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Concatenation-Based Greedy Heuristicsfor the Euclidean Steiner Tree ProblemMartin Zachariasen� Pawel Winter�September 17, 1997AbstractWe present a class of O(n log n) heuristics for the Steiner tree problem in theEuclidean plane. These heuristics identify a small number of subsets with few,geometrically close, terminals using minimum spanning trees and other well-knownstructures from computational geometry: Delaunay triangulations, Gabriel graphs,relative neighbourhood graphs, and higher-order Voronoi diagrams. Full Steinertrees of all these subsets are sorted according to some appropriately chosen measureof quality. A tree spanning all terminals is constructed using greedy concatenation.New heuristics are compared with each other and with heuristics from the literatureby performing extensive computational experiments on both randomly generatedand library problem instances.Keywords: heuristics, Steiner trees1 IntroductionGiven a set Z of n terminals in the Euclidean plane, a shortest network which interconnectsZ is called a Steiner minimum tree (SMT). An SMT may contain additional intersectionpoints, Steiner points. This Steiner tree problem is NP-hard and has been a subject forextensive investigation [9]. The most e�ective exact algorithm is currently able to solvemost problem instances with up to 1000 terminals in a day [24, 23]. If less CPU-time isavailable or larger problem instances have to be solved, heuristics are called for.An SMT is a union of full Steiner trees (FSTs). An FST F spanning a subset Zk of kterminals in Z has k � 2 Steiner points. Each Steiner point has three edges making 120��Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen �, Denmark.E-mail: fmartinz,pawelg@diku.dk. 1



with each other. Every terminal in F has degree one (is a leaf in F ). If two or three FSTsshare a terminal in an SMT, then the edges meet at the terminal at an angle which isat least 120�. Experience has shown that FSTs in an SMT seldomly span more than �veterminals [24].A minimum spanning tree (MST) for the terminals in Z is a shortest network spanningZ without introducing Steiner points. An MST for Z can be constructed in O(n logn)time [14], and is a good approximation to an SMT. This is a consequence of the Steinerratio theorem [9]: Let SMT (Z) and MST (Z) denote an SMT and an MST, respectively,spanning the same set of terminals Z. Then the ratio jSMT (Z)j=jMST (Z)j is alwaysgreater than or equal to p32 . Consequently, any MST algorithm, seen as an approximationalgorithm for the Steiner tree problem, has a 2p3 � 1:1547 performance ratio.The length of the MST is therefore a natural reference for the performance of other approx-imation algorithms, since there is little point in constructing algorithms which producesolutions worse than the MST. It was for a long time an open problem whether there existapproximation algorithms with performance ratios strictly less than 2p3 . Arora [1] showedthat there exists a polynomial-time approximation scheme for the Euclidean travellingsalesman problem and other geometric problems - among these the Euclidean Steiner treeproblem. This means that we can �nd in polynomial time (in the number of terminalsbut not in 1=�) a solution within a factor 1 + � from the optimum for every �xed � > 0.This result was obtained by a clever partitioning of the plane and applying dynamicprogramming.The practical usefulness of the Arora-algorithm has yet to be proven. Less sophisticatedheuristics1 on average produce much better solutions than their worst-case performanceratio 2p3 indicates. All heuristics described in the sequel have performance ratio 2p3 .Therefore, their performance will be measured on an experimental basis by computing thereduction over the MST (the most commonly used measure in the literature) and, whenavailable, the excess from the SMT. When references are made to the average reductionover the MST, it is assumed that the terminals have been distributed randomly withuniform distribution in a (unit) square. For this distribution and n = 100 the averagereduction of SMT over MST is approximately 3:2% - the asymptotic value is probablyslightly larger [24].Starting with an MST, a simple approach suggested by Thompson [21] is to look foredges meeting at angles less than 120� and insert Steiner points at appropriate positions(Figure 1a). These Steiner point insertions are continued until improvements fall belowsome threshold value. Chang [6] gave slightly more general variant: Select three vertices(terminals or Steiner points) of the current tree, insert a new Steiner point and corre-sponding edges and remove the longest edge on any cycle created (Figure 1b). Other1All heuristics for the Steiner tree problem are in fact approximation algorithms since they constructsolutions which are no worse than the MST; however, for historic reasons we use the word \heuristics"in the following. 2



MST-based methods have been proposed. The fastest of them, due to Beasley [4], hassub-quadratic observed running time and a 2:9% average reduction over the MST. Beasleyand Go�net [5] used the approach from [4] in a simulated annealing framework. Theirheuristic obtains a 3:0% average reduction at the expense of a huge running time.
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wFigure 1: Simple Steiner point insertions.The application of geometric structures to heuristics for the Euclidean Steiner tree prob-lem was initiated by Smith and Liebman [17]. A triangulation of Z was used to aid theidenti�cation of small subsets of terminals. The triangulation was constructed by usingthe convex hull for Z. The worst-case running time was O(n4) due to a very elaboratesubset selection procedure. The observed running time was close to being quadratic. Theaverage reduction was rather poor, approximately 2:2%.A much more e�cient heuristic was given by Smith, Lee and Liebman [16]. A similarapproach has also been applied to the 3-dimensional Euclidean Steiner tree problem [18]and to the plane rectilinear case [15]. This �rst O(n logn) heuristic is based on theDelaunay triangulation (DT). The average reduction was approximately 2:7%. This isquite impressive, worst-case running time taken into consideration. Since the class ofheuristics presented in this paper all originate from the ideas used by this heuristic, wepresent one of its variants here.A linear number of subsets with 2, 3 or 4 terminals is identi�ed as follows: 2-terminalsubsets are the MST edges (MST is a subgraph of DT), 3-terminal subsets are cornersof triangles in the DT with two MST edges, and 4-terminal subsets are corners of twoedge-sharing triangles in the DT with three connected edges from the MST. For each set3



Zk containing k terminals, k = 2; 3; 4, the shortest FST is constructed (if it exists); let itbe denoted by FST (Zk). All generated FSTs are placed on a priority queue Q with thepriority jFST (Zk)j=jMST (Zk)j (smallest �rst).The tree T spanning all terminals is then constructed by picking FSTs fromQ in a mannersimilar to Kruskal's MST algorithm. An FST is only added to T if it does not create acycle. Since a fast disjoint-set data structure is used, the overall worst-case complexity ofthe concatenation of small FSTs remains O(n logn).The new class of heuristics will follow the general outline of the DT-heuristic. We showthat it is possible to obtain a 3:0% reduction using O(n logn) time, albeit with a slightlylarger constant factor than Smith, Lee and Liebman's heuristic. In Section 2 we presentsome well-known structures from computational geometry and discuss their applicationto the Steiner tree problem. Identi�cation of small subsets of terminals (which are likelyto be spanned by a single FST in an SMT) using these structures is discussed in Section 3.Determination of the shortest FST for every such subset and pruning away non-optimalFSTs is covered in Section 4. Concatenation of FSTs using a greedy approach is discussedin Section 5. In Section 6 the performance of the heuristics is compared by performingextensive experiments on randomly generated problem instances, including instances fromthe OR-Library [3]. The results are also compared to other heuristics with similar worst-case or observed running time. Concluding remarks are given in Section 7.2 Proximity StructuresIn this section we present some well-known structures from computational geometry whichcapture proximity relations for a set of terminals Z.2.1 Voronoi DiagramsLet zi and zj denote two distinct terminals. Furthermore, let H(zi; zj) denote the set ofpoints not farther from zi than from zj. H(zi; zj) is a half-plane. LetV (zi; Z) = \zj2ZnziH(zi; zj)be the Voronoi region of zi. V (zi; Z) is convex and its interior is the locus of points closerto zi than to any other terminal. Hence,V (zi; Z) = fq 2 E2 j jziqj � jzjqj; 8zj 2 Z n zig4



Let P (zi; Z) denote the boundary of V (zi; Z). The union of these boundaries for allterminals in Z forms the Voronoi diagram for Z, denoted by V D(Z). Its edges are calledVoronoi edges. Points where Voronoi edges meet are called Voronoi points.The k-th order Voronoi diagram V Dk(Z), 1 � k < n, is a partition of the plane intoregions V (Zk; Z), Zk � Z, jZkj = k. The interior of V (Zk; Z) is the locus of points closerto every terminal in Zk than to any terminal in Z n Zk. Hence,V (Zk; Z) = fq 2 E2 j jziqj � jzjqj; 8zi 2 Zk; 8zj 2 Z n ZkgHence V D1(Z) = V D(Z). Note that V (Zk; Z) may be empty. In fact, at most O(n3)regions of all orders k, 1 � k � n� 1, are non-empty; furthermore, the Voronoi diagramsof all orders up to K-th order can be determined in O(K2n logn) time [10].2.2 Delaunay TriangulationsThe straight-line dual of the Voronoi diagram for Z is a triangulation of Z, called theDelaunay triangulation and denoted by DT (Z). This is one of the most important trian-gulations capturing proximity relations. It can also be de�ned as the unique triangulationsuch that the circumcircle of each triangle does not contain any other terminal in its in-terior. Triangles of DT (Z) tend to be as \equilateral" as possible in the sense that thesmallest internal angle in all its triangles is maximized over all triangulations.An edge (zi; zj) belongs to DT (Z) if and only if there is a circle passing through zi andzj and containing no other terminal in its interior (Figure 2a).DT (Z) has a number of interesting properties. It can be constructed in time �(n logn)and contains at least one minimum spanning tree for Z. The minimum spanning tree forZ can be determined in time �(n) once DT (Z) is given [14].2.3 Gabriel GraphsLet zi and zj denote two distinct terminals. Let D(zi; zj) denote a disc with zizj as itsdiameter. A Gabriel graph GG(Z) has Z as its vertex set. A pair of terminals zi and zj isadjacent i� D(zi; zj) contains no other terminal (Figure 2b). GG(Z) can be constructedin �(n logn) time by removing from DT (Z) edges not intersecting their dual Voronoiedges [11]. Consequently, GG(Z) is a subgraph of DT (Z). In fact, it contains at leastone minimum spanning tree for Z.
5



a) Delaunay triangulation b) Gabriel Graph

c) Relative neighbourhood graph d) Minimum spanning treeFigure 2: Proximity structures.
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2.4 Relative Neighborhood GraphsLet zi and zj denote two distinct terminals. Let L(zi; zj) be a lune obtained as an inter-section of two discs with radius jzizjj and centered at zi and zj, respectively. A relativeneighborhood graph RNG(Z) has Z as its vertex set. A pair of terminals zi and zj isadjacent i� L(zi; zj) contains no other terminal [22] (Figure 2c). A �(n logn) plane sweepalgorithm for the construction of RNG(Z) has been suggested by Supowit [19]. RNG(Z)is a subgraph of DT (Z). It contains at least one minimum spanning tree for Z.3 Subsets of TerminalsThe �rst phase of all our heuristics is to identify low-cardinality subsets of terminalsZk � Z, 2 � jZkj � K, such that the shortest FST for Zk (if it exists) is a good candidateto be a part of an SMT for Z. We assume that the maximum number of terminals of anyFST to be generated is given as a �xed integer K, 2 � K � n. Computational experiencereported in Section 6 indicates thatK should not be greater than 6 for randomly generatedproblem instances.Subsets with 2 terminals are identi�ed by taking all n� 1 pairs of terminals joined by anedge in an MST for Z. The rationale behind this strategy is due to the fact that FSTsspanning 2 terminals in an SMT for Z must belong to an MST for Z.Higher-Order Voronoi Diagrams: A subset Zk of Z, 3 � k � K, is selected i�the Voronoi region V (Zk; Z) is non-empty. The family of these subsets (together with2-terminal subsets) is denoted by HVD(K).The total number of non-empty Voronoi regions in Voronoi diagrams of all orders up toK-th order is O(K2(n�K)) [10].Delaunay Triangulations: A subset Zk of Z, 3 � k � K, is selected i� the subgraphof DT (Z) induced by Zk is the Delaunay triangulation of Zk. The family of these subsets(together with 2-terminal subsets) is denoted by DT4(K).A larger family of subsets, denoted by DT?(K), is obtained by taking subsets Zk of Z,3 � k � K, such that the subgraph of DT (Z) induced by Zk is connected.Gabriel Graphs: A subset Zk of Z, 3 � k � K, is selected i� the subgraph of DT (Z)induced by Zk is the Delaunay triangulation of Zk and is connected in GG(Z). The familyof these subsets (together with 2-terminal subsets) is denoted by GG4(K).A larger family of subsets, denoted by GG?(K), is obtained by taking subsets Zk of Z,3 � k � K, such that the subgraph of GG(Z) induced by Zk is connected.Relative Neighborhood Graphs: A subset Zk of Z, 3 � k � K, is selected i� thesubgraph of DT (Z) induced by Zk is the Delaunay triangulation of Zk and is connected7



in RNG(Z). The family of these subsets (together with 2-terminal subsets) is denotedby RNG4(K).A larger family of subsets, denoted by RNG?(K), is obtained by taking subsets Zk of Z,3 � k � K, such that the subgraph of RNG(Z) induced by Zk is connected.Minimum Spanning Trees: A subset Zk of Z, 3 � k � K, is selected i� the subgraph ofDT (Z) induced by Zk is the Delaunay triangulation of Zk and it is connected inMST (Z).The family of these subsets (together with 2-terminal subsets) is denoted by MST4(K).A larger family of subsets, denoted by MST?(K), is obtained by taking subsets Zk of Z,3 � k � K, such that the subgraph of MST (Z) induced by Zk is connected.It is well-known thatMST4(K) � RNG4(K) � GG4(K) � DT4(K)and MST �(K) � RNG�(K) � GG�(K) � DT �(K)Furthermore, MST4(K) �MST �(K); RNG4(K) � RNG�(K);GG4(K) � GG�(K); DT4(K) � DT �(K)The total number of terminal subsets in each of the sets MST4(K), RNG4(K), GG4(K)and DT4(K) is O(3K�3n) since there are O(n) triangles and each triangle has at mostthree neighbouring triangles. Assuming that K is a constant we get O(n) terminal subsetsin time O(n logn).The expected number of terminal subsets in each of the setsMST?(K), RNG?(K), GG?(K)and DT?(K) is O(6K�1n) since each terminal in DT (Z) has average degree six. Assumingthat K is a constant the expected number of terminal subsets is O(n) and they can begenerated in expected time O(n logn).4 Full Steiner Tree GenerationSince we only consider small subsets of terminals (K � 6), the processing time neededfor each subset of terminals is bounded by a constant. We compute a shortest FST for agiven subset of terminals, instead of an SMT, for the following reasons:� It is much faster and less complicated to compute a shortest FST or to concludethat no FST exists.� An FST does exist for a small fraction of subsets of terminals (especially whenK � 5) while all subsets of terminals have an SMT.8



� SMTs will often be obtained by concatenation of smaller FSTs.It is well-known that an SMT for Zk is completely inside the convex hull CH(Zk). Evena smaller region, called the Steiner hull of Zk and denoted by SH(Zk), can be obtainedin the following iterative way. Initially, SH(Zk) is identical with CH(Zk). If SH(Zk)contains a pair zi; zj of terminals appearing consecutively on the boundary, and a thirdterminal zq, zq 6= zi; zj, such that the interior angle 6 zizqzj of 4zizqzj is greater than orequal to 120� and 4zizqzj contains no other terminals, then replacing zizj by zizq andzqzj on the boundary yields a smaller region completely containing SMT for Zk. Thisprocess is continued for as long as possible. It can be shown that the order in which theedges are replaced is immaterial [9]. If the interior of SH(Zk) is not connected, Zk issaid to have degenerate con�guration; the original problem instance can be decomposedinto smaller problem instances (Figure 3a). If the interior of SH(Zk) is connected and allterminals are on its boundary, Zk is said to have Steiner con�guration (Figure 3b).
a) Degenerate b) SteinerFigure 3: Terminal con�guration examples.Properties of FSTs with three or four terminals are well understood [9]. In particular, anecessary condition for the existence of such FSTs is that all terminals are on the boundaryof their convex hull. We say that such sets of terminals have a convex con�guration.Convex con�guration is not necessary for the existence of FSTs with 5 or more terminals.Experiments show that we may discard terminal sets which do not form a Steiner con�gu-ration since they are very unlikely to be spanned by a single FST in an SMT for Z [24]. Ina set of one hundred problem instances (each with 100 terminals), all sets with 5 terminalsand all but one set with 6 terminals had Steiner con�gurations. There were two sets of 7terminals which did not have a Steiner con�guration, but since we restrict our attentionto sets with up to 6 terminals, these sets would not be considered anyway.The advantage of considering Steiner con�gurations, in addition to discarding less promis-ing FSTs, is that it is much faster to compute shortest FSTs for sets with 5 and 6 terminals.An FST for k terminals is computed by generating all possible full topologies for k termi-nals and determining the FST (if it exists) for each topology in O(k) time using Hwang'salgorithm [8]. There are 15 (respectively 120) di�erent topologies for k = 5 (respectivelyk = 6). If the con�guration is Steiner, only 5 (respectively 14) di�erent topologies needto be considered [9]. 9



For each terminal set Zk the following computations/tests are made:1. Compute Steiner hull for Zk. If the con�guration of Zk is degenerate or not Steiner,then discard Zk.2. Find a shortest FST for Zk, denoted by FST (Zk), by generating all admissible fulltopologies and applying Hwang's algorithm. If no FST exists, then discard Zk.3. Compute MST (Zk). If jMST (Zk)j � jFST (Zk)j, then discard Zk.5 Greedy ConcatenationGiven a list F of FSTs, we would like to construct a short tree spanning Z using theseFSTs. For any FST F 2 F we denote by ZF the set of terminals spanned by F and byMZF the subgraph of MST (Z) induced by ZF . We assume in our complexity analysisthat F contains O(n) FSTs. Relatively limited knowledge is required about these FSTs- a fact that makes the approach easy to generalize to other metrics (including obstacle-avoiding variants). For each FST F 2 F we only assume that the following informationis available:� Terminal set ZF spanned by F .� Length jF j of F .� Length jMST (ZF )j of an MST spanning ZF .� Information about the connectedness ofMZF , i.e., whether ZF induces a connectedsubgraph of MST (Z) or not.No knowledge about the location of Steiner points nor about the connections betweenterminals and Steiner points is needed during the concatenation. However, in order tooutput the �nal tree, it is obviously necessary that we have access to this information.Experimental evidence, presented in Section 6, shows that terminals of most FSTs inan SMT induce connected subgraphs of MST (Z). One must therefore use MSTs asbackbones when constructing good approximations to SMTs. However, in order to obtainhigh-quality solutions, it is sometimes necessary to deviate from the MST (Figure 4), aspreviously pointed out by Chang [6]. We therefore split our greedy construction into twophases:1. Greedy concatenation (Kruskal): Sort the FSTs according to a priority measureand construct an initial solution using a variant of Kruskal's MST algorithm, asexplained in Section 5.1. Only FSTs with terminals inducing connected subgraphsof MST (Z) are allowed to be used in this phase.10



2. Greedy insertion: Try to improve the initial solution by inserting the remainingFSTs, as explained in Section 5.2.We have tried to avoid the greedy insertion altogether to simplify the procedure. However,it seems very di�cult to de�ne a priority measure which both gives special priority toconnected induced subgraphs of the MST and some preference to other promising FSTs.

Figure 4: SMT with an FST inducing disconnected subgraphs of the MST (gray edges).5.1 Constructing the initial tree using KruskalThis initial phase is basically the heuristic of Smith, Lee and Liebman [16]. The FSTsare sorted according to the ratio priority jF j=jMST (ZF )j (smallest �rst), such that FSTsshowing a large relative reduction over the MST have top priority. Another possibility isto use the di�erence priority jMST (ZF )j � jF j (largest �rst). Our experiments show thatthe ratio priority is to be preferred as the di�erence priority gives preference to large (interms of length) FSTs; there is no guarantee that such FSTs are SMTs for their terminals.The ratio priority is more size independent, although with some preference for smallerFSTs. Also, if a small \bad" FST is added in this initial phase, it is likely to be replacedby a larger FST during the greedy FST insertion phase (Section 5.2).Thus, we sort the FSTs by ratio and assume in the following that the FSTs are indexedaccording to this priority: F = fF1; F2; : : : ; Fmg, where m = O(n) is the number ofFSTs. We also assume that the MST-edges (2-terminal FSTs), denoted byM and sortedin non-decreasing order, form the tail of F . The initial tree T0 is constructed by usingthe following algorithm (for an example see Figure 5):11



function Kruskal(F)T0 = ;forall F 2 F doif (MZF is connected) and (F does not create a cycle in T0) then T0 = T0 [Freturn T0end

Figure 5: Initial tree using Kruskal. Observe that each FST induces a connected subgraphof the MST (gray edges).That is, we scan F and add FSTs to the tree (forest) if no cycle is created. Since theMST-edges form the tail of F we always obtain a valid tree, i.e., T0 is connected andacyclic.The initial tree T0 will never be longer than MST (Z) since only FSTs which induceconnected subgraphs of MST (Z) are added. Furthermore, since we only improve T0 inthe second phase, the �nal tree will necessarily also have this property. An MST (Z) isknown to have degree at most six for every terminal [13] and the same will hold for T0.This can be seen from the fact that every FST in T0 spanning k terminals replaces exactlyk � 1 edges in MST (Z); all terminals in an FST are leaves and thus the degree of everyterminal in T0 is at most its degree in MST (Z).5.2 Greedy FST insertionIn this section we present an approach which has some similarity to Chang's generalizedSteiner point insertions [6]. However, we restrict our attention to the sorted list F ofFSTs and de�ne an FST-insertion as follows: Let T be the current tree, initially T = T0.12



Assume that the FSTs in T appear in the same order as in F . An FST Fi 2 F n T isinserted into T by using the following algorithm:function Insert(T , Fi, M)T 0 = Fiforall F 2 T doif (jZF j � 3) and (F does not create a cycle in T 0) then T 0 = T 0 [ Fforall F 2 M doif (F does not create a cycle in T 0) then T 0 = T 0 [ Freturn T 0endThus, we �rst add Fi to an empty tree, then all FSTs in T with three or more terminals(avoiding cycles), and �nally MST-edges in order to guarantee connectivity. An FST-insertion requires O(n) time2.The actual behavior of the algorithm is that it inserts Fi into T by pushing some ofthe FSTs in T out and reconnecting the components by adding edges from MST (Z).More precisely, if an FST Fi with k terminals is inserted into T , k � 1 cycles are created(Figure 6a). Each such cycle visits one or more FSTs from T ; one single FST in T may,if it spans three or more terminals, be a part of more than one cycle. For each cycle,only the FST which has the highest ratio is a candidate for deletion. Thus there is anatural preference for keeping low-ratio FSTs, in particular FSTs spanning three or moreterminals (Figure 6b).If the resulting tree T 0 is shorter than T we set T = T 0 and try to insert the next FSTfrom F n T . Scanning through F once yields an O(n2) greedy improvement algorithm.Preliminary experiments, presented in Section 6, show that this method is very e�ectivebut at the cost of high running times. We will now show how to cut the running timedown to O(n logn) while preserving most of the power of the O(n2) heuristic.The obvious solution is to allow at most O(logn) FST-insertions: pick the �rst O(logn)FSTs from F and perform the insert operation iteratively for each of these FSTs. Unfor-tunately, the following arguments show that the total expected relative improvement willdiminish when n becomes large.Assuming that the terminals are randomly distributed in a unit square, the expectedlength of an SMT is �(pn). This follows directly from the constant factor relationshipbetween the length of an SMT (Z), an MST (Z) and a Travelling Salesman tour TSP (Z)through the same set of points Z. More speci�cally we have 12 jTSP (Z)j � jMST (Z)j �jTSP (Z)j (the �rst inequality is the performance bound on the so-called double MSTheuristic for TSP and the other inequality is obvious). Similarly we have p32 jMST (Z)j �2Using a fast disjoint set data structure [20], the amortized time per FST is actually �(m;n), where�(m;n) is the inverse of Ackermann's function. This is an extremely slow-growing function and for allpractical purposes a constant. 13



Component 1 Component 2FST to be inserted

a) Tree before insertion b) Tree after insertionFigure 6: FST-insertion.jSMT (Z)j � jMST (Z)j (the �rst inequality is the Steiner ratio theorem and the secondis again obvious). These inequalities yield p34 jTSP (Z)j � jSMT (Z)j � jTSP (Z)j and byusing the classic result of Beardwood, Halton and Hammersley [2] which states that theexpected length of an TSP tour through a set of points distributed randomly in a unitsquare is �(pn), the same results follows for an SMT.When an FST Fi spanning k terminals is inserted, at most k � 1 FSTs spanning threeor more terminals are deleted from T . In addition, only a constant number of new MST-edges is added to T since only MST-edges which span terminals in removed FSTs are newcandidates for being used to reconnect the tree. Thus, the total number of FSTs (includingMST-edges) deleted or added is bounded by a constant. Each FST has bounded lengthand therefore the length reduction is bounded by a constant independent of n. The totallength reduction obtained by performing O(logn) FST-insertions thus has the same orderof magnitude. Now, this implies that the expected relative improvement over the initialsolution drops to zero as n goes to in�nity. This indicates that we must perform 
(pn)insertions to ensure that the e�ect of the greedy improvement does not disappear for largevalues of n.One remedy to this problem is to insert Fi locally in constant time. For any tree T , de�neTz; z 2 Z, to be the set of FSTs in T which span z. Assume that T has at most six FSTsspanning each terminal; in particular, this holds for T0 (see Section 5.1)3. Consider theforest �T = [z2ZFiTz, i.e., FSTs in T which share a terminal with Fi. Obviously, this forestcontains at most 6K FSTs. Let �Z = [F2 �TZF be the terminals spanned by �T and M �Z3In an SMT there can be at most three such FSTs and, furthermore, for randomly generated instancesthe probability that there are exactly three FSTs is zero.14



the subgraph of MST (Z) induced by �Z.The number of components in the forest �T is bounded by the number of terminals inFi (there are two components in Figure 6a). If there is only one component, then allFSTs through cycles created by inserting Fi into T are in �T . We replace the subtree �Tby �T 0 = Insert( �T , Fi, M �Z) provided that �T 0 spans �Z and is connected. Note that �T 0 isnot necessarily connected since we use edges from M �Z to reconnect the components, notedges from MST ( �Z).By representing T and MST (Z) appropriately, a local insertion can be performed inconstant time. Although not very likely to happen we must also ensure that the size of Tznever becomes greater than six. This can be checked just before T is updated, discardingthe insertion if the bound is exceeded.If �T or �T 0 are disconnected the local insertion of Fi is discarded. However, it may stillbe possible to perform an O(n)-insertion. The overall greedy improvement algorithm isthe following: Set T = T0. For each FST Fi 2 F n T we �rst try a local insertion. If �Tand �T 0 are connected and j �T 0j < j �T j we update T and go to the next FST. Otherwise wemake the call Insert(T , Fi, M) - provided that we have made less than Cdlogne insertionsalready. Here C is a constant determined as follows. Preliminary experiments showedthat if the number of components in �T was small, it was more likely that an insertion wasimproving. We therefore make Cidlogne insertions for every number i of components in�T (i = 1; : : : ; K); setting Ci = K� i+1 proved to give the right balance between runningtime and solution quality4. Still, it should be noted that the main reduction in lengthcomes from the local insertions since these may be performed for every FST; the otherO(logn) insertions only have a small, although not negligible, e�ect.6 Computational ExperienceThe new class of greedy concatenation-based heuristics was experimentally evaluated ona HP9000 workstation5 using the programming language C++ and class library LEDA(version 3.4.1) [12]. The random number generator used was the random source class inLEDA. We also used LEDA's native Delaunay triangulation algorithm. The higher-orderVoronoi diagram implementation was based on Lee's algorithm [10] using the 1-orderVoronoi diagram algorithm in LEDA.In Section 6.1 we compare terminal subset generation methods discussed in Section 3. Themost promising of these are selected and we compare the new heuristics to our own im-plementation of the heuristic by Smith, Lee and Liebman [16] by performing experiments4Example: For K = 5 and n = 1000 at most (5 + 4 + 3+ 2 + 1)dlog 1000e = 105 insertions are made.5Machine: HP 9000 Series 700 Model 735/99. Processor: 99 MHz PA-RISC 7100. Main memory: 96MB. Performance: 3.27 SPECint95 (109.1 SPECint92) and 3.98 SPECfp95 (169.9 SPECfp92). Operatingsystem: HP-UX 9.0. Compiler: GNU C++ 2.7.2 (optimization 
ag -O3).15



on a large number of randomly generated instances with up to 10000 terminals (Sec-tion 6.2). Finally, the new heuristics are compared to other heuristics from the literatureby measuring their performance on a series of library problem instances (Section 6.3).6.1 Terminal Subset Generation MethodsThe terminal subset generation methods described in Section 3 were compared experi-mentally one hundred problem instances (each with 100 terminals). The terminals weredrawn randomly with uniform distribution from a unit square.The average number of subsets generated with cardinality k = 3; 4; 5; 6 is given in Table 1.As could be expected, fewer subsets are generated when the connected induced subgraphsare restricted to adjacent triangles of DT . A very large number of subsets is generated forDT? and GG?. Also, a relatively large number of 3 and 4 terminal subsets is generatedby HVD, but this is less critical since FST computations are much more expensive for 5and 6 terminal subsets.Method k = 3 k = 4 k = 5 k = 6TS FST NI TS FST NI TS FST NI TS FST NIHVD 459 253 0.01 623 161 0.14 777 88 0.08 924 40 0.05DT4 186 151 0.54 273 116 0.34 530 98 0.08 1150 80 0.03GG4 134 116 0.55 193 93 0.34 334 73 0.09 636 56 0.03RNG4 78 65 1.01 98 40 0.53 134 24 0.36 186 14 0.08MST4 57 45 1.80 61 20 1.23 67 8 0.61 73 3 0.12DT? 1052 507 0.00 4316 794 0.00 18717 1389 0.00 83930 2375 0.01GG? 431 220 0.01 1188 253 0.00 3507 326 0.00 10796 403 0.01RNG? 184 90 0.48 327 62 0.19 623 50 0.08 1241 39 0.01MST? 120 54 1.30 159 24 0.89 219 10 0.33 310 5 0.05Table 1: Terminal subset generation methods. For each cardinality k the table gives theaverage number of terminal subsets (TS), average number of surviving full Steiner trees(FST) and average number of not identi�ed FSTs in SMTs (NI).Table 1 also presents the corresponding counts of surviving FSTs. We immediately notethat a much larger fraction of terminal subsets survives for the triangulation based meth-ods. For DT4 a total (for 3 � k � 6) of 21% survives, compared to only 5% for DT?. Thesame numbers for GG4 and GG? are 26% and 8%, respectively. For HVD the number is19%, slightly lower than for DT4.The ratio of surviving terminal subsets is not the only measure of quality. More importantis the issue of how well FSTs in SMTs are represented. Since SMTs are known for allinstances in the testbed [24], we may count the number of FSTs in each SMT which havenot been identi�ed. These average counts are also given in Table 1 and are in general quitelow. They should be compared to an average of 29.2 2-terminal FSTs (MST-edges), 19.916



3-terminal FSTs, 7.5 4-terminal FSTs, 1.6 5-terminal FSTs and 0.2 FSTs with 6 or moreterminals in the same 100 problem instances. Another interesting observation is that 10of these SMTs had a maximum FST size (number of terminals) of four, 65 a maximumof �ve, 20 a maximum of six and only 5 had an FST with seven or more terminals.There is a (natural) correspondence between the total number of FSTs generated andcounts of not identi�ed FSTs. The methods HVD, DT? and GG? which generate a largenumber of subsets (the last two in particular) also have a higher probability of \covering"the SMT. This does not mean that DT4 and GG4 are poor at identifying FSTs in SMTs- on average only one FST is missed. Another interesting observation is that RNG4 andespecially MST4 are signi�cantly worse at identifying FSTs in SMTs. Finally, on basisof the statistics for MST? we can conclude that an average of 2.6 FSTs do not induceconnected subgraphs of the MST. This should be compared to an average total of 58.4FSTs in the corresponding SMTs.The performance of an heuristic using a given subset generation method depends on theconcatenation method used. First we compare all generation methods using the O(n logn)greedy concatenation method described in Section 5.2. In Table 2 the reduction over MSTis given for each generation method and K = 3; 4; 5; 6 (maximum subset cardinality). Thetable clearly shows that the ability to cover FSTs in SMTs is not the only factor thatdetermines the performance of greedy concatenation heuristics. Triangulation based meth-ods, in particular DT4 and GG4, perform better than their subgraph connectivity basedcounterparts. This may seem surprising but is just an indicator that the greedy concate-nation has had less bad choices. The CPU-times are more or less directly proportionalto the number of subsets generated - perhaps except for HVD which has a relatively highoverhead due to the complex algorithm for constructing higher-order Voronoi diagrams.Increasing K from 4 to 5 increases the running time by a factor between 2 (for HVD) and13 (for DT?). Also note that selecting K = 3 is a very bad alternative. The improvementin solution quality when going from K = 5 to K = 6 on the other hand is negligible.Method K = 3 K = 4 K = 5 K = 6RED CPU RED CPU RED CPU RED CPUHVD 2.79 2.13 3.06 4.13 3.09 7.66 3.09 14.57DT4 2.77 0.17 3.06 0.38 3.09 1.66 3.10 7.33GG4 2.78 0.17 3.07 0.33 3.09 1.25 3.10 4.67RNG4 2.69 0.19 3.05 0.27 3.09 0.66 3.09 1.62MST4 2.56 0.09 2.92 0.14 2.97 0.36 2.97 0.71DT? 2.78 0.41 3.03 2.22 3.05 28.15 3.06 346.07GG? 2.80 0.25 3.05 0.79 3.08 6.22 3.09 50.26RNG? 2.74 0.21 3.06 0.36 3.09 1.38 3.09 6.26MST? 2.63 0.11 2.95 0.18 2.99 0.54 3.00 1.59Table 2: Heuristic performance for terminal subset generation methods. RED: Reductionover MST (percent). CPU: Total CPU-time (sec).17



In the following we will identify heuristics using the O(n logn) concatenation method byits generation method and maximum terminal subset cardinalityK. For instance, GG4(5)uses terminal subsets with up to �ve terminals identi�ed as vertices of adjacent trianglesof the Delaunay triangulation forming connected induced subgraphs of the Gabriel graph.On the basis of the results presented in Table 2, we selected GG4(4) and GG4(5) as themost \promising" alternatives. This is motivated by the excellent performance of thesetwo heuristics and by their limited use of CPU-time. RNG4(5) is also very e�cient, butrequires a special non-standard algorithm if one demands O(n logn) running time [19].Finally we present some results on other alternatives for greedy concatenation. Table 3compares four variants using generation method GG4 for K = 4; 5 and n = 100. The �rstvariant returns the initial solution obtained by using Kruskal without making any FST-insertions (Section 5.1). The second only makes local insertions while the third makeslocal FST-insertions and O(logn) insertions (this is the variant evaluated in Table 2).The last variant makes O(n) FST-insertions and therefore takes O(n2) time as opposedto the other three variants which require O(n logn) time.FST-insertions signi�cantly improve the quality of the heuristic solution at relativelylimited cost. The performance of the third variant is not much worse than the fourthvariant. However, this di�erence increases for larger values of n as will be shown inSection 6.3; the higher running time complexity of the latter will also become much moreevident.Greedy concatenation method K = 4 K = 5RED CPU RED CPU(1) Kruskal 2.83 0.19 2.86 1.05(2) Kruskal + local insertions 2.98 0.27 3.00 1.17(3) Kruskal + local insertions + O(n logn) insertions 3.07 0.33 3.09 1.25(4) Kruskal + O(n) insertions 3.11 0.54 3.13 1.53Table 3: Greedy concatenation method comparison for GG4. RED: Reduction over MST(percent). CPU: Total CPU-time (sec).6.2 Comparison to Smith, Lee and Liebmans's HeuristicIn this section we compare GG4(4) and GG4(5) to our own implementation of the heuris-tic by Smith, Lee and Liebman [16]. In this original version, called SLL, triangles in theDT with two MST edges for which the corresponding FST exists are put on a priorityqueue (similar to MST4(3)). The Kruskal-based concatenation �rst tries to add a fourterminal FST for the triangle in question and its nearest adjacent triangle6 - if this FST6Based on the distance between corresponding Voronoi vertices.18



does not exist or if it does create a cycle in the current tree, the three terminal FST isadded.A very simple modi�cation of this heuristic, called SLL+, simply puts all triangles with twoMST edges for which an FST exists and all four-terminal FSTs constructed from adjacenttriangles with three connected MST edges on the priority queue (just likeMST4(4)). Theheuristic tree is constructed using Kruskal.We present computational results in Table 4. Each number is an average taken over onehundred instances. SLL+ outperforms SLL at very little extra computational cost (forvery small instances the opposite seems to be the case as shown in Section 6.3). GG4(4)and GG4(5) obtain a reductions which are more than 0:3% better than SLL - at a constantfactor of 6 and 22 times the running time of SLL. For GG4(4) approximately one-third ofthis extra time is spent generating FSTs and two-thirds performing greedy improvement.For GG4(5) we have just the opposite: Two-thirds are used by FST generation andone-third by greedy improvement.This may at �rst seem to be expensive, but the new heuristics still are O(n logn) and weactually are very close to optimum: For n = 50, the average SMT reduction is 3:23%; outof one-hundred instances GG4(4) found the optimal solution for 10 instances and GG4(5)the optimal solution for 15 instances. For n = 100 the average SMT reduction is 3:20%;no optimal solutions have been found by either heuristic. On average we are thereforewithin 0:1% from optimum for small instances (n � 100) and (most likely) within 0:2%from optimum for larger instances.n SLL SLL+ GG4(4) GG4(5)RED CPU RED CPU RED CPU RED CPU50 2.76 0.06 2.89 0.06 3.11 0.15 3.13 0.56100 2.71 0.11 2.83 0.13 3.07 0.33 3.09 1.25500 2.68 0.31 2.84 0.37 3.04 2.05 3.07 7.601000 2.70 0.68 2.83 0.81 3.02 4.37 3.05 16.045000 2.72 3.96 2.85 4.61 3.01 25.67 3.04 89.0010000 2.71 8.44 2.85 9.75 3.00 54.69 3.02 186.40Avg. 2.71 2.85 3.04 3.07Table 4: Randomly generated instances. RED: Reduction over MST (percent). CPU: To-tal CPU-time (sec).
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6.3 Comparison to Other HeuristicsFirst we make a detailed comparison to the heuristics by Beasley [4] (BE92) and Beasleyand Go�net [5] (BG94). The CPU-times in these two papers have been \normalized"using the Linpack benchmark7.The heuristics were evaluated on instances which are available from the OR-Library [3].These instance are randomly generated problem instances with 10 to 1000 terminals, 15instances for each size; optimal solutions are known for all these instances [24, 23]. Inaddition, one single 10000 terminals instance is available from the OR-Library.We ran SLL+, GG4(4) and GG4(4)+ (the O(n2) variant of GG4(4) which makes O(n)FST-insertions) on the same set of problem instances. In Table 5 we compare the resultsto BE92. The overall tendency as far as solution quality is concerned is clear: SLL+falls behind by a large margin, while GG4(4) and GG4(4)+ both are better than BE92.While the observed running time growth of BE92 is O(n1:317) the heuristic GG4(4) hasworst-case running time of O(n logn) with a relatively small constant. For n = 1000the running time of GG4(4) is less that one-seventh of BE92 and the heuristic solutionsproduced are also better.n BE92 SLL+ GG4(4) GG4(4)+ OPTRED CPU RED CPU RED CPU RED CPU RED10 3.14 � 1.86 0.07 2.91 � 1.82 0.01 3.17 � 1.91 0.02 3.17 � 1.91 0.02 3.25 � 1.8820 3.02 � 1.01 0.17 2.91 � 1.04 0.01 3.10 � 1.00 0.04 3.10 � 0.97 0.04 3.16 � 0.9930 2.87 � 0.72 0.26 2.73 � 0.72 0.02 2.94 � 0.78 0.08 2.96 � 0.77 0.08 3.07 � 0.7840 3.02 � 0.63 0.50 2.87 � 0.54 0.03 3.03 � 0.63 0.11 3.04 � 0.63 0.11 3.14 � 0.6350 2.84 � 0.40 0.49 2.72 � 0.39 0.04 2.93 � 0.36 0.14 2.93 � 0.36 0.17 3.03 � 0.4160 2.95 � 0.40 0.72 2.75 � 0.37 0.04 3.08 � 0.46 0.19 3.10 � 0.43 0.22 3.27 � 0.4270 2.84 � 0.36 0.72 2.65 � 0.33 0.05 2.92 � 0.36 0.21 2.97 � 0.33 0.29 3.11 � 0.3880 2.82 � 0.62 1.00 2.64 � 0.61 0.06 2.87 � 0.65 0.25 2.92 � 0.65 0.36 3.04 � 0.6790 2.94 � 0.45 1.22 2.85 � 0.50 0.07 2.96 � 0.49 0.29 3.01 � 0.51 0.45 3.12 � 0.49100 2.95 � 0.37 1.47 2.80 � 0.34 0.08 3.08 � 0.43 0.34 3.14 � 0.41 0.56 3.27 � 0.38250 2.95 � 0.21 4.32 2.79 � 0.23 0.17 3.00 � 0.22 0.92 3.07 � 0.24 2.91 3.21 � 0.23500 3.05 � 0.17 10.28 2.89 � 0.17 0.37 3.13 � 0.19 2.03 3.22 � 0.17 11.52 3.33 � 0.181000 3.02 � 0.13 31.76 2.87 � 0.12 0.80 3.05 � 0.12 4.32 3.18 � 0.14 48.84 3.31 � 0.14Avg. 2.95 � 0.72 2.80 � 0.70 3.02 � 0.74 3.06 � 0.73 3.18 � 0.73Table 5: Comparison on instances from the OR-Library. RED: Reduction over MST(percent) and standard deviation. CPU: Total CPU-time (sec). OPT: Optimal solutionreduction.It would have been interesting to make a thorough comparison between our new heuristicsand BE92 on larger instances. Beasley [4] reports a 3:00% reduction in (normalized)time 4093.38 seconds on one 10000 terminal instance. When we applied SLL+, GG4(4)and GG4(4)+ to the same instance we obtained reductions of 2:85%, 2:98%, and 3:16%,7Our HP workstation has a Linpack benchmark of approximately 40, the Cray X-MP/28 used in [4] avalue between 50 and 200 and the SGI Indigo machine used in [5] a value between 4 and 12. Accordingly,the CPU-times in these two papers have been multiplied by 1.5 and 0.2, respectively, in order to makethem comparable to ours. 20



respectively. The corresponding CPU-times were 9.89, 54.22 and 5533.93 seconds. Thusthe new heuristics compare very favorably when running times are taken into account.While the variance of the MST reduction is similar for BE92, GG4(4) and GG4(4)+, theCPU-time variance shows a completely di�erent picture. The iterative nature of BE92makes the running time less predictable, e.g., for n = 1000, the ratio between maximumand minimum running time is 3:00, while it only is 1:05 and 1:11 forGG4(4) andGG4(4)+,respectively. Also, while GG4(4) uses one minute on an average 10000 terminal instance,BE92 spends more than an hour on a similar instance (based on the result for the single10000 terminal instance discussed above; if this instance is representative the reportedrunning time growth of O(n1:317) actually seems to be closer to being quadratic for largerinstances).The heuristic BG94 [5] has a performance that is somewhere between GG4(4) andGG4(4)+ but at the cost of a huge running time. Results are only reported for n � 100and for these instances the average reduction is 3:03%. For GG4(4) and GG4(4)+ thereductions obtained on the same instances are 3:01% and 3:03%, respectively. However,the (normalized) running time for BG94 (n = 100) is more that one-hundred times largerthan for both GG4(4) and GG4(4)+. Also, the observed running time growth is higher,namely O(n2:19).Finally, Chapeau-Blondeau, Janez and Ferrier [7] recently suggested a new O(n logn)heuristic. The (normalized) running times reported are slightly higher than those for SLLand SLL+ and the average reduction for n = 1000 is only 2:78%. Thus this heuristic doesnot perform better than SLL+.7 Concluding RemarksWe presented a class of O(n logn) heuristics for the Steiner tree problem in the Euclideanplane. The new heuristics �rst generated a short list of FSTs constructed on small subsetsof terminals. The geometrically close terminals spanned by each FST were identi�ed byusing well-known structures from computational geometry.Heuristic trees were constructing by greedy concatenation. Extensive experiments showedthat the new heuristics performed better than any other known O(n logn) heuristic. Infact, the heuristic solutions were better than those obtained by most other heuristics withhigher (or unknown) complexities.The approach can easily be generalized to other metrics and higher dimensions, includingobstacle-avoiding variants. A local search approach using full Steiner tree concatenationhas recently been suggested by Zachariasen [25]. Solutions within 0:05% from optimumcould be obtained by using the same basic FST-insertion scheme.21
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