
Technical Report DIKU-TR-97/21Department of Computer ScienceUniversity of CopenhagenUniversitetsparken 1DK-2100 KBH �DENMARKSeptember 1997

Local Search for the Steiner Tree Problemin the Euclidean Plane
Martin Zachariasen

Local Search for the Steiner Tree Problemin the Euclidean PlaneMartin Zachariasen�September 8, 1997
AbstractMost heuristics for the Steiner tree problem in the Euclidean planeperform a series of iterative improvements using the minimum spanningtree as an initial solution. We may therefore characterize them as localsearch heuristics. In this paper, we �rst give a survey of existing heuristicapproaches from a local search perspective, by setting up solution spacesand neighbourhood structures. Secondly, we present a new general localsearch approach which is based on a list of full Steiner trees constructedin a preprocessing phase. This list de�nes a solution space on which threeneighbourhood structures are proposed and evaluated. Computational re-sults show that this new approach is very competitive from a cost-bene�tpoint of view. Furthermore, it has the advantage of being easy to apply tothe Steiner tree problem in other metric spaces and to obstacle avoidingvariants.Keywords: heuristics, survey, local search, Steiner trees1 IntroductionThe Euclidean Steiner tree problem (ESTP) can be stated as follows: Given a setZ of n points in the Euclidean plane, �nd a shortest network, a Steiner minimumtree (SMT), interconnecting Z. The points in Z are called terminals, while anyjunctions introduced are called Steiner points.�Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen �,Denmark. E-mail: martinz@diku.dk. 1

A shortest network spanning Z without introducing Steiner points is called aminimum spanning tree (MST). In contrast to the Steiner tree problem whichis NP-hard, an MST can be constructed in time O(n logn) [28]. The minimumspanning tree is the basic reference when comparing heuristics for ESTP. Theratio of the length jSMT (Z)j of an SMT to the length jMST (Z)j of an MSTspanning the same set of terminals Z cannot be smaller than � = p3=2 � 0:866[18]. An MST is therefore at most 2p3�1 � 15:47% longer than an SMT. RecentlyArora [3] showed that ESTP belongs to a class of NP-hard problems which havea polynomial-time approximation scheme, i.e., we can �nd a solution within afactor 1 + � from optimum in polynomial time, for any �xed � > 0.There has been a major breakthrough in the development of exact algorithms forESTP during the last few years [44, 42]. Randomly generated instances with 50terminals can now be solved in a few minutes on a workstation and most 1000terminal instances in a day. Thus the need for heuristic algorithms may seem lessurgent. However, as will be demonstrated in the sequel heuristic algorithms maybe able to speed up exact algorithms signi�cantly by providing high quality upper-bounds. In particular, the so-called full Steiner tree approach which is presentedin this paper is well suited for this purpose, since it is based on concatenation ina manner similar to the best exact algorithm.Most heuristics for ESTP may be characterized as local search heuristics. Localsearch is a general search scheme which has been applied to a wide range ofcombinatorial optimization problems [1]. A combinatorial optimization problemis given by a �nite set X of solutions, where each solution x 2 X has cost f(x).The objective is to �nd a solution x� 2 X with minimum (or maximum) cost. Thesolutions space for ESTP is, as stated above, not �nite since Steiner points maybe chosen arbitrarily in the plane. However, it is possible give a �nite set (withsize super-exponential in n) of Steiner point candidates as shown by Melzak [26].A neighbourhood functionN over X assigns to every solution x 2 X a setN (x) �X of solutions which are \close to" x in some sense. Neighbourhood functionsare usually intimately related to the solution representation used, e.g., the datastructure storing and identifying solutions in X . Starting from an initial solutionx0 2 X a local search algorithm generates a chain of solutions x0;x1; : : :xk suchthat xi 2 N (xi�1) for every i = 1; : : : k, continually trying to �nd better solutionsin X .In this paper, we �rst give a survey of existing heuristics for ESTP from a localsearch perspective (Section 3). We classify the heuristics, discuss similarities anddi�erences and present results from the literature on their e�ciency. In Section 4we give a detailed description of local search based on full Steiner trees. Wepresent computational results in Section 5. Concluding remarks are given inSection 6. 2

2 De�nitions and Basic NotionsThe de�nitions and notions used in this paper in general follow those used in thebook on the Steiner tree problem by Hwang, Richards and Winter [18] and in thelocal search book edited by Aarts and Lenstra [1].We �rst note that Euclidean distances and Steiner point coordinates are solu-tions to algebraic equations and may in principle require in�nite precision. It istherefore assumed that terminal locations are given as rational numbers (�nite-precision) and that distances and Steiner point coordinates are rounded to �niteprecision.A Steiner tree (ST) is a tree T interconnecting Z ful�lling the following con-ditions: No two edges meet at an angle less than 120� and edges incident to aSteiner point meet at exactly 120� (angle conditions). The degree of a terminalpoint is at most three and each Steiner point has exactly degree three (degreeconditions). (In their classical exposition on the Steiner tree problem, Gilbertand Pollak [13] de�ned a Steiner tree as a tree that cannot be shortened by asmall perturbation or by \splitting" a terminal by inserting a Steiner point. Thisde�nition and the one given in our paper are equivalent and are used interchange-ably in the literature.) If, in addition, the number of Steiner points is maximal(n�2), the tree is called a full Steiner tree (FST). An SMT is a Steiner tree and,furthermore, a union of full Steiner trees (Figure 1).

Figure 1: A Steiner minimum tree (each full Steiner tree is indicated).A topology T is a description (graph) of the connections (edges) between terminalsand Steiner points (vertices). A Steiner topology is a topology which ful�lls the3

Steiner tree degree conditions. A topology is full if the number of Steiner pointsis maximal (n� 2).The shortest tree with a topology T is called the relatively minimal tree. A rela-tively minimal tree is degenerate if it has zero-length edges. An RMT-algorithmis a procedure for �nding a relatively minimal tree; both numerical and combi-natorial RMT-algorithms exist [37, 19].Any Steiner topology can be partitioned into edge-disjoint full components eachbeing a full Steiner topology. Given a full topology the locations of all Steinerpoints ful�lling the angle conditions - if such a con�guration exists - can befound in linear time using Hwang's algorithm [17]. We refer to this procedure asan FST-algorithm.Let jTH(Z)j be the length of a tree TH(Z) constructed using an heuristic H. Thesavings over MST �H(Z) = jMST (Z)j � jTH(Z)jjMST (Z)j(in percent) will be our performance measure for the heuristic. When referencesare made to the average reduction, �H , over the MST, it is assumed that theterminals have been distributed randomly with uniform distribution in a (unit)square.Finally we give two de�nitions related to local search neighbourhoods. A neigh-bourhood N is strongly connected if any solution in the solution space X can bereached from any other solution by performing moves via N . A neighbourhoodis weakly optimally connected if there is a �nite chain of moves from any solutionin X to some optimal solution in X .3 Local Search and Steiner Tree HeuristicsThe history of heuristics for ESTP dates back to the early 1970s with the contribu-tions of Chang [8], Thompson [41] and Korhonen [23]. The heuristics by Changand Thompson may be described as greedy Steiner point insertion algorithmswhich iteratively reduce the length of an initial MST, at each step inserting a\best" possible Steiner point. Although the notion \local optimization" or \localsearch" was not used, the analogy is apparent.The development of general local search methods such as simulated annealing,tabu search and genetic algorithms in the 1980s has opened up a new area of re-search, but applications to ESTP have had limited success compared to otherclassical problems (for more details about these meta-heuristics we refer thereader to [1]). To the best of our knowledge, there currently exist three sim-4

ulated annealing [24, 6, 14], one tabu search [16], one genetic [15] and one neuralnetwork [20] algorithm for ESTP.In this section we classify existing heuristics for ESTP based on the underlyingsolution representation. By doing so we can set up and characterize neighbour-hood structures based on these representations. This classi�cation is obviouslynot complete, but it captures the essence of the heuristics described. Heuristicapproaches which are di�cult or impossible to characterize from a local searchperspective have not been included in this survey (e.g. [22, 38, 30]). The heuris-tics are generally presented chronologically and, when available, running timesand observed reductions over MST are noted.The �rst alternative is to store complete information about the solution tree, thatis, information about the topology of the tree and all Steiner point coordinates(Section 3.1). We will refer to this representation as the Steiner tree representa-tion, ignoring the fact that the trees may not necessarily ful�ll degree and angleconditions - the objective is obviously that these conditions are ful�lled.A second alternative is to forget all about the topology; given a set of Steinerpoints S the corresponding tree is the MST over Z [S (Section 3.2). Thisrepresentation is called the Steiner points representation (there may be more thanone MST, but this fact is usually ignored by the heuristics using this approach).Conversely, we have the Steiner topology representation (Section 3.3) which storesthe topology of the tree, but not the locations of Steiner points. These are givenby, e.g., the relatively minimal tree.The last two representation methods �rst reduce the problem to a pure combina-torial problem by �xing a set of potential Steiner points. The graph representa-tion approach maps the problem to the Steiner tree problem in graphs for whichseveral heuristic algorithms exist (Section 3.4). The full Steiner tree (FST) ap-proach constructs a list of full Steiner trees in a preprocessing phase and buildsan heuristic tree by concatenating FSTs from this list (Section 3.5). A summaryof the performance of ESTP-heuristics is given in Section 3.6.3.1 Steiner TreesA solution is represented by an unrooted tree T with two types of nodes: Ter-minals (corresponding to Z) and Steiner points. We may assume that Steinerpoint coordinates are stored at the respective Steiner point nodes. No restrictionis put on the topology of the tree, but the objective is to end up with a Steinertree which ful�lls degree and angle conditions. Note that in a Steiner tree T allleaves are terminals.Most heuristics from the literature use MST (Z) as the initial solution. Other5

options have been suggested, but since the topology of SMTs often is closelyrelated to that of MSTs [44, 45], it is di�cult to give any reasonable alternative.However, other options are discussed at the end of this section.Thompson [41] gave a very simple neighbour selection procedure. Let u be avertex adjacent to two vertices v and w in the tree. We de�ne a Steiner pointinsertion as follows: First we assume that all angles in the triangle formed by u,v and w are smaller than 120�, otherwise we do nothing. Delete the edges (u; v)and (u; w) and insert a Steiner point s at its Steiner position, by adding the edges(s; u), (s; v) and (s; w) such that they make 120� with each other (Figure 2a).Thompson proposed to select the two edges a = (u; v) and b = (u; w), seen asvectors in the plane, for which the scalar product a � b was as large as possible.The scalar product can also be used in higher dimensional spaces which was theactual target for Thompson's algorithm (minimum evolutionary trees). This givespreference to long edges meeting at small angles. The new Steiner point is treatedas a terminal when making subsequent insertions. The algorithm stops when theimprovement drops below a given threshold. Thompson gave no computationalresults, but indicated that the heuristic seemed to perform well on small instances.A slightly more sophisticated insertion scheme was given by Chang [8]. He intro-duced a generalized Steiner point insertion: Let u, v and w be any three verticesin the current tree T for which a corresponding Steiner point s exists. Add s toT by connecting it to u, v and w and remove one edge from each of the two cyclescreated (Figure 2b).Chang only allowed generalized insertions which enlarged existing full compo-nents. That is, an edge in an existing full component could only be removed ifthe two components were reconnected by the new edges inserted. Chang provedthat if the generalized insertion leading to the largest positive reduction in lengthwas performed at every step, the �nal heuristic tree would have two interestingproperties: The degree of every Steiner point would be three and the tree wouldbe an MST over Z and the inserted Steiner points. Chang also noted that thetopology of any SMT could be obtained by performing at most n� 2 generalizedSteiner point insertions.The method suggested by Chang may be seen as a procedure for constructing agood Steiner topology, since the resulting tree in general has to be adjusted byrelocating Steiner points within each full component. Chang used repeated relo-cation of Steiner points to their Steiner position until the improvement droppedbelow a given threshold (a better option today would be to use Hwang's FST-algorithm [17] for every full component). The worst-case running time of Chang'sheuristic is huge, O(n4), but the performance is very good, �Chang � 3:0%.Finally we note an early contribution by Korhonen [23]. This heuristic may becharacterized as a tree construction algorithm and therefore less suited for local6

w

a) Steiner point insertion

b) Generalized Steiner point insertion

s s

ss

u u

u u

v v

v v

w w

wFigure 2: Simple Steiner point insertions.search. An heuristic tree is grown and the Steiner tree property maintainedfor every terminal addition step. The terminals are added in the order givenby Prim's MST-algorithm. After a terminal has been added the Steiner treeproperty is reestablished by inserting, deleting and relocating Steiner points. Thealgorithm is very fast, but its performance moderate, �Korhonen � 2:5%.Discussion and further re�nementExisting heuristics may be put into a local search framework by adding two im-portant components. Firstly, initial trees other thanMST (Z) may be used. Onechoice is random spanning trees and another choice near-optimal MSTs generatedby changing Prim's or Kruskal's algorithm as follows: Instead of choosing the toppriority edge at every step edges should be chosen with a probability dependingon their position in the priority queue.Secondly, a procedure for deleting Steiner points from the existing tree has to bedevised. Otherwise it would not really be possible to continue the search beyondthe insertion of n�2 Steiner points. No suggestions have been made on this issuein the literature.One of the main disadvantages of the Steiner tree representation is that it isdi�cult to retain the properties that one is actually looking for, such as degreeand angle conditions. A local Steiner point insertion or deletion may have globale�ects, requiring the relocation of several other Steiner points.7

The generalized Steiner insertion by Chang may be extended further by allowingthe insertions of k-terminal SMTs (Chang only inserts 3-terminal SMTs) [12, 7].3.2 Steiner PointsA solution is represented by a set of Steiner points S. New solutions are obtainedby adding, deleting or relocating Steiner points in S (note that an SMT canhave from 0 to n� 2 Steiner points). An heuristic tree is obtained by computingMST (Z[S). This tree is in general not a Steiner tree - there may even be Steinerpoints which have degree less than three. We will refer to a clean-up procedure asan algorithm which (iteratively) transforms the heuristic tree into a Steiner tree.This is done by deleting and relocating Steiner points in S until MST (Z [S) isas close to a Steiner tree as required.Representing a solution by a set of Steiner points was originally proposed bySmith and Liebman [35]. They also introduced techniques from computationalgeometry: A triangulation was used to generate a base set of Steiner points Sbase.Having generated this set, the heuristic solution was constructed by greedy selec-tion of Steiner points from Sbase. The initial solution was S = ; and a neighbourto the current solution was generated as follows (we assume that MST (Z [S)has been computed):1. Sort Sbase by the di�erence jMST (Z [S)j� jMST (Z [S [fsg)j; s 2 Sbase,i.e., by length reduction obtained by adding s to S.2. For each s 2 Sbase: Compute MST (Z [S [fsg); if improving then S =S [fsg, Sbase = Sbase n fsg.We note that the algorithm only adds Steiner points to S, that is, never deletesor relocates Steiner points. Also a relatively restricted base set is used for Steinerpoint candidates. Neighbours are generated in time O(n3) since an O(n2) MST-algorithm was used. The overall performance of the algorithm is rather poor,�SL � 2:2%.Suzuki and Iri [40] presented an algorithm in which relocation and deletion ofSteiner points is a fundamental element. Starting with a set S of n=4 pointsrandomly taken from the convex hull of Z, a neighbour is generated as follows:1. Find a relatively minimal tree using the topology given by MST (Z [S)(obviously only Steiner points are relocated).2. Delete Steiner points having degree less than three. For every Steiner pointwith degree greater than three place a new Steiner point in the close neigh-bourhood of the original Steiner point.8

3. Add Steiner points inside all angles smaller than 120� meeting at a terminal.All added Steiner points are placed randomly but close to the terminals or Steinerpoints in question. The complexity of the neighbour generation scheme dependson the algorithm used for �nding a relatively minimal tree. In the paper a nu-merical RMT-algorithm is used. The computational requirements are moderateand the performance reasonable, �SI � 2:9%.The only genetic algorithm known for ESTP was given by Hesser, M�anner andStucky [15]. The chromosome (solution) is a bit-string b representing S (the mostsigni�cant bits of the coordinates of points in S). The bitstring had constantlength representing exactly n Steiner points. Thus only relocations were possi-ble. The tree corresponding to a given bitstring was obtained by constructingMST (Z [S), removing Steiner points with degree less than three and relocatingSteiner points to their Steiner position.The genetic algorithm used standard crossover and mutation operations. This isnot particularly meaningful since this may cut the bit-representation of a Steinerpoint and share it with another bit-string solution. The method was tested on asingle 25-terminal instance (5�5 grid). Apparently it did not perform better thana greedy approach which �rst generates a base set Sbase containing n randomlygenerated Steiner points and then adds candidates from this set to S (similar toSmith and Liebman's algorithm).Beasley [5] and Beasley and Go�net [6] presented two heuristics based on theSteiner point approach. The former uses the following neighbour generationstrategy (initially S = ;):1. Let L be the set of connected subgraphs of MST (Z [S) with exactly fourvertices.2. Sort L by the reduction obtained by replacing the MST-edges by an SMTspanning the same four vertices; for each set of vertices K 2 L denote byS(K) the Steiner points in an SMT spanning K.3. For each set K 2 L add S(K) to S, given that no vertex in K has appearedpreviously.SinceMST (Z[S) has bounded degree, L has sizeO(n) and therefore it takes timeO(n logn) to generate a neighbour. The neighbour is cleaned-up by removingSteiner points with degree less than three and by relocating Steiner points to theiroptimal positions within each full Steiner tree (using Hwang's FST-algorithm[17]). The algorithm stops when no connected subgraph with four vertices has a9

shorter interconnecting tree. The running time of the algorithm is reasonable (theworst-case complexity is not given) and so is the performance, �Beasley � 2:9%.Beasley and Go�net [6] generate neighbours using Delaunay triangulations (DT).In addition, they use simulated annealing based local search. The initial solutionis again S = ; and neighbours are generated using the following algorithm:1. Construct DT (Z [S) and add the Steiner point (if it exists) of every De-launay triangle to S.2. Construct MST (Z [S).3. Delete Steiner points with degree smaller than three or greater than fourfrom S. Relocate all Steiner points with degree three to their Steiner posi-tion. If a Steiner point s has degree four then delete s from S, construct anSMT for the four incident vertices and add the Steiner points in this SMTto S.4. Make insertions of Steiner points if any edges meet at an angle less than120�.5. If any change was made in step 3 or 4 then goto step 2.By repeating step 1, each time adding more candidate Steiner points to S, dif-ferent neighbours can be generated. The neighbour generation procedure is com-putationally expensive, since several MSTs must be constructed. Unfortunately,it is not obvious why the algorithm stops; the average number of iterations ofstep 2 is not given either. The number of local search (i.e. simulated annealing)moves is limited, since the total number of Delaunay triangulations is only 50,independent of n for 10 � n � 100. A temperature reduction factor of 0.7 forsimulated annealing strongly indicates that this is the case. The performance isgood, �BG � 3:0%, but at the cost of a high computational e�ort.A more pure simulated annealing algorithm was given by Grimwood [14]. Thisalgorithm uses very little problem speci�c knowledge and a simple neighbourhoodstructure. Initially we have S = ; and allow additions, deletions and relocationsof Steiner points in S. No clean-up procedure is used.A new Steiner point candidate is given as the Steiner point of a triangle formedby three distinct points in Z [S, a total of O(n3) possibilities. A Steiner pointrelocation is seen as a deletion followed by an addition, giving a total of O(n4)neighbours. Additions, deletions and relocations are chosen with equal proba-bility. The length of the new tree is computed by constructing MST over Zand the new set of Steiner points. This simple algorithm is remarkably e�ective,�Grimwood � 3:0%, but computationally very expensive.10

Finally we mention a neural network algorithm by Jayadeva and Bhaumik [20].A self-organizing network is used to locate a �xed number of Steiner points.The approach is computationally very expensive and the solutions produced aresigni�cantly worse than those found by Beasley's heuristic [5].Discussion and further re�nementFrom a local search point of view the Steiner points solution representation hasso far been the most successful. It is easy to set up neighbourhood structuresand even simple variants perform quite well [14]. An important issue is how to�nd good Steiner points to insert into the candidate set S. The main drawback isthe evaluation procedure, i.e., computingMST (Z [S) and performing clean-up,which is computationally costly.One major advantage is that the heuristic solution is allowed to deviate com-pletely from MST (Z). Also the tree generated is, by construction, an MST overZ and the Steiner points, a property obviously shared by an SMT over Z.3.3 Steiner TopologiesThe pure variant of this approach is to store topology information about thecurrent solution only, i.e., the location of Steiner points is given implicitly. Asolution is therefore a Steiner topology T and the corresponding heuristic treethe relatively minimal tree.Topology-based heuristics were �rst discussed, but not evaluated experimentally,by Thompson [41]. More speci�cally, he suggested the following approach: Con-struct an initial topology T0 by, e.g., inserting Steiner points into an MST (seeSection 3.1). Find the corresponding relatively minimal tree T0. If this tree isnot degenerate (has no zero-length edges) then stop. Otherwise change the topo-logy around zero-length edges between Steiner points (Figure 3a). The relativelyminimal tree T1 for the new topology T1 is then found and the procedure iteratesuntil no such topology change can be made.Lundy [24] put Thompson's ideas into a simulated annealing framework; thiswas also the �rst simulated annealing algorithm for ESTP. The initial solutionis a randomly generated topology with n� 2 Steiner points (the topology is notSteiner in general since degree conditions for Steiner points are not necessarilyful�lled). The neighbour generation procedure consists of a topology perturbationprocedure (Figure 3b) and a Steiner point relocation scheme. The latter may beseen as a simpli�ed RMT-algorithm.The topology transformation di�ers from the one suggested by Thompson. Lundyshowed that this scheme permits the construction of any topology from anyother topology, i.e., the neighbourhood is strongly connected. It was found that11

simulated annealing produced better solutions than a multi-start version of theThompson heuristic, using a similar amount of CPU-time.

b) Lundy’s transformation

a) Thompson’s transformation

Figure 3: Topology transformations.Chapeau-Blondeau, Janez and Ferrier [9] gave a fast variant of Thompson'sheuristic. The initial topology, which is Steiner, is constructed from MST (Z).For every terminal z with degree d in MST (Z) d� 1 Steiner points are insertedrandomly but geometrically close to z.The subsequent iterative (local search like) process, which optimizes the topologyof the tree and Steiner point locations, is based on the simulation of the dynamicsof a
uid �lm that relaxes under surface forces. Each iteration takes O(n) andsince only a constant number of iterations (= 400) is made, the overall complexityof the heuristic becomes O(n logn). The heuristic uses the topology transforma-tion suggested by Thompson (Figure 3a). A change is made if the two connectedSteiner points are closer than �. The parameter � is slowly decreased, allowingfewer changes at the end of the topology optimization. Considering the runningtime complexity, the performance of the heuristic is quite good, �CJF � 2:8%.Recently, Dreyer and Overton [11] suggested two heuristics for ESTP. The �rstheuristic is basically the same as Thompson's, and the second one is a variant ofKorhonen's tree construction heuristic, in which a much more involved terminaladdition step is used. Only very limited computational results are given and nocomparisons are made to other heuristics.An heuristic using a full Steiner topology solution representation was given byH�urlimann [16]. This is also the only tabu search algorithm known for ESTP.12

A full Steiner topology is represented by a n� 3 component vector a whose i'thentry is an integer ai 2 f0; :::; 2ig; 1 � i � n � 3. The corresponding tree wascomputed by using Smith's RMT-algorithm [37].Starting from a full Steiner topology based on the topology ofMST (Z), a neigh-bour is obtained by changing a single component vector entry. H�urlimann pro-posed to change the value by at most 2 (wrapping around if necessary), whichgives 4(n� 3) neighbours.The tabu search algorithm is very simple. Whenever a component vector entryhas been changed, its value is kept �xed for a certain number of subsequentiterations. The approach was only successful for small problems (� 10 terminals),and the author indicates that one of the problems is the neighbourhood structureused.Discussion and further re�nementThe representation of solutions as Steiner topologies has the advantage of givingthe Steiner point locations implicitly. Conversely, it has the serious drawbackof having a very large, although �nite, solution space (the number of di�erenttopologies grows super-exponentially). Another drawback is the need for a com-putationally expensive RMT-algorithm.3.4 Graph RepresentationThe ESTP can be mapped to the Steiner tree problem in graphs (GSTP) by layingdown a grid on the plane. The granularity of this grid depends on the precisionrequired. All vertices on this grid that are inside the Steiner hull for Z (an area ofthe plane known to contain an SMT) are mapped to the graph problem as Steinervertices. Edge weights are (obviously) the corresponding Euclidean distances.Any local search method for GSTP may then be used to �nd a good heuristicsolution for the graph instance (see [18]). The graph solution is mapped back tothe plane and the ESTP solution cleaned-up by adjusting Steiner point locations.Discussion and further re�nementThis approach is particularly interesting when the obstacle avoiding variant isto be solved. Provan [29] gave several theoretical results and Armillotta andMummolo [2] used a mapping to the graph problem in order to construct a goodinitial solution (without Steiner points) for the obstacle avoiding problem.
13

3.5 Full Steiner TreesThis approach �rst reduces ESTP to a simple selection problem. Construct a listof full Steiner trees (FSTs) F = fF1; F2; :::; Fmg. Then �nd a subset F� � Fsuch that the FSTs in F� span all terminals and the length of the resulting treeis a short as possible. A solution can be represented by a 0-1 vector x 2 f0; 1gmsuch that xi = 1 if and only if Fi is selected, 1 � i � m.Smith, Lee and Liebman [34] gave an heuristic in which F was generated asfollows (this is a slightly modi�ed variant, see also [45]): Construct DT (Z) andMST (Z) which is a subgraph of DT (Z). Generate 3-terminal subsets as cornersof triangles in DT (Z) with two MST edges and 4-terminal subsets as corners oftwo edge-sharing triangles in DT (Z) with three connected edges from the MST.For each terminal subset �nd a shortest FST (if it exists) and append to F .Finally append all MST-edges to F .The heuristic tree is constructed by greedy selection of FSTs from F in a mannersimilar to Kruskal's MST-algorithm. This O(n logn) heuristic is both theoreti-cally and in practice the fastest heuristic known for ESTP and its performanceis also quite good, �SLL � 2:7%.This full Steiner tree algorithm was generalized and elaborated by Zachariasenand Winter [45]. Several FST generation approaches were evaluated and itwas shown experimentally that the best of these methods with high probabil-ity generates a superset of the FSTs in a corresponding SMT. Using an improvedgreedy concatenation method, a reduction �ZW � 3:0% could be obtained in timeO(n logn) and a reduction �ZW+ � 3:1% in time O(n2).Given F the problem of �nding a good heuristic tree is an easily stated combi-natorial problem for which local search methods on the set of 0-1 vectors f0; 1gmcan be devised (Section 4).Discussion and further re�nementA �xed list of FSTs makes it possible to avoid repeated Steiner point computa-tions (which are expensive
oating point operations). It is also an e�cient reduc-tion of the original problem to a simple selection problem. The major drawbackis that we cannot in general guarantee that F contains an SMT.Extensions of the full Steiner tree approach to obstacle avoiding variants havebeen discussed by Smith [32] and Nielsen [27].
14

3.6 SummaryIn Table 1 we present a summary of heuristics for ESTP, by noting their localsearch type, average reduction over MST (when available) and running timecomplexity (when available). The type classi�cation descent method in generalstands for an iterative best improvement method.Heuristic Type � ComplexitySteiner treesThompson [41] Descent method - -Chang [8] Descent method 3:0% O(n4)Korhonen [23] Tree construction 2:5% LowSteiner pointsSmith & Liebman [35] Descent method 2:2% O(n4)Suzuki & Iri [40] Descent method 2:9% MediumM�anner & Stucky [15] Genetic algorithm - HighBeasley [5] Descent method 2:9% Observed O(n1:3)Beasley & Go�net [6] Simulated annealing 3:0% Observed O(n2:2)Grimwood [14] Simulated annealing 3:0% HighJayadeva & Bhaumik [20] Neural network - HighSteiner topologiesLundy [24] Simulated annealing - HighChapeau-Blondeau et al. [9] Descent method 2:8% O(n logn)Dreyer & Overton [11] Descent method - HighH�urlimann [16] Tabu search - -Full Steiner treesSmith, Lee & Liebman [34] Tree construction 2:7% O(n logn)Zachariasen & Winter [45] Descent method 3:0% O(n logn)� � Descent method 3:1% O(n2)Table 1: Heuristics for ESTP. Type classi�cation and performance. An \-" in-dicates that no or insu�cient data is available to give a reliable estimate ofreduction over MST and/or running time complexity.The table indicates that the Steiner points representation has been the mostpopular and it has also been quite successful. Genetic algorithms, simulatedannealing and neural networks have been proposed and evaluated. The simulatedannealing based heuristic by Beasley & Go�net [6] has the best performancewhen running times are taken into account. The representations Steiner treesand Steiner topologies have had more limited success, at least from a local searchpoint of view and when running times are considered.The full Steiner tree approach has proven to be a viable ground for the construc-tion of fast greedy heuristics for ESTP [34, 45]. In the following sections we15

present several local search algorithms using this approach and show that theyperform very well compared to the best known heuristics.4 Full Steiner Tree Local SearchIn this section we describe the novel FST based local search approach. Localsearch is performed on a preprocessed list of FSTs, F = fF1; F2; :::; Fmg. Con-structing a good and short candidate list F is obviously essential. A good list isone that contains as many FSTs of an SMT as possible, preferably all of them.In a previous paper [45] we have shown that such a list, containing only a linearnumber of FSTs, can be constructed in time O(n logn). Here we give a summaryof a similar generation method for which the expected number of FSTs is linearand, furthermore, present a quick and very e�cient algorithm for pruning awaynon-optimal FSTs from F (Section 4.1). Full Steiner tree local search neighbour-hoods are proposed in Section 4.2 and local search methods (meta-heuristics) aregiven in Section 4.3.4.1 Generating and Pruning Full Steiner TreesOur FST generation method is based on two properties often true for terminalsspanned by an FST in an SMT (the 2�m ladder case, m odd, solved by Chungand Graham [10] disproves the general validity of these assumptions): Firstly,the terminals are geometrically close to each other. If two terminals, zi and zj,are spanned by an FST then zj typically is one of the closest neighbours to zi,and vice versa.Secondly, each FST in an SMT spans very few terminals and seldomly morethan �ve. In the study by Winter and Zachariasen [44] less than 1% of theFSTs spanned six or more terminals for randomly generated instances. In thefollowing we let K denote the maximum number of terminals spanned by anyFST generated.Well-known structures from computational geometry, such as the Delaunay tri-angulation, can be used to generate small subsets of geometrically close termi-nals [28]. Based on the experimental evidence given in [45] we choose to usethe so-called Gabriel graph GG(Z) which is an undirected graph with Z as itsvertex set. Let D(zi; zj), zi; zj 2 Z, denote a disc with zizj as a diameter.The terminals zi and zj are adjacent in GG(Z) if and only if D(zi; zj) con-tains no other terminal in Z. The Gabriel graph can be constructed in timeO(n logn) since it is an easily identi�ed subgraph of the Delaunay triangulation,16

DT (Z) (Figure 4). The Gabriel graph contains MST (Z) so we have the relationMST (Z) � GG(Z) � DT (Z).

Figure 4: Gabriel graph (black edges) as a subgraph of the Delaunay triangulation(black and gray edges).We generate subsets of terminals by enumerating all connected subgraphs ofGG(Z) with up to K terminals. Based on the results in [45] and preliminaryexperiments we choose K = 5. The expected number of such terminal sets islinear, since the average degree in GG(Z) is bounded by a constant (for randomlygenerated instances approximately 52n subsets are generated [45]). However, forK � 3 there may be
(n2) terminal subsets; consider, e.g., the corners of aregular n-gon with one terminal in its center.FSTs spanning two terminals in an SMT must belong to MST (Z), so thesen� 1 FSTs can be found in time O(n logn) time since MST (Z) � GG(Z). Nowconsider a subset ZF � Z containing from 3 to K terminals. A shortest FST Fspanning ZF (if it exists) is obtained by generating all full Steiner topologies andapplying Hwang's FST-algorithm [17].For any two terminals zi and zj let bzizj denote the length of the longest edgeon the unique path between zi and zj in MST (Z). This distance is equal to theso-called bottleneck Steiner distance between the two terminals. Let MSTb(ZF)be an MST over ZF using bottleneck Steiner distances. If jMSTb(ZF)j < jF jthen F may be discarded, since it cannot appear in any SMT [18].This pruning test can be performed in total time O(m logn) and O(n) spaceby storing MST (Z) as a dynamic search tree [31] allowing longest edge queriesin O(logn) time; recall that there are m FSTs and that each FST only spans17

a constant number of terminals. A simpler O(mn) time and O(n2) space im-plementation of the pruning test computes bzizj for every pair of terminals in apreprocessing phase by making n depth-�rst searches inMST (Z); the bottleneckSteiner distances are stored in a matrix. A practical implementation of this lattervariant is actually faster than an implementation of the O(m logn) variant forn � 1000.4.2 Local Search NeighbourhoodsBefore applying local search we sort the FST list F = fF1; F2; :::; Fmg by ratiojFij=jMSTb(ZFi)j; 1 � i � m (smallest �rst), such that FSTs showing a largereduction over the bottleneck MST form the head of F (this ratio is always � 1).In addition, we assume that the MST-edges (2-terminal FSTs) form the tail ofF and are sorted by non-decreasing length.FSTs in F spanning three or more terminals are called large FSTs. By sortingF as described above the list of large FSTs is F 0 = fF1; F2; : : : ; Fm0g; m0 =m� (n� 1), while MST-edges form the list F 00 = fFm0+1; Fm0+2; : : : ; Fmg. In thefollowing we assume that m0 > 0, otherwise we return MST (Z) as the heuristicsolution.We may de�ne the local search solution space as the set of 0-1 vectors X̂ =f0; 1gm. A solution x̂ 2 X̂ has x̂i = 1 if and only if Fi is selected, 1 � i � m. Notall solutions in X̂ represent valid solutions to ESTP. The graph correspondingto a solution x̂ may be disconnected (which is critical) or it may contain cycles(which is less critical). One remedy to this problem is to add a penalty to the costof solutions which are disconnected, e.g., some large constant times the numberof components.We avoid this problem completely by de�ning a solution space on large FSTsonly, X = f0; 1gm0. Then any solution vector x 2 X is a valid solution if weuse MST-edges to reconnect disconnected components, if necessary. Recall thatMST-edges are presorted in F 00 and we therefore can make this reconnection inlinear time, O(n), using a fast disjoint-set data structure.Three di�erent neighbourhood functions are proposed:Flip neighbourhood NFGiven a solution x 2 X a neighbour in NF (x) is constructed by
ipping thevalue of exactly one entry in x. This gives a total of m0 neighbours; eachneighbour is evaluated in time O(m), so evaluating the whole neighbour-hood takes timeO(m2). The neighbourhood is obviously strongly connectedsince we can transform any solution into any other by changing entries thatdi�er, one at a time. 18

An initial solution is constructed by generating a random 0-1 vector: Everyentry has probability 0:5 of containing the value 1.Insert/delete neighbourhood NIWhen using this neighbourhood all solutions are trees (contain no cycles).An arbitrary vector x is transformed into a tree solution by using a Kruskallike algorithm which runs through the presorted list F 0: An FST Fi is addedto the tree (forest) only if xi = 1 and no cycle is created when it is added;if xi = 1 and a cycle is created we set xi = 0. Finally MST-edges are addedif the corresponding graph is disconnected.Let x be a tree solution. We construct a neighbour by
ipping one of itsentries. The neighbour corresponding to
ipping an entry xi from 0 to 1 isconstructed by using the transformation described above - however, Fi isadded to the tree before any of the other FSTs are added. This is denotedan FST-insertion, since we insert Fi into the tree by pushing other FSTs outsuch that a tree is obtained (see [45] for more details). If xi = 1 we simplyset xi = 0, delete Fi from the tree and reconnect by using MST-edges. Thisneighbourhood can also be evaluated in time O(m2).This neighbourhood is strongly connected since any tree solution can betransformed into any other tree solution by going through the vector of allzeros (which is MST (Z)). All 1-entries in the �rst solution are
ipped to0 (large FSTs are deleted one by one) and then the correct 0-entries are
ipped to 1 as given by the second solution (FSTs are inserted one by one).An initial solution is constructed by generating a random 0-1 vector andtransforming it into a tree solution by the procedure given above.Local insert/delete neighbourhood NLThis neighbourhood is a greedy variant of NI which can be evaluated intime O(m). Let x be a tree solution and T the corresponding heuristictree. Assume that for every terminal z 2 Z we have access to a list Tz ofFSTs spanning z in T . Let Fi be an FST which we would like to insertinto T . If the FSTs in T which span some terminal in ZFi are connectedwe may perform the insertion locally in constant time [45]. Similarly, anFST Fi may be deleted in constant time if the edges in MST (Z) adjacentto some terminal in ZFi are connected. The size of this neighbourhood isat most m0, since some FSTs cannot be inserted or deleted because of theconnectedness condition.It can be shown by a simple counter-example that NL is neither stronglynor weakly optimally connected. That is, there exist instances for whichsome solution cannot be transformed into an optimal solution (with respectto F) by any sequence of NL moves.19

An initial solution is constructed by using the same procedure as for theinsert/delete neighbourhood.When compared to neighbourhoods proposed for other well-known combinatorialoptimization problems, such as the Travelling Salesman Problem, these neigh-bourhoods are quite simple. However, as will be shown in Section 5, the neigh-bourhoods are actually very e�ective - provided that enough CPU time is al-located. The expected (and perhaps the worst-case) complexity for evaluatingNF and NI can be reduced by using dynamic search trees and other sophisti-cated data structures, but would most likely yield no signi�cant improvement forn � 1000, the problem size range considered in this study.4.3 Local Search MethodsWe compare three thoroughly studied meta-heuristics the literature, repeated de-scent (RD), simulated annealing (SA) and tabu search (TS) [1]. Each of thesemethods have their advantages and disadvantages, and we will show that theyperform quite di�erently on the three neighbourhoods presented in Section 4.2.Repeated descent (RD)This is a multi-start version of iterative improvement. More speci�cally, wegenerate a random initial solution and set i = 1. Then we increase i until animproving neighbour corresponding to
ipping xi has been found. We moveto this new neighbour and increase i (wrapping around if necessary) untila new improving solution is found etc. When no improving neighbour canbe found (local optimum) we generate a new initial solution and descendagain. This descent method may be characterized as deterministic �rstimprovement.Simulated annealing (SA)We use the simulated annealing variant by Johnson, Aragon, McGeochand Schevon [21]. The parameters INITPROB = 0.4, TEMPFACTOR = 0.95,SIZEFACTOR = 4 and MINPERCENT = 2, which give a relatively fast coolingschedule were used.Tabu search (TS)A standard attribute based variant of tabu search is used. Every FSTinvolved in a move is given a tabu tenure chosen randomly from the interval[5; 8] (we found no signi�cant performance di�erences when changing theinterval). Otherwise the deterministic neighbourhood evaluation schemefrom RD is used. 20

5 Computational ExperienceThe full Steiner tree based local search approach was experimentally evaluated ona HP workstation1 using the programming language C++ and class library LEDA(version 3.4.1) [25]. The random number generator used was the random sourceclass in LEDA. We also used LEDA's native Delaunay triangulation algorithm.Problems instances were taken from the OR-Library [4]. The algorithms wereevaluated on the 46 instances by Soukup and Chow (3-62 terminals) [39] and the180 randomly generated instances by Beasley (10-1000 terminals), 15 instancesfor each size 10; 20; : : : ; 100; 250; 500 and 1000 [5]. Optimal solutions are knownfor all these instances [44, 42].In the following we �rst demonstrate the e�ciency of the full Steiner tree gen-eration method (Section 5.1) and compare the neighbourhoods and local searchmethods proposed (Section 5.2). The most promising of these are selected andcompared to the best known (local search) heuristic, the Steiner point approachby Beasley and Go�net [6] (Section 5.3).5.1 Full Steiner Tree Generation and PruningThe performance of the full Steiner tree generation method is summarized inTable 2. The algorithm uses the Gabriel graph to �nd subsets containing up toK = 5 terminals and bottleneck Steiner distances to prune FSTs. The simpleO(mn) pruning algorithm is used, but the CPU time of this step is negligible forthe instances considered. The number of surviving FSTs - which includes then� 1 MST-edges - is small and linear as expected.5.2 Neighbourhoods and Local Search MethodsWe compare neighbourhoods and local search methods on the 15 100-terminalinstances. Five independent runs were made on each instance for each neigh-bourhood/local search method combination. The stopping condition for SA isthe so-called freezing condition used in [21]. For RD and TS the stopping condi-tion is given by the maximum number descents MAXDESC and maximum numberof iterations MAXITER, respectively. These parameters were chosen as to make therunning times comparable to SA, resulting in the parameter values MAXDESC =10pn and MAXITER = 50pn.1Machine: HP 9000 Series 700 Model 735/99. Processor: 99 MHz PA-RISC 7100. Mainmemory: 96 MB. Performance: 3.27 SPECint95 (109.1 SPECint92) and 3.98 SPECfp95 (169.9SPECfp92). Operating system: HP-UX 9.0. Compiler: GNU C++ 2.7.2 (optimization
ag-O3). 21

n CPU Time CPU Time FST CountGeneration Pruning after(sec) (sec) Pruning10 0.09 0.01 20.120 0.48 0.03 42.530 1.07 0.06 63.940 1.60 0.08 93.450 2.05 0.11 115.960 2.57 0.13 137.670 3.11 0.16 157.380 3.82 0.20 185.390 4.47 0.22 201.9100 5.32 0.27 240.6250 15.97 0.88 591.6500 33.67 2.47 1229.91000 73.20 8.42 2413.7Table 2: Full Steiner tree generation and pruning.In Table 3 we summarize the results. Note that each number is an average over15�5 = 75 runs and that the running times include FST generation and pruning(which takes less than 6 seconds on average and is the same for all combinations).Two interesting observations follow immediately: Firstly, the neighbourhood NIis much better than NF and NL. Secondly, the performance of TS is substantiallyworse than for RD and SA. Local optima for NF have a poor quality, more orless independent of the initial solution (RD). SA seems to be better at escapingthese local optima than TS.The neighbourhood NI is in general very good. The reductions obtained by RDand SA are very close to the average reduction of the optimal solutions, 3:27%.For the neighbourhood NL only RD achieves a reasonable performance; for thisrestricted neighbourhood the initial solution is very critical. Running times arelower than for the two other neighbourhoods and this di�erence increases forlarger instances (recall that neighbourhood evaluation only takes O(m) comparedto O(m2) for the other two neighbourhoods).5.3 Overall Performance ComparisonIn this section we make a more thorough investigation of the FST based localsearch approach using the insert/delete neighbourhood, NI . Our results are com-pared to results reported on the same instances by Beasley and Go�net [6]. TheCPU-times in their paper have been \normalized" on basis of the Linpack bench-22

Neighbourhood Reduction CPUand Local over MST TimeSearch Method (percent) (sec)RD 2.63 � 0.31 32.8NF SA 3.05 � 0.37 48.3TS 2.25 � 0.40 32.3RD 3.25 � 0.36 34.5NI SA 3.24 � 0.38 51.3TS 3.15 � 0.39 48.6RD 3.17 � 0.35 22.7NL SA 2.61 � 0.79 33.8TS 2.49 � 0.81 28.8Table 3: Neighbourhood and local search method comparison. The second num-ber in the MST-reduction column is standard deviation.mark as follows: Our HP workstation has a benchmark of approximately 40 andthe SGI Indigo machine used in [6] a value between 4 and 12. Accordingly, theCPU-times reported in [6] were divided by 5, in order to make them comparableto ours.When applied to the 46 Soukup and Chow problem instances, all methods RD,SA and TS found the optimum for 40 instances in every of the �ve runs made.For four instances (no. 18, 32, 45 and 46) optimum was found at least once outof �ve runs by some method. Two instances (no. 10 and 40) were never solved tooptimality since not all the FSTs of an SMT were generated. For SA the averageMST reduction was 2:78% (compared to 2:81% for the optimal solutions) andthe average running time 1.1 seconds with a maximum of 21.6 seconds. Whenthe maximum FSTs size was increased to K = 6 all instances were solved tooptimality at least once out of �ve runs by some method.These results are comparable to those obtained by the heuristic of Beasley andGo�net. On basis of the solution values presented in their paper [6], they seemto have obtained optimal solutions for 45 instances (only instance no. 18 was notsolved to optimality). However, it is not clear if these values are averages overseveral runs or just the result of one single run; recall that this heuristic is basedon simulated annealing so di�erent runs may give di�erent results. The averagereduction over MST was 2:81% with an average (normalized) running time of 1.9seconds.In Table 4 we present the main computational results of this paper. The threelocal search methods, using neighbourhoodNI, are evaluated on the 180 randomlygenerated instances with 10 to 1000 terminals. The results are compared to thosereported by Beasley and Go�net and to the optimal solutions. While the running23

times and the running time growth are within the same order of magnitude, FSTbased local search produces signi�cantly better solutions. For n � 100 Beasleyand Go�net obtain an average reduction of 3:03% while the values for RD, SAand TS are 3:14%, 3:14% and 3:09%, respectively. Note that the average optimalsolution reduction is 3:15%.n Beasley & Go�net NI - RD NI - SA NI - TS OPTReduction CPU Reduction CPU Reduction CPU Reduction CPU Reductionover MST Time over MST Time over MST Time over MST Time over MST(percent) (sec) (percent) (sec) (percent) (sec) (percent) (sec) (percent)10 3.22 � 1.88 0.7 3.23 � 1.84 0.2 3.23 � 1.84 0.3 3.23 � 1.84 0.3 3.25 � 1.8820 3.12 � 0.97 3.3 3.15 � 0.96 0.9 3.16 � 0.96 1.5 3.14 � 0.94 1.3 3.16 � 0.9930 2.95 � 0.75 7.3 3.06 � 0.74 2.2 3.06 � 0.75 4.0 3.02 � 0.71 3.0 3.07 � 0.7840 2.97 � 0.63 15.5 3.12 � 0.59 4.4 3.12 � 0.59 8.2 3.07 � 0.62 6.0 3.14 � 0.6350 2.92 � 0.42 23.1 3.03 � 0.40 7.2 3.02 � 0.40 12.9 3.00 � 0.41 9.4 3.03 � 0.4160 3.18 � 0.37 31.1 3.27 � 0.41 9.6 3.27 � 0.41 16.3 3.21 � 0.41 13.8 3.27 � 0.4270 2.95 � 0.37 42.1 3.11 � 0.37 13.2 3.10 � 0.36 22.1 3.03 � 0.36 18.8 3.11 � 0.3880 2.92 � 0.69 78.1 3.03 � 0.65 19.2 3.03 � 0.65 31.2 2.98 � 0.62 27.1 3.04 � 0.6790 2.95 � 0.50 93.6 3.11 � 0.48 23.1 3.10 � 0.49 37.1 3.02 � 0.49 33.8 3.12 � 0.49100 3.07 � 0.34 97.7 3.25 � 0.36 34.5 3.24 � 0.38 51.3 3.15 � 0.39 48.6 3.27 � 0.38250 - - 3.17 � 0.22 338.1 3.17 � 0.22 365.1 3.08 � 0.23 432.9 3.21 � 0.23500 - - 3.27 � 0.17 2332.4 3.30 � 0.17 1414.9 3.20 � 0.17 2554.0 3.33 � 0.181000 - - 3.23 � 0.13 13904.6 3.28 � 0.14 5678.5 3.17 � 0.13 13896.1 3.31 � 0.14Table 4: Overall performance comparison. Second numbers in MST-reductioncolumns are standard deviations.On larger instances (n > 100) solutions within 0:05% from optimum are obtainedon average. The observed running time growth is super-quadratic with SA be-ing closest to quadratic running time. The relative solution quality deterioratesslightly for larger instances, but by using, e.g., a slower cooling schedule for SA,better solutions obviously can be expected at the cost of increased running time.It should be noted that RD does perform remarkably well. This indicates thatNI is a very powerful neighbourhood, that is, the average quality of local optimais high. The poor performance of tabu search may be attributed to the smallneighbourhood which makes it necessary to use a short tabu tenure; this againmakes it di�cult to avoid cycling.6 ConclusionThe contributions of this paper are twofold: First we gave a comprehensive surveyof all known and experimentally evaluated heuristics for ESTP from a local searchperspective. The survey is the �rst uni�ed classi�cation of heuristics for ESTP.We demonstrated that the Steiner points approach so far had been the mostpopular and successful local search approach. Furthermore, the full Steiner tree(FST) based methods had proven to be very e�ective in the context of greedyheuristics. 24

Secondly, we presented several local search neighbourhoods and methods us-ing FSTs. We gave three di�erent neighbourhoods and compared well-knownmeta-heuristics using these neighbourhoods. Computational experiments showedthat the insert/delete neighbourhood compared very favorably to the best knownheuristics for ESTP.We chose to use the most common variants of descent methods, simulated an-nealing and tabu search. Other meta-heuristics such as iterated descent, geneticalgorithms and more sophisticated variants of tabu search may prove to be evenmore e�ective. However, there is very little room for improvement as far asquality is concerned - running times may on the other hand be improved.Local search on FSTs may prove useful as a upper-bounding procedure for exactmethods. The best known exact algorithms [44, 42] use the same two-phasescheme employed in this paper: First a list of FSTs F - in this case known tocontain an SMT - is generated and then an SMT is obtained by concatenation ofFSTs from F . Better upper-bounding procedures would most likely improve theperformance of the branch-and-cut algorithm used in the concatenation phase.FST based local search can easily be applied to other metrics and higher dimen-sions, in particular the 3-dimensional Euclidean problem and the plane rectilinearproblem. All metric dependence (and dependence on dimension) is restricted tothe generation of a good and short FST list F . This requires an e�ective algo-rithm for �nding subsets of \close" terminals and an algorithm for constructingFSTs (or SMTs) on these subsets. There exist contributions in the literatureusing this basic approach for both the 3-dimensional Euclidean problem [36] andthe plane rectilinear problem [33], but none of them used local search for theconcatenation problem.Extensions to obstacle avoiding variants are also evident. For these problems\closeness" must be de�ned appropriately, i.e., using shortest paths between ter-minals which avoid the obstacles. FSTs (or SMTs) on small subsets of terminalsmust obviously be constructed such that they avoid the obstacles; there exist, e.g.,algorithms for the construction of SMTs for three terminals and one polygonalconvex obstacle [43].AcknowledgementThe author would like to thank Pawel Winter for valuable comments and sugges-tions.
25

References[1] E. H. L. Aarts and J. K. Lenstra, editors. Local Search in CombinatorialOptimization. John Wiley & Sons, 1997.[2] A. Armillotta and G. Mummolo. A Heuristic Algorithm for the Steiner Prob-lem with Obstacles. Technical report, Dipt. di Pregettazione e ProduzioneIndustriale, Univ. degli Studi di Bari, Bari, 1993.[3] S. Arora. Polynomial Time Approximation Schemes for Euclidean TSP andother Geometric Problems. In Proc. 37th Annual Symp. on Foundations ofComputer Science, pages 2{13, 1996.[4] J. E. Beasley. OR-Library: Distributing Test Problems by Electronic Mail.Journal of the Operational Research Society, 41:1069{1072, 1990.[5] J. E. Beasley. A Heuristic for Euclidean and Rectilinear Steiner Problems.European Journal of Operational Research, 58:284{292, 1992.[6] J. E. Beasley and F. Go�net. A Delaunay Triangulation-Based Heuristicfor the Euclidean Steiner Problem. Networks, 24:215{224, 1994.[7] P. Berman and V. Ramaiyer. Improved Approximations for the Steiner TreeProblem. Journal of Algorithms, 17(3):381{408, 1994.[8] S. K. Chang. The Generation of Minimal Trees with a Steiner Topology. J.Assoc. Comput. Mach., 19:699{711, 1972.[9] F. Chapeau-Blondeau, F. Janez, and J-L. Ferrier. A Dynamic AdaptiveRelaxation Scheme Applied to the Euclidean Steiner Minimal Tree Problem.SIAM Journal on Optimization, to appear.[10] F. R. K. Chung and R. L. Graham. Steiner Trees for Ladders. Annals ofDiscrete Mathematics, 2:173{200, 1978.[11] D. R. Dreyer and M. L. Overton. Two Heuristics for the Steiner Tree Prob-lem. Technical Report 724, Computer Science Department, New York Uni-versity, 1996.[12] D.-Z. Du and Y. Zhang. On Better Heuristics for Steiner Minimum Trees.Mathematical Programming, 57:193{202, 1992.[13] E. N. Gilbert and H. O. Pollak. Steiner Minimal Trees. SIAM Journal onApplied Mathematics, 16(1):1{29, 1968.
26

[14] G. R. Grimwood. The Euclidean Steiner Tree Problem: Simulated Annealingand Other Heuristics. Master's thesis, Institute of Statistics and OperationsResearch, Victoria University of Wellington, New Zealand, 1994.[15] J. Hesser, R. M�anner, and O. Stucky. Optimization of Steiner Trees usingGenetic Algorithms. In Proceedings of the Third International Conferenceon Genetic Algorithm, pages 231{236, 1989.[16] T. H�urlimann. The Euclidean Steiner Tree Problem, Implementation of aHeuristic. Technical Report 94-14, Institute of Informatics, University ofFribourg, 1994.[17] F. K. Hwang. A Linear Time Algorithm for Full Steiner Trees. OperationsResearch Letters, 4(5):235{237, 1986.[18] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. An-nals of Discrete Mathematics 53. Elsevier Science Publishers, Netherlands,1992.[19] F. K. Hwang and J. F. Weng. The Shortest Network under a Given Topology.Journal of Algorithms, 13:468{488, 1992.[20] Jayadeva and B. Bhaumik. A Neural Network for the Steiner Minimal TreeProblem. Biological Cybernetics, 70:485{494, 1994.[21] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza-tion by Simulated Annealing: An Experimental Evaluation; Part I, GraphPartitioning. Operations Research, 37(6):865{892, 1989.[22] R. Karp. Probabilistic Analysis of Partitioning Algorithms for the TravelingSalesman Problem in the Plane. Mathematics of Operations Research, 2:209{224, 1977.[23] P. Korhonen. An Algorithm for Transforming a Spanning Tree into a SteinerTree. In Survey of Math. Programming, Proc. of the 9-th Int. Math. Program.Symp., volume 2, pages 349{357. North-Holland, 1974.[24] M. Lundy. Applications of the Annealing Algorithm to Combinatorial Prob-lems in Statistics. Biometrika, 72:191{198, 1985.[25] K. Mehlhorn and S. N�aher. LEDA - A Platform for Combinatorialand Geometric Computing. Max Planck Institute for Computer Sciencehttp://www.mpi-sb.mpg.de/LEDA/leda.html, 1996.[26] Z. A. Melzak. On the Problem of Steiner. Canad. Math. Bull., 4(2):143{148,1961. 27

[27] M. Nielsen. Abstakte Voronoi-diagrammer i ESTPO-heuristikker. Master'sthesis, DIKU, Department of Computer Science, University of Copenhagen,1994.[28] F.P. Preparata and M. I. Shamos. Computational Geometry: An Introduc-tion. Springer-Verlag, New York, second edition, 1988.[29] J. S. Provan. An Approximation Scheme for Finding Steiner Trees withObstacles. SIAM Journal on Computing, 17(5):920{934, 1988.[30] S. Ravada and A. T. Sherman. Experimental Evaluation of a PartitioningAlgorithm for the Steiner Tree Problem in R2 and R3. Networks, 24:409{415,1994.[31] D. D. Sleator and R. E. Tarjan. A Data Structure for Dynamic Trees. Journalof Computer and System Sciences, 26:362{391, 1983.[32] J. M. Smith. Generalized Steiner Network Problems in Engineering Design.In Design Optimization. Academic Press, 1985.[33] J. M. Smith, D. T. Lee, and J. S. Liebman. An O(n logn) Heuristic forthe Rectilinear Steiner Minimal Tree Problem. Engineering Optimization,4:179{192, 1980.[34] J. M. Smith, D. T. Lee, and J. S. Liebman. An O(n logn) Heuristic forSteiner Minimal Tree Problems on the Euclidean Metric. Networks, 11:23{29, 1981.[35] J. M. Smith and J. S. Liebman. Steiner Trees, Steiner Circuits and theInterference Problem in Building Design. Engineering Optimization, 4:15{36, 1979.[36] J. M. Smith, R. Weiss, and M. Patel. AnO(N2) Heuristic for Steiner MinimalTrees in E3. Networks, 25:273{289, 1995.[37] W. D. Smith. How to Find Steiner Minimal Trees in Euclidean d-Space.Algorithmica, 7(2/3):137{177, 1992.[38] J. Soukup. Minimum Steiner Trees, Roots of a Polynomial and Other Magic.ACM/SIGMAP Newsletter, 22:37{51, 1977.[39] J. Soukup and W. F. Chow. Set of Test Problems for the Minimum LengthConnection Networks. ACM/SIGMAP Newsletter, 15:48{51, 1973.[40] A. Suzuki and M. Iri. A Heuristic Method for the Euclidean Steiner Problemas a Geometrical Optimization Problem. Asia-Paci�c Journal of OperationalResearch, 3(2):109{122, 1986. 28

[41] E. A. Thompson. The Method of Minimum Evolution. Annals of HumanGenetics, 36:333{340, 1973.[42] D. M. Warme. Personal communication, 1997.[43] P. Winter and J. M. Smith. Steiner Minimal Trees for Three Points withOne Convex Polygonal Obstacle. Annals of Operations Research, 33:577{599, 1991.[44] P. Winter and M. Zachariasen. Euclidean Steiner Minimum Trees: An Im-proved Exact Algorithm. Networks, to appear.[45] M. Zachariasen and P. Winter. Concatenation-Based Greedy Heuristics forthe Steiner Tree Problem in the Euclidean Plane. Technical Report 97/20,DIKU, Department of Computer Science, University of Copenhagen, 1997.

29

