Technical Report DIKU-TR-97/21
Department of Computer Science
University of Copenhagen
Universitetsparken 1
DK-2100 KBH O
DENMARK

September 1997

Local Search for the Steiner Tree Problem
in the Euclidean Plane

Martin Zachariasen

Local Search for the Steiner Tree Problem
in the Fuclidean Plane

Martin Zachariasen®

September 8, 1997

Abstract

Most heuristics for the Steiner tree problem in the Euclidean plane
perform a series of iterative improvements using the minimum spanning
tree as an initial solution. We may therefore characterize them as local
search heuristics. In this paper, we first give a survey of existing heuristic
approaches from a local search perspective, by setting up solution spaces
and neighbourhood structures. Secondly, we present a new general local
search approach which is based on a list of full Steiner trees constructed
in a preprocessing phase. This list defines a solution space on which three
neighbourhood structures are proposed and evaluated. Computational re-
sults show that this new approach is very competitive from a cost-benefit
point of view. Furthermore, it has the advantage of being easy to apply to
the Steiner tree problem in other metric spaces and to obstacle avoiding
variants.

Keywords: heuristics, survey, local search, Steiner trees

1 Introduction

The Euclidean Steiner tree problem (ESTP) can be stated as follows: Given a set
Z of n points in the Euclidean plane, find a shortest network, a Steiner minimum
tree (SMT), interconnecting Z. The points in Z are called terminals, while any
junctions introduced are called Steiner points.

*Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen O,
Denmark. E-mail: martinz@diku.dk.

A shortest network spanning Z without introducing Steiner points is called a
minimum spanning tree (MST). In contrast to the Steiner tree problem which
is NP-hard, an MST can be constructed in time O(nlogn) [28]. The minimum
spanning tree is the basic reference when comparing heuristics for ESTP. The
ratio of the length |[SMT(Z)| of an SMT to the length [MST(Z)| of an MST
spanning the same set of terminals Z cannot be smaller than p = /3/2 ~ 0.866
[18]. An MST is therefore at most % —1 & 15.47% longer than an SMT. Recently
Arora [3] showed that ESTP belongs to a class of NP-hard problems which have
a polynomial-time approximation scheme, i.e., we can find a solution within a
factor 1 4 € from optimum in polynomial time, for any fixed € > 0.

There has been a major breakthrough in the development of exact algorithms for
ESTP during the last few years [44, 42]. Randomly generated instances with 50
terminals can now be solved in a few minutes on a workstation and most 1000
terminal instances in a day. Thus the need for heuristic algorithms may seem less
urgent. However, as will be demonstrated in the sequel heuristic algorithms may
be able to speed up exact algorithms significantly by providing high quality upper-
bounds. In particular, the so-called full Steiner tree approach which is presented
in this paper is well suited for this purpose, since it is based on concatenation in
a manner similar to the best exact algorithm.

Most heuristics for ESTP may be characterized as local search heuristics. Local
search is a general search scheme which has been applied to a wide range of
combinatorial optimization problems [1]. A combinatorial optimization problem
is given by a finite set X’ of solutions, where each solution x € X" has cost f(x).
The objective is to find a solution x* € X with minimum (or maximum) cost. The
solutions space for ESTP is, as stated above, not finite since Steiner points may
be chosen arbitrarily in the plane. However, it is possible give a finite set (with
size super-exponential in n) of Steiner point candidates as shown by Melzak [26].

A neighbourhood function A/ over X assigns to every solution x € X a set N'(x) C
X of solutions which are “close to” x in some sense. Neighbourhood functions
are usually intimately related to the solution representation used, e.g., the data
structure storing and identifying solutions in X. Starting from an initial solution
xo € X a local search algorithm generates a chain of solutions xg, x1, ... Xy such
that x; € N (x;_1) for every i = 1,...k, continually trying to find better solutions
in X.

In this paper, we first give a survey of existing heuristics for ESTP from a local
search perspective (Section 3). We classify the heuristics, discuss similarities and
differences and present results from the literature on their efficiency. In Section 4
we give a detailed description of local search based on full Steiner trees. We
present computational results in Section 5. Concluding remarks are given in
Section 6.

2 Definitions and Basic Notions

The definitions and notions used in this paper in general follow those used in the
book on the Steiner tree problem by Hwang, Richards and Winter [18] and in the
local search book edited by Aarts and Lenstra [1].

We first note that Euclidean distances and Steiner point coordinates are solu-
tions to algebraic equations and may in principle require infinite precision. It is
therefore assumed that terminal locations are given as rational numbers (finite-
precision) and that distances and Steiner point coordinates are rounded to finite
precision.

A Steiner tree (ST) is a tree T interconnecting Z fulfilling the following con-
ditions: No two edges meet at an angle less than 120° and edges incident to a
Steiner point meet at exactly 120° (angle conditions). The degree of a terminal
point is at most three and each Steiner point has exactly degree three (degree
conditions). (In their classical exposition on the Steiner tree problem, Gilbert
and Pollak [13] defined a Steiner tree as a tree that cannot be shortened by a
small perturbation or by “splitting” a terminal by inserting a Steiner point. This
definition and the one given in our paper are equivalent and are used interchange-
ably in the literature.) If, in addition, the number of Steiner points is maximal
(n—2), the tree is called a full Steiner tree (FST). An SMT is a Steiner tree and,
furthermore, a union of full Steiner trees (Figure 1).

Figure 1: A Steiner minimum tree (each full Steiner tree is indicated).

A topology T is a description (graph) of the connections (edges) between terminals
and Steiner points (vertices). A Steiner topology is a topology which fulfills the

Steiner tree degree conditions. A topology is full if the number of Steiner points
is maximal (n — 2).

The shortest tree with a topology T is called the relatively minimal tree. A rela-
tively minimal tree is degenerate if it has zero-length edges. An RMT-algorithm
is a procedure for finding a relatively minimal tree; both numerical and combi-
natorial RMT-algorithms exist [37, 19].

Any Steiner topology can be partitioned into edge-disjoint full components each
being a full Steiner topology. Given a full topology the locations of all Steiner
points fulfilling the angle conditions - if such a configuration exists - can be
found in linear time using Hwang’s algorithm [17]. We refer to this procedure as
an FST-algorithm.

Let |Ty(Z)| be the length of a tree Ty (Z) constructed using an heuristic H. The
savings over MST

_ |MST(2)| - |Tu(Z)|

N |MST(Z)]

(in percent) will be our performance measure for the heuristic. When references
are made to the average reduction, op, over the MST, it is assumed that the
terminals have been distributed randomly with uniform distribution in a (unit)
square.

O'H(Z)

Finally we give two definitions related to local search neighbourhoods. A neigh-
bourhood N is strongly connected if any solution in the solution space X can be
reached from any other solution by performing moves via A/. A neighbourhood
is weakly optimally connected if there is a finite chain of moves from any solution
in X to some optimal solution in X

3 Local Search and Steiner Tree Heuristics

The history of heuristics for ESTP dates back to the early 1970s with the contribu-
tions of Chang [8], Thompson [41] and Korhonen [23]. The heuristics by Chang
and Thompson may be described as greedy Steiner point insertion algorithms
which iteratively reduce the length of an initial MST, at each step inserting a
“best” possible Steiner point. Although the notion “local optimization” or “local
search” was not used, the analogy is apparent.

The development of general local search methods such as simulated annealing,
tabu search and genetic algorithms in the 1980s has opened up a new area of re-
search, but applications to ESTP have had limited success compared to other
classical problems (for more details about these meta-heuristics we refer the
reader to [1]). To the best of our knowledge, there currently exist three sim-

ulated annealing [24, 6, 14], one tabu search [16], one genetic [15] and one neural
network [20] algorithm for ESTP.

In this section we classify existing heuristics for ESTP based on the underlying
solution representation. By doing so we can set up and characterize neighbour-
hood structures based on these representations. This classification is obviously
not complete, but it captures the essence of the heuristics described. Heuristic
approaches which are difficult or impossible to characterize from a local search
perspective have not been included in this survey (e.g. [22, 38, 30]). The heuris-
tics are generally presented chronologically and, when available, running times
and observed reductions over MST are noted.

The first alternative is to store complete information about the solution tree, that
is, information about the topology of the tree and all Steiner point coordinates
(Section 3.1). We will refer to this representation as the Steiner tree representa-
tion, ignoring the fact that the trees may not necessarily fulfill degree and angle
conditions - the objective is obviously that these conditions are fulfilled.

A second alternative is to forget all about the topology; given a set of Steiner
points S the corresponding tree is the MST over Z U S (Section 3.2). This
representation is called the Steiner points representation (there may be more than
one MST, but this fact is usually ignored by the heuristics using this approach).

Conversely, we have the Steiner topology representation (Section 3.3) which stores
the topology of the tree, but not the locations of Steiner points. These are given
by, e.g., the relatively minimal tree.

The last two representation methods first reduce the problem to a pure combina-
torial problem by fixing a set of potential Steiner points. The graph representa-
tion approach maps the problem to the Steiner tree problem in graphs for which
several heuristic algorithms exist (Section 3.4). The full Steiner tree (FST) ap-
proach constructs a list of full Steiner trees in a preprocessing phase and builds
an heuristic tree by concatenating FSTs from this list (Section 3.5). A summary
of the performance of ESTP-heuristics is given in Section 3.6.

3.1 Steiner Trees

A solution is represented by an unrooted tree T" with two types of nodes: Ter-
minals (corresponding to Z) and Steiner points. We may assume that Steiner
point coordinates are stored at the respective Steiner point nodes. No restriction
is put on the topology of the tree, but the objective is to end up with a Steiner
tree which fulfills degree and angle conditions. Note that in a Steiner tree T all
leaves are terminals.

Most heuristics from the literature use MST(Z) as the initial solution. Other

options have been suggested, but since the topology of SMTs often is closely
related to that of MSTs [44, 45], it is difficult to give any reasonable alternative.
However, other options are discussed at the end of this section.

Thompson [41] gave a very simple neighbour selection procedure. Let u be a
vertex adjacent to two vertices v and w in the tree. We define a Steiner point
insertion as follows: First we assume that all angles in the triangle formed by u,
v and w are smaller than 120°, otherwise we do nothing. Delete the edges (u,v)
and (u, w) and insert a Steiner point s at its Steiner position, by adding the edges
(s,u), (s,v) and (s, w) such that they make 120° with each other (Figure 2a).

Thompson proposed to select the two edges a = (u,v) and b = (u,w), seen as
vectors in the plane, for which the scalar product a - b was as large as possible.
The scalar product can also be used in higher dimensional spaces which was the
actual target for Thompson’s algorithm (minimum evolutionary trees). This gives
preference to long edges meeting at small angles. The new Steiner point is treated
as a terminal when making subsequent insertions. The algorithm stops when the
improvement drops below a given threshold. Thompson gave no computational
results, but indicated that the heuristic seemed to perform well on small instances.

A slightly more sophisticated insertion scheme was given by Chang [8]. He intro-
duced a generalized Steiner point insertion: Let u, v and w be any three vertices
in the current tree T for which a corresponding Steiner point s exists. Add s to
T by connecting it to u, v and w and remove one edge from each of the two cycles
created (Figure 2b).

Chang only allowed generalized insertions which enlarged existing full compo-
nents. That is, an edge in an existing full component could only be removed if
the two components were reconnected by the new edges inserted. Chang proved
that if the generalized insertion leading to the largest positive reduction in length
was performed at every step, the final heuristic tree would have two interesting
properties: The degree of every Steiner point would be three and the tree would
be an MST over Z and the inserted Steiner points. Chang also noted that the
topology of any SMT could be obtained by performing at most n — 2 generalized
Steiner point insertions.

The method suggested by Chang may be seen as a procedure for constructing a
good Steiner topology, since the resulting tree in general has to be adjusted by
relocating Steiner points within each full component. Chang used repeated relo-
cation of Steiner points to their Steiner position until the improvement dropped
below a given threshold (a better option today would be to use Hwang’s FST-
algorithm [17] for every full component). The worst-case running time of Chang’s
heuristic is huge, O(n*), but the performance is very good, ocpang = 3.0%.

Finally we note an early contribution by Korhonen [23]. This heuristic may be
characterized as a tree construction algorithm and therefore less suited for local

Vv
w
—_—
a) Seiner point insertion
u
—_—
s
w

v
b) Generalized Steiner point insertion

Figure 2: Simple Steiner point insertions.

search. An heuristic tree is grown and the Steiner tree property maintained
for every terminal addition step. The terminals are added in the order given
by Prim’s MST-algorithm. After a terminal has been added the Steiner tree
property is reestablished by inserting, deleting and relocating Steiner points. The
algorithm is very fast, but its performance moderate, oxorhonen =~ 2.5%.

Discussion and further refinement

Existing heuristics may be put into a local search framework by adding two im-
portant components. Firstly, initial trees other than M ST (Z) may be used. One
choice is random spanning trees and another choice near-optimal MSTs generated
by changing Prim’s or Kruskal’s algorithm as follows: Instead of choosing the top
priority edge at every step edges should be chosen with a probability depending
on their position in the priority queue.

Secondly, a procedure for deleting Steiner points from the existing tree has to be
devised. Otherwise it would not really be possible to continue the search beyond
the insertion of n — 2 Steiner points. No suggestions have been made on this issue
in the literature.

One of the main disadvantages of the Steiner tree representation is that it is
difficult to retain the properties that one is actually looking for, such as degree
and angle conditions. A local Steiner point insertion or deletion may have global
effects, requiring the relocation of several other Steiner points.

The generalized Steiner insertion by Chang may be extended further by allowing
the insertions of k-terminal SMTs (Chang only inserts 3-terminal SMTs) [12, 7].

3.2 Steiner Points

A solution is represented by a set of Steiner points S. New solutions are obtained
by adding, deleting or relocating Steiner points in S (note that an SMT can
have from 0 to n — 2 Steiner points). An heuristic tree is obtained by computing
MST(ZUS). This tree is in general not a Steiner tree - there may even be Steiner
points which have degree less than three. We will refer to a clean-up procedure as
an algorithm which (iteratively) transforms the heuristic tree into a Steiner tree.
This is done by deleting and relocating Steiner points in S until M ST(Z U S) is
as close to a Steiner tree as required.

Representing a solution by a set of Steiner points was originally proposed by
Smith and Liebman [35]. They also introduced techniques from computational
geometry: A triangulation was used to generate a base set of Steiner points Syyse.
Having generated this set, the heuristic solution was constructed by greedy selec-
tion of Steiner points from Sy,s.. The initial solution was S = () and a neighbour
to the current solution was generated as follows (we assume that MST(Z U S)
has been computed):

1. Sort Spese by the difference [MST(ZUS)|— |MST(ZUSU{s})|, s € Spase,
i.e., by length reduction obtained by adding s to S.

2. For each s € Spuse: Compute MST(Z U S U {s}); if improving then S =
SuU {S}a Sbase = Sbase \ {5}

We note that the algorithm only adds Steiner points to S, that is, never deletes
or relocates Steiner points. Also a relatively restricted base set is used for Steiner
point candidates. Neighbours are generated in time O(n?) since an O(n?) MST-
algorithm was used. The overall performance of the algorithm is rather poor,
osr, ~ 22%

Suzuki and Iri [40] presented an algorithm in which relocation and deletion of
Steiner points is a fundamental element. Starting with a set S of n/4 points
randomly taken from the convex hull of Z, a neighbour is generated as follows:

1. Find a relatively minimal tree using the topology given by MST(Z U S)
(obviously only Steiner points are relocated).

2. Delete Steiner points having degree less than three. For every Steiner point
with degree greater than three place a new Steiner point in the close neigh-
bourhood of the original Steiner point.

3. Add Steiner points inside all angles smaller than 120° meeting at a terminal.

All added Steiner points are placed randomly but close to the terminals or Steiner
points in question. The complexity of the neighbour generation scheme depends
on the algorithm used for finding a relatively minimal tree. In the paper a nu-
merical RMT-algorithm is used. The computational requirements are moderate
and the performance reasonable, og; ~ 2.9%.

The only genetic algorithm known for ESTP was given by Hesser, Manner and
Stucky [15]. The chromosome (solution) is a bit-string b representing S (the most
significant bits of the coordinates of points in S). The bitstring had constant
length representing exactly n Steiner points. Thus only relocations were possi-
ble. The tree corresponding to a given bitstring was obtained by constructing
MST(ZUS), removing Steiner points with degree less than three and relocating
Steiner points to their Steiner position.

The genetic algorithm used standard crossover and mutation operations. This is
not particularly meaningful since this may cut the bit-representation of a Steiner
point and share it with another bit-string solution. The method was tested on a
single 25-terminal instance (5x 5 grid). Apparently it did not perform better than
a greedy approach which first generates a base set Sy, containing n randomly
generated Steiner points and then adds candidates from this set to S (similar to
Smith and Liebman’s algorithm).

Beasley [5] and Beasley and Goffinet [6] presented two heuristics based on the
Steiner point approach. The former uses the following neighbour generation
strategy (initially S = 0)):

1. Let L be the set of connected subgraphs of M ST (Z U S) with exactly four
vertices.

2. Sort L by the reduction obtained by replacing the MST-edges by an SMT
spanning the same four vertices; for each set of vertices K € L denote by
S(K') the Steiner points in an SMT spanning K.

3. For each set K € L add S(K) to S, given that no vertex in K has appeared
previously.

Since M ST (ZUS) has bounded degree, L has size O(n) and therefore it takes time
O(nlogn) to generate a neighbour. The neighbour is cleaned-up by removing
Steiner points with degree less than three and by relocating Steiner points to their
optimal positions within each full Steiner tree (using Hwang’s FST-algorithm
[17]). The algorithm stops when no connected subgraph with four vertices has a

shorter interconnecting tree. The running time of the algorithm is reasonable (the
worst-case complexity is not given) and so is the performance, o peqasicy = 2.9%.

Beasley and Goffinet [6] generate neighbours using Delaunay triangulations (DT).
In addition, they use simulated annealing based local search. The initial solution
is again S = () and neighbours are generated using the following algorithm:

1. Construct DT(Z U S) and add the Steiner point (if it exists) of every De-
launay triangle to S.

2. Construct MST(Z U S).

3. Delete Steiner points with degree smaller than three or greater than four
from S. Relocate all Steiner points with degree three to their Steiner posi-
tion. If a Steiner point s has degree four then delete s from S, construct an
SMT for the four incident vertices and add the Steiner points in this SMT
to S.

4. Make insertions of Steiner points if any edges meet at an angle less than
120°.

5. If any change was made in step 3 or 4 then goto step 2.

By repeating step 1, each time adding more candidate Steiner points to S, dif-
ferent neighbours can be generated. The neighbour generation procedure is com-
putationally expensive, since several MSTs must be constructed. Unfortunately,
it is not obvious why the algorithm stops; the average number of iterations of
step 2 is not given either. The number of local search (i.e. simulated annealing)
moves is limited, since the total number of Delaunay triangulations is only 50,
independent of n for 10 < n < 100. A temperature reduction factor of 0.7 for
simulated annealing strongly indicates that this is the case. The performance is
good, opg ~ 3.0%, but at the cost of a high computational effort.

A more pure simulated annealing algorithm was given by Grimwood [14]. This
algorithm uses very little problem specific knowledge and a simple neighbourhood
structure. Initially we have S = () and allow additions, deletions and relocations
of Steiner points in S. No clean-up procedure is used.

A new Steiner point candidate is given as the Steiner point of a triangle formed
by three distinct points in Z U S, a total of O(n?) possibilities. A Steiner point
relocation is seen as a deletion followed by an addition, giving a total of O(n?)
neighbours. Additions, deletions and relocations are chosen with equal proba-
bility. The length of the new tree is computed by constructing MST over Z
and the new set of Steiner points. This simple algorithm is remarkably effective,
O Grimwood = 3.0%, but computationally very expensive.

10

Finally we mention a neural network algorithm by Jayadeva and Bhaumik [20].
A self-organizing network is used to locate a fixed number of Steiner points.
The approach is computationally very expensive and the solutions produced are
significantly worse than those found by Beasley’s heuristic [5].

Discussion and further refinement

From a local search point of view the Steiner points solution representation has
so far been the most successful. It is easy to set up neighbourhood structures
and even simple variants perform quite well [14]. An important issue is how to
find good Steiner points to insert into the candidate set S. The main drawback is
the evaluation procedure, i.e., computing M ST (Z U S) and performing clean-up,
which is computationally costly.

One major advantage is that the heuristic solution is allowed to deviate com-
pletely from MST(Z). Also the tree generated is, by construction, an MST over
7 and the Steiner points, a property obviously shared by an SMT over Z.

3.3 Steiner Topologies

The pure variant of this approach is to store topology information about the
current solution only, i.e., the location of Steiner points is given implicitly. A
solution is therefore a Steiner topology 7 and the corresponding heuristic tree
the relatively minimal tree.

Topology-based heuristics were first discussed, but not evaluated experimentally,
by Thompson [41]. More specifically, he suggested the following approach: Con-
struct an initial topology 7o by, e.g., inserting Steiner points into an MST (see
Section 3.1). Find the corresponding relatively minimal tree T. If this tree is
not degenerate (has no zero-length edges) then stop. Otherwise change the topo-
logy around zero-length edges between Steiner points (Figure 3a). The relatively
minimal tree T for the new topology 7; is then found and the procedure iterates
until no such topology change can be made.

Lundy [24] put Thompson’s ideas into a simulated annealing framework; this
was also the first simulated annealing algorithm for ESTP. The initial solution
is a randomly generated topology with n — 2 Steiner points (the topology is not
Steiner in general since degree conditions for Steiner points are not necessarily
fulfilled). The neighbour generation procedure consists of a topology perturbation
procedure (Figure 3b) and a Steiner point relocation scheme. The latter may be
seen as a simplified RMT-algorithm.

The topology transformation differs from the one suggested by Thompson. Lundy
showed that this scheme permits the construction of any topology from any
other topology, i.e., the neighbourhood is strongly connected. It was found that

11

simulated annealing produced better solutions than a multi-start version of the
Thompson heuristic, using a similar amount of CPU-time.

et

a) Thompson’s transformation

b) Lundy’s transformation

Figure 3: Topology transformations.

Chapeau-Blondeau, Janez and Ferrier [9] gave a fast variant of Thompson’s
heuristic. The initial topology, which is Steiner, is constructed from MST(Z).
For every terminal z with degree d in M ST (Z) d — 1 Steiner points are inserted
randomly but geometrically close to z.

The subsequent iterative (local search like) process, which optimizes the topology
of the tree and Steiner point locations, is based on the simulation of the dynamics
of a fluid film that relaxes under surface forces. Each iteration takes O(n) and
since only a constant number of iterations (= 400) is made, the overall complexity
of the heuristic becomes O(nlogn). The heuristic uses the topology transforma-
tion suggested by Thompson (Figure 3a). A change is made if the two connected
Steiner points are closer than 0. The parameter ¢ is slowly decreased, allowing
fewer changes at the end of the topology optimization. Considering the running
time complexity, the performance of the heuristic is quite good, oo sr ~ 2.8%.

Recently, Dreyer and Overton [11] suggested two heuristics for ESTP. The first
heuristic is basically the same as Thompson’s, and the second one is a variant of
Korhonen’s tree construction heuristic, in which a much more involved terminal
addition step is used. Only very limited computational results are given and no
comparisons are made to other heuristics.

An heuristic using a full Steiner topology solution representation was given by
Hiirlimann [16]. This is also the only tabu search algorithm known for ESTP.

12

A full Steiner topology is represented by a n — 3 component vector a whose i’th
entry is an integer a; € {0,...,2i}, 1 < i < n — 3. The corresponding tree was
computed by using Smith’s RMT-algorithm [37].

Starting from a full Steiner topology based on the topology of M ST(Z), a neigh-
bour is obtained by changing a single component vector entry. Hiirlimann pro-
posed to change the value by at most 2 (wrapping around if necessary), which
gives 4(n — 3) neighbours.

The tabu search algorithm is very simple. Whenever a component vector entry
has been changed, its value is kept fixed for a certain number of subsequent
iterations. The approach was only successful for small problems (< 10 terminals),
and the author indicates that one of the problems is the neighbourhood structure
used.

Discussion and further refinement

The representation of solutions as Steiner topologies has the advantage of giving
the Steiner point locations implicitly. Conversely, it has the serious drawback
of having a very large, although finite, solution space (the number of different
topologies grows super-exponentially). Another drawback is the need for a com-
putationally expensive RMT-algorithm.

3.4 Graph Representation

The ESTP can be mapped to the Steiner tree problem in graphs (GSTP) by laying
down a grid on the plane. The granularity of this grid depends on the precision
required. All vertices on this grid that are inside the Steiner hull for Z (an area of
the plane known to contain an SMT) are mapped to the graph problem as Steiner
vertices. Edge weights are (obviously) the corresponding Euclidean distances.

Any local search method for GSTP may then be used to find a good heuristic
solution for the graph instance (see [18]). The graph solution is mapped back to
the plane and the ESTP solution cleaned-up by adjusting Steiner point locations.

Discussion and further refinement

This approach is particularly interesting when the obstacle avoiding variant is
to be solved. Provan [29] gave several theoretical results and Armillotta and
Mummolo [2] used a mapping to the graph problem in order to construct a good
initial solution (without Steiner points) for the obstacle avoiding problem.

13

3.5 Full Steiner Trees

This approach first reduces ESTP to a simple selection problem. Construct a list
of full Steiner trees (FSTs) F = {F}, Fy, ..., F,,}. Then find a subset F* C F
such that the FSTs in F* span all terminals and the length of the resulting tree
is a short as possible. A solution can be represented by a 0-1 vector x € {0, 1}™
such that x; = 1 if and only if F; is selected, 1 < < m.

Smith, Lee and Liebman [34] gave an heuristic in which F was generated as
follows (this is a slightly modified variant, see also [45]): Construct DT(Z) and
MST(Z) which is a subgraph of DT(Z). Generate 3-terminal subsets as corners
of triangles in DT(Z) with two MST edges and 4-terminal subsets as corners of
two edge-sharing triangles in DT'(Z) with three connected edges from the MST.
For each terminal subset find a shortest FST (if it exists) and append to F.
Finally append all MST-edges to F.

The heuristic tree is constructed by greedy selection of FSTs from F in a manner
similar to Kruskal’s MST-algorithm. This O(nlogn) heuristic is both theoreti-
cally and in practice the fastest heuristic known for ESTP and its performance
is also quite good, ogr1 ~ 2.7%.

This full Steiner tree algorithm was generalized and elaborated by Zachariasen
and Winter [45]. Several FST generation approaches were evaluated and it
was shown experimentally that the best of these methods with high probabil-
ity generates a superset of the FSTs in a corresponding SMT. Using an improved
greedy concatenation method, a reduction oz ~ 3.0% could be obtained in time
O(nlogn) and a reduction oz ~ 3.1% in time O(n?).

Given F the problem of finding a good heuristic tree is an easily stated combi-
natorial problem for which local search methods on the set of 0-1 vectors {0, 1}™
can be devised (Section 4).

Discussion and further refinement

A fixed list of FSTs makes it possible to avoid repeated Steiner point computa-
tions (which are expensive floating point operations). It is also an efficient reduc-
tion of the original problem to a simple selection problem. The major drawback
is that we cannot in general guarantee that F contains an SMT.

Extensions of the full Steiner tree approach to obstacle avoiding variants have
been discussed by Smith [32] and Nielsen [27].

14

3.6 Summary

In Table 1 we present a summary of heuristics for ESTP, by noting their local
search type, average reduction over MST (when available) and running time
complexity (when available). The type classification descent method in general
stands for an iterative best improvement method.

‘ Heuristic ‘ Type ‘ o ‘ Complexity ‘
Steiner trees
Thompson [41] Descent method - -
Chang [8] Descent, method 3.0% | O(n*)
Korhonen [23] Tree construction 2.5% | Low
Steiner points
Smith & Liebman [35] Descent, method 2.2% | O(n*)
Suzuki & Iri [40] Descent method 2.9% | Medium
Ménner & Stucky [15] Genetic algorithm - | High
Beasley [5] Descent, method 2.9% | Observed O(n'?)
Beasley & Goffinet [6] Simulated annealing | 3.0% | Observed O(n*?)
Grimwood [14] Simulated annealing | 3.0% | High
Jayadeva & Bhaumik [20] Neural network - | High
Steiner topologies
Lundy [24] Simulated annealing - | High
Chapeau-Blondeau et al. [9] | Descent method 2.8% | O(nlogn)
Dreyer & Overton [11] Descent method - | High
Hiirlimann [16] Tabu search - -
Full Steiner trees
Smith, Lee & Liebman [34] | Tree construction 2.7% | O(nlogn)
Zachariasen & Winter [45] | Descent method 3.0% | O(nlogn)
- - Descent method 3.1% | O(n?)

w»

Table 1: Heuristics for ESTP. Type classification and performance. An in-
dicates that no or insufficient data is available to give a reliable estimate of
reduction over MST and/or running time complexity.

The table indicates that the Steiner points representation has been the most
popular and it has also been quite successful. Genetic algorithms, simulated
annealing and neural networks have been proposed and evaluated. The simulated
annealing based heuristic by Beasley & Goffinet [6] has the best performance
when running times are taken into account. The representations Steiner trees
and Steiner topologies have had more limited success, at least from a local search
point of view and when running times are considered.

The full Steiner tree approach has proven to be a viable ground for the construc-
tion of fast greedy heuristics for ESTP [34, 45]. In the following sections we

15

present, several local search algorithms using this approach and show that they
perform very well compared to the best known heuristics.

4 Full Steiner Tree Local Search

In this section we describe the novel FST based local search approach. Local
search is performed on a preprocessed list of FSTs, F = {F}, F5, ..., F,}. Con-
structing a good and short candidate list F is obviously essential. A good list is
one that contains as many FSTs of an SMT as possible, preferably all of them.

In a previous paper [45] we have shown that such a list, containing only a linear
number of FSTs, can be constructed in time O(nlogn). Here we give a summary
of a similar generation method for which the ezpected number of FSTs is linear
and, furthermore, present a quick and very efficient algorithm for pruning away
non-optimal FSTs from F (Section 4.1). Full Steiner tree local search neighbour-
hoods are proposed in Section 4.2 and local search methods (meta-heuristics) are
given in Section 4.3.

4.1 Generating and Pruning Full Steiner Trees

Our FST generation method is based on two properties often true for terminals
spanned by an FST in an SMT (the 2 x m ladder case, m odd, solved by Chung
and Graham [10] disproves the general validity of these assumptions): Firstly,
the terminals are geometrically close to each other. If two terminals, 2z; and z;,
are spanned by an FST then z; typically is one of the closest neighbours to z;,
and vice versa.

Secondly, each FST in an SMT spans very few terminals and seldomly more
than five. In the study by Winter and Zachariasen [44] less than 1% of the
FSTs spanned six or more terminals for randomly generated instances. In the
following we let K denote the maximum number of terminals spanned by any
FST generated.

Well-known structures from computational geometry, such as the Delaunay tri-
angulation, can be used to generate small subsets of geometrically close termi-
nals [28]. Based on the experimental evidence given in [45] we choose to use
the so-called Gabriel graph GG(Z) which is an undirected graph with 7 as its
vertex set. Let D(z;,2;), zi,2; € Z, denote a disc with z;z; as a diameter.
The terminals z; and z; are adjacent in GG(Z) if and only if D(z;,z;) con-
tains no other terminal in Z. The Gabriel graph can be constructed in time
O(nlogn) since it is an easily identified subgraph of the Delaunay triangulation,

16

DT(Z) (Figure 4). The Gabriel graph contains MST(Z) so we have the relation
MST(Z) C GG(Z) C DT(Z).

Figure 4: Gabriel graph (black edges) as a subgraph of the Delaunay triangulation
(black and gray edges).

We generate subsets of terminals by enumerating all connected subgraphs of
GG(Z) with up to K terminals. Based on the results in [45] and preliminary
experiments we choose K = 5. The expected number of such terminal sets is
linear, since the average degree in GG(Z) is bounded by a constant (for randomly
generated instances approximately 52n subsets are generated [45]). However, for
K > 3 there may be Q(n?) terminal subsets; consider, e.g., the corners of a
regular n-gon with one terminal in its center.

FSTs spanning two terminals in an SMT must belong to MST(Z), so these
n —1 FSTs can be found in time O(nlogn) time since M ST(Z) C GG(Z). Now
consider a subset Zr C Z containing from 3 to K terminals. A shortest FST F
spanning Zp (if it exists) is obtained by generating all full Steiner topologies and
applying Hwang’s FST-algorithm [17].

For any two terminals z; and z; let b, denote the length of the longest edge
on the unique path between z; and z; in M ST (Z). This distance is equal to the
so-called bottleneck Steiner distance between the two terminals. Let MST,(ZF)
be an MST over Zp using bottleneck Steiner distances. If |MST,(Zp)| < |F)|
then F' may be discarded, since it cannot appear in any SMT [18].

This pruning test can be performed in total time O(mlogn) and O(n) space
by storing MST(Z) as a dynamic search tree [31] allowing longest edge queries
in O(logn) time; recall that there are m FSTs and that each FST only spans

17

a constant number of terminals. A simpler O(mn) time and O(n?) space im-
plementation of the pruning test computes b,,.. for every pair of terminals in a
preprocessing phase by making n depth-first searches in M .ST(7); the bottleneck
Steiner distances are stored in a matrix. A practical implementation of this latter
variant is actually faster than an implementation of the O(mlogn) variant for
n < 1000.

4.2 Local Search Neighbourhoods

Before applying local search we sort the FST list F = {F}, F5, ..., F,,,} by ratio
|F;|/|MST,(ZF)|,1 < i < m (smallest first), such that FSTs showing a large
reduction over the bottleneck MST form the head of F (this ratio is always < 1).
In addition, we assume that the MST-edges (2-terminal FSTs) form the tail of
F and are sorted by non-decreasing length.

FSTs in F spanning three or more terminals are called large FSTs. By sorting
F as described above the list of large FSTs is F' = {F, F5,..., Fp}, m' =
m — (n — 1), while MST-edges form the list 7" = {Fy,y 11, Fii2, - .., Fin}. In the
following we assume that m’ > 0, otherwise we return M ST (Z) as the heuristic
solution.

We may define the local search solution space as the set of 0-1 vectors X =
{0,1}™. A solution x € X has ; = 1 if and only if F} is selected, 1 < i < m. Not
all solutions in X represent valid solutions to ESTP. The graph corresponding
to a solution x may be disconnected (which is critical) or it may contain cycles
(which is less critical). One remedy to this problem is to add a penalty to the cost
of solutions which are disconnected, e.g., some large constant times the number
of components.

We avoid this problem completely by defining a solution space on large FSTs
only, X = {0,1}™. Then any solution vector x € X is a valid solution if we
use MST-edges to reconnect disconnected components, if necessary. Recall that
MST-edges are presorted in F” and we therefore can make this reconnection in
linear time, O(n), using a fast disjoint-set data structure.

Three different neighbourhood functions are proposed:

Flip neighbourhood Ny

Given a solution x € X" a neighbour in Nz(x) is constructed by flipping the
value of exactly one entry in x. This gives a total of m' neighbours; each
neighbour is evaluated in time O(m), so evaluating the whole neighbour-
hood takes time O(m?). The neighbourhood is obviously strongly connected
since we can transform any solution into any other by changing entries that
differ, one at a time.

18

An initial solution is constructed by generating a random 0-1 vector: Every
entry has probability 0.5 of containing the value 1.

Insert/delete neighbourhood N7

When using this neighbourhood all solutions are trees (contain no cycles).
An arbitrary vector x is transformed into a tree solution by using a Kruskal
like algorithm which runs through the presorted list ': An FST F; is added
to the tree (forest) only if x; = 1 and no cycle is created when it is added;
if z; = 1 and a cycle is created we set z; = 0. Finally MST-edges are added
if the corresponding graph is disconnected.

Let x be a tree solution. We construct a neighbour by flipping one of its
entries. The neighbour corresponding to flipping an entry x; from 0 to 1 is
constructed by using the transformation described above - however, F; is
added to the tree before any of the other FSTs are added. This is denoted
an FST-insertion, since we insert F; into the tree by pushing other FSTs out
such that a tree is obtained (see [45] for more details). If x; = 1 we simply
set x; = 0, delete F; from the tree and reconnect by using MST-edges. This
neighbourhood can also be evaluated in time O(m?).

This neighbourhood is strongly connected since any tree solution can be
transformed into any other tree solution by going through the vector of all
zeros (which is MST(Z)). All 1-entries in the first solution are flipped to
0 (large FSTs are deleted one by one) and then the correct 0-entries are
flipped to 1 as given by the second solution (FSTs are inserted one by one).

An initial solution is constructed by generating a random 0-1 vector and
transforming it into a tree solution by the procedure given above.

Local insert/delete neighbourhood N,

This neighbourhood is a greedy variant of A7 which can be evaluated in
time O(m). Let x be a tree solution and T the corresponding heuristic
tree. Assume that for every terminal z € Z we have access to a list T, of
FSTs spanning z in 7. Let F; be an FST which we would like to insert
into 7". If the FSTs in 7" which span some terminal in Zp, are connected
we may perform the insertion [ocally in constant time [45]. Similarly, an
FST F, may be deleted in constant time if the edges in M ST (Z) adjacent
to some terminal in Zp, are connected. The size of this neighbourhood is
at most m/, since some FSTs cannot be inserted or deleted because of the
connectedness condition.

It can be shown by a simple counter-example that N7, is neither strongly
nor weakly optimally connected. That is, there exist instances for which
some solution cannot be transformed into an optimal solution (with respect
to F) by any sequence of N7, moves.

19

An initial solution is constructed by using the same procedure as for the
insert /delete neighbourhood.

When compared to neighbourhoods proposed for other well-known combinatorial
optimization problems, such as the Travelling Salesman Problem, these neigh-
bourhoods are quite simple. However, as will be shown in Section 5, the neigh-
bourhoods are actually very effective - provided that enough CPU time is al-
located. The expected (and perhaps the worst-case) complexity for evaluating
Nr and N can be reduced by using dynamic search trees and other sophisti-
cated data structures, but would most likely yield no significant improvement for
n < 1000, the problem size range considered in this study.

4.3 Local Search Methods

We compare three thoroughly studied meta-heuristics the literature, repeated de-
scent (RD), simulated annealing (SA) and tabu search (TS) [1]. Each of these
methods have their advantages and disadvantages, and we will show that they
perform quite differently on the three neighbourhoods presented in Section 4.2.

Repeated descent (RD)

This is a multi-start version of iterative improvement. More specifically, we
generate a random initial solution and set + = 1. Then we increase ¢ until an
improving neighbour corresponding to flipping x; has been found. We move
to this new neighbour and increase i (wrapping around if necessary) until
a new improving solution is found etc. When no improving neighbour can
be found (local optimum) we generate a new initial solution and descend
again. This descent method may be characterized as deterministic first
improvement.

Simulated annealing (SA)

We use the simulated annealing variant by Johnson, Aragon, McGeoch
and Schevon [21]. The parameters INITPROB = 0.4, TEMPFACTOR = 0.95,
SIZEFACTOR = 4 and MINPERCENT = 2, which give a relatively fast cooling
schedule were used.

Tabu search (TS)

A standard attribute based variant of tabu search is used. Every FST
involved in a move is given a tabu tenure chosen randomly from the interval
[5, 8] (we found no significant performance differences when changing the
interval). Otherwise the deterministic neighbourhood evaluation scheme
from RD is used.

20

5 Computational Experience

The full Steiner tree based local search approach was experimentally evaluated on
a HP workstation® using the programming language C++ and class library LEDA
(version 3.4.1) [25]. The random number generator used was the random_source
class in LEDA. We also used LEDA’s native Delaunay triangulation algorithm.

Problems instances were taken from the OR-Library [4]. The algorithms were
evaluated on the 46 instances by Soukup and Chow (3-62 terminals) [39] and the
180 randomly generated instances by Beasley (10-1000 terminals), 15 instances
for each size 10, 20,...,100, 250,500 and 1000 [5]. Optimal solutions are known
for all these instances [44, 42].

In the following we first demonstrate the efficiency of the full Steiner tree gen-
eration method (Section 5.1) and compare the neighbourhoods and local search
methods proposed (Section 5.2). The most promising of these are selected and
compared to the best known (local search) heuristic, the Steiner point approach
by Beasley and Goffinet [6] (Section 5.3).

5.1 Full Steiner Tree Generation and Pruning

The performance of the full Steiner tree generation method is summarized in
Table 2. The algorithm uses the Gabriel graph to find subsets containing up to
K = 5 terminals and bottleneck Steiner distances to prune FSTs. The simple
O(mn) pruning algorithm is used, but the CPU time of this step is negligible for
the instances considered. The number of surviving FSTs - which includes the
n — 1 MST-edges - is small and linear as expected.

5.2 Neighbourhoods and Local Search Methods

We compare neighbourhoods and local search methods on the 15 100-terminal
instances. Five independent runs were made on each instance for each neigh-
bourhood/local search method combination. The stopping condition for SA is
the so-called freezing condition used in [21]. For RD and T'S the stopping condi-
tion is given by the maximum number descents MAXDESC and maximum number
of iterations MAXITER, respectively. These parameters were chosen as to make the
running times comparable to SA, resulting in the parameter values MAXDESC =
10y/n and MAXITER = 50./n.

"Machine: HP 9000 Series 700 Model 735/99. Processor: 99 MHz PA-RISC 7100. Main
memory: 96 MB. Performance: 3.27 SPECint95 (109.1 SPECint92) and 3.98 SPEC{p95 (169.9
SPECp92). Operating system: HP-UX 9.0. Compiler: GNU C++ 2.7.2 (optimization flag
-03).

21

n | CPU Time | CPU Time | FST Count
Generation | Pruning after
(sec) (sec) Pruning

10 0.09 0.01 20.1
20 0.48 0.03 42.5
30 1.07 0.06 63.9
40 1.60 0.08 93.4
50 2.05 0.11 115.9
60 2.57 0.13 137.6
70 3.11 0.16 157.3
80 3.82 0.20 185.3
90 4.47 0.22 201.9
100 5.32 0.27 240.6
250 15.97 0.88 591.6
500 33.67 2.47 1229.9
1000 73.20 8.42 2413.7

Table 2: Full Steiner tree generation and pruning.

In Table 3 we summarize the results. Note that each number is an average over
15 x5 = 75 runs and that the running times include FST generation and pruning
(which takes less than 6 seconds on average and is the same for all combinations).

Two interesting observations follow immediately: Firstly, the neighbourhood N7
is much better than N and N7. Secondly, the performance of TS is substantially
worse than for RD and SA. Local optima for N have a poor quality, more or
less independent of the initial solution (RD). SA seems to be better at escaping
these local optima than TS.

The neighbourhood A7 is in general very good. The reductions obtained by RD
and SA are very close to the average reduction of the optimal solutions, 3.27%.
For the neighbourhood N7, only RD achieves a reasonable performance; for this
restricted neighbourhood the initial solution is very critical. Running times are
lower than for the two other neighbourhoods and this difference increases for
larger instances (recall that neighbourhood evaluation only takes O(m) compared
to O(m?) for the other two neighbourhoods).

5.3 Overall Performance Comparison

In this section we make a more thorough investigation of the FST based local
search approach using the insert/delete neighbourhood, N7. Our results are com-
pared to results reported on the same instances by Beasley and Goffinet [6]. The
CPU-times in their paper have been “normalized” on basis of the Linpack bench-

22

Neighbourhood | Reduction | CPU
and Local over MST | Time
Search Method | (percent) (sec)
RD 263 £031] 328

Nr | SA 3.0 +0.37| 483
TS 2.25 +£0.40 | 32.3

RD 325 +0.36| 34.5

N7 | SA 3.24 +£0.38 | 51.3
TS 3.15 +0.39 | 48.6

RD 3.17 +£0.35 | 22.7

N, | SA 261 +£0.79| 338
TS 249 £0.81| 288

Table 3: Neighbourhood and local search method comparison. The second num-
ber in the MST-reduction column is standard deviation.

mark as follows: Our HP workstation has a benchmark of approximately 40 and
the SGI Indigo machine used in [6] a value between 4 and 12. Accordingly, the
CPU-times reported in [6] were divided by 5, in order to make them comparable
to ours.

When applied to the 46 Soukup and Chow problem instances, all methods RD,
SA and TS found the optimum for 40 instances in every of the five runs made.
For four instances (no. 18, 32, 45 and 46) optimum was found at least once out
of five runs by some method. Two instances (no. 10 and 40) were never solved to
optimality since not all the FSTs of an SMT were generated. For SA the average
MST reduction was 2.78% (compared to 2.81% for the optimal solutions) and
the average running time 1.1 seconds with a maximum of 21.6 seconds. When
the maximum FSTs size was increased to K = 6 all instances were solved to
optimality at least once out of five runs by some method.

These results are comparable to those obtained by the heuristic of Beasley and
Goffinet. On basis of the solution values presented in their paper [6], they seem
to have obtained optimal solutions for 45 instances (only instance no. 18 was not
solved to optimality). However, it is not clear if these values are averages over
several runs or just the result of one single run; recall that this heuristic is based
on simulated annealing so different runs may give different results. The average
reduction over MST was 2.81% with an average (normalized) running time of 1.9
seconds.

In Table 4 we present the main computational results of this paper. The three
local search methods, using neighbourhood N7, are evaluated on the 180 randomly
generated instances with 10 to 1000 terminals. The results are compared to those
reported by Beasley and Goffinet and to the optimal solutions. While the running

23

times and the running time growth are within the same order of magnitude, FST
based local search produces significantly better solutions. For n < 100 Beasley
and Goffinet obtain an average reduction of 3.03% while the values for RD, SA
and TS are 3.14%, 3.14% and 3.09%, respectively. Note that the average optimal

solution reduction is 3.15%.

n Beasley & Goffinet N7 - RD N7 - SA N7 - TS OPT
Reduction CPU Reduction CPU Reduction CPU Reduction CPU Reduction
over MST Time over MST Time over MST Time over MST Time over MST
(percent) (sec) (percent) (sec) (percent) (sec) (percent) (sec) (percent)

10 3.22 + 1.88 0.7 | 3.23 + 1.84 0.2 3.23 + 1.84 0.3 | 3.23 + 1.84 0.3 3.25 + 1.88

20 3.12 + 0.97 3.3 | 3.15 + 0.96 0.9 3.16 + 0.96 1.5 | 3.14 + 0.94 1.3 3.16 + 0.99
30 | 295 £0.75 7.3 | 3.06 £ 0.74 2.2 | 3.06 £ 0.75 4.0 | 3.02 £ 0.71 3.0 | 3.07 £ 0.78
40 2.97 £+ 0.63 15.5 | 3.12 + 0.59 4.4 | 3.12 + 0.59 8.2 | 3.07 =+ 0.62 6.0 3.14 + 0.63
50 2.92 + 0.42 23.1 3.03 + 0.40 7.2 3.02 + 0.40 12.9 3.00 + 0.41 9.4 | 3.03 + 0.41
60 3.18 + 0.37 31.1 3.27 £ 0.41 9.6 3.27 £ 0.41 16.3 3.21 + 0.41 13.8 3.27 £ 0.42
70 2.95 + 0.37 42.1 3.11 + 0.37 13.2 3.10 + 0.36 22.1 3.03 + 0.36 18.8 3.11 + 0.38
80 | 2.92 £ 0.69 78.1 | 3.03 =+ 0.65 19.2 | 3.03 £ 0.65 31.2 | 2.98 + 0.62 27.1 | 3.04 =+ 0.67
90 2.95 + 0.50 93.6 | 3.11 + 0.48 23.1 3.10 + 0.49 37.1 3.02 + 0.49 33.8 3.12 + 0.49
100 | 3.07 4 0.34 97.7 | 3.25 £ 0.36 34.5 | 3.24 £+ 0.38 51.3 | 3.15 £ 0.39 48.6 | 3.27 =+ 0.38
250 - - | 3.17 £ 0.22 338.1 3.17 4+ 0.22 365.1 3.08 + 0.23 432.9 3.21 + 0.23
500 - - | 3.27 £ 0.17 2332.4 | 3.30 £ 0.17 | 1414.9 | 3.20 £ 0.17 2554.0 | 3.33 =+ 0.18
1000 - -1 323 4£0.13 | 13904.6 | 3.28 £+ 0.14 | 5678.5 | 3.17 + 0.13 | 13896.1 | 3.31 =+ 0.14

Table 4: Overall performance comparison. Second numbers in MST-reduction
columns are standard deviations.

On larger instances (n > 100) solutions within 0.05% from optimum are obtained
on average. The observed running time growth is super-quadratic with SA be-
ing closest to quadratic running time. The relative solution quality deteriorates
slightly for larger instances, but by using, e.g., a slower cooling schedule for SA,
better solutions obviously can be expected at the cost of increased running time.
It should be noted that RD does perform remarkably well. This indicates that
N7 is a very powerful neighbourhood, that is, the average quality of local optima
is high. The poor performance of tabu search may be attributed to the small
neighbourhood which makes it necessary to use a short tabu tenure; this again
makes it difficult to avoid cycling.

6 Conclusion

The contributions of this paper are twofold: First we gave a comprehensive survey
of all known and experimentally evaluated heuristics for ESTP from a local search
perspective. The survey is the first unified classification of heuristics for ESTP.
We demonstrated that the Steiner points approach so far had been the most
popular and successful local search approach. Furthermore, the full Steiner tree
(FST) based methods had proven to be very effective in the context of greedy
heuristics.

24

Secondly, we presented several local search neighbourhoods and methods us-
ing FSTs. We gave three different neighbourhoods and compared well-known
meta-heuristics using these neighbourhoods. Computational experiments showed
that the insert/delete neighbourhood compared very favorably to the best known
heuristics for ESTP.

We chose to use the most common variants of descent methods, simulated an-
nealing and tabu search. Other meta-heuristics such as iterated descent, genetic
algorithms and more sophisticated variants of tabu search may prove to be even
more effective. However, there is very little room for improvement as far as
quality is concerned - running times may on the other hand be improved.

Local search on FSTs may prove useful as a upper-bounding procedure for exact
methods. The best known exact algorithms [44, 42] use the same two-phase
scheme employed in this paper: First a list of FSTs F - in this case known to
contain an SMT - is generated and then an SMT is obtained by concatenation of
FSTs from F. Better upper-bounding procedures would most likely improve the
performance of the branch-and-cut algorithm used in the concatenation phase.

FST based local search can easily be applied to other metrics and higher dimen-
sions, in particular the 3-dimensional Euclidean problem and the plane rectilinear
problem. All metric dependence (and dependence on dimension) is restricted to
the generation of a good and short FST list F. This requires an effective algo-
rithm for finding subsets of “close” terminals and an algorithm for constructing
FSTs (or SMTs) on these subsets. There exist contributions in the literature
using this basic approach for both the 3-dimensional Euclidean problem [36] and
the plane rectilinear problem [33], but none of them used local search for the
concatenation problem.

Extensions to obstacle avoiding variants are also evident. For these problems
“closeness” must be defined appropriately, i.e., using shortest paths between ter-
minals which avoid the obstacles. FSTs (or SMTs) on small subsets of terminals
must obviously be constructed such that they avoid the obstacles; there exist, e.g.,
algorithms for the construction of SMTs for three terminals and one polygonal
convex obstacle [43].

Acknowledgement
The author would like to thank Pawel Winter for valuable comments and sugges-
tions.

25

References

1]

2]

[10]

[11]

[12]

[13]

E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial
Optimization. John Wiley & Sons, 1997.

A. Armillotta and G. Mummolo. A Heuristic Algorithm for the Steiner Prob-
lem with Obstacles. Technical report, Dipt. di Pregettazione e Produzione
Industriale, Univ. degli Studi di Bari, Bari, 1993.

S. Arora. Polynomial Time Approximation Schemes for Euclidean TSP and
other Geometric Problems. In Proc. 37th Annual Symp. on Foundations of
Computer Science, pages 2-13, 1996.

J. E. Beasley. OR-Library: Distributing Test Problems by Electronic Mail.
Journal of the Operational Research Society, 41:1069-1072, 1990.

J. E. Beasley. A Heuristic for Euclidean and Rectilinear Steiner Problems.
FEuropean Journal of Operational Research, 58:284-292, 1992.

J. E. Beasley and F. Goffinet. A Delaunay Triangulation-Based Heuristic
for the Euclidean Steiner Problem. Networks, 24:215-224, 1994.

P. Berman and V. Ramaiyer. Improved Approximations for the Steiner Tree
Problem. Journal of Algorithms, 17(3):381-408, 1994.

S. K. Chang. The Generation of Minimal Trees with a Steiner Topology. J.
Assoc. Comput. Mach., 19:699-711, 1972.

F. Chapeau-Blondeau, F. Janez, and J-L. Ferrier. A Dynamic Adaptive
Relaxation Scheme Applied to the Euclidean Steiner Minimal Tree Problem.
SIAM Journal on Optimization, to appear.

F. R. K. Chung and R. L. Graham. Steiner Trees for Ladders. Annals of
Discrete Mathematics, 2:173-200, 1978.

D. R. Dreyer and M. L. Overton. Two Heuristics for the Steiner Tree Prob-
lem. Technical Report 724, Computer Science Department, New York Uni-
versity, 1996.

D.-Z. Du and Y. Zhang. On Better Heuristics for Steiner Minimum Trees.
Mathematical Programming, 57:193-202, 1992.

E. N. Gilbert and H. O. Pollak. Steiner Minimal Trees. SIAM Journal on
Applied Mathematics, 16(1):1-29, 1968.

26

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

G. R. Grimwood. The Euclidean Steiner Tree Problem: Simulated Annealing
and Other Heuristics. Master’s thesis, Institute of Statistics and Operations
Research, Victoria University of Wellington, New Zealand, 1994.

J. Hesser, R. Manner, and O. Stucky. Optimization of Steiner Trees using
Genetic Algorithms. In Proceedings of the Third International Conference
on Genetic Algorithm, pages 231-236, 1989.

T. Hirlimann. The Euclidean Steiner Tree Problem, Implementation of a
Heuristic. Technical Report 94-14, Institute of Informatics, University of
Fribourg, 1994.

F. K. Hwang. A Linear Time Algorithm for Full Steiner Trees. Operations
Research Letters, 4(5):235-237, 1986.

F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. An-
nals of Discrete Mathematics 53. Elsevier Science Publishers, Netherlands,
1992.

F. K. Hwang and J. F. Weng. The Shortest Network under a Given Topology.
Journal of Algorithms, 13:468-488, 1992.

Jayadeva and B. Bhaumik. A Neural Network for the Steiner Minimal Tree
Problem. Biological Cybernetics, 70:485-494, 1994.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza-
tion by Simulated Annealing: An Experimental Evaluation; Part I, Graph
Partitioning. Operations Research, 37(6):865-892, 1989.

R. Karp. Probabilistic Analysis of Partitioning Algorithms for the Traveling
Salesman Problem in the Plane. Mathematics of Operations Research, 2:209—
224, 1977.

P. Korhonen. An Algorithm for Transforming a Spanning Tree into a Steiner
Tree. In Survey of Math. Programming, Proc. of the 9-th Int. Math. Program.
Symp., volume 2, pages 349-357. North-Holland, 1974.

M. Lundy. Applications of the Annealing Algorithm to Combinatorial Prob-
lems in Statistics. Biometrika, 72:191-198, 1985.

K. Mehlhorn and S. Naher. LEDA - A Platform for Combinatorial

and Geometric Computing. Max Planck Institute for Computer Science
http://www.mpi-sb.mpg.de/LEDA/leda.html, 1996.

Z. A. Melzak. On the Problem of Steiner. Canad. Math. Bull., 4(2):143-148,
1961.

27

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Nielsen. Abstakte Voronoi-diagrammer i ESTPO-heuristikker. Master’s
thesis, DIKU, Department of Computer Science, University of Copenhagen,
1994.

F.P. Preparata and M. I. Shamos. Computational Geometry: An Introduc-
tion. Springer-Verlag, New York, second edition, 1988.

J. S. Provan. An Approximation Scheme for Finding Steiner Trees with
Obstacles. STAM Journal on Computing, 17(5):920-934, 1988.

S. Ravada and A. T. Sherman. Experimental Evaluation of a Partitioning
Algorithm for the Steiner Tree Problem in R? and R?. Networks, 24:409-415,
1994.

D. D. Sleator and R. E. Tarjan. A Data Structure for Dynamic Trees. Journal
of Computer and System Sciences, 26:362-391, 1983.

J. M. Smith. Generalized Steiner Network Problems in Engineering Design.
In Design Optimization. Academic Press, 1985.

J. M. Smith, D. T. Lee, and J. S. Liebman. An O(nlogn) Heuristic for
the Rectilinear Steiner Minimal Tree Problem. FEngineering Optimization,
4:179-192, 1980.

J. M. Smith, D. T. Lee, and J. S. Liebman. An O(nlogn) Heuristic for
Steiner Minimal Tree Problems on the Euclidean Metric. Networks, 11:23—
29, 1981.

J. M. Smith and J. S. Liebman. Steiner Trees, Steiner Circuits and the
Interference Problem in Building Design. Engineering Optimization, 4:15—
36, 1979.

J. M. Smith, R. Weiss, and M. Patel. An O(N?) Heuristic for Steiner Minimal
Trees in E3. Networks, 25:273-289, 1995.

W. D. Smith. How to Find Steiner Minimal Trees in Euclidean d-Space.
Algorithmica, 7(2/3):137-177, 1992.

J. Soukup. Minimum Steiner Trees, Roots of a Polynomial and Other Magic.
ACM/SIGMAP Newsletter, 22:37-51, 1977.

J. Soukup and W. F. Chow. Set of Test Problems for the Minimum Length
Connection Networks. ACM/SIGMAP Newsletter, 15:48-51, 1973.

A. Suzuki and M. Iri. A Heuristic Method for the Euclidean Steiner Problem
as a Geometrical Optimization Problem. Asia-Pacific Journal of Operational
Research, 3(2):109-122, 1986.

28

[41] E. A. Thompson. The Method of Minimum Evolution. Annals of Human
Genetics, 36:333-340, 1973.

[42] D. M. Warme. Personal communication, 1997.

[43] P. Winter and J. M. Smith. Steiner Minimal Trees for Three Points with
One Convex Polygonal Obstacle. Annals of Operations Research, 33:577—
599, 1991.

[44] P. Winter and M. Zachariasen. Euclidean Steiner Minimum Trees: An Im-
proved Exact Algorithm. Networks, to appear.

[45] M. Zachariasen and P. Winter. Concatenation-Based Greedy Heuristics for
the Steiner Tree Problem in the Euclidean Plane. Technical Report 97/20,
DIKU, Department of Computer Science, University of Copenhagen, 1997.

29

