
Upper bounds on the covering numberof Galois-planes with small orderT. Ill�es and D. PisingerAbstractOur paper deals with a problem of P. Erd}os' related to the covering number of blockingsets of �nite projective planes. An integer linear programming (ILP) formulation of Erd}os'problem is introduced for projective planes of given orders. The mathematical programmingbased approach for this problem is new in the area of �nite projective planes. Since the ILPproblem is NP-hard and may involve up to 360.000 boolean variables for the consideredproblems, we propose a heuristic based on simulated annealing. The computational studygives a new insight into the structure of projective planes and their (minimal) blocking sets.This computational study indicates that the current theoretical results may be improved.Key words: Galois-plane, blocking sets, 0-1 programming, simulated annealingAMS Subject Classi�cation : 90C10, 51E21
1 IntroductionIn the beginning of the 1980's P.Erd}os asked whether there exists an absolute constant � suchthat every projective plane �(q) has a blocking set B where the covering number of B is notlarger than �. Although this deep question, which has some relation to graph and numbertheory, was raised more than 15 years ago | nobody have been able to answer it. The onlyknown results are some upper bounds on the covering numbers of a blocking set, which howeverby no means lead to some constant value �.Our approach in this paper is to use metaheuristics to construct blocking sets with smallcovering numbers, and study the numerical results in order to uncover special structural proper-ties, getting an impression of whether the existence of a supremum � is plausible. Although anumerical study is not a formal proof, our results indicate that the currently best known upperbounds apparently may be tightened, leading to a slight indication of that further work mayanswer Erd}os problem in an a�rmative way. However, �rst we need some de�nitions:Let �(q) denote a collection of points and subsets of these points. Each of these subsets isreferred to as line. �(q) is assumed to satisfy four axioms:(i) Each pair of distinct points lies on a unique line.(ii) Each pair of distinct lines intersects at a uniquely determined point.(iii) There are four points of which at most two lie on the same line.1



(iv) �(q) has a line with q + 1 points, where q is a given integer such that q � 2.A collection �(q) of points and lines satisfying all of the above axioms is called a �nite projectiveplane of order q. It can be deducted (see for example, K�arteszi [13]) from these axioms that� Each line has q + 1 points.� There are q + 1 lines through each point.� �(q) has in total q2 + q + 1 points and q2 + q + 1 lines.Any �nite projective plane of order q can be represented by its point-line incidence matrix,L = (lij); i; j = 1; 2; . . . ; q2 + q + 1, wherelij = ( 1; if the ith line contains the jth point0; otherwise.The incidence matrices for a special type of �nite projective planes called Galois{planes can begenerated easily from di�erence sets, D = fd1; d2; . . . ; dq+1g where 1 � d1 < d2 < . . . < dq+1 �q2 + q + 1 and all the di�erences�ij = ( dj � di; if i < jq2 + q + 1� dj + di; if i > j; (1)have di�erent values.A line of a Galois-plane of order q can be obtained as the setl1 = fPd1 ; Pd2 ; . . . ; Pdq+1g (2)of points, where D = fd1; d2; . . . ; dq+1g form a di�erence set. (For more details see [13,11].)The incidence matrix L of the Galois{plane can be generated from any di�erence set. First,using (2) we generate l1 from the given di�erence set asl1j = ( 1; if j 2 D;0; otherwise: j = 1; . . . ; q2 + q + 1 (3)Such a line of the Galois{plane fully characterizes all the other lines, as all succeeding lines aretranslations of l1 in the following way,lij = l1;�(i;j) i; j = 1; . . . ; q2 + q + 1 (4)where �(i; j) = 1 + ((i+ j � 2) mod q2 + q + 1).Let us illustrate how we can obtain the incidence matrix of a Galois-plane of order 4.Example 1 Let q = 4 be given and �nd �rst a di�erence set D. Using (1) it is easy to verifythat D = f1; 3; 8; 9; 12g form a di�erence set. Thereforel1 = (1; 0; 1; 0; 0; 0; 0; 1; 1; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0)is the incidence vector of the �rst line (see (3)). Now we are ready to build up the line-pointincidence matrix of Galois{plane of order 4 using equation (4).2
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1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCALet �(q) be a projective plane of order q: A subset B of �(q) is called a blocking set if B intersectsevery line but contains no line. A blocking set is called minimal if it does not contain a smallerblocking set as a subset. The following upper and lower bounds for the size of minimal blockingsets were proved by Bruen [4], and Bruen and Thas [5]q +pq + 1 � jBj � qpq + 1: (5)If B is a non-minimal blocking set then the upper bound on jBj is q2 �pq, [4].Example 2 It is easy to verify thatB = f2; 3; 6; 9; 10; 11; 12; 20; 21gform a (minimal) blocking set of the Galois{plane of order 4 given by the incidence matrix L4.Let us write down the incidence vector xB of the blocking set BxB = (0; 1; 1; 0; 0; 1; 0; 0; 1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 1; 1)then wT = (L4xB)T = (3; 3; 3; 1; 1; 1; 3; 1; 1; 3; 3; 1; 3; 3; 1; 1; 1; 1; 3; 3; 3)says that �rst line contains 3 points from B, second line contains 3 points from B, etc. Becausee � w � 4e;where e is the all ones vector of size 21, we know that B is a blocking set, because it covers allthe lines (lower bound), but contains no line (upper bound). There is a tangent on each point ofthe blocking set B, therefore it is minimal. 3



Except a few upper bounds, not much is known about the covering number of a �niteprojective plane (Section 2) and nearly nothing about the structure of those (minimal) blockingsets which correspond to the best known bounds. However, the related question of Erd}os (Section2) is more than 15 years old, but the only computational investigation is due to B�eres and Ill�es[2] for small prime orders up to q = 89. The investigation was based on a formulation of Erd}osproblem as an integer linear programming problem.B�eres and Ill�es [2] showed, that for a quite small value of q (q = 29) with CPLEX 2.1 [8]even �nding a feasible solution is practically impossible, although they used a fast workstationfor the computations. This prompted them to introduce a greedy heuristic. For all prime ordersup to q = 89 they were able to obtained better bounds on (�(q)) than those known from thetheoretical considerations (see Section 2). However it is still an open question whether theirgreedy algorithm gives the best known bounds on (�(q)) for all prime orders or not.B�eres and Ill�es observed that the running time of their greedy algorithm increases very fastwith the order of the �nite projective plane. (The running time of the greedy algorithm for theprojective plane of order 11 was just few minutes, while for the case q = 89 it took three days onPC-AT 386/25Mhz with 2 Mbyte RAM.) These experiments showed that even with the greedyheuristics only small instances can be handled. That is the reason why we are using moresophisticated heuristics (simulated annealing) to obtain upper bounds on (�(q)) for biggerorders.The goals of this numerical study are: (1) to compute better upper bounds for the coveringnumber of �nite projective plane with given, small orders than those known in the literature;(2) to show that for some questions arising in the area of �nite projective plane geometry thereis a reasonably good and generally not used tool (integer linear programming formulation of theproblem and simulated annealing algorithm) to make computational experiments in order togain insight into the problem; and �nally (3) to obtain some informations about the structureof (minimal) blocking sets with reasonably small covering numbers.The paper is organized as follows. The covering number of a �nite projective plane isintroduced and the related results are discussed in Section 2. Furthermore, this section contains apossible integer programming formulation of Erd}os question. Section 3 deals with the simulatedannealing reformulation of the integer linear programming problem and the generic form ofannealing algorithm is presented. Computational results are given in Section 4. Conclusionsand remarks close the paper in Section 5.2 The covering number of a �nite projective planeA projective plane �(q) has property B() if there is a blocking set B whose intersection witheach line of �(q) contains less than  points. For a blocking set B, (B) denotes the maximumnumber of collinear points of B, and (B) is called the covering number of the blocking set B.1The covering number of a given blocking set, B can be given as(B) = maxi wi = maxi (LqxB)i: (6)Using the result of B�eres and Ill�es [2], stricter lower and upper bounds on the size of theblocking sets can be derived. They depend on the covering number (B).1The minimal blocking set, B given in Example 2 has covering number, (B) = 3.4



(B�eres-Ill�es [2])Result 1 Let us assume that a minimal blocking set, B of the projective plane of order qis given. If B has covering number ̂ := (B), then the size jBj of B satis�es the followinginequality12 �1 + (̂ � 1)(q + 1)�qf(̂; q)� � jBj � 12 �1 + (̂ � 1)(q + 1) +qf(̂; q)� ; (7)where q � 8, ̂ > 3, and f(̂; q) = ((̂ � 1)(q + 1)� 1)2 � 4(̂ � 1)q2.The smallest  for which �(q) has property B() is called the covering number of the �niteprojective plane of order q, denoted by (�(q)), and it can be expressed as(�(q)) = 1 +minB (B) = 1 +minB maxi (LqxB)i: (8)The set of all blocking sets of a �nite projective plane �(q) can be described by using theirincidence vectors asQ = nx 2 f0; 1gq2+q+1je � Lqx � qeo and Q̂ = convQ; (9)where Lq denotes the point-line incidence matrix of �(q). Then (8) can be written as(�(q)) = 1 +minx2Qmaxi (Lqx)i: (10)Erd}os has asked whether there exists an absolute constant � such that every projectiveplane has property B(�):We may introduce the setQ� = nx 2 f0; 1gq2+q+1je � Lqx � �eo ; (11)and restate Erd}os question in the following way: does there exist an absolute constant � suchthat Q� 6= ; for every �nite projective plane ?In other words the question is whether the covering number for any �nite projective planeof order q is independent of q or not. If it is independent then there must exist an absoluteconstant which bounds the covering number of any �nite projective plane.The following bounds on (B) are known, all of them depending on q. Erd}os, Silvermann andStein [10] proved that every projective plane of order q has property B(c log q) if q is su�cientlylarge and c > 2e: Their proof is based on a probabilistic method. In the same paper they gavea construction to derive blocking set with property B(q � pq): Abbott and Liu [1] improvedtheir result for Galois-planes PG(2; q); where q is an odd prime power, obtaining B(c log q);with c > 2log2 : When p is odd prime then Abbott and Liu [1] proved that PG(2; p) has propertyB(2h(p) + 3); where h(p) denotes the longest block of consecutive non-residues modulo p: Thebest known estimate [7] of h(p) is h(p) = O(p 14+�): Sz}onyi [16,17] got a very similar result forPG(2; q); where q � 1 or 3(mod 4): He proved that there exists a minimal blocking set B; whichis the union of k di�erent parabolas2 such that A = fa1; a2; :::; akg � GF (q) and the parameters2A parabola is a set of points Pa := f(x; y) 2 GF (q)2 j y = x2 + a; a 2 GF (q)g � �(q), where GF (q) denotesthe Galois �eld of order q: 5



of the parabolas satisfy the following property: ai�aj is a non-square in the Galois-�eld GF (q)for every i 6= j; i; j = 1; 2; :::; k and suppose that A is maximal subject to inclusion. Then Bhas property B(2k + 1).Much better results are known for Galois-planes, where the order is a prime power. Bruenand Fisher [6] proved that PG(2; 3s); s � 2 has property B(5): This was generalized by Boros[3] proving that PG(2; ps); p > 2 prime and s � 2 has property B(p + 2). The Galois-planesPG(2; 2s); s � 2 has property B(6) if s is even and B(7) if s is odd [12].Now we are ready to give a possible Integer Linear Programming (ILP) formulation of Erd}osproblem, as the following relaxation of (10)(ILP) 8>><>>: mine � Lx � ( � 1)e5 �  � q + 1x 2 f0; 1gnwhere n = q2 + q + 1 and q denotes the order of a projective plane,  is an integer, ande = (1; 1; :::; 1) 2 Rn. Here L denotes the point-line incidence matrix of �(q): The lower boundon  comes from the results of B�eres and Ill�es (Proposition 2.1. { 2.2., [2]), while the upperbound is a trivial consequence of the de�nition of blocking sets. Using the results of B�eres andIll�es it is a natural assumption that q � 8.If  � 1 = q then all feasible solutions of (ILP) are incidence vectors of a blocking set. For agiven value of  � 1, the feasible solutions indicate such blocking sets which has property B().The objective value of an optimal solution of the (ILP) gives the minimal covering number of theprojective plane of �(q). The (ILP) model is an NP-complete formulation of Erd}os question.The LP-relaxation has a trivial optimal solution with � 1 = 4 and x = ( 4q+1 ; 4q+1 ; :::; 4q+1): Butthis solution gives no information about the integer optimum, since if q is large, then all entriesin x are very small (nearly zero), although we know that x must contain several ones, as well.3 Simulated annealingSince the (ILP) problem is NP-hard, and it may involve thousands of boolean variables forlarge values of q, we decided to use Simulated annealing to solve the problem heuristically.Simulated annealing has its roots in the Metropolitan algorithm [14] which was used to sim-ulate the cooling of material in a heat bath. The slower a melted material was cooled, the largercrystals could be grown. It is interesting to note that Erd}os problem has a typical \crystalline"structure due to the symmetry of the matrix L in our representation.3 The literature on Sim-ulated annealing is broad, and the technique has been used for numerous problems. See e.g.Dowsland [9] for a survey. Most papers however agree on the fact that annealing performs betteron uniform data than on data which are clustered, due to the smoother topography generatedby the uniform problems. Erd}os problem has an extremely uniform formulation.The simulated annealing process we used has the normal structure occurring in the literature,thus the reader is referred to [9] for a general introduction. We will here only outline the speci�cchoices made for adapting the heuristic to our problem. The main structure of the algorithmmay be sketched as:3We used the cyclic representation of the line-to-point incidence matrix of the given Galois-plane, [13].6



starting solution s0 is xi = 0 for i = 1; . . . ; ninitial temperature is t Trepeatfor i = 1 to M dorandomly select s 2 N(s0)�  f(s)� f(s0)if � < 0 then s0  selsex random[0; 1]if (x < e��=t) then s0  sendt �tuntil stop criteriaThe starting temperature was chosen as T = 2:0 as this gave an appropriate initial acceptratio. The cooling factor was chosen as � = 0:9995 and we decreased the temperature afterM = 10 000 iterations of the inner loop. If no solution was accepted within a period of qMiterations, the process was terminated. An upper limit on the number of iterations was set toK = 100 000 000, but in all cases the search stopped before this limit was reached.The neighbourhood function N(s) was constructed as follows: Basically we wish to choosea random variable xj and change its value to 1 � xj . Since the number of variables with value1 however is far smaller than the number of variables with value 0 we would mainly investigatetransitions 0 ! 1 and very seldom 1 ! 0. Thus two sets V0 and V1 are maintained, such thatxj = 0; j 2 V0 and xj = 1; j 2 V1. The neighbourhood function now chooses one of the sets V0and V1 with equal probability, and then randomly selects a variable xj, j 2 Vi, whose value ischanged to 1� xj . Both feasible and infeasible solution vectors x were accepted since this gavemost freedom to the algorithm to investigate the solution space.The objective function of (ILP) was not suitable as objective function for the simulatedannealing algorithm. Instead a value of  was chosen, and the problem was solved as a feasibilityproblem, measuring how much the constraints were violated. A good choice of  was  =1:8 ln(q). Then the objective function f could be expressed asf(x) = nXi=1 p(Pnj=1 Lijxj ; )where p(a; b) is a punishment function chosen asp(a; b) = 4 if a < 1;p(a; b) = (b� a)2 if a > b:Thus the principle is that each violation of the constraint Lx � e is punished by 4 while aviolation of Lx � e, is punished with the quadratic distance from , for each lefthand sideexceeding . The quadratic expression proved to perform well, since we prefer to have severalconstraints violated slightly than to have one constraint violated a lot (and thus pushing thedimension  upward).The objective function f can be evaluated in O(q) time for each iteration, since only onevariable xj is changed and there are q entries in L with Lij = 1. Knowing the previous valueof Lx, it is easy to derive the next value Lx0 when moving from a solution x to x0. Also the7
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100 6001.02.03.0Figure 1: � = (B)= ln(q) as function of qquadratic expressions in p(a; b) can be changed to an additive version by making a table overdi�erences between the square numbers, thus saving the multiplications.Each time a solution was obtained with an improved objective value, it was checked whetherit satis�es Lx � e. If this was the case, the improved solution was saved. If a solution was foundwhich satis�es all constraints for the given value of , we terminated the solution process. Anexperiment was run, where  was decreased each time a solution satisfying e � Lx � e wasfound, but it was not possible to prove feasibility of the tighter problem. Thus this idea wasabandoned.The total running time of the simulated annealing algorithm was thus O(Kq) where K isthe upper limit on the number of iterations. The process could often be terminated much earliersince a solution with objective value  was found.The incidence matrix L of the projective plane was generated from a di�erence set using therelation described in (4). The di�erence set was constructed using a procedure suggested byMoorhouse [15]. Fortunately it was not necessary to store the whole matrix L since all entriescan be derived from l1 in constant time. This brought the space consumption down to O(n)thus making it possible to solve even very large problems with up to n = 369057 variables.4 Computational resultsThe simulated annealing algorithm was programmed in C and run on a HP9000/735 with 99Mhzprocessor. We were in the privileged situation that \enough" computational time was available.So as can be seen from our parameters, a very slow cooling rate could be applied. Furthermoreeach problem was restarted 10 times, to smooth out statistical variations in the solution quality.The total CPU time used for this series of tests was more than 38 days. On the other hand thismeans that signi�cantly better solutions cannot be expected by the described method just byincreasing the computational time.Prime and prime power values of q between 7 and 607 were considered as presented in Table1-5. The �rst two tables give the general solution values while the last three give a more precisedescription of the blocking set found with the smallest covering number. The entries are asfollows:� q is the order of the projective plane.� n = q2+ q+1 is the number of binary variables. Each binary variable corresponds to oneof the points of the projective plane. 8



Table 1: General information about the found solutionsq n jBj (B) � t7 57 12 4 2.06 18728 73 19 4 1.92 19 91 13 4 1.82 155511 133 21 4 1.67 5413 183 24 5 1.95 226216 273 33 5 1.80 241117 307 44 5 1.76 7919 381 47 5 1.70 14723 553 58 6 1.91 290825 651 63 6 1.86 289127 757 66 6 1.82 297129 871 85 6 1.78 13731 993 86 6 1.75 16432 1057 90 6 1.73 15537 1407 106 6 1.66 23541 1723 116 6 1.62 30243 1893 126 6 1.60 113547 2257 135 7 1.82 391949 2451 158 7 1.80 23853 2863 169 7 1.76 28859 3541 194 7 1.72 25261 3783 199 7 1.70 31564 4161 206 7 1.68 31567 4557 219 7 1.66 35271 5113 230 7 1.64 36473 5403 238 7 1.63 51679 6321 258 7 1.60 68081 6643 263 8 1.82 601383 6973 269 8 1.81 670189 8011 325 8 1.78 43697 9507 349 8 1.75 519101 10303 366 8 1.73 543103 10713 375 8 1.73 549107 11557 389 8 1.71 561109 11991 391 8 1.71 612113 12883 409 8 1.69 630121 14763 440 8 1.67 713125 15751 460 8 1.66 797127 16257 455 8 1.65 824128 16513 470 8 1.65 875131 17293 477 8 1.64 1877137 18907 505 9 1.83 10065139 19461 512 9 1.82 11036149 22351 599 9 1.80 827151 22953 618 9 1.79 787157 24807 632 9 1.78 840163 26733 658 9 1.77 899167 28057 672 9 1.76 902169 28731 684 9 1.75 928173 30103 695 9 1.75 1029179 32221 725 9 1.73 1047181 32943 726 9 1.73 1104

q n jBj (B) � t191 36673 764 9 1.71 1276193 37443 772 9 1.71 1205197 39007 791 9 1.70 1278199 39801 803 9 1.70 1150211 44733 849 9 1.68 1569223 49953 902 9 1.66 14427227 51757 914 10 1.84 18045229 52671 927 10 1.84 17968233 54523 941 10 1.83 18711239 57361 974 10 1.83 18642241 58323 989 10 1.82 18894243 59293 993 10 1.82 19273251 63253 1033 10 1.81 19771256 65793 1052 10 1.80 19803257 66307 1055 10 1.80 20020263 69433 1166 10 1.79 1570269 72631 1187 10 1.79 1666271 73713 1208 10 1.79 1545277 77007 1237 10 1.78 1603281 79243 1234 10 1.77 1768283 80373 1250 10 1.77 1546289 83811 1279 10 1.76 2082293 86143 1290 10 1.76 1868307 94557 1356 10 1.75 1932311 97033 1373 10 1.74 1860313 98283 1378 10 1.74 2259317 100807 1401 10 1.74 2170331 109893 1465 10 1.72 2586337 113907 1493 10 1.72 2922343 117993 1516 10 1.71 3940347 120757 1539 10 1.71 3754349 122151 1545 10 1.71 3537353 124963 1565 10 1.70 3721359 129241 1593 10 1.70 26042361 130683 1605 10 1.70 12792367 135057 1638 11 1.86 46182373 139503 1665 11 1.86 46547379 144021 1705 11 1.85 51259383 147073 1722 11 1.85 55627389 151711 1745 11 1.84 56922397 158007 1777 11 1.84 60157401 161203 1802 11 1.84 60014409 167691 1840 11 1.83 64788419 175981 1887 11 1.82 66379421 177663 1903 11 1.82 66773431 186193 1956 11 1.81 69831433 187923 1958 11 1.81 67941439 193161 1994 11 1.81 72228443 196693 2012 11 1.81 74514449 202051 2043 11 1.80 75462457 209307 2206 11 1.80 6183461 212983 2234 11 1.79 57279



Table 2: General information about the found solutionsq n jBj (B) � t463 214833 2233 11 1.79 6331467 218557 2255 11 1.79 6486479 229921 2304 11 1.78 6846487 237657 2350 11 1.78 7768491 241573 2382 11 1.78 7324499 249501 2398 11 1.77 7651503 253513 2421 11 1.77 8062509 259591 2446 11 1.76 8135512 262657 2461 11 1.76 8293521 271963 2515 11 1.76 10085523 274053 2512 11 1.76 8656529 280371 2546 11 1.75 8926541 293223 2609 11 1.75 22197547 299757 2641 11 1.74 11348557 310807 2702 11 1.74 64630563 317533 2716 11 1.74 13039569 324331 2763 12 1.89 116238571 326613 2761 12 1.89 123373577 333507 2797 12 1.89 124763587 345157 2844 12 1.88 124678593 352243 2883 12 1.88 131083599 359401 2918 12 1.88 130924601 361803 2925 12 1.88 134580607 369057 2938 12 1.87 135926� jBj is the size of the blocking set.� (B) is the smallest covering number found.� � is the quotient (B)= ln(q).� t is the time used for the solution, measured in seconds.� 1; . . . ; 12 are the number of i-secants of the blocking set with the smallest covering number,where i = 1; . . . ; 12. The numbers of i-secants give some information about the structureof the blocking set.As seen from the tables, the found solutions have a very uniform structure.>From Figure 1 it can be seen that the quotient � = (B)= ln(q) is less than 2 for all problemsq � 8 and it becomes as low as 1:63 for some instances. Thus we have shown that projectiveplanes of order q, 7 � q � 607, q prime or prime power, has covering number (�(q)) < 2 ln(q).This does not answer Erd}os problem, but may help future investigation.4Figure 2 shows that our numerical experiences does not give indication of existence (or non-existence) of absolute constant �. But the structure of the blocking sets found { describedin Table 4-6 { gives some hints about the number of i-secants, which can be useful for furthertheoretical investigations.On Figure 3 the size of the blocking sets is plotted together with the known lower and upperbounds. We may hope that larger blocking sets can have much more special structure in the4The blocking sets found are available from the authors upon request.10
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Figure 3: jBj as function of q, lower bound q +pq + 1, upper bound qpq + 1sense that all secants contain fewer points. The size of the obtained blocking sets are far fromthe upper bounds, thus there is a hope for the existence of blocking sets with smaller coveringnumber for most of the studied cases.Using the bounds of B�eres and Ill�es [2], described in Result 1 we can modify Figure 3, gettingmore strict bounds on the size of the blocking sets. Result 1 says that the size of the blockingset depends on the covering number of it, as well. These bounds can be used as cuts in the(ILP) formulation of the problem.5 Concluding remarksSeveral attempts were done before reaching the current results. The integer programming ap-proach was not successful because continuous bounds are too weak. Also Lagrangian relaxationof the problem leads to a useless formulation, since the Lagrangian relaxation is weaker than thecontinuous relaxation. A constructive heuristic was investigated by B�eres and Ill�es [2], but itcould not solve large sized problems in reasonable time. We have experimented with tabu searchin our research, but the method performed poorly since the uniform problem structure means11
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Table 3: Geometrical propertiesq 1 2 3 4 5 6 7 8 9 10 11 127 36 12 0 98 29 9 16 199 78 0 0 1311 84 0 28 2113 117 9 33 18 616 137 55 27 37 1717 104 56 56 47 4419 144 68 63 59 4723 192 130 71 75 83 225 230 144 94 82 96 527 284 172 95 103 95 829 206 197 173 124 91 8031 271 231 186 136 97 7232 282 234 213 147 93 8837 370 319 231 223 149 11541 456 417 288 229 196 13743 474 422 341 255 223 17847 571 545 410 281 244 197 949 448 544 467 403 303 166 12053 566 607 546 458 353 220 11359 604 795 697 540 430 280 19561 653 870 736 589 438 288 20964 772 932 806 647 479 322 20367 818 992 879 741 529 342 25671 949 1110 1004 796 601 381 27273 994 1159 1050 860 614 442 28479 1155 1357 1242 1004 695 522 34681 1199 1524 1243 1036 766 512 360 383 1281 1517 1429 1065 742 556 376 789 1030 1450 1660 1395 1046 720 470 24097 1264 1820 1923 1655 1227 823 524 271101 1365 1896 2084 1848 1350 872 555 333103 1360 2030 2168 1881 1398 919 608 349107 1484 2197 2328 2025 1459 1052 653 359109 1592 2343 2438 2059 1530 1022 656 351113 1733 2382 2597 2226 1736 1121 676 412121 1891 2905 2838 2564 1933 1335 842 455125 2018 2848 3164 2727 2118 1424 904 548127 2227 3137 3278 2736 2127 1402 886 464128 2134 2999 3295 2917 2140 1498 983 547131 2246 3292 3450 2900 2332 1540 980 553137 2386 3473 3728 3373 2481 1663 1126 676 1139 2447 3634 3844 3362 2567 1753 1201 652 1149 2058 3503 4283 4110 3306 2372 1453 830 436151 1991 3465 4348 4197 3430 2536 1582 893 511157 2264 3889 4767 4536 3725 2574 1602 964 486163 2418 4208 5111 4843 3950 2862 1792 1034 515167 2528 4465 5454 4982 4259 2929 1820 1041 579169 2512 4591 5463 5293 4165 3027 1969 1144 567173 2798 4726 5793 5463 4500 3108 1994 1146 575179 2921 4981 6107 5899 4865 3354 2170 1255 669181 3085 5201 6260 6114 4813 3477 2117 1221 65513



Table 4: Geometrical propertiesq 1 2 3 4 5 6 7 8 9 10 11 12191 3401 5875 7039 6845 5325 3761 2319 1356 752193 3527 5974 7192 6850 5470 3831 2507 1396 696197 3708 6033 7481 7139 5829 4048 2513 1483 773199 3683 6194 7471 7391 6000 4075 2641 1499 847211 4093 7075 8553 8260 6609 4619 2875 1679 970223 4536 7818 9456 9249 7237 5353 3278 1971 1055227 4706 8269 9920 9378 7660 5329 3411 2033 1049 2229 4756 8208 10038 9704 7774 5439 3567 2033 1149 3233 4989 8550 10343 10019 8062 5647 3651 2112 1145 5239 5111 8776 10860 10481 8629 5960 3971 2294 1251 28241 5096 8775 10982 10632 8751 6301 4046 2347 1371 22243 5238 9124 11063 10796 8891 6398 4010 2454 1302 17251 5459 9447 11916 11576 9492 6833 4361 2652 1460 57256 5756 9816 12225 12298 9848 7032 4538 2690 1509 81257 5701 10070 12555 12041 9910 7194 4565 2665 1529 77263 4438 8692 12131 12899 11113 8400 5668 3350 1848 894269 4700 9282 12733 13377 11780 8662 5796 3572 1791 938271 4626 9180 12692 13558 11955 9014 6046 3679 1961 1002277 4688 9672 13258 14179 12555 9279 6366 3798 2151 1061281 5254 10284 13797 14731 12748 9514 6251 3689 1992 983283 5193 10318 13960 14818 12914 9793 6494 3748 2101 1034289 5288 10758 14729 15339 13471 10082 6788 4034 2292 1030293 5683 10922 15270 15909 13748 10520 6710 4061 2231 1089307 6071 12194 16403 17505 15297 11274 7572 4567 2449 1225311 6295 12319 17010 18028 15696 11493 7750 4629 2549 1264313 6420 12726 17123 18124 15968 11872 7627 4576 2584 1263317 6479 12951 17573 18519 16255 12125 8187 4802 2568 1348331 7090 13910 19265 20184 17598 13395 8798 5356 2825 1472337 7269 14517 19798 20973 18403 13736 9118 5574 2994 1525343 7648 15103 20513 21719 19008 14241 9550 5573 3065 1573347 7782 15214 20941 22285 19416 14576 9946 5774 3181 1642349 7899 15524 21194 22553 19590 14863 9789 5935 3162 1642353 8024 15785 21845 22925 19995 15226 10075 6080 3395 1613359 8266 16393 22367 23749 20786 15806 10319 6378 3462 1715361 8374 16362 22697 23918 20894 16089 10629 6487 3484 1749367 8358 17140 23042 24699 21839 16705 10893 6734 3798 1845 4373 8725 17365 24061 25549 22580 17207 11188 7070 3735 2010 13379 8744 17671 24455 26187 23700 17727 11976 7264 4094 2184 19383 8930 18119 24862 27011 24020 18063 12280 7312 4269 2182 25389 9359 18564 25934 27940 24594 18729 12426 7615 4293 2209 48397 9770 19616 26935 29052 25726 19436 13017 7689 4384 2304 78401 9767 19812 27499 29565 26283 19790 13409 8015 4598 2379 86409 10016 20606 28747 30682 27290 20647 13855 8445 4826 2455 122419 10698 21412 29831 32240 28776 21692 14647 9005 4989 2538 153421 10608 21582 29984 32245 28992 22206 15018 9127 5120 2647 134431 10857 22397 31412 33819 30288 23427 15860 9637 5432 2881 183433 11120 22775 31726 34493 30487 23461 15789 9630 5428 2818 196439 11213 23226 32457 35181 31459 24230 16488 10075 5620 3003 209443 11506 23508 32878 36194 31973 24659 16820 10143 5651 3137 224449 11746 24071 33820 36864 32886 25347 17364 10738 5820 3143 252457 9447 20965 31955 37275 35397 28522 20274 12737 7120 3770 1845461 9448 21160 32245 37973 35847 29081 20724 13205 7559 3898 184314
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