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Values and Their Representation

integer 32 bits, untagged. Unboxed (i.e., not region allocated).

real 64 bits, untagged. Boxed (i.e., allocated in region)

string Unbounded size. Allocated in region.

bool one 32 bit word. Unboxed.

a list nil and :: cells in one region; auxiliary pairs in one region; elements in

one or more regions. Size of :: cell: two 32 bit words; size of auxiliary
pair: two 32 bit words.

a tree A tree and its subtrees reside in one region. Elements in one region (if
not unboxed).

exn Nullary exception names are unboxed. A constructed exception value
(i.e., a unary exception constructor applied to a value) is stored in a
global region.

fn pat An anonymous function is represented by a boxed, untagged closure. Size

=> exp (in 32 bit words): 1 plus the number of free variables of the function.
(Free region variables also count as variables.)

fun f ... Mutually recursive region-polymorphic functions share the same closure,

which is region-allocated, untagged and whose size (in words) is the num-
ber of variables that occur free in the recursive declaration.

Regions and Their Representation

Finite = Region whose size can be determined at compile time. During com-

(p:n) pilation, a finite region size is given as a non-negative integer. After
multiplicity inference, this integer indicates the number of times a value
(of the appropriate type) is written into the region. Later, after physical
size inference, the integer indicates the physical region size in words. At
runtime, a finite region is allocated on the runtime stack.

Infinite  All other regions. At runtime, an infinite region consists of a region

(p:INF) descripter on the stack which contains pointers to the beginning and the
end of a linked list of fixed size region pages.

Storage Modes (only significant for infinite regions)

atbot  Reset region, then store value.

sat Determine actual storage mode (attop/atbot) at runtime.

attop  Store at top of region, without destroying any values already in the
region.
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Preface

The ML Kit with Regions is a Standard ML compiler. It is intended for the
development of stand-alone applications which must be small, reliable, fast
and space efficient.

There has always been a tension between high-level features in program-
ming languages and the programmer’s legitimate need to understand pro-
grams at the operational level. Very likely, if a resource conscious program-
mer is forced to make a choice between the two, he will choose the latter.

The ML Kit with Regions is the result of a research and development
effort which has been going on at the University of Copenhagen for the
past five years. The goal of this project has been to develop implementation
technology which combines the advantages of using a high-level programming
language, in this case Standard ML, with a model of computation which
allows programmers to reason about how much space and time their programs
will use.

In most call-by-value languages, it is not terribly hard to give a model of
time usage which is good enough for elementary reasoning.

For space, however, the situation is much less satisfactory. Part of the
reason is that many programs must recycle memory while running. For all
such programs, the mechanisms that reclaim memory inevitably become part
of the reasoning. This is true irrespective of whether memory recycling is
done by a stack mechanism or by pointer tracing garbage collection.

In the stack discipline, every point of allocation is matched by a point of
de-allocation and these points are obvious from the program. By contrast,
garbage collection techniques usually separate allocation, which is done by
the programmer, from de-allocation, which is done by a garbage collector.
The advantage of using reference tracing garbage collection techniques is that
they apply to a wide range of high-level concepts now found in programming
languages, for example recursive data types, higher-order functions, excep-
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tions, references and objects. The disadvantage is that it is becoming in-
creasingly difficult for the programmer to reason about lifetimes. Lifetimes
may depend on subtle details in the compiler and in the garbage collector.
Thus it is hard to model memory in a way which is useful to programmers.
Also, compilers offer little assistance for reasoning about lifetimes.

In this report we equip Standard ML with a different memory manage-
ment discipline, namely a region-based memory model. Like the stack disci-
pline, the region discipline is, in essence, simple and platform-independent.
Unlike the traditional stack discipline, however, the region discipline also ap-
plies to recursive data types, references and higher-order functions, for which
one has hitherto mostly used reference tracing garbage collection techniques.

The reader we have in mind is a person with a Computer Science back-
ground who is interested in developing small, but reliable and efficient ap-
plications written in Standard ML. Also, the report may be of interest to
researchers of programming languages, since the ML Kit with Regions is a
fairly bold exercise in program analysis. We should emphasise, however, that
this report is very much intended as a user’s guide, not a scientific publica-
tion.

This report consists of three parts:

Part I: Overview, in which we give an overview of the ideas that underlie
programming with regions in the Kit;

Part II: Understanding Regions, in which we systematically go through
the language constructs of the Standard ML Core Language, showing
for each one how it can be used when programming with regions;

Part III: System Reference, in which we explain how to interact with
the system, how to use the region profiler and how to call C functions
from the Kit.

The ML Kit with Regions is also called the ML Kit Version 2, since it
is a further development of the ML Kit Version 1, which was developed at
Edinburgh University and Copenhagen University. We hope you will enjoy
using the ML Kit with Regions as much as we have enjoyed developing it. If
your experience with the Kit gives rise to comments and suggestions, specif-
ically with relation to the goals and visions expressed above, please feel free
to write. Further information is available at our web site:
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http://www.diku.dk/research-groups/
topps/activities/kit2/index.html
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Chapter 1

Region-Based Memory
Management

Region-Based Memory Management is a technique for managing memory for
programs that have dynamic data structures, such as lists, trees, pointers
and function closures.

1.1 Prevailing Approaches to Dynamic Mem-
ory Management

Many programming languages rely on a memory model consisting of a stack
and a heap. Typically, the stack holds temporary values, activation records,
arrays and in general, values whose lifetime is closely connected to procedure
activations and whose size can be determined at the latest when creation of
the value begins. The heap is what holds all the other values. In particular,
the heap holds values whose size can grow dynamically, such as lists and
trees. The heap also holds values whose lifetime does not follow procedure
activations closely (for example lists and, in functional languages, function
closures and suspensions).

The beauty of the stack discipline (apart from the fact that it is often
very efficient in practice) is that it couples allocation points and de-allocation
points in a manner which is intelligible to the programmer. C programmers
appreciate that whatever memory is allocated for local variables in a proce-
dure ceases to exist (and take up memory) when the procedure returns. C
programmers also know that counting from one to some large number, N, is

13



14 CHAPTER 1. REGION-BASED MEMORY MANAGEMENT

not best done by making N recursive C procedure calls, since that would use
stack space proportional to V.

By contrast, programmers have much less help when it comes to managing
the heap. Two approaches prevail. The first approach is that the programmer
manages memory herself, using explicit allocation and de-allocation instruc-
tions (e.g., malloc and free in C). For non-trivial programs this can be a
very significant burden, since it is, in general, very hard to make sure that
none of the values that reside in the memory which one wishes to de-allocate
are not needed for the rest of the computation. This puts the programmer in
a very difficult position. If one is too eager to reclaim memory in the heap,
the program might crash under some peculiar circumstances which might be
hard to find during debugging. If one is too conservative reclaiming memory,
the program might end up “leaking space”, i.e., using more memory than
expected, perhaps eventually exhausting the memory of the machine.

The other prevailing approach is to use automatic garbage collection in
the heap. Some implementers of some languages even dispense with the
stack entirely, relying only on a heap with garbage collection. Garbage col-
lection techniques separate allocation, which is done by the programmer,
from de-allocation, which is done by the garbage collector. At first, this
might seem like the perfect solution: no longer does the programmer have
to worry about whether memory that is being reclaimed really is dead, for
the garbage collector only reclaims memory which cannot be reached by the
rest of the computation. However, reality is less perfect. Garbage collectors
are typically based on the idea that if data is reachable via pointers (starting
from the stack and other root data) then those data must be kept. Conse-
quently, programs have to be written with care to avoid hanging on to too
many pointers. Space conscious programmers (and language implementers)
can work their way around these problems, for example by assigning nil to
pointers that are no longer used. However, such tricks often rely on assump-
tions about the code which cannot be checked by the compiler and which are
likely to be invalidated as the program evolves.

1.2 Checked De-allocation of Memory

Regions offer an alternative to these two approaches. The runtime model is
very simple, at least in principle. The store consists of a stack of regions,
see Figure 1.1. Regions hold values, for example tuples, records, function
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Figure 1.1: The store is a stack of regions; every region is depicted by a box
in the picture.

closures, references and values of recursive types (such as lists and trees). All
values, except those that fit within one machine word (for example integers)
are stored in regions.

The size of a region is not necessarily known when the region is allocated.
Thus a region can grow gradually (and many regions can grow at the same
time) so one might think of the region stack as a stack of heaps. However,
the region stack really is a stack in the sense that (a) if region r; is allocated
before region 7o then ry is de-allocated before r; and (b) when a region is
de-allocated, all the memory occupied by that region is reclaimed in one
constant time operation.

Values which reside in one region are often, but not always, of the same
type. A region can contain pointers to values that reside in the same region
or in other regions. Both forward pointers (i.e., pointers from a region into
a region closer to the stack top) and backwards pointers (i.e., pointers to an
older region) occur.

Conceivably, one can combine the region scheme with pointer tracing
garbage collection techniques.! In the present version of the ML Kit, however,
the region stack is the only form of memory management provided. How can
that be so? Is the region model really general enough to fit a wide variety of

'TIndeed we might well provide a release of the ML Kit which has both regions and
reference-tracing garbage collection.
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computations?

First note that the pure stack discipline (a stack, but no heap) is a special
case of the region stack. Here the size of a region is known at the latest when
the region is allocated. Another special case is when one has just one region
in the region stack and that region grows dynamically. This can be thought
of as a heap with no garbage collection, which again would not be sufficient.

But when one has many regions, one obtains the possibility of distin-
guishing between values according to what region they reside in. The ML
Kit contains operations for allocating, de-allocating and extending regions.
But it also has an explicit operation for resetting an existing region, i.e.,
reclaiming all the memory occupied by the region without eliminating the
region from the region stack. This primitive, simple as it is, enables one to
cope with most of those situations where lifetimes simply are not nested.
Figure 1.2 shows a possible progression of the region stack.

In the ML Kit the vast majority of region management is done automat-
ically by the compiler and the runtime system. Indeed, with one exception,
source programs are written in Standard ML, with no added syntax or spe-
cial directives. The exception has to do with resetting of regions. The Kit
provides two built-in functions (resetRegions and forceResetting) which
instruct the program to reset regions. Here resetRegions is a safe form of
resetting where the compiler only inserts region resetting instructions if it can
prove that they are safe, and prints thorough explanations of why it thinks
resetting might be unsafe otherwise. Function forceResetting is for poten-
tially unsafe resetting of regions, which is useful in cases where the program-
mer jolly well knows that resetting is safe even if the compiler cannot prove
it. forceResetting is the only way we allow users to make decisions that
can make the program crash; many programs do not need forceResetting
and hence cannot crash (unless we have bugs in our system).

All other region directives, including directives for allocation and de-
allocation of regions, are inferred automatically by the compiler. This hap-
pens through a series of fairly complex program analyses and transformations
(in the excess of twenty-five passes involving three typed intermediate lan-
guages). These analyses are formally defined and the central one, called
region inference, has been proved correct for a skeletal language. Although
the formal rules that govern region inference and the other program analyses
are complex, we have on purpose restricted attention to program analyses
which we feel capture natural programming intuitions. Moreover, the Kit im-



1.2. CHECKED DE-ALLOCATION OF MEMORY

17

To I o rs Ty
(a)

To T Ty rs ry Ts
(b)

Iy I Iy I3

(c)

Figure 1.2: Further development of the region stack: (a) after allocation of
ry; (b) after growth of ro and ry, resetting of r3 and allocation of rs; (c)
after popping of ry and r5 but extension of r; and rj.
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plementation is such that, with one exception?, every region directive takes
constant time and constant space to execute. The fact that we avoid inter-
rupting program execution for unbounded lengths of time gives a nice smooth
experience when programs are run and should make the scheme attractive
for real-time programming.

To help programmers get used to the idea of programming with regions,
the ML Kit can print region-annotated programs, i.e., source programs it
has annotated with region directives. Also, it provides a region profiler for
examining run-time behaviour. The region profiler gives a graphical repre-
sentation of region sizes as a function of time. This makes it possible to see
which regions use the most space and even to relate memory consumption
back to individual allocation points in the (annotated) source program.

To sum up, the key advantages obtained by using regions compared to
more traditional memory management schemes are

1. safety of de-allocation is checked by the compiler;
2. the compiler can in many cases spot potential space leaks;

3. region management is under the control of the user, provided one un-
derstands the principles of region inference;

4. each of the region operations that are inserted use constant time and
constant space at runtime;

5. it is possible to relate runtime space consumption to allocation points
in the source program; we have found region profiling to be a powerful
tool for eliminating space leaks.

Regions are not a magic wand to solve all memory management problems.
Rather, the region scheme encourages a particular discipline of programming.
The purpose of this report is to lay out this discipline of programming.

2The exception has to do with exceptions. When an exception is raised, a search down
the stack for a handler takes place; this search is not constant time and it involves popping
of regions on the way. However, the number of region operations is bounded by the number
of handlers that appear on the stack.
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1.3 Example: the Game of Life

To illustrate the general flavour of region-based memory management, let us
consider the problem of implementing the game of Life. The game takes place
on a board that resembles a chess board, except that the size of the board
can grow as the game evolves. Thus every position has eight neighbouring
positions (perhaps after extension of the board). At any point in time, every
position is either alive or dead. A snapshot of the game consisting of the board
together with an indication of which positions are alive is called a generation
The rules of the game specify how to progress from one generation to the
next. Consider generation n from which we want to create generation n + 1
(n > 0). Let (i,7) be a position on the board, relative to some fixed point
(0,0) in the plane. Assume (i,7) is alive in generation n. Then (4, j) stays
alive in generation n + 1 if and only if it has two or three live neighbours
in generation n. Assume (i,7) is dead at generation n. Then it is born
in generation n + 1 if and only if it has precisely three live neighbours at
generation n. We assume that only finitely many positions are alive initially.
An example of two generations of Life is shown below:

0
00
0 00 0
00 0 00 0000 O
00 0 00 0000 0
00 0 0 00
0 0000 00
0000
0
0000
00 00 00
00 06000 0 O O
00 00 00 0
0000 0 0 00
0 0 00
0 0

00
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To represent the game board, we need a data structure which can grow
dynamically (so a two-dimensional array of fixed size is not sufficient). A
simple solution is to represent a generation by a list of integer pairs, namely
the positions that are alive. Since we want to give all pairs belonging to one
generation the same lifetime (in the computer memory, that is!) it is natural
to store all the integer pairs belonging to one generation in the same region.
Indeed region inference forces this decision upon us, as it happens, since it
requires that all elements belonging to the same list lie in the same region.
(Different lists can lie in different regions, however.)

Thus, after having built the initial generation, we expect the region stack
to look like this

[,  list of integer
pairs representing
generation n.

r0

The computation of the next generation involves a considerable amount of
list computation. Xavier Leroy has expressed the key part of the compu-
tation as shown in Figure 1.3. Despite the extensive use of higher-order
functions here, there is a great deal of stack structure in this computation.
For example, the survivors list can be allocated in a local region which
can be de-allocated after the list has been appended (@) to the newborn
list. The computation of survivors, in turn, involves the creation of a clo-
sure for (twoorthree o liveneighbours) and additional creation of clo-
sures as part of the computation of the application of filter. Each time
liveneighbours is called (by filter) additional temporary values are cre-
ated. All of this data should live shorter than survivors itself. The details
of these lifetimes are determined automatically by the region inference algo-
rithm which ensures that when the above expression terminates it will simply
have created a list containing the live positions of the new generation.

But now we have a design choice. Should we put the new generation in
the same region as the previous region or should we arrange that it is put in a
separate region? Piling all generations on top of each other in the same region
would clearly be a waste of space: only the most recent generation is ever
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let val living = alive gen
fun isalive x = member eq_int_pair_curry living x
fun liveneighbours x = length(filter isalive (neighbours x))
fun twoorthree n = n=2 orelse n=3

val survivors = filter (twoorthree o liveneighbours) living
val newnbrlist = collect
(fn z => filter (fn x => not(isalive x))
(neighbours z)
) living
val newborn = occurs3 newnbrlist
in
mkgen (survivors @ newborn)
end

Figure 1.3: An excerpt of a (modified version of) Xavier Leroy’s Game of
Life benchmark.

needed. Similarly, giving each generation a separate region on the region
stack is no good either, since it would make the stack grow ad infinitum
(although this could be alleviated somewhat by resetting all regions except
the topmost one). The solution is simple, however: use two regions, one
for the current generation and one for the new generation. When the new
generation has been created, reset the region of the old region and copy
the contents of the the new region into the old region. This is achieved by
organising the main loop of the program as follows:

local
(*1%) fun nthgen’(p as(0,g)) = p
(%2x%) | nthgen’(p as(i,g)) =
(*3%) nthgen’ (i-1, let val g’ = nextgen g
(*%4x%) in show g;
(*%5%) resetRegions g;
(x6%) copy g’
(x7%) end)
in

(¥8%) fun iter n = #2(nthgen’(n,gun()))
end
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Here nthgen’ is the main loop of the program. It takes a pair as argument;
the first component of the pair indicates the number of iterations desired,
while the second, g, is the current generation. The use of the as pattern
in line 1 forces the argument and the result of nthgen’ to be in the same
regions. Such a function is called a region endomorphism. In line 3, we
compute a fresh generation which lies in fresh regions, as it happens. Having
printed the generation (line 4) we then reset the regions containing g. The
compiler checks that this is safe. Then, in line 6 we copy g’ and the target of
this copy must be the regions of g, since nthgen’ is a region endomorphism
(see Figure 1.4). All in all we have achieved that at most two generations are
live at the same time (a fact which can be checked by inspecting the region
annotated code, if one feels passionately about it).?

The above device, which we refer to as double copying, can be seen as a
much expanded version of what is often called “tail recursion optimisation”.
In the case of regions, not just the stack space, but also region space, is
re-used. Indeed, double copying is similar to invoking a copying garbage
collector on specific regions which are known not to have live pointers into
them. But by doing the copying ourselves, we have full control over when it
happens, we know that the cost of copying will be proportional to the size of
the generation under consideration and that all other memory management
is done automatically by the region mechanism. Since each of the region
management directives which the compiler inserts in the code are constant
time and space operations, we have now avoided unpredictable interruptions
due to memory management. This might not be terribly important for the
purpose of the game of Life, but if we were writing control software for
the ABS brakes of a car, having control over all costs, including memory
management, would be crucial!

Region profiles for two hundred generations of 1ife starting from the con-
figuration shown earlier appear in Figures 1.6 and 1.5. The highest amount
of memory used for regions during the computation is 29.000 bytes. Fig-
ure 1.6, which has data collected from 1000 snapshots of the computation,
clearly shows that most of the 29.000 bytes are reclaimed between every two
generations of the game. It turns out that the game essentially stabilises with

3The entire life program is available in kitdemo/life.sml, project kitdemo/life.
(Running projects is described in Section 3.6.) Run with n=10000 on the HP PA-RISC,
the memory consumption (program + data) quickly reaches 192Kb and it stays there for
the remaining generations. The size of the executable program, which includes the runtime
system, is 164Kb.
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a small number of live positions on the board after roughly 150 generations.
This is clearly reflected in the region profile.

Figure 1.6 is from the same computation, but it only includes data from
80 snapshots. This makes it easier to see that the largest regions are r1588
and r1121. To find out what these regions contain, however, one needs to
master the methods described in Part II.
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[, list of integer
pairs representing
generation n.

r0
(a)
[ list of inte-
[y ger pairs representing
generation n + 1.
r0 rl

copy of ln1

r0

(c)

Figure 1.4: Using double-copying in the game of Life: (a) generation number
n resides in region r0; (b) generation (n + 1) has been built in r1; (c¢) region
r0 has been reset, the new generation copied into r0 and r1 has been de-
allocated.
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rp2ps - Region profiling Thu Apr 10 08:56:58 1997 ‘
——— Maximum allocated bytes in regions: 29000. ——
W r158sint

] r1121int
25Kk | B r1120inf
B r1530int
D rDesc
I r1483inf
I r1482int
[ ] r1062fin
D stack
W 794fin
B roo3int
] rev2int
W rso4int
B (1481inf
] r1480inf
. rlinf
W ro07int
[] roosint
I r766fin
M oTHER

seconds

bytes

Figure 1.5: A region profile of two hundred generations of the “Game of
Life”, showing region sizes as a function of time (80 snapshots).
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rp2ps - Region profiling Thu Apr 10 08:58:23 1997 ‘
——— Maximum allocated bytes in regions: 29000. ———
W r158sint

] r121int
25k B 11200t
I r1530int
D rDesc
B r1062fin
B 794t
[ ] r1483int
[ r1482inf
. stack
W ro03int
] rev2int
W rs04int
B (1481inf
] r1480inf
. rlinf
B ro07int

‘H\ A r906inf
R -

bytes

20k |

15k |

10k ]

r766fin

M oTHER

seconds

Figure 1.6: Region profile of two hundred generations of the “Game of Life”,
showing region sizes as a function of time (1000 snapshots).



Chapter 2

Making Regions Concrete

In this chapter we give a brief overview of how the abstract memory model
presented in the last chapter is mapped down to conventional memory. In do-
ing so, we shall introduce notation and concepts that will be used extensively
in what follows.

2.1 Finite and Infinite Regions

Not every region has the property that its size is known at compile-time,
or even when the region is first allocated at runtime. As we have seen, one
typical use of a region is to hold a list, and in general there is no way of
knowing how long a given list is going to be.

For efficiency reason, however, the Kit distinguishes between two kinds
of regions: those regions whose size it can determine at compile-time and
those it cannot. These regions are referred to as finite and infinite regions,
respectively.! Finite regions are always allocated on the runtime stack. An
infinite region is represented as a linked list of fixed-size pages. The runtime
system maintains a free list of such pages. An infinite region is represented
by a region descriptor, which is a record kept on the runtime stack. The
region descriptor contains two pointers: one to the first and one to the last
region page in the linked list which represents the region. Allocating an
infinite region involves getting a page from the free list and pushing a region
descriptor onto the runtime stack. Popping a region is done by appending

L“finite” and “unbounded” would have been better terms, but it is too late to change
that.
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the region pages of the region and the free list (this is done in constant time)
and then popping the region descriptor off the runtime stack.

At runtime, every region is represented by a 32-bit entity, called a region
name. If the region is finite, the region name is a pointer into the stack,
namely to the beginning of the region. If the region is infinite, the region
name is a pointer to the region descriptor of the region.

The multiplicity of a region is a statically determined upper bound on the
number of times a value is put into the region. The Kit operates with three
multiplicities: 0, 1 and oo, ordered by 0 < 1 < oo. Multiplicities annotate
binding occurrences of region variables. An expression of the form

letregion p:m in e end

where m is a multiplicity, gives rise to an allocation of a region which is finite
if m < oo, and infinite otherwise.

2.2 Runtime Types of Regions

Every region has a runtime type. The following runtime types exist: real,
string and top. Not surprisingly, regions of runtime type real and string
contain values of ML type real and string, respectively. Regions with run-
time type top can contain all other forms of allocated values, i.e., constructed
values, tuples, records and function closures.

It is often, but not always, the case that all values that reside in the same
region have the same type (considered as representations of ML values).

2.3 Allocation and De-Allocation of Regions

The analysis which decides when regions should be allocated and de-allocated
is called region inference. Region inference inserts several forms of memory
management directives as directives into the program. The target language
of region inference is called RegionExp.

In RegionFEzp, region allocation and de-allocation are explicit, they are
always paired and they follow the syntactical structure of the source program.
If e is an expression in RegionFEzp, then so is

letregion p in e end



2.4. THE KIT ABSTRACT MACHINE 29

Here p is a region variable. At runtime, first a region is allocated and bound
to p. Then e is evaluated, presumably using the region bound to p for storing
values. Upon reaching end, the program pops the region.

Region inference also decides, for each value-producing expression, into
which region (identified by a region variable) the value will be put.

We emphasise that region variables and letregion-expressions are not
present in source programs. The source language is unadulterated Standard
ML, so programs that run on the Kit should be easy to port to any other
Standard ML implementation.

2.4 The Kit Abstract Machine

The Kit contains a virtual machine, called the Kit Abstract Machine (KAM,
for short), which details the above ideas. The KAM is a register machine
with one linear address space which it partitions into a stack and a heap. The
heap holds region pages, all of the same size. The KAM has simple RISC-like
instructions, for example for moving word-size data between two registers or
between a register and a memory location. More complex operations, such
as function application, are expressed by sequences of KAM instructions.

For the purpose of this report, we assume that the KAM has infinitely
many registers. In reality, there is a fixed number of 32 bit registers and
register allocation assigns machine registers to KAM registers, using the run-
time stack for spilling. However, register allocation will not be described in
this report. Also, we do not discuss the interaction between hardware cache
strategies and the code generated by the Kit. While both can be important
in practice, we do not want to go to that level of detail. Our primary concern
is with establishing a model which the user can safely use as a worst-case
model of what happens at runtime.

2.5 Intermediate Languages

The Kit compiles Standard ML programs via a sequence of typed intermedi-
ate languages into KAM instructions, which in turn are compiled into ANSI
C or to HP PA-RISC assembly language. The intermediate languages we
shall refer to in the following are (in the order in which they are used in the
compilation process):
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Lambda A lambda-calculus like intermediate language. The main difference
between the Standard ML Core Language and Lambda is that the latter
only has trivial patterns.

RegionEzxp Same as Lambda, but with explicit region annotations (such as
the letregion-bindings mentioned in Section 2.3). Region variables
have their runtime type (Section 2.2) as an attribute, although, for
brevity, the pretty printer omits runtime types when printing expres-
sions, unless instructed otherwise.

MulExp Same as RegionFExp, but now every binding region variable occur-
rence is also annotated with a multiplicity (Section 2.1) in addition
to a runtime type. Again, the default is that the runtime type is not
printed. The terms of MulEzp are polymorphic in the information that
annotate the nodes of the terms. That way, MulEzp can be used as a
common intermediate language for a number of the internal analyses of
the compiler which add more and more information on the syntax tree.
The analysis which computes multiplicities is called the multiplicity
analysis.

The Kit contains a Lambda-optimiser which will happily rewrite Lambda-
terms when it is clear that this results in faster programs (as long as the
transformations cannot lead to increased space usage).

Region inference takes Lambda to be the source language. Region Infer-
ence happens after the lambda-optimiser has had a go at the lambda term.
Therefore, it wasn’t really true when we said that region inference simply
annotates source programs; we ignored the translation from SML to Lambda
and the Lambda optimiser. Thus one has to get used to (mostly minor) dif-
ferences between the source language and the intermediate languages of the
compiler if one wants to read programs in their intermediate forms.

When we want to show the result of the analyses, we usually show a
MulFEzp expression.

2.6 Runtime System

The runtime system is written in C. It is small (less than 100Kb of code when
compiled). Tt contains operations for allocating and de-allocating regions,
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extending regions, obtaining more space from the operating system, recording
region profiling information and performing low-level operations on strings.
It is possible to call C functions from ML Kit code. The Kit takes care of
the memory allocation, by allocating regions before the call and de-allocating
regions after the call. The C functions can build ML data structures such
as lists through abstract operations provided by the Kit runtime system. C
functions have to obey certain restrictions, see Chapter 17 for further details.
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Part 11

Understanding Regions
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Chapter 3

Records and Tuples

In this chapter we describe construction of records and selection of record
components. We also use records to introduce region-annotated types and
effects which are crucial for understanding when regions are allocated and
de-allocated.

3.1 Syntax

As part of the SML to Lambda translation, all SML records and SML tu-

ples are compiled into Lambda-tuples. The components of Lambda-tuples are

numbered from left to right, starting from 0. Selection is a primitive opera-

tion, both in Lambda and in the other intermediate languages. This primitive

is printed using ML notation #i:. Components are numbered from 0: the ith

components of a tuple of type 7 x...x7, is accessed by #i, for 0 <i <n—1.
The tuple constructor in Lambda is written as in SML:

ey, ... en)

However, the corresponding expression in RegionFxp and MulEzp takes the
form
(er,...,e,) atp

where p is a region variable indicating where the tuple should be put. In the
case n = 0, the atp is not printed, since the empty tuple is not allocated: it
is just a constant which fits in a KAM register.

Records are evaluated left to right.
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3.2 Example: Basic Record Operations
Consider the source program

val xy = (O,0)
val x = #1 xy;

Here is the resulting MulEzp program:!

let val xy = (), ()) at rl; val x = #0 xy
in {lxy: (_,r1), x: (_,r2) |}
end

There are several things to note from this example.

1. The MulEzp program contains two free region variables r1 and r2. Note
that the construction of the pair xy has been annotated by “at ri”,
indicating where the pair should be put. Similarly, r2 is the place of x
(although, as we shall see below, this does not denote a real region);

2. The expression {lxy:(.,r1), x:(_,r2)|} is an example of a frame
expression. A frame enumerates the components that are exported
from a compilation unit.

3.3 Region-Annotated Types

ML type inference infers a type for every expression in the program. Region-

inference extends this idea by inferring for each expression a region-annotated

type. The region-annotated type of an expression is the ML type of the

expression decorated with extra region information. In a region-annotated

type, every type constructor (e.g., int, unit and list) is paired with a

region variable, indicating where the value is going to be put at runtime.
The following are examples of region-annotated types

(int, p) | The type of integers in region p.

Iproject: kitdemo/proj, file kitdemo/projection.sml.
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(unit, p) | The type of O-tuples in region p. Integers and O-tuples are repre-

sented unboxed at runtime (rather than being stored in regions).> The
types unit, bool and int are always decorated with one particular
region variable, r2.

((int, py) * (string, p2), p3) | Denotes pairs in p3 whose first component is
an integer in p; and whose second component is a string in region ps.

A pair of a region-annotated type and a region variable is called a “(region-
annotated) type and place”. We use u to range over types and places

p= (7, p)

One can get the Kit to print the region-annotated types it infers for
binding occurrences of variables. The above example then becomes

let val xy:(((unit,r2)*(unit,r2)),r1) = (O, () at ri;
val x:(unit,r2) = #0 xy

in {Ixy: (((unit,r2)*(unit,r2)),r1), x: (unit,r2)|}

end

3.4 Effects and letregion

Here is an example of an SML program which first creates a pair and then
selects a component of the pair, after which the pair is garbage:?

val n = let
val pair = if true then (3+4, 4+5)
else (4, 5)
in
#1 pair
end;
The Kit compiles the declaration into the MulFxp program shown in Fig-

ure 3.1.* The compiler compiles the program as it is, without reducing the
conditional to its then branch. During evaluation, a region (denoted by

2To boz a value means to store the value in memory and represent it by its address.
Values which are kept in registers are said to be unbozed.

3Project: kitdemo/effect, file: kitdemo/elimpair.sml.

4In general, the Lambda-optimiser performs various optimisations; elimination of case
analyses whose outcome are known statically is not one of them.
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let val n =
letregion r7:1
in let val pair =
(case true
of true => (3 + 4, 4 + 5) at r7
| false => (4, 5) at r7
) (*casex)
in #0 pair
end
end
in {ln: (_,r2)|}
end

Figure 3.1: Region inference decides that the pair is to be allocated in a
local, finite region; the region will be de-allocated as soon as the pair becomes
garbage.

r7) is introduced before the pair is allocated; it remains on the region stack
till the projection of the pair has been computed, after which the region is
de-allocated.

The “:1” on the binding occurrences of r7 is a multiplicity indicating that
there is only one store operation into the region. (The multiplicity analysis
has discovered that there is at most one store from the then branch and at
most one store from the else branch and that at most one of the branches
will be chosen.) Thus the pair will be allocated in a little region on the
runtime stack.

But how does the Kit know that it is safe to de-allocate r7 where the
letregion ends?

The answer lies in the fact that the Kit infers for every expression not
just a region-annotated type, but also a so-called effect. An effect is a finite
set of atomic effects. Two forms of atomic effect are put(p) and get(p),
where p as usual ranges over region variables. put(p) indicates that a value
is being stored in region p and get(p) indicates that a value is being read
from region p. In our example, the region inference algorithm considers the
sub-expression eg =

let val pair =
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(case true
of true => (3 + 4, 4 + 5) at r7
| false => (4, 5) at r7
) (*casex)
in #0 pair
end

and finds that it has region-annotated type (int,r2) and effect

{put(r7), get(r7), put(r2), get(r2)}.

The atomic effects on r2 stem from the integer operations: all integers are
put into the same virtual region.

Whenever a region variable occurs free in the effect of an expression but
occurs free neither in the region-annotated type of the expression nor in
the type of any program variable which occurs free in the expression then
that region variable denotes a region which is only used locally within the
expression. That this is true is of course far from trivial, but it has been
proved for a skeletal version of RegionEzp. Consequently, when this condition
is met, the region inference algorithm wraps a letregion-binding of the
region variable around that expression.

In our example, there are no free variables in ey; moreover, r7 occurs in
the effect of ey but not in the region-annotated type of e;. Thus the region
inference algorithm inserts a letregion-binding of r7 around ey.

3.5 Runtime Representation

A record with 0 components (the value of type unit) is stored in a KAM
register, not in a region. A record with n components (n > 2) takes up
precisely n 32-bit words in a region; the tuple is represented by the (32-bit)
address of the first component of the tuple. Note that the Kit boxes tuples.
However, records are not tagged. Avoiding tags is possible, because (a)
there is no pointer tracing garbage collection; and (b) polymorphic equality
is compiled into monomorphic equality functions that do not have to examine
the type of objects at runtime.

Lambda, RegionExp and MulEzp allow one to express unboxed tuples, also
in the case of function calls and returns, but the Kit does not (yet) have a
boxing analysis which exploits it, nor does the code generator generate code
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for unboxed tuples, multiple function arguments or multiple function return
values.
A tuple is not allocated until its components have been evaluated.

3.6 A First Session with The Kit

The Kit is a batch compiler. A project consists of a number of SML source
files, enumerated in a project file. Executing a project consists of first com-
piling the project giving your so-called script file as an argument and then
running the generated target program.

3.6.1 Getting your own Script File

To compile a project, you need your own personal script file. Your script
file contains your personal preferences concerning where source files should
be read from, where target programs should be put, what should be printed
on log files, what format should be used when printing programs etc. When
you start the Kit, you give your script file as an argument.

If you have built the executable Kit yourself, there will be a script file
called kit .script in the same directory as you instructed the build program
to put the executable Kit in and you can use that script file as is. Otherwise,
obtain a script file from a friend or from the Web site mentioned in the
Preface and modify it as described in Section 16.4.

3.6.2 Compiling a Project

To compile a project, you need an executable version of the Kit; let us assume
it is available on your system as a UNIX program called kit.
To compile Example 3.2, start the Kit with the shell command

kit -script script

where script is the name of your script file.

After the Kit has uttered various greetings, you will find yourself in a rudi-
mentary menu-driven dialogue, see Figure 3.2. First, you are going to ask
the Kit to print one of the intermediate forms that arise under compilation
(this is how the annotated programs shown in this section were obtained).
Choose Printing of intermediate forms (i.e., type 1 followed by carriage
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0 Project....... ... ... ... .. .. >>>
1 Printing of intermediate forms >>>
2 Layout............ . oot >>>
3 Control....................... >>>
4 File... ... .. i >>>
5 Profiling..................... >>>
6 Test environment.............. >>>
7 Debug Kit.................. ... >>>
8 Compile an sml file........... >>>
9 Compile it again.............. ("dummy") >>>

Toggle line (t <number>), Activate line (a <number>), Up (u), or Quit(q):

Figure 3.2: The top-most Kit menu

return), and then print drop regions expression to toggle on the print-
ing of the MulExp program. Go up one level in the menu tree by typing u
followed by return, and you are back in the main menu.

Before proceeding, check the File menu to see that the source_directory
is set to the kitdemo directory (which is part of the distribution). The set-
tings you see are the ones that come from the script file. You can change
them, if you want to. Finish by going back up to the main menu.

Next, you are going to interact with the separate compilation system. Se-
lect the Project menu. Choose Set project file name; then type "proj"
(including the quotes) followed by return. Here proj is a project file which
contains the names of the files one wants to compile. Our project consists
of two files kitdemo/prelude.sml and kitdemo/projection.sml. The pre-
lude must be included in all projects (not just demonstration programs). The
file projection.sml contains the ML declaration shown in Section 3.2.

Then select Read the project file, and then Show project status.
This will list the program units that are in the project. The first column gives
the file name of the source code of the program unit (the extension .sml,
which is required for all source files, is not printed). The second column
shows the status of the program unit. new means that it has not yet been
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compiled.

Now select Compile and link project. If you inspect the status of the
project by selecting Show project status you will see that the two units
have been compiled. The Kit tells you where it puts the target files it creates.

For each source file f.sml the Kit produces a log file f.log. You will
find the output shown in Section 3.2 in the log file projection.log after the
heading

Report: AFTER DROP REGIONS:

Go up one on the menu tree. Printing of the region-annotated types can now
be done by selecting Layout from the main menu, and then print types.

Thereafter, go back to the Project menu, select Touch program unit
and enter the string "projection", to indicate that you want to recompile
that program unit. Select Compile and link project again. This will
bring the project up to date. One can then inspect the log file again to see
the region-annotated types.

Next, you can try the example in Section 3.4: select Set project file
name, enter "effect", select Read the project file, and then Compile
and link project.

3.6.3 Running a Target Program

If no errors were found during compilation, the Kit produces a target pro-
gram in the form of an executable file, called run. The Kit places run in
target_directory, which is defined in the script file. As mentioned in the
previous section, you can change the value of target_directory interactively
from the File menu in the Kit, before compiling your project.

Running the target program is done from the UNIX shell by changing
directory to the target directory and typing

run

The file will probably be around 100Kb large, even for the trivial examples
considered in the chapter. This is because it contains the Kit runtime system
and the compiled code for the prelude.

Running the programs presented in this chapter is not particularly ex-
citing, since none of them produce output! However, as an exercise, try
executing the hello project, which, like all other example files in this docu-
ment, is located in the kitdemo directory.
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Basic Values

Values of types int, real and string are defined in accordance with the 1990
Definition of Standard ML. In due course, they will be modified to comply
to the revised Definition of Standard ML and the emerging Basis Library.

4.1 Integers

Values of type int are represented as 32 bit integers. The following opera-
tions on integers are pre-defined:

infix 4 = <> < > <= >=
infix 6 + -

infix 7 div mod *

val 7 : int -> int
val abs: int -> int

At runtime, integers are represented without any form of boxing or tagging,
so all 32 bits are available. Integers are kept in KAM registers or, when
necessary, on the runtime stack.

For uniformity, region inference pairs all type constructors with a region
variable. In the case of integers, where no region is required for storing the
values, a fixed region, r2, is used throughout the program.

At present, arithmetic operations do not raise any exceptions when their
result is undefined or out of range.
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4.2 Reals

CHAPTER 4. BASIC VALUES

The prelude defines the following operations on reals:

<> < > <K= >=

real
real

-> int
-> real
-> real
-> real
-> real

infix 4 =

infix 6 + -
infix 7 * /
val 7 : real -> real
val abs: real ->
val real: int ->
val floor : real
val sqrt : real
val exp : real
val 1n : real
val sin : real
val cos : real

val arctan: real

Values of type real

-> real
-> real

are implemented as 64 bit floating point numbers. They

are always boxed, i.e., represented as a pointer to two consecutive 32 bit
words. These two words reside in a region and start on a double-aligned
address. For that reason, regions with runtime type real (Section 2.2) are
never unified with regions of any other runtime type.

A real constant ¢ in the source program is translated into an expression
of the form ¢ at p, where p is a region variable, indicating the region into
which the real will be stored.

At present, arithmetic operations do not raise any exceptions when their
result is undefined or out of range.

4.3 Strings

The prelude defines the following operations on strings:

infix 4
infix 6
val ord:

val chr:

~

string -> int
string -> int
val size: string -> int
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val explode: string -> string list
val implode: string list -> string
val = : string * string -> string

A string is represented by a 32 bit pointer into an infinite region. The string
is stored in consecutive bytes in the region, except if the size of the string
exceeds the length of one region page, in which case the string is split into
smaller strings which are linked together. This is completely transparent to
the programmer, who does not have to worry about the actual size of region
pages.

Calls of ord, chr and size take constant time and space. Calls of
explode, implode and ~ take time and space proportional to the sum of
the size of their input and their output.

The string operations can raise exceptions, as detailed in the 1990 Defi-
nition.

4.4 Booleans

The boolean values true and false are represented unboxed. Size: one
word.
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Chapter 5

Lists

Section 5.1 gives a summary of the list concept in Standard ML, introduces
the notion of the auzilary pairs of a list and presents the syntax of construc-
tors and destructors in the intermediate languages. Section 5.2 introduces
region-annotated list types and show how they correspond to the layout of
lists in memory. Section 5.3 gives a small example.

5.1 Syntax
In Standard ML all lists are constructed from the two constructors : : (read:
cons) and nil. As a shorthand, one can write [ezp,, ---,exp,] for

erp;i: +-+ tiexp,::nil

which in turn is short for
op ::(expy, ---, op ::(exp,,nil)---)
where ezp ranges over expressions. The type schemes of nil and cons are
nil — Va.alist 11 = Va.axalist — alist

In particular, note that :: is always applied to a pair. The construction of
the pair and the application of :: should not be confused: the pair and the
constructed value are separate values. For example, the declaration

val p = (2, nil)
val mylist = (op ::) p
val n = #1 p
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is legal in Standard ML. We refer to the pairs to which :: is applied as
auziliary pairs (of the list data type).

Decomposition of list values in Standard ML is done by pattern matching.
A pattern can extract the pair to which :: is applied. Pattern matching on
pairs can then give access to the components of the pair.

val abc = [uau, "b", "C"]
val op :: p = abc (* binds p to the pair ("a", ["b","c"]) *)
val (x::y::_) = abc (% binds x to "a" and y to "b" %)

In the last declaration, the pattern (x::y::_) is short for the pattern
(op ::(x, op ::(y, ))),

which combines decomposition of constructed values with decomposition of
pairs.

Many ML implementations represent lists differently by always packing
the constructor and the pair into one value.

The intermediate languages Lambda and RegionFExp have SML-like con-
structs for applying constructors, but they decompose constructed values by
applying a deconstructor primitive, not by pattern matching.

Lambda RegionEzp
nil nil at p store nil in region p
:: (e) (::atp) (e) | create cons cell in region p
decon_:: (e) | decon_:: (e) cons decomposition

In Lambda, which has essentially the same type system as SML, decon_: :,
the decomposition function for : :, has type Va.alist — a* alist. In addition,
Lambda and RegionEzp have a simple case construct:

(case e of :: =>1¢; | _ => ey)

where e must have list type.

5.2 Region-Annotated List Types

In Standard ML all elements of a given list must have the same type. We
extend this constraint to region inference by saying that all values in the
same list must reside in the same region(s), that all the constructed values
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~—

"C" ( Y

"b" ( ) ) /(1/ )
"a ( , ) nil
P1 P2 P3

Figure 5.1: Layout of the list ["a","b","c"] : (((string, p1), [p2])1ist, p3)
in memory. The spine of the list resides in p; while the auxiliary pairs reside
in po. Each auxiliary pair takes up two words; each constructed value (::, )
takes up two words; nil takes up one word.

must reside in one region and that all auxiliary pairs :: must reside in the
same region.

Thus region inference does not distinguish between a list and its tail.
Indeed a typical use of an infinite region is to hold the spine of a list, i.e., all
the :: cells and the nil cell of the list. For an example, Figure 5.1 shows
how the list ["a","b","c"] is laid out in memory.

In general, the region-annotated type and place of a list takes the form

((1s [p2])1ist, p3)

where = (1, p1) is the type and place of the members of the list, ps is
the region where the spine of the list resides, and p, is the region where the
auxiliary pairs of the list are stored. For example, the type

(((Stringa pl)? [pQ])liSta p3)

classifies lists which has their spine in p3, auxiliary pairs in p, and strings in
a region pj.
Not all lists need to live in the same regions! Formally, nil and :: have
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the following region-annotated types:

nil — VYapips.((a, p1), [po])list

= Yapipapse.((a, pr) * (o, p1), [p2])list, p3), pa) 4248
(e, 1), [pa]) list, p3)
Despite its verbosity, the type scheme for :: deserves careful study. It

is polymorphic not just in types (signified by the bound type variable «)
but also in region variables (signified by the bound p;, p» and p3). The
€ is a so-called effect variable. The e.{put(ps)} appearing on the function
arrow is called an arrow effect. Occurring in a function type, an arrow
effect describes the effect of applying the function. In this case, the effect
is to create a constructed value in p3, hence the effect is the singleton set
{put(p3)}. The effect variable € is used for expressing dependencies between
effects (examples follow in Chapter 13). Due to the fact that the variables are
universally quantified, every occurrence of :: can, potentially, be in its own
region. But notice that the type of :: forces the element, which is consed
onto the list, to be in the same region (p;) as the already existing elements
of the list. Similarly, the type forces the pairs to be in one region (p) and
the spine cells to be in one region (p3).

5.3 Example: Basic List Operations

The Kit compiles this program?

let val 1 = [1, 2, 31;
val (x::_) =1
in x end;

into the RegionFEzp-program shown in Figure 5.2.

'Project file kitdemo/lists, file kitdemo/onetwothree.sml.
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let val it =
letregion r7:INF, r8:INF
in let val 1 =
let val v2290 =

(1,
let val v2291 =
(2,
let val v2292 =
(3,
nil at r7
) at r8
in :: at r7 v2292
end
) at r8
in :: at r7 v2291
end
) at r8
in :: at r7 v2290
end
in (case 1
of :: =>
let val v2287 = decon_:: 1
in #0 v2287
end

| _ => raise Bind
) (*casex)
end
end
in {lit: (_,r2)1}

end

Figure 5.2: Example showing construction and deconstruction of a small list.
Layout of the list 1 is analogous to Figure 5.1. The infinite regions r7 and
r8 hold the spine of the list and the auxiliary pairs, respectively.
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Chapter 6

First-Order Functions

In this chapter we shall treat functions which are declared with fun and
which are first-order (i.e., they neither take functions as arguments nor pro-
duce functions as results). Higher-order functions are treated in Chapter 13.
Region polymorphism works uniformly over all types; we use lists as an ex-
ample of the general scheme.

6.1 Region-Polymorphic Functions

It would be a serious limitation if all lists produced by a function were stored
in the same region, for then all those lists would have to be kept alive till
the last time one of them were used. The solution which the Kit offers to
this problem is region-polymorphic functions, i.e., functions which are passed
regions at runtime.

When one declares a function which, when called, produces a fresh list,
the region inference algorithm will automatically insert extra formal region
parameters in the function declaration. At every place one refers to the
function, for example because one calls the function, the region inference
algorithm inserts a list of actual region parameters thus telling the function
where to put its result. This is all done automatically: the user does not
have to introduce region parameters or pass them as arguments. But it is
useful to understand the general principle so that one can exploit the feature
fully.

The syntax of a (single) function declaration in MulExp is:

fun f at po [p1, -+, okl T =€

23
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Here py denotes the region in which the closure for f is stored, pq,..., px
are the formal region parameters, x is the value parameter (a single variable)
and e is the body of the function. A call to f takes the form

ooy, oo A1 at pg €

where [p}, ---, p,] is a record of actual region parameters, pj is the region
where this record is stored, and €’ is an expression denoting the argument to
the call. Note that region parameters are enclosed in angle brackets ([ 1);
this should not cause confusion with ML lists, since RegionFxp and MulFxp
do not use the angle brackets for lists.

Different calls of f can use different actual regions, and this is essential
for obtaining good separation of lifetimes.

For an example, consider’

fun fromto(a, b) = if a>b then []
else a :: fromto(a+l, b)
val 1 = #1(fromto(1,10), fromto(100,110));

The corresponding MulEzp-program is shown in Figure 6.1. Note that r7
and r8 are formal regions of fromto. In the last call of fromto, a record
consisting of region descriptors for r20 and r21 are passed to fromto; the
region record is stored in r22. Note that the regions that hold the two lists
generated by this program are disjoint. The reason that r1 is passed twice to
fromto in the call fromto[at rl,at ri] at r17 (1, 10) at r19 is that,
for reasons to do with separate compilation, the Kit only has one region for
global values that are not of runtime type string, real or word. Thus r1
holds both the pairs and the spine of the first list. In the second list, which
does not escape to top level, the pairs and the spine are kept separate, in
r21 and r20, respectively.

6.2 Region Type Schemes
A region-polymorphic type scheme takes the form

ou=Vay - Qppy- Pr€L - Em.T

'Project kitdemo/fromto, file kitdemo/fromto.sml.
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let fun fromto at rl [r7:INF, r8:INF] (var263)=
let val a = #0 var263; val b = #1 var263
in (case a > b
of true => nil at r7

| false =>
let val v2725 =
(a,
letregion ri13:1,
ri5:1
in fromto[r7,r8] at ri3
(a + 1,
b
) at rib5
end
) at r8
in :: at r7 v2725
end

) (*casex)
end ;
val 1 =
let val v2737 =
letregion r17:1, ri19:1
in fromto[ri,rl] at ri7
(1, 10) at ri19
end
val _not_used =
letregion r20:INF, r21:INF
in let val v2738 =
letregion r22:1, r24:1
in fromto[r20,r21] at r22
(100, 110) at r24

end
in ()
end
end
in v2737
end
in {lfromto: (_,rl), pair: (_,r1)l}

end

Figure 6.1: The region-annotated version of fromto shows that fromto is
region-polymorphic.
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where ay, ..., a, are type variables, py, ..., pr are region variables, €1,..., ¢,
are effect variables and 7 is a region-annotated type.

The types of nil and : : in Section 5.2 are examples of region-polymorphic
type schemes.

There is a close connection between, on the one hand, the formal and ac-
tual region parameters found in RegionFEzp (and MulExp) programs, and, on
the other hand, the region type schemes which the region inference algorithm
assigns to recursively declared functions. The formal region parameters of
a function stem from the bound region variables of the region type scheme
of that function. The actual region parameters which annotate a call of the
function are the region variables to which the bound region variables are
instantiated at that particular application.

For example, the region type scheme of fromto from Figure 6.1 is

Vprpspee.((int, py) * (int, ps), pg) e-{get(p2).put(p2).get(ps).put(pr).put(ps)}
(((int, po)[ps])1ist, pr)

At the last call of fromto in Figure 6.1, the type scheme is instantiated to
the type and place

((int, p2) % (int, p2), p24) e’.{get(pz),put(pz),get(pu),put(pzo),put(pzl)}>
(((int, p2)[p21])1ist, pao)

The instantiation of bound variables of the type scheme which achieves this
is
{p7 = P20, ps = pa1, pe > pas,e > €'}

In general, the actual region parameters annotating a call of a region-polymorphic
function are obtained from the range of the substitution by which the type
scheme of the function is instantiated at that application.

To avoid passing regions that are never used, the Kit only introduces
formal region variables for those bound region variables in the type scheme
for which there appears at least one put effect in the type of the function.
Reading a value is done simply by following a pointer to the value, irrespective
of which region the value resides in, whereas storing a value in a region uses
the name (Section 2.1) of the region. This explains why pg does not become
a formal region parameter and why po, is not passed to fromto at the call
site. This optimisation, which is called dropping of regions, is the key reason
why the Kit takes the trouble to distinguish between put and get effects.
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Region-polymorphic functions also have to be allocated somewhere. There-
fore, the region information associated with a region-polymorphic function
is a region type scheme and place, i.e., a pair (o, p). Indeed every binding
occurrence of a variable (whether the binding is done by fun, let or fn)
associates a region type scheme and place with the binding occurrence. (In
the case of let, the type scheme will have no quantified region and effect
variables, however, and in the case of fn, the type scheme will have no quan-
tified variables at all.) In the following, when we refer to “the region type
(scheme) and place” of some variable, we mean the region type (scheme) and
place which is associated with the binding occurrence of the variable. The
region type scheme should be clearly distinguished from instances of the type
scheme which decorate non-binding occurrences of the variable.

6.3 Endomorphisms and Exomorphisms

The fromto function from Section 6.2 has the property that it can put its
result in regions that are separate from the regions where its argument lies.
This is not surprising, if one looks at the declaration of the function: it creates
a brand new list which does not share with the argument (a,b), except for
the integers a and b which may end up in the list. The freshness of the
generated list is also evident from the region type scheme of the function:
different region variables are used for the argument and the result.

Not all region-polymorphic functions create brand new values. Very of-
ten, a region-polymorphic function simply adds values to regions which are
determined by the argument to the function. A good example is the list
append function from the prelude:

infixr 5 @
fun [] @ ys = ys
| (x::x8) @ ys =x :: (xs @ ys)

Append successively conses the elements of the first list onto the second list.
Thus ys and xs @ ys must be in the same regions. However, xs and ys need
not be in the same regions, although the elements of xs and ys clearly must
be in the same regions, since they end up in the same list. These properties
of append are summarised in the inferred region type scheme:

Vap1papsprpapac- (@, ps), [p2])1ist, pr) * (@, p3), [pa]) 1ist, ph), pa)
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c.{get(ps).get(p1).get(p2).put(p}).put(ps)} ,

(((ev, p3), [p5])1ist, pi)

One of the key things one needs to be conscious of when programming with
regions is whether one want functions to create fresh values or whether one
wants to add to existing regions. Adding to existing regions can of course
make these regions too large and long-lived, since the entire region will be
alive for as long as one of the values in the region may be needed in the
future. Here are two more examples to highlight the difference between
functions that can put values in fresh regions and functions that add values
to existing regions:
fun cpl [1 = []
| cpl (x::xs8) = x :: cpl xs
fun cp2 (1 as [1)
| cp2 (x::x8) = x :: cp2 xs

I
'_l

Here cpl can copy a list into fresh regions, whereas cp2 always copies a list
into the same region:

cpl — Vaplpgpgpgpge.((oz, p3), [pg])list, p1) e.{get(p1),get(p2),put(p}),put(ps)}

((a, pa), [po])List, pf)
cp2 VOtp1p2€.((Oz,p3),[pg])liSt,pl) e.{get(m),Eet(pz),put(m),put(pz)}_\,

(s ). [p2]) 2t 1)

As we saw in Section 1.3, there are cases where it is useful to copy a list from
one region into another region, in order to make it possible to de-allocate
the old region. This copying can be used as a kind of programmer-controlled
garbage collection in cases where garbage has accumulated in the original
region.

Since it is often useful to distinguish between functions that can put their
result into fresh regions and functions that simply add to regions determined
by their value argument, we shall refer informally to the former functions
as region exomorphisms and the latter as region endomorphisms. Note that
this is not a clear-cut distinction, however. Often, functions have both an
endomorphic and an exomorphic side to them. Also note that even a region
exomorphic function can be forced to act as an endomorphism by the calling
context. Example:

if true then cpl 1 else 1
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Since the two branches of the conditional are required to have the same
region-annotated type, 1 and cpl 1 are forced to be in the same regions.

6.4 Polymorphic Recursion
A recursive region-polymorphic function

fun f at po [p1, -+, k] T =€

may call itself inside its own body (e) with regions that are different from its
own formal region parameter ([p;, ---, pgl). This feature is called polymor-
phic recursion in regions, named after polymorphic recursion, the analogous
concept for types. Polymorphic recursion in regions is vital for achieving
good recursion. It is also a major source of complication of the region infer-
ence algorithm we use in the Kit, but we shall not tire the reader with the
details here.

We now show a typical use of polymorphic recursion in regions, namely
merge sorting of lists. The basic idea of merge sort is simple: first split the
input list into two lists [ and r of roughly equal length. Then sort [ and r
recursively and merge the results into a single sorted list. When programming
with regions, we need to plan which of these lists we want to reside in the
same regions. We do not want to waste space. In particular, if n is the length
of the list, it would be quite irresponsible to use O(nlogn) space, say. Let
us aim at arranging that the sorting function is a region exomorphism which
does not produce any values in its result regions except the sorted list. To
sort n elements we shall need n list cells (to hold the input list) plus roughly
2 x (n/2) list cells to hold I and r, the two lists that arise from splitting the
input list. To sort [ recursively, we need space for the two lists obtained by
splitting [ etc. This grows to a maximum of 3n list cells (including the n
cells to hold the input), before any merging is done. By the time all of [ is
sorted, i.e., just before r is sorted recursively, we have the following lists: the
input (n cells), I (n/2 cells), [ sorted (n/2 cells), r (n/2 cells). Continuing
this way, one sees that the maximal memory usage occurs at the rightmost
merge to two lists of length at most one, at which point approximately 4n
list cells are live. Here is code which uses these ideas:



60 CHAPTER 6. FIRST-ORDER FUNCTIONS

fun cp [0 =[]
| cp (x::x8)= x :: cp Xs

(* exomorphic merge *)
fun merge(xs, []):int list = cp xs
| merge([], ys) = cp ys
| merge(11 as x::xs, 12 as y::ys) =
if x<y then x :: merge(xs, 12)
else y :: merge(ll, ys)

(* splitting a list *)

fun split(x::y::zs, 1, r) = split(zs, x::1, y::r)
| split([x], 1, r) = (x::1, r)
| split([], 1, r) = (1, 1)

(* exomorphic merge sort *)
fun msort [1 = []
| msort [x] = [x]
| msort xs = let val (1, r) = split(xs, [1, [1)
in merge(msort 1, msort r)
end;

The exomorphic merge function is a bit inefficient in that it copies one argu-
ment when the other is empty, but the exomorphism ensures that msort 1
and msort r are not forced into the same regions. The polymorphic recur-
sion in regions makes it possible for xs, 1, r, msort 1 and msort r all to
be in distinct regions. For example, in the call msort 1, the polymorphic
recursion makes it possible for 1 to be in regions different from xs and it also
makes it possible for the result of the call to be in a region different from the
result of msort xs.

Based on the above analysis we conclude that the space required by
msort xs is approximately 4nc; + cslogyn, where n is the length of xs, ¢ is
the size of a list cell (4 words in this case) and ¢, is the space on the runtime
stack used by one recursive call of msort (probably less than 10 words).

To check the above analysis, we sorted 50,000 integers with the region
profiler enabled. According to our analysis, the maximal space usage should
be roughly 4 x 50,000 x 4 words, i.e., 3,200,000 bytes, i.e, 3.125M B. As one
sees in Figure 6.2, the analysis was accurate to within a kilobyte.
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‘ ..lafterone/bin/HPPA36h/rp2ps - Region profiling Thu Mar 20 08:35:17 1997 ‘
—— Maximum allocated bytes in regions: 3201016. ——————

bytes

B o

[ roint
B 73int
B ine
[ ] r74inf
. r72inf
. r83inf
D r84inf
I riinf

B rssfin

31.2 . . . seconds

Figure 6.2: Region profiling of msort sorting 50,000 integers. The high-level
mark of 3,201,016 bytes is exact (i.e., not sampled).

In Chapter 12 we shall see how one can use resetting of regions to reduce
the space usage to roughly 2nc,.

The project kitdemo/msort contains the above declarations. After com-
piling the project, the region-annotated code may be found in the file
kitdemo/msort.log.
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Chapter 7

Value Declarations

Although region inference is based on types and effects, it is also to some
extent syntax dependent: two programs can easily be equivalent in their
input-output behaviour and yet result in very different memory behaviour.
In this chapter we discuss how to write declarations in order to obtain good
results with region inference. The region inference rules that underlie the
ML Kit with Regions are related to the scope rules of ML, so we start by a
(very informal) summary of the scope rules of ML declarations.

7.1 Syntax

A Standard ML wvalue declaration binds a value to a value variable. For
example, the result of evaluating the value declaration

val x = 3+4

is the environment {x — 7}. More generally, evaluation of a value binding
val id = exp proceeds as follows. Assume the result of evaluating ezp is
a value, v. Then the result of evaluating val id = ezp is the environment
{id — v}.

The value declaration is just one form of Core Language declaration (the
others being type and exception declarations). We use dec to range over
declarations. Declarations can be combined in several ways. For example,

decy ; decs
is a sequential declaration. The identifiers declared by this declaration are the

identifiers that are declared by dec; or decy; moreover, identifiers declared

63
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in dec; may be referenced in decs. The semicolon is associative. Thus in a
sequence decy; ... ;dec, of declarations, identifiers declared in dec; may be
referenced in dec;yq, ..., dec, (1 <i<n).

The Core Language has two forms of local declarations. The expression

let dec in erp end

declares identifiers whose scope does not extend beyond exp. Similarly, the
declaration
local dec; in decs end

first declares identifiers (in dec;) whose scope does not extend beyond decs
and it then uses these declarations to perform the declaration in decy. An
identifier is declared by the entire local construct if and only if it is declared
by decs.

7.2 On the Relationship between Scope and
Lifetime

Scope is a syntactic concept: a declaration of an identifier contains a binding
occurrence of the identifier; the scope of the declaration is the part of the
ensuing program text whose free occurrences of that identifier are bound
by that binding occurrence. By contrast, lifetime, as we use the word, is
a dynamic concept. A value is “live” if and only if the remainder of the
computation uses it (or part of it). The traditional stack discipline couples
these two concepts very closely. For example, in the pure stack discipline,
the evaluation of
let dec in erp end

in an environment E proceeds as follows. First evaluate dec, yielding an
environment, F;. Then evaluate exp in the environment E extended with
E, yielding value v. Then v is the result of evaluating the let-expression in
E. In implementation terms: first push an environment E; onto the stack,
use it to evaluate the expression in the scope of the declaration and then
pop the stack. That this idea works in block-structured languages hinges
on a number of carefully made language design decisions. In functional and
object-oriented languages, memory cannot be managed that simply. The
problem is that while environments can be managed in a stack-like manner,
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the values in the range of the environment cannot (unless one uses regions,
that is). For example consider the ML expression:

local
val private = [2,3,5,7,11,13]
in
fun smallPrime(n:int): bool =
List.member n private
end

Although the scope of the declaration is only the declaration of smallPrime,
private is accessed (at runtime) whenever smallPrime is called. Thus the
lifetime of the list of small primes is at least as long as the lifetime of the
smallPrime function itself.

The region discipline still has a coupling between scope and lifetimes,
but, since we want to be able to handle recursive data types and higher-order
functions, the coupling is less tight. The ground rule of region inference is
that as long as a value variable id is in scope, the value bound to it at runtime
will remain allocated. More precisely:

Ground Rule: The region rules forbid transforming an expression
exp into letregion p in exp end if exp is in the scope of an
identifier which has p free in its region type scheme or place.

For an example, consider

let
val list = [1,2,3]
val n = length list
val r = sin(real n)

in
cos(r)
end

At runtime, the list bound to list is not used (i.e., it is not live) after its
length has been computed; similarly, the value of n is not live after it has
been converted to a floating point number, and so on. In short, at runtime
we have a sequence of short, non-overlapping lifetimes.
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With region inference, however, the list bound to 1ist will stay allocated
throughout the evaluation of the remainder of the let-expression.t

It is crucial to bear the ground rule in mind when programming with
regions. For a more interesting example, consider the following declarations,
taken from a program which computes prime numbers using the Sieve of
Eratosthenes:

fun cp [1 = [I
| cp (x::x8) = x :: cp xs

fun sift (n, [1) = []
| sift (n, (x::xs)) = if x mod n = 0 then sift(n,xs)
else x::sift(n,xs)
fun sieve(a as ([], p)) = a
| sieve(x::xs, p) = let val rest = sift(x,xs)
in sieve(cp rest,x::p)
end

Here sift(n, 1) produces a list of the numbers from 1 that are not divisible
by n; sieve(xs, p) repeatedly calls sift, adding primes to the front of
p, until the list of numbers remaining in the sieve becomes empty. The
programmer has employed the copying technique suggested in Section 1.3 to
avoid that the lists that are bound to rest during the repeated filtering all
are put in the same region. The programmer’s intention is that the cp rest
should overwrite x: :xs by a copy of rest, so that space consumption would
be bounded by a constant times the size of the input. But it does not work
as intended: since rest is in scope at the recursive application of sieve, the
list which is bound to rest will stay allocated for the duration of that call,
which is in fact the remainder of the entire computation!

In many cases, the solution is simply to shorten the scope of the decla-
ration. In the above example, a good solution is to move the application of
sieve outside the let:

LOne can force de-allocation of the list by inserting val _ = resetRegions(list) after
the declaration of n; but, as we shall see, there are less draconian ways of achieving the
same result.
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fun sieve(a as ([], p)) = a
| sieve(x::xs, p) =
sieve let val rest = sift(x,xs)
in (cp rest,x::p)
end

Although we cannot explain why the copying really overwrites the input list
until we have dealt with resetting of regions (Chapter 12) we can explain why
this transformation ensures that the list bound to rest will not live to see
the recursive call of sieve. Unless forced by context to do otherwise, sift
will create a list using fresh regions. Since cp is also exomorphic, there will
be no sharing between rest and the other lists. Precisely, the two region
variables that denote the two regions which hold the spine and the auxiliary
pairs of rest appear in the effect of the (revised) let-expression but neither
of them occur free in the region type scheme and place of any variable in
scope at that point, not even in the region type scheme and place of sieve,
whose only free region variables are the global integer region r2 and the
region which contains sieve itself. Consequently, region inference will wrap
the let-expression by a letregion-binding of the two region variables in
question, e.g.,

fun sieve(a as ([], p)) = a
| sieve(x::xs, p) =
sieve letregion r10, riil
in let val rest = sift[rl10,r11](x,xs)
in (cp rest,x::p)
end
end

7.3 Summary

Informally, region inference forces lifetime to be at least “as long” as scope.
However, region inference will introduce a letregion p-binding around an
expression containing a free occurrence of p as soon as p occurs free neither
in the type of the expression nor in the region type scheme and place of any
variable in scope at the expression.

Useful program transformations to shorten lifetimes include:
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1. Inwards let floating: transform
let val id; = exp, val idy = exp, in exp end
into
let val idy = let val id; = erp, in ezp, end in exp end
provided ¢d; does not occur free in exp.
2. Application extrusion: transform
let dec in f(ezp) end

into
f let dec in exp end

provided f is an identifier which is not declared by dec.

These meaning-preserving transformations are useful in situations where
early de-allocation is important. Application extrusion is a useful program-
ming habbit, especially in connection with tail recursion; the reader will see
it employed several times in what follows.



Chapter 8

Static detection of space leaks

“Space leak” is the informal term used when a program uses much more
memory than one would expect, typically because of memory not being re-
cycled as early as it should (or not at all).

If a region-polymorphic function with region type scheme o has a put-
effect on a region variable which is not amongst the bound region variables of
o then one quite possibly has a space leak: every application of the function
may write values into a region which is the same for all calls of the function.
For example, consider the source program'

fun g() =
let val x = [5,7]
fun f(y) = (if y>3 then x@x else x;
5)
in
f1; f 4
end;

Here f has type int — int; yet, when y>3 evaluates to true, an append
operation producing a list in the same region as x is performed. The first
call of £ will not cause the append operation to be called, but the second one
will. One can say that £ has a space leak in that it can write values into a
more global region, namely a region which is allocated at the beginning of
the body of g. Hence the sequence of calls to £ would accumulate copies of
x0@x in that region, although none of these lists are accessible anywhere. In

!Project kitdemo/escape, file kitdemo/escape.sml.
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this particular case, the values are not even part of the result type of f, so
the writing is a “side-effect” at the implementation level, even though there
are no references in the program.

The region type scheme inferred for £ is:

VG.(int, I'2) e.{put(r4),put(r5),get(r2),put(r2)} >(int, I'2)

where the region-annotated type of x is
(((int,r2), [r5])1ist, r4d)

Here we see that r4 and r5 are free in the type scheme but appear with put
effects.

8.1 Warnings About Space Leaks

The Kit issues a warning each time it meets a fun-declared function which
has a free put effect occurring somewhere in its type scheme. In practice,
we have found this to be an extremely valuable device for predicting space
leaks. In our example, the following warning is printed on the log file:

fun g at r1 [] (var314)=
letregion r8:INF, r9:INF
in let val x =
let val v3294 =

(5,
let val v3295 = (7, nil at r8) at r9
in :: at r8 v3295
end
) at r9
in :: at r8 v3294

end
in letregion ri2:1
in let fun f at r12 [1 (y)=
let val _not_used =
let val v3291 =
(case y > 3
of true =>
letregion
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in @[r8,r9] at rib
(x, x) at ri7
end
| false => x
) (xcasex)
in ()
end
in b5
end ;
val _not_used =
let val v3293 =
letregion ri18:1
in £[1 1
end
in O
end
in letregion r20:1
in f[] 4
end
end
end
end
end

*kk Warnings kkk
f has a type scheme with escaping put effects on region(s):
r8, which is also free in the type (schemes) of : x
r9, which is also free in the type (schemes) of : x

We are told that the program might space leak in regions r8 and r9. Looking
at the function f, we see that these two regions are actual region parameters
to @. This reveals that the problem is the call to @.

8.2 Fixing Space Leaks

Often one can fix a space leak by delaying the creation of the global value
which causes the space leak. In the above example, we can move the con-
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struction of the list into f:2

fun g() =
let fun mk_x() = [5,7]
fun f(y) = let val x = mk_x()
in if y>3 then x0x else x; 5
end
in
f1;, f 4
end;

Of course, this means that the list will be re-constructed upon each applica-
tion of £. Another solution is to move the creation of the list as close to the
calls as possible and then pass the list as an extra argument:?

fun g() =
let
fun f(x,y) = (if y>3 then x0x else x; 5)
in
let val x = [5,7]
in f(x, 1); f(x, 4)
end
end;

Both solutions stop warnings from being printed, but the second solution is
better than the first: f still has a put effect on the regions containing x, but
the difference is that these are now represented by bound region variables
in the type scheme of £. This has two advantages: (a) allocation of space
for the list is delayed till the list is actually used; and (b), the list can be
de-allocated after the calls have been made (whereas in the original version,
x occurs free in the declaration of £ and will be kept alive as long a £ can be
called).

At other times, there is no clean way of avoiding escaping put regions.
One example is found in the prelude:

exception Io of string
exception CANNOT_OPEN

2Project: kitdemo/escape, file kitdemo/escapel.sml.
3Project: kitdemo/escape, file kitdemo/escape2.sml.
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fun open_in(f: string): instream =
INS(prim(31, ("openInStream", "openInStream", f,
CANNOT_OPEN)))
handle CANNOT_OPEN => raise Io("Cannot open " = f)
fun open_out(f: string): outstream =
QUTS (prim(31, ("openOutStream", "openOutStream", f,
CANNOT_OPEN)))
handle CANNOT_OPEN => raise Io("Cannot open " = f)

As explained in Chapter 11, our region inference algorithm is very simple-
minded about unary exception constructors: when a unary exception con-
structor is applied to a value, both the argument value and the resulting
constructed value are forced into a global region. Thus the application
Io("Cannot open " ~ f) has a potential space leak in it: every time we
concatenate the two strings, the resulting string will be put into a global
region. This particular space leak is perhaps not something that would keep
one awake at night, since most programs do not make a large number of
failed attempts to open files, but it is useful to be warned about this poten-
tial problem.
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Chapter 9

References

Section 9.1 gives a brief summary of references in Standard ML; it may be
skipped by readers who know the language. Thereafter we discuss runtime
representation of references, region-annotated reference types and show ex-
amples.

9.1 References in Standard ML

A reference is a memory address (pointer). Standard ML has three built-in
operations on references

ref Va.ao — aref create reference
! Va.aref — « dereferencing
1= Va.aref x o — unit  assignment

If the type of a reference r is 7ref then one can store values of type 7
(only) at address r. A reference is a value and can therefore be bound to
a value identifier by a value declaration (val---). While the value stored
at a reference may change, the binding between variable and reference does
not change. We show an example, since this point can be confusing to pro-
grammers who are familiar with updatable variables in languages like C and
Pascal.

val it = let
val x: int ref = ref 3
val y: bool ref = ref true
val z: int ref = if !y then x else ref 5
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in

end

Since !y evaluates to true, z becomes bound to the same reference, r, as x. So
the subsequent assignment to z changes the contents of the store at address
r to contain 6. Since x and z are aliases, the result of the let-expression is
the contents of the store at address r, i.e., 6.

9.2 Runtime Representation of References

The Kit translates an SML expression of the form ref ezp into an expression
of the form
ref at p e

which is evaluated as follows. First e is evaluated. Assume this yields a
value, v. Here v may be a boxed or an unboxed value. Next, a 32-bit word is
allocated in the region denoted by p; let r be the address of this word. Then
v is stored at address r and r is the result of the evaluation.

Note that a reference really is a pointer in the implementation. In par-
ticular, a reference is not tagged and may be stored in a KAM register. The
contents of the reference is also one word, either an unboxed value (e.g., an
integer or a boolean) or a pointer (if the contents is boxed). So the contents
of a reference is not tagged either.

Dereferencing a reference r is done by reading the contents of the memory
location r. Note that this does not require knowledge of what region the word
with address r resides in.

Assigning a value v to a reference r simply stores v in the memory at
address r. When v is an unboxed value, this can be regarded as copying v
into the memory cell r; othewise v is a pointer which the assignment stores
in the memory cell r. Either way, assignment is a constant-time operation.

9.3 Region-annotated Reference Types

The general form of a region-annotated reference type and place is:

(nref, p)
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r: 3

r34 r35 r36

Figure 9.1: Creating a reference allocates one word in a region on the region
stack. Above, the region is drawn as a finite region, but it could equally well
be infinite

Informally, a reference r has this type if it is the address of a word in the
region denoted by p and, moreover, p is the type and place of the contents of
that word. For example, assume p is bound to some region name, say r35;
then the evaluation of val x = ref at p 3 results in the environment
{x + r}, where r is the address of a word with contents 3 residing in region
r35, see Figure 9.1.

References are treated like all other values by region inference. The
region-annotated types given to the three built-in operations are:

ut

ref  Vapipe. (o, p) = ((cv, pr)ret, po)

! Vappse.((, pr)ret, py) —A8etlezlls (o p))

i= Yap papspae.(((, pr)ret, pa) * (a, pr), ps) —A8etlosl.putloz).outloal,
(unita p4)

Note that within each of these type schemes, « is paired with the same region
variable. The reason is that assigning a value v to a reference r does not make
a copy of v (unless v is unboxed). The advantage of the chosen scheme for
handling references is that reference creation, dereferencing and assignment
all are constant-time operations. The disadvantage is that if two values may
be assigned to the same reference, they are forced to be in the same regions
(cf. the region type schemes given above).

If we compile the example from Section 9.1 we get the program shown
in Figure 9.2.! The region denoted by r7 contains the memory word whose

'Project kitdemo/refs, file kitdemo/refs3.sml.
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Iet val 1t =
letregion r7:INF
in let val x = ref at r7 3
in letregion r8:1
in let val y =
let val v3845 = true
in ref at r8 v3845 end ;
val z =
(case letregion r9:1 in ![] y end
of true => x | false => ref at r7 5)
val v3842 =
letregion ril:1, ri3:1
in :=[r7] at ri1 (z, 6) at ri3

end
in letregion ri14:1 in !'[] x end
end
end
end
end
in {lit: (_,r2) 1%}

end

Figure 9.2: Region-annotated reference creation.
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address is bound to x and z, and whose contents is first 3, then 6. The region
denoted by r8 contains a single boolean. Also note that the word containing
5 is designated r7, since the then and else branches must give the same type
and place. Finally note that all references will be reclaimed automatically,
at the end of letregion constructs which bind r7 and r8.

9.4 Local References

References to words which are created locally within a function and do not
escape the function naturally reside in regions which are local to the function
body. For example, the declaration:?

fun id(x) = let val r = ref x in ! r end;
is compiled into

let fun id at r1 []1 (x)=
letregion r9:1
in let val r = ref at r9 x
in letregion r10:1 in ![] r end
end
end
in {lid: (_,rD) |}
end

Here r9 will be implemented as one word on the runtime stack. The evalua-
tion of ref at r9 x moves the contents of the standard argument register
(standardArg) to that word on the stack. At the end of the letregion r9
. end, the word is popped off the stack.
Now let us turn to an example of a memory cell whose lifetime extends
the scope of its declaration, because it is accessible via a function (in Algol
terminology, the reference is an own variable of the function.)?

local
val r = ref ([]:string list)
in
fun memo_id x = (r:= x:: !r; x)

2Project: kitdemo/refs, file kitdemo/refsl.sml.
3Project: kitdemo/refs, file kitdemo/refs2.sml.



80 CHAPTER 9. REFERENCES

end
val y = memo_id "abc"
val z = memo_id "efg";

This compiles into

let val r =
let val v3756 = nil at rl in ref at rl1 v3756 end ;
fun memo_id at ri[] (x) =
let val v3752 =
letregion r8:1, r10:1
in :=[r1] at r8

(r,
let val v3753 =
(x,
letregion ri2:1
in '[] r
end
) at ri
in :: at rl v3753
end
) at r10
end
in x
end ;
val y = letregion r14:1 in memo_id[] "abc'"at r4 end
val z = letregion r16:1 in memo_id[] "efg"at r4 end
in  {|
r: (_,r1),
memo_id: (_,rl),
y: (_,rd),
z: (_,rd)
|3
end

and the Kit warns us that there is a possible space leak (Chapter 8):

**xx Warnings **x*
memo_id has a type scheme with escaping put effects on region(s):
rl, which is also free in the type (schemes) of : ! := r Match Bind
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9.5 Hints on Programming with References

There is no need to shy away from using references when programming with
regions. However, one needs to be aware of the restriction that values that
may be assigned to the same references are forced to live in the same region,
and this region with all its values will be alive for as long as the reference is
live. This poses no problem if the contents type is unboxed (e.g., int), for in
that case no region for the contents is allocated at all. But one should avoid
creating long-lived references which are assigned many different large values.
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Chapter 10

Recursive Data Types

Standard ML permits the programmer to declare (possibly recursive) data
types using the datatype declaration. For example, one can declare a poly-
morphic, recursive data type for binary trees as follows:

datatype ’a tree = Lf | Br of ’a * ’a tree * ’a tree;

10.1 Spreading Data Types

The Kit performs an analysis, called “spreading of data types”, of the datatype
declarations contained in the program. Spreading determines (a) a so-called
arity of every type name which the data type declaration introduces and (b)
a region type scheme for every value constructor introduced by the data type
declaration. In Standard ML, every type name has an attribute, called its
arity. For example, int has arity 0 while the type name introduced by the
above declaration would have arity 1. However, the notion of arity has to be
extended internally in the Kit to account for regions and effects. For lists,
for example, we need not just a region for holding the constructors nil and
::, but also a region for holding the pairs to which :: is applied. For the
data type

datatype ’a foo = A | B of (’a * ’a) *x (’a x ’a)

the type of B introduces the possibility of three region variables (one for
each star), even if we decide to pair all occurrences of ’a by the same region
variable. Region variables which are induced by the types of constructors

83
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and which do not hold the constructed values themselves are called auziliary
region variables. For example, the 1ist data type:

datatype ’a list = nil | op :: of ’a * ’a list

has one auxiliary region variable, namely the region variable which describes
where the pairs of type >a * ’a list, i.e., the auxiliary pairs, reside.
One also needs auxiliary arrow effects, for cases such as

datatype V = N of int | F of V -> V

where we need an arrow effect for the function type V. -> V. We refer to such
an arrow effect as an auxiliary arrow effect of the data type in question.

We define the (internal) arity of a type name ¢ to be a triple (n, k, m) of
non-negative integers, where n is the usual Standard ML arity of the type
name, k is the region arity of t and m is the effect arity of t. The region and
effect arity indicate the number of auxiliary regions and arrow effects of the
data type, respectively.

For efficiency purposes, we have found it prudent to restrict the maximal
number of auxiliary regions a data type can have to 3 (one for each kind of
runtime type of regions) and to restrict the maximal number of auxiliary ef-
fects to 1. Otherwise, the number of auxiliary regions can grow exponentially
in the size of the program:

C
Cl of tO * tO
C2 of t1 * t1

datatype tO
datatype ti1
datatype t2

Here the number of auxiliary region variables would double for each new data
type declaration.

Furthermore, all type names introduced by a datatype declaration are
given the same arity (a datatype declaration can declare several types simul-
taneously). Within one constructor binding (conbind), all occurrences of the
same type variable are paired with the same region variable. Different type
variables are paired with different region variables. Since we allow at most
one auxiliary region variable for each datatype declaration, the analysis of
data type declarations sometimes has to unify two auxiliary region variables
that would otherwise be distinct, but it only unifies auxiliary region variables
that have the same runtime type.
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The practical consequence of these restrictions is that sometimes applying
a constructor to a value v forces identification of regions of v that hold
otherwise unrelated parts of v.

The automatic memory management we have discussed for lists extends
to other recursive data types without problems. For example, binary trees
are put into regions and are subsequently de-allocated (in a constant time
operation) when the region is popped. The next section is an example to
illustrate the point.

For simplicity, constructed values are always boxed.

10.2 Example: Balanced Trees

Consider the following program in Figure 10.1.! Note that we would hope
that the balanced tree produced by balpre is removed after it has been
collapsed into a list by preord. And indeed it is. Here is the proof:

val it =
letregion r72:1, r74:1
in say[]
letregion r75:1, r77:INF, r78:INF, r79:INF
in implode[r74] at r75
letregion r80:1, r82:1, r83:INF, r84:INF
in preord[r77,r78] at r80
(letregion r85:1, r87:INF, r88:INF
in balpre[r83,r84] at r85
letregion r89:1, r91:1
in explode[r87,r88,r79] at r89
"Greetings from the Kit\n"at r91
end
end
nil at r77
) at r82
end
end
end

'Project kitdemo/trees, file kitdemo/trees.sml.
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datatype ’a tree = Lf | Br of ’a * ’a tree * ’a tree
(* preorder traversal of tree *)

fun preord (Lf, xs) = xs
| preord (Br(x,t1,t2),xs) =
x::preord(tl,preord(t2,xs))

(* building a balanced binary tree
from a list: *)

fun balpre [] = Lf
| balpre(x::xs) =
let val k = length xs div 2
in Br(x, balpre(take(xs, k)),
balpre(drop(xs, k)))
end

(* preord o balpre is the identity: *)

val it = say(implode(preord(balpre(explode
"Greetings from the Kit\n"),[1)));

Figure 10.1: Example showing recycling of memory used for an intermediate
data structure.
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This is the kind of certainty about lifetimes we are aiming at. Imagine, for
example, that the trees under consideration were terms representing different
intermediate forms in a compiler. Then one would like to know that (possibly
large) syntax trees are not kept in memory longer than needed.
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Chapter 11

Exceptions

11.1 Exception Constructors and Exception
Names

Standard ML exception constructors are introduced by exception declara-
tions. The two most basic forms are

exception ezxcon

and
exception excon of ity

for introducing nullary and unary exception constructors, respectively. Unary
exception constructors are typically used when one wants to raise an excep-
tion which contains a “reason” (represented by a value of type ty).

Unlike in some languages (for example Java), exception declarations need
not occur at top level. For example, a function body may contain exception
declarations. Each evaluation of an exception declaration creates a fresh
exception name and binds it to the exception constructor. This is sometimes
referred to as the generative nature of ML exceptions.

In the ML Kit, an exception name is implemented as a pointer to a pair
consisting of an integer and a string pointer; the string pointer points to the
name of the exception, which is a global constant in the target program. The
string is used for printing the name of the exception if it ever propagates to
the top level. The cost of creating the pair is, as always with pairs, two
words.
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11.2 Exception Values

Standard ML has a type exn of exception values. An exception value is either
an exception name or a constructed exception value. A constructed exception
value can be thought of as a pair (en, v) of an exception name en and a value
v; we refer to v as the argument of en.

An exception value which is just a nullary exception name is represented
as the name itself, i.e., by a pointer to a pair of an integer and a string.
Thus referring to a nullary exception constructor allocates no memory. By
contrast, applying a unary exception constructor to an argument constructs
a constructed exception value. Cost: two words.

The distinction between nullary and unary exception constructors is im-
portant in the Kit because our region inference analysis takes a simple-
minded approach to exceptions: all exception names and all constructed
exception values are put in global regions and thus never reclaimed auto-
matically.

We therefore make the following recommendations:

1. Put exception declarations at top-level, if possible. That way, the mem-
ory required by exception names will be bounded by the program size.

2. Avoid applying unary exception constructors frequently; there is no
harm in raising and handling constructed exception values frequently,
it is the creation of many different constructed exception values that can
lead to space leaks. Nullary constructors may be used freely without
incurring memory costs.

11.3 Raising Exceptions

An expression of the form
raise ezxp

is evaluated as follows. First exp, an expression of type exn, is evaluated
to an exception value. Then the runtime stack is scanned from top towards
bottom in search of a handler which can handle the exception. The KAM
has a register which points to the top-most exception handler; the exception
handlers are linked together as a linked list interspersed with the other con-
tents of the runtime stack. If a matching handler is found, the runtime stack
is popped down to the handler. This popping includes popping of regions
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that lie between that stack top and the handler. Put differently, consider an
expression of the form letregion p in e end; if e evaluates to an exception
packet, then the region bound to p is de-allocated and the packet is also the
result of evaluating the letregion expression.

We have not attempted to design an analysis which would estimate how
far down the stack a given exception value might propagate. Of course, it
would not be a very good idea to allocate a constructed exception value in a
region which is popped before the exception is handled! This is why we put
all exception names and all constructed exception values in global regions.

11.4 Handling Exceptions
The ML expression form
exp, handle maltch

is compiled into a MulEzp expression of the form

letregion p in
let f = fn match at p in e; handle f end
end

where f is a fresh variable. So first a handler (expressed as a function) is
evaluated and stored in some region p. This region will always have multi-
plicity one and therefore be a finite region which is put on the stack. Then
e1, the result of compiling exp,, is evaluated. If e; terminates with a value,
the letregion construct will take care of de-allocating the handler. If e;
terminates with an exception, however, f is applied.

Thus the combined cost of raising an exception and searching for the
appropriate handler takes time proportional to the depth of the runtime
stack in the worst case.

This is the only operation which takes time which cannot be determined
statically, provided one admits arithmetic operations as constant-time oper-
ations.

11.5 Example: Prudent Use of Exceptions

Here is an example of prudent use of exceptions in the ML Kit:
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exception Hd (* recommendation 1 *)

fun hd [] = raise Hd
| hd (x::.) = x

exception T1

fun tl [] = raise T1
| t1 (_ ::xs) = xs

exception Error of string

local

val error_f = Error "f" (% recommendation 2 *)
in

fun £(1) =

hd(t1(tl 1)) handle => raise error_f

end

val r = f[1,2,3,4];

Note that the application Error "f" has been lifted out from the body
of £. No matter how many times f is applied, it will not create additional
exception values.!

'Project: kitdemo/exceptions, file: kitdemo/exceptions.sml.
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Resetting Regions

In Section 1.2 we explained that resetting regions is an important ingredient
in programming with regions. This chapter gives an informal explanation
of the rules that govern resetting, rules which play a key role in Kit pro-
gramming irrespective of whether one leaves resetting of regions to the Kit
or prefers to control resetting explicitly in the program.

Resetting only makes sense for infinite regions. It is a constant-time
operation.

The Kit contains an analysis, the storage mode analysis, which has two
purposes:

1. inserting automatic resetting of infinite regions, when possible;

2. checking applications of resetRegions (and forceResetting) in order
to report on the safety of the resetting requested by the programmer.

As a matter of design, one might wonder whether it would not be sufficient
to rely on the user indicating where resetting should be done. However,
checking whether resetting is safe at a particular point chosen by the user
is of course no easier than checking whether resetting is safe at an arbitrary
point in the program, so one might as well let the compiler insert region
resetting whenever it can prove that it is safe.

In this chapter we describe the principles that underlie the storage mode
analysis. Even if one is willing to insert resetRegions and forceResetting
instructions in the program, one still needs to understand these principles, in
order to be able to act upon the messages that are generated by the system
in response to explicit resetRegions and forceResetting instructions.
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12.1 Storage Modes

As we have seen in previous chapters, region inference decorates every allo-
cation point with an annotation of the form “at p”, indicating into which
region the value should be stored.

Now the basic idea is that storing a value into a region can be done in
one of two ways, at runtime. One either stores the value at the top of the
region, thereby increasing the size of the region; or one stores the value into
the bottom of the region, by first resetting the region (so that it contains no
values) and then storing the value into the region.

The storage mode analysis transforms an allocation point “at p” into
“attop p” when it estimates that p contains live values at the allocation
point, whereas it transform it into “atbot p”, if it can prove that the region
will not contain live values at that allocation point. The tokens attop and
atbot are called storage modes.

Region polymorphism introduces several interesting problems. Let f be
a region-polymorphic function with formal region parameter p and consider
an allocation point at p in the body of f. Whether it is safe for f to store
the value atbot in the region depends not only on the body of f but also on
the context in which f is called.

For example, consider the compilation unit

fun £ [1 = []

| £ (x::xs) = x+1 :: £ xs
val 11 = [1,2,3]
val 12 = if true then f 11 else 11

val x::_ = 11;

When £ stores the empty list, it can potentially reset the region it writes
into (as well as the auxiliary region intended for the auxiliary pairs of the
list). In the above program, however, the conditional forces £ 11 and 12 to
be in the same regions as 11. Since 11 is live after the application of £, this
application must not use atbot as storage mode. Indeed, even if we removed
the last line of the program, the application could still not use atbot, for 11 is
exported from the compilation unit and thus potentially used by subsequent
compilation units.
By contrast, consider!

'Project: kitdemo/sma, file: kitdemo/smal.sml.
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fun £ [] = []
| £ (x::x8) = x+1 :: f xs

val n = length(let val 11 = [1,2,3]
in if true then f 11 else 11
end)

When £ stores nil, it is welcome to reset the regions that hold 11, for by
that time, 11 is no longer needed! (f traverses 11, but when it reaches the
end of the list, 11 is no longer needed.) Indeed the Kit will replace the list
[1,2,3] by [2,3,4]. The ability to replace data in regions is crucial in
many situations (as we illustrated with the game of Life in Section 1.3).

Since the Kit allows separate compilation, it cannot know all the call sites
of a region-polymorphic function, when it is declared. Therefore, when con-
sidering an allocation point “at p” inside the body of some region-polymorphic
function, f, which has p as a formal region parameter, one cannot know at
compile time whether to use attop or atbot. Instead, the storage mode
analysis operates with a third kind of storage mode: sat, read: “somewhere
at”. Consider an application of f in which p is instantiated to some region
variable, p/, say. At runtime, p’ is bound to some region name (Section 2.1),
r’. Then 7’ is combined with a definite storage mode (i.e., attop or atbot),
to yield r, say, which is then bound to p. When 7’ was originally created
(by a letregion-expression), r’ was also made to contain an indication of
whether it is an infinite region or a finite region.? At runtime, an allocation
sat p in the body of f will test r to see whether the region is infinite and
whether the value should be stored at the top or at the bottom.?

The relevant parts of the result of compiling the last example above
are shown in Figure 12.1. To see the storage modes, switch on the flag
print atbot expression inthe menu Printing of intermediate forms.
The intermediate form obtained by enabling this flag is from before the op-
timisation that drops get-regions (page 56) and may therefore have more
region variables.

20n machines that have at least four bytes per word, the two least significant bits
of a pointer to a word will always be 00. These two bits hold extra information in the
region name. One bit, called the “atbot bit”, holds the current storage mode of the region.
Another bit, called the “infinity bit”, indicates whether the region is finite or infinite.

3When p has multiplicity infinity, ' must be the name of an infinite region, so the
runtime check on whether r has its infinity bit set is omitted.
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fun f attop r1 [r7:INF, r8:INF, r9:0, r10:0] (varl80)=
(case vari180
of nil => nil sat r7
| :: => let val v2007 = decon_:: varil80;
val x = #0 v2007;
val xs = #1 v2007;
val v2010 =
(x + lattop r2,
letregion rib5:1
in f[sat r7,sat r8,sat r9,sat rio]
atbot ri1b xs
end) attop r8
in :: attop r7 v2010
end) (*casex) ;
val n =
letregion r17:1, r19:INF, r20:INF
in length[atbot r19,atbot r20,attop r2] atbot ri7

let val 11 =
let val v2014 =
(lattop r2,
let val v2015 =
(2attop r2,
let val v2016 =
(3attop r2, nil atbot r19) attop r20
in :: attop ri19 v2016
end
) attop r20
in :: attop r19 v2015
end) attop r20
in :: attop ri19 v2014
end

in (case true attop r2
of true =>
letregion r24:1
(x1x%) in flatbot r19,atbot r20,atbot r19,atbot r20]
atbot r24 11
end
| false => 11) (xcasex)
end
end (xr17:1, r19:INF, r20:INFx*)

Figure 12.1: Storage modes inferred by the storage mode analysis.
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12.2 Storage Mode Analysis

For the purpose of the storage mode analysis, actual region parameters to
region-polymorphic functions are considered allocation points. Passing a re-
gion as an actual argument to a region-polymorphic function involves neither
resetting the region nor storing any value in it, but a storage mode has to
be determined at that point nonetheless, since it has to be passed into the
function together with the region. The storage mode expresses whether, at
the call site, there may be any live values in the region after the call. For
example, in Figure 12.1 the call to £ at (*1%) passes both r19 and r20
with storage mode atbot since the only value that exists before the call of
f and is needed after the call of £ is length, which is declared in a different
compilation unit and therefore obviously resides neither in r19 nor in r20.

Within every lambda abstraction, the Kit performs a backwards flow
analysis which determines, for every allocation point, a set of locally live
variables, i.e., a set of variables used by the remainder of the computation in
the function up to the syntactic end of the function. (This includes variables
which appear in function application expressions.) Prior to the computation
of locally live variables, a program transformation, called K-normalisation,
has made sure that every intermediate result which arises during computa-
tion becomes bound to a variable. (This happens by introducing extra let
bindings, when necessary.)?

The Kit also computes a set of locally live variables for each allocation
point which does not occur inside any function.

We now give an informal explanation of the rules that assign storage
modes to allocation points. Let an allocation point

atp (12.1)
be given.

CASE A: pis a global region. Then attop is used. There is a deficiency we
have to admit here. The Kit only puts letregion around expressions, not
around declarations. Thus, if one writes

4K-normalisation is transparent to users: although the storage mode analysis and all
subsequent phases up to code generation operate on K-normal forms, programs are always
simplified to eliminate the extra let-bindings before they are presented to the user.
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local
fun £ [1 = []
| £ (x::x8) = x+1 :: f xs
val 11 = [1,2,3]
in
val n = length(if true then f 11 else 11)
end

at top level, then 11 is put into a global region, although this is really unnec-
essary. As a consequence, £ would be called with storage mode attop and
thus 11 would not be overwritten.

CASE B: The region variable p is not a global region and the allocation
point (12.1) occurs inside a lambda abstraction, i.e, inside an expression of
the form fn pat => e. Here we regard every expression of the form

let fun f(x) = e in €' end
as an abbreviation for
let val rec f = fn(x) => e in €' end

Then it makes sense to talk about the smallest enclosing lambda abstraction
(of the allocation point).
Now there are the following cases:

B1 p is bound outside the smallest enclosing lambda abstraction (and this
lambda abstraction is not the right-hand side of a declaration of a
region-polymorphic function which has p as formal parameter): use
attop (see Figure 12.2);

B2 p is bound by a letregion-expression inside the smallest enclosing func-
tion: use atbot if no locally live variable at the allocation point has p
free in its region type scheme and place (Section 6.2), and use attop
otherwise (see Figure 12.3);

B3 (first attempt) p is a formal parameter of a region-polymorphic func-
tion whose right-hand side is the smallest enclosing lambda abstraction.:
use sat, if no locally live variable at the allocation point has p free in
its region type scheme and place, and use attop otherwise (see Fig-
ure 12.4).
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letregion p
in ... (fn pat => ...at p...)
end

fun f at pi[p] =
(fn x => (fn y => ... at p ...)at pplat p;

Figure 12.2: Two typical situations where at p is turned into attopp by
rule B1.

(fn pat => ...
letregion p

in ...at p...[...
end ...

)

Figure 12.3: The situation which is considered in B2. If no locally live
variable [ has p occurring in its type scheme and place, replace at p by
atbot p, otherwise by attop p.

fun f at py [p, ...] =
(fn pat => ...atp...[...)

Figure 12.4: The situation which is considered in B3. If no locally live
variable [ has in its type scheme and place a region variable which may be
aliased with p, replace at p by sat p, otherwise by attop p.
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The motivation for (B1) is that if p is declared non-locally, then we do not
attempt to find out whether p contains live data (this would require a more
sophisticated analysis.) The intuition behind (B2) is as follows. Region
inference makes sure that the region-annotated type and place of a variable
always contains free in it region variables for all the regions which the value
bound to that variable needs when used. The lifetime of the region bound
to p is given by the letregion expression which is in the same function as
the allocation point. Thus, if no locally live variable at the allocation point
has p free in its type scheme or place, then p really does not contain any live
value at that allocation point.

The intuition behind (B3) is the same as behind (B2), but in this case
there is a complication: p is only a formal parameter so it may be instantiated
to different regions; in particular it may be instantiated to a region variable
which does occur free in the type scheme and place of a locally live variable
at the allocation point. If that happens, rule (B3), as stated, is not sound!

We refer to the phenomenon that two different region variables in the
program may denote the same region at runtime as region aliasing. In order
to determine whether to use sat or attop in case (B3), the Kit builds a region
flow graph for the entire compilation unit. (This happens in a phase prior
to the storage mode analysis proper.) The nodes of the region flow graph
are region variables and arrow effects that appear in the region-annotated
compilation unit. Whenever p; is a formal region parameter of some function
declared in the unit and p, is a corresponding actual region parameter in the
same unit, a directed edge from p; to ps is created. Similarly for arrow effects:
if €1.¢1 is a bound arrow effect of a region-polymorphic function declared in
the compilation unit and e5.¢5 is a corresponding actual arrow effect then an
edge from €; to € is inserted into the graph. Also, edges from € to every
region and effect variable occurring in ¢y are inserted. Finally, for every
region-polymorphic function f declared in the program and every formal
region parameter p of f, if f is exported from the compilation unit, then an
edge from p to the global region of the same runtime type as p is inserted
into the graph. (This is necessary, in order to cater for applications of f in
subsequent compilation modules.) Let G be the graph thus constructed. For
every node p in the graph, we write (p) to denote the set of region variables
which can be reached from p, including p itself. The rule that replaces (B3)
is:

B3 p is a formal parameter of a region-polymorphic function whose right-
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hand side is the smallest enclosing lambda abstraction: use sat, if, for
every variable [ which is locally live at the allocation point and for
every region variable p’ which occurs free in the region type scheme
and place of [, it is the case that (p) N (p’) = (); use attop otherwise.

CASE C: p is bound by a letregion-expression and the allocation point
(12.1) does not occur inside any function abstraction. As in (B2), use atbot
if no locally live variable at the allocation point has p free in its region type
scheme and place, and use attop otherwise.

12.3 Example: Computing the Length of a
List

We shall now illustrate the storage mode rules of Section 12.2 with some small
examples which also allow us to discuss benefits and drawbacks associated
with region resetting.

Consider the functions declared in Figure 12.5%; they implement five dif-
ferent ways of finding the length of a list! The first, nlength, is the most
straightforward one. It is not tail recursive. Textbooks in functional pro-
gramming often recommend that functions are written iteratively (i.e., us-
ing tail calls) whenever possible. This we have done with tlength. Next,
klength is a version which contains a local region endomorphism loop to
perform the iteration; 11length is similar to klength, except that the region
endomorphism is declared outside 1length, using local. Region and stack
profiles resulting from running the program are shown in Figure 12.6. The
diagram shows how much space is used in regions, both finite regions on the
stack and infinite regions. The rDesc band shows how much space is used on
the stack for holding region descriptors. The stack band shows how much
space is used on the stack, including neither finite regions nor region descrip-
tors; the stack band mainly consists of registers and return addresses that
have been pushed onto the stack.

In Figure 12.6 we clearly see the five phases. In each phase, first a list is
built — seen as an almost linear growth in two regions; then follows a shorter
computation of the length of the list. The space behaviour of the five ways

5Project: kitdemo/nlength10000, file: kitdemo/length.sml.



102 CHAPTER 12. RESETTING REGIONS

fun upto n =
let fun loop(p as (0,acc)) =p
| loop(n, acc) =
loop(n-1, n::acc)
in
#2 (loop(n, [1))
end

fun nlength [] = 0
| nlength (_::xs) = 1 + nlength xs

fun tlength’([], acc) = acc
| tlength’(_::xs, acc) = tlength’(xs,acc+l)

fun tlength(l) = tlength’(1,0)

fun klength 1 =
let fun loop(p as ([], acc)) =p
| loop(_::xs, acc) = loop(xs,acc+l)
in
#2 (1oop(1,0))
end

local
fun 1llength’(p as ([1, acc)) =p
| 1length’(_::xs, acc) = llength’(xs,acc+l)
in
fun llength(l) = #2(llength’(1, 0))
end

fun global(p as ([1, acc)) = p
| global(_::xs, acc) = global(xs, acc+l)

fun glength(l) = #2(global(l, 0))
val run = nlength(upto 10000) + tlength(upto 10000) +

klength(upto 10000) + llength(upto 10000) +
glength(upto 10000);

Figure 12.5: Five different ways of computing the length of lists.
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../afterone/bin/HPPA36i/rp2ps - Region profiling Mon Mar 24 12:02:13 1997
——— Maximum allocated bytes in regions: 240220. ———————
W r11910int

[ r11918inf
M r11028inf
220k | B 110270
[ r11937int
B r11936inf
180k | B 1100100t
[ r11900int
I r11910int
B r11900int
B r11880int
] r11724fin
. rlinf

. stack
D rDesc
B r11680fin
B r11678int
[ r1907fin
I r11925fin
B otHer

bytes

240k |

200Kk |

seconds

Figure 12.6: Region profiling of five different ways of computing the length
of a list, namely, from left to right: nlength, tlength, klength, 1length
and glength.
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of computing the length vary considerably. We shall have more to say about
the time behaviour below.

As one would expect, nlength leads to a peak in stack size and it does
not use regions. (The peak in stack size is caused by the stacking of a return
address.)

Next we see that tlength is not an improvement over nlength! Note
that tlength’ is region-polymorphic and that the polymorphic recursion in
regions allows the pair (xs, acc+1) to be stored in a region different from
the argument pair to tlength’. Thus what appears to be a tail call is in
fact not a tail call, for it is automatically enclosed in a letregion construct
which introduces a fresh region for each argument pair (xs, acc+1). This
region is finite, so it is allocated on the stack. That is why we see a sharp
increase in stack size for tlength’.

The next function, klength, deserves careful study, since it is a prototype
of a particular schema which can be used again and again when program-
ming with regions. Iteration is done by a region endomorphism, loop, which
is declared as a local function to the main function. The use of the same
variable p on both the left-hand side and the right-hand side of the decla-
ration of loop forces loop to be a region endomorphism. Since the result
of loop(xs,acc+1) is also the result of loop, the result of loop(xs,acc+1)
therefore has to be in the same region as p; but since loop is an endomor-
phism, this forces (xs, acc+1) to be in the same region as p. Thus what
appears to be a tail call (Loop(xs,acc+1)) really will be a tail call; in par-
ticular there will be no fresh region for the argument and no growth of the
stack.

Better still, we have carefully arranged that memory consumption will
be constant throughout the computation of the length of the list. First, the
argument to the initial call of loop is a pair (1, 0) constructed at that
point. Since loop is a region endomorphism, the result of loop(1, 0) will
be in the same region as (1, 0). Moreover, since we then immediately take
the second projection of that pair, that region is clearly local to the body
of klength. Call the region p. Since there can be an unbounded number of
stores into this region, p is classified as infinite by multiplicity inference.

The storage mode passed along with p in the initial call 1oop(1,0) is
atbot, by rule (B2) of Section 12.2. Inside loop, the storage mode given to
the allocation of (xs, acc+1) is sat, by rule (B3) in Section 12.2: the only
locally live variable at the point where the allocation takes place is loop —
which we must not destroy before calling! — and the region which loop lies
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in is clearly different from p.

Therefore, every iteration of loop resets the “infinite” region p so that it
will in fact only contain at most one pair. This is seen very clearly in the
third hump of Figure 12.6.

Next consider 11ength. The difference from klength is that 11length’ is
now declared outside 1length. Note that although the use of local makes
it clear that 11length’ is not exported from the compilation unit, 1length’
must in fact reside in a global region, since 11length, which is exported, calls
llength’. Nonetheless, the storage mode analysis still achieves constant
memory usage. As before, we have arranged that iteration is done by a
region endomorphism which is initially applied to a freshly constructed pair.
This pair can reside in a region which is local to the body of 11ength (once
again, the projection #2(1length’ (1, 0)) makes sure that the pair does
not escape the body of 11ength). The crucial bit is now which storage mode
llength’ uses when it stores (xs, acc+1). The only locally live variable
at that point is 11length’ itself and, as we noted above, length’ lives in a
global region which is clearly different from the region inside 11length which
contains all the pairs. Thus storage mode sat will be used, as desired.

Finally, consider glength, which is similar to 11ength, but with the cru-
cial difference that global is exported from the compilation unit. Since
global may be called from a different compilation unit, then, for all we
know, global may be applied to a pair which resides in the same (global)
region as global itself. Using sat when storing (xs, acc+1) would then
be a big mistake: it would destroy the very function we are trying to call!
Therefore, the storage mode analysis assigns attop to that storage opera-
tion.® Consequently we get a memory leak, as shown in the final hump of
Figure 12.6.

To sum up, here is how one writes a loop without using space proportional
to the number of iterations:

1. The iteration should be done by an auxiliary, uncurried function which
is declared as local to the function that uses it; we refer (informally) to
this auxiliary function as the iterator.

2. The iterator should be a region endomorphism and it should be tail
recursive;

6To be precise, attop comes about by using rule (B3) of Section 12.2. This example
illustrates why we put edges from formal region parameters to global regions for exported
functions when constructing the region flow graph.
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program | upto | nlength | tlength | klength | 1length | glength
sec. 0.10 0.14 0.15 0.18 0.20 0.14

Figure 12.7: User time in seconds for building a list of 100,000 elements and
computing its length, using five different length functions. upto builds the
list, but does not compute a length. Times are average over three runs.

3. Tteration should start from a suitably fresh initial argument; the result
of the iteration should be kept clearly separate from the region where
the iterator function lies.

Mutual recursion poses no additional complications. All functions in a block
of mutually recursive functions are put in the same region.

Finally, the reader may be concerned that the two recommended solu-
tions, klength and 1length, seem to be much slower than the other versions.
This is mostly an artifact of the profiling software, however.” To get a bet-
ter picture of the actual cost of the different versions, we compiled the five
programs separately (using lists of length 100,000 instead of 10,000) using
the HP backend and then ran the programs on an HP-9000s700. The results
are shown in Figure 12.7. Since upto alone takes 0.10 seconds to build the
list, the differences in times are clear: the two programs that reset regions
(klength and 1length) are slower than those that leak space. Writing attop
into an infinite region glength is only slightly slower than storing values on
the stack (nlength). Thus most of the extra cost of klength and 1length
stems from the operation which resets regions. This extra cost could proba-
bly be reduced significantly by an analysis which discovered that the regions
that have been marked as infinite only ever contain one value at the time
and could therefore be treated as finite regions.

Programming with storage modes is useful if one wants to miniaturise
programs using the Kit. However, it is often the case that there are only a
few places in the program where resetting is really essential, for example in
some main loop which is supposed to run forever. Therefore, the Kit provides
two operations which the programmer can use to encourage (or force) the Kit
to perform resetting at particular places in the program. These are described

"When profiling is turned on, every resetting of a region involves a scan of an entire
region page (typically 1 Kb) and this cost far dominates the cost of allocating a pair into
the region.
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in the next section.

12.4 resetRegions and forceResetting
The programmer can reset regions using the two built-in primitives
resetRegions id

and
forceResetting id

Note that, in both cases, the argument has to be an identifier (more specif-
ically, a value variable). To port programs that contain resetRegions and
forceResetting to other ML systems, simply declare

fun resetRegions _ = ()
fun forceResetting _ =

O

before compiling the program developed using the Kit.

Let p be a region variable which occurs free in the type and place of id.
Let m be the storage mode determined for p at a program point according
to the rules of the previous section. Whether resetting of id at that program
point actually takes place at runtime, depends on m and on whether resetting
is forced, see Figure 12.8.

12.5 Example: Improved Mergesort

We can now improve on the mergesort algorithm (Section 6.4) by taking
storage modes into account. Splitting a list can be done by an iterative
region endomorphism which is made local to the sorting function. Also,
when the input list has been split, it is no longer needed, so the region it
resides in can be reset. Similarly, when the two smaller lists have been sorted
(into new regions) the regions of the smaller lists can be reset. These three
simple observations lead to the following variant of msort:8

8Project: kitdemo/msortresetl, file kitdemo/msortresetl.sml.
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Does resetting really take place at runtime?
resetRegions | forceResetting

m = atbot | yes yes

m = sat only if run- | yesx
time storage
mode is atbot
m = attop | nox yes*

(¥): A compile-time warning is printed in this case.

Figure 12.8: The storage modes that will be used when resetting a region
depending on m, the storage mode inferred by the storage mode analysis and
depending on whether the resetting is safe (resetRegions) or potentially
unsafe (forceResetting).

local
(* splitting a list *)
fun split(x::y::zs, 1, r) = split(zs, x::1, y::r)
| split(x::xs, 1, r) = (xs, x::1, r)
| split(p as ([1, 1, r)) =p

infix footnote
fun x footnote y = x

(* exomorphic merge sort *)
fun msort [] = []
| msort [x] [x]
| msort xs = let val (_, 1, r) = split(xs, [1, [1)
in resetRegions xs;
merge (msort 1 footnote resetRegions 1,
msort r footnote resetRegions r)

end

in
val runmsort = msort (upto(50000))
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val result = output(std_out, "Really done\n");

end

Unfortunately, the storage mode analysis complains:

resetRegions(v7038) :
You have suggested resetting the regions that appear free
in the type scheme and place of ’v7038’, i.e., in
(([(int,r2)],[r63],) 1list,r62)

(1)

(2)

’r63’: there is a conflict with the locally
live variable
1 :(([(int,r2)]1,[r72],) list,r71)
from which the following region variables can
in the region flow graph:

{r71,r2,r72}
Amongst these, ’r72’ can also be reached from
Thus I have given ’r63’ storage mode "attop".

’r62’: there is a conflict with the locally
live variable
1 :(([{nt,r2)],[r72],) list,r71)
from which the following region variables can
in the region flow graph:

{r71,r2,r72}
Amongst these, ’r71’ can also be reached from
Thus I have given ’r62’ storage mode "attop".

be reached

’r63’ .

be reached

’r62’ .

Here v7038 turns out to be xs (by inspection of the region-annotated term),
so there are two complaints concerning the first resetRegions, but none
concerning the two remaining ones. Consider (1). By inspecting the region-
annotated term one sees that r62 and r63 are formal parameters of msort.
Due to the recursive call msort r, the region graph contains an edge from
r63 to r72 and, as pointed out in (2), an edge from r62 to r71. Thus the
analysis decides on attop, using rule (B3) This shows a weakness in the
analysis, for using sat would really be sound. (The problem is that, unlike
polymorphic recursion, the region flow graph does not distinguish between
different calls of the same function.) Seeing that this is the problem, we
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local
(* splitting a list *)
fun split(x::y::zs, 1, r) = split(zs, x::1, y::r)
| split(x::xs, 1, r) = (xs, x::1, r)
| split(p as ([1, 1, r)) =1p

infix footnote
fun x footnote y = x

(* exomorphic merge sort *)
fun msort [] = []
| msort [x] [x]
| msort xs = let val (_, 1, r) = split(xs, [1, [1)
in forceResetting xs;
merge (msort 1 footnote resetRegions 1,
msort r footnote resetRegions r)

end

in
val runmsort = msort (upto(50000))

val result = output(std_out, "Really done\n");
end

Figure 12.9: Using forceResetting to reset regions.
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‘ rp2ps - Region profiling Fri Apr 18 12:17:50 1997 ‘
—— Maximum allocated bytes in regions: 1600284. ———————
W r1774int

] r1773int
1800k M r1786int
B r17s5int
[] r1813int
B r1812inf
W 1772inf
[ ra771int
D stack
B r17ssint
W r2787int
D rDesc
II rlinf
B 116250n
[] r621fin
B r1606fin
M 116100in
[ ra775int
[ r1805fin
M otHeR

seconds

bytes

1600k

Figure 12.10: Region profiling of the improved mergesort. The two upper tri-
anges contain unsorted elements, while the two lower triangles contain sorted
elements. Project: kitdemo/msortreset?2, file kitdemo/msortreset2.sml;
program compiled with profiling enabled and then run with the command
run -microsec 100000. The picture (region.ps) was generated by the
command: rp2ps -region -sampleMax 1000 -eps 120 mm and then pre-
viewed using the command ghostview region.ps .

decide to put forceResetting to work, see Figure 12.9. The region profile
of the improved merge sort appears in Figure 12.10. Note that, as expected,
we have now brought space consumption down from four times to two times
the size of the input. Figure 12.10 may be compared to Figure 6.2, page 61.

12.6 Example: Scanning Text Files

In this section we present a program which can scan a sequence of Standard
ML source files in order to compute what percentage of the source files is
made up by comments. Recall that an ML comment begins with the two
characters (*, ends with *) and that comments may be nested but must be
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balanced (within each file, we require).

The obvious solution to this problem is to implement an automaton with
counters to keep track of the level of nesting of parentheses, number of charac-
ters read and number of characters within comments. This provides an inter-
esting test for region inference: although designed with the lambda calculus
in mind, does the scheme cope with good old-fashioned state computations?

Let us be ambitious and write a program which only ever holds on to one
character at a time when it scans a file. In other words, the aim is to use
constant space (i.e., space consumption should be independent of the length
of the input file).

To this end, let us arrange to use a region with infinite multiplicity to
hold the current input character and then reset that region before we proceed
to the next character. The iteration is done by tail recursion, using region
endomorphisms to ensure constant space usage.

The bulk of the program appears below. The scanning of a single file
is done by scan, which contains three mutually recursive region endomor-
phisms (count, after_lparen and after_star) written in accordance with
the guidelines in Section 12.3. The built-in input function understands stor-
age modes: if called with storage mode atbot it will reset the region where
the string should be put before reading the string from the input. Conse-
quently, at every call of next, the “input buffer region” will be reset.

The other important loop in the program is driver, a function which
repeatedly reads a function name from a given input stream, opens the file
with that name and calls scan to process the file. Once again, we want to
keep at most one file name in memory at a time, so we would like the re-
gion containing the file name to be reset upon each iteration. As it turns
out, our readWord will always store the string it creates at the top of the
region in question. The reason is that it calls implode, which is declared in
and exported from the prelude. It is implode which always stores attop, by
rule B3 and the fact that formal region parameters of exported functions are
connected to global regions in the region flow graph. Thus the two occur-
rences of resetRegions are necessary. In general, when splitting a program
unit into two, one may have to insert explicit resetRegions into the second
unit, when operations from the first unit are called.

local
exception NotBalanced
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fun scan(is: instream) : int*int =
let
fun next() = input(is, 1)
fun up(level,inside) = if level>0 then inside+1
else inside

(x n: characters read in ’is’
inside: characters belonging to comments
level : current number of unmatched (*
s : next input character or empty *)
count is endo *)
fun count(p as (n,inside,level,s:string))=
case s of
" => (x end of stream: x) p
| "(" => after_lparen(n+l,inside,level,next())
| "*" => after_star(n+1l,up(level,inside),level,next())
| ch => count(n+l,up(level,inside), level,next())
and after_lparen(p as (n,inside,level,s))=
case s of
1R} => p
| "x" => count(n+1l,inside+2, level+1,next())

| "(" => after_lparen(n+l, up(level,inside), level,next())
| ch => count(n+1,up(level,up(level,inside)),level,next())

and after_star(p as (n,inside,level,s)) =

case s of

1R} => p
| ")" => if level>0 then

count (n+1,inside+1,level-1,next())
else raise NotBalanced

| "x" => after_star(n+l,up(level,inside), level,next())
| "(" => after_lparen(n+l,inside,level,next())
| ch => count(n+l,up(level,inside),level,next())

val (n, inside,level,_) = count(0,0,0,next())
in

if level=0 then (n,inside) else raise NotBalanced
end
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fun report_file(filename, n, inside) =

writeln(implode[filename , ": size = " , toString n ,
" comments: ", toString inside, " (",
toString(percent (inside, n)) handle Quot => "",
II%) Il:l ) ;

(* scan_file(filename) scans through the file named
filename returning either Some(size_in_bytes, size_of_comments)

or, in case of an error, None. In either case a line of
information is printed. *)

fun scan_file (filename: string) : (int*int)Option=
let val is = open_in filename
in let val (n,inside) = scan is

in close_in is;
report_file(filename, n, inside);
Some(n,inside)
end handle NotBalanced =>
(writeln(filename ~ ": not balanced");
close_in is;
None)
end handle Io msg => (writeln msg; None)

fun report_totals(n,inside) =
writeln(implode["\n\nTotal sizes: ", toString n,
" comments: ", toString inside,

(", toString(percent(inside,n)) handle Quot => "",
n)%u])

(* main(is) reads a sequence of filenames from is,
one file name pr line (leading spaces are skipped;
no spaces allowed in file names). Each file is

scanned using scan_file after which a summary
report is printed *)

fun main(is: instream):unit =
let

fun driver(p as(None,n,inside)) =
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(report_totals(n, inside); p)
| driver(p as (Some filename,n:int,inside:int)) =
driver(case scan_file filename of
Some(n’,inside’) =>
(resetRegions p;
(readWord(is), n+n’,inside+inside’))
| None => (resetRegions p;
(readWord(is) ,n,inside)))

in
driver (readWord(is),0,0);
O
end
in
val result = main(std_in)
end

The program was compiled’ both with and without profiling turned on.
The output from running the program on 10 files listed in the ML_CONSULT
file of the Kit is shown below

Parsing/INFIX_STACK.sml: size = 585 comments: 417 (71%)
Parsing/InfixStack34g.sml: size = 7641 comments: 3120 (40%)
Parsing/Infixing34g.sml: size = 28389 comments: 4645 (16%)
Parsing/LEX_BASICS.sml: size = 2102 comments: 1334 (63%)
Parsing/LEX_UTILS.sml: size = 1294 comments: 399 (30%)
Parsing/LexBasics36e.sml: size = 11674 comments: 2968 (25%)
Parsing/LexUtils33b.sml: size = 7566 comments: 1834 (247%)
Parsing/MyBase.sml: size = 33735 comments: 10896 (32%)
Parsing/PARSE.sml: size = 1151 comments: 644 (55%)
Parsing/Parse34g.sml: size = 6926 comments: 924 (13%)

Total sizes: 101063 comments: 27181 (26)Y

A region profile for that run is shown in Figure 12.11. The almost-constant
space usage is evident. The occasional disturbances are due to the non-

9Project: kitdemo/scan.
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../afterone/bin/HPPA36i/rp2ps - Region profiling Wed Mar 26 12:04:14 1997 ‘
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Figure 12.11: Region profiling of the scanner. Note that the unit of measure
on the y-axis is bytes, not kilobytes. The occasional increase is due to the
functions which read a file name from an instream. Project: kitdemo/scan.
The program was compiled with profiling enabled, then run by the
unix command run -microsec 100000 < ../../kitdemo/scanfiles. A
postscript picture (region.ps) can be generated by the unix command
rp2ps -region -sampleMax 1000 -eps 120 mm.

iterative functions which read a file name from input by first reading one line
and then extracting the name.



Chapter 13

Higher-Order Functions

13.1 Lambda-Abstraction (fn)

A lambda abstraction in Standard ML is an expression of the form
fn pat => exp

where pat is a pattern and exp an expression. Lambda expressions denote
functions. We refer to the exp as the body of the function; variable occurrences
in pat are binding occurrences; informally, the variables that occur in pat are
said to be lambda-bound with scope exp.

Lambda-abstractions are represented by closures, both in the language
definition and in the Kit. In the Kit, a closure for a lambda abstraction
consists of a code pointer plus one word for each free variable of the lambda
abstraction. Closures are not tagged.

At this stage, it will hardly come as a surprise to the reader that closures
are stored in regions. Sometimes they reside in finite regions on the stack,
other times they live in infinite regions, just like all other boxed values.

Every occurrence of fn in the program is considered an allocation point;
the region-annotated version of the lambda abstraction is

fn at p pat => exp
Standard ML allows functions to be declared using val rather than fun, e.g.,

val h =g o f

117
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Whereas functions declared with fun automatically become region polymor-
phic, functions declared with val do not in general become region-polymorphic.*
However, in the special case where the right-hand side of the value declara-
tion is a lambda abstraction, the Kit automatically converts the declaration
into a fun declaration, thereby making the function region polymorphic after
all.

ML allows declarations of the form

fun f atpat, atpat,-- - atpat, = exp
as a shorthand for
fun f atpat, => fn atpat, => --- fn atpat, => exp

where atpat ranges over atomic patterns. We say that functions declared
using this abbreviation are Curried.

13.2 Region-Annotated Function Types

The general form of a region-annotated function type is
1 =<2 [l

where 11 is the region-annotated type and place of the argument and g5 is the
region-annotated type and place of the result. A region-annotated function
type with place takes the form

(/JJI =& M2, p)

where p is the region containing the closure. As mentioned in Section 5.2,
the unusual looking object €. is called an arrow effect. Its first component
is an effect variable, whose purpose will be explained shortly. The second
component is called the latent effect, and describes the effect of evaluating
the body of the function.

The following example illustrates why latent effects are crucial for know-
ing the lifetimes of closures.? Consider

! The reason for this is that the expression on the right-hand side of the value declaration
might have an effect (e.g, print something) before returning the function. It would not be
correct, to suspend this effect by introducing formal region parameters.

2Project: kitdemo/lambda, file kitdemo/lambda.sml.
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val n = let val f = let val xs = [1,2]
in fn ys => length xs + length ys
end
in £ [7]
end

Note that xs has to be kept alive for as long as the function fn ys =>

- may be called, for this function will access xs, when called. The region-
annotated version appears in Figure 13.1. (To see the output programs dis-
cussed in this section, enable the flag print drop regions expression and
look under the heading Report: AFTER DROP REGIONS.) We see that xs is
put in r11l and r12, that the function closure for (fn ys => -.:) is put in
r7 and indeed, r7, r11 and r12 all have the same lifetime. To understand
how the region inference system figured that out, let us consider the effect
and the region-annotated type of particular sub-expressions. Looking at the
lambda abstraction, it must have a functional type of the form (u <% 1/, r7)
where ¢ is the effect

{get(r1), get(r2),get(r1l), get(r12), get(r9), get(r10), put(r2)}

Note that r11 and r12 occur free in the type of the lambda abstraction. But,
as pointed out in Section 3.4, the criterion for putting letregion p in ...
end around an expression e is that p occurs free neither in the region-
annotated type and place of e nor in the region-annotated type scheme and
place of any variable in the domain of the type environment. The smallest
sub-expression of the program for which ri1 and r12 does not occur free
in the type and place of the expression is the right-hand side of the val-
binding of n, for that expression simply has region-annotated type and place
(int,r2). And at that point, the only region variables that occur free in the
type environment are global region variables. Hence the placement of the
letregion-binding of r11 and ri12.

13.3 Arrow Effects

In a first-order language, effect variables might not be particularly impor-
tant. But in a higher-order language like ML, effect variables are useful for
tracking dependencies between functions. The following example illustrates
the point:?

3Project: kitdemo/lambda, files kitdemo/lambdal.sml and kitdemo/lambda2.sml.
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let val n =
letregion r7:1, r9:INF, r10:1, r11:INF, ri12:INF
in let val f =
let val xs =
let val v9260 =

(1,
let val v9261 = (2, nil at ril) at ri2
in :: at ri1 v9261
end
) at ri12
in :: at ri11 v9260

end

in fn at r7 ys =>
letregion r16:1 in length[] xs end +
letregion r18:1 in length[] ys end

end

in f
let val v9257 = (7, nil at r9) at ri0
in :: at r9 v9257
end

end

end
in {ln: (_,r2) |}

end

Figure 13.1: Region-annotated program illustrating that the lifetime of a
closure is at least as long as the lifetime of the values that evaluation of the
function body will require.
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fun apply f x = f x
val y = apply (fn n => n+1) 5
val z = apply (fn m => m) 9

Here is the region type scheme of apply:

Yayaopipapspacieses.((an, pr) L (ay, py), ps) —c2dputlealty
((al’pl) caiget ‘ (a27p2)7p4)

The latent effect associated with €5 shows that when apply is applied to a
function, it may create (in fact: will create) a function closure in py. The
latent effect associated with €; is empty, since the declaration of apply does
not tell us anything about what effect the formal parameter £ must have.
Crucially, however, €; is included as an atomic effect in the latent effect
associated with e3: whenever the body of apply f is evaluated, the body of
f may be (in fact: will be) evaluated.

The polymorphism in effects makes it possible to distinguish between
the latent effects of different actual arguments to apply. For example, the
functions fn n => n+1 and fn m => m have different latent effects. Let us
take fn n => n+1 as example. It has function type and place

((int, py) —a:lzetloalputloa)ly (ing 1), ps) (13.1)

Here we have assumed that integers always live in p,, while €5 and p5 were
chosen arbitrarily. The region inference algorithm discovers that (13.1) is an
instance of ((ay, p1) =& (e, p2), p3) from the type scheme for apply under
the instantiating substitution

S = ({oq — int,ap = int}, {p1 — po, p2 = P2, p3 = ps},
{e1 = es.{get(p2), put(p2)})

Formally, a substitution is a triple (S*, S”,S¢), where S* is a map from type
variables to types, S” is a finite map from region variables to region variables
and S° is a map from effect variables to arrow effects. Although we shall
not define what it means to apply a substitution to a type in this document,
let us explain why substitutions map effect variables to arrow effects. One
alternative, one might consider, is to let substitutions map effect variables to
effect variables. But then substitutions would not be able to account for the
idea that effects can “grow”, when instantiated. In the apply example, for in-
stance, the empty effect associated with €; has to grow to {get(p2), put(ps)}
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at the concrete application of apply (otherwise, as it is easy to demonstrate,
the region inference system would become unsound).

Another alternative would be to let substitutions map effect variables
to effects. But that would not work well together with the idea of using
substitutions to express “growth” of effects either. For example, applying
the map {e — {get(py), put(p2)}} to the effect {get(py),€}, say, would
presumably yield the effect {get(pg), get(po), put(ps)} in which the fact that
the original effect had to be at least as large as whatever € stands for, is lost.
Instead, we define substitution so that applying the effect substitution {e —
e{get(p2), put(p)}} to {get(py), €} yields {get(py), €, get(p2), put(p)}.

We can now give a complete definition of atomic effects. An atomic effect
is either an effect variable or a term of the form get(p) or put(p), where p as
usual ranges over region variables. An effect is a finite set of atomic effects.

One can get the Kit to print region-annotated types of all binding occur-
rences of value variables. Also, one can choose to have arrow effects included
in the printout: Enable the flags print types and print effects in the
Layout menu. Although this gives very verbose output, it is instructive to
look at such a term just once, to see how arrow effects are instantiated. We
show the full output for the apply example in Figure 13.2. In reading the
output it is useful to know that the Kit represents effects and arrow effects
as graphs, the nodes of which are region variables, effect variables put, get
or U (for “union”; U by itself means the empty set). Region variables are
leaf nodes. A put or get node has emanating from it precisely one edge;
it leads to the region variable in question. An effect variable node (written
e followed by a sequence number) is always the handle of an arrow effect;
there are edges from the effect variable to the atomic effects of that arrow
effect, either directly, or via union nodes or other effect variable nodes. For
instance, e14(U) in the figure denotes an effect variable with an edge to an
empty union node. When a term containing arrow effects is printed, shared
nodes that have already been printed are marked with a @; their children are
not printed again. For instance, in the figure, the second occurence of r2 is
printed as @r2. The binding occurrence of apply has been printed with its
region type scheme. Each non-binding occurrence of apply has been printed
with four square-bracketed lists: The first list is the actual region arguments;
the following three are “instantiation lists” that show the range of the substi-
tution by which the bound variables of the type scheme was instantiated, in
the same order as the bound variables occurred. For example, in the second
use of apply, r8 was instantiated to r17.
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fun apply

rall
’a34,’a32,r7,r8,r9,r10,el11,e12,e13.
((((’a32,r10)-e11->(’a34,r9)),r8)
-e12(put (r7))->

(((’a32,r10)-e13(U(U,get (r8) ,e11))->(’a34,r9)) ,r7)

)

at ri

[r7:1]

(£)=

fn el3 at r7 x:(’a32,r10) => f x

val y:(int,r2) =
letregion r9:1, ri10:1
in letregion rii:1
in apply
[r9]
[int,int]
[r9,r10,r2,r2]
[e7(U(get(r2),get(rl) ,put(@r2))),

el2(put(r9)),
e8(e7(U(get(r2) ,get(rl) ,put(@r2))),get(r10))
]
at rii1
(fn e7 at r10 n:(int,r2) =>n + 1)
end
5

end
val z:(int,r2) =
letregion ri16:1, ri17:1
in letregion ri8:1
in apply
[r16]
[int,int]
[r16,r17,r2,r2]
[e14(U) ,e19(put(r16)),e15(e14(U) ,get(r17))]
at ri8
(fn el14 at ri17 m:(int,r2) => m)
end
9
end

Figure 13.2: The instantiation of arrow effects keeps different applications
of the same function (here apply) apart. (Project: kitdemo/lambda, files:
kitdemo/lambdal.sml and lambda2.sml.)
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13.4 Region-Polymorphic Recursion and Higher-
Order Functions

Unlike identifiers bound by fun, lambda-bound function identifiers are never
region-polymorphic. So in an expression of the form

(fn £ => - f .-+ £ --2)

all the uses of £ use the same regions. Indeed, since f occurs free in the
type environment while region inference analyses the body of the lambda
abstraction, none of the regions which appear in the type of £ will be de-
allocated inside the body of the lambda abstraction. Also, such a region
must be bound outside the lambda abstraction, so any attempt to reset
such a region inside the body of the abstraction will cause the storage mode
analysis to complain (by Rule (B1) of Section 12.2).

Therefore, when a function f is passed as argument to another function,

g,
g9(f)

first regions are allocated for the use of f, then ¢ is called and finally the
regions are de-allocated (provided they are not global regions). Whether the
letregion construct thus introduced encloses the call site immediately

letregion pi,...,p, in g(f) end
or further out
letregion py,...,pp in ... g(f) ... end

depends on the type and effect of the expression g(f) in the usual way:
regions can be de-allocated when they occur free neither in the type of the
expression nor in the type environment.

13.5 Examples: map and foldl

Consider?

4Project: kitdemo/lambda, files kitdemo/lambda3.sml and kitdemo/lambda4.sml.
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fun map £ [1 = []
| map £ (x::xs)

f(x) :: map f xs

val x = map (fn x => x+1) [7,11]

The above formulation of map is not the most efficient one in the Kit, since it
will create one closure for each element in the list, due to currying.’ However
it serves to illustrate the point made in the previous section about allocat-
ing regions in connection with higher-order functions. The region-annotated
version is seen in Figure 13.3. We see that the regions that appear free in the
type and place of the successor function (i.e., r2 and r12) must be allocated
prior to the call of map and that they stay alive throughout the evaluation of
the body of map. Note, however, that the closures that are created when map
is applied do not pile up in r12, the region of the successor function. Instead,
they are put in local regions bound to r22, one closure in each region. Also,
if we had given some more complicated argument to map, the body of that
function could have letregion expressions. For each list element, regions
would then be allocated, used and then de-allocated before proceeding to the
next list element.

So it might appear that higher-order functions are nothing to worry about
when programming with regions. That is not so, however. The limitation
that lambda-bound functions are never region-polymorphic can lead to space
leaks. Here is an example:

fun foldl f acc [] = acc
| foldl f acc (x::xs) = foldl f (f(x,acc)) xs

val x = foldl (fn (x,acc) => 10%acc+x) 0 [7,2];

Since f is lambda-bound, all the pairs created by the expression (x,acc) will
pile up in the same region. The storage mode analysis will infer storage mode
attop for the allocation of the pair, by rule (B1) of Section 12.2: since foldl
is curried, there are several lambdas between the formal region parameter of
foldl which indicates where the pair should be put, and the allocation point
of the pair.

5When map and the application of map appear in the same compilation unit, the Kit will
automatically specialise map to a recursive function which does not have this defect. (This
it the result of a general optimisation of curried, closed functions that have a constant
argument.) The output we present in this section was obtained by putting map in a
compilation unit of its own.
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fun map at r1 [r7:1, r8:0, r9:0] (var932)=
fn at r7 var933 =>
(case var933
of nil => nil at r8
| =
let val v10434 = decon_:: var933;
val x = #0 v10434;
val xs = #1 v10434;
val v10439 =
(var932 x,
letregion r21:1
in letregion r22:1
in map[r21,r8,r9] at r22 var932
end
Xs
end
) at r9
in :: at r8 v10439
end
) (xcasex)

val x =
letregion r9:1, r10:INF, ri11:INF, ri2:1
in letregion ri3:1
in map[r9,rl,r1] at ri13 (fn at r12 x => x + 1)

end
let val v10465 =
(7,
let val v10466 = (11, nil at r10) at riil
in :: at r10 v10466
end
) at riil
in :: at r10 v10465
end

end

Figure 13.3: Although this version of map creates a closure for each list
element, the region-polymorphic recursion (of map) ensures that that closure
is put in a region local to map. Thus these closures do not pile up in r12, the
region of the initial argument.
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It does not help to uncurry foldl and turn foldl into a region endomor-
phism:

P

fun foldl(p as (£f,[1,.)) =
= foldl(f,xs,f(x,acc))

| foldl(f,x::xs,acc)

val x = #3(foldl(fn(x,acc) => 10*acc+x,[7,2],0));

The storage mode analysis will still give attop for the allocation of the pair
(x,acc), for the region of the pair is free in the type of £, which is locally
live at that point.

The solution is to require that £ be curried, to avoid the creation of the
pair altogether, i.e, going to higher order rather than lower:

fun foldl f b xs =
let fun loop(p as ([1, b))=p
| loop(x::xs, b) = loop(xs,f x b)
in
#2 (loop(xs,b))
end

The region-annotated version appears in Figure 14.2 (page 137).
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Chapter 14

The function call

Standard ML allows function applications of the form

eTp; eTPy

where ezp, is the operator and exp, is the operand. The syntax for function
application is overloaded, in that it is used for three different purposes in
ML:

1. application of built-in operations such as +, =, :=;

2. application of a value constructor (including ref) or an exception con-
structor;

3. application of user-defined functions, i.e., functions that are introduced
by fn or fun;

This chapter is about the last kind of function application; in this chapter,
we use the term function application to stand for application of user-defined
functions only.

Function applications are ubiquitous in Standard ML programs; in par-
ticular, iteration is often achieved by function calls. Not surprisingly, careful
compilation of function calls is essential for obtaining good performance.

The Kit partitions function calls into four kinds, which are implemented
in different ways. At best, a function call is simply realised by a jump in the
target code.

The resource conscious programmer will want to know the special cases;
for example, when doing an iterative computation, it is important to know

129
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whether the space usage is going to be independent of the number of itera-
tions.

In this section we enumerate the cases recognized by the Kit and show
how one can check whether specific function calls in the code turn out the
way one intended.

The Kit performs a backwards flow analysis, called call conversion, to
determine which function calls are tail calls and, more generally, which func-
tion calls fall into the special cases listed below. We say that expressions
produced by this analysis are call-explicit.

One can inspect call-explicit programs by enabling the flag

print call-explicit expression

in the menu Printing of intermediate forms. Call-explicit expressions
are produced after regions have been dropped (page 56) but before generation
of KAM code.

We shall first give a brief description of the parameter passing mechanism
in general and then discuss the different kinds of function calls provided,
working our way from the most specialised (and most efficient) cases towards
the default cases.

14.1 Parameter Passing

There is one (and so far only one) register which is used for passing arguments
to functions. It is called stardardArg. In addition, region-polymorphic
functions use another fixed register, called standardArgl', which points to
the record of region parameters which the caller has allocated prior to the
call.

14.2 Tail Calls

A call which is the last action of a function is referred to as a tail call. After
region inference, the Kit performs a tail call analysis (in one backwards scan
through the program). It is significant that the tail call analysis happens
after region inference: as we saw in Section 12.3, a function call that looks

L Admittedly, not terribly good nomenclature.
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like a tail call in the source program may end up as a non-tail call in the
region-annotated program, because the function has to return in order to free
memory.

14.3 Simple Jump (jmp)

In this section we shall consider conditions under which one can implement a
function call as a simple jump. A call of a region-polymorphic function takes
the form f [p;, ..., po] at py exp where p, is the region which holds the
region vector containing the actual region parameters p;, ..., p,. During
K-normalisation, the Kit tries to bring the creation of py close to the point
of the call. Therefore, an important case to consider is a call of the form

letregion py in f [py, ..., pu] at py exp end (n >0) (14.1)

where f is the name of a region-polymorphic function.
The Kit simplifies this expression to a simple jump

jmp [ exp
if the following conditions are met:
1. the call is a tail call; and
2. one has

(a) n=0; or

(b) the call occurs inside the body of some region-polymorphic func-

tion g and
i. the actual region parameters pq, ..., p, are a prefix of the
formal region parameters of g, i.e., the list of formal region
parameters of g is [p1, - .., Pu, Putls - - Pnikl, fOr some p, 1,
-+ Pntk; and

ii. the closest surrounding A of the call is the A that starts the
right-hand side of g.

The start address of f is known during compilation (since f is region poly-
morphic). Thus such a function call is as efficient as an assembly language
goto to a constant label.
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To understand the above requirements, note that if the region p, really
has to be created (be it on the stack or as an infinite region) then the call f
cannot be treated as a tail call, for f has to return to de-allocate py. Now
(2a) is one way of ensuring that there is no need to allocate py. A different
way is given by (2b). The idea is to re-use the region vector of the function g
in which the call of f occurs (a common special case is that g is f). Condition
(2(b)i) ensures that the actual region parameters of f coincide with (a prefix
of) the formal parameters of g. Finally, (2(b)ii) is necessary in order to
ensure that the region vector of g really is available when f is called.

To understand (2(b)ii) in more detail, consider the example

fun glr](x) =
h[ri] (fn y => letregion r2 in f[r] at r2 y end),

which one might think of as sugar for

val rec glr] = fn x =>
h[ri] (fn y => letregion r2 in fl[r]at r2 y end).

Here the call to £ will not be implemented by a jmp, for there is a fn between
the start of the body of g and the call of £f. Indeed, we must not implement
the call of £ by a jmp, for in the call £[r] at r2, a region vector containing
r has to be constructed, since, at the point of the call, r, is available only
from the closure of fn y => letregion r2 in f[rlat r2 y end.

Note that (14.1) requires that the letregion bind only one region variable
(the region used for the region record). The way to avoid that letregion
binds more than one region variable is to turn the calling function into a
region endomorphism, when possible.

The following is an example of how one obtains simple jumps:?

local
fun f’(p as (0,b)) = p
| £2(n,b) = f’(n-1,n*b)
in
fun f(a,b) = #2(f’(a,b))
end;

The call-explicit version of £’ appears in Figure 14.1. Another example of a
jmp tail call will be shown in Section 14.8.

2Project: kitdemo/tail, file: kitdemo/tail2.sml.
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fun f’ attop rl [r7:inf] (var1024)=

(case #0 var1024

of 0 => var1024

| _ =
let val n = #0 var1024; val b = #1 var1024
in jmp £ (n - 1, n * b) sat r7
end

) (xcasex) ;

Figure 14.1: An example where a function call turns into a simple jump.

14.4 Non-Tail Call of Region-Polymorphic Func-
tion (funcall)

Still referring to the form (14.1), let us consider the case where (1) or (2) is
not satisfied. Then the Kit will allocate py before the call of f and de-allocate
it afterwards.® The region bound to py will always be finite and be on the
stack. Due to this allocation, the call cannot be a tail call. The mnemonic
used for a non-tail call of a region-polymorphic function is funcall. Thus
(14.1) is simplified to

letregion py in funcall f [py, ..., p,] at py erp end.

Now let us turn to calls of region-polymorphic functions which do not fit
the pattern (14.1). One special case is:

letregion pg,p1,--.-pk in f [1 at py exp end

where £ > 0. Here pg is not needed; the Kit therefore replaces the expression
by
letregion pi,...p, in funcall f exp end

(For reasons of presentation, we have assumed that the letregion-bound
region variables have been rearranged, if necessary, to bring p, to the front.)

30ne could avoid this allocation in the case n = 1 or, more generally, if one allowed
unboxed representation of region vectors, but for simplicity, we choose to forego this
opportunity for optimisation.
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Every remaining case of an application of a region-polymorphic function

f o1, ---y pul at po exp

is replaced by
(funcall f [py, ..., pn] at pg) exp

This completes all possible cases of applications of region-polymorphic
functions. We now turn to function applications where the operator is not
the name of a region-polymorphic function.

14.5 Tail Call of Unknown Function (fnjmp)

Consider the case:
exp, expy

where (a) the call is a tail call and (b) ezp, is not the name of a region-
polymorphic function.

Here ezp, will be evaluated to a closure, pointed to by a standard regis-
ter, standardClos. Then exp, will be evaluated and the result put in the
standard register standardArg. The first word in the closure always contains
the address of the code of the function. This address is fetched into a register
and a jump to the address is made. Since the call is a tail call, it induces
no allocation, neither on the stack nor in regions. It is thus as efficient as an
indirect goto in assembly language.

The mnemonic used in call-explicit expressions for this special case is

fnjmp exp, exp,y

14.6 Non-Tail call of Unknown Function (fncall)

Consider the case
exp, eTpy

where (a) the call is not a tail call and (b) exp, is not the name of a region-
polymorphic function.

This is implemented as follows: first ezp, is evaluated and the result, a
pointer to a closure, is stored in standardClos. Then ezp, is evaluated and
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stored in standardArg. Then live registers and a return address are pushed
onto the stack and a jump is made to the code address which is stored in the
first word of the closure pointed to by standardClos. Upon return, registers
are restored from the stack.

The mnemonic used in call-explicit expressions for this special case is

fncall exp; exp,

14.7 Example: Function Composition

The prelude defines function composition as follows:
fun (f o g) x = f(g x)
The resulting call-explicit expression produced by the Kit is*

fun o attop ri[r7:2] (var1026) =
fn attop r7 x =>
let val f = #0 var1026; val g = #1 var1026
in fnjmp f (fncall g x)
end

Note that £ o g first creates a closure in r7 and then returns. When called,
the created function first performs a non-tail call of g and then a tail call to
f.

14.8 Example: foldl Revisited

Consider

fun foldl £ b xs =
case xs of
[0 =>0»
| x::xs’ => foldl f (f x b) xs’

Note that the recursive call of fold1 is a call of a known function, but not a
tail call: foldl returns a closure, which is subsequently applied to the value
of (f x b). This too returns a closure which in turn is applied to xs’. The
resulting call-explicit expression is®

4Project kitdemo/compose, file kitdemo/compose.sml.
>Project kitdemo/fold, file kitdemo/fold1l.sml.
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fun foldl attop rl [r7:4, r8:4] (f)=
fn attop r7 b =>
fn attop r8 xs =>
(case xs
of nil => b
| =
let val v11876 = decon_:: Xs;
val x = #0 v11876;
val xs’ = #1 v11876
in letregion r22:4
in fncall
letregion r24:4
in fncall
letregion r25:2
in funcall foldl[atbot r24,atbot r22] atbot r25 f
end
(fncall (fncall f x) b)
end
xs’
end
end
) (*casex)

Note that upon each iteration, fresh regions for holding two closures are being
allocated for the duration of the recursive call. Thus space usage is linear in
the length of the list (4 words for each list cell, to be precise).

An efficient version of foldl is written thus:

fun foldl £ b xs =
let fun loop(p as ([1, b))=p
| loop(x::xs, b) = loop(xs,f x b))
in
#2 (loop(xs,b))
end

It is compiled into the call-explicit expression in Figure 14.2.° There are two
reasons why this is much better: the loop is implemented as a jump and,

6Project kitdemo/fold, file kitdemo/fold2.sml.
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fun foldl attop rl [r7:3, r8:3] (f)=
fn attop r7 b =>
fn attop r8 xs =>
letregion r20:1
in let fun loop atbot r20 [r21:inf] (varl074)=
(case #0 var1074
of nil => var1074

| =
let val v11919 = #0 var1074;
val v11921 = decon_:: v11919;

val b = #1 var1074;
val x = #0 v11921;
val xs = #1 v11921

(* note jmp *) in jmp loop (xs,
fncall (fncall f x) b
) sat r21
end

) (*casex)
in letregion r28:inf
in let val v11926 =
letregion r29:1
in funcall loop[atbot r28] atbot r29
(xs, b) atbot r28
end
in #1 v11926
end
end
end
end

Figure 14.2: The result of compiling foldl is an iterative function which
avoids argument pairs piling up in one region.
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more importantly, there is no new allocation in each iteration, except, of
course, for the allocation which £ might make.”
As an exercise, consider the following variant of foldl which assumes

that f takes a pair as an argument:

fun foldl’ £ b xs =
let fun loop(p as ([1, b))=1p
| loop(x::xs, b) = loop(xs,f(x,b)))
in
#2(loop(xs,b))
end

Interestingly, this program contains a potential space leak. Can you detect
it? If not, the Kit will tell you when you compile the program.®

"We repeat that because f is a formal function parameter, all the allocations made by
the calls to £ (one call for each element of the list) are put in the same regions. If the list
is very long or the values produced large, it may be a good idea to copy the final result to

separate regions.
8Project kitdemo/fold, file kitdemo/fold3.sml.
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Chapter 15

Using the Profiler

We have already seen several examples of the use of the region profiler. We
shall now explain how to profile in more detail. For example, we shall see how
one can find out precisely what allocation points in the program contribute
to a particular region.

The region profiler consists of several tools which can be used to analyse
the dynamic memory behaviour of the target program. First of all, there
are the profiles which are graphs showing the dynamic memory usage of the
executed program. There are three different graphs:

e A region profile is a graph which gives a “global” view of the memory
usage by showing the total number of words allocated in regions and
on the stack as a function of time. In the graph, regions that arise from
the same

letregion p in € end

expression are collected into one coloured band, labelled p. The region
variables that label bands are always global or letregion-bound, never
formal region parameters.

e An object profile is a graph which gives a “local” view into a particular
region, as a function of time. The graph shows the objects allocated
into a chosen region, with one coloured band for each allocation point
in the region-annotated lambda program!. Each allocation point is

!Every occurrence of an “at” in the region-annotated lambda program is an allocation
point.

141
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annotated with a program point which is a unique number identifying
the allocation.?

If you have an object profile showing that program point 42 (written
pp42) contributes with a lot of allocations you can search for pp42 in
the region-annotated lambda program.

o A stack profile is a graph which shows the stack memory usage, as a
function of time.

As described above the region profiler can give you a region-annotated
lambda program annotated with program points.

During compilation, it is also possible to generate a region flow graph
which shows how regions may be passed around at runtime when region
polymorphic functions are applied. The region flow graph is very handy
when profiling larger programs when one wants to find out why a formal
region variable has been instantiated to a certain letregion-bound region
variable.

An example should clarify this. Suppose the region profile shows that r5
grows very big. Further, suppose an object profile of r5 shows that program
point pp345 is responsible. Searching for pp345 in the region-annotated
program, you may find that the allocation at pp345 is into some other region
variable, r34, say. Here r34 will be a formal region parameter of a region-
polymorphic function which at runtime has been instantiated to r5 by one
or more calls of region-polymorphic functions.

You can now use the region flow graph to find the “cascade” of region
polymorphic applications that ends up instantiating r34 to r5.

Profiling is sketched in Figure 15.1.

We will now show an example on how to profile a concrete program con-
taining a space leak and then show how the profiler can be used to fix it.
After that, we explain in more detail how to specify the profiling strategies
and how the profiles are generated.

2Program points are unique local to a project, e.g. with a project containing two source
files, the program points in the region-annotated lambda programs for the two files will
be distinct.
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Ch.oose. Compile MT, Choose Target Execute Target Generate

Compile-Time Source Program . Profiles
. . h Profiling Program .
Profiling with Kit Strate (run ...) with the graph
Strategy compiler rategy o generator rp2ps
-log | Region- Annotated | | R;lglon f},gg TP Profile . PS Profile
ow -veg
| Lambda Program | | Graph | | Datafile | | Graphs

Figure 15.1: Overview of the ML Kit profiler. Dotted boxes represent output
from the profiler. The file containing the output is also shown, e.g. a profile
goes into a .ps file.

15.1 Profiling project scan_revi

In this section, we concentrate on the general principles of profiling. We
use the revised scan project (project /kitdemo/scan revl) as an example.
Instead of asking for an input file to scan (as project scan does) the program
scans the same file (../../kitdemo/life.sml) 11 times.

The first thing to do is to get an overview of the memory usage of the
program. The region profile does that, see Figure 15.2

The graph shows that region r1 holds the largest amount of memory, but
it does not get bigger over time. Region r2797, however, accumulates more
memory for each time it scans the life program.

To see what happens in region r2797, we make an object profile of that
region, see Figure 15.3.

The object profile shows that program point pp33 produces a lot of allo-
cations which are first freed again when the program stops. We now search
for pp33 in file prelude.log and find:

fun implode attop rl pp32 [r110:inf] (strs)=
ccall(implodeStringProfiling, attop r110 pp33, strs);

Formal region variable r110 is instantiated with letregion-bound region
variable r2797 in a call to function implode. We now search after r2797 in
file scan_revl.log and find the following fragment of the region flow graph.

toString [r1545:inf]
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scan_rev1 - Region profiling Sat Apr 5 13:29:59 1997 ‘
0 ——— Maximum allocated bytes in regions: 1252, ——————————

g
z |

1400 ] [ rzrorint

1200

1000 |
[ rasagint

800 M 2798iin

600 M 2670fin

22.0 24.0 26.0 seconds

Figure 15.2: It is obvious that memory is accumulated in the two top bands.
The global region r1 and region r2797 hold the largets amount of mem-
ory. The graph has been generated by executing run -microsec 10000 on
the HPUX (with the C backend) and then typing rp2ps -sampleMax 1200

-region.

--r1545 attop--> LETREGION[r2395:inf];
--r1545 attop--> driver[r2468:inf]
--r2468 attop--> LETREGION[r2797:infl; (15.1)

This is read as follows: the formal region variable r2468 is instantiated
to letregion-bound region variable r2797 when function driver is called.
Formal region variable r1545 is then instantiated to region variable r2468
when calling function toString.®? Searching after r1545 in file 1ib.log shows
that toString calls function implode which is found in file prelude.log.

fun toString attop rl pp200 [r1545:inf] (n)=
letregion r1542:inf, r1543:inf, ri1b544:inf, ri1b547:1
in implode[sat r1545 pp208] atbot r1547 pp207

3Region flow graphs are local to each program in a project. Calling a non local region
polymorphic function will then introduce an edge in the region flow graph, but we do not
know in which module the called function is located. It may be necessary to look in several
log files to find the path from a formal region variable to an actual.

4We use ... to indicate that we have deleted text.
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‘ scan_rev1 - Object profiling on region 2797 Sat Apr 5 13:29:40 1997
——— Maximum allocated bytes in this region: 572. ——————————

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 seconds

Figure 15.3: There seems to be a space leak at program point pp33.
The graph has been generated by typing rp2ps -sampleMax 1200 -object
2797.

We see that region r2797 is passed with storage mode attop (15.1, above)
to formal region variable r2468 when function driver is called for the first
time. Region r2797 contains the result string which is printed after scanning
the file. This can be seen from the lambda program in file scan_revil.log.
Searching after allocation points allocating into region r2468 gives among
others the following fragments: ": size = "attop r2468 and " comments:
"attop r2468.

The result string is not needed after a file has been scanned and the result
string printed, so the memory holding the result string can be de-allocated.
The attop storage mode explains why the region holding the result string
is not deallocated between scans. So, why is the storage mode attop? To
answer this we have to see where driver is called the first time, which is in
function do_it:

fun main(is: instream) :unit
let

fun driver (None,n,inside)

report_totals(n, inside)
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| driver(Some filename,n:int,inside:int) =
case scan_file filename of
Some(n,inside) => report_totals(n,inside)
| None => ()

val filename = "../../kitdemo/life.sml"
fun do_it 0 = driver(Some filename, 0, 0)
| do_it n = (driver(Some filename, 0, 0); do_it (n-1))
in
do_it 10;
O

end

The following fragment of the corresponding lambda program (file scan_rev1.log)
shows that the file name "1life.sml" is also put into region r2797 which, of
course, has to stay allocated between the scans:

letregion r2797:inf
in let val filename = "../../kitdemo/life.sml"attop r2797 pp501
in letregion r2798:3
in let fun do_it atbot r2798 pp502 [] (var70)=

The reason that the file name and the other strings mentioned above must
stay in the same region is that they are all made part of the same list of
strings, namely the argument to implode in report_totals.

The region r2797 contains both local and non-local data to the driver
function which is why the region cannot be reset in the driver function. A
general solution to this problem is to delay the creation of the file name, so
that the file name is created at each call to driver. The newly created file
name will then be put into a region local to the application point to driver.
The revision is found in project kitdemo/scan_rev?2:

fun filename() = "../../kitdemo/life.sml"
fun do_it 0 = driver(Some (filename()), 0, 0)
| do_it n = (driver(Some (filename()), 0, 0); do_it (n-1))



15.1. PROFILING PROJECT SCAN_REV1 147

scan_rev2 - Region profiling Tue Apr 15 15:54:04 1997 ‘
————————— Maximum allocated bytes in regions: 724, —————————————

»
2

=
3

Figure 15.4: There is no space leak: no matter how many times we scan
the file, the project will use the same number of words. The graph has
been generated by executing run -microsec 10000 and rp2ps -sampleMax
1200 -region.

Figure 15.4 shows a region profile of the scan_rev2 project.
To see the effect of the modifications above consider the following lambda
fragment (found in file scan_rev2.1log):

fun do_it atbot r2797 pp501 [] (var142)=
(case vari142
of 0 =>
letregion r2799:inf, r2800:2, r2801:3, r2803:1
in driver[atbot r2799 pp506] atbot r2803 pp505
(Some atbot r2800 pp503 "../../kitdemo/life.sml"
attop r2799 ppb502,
0,
0
) atbot r2801 pp504
end (*r2799:inf, r2800:2, r2801:3, r2803:1%)

The copy of the file name is put into region r2799 which is deallocated after
the call to driver.
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15.2 Compile-Time Profiling Strategy

We will now show some examples on how the profiling tools can be used.
As shown in Figure 15.1 we have to choose a Compile-Time Profiling Strat-
egy. The Compile-Time Profiling Strategy directs how the region-annotated
lambda code with program points and the region flow graph are generated.

The Compile-Time Profiling Strategy is set up in the Profiling sub-menu
in the ML Kit menu.?

Profiling

0 region profiling........... ..., off >>>
1 generate lambda program with program points. off

2 generate region flow graph (.vcg file)...... off

3 paths between two nodes in region flow graph [] >>>
4 Instruction Count Profiling................. off

Region profiling is enabled by choosing the first item: region profiling.

If you want the region-annotated lambda code with program points,
toggle the second menu item: generate lambda program with program
points. The lambda program is written on the log.

To generate a region flow graph, choose generate region flow graph
(.vcg file). The region flow graph will be written on the log in text layout
which may be hard to read. A more readable graph is exported to the target
directory in file f.vcg where f.sml is the source program. The file f.vcg
contains the region flow graph in a format that can be read by the VCG tool
(Visualization of Compiler Graphs®).

As a running example we use the project life in the kitdemo directory.
The project contains one file: 1ife.sml. We toggle the first three options
on (above, 0-2) and compile the project from inside the Project sub-menu.

5The Instruction Count Profiling option is only available in the HP-UX backend
and has nothing to do with region profiling. It simply counts the number of executed
instructions in the target program excluding runtime calls and the link file. It should only
be used when region profiling is not enabled. If the number of instructions executed gets
too large, the Overflow exception is raised.

6The VCG tool can be obtained from

http://www.cs.uni-sb.de/RW/users/sander/html/gsvcgl.html.

We use version 1.30 found in file vcg.1.30.r3.17.tar.
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The ML Kit now generates several files of which we have 1ife.log (con-
taining, among other things, the lambda program with program points and
the region flow graph in text layout), 1ife.vcg (the region flow graph ready
to use with the VCG tool) and the executable run.

Lambda program with program points

In the log file (1ife.log) you find the lambda program by searching for
LAMBDA CODE WITH PROGRAM POINTS:

Report: LAMBDA CODE WITH PROGRAM POINTS::
let exception Div : (exn,rl)
(* exn value or name attop rl pp2 *);

In the first line we have an allocation with storage mode attop into region
r1. The allocation point has program point 2 (pp2).

Region flow graphs

The region flow graph is found by searching after REGION FLOW GRAPH FOR
PROFILING:

Report: REGION FLOW GRAPH FOR PROFILING::
Begin layout of region flow graph and SCC-graph.

cp_list[r314:inf]
--r314 sat--> [*r314x] ;
--r314 atbot—--> LETREGION[r1539:inf];
--r314 sat--> nthgen’[r944:inf]
--r944 sat--> [*r944x] ;
--r944 atbot--> LETREGION[r1588:inf];

The region flow graph is almost equivalent to the graph used by the storage
mode analysis (p. 100) where region variables are nodes and an edge between
two nodes p and p' is inserted if p is a formal region parameter of a function f
which is applied to actual region parameter p’. This implies that letregion-
bound region variables are always leaf nodes.
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Nodes in the graph are written in square brackets, where for example
cp-list[r314:inf] means that r314 is a formal region parameter in function
cp_list. An asterisk inside a square bracket means that the node has been
written earlier. Only the node identifier (i.e. the region variable) will then
be printed. The size of the region is printed after the region variable: we use
inf for an infinite region and : size for a finite region where size is the region
size in words.

Edges are written with the from node identifier inside the edge. The
edge points to the to node. The text cp_list[r314:inf] --r314 sat-->
[xr314%] ; isread: there is an edge from node r314 to node r314, and node
r314 has been written earlier. We have a cycle, so cp_list must call itself
recursively; if you look in file 1ife.sml you will find something like:

fun cp_list[] = []
| cp_list((x,y)::rest) =
let val 1 = cp_list rest
in (x,y):: 1
end.

It is important to look inside the edge for the from node. Consider for
example:

LETREGION [r3621:2] ; --r3480 atbot-->  LETREGION[r3627:2];

We do not have an edge from the letregion-bound region variable (r3621)
to the other letregion-bound variable (r3627).

The strongly connected components graph

The region flow graph can get very complicated to read because we may have
mutually recursive functions giving a bunch of edges and cycles. If the graphs
get too complicated you may find help in the strongly connected component
(scce) version of the graph.

The scc graph is found by searching for [sccNo in the log file. Each scc
is identified by a unique scc number. The region variables contained in each
scc is written as info on the scc-node.

Consider for example:
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[sccNo 206: r1181,] --sccNo 206--> [sccNo 205: r1486,];

We have a scc node (id 206) containing region variable r1181 and an edge
to scc node (id 205) containing region variable r1486.

Region flow paths

If you are interested in the possible paths from one region variable to another,
the ML Kit can find them for you.

This often happens when you have an object profile (for example of region
p1) showing that a certain allocation point is responsible for the allocations of
interest but the region they are allocated in is not the same as the one written
at the allocation point, say po, in the region-annotated lambda program.

The region written at the allocation point (py) must then be a formal re-
gion variable and it is now interesting to find out how p, has been instantiated
to py.

You can specify the from and to nodes that you want the paths for in the
fourth menu item (paths between two nodes in region flow graph) in
the Profiling sub-menu:

Profiling

0 region profiling.............. ... .. ... ... off >>>
1 generate lambda program with program points. off

2 generate region flow graph (.vcg file)...... off

3 paths between two nodes in region flow graph [] >>>
4 Instruction Count Profiling................. off

Toggle line (t <number>), Activate line (a <number>), Up (u), or Quit(q):

>3

<type an int pair list of region variables,

e.g. [(formal reg. var. at pp.,\texttt{letregion}-bound reg. var.)]> or up (u): >
[(314,1588)]

You may type in a list of integer pairs, i.e. you can specify several pairs of
nodes that you want the paths for.

Compiling the source program again gives a new log file where you can
search for [Starting layout of paths...:"

"Because region variables may change when re-compiling a source program in a project
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[Starting layout of paths...
[Start path: [sccNo 59: r314,]--->
[sccNo 58: r944,]--->[sccNo 57: r1588,]1]
...Finishing layout of paths]

If you look at the region flow graph on page 149 you see that the only
path from region r314 to region r1588 goes through function nthgen’, i.e.
nthgen’ calls cp_list. If you look in the file 1ife.sml you may notice that
nthgen’ actually calls a function copy and not cp_list. The function copy
is declared as

copy (GEN 1) = GEN(cp_list 1)

If you see in the lambda program (file 1ife.log) you may notice that cp_list
has been inlined instead of copy by the optimizer.

Using the VCG tool

The VCG tool can be used to visualize the exported graphs (file source.vcg).
We assume that you have installed the tool and it is started by typing xvcg
at the command prompt. We use file life.vcg as the running example.
Typing xvcg life.vcg at the command prompt gives the window shown in
Figure 15.5.

The two graphs are exported folded. To unfold a graph choose Unfold
Subgraph from the pull-down menu inside the xvcg window. The pull-down
menu is activated by pressing one of the mouse buttons. After activating
Unfold Subgraph you have to pick the node representing the graph to
unfold. This is done by clicking on the node with the left mouse button.
Pressing the right mouse button will then unfold the chosen graph. Figure
15.6 shows a small fraction of the unfolded region flow graph.

The graph is read in the same way as the text-based version in the log file.
It can be printed out, scaled etc. from the pull-down menu. The graph is
folded again by choosing Fold Subgraph and clicking on one of the nodes.
All nodes in the graph then turn black, and clicking on the right mouse
button folds the graph.

it may be necessary to start all over by starting the Kit again and compile the whole
project again to make sure that the regions you have specified will match the regions in a
region flow graph of a previous compilation.
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B VCGlifexeg [HEE]E]

II SCC graph

Region flow graph |I

= I

Figure 15.5: The VCG graph contains two nodes. The node “Region flow
graph” represents the folded region flow graph and the node “SCC graph”
represents the folded strongly connected componemt graph.

Region flow paths are also exported together with the region flow graph.
Each path is numbered, and can be viewed by the Expose/Hide edges
facility in the VCG pull-down menu, see Figure 15.7. Each path is numbered
because there can be several paths between the same two nodes. Clicking on
the edge class “Graph” will hide the edges in the region flow graph so that
edges in the generated path are the only edges shown, see Figure 15.8.

15.3 Target Profiling Strategy

When the source program has been compiled and linked you have an exe-
cutable, run. Typing run at the command prompt will execute the program
with a predefined Target Profiling Strategy. The profiling strategy is printed
on the first four lines of output:

Profiling is turned on with options:
profile timer (unix virtual timer) is turned on.
a profile tick occurs every 1th second.
profiling data is written on file profile.rp.

You can change the profiling strategy by passing command line arguments
directly to the executable. The second line says that a virtual timer is used.
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RSN AN SETOMAN SEUOMANSEYTMAN SEWD[*] Afvalailla]iE]
I =

attop

|accumf[r1205:2] ———————_—_______J II
atbot——LETREGION[ 1281 :inf]]

Figure 15.6: The figure shows a small fragment of the region flow graph.

B VCG life.veg Edge Classes |EARM=EIMIARE HH (@
Show Edge Classes |Cance1 (Esc) ‘ | Okay ‘
W &raph W Path?¢rd74,r1748)

Figure 15.7: After choosing the Expose/Hide edges facility you get this
window. The window shows that there are two edge classes in the graph;
one for the region flow graph and one for the path from node r474 to node
r1748. If you have generated the path from section 15.2 you have the option
Path2(r314,r1588).

There are three possible timers, but in general it may be system dependent.
On the HP-UX operating system you have the following timers:®

REAL which is real time.

VIRTUAL which is the process virtual time. It runs only when the process
is executing.

PROF which is the process virtual time together with the time used in the
operating system on behalf of the process.

You specify the timer to use by passing -realtime, -virtualtime or -profiletime
to the executable.

8A complete description can be found in the manual page for getitimer.
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Figure 15.8: The Figure shows the path between node r474 and r1748. If
you look on page 149 you may notice that it is the same path as in the log
file; the numbers have changed however, because they where generated in
two different compilations.

The third line says that a profile tick occurs every 1 second. A profile
tick is when the program stops normal execution, and memory is traversed
to collect profile data. The more often a profile tick occurs the more detailed
you profile. The time slot (the time between to succeeding profile ticks) to
use is specified by the -—sec n and -microsec n options. A time slot of half
a second is specified by -microsec 500000 and not by -sec 0.5.°

The fourth line tells you that the collected profile data is exported to file
profile.rp. This can be changed by the -file outFileName option.

There are several other command line arguments which can be seen by
the -h or -help options.

15.4 Executing run
After executing run some region statistics are printed on stdout. The region

statistics are collected independently of the Target Profiling Strategy above
and are exact values for the program.

9The lowest possible time slot to use is system dependent. It is also system dependent
how long time that passes before the time wraps. This will not in practice happen on a
HP-UX but it will happen after about 40 minutes on SUN OS4.
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*kokkkkokkokkkkkRegion statisticskxskckksdokkskokkkokkk

SBRK.
Number of calls to sbrk : 3
Number of bytes allocated in each SBRK call : 24240
Total number of bytes allocated by SBRK : 72720 (0.1Mb)
REGIONPAGES.
Size of one page H 800 bytes
Max. no. of simultaneously allocated pages : 78
Number of allocated pages now : 3
REGIONS.
Size of infinite region descriptor (incl. profiling information) : 28 bytes
Size of infinite region descriptor (excl. profiling information) : 16 bytes
Size of finite region descriptor H 8 bytes
Number of calls to allocateRegionInf : 157771
Number of calls to deallocateRegionInf : 157768
Number of calls to allocateRegionFin : 3457870
Number of calls to deallocateRegionFin : 3457870
Number of calls to alloc : 1446811
Number of calls to resetRegion : 139776
Number of calls to deallocateRegionsUntil : 0
Max. no. of co-existing regions (finite plus infinite) : 242
Number of regions now : 3
Live data in infinite regions : 84 bytes ( 0.0Mb)
Live data in finite regions : 0 bytes ( 0.0Mb)
Total live data : 84 bytes ( 0.0Mb)
Maximum space used for region pages : 62400 bytes ( 0.1Mb)
Maximum space used on data in region pages H 27488 bytes ( 0.0Mb)
Space in regions at that time used on profiling : 27576 bytes ( 0.0Mb)
Maximum allocated space in region pages : 55064 bytes ( 0.1Mb)
Memory utilisation for infinite regions ( 55064/ 62400) : 88%
Maximum space used on the stack for infinite region descriptors H 400 bytes ( 0.0Mb)
Additional space used on profiling information at that time : 300 bytes ( 0.0Mb)
Maximum space used on infinite region descriptors on the stack : 700 bytes ( 0.0Mb)
Maximum space used on the stack for finite regions : 6604 bytes ( 0.0Mb)
Additional space used on profiling information at that time : 3584 bytes ( 0.0Mb)
Maximum space used on finite regions on the stack : 10188 bytes ( 0.0Mb)

Max. size of stack when program was executed : 11256 bytes ( 0.0Mb)
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Space used on profiling information at that time : 3800 bytes ( 0.0Mb)
Max. stack use excl. profiling information : 7456 bytes ( 0.0Mb)
Max. size of stack in a profile tick : 5596 bytes ( 0.0Mb)

*xkkkkkkkEnd of region statisticskkkskckkskokx

The SBRK part above shows how memory is allocated from the operating

system.
Each region consists of several region pages whose size is found in the
REGIONPAGES part. The value

Max. no. of simultaneously allocated pages : 78
multiplied by

Size of one page : 800 bytes

gives the maximal memory use in infinite regions (62400 bytes).

In the REGIONS part, we see the number of calls to finite and infinite
region operations, respectively. The target program has allocated 157771
infinite regions and deallocated 157768; hence three global regions were alive
when the program finished; i.e. global regions are not necessarily deallocated
explicitly before the program terminates.

No finite regions are alive (3457870 allocations and deallocations). We
have allocated 1446811 objects in infinite regions. It has been possible to reset
an infinite region 139776 times. The deallocateRegionsUntil operation is
only used when raising exceptions, i.e. no exceptions have been raised.

Because objects allocated in infinite regions are not split across different
region pages it is not always possible to fill out all region pages. The value

Memory utilisation for infinite regions ( 55064/ 62400) : 88%

shows memory utilisation at the moment where the program had allocated
the largest amount of memory. The size of objects in finite regions allocated
on the stack is shown together with the overhead produced by the profiler.
The values

Max. size of stack when program was executed : 11256 bytes ( 0.0Mb)

and

Max. size of stack in a profile tick : 5596 bytes ( 0.0Mb)
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can be used to see if it is necessary to profile more detailed. If the difference
between the two figures is large you can profile with a smaller time slot.

After execution of the target program we have a profile data file named
profile.rp.

15.5 Processing the profile data file

The profile datafile profile.rp can be processed by the graph generator
rp2ps (read RegionProfiler2PostScript) found in the bin directory for the
ML Kit version you use.'® The graph generator is controlled by command
line options.

A region profile is produced by the -region switch. Typing the UNIX
command rp2ps -region produces a postscript file in file region.ps.
The file profile.rp is used as profile data file. Figure 15.9 shows the region
profile for the example program life.sml. The regions are sorted by size

‘ life - Region profiling Tue Apr 8 13:38:38 1997 ‘
P ——————————— Maximum allocated bytes in regions: 29000, ———————————
z W 15880
[ r1122int
[ r1120in
B 11530int
[ r1062in
[ r1483int
W r1482int
[ resc
[ stack
B ro03int
W roo2int
| ‘ [T ra481in
[ r1480in
‘ ’ ' ’” [ W 7946
i / Il I3 e
[ rso4int
‘ W 147000

25k
20k

15k

[ r1a78int
[ ro07int

M otHer
ok

0.1 20.1 40.1 . . seconds

Figure 15.9: The region profile shows all regions and the stack with the region
(or stack) having the largest area at the top. Executing the life program
with run -microsec 100000 and typing rp2ps -sampleMax 1200 -region
produces this graph.

(area) with the largest at the top and the smallest at the bottom. If there are

10The rp2ps program is based on a profiler by Colin Runciman, David Wakeling and
Niklas Rojemo.
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more regions than can be shown in different shades, the smallest are collected
in an other band at the bottom.

Each region is identified with a number that matches a letregion-bound
region variable in the region-annotated lambda program. Infinite regions
end with “inf” and finite regions with “fin”. We also have a band rDesc
and stack. The rDesc band shows the memory used on infinite “region
descriptors” on the stack. The stack band shows stack usage excluding the
region descriptors for the infinite regions.

The mazx. allocation line “Maximum allocated bytes in regions: ...” at
top of Figure 15.9 shows the maximum number of bytes allocated in regions
when the target program was executed. Because we also show the stack use
on the graph (as the rDesc and stack band), we offset the max. allocation
line upwards by the maximum stack use shown. The space between the max.
allocation line and the top band shows the inaccuracy of the profiling strategy
used. Having a large gap indicates that a smaller time slot should be used
or maybe another Compile-Time Profiling Strategy.

An object profile is produced by the -object switch. If we want to ex-
amine the largest region shown in Figure 15.9, we type rp2ps -sampleMax
1200 -object 1588 and get the object profile shown in Figure 15.10. We

»
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‘ life - Object profiling on region 1588 Tue Apr 8 13:43:04 1997 ‘
———— Maximum allocated bytes in this region: 9428. —g—————————
. pp64.
I [ ppes
I I [ ppas2
I [ pp1s1
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Figure 15.10: The object profile shows all allocation points allocating into
this region.

see that allocation point pp64 is responsible for the largest amount of alloca-
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tions in the program. The allocation point may be found by searching after
program point pp64 in the region-annotated lambda program.

A stack profile (Figure 15.11) shows memory usage in the stack. A stack
profile is generated with the -stack option to rp2ps.

‘ life - Stack profiling Tue Apr 8 13:44:56 1997
P

8
=
5

1000

Figure 15.11: Memory usage on the stack.

15.6 More complicated graphs with rp2ps

This section gives a fast overview of the more advanced options which can
be passed to rp2ps. First of all, it is possible to name the profiles with
the —name option. Comments are inserted in the x-axis with the ~comment
option.

The profile data file may contain an large number of samples (the data
collected by a profile tick is called a sample). By default, rp2ps only uses 64
samples. This may be changed with the -sampleMax option. The following
two algorithms are used to sort out samples:

-sortBySize where the n (specified by ~sampleMax) largest sam-
ples are kept.

-sortByTime is used by default and makes a binary deletion of
samples by time such that the n samples shown will be
equally distributed on the z-axis.
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The -sortBySize option is handy if you get some profiles with a large gap
between the top band and the maz. allocation line. If there is a large gap
when using option -sortBySize, then you have to profile with smaller time
slots. You can use the -stat option to get the number of samples in the
profile data file. It is printed as Number of ticks:.

Figure 15.12 shows the profile for the following command line:

rp2ps -region -sampleMax 50 -name life.sml
-comment 9 "A comment at time 9" -sortByTime

life.sml - Region profiling Tue Apr 8 13:48:55 1997 ‘
P —————————— Maximum allocated bytes in regions: 29000, ——————————————
< o
z W r1ss8int
[ raa21inf

I 112000
M 10626in
[ raasain
[ r1482int
I roesc
[ roo3int
[ roo2int
M 148100t
B 14800
[ stack
[ r1530int
W it
[ raa70in
[ r1478int

25k |

comment at time

20k |

15k

10k

Figure 15.12: Tt is possible to insert comments in the profiles.

The graph generator recognize several options not shown above. They
are printed on stdout when typing rp2ps -h.
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Chapter 16

Interacting with the Kit

Starting the Kit was described in Section 3.6. To leave the Kit, type q
followed by a return character.

In the following, we give an overview over the most important sub-menus.
Section 16.4 explains how to set up a personal script file.

16.1 Project Menu for Separate Compilation

In Section 3.6 we described how software projects with multiple program
units (source files) are compiled in the Kit. Once the project has been com-
piled and linked, the Kit manages what program units should be recompiled
upon modification of source code. The system guarantees that the result of
first touching one or more program units and then using the separate compi-
lation system to re-build the system is the same as if all program units were
recompiled.

A project file contains a sequence of names of all program units in the
project. Source files must have extension .sml but this extension is omitted
in the project file. Every source file must contain a top-level Standard ML
declaration; the scope of the declaration is all the subsequent source files
in the project file. Hence, a program unit may depend on program units
mentioned earlier in the project file, but not vice versa. The meaning of an
entire project is the meaning of the top-level declaration that would arise
by concatenating all the source files listed in the project file, in the order
they are listed. Thus, the separate compilation system is a way of avoiding
recompiling parts of a (possibly) long sequence of declarations, while ensuring
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that the result is always the same as if one had recompiled the entire program.
As an example, consider the project file below for the text scanning ex-
ample.!

prelude
lib
scan

The actual source files for the project are prelude.sml, 1ib.sml and scan.sml.
These files must be located in the source directory together with the project
file scan. Whereas both the program units 1ib and scan depend on the
program unit prelude, scan also depends on lib.

The Project sub-menu provides the user with operations for setting a
project file name, reading a project file, showing the status of a project,
compiling and linking a project, and operations for touching a program unit,
upon modification of source code (See Section 3.6).

After a project has been successfully compiled and linked, it can be exe-
cuted by running the command

run

in the target directory.

The Kit compiles each program unit of a project one at a time, in the
order mentioned in the project file. A program unit is compiled under a
given set of assumptions, providing for instance, region type schemes for free
variables of the program unit. Also, compilation of a program unit gives rise
to exported information about declared identifiers. Exported information
may occur in assumptions for later program units.

A program unit is recompiled if either

1. the user has “touched” the program unit. One touches a program
unit by selecting Touch a program unit or Touch it again from
the Project menu. Typically, one does this after having modified the
source file; the Kit does not keep track of file modification dates;

2. the assumptions under which the program unit was previously com-
piled, have changed.

IProject: kitdemo/scan.
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To avoid unnecessary recompilation, compilation assumptions for a program
unit only depend on the free identifiers of the unit. Further, if a program unit
has been compiled earlier, the system will seek to match the new exported
information to the old exported information, by renaming generated names
to names generated when the program unit was first compiled. This allows
the compiler to use fresh names (stamps) for implementing generative data
types, e.g., and still achieve that a program unit is not necessarily recompiled
even though a program unit, on which it depends, is modified.

In the text scanning example above, let us assume we modify and touch
1ib. Selecting “Compile and link project” will cause 1ib to be recom-
piled; then the Kit checks whether the assumptions under which the program
unit scan was compiled have changed and if so, recompiles scan.

Modifying only comments or string constants inside 1ib or extending its
set of declared identifiers does not trigger recompilation of scan.

However, more information is needed to compile a program unit than the
ML type schemes for its free variables. Hence, it might be the case that a
program unit must be recompiled even if the ML type assumptions about
free variables have not changed. For instance, the region type scheme for a
free variable might have changed, even if the underlying ML type scheme has
not.

As an example, consider modifying the function readWord in unit 1ib
to put its result in a global region. This will trigger recompilation of the
program unit scan, since the assumptions under which it was previously
compiled, have changed. Besides changes in region type schemes, changes in
multiplicities and physical sizes of formal region variables of functions may
also trigger recompilation.

16.2 Printing of Intermediate Forms Menu

The menu Printing of intermediate forms controls which intermediate
forms are output on the log file. A summary of the major phases that produce
printable intermediate forms is shown in Figure 16.1. The phases are listed
in the order they take place in the Kit. The optimiser (which rewrites a
Lambda program), collects statistics about the optimisation which can be
printed out by turning on the flag statistics after optimisation.

The storage mode analysis (Chapter 12) outputs a MulFzp expression
that can be printed by turning on the flag print atbot expression.
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Menu: Printing of Intermediate Forms
Phase Type of Result | Flag(s) which Print Result
Elaboration Lambda (%)
Elim. of Polym. Eq. Lambda (%)
Lambda Optimiser Lambda (%)
report statistics after
optimisation
Spreading RegionEzp (%)
Region Inference RegionEzp (%)
Multiplicity Inference MulEzp (%)
K-normalisation MulFEzp

Storage Mode Analysis MulEzp print atbot expression(x)
Dropping of Regions MulEzxp print drop regions
expression (k)

Physical Size Inference MulEzp print physical size
inference expression(x)

Call Conversion MulEzxp print call-explicit
expression (k)

Code Generation KAM-code print KAM code before
register allocation(x)

Register Allocation KAM-code print KAM code after
register allocation(x)

Figure 16.1: The table shows how the menu items in the “Printing of Interme-
diate Forms” correspond to the phases in the Kit. Enabling debug compiler
from the Debug Kit menu causes all intermediate forms marked (x) to be
printed. Thus one can select phases individually or ask to have all printed.
The phases that follow K-normalisation all work on K-normal forms, but, for
readablity, terms are printed as though they had not been normalised (unless
Print in K-normal Form from the Layout menu is enabled).
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After that, regions with only get effects are removed from the MulEzxp
expression (page 56). To see the result of that, turn on print drop regions
expression.

After that, the physical size inference determines the size in words of finite
region variables. For instance, a finite region that will contain a pair will have
physical size two words. To see the result of the physical size inference, turn
on print physical size inference expression.

After that, call conversion converts the MulEzp to a call-explicit expres-
sion (page 130). To see the result, enable print call-explicit expression.

After that, KAM code is generated. The KAM code before the register
allocation can be inspected by enabling print KAM code before register
allocation, and the result of the register allocation can be viewed by en-
abling print KAM code after register allocation.

16.3 Layout Menu

While the switches described in the previous section concern which interme-
diate forms to print, the switches in the sub-menu Layout control how these
forms are printed.

The flags print types, print effects, and print regions control the
printing of types and places, effects and region allocation points (“at p”).
All eight combinations of these three flags are possible, but if print_effect
is turned on it is best also to turn the two others on so that one can see where
the effect variables and the region variables which appear in arrow effects are
bound..

Enabling print in K-Normal Form causes expressions to be output in
K-Normal Form instead of the simplified form in which they are normally
presented.

16.4 Creating your own Script File

If you have built the Kit yourself on an HP or a SUN using the distribution
accessible from our web site, the Kit has already produced a script file for
you and you do not have to modify it to get started. If somebody else has
built the Kit locally, they should be able to refer you to a script file which
you can take as a starting point; the only things you will have to change in
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the script will be the constants listed in Section 16.4.1. Likewise, if you have
downloaded an executable Kit from the Kit web site, you will have received
with it a script file for the architecture in question and you only have to
modify the constants listed in Section 16.4.1. If you are porting the Kit to a
completely different platform, you need to take the script constants listed in
Section 16.4.2 into account too.

16.4.1 Script constants concerning paths

Under the header (¥ File *) in the script file you should find the following
constants

source_directory The directory where the Kit will look for your ML project
and source files (including the prelude).

target_directory The directory where you want the Kit to put the target
files it produces.

log_to_file True if log information should be written to a file rather than
onto the screen.

log_directory The directory where the Kit will write log files.
path_to kit_script The full file name of your script file.

path_to_runtime The full file name of the non-profiling runtime system of
the Kit.

path_to_runtime_prof The full file name of the profiling runtime system of
the Kit.

16.4.2 Platform-dependent Settings

The string constant target file extension is set to ".c" if you generate
C target code and to ".s" if you generate HP target code.
The following settings

val kit_architecture : string = "HPUX"
val c_compiler : string = "cc -Aa"
val c_libs : string = "-1m"
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may all have to be changed, depending on your platform and the C-compiler
you use. See the readme and roadmap files in the distribution.
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Chapter 17

Calling C Functions

In this chapter we describe how the ML Kit programmer can call C functions.
C functions may be passed ML values and may return ML values. Not all ML
values are represented as if they were C values. For instance, C strings are
null-terminated arrays of characters, and this is not how the Kit represents
ML strings. For this reason, a small number of conversion functions and
macros are provided for converting C values to ML values and vice versa.

When a C function has to return boxed values of known size, finite regions
are allocated by the Kit and pointers to them passed to the C function as
extra parameters. When a C function has to return values of unbounded
size, pointers to infinite regions are passed to the C function; in this case,
the C function can itself allocate space in these infinite regions, using the
primitives described below. In both cases, the Kit uses region inference to
infer the lifetime of regions that are passed to the C-function. The region
inference algorithm does not analyse C functions; it assumes that C functions
that are called from ML code are region exomorphisms.

For every C function that is called from the ML code, the order of the
region arguments (if any) is uniquely determined by the ML result type of
the function. This type must be a monotype constructed from lists, records,
booleans, reals, strings and integers.

Examples of existing libraries which one can access in this way are the X
Window System and standard UNIX libraries containing functions like time,
cp and fork. There are limitations to the scheme, however. First, since C
and the ML Kit do not share value representations, transmitting large data
structures between C and ML will involve significant copying, which might
be a problem in practice. Second, some C libraries requires the user to set up
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“call-back functions” to be executed when specific events occur. However, it
is not currently possible to have a C function call an ML Kit function.

17.1 Declaring Primitives and C Functions

The Kit comes with a prelude (see the file kitdemo/prelude.sml) defining
some of the initial basis of the 1990 Definition. The declarations in the
prelude use a special built-in identifier called prim which is declared to have
type scheme Vaf.(int * @) — [ in the initial environment. A primitive
function is then declared in the prelude by passing a number to prim. For
example

fun op = (x: ’’a, y: ’’a): bool = prim(0, (x, y))

declares polymorphic equality. The argument and result types are explicitly
stated in order to give the primitive the correct type scheme.

Primitive number 31 is used for calling functions written in C. The second
argument to prim is a tuple holding as the first component a string containing
the name of the C function. The second component of the tuple is another
string containing the name of the C function to be used when profiling is
enabled. The remaining components of the tuple are arguments to the C
function:

fun mlfun (xq Ty, ..., Ty 1 Ty) T =

prim(31, (c_func, c_funcProf, x1, ..., zy,))

The result type 7 must be of the following form (no type variables are al-
lowed):

T u=1int | bool | 7y *...%7, | 7 1list | real | string | unit

If the result type is one of int, bool or unit then the result value can be
returned unboxed. If the result type represents a boxed value, the C function
must be told where to store the value. For any type which is either real or
a non-empty tuple type, and does not occur in a list type of the result type
7, the Kit allocates space for the value and passes a pointer to the allocated
space as an additional argument to the C function. For any type representing
a boxed value which is either string or occurs in a list type of the result
type 7, the Kit cannot statically determine the amount of space needed to
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store the value. Instead, regions are passed to the C function as additional
arguments and the C function must then explicitly allocate space in these
regions as needed, using a C function provided by the runtime system. The
order in which these additional arguments are passed to the C function is
determined by a pre-order traversal of the result type 7. For a list type,
regions are given in the order:

1. Region for cons-cells;
2. Region for auxiliary pairs;

3. Regions for elements, if necessary.

Below we give an example to show what extra arguments are passed to
a C function, given the result type. In the example, we use the following
(optional) naming convention: names of arguments holding addresses of pre-
allocated space in regions start with vAddr, while names of arguments holding
addresses of region descriptors (to be used for allocation in an infinite region)
start with rAddr.

Example 1 Given the result type (int * string) list x real, the follow-
ing extra arguments are passed to the C function (in order): vAddrPair,
rAddrLCons, rAddrLPairs, rAddrEPairs, rAddrEStrings and vAddrReal,
see Figure 17.1.

Here vAddrPair holds an address pointing to pre-allocated storage in
which the tuple of the list and the (pointer to the) real should reside. The
arguments rAddrLCons and rAddrLPairs hold region addresses for the spine
and the auxiliary pairs of the list, respectively. Similarly, rAddrEPairs and
rAddrEStrings hold region addresses for element pairs and strings, respec-
tively. The argument vAddrReal holds the address for pre-allocated storage
for the real.

Additional arguments holding pointers to pre-allocated space and infinite
regions are passed to the C function prior to the original ML arguments.
Consider again the ML declaration

fun mlfun (xy 7, ..., 0p 1 Ty) i T =

prim(31, (c_func, c_funcProf, x1, ..., z,)).
The C function c_func is then declared as

int c_func (int addry, ..., int addr,, int z;,...,int z,)
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) (D vAddrPair
@ rAddrLCons and rAddrLPairs

® ® rAddrEPairs

@ Integers are unboxed
® rAddrEStrings

©® vAddrReal

Figure 17.1: The order of pointers to allocated space and infinite regions is
determined from a pre-order traversal of the result type (int*string) listx
real.

where addry, ..., addr,, are pointers to pre-allocated space and infinite re-
gions as described above.

To support profiling the programmer must provide special profiling ver-
sions of some C functions. When profiling is enabled and at least one pointer
to pre-allocated space or to an infinite region is passed to the C function,
then also a single program point representing the call of the C function is
passed. The program point has to be used when allocating into infinite re-
gions. This is explained in Section 17.4. The program point is passed as the
last argument:

int c_funcProf (int addry, ..., int addry,,
int x4,...,1int x,, int pPoint)

C functions that do not allocate into infinite regions can be used unchanged
when profiling.!

'For simplicity, we have chosen to pass the program point even though the C function
only uses pre-allocated space. Because we pass the program point as the last argument
to the C function we need not have the program point as a formal parameter in the C
function. The program point is passed but not used.
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17.2 Conversion Macros and Functions

We provide a small conversion library of macros and functions for use by C
functions that need to convert between ML values and C values. Using the li-
brary whenever values are passed between C and ML will protect you against
any future change in the representation of ML values. The interface to the li-
brary is provided through the include file src/Runtime/Version17/M1Convert .h.?

17.2.1 Integers

There are two macros for converting between the ML representation of inte-
gers and the C representation of integers:3

#define convertIntToC(i)
#define convertIntToML (i)

To convert an ML integer (ML;,,;) to a C integer (C;,;) write
Cnt = convertIntToC(ML;,,);,
To convert a C integer (C';,4+) to an ML integer (ML;,;) write
ML;,+ = convertIntToML(C' ;) ;-

The above macros are used in the examples 2, 3 and 6 in Section 17.7.

17.2.2 Units

The following constant in the conversion library denotes the ML representa-
tion of ():

#tdefine mlUNIT

17.2.3 Reals

An ML real is represented as a pointer into a region containing the real. To
convert an ML real to a C real we dereference the pointer. To convert a
C real to an ML real, we update the memory to contain the ML real. The
following two macros are provided:

2There is also a symbolic link to this file in the kitdemo directory.
3In this release of the Kit, these macros are the identity maps, but that may change.
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#define convertRealToC(mlReal)
#define convertRealToML(cReal, mlReal)

Converting from an ML real to a C real can be done with the first macro:

C reql = convertRealToC(ML

rea real) ;-

Converting from a C real to an ML real (being part of the result value of
the C function) can be done in one or two steps depending on whether the
real is part of a list or not. If the real is not in a list the memory containing
the real has been allocated before the C call (See Section 17.1):

convertRealToML((C' ML

real’ real) -

If the ML real is in a list element, then space must be allocated for the
real before converting it. If p,,.; is the region for the real you write:

allocReal(p . ML
convertRealToML(C

real);

reals MLyegp)s

The above macros are used in the examples 3, 6 and 8 in Section 17.7.

17.2.4 Booleans

Four constants provide the values of true and false in ML and in C. These
are defined by the following macros:*

#define mlTRUE 3
#define ml1FALSE 1
#define cTRUE 1
#tdefine cFALSE O

Two macros are provided for converting booleans:

#define convertBoolToC(i)
#define convertBoolToML (i)

Converting booleans are similar to converting integers:

Cpool = convertBoolToC(MLy, ) ;
MLy, =convertBoolToML(C'p 1)

4Booleans in the Kit are tagged for historical reasons.
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17.2.5 Records

Records are boxed. One macro is provided for storing and retrieving ele-
ments:

#define elemRecordML(recAddr, offset)

An element can be retrieved by writing

ML = elemRecordML(MLyec, offset);

elem

where the first element has offset 0. An element is stored by

elemRecordML(MLyec, offset) = ML 1,0

Two specialized versions of the above macros are provided for pairs:

#define first(x)
#define second(x)

If the record is in a list element then it is necessary to allocate the record
before using it. This is done with the macro

#define allocRecordML(rhoRec, size, recAddr)

where rhoRec is a pointer to a region descriptor, size is the size of the
record (i.e., the number of components), and recAddr is a variable in which
allocRecordML returns a pointer to storage for the record. The record is
then stored, component by component, by repeatedly calling elemRecordML
with the pointer as argument.

The above macros are used in examples 8, 9 and 7 in Section 17.7.

17.2.6 Strings

Strings are boxed and always allocated in infinite regions. It is possible to
print an ML string by using the C function

void printString(StringDesc *str);

Strings are converted from ML to C and vice versa using the two C
functions
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void convertStringToC(StringDesc *mlStr, char *cStr, int cStrLen);
StringDesc *convertStringToML(int rAddr, char *cStr);.

An ML string is converted to a C string by writing
convertStringToC(MLgyy,C 4y, cStrLen);

and a C string is converted to an ML string by writing
ML, = convertStringToML(rhoStr, Cg4y);

When using convertStringToC, the C string (C g4-) has to be allocated
in advance. The length of the pre-allocated C string is also passed to
convertStringToC. If the ML string is larger than the C string an error
message is written on stdout and the program will terminate. The following
function returns the size of an ML string:

int sizeString(StringDesc *str);

The above macros are used in the examples 7 and 5 in Section 17.7.

17.2.7 Lists

Lists are always allocated in infinite regions. A list uses, as a minimum, two
regions. One region for the constructors (NIL and CONS) and one region for
the auxiliary pairs (Figure 17.2).

Figure 17.2: A list is constructed with constructors (NIL and CONS) and pairs.
The constructors are allocated in region pgo,s and the pairs in region ppur.
If the elements are boxed then they are allocated in one or more infinite
regions. In this Figure we assume one infinite region for the elements.

We will now show three examples of manipulating lists. The first example
runs through a list. Consider the following C function template:
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int run_through_a_list(int list) {
int 1s;
int elemML;
for (ls=1list; isCONS(1ls); 1ls=t1(1ls)) {
elemML = hd(1s);
/*do something with the element*/
}

return;

The ML list is passed to the C function in parameter 1ist. The example
uses a simple loop to run through the list. The parameter 1ist points at the
first constructor in the list. Each time we have a CONS constructor we also
have an element, see Figure 17.2. The element can be retrieved with the hd
macro. One obtains the tail of the list by using the t1 macro.

The following four macros are provided in the conversion library.

#define isNIL(x)
#define isCONS(x)
#define hd(x)
#define t1(x)

The next example explains how to construct a list backwards. Consider
the following C function template.

int construct_list_backwards(int consRho, int pairRho) {
int *resList, *pair;
makeNIL(consRho,resList) ;
while (/*more elements*/) {
ml_elem = ...;
allocRecordML(pairRho, 2, pair);
first(pair) = (int) ml_elem;
second(pair) = (int) resList;
makeCONS (consRho, pair, resList);
}

return (int) resList;
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First we make the NIL constructor which marks the end of the list. Each
time we have an element, we allocate a pair. We store the element in the
first cell of the pair. A pointer to the list (constructed so far) is put in the
second cell of the pair. We then allocate a new CONS constructor, now being
the first constructor in the list. The pair is the argument given to the CONS
constructor. We have assumed that the elements are unboxed, so that no
regions are necessary for the elements.

The last example shows how a list can be constructed forwards. It is more
clumsy to construct the list forwards because we have to return a pointer to
the first element. Consider the following C function template.

int construct_list_forwards(int consRho, int pairRho) {
int *pair, *cons, *temp_pair, res;

/* The first element is special because we have to */
/* return a pointer to it. */
ml_elem = ...

allocRecordML(pairRho, 2, pair);
first(pair) = (int) ml_elem;
makeCONS (consRho, pair, cons);
res = (int) cons;

while (/*more elements*/) {
ml_elem = ...
allocRecordML(pairRho, 2, temp_pair);
first(temp_pair) = (int) ml_elem;
makeCONS (consRho, temp_pair, cons);
second(pair) = (int) cons;
pair = temp_pair;

}

makeNIL (consRho, cons);
second(pair) = (int)cons;
return res;

}

We construct the CONS constructor and pair for the first element and return
a pointer to the CONS constructor as the result. We then construct the rest of
the list by constructing a CONS constructor and a pair for each element. It is
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necessary to use a temporary variable for the pair (in the example temp_pair)
because we have to update the pair for the previous element. We let the last
pair point at a NIL constructor to denote the end of the list.

The two macros makeCONS and makeNIL are provided in the conversion
library:

#define makeNIL(rAddr, ptr)
#define makeCONS(rAddr, pair, ptr)

17.3 Exceptions

C functions are allowed to raise exceptions and it is possible for the ML code
to handle these exceptions. A C function cannot declare exceptions locally.
As an example, consider the following ML declaration.

exception EXN
fun raiseif0 (arg : int) : unit =
prim(31, ("raiseif0", "raiseif0", arg, EXN))

If we want the function raiseifO to raise exception EXN if the argument
(arg) is 0 then we use the function raise_exn provided by the conversion
library. The C function may be declared thus:

int raiseifO(int arg, int exn) {
int c_int;
c_int = convertIntToC(arg);
if (c_int = 0) {
raise_exn(exn);
return;

}

return mlUnit;

3

Exceptions are used in examples 6 and 7 in Section 17.7.
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17.4 Profiling

It is necessary to make special versions of those C functions that allocate
into infinite regions if the Kit profiler is used.

When profiling is enabled, an extra argument is passed to some of the
C functions. The argument is an integer identifying the allocation point
representing the C call in the lambda program (Chapter 15).

The conversion library contains special versions of various allocation macros
and functions presented earlier in this chapter:

#define allocRealProf (realRho, realPtr, pPoint)
#define allocRecordMLProf (rhoRec, ssize, recAddr, pPoint)
StringDesc *convertStringToMLProfiling(int rhoString,
char *cStr,
int pPoint);
#define makeNILProf (rAddr, ptr, pPoint)
#define makeCONSProf (rAddr, pair, ptr, pPoint)

As an example, we show the profiling version of the C function construct_-
list_backwards, presented earlier.

int construct_list_backwardsProf (int consRho,
int pairRho,
int pPoint) {
int *resList, x*pair;
makeNILProf (consRho,resList, pPoint);
while (/*more elements*/) {
ml_elem = ...;
allocRecordMLProf (pairRho, 2, pair, pPoint);
first(pair) = (int) ml_elem;

second(pair) = (int) resList;

makeCONSProf (consRho, pair, resList, pPoint);
}
return (int) reslList;

The above example shows that it is not difficult to make the profiling
version of a C function; use the “Prof” versions of the macros and use the
extra argument pPoint, appropriately. The same program point is used for
all allocations in the C function, perceiving the C function as one entity.
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17.5 Storage Modes

As described in Chapter 12 (page 95), actual region parameters contain a
storage mode at runtime, if the region is infinite. A C function may check
the storage mode of an infinite region to see whether it is possible to reset
the region before allocating space in it. The conversion library provides a
macro, is_inf_and_atbot (x), which can be used to test whether resetting is
safe, assuming that the arguments to the C function are dead.

The C function resetRegion, which is provided by the conversion library,
can be used to reset a region as in the C function template below.

int construct_list_backwards(int consRho, int pairRho) {
int *reslList, *pair;

if (is_inf_and_atbot (consRho))
resetRegion(consRho) ;

if (is_inf_and_atbot (pairRho))
resetRegion(pairRho) ;

makeNIL(consRho,resList) ;

The C programmer should be careful not to reset regions that could con-
tain live values. In particular, the C programmer must be conservative and
take into acount possible region aliasing between regions holding arguments
and regions holding the result. Clearly, if a region which the C function is
supposed to return a result in contains part of the value argument(s) of the
function, then the function should not first reset the region and then access
the argument(s).

17.6 Compiling and Linking

To use a set of C functions in the ML code, one must first compile the C
functions into an object file. (Remember to include the conversion library.)

As an example, the file kitdemo/my_1ib.c holds a set of example C func-
tions. On the HPUX system this file is compiled by typing®

>0On the SUN 0S4 system type gcc -ansi -o my_lib.o -c my_lib.c.
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cc -Aa -D_HPUX_SOURCE -o my_lib.o -c my_lib.c
in the kitdemo directory. If the C functions are used with profiling type®
cc -Aa -D_HPUX_SOURCE -DPROFILING -o my_lib_prof.o -c my_lib.c

The project ccalls located in the kitdemo directory demonstrates calls
to C functions. The project must be compiled and linked with the file
my_lib.o (or the file my_lib_prof.o if profiling is enabled.) This is done
by first modifying the 1link with library string in the Control menu
so that it contains the full name of kitdemo/my_lib.o, for example

"/home/thorl/jane/kitdemo/my_lib.o -1lm"

and then compiling the project as usual. If profiling is enabled, the link
string must instead refer to kitdemo/my_lib_prof.o, e.g.,

"/home/thorl/jane/kitdemo/my_lib_prof.o -1lm"

The project is then executed as usual.

17.6.1 Auto Conversion

For C functions that are simple, in a sense which is defined below, the Kit
can generate code which automatically converts arguments from ML to C
and results from C back to ML.

Auto conversion is enabled by prepending a @-character to the name of
the C function, as in the following example:

fun power (base : int, n : int) : int =
prim(31, ("@power", base, n))

The power function may then be implemented in C as follows:

int power(int base, int n) {
int p;
for (p =1; n > 0; --n)
p = p * base;
return p;

¥

60n the SUN 0S4 system type gcc -ansi -o my_lib_prof.o -DPROFILING -c
my_lib.c.
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No explicit conversion is needed in the C code. Auto conversion is only
supported when the arguments of the ML function are of type int or bool
and when the result has type unit, int or bool. It also works when profiling
is enabled.

Auto conversion is used in example 4 in Section 17.7.

17.7 Examples

Several example C functions are located in the file kitdemo/my_1ib.c and
the project kitdemo/ccalls makes use of these functions.

The following ML declarations are located in the ccalls.sml file which
is part of the ccalls project, search after

(kb x)
(* Interface functions that call prim(31, ) %)
(kmmmm——————————_————_——————— *)
fun power(base : int, n : int) : int =
prim(31, ("power", '"power", base, n))
fun power_auto(base : int, n : int) : int =
prim(31, ("@power_auto", "@power_auto", base, n))

fun power_real (base : real, n : int) : real =
prim(31, ("power_real", "power_real", base, n))
fun print_string_list (string_list) : unit =
prim(31, ("print_string_ list","print_string_ list",
string_list))
exception Power of string
fun power_exn (base : real, n : int) : real =
prim(31, ("power_exn", "power_exn",
base, n, Power "This is power"))
exception DIR of string
fun dir (directory : string) : string list =
prim(31, ("dir", "dirProf", directory,
DIR "Cannot open directory"))
fun real_list () : real list =
prim(31, ("real_list", "real_listProf"))
fun change_elem (p : int*string) : string*int =
prim(31, ("change_elem", '"change_elem", p))
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The implementation of each of the C functions is summarized below (see
the file my_1ib.c for detailed comments.)

Example 2 The power function shows how to convert integers. This is done
with the macros convertIntToC and convertIntToML.

Example 3 The power_real function shows how to convert reals. This is
done with the macros convertRealToC and convertRealToML.

Example 4 The power_auto function shows the use of auto conversion.
This is the easiest way of declaring C functions. The same C function may
be called from the Kit and other C programs.

Example 5 The print_string list example shows how to run through a
list of strings. The method can easily be extended to running through lists
of lists of lists, etc.

Example 6 The power_exn function shows how an exception can be raised
from a C function. Note that it is necessary to return from the C function
after you have called the raise_exn function.

Example 7 The dir function shows how a list can be constructed back-
wards. We use the UNIX system calls opendir and readdir to read the
contents of the specified directory.

Note also that we check the infinite regions for resetting at the start of
the C function. The checks must be placed at the start of the function, orelse
not inserted at all.

If you compare the C functions dir and dirProf you may notice how the
function dir is modified to work with profiling.

Example 8 Function real_list constructs a list of reals forwards. The re-
als are allocated in an infinite region. It may be more convenient to construct
the list backwards in the C function and then apply a list reverse function
on the result list in the Kit program.

Example 9 Function change_elem shows the use of macro elemRecordML.
The result type is string*int. The function swaps the two elements in the
pair. The Kit passes an address to pre-allocated space for the result pair,
and an infinite region for the result string.
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At first thought it should be enough to just swap the two arguments, and
not copy the string into the string region, i.e. one could write the following
function:

int change_elem(int newPair, int stringRho, int pair) {
int firstElem_ml, secondElem_ml;

firstElem_ml = elemRecordML(pair, 0);
secondElem_ml = elemRecordML(pair, 1);

secondElem_ml ;
firstElem_ml;

elemRecordML (newPair, 0)
elemRecordML (newPair, 1)

return newPair;

This function may work sometimes but it is not always safe! Region infer-
ence expects the result string to be allocated in stringRho, and may therefore
de-allocate the region containing the argument string, secondElem_ml, while
the string in the returned pair is still alive. A safe version of change elem is
found in my_1ib.c.
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touching a program unit, 42, 164
tree
binary, 83
tree, 83
tuple, see record
type
region annotated, 122
region-annotated, 35, 36, 49, 76,
118
type and place, 37, 49
type scheme

193
region polymorphic, 54
unit, 39
val, 118
value declaration, see declaration
variable

lambda-bound, 117
locally live, 97
own, 79
.veg, 143
VCG tool, 148, 152
-virtualtime option, 154

web site, 8
word size, 29
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Global Regions

r1 Holds values of type top, i.e., records, exceptions and closures;
r2 This region does not actually exist; it is used with unboxed values, such
as integers, booleans and the O-tuple.




