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AbstractFloats are ugly, but to everyone but theoretical computer scientists, they are thereal thing. A linear time algorithm is presented for the undirected single source shortestpaths problem with oating point weights.1 IntroductionThe technical goal of this paper is to present a linear time solution to the undirected singlesource shortest paths problem (USSSP) where the weights are oating points, or just oats.On a more philosophical level, the goal is to draw attention to the problem of making e�cientalgorithms for oats. Suppose, for example, we have an algorithm for the max-ow problemwhose running time includes a factor logC, where C is the maximal capacity. If we allowoating points, such an algorithm is not even polynomial, i.e. logC is the exponent of C,and the exponent is stored with log logC bits.Floating points are at least as used as integers, by everybody but theoretical computerscientists, who seem to prefer integers. To multiply two integers the faster way is oftento convert them to double oats and send them to the oating point co-processor. Why?Because people simply don't care enough about integers to make an integer co-processor.Also, as theoretical computer scientists, we have to admit that oats do provide an elegantway of dealing with numbers in a large range. It is for good reasons that all other scientistsand engineers have used them for centuries.The rounding of oating point arithmetic is ugly in that, for example, addition is neitherassociative, nor commutative. Nevertheless, in this paper, we hope to indicate, that �ndingthe structure of the rounding for a given problem, such as USSSP, can be an appealingchallenge.It should be noted that often oats do not cause any problems relative to integers.For problems like sorting, priority queues, and searching, there is no di�erence. The IEEEoating point standard is made such that interpreting the bit-string representation of oatingpoints as representing integers, is order preserving. Hence we can feed oating points to aninteger priority queue, if we just don't tell it that it is oats. Similarly, van Emde Boas'data structure [vBKZ77] works in time O(log!), where ! the the word length, no matterwhether the words represent integers or oats.1



Up to recently, all theoretical developments in the single source shortest paths problem(SSSP) were based in Dijkstra's algorithm [Dij59], where vertices are visited in increasingorder of distance to the source using a priority queue. Since the priority queue doesn'tcare whether the input is integers or oats, all implementations of Dijkstra's algorithm workequally well for integers and oats. However, recently, the author [Tho97] presented a lineartime non-Dijkstra algorithm for undirected SSSP with integer weights. It is crucial to thisalgorithm that the weights are sorted with respect to their exponents. For integers in words,the exponent is at most !, and then the exponents are easily sorted in linear time. However,for oating points, sorting the exponents is as hard as integer sorting, and this we do notknow how to do in linear time.Here, we show how to move edges around in the graph, preserving the oating pointdistances, ending with a series of independent subgraphs for which the exponents can besorted in linear time. Given the sorted exponents, it is not too di�cult to modify thealgorithm from [Tho97] for integer USSSP to solve the oating point USSSP in linear time.Some remarks on this will be made in the journal version of [Tho97]. Given the sortedexponents, such a oating point version of the algorithm from [Tho97] may work very wellin practice because of the e�ciency of oating point arithmetic. However, here we give a selfcontained presentation, showing something in principle stronger; namely, that USSSP withoating point weights can be solved in linear time using a linear time oracle for USSSP withinteger weights. Finally, we will make a few remarks on oats and max-ow.2 PreliminariesOur algorithm runs on a RAM, which models what we program in imperative programminglanguages such as C. The memory is divided into addressable words of length w. Addressesare themselves contained in words, so ! � logn. Moreover, we have a constant number ofregisters, each with capacity for one word. The basic assembler instructions are: conditionaljumps, direct and indirect addressing for loading and storing words in registers, and somecomputational instructions, such as comparisons, addition, and multiplication, for numbersin registers. The space complexity is the maximal memory address used, and the timecomplexity is the number of instructions performed. All weights are oating point numbers,each contained in O(1) words.The numbers may be either integers, represented the usual way, of oating point numbers.A oating point, or just a oat, is a pair x = (e;m), where e is an integer, and m is a bitstring b1 � � � b}. Then x represents the real number 2e(1 +P}i=1 bi=2i). Thus e = blog2 xc.We call e the exponent, denoted expo(x), and m the mantissa, denoted mant(x). Often wewill identify a oat with the real number it represents. Both e and m are assumed to �t in aconstant number of words. The number } = O(!) is �xed throughout a given computationand is referred to as the precision.We let � denote oating point addition. In this paper, for simplicity, when two oats xand y are added, they are always rounded down to nearest oat (determined by the precision}). Thus x� y � x+ y. This gives us the following basic rule:expo(x) > expo(y) + } ) x� y = y � x = x (1)If instead we were rounding either up or down to nearest oat, the rule would only applyif expo(x) > expo(y) + } + 1, and all the calculations below, would have to be changedaccordingly. 2



Let G = (V;E), jV j = n, jEj = m, be an undirected connected graph with a distinguishedsource vertex s. Each edge e 2 E has a oating point weight `(e) associated with it. Thelength of a path from s to some vertex v, is the oating point sum of the weights added upstarting from s. More speci�cally, if the path is P = (v0; v1; : : : ; vl), s = v0, vl = v, then thelength of P is ((((`(v0; v1)� (v1; v2))� `(v2; v3)) � � �)� `(vl�1; vl)By d(v) we denote the length of the shortest path from s to v. The oating point USSSPproblem is that of �nding d(v) for all v. Di�erent orders of adding the weights could givedi�erent answers, so it is natural to ask how big the errors can get. Let d�(v) denote thedistance where the weights are summed using normal addition of the reals represented bythe oats. Then d�(v) represents the ideal answer. Clearly d�(v) � d(v).Observation 1 d�(v)�d(v)d(v) � 2�}+log2 nProof: Set e = expo(d(v)). We are adding at most n � 1 numbers. Since the maximalexponent is � e, the maximal loss per number is < 2e�}. Thus, the total error is < (n �1)2e�} < 2e�}+log2 n.In theory, since ! � log2 n, we can always simulate log2 n extra bit of precision withouta�ecting the asymptotic running time. In practice, according to the IEEE standard format,with long oats, we have } = 52. Hence the relative error d�(v)�d(v)d(v) is at most 2�52+log2 n,which is normally OK.3 Sorting the exponentsWe will now apply some di�erent reductions to G constructing a graph G0 so that the d-values of the nodes are unchanged (though some vertices may be identi�ed), but so that foreach component of G0 n fsg, the exponents vary by at most n}. Clearly the USSSP problemcan be solved independently for each component of G0 n fsg, and the small variation in theexponents implies that they can be sorted in linear time.Our �rst step is to construct a minimums spanning tree T for G in linear time [FW94].Let dT (v) the weight of the path from s to v in T . Let fT (v) denote the weight of the�rst edge on this path. Clearly dT (v) � d(v). Also, since T is a minimum spanning tree,fT (v) � d(v).Algorithm A: Reduce G by applying the following rules as long as possible.1. If v 6= s, expo(`(v; w)) > expo(dT (v)) + } and dT (w) � dT (v), replace (v; w) by anedge (s; w) of the same weight. If (v; w) was in T , it is replaced by (s; w) in T .Since dT (v) � d(v), d(v)� `(v; w) = `(v; w). Also d(w)� `(v; w) � `(v; w) � dT (v) �d(v). Thus no distances in G or T are changed.2. If (v; w) 2 T and expo(`(v; w)) < expo(fT (v))� }, contract (v; w).Since (v; w) 2 T , T remains a minimum spanning tree. Since d(v) � fT (v), d(v) �`(v; w) = d(v), so d(w) � d(v). However, fT (v) = fT (w), so symmetrically, d(v) �d(w). 3



3. Remove any loop.When no more rules apply, any edge (v; w) in resulting graph G0 satis�es(i) if v 6= s, expo(`(v; w)) � expo(dT (v)) + }(ii) expo(`(v; w)) � expo(fT (v))� }.To see (ii), note that if it is not satis�ed by a non-tree edge (v; w), since T is a minimumspanning tree, (ii) should be satis�ed by all the edges on the induced cycle, but these shouldhave been contracted by rule 2, and then (v; w) should be a loop that should have beenremoved by rule 3.We can now solve the USSSP problem for G, by solving it independently for each compo-nent of G0 n fsg. For simplicity, we assume that G0 n fsg consists of exactly one component.Our �rst goal is to proveProposition 2 If G0 satis�es (i) and (ii) and G0 n fsg is connected, the minimum andmaximum exponent of an edge in G0 di�er by at most n}, where n is the number of nodesin G0.In order to prove Proposition 2, we �rst prove some technical lemmas. In each of the lemmas,we implicitly assume the conditions on G0 from Proposition 2.Lemma 3 If v has depth d > 0, expo(dT (v)) � expo(fT (v)) + (d� 1)}.Proof: By induction on d. The statement is trivially true for d = 1. If d > 1 and u isthe ancestor of v, by induction, expo(dT (u)) � expo(fT (u)) + (d � 2)} = expo(fT (v)) +(d� 2)}. Applying (i), expo(`(u; v)) � expo(dT (u))+} � expo(fT (v)) + (d� 1)}. Supposeexpo(`(u; v)) = expo(fT (v)) + (d � 1)}. Since expo(dT (u)) � expo(fT (v)) � (d � 2)},dT (v) = dT (u)� `(u; v) = `(u; v). Since � is increasing in both its arguments, it follows thatexpo(dT (v)) � expo(fT (v)) + (d� 1)}, as desired.Lemma 4 If (v; w) 2 G0 where v 6= s, expo(`(v; w)) � expo(fT (v)) + depthT (v)}.Proof: By (i) and Lemma 3, expo(`(v; w)) � expo(dT (v))+} � expo(fT (v))+ depthT (v)}Lemma 5 If (s; u) and (v; w) are in G0, expo(`(v; w)) � expo(`(s; u)) + (n� 1)}Proof: Let T1; : : : ; Ti be distinct subtrees of T n fsg such that u 2 T1, and for i > 1, thereis an edge (x; y) from Ti�1 to Ti. By induction on i, we will argue that if (a; b) 2 G0 anda 2 Ti, expo(`(a; b)) � expo(`(s; u)) + iXj=1 jV (Tj)j}: (2)Suppose i = 1. Since depthT (a) � jV (Ti)j, (2) follows directly from Lemma 4.Suppose i > 1. Let (x; y) be the edge entering Ti from Ti�1. By induction,expo(`(x; y)) � expo(`(s; u)) + + i�1Xj=1 jV (Tj)j}:4



Since T is a minimum spanning tree `(x; y) � fT (y) = fT (a). Thus, by Lemma 4,expo(`(a; b)) � expo(fT (a))+depthT (a)} � expo(x; y)+jV (Ti)j} � expo(`(s; u))+ iXj=1 jV (Tj)j};completing the proof of (2). The trees T1; : : : ; Ti can be chosen for any (a; b) 2 G0, and sinceSj Tj � G0 n fsg, the lemma follows.Proof of Proposition 2: Let (s; u) be the minimum weight edge leaving s. Consider anyedge (v; w). By (2), expo(`(v; w)) � expo(fT (v))�} � expo(`(s; u))�}. At the same time,by Lemma 5, expo(`(v; w)) � expo(`(s; u)) + (n � 1)}. Hence, exponents of weights in G0can vary by at most n}.Theorem 6 We can sort the exponents of the edges in G0 in linear time.Proof: First subtracting the minimum exponent from all other exponents, the maximumexponent becomes n}, which is represented by log2 n+ log2 } bits. If } � n, each exponentis viewed as two � log2 n bit characters, and we radix sort in two rounds, each round takinglinear time.In the extreme case where } > n, since } = O(!), we have log2 n+ log2 } = O(!=(lognlog logn)). Then we can apply the linear time packed sorting from [AH92].4 Using an integer oracleWe will now solve the USSSP problem for the graph G0 in Proposition 2 using the lineartime integer USSSP oracle from [Tho97]. First we will estimate the exponents �1. Secondwe will make exact calculations.Distances with a bit too much precisionWe will calculate the distances from s but sometimes using some extra precision. Sincewe always round down, extra precision means larger values. For each vertex v, we denotethe obtained distance by D(v). Referring to Observation 1, we get d(v) � D(v) � d�(v).Since } � log2 n, we further get D(v) � 2d(v). Consequently, expo(d(v)) � expo(D(v)) �expo(d(v)) + 1.Our �rst step is to subtract the exponent e of the smallest weight from all weight expo-nents (corresponding to division by 2e). By Proposition 2, all weight exponents are now inthe interval [0; n}).We are going to proceed in rounds for i = 1; : : : ; n. In round i, we are going to �nd thedistances from s along paths where the maximal exponent of an edge weight is < i}. Weassume that this has already been done over paths where the maximal exponent is < (i�1)}.Consider the set S = fv j expo(D(v)) < (i� 1)}g. Edges with exponents � (i� 1)} arenot going to give any better distances for vertices v 2 S, so the distances to vertices in Smay now be output. Next we contract S as follows. For all edges (v; w) 2 E, v 2 S n fsg,w 62 S, we replace (v; w) by a distance edge (s; w) whose weight is D(v)�`(s; w). AfterwardsS nfsg is removed. Clearly the remaining vertices have same distances in the reduced graph,and each edge (v; w) is only once replaced by a distance edge (s; w).5



Now contract all edges (v; w) with expo(`(v; w)) < (i�2)}. This corresponds to reducingtheir weight to 0. We claim that this does not not change the oating point distance to anyvertex. By symmetry, it su�ces to show that it does not change the distance to w. Supposethe shortest path to w goes through v. Since v was not contracted in S, expo(D(v)) �(i� 1)}, but this immediately implies D(v)� `(v; w) = D(v)Here in round i, concerning the original edges, we restrict our attention to the survivingones with exponent < i}. Since we have contracted all original edges with exponent <(i � 2)}; this implies that edges will be considered in their original form for at most 3rounds. Concerning distance edges, we restrict our attention to the surviving ones where themaximal edge weight on the corresponding path has exponent < i}. The weight of thesedistance edges is then < (n � 1)2i} < 2(i+1)}. At the same time, we have contracted everydistance edge whose exponent is < (i�1)}. Hence distance edges are considered for at most3 rounds. In conclusion, each edge will be considered for a total of at most 6 times.Before converting our oats to integers, we subtract (i� 3)} from every exponent, corre-sponding to dividing all weights by 2(i�3)}. Since the smallest weight exponent was � (i�2)},it is now }, so all weights are now integers. All distances computed in round i, are basedon original edges whose weight exponents are now < i} � (i � 3)} = 3}, hence of weight< 23}. Thus, the maximal distance computed in round i is < (n � 1)23} Thus, we call ourinteger USSSP, where each integer is represented by dlog2 ne + 3} = O(!) bits. This takestime linear in the number of edges considered, and since each edge is considered in at most6 rounds, the total running time over all rounds is linear in the total number of edges. Thedistances produced are essentially correct, except that in the calculations, we vary between} and log2 n+ 3} bits of precision, where we should really only have had a precision of } inevery single addition. As pointed out above, this means that the exponents of the calculateddistances are either correct, or at most one too large.Exact resultsIn order to get the exact oating point distances d(v), as de�ned in Section 2, we aregoing to proceed in rounds as above, but working with one exponent e at the time.We will go through the exponents e in increasing order. Recall that the exponentsof the edge weights were sorted in Section 3. Inserting exponents of computed dis-tances in the ordering is straightforward; for if d(w) = d(v) � `(v; w), expo(d(w)) 2fexpo(d(v)); expo(d(v)) + 1; expo(`(v; w)); expo(`(v; w)) + 1g. For each vertex v, we aregoing to start with our estimated distance D(v) � d(v) computed in the previous subsec-tion. We are going to decrease D(v) to d(v) over several rounds. Recall that when we startexpo(d(v)) � expo(D(v)) � expo(d(v)) + 1.The goal of round e is to get D(v) = d(v) for all v with expo(d(v)) � e. Inductivity, weassume this has already been achieved for all v with expo(d(v)) � e� 1. Let S be the set ofvertices v with expo(d(v)) � e� 1. These vertices are contracted, as in the previous section,that is, each outgoing edge (v; w), v 2 S n fsg; w 62 S, is replaced by a distance edge (s; w)with `(s; w) = d(v)� `(v; w). Moreover, we set D(w) = minfD(w); D(v)� `(v; w)g.Construct the graph Ge with the distance edges (s; v) with expo(D(v)) = e, and all edges(v; w) with fexpo(D(v)); expo(D(w))g � fe; e+1g. The latter includes all edges (v; w) withexpo(d(v)) = expo(d(w)) = e. Subtract e�} from all the exponents and convert to integers,rounding down, i.e. x 7! bx=2e�}c. Call the integer USSSP algorithm, convert back to oats,and add e� } to the exponents. 6



To see that the above is correct for any w with expo(d(w)) = e, consider a shortest pathv0 � � � vl from s = v0 to w = vl. Let vi be the last vertex with expo(d(vi)) < e. By induction,D(vi) = d(vi), and also, we contracted vi 2 S correctly, settingD(vi+1) = D(vi)�`(vi; vi+1) =d(vi)�`(vi; vi+1) = d(vi+1). For j = i+1; : : : ; l�1, we have expo(d(vj)) = expo(d(vj+1)) = e,so (vj; vj+1) is and edge in Ge. Moreover, for each of the desired oating point additionsD(vj)� `(vj; vj+1), the �rst term and the sum both have exponent e. This implies that theinteger additions performed by the integer USSSP algorithm simulate the desired oatingpoint additions with exactly the right precession }. Thus, we end up with D(w) = d(w), asdesired.Clearly, each edge is considered at most twice in its original form, and at most once asdistance edge. Thus, the total time spend above is linear in the total number of edges.Theorem 7 There is a linear time Turing reduction from the oating point USSSP problemto the integer USSSP problem.Combining with the linear time algorithm for integer USSSP from [Tho97], we getCorollary 8 There is a linear time algorithm for USSSP problem with oating point weights.5 A remark on max-owAbove it was shown how we can deal with oating points in connection with USSSP. Inthe introduction, we made some remarks concerning max-ow. We will now sketch how toreplace an exponential factor O(logC) by a factor O(logn+}). The conversion from integersto oats is a lot easier for max-ow than for single source shortest paths; for we are onlyinterested in one ow value rather than a distance value for every single vertex.Let f � denote the (unknown) maximal ow value. First we �nd an s-t path with maximalminimal capacity D, that is, D is the maximal ow that can be pushed along a single path.Then D � f � � mD. We can therefore reduce all capacities bigger than mD to mD withouta�ecting the maximal ow. Concerning the small capacities, we can exploit that we areanyway going to accept an error in the order of D=2}. At most doubling this error, we cantake all weights and round down to the nearest multiple of D=(m2}). More precisely, weset e = expo(D) � blog2mc � }, subtract e from all exponents and round down to nearestinteger. If C 0 is now the maximal capacity, log2 C 0 � 2dlog2me + } = O(logn + }). Thenwe solve the max-ow problem with the reduced weights, and add e to the exponent of theresulting ow value.References[AH92] S.Albers and T.Hagerup, Improved parallel integer sorting without concurrent writing,in Proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 463{472, 1992.[Dij59] E.W.Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1(1959), 269{271.[FW94] M.L. Fredman and D.E. Willard, Trans-dichotomous algorithms for minimumspanning trees and shortest paths, J. Comp. Syst. Sc. 48 (1994) 533{551.7
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