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2 Values and Their Representationinteger 32 bits, untagged. Unboxed (i.e., not region allocated).real 64 bits, untagged. Boxed (i.e., allocated in region)string Unbounded size. Allocated in region.bool one 32 bit word. Unboxed.� list nil and :: cells in one region; auxiliary pairs in one region; elements inone or more regions. Size of :: cell: two 32 bit words; size of auxiliarypair: two 32 bit words.� tree A tree and its subtrees reside in one region. Elements in one region (ifnot unboxed).exn Nullary exception names are unboxed. A constructed exception value(i.e., a unary exception constructor applied to a value) is stored in aglobal region.fn pat=> exp An anonymous function is represented by a boxed, untagged closure. Size(in 32 bit words): 1 plus the number of free variables of the function.(Free region variables also count as variables.)fun f : : : Mutually recursive region-polymorphic functions share the same closure,which is region-allocated, untagged and whose size (in words) is the num-ber of variables that occur free in the recursive declaration.Regions and Their RepresentationFinite(�:n) Region whose size can be determined at compile time. During com-pilation, a �nite region size is given as a non-negative integer. Aftermultiplicity inference, this integer indicates the number of times a value(of the appropriate type) is written into the region. Later, after physicalsize inference, the integer indicates the physical region size in words. Atruntime, a �nite region is allocated on the runtime stack.In�nite(�:INF) All other regions. At runtime, an in�nite region consists of a regiondescripter on the stack which contains pointers to the beginning and theend of a linked list of �xed size region pages.Storage Modes (only signi�cant for in�nite regions)atbot Reset region, then store value.sat Determine actual storage mode (attop/atbot) at runtime.attop Store at top of region, without destroying any values already in theregion.
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PrefaceThe ML Kit with Regions is a Standard ML compiler. It is intended for thedevelopment of stand-alone applications which must be small, reliable, fastand space e�cient.There has always been a tension between high-level features in program-ming languages and the programmer's legitimate need to understand pro-grams at the operational level. Very likely, if a resource conscious program-mer is forced to make a choice between the two, he will choose the latter.The ML Kit with Regions is the result of a research and developmente�ort which has been going on at the University of Copenhagen for thepast �ve years. The goal of this project has been to develop implementationtechnology which combines the advantages of using a high-level programminglanguage, in this case Standard ML, with a model of computation whichallows programmers to reason about how much space and time their programswill use.In most call-by-value languages, it is not terribly hard to give a model oftime usage which is good enough for elementary reasoning.For space, however, the situation is much less satisfactory. Part of thereason is that many programs must recycle memory while running. For allsuch programs, the mechanisms that reclaim memory inevitably become partof the reasoning. This is true irrespective of whether memory recycling isdone by a stack mechanism or by pointer tracing garbage collection.In the stack discipline, every point of allocation is matched by a point ofde-allocation and these points are obvious from the program. By contrast,garbage collection techniques usually separate allocation, which is done bythe programmer, from de-allocation, which is done by a garbage collector.The advantage of using reference tracing garbage collection techniques is thatthey apply to a wide range of high-level concepts now found in programminglanguages, for example recursive data types, higher-order functions, excep-7



8 CONTENTStions, references and objects. The disadvantage is that it is becoming in-creasingly di�cult for the programmer to reason about lifetimes. Lifetimesmay depend on subtle details in the compiler and in the garbage collector.Thus it is hard to model memory in a way which is useful to programmers.Also, compilers o�er little assistance for reasoning about lifetimes.In this report we equip Standard ML with a di�erent memory manage-ment discipline, namely a region-based memory model. Like the stack disci-pline, the region discipline is, in essence, simple and platform-independent.Unlike the traditional stack discipline, however, the region discipline also ap-plies to recursive data types, references and higher-order functions, for whichone has hitherto mostly used reference tracing garbage collection techniques.The reader we have in mind is a person with a Computer Science back-ground who is interested in developing small, but reliable and e�cient ap-plications written in Standard ML. Also, the report may be of interest toresearchers of programming languages, since the ML Kit with Regions is afairly bold exercise in program analysis. We should emphasise, however, thatthis report is very much intended as a user's guide, not a scienti�c publica-tion.This report consists of three parts:Part I: Overview, in which we give an overview of the ideas that underlieprogramming with regions in the Kit;Part II: Understanding Regions, in which we systematically go throughthe language constructs of the Standard ML Core Language, showingfor each one how it can be used when programming with regions;Part III: System Reference, in which we explain how to interact withthe system, how to use the region pro�ler and how to call C functionsfrom the Kit.The ML Kit with Regions is also called the ML Kit Version 2, since itis a further development of the ML Kit Version 1, which was developed atEdinburgh University and Copenhagen University. We hope you will enjoyusing the ML Kit with Regions as much as we have enjoyed developing it. Ifyour experience with the Kit gives rise to comments and suggestions, specif-ically with relation to the goals and visions expressed above, please feel freeto write. Further information is available at our web site:
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Chapter 1Region-Based MemoryManagementRegion-Based Memory Management is a technique for managing memory forprograms that have dynamic data structures, such as lists, trees, pointersand function closures.1.1 Prevailing Approaches to Dynamic Mem-ory ManagementMany programming languages rely on a memory model consisting of a stackand a heap. Typically, the stack holds temporary values, activation records,arrays and in general, values whose lifetime is closely connected to procedureactivations and whose size can be determined at the latest when creation ofthe value begins. The heap is what holds all the other values. In particular,the heap holds values whose size can grow dynamically, such as lists andtrees. The heap also holds values whose lifetime does not follow procedureactivations closely (for example lists and, in functional languages, functionclosures and suspensions).The beauty of the stack discipline (apart from the fact that it is oftenvery e�cient in practice) is that it couples allocation points and de-allocationpoints in a manner which is intelligible to the programmer. C programmersappreciate that whatever memory is allocated for local variables in a proce-dure ceases to exist (and take up memory) when the procedure returns. Cprogrammers also know that counting from one to some large number, N , is13



14 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTnot best done by making N recursive C procedure calls, since that would usestack space proportional to N .By contrast, programmers have much less help when it comes to managingthe heap. Two approaches prevail. The �rst approach is that the programmermanages memory herself, using explicit allocation and de-allocation instruc-tions (e.g., malloc and free in C). For non-trivial programs this can be avery signi�cant burden, since it is, in general, very hard to make sure thatnone of the values that reside in the memory which one wishes to de-allocateare not needed for the rest of the computation. This puts the programmer ina very di�cult position. If one is too eager to reclaim memory in the heap,the program might crash under some peculiar circumstances which might behard to �nd during debugging. If one is too conservative reclaiming memory,the program might end up \leaking space", i.e., using more memory thanexpected, perhaps eventually exhausting the memory of the machine.The other prevailing approach is to use automatic garbage collection inthe heap. Some implementers of some languages even dispense with thestack entirely, relying only on a heap with garbage collection. Garbage col-lection techniques separate allocation, which is done by the programmer,from de-allocation, which is done by the garbage collector. At �rst, thismight seem like the perfect solution: no longer does the programmer haveto worry about whether memory that is being reclaimed really is dead, forthe garbage collector only reclaims memory which cannot be reached by therest of the computation. However, reality is less perfect. Garbage collectorsare typically based on the idea that if data is reachable via pointers (startingfrom the stack and other root data) then those data must be kept. Conse-quently, programs have to be written with care to avoid hanging on to toomany pointers. Space conscious programmers (and language implementers)can work their way around these problems, for example by assigning nil topointers that are no longer used. However, such tricks often rely on assump-tions about the code which cannot be checked by the compiler and which arelikely to be invalidated as the program evolves.1.2 Checked De-allocation of MemoryRegions o�er an alternative to these two approaches. The runtime model isvery simple, at least in principle. The store consists of a stack of regions,see Figure 1.1. Regions hold values, for example tuples, records, function



1.2. CHECKED DE-ALLOCATION OF MEMORY 15

r0 r1 r2 r3 : : :Figure 1.1: The store is a stack of regions; every region is depicted by a boxin the picture.closures, references and values of recursive types (such as lists and trees). Allvalues, except those that �t within one machine word (for example integers)are stored in regions.The size of a region is not necessarily known when the region is allocated.Thus a region can grow gradually (and many regions can grow at the sametime) so one might think of the region stack as a stack of heaps. However,the region stack really is a stack in the sense that (a) if region r1 is allocatedbefore region r2 then r2 is de-allocated before r1 and (b) when a region isde-allocated, all the memory occupied by that region is reclaimed in oneconstant time operation.Values which reside in one region are often, but not always, of the sametype. A region can contain pointers to values that reside in the same regionor in other regions. Both forward pointers (i.e., pointers from a region intoa region closer to the stack top) and backwards pointers (i.e., pointers to anolder region) occur.Conceivably, one can combine the region scheme with pointer tracinggarbage collection techniques.1 In the present version of the ML Kit, however,the region stack is the only form of memory management provided. How canthat be so? Is the region model really general enough to �t a wide variety of1Indeed we might well provide a release of the ML Kit which has both regions andreference-tracing garbage collection.



16 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTcomputations?First note that the pure stack discipline (a stack, but no heap) is a specialcase of the region stack. Here the size of a region is known at the latest whenthe region is allocated. Another special case is when one has just one regionin the region stack and that region grows dynamically. This can be thoughtof as a heap with no garbage collection, which again would not be su�cient.But when one has many regions, one obtains the possibility of distin-guishing between values according to what region they reside in. The MLKit contains operations for allocating, de-allocating and extending regions.But it also has an explicit operation for resetting an existing region, i.e.,reclaiming all the memory occupied by the region without eliminating theregion from the region stack. This primitive, simple as it is, enables one tocope with most of those situations where lifetimes simply are not nested.Figure 1.2 shows a possible progression of the region stack.In the ML Kit the vast majority of region management is done automat-ically by the compiler and the runtime system. Indeed, with one exception,source programs are written in Standard ML, with no added syntax or spe-cial directives. The exception has to do with resetting of regions. The Kitprovides two built-in functions (resetRegions and forceResetting) whichinstruct the program to reset regions. Here resetRegions is a safe form ofresetting where the compiler only inserts region resetting instructions if it canprove that they are safe, and prints thorough explanations of why it thinksresetting might be unsafe otherwise. Function forceResetting is for poten-tially unsafe resetting of regions, which is useful in cases where the program-mer jolly well knows that resetting is safe even if the compiler cannot proveit. forceResetting is the only way we allow users to make decisions thatcan make the program crash; many programs do not need forceResettingand hence cannot crash (unless we have bugs in our system).All other region directives, including directives for allocation and de-allocation of regions, are inferred automatically by the compiler. This hap-pens through a series of fairly complex program analyses and transformations(in the excess of twenty-�ve passes involving three typed intermediate lan-guages). These analyses are formally de�ned and the central one, calledregion inference, has been proved correct for a skeletal language. Althoughthe formal rules that govern region inference and the other program analysesare complex, we have on purpose restricted attention to program analyseswhich we feel capture natural programming intuitions. Moreover, the Kit im-
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r0 r1 r2 r3 r4(a)

r0 r1 r2 r3 r4 r5(b)

r0 r1 r2 r3(c)Figure 1.2: Further development of the region stack: (a) after allocation ofr4; (b) after growth of r2 and r4, resetting of r3 and allocation of r5; (c)after popping of r4 and r5 but extension of r1 and r3.



18 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTplementation is such that, with one exception2, every region directive takesconstant time and constant space to execute. The fact that we avoid inter-rupting program execution for unbounded lengths of time gives a nice smoothexperience when programs are run and should make the scheme attractivefor real-time programming.To help programmers get used to the idea of programming with regions,the ML Kit can print region-annotated programs, i.e., source programs ithas annotated with region directives. Also, it provides a region pro�ler forexamining run-time behaviour. The region pro�ler gives a graphical repre-sentation of region sizes as a function of time. This makes it possible to seewhich regions use the most space and even to relate memory consumptionback to individual allocation points in the (annotated) source program.To sum up, the key advantages obtained by using regions compared tomore traditional memory management schemes are1. safety of de-allocation is checked by the compiler;2. the compiler can in many cases spot potential space leaks;3. region management is under the control of the user, provided one un-derstands the principles of region inference;4. each of the region operations that are inserted use constant time andconstant space at runtime;5. it is possible to relate runtime space consumption to allocation pointsin the source program; we have found region pro�ling to be a powerfultool for eliminating space leaks.Regions are not a magic wand to solve all memory management problems.Rather, the region scheme encourages a particular discipline of programming.The purpose of this report is to lay out this discipline of programming.2The exception has to do with exceptions. When an exception is raised, a search downthe stack for a handler takes place; this search is not constant time and it involves poppingof regions on the way. However, the number of region operations is bounded by the numberof handlers that appear on the stack.



1.3. EXAMPLE: THE GAME OF LIFE 191.3 Example: the Game of LifeTo illustrate the general 
avour of region-based memory management, let usconsider the problem of implementing the game of Life. The game takes placeon a board that resembles a chess board, except that the size of the boardcan grow as the game evolves. Thus every position has eight neighbouringpositions (perhaps after extension of the board). At any point in time, everyposition is either alive or dead. A snapshot of the game consisting of the boardtogether with an indication of which positions are alive is called a generation.The rules of the game specify how to progress from one generation to thenext. Consider generation n from which we want to create generation n + 1(n � 0). Let (i; j) be a position on the board, relative to some �xed point(0; 0) in the plane. Assume (i; j) is alive in generation n. Then (i; j) staysalive in generation n + 1 if and only if it has two or three live neighboursin generation n. Assume (i; j) is dead at generation n. Then it is bornin generation n + 1 if and only if it has precisely three live neighbours atgeneration n. We assume that only �nitely many positions are alive initially.An example of two generations of Life is shown below:00 00 00 000 0 00 0000 000 0 00 0000 00 0 0 0 000 0000 0000000000000 0 0 0 000 000 0 0 0 000 00 0 0 00000 0 0 000 0 000 000



20 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTTo represent the game board, we need a data structure which can growdynamically (so a two-dimensional array of �xed size is not su�cient). Asimple solution is to represent a generation by a list of integer pairs, namelythe positions that are alive. Since we want to give all pairs belonging to onegeneration the same lifetime (in the computer memory, that is!) it is naturalto store all the integer pairs belonging to one generation in the same region.Indeed region inference forces this decision upon us, as it happens, since itrequires that all elements belonging to the same list lie in the same region.(Di�erent lists can lie in di�erent regions, however.)Thus, after having built the initial generation, we expect the region stackto look like this
ln: list of integerpairs representinggeneration n.r0The computation of the next generation involves a considerable amount oflist computation. Xavier Leroy has expressed the key part of the compu-tation as shown in Figure 1.3. Despite the extensive use of higher-orderfunctions here, there is a great deal of stack structure in this computation.For example, the survivors list can be allocated in a local region whichcan be de-allocated after the list has been appended (@) to the newbornlist. The computation of survivors, in turn, involves the creation of a clo-sure for (twoorthree o liveneighbours) and additional creation of clo-sures as part of the computation of the application of filter. Each timeliveneighbours is called (by filter) additional temporary values are cre-ated. All of this data should live shorter than survivors itself. The detailsof these lifetimes are determined automatically by the region inference algo-rithm which ensures that when the above expression terminates it will simplyhave created a list containing the live positions of the new generation.But now we have a design choice. Should we put the new generation inthe same region as the previous region or should we arrange that it is put in aseparate region? Piling all generations on top of each other in the same regionwould clearly be a waste of space: only the most recent generation is ever



1.3. EXAMPLE: THE GAME OF LIFE 21let val living = alive genfun isalive x = member eq_int_pair_curry living xfun liveneighbours x = length(filter isalive (neighbours x))fun twoorthree n = n=2 orelse n=3val survivors = filter (twoorthree o liveneighbours) livingval newnbrlist = collect(fn z => filter (fn x => not(isalive x))(neighbours z)) livingval newborn = occurs3 newnbrlistin mkgen (survivors @ newborn)endFigure 1.3: An excerpt of a (modi�ed version of) Xavier Leroy's Game ofLife benchmark.needed. Similarly, giving each generation a separate region on the regionstack is no good either, since it would make the stack grow ad in�nitum(although this could be alleviated somewhat by resetting all regions exceptthe topmost one). The solution is simple, however: use two regions, onefor the current generation and one for the new generation. When the newgeneration has been created, reset the region of the old region and copythe contents of the the new region into the old region. This is achieved byorganising the main loop of the program as follows:local(*1*) fun nthgen'(p as(0,g)) = p(*2*) | nthgen'(p as(i,g)) =(*3*) nthgen' (i-1, let val g' = nextgen g(*4*) in show g;(*5*) resetRegions g;(*6*) copy g'(*7*) end)in(*8*) fun iter n = #2(nthgen'(n,gun()))end



22 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTHere nthgen' is the main loop of the program. It takes a pair as argument;the �rst component of the pair indicates the number of iterations desired,while the second, g, is the current generation. The use of the as patternin line 1 forces the argument and the result of nthgen' to be in the sameregions. Such a function is called a region endomorphism. In line 3, wecompute a fresh generation which lies in fresh regions, as it happens. Havingprinted the generation (line 4) we then reset the regions containing g. Thecompiler checks that this is safe. Then, in line 6 we copy g' and the target ofthis copy must be the regions of g, since nthgen' is a region endomorphism(see Figure 1.4). All in all we have achieved that at most two generations arelive at the same time (a fact which can be checked by inspecting the regionannotated code, if one feels passionately about it).3The above device, which we refer to as double copying, can be seen as amuch expanded version of what is often called \tail recursion optimisation".In the case of regions, not just the stack space, but also region space, isre-used. Indeed, double copying is similar to invoking a copying garbagecollector on speci�c regions which are known not to have live pointers intothem. But by doing the copying ourselves, we have full control over when ithappens, we know that the cost of copying will be proportional to the size ofthe generation under consideration and that all other memory managementis done automatically by the region mechanism. Since each of the regionmanagement directives which the compiler inserts in the code are constanttime and space operations, we have now avoided unpredictable interruptionsdue to memory management. This might not be terribly important for thepurpose of the game of Life, but if we were writing control software forthe ABS brakes of a car, having control over all costs, including memorymanagement, would be crucial!Region pro�les for two hundred generations of life starting from the con-�guration shown earlier appear in Figures 1.6 and 1.5. The highest amountof memory used for regions during the computation is 29.000 bytes. Fig-ure 1.6, which has data collected from 1000 snapshots of the computation,clearly shows that most of the 29.000 bytes are reclaimed between every twogenerations of the game. It turns out that the game essentially stabilises with3The entire life program is available in kitdemo/life.sml, project kitdemo/life.(Running projects is described in Section 3.6.) Run with n=10000 on the HP PA-RISC,the memory consumption (program + data) quickly reaches 192Kb and it stays there forthe remaining generations. The size of the executable program, which includes the runtimesystem, is 164Kb.



1.3. EXAMPLE: THE GAME OF LIFE 23a small number of live positions on the board after roughly 150 generations.This is clearly re
ected in the region pro�le.Figure 1.6 is from the same computation, but it only includes data from80 snapshots. This makes it easier to see that the largest regions are r1588and r1121. To �nd out what these regions contain, however, one needs tomaster the methods described in Part II.



24 CHAPTER 1. REGION-BASED MEMORY MANAGEMENT
ln: list of integerpairs representinggeneration n.r0 (a)
ln r0

ln+1: list of inte-ger pairs representinggeneration n+ 1.r1(b)
copy of ln+1r0 (c)Figure 1.4: Using double-copying in the game of Life: (a) generation numbern resides in region r0; (b) generation (n+1) has been built in r1; (c) regionr0 has been reset, the new generation copied into r0 and r1 has been de-allocated.
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Figure 1.5: A region pro�le of two hundred generations of the \Game ofLife", showing region sizes as a function of time (80 snapshots).
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Chapter 2Making Regions ConcreteIn this chapter we give a brief overview of how the abstract memory modelpresented in the last chapter is mapped down to conventional memory. In do-ing so, we shall introduce notation and concepts that will be used extensivelyin what follows.2.1 Finite and In�nite RegionsNot every region has the property that its size is known at compile-time,or even when the region is �rst allocated at runtime. As we have seen, onetypical use of a region is to hold a list, and in general there is no way ofknowing how long a given list is going to be.For e�ciency reason, however, the Kit distinguishes between two kindsof regions: those regions whose size it can determine at compile-time andthose it cannot. These regions are referred to as �nite and in�nite regions,respectively.1 Finite regions are always allocated on the runtime stack. Anin�nite region is represented as a linked list of �xed-size pages. The runtimesystem maintains a free list of such pages. An in�nite region is representedby a region descriptor, which is a record kept on the runtime stack. Theregion descriptor contains two pointers: one to the �rst and one to the lastregion page in the linked list which represents the region. Allocating anin�nite region involves getting a page from the free list and pushing a regiondescriptor onto the runtime stack. Popping a region is done by appending1\�nite" and \unbounded" would have been better terms, but it is too late to changethat. 27



28 CHAPTER 2. MAKING REGIONS CONCRETEthe region pages of the region and the free list (this is done in constant time)and then popping the region descriptor o� the runtime stack.At runtime, every region is represented by a 32-bit entity, called a regionname. If the region is �nite, the region name is a pointer into the stack,namely to the beginning of the region. If the region is in�nite, the regionname is a pointer to the region descriptor of the region.The multiplicity of a region is a statically determined upper bound on thenumber of times a value is put into the region. The Kit operates with threemultiplicities: 0, 1 and 1, ordered by 0 < 1 < 1. Multiplicities annotatebinding occurrences of region variables. An expression of the formletregion � : m in e endwhere m is a multiplicity, gives rise to an allocation of a region which is �niteif m <1, and in�nite otherwise.2.2 Runtime Types of RegionsEvery region has a runtime type. The following runtime types exist: real,string and top. Not surprisingly, regions of runtime type real and stringcontain values of ML type real and string, respectively. Regions with run-time type top can contain all other forms of allocated values, i.e., constructedvalues, tuples, records and function closures.It is often, but not always, the case that all values that reside in the sameregion have the same type (considered as representations of ML values).2.3 Allocation and De-Allocation of RegionsThe analysis which decides when regions should be allocated and de-allocatedis called region inference. Region inference inserts several forms of memorymanagement directives as directives into the program. The target languageof region inference is called RegionExp.In RegionExp, region allocation and de-allocation are explicit, they arealways paired and they follow the syntactical structure of the source program.If e is an expression in RegionExp, then so isletregion � in e end



2.4. THE KIT ABSTRACT MACHINE 29Here � is a region variable. At runtime, �rst a region is allocated and boundto �. Then e is evaluated, presumably using the region bound to � for storingvalues. Upon reaching end, the program pops the region.Region inference also decides, for each value-producing expression, intowhich region (identi�ed by a region variable) the value will be put.We emphasise that region variables and letregion-expressions are notpresent in source programs. The source language is unadulterated StandardML, so programs that run on the Kit should be easy to port to any otherStandard ML implementation.2.4 The Kit Abstract MachineThe Kit contains a virtual machine, called the Kit Abstract Machine (KAM,for short), which details the above ideas. The KAM is a register machinewith one linear address space which it partitions into a stack and a heap. Theheap holds region pages, all of the same size. The KAM has simple RISC-likeinstructions, for example for moving word-size data between two registers orbetween a register and a memory location. More complex operations, suchas function application, are expressed by sequences of KAM instructions.For the purpose of this report, we assume that the KAM has in�nitelymany registers. In reality, there is a �xed number of 32 bit registers andregister allocation assigns machine registers to KAM registers, using the run-time stack for spilling. However, register allocation will not be described inthis report. Also, we do not discuss the interaction between hardware cachestrategies and the code generated by the Kit. While both can be importantin practice, we do not want to go to that level of detail. Our primary concernis with establishing a model which the user can safely use as a worst-casemodel of what happens at runtime.2.5 Intermediate LanguagesThe Kit compiles Standard ML programs via a sequence of typed intermedi-ate languages into KAM instructions, which in turn are compiled into ANSIC or to HP PA-RISC assembly language. The intermediate languages weshall refer to in the following are (in the order in which they are used in thecompilation process):



30 CHAPTER 2. MAKING REGIONS CONCRETELambda A lambda-calculus like intermediate language. The main di�erencebetween the Standard ML Core Language and Lambda is that the latteronly has trivial patterns.RegionExp Same as Lambda, but with explicit region annotations (such asthe letregion-bindings mentioned in Section 2.3). Region variableshave their runtime type (Section 2.2) as an attribute, although, forbrevity, the pretty printer omits runtime types when printing expres-sions, unless instructed otherwise.MulExp Same as RegionExp, but now every binding region variable occur-rence is also annotated with a multiplicity (Section 2.1) in additionto a runtime type. Again, the default is that the runtime type is notprinted. The terms of MulExp are polymorphic in the information thatannotate the nodes of the terms. That way, MulExp can be used as acommon intermediate language for a number of the internal analyses ofthe compiler which add more and more information on the syntax tree.The analysis which computes multiplicities is called the multiplicityanalysis.The Kit contains a Lambda-optimiser which will happily rewrite Lambda-terms when it is clear that this results in faster programs (as long as thetransformations cannot lead to increased space usage).Region inference takes Lambda to be the source language. Region Infer-ence happens after the lambda-optimiser has had a go at the lambda term.Therefore, it wasn't really true when we said that region inference simplyannotates source programs; we ignored the translation from SML to Lambdaand the Lambda optimiser. Thus one has to get used to (mostly minor) dif-ferences between the source language and the intermediate languages of thecompiler if one wants to read programs in their intermediate forms.When we want to show the result of the analyses, we usually show aMulExp expression.2.6 Runtime SystemThe runtime system is written in C. It is small (less than 100Kb of code whencompiled). It contains operations for allocating and de-allocating regions,



2.6. RUNTIME SYSTEM 31extending regions, obtaining more space from the operating system, recordingregion pro�ling information and performing low-level operations on strings.It is possible to call C functions from ML Kit code. The Kit takes care ofthe memory allocation, by allocating regions before the call and de-allocatingregions after the call. The C functions can build ML data structures suchas lists through abstract operations provided by the Kit runtime system. Cfunctions have to obey certain restrictions, see Chapter 17 for further details.
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Chapter 3Records and TuplesIn this chapter we describe construction of records and selection of recordcomponents. We also use records to introduce region-annotated types ande�ects which are crucial for understanding when regions are allocated andde-allocated.3.1 SyntaxAs part of the SML to Lambda translation, all SML records and SML tu-ples are compiled into Lambda-tuples. The components of Lambda-tuples arenumbered from left to right, starting from 0. Selection is a primitive opera-tion, both in Lambda and in the other intermediate languages. This primitiveis printed using ML notation #i. Components are numbered from 0: the ithcomponents of a tuple of type �1 � : : :� �n is accessed by #i, for 0 � i � n�1.The tuple constructor in Lambda is written as in SML:(e1, : : : ,en)However, the corresponding expression in RegionExp and MulExp takes theform (e1, : : : ,en) at�where � is a region variable indicating where the tuple should be put. In thecase n = 0, the at� is not printed, since the empty tuple is not allocated: itis just a constant which �ts in a KAM register.Records are evaluated left to right.35



36 CHAPTER 3. RECORDS AND TUPLES3.2 Example: Basic Record OperationsConsider the source programval xy = ((),())val x = #1 xy;Here is the resulting MulExp program:1let val xy = ((), ()) at r1; val x = #0 xyin {|xy: (_,r1), x: (_,r2)|}endThere are several things to note from this example.1. TheMulExp program contains two free region variables r1 and r2. Notethat the construction of the pair xy has been annotated by \at r1",indicating where the pair should be put. Similarly, r2 is the place of x(although, as we shall see below, this does not denote a real region);2. The expression f|xy:( ,r1), x:( ,r2)|g is an example of a frameexpression. A frame enumerates the components that are exportedfrom a compilation unit.3.3 Region-Annotated TypesML type inference infers a type for every expression in the program. Region-inference extends this idea by inferring for each expression a region-annotatedtype. The region-annotated type of an expression is the ML type of theexpression decorated with extra region information. In a region-annotatedtype, every type constructor (e.g., int, unit and list) is paired with aregion variable, indicating where the value is going to be put at runtime.The following are examples of region-annotated types(int; �) The type of integers in region �.1project: kitdemo/proj, �le kitdemo/projection.sml.



3.4. EFFECTS AND LETREGION 37(unit; �) The type of 0-tuples in region �. Integers and 0-tuples are repre-sented unboxed at runtime (rather than being stored in regions).2 Thetypes unit, bool and int are always decorated with one particularregion variable, r2.((int; �1) � (string; �2); �3) Denotes pairs in �3 whose �rst component isan integer in �1 and whose second component is a string in region �2.A pair of a region-annotated type and a region variable is called a \(region-annotated) type and place". We use � to range over types and places� ::= (�; �)One can get the Kit to print the region-annotated types it infers forbinding occurrences of variables. The above example then becomeslet val xy:(((unit,r2)*(unit,r2)),r1) = ((), ()) at r1;val x:(unit,r2) = #0 xyin {|xy: (((unit,r2)*(unit,r2)),r1), x: (unit,r2)|}end3.4 E�ects and letregionHere is an example of an SML program which �rst creates a pair and thenselects a component of the pair, after which the pair is garbage:3val n = letval pair = if true then (3+4, 4+5)else (4, 5)in #1 pairend;The Kit compiles the declaration into the MulExp program shown in Fig-ure 3.1.4 The compiler compiles the program as it is, without reducing theconditional to its then branch. During evaluation, a region (denoted by2To box a value means to store the value in memory and represent it by its address.Values which are kept in registers are said to be unboxed.3Project: kitdemo/effect, �le: kitdemo/elimpair.sml.4In general, the Lambda-optimiser performs various optimisations; elimination of caseanalyses whose outcome are known statically is not one of them.



38 CHAPTER 3. RECORDS AND TUPLESlet val n =letregion r7:1in let val pair =(case trueof true => (3 + 4, 4 + 5) at r7| false => (4, 5) at r7) (*case*)in #0 pairendendin {|n: (_,r2)|}endFigure 3.1: Region inference decides that the pair is to be allocated in alocal, �nite region; the region will be de-allocated as soon as the pair becomesgarbage.r7) is introduced before the pair is allocated; it remains on the region stacktill the projection of the pair has been computed, after which the region isde-allocated.The \:1" on the binding occurrences of r7 is a multiplicity indicating thatthere is only one store operation into the region. (The multiplicity analysishas discovered that there is at most one store from the then branch and atmost one store from the else branch and that at most one of the brancheswill be chosen.) Thus the pair will be allocated in a little region on theruntime stack.But how does the Kit know that it is safe to de-allocate r7 where theletregion ends?The answer lies in the fact that the Kit infers for every expression notjust a region-annotated type, but also a so-called e�ect. An e�ect is a �niteset of atomic e�ects. Two forms of atomic e�ect are put(�) and get(�),where � as usual ranges over region variables. put(�) indicates that a valueis being stored in region � and get(�) indicates that a value is being readfrom region �. In our example, the region inference algorithm considers thesub-expression e0 =let val pair =



3.5. RUNTIME REPRESENTATION 39(case trueof true => (3 + 4, 4 + 5) at r7| false => (4, 5) at r7) (*case*)in #0 pairendand �nds that it has region-annotated type (int; r2) and e�ectfput(r7); get(r7);put(r2); get(r2)g:The atomic e�ects on r2 stem from the integer operations: all integers areput into the same virtual region.Whenever a region variable occurs free in the e�ect of an expression butoccurs free neither in the region-annotated type of the expression nor inthe type of any program variable which occurs free in the expression thenthat region variable denotes a region which is only used locally within theexpression. That this is true is of course far from trivial, but it has beenproved for a skeletal version of RegionExp. Consequently, when this conditionis met, the region inference algorithm wraps a letregion-binding of theregion variable around that expression.In our example, there are no free variables in e0; moreover, r7 occurs inthe e�ect of e0 but not in the region-annotated type of e0. Thus the regioninference algorithm inserts a letregion-binding of r7 around e0.3.5 Runtime RepresentationA record with 0 components (the value of type unit) is stored in a KAMregister, not in a region. A record with n components (n � 2) takes upprecisely n 32-bit words in a region; the tuple is represented by the (32-bit)address of the �rst component of the tuple. Note that the Kit boxes tuples.However, records are not tagged. Avoiding tags is possible, because (a)there is no pointer tracing garbage collection; and (b) polymorphic equalityis compiled into monomorphic equality functions that do not have to examinethe type of objects at runtime.Lambda, RegionExp andMulExp allow one to express unboxed tuples, alsoin the case of function calls and returns, but the Kit does not (yet) have aboxing analysis which exploits it, nor does the code generator generate code



40 CHAPTER 3. RECORDS AND TUPLESfor unboxed tuples, multiple function arguments or multiple function returnvalues.A tuple is not allocated until its components have been evaluated.3.6 A First Session with The KitThe Kit is a batch compiler. A project consists of a number of SML source�les, enumerated in a project �le. Executing a project consists of �rst com-piling the project giving your so-called script �le as an argument and thenrunning the generated target program.3.6.1 Getting your own Script FileTo compile a project, you need your own personal script �le. Your script�le contains your personal preferences concerning where source �les shouldbe read from, where target programs should be put, what should be printedon log �les, what format should be used when printing programs etc. Whenyou start the Kit, you give your script �le as an argument.If you have built the executable Kit yourself, there will be a script �lecalled kit.script in the same directory as you instructed the build programto put the executable Kit in and you can use that script �le as is. Otherwise,obtain a script �le from a friend or from the Web site mentioned in thePreface and modify it as described in Section 16.4.3.6.2 Compiling a ProjectTo compile a project, you need an executable version of the Kit; let us assumeit is available on your system as a UNIX program called kit.To compile Example 3.2, start the Kit with the shell commandkit -script scriptwhere script is the name of your script �le.After the Kit has uttered various greetings, you will �nd yourself in a rudi-mentary menu-driven dialogue, see Figure 3.2. First, you are going to askthe Kit to print one of the intermediate forms that arise under compilation(this is how the annotated programs shown in this section were obtained).Choose Printing of intermediate forms (i.e., type 1 followed by carriage



3.6. A FIRST SESSION WITH THE KIT 410 Project....................... >>>1 Printing of intermediate forms >>>2 Layout........................ >>>3 Control....................... >>>4 File.......................... >>>5 Profiling..................... >>>6 Test environment.............. >>>7 Debug Kit..................... >>>8 Compile an sml file........... >>>9 Compile it again.............. ("dummy") >>>Toggle line (t <number>), Activate line (a <number>), Up (u), or Quit(q):> Figure 3.2: The top-most Kit menureturn), and then print drop regions expression to toggle on the print-ing of the MulExp program. Go up one level in the menu tree by typing ufollowed by return, and you are back in the main menu.Before proceeding, check the Filemenu to see that the source directoryis set to the kitdemo directory (which is part of the distribution). The set-tings you see are the ones that come from the script �le. You can changethem, if you want to. Finish by going back up to the main menu.Next, you are going to interact with the separate compilation system. Se-lect the Project menu. Choose Set project file name; then type "proj"(including the quotes) followed by return. Here proj is a project �le whichcontains the names of the �les one wants to compile. Our project consistsof two �les kitdemo/prelude.sml and kitdemo/projection.sml. The pre-lude must be included in all projects (not just demonstration programs). The�le projection.sml contains the ML declaration shown in Section 3.2.Then select Read the project file, and then Show project status.This will list the program units that are in the project. The �rst column givesthe �le name of the source code of the program unit (the extension .sml,which is required for all source �les, is not printed). The second columnshows the status of the program unit. new means that it has not yet been



42 CHAPTER 3. RECORDS AND TUPLEScompiled.Now select Compile and link project. If you inspect the status of theproject by selecting Show project status you will see that the two unitshave been compiled. The Kit tells you where it puts the target �les it creates.For each source �le f.sml the Kit produces a log �le f.log. You will�nd the output shown in Section 3.2 in the log �le projection.log after theheadingReport: AFTER DROP REGIONS:Go up one on the menu tree. Printing of the region-annotated types can nowbe done by selecting Layout from the main menu, and then print types.Thereafter, go back to the Project menu, select Touch program unitand enter the string "projection", to indicate that you want to recompilethat program unit. Select Compile and link project again. This willbring the project up to date. One can then inspect the log �le again to seethe region-annotated types.Next, you can try the example in Section 3.4: select Set project filename, enter "effect", select Read the project file, and then Compileand link project.3.6.3 Running a Target ProgramIf no errors were found during compilation, the Kit produces a target pro-gram in the form of an executable �le, called run. The Kit places run intarget directory, which is de�ned in the script �le. As mentioned in theprevious section, you can change the value of target directory interactivelyfrom the File menu in the Kit, before compiling your project.Running the target program is done from the UNIX shell by changingdirectory to the target directory and typingrunThe �le will probably be around 100Kb large, even for the trivial examplesconsidered in the chapter. This is because it contains the Kit runtime systemand the compiled code for the prelude.Running the programs presented in this chapter is not particularly ex-citing, since none of them produce output! However, as an exercise, tryexecuting the hello project, which, like all other example �les in this docu-ment, is located in the kitdemo directory.



Chapter 4Basic ValuesValues of types int, real and string are de�ned in accordance with the 1990De�nition of Standard ML. In due course, they will be modi�ed to complyto the revised De�nition of Standard ML and the emerging Basis Library.4.1 IntegersValues of type int are represented as 32 bit integers. The following opera-tions on integers are pre-de�ned:infix 4 = <> < > <= >=infix 6 + -infix 7 div mod *val ~ : int -> intval abs: int -> intAt runtime, integers are represented without any form of boxing or tagging,so all 32 bits are available. Integers are kept in KAM registers or, whennecessary, on the runtime stack.For uniformity, region inference pairs all type constructors with a regionvariable. In the case of integers, where no region is required for storing thevalues, a �xed region, r2, is used throughout the program.At present, arithmetic operations do not raise any exceptions when theirresult is unde�ned or out of range.
43



44 CHAPTER 4. BASIC VALUES4.2 RealsThe prelude de�nes the following operations on reals:infix 4 = <> < > <= >=infix 6 + -infix 7 * /val ~ : real -> realval abs: real -> realval real: int -> realval floor : real -> intval sqrt : real -> realval exp : real -> realval ln : real -> realval sin : real -> realval cos : real -> realval arctan: real -> realValues of type real are implemented as 64 bit 
oating point numbers. Theyare always boxed, i.e., represented as a pointer to two consecutive 32 bitwords. These two words reside in a region and start on a double-alignedaddress. For that reason, regions with runtime type real (Section 2.2) arenever uni�ed with regions of any other runtime type.A real constant c in the source program is translated into an expressionof the form c at �, where � is a region variable, indicating the region intowhich the real will be stored.At present, arithmetic operations do not raise any exceptions when theirresult is unde�ned or out of range.4.3 StringsThe prelude de�nes the following operations on strings:infix 4 =infix 6 ^val ord: string -> intval chr: string -> intval size: string -> int



4.4. BOOLEANS 45val explode: string -> string listval implode: string list -> stringval ^ : string * string -> stringA string is represented by a 32 bit pointer into an in�nite region. The stringis stored in consecutive bytes in the region, except if the size of the stringexceeds the length of one region page, in which case the string is split intosmaller strings which are linked together. This is completely transparent tothe programmer, who does not have to worry about the actual size of regionpages.Calls of ord, chr and size take constant time and space. Calls ofexplode, implode and ^ take time and space proportional to the sum ofthe size of their input and their output.The string operations can raise exceptions, as detailed in the 1990 De�-nition.4.4 BooleansThe boolean values true and false are represented unboxed. Size: oneword.
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Chapter 5ListsSection 5.1 gives a summary of the list concept in Standard ML, introducesthe notion of the auxilary pairs of a list and presents the syntax of construc-tors and destructors in the intermediate languages. Section 5.2 introducesregion-annotated list types and show how they correspond to the layout oflists in memory. Section 5.3 gives a small example.5.1 SyntaxIn Standard ML all lists are constructed from the two constructors :: (read:cons) and nil. As a shorthand, one can write [exp1, � � �,expn] forexp1:: � � � ::expn::nilwhich in turn is short forop ::(exp1, � � �, op ::(expn,nil)� � �)where exp ranges over expressions. The type schemes of nil and cons arenil 7! 8�:�list :: 7! 8�:� � �list ! �listIn particular, note that :: is always applied to a pair. The construction ofthe pair and the application of :: should not be confused: the pair and theconstructed value are separate values. For example, the declarationval p = (2, nil)val mylist = (op ::) pval n = #1 p 47



48 CHAPTER 5. LISTSis legal in Standard ML. We refer to the pairs to which :: is applied asauxiliary pairs (of the list data type).Decomposition of list values in Standard ML is done by pattern matching.A pattern can extract the pair to which :: is applied. Pattern matching onpairs can then give access to the components of the pair.val abc = ["a", "b", "c"]val op :: p = abc (* binds p to the pair ("a", ["b","c"]) *)val (x::y::_) = abc (* binds x to "a" and y to "b" *)In the last declaration, the pattern (x::y:: ) is short for the pattern(op ::(x, op ::(y, )));which combines decomposition of constructed values with decomposition ofpairs.Many ML implementations represent lists di�erently by always packingthe constructor and the pair into one value.The intermediate languages Lambda and RegionExp have SML-like con-structs for applying constructors, but they decompose constructed values byapplying a deconstructor primitive, not by pattern matching.Lambda RegionExpnil nil at � store nil in region �:: (e) (::at�) (e) create cons cell in region �decon :: (e) decon :: (e) cons decompositionIn Lambda, which has essentially the same type system as SML, decon ::,the decomposition function for ::, has type 8�:�list! ���list. In addition,Lambda and RegionExp have a simple case construct:(case e of :: => e1 | => e2)where e must have list type.5.2 Region-Annotated List TypesIn Standard ML all elements of a given list must have the same type. Weextend this constraint to region inference by saying that all values in thesame list must reside in the same region(s), that all the constructed values



5.2. REGION-ANNOTATED LIST TYPES 49

"a""b""c" ( ; )( ; )( ; ) nil(::; )(::; )(::; )
@@@@@@I� ������	 --- ���������9 ���������9 ���������9

�1 �2 �3Figure 5.1: Layout of the list ["a","b","c"] : (((string; �1); [�2])list; �3)in memory. The spine of the list resides in �3 while the auxiliary pairs residein �2. Each auxiliary pair takes up two words; each constructed value (::; )takes up two words; nil takes up one word.must reside in one region and that all auxiliary pairs :: must reside in thesame region.Thus region inference does not distinguish between a list and its tail.Indeed a typical use of an in�nite region is to hold the spine of a list, i.e., allthe :: cells and the nil cell of the list. For an example, Figure 5.1 showshow the list ["a","b","c"] is laid out in memory.In general, the region-annotated type and place of a list takes the form((�; [�2])list; �3)where � = (�1; �1) is the type and place of the members of the list, �3 isthe region where the spine of the list resides, and �2 is the region where theauxiliary pairs of the list are stored. For example, the type(((string; �1); [�2])list; �3)classi�es lists which has their spine in �3, auxiliary pairs in �2 and strings ina region �1.Not all lists need to live in the same regions! Formally, nil and :: have



50 CHAPTER 5. LISTSthe following region-annotated types:nil 7! 8��1�2:((�; �1); [�2])list:: 7! 8��1�2�3�:((�; �1) � (((�; �1); [�2])list; �3); �2) �:fput(�3)g�������!(((�; �1); [�2])list; �3)Despite its verbosity, the type scheme for :: deserves careful study. Itis polymorphic not just in types (signi�ed by the bound type variable �)but also in region variables (signi�ed by the bound �1, �2 and �3). The� is a so-called e�ect variable. The �:fput(�3)g appearing on the functionarrow is called an arrow e�ect. Occurring in a function type, an arrowe�ect describes the e�ect of applying the function. In this case, the e�ectis to create a constructed value in �3, hence the e�ect is the singleton setfput(�3)g. The e�ect variable � is used for expressing dependencies betweene�ects (examples follow in Chapter 13). Due to the fact that the variables areuniversally quanti�ed, every occurrence of :: can, potentially, be in its ownregion. But notice that the type of :: forces the element, which is consedonto the list, to be in the same region (�1) as the already existing elementsof the list. Similarly, the type forces the pairs to be in one region (�2) andthe spine cells to be in one region (�3).5.3 Example: Basic List OperationsThe Kit compiles this program1let val l = [1, 2, 3];val (x::_) = lin x end;into the RegionExp-program shown in Figure 5.2.
1Project �le kitdemo/lists, �le kitdemo/onetwothree.sml.



5.3. EXAMPLE: BASIC LIST OPERATIONS 51let val it =letregion r7:INF, r8:INFin let val l =let val v2290 =(1,let val v2291 =(2,let val v2292 =(3,nil at r7) at r8in :: at r7 v2292end) at r8in :: at r7 v2291end) at r8in :: at r7 v2290endin (case lof :: =>let val v2287 = decon_:: lin #0 v2287end| _ => raise Bind) (*case*)endendin {|it: (_,r2)|}endFigure 5.2: Example showing construction and deconstruction of a small list.Layout of the list l is analogous to Figure 5.1. The in�nite regions r7 andr8 hold the spine of the list and the auxiliary pairs, respectively.
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Chapter 6First-Order FunctionsIn this chapter we shall treat functions which are declared with fun andwhich are �rst-order (i.e., they neither take functions as arguments nor pro-duce functions as results). Higher-order functions are treated in Chapter 13.Region polymorphism works uniformly over all types; we use lists as an ex-ample of the general scheme.6.1 Region-Polymorphic FunctionsIt would be a serious limitation if all lists produced by a function were storedin the same region, for then all those lists would have to be kept alive tillthe last time one of them were used. The solution which the Kit o�ers tothis problem is region-polymorphic functions, i.e., functions which are passedregions at runtime.When one declares a function which, when called, produces a fresh list,the region inference algorithm will automatically insert extra formal regionparameters in the function declaration. At every place one refers to thefunction, for example because one calls the function, the region inferencealgorithm inserts a list of actual region parameters thus telling the functionwhere to put its result. This is all done automatically: the user does nothave to introduce region parameters or pass them as arguments. But it isuseful to understand the general principle so that one can exploit the featurefully.The syntax of a (single) function declaration in MulExp is:fun f at �0 [�1, � � �, �k] x = e53



54 CHAPTER 6. FIRST-ORDER FUNCTIONSHere �0 denotes the region in which the closure for f is stored, �1; : : : ; �kare the formal region parameters, x is the value parameter (a single variable)and e is the body of the function. A call to f takes the formf [�01, � � �, �0k] at �00 e0where [�01, � � �, �0k] is a record of actual region parameters, �00 is the regionwhere this record is stored, and e0 is an expression denoting the argument tothe call. Note that region parameters are enclosed in angle brackets ([ ]);this should not cause confusion with ML lists, since RegionExp and MulExpdo not use the angle brackets for lists.Di�erent calls of f can use di�erent actual regions, and this is essentialfor obtaining good separation of lifetimes.For an example, consider1fun fromto(a, b) = if a>b then []else a :: fromto(a+1, b)val l = #1(fromto(1,10), fromto(100,110));The corresponding MulExp-program is shown in Figure 6.1. Note that r7and r8 are formal regions of fromto. In the last call of fromto, a recordconsisting of region descriptors for r20 and r21 are passed to fromto; theregion record is stored in r22. Note that the regions that hold the two listsgenerated by this program are disjoint. The reason that r1 is passed twice tofromto in the call fromto[at r1,at r1] at r17 (1, 10) at r19 is that,for reasons to do with separate compilation, the Kit only has one region forglobal values that are not of runtime type string, real or word. Thus r1holds both the pairs and the spine of the �rst list. In the second list, whichdoes not escape to top level, the pairs and the spine are kept separate, inr21 and r20, respectively.6.2 Region Type SchemesA region-polymorphic type scheme takes the form� ::= 8�1 � � ��n�1 � � � �k�1 � � � �m:�1Project kitdemo/fromto, �le kitdemo/fromto.sml.



6.2. REGION TYPE SCHEMES 55let fun fromto at r1 [r7:INF, r8:INF] (var263)=let val a = #0 var263; val b = #1 var263in (case a > bof true => nil at r7| false =>let val v2725 =(a,letregion r13:1,r15:1in fromto[r7,r8] at r13(a + 1,b) at r15end) at r8in :: at r7 v2725end) (*case*)end ;val l =let val v2737 =letregion r17:1, r19:1in fromto[r1,r1] at r17(1, 10) at r19endval _not_used =letregion r20:INF, r21:INFin let val v2738 =letregion r22:1, r24:1in fromto[r20,r21] at r22(100, 110) at r24endin ()endendin v2737endin {|fromto: (_,r1), pair: (_,r1)|}endFigure 6.1: The region-annotated version of fromto shows that fromto isregion-polymorphic.



56 CHAPTER 6. FIRST-ORDER FUNCTIONSwhere �1; : : : ; �n are type variables, �1; : : : ; �k are region variables, �1; : : : ; �mare e�ect variables and � is a region-annotated type.The types of nil and :: in Section 5.2 are examples of region-polymorphictype schemes.There is a close connection between, on the one hand, the formal and ac-tual region parameters found in RegionExp (and MulExp) programs, and, onthe other hand, the region type schemes which the region inference algorithmassigns to recursively declared functions. The formal region parameters ofa function stem from the bound region variables of the region type schemeof that function. The actual region parameters which annotate a call of thefunction are the region variables to which the bound region variables areinstantiated at that particular application.For example, the region type scheme of fromto from Figure 6.1 is8�7�8�6�:((int; �2) � (int; �2); �6) �:fget(�2);put(�2);get(�6);put(�7);put(�8)g��������������������������!(((int; �2)[�8])list; �7)At the last call of fromto in Figure 6.1, the type scheme is instantiated tothe type and place((int; �2) � (int; �2); �24) �0:fget(�2);put(�2);get(�24);put(�20);put(�21)g����������������������������!(((int; �2)[�21])list; �20)The instantiation of bound variables of the type scheme which achieves thisis f�7 7! �20; �8 7! �21; �6 7! �24; � 7! �0gIn general, the actual region parameters annotating a call of a region-polymorphicfunction are obtained from the range of the substitution by which the typescheme of the function is instantiated at that application.To avoid passing regions that are never used, the Kit only introducesformal region variables for those bound region variables in the type schemefor which there appears at least one put e�ect in the type of the function.Reading a value is done simply by following a pointer to the value, irrespectiveof which region the value resides in, whereas storing a value in a region usesthe name (Section 2.1) of the region. This explains why �6 does not becomea formal region parameter and why �24 is not passed to fromto at the callsite. This optimisation, which is called dropping of regions, is the key reasonwhy the Kit takes the trouble to distinguish between put and get e�ects.



6.3. ENDOMORPHISMS AND EXOMORPHISMS 57Region-polymorphic functions also have to be allocated somewhere. There-fore, the region information associated with a region-polymorphic functionis a region type scheme and place, i.e., a pair (�; �). Indeed every bindingoccurrence of a variable (whether the binding is done by fun, let or fn)associates a region type scheme and place with the binding occurrence. (Inthe case of let, the type scheme will have no quanti�ed region and e�ectvariables, however, and in the case of fn, the type scheme will have no quan-ti�ed variables at all.) In the following, when we refer to \the region type(scheme) and place" of some variable, we mean the region type (scheme) andplace which is associated with the binding occurrence of the variable. Theregion type scheme should be clearly distinguished from instances of the typescheme which decorate non-binding occurrences of the variable.6.3 Endomorphisms and ExomorphismsThe fromto function from Section 6.2 has the property that it can put itsresult in regions that are separate from the regions where its argument lies.This is not surprising, if one looks at the declaration of the function: it createsa brand new list which does not share with the argument (a; b), except forthe integers a and b which may end up in the list. The freshness of thegenerated list is also evident from the region type scheme of the function:di�erent region variables are used for the argument and the result.Not all region-polymorphic functions create brand new values. Very of-ten, a region-polymorphic function simply adds values to regions which aredetermined by the argument to the function. A good example is the listappend function from the prelude:infixr 5 @fun [] @ ys = ys| (x::xs) @ ys = x :: (xs @ ys)Append successively conses the elements of the �rst list onto the second list.Thus ys and xs @ ys must be in the same regions. However, xs and ys neednot be in the same regions, although the elements of xs and ys clearly mustbe in the same regions, since they end up in the same list. These propertiesof append are summarised in the inferred region type scheme:8��1�2�3�01�02�4�:((((�; �3); [�2])list; �1) � (((�; �3); [�02])list; �01); �4)



58 CHAPTER 6. FIRST-ORDER FUNCTIONS�:fget(�4);get(�1);get(�2);put(�01);put(�02)g��������������������������!(((�; �3); [�02])list; �01)One of the key things one needs to be conscious of when programming withregions is whether one want functions to create fresh values or whether onewants to add to existing regions. Adding to existing regions can of coursemake these regions too large and long-lived, since the entire region will bealive for as long as one of the values in the region may be needed in thefuture. Here are two more examples to highlight the di�erence betweenfunctions that can put values in fresh regions and functions that add valuesto existing regions:fun cp1 [] = []| cp1 (x::xs) = x :: cp1 xsfun cp2 (l as []) = l| cp2 (x::xs) = x :: cp2 xsHere cp1 can copy a list into fresh regions, whereas cp2 always copies a listinto the same region:cp1 7! 8��1�2�3�02�03�:((�; �3); [�2])list; �1) �:fget(�1);get(�2);put(�01);put(�02)g���������������������!((�; �3); [�02])list; �01)cp2 7! 8��1�2�:((�; �3); [�2])list; �1) �:fget(�1);get(�2);put(�1);put(�2)g���������������������!((�; �3); [�2])list; �1)As we saw in Section 1.3, there are cases where it is useful to copy a list fromone region into another region, in order to make it possible to de-allocatethe old region. This copying can be used as a kind of programmer-controlledgarbage collection in cases where garbage has accumulated in the originalregion.Since it is often useful to distinguish between functions that can put theirresult into fresh regions and functions that simply add to regions determinedby their value argument, we shall refer informally to the former functionsas region exomorphisms and the latter as region endomorphisms. Note thatthis is not a clear-cut distinction, however. Often, functions have both anendomorphic and an exomorphic side to them. Also note that even a regionexomorphic function can be forced to act as an endomorphism by the callingcontext. Example: if true then cp1 l else l



6.4. POLYMORPHIC RECURSION 59Since the two branches of the conditional are required to have the sameregion-annotated type, l and cp1 l are forced to be in the same regions.6.4 Polymorphic RecursionA recursive region-polymorphic functionfun f at �0 [�1, � � �, �k] x = emay call itself inside its own body (e) with regions that are di�erent from itsown formal region parameter ([�1, � � �, �k]). This feature is called polymor-phic recursion in regions, named after polymorphic recursion, the analogousconcept for types. Polymorphic recursion in regions is vital for achievinggood recursion. It is also a major source of complication of the region infer-ence algorithm we use in the Kit, but we shall not tire the reader with thedetails here.We now show a typical use of polymorphic recursion in regions, namelymerge sorting of lists. The basic idea of merge sort is simple: �rst split theinput list into two lists l and r of roughly equal length. Then sort l and rrecursively and merge the results into a single sorted list. When programmingwith regions, we need to plan which of these lists we want to reside in thesame regions. We do not want to waste space. In particular, if n is the lengthof the list, it would be quite irresponsible to use O(nlogn) space, say. Letus aim at arranging that the sorting function is a region exomorphism whichdoes not produce any values in its result regions except the sorted list. Tosort n elements we shall need n list cells (to hold the input list) plus roughly2� (n=2) list cells to hold l and r, the two lists that arise from splitting theinput list. To sort l recursively, we need space for the two lists obtained bysplitting l etc. This grows to a maximum of 3n list cells (including the ncells to hold the input), before any merging is done. By the time all of l issorted, i.e., just before r is sorted recursively, we have the following lists: theinput (n cells), l (n=2 cells), l sorted (n=2 cells), r (n=2 cells). Continuingthis way, one sees that the maximal memory usage occurs at the rightmostmerge to two lists of length at most one, at which point approximately 4nlist cells are live. Here is code which uses these ideas:



60 CHAPTER 6. FIRST-ORDER FUNCTIONSfun cp [] =[]| cp (x::xs)= x :: cp xs(* exomorphic merge *)fun merge(xs, []):int list = cp xs| merge([], ys) = cp ys| merge(l1 as x::xs, l2 as y::ys) =if x<y then x :: merge(xs, l2)else y :: merge(l1, ys)(* splitting a list *)fun split(x::y::zs, l, r) = split(zs, x::l, y::r)| split([x], l, r) = (x::l, r)| split([], l, r) = (l, r)(* exomorphic merge sort *)fun msort [] = []| msort [x] = [x]| msort xs = let val (l, r) = split(xs, [], [])in merge(msort l, msort r)end;The exomorphic merge function is a bit ine�cient in that it copies one argu-ment when the other is empty, but the exomorphism ensures that msort land msort r are not forced into the same regions. The polymorphic recur-sion in regions makes it possible for xs, l, r, msort l and msort r all tobe in distinct regions. For example, in the call msort l, the polymorphicrecursion makes it possible for l to be in regions di�erent from xs and it alsomakes it possible for the result of the call to be in a region di�erent from theresult of msort xs.Based on the above analysis we conclude that the space required bymsort xs is approximately 4nc1 + c2log2n, where n is the length of xs, c1 isthe size of a list cell (4 words in this case) and c2 is the space on the runtimestack used by one recursive call of msort (probably less than 10 words).To check the above analysis, we sorted 50,000 integers with the regionpro�ler enabled. According to our analysis, the maximal space usage shouldbe roughly 4� 50; 000� 4 words, i.e., 3,200,000 bytes, i.e, 3:125MB. As onesees in Figure 6.2, the analysis was accurate to within a kilobyte.
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Figure 6.2: Region pro�ling of msort sorting 50,000 integers. The high-levelmark of 3,201,016 bytes is exact (i.e., not sampled).In Chapter 12 we shall see how one can use resetting of regions to reducethe space usage to roughly 2nc1.The project kitdemo/msort contains the above declarations. After com-piling the project, the region-annotated code may be found in the �lekitdemo/msort.log.
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Chapter 7Value DeclarationsAlthough region inference is based on types and e�ects, it is also to someextent syntax dependent: two programs can easily be equivalent in theirinput-output behaviour and yet result in very di�erent memory behaviour.In this chapter we discuss how to write declarations in order to obtain goodresults with region inference. The region inference rules that underlie theML Kit with Regions are related to the scope rules of ML, so we start by a(very informal) summary of the scope rules of ML declarations.7.1 SyntaxA Standard ML value declaration binds a value to a value variable. Forexample, the result of evaluating the value declarationval x = 3+4is the environment fx 7! 7g. More generally, evaluation of a value bindingval id = exp proceeds as follows. Assume the result of evaluating exp isa value, v. Then the result of evaluating val id = exp is the environmentfid 7! vg.The value declaration is just one form of Core Language declaration (theothers being type and exception declarations). We use dec to range overdeclarations. Declarations can be combined in several ways. For example,dec1;dec2is a sequential declaration. The identi�ers declared by this declaration are theidenti�ers that are declared by dec1 or dec2; moreover, identi�ers declared63



64 CHAPTER 7. VALUE DECLARATIONSin dec1 may be referenced in dec2. The semicolon is associative. Thus in asequence dec1; : : : ;decn of declarations, identi�ers declared in deci may bereferenced in deci+1; : : : ; decn (1 � i � n).The Core Language has two forms of local declarations. The expressionlet dec in exp enddeclares identi�ers whose scope does not extend beyond exp. Similarly, thedeclaration local dec1 in dec2 end�rst declares identi�ers (in dec1) whose scope does not extend beyond dec2and it then uses these declarations to perform the declaration in dec2. Anidenti�er is declared by the entire local construct if and only if it is declaredby dec2.7.2 On the Relationship between Scope andLifetimeScope is a syntactic concept: a declaration of an identi�er contains a bindingoccurrence of the identi�er; the scope of the declaration is the part of theensuing program text whose free occurrences of that identi�er are boundby that binding occurrence. By contrast, lifetime, as we use the word, isa dynamic concept. A value is \live" if and only if the remainder of thecomputation uses it (or part of it). The traditional stack discipline couplesthese two concepts very closely. For example, in the pure stack discipline,the evaluation of let dec in exp endin an environment E proceeds as follows. First evaluate dec, yielding anenvironment, E1. Then evaluate exp in the environment E extended withE1, yielding value v. Then v is the result of evaluating the let-expression inE. In implementation terms: �rst push an environment E1 onto the stack,use it to evaluate the expression in the scope of the declaration and thenpop the stack. That this idea works in block-structured languages hingeson a number of carefully made language design decisions. In functional andobject-oriented languages, memory cannot be managed that simply. Theproblem is that while environments can be managed in a stack-like manner,



7.2. ON THE RELATIONSHIP BETWEEN SCOPE AND LIFETIME 65the values in the range of the environment cannot (unless one uses regions,that is). For example consider the ML expression:localval private = [2,3,5,7,11,13]in fun smallPrime(n:int): bool =List.member n privateendAlthough the scope of the declaration is only the declaration of smallPrime,private is accessed (at runtime) whenever smallPrime is called. Thus thelifetime of the list of small primes is at least as long as the lifetime of thesmallPrime function itself.The region discipline still has a coupling between scope and lifetimes,but, since we want to be able to handle recursive data types and higher-orderfunctions, the coupling is less tight. The ground rule of region inference isthat as long as a value variable id is in scope, the value bound to it at runtimewill remain allocated. More precisely:Ground Rule: The region rules forbid transforming an expressionexp into letregion � in exp end if exp is in the scope of anidenti�er which has � free in its region type scheme or place.For an example, considerletval list = [1,2,3]val n = length listval r = sin(real n)in cos(r)endAt runtime, the list bound to list is not used (i.e., it is not live) after itslength has been computed; similarly, the value of n is not live after it hasbeen converted to a 
oating point number, and so on. In short, at runtimewe have a sequence of short, non-overlapping lifetimes.



66 CHAPTER 7. VALUE DECLARATIONSWith region inference, however, the list bound to list will stay allocatedthroughout the evaluation of the remainder of the let-expression.1It is crucial to bear the ground rule in mind when programming withregions. For a more interesting example, consider the following declarations,taken from a program which computes prime numbers using the Sieve ofEratosthenes:fun cp [] = []| cp (x::xs) = x :: cp xsfun sift (n, []) = []| sift (n, (x::xs)) = if x mod n = 0 then sift(n,xs)else x::sift(n,xs)fun sieve(a as ([], p)) = a| sieve(x::xs, p) = let val rest = sift(x,xs)in sieve(cp rest,x::p)endHere sift(n, l) produces a list of the numbers from l that are not divisibleby n; sieve(xs, p) repeatedly calls sift, adding primes to the front ofp, until the list of numbers remaining in the sieve becomes empty. Theprogrammer has employed the copying technique suggested in Section 1.3 toavoid that the lists that are bound to rest during the repeated �ltering allare put in the same region. The programmer's intention is that the cp restshould overwrite x::xs by a copy of rest, so that space consumption wouldbe bounded by a constant times the size of the input. But it does not workas intended: since rest is in scope at the recursive application of sieve, thelist which is bound to rest will stay allocated for the duration of that call,which is in fact the remainder of the entire computation!In many cases, the solution is simply to shorten the scope of the decla-ration. In the above example, a good solution is to move the application ofsieve outside the let:1One can force de-allocation of the list by inserting val = resetRegions(list) afterthe declaration of n; but, as we shall see, there are less draconian ways of achieving thesame result.



7.3. SUMMARY 67fun sieve(a as ([], p)) = a| sieve(x::xs, p) =sieve let val rest = sift(x,xs)in (cp rest,x::p)endAlthough we cannot explain why the copying really overwrites the input listuntil we have dealt with resetting of regions (Chapter 12) we can explain whythis transformation ensures that the list bound to rest will not live to seethe recursive call of sieve. Unless forced by context to do otherwise, siftwill create a list using fresh regions. Since cp is also exomorphic, there willbe no sharing between rest and the other lists. Precisely, the two regionvariables that denote the two regions which hold the spine and the auxiliarypairs of rest appear in the e�ect of the (revised) let-expression but neitherof them occur free in the region type scheme and place of any variable inscope at that point, not even in the region type scheme and place of sieve,whose only free region variables are the global integer region r2 and theregion which contains sieve itself. Consequently, region inference will wrapthe let-expression by a letregion-binding of the two region variables inquestion, e.g.,fun sieve(a as ([], p)) = a| sieve(x::xs, p) =sieve letregion r10, r11in let val rest = sift[r10,r11](x,xs)in (cp rest,x::p)endend7.3 SummaryInformally, region inference forces lifetime to be at least \as long" as scope.However, region inference will introduce a letregion �-binding around anexpression containing a free occurrence of � as soon as � occurs free neitherin the type of the expression nor in the region type scheme and place of anyvariable in scope at the expression.Useful program transformations to shorten lifetimes include:



68 CHAPTER 7. VALUE DECLARATIONS1. Inwards let 
oating: transformlet val id1 = exp1 val id2 = exp2 in exp endintolet val id2 = let val id1 = exp1 in exp2 end in exp endprovided id1 does not occur free in exp.2. Application extrusion: transformlet dec in f(exp) endinto f let dec in exp endprovided f is an identi�er which is not declared by dec.These meaning-preserving transformations are useful in situations whereearly de-allocation is important. Application extrusion is a useful program-ming habbit, especially in connection with tail recursion; the reader will seeit employed several times in what follows.



Chapter 8Static detection of space leaks\Space leak" is the informal term used when a program uses much morememory than one would expect, typically because of memory not being re-cycled as early as it should (or not at all).If a region-polymorphic function with region type scheme � has a put-e�ect on a region variable which is not amongst the bound region variables of� then one quite possibly has a space leak: every application of the functionmay write values into a region which is the same for all calls of the function.For example, consider the source program1fun g() =let val x = [5,7]fun f(y) = (if y>3 then x@x else x;5)in f 1; f 4end;Here f has type int ! int; yet, when y>3 evaluates to true, an appendoperation producing a list in the same region as x is performed. The �rstcall of f will not cause the append operation to be called, but the second onewill. One can say that f has a space leak in that it can write values into amore global region, namely a region which is allocated at the beginning ofthe body of g. Hence the sequence of calls to f would accumulate copies ofx@x in that region, although none of these lists are accessible anywhere. In1Project kitdemo/escape, �le kitdemo/escape.sml.69



70 CHAPTER 8. STATIC DETECTION OF SPACE LEAKSthis particular case, the values are not even part of the result type of f, sothe writing is a \side-e�ect" at the implementation level, even though thereare no references in the program.The region type scheme inferred for f is:8�:(int; r2) �:fput(r4);put(r5);get(r2);put(r2)g���������������������!(int; r2)where the region-annotated type of x is(((int; r2); [r5])list; r4)Here we see that r4 and r5 are free in the type scheme but appear with pute�ects.8.1 Warnings About Space LeaksThe Kit issues a warning each time it meets a fun-declared function whichhas a free put e�ect occurring somewhere in its type scheme. In practice,we have found this to be an extremely valuable device for predicting spaceleaks. In our example, the following warning is printed on the log �le:fun g at r1 [] (var314)=letregion r8:INF, r9:INFin let val x =let val v3294 =(5,let val v3295 = (7, nil at r8) at r9in :: at r8 v3295end) at r9in :: at r8 v3294endin letregion r12:1in let fun f at r12 [] (y)=let val _not_used =let val v3291 =(case y > 3of true =>letregion



8.2. FIXING SPACE LEAKS 71...in @[r8,r9] at r15(x, x) at r17end| false => x) (*case*)in ()endin 5end ;val _not_used =let val v3293 =letregion r18:1in f[] 1endin ()endin letregion r20:1in f[] 4endendendendend*** Warnings ***f has a type scheme with escaping put effects on region(s):r8, which is also free in the type (schemes) of : xr9, which is also free in the type (schemes) of : xWe are told that the program might space leak in regions r8 and r9. Lookingat the function f, we see that these two regions are actual region parametersto @. This reveals that the problem is the call to @.8.2 Fixing Space LeaksOften one can �x a space leak by delaying the creation of the global valuewhich causes the space leak. In the above example, we can move the con-



72 CHAPTER 8. STATIC DETECTION OF SPACE LEAKSstruction of the list into f:2fun g() =let fun mk_x() = [5,7]fun f(y) = let val x = mk_x()in if y>3 then x@x else x; 5endin f 1; f 4end;Of course, this means that the list will be re-constructed upon each applica-tion of f. Another solution is to move the creation of the list as close to thecalls as possible and then pass the list as an extra argument:3fun g() =let fun f(x,y) = (if y>3 then x@x else x; 5)in let val x = [5,7]in f(x, 1); f(x, 4)endend;Both solutions stop warnings from being printed, but the second solution isbetter than the �rst: f still has a put e�ect on the regions containing x, butthe di�erence is that these are now represented by bound region variablesin the type scheme of f. This has two advantages: (a) allocation of spacefor the list is delayed till the list is actually used; and (b), the list can bede-allocated after the calls have been made (whereas in the original version,x occurs free in the declaration of f and will be kept alive as long a f can becalled).At other times, there is no clean way of avoiding escaping put regions.One example is found in the prelude:exception Io of stringexception CANNOT_OPEN2Project: kitdemo/escape, �le kitdemo/escape1.sml.3Project: kitdemo/escape, �le kitdemo/escape2.sml.



8.2. FIXING SPACE LEAKS 73fun open_in(f: string): instream =INS(prim(31, ("openInStream", "openInStream", f,CANNOT_OPEN)))handle CANNOT_OPEN => raise Io("Cannot open " ^ f)fun open_out(f: string): outstream =OUTS(prim(31, ("openOutStream", "openOutStream", f,CANNOT_OPEN)))handle CANNOT_OPEN => raise Io("Cannot open " ^ f)As explained in Chapter 11, our region inference algorithm is very simple-minded about unary exception constructors: when a unary exception con-structor is applied to a value, both the argument value and the resultingconstructed value are forced into a global region. Thus the applicationIo("Cannot open " ^ f) has a potential space leak in it: every time weconcatenate the two strings, the resulting string will be put into a globalregion. This particular space leak is perhaps not something that would keepone awake at night, since most programs do not make a large number offailed attempts to open �les, but it is useful to be warned about this poten-tial problem.
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Chapter 9ReferencesSection 9.1 gives a brief summary of references in Standard ML; it may beskipped by readers who know the language. Thereafter we discuss runtimerepresentation of references, region-annotated reference types and show ex-amples.9.1 References in Standard MLA reference is a memory address (pointer). Standard ML has three built-inoperations on referencesref 8�:� ! �ref create reference! 8�:�ref ! � dereferencing:= 8�:�ref � �! unit assignmentIf the type of a reference r is � ref then one can store values of type �(only) at address r. A reference is a value and can therefore be bound toa value identi�er by a value declaration (val� � �). While the value storedat a reference may change, the binding between variable and reference doesnot change. We show an example, since this point can be confusing to pro-grammers who are familiar with updatable variables in languages like C andPascal.val it = let val x: int ref = ref 3val y: bool ref = ref trueval z: int ref = if !y then x else ref 575



76 CHAPTER 9. REFERENCESin z:= 6;!xendSince !y evaluates to true, z becomes bound to the same reference, r, as x. Sothe subsequent assignment to z changes the contents of the store at addressr to contain 6. Since x and z are aliases, the result of the let-expression isthe contents of the store at address r, i.e., 6.9.2 Runtime Representation of ReferencesThe Kit translates an SML expression of the form ref exp into an expressionof the form ref at � ewhich is evaluated as follows. First e is evaluated. Assume this yields avalue, v. Here v may be a boxed or an unboxed value. Next, a 32-bit word isallocated in the region denoted by �; let r be the address of this word. Thenv is stored at address r and r is the result of the evaluation.Note that a reference really is a pointer in the implementation. In par-ticular, a reference is not tagged and may be stored in a KAM register. Thecontents of the reference is also one word, either an unboxed value (e.g., aninteger or a boolean) or a pointer (if the contents is boxed). So the contentsof a reference is not tagged either.Dereferencing a reference r is done by reading the contents of the memorylocation r. Note that this does not require knowledge of what region the wordwith address r resides in.Assigning a value v to a reference r simply stores v in the memory ataddress r. When v is an unboxed value, this can be regarded as copying vinto the memory cell r; othewise v is a pointer which the assignment storesin the memory cell r. Either way, assignment is a constant-time operation.9.3 Region-annotated Reference TypesThe general form of a region-annotated reference type and place is:(� ref; �)



9.3. REGION-ANNOTATED REFERENCE TYPES 77
: : : 3r : r35r34 r36: : :Figure 9.1: Creating a reference allocates one word in a region on the regionstack. Above, the region is drawn as a �nite region, but it could equally wellbe in�nite.Informally, a reference r has this type if it is the address of a word in theregion denoted by � and, moreover, � is the type and place of the contents ofthat word. For example, assume � is bound to some region name, say r35;then the evaluation of val x = ref at � 3 results in the environmentfx 7! rg, where r is the address of a word with contents 3 residing in regionr35, see Figure 9.1.References are treated like all other values by region inference. Theregion-annotated types given to the three built-in operations are:ref 8��1�2�:(�; �1) �:fput(�2)g�������!((�; �1)ref; �2)! 8��1�2�:((�; �1)ref; �2) �:fget(�2)g�������!(�; �1):= 8��1�2�3�4�:(((�; �1)ref; �2) � (�; �1); �3) �:fget(�3);put(�2);put(�4)g�����������������!(unit; �4)Note that within each of these type schemes, � is paired with the same regionvariable. The reason is that assigning a value v to a reference r does not makea copy of v (unless v is unboxed). The advantage of the chosen scheme forhandling references is that reference creation, dereferencing and assignmentall are constant-time operations. The disadvantage is that if two values maybe assigned to the same reference, they are forced to be in the same regions(cf. the region type schemes given above).If we compile the example from Section 9.1 we get the program shownin Figure 9.2.1 The region denoted by r7 contains the memory word whose1Project kitdemo/refs, �le kitdemo/refs3.sml.



78 CHAPTER 9. REFERENCES
let val it =letregion r7:INFin let val x = ref at r7 3in letregion r8:1in let val y =let val v3845 = truein ref at r8 v3845 end ;val z =(case letregion r9:1 in ![] y endof true => x | false => ref at r7 5)val v3842 =letregion r11:1, r13:1in :=[r7] at r11 (z, 6) at r13endin letregion r14:1 in ![] x endendendendendin {|it: (_,r2)|}end Figure 9.2: Region-annotated reference creation.



9.4. LOCAL REFERENCES 79address is bound to x and z, and whose contents is �rst 3, then 6. The regiondenoted by r8 contains a single boolean. Also note that the word containing5 is designated r7, since the then and else branches must give the same typeand place. Finally note that all references will be reclaimed automatically,at the end of letregion constructs which bind r7 and r8.9.4 Local ReferencesReferences to words which are created locally within a function and do notescape the function naturally reside in regions which are local to the functionbody. For example, the declaration:2fun id(x) = let val r = ref x in ! r end;is compiled intolet fun id at r1 [] (x)=letregion r9:1in let val r = ref at r9 xin letregion r10:1 in ![] r endendendin {|id: (_,r1)|}endHere r9 will be implemented as one word on the runtime stack. The evalua-tion of ref at r9 x moves the contents of the standard argument register(standardArg) to that word on the stack. At the end of the letregion r9: : : end, the word is popped o� the stack.Now let us turn to an example of a memory cell whose lifetime extendsthe scope of its declaration, because it is accessible via a function (in Algolterminology, the reference is an own variable of the function.)3localval r = ref ([]:string list)infun memo_id x = (r:= x:: !r; x)2Project: kitdemo/refs, �le kitdemo/refs1.sml.3Project: kitdemo/refs, �le kitdemo/refs2.sml.



80 CHAPTER 9. REFERENCESendval y = memo_id "abc"val z = memo_id "efg";This compiles intolet val r =let val v3756 = nil at r1 in ref at r1 v3756 end ;fun memo_id at r1[] (x) =let val v3752 =letregion r8:1, r10:1in :=[r1] at r8(r,let val v3753 =(x,letregion r12:1in ![] rend) at r1in :: at r1 v3753end) at r10endin xend ;val y = letregion r14:1 in memo_id[] "abc"at r4 endval z = letregion r16:1 in memo_id[] "efg"at r4 endin {|r: (_,r1),memo_id: (_,r1),y: (_,r4),z: (_,r4)|}endand the Kit warns us that there is a possible space leak (Chapter 8):*** Warnings ***memo_id has a type scheme with escaping put effects on region(s):r1, which is also free in the type (schemes) of : ! := r Match Bind



9.5. HINTS ON PROGRAMMING WITH REFERENCES 819.5 Hints on Programming with ReferencesThere is no need to shy away from using references when programming withregions. However, one needs to be aware of the restriction that values thatmay be assigned to the same references are forced to live in the same region,and this region with all its values will be alive for as long as the reference islive. This poses no problem if the contents type is unboxed (e.g., int), for inthat case no region for the contents is allocated at all. But one should avoidcreating long-lived references which are assigned many di�erent large values.
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Chapter 10Recursive Data TypesStandard ML permits the programmer to declare (possibly recursive) datatypes using the datatype declaration. For example, one can declare a poly-morphic, recursive data type for binary trees as follows:datatype 'a tree = Lf | Br of 'a * 'a tree * 'a tree;10.1 Spreading Data TypesThe Kit performs an analysis, called \spreading of data types", of the datatypedeclarations contained in the program. Spreading determines (a) a so-calledarity of every type name which the data type declaration introduces and (b)a region type scheme for every value constructor introduced by the data typedeclaration. In Standard ML, every type name has an attribute, called itsarity. For example, int has arity 0 while the type name introduced by theabove declaration would have arity 1. However, the notion of arity has to beextended internally in the Kit to account for regions and e�ects. For lists,for example, we need not just a region for holding the constructors nil and::, but also a region for holding the pairs to which :: is applied. For thedata typedatatype 'a foo = A | B of ('a * 'a) * ('a * 'a)the type of B introduces the possibility of three region variables (one foreach star), even if we decide to pair all occurrences of 'a by the same regionvariable. Region variables which are induced by the types of constructors83



84 CHAPTER 10. RECURSIVE DATA TYPESand which do not hold the constructed values themselves are called auxiliaryregion variables. For example, the list data type:datatype 'a list = nil | op :: of 'a * 'a listhas one auxiliary region variable, namely the region variable which describeswhere the pairs of type 'a * 'a list, i.e., the auxiliary pairs, reside.One also needs auxiliary arrow e�ects, for cases such asdatatype V = N of int | F of V -> Vwhere we need an arrow e�ect for the function type V -> V. We refer to suchan arrow e�ect as an auxiliary arrow e�ect of the data type in question.We de�ne the (internal) arity of a type name t to be a triple (n; k;m) ofnon-negative integers, where n is the usual Standard ML arity of the typename, k is the region arity of t and m is the e�ect arity of t. The region ande�ect arity indicate the number of auxiliary regions and arrow e�ects of thedata type, respectively.For e�ciency purposes, we have found it prudent to restrict the maximalnumber of auxiliary regions a data type can have to 3 (one for each kind ofruntime type of regions) and to restrict the maximal number of auxiliary ef-fects to 1. Otherwise, the number of auxiliary regions can grow exponentiallyin the size of the program:datatype t0 = Cdatatype t1 = C1 of t0 * t0datatype t2 = C2 of t1 * t1...Here the number of auxiliary region variables would double for each new datatype declaration.Furthermore, all type names introduced by a datatype declaration aregiven the same arity (a datatype declaration can declare several types simul-taneously). Within one constructor binding (conbind), all occurrences of thesame type variable are paired with the same region variable. Di�erent typevariables are paired with di�erent region variables. Since we allow at mostone auxiliary region variable for each datatype declaration, the analysis ofdata type declarations sometimes has to unify two auxiliary region variablesthat would otherwise be distinct, but it only uni�es auxiliary region variablesthat have the same runtime type.



10.2. EXAMPLE: BALANCED TREES 85The practical consequence of these restrictions is that sometimes applyinga constructor to a value v forces identi�cation of regions of v that holdotherwise unrelated parts of v.The automatic memory management we have discussed for lists extendsto other recursive data types without problems. For example, binary treesare put into regions and are subsequently de-allocated (in a constant timeoperation) when the region is popped. The next section is an example toillustrate the point.For simplicity, constructed values are always boxed.10.2 Example: Balanced TreesConsider the following program in Figure 10.1.1 Note that we would hopethat the balanced tree produced by balpre is removed after it has beencollapsed into a list by preord. And indeed it is. Here is the proof:val it =letregion r72:1, r74:1in say[]letregion r75:1, r77:INF, r78:INF, r79:INFin implode[r74] at r75letregion r80:1, r82:1, r83:INF, r84:INFin preord[r77,r78] at r80(letregion r85:1, r87:INF, r88:INFin balpre[r83,r84] at r85letregion r89:1, r91:1in explode[r87,r88,r79] at r89"Greetings from the Kit\n"at r91endendnil at r77) at r82endendend1Project kitdemo/trees, �le kitdemo/trees.sml.



86 CHAPTER 10. RECURSIVE DATA TYPES
datatype 'a tree = Lf | Br of 'a * 'a tree * 'a tree(* preorder traversal of tree *)fun preord (Lf, xs) = xs| preord (Br(x,t1,t2),xs) =x::preord(t1,preord(t2,xs))(* building a balanced binary treefrom a list: *)fun balpre [] = Lf| balpre(x::xs) =let val k = length xs div 2in Br(x, balpre(take(xs, k)),balpre(drop(xs, k)))end(* preord o balpre is the identity: *)val it = say(implode(preord(balpre(explode"Greetings from the Kit\n"),[])));Figure 10.1: Example showing recycling of memory used for an intermediatedata structure.



10.2. EXAMPLE: BALANCED TREES 87This is the kind of certainty about lifetimes we are aiming at. Imagine, forexample, that the trees under consideration were terms representing di�erentintermediate forms in a compiler. Then one would like to know that (possiblylarge) syntax trees are not kept in memory longer than needed.
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Chapter 11Exceptions
11.1 Exception Constructors and ExceptionNamesStandard ML exception constructors are introduced by exception declara-tions. The two most basic forms areexception exconand exception excon of tyfor introducing nullary and unary exception constructors, respectively. Unaryexception constructors are typically used when one wants to raise an excep-tion which contains a \reason" (represented by a value of type ty).Unlike in some languages (for example Java), exception declarations neednot occur at top level. For example, a function body may contain exceptiondeclarations. Each evaluation of an exception declaration creates a freshexception name and binds it to the exception constructor. This is sometimesreferred to as the generative nature of ML exceptions.In the ML Kit, an exception name is implemented as a pointer to a pairconsisting of an integer and a string pointer; the string pointer points to thename of the exception, which is a global constant in the target program. Thestring is used for printing the name of the exception if it ever propagates tothe top level. The cost of creating the pair is, as always with pairs, twowords. 89



90 CHAPTER 11. EXCEPTIONS11.2 Exception ValuesStandard ML has a type exn of exception values. An exception value is eitheran exception name or a constructed exception value. A constructed exceptionvalue can be thought of as a pair (en; v) of an exception name en and a valuev; we refer to v as the argument of en.An exception value which is just a nullary exception name is representedas the name itself, i.e., by a pointer to a pair of an integer and a string.Thus referring to a nullary exception constructor allocates no memory. Bycontrast, applying a unary exception constructor to an argument constructsa constructed exception value. Cost: two words.The distinction between nullary and unary exception constructors is im-portant in the Kit because our region inference analysis takes a simple-minded approach to exceptions: all exception names and all constructedexception values are put in global regions and thus never reclaimed auto-matically.We therefore make the following recommendations:1. Put exception declarations at top-level, if possible. That way, the mem-ory required by exception names will be bounded by the program size.2. Avoid applying unary exception constructors frequently; there is noharm in raising and handling constructed exception values frequently,it is the creation of many di�erent constructed exception values that canlead to space leaks. Nullary constructors may be used freely withoutincurring memory costs.11.3 Raising ExceptionsAn expression of the form raise expis evaluated as follows. First exp, an expression of type exn, is evaluatedto an exception value. Then the runtime stack is scanned from top towardsbottom in search of a handler which can handle the exception. The KAMhas a register which points to the top-most exception handler; the exceptionhandlers are linked together as a linked list interspersed with the other con-tents of the runtime stack. If a matching handler is found, the runtime stackis popped down to the handler. This popping includes popping of regions



11.4. HANDLING EXCEPTIONS 91that lie between that stack top and the handler. Put di�erently, consider anexpression of the form letregion � in e end; if e evaluates to an exceptionpacket, then the region bound to � is de-allocated and the packet is also theresult of evaluating the letregion expression.We have not attempted to design an analysis which would estimate howfar down the stack a given exception value might propagate. Of course, itwould not be a very good idea to allocate a constructed exception value in aregion which is popped before the exception is handled! This is why we putall exception names and all constructed exception values in global regions.11.4 Handling ExceptionsThe ML expression form exp1 handle matchis compiled into a MulExp expression of the formletregion � inlet f = fn match at � in e1 handle f endendwhere f is a fresh variable. So �rst a handler (expressed as a function) isevaluated and stored in some region �. This region will always have multi-plicity one and therefore be a �nite region which is put on the stack. Thene1, the result of compiling exp1, is evaluated. If e1 terminates with a value,the letregion construct will take care of de-allocating the handler. If e1terminates with an exception, however, f is applied.Thus the combined cost of raising an exception and searching for theappropriate handler takes time proportional to the depth of the runtimestack in the worst case.This is the only operation which takes time which cannot be determinedstatically, provided one admits arithmetic operations as constant-time oper-ations.11.5 Example: Prudent Use of ExceptionsHere is an example of prudent use of exceptions in the ML Kit:



92 CHAPTER 11. EXCEPTIONSexception Hd (* recommendation 1 *)fun hd [] = raise Hd| hd (x::_) = xexception Tlfun tl [] = raise Tl| tl (_ ::xs) = xsexception Error of stringlocalval error_f = Error "f" (* recommendation 2 *)infun f(l) =hd(tl(tl l)) handle _ => raise error_fendval r = f[1,2,3,4];Note that the application Error "f" has been lifted out from the bodyof f. No matter how many times f is applied, it will not create additionalexception values.1

1Project: kitdemo/exceptions, �le: kitdemo/exceptions.sml.



Chapter 12Resetting RegionsIn Section 1.2 we explained that resetting regions is an important ingredientin programming with regions. This chapter gives an informal explanationof the rules that govern resetting, rules which play a key rôle in Kit pro-gramming irrespective of whether one leaves resetting of regions to the Kitor prefers to control resetting explicitly in the program.Resetting only makes sense for in�nite regions. It is a constant-timeoperation.The Kit contains an analysis, the storage mode analysis, which has twopurposes:1. inserting automatic resetting of in�nite regions, when possible;2. checking applications of resetRegions (and forceResetting) in orderto report on the safety of the resetting requested by the programmer.As a matter of design, one might wonder whether it would not be su�cientto rely on the user indicating where resetting should be done. However,checking whether resetting is safe at a particular point chosen by the useris of course no easier than checking whether resetting is safe at an arbitrarypoint in the program, so one might as well let the compiler insert regionresetting whenever it can prove that it is safe.In this chapter we describe the principles that underlie the storage modeanalysis. Even if one is willing to insert resetRegions and forceResettinginstructions in the program, one still needs to understand these principles, inorder to be able to act upon the messages that are generated by the systemin response to explicit resetRegions and forceResetting instructions.93



94 CHAPTER 12. RESETTING REGIONS12.1 Storage ModesAs we have seen in previous chapters, region inference decorates every allo-cation point with an annotation of the form \at �", indicating into whichregion the value should be stored.Now the basic idea is that storing a value into a region can be done inone of two ways, at runtime. One either stores the value at the top of theregion, thereby increasing the size of the region; or one stores the value intothe bottom of the region, by �rst resetting the region (so that it contains novalues) and then storing the value into the region.The storage mode analysis transforms an allocation point \at �" into\attop �" when it estimates that � contains live values at the allocationpoint, whereas it transform it into \atbot �", if it can prove that the regionwill not contain live values at that allocation point. The tokens attop andatbot are called storage modes.Region polymorphism introduces several interesting problems. Let f bea region-polymorphic function with formal region parameter � and consideran allocation point at � in the body of f . Whether it is safe for f to storethe value atbot in the region depends not only on the body of f but also onthe context in which f is called.For example, consider the compilation unitfun f [] = []| f (x::xs) = x+1 :: f xsval ll = [1,2,3]val l2 = if true then f l1 else l1val x::_ = l1;When f stores the empty list, it can potentially reset the region it writesinto (as well as the auxiliary region intended for the auxiliary pairs of thelist). In the above program, however, the conditional forces f l1 and l2 tobe in the same regions as l1. Since l1 is live after the application of f, thisapplication must not use atbot as storage mode. Indeed, even if we removedthe last line of the program, the application could still not use atbot, for l1 isexported from the compilation unit and thus potentially used by subsequentcompilation units.By contrast, consider11Project: kitdemo/sma, �le: kitdemo/sma1.sml.



12.1. STORAGE MODES 95fun f [] = []| f (x::xs) = x+1 :: f xsval n = length(let val l1 = [1,2,3]in if true then f l1 else l1end)When f stores nil, it is welcome to reset the regions that hold l1, for bythat time, l1 is no longer needed! (f traverses l1, but when it reaches theend of the list, l1 is no longer needed.) Indeed the Kit will replace the list[1,2,3] by [2,3,4]. The ability to replace data in regions is crucial inmany situations (as we illustrated with the game of Life in Section 1.3).Since the Kit allows separate compilation, it cannot know all the call sitesof a region-polymorphic function, when it is declared. Therefore, when con-sidering an allocation point \at �" inside the body of some region-polymorphicfunction, f , which has � as a formal region parameter, one cannot know atcompile time whether to use attop or atbot. Instead, the storage modeanalysis operates with a third kind of storage mode: sat, read: \somewhereat". Consider an application of f in which � is instantiated to some regionvariable, �0, say. At runtime, �0 is bound to some region name (Section 2.1),r0. Then r0 is combined with a de�nite storage mode (i.e., attop or atbot),to yield r, say, which is then bound to �. When r0 was originally created(by a letregion-expression), r0 was also made to contain an indication ofwhether it is an in�nite region or a �nite region.2 At runtime, an allocationsat � in the body of f will test r to see whether the region is in�nite andwhether the value should be stored at the top or at the bottom.3The relevant parts of the result of compiling the last example aboveare shown in Figure 12.1. To see the storage modes, switch on the 
agprint atbot expression in the menu Printing of intermediate forms.The intermediate form obtained by enabling this 
ag is from before the op-timisation that drops get-regions (page 56) and may therefore have moreregion variables.2On machines that have at least four bytes per word, the two least signi�cant bitsof a pointer to a word will always be 00. These two bits hold extra information in theregion name. One bit, called the \atbot bit", holds the current storage mode of the region.Another bit, called the \in�nity bit", indicates whether the region is �nite or in�nite.3When � has multiplicity in�nity, r0 must be the name of an in�nite region, so theruntime check on whether r has its in�nity bit set is omitted.



96 CHAPTER 12. RESETTING REGIONSfun f attop r1 [r7:INF, r8:INF, r9:0, r10:0] (var180)=(case var180of nil => nil sat r7| :: => let val v2007 = decon_:: var180;val x = #0 v2007;val xs = #1 v2007;val v2010 =(x + 1attop r2,letregion r15:1in f[sat r7,sat r8,sat r9,sat r10]atbot r15 xsend) attop r8in :: attop r7 v2010end) (*case*) ;val n =letregion r17:1, r19:INF, r20:INFin length[atbot r19,atbot r20,attop r2] atbot r17let val l1 =let val v2014 =(1attop r2,let val v2015 =(2attop r2,let val v2016 =(3attop r2, nil atbot r19) attop r20in :: attop r19 v2016end) attop r20in :: attop r19 v2015end) attop r20in :: attop r19 v2014endin (case true attop r2of true =>letregion r24:1(*1*) in f[atbot r19,atbot r20,atbot r19,atbot r20]atbot r24 l1end| false => l1) (*case*)endend (*r17:1, r19:INF, r20:INF*)Figure 12.1: Storage modes inferred by the storage mode analysis.



12.2. STORAGE MODE ANALYSIS 9712.2 Storage Mode AnalysisFor the purpose of the storage mode analysis, actual region parameters toregion-polymorphic functions are considered allocation points. Passing a re-gion as an actual argument to a region-polymorphic function involves neitherresetting the region nor storing any value in it, but a storage mode has tobe determined at that point nonetheless, since it has to be passed into thefunction together with the region. The storage mode expresses whether, atthe call site, there may be any live values in the region after the call. Forexample, in Figure 12.1 the call to f at (*1*) passes both r19 and r20with storage mode atbot since the only value that exists before the call off and is needed after the call of f is length, which is declared in a di�erentcompilation unit and therefore obviously resides neither in r19 nor in r20.Within every lambda abstraction, the Kit performs a backwards 
owanalysis which determines, for every allocation point, a set of locally livevariables, i.e., a set of variables used by the remainder of the computation inthe function up to the syntactic end of the function. (This includes variableswhich appear in function application expressions.) Prior to the computationof locally live variables, a program transformation, called K-normalisation,has made sure that every intermediate result which arises during computa-tion becomes bound to a variable. (This happens by introducing extra letbindings, when necessary.)4The Kit also computes a set of locally live variables for each allocationpoint which does not occur inside any function.We now give an informal explanation of the rules that assign storagemodes to allocation points. Let an allocation pointat � (12.1)be given.CASE A: � is a global region. Then attop is used. There is a de�ciency wehave to admit here. The Kit only puts letregion around expressions, notaround declarations. Thus, if one writes4K-normalisation is transparent to users: although the storage mode analysis and allsubsequent phases up to code generation operate on K-normal forms, programs are alwayssimpli�ed to eliminate the extra let-bindings before they are presented to the user.



98 CHAPTER 12. RESETTING REGIONSlocalfun f [] = []| f (x::xs) = x+1 :: f xsval l1 = [1,2,3]inval n = length(if true then f l1 else l1)endat top level, then l1 is put into a global region, although this is really unnec-essary. As a consequence, f would be called with storage mode attop andthus l1 would not be overwritten.CASE B: The region variable � is not a global region and the allocationpoint (12.1) occurs inside a lambda abstraction, i.e, inside an expression ofthe form fn pat => e. Here we regard every expression of the formlet fun f(x) = e in e0 endas an abbreviation forlet val rec f = fn(x) => e in e0 endThen it makes sense to talk about the smallest enclosing lambda abstraction(of the allocation point).Now there are the following cases:B1 � is bound outside the smallest enclosing lambda abstraction (and thislambda abstraction is not the right-hand side of a declaration of aregion-polymorphic function which has � as formal parameter): useattop (see Figure 12.2);B2 � is bound by a letregion-expression inside the smallest enclosing func-tion: use atbot if no locally live variable at the allocation point has �free in its region type scheme and place (Section 6.2), and use attopotherwise (see Figure 12.3);B3 (�rst attempt) � is a formal parameter of a region-polymorphic func-tion whose right-hand side is the smallest enclosing lambda abstraction:use sat, if no locally live variable at the allocation point has � free inits region type scheme and place, and use attop otherwise (see Fig-ure 12.4).



12.2. STORAGE MODE ANALYSIS 99letregion �in : : : (fn pat => : : : at � : : :)endfun f at �1[�] =(fn x => (fn y => : : : at � : : :)at �2)at �1Figure 12.2: Two typical situations where at � is turned into attop � byrule B1.
(fn pat => : : :letregion �in : : : at � : : : l : : :end : : :)Figure 12.3: The situation which is considered in B2. If no locally livevariable l has � occurring in its type scheme and place, replace at � byatbot �, otherwise by attop �.
fun f at �0 [�, : : :] =(fn pat => : : : at � : : : l : : :)Figure 12.4: The situation which is considered in B3. If no locally livevariable l has in its type scheme and place a region variable which may bealiased with �, replace at � by sat �, otherwise by attop �.



100 CHAPTER 12. RESETTING REGIONSThe motivation for (B1) is that if � is declared non-locally, then we do notattempt to �nd out whether � contains live data (this would require a moresophisticated analysis.) The intuition behind (B2) is as follows. Regioninference makes sure that the region-annotated type and place of a variablealways contains free in it region variables for all the regions which the valuebound to that variable needs when used. The lifetime of the region boundto � is given by the letregion expression which is in the same function asthe allocation point. Thus, if no locally live variable at the allocation pointhas � free in its type scheme or place, then � really does not contain any livevalue at that allocation point.The intuition behind (B3) is the same as behind (B2), but in this casethere is a complication: � is only a formal parameter so it may be instantiatedto di�erent regions; in particular it may be instantiated to a region variablewhich does occur free in the type scheme and place of a locally live variableat the allocation point. If that happens, rule (B3), as stated, is not sound!We refer to the phenomenon that two di�erent region variables in theprogram may denote the same region at runtime as region aliasing. In orderto determine whether to use sat or attop in case (B3), the Kit builds a region
ow graph for the entire compilation unit. (This happens in a phase priorto the storage mode analysis proper.) The nodes of the region 
ow graphare region variables and arrow e�ects that appear in the region-annotatedcompilation unit. Whenever �1 is a formal region parameter of some functiondeclared in the unit and �2 is a corresponding actual region parameter in thesame unit, a directed edge from �1 to �2 is created. Similarly for arrow e�ects:if �1:'1 is a bound arrow e�ect of a region-polymorphic function declared inthe compilation unit and �2:'2 is a corresponding actual arrow e�ect then anedge from �1 to �2 is inserted into the graph. Also, edges from �2 to everyregion and e�ect variable occurring in '2 are inserted. Finally, for everyregion-polymorphic function f declared in the program and every formalregion parameter � of f , if f is exported from the compilation unit, then anedge from � to the global region of the same runtime type as � is insertedinto the graph. (This is necessary, in order to cater for applications of f insubsequent compilation modules.) Let G be the graph thus constructed. Forevery node � in the graph, we write h�i to denote the set of region variableswhich can be reached from �, including � itself. The rule that replaces (B3)is:B3 � is a formal parameter of a region-polymorphic function whose right-



12.3. EXAMPLE: COMPUTING THE LENGTH OF A LIST 101hand side is the smallest enclosing lambda abstraction: use sat, if, forevery variable l which is locally live at the allocation point and forevery region variable �0 which occurs free in the region type schemeand place of l, it is the case that h�i \ h�0i = ;; use attop otherwise.CASE C: � is bound by a letregion-expression and the allocation point(12.1) does not occur inside any function abstraction. As in (B2), use atbotif no locally live variable at the allocation point has � free in its region typescheme and place, and use attop otherwise.12.3 Example: Computing the Length of aListWe shall now illustrate the storage mode rules of Section 12.2 with some smallexamples which also allow us to discuss bene�ts and drawbacks associatedwith region resetting.Consider the functions declared in Figure 12.55; they implement �ve dif-ferent ways of �nding the length of a list! The �rst, nlength, is the moststraightforward one. It is not tail recursive. Textbooks in functional pro-gramming often recommend that functions are written iteratively (i.e., us-ing tail calls) whenever possible. This we have done with tlength. Next,klength is a version which contains a local region endomorphism loop toperform the iteration; llength is similar to klength, except that the regionendomorphism is declared outside llength, using local. Region and stackpro�les resulting from running the program are shown in Figure 12.6. Thediagram shows how much space is used in regions, both �nite regions on thestack and in�nite regions. The rDesc band shows how much space is used onthe stack for holding region descriptors. The stack band shows how muchspace is used on the stack, including neither �nite regions nor region descrip-tors; the stack band mainly consists of registers and return addresses thathave been pushed onto the stack.In Figure 12.6 we clearly see the �ve phases. In each phase, �rst a list isbuilt | seen as an almost linear growth in two regions; then follows a shortercomputation of the length of the list. The space behaviour of the �ve ways5Project: kitdemo/nlength10000, �le: kitdemo/length.sml.



102 CHAPTER 12. RESETTING REGIONSfun upto n =let fun loop(p as (0,acc)) = p| loop(n, acc) =loop(n-1, n::acc)in #2(loop(n,[]))endfun nlength [] = 0| nlength (_::xs) = 1 + nlength xsfun tlength'([], acc) = acc| tlength'(_::xs, acc) = tlength'(xs,acc+1)fun tlength(l) = tlength'(l,0)fun klength l =let fun loop(p as ([], acc)) = p| loop(_::xs, acc) = loop(xs,acc+1)in #2(loop(l,0))endlocalfun llength'(p as ([], acc)) = p| llength'(_::xs, acc) = llength'(xs,acc+1)infun llength(l) = #2(llength'(l, 0))endfun global(p as ([], acc)) = p| global(_::xs, acc) = global(xs, acc+1)fun glength(l) = #2(global(l, 0))val run = nlength(upto 10000) + tlength(upto 10000) +klength(upto 10000) + llength(upto 10000) +glength(upto 10000);Figure 12.5: Five di�erent ways of computing the length of lists.
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Figure 12.6: Region pro�ling of �ve di�erent ways of computing the lengthof a list, namely, from left to right: nlength, tlength, klength, llengthand glength.



104 CHAPTER 12. RESETTING REGIONSof computing the length vary considerably. We shall have more to say aboutthe time behaviour below.As one would expect, nlength leads to a peak in stack size and it doesnot use regions. (The peak in stack size is caused by the stacking of a returnaddress.)Next we see that tlength is not an improvement over nlength! Notethat tlength' is region-polymorphic and that the polymorphic recursion inregions allows the pair (xs, acc+1) to be stored in a region di�erent fromthe argument pair to tlength'. Thus what appears to be a tail call is infact not a tail call, for it is automatically enclosed in a letregion constructwhich introduces a fresh region for each argument pair (xs, acc+1). Thisregion is �nite, so it is allocated on the stack. That is why we see a sharpincrease in stack size for tlength'.The next function, klength, deserves careful study, since it is a prototypeof a particular schema which can be used again and again when program-ming with regions. Iteration is done by a region endomorphism, loop, whichis declared as a local function to the main function. The use of the samevariable p on both the left-hand side and the right-hand side of the decla-ration of loop forces loop to be a region endomorphism. Since the resultof loop(xs,acc+1) is also the result of loop, the result of loop(xs,acc+1)therefore has to be in the same region as p; but since loop is an endomor-phism, this forces (xs, acc+1) to be in the same region as p. Thus whatappears to be a tail call (loop(xs,acc+1)) really will be a tail call; in par-ticular there will be no fresh region for the argument and no growth of thestack.Better still, we have carefully arranged that memory consumption willbe constant throughout the computation of the length of the list. First, theargument to the initial call of loop is a pair (l, 0) constructed at thatpoint. Since loop is a region endomorphism, the result of loop(l, 0) willbe in the same region as (l, 0). Moreover, since we then immediately takethe second projection of that pair, that region is clearly local to the bodyof klength. Call the region �. Since there can be an unbounded number ofstores into this region, � is classi�ed as in�nite by multiplicity inference.The storage mode passed along with � in the initial call loop(l,0) isatbot, by rule (B2) of Section 12.2. Inside loop, the storage mode given tothe allocation of (xs, acc+1) is sat, by rule (B3) in Section 12.2: the onlylocally live variable at the point where the allocation takes place is loop |which we must not destroy before calling! | and the region which loop lies



12.3. EXAMPLE: COMPUTING THE LENGTH OF A LIST 105in is clearly di�erent from �.Therefore, every iteration of loop resets the \in�nite" region � so that itwill in fact only contain at most one pair. This is seen very clearly in thethird hump of Figure 12.6.Next consider llength. The di�erence from klength is that llength' isnow declared outside llength. Note that although the use of local makesit clear that llength' is not exported from the compilation unit, llength'must in fact reside in a global region, since llength, which is exported, callsllength'. Nonetheless, the storage mode analysis still achieves constantmemory usage. As before, we have arranged that iteration is done by aregion endomorphism which is initially applied to a freshly constructed pair.This pair can reside in a region which is local to the body of llength (onceagain, the projection #2(llength'(l, 0)) makes sure that the pair doesnot escape the body of llength). The crucial bit is now which storage modellength' uses when it stores (xs, acc+1). The only locally live variableat that point is llength' itself and, as we noted above, length' lives in aglobal region which is clearly di�erent from the region inside llength whichcontains all the pairs. Thus storage mode sat will be used, as desired.Finally, consider glength, which is similar to llength, but with the cru-cial di�erence that global is exported from the compilation unit. Sinceglobal may be called from a di�erent compilation unit, then, for all weknow, global may be applied to a pair which resides in the same (global)region as global itself. Using sat when storing (xs, acc+1) would thenbe a big mistake: it would destroy the very function we are trying to call!Therefore, the storage mode analysis assigns attop to that storage opera-tion.6 Consequently we get a memory leak, as shown in the �nal hump ofFigure 12.6.To sum up, here is how one writes a loop without using space proportionalto the number of iterations:1. The iteration should be done by an auxiliary, uncurried function whichis declared as local to the function that uses it; we refer (informally) tothis auxiliary function as the iterator.2. The iterator should be a region endomorphism and it should be tailrecursive;6To be precise, attop comes about by using rule (B3) of Section 12.2. This exampleillustrates why we put edges from formal region parameters to global regions for exportedfunctions when constructing the region 
ow graph.



106 CHAPTER 12. RESETTING REGIONSprogram upto nlength tlength klength llength glengthsec. 0.10 0.14 0.15 0.18 0.20 0.14Figure 12.7: User time in seconds for building a list of 100,000 elements andcomputing its length, using �ve di�erent length functions. upto builds thelist, but does not compute a length. Times are average over three runs.3. Iteration should start from a suitably fresh initial argument; the resultof the iteration should be kept clearly separate from the region wherethe iterator function lies.Mutual recursion poses no additional complications. All functions in a blockof mutually recursive functions are put in the same region.Finally, the reader may be concerned that the two recommended solu-tions, klength and llength, seem to be much slower than the other versions.This is mostly an artifact of the pro�ling software, however.7 To get a bet-ter picture of the actual cost of the di�erent versions, we compiled the �veprograms separately (using lists of length 100,000 instead of 10,000) usingthe HP backend and then ran the programs on an HP-9000s700. The resultsare shown in Figure 12.7. Since upto alone takes 0.10 seconds to build thelist, the di�erences in times are clear: the two programs that reset regions(klength and llength) are slower than those that leak space. Writing attopinto an in�nite region glength is only slightly slower than storing values onthe stack (nlength). Thus most of the extra cost of klength and llengthstems from the operation which resets regions. This extra cost could proba-bly be reduced signi�cantly by an analysis which discovered that the regionsthat have been marked as in�nite only ever contain one value at the timeand could therefore be treated as �nite regions.Programming with storage modes is useful if one wants to miniaturiseprograms using the Kit. However, it is often the case that there are only afew places in the program where resetting is really essential, for example insome main loop which is supposed to run forever. Therefore, the Kit providestwo operations which the programmer can use to encourage (or force) the Kitto perform resetting at particular places in the program. These are described7When pro�ling is turned on, every resetting of a region involves a scan of an entireregion page (typically 1 Kb) and this cost far dominates the cost of allocating a pair intothe region.



12.4. RESETREGIONS AND FORCERESETTING 107in the next section.12.4 resetRegions and forceResettingThe programmer can reset regions using the two built-in primitivesresetRegions idand forceResetting idNote that, in both cases, the argument has to be an identi�er (more specif-ically, a value variable). To port programs that contain resetRegions andforceResetting to other ML systems, simply declarefun resetRegions _ = ()fun forceResetting _ = ()before compiling the program developed using the Kit.Let � be a region variable which occurs free in the type and place of id.Let m be the storage mode determined for � at a program point accordingto the rules of the previous section. Whether resetting of id at that programpoint actually takes place at runtime, depends onm and on whether resettingis forced, see Figure 12.8.12.5 Example: Improved MergesortWe can now improve on the mergesort algorithm (Section 6.4) by takingstorage modes into account. Splitting a list can be done by an iterativeregion endomorphism which is made local to the sorting function. Also,when the input list has been split, it is no longer needed, so the region itresides in can be reset. Similarly, when the two smaller lists have been sorted(into new regions) the regions of the smaller lists can be reset. These threesimple observations lead to the following variant of msort:88Project: kitdemo/msortreset1, �le kitdemo/msortreset1.sml.



108 CHAPTER 12. RESETTING REGIONSDoes resetting really take place at runtime?resetRegions forceResettingm = atbot yes yesm = sat only if run-time storagemode is atbot yes�m = attop no� yes�(�): A compile-time warning is printed in this case.Figure 12.8: The storage modes that will be used when resetting a regiondepending on m, the storage mode inferred by the storage mode analysis anddepending on whether the resetting is safe (resetRegions) or potentiallyunsafe (forceResetting).local(* splitting a list *)fun split(x::y::zs, l, r) = split(zs, x::l, y::r)| split(x::xs, l, r) = (xs, x::l, r)| split(p as ([], l, r)) = pinfix footnotefun x footnote y = x(* exomorphic merge sort *)fun msort [] = []| msort [x] = [x]| msort xs = let val (_, l, r) = split(xs, [], [])in resetRegions xs;merge(msort l footnote resetRegions l,msort r footnote resetRegions r)endinval runmsort = msort(upto(50000))



12.5. EXAMPLE: IMPROVED MERGESORT 109val result = output(std_out, "Really done\n");endUnfortunately, the storage mode analysis complains:resetRegions(v7038):You have suggested resetting the regions that appear freein the type scheme and place of 'v7038', i.e., in(([(int,r2)],[r63],) list,r62)(1) 'r63': there is a conflict with the locallylive variablel :(([(int,r2)],[r72],) list,r71)from which the following region variables can be reachedin the region flow graph:{r71,r2,r72}Amongst these, 'r72' can also be reached from 'r63'.Thus I have given 'r63' storage mode "attop".(2) 'r62': there is a conflict with the locallylive variablel :(([(int,r2)],[r72],) list,r71)from which the following region variables can be reachedin the region flow graph:{r71,r2,r72}Amongst these, 'r71' can also be reached from 'r62'.Thus I have given 'r62' storage mode "attop".Here v7038 turns out to be xs (by inspection of the region-annotated term),so there are two complaints concerning the �rst resetRegions, but noneconcerning the two remaining ones. Consider (1). By inspecting the region-annotated term one sees that r62 and r63 are formal parameters of msort.Due to the recursive call msort r, the region graph contains an edge fromr63 to r72 and, as pointed out in (2), an edge from r62 to r71. Thus theanalysis decides on attop, using rule (B3) This shows a weakness in theanalysis, for using sat would really be sound. (The problem is that, unlikepolymorphic recursion, the region 
ow graph does not distinguish betweendi�erent calls of the same function.) Seeing that this is the problem, we
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local(* splitting a list *)fun split(x::y::zs, l, r) = split(zs, x::l, y::r)| split(x::xs, l, r) = (xs, x::l, r)| split(p as ([], l, r)) = pinfix footnotefun x footnote y = x(* exomorphic merge sort *)fun msort [] = []| msort [x] = [x]| msort xs = let val (_, l, r) = split(xs, [], [])in forceResetting xs;merge(msort l footnote resetRegions l,msort r footnote resetRegions r)endinval runmsort = msort(upto(50000))val result = output(std_out, "Really done\n");endFigure 12.9: Using forceResetting to reset regions.
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Figure 12.10: Region pro�ling of the improved mergesort. The two upper tri-anges contain unsorted elements, while the two lower triangles contain sortedelements. Project: kitdemo/msortreset2, �le kitdemo/msortreset2.sml;program compiled with pro�ling enabled and then run with the commandrun -microsec 100000. The picture (region.ps) was generated by thecommand: rp2ps -region -sampleMax 1000 -eps 120 mm and then pre-viewed using the command ghostview region.ps .decide to put forceResetting to work, see Figure 12.9. The region pro�leof the improved merge sort appears in Figure 12.10. Note that, as expected,we have now brought space consumption down from four times to two timesthe size of the input. Figure 12.10 may be compared to Figure 6.2, page 61.12.6 Example: Scanning Text FilesIn this section we present a program which can scan a sequence of StandardML source �les in order to compute what percentage of the source �les ismade up by comments. Recall that an ML comment begins with the twocharacters (*, ends with *) and that comments may be nested but must be



112 CHAPTER 12. RESETTING REGIONSbalanced (within each �le, we require).The obvious solution to this problem is to implement an automaton withcounters to keep track of the level of nesting of parentheses, number of charac-ters read and number of characters within comments. This provides an inter-esting test for region inference: although designed with the lambda calculusin mind, does the scheme cope with good old-fashioned state computations?Let us be ambitious and write a program which only ever holds on to onecharacter at a time when it scans a �le. In other words, the aim is to useconstant space (i.e., space consumption should be independent of the lengthof the input �le).To this end, let us arrange to use a region with in�nite multiplicity tohold the current input character and then reset that region before we proceedto the next character. The iteration is done by tail recursion, using regionendomorphisms to ensure constant space usage.The bulk of the program appears below. The scanning of a single �leis done by scan, which contains three mutually recursive region endomor-phisms (count, after lparen and after star) written in accordance withthe guidelines in Section 12.3. The built-in input function understands stor-age modes: if called with storage mode atbot it will reset the region wherethe string should be put before reading the string from the input. Conse-quently, at every call of next, the \input bu�er region" will be reset.The other important loop in the program is driver, a function whichrepeatedly reads a function name from a given input stream, opens the �lewith that name and calls scan to process the �le. Once again, we want tokeep at most one �le name in memory at a time, so we would like the re-gion containing the �le name to be reset upon each iteration. As it turnsout, our readWord will always store the string it creates at the top of theregion in question. The reason is that it calls implode, which is declared inand exported from the prelude. It is implode which always stores attop, byrule B3 and the fact that formal region parameters of exported functions areconnected to global regions in the region 
ow graph. Thus the two occur-rences of resetRegions are necessary. In general, when splitting a programunit into two, one may have to insert explicit resetRegions into the secondunit, when operations from the �rst unit are called.localexception NotBalanced



12.6. EXAMPLE: SCANNING TEXT FILES 113fun scan(is: instream) : int*int =letfun next() = input(is, 1)fun up(level,inside) = if level>0 then inside+1else inside(* n: characters read in 'is'inside: characters belonging to commentslevel : current number of unmatched (*s : next input character or empty *)count is endo *)fun count(p as (n,inside,level,s:string))=case s of"" => (* end of stream: *) p| "(" => after_lparen(n+1,inside,level,next())| "*" => after_star(n+1,up(level,inside),level,next())| ch => count(n+1,up(level,inside), level,next())and after_lparen(p as (n,inside,level,s))=case s of"" => p| "*" => count(n+1,inside+2, level+1,next())| "(" => after_lparen(n+1, up(level,inside), level,next())| ch => count(n+1,up(level,up(level,inside)),level,next())and after_star(p as (n,inside,level,s)) =case s of"" => p| ")" => if level>0 thencount(n+1,inside+1,level-1,next())else raise NotBalanced| "*" => after_star(n+1,up(level,inside), level,next())| "(" => after_lparen(n+1,inside,level,next())| ch => count(n+1,up(level,inside),level,next())val (n, inside,level,_) = count(0,0,0,next())inif level=0 then (n,inside) else raise NotBalancedend



114 CHAPTER 12. RESETTING REGIONSfun report_file(filename, n, inside) =writeln(implode[filename , ": size = " , toString n ," comments: ", toString inside, " (",toString(percent(inside, n)) handle Quot => "","%)"]);(* scan_file(filename) scans through the file namedfilename returning either Some(size_in_bytes, size_of_comments)or, in case of an error, None. In either case a line ofinformation is printed. *)fun scan_file (filename: string) : (int*int)Option=let val is = open_in filenamein let val (n,inside) = scan isin close_in is;report_file(filename, n, inside);Some(n,inside)end handle NotBalanced =>(writeln(filename ^ ": not balanced");close_in is;None)end handle Io msg => (writeln msg; None)fun report_totals(n,inside) =writeln(implode["\n\nTotal sizes: ", toString n," comments: ", toString inside," (", toString(percent(inside,n)) handle Quot => "",")%"])(* main(is) reads a sequence of filenames from is,one file name pr line (leading spaces are skipped;no spaces allowed in file names). Each file isscanned using scan_file after which a summaryreport is printed *)fun main(is: instream):unit =letfun driver(p as(None,n,inside)) =



12.6. EXAMPLE: SCANNING TEXT FILES 115(report_totals(n, inside); p)| driver(p as (Some filename,n:int,inside:int)) =driver(case scan_file filename ofSome(n',inside') =>(resetRegions p;(readWord(is), n+n',inside+inside'))| None => (resetRegions p;(readWord(is),n,inside)))indriver(readWord(is),0,0);()endinval result = main(std_in)endThe program was compiled9 both with and without pro�ling turned on.The output from running the program on 10 �les listed in the ML CONSULT�le of the Kit is shown belowParsing/INFIX_STACK.sml: size = 585 comments: 417 (71%)Parsing/InfixStack34g.sml: size = 7641 comments: 3120 (40%)Parsing/Infixing34g.sml: size = 28389 comments: 4645 (16%)Parsing/LEX_BASICS.sml: size = 2102 comments: 1334 (63%)Parsing/LEX_UTILS.sml: size = 1294 comments: 399 (30%)Parsing/LexBasics36e.sml: size = 11674 comments: 2968 (25%)Parsing/LexUtils33b.sml: size = 7566 comments: 1834 (24%)Parsing/MyBase.sml: size = 33735 comments: 10896 (32%)Parsing/PARSE.sml: size = 1151 comments: 644 (55%)Parsing/Parse34g.sml: size = 6926 comments: 924 (13%)Total sizes: 101063 comments: 27181 (26)%A region pro�le for that run is shown in Figure 12.11. The almost-constantspace usage is evident. The occasional disturbances are due to the non-9Project: kitdemo/scan.



116 CHAPTER 12. RESETTING REGIONS
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Figure 12.11: Region pro�ling of the scanner. Note that the unit of measureon the y-axis is bytes, not kilobytes. The occasional increase is due to thefunctions which read a �le name from an instream. Project: kitdemo/scan.The program was compiled with pro�ling enabled, then run by theunix command run -microsec 100000 < ../../kitdemo/scanfiles. Apostscript picture (region.ps) can be generated by the unix commandrp2ps -region -sampleMax 1000 -eps 120 mm.iterative functions which read a �le name from input by �rst reading one lineand then extracting the name.



Chapter 13Higher-Order Functions
13.1 Lambda-Abstraction (fn)A lambda abstraction in Standard ML is an expression of the formfn pat => expwhere pat is a pattern and exp an expression. Lambda expressions denotefunctions. We refer to the exp as the body of the function; variable occurrencesin pat are binding occurrences; informally, the variables that occur in pat aresaid to be lambda-bound with scope exp.Lambda-abstractions are represented by closures, both in the languagede�nition and in the Kit. In the Kit, a closure for a lambda abstractionconsists of a code pointer plus one word for each free variable of the lambdaabstraction. Closures are not tagged.At this stage, it will hardly come as a surprise to the reader that closuresare stored in regions. Sometimes they reside in �nite regions on the stack,other times they live in in�nite regions, just like all other boxed values.Every occurrence of fn in the program is considered an allocation point;the region-annotated version of the lambda abstraction isfn at � pat => expStandard ML allows functions to be declared using val rather than fun, e.g.,val h = g o f 117



118 CHAPTER 13. HIGHER-ORDER FUNCTIONSWhereas functions declared with fun automatically become region polymor-phic, functions declared with val do not in general become region-polymorphic.1However, in the special case where the right-hand side of the value declara-tion is a lambda abstraction, the Kit automatically converts the declarationinto a fun declaration, thereby making the function region polymorphic afterall.ML allows declarations of the formfun f atpat1 atpat2 � � � atpatn = expas a shorthand forfun f atpat1 => fn atpat2 => � � � fn atpatn => expwhere atpat ranges over atomic patterns. We say that functions declaredusing this abbreviation are Curried.13.2 Region-Annotated Function TypesThe general form of a region-annotated function type is�1 �:'��!�2where �1 is the region-annotated type and place of the argument and �2 is theregion-annotated type and place of the result. A region-annotated functiontype with place takes the form(�1 �:'��!�2; �)where � is the region containing the closure. As mentioned in Section 5.2,the unusual looking object �:' is called an arrow e�ect. Its �rst componentis an e�ect variable, whose purpose will be explained shortly. The secondcomponent is called the latent e�ect, and describes the e�ect of evaluatingthe body of the function.The following example illustrates why latent e�ects are crucial for know-ing the lifetimes of closures.2 Consider1The reason for this is that the expression on the right-hand side of the value declarationmight have an e�ect (e.g, print something) before returning the function. It would not becorrect to suspend this e�ect by introducing formal region parameters.2Project: kitdemo/lambda, �le kitdemo/lambda.sml.



13.3. ARROW EFFECTS 119val n = let val f = let val xs = [1,2]in fn ys => length xs + length ysendin f [7]endNote that xs has to be kept alive for as long as the function fn ys =>� � � may be called, for this function will access xs, when called. The region-annotated version appears in Figure 13.1. (To see the output programs dis-cussed in this section, enable the 
ag print drop regions expression andlook under the heading Report: AFTER DROP REGIONS.) We see that xs isput in r11 and r12, that the function closure for (fn ys => � � �) is put inr7 and indeed, r7, r11 and r12 all have the same lifetime. To understandhow the region inference system �gured that out, let us consider the e�ectand the region-annotated type of particular sub-expressions. Looking at thelambda abstraction, it must have a functional type of the form (� �:'��!�0; r7)where ' is the e�ectfget(r1); get(r2); get(r11); get(r12); get(r9); get(r10);put(r2)gNote that r11 and r12 occur free in the type of the lambda abstraction. But,as pointed out in Section 3.4, the criterion for putting letregion � in : : :end around an expression e is that � occurs free neither in the region-annotated type and place of e nor in the region-annotated type scheme andplace of any variable in the domain of the type environment. The smallestsub-expression of the program for which r11 and r12 does not occur freein the type and place of the expression is the right-hand side of the val-binding of n, for that expression simply has region-annotated type and place(int,r2). And at that point, the only region variables that occur free in thetype environment are global region variables. Hence the placement of theletregion-binding of r11 and r12.13.3 Arrow E�ectsIn a �rst-order language, e�ect variables might not be particularly impor-tant. But in a higher-order language like ML, e�ect variables are useful fortracking dependencies between functions. The following example illustratesthe point:33Project: kitdemo/lambda, �les kitdemo/lambda1.sml and kitdemo/lambda2.sml.



120 CHAPTER 13. HIGHER-ORDER FUNCTIONS
let val n =letregion r7:1, r9:INF, r10:1, r11:INF, r12:INFin let val f =let val xs =let val v9260 =(1,let val v9261 = (2, nil at r11) at r12in :: at r11 v9261end) at r12in :: at r11 v9260endin fn at r7 ys =>letregion r16:1 in length[] xs end +letregion r18:1 in length[] ys endendin flet val v9257 = (7, nil at r9) at r10in :: at r9 v9257endendendin {|n: (_,r2)|}endFigure 13.1: Region-annotated program illustrating that the lifetime of aclosure is at least as long as the lifetime of the values that evaluation of thefunction body will require.



13.3. ARROW EFFECTS 121fun apply f x = f xval y = apply (fn n => n+1) 5val z = apply (fn m => m) 9Here is the region type scheme of apply:8�1�2�1�2�3�4�1�2�3:((�1; �1) �1:;���!(�2; �2); �3) �2:fput(�4)g��������!((�1; �1) �3:fget(�3);�1g���������!(�2; �2); �4)The latent e�ect associated with �2 shows that when apply is applied to afunction, it may create (in fact: will create) a function closure in �4. Thelatent e�ect associated with �1 is empty, since the declaration of apply doesnot tell us anything about what e�ect the formal parameter f must have.Crucially, however, �1 is included as an atomic e�ect in the latent e�ectassociated with �3: whenever the body of apply f is evaluated, the body off may be (in fact: will be) evaluated.The polymorphism in e�ects makes it possible to distinguish betweenthe latent e�ects of di�erent actual arguments to apply. For example, thefunctions fn n => n+1 and fn m => m have di�erent latent e�ects. Let ustake fn n => n+1 as example. It has function type and place((int; �2) �5:fget(�2);put(�2)g������������!(int; �2); �5) (13.1)Here we have assumed that integers always live in �2, while �5 and �5 werechosen arbitrarily. The region inference algorithm discovers that (13.1) is aninstance of ((�1; �1) �1:;���!(�2; �2); �3) from the type scheme for apply underthe instantiating substitutionS = (f�1 7! int; �2 7! intg; f�1 7! �2; �2 7! �2; �3 7! �5g;f�1 7! �5:fget(�2);put(�2)g)Formally, a substitution is a triple (St; Sr; Se), where St is a map from typevariables to types, Sr is a �nite map from region variables to region variablesand Se is a map from e�ect variables to arrow e�ects. Although we shallnot de�ne what it means to apply a substitution to a type in this document,let us explain why substitutions map e�ect variables to arrow e�ects. Onealternative, one might consider, is to let substitutions map e�ect variables toe�ect variables. But then substitutions would not be able to account for theidea that e�ects can \grow", when instantiated. In the apply example, for in-stance, the empty e�ect associated with �1 has to grow to fget(�2);put(�2)g



122 CHAPTER 13. HIGHER-ORDER FUNCTIONSat the concrete application of apply (otherwise, as it is easy to demonstrate,the region inference system would become unsound).Another alternative would be to let substitutions map e�ect variablesto e�ects. But that would not work well together with the idea of usingsubstitutions to express \growth" of e�ects either. For example, applyingthe map f� 7! fget(�0);put(�2)gg to the e�ect fget(�9); �g, say, wouldpresumably yield the e�ect fget(�9); get(�0);put(�2)g in which the fact thatthe original e�ect had to be at least as large as whatever � stands for, is lost.Instead, we de�ne substitution so that applying the e�ect substitution f� 7!�:fget(�2);put(�)gg to fget(�9); �g yields fget(�9); �; get(�2);put(�)g.We can now give a complete de�nition of atomic e�ects. An atomic e�ectis either an e�ect variable or a term of the form get(�) or put(�), where � asusual ranges over region variables. An e�ect is a �nite set of atomic e�ects.One can get the Kit to print region-annotated types of all binding occur-rences of value variables. Also, one can choose to have arrow e�ects includedin the printout: Enable the 
ags print types and print effects in theLayout menu. Although this gives very verbose output, it is instructive tolook at such a term just once, to see how arrow e�ects are instantiated. Weshow the full output for the apply example in Figure 13.2. In reading theoutput it is useful to know that the Kit represents e�ects and arrow e�ectsas graphs, the nodes of which are region variables, e�ect variables put, getor U (for \union"; U by itself means the empty set). Region variables areleaf nodes. A put or get node has emanating from it precisely one edge;it leads to the region variable in question. An e�ect variable node (writtene followed by a sequence number) is always the handle of an arrow e�ect;there are edges from the e�ect variable to the atomic e�ects of that arrowe�ect, either directly, or via union nodes or other e�ect variable nodes. Forinstance, e14(U) in the �gure denotes an e�ect variable with an edge to anempty union node. When a term containing arrow e�ects is printed, sharednodes that have already been printed are marked with a @; their children arenot printed again. For instance, in the �gure, the second occurence of r2 isprinted as @r2. The binding occurrence of apply has been printed with itsregion type scheme. Each non-binding occurrence of apply has been printedwith four square-bracketed lists: The �rst list is the actual region arguments;the following three are \instantiation lists" that show the range of the substi-tution by which the bound variables of the type scheme was instantiated, inthe same order as the bound variables occurred. For example, in the seconduse of apply, r8 was instantiated to r17.



13.3. ARROW EFFECTS 123fun apply:all'a34,'a32,r7,r8,r9,r10,e11,e12,e13.(((('a32,r10)-e11->('a34,r9)),r8)-e12(put(r7))->((('a32,r10)-e13(U(U,get(r8),e11))->('a34,r9)),r7))at r1[r7:1](f)=fn e13 at r7 x:('a32,r10) => f xval y:(int,r2) =letregion r9:1, r10:1in letregion r11:1in apply[r9][int,int][r9,r10,r2,r2][e7(U(get(r2),get(r1),put(@r2))),e12(put(r9)),e8(e7(U(get(r2),get(r1),put(@r2))),get(r10))]at r11(fn e7 at r10 n:(int,r2) => n + 1)end5endval z:(int,r2) =letregion r16:1, r17:1in letregion r18:1in apply[r16][int,int][r16,r17,r2,r2][e14(U),e19(put(r16)),e15(e14(U),get(r17))]at r18(fn e14 at r17 m:(int,r2) => m)end9endFigure 13.2: The instantiation of arrow e�ects keeps di�erent applicationsof the same function (here apply) apart. (Project: kitdemo/lambda, �les:kitdemo/lambda1.sml and lambda2.sml.)



124 CHAPTER 13. HIGHER-ORDER FUNCTIONS13.4 Region-Polymorphic Recursion and Higher-Order FunctionsUnlike identi�ers bound by fun, lambda-bound function identi�ers are neverregion-polymorphic. So in an expression of the form(fn f => � � � f � � � f � � �)all the uses of f use the same regions. Indeed, since f occurs free in thetype environment while region inference analyses the body of the lambdaabstraction, none of the regions which appear in the type of f will be de-allocated inside the body of the lambda abstraction. Also, such a regionmust be bound outside the lambda abstraction, so any attempt to resetsuch a region inside the body of the abstraction will cause the storage modeanalysis to complain (by Rule (B1) of Section 12.2).Therefore, when a function f is passed as argument to another function,g, g(f)�rst regions are allocated for the use of f , then g is called and �nally theregions are de-allocated (provided they are not global regions). Whether theletregion construct thus introduced encloses the call site immediatelyletregion �1; : : : ; �n in g(f) endor further out letregion �1; : : : ; �n in : : : g(f) : : : enddepends on the type and e�ect of the expression g(f) in the usual way:regions can be de-allocated when they occur free neither in the type of theexpression nor in the type environment.13.5 Examples: map and foldlConsider44Project: kitdemo/lambda, �les kitdemo/lambda3.sml and kitdemo/lambda4.sml.



13.5. EXAMPLES: MAP AND FOLDL 125fun map f [] = []| map f (x::xs) = f(x) :: map f xsval x = map (fn x => x+1) [7,11]The above formulation of map is not the most e�cient one in the Kit, since itwill create one closure for each element in the list, due to currying.5 Howeverit serves to illustrate the point made in the previous section about allocat-ing regions in connection with higher-order functions. The region-annotatedversion is seen in Figure 13.3. We see that the regions that appear free in thetype and place of the successor function (i.e., r2 and r12) must be allocatedprior to the call of map and that they stay alive throughout the evaluation ofthe body of map. Note, however, that the closures that are created when mapis applied do not pile up in r12, the region of the successor function. Instead,they are put in local regions bound to r22, one closure in each region. Also,if we had given some more complicated argument to map, the body of thatfunction could have letregion expressions. For each list element, regionswould then be allocated, used and then de-allocated before proceeding to thenext list element.So it might appear that higher-order functions are nothing to worry aboutwhen programming with regions. That is not so, however. The limitationthat lambda-bound functions are never region-polymorphic can lead to spaceleaks. Here is an example:fun foldl f acc [] = acc| foldl f acc (x::xs) = foldl f (f(x,acc)) xsval x = foldl (fn (x,acc) => 10*acc+x) 0 [7,2];Since f is lambda-bound, all the pairs created by the expression (x,acc) willpile up in the same region. The storage mode analysis will infer storage modeattop for the allocation of the pair, by rule (B1) of Section 12.2: since foldlis curried, there are several lambdas between the formal region parameter offoldl which indicates where the pair should be put, and the allocation pointof the pair.5When map and the application of map appear in the same compilation unit, the Kit willautomatically specialise map to a recursive function which does not have this defect. (Thisit the result of a general optimisation of curried, closed functions that have a constantargument.) The output we present in this section was obtained by putting map in acompilation unit of its own.



126 CHAPTER 13. HIGHER-ORDER FUNCTIONSfun map at r1 [r7:1, r8:0, r9:0] (var932)=fn at r7 var933 =>(case var933of nil => nil at r8| :: =>let val v10434 = decon_:: var933;val x = #0 v10434;val xs = #1 v10434;val v10439 =(var932 x,letregion r21:1in letregion r22:1in map[r21,r8,r9] at r22 var932endxsend) at r9in :: at r8 v10439end) (*case*)val x =letregion r9:1, r10:INF, r11:INF, r12:1in letregion r13:1in map[r9,r1,r1] at r13 (fn at r12 x => x + 1)endlet val v10465 =(7,let val v10466 = (11, nil at r10) at r11in :: at r10 v10466end) at r11in :: at r10 v10465endendFigure 13.3: Although this version of map creates a closure for each listelement, the region-polymorphic recursion (of map) ensures that that closureis put in a region local to map. Thus these closures do not pile up in r12, theregion of the initial argument.



13.5. EXAMPLES: MAP AND FOLDL 127It does not help to uncurry foldl and turn foldl into a region endomor-phism: fun foldl(p as (f,[],_)) = p| foldl(f,x::xs,acc) = foldl(f,xs,f(x,acc))val x = #3(foldl(fn(x,acc) => 10*acc+x,[7,2],0));The storage mode analysis will still give attop for the allocation of the pair(x,acc), for the region of the pair is free in the type of f, which is locallylive at that point.The solution is to require that f be curried, to avoid the creation of thepair altogether, i.e, going to higher order rather than lower:fun foldl f b xs =let fun loop(p as ([], b))= p| loop(x::xs, b) = loop(xs,f x b)in #2(loop(xs,b))endThe region-annotated version appears in Figure 14.2 (page 137).
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Chapter 14The function callStandard ML allows function applications of the formexp1exp2where exp1 is the operator and exp2 is the operand. The syntax for functionapplication is overloaded, in that it is used for three di�erent purposes inML:1. application of built-in operations such as +, =, :=;2. application of a value constructor (including ref) or an exception con-structor;3. application of user-de�ned functions, i.e., functions that are introducedby fn or fun;This chapter is about the last kind of function application; in this chapter,we use the term function application to stand for application of user-de�nedfunctions only.Function applications are ubiquitous in Standard ML programs; in par-ticular, iteration is often achieved by function calls. Not surprisingly, carefulcompilation of function calls is essential for obtaining good performance.The Kit partitions function calls into four kinds, which are implementedin di�erent ways. At best, a function call is simply realised by a jump in thetarget code.The resource conscious programmer will want to know the special cases;for example, when doing an iterative computation, it is important to know129



130 CHAPTER 14. THE FUNCTION CALLwhether the space usage is going to be independent of the number of itera-tions.In this section we enumerate the cases recognized by the Kit and showhow one can check whether speci�c function calls in the code turn out theway one intended.The Kit performs a backwards 
ow analysis, called call conversion, todetermine which function calls are tail calls and, more generally, which func-tion calls fall into the special cases listed below. We say that expressionsproduced by this analysis are call-explicit.One can inspect call-explicit programs by enabling the 
agprint call-explicit expressionin the menu Printing of intermediate forms. Call-explicit expressionsare produced after regions have been dropped (page 56) but before generationof KAM code.We shall �rst give a brief description of the parameter passing mechanismin general and then discuss the di�erent kinds of function calls provided,working our way from the most specialised (and most e�cient) cases towardsthe default cases.14.1 Parameter PassingThere is one (and so far only one) register which is used for passing argumentsto functions. It is called stardardArg. In addition, region-polymorphicfunctions use another �xed register, called standardArg11, which points tothe record of region parameters which the caller has allocated prior to thecall.14.2 Tail CallsA call which is the last action of a function is referred to as a tail call. Afterregion inference, the Kit performs a tail call analysis (in one backwards scanthrough the program). It is signi�cant that the tail call analysis happensafter region inference: as we saw in Section 12.3, a function call that looks1Admittedly, not terribly good nomenclature.



14.3. SIMPLE JUMP (JMP) 131like a tail call in the source program may end up as a non-tail call in theregion-annotated program, because the function has to return in order to freememory.14.3 Simple Jump (jmp)In this section we shall consider conditions under which one can implement afunction call as a simple jump. A call of a region-polymorphic function takesthe form f [�1, : : :, �n] at �0 exp where �0 is the region which holds theregion vector containing the actual region parameters �1, : : :, �n. DuringK-normalisation, the Kit tries to bring the creation of �0 close to the pointof the call. Therefore, an important case to consider is a call of the formletregion �0 in f [�1, : : :, �n] at �0 exp end (n � 0) (14.1)where f is the name of a region-polymorphic function.The Kit simpli�es this expression to a simple jumpjmp f expif the following conditions are met:1. the call is a tail call; and2. one has(a) n = 0; or(b) the call occurs inside the body of some region-polymorphic func-tion g andi. the actual region parameters �1, : : :, �n are a pre�x of theformal region parameters of g, i.e., the list of formal regionparameters of g is [�1, : : :, �n, �n+1, : : :, �n+k], for some �n+1,. . . , �n+k; andii. the closest surrounding � of the call is the � that starts theright-hand side of g.The start address of f is known during compilation (since f is region poly-morphic). Thus such a function call is as e�cient as an assembly languagegoto to a constant label.



132 CHAPTER 14. THE FUNCTION CALLTo understand the above requirements, note that if the region �0 reallyhas to be created (be it on the stack or as an in�nite region) then the call fcannot be treated as a tail call, for f has to return to de-allocate �0. Now(2a) is one way of ensuring that there is no need to allocate �0. A di�erentway is given by (2b). The idea is to re-use the region vector of the function gin which the call of f occurs (a common special case is that g is f). Condition(2(b)i) ensures that the actual region parameters of f coincide with (a pre�xof) the formal parameters of g. Finally, (2(b)ii) is necessary in order toensure that the region vector of g really is available when f is called.To understand (2(b)ii) in more detail, consider the examplefun g[r](x) =h[r1] (fn y => letregion r2 in f[r] at r2 y end),which one might think of as sugar forval rec g[r] = fn x =>h[r1] (fn y => letregion r2 in f[r]at r2 y end).Here the call to f will not be implemented by a jmp, for there is a fn betweenthe start of the body of g and the call of f. Indeed, we must not implementthe call of f by a jmp, for in the call f[r] at r2, a region vector containingr has to be constructed, since, at the point of the call, r, is available onlyfrom the closure of fn y => letregion r2 in f[r]at r2 y end.Note that (14.1) requires that the letregion bind only one region variable(the region used for the region record). The way to avoid that letregionbinds more than one region variable is to turn the calling function into aregion endomorphism, when possible.The following is an example of how one obtains simple jumps:2localfun f'(p as (0,b)) = p| f'(n,b) = f'(n-1,n*b)infun f(a,b) = #2(f'(a,b))end;The call-explicit version of f' appears in Figure 14.1. Another example of ajmp tail call will be shown in Section 14.8.2Project: kitdemo/tail, �le: kitdemo/tail2.sml.



14.4. NON-TAIL CALL OF REGION-POLYMORPHIC FUNCTION (FUNCALL)133fun f' attop r1 [r7:inf] (var1024)=(case #0 var1024of 0 => var1024| _ =>let val n = #0 var1024; val b = #1 var1024in jmp f' (n - 1, n * b) sat r7end) (*case*) ;Figure 14.1: An example where a function call turns into a simple jump.14.4 Non-Tail Call of Region-Polymorphic Func-tion (funcall)Still referring to the form (14.1), let us consider the case where (1) or (2) isnot satis�ed. Then the Kit will allocate �0 before the call of f and de-allocateit afterwards.3 The region bound to �0 will always be �nite and be on thestack. Due to this allocation, the call cannot be a tail call. The mnemonicused for a non-tail call of a region-polymorphic function is funcall. Thus(14.1) is simpli�ed toletregion �0 in funcall f [�1, : : :, �n] at �0 exp end:Now let us turn to calls of region-polymorphic functions which do not �tthe pattern (14.1). One special case is:letregion �0; �1; : : : �k in f [] at �0 exp endwhere k > 0. Here �0 is not needed; the Kit therefore replaces the expressionby letregion �1; : : : �k in funcall f exp end(For reasons of presentation, we have assumed that the letregion-boundregion variables have been rearranged, if necessary, to bring �0 to the front.)3One could avoid this allocation in the case n = 1 or, more generally, if one allowedunboxed representation of region vectors, but for simplicity, we choose to forego thisopportunity for optimisation.



134 CHAPTER 14. THE FUNCTION CALLEvery remaining case of an application of a region-polymorphic functionf [�1, : : :, �n] at �0 expis replaced by (funcall f [�1, : : :, �n] at �0) expThis completes all possible cases of applications of region-polymorphicfunctions. We now turn to function applications where the operator is notthe name of a region-polymorphic function.14.5 Tail Call of Unknown Function (fnjmp)Consider the case: exp1 exp2where (a) the call is a tail call and (b) exp1 is not the name of a region-polymorphic function.Here exp1 will be evaluated to a closure, pointed to by a standard regis-ter, standardClos. Then exp2 will be evaluated and the result put in thestandard register standardArg. The �rst word in the closure always containsthe address of the code of the function. This address is fetched into a registerand a jump to the address is made. Since the call is a tail call, it inducesno allocation, neither on the stack nor in regions. It is thus as e�cient as anindirect goto in assembly language.The mnemonic used in call-explicit expressions for this special case isfnjmp exp1 exp214.6 Non-Tail call of Unknown Function (fncall)Consider the case exp1 exp2where (a) the call is not a tail call and (b) exp1 is not the name of a region-polymorphic function.This is implemented as follows: �rst exp1 is evaluated and the result, apointer to a closure, is stored in standardClos. Then exp2 is evaluated and



14.7. EXAMPLE: FUNCTION COMPOSITION 135stored in standardArg. Then live registers and a return address are pushedonto the stack and a jump is made to the code address which is stored in the�rst word of the closure pointed to by standardClos. Upon return, registersare restored from the stack.The mnemonic used in call-explicit expressions for this special case isfncall exp1 exp214.7 Example: Function CompositionThe prelude de�nes function composition as follows:fun (f o g) x = f(g x)The resulting call-explicit expression produced by the Kit is4fun o attop r1[r7:2] (var1026) =fn attop r7 x =>let val f = #0 var1026; val g = #1 var1026in fnjmp f (fncall g x)endNote that f o g �rst creates a closure in r7 and then returns. When called,the created function �rst performs a non-tail call of g and then a tail call tof.14.8 Example: foldl RevisitedConsiderfun foldl f b xs =case xs of[] => b| x::xs' => foldl f (f x b) xs'Note that the recursive call of foldl is a call of a known function, but not atail call: foldl returns a closure, which is subsequently applied to the valueof (f x b). This too returns a closure which in turn is applied to xs'. Theresulting call-explicit expression is54Project kitdemo/compose, �le kitdemo/compose.sml.5Project kitdemo/fold, �le kitdemo/fold1.sml.



136 CHAPTER 14. THE FUNCTION CALLfun foldl attop r1 [r7:4, r8:4] (f)=fn attop r7 b =>fn attop r8 xs =>(case xsof nil => b| :: =>let val v11876 = decon_:: xs;val x = #0 v11876;val xs' = #1 v11876in letregion r22:4in fncallletregion r24:4in fncallletregion r25:2in funcall foldl[atbot r24,atbot r22] atbot r25 fend(fncall (fncall f x) b)endxs'endend) (*case*)Note that upon each iteration, fresh regions for holding two closures are beingallocated for the duration of the recursive call. Thus space usage is linear inthe length of the list (4 words for each list cell, to be precise).An e�cient version of foldl is written thus:fun foldl f b xs =let fun loop(p as ([], b))= p| loop(x::xs, b) = loop(xs,f x b))in #2(loop(xs,b))endIt is compiled into the call-explicit expression in Figure 14.2.6 There are tworeasons why this is much better: the loop is implemented as a jump and,6Project kitdemo/fold, �le kitdemo/fold2.sml.



14.8. EXAMPLE: FOLDL REVISITED 137
fun foldl attop r1 [r7:3, r8:3] (f)=fn attop r7 b =>fn attop r8 xs =>letregion r20:1in let fun loop atbot r20 [r21:inf] (var1074)=(case #0 var1074of nil => var1074| :: =>let val v11919 = #0 var1074;val v11921 = decon_:: v11919;val b = #1 var1074;val x = #0 v11921;val xs = #1 v11921(* note jmp *) in jmp loop (xs,fncall (fncall f x) b) sat r21end) (*case*)in letregion r28:infin let val v11926 =letregion r29:1in funcall loop[atbot r28] atbot r29(xs, b) atbot r28endin #1 v11926endendendendFigure 14.2: The result of compiling foldl is an iterative function whichavoids argument pairs piling up in one region.



138 CHAPTER 14. THE FUNCTION CALLmore importantly, there is no new allocation in each iteration, except, ofcourse, for the allocation which f might make.7As an exercise, consider the following variant of foldl which assumesthat f takes a pair as an argument:fun foldl' f b xs =let fun loop(p as ([], b))= p| loop(x::xs, b) = loop(xs,f(x,b)))in #2(loop(xs,b))endInterestingly, this program contains a potential space leak. Can you detectit? If not, the Kit will tell you when you compile the program.8

7We repeat that because f is a formal function parameter, all the allocations made bythe calls to f (one call for each element of the list) are put in the same regions. If the listis very long or the values produced large, it may be a good idea to copy the �nal result toseparate regions.8Project kitdemo/fold, �le kitdemo/fold3.sml.
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Chapter 15Using the Pro�lerWe have already seen several examples of the use of the region pro�ler. Weshall now explain how to pro�le in more detail. For example, we shall see howone can �nd out precisely what allocation points in the program contributeto a particular region.The region pro�ler consists of several tools which can be used to analysethe dynamic memory behaviour of the target program. First of all, thereare the pro�les which are graphs showing the dynamic memory usage of theexecuted program. There are three di�erent graphs:� A region pro�le is a graph which gives a \global" view of the memoryusage by showing the total number of words allocated in regions andon the stack as a function of time. In the graph, regions that arise fromthe same letregion � in e endexpression are collected into one coloured band, labelled �. The regionvariables that label bands are always global or letregion-bound, neverformal region parameters.� An object pro�le is a graph which gives a \local" view into a particularregion, as a function of time. The graph shows the objects allocatedinto a chosen region, with one coloured band for each allocation pointin the region-annotated lambda program1. Each allocation point is1Every occurrence of an \at" in the region-annotated lambda program is an allocationpoint. 141



142 CHAPTER 15. USING THE PROFILERannotated with a program point which is a unique number identifyingthe allocation.2If you have an object pro�le showing that program point 42 (writtenpp42) contributes with a lot of allocations you can search for pp42 inthe region-annotated lambda program.� A stack pro�le is a graph which shows the stack memory usage, as afunction of time.As described above the region pro�ler can give you a region-annotatedlambda program annotated with program points.During compilation, it is also possible to generate a region 
ow graphwhich shows how regions may be passed around at runtime when regionpolymorphic functions are applied. The region 
ow graph is very handywhen pro�ling larger programs when one wants to �nd out why a formalregion variable has been instantiated to a certain letregion-bound regionvariable.An example should clarify this. Suppose the region pro�le shows that r5grows very big. Further, suppose an object pro�le of r5 shows that programpoint pp345 is responsible. Searching for pp345 in the region-annotatedprogram, you may �nd that the allocation at pp345 is into some other regionvariable, r34, say. Here r34 will be a formal region parameter of a region-polymorphic function which at runtime has been instantiated to r5 by oneor more calls of region-polymorphic functions.You can now use the region 
ow graph to �nd the \cascade" of regionpolymorphic applications that ends up instantiating r34 to r5.Pro�ling is sketched in Figure 15.1.We will now show an example on how to pro�le a concrete program con-taining a space leak and then show how the pro�ler can be used to �x it.After that, we explain in more detail how to specify the pro�ling strategiesand how the pro�les are generated.2Program points are unique local to a project, e.g. with a project containing two source�les, the program points in the region-annotated lambda programs for the two �les willbe distinct.



15.1. PROFILING PROJECT SCAN REV1 143ChooseCompile-TimePro�lingStrategy Compile MLSource Programwith Kitcompiler Choose TargetPro�lingStrategy Execute TargetProgram(run : : :) GeneratePro�leswith the graphgenerator rp2ps���	Region- AnnotatedLambda Program @@@RRegionFlowGraph ?Pro�leData�le ?���� Pro�leGraphs.log .log.vcg .rp .psFigure 15.1: Overview of the ML Kit pro�ler. Dotted boxes represent outputfrom the pro�ler. The �le containing the output is also shown, e.g. a pro�legoes into a .ps �le.15.1 Pro�ling project scan rev1In this section, we concentrate on the general principles of pro�ling. Weuse the revised scan project (project /kitdemo/scan rev1) as an example.Instead of asking for an input �le to scan (as project scan does) the programscans the same �le (../../kitdemo/life.sml) 11 times.The �rst thing to do is to get an overview of the memory usage of theprogram. The region pro�le does that, see Figure 15.2The graph shows that region r1 holds the largest amount of memory, butit does not get bigger over time. Region r2797, however, accumulates morememory for each time it scans the life program.To see what happens in region r2797, we make an object pro�le of thatregion, see Figure 15.3.The object pro�le shows that program point pp33 produces a lot of allo-cations which are �rst freed again when the program stops. We now searchfor pp33 in �le prelude.log and �nd:fun implode attop r1 pp32 [r110:inf] (strs)=ccall(implodeStringProfiling, attop r110 pp33, strs);Formal region variable r110 is instantiated with letregion-bound regionvariable r2797 in a call to function implode. We now search after r2797 in�le scan rev1.log and �nd the following fragment of the region 
ow graph.toString [r1545:inf]
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scan_rev1 - Region profiling Sat Apr  5 13:29:59 1997

OTHER

r2482fin

r2810fin

r2651fin

r2489fin

r2478fin

r2475fin

r2670fin

r2749fin

r2811fin

r2798fin

r2648inf

r2649inf

r2783fin

r2773fin

r2463fin

stack

rDesc

r2797inf

r1inf

seconds0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0

by
te

s

0

200

400

600

800

1000

1200

1400

Maximum allocated bytes in regions: 1252.

Figure 15.2: It is obvious that memory is accumulated in the two top bands.The global region r1 and region r2797 hold the largets amount of mem-ory. The graph has been generated by executing run -microsec 10000 onthe HPUX (with the C backend) and then typing rp2ps -sampleMax 1200-region. --r1545 attop--> LETREGION[r2395:inf];--r1545 attop--> driver[r2468:inf]--r2468 attop--> LETREGION[r2797:inf]; (15.1)This is read as follows: the formal region variable r2468 is instantiatedto letregion-bound region variable r2797 when function driver is called.Formal region variable r1545 is then instantiated to region variable r2468when calling function toString.3 Searching after r1545 in �le lib.log showsthat toString calls function implode which is found in �le prelude.log.4fun toString attop r1 pp200 [r1545:inf] (n)=letregion r1542:inf, r1543:inf, r1544:inf, r1547:1in implode[sat r1545 pp208] atbot r1547 pp2073Region 
ow graphs are local to each program in a project. Calling a non local regionpolymorphic function will then introduce an edge in the region 
ow graph, but we do notknow in which module the called function is located. It may be necessary to look in severallog �les to �nd the path from a formal region variable to an actual.4We use ... to indicate that we have deleted text.
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scan_rev1 - Object profiling on region 2797 Sat Apr  5 13:29:40 1997

pp33

seconds0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0

by
te

s

0

50

100

150

200

250

300

350

400

450

500

Maximum allocated bytes in this region: 572.

Figure 15.3: There seems to be a space leak at program point pp33.The graph has been generated by typing rp2ps -sampleMax 1200 -object2797....We see that region r2797 is passed with storage mode attop (15.1, above)to formal region variable r2468 when function driver is called for the �rsttime. Region r2797 contains the result string which is printed after scanningthe �le. This can be seen from the lambda program in �le scan rev1.log.Searching after allocation points allocating into region r2468 gives amongothers the following fragments: ": size = "attop r2468 and " comments:"attop r2468.The result string is not needed after a �le has been scanned and the resultstring printed, so the memory holding the result string can be de-allocated.The attop storage mode explains why the region holding the result stringis not deallocated between scans. So, why is the storage mode attop? Toanswer this we have to see where driver is called the �rst time, which is infunction do it:fun main(is: instream):unit =letfun driver(None,n,inside) =report_totals(n, inside)



146 CHAPTER 15. USING THE PROFILER| driver(Some filename,n:int,inside:int) =case scan_file filename ofSome(n,inside) => report_totals(n,inside)| None => ()val filename = "../../kitdemo/life.sml"fun do_it 0 = driver(Some filename, 0, 0)| do_it n = (driver(Some filename, 0, 0); do_it (n-1))indo_it 10;()endThe following fragment of the corresponding lambda program (�le scan rev1.log)shows that the �le name "life.sml" is also put into region r2797 which, ofcourse, has to stay allocated between the scans:...letregion r2797:infin let val filename = "../../kitdemo/life.sml"attop r2797 pp501in letregion r2798:3in let fun do_it atbot r2798 pp502 [] (var70)=...The reason that the �le name and the other strings mentioned above muststay in the same region is that they are all made part of the same list ofstrings, namely the argument to implode in report totals.The region r2797 contains both local and non-local data to the driverfunction which is why the region cannot be reset in the driver function. Ageneral solution to this problem is to delay the creation of the �le name, sothat the �le name is created at each call to driver. The newly created �lename will then be put into a region local to the application point to driver.The revision is found in project kitdemo/scan rev2:fun filename() = "../../kitdemo/life.sml"fun do_it 0 = driver(Some (filename()), 0, 0)| do_it n = (driver(Some (filename()), 0, 0); do_it (n-1))
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scan_rev2 - Region profiling Tue Apr 15 15:54:04 1997
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Figure 15.4: There is no space leak: no matter how many times we scanthe �le, the project will use the same number of words. The graph hasbeen generated by executing run -microsec 10000 and rp2ps -sampleMax1200 -region.Figure 15.4 shows a region pro�le of the scan rev2 project.To see the e�ect of the modi�cations above consider the following lambdafragment (found in �le scan rev2.log):fun do_it atbot r2797 pp501 [] (var142)=(case var142of 0 =>letregion r2799:inf, r2800:2, r2801:3, r2803:1in driver[atbot r2799 pp506] atbot r2803 pp505(Some atbot r2800 pp503 "../../kitdemo/life.sml"attop r2799 pp502,0,0) atbot r2801 pp504end (*r2799:inf, r2800:2, r2801:3, r2803:1*)The copy of the �le name is put into region r2799 which is deallocated afterthe call to driver.



148 CHAPTER 15. USING THE PROFILER15.2 Compile-Time Pro�ling StrategyWe will now show some examples on how the pro�ling tools can be used.As shown in Figure 15.1 we have to choose a Compile-Time Pro�ling Strat-egy . The Compile-Time Pro�ling Strategy directs how the region-annotatedlambda code with program points and the region 
ow graph are generated.The Compile-Time Pro�ling Strategy is set up in the Pro�ling sub-menuin the ML Kit menu.5Profiling0 region profiling............................ off >>>1 generate lambda program with program points. off2 generate region flow graph (.vcg file)...... off3 paths between two nodes in region flow graph [] >>>4 Instruction Count Profiling................. offRegion pro�ling is enabled by choosing the �rst item: region profiling.If you want the region-annotated lambda code with program points,toggle the second menu item: generate lambda program with programpoints. The lambda program is written on the log.To generate a region 
ow graph, choose generate region flow graph(.vcg file). The region 
ow graph will be written on the log in text layoutwhich may be hard to read. A more readable graph is exported to the targetdirectory in �le f .vcg where f .sml is the source program. The �le f .vcgcontains the region 
ow graph in a format that can be read by the VCG tool(Visualization of Compiler Graphs6).As a running example we use the project life in the kitdemo directory.The project contains one �le: life.sml. We toggle the �rst three optionson (above, 0-2) and compile the project from inside the Project sub-menu.5The Instruction Count Profiling option is only available in the HP-UX backendand has nothing to do with region pro�ling. It simply counts the number of executedinstructions in the target program excluding runtime calls and the link �le. It should onlybe used when region pro�ling is not enabled. If the number of instructions executed getstoo large, the Over
ow exception is raised.6The VCG tool can be obtained fromhttp://www.cs.uni-sb.de/RW/users/sander/html/gsvcg1.html:We use version 1.30 found in �le vcg.1.30.r3.17.tar.



15.2. COMPILE-TIME PROFILING STRATEGY 149The ML Kit now generates several �les of which we have life.log (con-taining, among other things, the lambda program with program points andthe region 
ow graph in text layout), life.vcg (the region 
ow graph readyto use with the VCG tool) and the executable run.Lambda program with program pointsIn the log �le (life.log) you �nd the lambda program by searching forLAMBDA CODE WITH PROGRAM POINTS:Report: LAMBDA CODE WITH PROGRAM POINTS::let exception Div : (exn,r1)(* exn value or name attop r1 pp2 *);...In the �rst line we have an allocation with storage mode attop into regionr1. The allocation point has program point 2 (pp2).Region 
ow graphsThe region 
ow graph is found by searching after REGION FLOW GRAPH FORPROFILING:Report: REGION FLOW GRAPH FOR PROFILING::Begin layout of region flow graph and SCC-graph.... cp_list[r314:inf]--r314 sat--> [*r314*] ;--r314 atbot--> LETREGION[r1539:inf];--r314 sat--> nthgen'[r944:inf]--r944 sat--> [*r944*] ;--r944 atbot--> LETREGION[r1588:inf];...The region 
ow graph is almost equivalent to the graph used by the storagemode analysis (p. 100) where region variables are nodes and an edge betweentwo nodes � and �0 is inserted if � is a formal region parameter of a function fwhich is applied to actual region parameter �0. This implies that letregion-bound region variables are always leaf nodes.



150 CHAPTER 15. USING THE PROFILERNodes in the graph are written in square brackets, where for examplecp list[r314:inf] means that r314 is a formal region parameter in functioncp list. An asterisk inside a square bracket means that the node has beenwritten earlier. Only the node identi�er (i.e. the region variable) will thenbe printed. The size of the region is printed after the region variable: we useinf for an in�nite region and :size for a �nite region where size is the regionsize in words.Edges are written with the from node identi�er inside the edge. Theedge points to the to node. The text cp list[r314:inf] --r314 sat-->[*r314*] ; is read: there is an edge from node r314 to node r314, and noder314 has been written earlier. We have a cycle, so cp list must call itselfrecursively; if you look in �le life.sml you will �nd something like:fun cp_list[] = []| cp_list((x,y)::rest) =let val l = cp_list restin (x,y):: lend.It is important to look inside the edge for the from node. Consider forexample:...LETREGION[r3621:2]; --r3480 atbot--> LETREGION[r3627:2];...We do not have an edge from the letregion-bound region variable (r3621)to the other letregion-bound variable (r3627).The strongly connected components graphThe region 
ow graph can get very complicated to read because we may havemutually recursive functions giving a bunch of edges and cycles. If the graphsget too complicated you may �nd help in the strongly connected component(scc) version of the graph.The scc graph is found by searching for [sccNo in the log �le. Each sccis identi�ed by a unique scc number. The region variables contained in eachscc is written as info on the scc-node.Consider for example:



15.2. COMPILE-TIME PROFILING STRATEGY 151[sccNo 206: r1181,] --sccNo 206--> [sccNo 205: r1486,];We have a scc node (id 206) containing region variable r1181 and an edgeto scc node (id 205) containing region variable r1486.Region 
ow pathsIf you are interested in the possible paths from one region variable to another,the ML Kit can �nd them for you.This often happens when you have an object pro�le (for example of region�1) showing that a certain allocation point is responsible for the allocations ofinterest but the region they are allocated in is not the same as the one writtenat the allocation point, say �2, in the region-annotated lambda program.The region written at the allocation point (�2) must then be a formal re-gion variable and it is now interesting to �nd out how �2 has been instantiatedto �1.You can specify the from and to nodes that you want the paths for in thefourth menu item (paths between two nodes in region flow graph) inthe Pro�ling sub-menu:Profiling0 region profiling............................ off >>>1 generate lambda program with program points. off2 generate region flow graph (.vcg file)...... off3 paths between two nodes in region flow graph [] >>>4 Instruction Count Profiling................. offToggle line (t <number>), Activate line (a <number>), Up (u), or Quit(q):>3<type an int pair list of region variables,e.g. [(formal reg. var. at pp.,\texttt{letregion}-bound reg. var.)]> or up (u): >[(314,1588)]You may type in a list of integer pairs, i.e. you can specify several pairs ofnodes that you want the paths for.Compiling the source program again gives a new log �le where you cansearch for [Starting layout of paths...:77Because region variables may change when re-compiling a source program in a project



152 CHAPTER 15. USING THE PROFILER[Starting layout of paths...[Start path: [sccNo 59: r314,]--->[sccNo 58: r944,]--->[sccNo 57: r1588,]]...Finishing layout of paths]If you look at the region 
ow graph on page 149 you see that the onlypath from region r314 to region r1588 goes through function nthgen', i.e.nthgen' calls cp list. If you look in the �le life.sml you may notice thatnthgen' actually calls a function copy and not cp list. The function copyis declared ascopy (GEN l) = GEN(cp_list l)If you see in the lambda program (�le life.log) you may notice that cp listhas been inlined instead of copy by the optimizer.Using the VCG toolThe VCG tool can be used to visualize the exported graphs (�le source.vcg).We assume that you have installed the tool and it is started by typing xvcgat the command prompt. We use �le life.vcg as the running example.Typing xvcg life.vcg at the command prompt gives the window shown inFigure 15.5.The two graphs are exported folded. To unfold a graph choose UnfoldSubgraph from the pull-down menu inside the xvcg window. The pull-downmenu is activated by pressing one of the mouse buttons. After activatingUnfold Subgraph you have to pick the node representing the graph tounfold. This is done by clicking on the node with the left mouse button.Pressing the right mouse button will then unfold the chosen graph. Figure15.6 shows a small fraction of the unfolded region 
ow graph.The graph is read in the same way as the text-based version in the log �le.It can be printed out, scaled etc. from the pull-down menu. The graph isfolded again by choosing Fold Subgraph and clicking on one of the nodes.All nodes in the graph then turn black, and clicking on the right mousebutton folds the graph.it may be necessary to start all over by starting the Kit again and compile the wholeproject again to make sure that the regions you have speci�ed will match the regions in aregion 
ow graph of a previous compilation.
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Figure 15.5: The VCG graph contains two nodes. The node \Region 
owgraph" represents the folded region 
ow graph and the node \SCC graph"represents the folded strongly connected componemt graph.Region 
ow paths are also exported together with the region 
ow graph.Each path is numbered, and can be viewed by the Expose/Hide edgesfacility in the VCG pull-down menu, see Figure 15.7. Each path is numberedbecause there can be several paths between the same two nodes. Clicking onthe edge class \Graph" will hide the edges in the region 
ow graph so thatedges in the generated path are the only edges shown, see Figure 15.8.15.3 Target Pro�ling StrategyWhen the source program has been compiled and linked you have an exe-cutable, run. Typing run at the command prompt will execute the programwith a prede�ned Target Pro�ling Strategy. The pro�ling strategy is printedon the �rst four lines of output:Profiling is turned on with options:profile timer (unix virtual timer) is turned on.a profile tick occurs every 1th second.profiling data is written on file profile.rp.You can change the pro�ling strategy by passing command line argumentsdirectly to the executable. The second line says that a virtual timer is used.
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Figure 15.6: The �gure shows a small fragment of the region 
ow graph.
Figure 15.7: After choosing the Expose/Hide edges facility you get thiswindow. The window shows that there are two edge classes in the graph;one for the region 
ow graph and one for the path from node r474 to noder1748. If you have generated the path from section 15.2 you have the optionPath2(r314,r1588).There are three possible timers, but in general it may be system dependent.On the HP-UX operating system you have the following timers:8REAL which is real time.VIRTUAL which is the process virtual time. It runs only when the processis executing.PROF which is the process virtual time together with the time used in theoperating system on behalf of the process.You specify the timer to use by passing -realtime, -virtualtime or -profiletimeto the executable.8A complete description can be found in the manual page for getitimer.
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Figure 15.8: The Figure shows the path between node r474 and r1748. Ifyou look on page 149 you may notice that it is the same path as in the log�le; the numbers have changed however, because they where generated intwo di�erent compilations.The third line says that a pro�le tick occurs every 1 second. A pro�letick is when the program stops normal execution, and memory is traversedto collect pro�le data. The more often a pro�le tick occurs the more detailedyou pro�le. The time slot (the time between to succeeding pro�le ticks) touse is speci�ed by the -sec n and -microsec n options. A time slot of halfa second is speci�ed by -microsec 500000 and not by -sec 0.5.9The fourth line tells you that the collected pro�le data is exported to �leprofile.rp. This can be changed by the -file outFileName option.There are several other command line arguments which can be seen bythe -h or -help options.15.4 Executing runAfter executing run some region statistics are printed on stdout. The regionstatistics are collected independently of the Target Pro�ling Strategy aboveand are exact values for the program.9The lowest possible time slot to use is system dependent. It is also system dependenthow long time that passes before the time wraps. This will not in practice happen on aHP-UX but it will happen after about 40 minutes on SUN OS4.



156 CHAPTER 15. USING THE PROFILER*************Region statistics***************SBRK.Number of calls to sbrk : 3Number of bytes allocated in each SBRK call : 24240Total number of bytes allocated by SBRK : 72720 (0.1Mb)REGIONPAGES.Size of one page : 800 bytesMax. no. of simultaneously allocated pages : 78Number of allocated pages now : 3REGIONS.Size of infinite region descriptor (incl. profiling information) : 28 bytesSize of infinite region descriptor (excl. profiling information) : 16 bytesSize of finite region descriptor : 8 bytesNumber of calls to allocateRegionInf : 157771Number of calls to deallocateRegionInf : 157768Number of calls to allocateRegionFin : 3457870Number of calls to deallocateRegionFin : 3457870Number of calls to alloc : 1446811Number of calls to resetRegion : 139776Number of calls to deallocateRegionsUntil : 0Max. no. of co-existing regions (finite plus infinite) : 242Number of regions now : 3Live data in infinite regions : 84 bytes ( 0.0Mb)Live data in finite regions : 0 bytes ( 0.0Mb)---------------------------------------------------------Total live data : 84 bytes ( 0.0Mb)Maximum space used for region pages : 62400 bytes ( 0.1Mb)Maximum space used on data in region pages : 27488 bytes ( 0.0Mb)Space in regions at that time used on profiling : 27576 bytes ( 0.0Mb)-------------------------------------------------------------------------------Maximum allocated space in region pages : 55064 bytes ( 0.1Mb)Memory utilisation for infinite regions ( 55064/ 62400) : 88%Maximum space used on the stack for infinite region descriptors : 400 bytes ( 0.0Mb)Additional space used on profiling information at that time : 300 bytes ( 0.0Mb)---------------------------------------------------------------------------------------------Maximum space used on infinite region descriptors on the stack : 700 bytes ( 0.0Mb)Maximum space used on the stack for finite regions : 6604 bytes ( 0.0Mb)Additional space used on profiling information at that time : 3584 bytes ( 0.0Mb)-------------------------------------------------------------------------------------------Maximum space used on finite regions on the stack : 10188 bytes ( 0.0Mb)Max. size of stack when program was executed : 11256 bytes ( 0.0Mb)



15.4. EXECUTING RUN 157Space used on profiling information at that time : 3800 bytes ( 0.0Mb)-------------------------------------------------------------------------------Max. stack use excl. profiling information : 7456 bytes ( 0.0Mb)Max. size of stack in a profile tick : 5596 bytes ( 0.0Mb)*********End of region statistics*********The SBRK part above shows how memory is allocated from the operatingsystem.Each region consists of several region pages whose size is found in theREGIONPAGES part. The valueMax. no. of simultaneously allocated pages : 78multiplied bySize of one page : 800 bytesgives the maximal memory use in in�nite regions (62400 bytes).In the REGIONS part, we see the number of calls to �nite and in�niteregion operations, respectively. The target program has allocated 157771in�nite regions and deallocated 157768; hence three global regions were alivewhen the program �nished; i.e. global regions are not necessarily deallocatedexplicitly before the program terminates.No �nite regions are alive (3457870 allocations and deallocations). Wehave allocated 1446811 objects in in�nite regions. It has been possible to resetan in�nite region 139776 times. The deallocateRegionsUntil operation isonly used when raising exceptions, i.e. no exceptions have been raised.Because objects allocated in in�nite regions are not split across di�erentregion pages it is not always possible to �ll out all region pages. The valueMemory utilisation for infinite regions ( 55064/ 62400) : 88%shows memory utilisation at the moment where the program had allocatedthe largest amount of memory. The size of objects in �nite regions allocatedon the stack is shown together with the overhead produced by the pro�ler.The valuesMax. size of stack when program was executed : 11256 bytes ( 0.0Mb)andMax. size of stack in a profile tick : 5596 bytes ( 0.0Mb)



158 CHAPTER 15. USING THE PROFILERcan be used to see if it is necessary to pro�le more detailed. If the di�erencebetween the two �gures is large you can pro�le with a smaller time slot.After execution of the target program we have a pro�le data �le namedprofile.rp.15.5 Processing the pro�le data �leThe pro�le data�le profile.rp can be processed by the graph generatorrp2ps (read RegionPro�ler2PostScript) found in the bin directory for theML Kit version you use.10 The graph generator is controlled by commandline options.A region pro�le is produced by the -region switch. Typing the UNIXcommand rp2ps -region produces a postscript �le in �le region.ps.The �le profile.rp is used as pro�le data �le. Figure 15.9 shows the regionpro�le for the example program life.sml. The regions are sorted by size
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Figure 15.9: The region pro�le shows all regions and the stack with the region(or stack) having the largest area at the top. Executing the life programwith run -microsec 100000 and typing rp2ps -sampleMax 1200 -regionproduces this graph.(area) with the largest at the top and the smallest at the bottom. If there are10The rp2ps program is based on a pro�ler by Colin Runciman, David Wakeling andNiklas R�ojemo.



15.5. PROCESSING THE PROFILE DATA FILE 159more regions than can be shown in di�erent shades, the smallest are collectedin an other band at the bottom.Each region is identi�ed with a number that matches a letregion-boundregion variable in the region-annotated lambda program. In�nite regionsend with \inf" and �nite regions with \fin". We also have a band rDescand stack. The rDesc band shows the memory used on in�nite \regiondescriptors" on the stack. The stack band shows stack usage excluding theregion descriptors for the in�nite regions.The max. allocation line \Maximum allocated bytes in regions: : : :" attop of Figure 15.9 shows the maximum number of bytes allocated in regionswhen the target program was executed. Because we also show the stack useon the graph (as the rDesc and stack band), we o�set the max. allocationline upwards by the maximum stack use shown. The space between the max.allocation line and the top band shows the inaccuracy of the pro�ling strategyused. Having a large gap indicates that a smaller time slot should be usedor maybe another Compile-Time Pro�ling Strategy.An object pro�le is produced by the -object switch. If we want to ex-amine the largest region shown in Figure 15.9, we type rp2ps -sampleMax1200 -object 1588 and get the object pro�le shown in Figure 15.10. We
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Figure 15.10: The object pro�le shows all allocation points allocating intothis region.see that allocation point pp64 is responsible for the largest amount of alloca-



160 CHAPTER 15. USING THE PROFILERtions in the program. The allocation point may be found by searching afterprogram point pp64 in the region-annotated lambda program.A stack pro�le (Figure 15.11) shows memory usage in the stack. A stackpro�le is generated with the -stack option to rp2ps.
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Figure 15.11: Memory usage on the stack.
15.6 More complicated graphs with rp2psThis section gives a fast overview of the more advanced options which canbe passed to rp2ps. First of all, it is possible to name the pro�les withthe -name option. Comments are inserted in the x-axis with the -commentoption.The pro�le data �le may contain an large number of samples (the datacollected by a pro�le tick is called a sample). By default, rp2ps only uses 64samples. This may be changed with the -sampleMax option. The followingtwo algorithms are used to sort out samples:-sortBySize where the n (speci�ed by -sampleMax) largest sam-ples are kept.-sortByTime is used by default and makes a binary deletion ofsamples by time such that the n samples shown will beequally distributed on the x-axis.



15.6. MORE COMPLICATED GRAPHS WITH RP2PS 161The -sortBySize option is handy if you get some pro�les with a large gapbetween the top band and the max. allocation line. If there is a large gapwhen using option -sortBySize, then you have to pro�le with smaller timeslots. You can use the -stat option to get the number of samples in thepro�le data �le. It is printed as Number of ticks:.Figure 15.12 shows the pro�le for the following command line:rp2ps -region -sampleMax 50 -name life.sml-comment 9 "A comment at time 9" -sortByTime
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Figure 15.12: It is possible to insert comments in the pro�les.The graph generator recognize several options not shown above. Theyare printed on stdout when typing rp2ps -h.
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Chapter 16Interacting with the KitStarting the Kit was described in Section 3.6. To leave the Kit, type qfollowed by a return character.In the following, we give an overview over the most important sub-menus.Section 16.4 explains how to set up a personal script �le.16.1 Project Menu for Separate CompilationIn Section 3.6 we described how software projects with multiple programunits (source �les) are compiled in the Kit. Once the project has been com-piled and linked, the Kit manages what program units should be recompiledupon modi�cation of source code. The system guarantees that the result of�rst touching one or more program units and then using the separate compi-lation system to re-build the system is the same as if all program units wererecompiled.A project �le contains a sequence of names of all program units in theproject. Source �les must have extension .sml but this extension is omittedin the project �le. Every source �le must contain a top-level Standard MLdeclaration; the scope of the declaration is all the subsequent source �lesin the project �le. Hence, a program unit may depend on program unitsmentioned earlier in the project �le, but not vice versa. The meaning of anentire project is the meaning of the top-level declaration that would ariseby concatenating all the source �les listed in the project �le, in the orderthey are listed. Thus, the separate compilation system is a way of avoidingrecompiling parts of a (possibly) long sequence of declarations, while ensuring163



164 CHAPTER 16. INTERACTING WITH THE KITthat the result is always the same as if one had recompiled the entire program.As an example, consider the project �le below for the text scanning ex-ample.1preludelibscanThe actual source �les for the project are prelude.sml, lib.sml and scan.sml.These �les must be located in the source directory together with the project�le scan. Whereas both the program units lib and scan depend on theprogram unit prelude, scan also depends on lib.The Project sub-menu provides the user with operations for setting aproject �le name, reading a project �le, showing the status of a project,compiling and linking a project, and operations for touching a program unit,upon modi�cation of source code (See Section 3.6).After a project has been successfully compiled and linked, it can be exe-cuted by running the commandrunin the target directory.The Kit compiles each program unit of a project one at a time, in theorder mentioned in the project �le. A program unit is compiled under agiven set of assumptions, providing for instance, region type schemes for freevariables of the program unit. Also, compilation of a program unit gives riseto exported information about declared identi�ers. Exported informationmay occur in assumptions for later program units.A program unit is recompiled if either1. the user has \touched" the program unit. One touches a programunit by selecting Touch a program unit or Touch it again fromthe Project menu. Typically, one does this after having modi�ed thesource �le; the Kit does not keep track of �le modi�cation dates;2. the assumptions under which the program unit was previously com-piled, have changed.1Project: kitdemo/scan.



16.2. PRINTING OF INTERMEDIATE FORMS MENU 165To avoid unnecessary recompilation, compilation assumptions for a programunit only depend on the free identi�ers of the unit. Further, if a program unithas been compiled earlier, the system will seek to match the new exportedinformation to the old exported information, by renaming generated namesto names generated when the program unit was �rst compiled. This allowsthe compiler to use fresh names (stamps) for implementing generative datatypes, e.g., and still achieve that a program unit is not necessarily recompiledeven though a program unit, on which it depends, is modi�ed.In the text scanning example above, let us assume we modify and touchlib. Selecting \Compile and link project" will cause lib to be recom-piled; then the Kit checks whether the assumptions under which the programunit scan was compiled have changed and if so, recompiles scan.Modifying only comments or string constants inside lib or extending itsset of declared identi�ers does not trigger recompilation of scan.However, more information is needed to compile a program unit than theML type schemes for its free variables. Hence, it might be the case that aprogram unit must be recompiled even if the ML type assumptions aboutfree variables have not changed. For instance, the region type scheme for afree variable might have changed, even if the underlying ML type scheme hasnot.As an example, consider modifying the function readWord in unit libto put its result in a global region. This will trigger recompilation of theprogram unit scan, since the assumptions under which it was previouslycompiled, have changed. Besides changes in region type schemes, changes inmultiplicities and physical sizes of formal region variables of functions mayalso trigger recompilation.16.2 Printing of Intermediate Forms MenuThe menu Printing of intermediate forms controls which intermediateforms are output on the log �le. A summary of the major phases that produceprintable intermediate forms is shown in Figure 16.1. The phases are listedin the order they take place in the Kit. The optimiser (which rewrites aLambda program), collects statistics about the optimisation which can beprinted out by turning on the 
ag statistics after optimisation.The storage mode analysis (Chapter 12) outputs a MulExp expressionthat can be printed by turning on the 
ag print atbot expression.



166 CHAPTER 16. INTERACTING WITH THE KIT
Menu: Printing of Intermediate FormsPhase Type of Result Flag(s) which Print ResultElaboration Lambda (�)Elim. of Polym. Eq. Lambda (�)Lambda Optimiser Lambda (�)report statistics afteroptimisationSpreading RegionExp (�)Region Inference RegionExp (�)Multiplicity Inference MulExp (�)K-normalisation MulExpStorage Mode Analysis MulExp print atbot expression(�)Dropping of Regions MulExp print drop regionsexpression(�)Physical Size Inference MulExp print physical sizeinference expression(�)Call Conversion MulExp print call-explicitexpression(�)Code Generation KAM-code print KAM code beforeregister allocation(�)Register Allocation KAM-code print KAM code afterregister allocation(�)Figure 16.1: The table shows how the menu items in the \Printing of Interme-diate Forms" correspond to the phases in the Kit. Enabling debug compilerfrom the Debug Kit menu causes all intermediate forms marked (�) to beprinted. Thus one can select phases individually or ask to have all printed.The phases that follow K-normalisation all work on K-normal forms, but, forreadablity, terms are printed as though they had not been normalised (unlessPrint in K-normal Form from the Layout menu is enabled).



16.3. LAYOUT MENU 167After that, regions with only get e�ects are removed from the MulExpexpression (page 56). To see the result of that, turn on print drop regionsexpression.After that, the physical size inference determines the size in words of �niteregion variables. For instance, a �nite region that will contain a pair will havephysical size two words. To see the result of the physical size inference, turnon print physical size inference expression.After that, call conversion converts the MulExp to a call-explicit expres-sion (page 130). To see the result, enable print call-explicit expression.After that, KAM code is generated. The KAM code before the registerallocation can be inspected by enabling print KAM code before registerallocation, and the result of the register allocation can be viewed by en-abling print KAM code after register allocation.16.3 Layout MenuWhile the switches described in the previous section concern which interme-diate forms to print, the switches in the sub-menu Layout control how theseforms are printed.The 
ags print types, print effects, and print regions control theprinting of types and places, e�ects and region allocation points (\at �").All eight combinations of these three 
ags are possible, but if print effectis turned on it is best also to turn the two others on so that one can see wherethe e�ect variables and the region variables which appear in arrow e�ects arebound..Enabling print in K-Normal Form causes expressions to be output inK-Normal Form instead of the simpli�ed form in which they are normallypresented.16.4 Creating your own Script FileIf you have built the Kit yourself on an HP or a SUN using the distributionaccessible from our web site, the Kit has already produced a script �le foryou and you do not have to modify it to get started. If somebody else hasbuilt the Kit locally, they should be able to refer you to a script �le whichyou can take as a starting point; the only things you will have to change in



168 CHAPTER 16. INTERACTING WITH THE KITthe script will be the constants listed in Section 16.4.1. Likewise, if you havedownloaded an executable Kit from the Kit web site, you will have receivedwith it a script �le for the architecture in question and you only have tomodify the constants listed in Section 16.4.1. If you are porting the Kit to acompletely di�erent platform, you need to take the script constants listed inSection 16.4.2 into account too.16.4.1 Script constants concerning pathsUnder the header (* File *) in the script �le you should �nd the followingconstantssource directory The directory where the Kit will look for your ML projectand source �les (including the prelude).target directory The directory where you want the Kit to put the target�les it produces.log to file True if log information should be written to a �le rather thanonto the screen.log directory The directory where the Kit will write log �les.path to kit script The full �le name of your script �le.path to runtime The full �le name of the non-pro�ling runtime system ofthe Kit.path to runtime prof The full �le name of the pro�ling runtime system ofthe Kit.16.4.2 Platform-dependent SettingsThe string constant target file extension is set to ".c" if you generateC target code and to ".s" if you generate HP target code.The following settingsval kit_architecture : string = "HPUX"val c_compiler : string = "cc -Aa"val c_libs : string = "-lm"



16.4. CREATING YOUR OWN SCRIPT FILE 169may all have to be changed, depending on your platform and the C-compileryou use. See the readme and roadmap �les in the distribution.
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Chapter 17Calling C FunctionsIn this chapter we describe how the ML Kit programmer can call C functions.C functions may be passed ML values and may return ML values. Not all MLvalues are represented as if they were C values. For instance, C strings arenull-terminated arrays of characters, and this is not how the Kit representsML strings. For this reason, a small number of conversion functions andmacros are provided for converting C values to ML values and vice versa.When a C function has to return boxed values of known size, �nite regionsare allocated by the Kit and pointers to them passed to the C function asextra parameters. When a C function has to return values of unboundedsize, pointers to in�nite regions are passed to the C function; in this case,the C function can itself allocate space in these in�nite regions, using theprimitives described below. In both cases, the Kit uses region inference toinfer the lifetime of regions that are passed to the C-function. The regioninference algorithm does not analyse C functions; it assumes that C functionsthat are called from ML code are region exomorphisms.For every C function that is called from the ML code, the order of theregion arguments (if any) is uniquely determined by the ML result type ofthe function. This type must be a monotype constructed from lists, records,booleans, reals, strings and integers.Examples of existing libraries which one can access in this way are the XWindow System and standard UNIX libraries containing functions like time,cp and fork. There are limitations to the scheme, however. First, since Cand the ML Kit do not share value representations, transmitting large datastructures between C and ML will involve signi�cant copying, which mightbe a problem in practice. Second, some C libraries requires the user to set up171



172 CHAPTER 17. CALLING C FUNCTIONS\call-back functions" to be executed when speci�c events occur. However, itis not currently possible to have a C function call an ML Kit function.17.1 Declaring Primitives and C FunctionsThe Kit comes with a prelude (see the �le kitdemo/prelude.sml) de�ningsome of the initial basis of the 1990 De�nition. The declarations in theprelude use a special built-in identi�er called prim which is declared to havetype scheme 8��:(int � �) ! � in the initial environment. A primitivefunction is then declared in the prelude by passing a number to prim. Forexamplefun op = (x: ''a, y: ''a): bool = prim(0, (x, y))declares polymorphic equality. The argument and result types are explicitlystated in order to give the primitive the correct type scheme.Primitive number 31 is used for calling functions written in C. The secondargument to prim is a tuple holding as the �rst component a string containingthe name of the C function. The second component of the tuple is anotherstring containing the name of the C function to be used when pro�ling isenabled. The remaining components of the tuple are arguments to the Cfunction: fun ml fun (x1 : �1; : : : ; xn : �n) : � =prim(31; (c func; c funcProf; x1; : : : ; xn))The result type � must be of the following form (no type variables are al-lowed):� ::= int j bool j �1 � : : : � �n j � list j real j string j unitIf the result type is one of int, bool or unit then the result value can bereturned unboxed. If the result type represents a boxed value, the C functionmust be told where to store the value. For any type which is either real ora non-empty tuple type, and does not occur in a list type of the result type� , the Kit allocates space for the value and passes a pointer to the allocatedspace as an additional argument to the C function. For any type representinga boxed value which is either string or occurs in a list type of the resulttype � , the Kit cannot statically determine the amount of space needed to



17.1. DECLARING PRIMITIVES AND C FUNCTIONS 173store the value. Instead, regions are passed to the C function as additionalarguments and the C function must then explicitly allocate space in theseregions as needed, using a C function provided by the runtime system. Theorder in which these additional arguments are passed to the C function isdetermined by a pre-order traversal of the result type � . For a list type,regions are given in the order:1. Region for cons-cells;2. Region for auxiliary pairs;3. Regions for elements, if necessary.Below we give an example to show what extra arguments are passed toa C function, given the result type. In the example, we use the following(optional) naming convention: names of arguments holding addresses of pre-allocated space in regions start with vAddr, while names of arguments holdingaddresses of region descriptors (to be used for allocation in an in�nite region)start with rAddr.Example 1 Given the result type (int � string) list � real, the follow-ing extra arguments are passed to the C function (in order): vAddrPair,rAddrLCons, rAddrLPairs, rAddrEPairs, rAddrEStrings and vAddrReal,see Figure 17.1.Here vAddrPair holds an address pointing to pre-allocated storage inwhich the tuple of the list and the (pointer to the) real should reside. Thearguments rAddrLCons and rAddrLPairs hold region addresses for the spineand the auxiliary pairs of the list, respectively. Similarly, rAddrEPairs andrAddrEStrings hold region addresses for element pairs and strings, respec-tively. The argument vAddrReal holds the address for pre-allocated storagefor the real.Additional arguments holding pointers to pre-allocated space and in�niteregions are passed to the C function prior to the original ML arguments.Consider again the ML declarationfun ml fun (x1 : �1; : : : ; xn : �n) : � =prim(31; (c func; c funcProf; x1; : : : ; xn)):The C function c func is then declared asint c func (int addr1; : : : ; int addrm; int x1; : : : ; int xn)



174 CHAPTER 17. CALLING C FUNCTIONS� reallist�int string
��� @@@

��� @@@
i1i2 i3i4 i5

i6 i1 vAddrPairi2 rAddrLCons and rAddrLPairsi3 rAddrEPairsi4 Integers are unboxedi5 rAddrEStringsi6 vAddrReal
Figure 17.1: The order of pointers to allocated space and in�nite regions isdetermined from a pre-order traversal of the result type (int�string) list�real.where addr 1, : : :, addrm are pointers to pre-allocated space and in�nite re-gions as described above.To support pro�ling the programmer must provide special pro�ling ver-sions of some C functions. When pro�ling is enabled and at least one pointerto pre-allocated space or to an in�nite region is passed to the C function,then also a single program point representing the call of the C function ispassed. The program point has to be used when allocating into in�nite re-gions. This is explained in Section 17.4. The program point is passed as thelast argument:int c funcProf (int addr1; : : : ; int addrm;int x1; : : : ; int xn; int pPoint)C functions that do not allocate into in�nite regions can be used unchangedwhen pro�ling.11For simplicity, we have chosen to pass the program point even though the C functiononly uses pre-allocated space. Because we pass the program point as the last argumentto the C function we need not have the program point as a formal parameter in the Cfunction. The program point is passed but not used.



17.2. CONVERSION MACROS AND FUNCTIONS 17517.2 Conversion Macros and FunctionsWe provide a small conversion library of macros and functions for use by Cfunctions that need to convert between ML values and C values. Using the li-brary whenever values are passed between C and ML will protect you againstany future change in the representation of ML values. The interface to the li-brary is provided through the include �le src/Runtime/Version17/MlConvert.h.217.2.1 IntegersThere are two macros for converting between the ML representation of inte-gers and the C representation of integers:3#define convertIntToC(i)#define convertIntToML(i)To convert an ML integer (MLint) to a C integer (Cint) writeCint = convertIntToC(MLint);,To convert a C integer (Cint) to an ML integer (MLint) writeMLint = convertIntToML(C int);.The above macros are used in the examples 2, 3 and 6 in Section 17.7.17.2.2 UnitsThe following constant in the conversion library denotes the ML representa-tion of ():#define mlUNIT17.2.3 RealsAn ML real is represented as a pointer into a region containing the real. Toconvert an ML real to a C real we dereference the pointer. To convert aC real to an ML real, we update the memory to contain the ML real. Thefollowing two macros are provided:2There is also a symbolic link to this �le in the kitdemo directory.3In this release of the Kit, these macros are the identity maps, but that may change.



176 CHAPTER 17. CALLING C FUNCTIONS#define convertRealToC(mlReal)#define convertRealToML(cReal, mlReal)Converting from an ML real to a C real can be done with the �rst macro:Creal = convertRealToC(MLreal);.Converting from a C real to an ML real (being part of the result value ofthe C function) can be done in one or two steps depending on whether thereal is part of a list or not. If the real is not in a list the memory containingthe real has been allocated before the C call (See Section 17.1):convertRealToML(Creal, MLreal);.If the ML real is in a list element, then space must be allocated for thereal before converting it. If �real is the region for the real you write:allocReal(�real, MLreal);convertRealToML(Creal, MLreal);The above macros are used in the examples 3, 6 and 8 in Section 17.7.17.2.4 BooleansFour constants provide the values of true and false in ML and in C. Theseare de�ned by the following macros:4#define mlTRUE 3#define mlFALSE 1#define cTRUE 1#define cFALSE 0Two macros are provided for converting booleans:#define convertBoolToC(i)#define convertBoolToML(i)Converting booleans are similar to converting integers:Cbool = convertBoolToC(MLbool);MLbool=convertBoolToML(Cbool);.4Booleans in the Kit are tagged for historical reasons.



17.2. CONVERSION MACROS AND FUNCTIONS 17717.2.5 RecordsRecords are boxed. One macro is provided for storing and retrieving ele-ments:#define elemRecordML(recAddr, offset)An element can be retrieved by writingMLelem = elemRecordML(MLrec, o�set);where the �rst element has o�set 0. An element is stored byelemRecordML(MLrec, o�set) = MLelem;Two specialized versions of the above macros are provided for pairs:#define first(x)#define second(x)If the record is in a list element then it is necessary to allocate the recordbefore using it. This is done with the macro#define allocRecordML(rhoRec, size, recAddr)where rhoRec is a pointer to a region descriptor, size is the size of therecord (i.e., the number of components), and recAddr is a variable in whichallocRecordML returns a pointer to storage for the record. The record isthen stored, component by component, by repeatedly calling elemRecordMLwith the pointer as argument.The above macros are used in examples 8, 9 and 7 in Section 17.7.17.2.6 StringsStrings are boxed and always allocated in in�nite regions. It is possible toprint an ML string by using the C functionvoid printString(StringDesc *str);Strings are converted from ML to C and vice versa using the two Cfunctions



178 CHAPTER 17. CALLING C FUNCTIONSvoid convertStringToC(StringDesc *mlStr, char *cStr, int cStrLen);StringDesc *convertStringToML(int rAddr, char *cStr);.An ML string is converted to a C string by writingconvertStringToC(MLstr ,Cstr, cStrLen);and a C string is converted to an ML string by writingMLstr = convertStringToML(rhoStr, Cstr);When using convertStringToC, the C string (Cstr) has to be allocatedin advance. The length of the pre-allocated C string is also passed toconvertStringToC. If the ML string is larger than the C string an errormessage is written on stdout and the program will terminate. The followingfunction returns the size of an ML string:int sizeString(StringDesc *str);The above macros are used in the examples 7 and 5 in Section 17.7.17.2.7 ListsLists are always allocated in in�nite regions. A list uses, as a minimum, tworegions. One region for the constructors (NIL and CONS) and one region forthe auxiliary pairs (Figure 17.2).
elem? 6 elem

NIL? 6CONS ? CONS ? �elem�pair�cons
Figure 17.2: A list is constructed with constructors (NIL and CONS) and pairs.The constructors are allocated in region �cons and the pairs in region �pair.If the elements are boxed then they are allocated in one or more in�niteregions. In this Figure we assume one in�nite region for the elements.We will now show three examples of manipulating lists. The �rst exampleruns through a list. Consider the following C function template:



17.2. CONVERSION MACROS AND FUNCTIONS 179int run_through_a_list(int list) {int ls;int elemML;for (ls=list; isCONS(ls); ls=tl(ls)) {elemML = hd(ls);/*do something with the element*/}return;} The ML list is passed to the C function in parameter list. The exampleuses a simple loop to run through the list. The parameter list points at the�rst constructor in the list. Each time we have a CONS constructor we alsohave an element, see Figure 17.2. The element can be retrieved with the hdmacro. One obtains the tail of the list by using the tl macro.The following four macros are provided in the conversion library.#define isNIL(x)#define isCONS(x)#define hd(x)#define tl(x)The next example explains how to construct a list backwards. Considerthe following C function template.int construct_list_backwards(int consRho, int pairRho) {int *resList, *pair;makeNIL(consRho,resList);while (/*more elements*/) {ml_elem = ...;allocRecordML(pairRho, 2, pair);first(pair) = (int) ml_elem;second(pair) = (int) resList;makeCONS(consRho, pair, resList);}return (int) resList;}



180 CHAPTER 17. CALLING C FUNCTIONSFirst we make the NIL constructor which marks the end of the list. Eachtime we have an element, we allocate a pair. We store the element in the�rst cell of the pair. A pointer to the list (constructed so far) is put in thesecond cell of the pair. We then allocate a new CONS constructor, now beingthe �rst constructor in the list. The pair is the argument given to the CONSconstructor. We have assumed that the elements are unboxed, so that noregions are necessary for the elements.The last example shows how a list can be constructed forwards. It is moreclumsy to construct the list forwards because we have to return a pointer tothe �rst element. Consider the following C function template.int construct_list_forwards(int consRho, int pairRho) {int *pair, *cons, *temp_pair, res;/* The first element is special because we have to *//* return a pointer to it. */ml_elem = ...allocRecordML(pairRho, 2, pair);first(pair) = (int) ml_elem;makeCONS(consRho, pair, cons);res = (int) cons;while (/*more elements*/) {ml_elem = ...allocRecordML(pairRho, 2, temp_pair);first(temp_pair) = (int) ml_elem;makeCONS(consRho, temp_pair, cons);second(pair) = (int) cons;pair = temp_pair;}makeNIL(consRho, cons);second(pair) = (int)cons;return res;}We construct the CONS constructor and pair for the �rst element and returna pointer to the CONS constructor as the result. We then construct the rest ofthe list by constructing a CONS constructor and a pair for each element. It is



17.3. EXCEPTIONS 181necessary to use a temporary variable for the pair (in the example temp pair)because we have to update the pair for the previous element. We let the lastpair point at a NIL constructor to denote the end of the list.The two macros makeCONS and makeNIL are provided in the conversionlibrary:#define makeNIL(rAddr, ptr)#define makeCONS(rAddr, pair, ptr)17.3 ExceptionsC functions are allowed to raise exceptions and it is possible for the ML codeto handle these exceptions. A C function cannot declare exceptions locally.As an example, consider the following ML declaration.exception EXNfun raiseif0 (arg : int) : unit =prim(31, ("raiseif0", "raiseif0", arg, EXN))If we want the function raiseif0 to raise exception EXN if the argument(arg) is 0 then we use the function raise exn provided by the conversionlibrary. The C function may be declared thus:int raiseif0(int arg, int exn) {int c_int;c_int = convertIntToC(arg);if (c_int = 0) {raise_exn(exn);return;}return mlUnit;} Exceptions are used in examples 6 and 7 in Section 17.7.



182 CHAPTER 17. CALLING C FUNCTIONS17.4 Pro�lingIt is necessary to make special versions of those C functions that allocateinto in�nite regions if the Kit pro�ler is used.When pro�ling is enabled, an extra argument is passed to some of theC functions. The argument is an integer identifying the allocation pointrepresenting the C call in the lambda program (Chapter 15).The conversion library contains special versions of various allocationmacrosand functions presented earlier in this chapter:#define allocRealProf(realRho, realPtr, pPoint)#define allocRecordMLProf(rhoRec, ssize, recAddr, pPoint)StringDesc *convertStringToMLProfiling(int rhoString,char *cStr,int pPoint);#define makeNILProf(rAddr, ptr, pPoint)#define makeCONSProf(rAddr, pair, ptr, pPoint)As an example, we show the pro�ling version of the C function construct -list backwards, presented earlier.int construct_list_backwardsProf(int consRho,int pairRho,int pPoint) {int *resList, *pair;makeNILProf(consRho,resList, pPoint);while (/*more elements*/) {ml_elem = ...;allocRecordMLProf(pairRho, 2, pair, pPoint);first(pair) = (int) ml_elem;second(pair) = (int) resList;makeCONSProf(consRho, pair, resList, pPoint);}return (int) resList;} The above example shows that it is not di�cult to make the pro�lingversion of a C function; use the \Prof" versions of the macros and use theextra argument pPoint, appropriately. The same program point is used forall allocations in the C function, perceiving the C function as one entity.



17.5. STORAGE MODES 18317.5 Storage ModesAs described in Chapter 12 (page 95), actual region parameters contain astorage mode at runtime, if the region is in�nite. A C function may checkthe storage mode of an in�nite region to see whether it is possible to resetthe region before allocating space in it. The conversion library provides amacro, is inf and atbot(x), which can be used to test whether resetting issafe, assuming that the arguments to the C function are dead.The C function resetRegion, which is provided by the conversion library,can be used to reset a region as in the C function template below.int construct_list_backwards(int consRho, int pairRho) {int *resList, *pair;if (is_inf_and_atbot(consRho))resetRegion(consRho);if (is_inf_and_atbot(pairRho))resetRegion(pairRho);makeNIL(consRho,resList);...The C programmer should be careful not to reset regions that could con-tain live values. In particular, the C programmer must be conservative andtake into acount possible region aliasing between regions holding argumentsand regions holding the result. Clearly, if a region which the C function issupposed to return a result in contains part of the value argument(s) of thefunction, then the function should not �rst reset the region and then accessthe argument(s).17.6 Compiling and LinkingTo use a set of C functions in the ML code, one must �rst compile the Cfunctions into an object �le. (Remember to include the conversion library.)As an example, the �le kitdemo/my lib.c holds a set of example C func-tions. On the HPUX system this �le is compiled by typing55On the SUN OS4 system type gcc -ansi -o my lib.o -c my lib.c.



184 CHAPTER 17. CALLING C FUNCTIONScc -Aa -D_HPUX_SOURCE -o my_lib.o -c my_lib.cin the kitdemo directory. If the C functions are used with pro�ling type6cc -Aa -D_HPUX_SOURCE -DPROFILING -o my_lib_prof.o -c my_lib.cThe project ccalls located in the kitdemo directory demonstrates callsto C functions. The project must be compiled and linked with the �lemy lib.o (or the �le my lib prof.o if pro�ling is enabled.) This is doneby �rst modifying the link with library string in the Control menuso that it contains the full name of kitdemo/my lib.o, for example"/home/thor1/jane/kitdemo/my lib.o -lm"and then compiling the project as usual. If pro�ling is enabled, the linkstring must instead refer to kitdemo/my lib prof.o, e.g.,"/home/thor1/jane/kitdemo/my lib prof.o -lm"The project is then executed as usual.17.6.1 Auto ConversionFor C functions that are simple, in a sense which is de�ned below, the Kitcan generate code which automatically converts arguments from ML to Cand results from C back to ML.Auto conversion is enabled by prepending a @-character to the name ofthe C function, as in the following example:fun power (base : int, n : int) : int =prim(31, ("@power", base, n))The power function may then be implemented in C as follows:int power(int base, int n) {int p;for (p = 1; n > 0; --n)p = p * base;return p;}6On the SUN OS4 system type gcc -ansi -o my lib prof.o -DPROFILING -cmy lib.c.



17.7. EXAMPLES 185No explicit conversion is needed in the C code. Auto conversion is onlysupported when the arguments of the ML function are of type int or booland when the result has type unit, int or bool. It also works when pro�lingis enabled.Auto conversion is used in example 4 in Section 17.7.17.7 ExamplesSeveral example C functions are located in the �le kitdemo/my lib.c andthe project kitdemo/ccalls makes use of these functions.The following ML declarations are located in the ccalls.sml �le whichis part of the ccalls project, search after(*----------------------------------------------*)(* Interface functions that call prim(31, ...) *)(*----------------------------------------------*)fun power(base : int, n : int) : int =prim(31, ("power", "power", base, n))fun power_auto(base : int, n : int) : int =prim(31, ("@power_auto", "@power_auto", base, n))fun power_real (base : real, n : int) : real =prim(31, ("power_real", "power_real", base, n))fun print_string_list (string_list) : unit =prim(31, ("print_string_list","print_string_list",string_list))exception Power of stringfun power_exn (base : real, n : int) : real =prim(31, ("power_exn", "power_exn",base, n, Power "This is power"))exception DIR of stringfun dir (directory : string) : string list =prim(31, ("dir", "dirProf", directory,DIR "Cannot open directory"))fun real_list () : real list =prim(31, ("real_list", "real_listProf"))fun change_elem (p : int*string) : string*int =prim(31, ("change_elem", "change_elem", p))



186 CHAPTER 17. CALLING C FUNCTIONSThe implementation of each of the C functions is summarized below (seethe �le my lib.c for detailed comments.)Example 2 The power function shows how to convert integers. This is donewith the macros convertIntToC and convertIntToML.Example 3 The power real function shows how to convert reals. This isdone with the macros convertRealToC and convertRealToML.Example 4 The power auto function shows the use of auto conversion.This is the easiest way of declaring C functions. The same C function maybe called from the Kit and other C programs.Example 5 The print string list example shows how to run through alist of strings. The method can easily be extended to running through listsof lists of lists, etc.Example 6 The power exn function shows how an exception can be raisedfrom a C function. Note that it is necessary to return from the C functionafter you have called the raise exn function.Example 7 The dir function shows how a list can be constructed back-wards. We use the UNIX system calls opendir and readdir to read thecontents of the speci�ed directory.Note also that we check the in�nite regions for resetting at the start ofthe C function. The checks must be placed at the start of the function, orelsenot inserted at all.If you compare the C functions dir and dirProf you may notice how thefunction dir is modi�ed to work with pro�ling.Example 8 Function real list constructs a list of reals forwards. The re-als are allocated in an in�nite region. It may be more convenient to constructthe list backwards in the C function and then apply a list reverse functionon the result list in the Kit program.Example 9 Function change elem shows the use of macro elemRecordML.The result type is string*int. The function swaps the two elements in thepair. The Kit passes an address to pre-allocated space for the result pair,and an in�nite region for the result string.



17.7. EXAMPLES 187At �rst thought it should be enough to just swap the two arguments, andnot copy the string into the string region, i.e. one could write the followingfunction:int change_elem(int newPair, int stringRho, int pair) {int firstElem_ml, secondElem_ml;firstElem_ml = elemRecordML(pair, 0);secondElem_ml = elemRecordML(pair, 1);elemRecordML(newPair, 0) = secondElem_ml;elemRecordML(newPair, 1) = firstElem_ml;return newPair;} This function may work sometimes but it is not always safe! Region infer-ence expects the result string to be allocated in stringRho, and may thereforede-allocate the region containing the argument string, secondElem ml, whilethe string in the returned pair is still alive. A safe version of change elem isfound in my lib.c.
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194 INDEXGlobal Regionsr1 Holds values of type top, i.e., records, exceptions and closures;r2 This region does not actually exist; it is used with unboxed values, suchas integers, booleans and the 0-tuple.


