
NORMALIZATIONIN �-CALCULUS AND TYPE THEORYDISSERTATION
M.H.B. S�rensenDepartment of Computer ScienceUniversity of Copenhagen

Supervisors:H.P. Barendregt, Catholic University of Nijmegen.N.D. Jones, University of Copenhagen.External reviewers:T. Coquand, Chalmers University of Technology, Gothenburg.O. Danvy, University of Aarhus.J.W. Klop, CWI, Amsterdam.

: : : it can apparently happen that someone, without much exact learningand with little of the information collected by earlier generations in his head,that such an individual, passing his days like other artistsin the creation of more or less fantastic pictures,can one day feel ripen in himself a conscious wish to use his imaginary imagesto approach in�nity as purely and as closely as possible.Deep, deep in�nity! Quietness. To dream away from the tensions of daily living;to sail over a calm sea at the prow of a ship, toward a horizon that always recedes;to stare at the passing waves and listen to their monotonous soft murmur;to dream away into unconsciousness : : :M.C. Escher.

Preface
The present monograph constitutes the author's Ph.D. thesis submitted tothe Department of Computer Science, University of Copenhagen on April1st, 1997. The research reported in the thesis was conducted during severalperiods between September 1994 and March 1997. The topic of the thesisis �-calculus and type theory; more precisely, the thesis addresses certainquestions regarding normalization in these theories.The thesis contains no tutorial on �-calculus or type theory, except fora very brief introduction presenting enough concepts and terminology toexplain the motivation and achievements of the thesis to someone who doesnot know the subject. In the rest of the thesis, the reader is expected tohave an elementary knowledge of �-calculus corresponding, e.g., to chapters2{3 of Barendregt's book [3]. Chapters 6{9, 11, and 13 of the same bookwould also be useful, but are not essential. The reader is also expected tobe familiar with type theory as presented, e.g., in the handbook chapter [4].Nevertheless, the thesis is self-contained in that it does not rely on anynotions from papers or textbooks. The few exceptions are mentioned in thetext; for instance, the de�nition of substitution is assumed to be known.The bulk of the thesis is made up of three chapters, which have been sowritten that they can be read in any desired order; each chapter begins witha presentation of the fundamental notions used in that particular chapter(this leads to a bit of duplication). However, the deepest appreciation ofideas in later chapters is obtained by reading earlier chapters �rst.To avoid proliferation of the same idea in several contexts, the thesisis concerned with untyped and typed versions of �-calculus only; thus, noattempt is made to modify results so as to hold for combinatory logic or forvarious notions of higher-order rewriting systems. Nevertheless, referencesto relevant similar results in the literature for such systems are given.AcknowledgmentsI owe a huge debt to Henk Barendregt for posing interesting problems andfor comments to my ideas. This thesis is a product of Henk's knowledge ofthe �eld; I am proud to be able to call myself his student. For his hospitalityduring my stay in Nijmegen I am more than grateful. It is also a pleasurev

vi Prefaceto acknowledge my debt to Neil Jones for educating me as a researcher,for helping me out in ways too numerous to be mentioned here, and forsupplying ideas for a number of interesting research projects reported inseveral papers. That I ever became a researcher is due to Neil.I am grateful to Thierry Coquand, Olivier Danvy, and Jan Willem Klopfor agreeing to become members of the thesis committee.I am thankful to my co-workers on various research projects. In par-ticular, thanks to John Hatcli� and Gilles Barthe whose knowledge of CPStranslations and pure type systems, respectively, had a signi�cant inuenceon my ideas. I would not have come this far without John and Gilles.Thanks also to Herman Geuvers, Femke van Raamsdonk, Paula Severi,Hongwei Xi, Ralph Loader, Zurab Khasidashvili, Amir Ben-Amram, TorbenMogensen, and Laurent Regnier for discussions and comments.Thanks to Wei-Ngan Chin, Chet Murthy, and Peter Sestoft for beingexcellent committee members on previous projects. Thanks also to FritzHenglein for being a very inspiring supervisor on an early project. Oh, andthanks also to Carsten Gomard, who was the �rst to see that it might berelevant for me to do research.Many thanks to Zurab Khasidashvili, Masami Hagiya, Sacchio Hirokawa,Andrei Klimov, Sergei Romanenko, Sergei Abramov, Andrei Nemytykh,Valentin Turchin, Gilles Barthe, Femke van Raamsdonk, and Paula Severifor hospitality during visits in Tbilisi, Tokyo, Kyushu, Moscow, Pereslavl,New York, and Amsterdam.Thanks to the �-group in Nijmegen and the TOPPS group at DIKU forproviding inspiring working environments.Thanks to the Computer Department at DIKU for good support, to ErikBarendsen and Henning Niss for help with LATEX, and to Kristo�er Rose forhelp with XY-pic.Thanks to my friends in the Dead Computer Scientists' Society for allthose happy evenings with discussions about Church, G�odel, and VIC 20.Thanks also to Peter Harry Eidor� with whom I have spent great under-graduate days, and to my brother in spirit, Jakob Rehof, who shares myinterest for �-calculus, type theory, and Clint Eastwood.To my parents and to my girl-friend, Mette Bj�rnlund, I shall remainforever indebted. M.H.S., April 1997Preface to the revised editionIn this revised version, appearing as a DIKU report, Chapter 1 has beenupdated according to suggestions from referees of a paper based on theprevious version of the chapter. Thanks to Zurab Khasidashvili, Vincentvan Oostrom, and Roel de Vrijer whose comments signi�cantly improved

Preface viithat paper. Corrections and additions suggested by the thesis committeehave also been incorporated throughout the thesis, and an index has beenadded.Since the appearance of the �rst edition of this thesis, an interestingtranslation has been developed by Xi [144], which is similar to the con-tinuation passing style translation in Chapter 2. This new translation ismentioned in passing in Chapter 1, but has not been worked into Chap-ters 2 and 3. In fact, the new translation can be viewed as a so-calledthunki�cation translation|see [47]|and like the continuation passing styletranslation, the thunki�cation translation can be viewed as a permutativeinner interpretation. Since the thunki�cation translation is simpler than thecontinuation passing style translation, it would be interesting to see whetherit can be used to prove the Barendregt-Geuvers-Klop conjecture for a largerclass of pure type systems than that studied in Chapter 3.Also, several other parts of the thesis call for elaboration. The strongnormalization proofs by Gandy, de Vrijer, etc. mentioned in Chapter 1,which establish upper bounds for length of reduction sequences, seem toyield reductions of strong normalization to weak normalization of the samenotion of reduction, and this should be investigated in greater detail. Thereduction of strong normalization to weak normalization by Loader men-tioned in Chapter 2 should also be examined more closely. These techniquesmay provide alternative approaches to attack the Barendregt-Geuvers-Klopconjecture. Another idea for attacking the conjecture is to generalize thetranslation due to Harper, Honsell, and Plotkin which eliminates dependenttypes.The relation between permutative inner interpretations and monads inChapter 2 should be explained in greater detail. Also, the technique in Chap-ter 2 should be applied to a greater variety of systems, e.g., systems withthe permutative conversions known from proof normalization and G�odel'ssystem T , if possible. It would also be interesting to study type systemswhich are weakly but not strongly normalizing (at present no such systemsare known among the pure type systems, but one could choose among othersystems).Finally, the connection in Chapter 3 to the K-conjecture and to thelooping combinators of Coquand and Herbelin should be elaborated.These issues will be addressed elsewhere. M.H.B.S., April 1998

viii

ContentsPreface vIntroduction 11 Perpetual Reductions in �-Calculus 111.1 Introduction . 111.2 Classi�cation of strategies and redexes 131.3 Perpetual and maximal strategies 201.4 The
-theorem . 291.5 Strong normalization in type theory 371.6 Developments . 421.7 Maximal and perpetual redexes 471.8 A note on shortest developments 622 Weak and Strong Normalization in Type Theory 712.1 Introduction . 712.2 Klop's technique . 742.3 Variations on Klop's technique 772.4 Extensions of Klop's technique 822.5 Simulation by permutative inner interpretation 872.6 Application to typed �-calculi �a la Curry 942.7 Application to typed �-calculi �a la Church 992.8 Conclusion . 1033 Normalization in Pure Type Systems 1053.1 Introduction . 1053.2 Pure type systems . 1063.3 CPS translation of types . 1163.4 CPS translation of terms . 1273.5 Strong normalization from weak normalization 1373.6 Conclusion . 147Bibliography 149Index 161ix

x Contents

Introduction
�-calculus is a collection of formal theories of interest in, e.g., computerscience and logic. The objects of study in these theories are �-terms, whichexpress functions and applications of functions in a pure form. For instance,�x:xis a �-term which, intuitively, denotes the function that maps any argumentto itself, i.e., the identity function. This is similar to the notation n 7! nemployed in mathematics. However, �x:x is a string over an alphabet withsymbols �, x, etc., whereas n 7! n is a function.The �-term �x:x is henceforth called I, in short:I � �x:x:As in the notation n 7! n, the name of the bound variable x in �x:x is notsigni�cant; thus, we might as well have writtenI � �y:y:Another �-term is K� � �y:�x:xwhich, intuitively, denotes the function that maps any argument to a func-tion, namely the one that maps any argument to itself, i.e., the identityfunction. This is similar to programming languages where a procedure mayreturn a procedure as a result. A related �-term isK � �y:�x:ywhich, intuitively, denotes the function that maps any argument to thefunction that, for any argument, returns the former argument. �-termsof the form �x:P are generally called abstractions.Since �-terms intuitively denote functions, there is a way to expressapplication of one �-term to another; this is expressed by juxtaposition.Thus, the �-term I K1

2 Introductionexpresses application of I to K. Since K intuitively denotes a function too,I denotes a function which may have another function as argument. This issimilar to programming languages where a procedure may receive anotherprocedure as argument.In mathematics we usually write application of a function, say, f(n) = n2to an argument, say, 4 with the argument in parenthesis: f(4). By traditionthis is not done in �-calculus. However, we do need to put some parenthesesto delimit the scope of applications and abstractions. For instance,(�x:x) I �x:(x I)are not the same �-term; the �rst is I applied to I, whereas the secondexpects an argument x which is applied to I. To save parentheses, it iscustomary to omit the parentheses in the second of the two �-terms.Intuitively, if �x:M denotes a function, andN denotes an argument, thenthe the result of the function on the argument is denoted by the �-term thatarises by substitution of N for x in M . This latter �-term is written1Mfx := Ng:This is similar to common practice in mathematics; if f is as above, thenf(4) = 42, and we get from the application f(4) to the result 42 by substi-tuting 4 for n in the body of the de�nition of f .The process of calculating results is formalized by �-reduction. Onewrites M !� N if N arises from M by replacing a �-redex, i.e., a part ofform (�x:P)Qby its �-contractum Pfx := Qg:For instance, I K � (�x:x)K!� xfx := Kg �K:If M !� : : :!� N in zero or more steps, one writes M !!� N .Since a �-term M may contain several �-redexes, i.e., several parts ofform (�x:P)Q, there may be several N such that M !� N . For instance,K (I I)!� �x:(I I)and also K (I I)!� K I:However, the celebrated Church-Rosser theorem states that ifM !!� M11Some care must be taken in the substitution operation to avoid confusion betweendi�erent variables; such problems are beyond the scope of this introduction.

Introduction 3and M !!� M2;then a single �-term M3 can be found withM1 !!� M3and M2 !!� M3:In particular, if M1 and M2 are �-normal forms, i.e., �-terms that admitno further �-reductions, then they must be the same �-term, since the �-reductions from M1 and M2 to M3 must be in zero steps. This is similar tothe fact that when we calculate the value of an arithmetical expression, e.g.,(4 + 2) � (3 + 7) � 11;the end result is independent of the order in which we do the calculations.The idea that any �-termM denotes a function also gives rise to anothertype of reduction, namely �-reduction, which states that M !� N , if Narises from M by replacing a part of form �x:P x by P , where x does notappear in P ; a �-term of the former kind is an �-redex. For instance,�y:I y !� I:Usually one considers either �-reduction alone or �-reduction together with�-reduction. To stress the distinction, one speaks of ��-calculus and ���-calculus. In the rest of this introduction we are concerned with �-reductionalone, and adopt the usual convention of omitting \�-" from the notions�-redex, �-reduction, etc.�-calculus is a type-free formalism. Unlike common mathematical prac-tice, we do not insist that �-terms denote functions from certain domains,e.g., the natural numbers, and that arguments be drawn from these domains.In particular, we may have self-application as in the �-term! � �x:x x;and we may apply this �-term to itself as in the �-term
 � ! !:The type-free nature of �-calculus leads to some interesting phenomena;for instance, a �-term may reduce to itself as in
 � (�x:x x) ! !� ! ! �
:Therefore, there are also �-terms with in�nite reduction sequences, like
!�
!� : : : :

4 IntroductionSome �-terms admit both an in�nite reduction sequence:K�
 !� K�
 !� : : :(where the reductions are in
) and a �nite one to normal form:K�
 !� I:A �-term is weakly normalizing if it admits a reduction sequence ending in anormal form. A �-term is strongly normalizing if all its reduction sequenceseventually end in normal forms. The latter trivially implies the former, butnot vice versa as the above example illustrates.However, the normalization theorem, due to Curry and Feys, states thatrepeatedly reducing the left-most redex in a weakly normalizing �-term even-tually leads to a normal form|even if the �-term is not strongly normalizing.Another way to state this is that the reduction strategy which always reducesthe left-most redex is normalizing. There is also a reduction strategy withthe property that, for any �-term admitting an in�nite reduction sequence,reducing according to the strategy does not lead to a normal-form. Such astrategy is called perpetual. A normalizing reduction strategy which, for anyweakly normalizing �-term, computes a shortest reduction sequence amongall those leading to a normal form is called minimal. Similarly, a perpetualreduction strategy which, for any strongly normalizing �-term, computes alongest reduction sequence is called maximal.Interestingly, the existence of �-terms that admit both a reduction se-quence to normal form as well as an in�nite reduction sequence vanishesif we allow the formation of abstractions �x:P only when x occurs in P .This result is known as the conservation theorem for �I, due to Church andRosser. The terminology stems from the fact that the resulting fragment of�-calculus is called �I-calculus, and to make the distinction explicit, general�-calculus is sometimes called �K-calculus.A reduction sequence from a �-term M which only reduces redexes thatare present in M , in a certain sense, is called a development. For instance(�x:x) ((�y:y) z)!� (�y:y) z !� zis a development, but(�x:x z) (�y:y)!� (�y:y) z !� zis not, because the redex contracted in the last step is not present in theoriginal term; in contrast, it is created during the reduction path. Curryand Feys' �nite developments theorem states that there are no in�nite de-velopments.In some variants of �-calculus, collectively known as type theory, restric-tions are made regarding the �-terms that may be applied to other �-terms.One considers types, e.g., 0! (0! 0):

Introduction 5Intuitively, 0 denotes some set, and A ! B denotes the set of functionsfrom A to B. However, like �-terms, types are strings.One then stipulates that each variable x has some type A. Moreover, ifx has type A and M has type B, then �x:M has type A! B. This reectsthe intuition that if M denotes an element of B for each x in A, then �x:Mdenotes a function from A to B. In a similar vein, if M has type A ! Band N has type A, then M N has type B.A type theory is weakly and strongly normalizing if all terms that havea type are weakly and strongly normalizing, respectively. Again, the lattertrivially implies the former. One can prove, using a classical technique dueto Tait and Girard, that many type theories satisfy both properties.�-calculus and the related systems of combinatory logic were originallyproposed as a foundation of mathematics around 1930 by Church and Curry,but the proposed systems were subsequently shown to be inconsistent byKleene and Rosser in 1935. However, the subsystem described above con-sisting of the �-terms equipped with �-reduction turned out to be useful forformalizing the intuitive notion of e�ective computability, and this was amain motivation for the development of recursion theory. 2With the invention of physical computers came also programming lan-guages, and �-calculus and combinatory logic have proved to be useful toolsin the theory and implementation of programming languages. For instance,�-calculus may be considered an idealized sublanguage of higher-order pro-gramming languages like Lisp. In this case, �-reduction expresses an elemen-tary computation step, and, roughly, normal forms are the results of compu-tations. Also, �-calculus is useful for expressing semantics of programminglanguages as done in denotational semantics. Hindley and Seldin [50, p43]summarize the situation: \�-calculus and combinatory logic are regarded as`test-beds' in the study of higher-order programming languages: techniquesare tried out on these two simple languages, developed, and then applied toother more `practical' languages."Similarly, type theory is useful for the study and implementation of pro-gramming languages with types like Pascal and ML.3 Type theory is alsoof interest in logic due to the so-called Curry-Howard Isomorphism, whichinterprets types as formulae in formal logic and �-terms as representationsof formal proofs. In this case, �-reduction expresses reductions of proofs,studied independently in proof theory.In these applications of �-calculus, the property of weak normalizationis of considerable importance. For instance, in a programming language,weak normalization of a term guarantees that the term has a result; in2`For more on the history of �-calculus, see, e.g., [3] or [50]. First hand informationmay be obtained from Kleene and Rosser's eye witness statements [75, 110], and fromCurry and Feys' book [29], which contains a wealth of historical information.3For instance, type theories are used as intermediate languages for the compilation ofrealistic higher-order typed programming languages.

6 Introductiongeneral programming languages not all terms have this property, and it isnot decidable, in general, whether a term has the property|this is a variantof the halting problem. In proof theory, weak normalization of type theoriesis used to prove logical consistency of formal logics.In some applications it is necessary, or at least more convenient, to knowthat a �-term or a type theory is not merely weakly normalizing, but infact strongly normalizing. For instance, weak normalization of a �-termimplies that the �-term has a normal form, but to �nd this normal formone needs a reduction strategy that is guaranteed to �nd the normal form,e.g., left-most reduction. Knowing that all reduction sequences eventuallyterminate allows us choose between di�erent reduction strategies accordingto, e.g., e�ciency concerns. As another example, some proof techniques,e.g., Newman's Lemma, require strong normalization of �-terms. Finally, asvan de Pol [102, p3] puts it: \After all, it is quite natural to ask whether allreduction sequences eventually lead to a normal form."As mentioned above, strong normalization of a �-term or of a type theorytrivially implies weak normalization of the �-term or the type theory, sothe bene�ts of weak normalization are inherited by strong normalization.However, for some �-terms and type theories, weak normalization is easier toprove than strong normalization. This raises the idea of studying techniquesto infer strong normalization from weak normalization in �-calculus and typetheory. This thesis is concerned with such techniques.OverviewWe end the introduction with a brief overview of the remaining three chap-ters, emphasizing the research contribution of each chapter.The �rst chapter surveys a part of the theory of �-reduction in �-calculuswhich might aptly be called perpetual reductions. The theory is concernedwith perpetual reduction strategies, i.e., reduction strategies that computein�nite reduction paths from �-terms (when possible), and with perpetualredexes, i.e., redexes whose contraction in �-terms preserves the possibility(when present) of in�nite reduction paths. The survey not only recastsclassical theorems in a uni�ed setting, but also o�ers new results and prooftechniques, as well as a number of applications to problems in �-calculus andtype theory. In particular, the theory provides techniques to infer strongnormalization from weak normalization which are used in the following twochapters to address the connection between weak and strong normalizationin type theories.The chapter begins with a classi�cation of redexes and reduction strate-gies and proves equivalence between some classi�cations from the literature.Next a lemma is proved which we call the fundamental lemma of perpetu-ality. The lemma is used|often implicitly|inmany proofs in the literature,e.g., in the Tait & Girard strong normalization proofs. An attempt is then

Introduction 7made to show that the core of the recent techniques by van Raamsdonkand Severi [106] and by Xi [140] for proving strong normalization results iscaptured by this lemma.Several known perpetual reduction strategies are then presented; theproofs or perpetuality are an immediate consequence of the fundamentallemma of perpetuality.A stronger form of the fundamental lemma of perpetuality, which we callthe fundamental lemma of maximality, is then presented. This result is oftenused implicitly in strong normalization proofs which establish upper boundsfor the length of reduction paths. We use the lemma to show maximality ofa certain e�ective reduction strategy.A new result is proved (Proposition 1.3.27) which states that to computean upper bound for the length of reduction sequences from some �-term, onecannot do better, in a certain sense, than simply try to reduce the �-term tonormal form, using this maximal reduction strategy, and count the numberof reductions along the way. This shows that there is no analog in general�-calculus of the techniques known for type theories and developments forcomputing upper bounds for length of reductions.A new result, which we call the
-theorem, is then proved, stating thatevery �-term in every in�nite reduction sequence contains
 as a substring.This result gives a technique to infer strong normalization from weak nor-malization of �-terms, and throws some light on a certain false conjecture.It also implies some results that previously relied on tedious case analyses.We then study approaches to proving strong normalization of simplytyped �-calculus based on the fundamental lemma of perpetuality and basedon the related techniques by van Raamsdonk and Severi and by Xi. Inparticular, a new proof is presented.We also study approaches to proving �niteness of developments, basedon a version of the fundamental lemma of perpetuality for developments,and in particular give a new, perspicuous proof of this theorem.Next a well-known proof technique is re�ned and used to give smoothproofs of the conservation theorem for �I, of the so-called conservation the-orem for �K, and of a related theorem due to Bergstra and Klop; thesetheorems amount to characterizations of perpetual redexes, and also give amethod to infer strong normalization from weak normalization. The tech-nique is also demonstrated to yield the normalization theorem with littlee�ort. We also show that the normalization theorem implies the conserva-tion theorem for �I .We conclude the �rst chapter with a new technique to compute shortestdevelopments. This result does not belong to the main path of the chapter,but arises by an interesting principle of duality from a technique to computelongest developments due to de Vrijer [135].For some type theories it is easier to prove weak normalization thanstrong normalization. More precisely, although it is equally di�cult to prove

8 Introductionweak and strong normalization using the Tait & Girard method, there is,for some type theories, a method to prove weak normalization which issubstantially simpler than the Tait & Girard method.A number of techniques to strong normalization from weak normalizationhave been invented over the last twenty years by Nederpelt [92], Klop [76],Khasidashvili [69], Karr [62], de Groote [31], and Kfoury and Wells [66], butthese techniques infer strong normalization of one notion of reduction fromweak normalization of a more complicated notion of reduction.This has the undesirable consequence that, even if one knows that anotion of reduction is weakly normalizing, one has to redo the weak nor-malization proof for the complicated notion of reduction to conclude strongnormalization for the original notion of reduction. This is a non-trivialprocess which involves very di�erent techniques for di�erent calculi. A tech-nique to uniformly infer strong normalization for one notion of reductionfrom weak normalization of the same notion of reduction would be better.The second chapter presents a new technique to infer strong normaliza-tion of a notion of reduction in a type theory from weak normalization ofthe same notion of reduction. The technique not only simpli�es the task ofproving strong normalization as compared to previous approaches, but alsosuggests an approach to an open problem in type theory (see below).The chapter begins with an account of Klop's technique, which is basedon an interpretation of �K in �I and the conservation theorem for �I. Klop'stechnique is then compared to related techniques.Our technique is then presented as an extension of Klop's techniqueusing a continuation passing style translation. The technique is used toinfer strong normalization from weak normalization in simply, second-order,and higher-order typed �-calculus, a system with subtypes, and the systemof positive, recursive types.Loader [85] independently uses a somewhat di�erent translation to inferstrong normalization from weak normalization in simply and second-ordertyped �-calculus. Xi [141] independently uses a translation similar to ours toinfer strong normalization from weak normalization in the same two calculi.The chapter also shows that the continuation passing style translationused in our technique is a special case of a class of translations, which wecall permutative inner interpretations, each of which gives rise to a similarextension of Klop's technique. The translation studied by Loader may beviewed as another special case.The Barendregt-Geuvers-Klop conjecture states that every weakly nor-malizing pure type system is also strongly normalizing|pure type systemsare a general formalism of which speci�c type theories can be viewed asspecial cases. In the third chapter, we show that the conjecture is true foran in�nite class of pure type systems that includes, e.g., the left hand side ofBarendregt's �-cube as well as the well-known system �U . This seems to bethe �rst result giving a positive answer to the conjecture not merely for some

Introduction 9concrete systems for which strong normalization is known to hold|for suchsystems the conjecture is trivially true|but for a uniform class of systemsin which not all systems are strongly normalizing.The chapter introduces the notion of a generalized non-dependent puretype system, in which types do not depend on terms. This property allows usto give separate continuation passing style translations on terms and types,and these are used to extend the technique of the previous chapter to theclass of generalized non-dependent pure type systems.This class is a generalization of Coquand and Herbelin's [27] logical non-dependent pure type system, and our continuation passing style translationsgeneralize Coquand and Herbelin's translations of logical non-dependentpure type systems.The �rst chapter (except the last section) is based on [118, 119, 120],and is also inspired by the papers [106, 140], as is elaborated in the chapter.A paper based on the chapter (excluding the last section) has been acceptedfor publication [107] as joint work with F. van Raamsdonk, P. Severi, andH. Xi. Another paper based on the last section has been submitted forpublication [122].The second chapter is based on [121].A paper based on the third chapter has been submitted for publica-tion [11] as joint work with G. Barthe and J. Hatcli�.Not all work of the author relevant for the third chapter has been in-cluded. Some di�culties with the system of higher-order �-calculus in [121]lead to the study of so-called domain-free pure type systems [14, 15] joint withG. Barthe, and to the study of continuation passing style translations intosuch systems [10, 12] joint with G. Barthe and J. Hatcli�. These techniqueswere subsequently used to study a framework for �-calculi corresponding toclassical logics via the Curry-Howard isomorphism [9]. Also, the techniquefor de�ning general CPS translations was generalized to a general inductionprinciple in joint work with G. Barthe and J. Hatcli� [13]. The chapter usesideas developed in these projects, but does not use directly the techniquesdeveloped in the papers.

10 Introduction

CHAPTER 1Perpetual Reductions in �-Calculus
This chapter surveys a part of the theory of �-reduction in �-calculus whichmight aptly be called perpetual reductions. The theory is concerned withperpetual reduction strategies, i.e., reduction strategies that compute in�nitereduction paths from �-terms (when possible), and with perpetual redexes,i.e., redexes whose contraction in �-terms preserves the possibility (whenpresent) of in�nite reduction paths. The survey not only recasts classicaltheorems in a uni�ed setting, but also o�ers new results and proof tech-niques, as well as a number of applications to problems in �-calculus andtype theory. In particular, the theory provides techniques to infer strong nor-malization from weak normalization which are used in the next two chapters.1.1. IntroductionConsiderable attention has been devoted to classi�cation of reduction strate-gies in �-calculus [5, 17, 18, 29, 76, 84, 138]|see also [3, Ch. 13]. We areconcerned with strategies di�ering in the length of reduction paths.(i) A maximal strategy computes for a term a longest reduction path tonormal form, if one exists, otherwise some in�nite reduction path.(ii) A minimal strategy computes for a term a shortest reduction path tonormal form, if one exists, otherwise some in�nite reduction path.(iii) A perpetual strategy computes for a term an in�nite reduction path, ifone exists, otherwise some �nite reduction path to normal form.(iv) A normalizing strategy computes for a term a �nite reduction path tonormal form, if one exists, otherwise some in�nite reduction path.11In this presentation, attention is restricted to the usual �-calculus. In the so-calledin�nite �-calculus one also studies in�nite reductions ending in in�nite normal forms.11

12 Chapter 1. Perpetual Reductions in �-CalculusPerpetual and normalizing strategies are opposite, in some sense, as aremaximal and minimal strategies.Another classi�cation is concerned with redexes rather than strategies.For instance, a redex � with contractum �0 is perpetual if, for any contextC such that C[�] has an in�nite reduction path, C[�0] also has an in�nitereduction path. This chapter presents a theory of perpetual and maximal�-reduction strategies and �-redexes. The chapter not only recasts in auni�ed setting classical theorems due to Barendregt, Bergstra, Klop, andVolken, to Church and Rosser, to Curry and Feys, and to de Vrijer, butalso presents new results, proofs, and techniques, as well as a number ofapplications to problems in �-calculus and type theory demonstrating theelegance and relevance of the theory.The chapter is organized as follows. Section 1.2 classi�es reductionstrategies and redexes in �-calculus and proves equivalence between di�erentformulations of perpetual and maximal strategies and redexes.Section 1.3 is about perpetual and maximal �-reduction strategies. Thisis a central theme in work of de Vrijer [135, 136, 138], who uses the techniqueof counting steps to establish several strong normalization results. Thecounting functions in fact de�ne reduction strategies.We �rst prove a result which we call the fundamental lemma of perpe-tuality. The lemma is used|often implicitly|in many strong normalizationproofs in the literature. An attempt is then made to show that the core of therecent techniques by van Raamsdonk and Severi and by Xi for proving strongnormalization results is captured by this lemma. The section presents severalperpetual reduction strategies; perpetuality is in each case an immediateconsequence of the fundamental lemma of perpetuality.The section then proves a stronger form of the fundamental lemma ofperpetuality which we call the fundamental lemma of maximality. Thisresult is often used implicitly in strong normalization proofs which establishupper bounds for the length of reduction paths. We use the lemma to showmaximality of a certain reduction strategy and to give a certain, trivialtechnique for computing upper bounds for the length of reduction pathsfrom �-terms without in�nite reduction paths. We also prove that, in acertain sense, the trivial technique cannot be improved.Sections 1.4{1.6 give applications of perpetual and maximal �-reductionstrategies. Section 1.4 presents the recent
-theorem, stating that every �-term in every in�nite reduction path contains the �-term
 as a substring.The proof uses a certain perpetual reduction strategy. Section 1.5 stud-ies approaches to proving strong normalization of simply typed �-calculusbased on the fundamental lemma of perpetuality and based on the relatedtechniques by van Raamsdonk and Severi and by Xi. In particular, a newperspicuous proof is presented. Section 1.6 similarly studies approaches toproving �niteness of developments and in particular gives a new, perspicuousproof of this theorem.

1.2. Classi�cation of strategies and redexes 13Section 1.7 is about perpetual �-redexes (as we shall see, maximal �-redexes turn out to be trivial). A well-known proof technique is re�nedand used to give smooth proofs of the conservation theorem for �I , of theconservation theorem for �K , and of a related theorem due to Bergstra andKlop; these results together give characterizations of perpetual redexes in�I and �K . The technique is also demonstrated to yield the normalizationtheorem with little e�ort. The section ends with a very short proof of theconservation theorem for �I using the normalization theorem.We conclude the chapter with a new technique to compute shortest de-velopments. This result does not belong to the main path of the chapter,but arises by an interesting principle of duality from a technique to computelongest developments due to de Vrijer [135].Klop [77] surveys some results about reduction strategies in �rst-orderterm rewriting systems. Due to the absence of abstractions and the presenceof patterns in the term language, some parts of that theory are rather di�er-ent from what is presented in this chapter; therefore, we shall not considersuch systems any further. Several notions of higher-order term rewriting sys-tem exist, some of which contain as special cases �-calculus with �-reduction.We will not consider such systems, although we do try to give references toresults that generalize those for �-calculus presented in this chapter.1.2. Classi�cation of strategies and redexesIn this section we classify strategies and redexes as outlined in the introduc-tion. The �rst subsection reviews preliminary notions. The second subsec-tion introduces some notation and properties pertaining to reductions. Thethird and fourth subsections then classify strategies and redexes and proveequivalence between di�erent classi�cations from the literature.1.2.1. PreliminariesMost notation, terminology, and conventions are adopted from [3]; in thissubsection we merely �x the notation for some well-known concepts.�K is the set of type-free �-terms. Some example terms areK � �x:�y:x,I � �x:x, ! � �x:x x, and
 � ! !. We use x; y; z; : : : to range over theset V of variables. Familiarity is assumed with conventions for omittingparentheses in �-terms. Familiarity is also assumed with the notions of freeand bound variables, the variable convention, substitution, and the subtermrelation, which is denoted by �. Syntactic equality up to renaming of boundvariables is denoted by �. FV(M) denotes the set of free variables in M .jjM jjx denotes the number of free occurrences of x in M . jjM jj denotes thesize of M , i.e., the number of occurrences of abstractions, applications, andvariables in M . �I is the set of all �-terms where for every subterm �x:M ,x 2 FV(M). Thus, I; !;
 2 �I , whereas K 62 �I . A �-context C is a term

14 Chapter 1. Perpetual Reductions in �-Calculuswith a single occurrence of the symbol []; the result of replacing [] by thetermM in C is denoted by C[M]. Occasionally the name of bound variablesmatters, e.g., when dealing with contexts. In such cases, BV(M) denotesthe set of variables bound in M .We occasionally use vector notation ~P for a sequence of terms P1 : : : Pn(where n � 0), e.g., Q ~P for Q P1 : : : Pn, and ~P 2 S for P1; : : : ; Pn 2 S.A notion of reduction on a set S is a binary relation R � S � S. IfM R N , then M is an R-redex and N its R-contractum. By R1R2 wedenote the union of two notions of reduction R1 and R2. For a notion ofreduction R, the corresponding reduction relation !R is the compatibleclosure (relative to some set of contexts). For a reduction relation !R, !!Ris the reexive, transitive closure, !!+R is the transitive closure, and =R isthe transitive, reexive, symmetric closure. We assume the reader is familiarwith the notion of reduction � on �K . Several elementary properties aboutsubstitution and �-reduction will be used implicitly.Let N� = N [f1g. The following calculation rules are convenient:min ; = max ; = 1. Moreover, maxU = 1 if U � N is unbounded , i.e.,if, for all m 2 U , there is an n 2 U with n > m. Also, 1� k = 1 + k =1 +1 = k � 1 = 1, for any k 2 N. Finally, for m�; n� 2 N� we writem� < n� i� either m� 6=1 and n� =1, or m�; n� 2 N and m� < n� by theusual ordering on N. We write m� � n� i� m� < n� or m� = n�.We use);,;&;8;9 as connectives and quanti�ers in the informal meta-language. For a map F : S ! S on some set S, we de�ne F 0(M) =M andF n+1(M) = F (F n(M)).1.2.2. Some notation concerning normalizationIn this subsection R denotes a notion of reduction on some set S, and !Rdenotes the corresponding reduction relation.1.2.1. Definition. A �nite or in�nite sequenceM0 !R M1 !R : : :is called an R-reduction path fromM0. We say thatM0 has this R-reductionpath. If the sequence is �nite it ends in the last term Mn and has length n,and then we write M0 !!nR Mn. If the sequence is in�nite, it has length 1.1.2.2. Definition.1R = fM jM has an in�nite R-reduction pathg:nR = fM jM has an R-reduction path of length ng:NFR = fM jM has no R-reduction path of length 1 or moreg:SNR = fM jM has no in�nite R-reduction pathg:WNR = fM jM has a �nite R-reduction path ending in an N 2 NFRg:In the notation nR, we require n 2 N.

1.2. Classi�cation of strategies and redexes 151.2.3. Definition.CRR = fM j for all L;N; if L R M!!R N then L!!RKR N for a Kg:FBR = fM jM !R N for only �nitely many di�erent Ng:1.2.4. Terminology.(i) M 2 NFR , M is an R-normal form.(ii) M 2 SNR , M is R-strongly normalizing.(iii) M 2WNR , M is R-weakly normalizing.(iv) M 2 CRR , M is R-Church-Rosser.(v) M 2 FBR , M is R-�nitely branching.We often omit R, relying on the context to resolve the ambiguity. WhenR is a notion of reduction on a set S, and M 2 FBR for all M 2 S, wesimply write FBR. Similarly with the other sets introduced above.1.2.5. Lemma. Assume FBR. Then M 2 1R , 8n 2 N :M 2 nR.Proof. \)" is obvious; \(" is by K�onig's Lemma. utWe shall denote by sR(M) 2 N� the length of a shortest �nite reductionpath fromM to normal form, if a �nite reduction path to normal form exists;otherwise sR(M) = 1. Also, lR(M) 2 N� denotes the length of a longest�nite reduction path from M to normal form, if there is an upper bound onthe length of these reduction paths; otherwise lR(M) =1. In symbols:1.2.6. Definition.(i) sR(M) = minfn j 9N 2 NFR :M !!nR Ng.(ii) lR(M) = maxfn j 9N 2 NFR :M !!nR Ng.1.2.7. Lemma. Assume CRR, FBR. Then(i) M 2WNR , sR(M) <1.(ii) M 2 1R , lR(M) =1.Proof.(i) \)": IfM 2WNR thenM !!nR N 2 NFR for an n 2 N, so sR(M) <1.\(": If sR(M) <1 thenM !!nR N 2 NFR for an n 2 N, soM 2WNR.(ii) \)": Assume M 2 1R.1. M 62WNR. Then lR(M) =1.

16 Chapter 1. Perpetual Reductions in �-Calculus2. M 2 WNR. Then M !!R N 2 NFR for some N . Since M 2 1R,for any n 2 N there is K such that M !!nR K. By CRR, K !!R N .Thus, for any m 2 N there is n > m such that M !!nR N 2 NFR.Then lR(M) =1.\(": Assume lR(M) =1. There are two ways this can happen.1. M 62WNR. Then M 2 1R.2. For arbitrarily large n 2 N there is N 2 NF� withM !!nR N . ThenM 2 1R by Lemma 1.2.5. ut1.2.8. Remark. Although seemingly trivial, the above proof uses the rulesmin ; = max ; = maxU =1 (U unbounded) in subtle ways. For instance,as shown in (ii) \)", if m 2 1R, then fn j 9N 2 NFR :M !!nR Ng is eitherempty (ifM 62WNR) or unbounded (ifM 2WNR). In either event, the twolatter conventions imply lR(M) =1.1.2.9. Remark. The statement formulated in Lemma 1.2.7(ii) will be usedat various places later; an equivalent statement is: M 2 SNR, lR(M) <1.1.2.3. Classi�cation of strategiesIn this subsection we introduce rigorously the classi�cation of reductionstrategies that was mentioned informally in the introduction. Throughoutthe subsection, R denotes a notion of reduction on some set S, and !Rdenotes the corresponding reduction relation.1.2.10. Definition (Barendregt et al. [3, 5]).(i) An R-reduction strategy is a map F : S ! S such that M !R F (M) ifM 62 NFR, and F (M) =M otherwise.(ii) Let F be an R-reduction strategy. De�neLF (M) = minfn j F n(M) 2 NFRg:The F -reduction path from M is the reduction pathM !R F (M)!R F 2(N)!R � � �of length LF (M).1.2.11. Remark. Reduction strategies are history insensitive; that is, givensome M 2 �K , the act of a reduction strategy on M is independent onhow we might have arrived at M . For instance, \for any M 2 �K , reducealternately the left-most and right-most �-redex, beginning with the left-most one" does not specify a reduction strategy; a reduction strategy receivesa term as input and must return as output another term that arises fromthe former by one reduction step.

1.2. Classi�cation of strategies and redexes 17Barendregt et al. [3, 5] use the terminology one-step reduction strategyfor what we call reduction strategy. In the following de�nition, (ii)-(iv) arealso taken from [3, 5], but what we call minimal is there called L-1-optimal.1.2.12. Definition. Let F be an R-reduction strategy.(i) F is R-maximal i� LF (M) = lR(M).(ii) F is R-minimal i� LF (M) = sR(M).(iii) F is R-perpetual i� M 2 1R) LF (M) =1.(iv) F is R-normalizing i� M 2WNR) LF (M) <1.This classi�cation of strategies is \global" in that it is formulated interms of the whole reduction path of the strategy. The following formula-tions of minimality and maximality are \local" in that they are formulatedin terms of one step of the strategy. The local classi�cations have the ad-vantage that they give rise to analogous classi�cations of redexes.1.2.13. Lemma. Assume CRR, FBR. Let F be an R-reduction strategy.(i) F is R-minimal i� for all M 62 NFR: sR(M) = sR(F (M)) + 1.(ii) F is R-maximal i� for all M 62 NFR: lR(M) = lR(F (M)) + 1.Proof.(i) \)": Assume F is R-minimal. Then, for any M 62 NFR,sR(M) = LF (M)= minfn j F n(M) 2 NFRg= minfn j F n(F (M)) 2 NFRg+ 1= LF (F (M)) + 1= sR(F (M)) + 1:\(": Assume for all M 62 NFR that sR(M) = sR(F (M)) + 1. IfsR(M) = 1, then also LF (M) = 1. Now assume sR(M) < 1. Weshow by induction on sR(M) that sR(M) = LF (M).1. sR(M) = 0. Then M 2 NFR, so LF (M) = 0.2. 0 < sR(M) <1. Then M 62 NFR. By the induction hypothesis,sR(M) = sR(F (M)) + 1= LF (F (M)) + 1= LF (M):(ii) \)": Assume F is maximal. Then, for any M 62 NFR,lR(M) = LF (M)= LF (F (M)) + 1= lR(F (M)) + 1:

18 Chapter 1. Perpetual Reductions in �-Calculus\(": Assume for all M 62 NFR that lR(M) = lR(F (M)) + 1. IfLF (M) = 1, then, by Lemma 1.2.7, also lR(M) = 1. Now assumeLF (M) <1. We show lR(M) = LF (M) by induction on LF (M).1. LF (M) = 0. Then M 2 NFR, so lR(M) = 0.2. 0 < LF (M) <1. Then N 62 NFR. By the induction hypothesis,LF (M) = LF (F (M)) + 1= lR(F (M)) + 1= lR(M):Note that we need Lemma 1.2.7 in (ii), but not in (i). utThe following gives another local formulation of perpetuality and maxi-mality, due to Bergstra and Klop [18] and Regnier [108], respectively.1.2.14. Lemma. Assume CRR, FBR. Let F be an R-reduction strategy.(i) F is R-perpetual i� for all M : M 2 1R) F (M) 2 1R.(ii) F is R-maximal i� for all M and n � 1: M 2 nR) F (M) 2 (n�1)R.Proof.(i) \)": Assume M 2 1R. By assumption, LF (M) = 1, i.e., the pathM !R F (M)!R F 2(M)!R : : : is in�nite, so F (M) 2 1R.\(": Assume M 2 1R. By induction on n show that F n(M) 2 1R,in particular F n(M) 62 NFR, so LF (M) =1.(ii) \)": Assume that M 2 nR. By CRR, n � lR(M) = LF (M), i.e.,F n�1(M) 62 NFR, so F (M) 2 (n� 1)R.\(": If LF (M) = 1, then, by Lemma 1.2.7, lR(M) = 1. AssumeLF (M) <1. We show LF (M) = lR(M) by induction on LF (M).1. LF (M) = 0. Then M 2 NFR, so lR(M) = 0.2. 0 < LF (M) < 1. Then M 62 NFR. By the induction hypothesisand Lemma 1.2.13,LF (M) = LF (F (M)) + 1= lR(F (M)) + 1= lR(M): ut1.2.15. Proposition. Assume CRR;FBR. Let F be anR-reduction strategy.(i) If F is R-maximal then F is R-perpetual.(ii) If F is R-minimal then F is R-normalizing.Proof.

1.2. Classi�cation of strategies and redexes 19(i) If M 2 1R then, by Lemma 1.2.7, LF (M) = lR(M) =1.(ii) If M 2WNR then, by Lemma 1.2.7, LF (M) = sR(M) <1. ut1.2.16. Remark. No other general containment exists between our fourtypes of strategies than the two mentioned above.Perpetual reduction strategies are often useful to prove properties aboutin�nite reduction paths. In these cases we are usually not interested in howthe strategy behaves on strongly normalizing terms. This motivates thefollowing.1.2.17. Definition. A partial, perpetual R-reduction strategy is a mappingF :1R !1R such that for all M 2 1R: M !R F (M).1.2.4. Classi�cation of redexesIn this subsection we introduce rigorously the classi�cation of redexes fromthe introduction. Throughout the subsection, R denotes a notion of reduc-tion on �K , and !R denotes the corresponding reduction relation.In the following de�nition, (i) is taken from [18].1.2.18. Definition. Let � be an R-redex with contractum �0.(i) � is R-perpetual i�, for all C: C[�] 2 1R) C[�0] 2 1R.(ii) � is R-maximal i�, for all n � 1 and C: C[�] 2 nR)C[�0] 2 (n�1)R.1.2.19. Remark. As was the case for strategies, one can vary the formula-tion of perpetual and maximal redexes; we shall not study such equivalentformulations.1.2.20. Definition. Let � be an R-redex with contractum �0. Then � isR-minimal i� for all C: sR(C[�]) = sR(C[�0]) + 1.1.2.21. Discussion. A strategy that always contracts perpetual redexes isperpetual. Similarly, strategies that always contract maximal and minimalredexes are maximal and minimal, respectively. This is easy to verify simplyby noting the analogy between on the one hand the local formulations ofperpetual, maximal, and minimal strategies in Lemmas 1.2.13 and 1.2.14,and on the other hand the formulations of perpetual, maximal, and minimalredexes in De�nitions 1.2.18 and 1.2.20.Perpetual strategies may also contract non-perpetual redexes. The rea-son is that a strategy is confronted with a redex in a given context, and needsonly to make sure that contracting the redex in this particular context pre-serves the possibility, if present, of an in�nite reduction. A perpetual redex,

20 Chapter 1. Perpetual Reductions in �-Calculuson the other hand, must preserve the existence of in�nite reduction pathsin all contexts. Similar remarks apply to maximal and minimal strategies.We do not know how to give a formulation of the notion of a normalizingredex which satis�es the property that a strategy contracting only normaliz-ing redexes is itself normalizing. This problem stems from the fact that theabove classi�cations of redexes were derived from local formulations of thenotions of a perpetual, maximal, and minimal strategy, whereas we have nolocal formulation of the notion of a normalizing strategy.1.2.22. Proposition. Assume FBR. A redex which is R-maximal is alsoR-perpetual.Proof. Given R-maximal redex � with contractum �0 and a context C,assume C[�] 2 1R. To prove C[�0] 2 1R it su�ces by Lemma 1.2.5to show that C[�0] 2 nR for all n 2 N. Since C[�] 2 1R we have byLemma 1.2.5 for all n 2 N, C[�] 2 nR and thereby C[�] 2 (n+ 1)R. ThusC[�0] 2 nR for all n 2 N by maximality. ut1.2.23. Remark. The converse of the preceding proposition does not hold.1.3. Perpetual and maximal strategiesIn this section we study perpetual and maximal �-reduction strategies. The�rst subsection presents the fundamental lemma of perpetuality. The sec-ond subsection presents two recent characterizations of strongly normalizingterms due to van Raamsdonk and Severi and to Xi, respectively, and showsthat the core of these characterizations is made up of the fundamental lemmaof perpetuality and a certain lexicographic induction principle. The thirdsubsection presents two (partial) perpetual �-reduction strategies; the proofof perpetuality in each case uses the fundamental lemma of perpetuality.The fourth subsection presents the fundamental lemma of maximality,analogous to the fundamental lemma of perpetuality. The �fth subsectionpresents an e�ective, maximal �-reduction strategy; the proof of maximalityuses the fundamental lemma of maximality. The sixth subsection shows thatto compute an upper bound on the length of a longest �-reduction path forsome term, one cannot do better, in a certain sense, than try to reduce theterm to normal form and count the number of steps along the way.The property CR� is used freely in this and the following sections.1.3.1. The fundamental lemma of perpetualityThe following lemma is used in many strong normalization proofs in theliterature|see Section 1.5. As will be seen below, the lemma is also usefulto show that reduction strategies are perpetual.

1.3. Perpetual and maximal strategies 211.3.1. Lemma (Fundamental lemma of perpetuality). Assume thatM1 2 SN�if x 62 FV(M0). For all n � 1:M0fx :=M1gM2 : : :Mn 2 SN�) (�x:M0)M1 : : :Mn 2 SN�:Proof. Let M0fx :=M1gM2 : : : Mn 2 SN� . Then M0;M2; : : : ;Mn 2 SN�.If x 62 FV(M0), then, by assumption, M1 2 SN�. If x 2 FV(M0), then alsoM1 � M0fx := M1gM2 : : :Mn, so M1 2 SN�. If (�x:M0)M1 : : :Mn 2 1�,then any in�nite reduction must therefore have the form(�x:M0)M1 : : :Mn !!� (�x:M 00)M 01 : : :M 0n!� M 00fx :=M 01gM 02 : : :M 0n!� : : : :Since M !!� M 0 & N !!� N 0) Mfx := Ng !!� M 0fx := N 0g;there is an in�nite reduction sequenceM0fx :=M1gM2 : : :Mn !!� M 00fx :=M 01gM 02 : : :M 0n!� : : : ;contradicting M0fx :=M1gM2 : : :Mn 2 SN� . ut1.3.2. Corollary. If M1 2 SN�, then for all n � 1:M0fx :=M1gM2 : : :Mn 2 SN�) (�x:M0)M1 : : :Mn 2 SN�:Proof. By the fundamental lemma of perpetuality. ut1.3.3. Remark. The fundamental lemma of perpetuality gives a conditionensuring that a contraction (�x:M0)M1 : : :Mn !� M0fx :=M1gM2 : : :Mnpreserves the possibility, if present, of an in�nite reduction. The corollaryrequires a slightly simpler condition.1.3.2. Two characterizations of strongly normalizing termsNext we introduce two characterizations of SN� due to van Raamsdonk andSeveri [106] (also [105, 117]) and to Xi [140], respectively.1.3.4. Definition. Let X � �K be the smallest set closed under:(i) M1; : : : ;Mn 2 X) xM1 : : :Mn 2 X.(ii) M 2 X) �x:M 2 X.(iii) M1 2 X & M0fx :=M1gM2 : : :Mn 2 X) (�x:M0)M1 : : :Mn 2 X.

22 Chapter 1. Perpetual Reductions in �-Calculus1.3.5. Proposition. SN� = X.Proof. We �rst proveM 2 SN�)M 2 X by induction on lexicographicallyordered pairs hl�(M); jjM jji.1. M � x P1 : : : Pn. Then P1; : : : ; Pn 2 SN�. By the induction hypothesisP1; : : : ; Pn 2 X, so M 2 X.2. M � �x:P . Similar to Case 1.3. M � (�x:P0) P1 : : : Pn. Then P1 2 SN�, P0fx := P1g P2 : : : Pn 2 SN�,so by the induction hypothesis, P1 2 X, P0fx := P1g P2 : : : Pn 2 X, soM 2 X.It remains to prove M 2 X) M 2 SN�. We proceed by induction on thederivation of M 2 X.1. M � x P1 : : : Pn where P1; : : : ; Pn 2 X. By the induction hypothesisP1; : : : ; Pn 2 SN�, so M 2 SN�.2. M � �x:P . Similar to Case 1.3. M � (�x:P0) P1 : : : Pn where P1 2 X, P0fx := P1g P2 : : : Pn 2 X. Bythe induction hypothesis, P1 2 SN�, P0fx := P1gP2 : : : Pn 2 SN�, so bythe fundamental lemma of perpetuality, M 2 SN�. ut1.3.6. Remark. Given an assertion of formM 2 SN�)P (M), we may proveinsteadM 2 X)P (M) by induction on the derivation ofM 2 X; this is verysimilar to proving the original assertion by induction on lexicographicallyordered pairs hl�(M); jjM jji. Given an assertion of form P (M)) M 2 SN�,we may prove instead P (M)) M 2 X; this is very similar to proving theoriginal assertion and using the fundamental lemma of perpetuality in thecase M � (�x:P0) P1 : : : Pn. Thus, the two main ingredients in the proofof Proposition 1.3.5|lexicographic induction on hl�(M); jjM jji and the fun-damental lemma of perpetuality|are used implicitly when one uses X toreason about SN� . Van Raamsdonk and Severi [106] prove strong normal-ization results in �-calculus using this characterization|see Sections 1.5and 1.6.1.3.7. Definition. De�ne Fl : �K ! �K as follows. If M 2 NF� thenFl(M) =M ; otherwise,Fl(x ~P Q ~R) = x ~P Fl(Q) ~R if ~P 2 NF; Q 62 NF�Fl(�x:P) = �x:Fl(P)Fl((�x:P) Q ~R) = Pfx := Qg ~R:Write M !l N if M 62 NF� and Fl(M) � N , and M 2 1l if LFl(M) =1.

1.3. Perpetual and maximal strategies 231.3.8. Definition. De�ne the relation . by:. = = [!lwhere = denotes the smallest relation closed under the rules:�x:M =M M1 M2 =M1 M1 M2 =M2:De�ne H(M0) = maxfn jM0 . M1 . : : : . Mng 2 N� :1.3.9. Proposition. SN� = fM 2 �K j H(M) <1g.Proof. We �rst prove M 2 SN�) H(M) < 1 by induction on lexico-graphically ordered pairs hl�(M); jjM jji. First note that if H(M0) =1 thenby K�onig's lemma there is an in�nite sequence M0 . M1 . : : : , and so thereis an M1 with M0 . M1 and H(M1) =1.1. M � x. Then H(M) = 0 <1.2. M � P Q. Then P;Q 2 SN�. Moreover, if M !l M 0 then M 0 2 SN�.By the induction hypothesis H(P) <1, H(Q) <1, and H(M 0) <1.Thus, for all N with M . N , H(N) <1. Thus, H(M) <1.3. M � �x:P . Similar to Case 2.Next we prove H(M) <1) M 2 SN� by induction on H(M).1. M � xP1 : : : Pn. Then H(P1) <1; : : : ;H(Pn) <1. By the inductionhypothesis P1; : : : ; Pn 2 SN� , so M 2 SN� .2. M � �x:P . Similar to Case 1.3. M � (�x:P0) P1 : : : Pn. Then H(P0fx := P1g P2 : : : Pn) < 1 andH(P1) <1. By the induction hypothesis, P0fx := P1gP2 : : : Pn 2 SN�and P1 2 SN�. By the fundamental lemma of perpetuality it thenfollows that M 2 SN�. ut1.3.10. Remark. The point in Remark 1.3.6 may be repeated with \M 2X" replaced by \H(M) <1." Xi [140] proves strong normalization resultsin �-calculus using this characterization|see Sections 1.5 and 1.6.1.3.11. Remark. The above characterizations of SN�, especially the secondone, are similar to the successor relation, de�ned by Terlouw [128], whoproves this relation to be well-founded and who uses it to show a connectionbetween higher type levels and trans�nite recursion (see also [130]).Whether one should prove results in �-calculus using the fundamentallemma of perpetuality and lexicographic induction, or one should use one ofthe characterizations by van Raamsdonk and Severi and by Xi, seems to bea matter of taste.

24 Chapter 1. Perpetual Reductions in �-Calculus1.3.3. Some perpetual �-reduction strategiesThe following strategy is due to Bergstra and Klop [18].1.3.12. Definition. De�ne F1 :1� ! �K by:F1(x ~P Q ~R) = x ~P F1(Q) ~R if ~P 2 SN�; Q 62 SN�F1(�x:P) = �x:F1(P)F1((�x:P) Q ~R) = Pfx := Qg ~R if Q 2 SN�F1((�x:P) Q ~R) = (�x:P) F1(Q) ~R if Q 62 SN�.1.3.13. Remark. For every M 2 1� either M � x P1 : : : Pn where n � 1and Pi 2 1� for some i, or M � �x:P , or M � (�x:P0) P1 : : : Pn wheren � 1. It follows that F1 is de�ned on all elements of 1�.1.3.14. Proposition. F1 is a partial, perpetual �-reduction strategy.Proof. By induction on the size ofM prove thatM 2 1�)F1(M) 2 1�;the only non-trivial case is when M � (�x:P) Q ~R and Q 2 SN�, in whichcase use Corollary 1.3.2. utThe following strategy is a variant of a strategy in [120].1.3.15. Definition. De�ne F2 :1� ! �K by:F2(x ~P Q ~R) = x ~P F2(Q) ~R if ~P 2 SN�; Q 62 SN�F2(�x:P) = �x:F2(P)F2((�x:P) Q ~R) = Pfx := Qg ~R if P 2 SN�, Q 2 SN�F2((�x:P) Q ~R) = (�x:F2(P)) Q ~R if P 62 SN�F2((�x:P) Q ~R) = (�x:P) F2(Q) ~R if P 2 SN�; Q 62 SN�.1.3.16. Proposition. F2 is partial, perpetual �-reduction strategy.Proof. By induction on the size ofM prove thatM 2 1�)F2(M) 2 1�;the only non-trivial case is whenM � (�x:P)Q ~R and P;Q 2 SN�, in whichcase use Corollary 1.3.2. ut1.3.4. The fundamental lemma of maximalityThe following lemma is used in some of the strong normalization proofs inthe literature which, in addition to proving strong normalization, establishupper bounds for the length of reduction paths|see Section 1.5.1.3.17. Definition. De�ne for any variable x the map 62x: �K ! f0; 1g by:62x(M) = � 1 if x 62 FV(M)0 if x 2 FV(M).

1.3. Perpetual and maximal strategies 251.3.18. Lemma (Fundamental lemma of maximality). For all n � 1,l�((�x:M0)M1 : : :Mn) = l�(M0fx :=M1gM2 : : :Mn)+ 62x(M0) � l�(M1)+1:Proof. If l�((�x:M0)M1 : : :Mn) =1, then by Lemma 1.2.7 and the fun-damental lemma of perpetuality, also l�(M0fx := M1gM2 : : :Mn) = 1 or62x(M1) � l�(M1) =1. Thus, in this case the equality holds.If l�((�x:M0)M1M2 : : :Mn) <1, thenM0; : : : ;Mn 2 SN� by Lemma 1.2.7.We consider two cases.1. x 62 FV(M0). A longest reduction from (�x:M0) M1 : : :Mn has theform (�x:M0)M1 : : :Mn !!m� (�x:M 00)M 01 : : : M 0n!� M 00 M 02 : : : M 0n!!k� K 2 NF�;where M0 !!m0� M 00; : : : ;Mn !!mn� M 0n, and where m0 + : : :+mn = m,l�(M1) = m1, and l�((�x:M0)M1 : : :Mn) =m+ k + 1. Then(�x:M0)M1 : : :Mn !!m1� (�x:M0)M 01 M2 : : : Mn!� M0 M2 : : :Mn!!m�m1� M 00 M 02 : : :M 0n!!k� K 2 NF�is another longest reduction path from (�x:M0) M1 : : :Mn. Thus,M0 M2 : : :Mn !!m�m1+k� K is also a longest reduction path fromM0 M2 : : :Mn, i.e., l�(M0 M2 : : : Mn) = m�m1 + k. Thus,l�((�x:M0)M1 : : :Mn) = m+ k + 1= (m�m1 + k) +m1 + 1= l�(M0 M2 : : :Mn) + l�(M1) + 1:2. x 2 FV(M0). A longest reduction from (�x:M0) M1 : : :Mn has theform (�x:M0)M1 : : :Mn !!m� (�x:M 00)M 01 : : : M 0n!� M 00fx :=M 01gM 02 : : : M 0n!!k� K 2 NF�;where M0 !!m0� M 00; : : : ;Mn !!mn� M 0n, and where m0 + : : : +mn = mand l�((�x:M0)M1 : : :Mn) = m+ k + 1. SinceM !!m� M 0 & N !!n� N 0) Mfx := Ng !!m+n�jjM jjx� M 0fx := N 0g;also (�x:M0)M1 : : :Mn !� M0fx :=M1gM2 : : :Mn!!m0+m1�jjM0jjx� M 00fx :=M 01gM2 : : :Mn!!m2+:::+mn� M 00fx :=M 01gM 02 : : :M 0n!!k� K 2 NF�:

26 Chapter 1. Perpetual Reductions in �-CalculusSince jjM0jjx � 1, m0+m1 � jjM0jjx +m2 : : :+mn + k+1 � m+ k+1,so this is, in fact, another longest reduction from (�x:M0)M1 : : : Mn,so l�(M0fx :=M1gM2 : : : Mn) = m0 +m1 � jjM0jjx +m2 : : :+mn + k.Thus,l�((�x:M0)M1 : : :Mn) = m0 +m1 + : : : +mn + k + 1� m0+m1 �jjM0jjx+m2+: : :+mn+k+1= l�(M0fx :=M1gM2 : : :Mn) + 1:The converse inequality is trivial. ut1.3.19. Corollary. For all n � 1,l�((�x:M0)M1 : : : Mn) � l�(M0fx :=M1gM2 : : :Mn) + l�(M1) + 1:Proof. By the fundamental lemma of maximality. ut1.3.20. Remark. The fundamental lemma of perpetuality and its corollaryare special cases of the fundamental lemma of maximality and its corollary,respectively.1.3.5. An e�ective maximal strategyThe following strategy is due to Barendregt et al. [3, 5].1.3.21. Definition. De�ne F1 : �K ! �K as follows. If M 2 NF� thenF1(M) =M ; otherwiseF1(x ~P Q ~R) = x ~P F1(Q) ~R if ~P 2 NF� ; Q 62 NF�F1(�x:P) = �x:F1(P)F1((�x:P) Q ~R) = Pfx := Qg ~R if x 2 FV(P) or Q 2 NF�F1((�x:P) Q ~R) = (�x:P) F1(Q) ~R if x 62 FV(P) and Q 62 NF�.The following theorem has been folklore for some time. De Vrijer [136,138] uses F1 to calculate the maximal length of a reduction path of a sim-ply typed �-term. In fact, the proof of [136, Thm 4.9] shows that F1 ismaximal|see also [136, 2.3.3 and 4.9.2], and the discussion of related workin Section 5. Later, the theorem was proved independently by Regnier [108],Khasidashvili [71], van Raamsdonk and Severi [106] and the author [119].The proof below is a simpli�cation of the two latter proofs.1.3.22. Theorem. F1 is an e�ective, maximal �-reduction strategy.Proof. It is clear that F1 is an e�ective �-reduction strategy. To provemaximality we use the formulation from Lemma 1.2.14. GivenM 2 �K andm � 1, we must show that M 2 m�) F1(M) 2 (m� 1)� . We proceed byinduction on M .

1.3. Perpetual and maximal strategies 271. M � x ~P Q ~R where ~P 2 NF� , Q 62 NF�. Let ~R = R1; : : : ; Rn. ThenQ 2 m0�; R1 2 m1�; : : : ; Rn 2 mn�, where m = m0 + m1 + : : : + mn,and m0 � 1. By the induction hypothesis, F1(Q) 2 (m0 � 1)� . ThenF1(M) = x ~P F1(Q) ~R 2 (m� 1)� .2. M � �x:P . Similar to Case 1.3. M � (�x:P) Q ~R where x 2 FV(P) or Q 2 NF�. By the fundamentallemma of maximality,l�(Pfx := Qg ~R) + 1 = l�(M) � m:Therefore, l�(Pfx := Qg ~R) � m� 1, i.e., F1(M) 2 (m� 1)� .4. M � (�x:P)Q ~R where x 62 FV(P) and Q 62 NF�. By the fundamentallemma of maximality,l�(P ~R) + l�(Q) + 1 = l�(M) � m:We consider two cases.4.1. Q 2 1�. Then, for any n � 1, Q 2 n�. By the inductionhypothesis, for any n � 1, F1(Q) 2 (n � 1)� . In particular,F1(Q) 2 (m� 1)� , and then F1(M) 2 (m� 1)�.4.2. Q 62 1�. Then l�(Q) < 1 by Lemma 1.2.7. By the inductionhypothesis, l�(F1(Q)) � l�(Q)� 1. Thenl�(F1(M)) = l�((�x:P) F1(Q) ~R)= l�(P ~R) + l�(F1(Q)) + 1� l�(P ~R) + l�(Q)= l�(M)� 1� m� 1:Thus, F1(M) 2 (m� 1)� . ut1.3.23. Corollary (Barendregt et al. [3, 5]). F1 is perpetual.1.3.24. Remark. As pointed out by van Raamsdonk and Severi [106], theproof in [3, 5] of this corollary can be simpli�ed by using the fundamentallemma of perpetuality or one of the related characterizations.Khasidashvili [71] studies so-called limit reduction strategies in ortho-gonal expression reduction systems (of which �-reduction on �K is a specialcase), and shows that any limit reduction strategy is maximal and thatF1 is a limit reduction strategy in �-calculus. the author [119] presentsa ��-reduction strategy H1 and shows that it is ��-maximal and thereby��-perpetual.

28 Chapter 1. Perpetual Reductions in �-Calculus1.3.6. On upper bounds for length of reductionsOne can e�ectively compute upper bounds for the length of longest develop-ments and longest reduction paths in several typed �-calculi (see Sections 1.5and 1.6). This raises the question whether there is some formula for upperbounds for lengths of reduction paths in type-free �-calculus. In this sub-section we give a positive and a negative answer to this question.The following de�nition gives the most obvious way of counting the num-ber of steps in a longest reduction to normal form.1.3.25. Definition. De�ne h : SN� ! N by:h(x P1 : : : Pn) = h(P1) + : : : + h(Pn)h(�x:P) = h(P)h((�x:P)Q ~R) = h(Pfx := Qg ~R) + 1 if x 2 FV(P) or Q 2 NF�h((�x:P)Q ~R) = h(P ~R) + h(Q) + 1 if x 62 FV(P) and Q 62 NF�.1.3.26. Proposition. For any M 2 SN�:h(M) = l�(M).Proof. By induction on l�(M) using the fundamental lemma of maximal-ity. utThe map h is de�ned only for elements in SN� . It is natural to askwhether there is a \simple formula" f such that f(M) is the length of alongest �-reduction from M when M 2 SN�, and f(M) is some unpre-dictable number whenM 2 1�. One could hope that the freedom to returnarbitrary values on terms with in�nite reductions could give a simple for-mula on strongly normalizing terms. A reasonable formalization of \simpleformula" is the notion of a primitive recursive function. The following propo-sition, which answers a more general question, shows that our hopes are invain.1.3.27. Proposition. There is no total e�ective l : �K ! N such that, forall M 2 SN�, l(M) � l�(M):Proof. Suppose such an l existed and consider c : �K ! N:c(M) = (0 if F l(M)1 (M) 2 NF�.1 if F l(M)1 (M) 62 NF�.Here c is total and e�ective. Consider the following two cases.1. c(M) = 0. Then F l(M)1 (M) 2 NF�, i.e., LF1(M) � l(M) < 1, soM 2 SN� by perpetuality of F1.

1.4. The
-theorem 292. c(M) = 1. Then F l(M)1 (M) 62 NF�. By maximality of F1 it followsthat l�(M) = LF1(M) > l(M). By de�nition of l, M 62 SN�.Thus, c gives a procedure to decide for any M whether M 2 SN�, which isknown to be impossible, a contradiction. ut1.4. The
-theoremIn the type-free �-calculus some terms have an in�nite reduction path. Thesimplest example is the term
 � ! !, where ! � �x:x x. It has an in�nitereduction path where the term reduces to itself in every step:
!�
!� : : : :There are terms that do have an in�nite reduction path, but where thepath does not have this simple form.2 For instance, the term 	 � ,where � �x:x x y, has the in�nite reduction path:	!� 	 y !� 	 y y !� : : : :In every step the redex 	 appears as a subterm, and the context of the redexis extended with an application �y. As a more complicated example considerthe term � y �, where � � �a:�x:x (a y) x. It has the in�nite reduction path�y� !� (�x:x(yy)x)� !� �(yy)� !� (�x:x(yyy)x)� !� �(yyy)� !� : : : :This path is similar to the preceding one, but the extra application � y isadded inside the redex.Although these three reduction paths have their di�erences they have acommon property: in all three paths every term has
 as a substring. Itis natural to ask whether this property is shared by all in�nite reductionpaths. In this section we present the
-theorem, taken from [120], whichstates that this is indeed the case. The proof exploits perpetuality of thestrategy F2 from Section 1.3.3.The �rst subsection introduces the set of all terms that do not have
as substring, and the second subsection shows that the elements of this setare strongly normalizing. The third subsection studies applications.1.4.1. The set �
We �rst formalize what it means that one term is a substring of another.2Lercher [82] shows that M !� M i� M � C[
] for some context C.

30 Chapter 1. Perpetual Reductions in �-Calculus1.4.1. Definition. De�ne the relation � (\substring") on �K by:x� xP �Q) P � �x:Q if x 62 FV(P)P �Q) P �QZP �Q) P � Z QP �Q) �x:P � �x:QP1 �Q1 & P2 �Q2) P1 P2 �Q1 Q2:1.4.2. Example.(i) ! � �x:x x Z.(ii)
� (�x:x x Z) (�x:x x Z).(iii) ! � �a:�x:x Z x.(iv)
� (�a:�x:x Z x) Z (�a:�x:x Z x).(v) ! � �x:x (�y:x).(vi) �x:x y 6�(�x:x) y.(vii) �x:y 6�(�x:x) y.(viii) �x:x y 6�(�x:x) y.(ix) ! 6��x:x (�x:x).(x)
 6��x:(x x) !.It is convenient to introduce an inductively de�ned set �
 of all termsthat do not contain
 as a substring, and show that all elements of thisset are strongly normalizing. The following auxiliary set �!, studied byKomori [79], Hindley [49], and Jacobs [56], is the set of all terms that donot contain ! as a substring.1.4.3. Definition.(i) De�ne �! by: x 2 �!P 2 �!; jjP jjx � 1) �x:P 2 �!P;Q 2 �!) P Q 2 �!:(ii) De�ne, for M 2 �K , jjM jj! 2 N by:jjxjj! = 0jj�x:P jj! = � jjP jj! if jjP jjx � 11 + jjP jj! if jjP jjx > 1jjP Qjj! = jjP jj! + jjQjj!:(iii) An abstraction �x:P is duplicating if jjP jjx > 1.

1.4. The
-theorem 311.4.4. Remark. The following equivalences are easily established:jjM jj! = 0 , M 2 �! , ! 6�M:Each of these equivalent conditions state thatM does not contain a subtermwhich is a duplicating abstraction.One easily shows that �! is closed under reduction. The intuition is thatifM 2 �! and N 62 �!, thenM has no duplicating abstractions whileN hasat least one. Thus, the reduction M !� N must duplicate a variable in thebody of some abstraction, but this would require a duplicating abstractioninM . It is also easy to prove that reduction in �! decreases term size, sinceevery step removes an application and an abstraction. With the precedingproperty this implies that every term in �! is strongly normalizing.1.4.5. Definition. De�ne the set �
 as follows.(1) x 2 �
(2) M 2 �
) �x:M 2 �
(3) M 2 �
; N 2 �!) M N 2 �
(4) M 2 �!; N 2 �
) M N 2 �
:1.4.6. Remark. It is easy to show �! � �
 and the following equivalence:M 2 �
 ,
 6�M:Informally, these two equivalent conditions state that M does not containtwo disjoint subterms that are both duplicating abstractions.Next we show that �
 is closed under reduction. The intuition is as fol-lows. If M 2 �
 and N 62 �
, then M has no disjoint duplicating abstrac-tions, while N has at least two. If M !� N then non-disjoint duplicatingabstractions in M are also non-disjoint in N . Therefore, the two disjointduplicating abstractions in N must arise from M either by duplication intodisjoint positions of a single duplicating abstraction, or by duplication of avariable in the body of a non-duplicating abstraction which is disjoint with aduplicating abstraction. Both cases are impossible because they entail thatM has two disjoint duplicating abstractions.1.4.7. Lemma. M 2 �
 & M !� N) N 2 �
.Proof. First prove by induction on the derivation of M 2 �! thatM 2 �! & N 2 �!) Mfx := Ng 2 �! (1.1)and M 2 �! & jjM jjx � 1 & N 2 �
) Mfx := Ng 2 �
: (1.2)Show by induction on the derivation of M 2 �
, using (1.1) and �! � �
,M 2 �
; N 2 �!) Mfx := Ng 2 �
: (1.3)Now proceed by induction on the derivation ofM !� N using (1.2-1.3). ut

32 Chapter 1. Perpetual Reductions in �-Calculus1.4.2. Strong normalization of terms in �
As for �!, the idea for proving that all terms in �
 are strongly normalizingis to �nd a decreasing measure, but term size jj � jj does not work. Insteadwe consider the lexicographically ordered measure hjj � jj!; jj � jji.SupposeM !� N by contraction of the redex � � (�x:P)Q. If �x:P isnon-duplicating, contraction of � creates no new duplicating abstractions.Moreover, the size ofN is strictly smaller than the size ofM , so the reductionstep decreases the measure.If �x:P is duplicating, the reduction step removes one duplicating ab-straction, and any new duplicating abstractions have to come either fromproliferation of duplicating abstractions inQ or from duplication of variablesin the body of some abstraction. The �rst case is impossible, since it impliesthat M has two disjoint duplicating abstractions. In the second case, newduplicating abstractions may be created, but they must have their � to theleft of �.Recall that a standard reduction path M0 !� M1 !� : : : is such thatwhenever a redex � is contracted in Mi all abstractions to the left of � aremarked, and a redex with marked abstraction is not allowed to be contractedin Mj for any j > i. If a term has an in�nite reduction path, then it has astandard in�nite reduction path [18].The idea then is as follows. Suppose some M 2 �
 has an in�nitereduction path and hence a standard in�nite reduction path. Then themeasure hjj�jj! ; jj�jji is decreasing on this reduction path if we insist that jj�jj!count only non-marked abstractions, and thus we arrive at a contradiction.To formalize this reasoning we use the strategy F2 from Section 1.3.3,which computes standard in�nite reductions. The following map V isolatesthe part of a term in which F2 contracts a redex. This part of the termcontains all the abstractions to be counted by our measure.1.4.8. Definition. De�ne V :1� ! �K by:V (x ~P Q ~R) = V (Q) if ~P 2 SN� ; Q 62 SN�V (�x:P) = V (P)V ((�x:P)Q ~R) = (�x:P)Q~R if P 2 SN� ; Q 2 SN�V ((�x:P)Q ~R) = V (P) if P 62 SN�V ((�x:P)Q ~R) = V (Q) if P 2 SN� ; Q 62 SN� .1.4.9. Lemma. For all M 2 1�: V (M) �M .Proof. By induction on M . ut1.4.10. Lemma. For all M 2 1�,V (M) = (�y:K) L ~N

1.4. The
-theorem 33for some K;L; ~N 2 �K withV (F2(M)) � Kfx := Lg ~N:Proof. Induction on M using perpetuality of F2.1. M � x ~P Q~R where ~P 2 SN�, Q 62 SN�. By the induction hypothesis,V (M) = V (Q) = (�y:K) L ~Nfor some K;L; ~N . By the induction hypothesis and perpetuality of F2,V (F2(M)) = V (x ~P F2(Q) ~R) = V (F2(Q)) � Kfy := Lg ~N:2. M � �x:P . Similar to Case 1.3. M � (�y:P)Q ~R where P 2 SN� and Q 2 SN�. ThenV (M) = (�x:P)Q ~R;and by Lemma 1.4.9,V (F2(M)) = V (Pfx := Qg ~R) � Pfx := Qg ~R:The remaining two cases are similar to Case 1. ut1.4.11. Lemma. jjPfx := Qgjj! = jjP jj! + jjP jjx � jjQjj!:Proof. By induction on P . ut1.4.12. Proposition. M 2 �
) M 2 SN�.Proof. Suppose M 2 �
 and M 2 1�. By perpetuality of F2, there is anin�nite reduction path M0 !� M1 !� : : :such that for all i, F2(Mi) =Mi+1 and, by Lemma 1.4.7, Mi 2 �
. We nowclaim that for all ihjjV (Mi)jj!; jjV (Mi)jji > hjjV (Mi+1)jj!; jjV (Mi+1)jji: (1.4)This implies that we have an in�nite sequencehjjV (M0)jj!; jjV (M0)jji > hjjV (M1)jj!; jjV (M1)jji > : : : ;which is clearly a contradiction. Thus M 2 SN�, provided we can prove(1.4).To prove this, �rst note that by Lemma 1.4.10 and 1.4.9:V (Mi) = (�y:K) L ~N �Mi (1.5)V (Mi+1) � Kfy := Lg ~N (1.6)for some K;L; ~N . Since (�y:K)L �Mi 2 �
, also (�y:K)L 2 �
. We nowprove (1.4) splitting into the following two cases. Let ~N = N1; : : : ; Nn.

34 Chapter 1. Perpetual Reductions in �-Calculus1. jjKjjy > 1. Then �y:K 2 �
n�!, so L 2 �!, and hence jjLjj! = 0. By(1.6), Lemma 1.4.11, and (1.5):jjV (Mi+1)jj! � jjKfy := Lg ~N jj!= jjKjj! + jjKjjy � jjLjj! + jjN1jj! + : : :+ jjNnjj!= jjKjj! + jjN1jj! + : : :+ jjNnjj!< jj�y:Kjj! + jjN1jj! + : : :+ jjNnjj!= jj(�y:K) L ~N jj!= jjV (Mi)jj!:2. jjKjjy � 1. Then by (1.6), Lemma 1.4.11, and (1.5):jjV (Mi+1)jj! � jjKfy := Lg ~N jj!= jjKjj! + jjKjjy � jjLjj! + jjN1jj! + : : :+ jjNnjj!� jjKjj! + jjLjj! + jjN1jj! + : : :+ jjNnjj!= jj(�y:K) L ~N jj!= jjV (Mi)jj!:Moreover, by (1.6) and (1.5):jjV (Mi+1)jj � jjKfy := Lg ~N jj= jjKjj+ jjKjjy � (jjLjj � 1) + jjN1jj+ : : : + jjNnjj+ n< jjKjj+ jjLjj+ 2 + jjN1jj+ : : :+ jjNnjj+ n= jj(�y:K) L ~N jj= jjV (Mi)jj:as required. utWe �nally have the
-theorem, from [120]:1.4.13. Theorem. If M 2 1� then
�M .Proof. By Remark 1.4.6 and Proposition 1.4.12. ut1.4.14. Remark. The termM � (�x:yxx)(�x:yxx) shows that
�M doesnot generally imply M 2 1�. This should come as no surprise: if
 �Mhad been equivalent to M 2 1�, we would have had a simple syntactic (inparticular e�ective) algorithm for deciding whether M 2 SN�, which is anundecidable problem.Following Gramlich [43] (see also Plaisted [99]) we call an in�nite reduc-tion path constricting if it has the formC1[M1]!� C1[C2[M2]]!� C1[C2[C3[M3]]] : : : ;where Mi is the minimal superterm with an in�nite reduction path of theredex contracted in the step C1[: : : Ci[Mi] : : :]!� C1[: : : Ci[Ci+1[Mi+1]] : : :].

1.4. The
-theorem 35Van Oostrom [95] sketches a variant of the above proof which, instead ofusing the perpetual strategy F2 to obtain standard in�nite reductions, usesa so-called zoom-in strategy (see Melli�es [86]). This is a constricting stra-tegy which in each term contracts the leftmost redex of a minimal subtermwith an in�nite reduction path. The proof presented above is very similar,since F2 is also constricting|indeed, Lemma 1.4.10 expresses a very similarproperty. However, in (�x:x) z
, F2 contracts the left-most redex, so F2is not a zoom-in strategy in the above sense. The following variation F3,studied by the author [120], is a zoom-in strategy:1.4.15. Definition. De�ne F3 :1� ! �K by:F3(x ~P Q ~R) = x ~P F3(Q) ~R if ~P 2 SN�; Q 62 SN�F3(�x:P) = �x:F3(P)F3((�x:P)Q ~R) = Pfx := Qg ~R if P;Q; ~R 2 SN�F3((�x:P)Q ~R) = (�x:F3(P))Q ~R if P 62 SN�F3((�x:P) ~R Q ~S) = (�x:P) ~R F3(Q) ~S if P; ~R 2 SN�; Q 62 SN�.Khasidashvili and Ogawa [74] study strategies which in a term contract aso-called external redex of a minimal subterm ofM with an in�nite reductionpath; in particular, in �-terms the leftmost redex of a minimal subtermwith an in�nite reduction is external. They show that any such strategy isperpetual. They also show that the strategy which in each step contractsthe leftmost among all such redexes is constricting.Xi [142] calls a reduction path M0 !� M1 !� : : : canonical if, when-ever a redex � is contracted in Mi all redexes containing � as a subtermhave their abstractions marked, and a redex with marked abstraction is notallowed to be contracted in Mj for any j > i. Any standard reduction isalso canonical, but the converse is not true, since a canonical path maycontract disjoint redexes from right to left. However, whenever a term Mhas a canonical reduction which is in�nite (or ends in N) then M also has astandard reduction which is in�nite (or ends in N). Xi uses canonical reduc-tions to give proofs of the �nite developments theorem, the standardizationtheorem, the conservation theorem for �I , and the normalization theorem.B�ohm et al. [21] and B�ohm and Dezani-Ciancaglini [22] give, for any�-normal formM , a constructive de�nition of a set of �-normal forms N forwhichMN has a �-normal form. Since any �-term can be transformed to anequivalent term which is an applicative combination of �-normal forms, thiscan be used to generally approximate whether a term has a �-normal formor not. On the other hand, �
 directly characterizes a class of terms witharbitrary nesting of �'s and application which are all �-strongly normalizing.1.4.3. ApplicationsAn S-term in combinatory logic is a term built of only the S-combinator andapplication, e.g., S(SS)SSSS and SSS(SS)SS. Barendregt et al. [5] show

36 Chapter 1. Perpetual Reductions in �-Calculusthat these two S-terms have in�nite reduction paths. Dubou�e has veri�ed bycomputer that the remaining 130 other S-terms with 7 or fewer occurrencesof S are strongly normalizing. The following shows that only one among the2622 closed �-terms of size 9 or less has an in�nite reduction path.31.4.16. Corollary. Let M 2 1�. Then(i) jj
jj � jjM jj.(ii) jjM jj � jj
jj) M �
.Proof. (i): By the
-theorem, since O �M clearly implies jjOjj � jjM jj.(ii): By the
-theorem and (i) using the fact that O �M and jjM jj � jjOjjimplies M � O. utThe next application gives a technique to reduce proofs that some termis strongly normalizing to proofs that terms are weakly normalizing. Thelatter is usually easier.1.4.17. Corollary. If N 2WN� for all N �M , then M 2 SN�.Proof. If M 2 1� then, by the
-theorem,
�M , and
 62WN�. utThe following shows how this corollary may be used to prove strongnormalization of a set of terms.1.4.18. Proposition. Let S � �K and let � be a relation on �K with(i) If N 2WN� for all N �M , then M 2 SN�.(ii) If M 2 S and N �M then N 2 S.Then S �WN�) S � SN�.Proof. Assume that � satis�es (i)-(ii) and assume S � WN�. Given anM 2 S. By (ii), N 2 S for all N �M . Then, by assumption, N 2WN� forall N �M . Then by (i), M 2 SN�, as required. ut1.4.19. Remark. The previous result has motivated the search for relationssatisfying (i)-(ii) for various sets S, notably the set �! of terms typable insimply typed �-calculus �a la Curry (see Section 1.5). With such a relationat hand, one can show that all elements of �! are strongly normalizing bydemonstrating that they are all weakly normalizing.3T. Mogensen gives a formula f(n;m) for the number of �-terms of size n � 1 with atmost m � 0 free variables:f(1; m) = mf(n + 1;m) = f(n;m+ 1) +Pn�1i=1 f(i;m) � f(n � i;m):

1.5. Strong normalization in type theory 37As Corollary 1.4.17 shows, � satis�es (i). In fact, the proof of the corol-lary shows that any relation � satisfying M 2 1�)
 � M also satis�es(i). However, � does not satisfy (ii) for �!. For instance, �x:x (x�y:y) hastype ((� ! �) ! (� ! �)) ! (� ! �) in simply typed �-calculus, but�x:x x� �x:x (x �y:y) has no type.The author [121] and Xi [141, 144] study relations � satisfying (i) and(ii) for �! which are de�ned by translations, i.e., M � N i� t(N) =M forcertain translations t : �K ! �I|see Chapter 2.1.4.20. Problem. Hindley [49] shows that M 2 �!) M 2 �!, i.e., everyM 2 �! can be typed in simply typed �-calculus �a la Curry. Can every Min �
 be typed in second-order typed �-calculus �a la Curry?1.5. Strong normalization in type theoryAs mentioned in Section 1.3, many strong normalization proofs in the lit-erature make use of the fundamental lemma of perpetuality or the funda-mental lemma of maximality (see also Remark 1.3.6 and 1.3.10). In thissection we study such proofs in more detail in the context of the simplytyped �-calculus.The �rst subsection presents the version of simply typed �-calculus withwhich we shall be concerned. The second subsection presents a new proof ofstrong normalization of simply typed �-calculus due to van Raamsdonk andSeveri [106]. While their original proof uses their characterization of SN�, thepresent version uses the fundamental lemma of perpetuality. Other proofsare reviewed in less detail.1.5.1. Simply typed �-calculus1.5.1. Definition. Let T0 be a set of constants, called base types. The setT of simple types is the smallest set such that(i) T0 � T .(ii) A;B 2 T) A! B 2 T .For A 2 T , jjAjj denotes the number of arrows in A.We use association to the right, so A! B ! C means A! (B ! C).1.5.2. Convention. It is convenient to assume that the set V (the set ofvariables of �K) is divided into mutually exclusive and together exhaustivenon-empty classes VA where A 2 T , i.e.,V = [A2T VA & A 6= B) VA 6= VB & VA 6= ;:

38 Chapter 1. Perpetual Reductions in �-Calculus1.5.3. Definition. For every A 2 T , the set of simply typed �-terms of typeA, written �!A , is the smallest set such that(i) x 2 VA) x 2 �!A .(ii) x 2 VA & M 2 �!B) �x:M 2 �!A!B.(iii) M 2 �!B!A & N 2 �!B) M N 2 �!A .The set of simply typed �-terms, written �!, is de�ned by:�! = [A2T �!A :The following two properties, known as the substitution lemma and theuniqueness of types property, will be used in the next subsection.1.5.4. Lemma.(i) P 2 �!B & x 2 �!A & N 2 �!A) Pfx := Ng 2 �!B .(ii) P 2 �!A & P 2 �!B) A = B.Proof. (i)-(ii): by induction on the derivation of P 2 �!B . ut1.5.2. Strong normalization of simply typed �-calculusAn attempt to prove directly, by induction on the derivation of M 2 �!A ,that M 2 SN� breaks down in the application case: P 2 SN� and Q 2 SN�does not imply P Q 2 SN�. One way of overcoming this di�culty is tointroduce the set SN!A of strongly normalizing terms of type A and showthat M 2 �!A implies M 2 SN!A . The crucial step then is to show for anyM 2 SN!A!B and N 2 SN!A that M N 2 SN!B . This idea is carried outbelow, following [106].1.5.5. Definition. For A 2 T de�ne SN!A = SN� \ �!A , andSN! = [A2T SN!A :1.5.6. Remark. For every type A: ; VA � SN!A � �!A .1.5.7. Definition. For X;Y � �K de�neX ! Y = fM 2 �K j 8N 2 X :M N 2 Y g:1.5.8. Lemma. �!A!B = �!A ! �!B .

1.5. Strong normalization in type theory 39Proof. Let M 2 �!A!B. For all N 2 �!A , M N 2 �!B , so M 2 �!A ! �!B .Hence �!A!B � �!A ! �!B . Conversely, let M 2 �!A ! �!B . Pick someN 2 �!A . Then M N 2 �!B . Therefore, M 2 �!C!B for some C 2 Twith N 2 �!C . By uniqueness of types, A = C, so M 2 �!A!B. Hence�!A ! �!B � �!A!B. ut1.5.9. Lemma. SN!A!B � SN!A ! SN!B .Proof. Let M 2 SN!A ! SN!B . Pick some N 2 SN!A . Then M N 2 SN!B .In particular, M N 2 SN�, and then M 2 SN�. Moreover, since M N 2 �!Band N 2 �!A , also M 2 �!A!B by uniqueness of types. In conclusion,M 2 SN!A!B. utThe converse of the preceding lemma is more di�cult to prove. We needthe following lemma.1.5.10. Lemma. Let P 2 SN!B , x 2 �!A1!:::!Am , and N 2 SN!A1! : : :!SN!Amwhere Am is a base type. Then Pfx := Ng 2 SN!B .Proof. We use the abbreviation L� � Lfx := Ng for any L 2 �!. ByLemma 1.5.9, N 2 SN!A1!:::!Am . By the substitution lemma, P � 2 �!B . Itremains to show P � 2 SN�. We show this by induction on lexicographicallyordered pairs hl�(P); jjP jji.1. P � y P1 : : : Pn. Then P1; : : : ; Pn 2 SN� . Also, y 2 �!B1!:::!Bn!Band P1 2 �!B1 ; : : : ; Pn 2 �!Bn , i.e., P1 2 SN!B1 ; : : : ; Pn 2 SN!Bn . By theinduction hypothesis, P �1 ; : : : ; P �n 2 SN� . Consider two subcases.1.1. y 6� x. Then P � � y P �1 : : : P �n 2 SN�.1.2. y � x. Then B1 = A1, : : : , Bn = An and B = An+1! : : :!Am.By Lemma 1.5.9, SN!An+1 ! : : : ! SN!Am � SN!B . Therefore,SN!A1 ! : : : ! SN!Am � SN!A1 ! : : : ! SN!An ! SN!B . So N 2SN!A1 ! : : : ! SN!An ! SN!B . By the substitution lemma, P �1 2�!B1 ; : : : ; P �n 2 �!Bn , i.e., P �1 2 SN!A1 ; : : : ; P �n 2 SN!An . Therefore,P � � NP �1 : : : P �n 2 SN!B .2. P � �y:P0. Then P0 2 SN�. Also, B = B1 ! B0 and P0 2 �!B0 , i.e.,P0 2 SN!B0 . By the induction hypothesis, P �0 2 SN�. Therefore alsoP � � �y:P �0 2 SN�.3. P � (�y:P0) P1P2 : : : Pn. Then P0fy := P1gP2 : : : Pn 2 SN�, P1 2 SN�.Also, P1 2 �!B1 ; : : : ; Pn 2 �!Bn , y 2 �!B1 , and P0 2 �!B2!:::!Bn!B. Bythe induction hypothesis,(P0fy := P1gP2 : : : Pn)� � P �0 fy := P �1 gP �2 : : : P �n 2 SN�and P �1 2 SN�. Then P � � (�y:P �0) P �1 P �2 : : : P �n 2 SN�, by the funda-mental lemma of perpetuality. ut

40 Chapter 1. Perpetual Reductions in �-CalculusThe following crucial lemma states that M 2 SN!A!B and N 2 SN!Aimplies M N 2 SN!B .1.5.11. Lemma. SN!A!B � SN!A ! SN!B .Proof. We prove that M 2 SN!A!B implies M 2 SN!A ! SN!B . The proofis by induction on lexicographically ordered pairs hjjAjj; l�(M)i. For eachN 2 SN!A we must prove that M N 2 SN!B . Since obviously M N 2 �!B , itsu�ces to show in each case that M N 2 SN� .1. M � y P1 : : : Pn. Then P1; : : : ; Pn 2 SN� . Since N 2 SN�, it followsthat M N � y P1 : : : PnN 2 SN�.2. M � �x:P . Then P 2 SN�. Since A = A1 ! : : : ! Am for some basetype Am, the induction hypothesis yields N 2 SN!A1 ! : : : ! SN!Am .Since P 2 SN!B , Lemma 1.5.10 implies that Pfx := Ng 2 SN�. ThenM N � (�x:P)N 2 SN� by the fundamental lemma of perpetuality.3. M � (�y:P0) P1P2 : : : Pn. Then P0fy := P1gP2 : : : Pn 2 SN� and alsoP1 2 SN�. Since P0fy := P1gP2 : : : Pn 2 �!A!B, the induction hy-pothesis yields P0fy := P1gP2 : : : PnN 2 SN� . Since P1 2 SN�, alsoM N � (�y:P0)P1P2 : : : PnN 2 SN� by the fundamental lemma of per-petuality. ut1.5.12. Theorem. Let A be a simple type. If M 2 �!A then M 2 SN�.Proof. By induction on the derivation of M 2 �!A .1. M � x 2 VA. Then x 2 SN�.2. M = �x:P , where A = A0 ! A1 and P 2 �!A1 . By the inductionhypothesis, P 2 SN�, and therefore �x:P 2 SN�.3. M � PQ, where P 2 �!B!A and Q 2 �!B . By the induction hypothesis,P 2 SN!B!A and Q 2 SN!B . By Lemma 1.5.11, P 2 SN!B ! SN!A . ThenP Q 2 SN!A � SN�. ut1.5.13. Remark. A similar technique for handling the di�cult applicationcase is due to Xi [140].There are many other proofs of strong normalization of simply typed�-calculus. The following is an incomplete list. Tait [125] proves weaknormalization of several systems, but the method can be adapted to provestrong normalization. The resulting classical proof makes use of the notionof strong computability and is quite short but complex. The proof usesthe fundamental lemma of perpetuality to show that the set of stronglycomputable terms is closed under certain expansions|see, e.g., [50, App. 2,Lem. 2] .

1.5. Strong normalization in type theory 41Girard [41] introduces the notion of candidate of reducibility. He extendsTait's method in order to prove strong normalization of second- and higher-order �-calculus. In the version of this proof technique expressed in termsof saturated sets, the fundamental lemma of perpetuality is used to showthat SN� is a saturated set|see, e.g., [4, Lem. 4.3.3].Terlouw [129] interprets Tait's proof of strong normalization of simplytyped lambda calculus in a general model-theoretic framework. This yieldsa proof of strong normalization of the Calculus of Constructions and otheradvanced type systems.Gandy [36] interprets a term in a typed �-calculus by a strict mono-tonic functional whose value is an upper bound for the length of reductionsfrom the term|the form of the upper bound is elaborated by Schwichten-berg [114]. Gandy's technique uses implicitly the weak form of the funda-mental lemma of maximality (Corollary 1.3.19). The technique is general-ized to higher-order rewrite systems by van de Pol [101] and applied to avariety of systems by van de Pol and Schwichtenberg [103]. Van de Pol [102]discusses the relationship between the proof by Gandy and the proof byTait.De Vrijer [138, 136] proves strong normalization of simply typed �-calculus by translating terms into functionals computing the exact lengthof the longest reduction path to normal form, and shows that F1 computesthis path. De Vrijer's proof uses the fundamental lemma of maximality|seethe proof of [136, Thm. 4.9], and also [136, 2.3.3 and 4.9.2].Another technique for computing upper bounds on lengths of reductionsis due to Howard [53] which is used by Schwichtenberg [115] to give upperbounds for the length of reductions in simply typed �-calculus. Whereasthe bound h from De�nition 1.3.25 implicitly reduces the term to normalform, i.e., h((�x:P) Q) is expressed in terms of h(Pfx := Qg), the boundsfor reductions of simply typed terms can be expressed in such a way thatthe bound for (�x:P) Q is expressed in terms of the bounds for P andQ. This technique uses implicitly a version of the fundamental lemmaof maximality|see the proof of the main lemma [115, p.407]. Spring-intveld [123] applies the technique to the dependent system �P and to theweak version �! of higher-order typed �-calculus.Xi [143] gives a proof of the standardization theorem which provides anupper bound on the length of the standard reduction path obtained fromany given reduction path, and Xi uses this to provide upper bounds for thelength of reduction paths in simply typed �-calculus.Van Daalen proves strong normalization of simply typed �-calculus usinginduction on a certain triple|see [93, p.507]. L�evy [83] uses the technique toprove strong normalization of a labeled �-calculus with a bounded predicate.This proof yields also that all developments are �nite, and standardization,as reported in [28].

42 Chapter 1. Perpetual Reductions in �-CalculusCapretta and Valentini [23] prove strong normalization of simply typed�-calculus by showing strong normalization of an alternative formulation ofsimply typed �-calculus which they prove is equivalent to the usual formu-lation; this latter part is the di�cult part of the proof.Klop [76] shows strong normalization of a labeled �-calculus by an inter-pretation in �I . Several of the above techniques also use translations from�K to �I . The technique by Klop was discovered independently from a sim-ilar technique by Nederpelt [92] and has been reinvented and extended bymany researchers, e.g., Khasidashvili [69], Karr [62], de Groote [31], Kfouryand Wells [66], Xi [141, 144], and the author [121]|see Chapter 2.1.6. DevelopmentsThe preceding section analyzed approaches based on the fundamental lemmaof perpetuality, etc., to proving that all reductions of typed terms terminate.In the present section we give a similar analysis for reduction of labeled terms,i.e., for so-called developments.The �rst subsection presents the fundamental lemma of perpetuality fordevelopments along with two related characterizations due to van Raams-donk and Severi and to Xi, respectively. The second subsection presents anew proof, due independently to van Raamsdonk and Severi and to Xi, ofthe �nite developments theorem. Whereas the proof by van Raamsdonk andSeveri and by Xi use their respective characterizations, the proof presentedhere uses the fundamental lemma of perpetuality for developments. Otherproofs of the theorem are reviewed in less detail.1.6.1. DevelopmentsThis subsection introduces developments in terms of labeled terms; we followBarendregt [3, 11.1{2], with some insigni�cant deviations.1.6.1. Definition.(i) The set �K (�-terms or labeled �-terms) is de�ned as follows.x 2 �KP 2 �K) �x:P 2 �KP;Q 2 �K) P Q 2 �KP;Q 2 �K) (�x:P)Q 2 �K :In the last clause (�x:P)Q is a labeled redex.(ii) The notions of reduction �; � on �K are de�ned by:(�x:P)Q � Pfx := Qg(�x:P)Q � Pfx := Qg:

1.6. Developments 43(iii) The notion of reduction �� is de�ned by:�� = � [�:1.6.2. Remark. As done for �-terms in Section 1.2.1 we briey �x the ter-minology and notation for some well-known concepts|see [3]. We assumefamiliarity with conventions for omitting parentheses, with the notions offree and bound variables, with the variable convention, and with substitu-tion. Also, � denotes the subterm relation,4 � denotes syntactic equalityup to renaming of bound variables. FV(M) denotes the set of variables thatoccur free in M . A �-context C is a �-term with a single occurrence of [];C[M] denotes the result of replacing the occurrence of [] in C by M . jjM jjdenotes the number of occurrences of abstractions (labeled and unlabeled),applications, and variables in M . The set �I is the subset of �K where, forevery M 2 �I and every �x:P �M and (�x:P)Q �M , x 2 FV(P).51.6.3. Lemma.(i) M;N 2 �K) Mfx := Ng 2 �K.(ii) M 2 �K & M !�� N) N 2 �K .Proof.(i) By induction on M .(ii) By induction on the derivation of M !�� N , using (i). ut1.6.4. Definition.(i) A development of M 2 �K is �-reduction path from M .(ii) A complete development of M 2 �K is one which ends in an N 2 NF�.The �niteness of developments theorem states that all developmentseventually terminate, i.e., that M 2 SN� for all M 2 �K . A strongerform asserts in addition that the �-normal form of M 2 �K is unique.1.6.2. Fundamental lemma of perpetuality and developmentsThe following is an analog of the fundamental lemma of perpetuality fordevelopments. It is used implicitly in several proofs in the literature of�nite developments.4Recall that the subterms of (�x:P) Q are the subterms of P and Q and the term(�x:P)Q itself; that is, �x:P is not a subterm.5In other words, �I is the set of all M 2 �K such that replacing every � by � yieldsan element of �I .

44 Chapter 1. Perpetual Reductions in �-Calculus1.6.5. Lemma. Assume N 2 SN� if x 62 FV(M). ThenMfx := Ng 2 SN�) (�x:M)N 2 SN�:Proof. Suppose Mfx := Ng 2 SN�. If x 62 FV(M), then, by assumption,N 2 SN�. If x 2 FV(M), then N � Mfx := Ng, so again N 2 SN� . AlsoM 2 SN�. If (�x:M)N 2 1�, then any in�nite reduction must have form(�x:M)N !!� (�x:M 0)N 0!� M 0fx := N 0g!� : : : :Since M !!� M 0 & N !!� N 0) Mfx := Ng !!� M 0fx := N 0g;there is an in�nite reduction sequenceMfx := Ng !!� M 0fx := N 0g!� : : : ;contradicting Mfx := Ng 2 SN�. ut1.6.6. Corollary. If N 2 SN�, thenMfx := Ng 2 SN�) (�x:M)N 2 SN�:Proof. By Lemma 1.6.5. ut1.6.7. Remark. Following van Raamsdonk and Severi [106] one can showthat SN� is the smallest set closed under the rules:(i) x 2 X.(ii) P 2 X) �x:P 2 X.(iii) P 2 X & Q 2 X) P Q 2 X.(iv) Pfx := Qg 2 X & Q 2 X) (�x:P)Q 2 X.The proof of this uses two principles: induction on lexicographically orderedpairs hl�(�); jj � jji and the fundamental lemma of perpetuality for develop-ments. Proofs using the characterization correspond to direct proofs usingthe two principles, as was the case for �-reduction|see Remark 1.3.6.1.6.8. Remark. Another characterization of SN� is due to Xi [140], whoconsiders a relation . on �K de�ned by. = w [!l;

1.6. Developments 45where!l denotes left-most �-reduction and where w is the smallest relationclosed under the rules:�x:M wM M N wM M N w N (�x:M)N wM (�x:M)N w N:Let H(M0) = maxfn jM0 . M1 . : : : . Mng 2 N� . Then, for all M 2 �K ,SN� = fM 2 �K j H(M) <1g:The proof and uses of this characterization are very similar to those of thecharacterization in [106].1.6.3. A new proof of the �nite developments theoremThe following proof of the �nite developments theorem is due to van Raams-donk and Severi [106]; their proof uses their characterization of SN� whereasthe following proof uses lexicographic induction and the fundamental lemmaof perpetuality|see Remark 1.6.7.1.6.9. Lemma. M;N 2 SN�) Mfx := Ng 2 SN�.Proof. By induction on hl�(M); jjM jji. Let L� � Lfx := Ng.1. M � x. Then M� � N 2 SN�.2. M � y. Then M� � y 2 SN�.3. M � �x:P . By the induction hypothesis, P � 2 SN� . It follows thatM� � �x:P � 2 SN�.4. M � P Q. Similar to the preceding case.5. M � (�y:P)Q. Then Pfy := Qg 2 SN� and Q 2 SN�. By the inductionhypothesis (Pfy := Qg)� � P �fy := Q�g 2 SN� and Q� 2 SN�. Bythe fundamental lemma of perpetuality for developments it follows that((�y:P)Q)� � (�y:P �)Q� 2 SN�. ut1.6.10. Theorem (Finite Developments). For all M 2 �K, M 2 SN�.Proof. By induction on M .1. M � x. Then M 2 SN�.2. M � �x:P . By the induction hypothesis, P 2 SN� , and thereforeM 2 SN�.3. M � P Q. Similar to Case 2.4. M � (�x:P)Q. By the induction hypothesis P;Q 2 SN�. By Lemma 1.6.9also Pfx := Qg 2 SN�. By the fundamental lemma of perpetuality fordevelopments, M 2 SN�. ut

46 Chapter 1. Perpetual Reductions in �-CalculusThere are many proofs of the �nite developments theorem in the lit-erature; the following is an incomplete list. The theorem was �rst provedby Church and Rosser [24, 25] for �I ; they also sketch a proof for �K .6Curry and Feys [29] and Schroer [113] give full proofs of the theorem for�K . Other proofs were later given independently by Hyland [55] and Hind-ley [48]. Barendregt et al. [5] subsequently simpli�ed Hyland's proof|seealso [3].Xi [140] gives a proof similar to the above using instead of the fun-damental lemma of perpetuality for developments his characterization ofSN�|see Remark 1.6.8. Van Oostrom [95, 96] shows that Lemma 1.6.9 canbe eliminated by proving in Theorem 1.6.10 the stronger assertion: for allsubstitutions � with �(x) 2 SN� for all x, it holds that M� 2 SN�.Another proof due to van Oostrom [95] uses Klop's [76] technique forreducing strong normalization to weak normalization. Other proofs thatwork by translation into strongly normalizing typed �-calculi are due toParigot [98] (see also [80]), van Oostrom and van Raamsdonk [97], vanRaamsdonk and Severi [106], Ghilezan [40], and Statman [124].The theorem has also been proved in several ways for various notions ofhigher-order rewrite systems. Klop [76] proves it for orthogonal combina-tory reduction systems by means of his technique to reduce weak normal-ization to strong normalization. Van Oostrom [94, 96] proves �niteness ofdevelopments for orthogonal higher-order rewriting systems and for patternrewriting systems. Each of these two results implies �nite developmentsfor orthogonal combinatory reduction systems. Melli�es [86] gives an ax-iomatic formulation of developments and shows �nite developments for thisformulation, which includes orthogonal combinatory reduction systems, butapparently not pattern rewriting systems|see [96]. Khasidashvili [69, 71]gives algorithms to compute longest developments and length of such devel-opments in orthogonal expression reduction systems; these algorithms arespecial cases of methods to compute longest reductions and the length ofsuch reductions in certain restricted orthogonal expression reduction sys-tems.One can formulate a version of the fundamental lemma of maximalityfor developments and use this to give a corresponding e�ective strategyF1 computing longest developments and a map h : SN� ! N comput-ing the length of longest developments, similarly to the development inSections 1.3.5-1.3.6. However, de Vrijer [135] shows that in the case ofdevelopments one can do better; he gives a map f : �K ! N (called hin [135]) computing the length of longest developments where f((�x:P) Q)is expressed in terms of f(P) and f(Q); this of course implies �niteness ofdevelopments. He also shows that F1 computes longest developments. Inthe last section of this chapter we apply to de Vrijer's technique a principle6See the end of [25], or the beginning of Chapter V of [24].

1.7. Maximal and perpetual redexes 47of duality thereby arriving at a technique to compute shortest developmentas well as the length of such developments.1.7. Maximal and perpetual redexesHaving applied the techniques related to perpetual and maximal �-reductionstrategies from Section 1.3 to various strong normalization problems in Sec-tions 1.4{1.6, we now return to study perpetual and maximal �-redexes.This leads to some conservation theorems.The �rst subsection reviews some fundamental results relating reductionon terms with and without labels, which will be used in the rest of thesection. In particular, a scheme employed in several proofs of conservationtheorems in the literature is made explicit. The next three subsectionsprove the conservation theorem for �I , the conservation theorem for �K ,and a related conservation theorem due to Bergstra and Klop, using thisproof scheme. These results are used in the �fth subsection to characterizeperpetual �-redexes (the notion of maximal �-redex turns out to be trivial).The sixth subsection gives a proof of the normalization theorem similar tothe proofs of the conservation theorems, and the last subsection gives avery short proof of the conservation theorem for �I using the normalizationtheorem.1.7.1. Reduction on terms with and without labelsThere are two important ways to move from a term with labels to onewithout: one can either erase all labels or reduce all labeled redexes. This isdone by the two maps j � j; '(�) : �K ! �K , respectively, introduced below.1.7.1. Definition. For M 2 �K de�ne jM j 2 �K as follows.jxj = xj�x:P j = �x:jP jjP Qj = jP j jQjj(�x:P)Qj = (�x:jP j) jQj:1.7.2. Lemma. Let M;N 2 �K.(i) jM jfx := jN jg � jMfx := Ngj.(ii) (Projection.) M !�� N) jM j !� jN j.(iii) (Lifting.) jM j !� K) 9N 2 �K :M !�� N & jN j � K.Proof. (i): By induction on M . (ii): By induction on the derivation ofM !�� N . (iii): By induction on the derivation of jM j !� K. ut1.7.3. Corollary. Let M 2 �K .

48 Chapter 1. Perpetual Reductions in �-Calculus(i) M 2 SN�� , jM j 2 SN�.(ii) M 2 NF�� , jM j 2 NF�.The following map '(M) computes a complete inside-out developmentof M 2 �K , whereas M !!� N 2 NF� means that N is the result of anarbitrary complete development of M . In the last clause of the de�nition itis implicit that no previous clause applies.1.7.4. Definition. De�ne ' : �K ! �K as follows.'(x) = x'(�x:Q) = �x:'(Q)'((�x:P)Q) = '(P)fx := '(Q)g'(P Q) = '(P) '(Q):1.7.5. Lemma. For all M;N 2 �K:(i) '(Mfx := Ng) = '(M)fx := '(N)g.(ii) M '
 B

BB
BB

BB
B !� // N'

~~} }
} }
} }
} }K(iii) M'

��

!� // N'
��K !!� // LProof. (i): By induction on M . (ii): By induction on the derivation ofM !� N using (i). (iii): By induction on the derivation of M !� N using(i). utThe following expresses a relation between j � j and '(�).1.7.6. Lemma. Let M � C[(�x:P)Q] 2 �K , N � C[Pfx := Qg] 2 �K, andL � C[(�x:P)Q] 2 �K . Then M!�

��

L'
~~} }
} }
} }
} }

j�j``A A A A A A A AN

1.7. Maximal and perpetual redexes 49Proof. By induction on the derivation of M !� N . utThe following proposition expresses the core idea of several proofs ofconservation theorems in the literature.1.7.7. Proposition. Let M 2 �K and M !� N . ThenM 2 1�) N 2 1�if there is an S � �K and F � :1�� !1�� with(i) M�C[(�x:P)Q], C[Pfx := Qg]�N , C[(�x:P)Q]2S for some C;P;Q.(ii) L 2 S) F �(L) 2 S.(iii) For all L 2 S : L!� F �(L)) '(L)!!+� '(F �(L)).Proof. Let M !� N where M 2 1�, and let C;P;Q, S, and F � be asrequired in (i)-(iii).Let L0 � C[(�x:P) Q], N0 � N , and M0 � M . By Corollary 1.7.3,L0 2 1�� . Since F � is perpetual,L0 !�� L1 !�� L2 : : :with Li = F �(Li�1) is in�nite.By Lemma 1.7.5{1.7.6, and the assumptions we can erect the diagram:7M0 !� //!�
��

M1 !� //M2 !� // : : :L0 !� //'
��� �
� �
� �
�

j�j]]; ; ; ; ; ; ; L1 !� //'
��� �
� �
� �
�

j�j]]; ; ; ; ; ; ; L2 !� //'
��� �
� �
� �
�

j�j]]; ; ; ; ; ; ; : : :N0 !!+� // N1 � // N2 !!+� // : : :Here Li !� Li+1) Ni !!+� Ni+1Li !� Li+1) Ni � Ni+1:By �niteness of developments Li !� Li+1 for in�nitely many i, giving anin�nite �-reduction path from N0. ut1.7.8. Remark. The diagram used in the above proof is an in�nite versionof the diagram used by Barendregt [3, 11.1] to prove the strip lemma, themain lemma in his proof of the Church-Rosser property.7The reduction M0 !� M1 !� : : : is constructed by projection of L0; L1; : : : , but theformer reduction path is not essential.

50 Chapter 1. Perpetual Reductions in �-Calculus1.7.2. The conservation theorem for �IWe now use Proposition 1.7.7 to prove the conservation theorem for �I .1.7.9. Lemma. For any M 2 �I : M !�� N) N 2 �I .8Proof. Show by induction on M thatM;N 2 �I) Mfx := Ng 2 �I ; (�)and by induction on the derivation of M !�� N thatFV (M) � FV(N): (+)Using (�) and (+) proceed by induction on the derivation of M !�� N . ut1.7.10. Lemma. For any M 2 �I : M !� N) '(M)!!+� '(N)Proof. Show by induction on M that for all M 2 �I :FV(M) � FV('(M)):Using this property and Lemma 1.7.5(i), proceed by induction on the deriva-tion of M !� N . ut1.7.11. Theorem (Conservation for �I). If M 2 �I and M !� N , thenM 2 1�) N 2 1�:Proof. By the preceding two lemmas we can use Proposition 1.7.7 withS = �I and any partial, perpetual ��-reduction strategy in the role of F �.ut1.7.12. Remark. Since �I is closed under �-reduction, we can view � as anotion of reduction on �I , and we can view any �-reduction strategy on �Kas a �-reduction strategy on �I . The conservation theorem for �I statesthat in �I , all �-redexes and �-reduction strategies are perpetual.1.7.13. Corollary. Let M 2 �I .(i) M 2WN�) M 2 SN�.(ii) M 2WN� & N �M) N 2WN�.Proof.(i) If M 2 WN� , then M !!� N 2 NF�, for some N . If M 2 1�, then bythe conservation theorem, N 2 1�, a contradiction.8�I is de�ned in Remark 1.6.2.

1.7. Maximal and perpetual redexes 51(ii) If M 2 WN� and N � M , then M 2 SN� , and therefore N 2 SN�, inparticular N 2WN�. utAs mentioned in Remark 1.4.19 and at the end of Section 1.5, a numberof techniques to prove strong normalization of typed �-calculi use transla-tions from �K to �I . Most of these techniques also use some variant ofCorollary 1.7.13(i). For instance, the techniques by the author [121] andXi [141, 144] use a translation t : �K ! �I such that t(M) 2 SN�) M 2SN�. By the corollary, it then su�ces to show t(M) 2 WN� to inferM 2 SN�.The conservation theorem for �I is due to Church and Rosser [24, 25],and was later proved by Curry and Feys [29]. A proof in the spirit of theformer proof is given by Barendregt et al. [3, 5]. These proofs are all bysyntactic methods; a semantic proof appears in [51]. Klop [76] proves a gen-eralization of the theorem for orthogonal non-erasing combinatory reductionsystems.The above proof is a slight simpli�cation of the proof by Barendregtet al.; our proof uses inside-out developments rather than arbitrary devel-opments and avoids the explicit notions of redex occurrence and residual(similarly, Takahashi [127] proves Curry and Feys' standardization theoremusing parallel reductions, arguing that these are more convenient than thearbitrary developments used in, e.g., Mitschke's proof [89]|see also [3]). Avery short proof will be given in the last subsection.1.7.3. The conservation theorem for �KWe now use Proposition 1.7.7 to prove the conservation theorem for �K .1.7.14. Definition.(i) An I-redex is a term (�x:P)Q 2 �K where x 2 FV(P). A K-redex is aterm (�x:P)Q 2 �K where x 62 FV(P).(ii) We write KP Q for (�x:P)Q and KP Q for (�x:P)Q when x 62 FV(P)and call P and Q the body and argument, respectively, of the redex.(iii) �I is the subset of �K where for each M 2 �I and each (�x:P)Q �M ,it holds that x 2 FV(P).(iv) We write M � (��x:P)Q if M � (�x:P)Q or M � (�x:P)Q.1.7.15. Definition. De�ne F �1 :1�� ! �K by:F �1 (x ~P Q ~R) = x ~P F �1 (Q) ~R if ~P 2 SN�� ; Q 62 SN��F �1 (�x:P) = �x:F �1 (P)F �1 ((��x:P) Q ~R) = Pfx := Qg ~R if Q 2 SN��F �1 ((��x:P) Q ~R) = (��x:P) F �1 (Q) ~R if Q 62 SN�� .

52 Chapter 1. Perpetual Reductions in �-Calculus1.7.16. Lemma. For all M 2 1��: F �1 (M) 2 1��.Proof. First show that, for all M 2 1�� :jF �1 (M)j = F1(jM j) (�)by induction on M using Corollary 1.7.3. Since M 2 1�� , jM j 2 1� byCorollary 1.7.3. By (�) and perpetuality of F1, jF �1 (M)j = F1(jM j) 2 1�.Then by Corollary 1.7.3, F �1 (M) 2 1�� . ut1.7.17. Lemma. For all M 2 �I : F �1 (M) 2 �I .Proof. First prove by induction on M thatM;N 2 �I) Mfx := Ng 2 �I :Using this show F �1 (M) 2 �I by induction on M . ut1.7.18. Lemma. For all M 2 �I : M !� F �1 (M)) '(M)!!+� '(F �1 (M)).Proof. By induction onM show that for allM 2 �I : FV(M) � FV('(M)).Using this and Lemma 1.7.5 proceed by induction on M . ut1.7.19. Theorem (Conservation for �K). If M � C[�] !� C[�0] � Nwhere M 2 �K and � is an I-redex, thenM 2 1�) N 2 1�:Proof. By the preceding three lemmas we can use Proposition 1.7.7 withS = �I and F � = F �1 . ut1.7.20. Corollary. Any I-redex is perpetual.1.7.21. Discussion (Barendregt et al. [3, 5]). The proof of the conservationtheorem for �I does not carry over to �K , i.e., we cannot use Proposi-tion 1.7.7 with S = �K and F � any partial, perpetual ��-reduction strat-egy. For instance, (�x:K I x)
 is an I-redex, but the diagram in the proofof Proposition 1.7.7 is:(�x:K I x)
 !� //!�
��

(�x:I)
 !� // (�x:I)
 !� // : : :(�x:K I x)
 !� //'
yyr r r

r r
r r
r r
r

j�jeeK K K K K K K K K K (�x:I)
 !� //'
}}{ {
{ {
{ {
{ {

j�j``A A A A A A A A (�x:I)
 !� //'
}}{ {
{ {
{ {
{ {

j�j``A A A A A A A A : : :K I
 !� // I � // I � // : : :

1.7. Maximal and perpetual redexes 53After one step, no reductions occur in the lower sequence. The problem isthat property (iii) in Proposition 1.7.7 fails for S = �K if F � is arbitrary.This is because in M !� N the reduction may take place in the argumentQ of a labeled K-redex K P Q, and then '(M) � '(N).However, (iii) does hold for S = �I , i.e., when only I-redexes are labeled.The rescue then is that labeling an I-redex yields a term in �I , so (i) alsoholds. Moreover, to turn a �I term into a term outside �I would require areduction step inside P of (�x:P)Q which erased all occurrences of x, butF �1 never reduces a redex inside P of a redex (�x:P)Q, so (ii) holds too.The conservation theorem for �K is due to Barendregt et al. [3, 5].Khasidashvili [71] shows a version for orthogonal expression reduction sys-tems, using perpetuality of his limit strategies mentioned earlier (see theend of Section 1.3.5). Our proof is a slight simpli�cation of the proof byBarendregt et al.; apart from the simpli�cations mentioned in the precedingsubsection, our proof uses a simpler perpetual reduction strategy than theproof by Barendregt et al.1.7.4. Conservation under K-reductionThe preceding two subsections characterized perpetual I-redexes in �I and�K . Now we characterize perpetual K-redexes in �K .1.7.22. Definition.(i) �K is the subset of �K such that for allM 2 �K and all (�x:P)Q � M ,it holds that x 62 FV(P).(ii) For (L;R) = (�K ; �) and (L;R) = (�K ; ��), an SNR-substitution is asubstitution � such that x� 2 SNR for every variable x. For P;Q 2 L,we write P �R1 Q i� for all SNR-substitutions �:P� 2 1R (Q� 2 1R:For Q 2 SNR, � + fx := Qg maps x to Q and acts as � on any othervariable. By projection and lifting P ��1 Q , P ���1 Q for anyP;Q 2 �K .1.7.23. Definition. De�ne F �2 :1�� ! �K by:F �2 (x ~P Q ~R) = x ~P F �2 (Q) ~R if ~P 2 SN�� ; Q 62 SN��F �2 (�x:P) = �x:F �2 (P)F �2 ((��x:P)Q ~R) = Pfx := Qg ~R if P;Q 2 SN��F �2 ((��x:P)Q ~R) = (��x:F �2 (P))Q ~R if P 62 SN��F �2 ((��x:P)Q ~R) = (��x:P) F �2 (Q) ~R if P 2 SN�� ; Q 62 SN�� .

54 Chapter 1. Perpetual Reductions in �-Calculus1.7.24. Lemma. For all M 2 1��: F �2 (M) 2 1��.Proof. First show that, for all M 2 1�� :jF �2 (M)j = F2(jM j) (�)by induction on M using Corollary 1.7.3. Since M 2 1�� , jM j 2 1� byCorollary 1.7.3. By (�) and perpetuality of F2, jF �2 (M)j = F2(jM j) 2 1�.Then by Corollary 1.7.3, F �2 (M) 2 1�� . ut1.7.25. Lemma. For all M 2 �K , F �2 (M) 2 �K.Proof. First prove by induction on M thatM;N 2 �K) Mfx := Ng 2 �K :Using this property proceed by induction on M . ut1.7.26. Definition. Let X be a set of variables.(i) An SN��-substitution � is X-neutral, if x� = x for all x 2 X.(ii) M isX-good if, for allKAB�M andX-neutral �, A�21��(B�21��.(iii) X respects M if FV(M) � X and X \BV(M) = fg.1.7.27. Definition. For M 2 1�� , de�ne the set of variables V (M) by:V (x ~P Q ~R) = V (Q) if ~P 2 SN�� ; Q 62 SN��V (�x:P) = fxg [V (P)V ((��x:P) Q ~R) = fg if P;Q 2 SN��V ((��x:P) Q ~R) = fxg [V (P) if P 62 SN��V ((��x:P) Q ~R) = V (Q) if P 2 SN�� ; Q 62 SN�� .1.7.28. Lemma. For all M 2 1��: V (M) � V (F �2 (M)).Proof. By induction on M using perpetuality of F �2 . ut1.7.29. Lemma. Let M 2 1�� \ �K, M be X [V (M)-good, X respect M .(i) F �2 (M) is X [V (F �2 (M))-good, and X respects F �2 (M).(ii) M !� F �2 (M)) '(M)!!+� '(F �2 (M)).Proof. Let M 2 1�� \ �K , M be X [V (M)-good, X respect M .(i): Since reduction does not invent new free variables, and new boundvariables are chosen fresh, X respects F �2 (M).We show that F �2 (M) is X [V (F �2 (M))-good by induction on M . LetKAB � F �2 (M) and let � be an X [V (F �2 (M))-neutral SN��-substitution.We are to show that A� 2 1�� (B� 2 1�� .

1.7. Maximal and perpetual redexes 551. M � x ~P Q ~R, and ~P 2 SN�� ; Q 62 SN�� . Then F �2 (M) = x ~P F �2 (Q) ~R.1.1. K A B � S, where ~P = ~P1; S; ~P2 or ~R = ~R1; S; ~R2. Then, byLemma 1.7.28, V (M) � V (F �2 (M)). Therefore, � is X [V (M)-neutral. Since M is X [V (M)-good, A� 2 1�� (B� 2 1�� .1.2. K A B � F �2 (Q). Since V (M) = V (Q), Q is X [V (Q)-good. Bythe induction hypothesis, F �2 (Q) is X [V (F �2 (Q))-good. Since F �2is perpetual, V (F �2 (M)) = V (F �2 (Q)), so F �2 (Q) is X [V (F �2 (M))-good. Therefore, A� 2 1�� (B� 2 1�� .2. M � �x:P . Then F �2 (M) = �x:F �2 (P). Then K A B � F �2 (P). SinceV (M) = fxg[V (P), P is X [fxg[V (P)-good. Here X [fxg respectsP , so by the induction hypothesis, F �2 (P) is X [fxg[V (F �2 (P))-good.Since V (F �2 (M)) = fxg [V (F �2 (P)), F �2 (P) is X [V (F �2 (M))-good.Then A� 2 1�� (B� 2 1�� .3. M � (��x:P)Q ~R. We consider three subcases.3.1. P 2 1�� . Then F �2 (M) = (��x:F �2 (P)) Q ~R. There are, in turn,three cases to consider.3.1.1. K A B � S, where S � Q or ~R = ~R1; S; ~R2. Similar toCase 1.1.3.1.2. KAB � F �2 (P). Similar to Case 2.3.1.3. KAB � (��x:F �2 (P))Q. Since F �2 is perpetual, F �2 (P) 2 1�� ,i.e., A 2 1�� . Thus A� 2 1�� , so A� 2 1�� (B� 2 1��trivially.3.2. P 2 SN�� , Q 62 SN�� . As in Case 3.1, there are three subcases.3.2.1. K A B � S, where S � P or ~R = ~R1; S; ~R2. Similar toCase 1.1.3.2.2. KAB � F �2 (Q). Similar to Case 1.2.3.2.3. KAB � (��x:P)F �2 (Q). This case is impossible. Indeed, sup-pose thatKAB � (��x:P)F �2 (Q), soKAB0 � (��x:P)Q �M .The identity substitution � is clearly X [V (M)-neutral, butaccording to the above, A� 62 1�� and B0� 2 1�� , contradict-ing the assumption that M is X [V (M)-good.3.3. P;Q 2 SN�� . Then F �2 (M) = Pfx := Qg ~R.3.3.1. KAB � S, where S 2 ~R. Similar to Case 1.1.3.3.2. KAB � Pfx := Qg. We consider three subcases.(a) KA B � Q. Similar to Case 1.1.(b) KA B � P . Similar to Case 1.1.(c) K A B � K (Ifx := Qg) (Jfx := Qg), where K I J � P .Since FV(Q) � FV(M) � X, y� = y, for all y 2 FV(Q).Therefore,KA�B� � KI�0J�0, where �0 = �+fx := Qg.

56 Chapter 1. Perpetual Reductions in �-CalculusSince V (M) � V (F �2 (M)), � is X [V (M)-neutral. Nowx 62 V (M), and x 2 BV(M) so x 62 X. Therefore �0 isX [V (M)-neutral. Thus, since M is X [V (M)-good,A� � I�0 2 1�� (B� � J�0 2 1�� .(ii): By induction on M . ut1.7.30. Theorem (Conservation of K-redexes). Assume that P ��1 Q andM � C[K P Q]!� C[P] � N where M 2 �K. ThenM 2 1�) N 2 1�:Proof. Suppose M 2 1� and M � C[K P Q] !� C[P] � N , whereP ��1 Q. Let F � = F �2 andS = fJ 2 �K \1�� j J is FV(M) [V (J)� good & FV(M) respects Jg:Then condition (i) of Proposition 1.7.7 is clearly satis�ed, and by Lem-mas 1.7.24, 1.7.25, and 1.7.29, conditions (ii) and (iii) are also satis�ed. ut1.7.31. Corollary. A K-redex K P Q is perpetual if P ��1 Q.1.7.32. Corollary. A K-redex K P Q is perpetual if one of the followingconditions are satis�ed:(i) P 2 1�.(ii) Q 2 SN� and FV(Q) = ;.1.7.33. Corollary. A redex (�x:P)Q is perpetual ifP�fx := Q�g 2 1� (Q� 2 1�for all SN�-substitutions �.Proof. If x 2 FV(P) then the redex is perpetual by the conservation the-orem for �K . If x 62 FV(P), then the condition of the theorem is equivalentto P ��1 Q, so the redex is again perpetual by the preceding Corollary. ut1.7.34. Discussion. It is not true that M 2 �K and M !� N by contrac-tion of any K-redex impliesM 2 1�) N 2 1�:

1.7. Maximal and perpetual redexes 57For instance, for the term M � K I
 and the reduction step K I
 !� Ithe assertion is wrong. The diagram from the proof of Proposition 1.7.7 is:K I
 !� //!�
��

K I
 !� // K I
 !� // : : :K I
 !� //'
||y y
y y
y y
y y
y

j�jbbE E E E E E E E K I
 !� //'
||y y
y y
y y
y y
y

j�jbbE E E E E E E E K I
 !� //'
||y y
y y
y y
y y
y

j�jbbE E E E E E E E : : :I � // I � // I � // : : :In the lower sequence every term is identical to its successor, and the problemevidently is the same as earlier: (ii) of Proposition 1.7.7 fails for S = �K ;that is, in M !� N the reduction step may occur in the argument of alabeled K-redex, and then '(M) � '(N).However, (ii) holds if the reduction step is not inside an argument ofa labeled K-redex.9 If the initial K-redex K P Q is such that P ��1 Qand we use F �2 to compute the middle reduction path, then no reductionwill be inside the argument of labeled K-redex. Indeed, when F �2 contracts(��x:K) L, L 2 SN�� . Since F �2 computes standard reduction paths, thismeans, roughly, that every residual of the initial labeled K-redex K P Qhas form K P� Q� where � is an SN��-substitution. Since P ���1 Q, alsoP� 2 1�� (Q� 2 1�� . Therefore, F �2 does not contract a redex insideQ�. It may happen that F �2 contracts a redex inside P�. In this case, allthe following reductions will also be inside P�.Theorem 1.7.30 is due to Bergstra and Klop [18]. Our proof above isa simpli�cation of the proof of Bergstra and Klop. Xi [140] proves Corol-lary 1.7.33 directly, instead of proving conservation for �K and the Bergstra-Klop theorem separately. Khasidashvili and Ogawa [74] independently proveCorollary 1.7.33, using a variant of the strategy F2, and study applicationsto various restricted �-calculi. Corollary 1.7.32(ii) is also taken from Khasi-dashvili and Ogawa [74].1.7.5. Perpetual and maximal redexesThe following proposition shows that the converse of Theorem 1.7.30 alsoholds. The idea of the proof is that one can simulate the e�ect of substitu-tions by means of contexts and reductions.1.7.35. Proposition (Bergstra and Klop [18]). AssumeC[K P Q] 2 1�) C[P] 2 1�9This observation generalizes the earlier observation that (ii) holds in �K if all labeledredexes are I-redexes. In that case no reduction can take place inside the argument of alabeled K-redex.

58 Chapter 1. Perpetual Reductions in �-Calculusfor all contexts C. Then P ��1 Q.Proof. To show P ��1 Q, let ~R 2 SN�, and supposeQf~x := ~Rg 2 1�:Put C � (�~x:[]) ~R. Since(�~x:(K P Q)) ~R!!� K (Pf~x := ~Rg) (Qf~x := ~Rg);also C[K P Q] 2 1�:By our assumptions, this implies C[P] 2 1�, i.e., (�~x:P) ~R 2 1�. Since~R 2 SN� , for some n F n1 ((�~x:P) ~R) = Pf~x := ~Rg;and by perpetuality of F1, Pf~x := ~Rg 2 1� as required. utThe following corollary, in which (i) is due to Barendregt et al. [3, 5] and(ii) is due to Bergstra and Klop [18], sums up the situation.1.7.36. Corollary. A redex (�x:P)Q is perpetual i�(�x:P)Q is an I-redex; or(�x:P)Q is a K-redex with P ��1 Q.Proof. By Corollary 1.7.20, Corollary 1.7.31 and Proposition 1.7.35. utWe now proceed to characterize maximal redexes. The intuition is asfollows. Given a redex � with contractum �0, we can conceive a context Cwhich is such that C[�] can duplicate �. Therefore the longest reductionpath from C[�] is obtained only if we do not contract � until it has beenduplicated. But then � is not maximal. The only escape is when thecontractum of � has an in�nite reduction path. Then C[�0] has arbitrarilylong reduction paths, so � is maximal.1.7.37. Proposition. Redex � with contractum �0 is maximal i� �0 2 1�.Proof.(: If �0 2 1� then for any n > 0 and context C, C[�0] 2 (n� 1)� .

1.7. Maximal and perpetual redexes 59): We assume �0 2 SN� and prove that � is not maximal by �nding ann such that C[�] 2 n� but not C[�0] 2 (n� 1)� .Since �0 2 SN� there is by K�onig's Lemma an m 2 N such that�0 2 (m�1)� and �0 62 m�. Then � 2 m�. So for C � (�x:�y:y x x)[]we have for some QC[�]!� �y:y ��!!2m� �y:y Q Q;that is, C[�] 2 (2m+ 1)� .On the other hand, any reduction of C[�0] has formC[�0]!!k� C[Q0]!� �y:y Q0 Q0 !!2l� �y:y Q00 Q00for some Q0; Q00, where k + l � m� 1, and therefore k + 1 + 2l < 2m.So, C[�0] 62 (2m)� . ut1.7.6. The normalization theoremIn this subsection we prove the normalization theorem for �K which statesthat repeated contraction of the left-most redex in a weakly normalizingterm eventually leads to a normal-form. We use a technique very similar tothat used to prove conservation theorems in the preceding subsections.1.7.38. Definition. De�ne F �l : �K ! �K a follows. If M 2 NF�� thenF �l (M) =M ; otherwise,F �l (x ~P Q ~R) = x ~P F �l (Q) ~R if ~P 2 NF�� ; Q 62 NF��F �l (�x:P) = �x:F �l (P)F �l ((��x:P)Q ~R) = Pfx := Qg ~R:We write M !l� N if M 62 NF�� and F �l (M) = N . More speci�cally,if M � C[(�x:P) Q] and C[Pfx := Qg] � N we write M !l N , and ifM � C[(�x:P)Q] and C[Pfx := Qg] � N we write M !l N .1.7.39. Lemma. For all M 2 �K: jF �l (M)j = Fl(jM j).Proof. By induction on M . ut1.7.40. Lemma. Let M 2 �K.M !l //'
��

N'
��K !l // LProof. By induction on M . ut

60 Chapter 1. Perpetual Reductions in �-CalculusWe prove the contrapositive of the normalization theorem: if the left-most reduction path from M does not terminate, then no reduction pathdoes. For this it su�ces to show the following result, very similar to theconservation theorems seen earlier|this explains why the technique of theprevious subsections is useful.1.7.41. Theorem. If M 2 �K and M !� N , thenM 2 1l) N 2 1l:Proof. Let M � C[(�x:P) Q] !� C[Pfx := Qg] � N . Suppose M 2 1l,i.e. M �M0 !l M1 !l M2 !l : : : :Let L0 = C[(�x:P) Q], and N0 � N . By Lemma 1.7.5, 1.7.6, 1.7.39,and 1.7.40, we can erect the diagram:M0 !l //!�
��

M1 !l //M2 !l // : : :L0 !l //'
��� �
� �
� �
�

j�j]]; ; ; ; ; ; ; L1 !l //'
��� �
� �
� �
�

j�j]]; ; ; ; ; ; ; L2 !l //'
��� �
� �
� �
�

j�j]]; ; ; ; ; ; ; : : :N0 !l // N1 � // N2 !l // : : :where Li !l Li+1) Ni !l Ni+1Li !l Li+1) Ni � Ni+1:By �niteness of developments, Li !l Li+1, for in�nitely many i, giving anin�nite left-most reduction path from N0. ut1.7.42. Corollary (Normalization theorem). Fl is normalizing.Proof. Suppose M 2 WN�, i.e., M !!� N 2 NF�. If M had an in�niteleftmost reduction, then by Theorem 1.7.41, so did N , a contradiction. ut1.7.43. Definition. Let M 2 �K . A �nite or in�nite reduction pathM0 !� M1 !� M2 !� : : :is quasi-leftmost if it is �nite or for all i 2 N there is j > i withMj !l Mj+1.1.7.44. Corollary. If M 2 WN�, then any quasi-leftmost reduction fromM is �nite.Proof. First show as in Theorem 1.7.41 that if M !� N and M hasan in�nite quasi-leftmost reduction, then so does N . Then proceed as inCorollary 1.7.42. ut

1.7. Maximal and perpetual redexes 61The normalization theorem is due to Curry and Feys [29]. Barendregt [3]infers the normalization theorem from the standardization theorem, and usesboth of these theorems to prove normalization of quasi-leftmost reductions.Barendregt et al. [6] de�ne a �-redex � to be needed in a term M , if �(or a residual of �) is contracted in every reduction of M to normal form.They then show that every term not in normal-form has at least one neededredex, and that a reduction strategy that contracts only needed redexes isnormalizing. They also show that it is undecidable, in general, whether aredex is needed in a term; however, the left-most redex is always needed,and this yields another proof of the normalization theorem. Similar resultswere shown by Huet and L�evy [54] in their early study of neededness in thecontext of orthogonal term rewriting systems, and much has been done sincein various contexts|see [73] for references to some paper`s. Similar resultswere discovered independently by Khasidashvili [68] (see also [70, 72]); inparticular, the proof of Theorem 1.7.41 can be viewed as a special case of aproof due to Khasidashvili [68].For more on normalization, see [76, 105].1.7.7. Conservation from normalizationIn this last subsection we give a very short proof of the conservation theoremfor �I , using the fact that F1 is perpetual and Fl is normalizing.1.7.45. Lemma (Regnier [108]). For all M 2 �I , Fl(M) = F1(M).Proof. If �x:P �M 2 �I , then x 2 FV(P). ut1.7.46. Corollary.(i) For all M 2 �I , M 2WN� , M 2 SN�.(ii) For all M 2 �I , M 2 1� & M !� N) N 2 1�.Proof.(i) Since F1 is perpetual and Fl is normalizing, Lemma 1.7.45 implies:M 2WN� , 9n : F nl (M) 2 NF� , 9n : F n1(M) 2 NF� , M 2 SN�:(ii) Suppose M !� N . If M 2 1� , then by (i), M 62 WN�. HenceN 62WN�, in particular N 2 1�. ut1.7.47. Remark. The same technique can be used to prove that in �! (seeDe�nition 1.4.3) all reduction paths have the same length: one proves di-rectly that in �!, F1 is minimal. Since F1 is also maximal, the longest andshortest reduction path have the same length, and so all reduction pathshave the same length.

62 Chapter 1. Perpetual Reductions in �-Calculus1.7.48. Remark. Not all strategies are maximal in �I ; for instance the strat-egy which always contracts the right-most redex is not maximal, as theexample (�x:�y:y x x) (I I)!!3l �y:y I I shows.1.7.49. Remark. A simpler proof of the above corollary, which does not useF1, can be obtained by proving directly that Fl is perpetual in �I using thefundamental lemma of perpetuality, rather than inferring this from Fl = F1and perpetuality of F1. Slight variations of this technique are due to Curryand Feys [29] and to van Raamsdonk [105].Barendregt et al. [6] show that leftmost reduction paths have maximallength among all reduction paths in which only needed redexes are con-tracted, and that in �I all redexes are needed. This gives another proofthat in �I , Fl is maximal and thereby perpetual.1.8. A note on shortest developmentsAs mentioned above, de Vrijer [135] presents a proof of the �nite devel-opments theorem which, in addition to showing that all developments are�nite, gives an e�ective reduction strategy computing longest developmentsas well as a simple formula computing the length of such longest develop-ments.We now show that by applying a rather simple and intuitive principle ofduality to de Vrijer's approach one arrives at a proof that some developmentsare �nite which in addition yields an e�ective reduction strategy computingshortest developments as well as a simple formula computing the length ofsuch shortest developments. The duality fails for general �-reduction.Our results simplify previous work by Khasidashvili [68].1.8.1. Shortest developmentsWe �rst present our technique for computing shortest developments andthen explain the relation to de Vrijer's [135] technique afterwards.1.8.1. Definition.(i) For all x 2 V de�ne mx : �K ! N by:10mx(x) = 1mx(y) = 0 if x 6� ymx((�y:P)Q) = mx(P) +mx(Q)bmy(P); 1cmx(P Q) = mx(P) +mx(Q) if P 6� �y:Rmx(�y:P) = mx(P):10bm;nc and dm;ne denote the minimum and maximum of m and n, respectively.

1.8. A note on shortest developments 63(ii) De�ne h : �K ! N by:h(x) = 0h((�y:P)Q) = h(P) + h(Q)bmy(P); 1c + 1h(P Q) = h(P) + h(Q) if P 6� �y:Rh(�y:P) = h(P):(iii) De�ne the strategy H : �K ! �K by:H(x) = xH((�y:P)Q) = � (�y:P)H(Q)Pfy := Qg if bmy(P); 1c = 1 & Q 62 NF�otherwiseH(P Q) = � H(P)QP H(Q) if P 6� �y:R & P 62 NF�if P 6� �y:R & P 2 NF�H(�y:P) = �y:H(P):As will be seen below, M !� H(M)!� H(H(M))!� : : : is a shortestcomplete development fromM , and h(M) is the length of this development.Corollary 1.8.8 expresses this succinctly as: LH(M) = s�(M) = h(M).1.8.2. Remark.(i) x 62 FV(M)) mx(M) = 0.(ii) M 2 NF� , h(M) = 0.(iii) bmy(P); 1c 6= 1) bmy(P); 1c = my(P).1.8.3. Lemma. Let x 6� y. Then:(i) my(Mfx := Ng) = my(M) +my(N)mx(M).(ii) h(Mfx := Ng) = h(M) + h(N)mx(M).Proof. (i) is by induction on M . Let L� � Lfx := Ng.1. M � z.1.1. z � x. Then my(x�) = my(N)= my(x) +my(N)mx(x):1.2. z 6� x. Then my(z�) = my(z)= my(z) +my(N)mx(z):

64 Chapter 1. Perpetual Reductions in �-Calculus2. M � (�z:P) Q. Since z 62 FV(N), also mz(N) = 0. Therefore, by theinduction hypothesis,my((�z:P �)Q�)= my(P �) +my(Q�)bmz(P �); 1c= my(P) +my(N)mx(P) + (my(Q) +my(N)mx(Q))bmz(P); 1c= my(P) +my(N)mx(P) +my(Q)bmz(P); 1c +my(N)mx(Q)bmz(P); 1c= my(P) +my(Q)bmz(P); 1c +my(N)(mx(P) +mx(Q)bmz(P); 1c)= my((�z:P)Q) +my(N)mx((�z:P)Q):3. M � P Q where P 6� �y:R. Then, by the induction hypothesis,my(P � Q�) = my(P �) +my(Q�)= my(P) +my(N)mx(P) +my(Q) +my(N)mx(Q)= my(P Q) +my(N)mx(P Q):4. M � �y:P . Similar to Case 3.This concludes the proof of (i); (ii) is also by induction on M .1. M � z.1.1. z � x. Then h(x�) = h(N)= h(x) + h(N)mx(x):1.2. z 6� x. Then h(z�) = h(z)= h(z) + h(N)mx(z):2. M � (�z:P) Q. Since z 62 FV(N), also mz(N) = 0. Therefore, by theinduction hypothesis and (i),h((�z:P �)Q�)= h(P �) + h(Q�)bmz(P �); 1c + 1= h(P) + h(N)mx(P) + (h(Q) + h(N)mx(Q))bmz(P); 1c + 1= h(P) + h(N)mx(P) + h(Q)bmz(P); 1c + h(N)mx(Q)bmz(P); 1c + 1= h(P) + h(Q)bmz(P); 1c + 1 + h(N)(mx(P) +mx(Q)bmz(P); 1c)= h((�z:P) Q) + h(N)mx((�z:P)Q):3. M � P Q where P 6� �y:R. Then, by the induction hypothesis,h(P � Q�) = h(P �) + h(Q�)= h(P) + h(N)mx(P) + h(Q) + h(N)mx(Q)= h(P Q) + h(N)mx(P Q):4. M � �y:P . Similar to Case 3. ut

1.8. A note on shortest developments 651.8.4. Lemma. Suppose that M !� N . Then(i) mx(M) � mx(N).(ii) h(M) � h(N) + 1.Proof. (i) is by induction on M !� N .1. M � (�y:P)Q!� Pfy := Qg � N . By Lemma 1.8.3,mx((�y:P)Q) = mx(P) +mx(Q)bmy(P); 1c� mx(P) +mx(Q)my(P)= mx(Pfy := Qg):2. M � (�y:P) Q !� (�y:P 0) Q0 � N , where P !� P 0 and Q � Q0, orvice versa. By the induction hypothesis,mx((�y:P)Q) = mx(P) +mx(Q)bmy(P); 1c� mx(P 0) +mx(Q0)bmy(P 0); 1c= mx((�y:P 0)Q0):3. M � P Q !� P 0 Q0 � N , where P 6� �y:R, and where P !� P 0 andQ � Q0, or vice versa. Similar to Case 2.4. M � �y:P !� �y:P 0 � N , where P !� P 0. Similar to Case 2.This concludes (i); (ii) is also by induction on M !� N .1. M � (�y:P)Q!� Pfy := Qg � N . By Lemma 1.8.3h((�y:P)Q) = h(P) + h(Q)bmy(P); 1c + 1� h(P) + h(Q)my(P) + 1= h(Pfy := Qg) + 1:2. M � (�y:P) Q !� (�y:P 0) Q0 � N , where P !� P 0 and Q � Q0, orvice versa. By the induction hypothesis and (i),h((�y:P)Q) = h(P) + h(Q)bmy(P); 1c + 1� h(P 0) + h(Q0)bmy(P 0); 1c + 2= h((�y:P 0)Q0) + 1:3. M � P Q !� P 0 Q0 � N , where P 6� �y:R, and where P !� P 0 andQ � Q0, or vice versa. Similar to Case 2.4. M � �y:P !� �y:P 0 � N , where P !� P 0. Similar to Case 2. ut1.8.5. Corollary. For all M 2 �K : h(M) � s�(M).Proof. By induction on h(M).

66 Chapter 1. Perpetual Reductions in �-Calculus1. h(M) = 0. Then M 2 NF�, and then s�(M) = 0.2. h(M) 6= 0. Then M 62 NF�. Let M !� N be such that s�(M) =s�(N) + 1. By Lemma 1.8.4(ii) and the induction hypothesis,h(M) � h(N) + 1� s�(N) + 1= s�(M): 21.8.6. Lemma. If h(M) 6= 0 then M !� H(M) and h(M) = h(H(M)) + 1.Proof. By induction on M . Assume h(M) 6= 0.1. M � x. This case is impossible since h(x) = 0.2. M � (�y:P)Q.2.1. bmy(P); 1c = 1 and Q 62 NF�. By the induction hypothesis,h((�y:P)Q) = h(P) + h(Q)bmy(P); 1c + 1= h(P) + h(Q) + 1= h(P) + h(H(Q)) + 2= h(P) + h(H(Q))bmy(P); 1c + 2= h((�y:P)H(Q)) + 1= h(H((�y:P)Q)) + 1:2.2. bmy(P); 1c 6= 1 or Q 2 NF� . By Lemma 1.8.3h((�y:P)Q) = h(P) + h(Q)bmy(P); 1c + 1= h(P) + h(Q)my(P) + 1= h(Pfy := Qg) + 1:3. M � �y:P . Then, by the induction hypothesis,h(�y:P) = h(P)= h(H(P)) + 1= h(�y:H(P)) + 1= h(H(�y:P)) + 1:4. M � P Q. Similar to Case 3. ut1.8.7. Corollary. For all M 2 �K: h(M) = LH(M).Proof. By induction on h(M).1. h(M) = 0. Then M 2 NF�, and then LH(M) = 0.

1.8. A note on shortest developments 672. h(M) 6= 0. ThenM 62 NF�, and then by Lemma 1.8.6 and the inductionhypothesis, h(M) = h(H(M)) + 1= LH(H(M)) + 1= LH(M): 21.8.8. Corollary. For all M 2 �K : h(M) = s�(M) = LH(M).Proof. Let M 2 �K . Obviously, s�(M) � LH(M). By Corollary 1.8.5and 1.8.7, s�(M) � LH(M) = h(M) � s�(M): 21.8.2. Relation to Khasidashvili's techniqueKhasidashvili [68] calls a redex � inM essential, notation E(�;M), if everycomplete development of M must reduce � (or a residual of �). He showsthat any strategy which reduces in each step an inner-most essential redexyields shortest complete developments, and he gives a formula for the lengthof such developments: the number of essential redexes in the initial term.He also gives an algorithm to decide whether a redex in a term is essential;this makes the above strategy and formula e�ective, but the algorithm is|inour opinion|somewhat involved. The algorithm can be simpler formulatedin terms of the map my as follows:E(�; (�y:P)Q) , � � (�y:P)Q or E(�; P) or [E(�; Q) & my(P) > 0]E(�; P Q) , E(�; P) or E(�; Q)E(�; �y:P) , E(�; P):In this terminology, the map h counts the number of essential redexes in aterm, andH reduces an essential redex that is not contained in the argumentof another essential redex.1.8.3. Relation to de Vrijer's techniqueDe Vrijer [135] studies the following maps nx, g, and G, which arise frommx,h, and H by replacing all minimum operators b�; �c by maximum operatorsd�; �e; intuitively this makes sense since we now consider longest instead ofshortest developments.(i) For all x 2 V de�ne nx : �K ! N by:nx(x) = 1nx(y) = 0 if x 6� ynx((�y:P)Q) = nx(P) + nx(Q)dny(P); 1enx(P Q) = nx(P) + nx(Q) if P 6� �y:Rnx(�y:P) = nx(P):

68 Chapter 1. Perpetual Reductions in �-Calculus(ii) De�ne g : �K ! N by:g(x) = 0g((�y:P)Q) = g(P) + g(Q)dny(P); 1e + 1g(P Q) = g(P) + g(Q) if P 6� �y:Rg(�y:P) = g(P):(iii) De�ne the strategy G : �K ! �K by:G(x) = xG((�y:P)Q) = � (�y:P)G(Q)Pfy := Qg if dny(P); 1e = 1 & Q 62 NF�otherwise.G(P Q) = � G(P)QP G(Q) if P 6� �y:R & P 62 NF�if P 6� �y:R & P 2 NF�G(�y:P) = �y:G(P):De Vrijer proves that M !� G(M) !� G(G(M)) !� : : : is a longestcomplete development from M , and that g(M) is the length of this devel-opment. This is expressed by the equations: LG(M) = l�(M) = g(M). The�nite developments theorem is an immediate corollary.The proof of these equations can be carried out exactly as in 1.8.2{1.8.8 by replacing s�, b�; �c, �, mx, h, and LH by l�, d�; �e, �, nx, g,and LG, respectively! This works because the properties used in 1.8.2{1.8.8involving s�;mx, etc. are invariant under the transformation, as the readeris encouraged to check.11 For instance, the property bm;nc � m becomesdm;ne � m.1.8.4. DiscussionAlthough the general notions of longest and shortest complete �-reductionsequences are intuitively \opposite," they are, technically speaking, verydi�erent. For instance, there is an e�ective reduction strategy that computeslongest complete �-reduction sequences (see [119] among others), but noe�ective reduction strategy that computes shortest complete �-reductionsequences [3]. In contrast, the above shows that one can e�ectively computeboth shortest and longest complete developments, and the proofs reveal anamazing duality between the two concepts. It is natural to ask why theduality does not carry over to the general case of �-reduction.The di�erence between the minimal strategyH and the maximal strategyG is revealed on terms of form (�y:P) Q where Q 62 NF�. The rationalebehind the minimal strategy is that if any reduction of (�y:P) Q to �-normal form must reduce inside at least one residual of Q, then it is best to11To obtain this result, a small change has been made to G as compared to de Vrijer'sformulation; in his formulation the condition dny(P); 1e = 1 is ny(P) = 0|see the lastsubsection.

1.8. A note on shortest developments 69perform reductions in Q �rst, to avoid proliferation. This is decidable fordevelopments, but undecidable for �-reduction [6].The rationale behind the maximal strategy is that if any reduction of(�y:P)Q to �-normal form may reduce inside at most one residual of Q, thenit is best to perform reductions in Q �rst, to avoid erasing. An equivalenttechnique, used by de Vrijer [135], is to test whether reducing (�y:P) Qone step would delete Q, and if so reduce Q to normal form �rst. This isdecidable for developments as well as for �-reduction.From the point of view of e�ciency, a minimal strategy is clearly betterthan a maximal strategy. It is a remarkable fact that in general �-reductionswe can e�ectively do the worst possible job, but not the best possible job.

70 Chapter 1. Perpetual Reductions in �-Calculus

CHAPTER 2Weak and Strong Normalization in Type Theory
For some typed �-calculi it is easier to prove weak normalization than strongnormalization. Techniques to infer the latter from the former have beeninvented over the last twenty years by Nederpelt, Klop, Khasidashvili, Karr,de Groote, and Kfoury and Wells. However, these techniques infer strongnormalization of one notion of reduction from weak normalization of a morecomplicated notion of reduction. This chapter presents a new technique toinfer strong normalization of a notion of reduction in a typed �-calculusfrom weak normalization of the same notion of reduction. The techniquenot only simpli�es the task of proving strong normalization as compared toprevious approaches, but also suggests an approach to an open problem intype theory, pursued in the next chapter.2.1. IntroductionAs mentioned in the Introduction, one of the most important questionsconcerning a notion of reduction in a typed �-calculus is whether it satis�esweak and strong normalization.1 The former means that from every termthere is at least one �nite reduction sequence ending in a normal form; thelatter means that there is no term with an in�nite reduction sequence. Thelatter property trivially implies the former, but the converse is not obviouseven when known to be true.The classical proof of strong normalization for �-reduction in simplytyped �-calculus is by a method due to Tait [125]. It was generalized tosecond-order typed �-calculus by Girard [41], and subsequently simpli�edby Tait [126]. It has since been generalized to a variety of �-calculi|see [4,34, 42, 50, 80, 132]. A version of the proof is also presented in Section 1.5.1Reduction on terms in typed �-calculi is closely related to reduction on derivations innatural deduction logics via the Curry-Howard isomorphism [29, 52]. This will be implicitin the rest of the chapter. 71

72 Chapter 2. Weak and Strong Normalization in Type TheoryFor notions of reduction in some typed �-calculi there is a technique toprove weak normalization that is simpler than the Tait & Girard techniqueto prove strong normalization. For instance, Turing [35] proves weak nor-malization for �-reduction in simply typed �-calculus by giving an explicitmeasure which decreases in every step of a certain �-reduction sequence.Prawitz [104] independently uses the same technique to prove weak normal-ization for reduction of natural deduction derivations in predicate logic.Nederpelt [92], Klop [76], Khasidashvili [69], Karr [62], de Groote [31],and Kfoury and Wells [66] have invented techniques to infer strong normal-ization from weak normalization. However, these techniques all infer strongnormalization of one notion of reduction from weak normalization of a morecomplicated notion of reduction.This has the undesirable consequence that, even if one knows that anotion of reduction is weakly normalizing, one has to redo the weak nor-malization proof for the complicated notion of reduction to conclude strongnormalization for the original notion of reduction. This is a non-trivialprocess|see [67] for comments on two such proofs|which involves very dif-ferent techniques for di�erent calculi. For instance, for �-reduction in simplytyped �-calculus one can extend the Turing & Prawitz weak normalizationproof to the complicated notion of reduction, but for second-order typed�-calculus one must use some kind of reducibility predicate. A technique touniformly infer strong normalization for one notion of reduction from weaknormalization of the same notion of reduction would be better.Another interest in such a technique stems from a conjecture, presentedby Barendregt at Typed Lambda-Calculus and Applications, Edinburgh 1995,stating that for every pure type system [4] weak normalization of �-reductionimplies strong normalization of �-reduction. The conjecture has also beenmentioned by Geuvers [38], and, in a less concrete form, by Klop.This chapter extends Klop's technique to infer strong normalization ofone notion of reduction from weak normalization of the same notion of re-duction. The chapter does not give an answer to the conjecture, but it doessuggest one possible approach to an a�rmative answer, pursued in the nextchapter.Section 2.2 presents Klop's technique, which is based on the conservationtheorem for �I and an interpretation of �K in �I. Section 2.3 analyzes therelationship to the similar techniques by Nederpelt and others. Section 2.4presents our extension of Klop's technique, which is based on a continuationpassing style translation. Section 2.5 shows that the continuation passingstyle translation is a special case of a class of translations, which we callpermutative inner interpretations, each of which give rise to a similar exten-sion of Klop's technique. The versatility of our approach is demonstrated byapplication to some typed �-calculi in Section 2.6 and 2.7. These systemsinclude second-order �-calculus and the system of positive, recursive types.Section 2.8 concludes and reviews directions for further work.

2.1. Introduction 732.1.1. PreliminariesThe following is explained in more detail in [3].2.1.1. Notation. �K is the set of type-free �-terms. Some example termsare K � �xy:x, I � �x:x, ! � �x:x x, and
 � ! !. M � N means that Mis a subterm of N . FV(M) is the set of free variables inM . �I is the set of all�-terms where for every subterm �x:M , x 2 FV(M). Familiarity is assumedwith the variable convention, substitution, and notions of reduction. ByR1R2 we denote the union of two notions of reduction R1 and R2. For anotion of reduction R, !R is the compatible closure, !!R is the compatible,reexive, transitive closure, !!+R is the compatible, transitive closure, and=R is the transitive, reexive, symmetric, compatible closure. We use),,, and & to denote the obvious connectives in the meta-language.In the remainder of this section R denotes an arbitrary notion of reduc-tion on �K .2.1.2. Definition. A �nite or in�nite sequenceM0 !R M1 !R : : :is called an R-reduction path fromM0. We say thatM0 has this R-reductionpath. If the sequence is �nite it ends in the last term Mn and has length n.2.1.3. Definition. De�ne the following subsets of �K :1R = fM jM has an in�nite R-reduction pathg:NFR = fM jM has no R-reduction path of length 1 or moreg:SNR = fM jM has no in�nite R-reduction pathg:WNR = fM jM has a �nite R-reduction path ending in an N 2 NFRg:CRR = fM j for all L;N; if L R M!!R N then L!!RKR N for a Kg:2.1.4. Terminology. The elements of NFR, SNR, and WNR are R-normalforms, R-strongly normalizing, and R-weakly normalizing, respectively. Wesometimes write, e.g., SNR(M) instead of M 2 SNR. We also write, e.g.,SNR to state that, for all M 2 �K , M 2 SNR. We also use the above setsfor notions of reduction on other sets than �K with the necessary changes.2.1.5. Definition. For M 2 SNR \ CRR, nfR(M) is the unique N 2 NFRsatisfying M !!R N .

74 Chapter 2. Weak and Strong Normalization in Type Theory2.2. Klop's techniqueThis section presents Klop's technique [76, I.8] to infer strong normalizationfrom weak normalization. Klop uses it to prove strong normalization of �-reduction in simply typed �-calculus and in Levy's and Hyland-Wadsworth'slabeled calculi; �niteness of developments follows as a special case. Wepresent the technique in an untyped, unlabeled setting.The �rst subsection sketches the technique in a style which will also beused for the related techniques in Section 2.3. The second subsection provesa result that will be used in our extension in Section 2.4.2.2.1. The idea: non-erasing reductions2.2.1. Definition.(i) Let ��K be the set de�ned by: M ::= x j �x:M jM1 M2 j [M1;M2].(ii) Let ��I be the set fM 2 ��K j �x:P �M) x 2 FV(P)g.(iii) De�ne notions of reduction �; �; � on ��K by:[P;Q]R � [P R;Q](�x:P)Q � Pfx := Qg[P;Q] � P:(iv) De�ne � : �K ! ��I by:�(x) = x�(�x:P) = �x:[�(P); x]�(P Q) = �(P) �(Q):The conservation theorem for �I states for M 2 �I that M 2 WN�implies M 2 SN�. This fails for terms in �K , as the term K I
 shows,because reduction in �K can erase terms, and parts of terms, with in�nitereductions. To obtain a similar result for �K , Klop considers �(M) fromwhich every �-reduction (�x:[P; x]) Q !� [Pfx := Qg; Q] makes a copy ofthe argument. Indeed, one can show that �(M) 2WN� implies �(M) 2 SN�.The hope is that �(M) 2 SN�, in turn, impliesM 2 SN� . However, this doesnot hold. For example, �(I ! !) 2 SN�, since the only reduction path fromthis term is�(I ! !) � (�x:[x; x]) �(!) �(!)!� [�(!); �(!)] �(!) 2 NF�:However, I ! ! 62 SN�, sinceI ! ! !� ! ! !� ! ! !� : : : :The problem is that the pairing operator may block reductions in �(M)which take place in M . Therefore Klop adopts the �-rule which moves aterm across a copy.

2.2. Klop's technique 752.2.2. Theorem (Klop [76]). For all M 2�K ,�(M)2WN��) M 2SN�:2.2.3. Remark. Klop's proof of Theorem 2.2.2 is in two steps:�(M) 2WN��) �(M) 2 SN��) M 2 SN�: (2.1)The �rst implication is a special case of Klop's conservation theorem [76] forde�nable extensions of �I , and the second one is proved by the implications:�(M) 2 SN��) �(M) 2 SN���) �(M) 2 SN��) M 2 SN�: (2.2)Here the �rst implication follows from the fact that in an in�nite ���-reduction one can postpone �-reductions to get an in�nite ��-reduction.The second implication is obvious, and the third follows from �(M)!!� M .2.2.2. Proof of part of Klop's resultIn Section 2.4 our extension uses the second implication of (2.1), which wetherefore prove now. The proof follows the structure of (2.2).2.2.4. Lemma (Postponement of � across ��). For all M;N;O 2 ��K :M !� ////!!+��
��

N!��
����K !!� // OProof. First show that, if M !� N thenMfx := Lg !� Nfx := Lg (2.3)and Lfx :=Mg !!� Lfx := Ng (2.4)by induction on M !� N and L, respectively. Then proceed by inductionon M !� N , splitting into cases according to how M !� N !�� O:1. M � x P0 : : : Pn, where n > 0. Then N � xQ0 : : : Qn, where Pi !� Qifor one i, and Pj � Qj for all j 6= i. Then O � x R0 : : : Rn, whereQl !�� Rl for one l, and Qm � Rm for all m 6= l.1.1. i = l. Then Pi !� Qi !�� Ri. Then, by the induction hypothesis,Pi !!+�� K !!� Ri, for some K. Thenx P0 : : : Pn !!+�� x Q0 : : : Qi�1 K Qi+1 : : : Qn!!� x R0 : : : Rn:

76 Chapter 2. Weak and Strong Normalization in Type Theory1.2. i 6= l. Then Pi !� Qi � Ri and Pl � Ql !�� Rl. Thenx P0 : : : Pn !�� x Q0 : : : Ql�1 Rl Ql+1 : : : Qn!� x R0 : : : Rn:2. M � (�x:P0) P1 : : : Pn, where n � 0. Then N � (�x:Q0) Q1 : : : Qn,where Pi !� Qi for one i, and Pj � Qj for all j 6= i.2.1. O � (�x:R0) R1 : : : Rn, where Ql !� Rl for one l, and Pm � Qmfor all m 6= l. Then proceed as in Case 1.2.2. O � Q0fx := Q1gQ2 : : : Qn. Then, by (2.3)-(2.4),(�x:P0) P1 : : : Pn !�� P0fx := P1g P2 : : : Pn!!� Q0fx := Q1gQ2 : : : Qn:3. M � [P1; P0] P2 : : : Pn, where n > 0.3.1. N � [Q1; Q0] Q2 : : : Qn, where Pi !� Qi for one i, and Pj � Qjfor all j 6= i. Then proceed as follows.� O � [R1; R0]R2 : : : Rn, where Ql !�� Rl for one l, and whereQm � Rm for all m 6= l. Then proceed as in Case 1.� O � [Q1 Q2; Q0]Q3 : : : Qn. Then[P1; P0] P2 : : : Pn !� [P1 P2; P0] P3 : : : Pn!� [Q1 Q2; Q0]Q3 : : : Qn:3.2. N � P1 P2 : : : Pn. Since N !�� O,[P1; P0] P2 : : : Pn !!� [P1 : : : Pn; P0]!�� [O;P0]!� O:This exhausts all possibilities. ut2.2.5. Lemma. For all M 2 ��K,M 2 SN��) M 2 SN���:Proof. Assume 1���(M). We must prove 1��(M).We �rst show by induction on n that, for all n � 0, there is an n-tuple�n = (M0;M1; : : : ;Mn�1) and L0; L1; : : : such thatM0 !�� M1 !�� : : :!�� Mn�1 !��� L0 !��� L1 !��� : : : :Put �0 = (M). For n = m+ 1 we assume:M0 !�� M1 !�� : : :!�� Mm�1 !��� L0 !��� L1 !��� : : : :

2.3. Variations on Klop's technique 77Since �-reductions strictly decrease term size, there is a smallest k � m� 1such that Mk !�� Mk+1. Now use Lemma 2.2.4 k� (m� 1) times to arriveat a sequence in which the n �rst elements constitute �n.Now let Ni be the i'th element of �i. Then clearlyM � N0 !�� N1 !�� N2 !�� : : :as required. ut2.2.6. Lemma. For all M 2 ��K ,�(M) 2 SN��) M 2 SN�:Proof. By induction on M prove �(M)!!� M . This gives the lemma. ut2.2.7. Main Lemma (Klop [76]). For all M 2 �K,�(M) 2 SN��) M 2 SN�:Proof. By Lemmas 2.2.5 and 2.2.6. ut2.3. Variations on Klop's techniqueKlop's technique [76] was inspired by Nederpelt's [92] technique, and isalso related to the later techniques by Khasidashvili [69], Karr [62], deGroote [31], and Kfoury and Wells [66]. The similarity between the dif-ferent approaches is sometimes blurred because each technique is describedin a particular context in terms of labeled or typed terms.This section reviews these techniques in an untyped, unlabeled setting.We begin with de Groote's technique since it resembles Klop's the most.The remaining techniques are then described in less detail. For more onthe relationship between Klop's and Nederpelt's technique, see [76, II.4].For more on the relationship between de Groote's and Kfoury and Wells'technique, see [67]. The notions of reduction discussed in this section havebeen considered in a number of other contexts [2, 63, 64, 65, 90, 108, 112,134]|see [67] for a survey.2.3.1. The technique by de GrooteThis subsection presents de Groote's [31] technique to reduce strong normal-ization for the systems in the �-cube [4] to weak normalization of relatedsystems. In particular, adopting a version of the Turing & Prawitz proof, heproves strong normalization of �-reduction in the simply typed �-calculus.

78 Chapter 2. Weak and Strong Normalization in Type Theory2.3.1. Definition. Let �I ; �K ; �S be the notions of reduction on �K :(�x:P)Q �I Pfx := Qg if x 2 FV(P)(�y:P)Q �K P if y 62 FV(P)(�y:P)QR �S (�y:P R)Q if y 62 FV(P).A generalization of the conservation theorem for �I states for M 2 �KthatM 2WN�I impliesM 2 SN�I . If �K -redexes could be postponed across�I -redexes, M 2 SN�I would, in turn, imply M 2 SN�I�K , i.e. M 2 SN�.This would give a technique to infer �-strong normalization from �I -weaknormalization. Unfortunately, postponement of �K -redexes is not in generalpossible; a �K -reduction may create a �I-redex:(�y:�x:P)QR!�K (�x:P) R y 62 FV(P); x 2 FV(P):The notion of reduction �S is used to sidestep this problem.2.3.2. Theorem (de Groote [31]). For all M 2�K ,M 2WN�S�I) M 2 SN�:2.3.3. Remark. The proof of Theorem 2.3.2 by de Groote is in two parts:M 2WN�I�S) M 2 SN�I�S) M 2 SN�: (2.5)The �rst part of (2.5) is proved by a technique originally due to Ned-erpelt. One shows that CR�S�I and that a certain measure j � j is strictlyincreased by �I�S-reductions (INC�I�S for short). If M 2WN�I�S , i.e.,M !!�I�S N 2 NF�I�Sand M also had an in�nite �I�S-reductionM �M0 !�I�S M1 !�I�S : : : ;then jN j < jMkj for some k, by INC�I�S . By CR�I�S , Mk !!�I�S N andhence by INC�I�S also jMkj � jN j, a contradiction. In short:INC�I�S and CR�I�S and M 2WN�I�S) M 2 SN�I�S : (2.6)The second part of (2.5) is proved by the implications:M 2 SN�I�S) M 2 SN�I�S�K) M 2 SN�I�K) M 2 SN�: (2.7)Here the �rst implication follows from the fact that �K -reductions can bepostponed across �I�S -reductions, and the two others are trivial.

2.3. Variations on Klop's technique 792.3.2. Klop versus de GrooteThe reductions � and �S adopted by Klop and de Groote, respectively, arevery similar. Whereas Klop considers reductions[P;Q] R! [P R;Q];de Groote considers (�y:P)QR! (�y:P R)Q:Reading [P;Q] as (�y:P)Q with y 62 P , they are the same!Indeed, let � : ��I ! �K be the map which replaces �-redex [M;N] by(�y:M)N , y 62 FV(M). Then, for all M 2 ��I , N 2 ��K ,M !� N , �(M)!�I �(N)M !� N , �(M)!�K �(N)M !� N , �(M)!�S �(N):This explains the similarity between the proof of Klop's Theorem 2.2.2and the proof of de Groote's Theorem 2.3.2. In both cases, the overall proofconsists of two implications|(2.1) and (2.5)|see Remarks 2.2.3 and 2.3.3.Klop and de Groote prove the �rst implication in (2.1) and (2.5) di�erently,but de Groote's proof can be adapted to Klop's setting. As for the sec-ond implication in (2.1) and (2.5), the proof consists in both cases of threeimplications|(2.2) and (2.7). The �rst two implications in (2.2) and (2.7)are proved the same way. The techniques only di�er in the last implication:in Klop's technique one has to use the details of �, while in de Groote'stechnique one uses � = �I�K .2.3.3. Nederpelt's techniqueNederpelt [92] proves �-strong normalization of all terms in a typed �-calculus from the Automath family [30], using a reduction to the problem ofproving weak normalization. Nederpelt uses a somewhat unorthodox nota-tion for �-terms. For instance, (�x:P)Q is written fQg[x]P . This notationhas its advantages, but we present here the technique in more familiar terms.Recently there has been new interest in Nederpelt's reductions [20, 58,59, 60], and their relevance to explicit substitution calculi [57, 61].2.3.4. Definition. Let C;D range over contexts, and C[D] denote the resultof substituting D for [] in C. The set of �-chains C is de�ned by:2[] 2 CC 2 C; N 2 �K) C[�x:[]]N 2 CC;D 2 C) C[D] 2 C:2One may think of abstraction and application in �-chains as left and right parenthe-sis. Counting inside-out the number of abstractions is never smaller than the number ofapplications, and the total number of abstractions equals the total number of applications.

80 Chapter 2. Weak and Strong Normalization in Type TheoryDe�ne the notions of reduction �1; �2 by:C[�x:P]R �1 C[�x:Pfx := Rg]R if x 2 FV(P) and C 2 CC[�y:P]R �2 C[P] if y 62 FV(P) and C 2 C.The motivation for �1 is that it allows postponement of �2-reductions,just like �S-reductions allow postponement of �K -reductions. For example,if x 2 FV(P) and y 62 FV(P), then(�y:�x:P)QR!�1 (�y:�x:Pfx := Rg)QR!�2 (�y:Pfx := Rg)Q :In de Groote's setting this would be(�y:�x:P)QR!�S (�y:(�x:P) R)Q!�K (�y:Pfx := Rg)Q :None of �S and �1 is contained in the other: �S is more general in that itdoes not require the object under �y to be an abstraction, and �1 is moregeneral in that it does not require the �-chain to have form (�y:[])Q.2.3.5. Theorem (Nederpelt [92]). For all M 2 �K ,M 2WN�1) M 2SN�:2.3.6. Remark. The proof structure is as (2.5)-(2.7) in Remark 2.3.3 with�1 in place of �I�S and �2 in place of �K .2.3.4. Karr's techniqueKarr [62] studies general conditions under which additions to the simplytyped �-calculus remain strongly normalizing, and obtains as a special casestrong normalization of ��-reduction and surjective pairs.This in general works by reducing �IR-strong normalization to �IR-strong normalization, where R is a certain conjugate rule, derived mechan-ically from R.2.3.7. Definition. De�ne the notion of reduction � by:Cfz := �x:Mg R � Cfz :=Mfx := Rgg if x 2 FV(M) and C !!�K z.The motivation for � is that it allows postponement of �K . For example,if x 2 FV(P) and y 62 FV(P) then(�y:�x:P)QR!� (�y:Pfx := Rg)Q :This shows that Karr's reduction � obtains the e�ect of Nederpelt's �1(composed with �2). Whereas Nederpelt requires that the C in C[�x:P] R,be a �-chain, Karr requires that C[z]!!�K z.2.3.8. Theorem (Karr [62]). For all M 2�K ,M 2SN�I�) M 2SN�:2.3.9. Remark. The proof is as (2.7) in Remark 2.3.3 with � in place of �S .

2.3. Variations on Klop's technique 812.3.5. Kfoury and Wells' techniqueKfoury andWells [66] reduce the strong normalization problem of �-reductionin simply typed �-calculus and the intersection type system to the weak nor-malization problem for related systems as follows.2.3.10. Definition. De�ne the notion of reduction by:(�y:�x:P)Q �x:(�y:P) Q;and let M !� N , M !�I M 0 !! N 2 NF .The idea behind again is that it facilitates postponement of �K -reductions. For example,(�y:�x:P)QR! (�x:(�y:P) Q)R:Thus, whereas de Groote's �S moves R to its matching �x, Kfoury andWells' moves �x to its matching R.2.3.11. Theorem (Kfoury and Wells [66]). For all M 2�K,nf(M)2WN�) M 2SN�:2.3.12. Remark. Instead of proceeding as in (2.5)-(2.7) with in place of�S , Kfoury and Wells approach the problem di�erently. Their proof showsthat �-normal forms are �-strongly normalizing. Since �-reductions preservethe possibility of in�nite �-reductions, any �-weakly normalizing term is �-strongly normalizing. The result then follows from the fact that -reductionspreserve the possibility of in�nite �-reductions.2.3.6. More general techniques by Klop and KhasidashviliKlop [76, II.4] generalizes the technique from Section 2.2 to regular combi-natory reduction systems (such systems are described in the survey [78]).For any regular combinatory reduction system �, Klop introduces anotherone �� such that if all terms are weakly normalizing in �� then all termsare strongly normalizing in �. The proof is a generalization of Nederpelt'stechnique (2.5)-(2.7) in Remark 2.3.3 with �� for �I�S and � for �. As acorollary Klop obtains �niteness of developments for regular combinatorysystems.Khasidashvili [69] studies so-called S-reductions, which are equivalentto developments. He independently develops a technique similar to Klop's,and uses it to prove strong normalization of S-reductions (i.e., �niteness ofdevelopments), to e�ectively compute longest S-reductions, and to e�ectivelycompute the length of such reductions. He obtains similar results for othernotions of reduction too.

82 Chapter 2. Weak and Strong Normalization in Type TheoryIn a more recent paper, Khasidashvili formulates his technique for so-called orthogonal expression reduction system [71]. The proof of the resultis similar to Nederpelt's. As applications he obtains several theorems in thetheory of perpetual reductions|see Chapter 1.2.4. Extensions of Klop's techniqueThis section presents the main contribution of the chapter: an extension ofKlop's technique yielding a translation [�] : �K ! �I such that [M] 2WN�implies M 2 SN� . This result was independently discovered by Xi [141].The �rst subsection gives the idea and the second subsection developsthe details.2.4.1. The idea: simulation of �Theorem 2.2.2 shows forM 2 �K thatM 2 SN� follows from �(M) 2WN��.We aim at a condition involving only �-weak normalization. The followingde�nition and proposition suggest a natural approach.2.4.1. Definition. A translation � : ��I ! �I simulates � ifL!� K) �(L)!!+� �(K) (2.8)L!� K) �(L)!!� �(K): (2.9)2.4.2. Proposition. Assume � : ��I ! �I simulates �. For all M 2 �K ,�(�(M)) 2WN�) M 2 SN�:Proof. We �rst show that, for all M 2 ��K , SN�(M). De�ne w : ��K ! N:w(x) = 1w(�x:P) = w(P)w(P Q) = w(P) + w(Q)w([P;Q]) = 2w(P) + w(Q):Then prove, by induction on M !� N , that M !� N) w(M) > w(N).Now, assume �(�(M)) 2 WN�. By the conservation theorem for �I ,�(�(M)) 2 SN�. If �(M) had an in�nite ��-reduction path, then in�nitelymany of these steps were �-reductions, but then �(�(M)) also had an in�nite�-reduction path, a contradiction. Hence �(M) 2 SN��. Then, by MainLemma 2.2.7, M 2 SN�. utSo, the problem is to �nd �. One approach, mentioned by Klop [76,I.7], is to map pairs [M;N] 2 ��I into terms P M N 2 �I where P is a�xed point combinator such that P M N L!� P (M L)N . For the present

2.4. Extensions of Klop's technique 83purposes this approach has the problem that, for the obvious choices of P ,�(�(M)) 62WN�. Moreover, ��� fails to map typable terms to typable terms(see Section 2.6).Fortunately another technique is available. It is well-known [26, 112]that one can simulate reductions like � by means of a continuation passingstyle (CPS) translation [109, 100]. More precisely, there is a CPS translation : ��I ! ��I and an \optimizing" CPS translation � : ��I ! ��I such that (M) !!� �(M) and � simulates �. Since a pair [M;N] in the translatedworld has no notion of reduction associated, it is equivalent to yMN where yis some fresh variable. Using this idea one gets a translation into �I insteadof ��I .This suggests the following principle.2.4.3. Proposition. Suppose ; � : ��I ! �I are such that � simulates �and (M)!!� �(M) for all M 2 ��I . Then (�(M)) 2WN�) M 2 SN�:Proof. Assume that (�(M)) 2 WN�. By the Church-Rosser property,�(�(M)) 2WN�. Then, by Proposition 2.4.2, M 2 SN� . ut2.4.2. Simulation by CPS translationWe now show how to simulate � by means of CPS translation.The restrictions to �K of the following two maps were �rst studied sys-tematically by Plotkin [100]; see also [109].2.4.4. Definition. Let y be a variable, not occurring in any other term.(i) De�ne � : ��K ! �K by:x = �k:x k�x:P = �k:k �x:PP Q = �k:P �m:m Q k[P;Q] = �k:y (P k)Q:(ii) De�ne � :� : ��K � �K ! �K by:x : H = x H(�x:P) : H = H �x:P(P Q) : H = P : (�m:mQH)[P;Q] : H = y (P : H)Q:where M = �h:(M :h), for all M 2 ��K .The idea is to use Proposition 2.4.3 with (M) =M and �(M) =M .

84 Chapter 2. Weak and Strong Normalization in Type Theory2.4.5. Lemma. For all M;N 2 ��K and K;L 2 �K:(i) k 62 FV(M)) (M : K)fk := Lg =M : (Kfk := Lg).(ii) K !!+� L) M : K !!+� M : L.Proof. By induction on M . ut2.4.6. Lemma. For all M;N 2 ��K and K 2 �K :(M :K)fx := Ng !!� (Mfx := Ng) : (Kfx := Ng):Proof. By induction on M . Let, for any L 2 �K , L� � Lfx := Ng.1. M � x. Then, by Lemma 2.4.5(i),(x :K)� � (x K)�� N K�!� (N :h)fh := K�g� N :K�� (xfx := Ng) :K�:2. M � y 6� x. Then (y :K)� � (y K)�� yfx := NgK�� (yfx := Ng) :K�:3. M � �y:P . Then, by the induction hypothesis,((�y:P) :K)� � (K �y:P)�!!� K� �y:Pfx := Ng� (�y:Pfx := Ng) :K�� ((�y:P)fx := Ng) :K�:4. M � P Q. Then, by the induction hypothesis and Lemma 2.4.5(ii),((P Q) :K)� � (P : (�m:m QK))�!!� (Pfx := Ng) :�m:m Qfx := NgK�� (Pfx := NgQfx := Ng) :K�� ((P Q)fx := Ng) :K�:The remaining case is similar to Case 3. ut2.4.7. Lemma. For all M;N 2 ��K and K 2 �K :(i) M !!� M .(ii) M !� N) M : K !!+� N : K.

2.4. Extensions of Klop's technique 85(iii) M !� N) M : K � N : K.Proof.(i) Induction on M .1. M � P Q. Then, by the induction hypothesis and Lemma 2.4.5(i),P Q � �k:P �m:mQ k!!� �k:P �m:mQ k!� �k:(P :�m:mQ k)� �k:((P Q) :k)� P Q:2. M � [P;Q]. Then, by the induction hypothesis and Lemma 2.4.5(i),[P;Q] � �k:y (P k)Q!!� �k:y (P k)Q!� �k:y (P :k)Q� �k:([P;Q] :k)� [P;Q]:The remaining two cases are straight-forward.(ii) Induction on M !� N .1. M � (�x:P) Q !� Pfx := Qg � N . Then, by Lemma 2.4.5(i)and 2.4.6, M :K � (�m:mQK) �x:P!� (�x:P)QK!!� Pfx := QgK!!� (Pfx := Qg) :K:2. M � P Q!� P Q0 � N , where Q!� Q0. Then, by the inductionhypothesis and Lemma 2.4.5(ii),M :K � P : (�m:m QK)!!+� P : (�m:m Q0 K)� N :K:The remaining cases are similar to Case 2.(iii) Induction on M !� N .1. M � [P;Q] R!� [P;R]Q � N . Then, by the induction hypothe-sis, M :K � y (P : (�m:m RK))Q� y ((P R) :K)Q� N :K:

86 Chapter 2. Weak and Strong Normalization in Type Theory2. M � P Q!� P Q0 � N , where Q!� Q0. Then, by the inductionhypothesis, M :K � P : (�m:m QK)� P : (�m:m Q0 K)� N :K:The remaining cases are similar to Case 2. ut2.4.8. Theorem. For all M 2 �K�(M) 2WN�) M 2 SN� :Proof. By Proposition 2.4.3 and Lemma 2.4.7, since �; � : ��I ! �I . utThe following corollary states this more explicitly. For comparison witha later construction the translation in the corollary omits some �-redexes.2.4.9. Corollary. De�ne [�] : �K ! �I by:[x] = �k:x k[�x:P] = �k:k (�x:�h:y ([P] h) x)[P Q] = �k:[P] (�m:m [Q] k):For all M 2 �K , [M] 2WN�) M 2 SN�:Proof. Assume [M] 2 WN�, i.e., [M] 2 WN��. By induction on M , showthat �(M)!!� [M]:Therefore, �(M) 2WN��. Hence �(M) 2WN� . Now use Theorem 2.4.8. utXi [141] independently discovers Corollary 2.4.9 and uses it to prove thatweak normalization implies strong normalization in simply and second-ordertyped �-calculus, and mentions that the technique extends to higher-ordertyped �-calculus. Whereas the present chapter obtains the translation [�] asthe composition of Klop's translation with a CPS translation, Xi studies thecomposition directly. The resulting proof of Corollary 2.4.9 is very short,but|in our opinion|less transparent.2.4.10. Remark. Recall from Chapter 1 that a perpetual reduction strategyF computes for a type-free term an in�nite reduction path, if one exists, andotherwise a �nite reduction path to normal form. To prove that all reductionpaths end in a normal form it thus su�ces to prove that the one computedby F does so. This is similar to the technique expressed by Corollary 2.4.9:instead of proving that all reduction paths are �nite, one only needs to showthat one reduction path is �nite. The di�erence is that in the technique inthe corollary, one may choose freely which path to prove �nite, whereas inthe technique based on perpetual reductions, one must prove that the pathcomputed by F is �nite.

2.5. Simulation by permutative inner interpretation 872.4.11. Remark. One might wonder whether the assumption [M] 2 WN�can be replaced by a weaker condition, e.g., that [M] has a head normalform or weak head normal form. None of these two weaker conditions aresu�cient as the example M � �x:
 shows.2.4.12. Remark. It is natural to wonder whether our extension of Klop'stechnique has analogous extensions of the techniques by Nederpelt, de Groote,etc. Indeed, the rule �lift in [112] which generalizes �S can be simulated bya CPS translation [112], as was also noted in [67]. However, this yields theproperty M 2WN�I) M 2 SN� ;as opposed to our �(M) 2WN�) M 2 SN�:In the former case one has to prove that M 2 WN�I . This is not thesame as �(M) 2WN� (neither set is contained in the other). Thus, with theformer technique one does not infer strong normalization of one notion ofreduction from weak normalization of the same notion of reduction2.5. Simulation by permutative inner interpretationIn this section we show that simulation by CPS translation is a special caseof simulation by a general model-like construction. To do so we replace thespeci�c CPS translation by a generic translation, and replace the speci�ccolon translation by a generalization of Sabry and Felleisen's [112] compact-ing CPS translation. The colon translation cannot be generalized directlybecause it exploits the fact that an explicit translation is given.The �rst subsection introduces permutative interpretations. The secondsubsection shows how to derive simulations of � from permutative innerinterpretations. The third subsection shows that the technique based onCPS translations from Section 2.4 is a special case. The fourth subsectiongives another special case due to Loader [85]. The last subsection explainsthe relation to the notion of an inner model.2.5.1. Permutative inner interpretations2.5.1. Definition.(i) An inner interpretation is a tuple I = hE;F;G;Hi of terms from �K .(ii) The map [[�]]I : �K ! �K determined by I is de�ned by:[[x]]I = E x[[P Q]]I = F [[P]]I [[Q]]I[[�y:P]]I = G (�y:H [[P]]I (E y)):

88 Chapter 2. Weak and Strong Normalization in Type Theory2.5.2. Notation. Given an inner interpretation I = hE;F;G;Hi, the term[[M]]I has a number of occurrences of the terms E;F;G;H introduced by thetranslation. However, there may be subterm occurrences in [[M]]I identicalto one of E;F;G;H which were not introduced by the translation. Forinstance, if E and M are both the free variable y, then [[M]]I � y y has twooccurrences of E, but only one were introduced by the translation.We assume that the set V of variables in �K is divided into two denu-merable, disjoint sets V0 and V1. In implicit �-conversions, variables arerenamed by other variables in the same set. All terms are assumed to usevariables from V0, except the terms E;F;G;H in an inner interpretation,which always use variables from V1. De�ne the notions of reduction �0 and�1 by:3 (�x:P)Q �i Pfx := Qg if x 2 Vi:Then � = �0 [�1.2.5.3. Definition. Let I = hE;F;G;Hi be a permutative inner interpreta-tion.(i) The language L(I) � �K determined by I is de�ned by:M ::= E x j F M1 M2 jG �y:M jH M1 M2:(ii) I is permutative if, for all X;Y;Z 2 L(I),1. E X =�1 X.2. F (G �x:X) Y =�1 E ((�x:X) Y).3. F (H X Y) Z =�1 H (F X Z) Y .(iii) I is sound if, for all X;Y;Z 2 L(I), 1-2 hold, and4. H X Y =�1 X.2.5.4. Remark. Any inner interpretation which is sound is also permuta-tive, but the converse is not generally true.Given any permutative inner interpretation I = hE;F;G;Hi, we shallshow that, if E;F;G;H are linear terms, then [[M]]I 2 WN� implies thatM 2 SN�, for all M 2 �K .2.5.2. Simulations from permutative inner interpretationsThe following is a convenient auxiliary notion.3No connection with Nederpelt's �1 is intended.

2.5. Simulation by permutative inner interpretation 892.5.5. Definition. Given an inner interpretation I = hE;F;G;Hi, de�nethe map f[�]gI : ��K ! �K by:f[x]gI = E xf[P Q]gI = F f[P]gI f[Q]gIf[�y:P]gI = G �y:f[P]gIf[[P;Q]]gI = H f[P]gI f[Q]gI :2.5.6. Remark. f[�(M)]gI � [[M]]I and f[N]gI 2 L(I) for all N 2 ��K andM 2 �K .2.5.7. Lemma. Let I = hE;F;G;Hi be a permutative inner interpretation.For all M;N 2 ��K,f[M]gIfx := f[N]gIg =�1 f[Mfx := Ng]gI :Proof. By induction on M .1. M � x. Then f[x]gIfx := f[N]gIg � E f[N]gI=�1 f[N]gI� f[xfx := Ng]gI :2. M � y 6� x. Thenf[y]gIfx := f[N]gIg � E y� f[y]gI� f[yfx := Ng]gI :In the remaining cases, apply the induction hypothesis. ut2.5.8. Lemma. For all M;N 2 ��K ,(i) Mf[�]gI
��

!� // Nf[�]gI
��f[M]gI =�1 L !�0 // L0 =�1 f[N]gI (ii) M !� //f[�]gI

��

Nf[�]gI
��f[M]gI =�1 f[N]gIProof.(i) Induction on M !� N . If M � (�x:P)Q!�0 Pfx := Qg � N , thenf[M]gI � F (G �x:f[P]gI) f[Q]gI=�1 E ((�x:f[P]gI) f[Q]gI)!�0 E (f[P]gIfx := f[Q]gIg)=�1 E (f[Pfx := Qg]gI)=�1 f[Pfx := Qg]gI� f[N]gI :In the remaining cases, apply the induction hypothesis.

90 Chapter 2. Weak and Strong Normalization in Type Theory(ii) Induction on M !� N . If M � [P;Q] R!� [P R;Q] � N , thenf[M]gI � F (H f[P]gI f[Q]gI) f[R]gI=�1 H (F f[P]gI f[R]gI) f[Q]gI� f[N]gI :In the remaining cases, use the induction hypothesis. ut2.5.9. Definition.(i) De�ne for M 2 �K and variable z, jjM jj and jjM jjz by:jjxjj =1 jjxjjz =1 if z � x, else 0jj�x:M jj=1 + jjM jj jj�x:M jjz=jjM jjz if z 6� x, else 0jjM N jj =1 + jjM jj+ jjN jj jjM N jjz =jjM jjz + jjN jjz:(ii) �L = fM 2 �K j �x:P �M and x 2 V1) jjP jjx = 1g.The following lemma shows that nf�1(M) is well-de�ned for M 2 �L.2.5.10. Lemma.(i) For all M 2 �L :M !�1 N) N 2 �L.(ii) For all M 2 �L : SN�1(M).(iii) For all M 2 �K : CR�1(M).Proof.(i) Prove by induction on P that for all P;Q 2 �L and k 6= l:jjPfk := Qgjjl = jjP jjl + jjQjjl � jjP jjk:Using this prove by induction on M !�1 N that for all M 2 �L:M !�1 N) jjM jjl = jjN jjl: (2.10)Then prove by induction on P that for all P;Q 2 �L and k 2 V1:Pfk := Qg 2 �L: (2.11)Finally prove (i) by induction on M !�1 N using (2.10)-(2.11):1. M � (�k:P) Q!�1 Pfk := Qg � N . Then, by (2.11), N 2 �L.2. M � �k:P !�1 �k:Q � N , where P !�1 Q. Since M 2 �L, alsoP 2 �L and jjP jjk = 1. By the induction hypothesis Q 2 �L, andby (2.10), jjQjjk = 1. Therefore, N 2 �L.In the remaining cases, apply the induction hypothesis directly.

2.5. Simulation by permutative inner interpretation 91(ii) Prove by induction on P that for all P;Q;2 �L:jjPfk := Qgjj = jjP jj+ (jjQjj � 1) � jjP jjk:Use this to prove by induction on M !�1 N that for all M 2 �L:M !�1 N) jjM jj > jjN jj: (2.12)Now (ii) follows by (i) and (2.12).(iii) By the technique due to Tait and Martin-L�of|see [3]. ut2.5.11. Lemma. For all M;M 0 2 �L; N 2 �K :M!!�1
��

!�0 // N!!�1
��M 0 !�0 // N 0Proof. It su�ces, by Lemma 2.5.10(i) and transitivity, to prove the asser-tion when M !�1 M 0.First show, for any M;N;L;K 2 �K with jjKjjk = 1,If M !�1 N then Mfx := Lg !�1 Nfx := Lg (2.13)If M !�1 N then Lfx :=Mg !!�1 Lfx := Ng (2.14)If M !�0 N then Mfk := Lg !�0 Nfk := Lg (2.15)If M !�0 N then Kfk :=Mg !�0 Kfk := Ng: (2.16)Here (2.13),(2.15) are by induction on M !� N , (2.14),(2.16) by inductionon L.We now proceed by induction on M !� N using (2.13)-(2.16):1. M � (�x:P) Q !�0 Pfx := Qg � N . Then M !�1 (�x:P 0) Q0 � M 0,where P !�1 P 0 and Q � Q0, or vice versa. With N 0 � P 0fx := Q0g,both M 0 !�0 N 0 and N !!�1 N 0, by (2.13)-(2.14).2. M � (�k:P) Q !�1 Pfk := Qg � M 0. Then M !�0 (�k:R) S � Nwhere P !�0 R and Q � S, or vice versa. With N 0 � Rfk := Sg,N !�1 N 0 and M 0 !�0 N 0, by (2.15)-(2.16).In the remaining cases, use the induction hypothesis. ut2.5.12. Lemma. Let I be a permutative inner interpretation of �L terms.For all M;N 2 ��K:(i) f[M]gI !!� nf�1(f[M]gI).(ii) M !� N) nf�1(f[M]gI)!!+� nf�1(f[N]gI).

92 Chapter 2. Weak and Strong Normalization in Type Theory(iii) M !� N) nf�1(f[M]gI) � nf�1(f[N]gI).Proof. (i) is obvious and for (ii)-(iii) we have the diagramsM !� //�
��

N�
��M =�1nf�1

��

L!!�1~~

!�0 L0 =�1 //!!�1��

Nnf�1
��M 0 !�0 // O !!�1 // N 0

M !� //�
��

N�
��Mnf�1

��

=�1 Nnf�1
��M 0 � N 0by Lemmas 2.5.8, and 2.5.11. ut2.5.13. Theorem. Let I be a permutative inner interpretation of �L terms.For all M 2 �K , [[M]]I 2WN�) M 2 SN� :Proof. By Proposition 2.4.3, Remark 2.5.6, and Lemma 2.5.12. ut2.5.3. CPS translation as a permutative inner interpretation2.5.14. Proposition. Let I = hE;F;G;Hi, where for some �xed variable y,E � �X:�k:X kF � �M:�N:�k:M �m:mN kG � �M:�k:k MH � �M:�N:�k:y (M k)N:Then I is a permutative inner interpretation of �L terms.Proof. We prove that the terms E;F;G;H satisfy the equations of a per-mutative inner interpretation.(i) For all P 2 L(I), P =�1 �l:R for some R and l 2 V1. Thus,E P =�1 �k:(�l:R) k=�1 �k:Rfk := lg� �l:R� P:(ii) For all P;Q 2 L(I),F (G �x:P)Q =�1 �k:(�h:h �x:P) �m:mQ k=�1 �k:(�m:m Q k) �x:P=�1 �k:(�x:P) Q k=�1 E ((�x:P)Q):

2.5. Simulation by permutative inner interpretation 93(iii) For all P;Q;R 2 L(I),F (H P Q)R � �k:(�l:y (P l)Q) �m:m R k=�1 �k:y (P �m:m R k)Q=�1 �k:y ((�h:P �m:m R h) k)Q=�1 H (F P R)Q:This concludes the proof. ut2.5.4. Loader's permutative inner interpretationLoader [85] uses a translation (j�j) mapping a typed term in simply andsecond-order typed �-calculus into constructive evidence for the statementthat the term is strongly normalizing. He uses the translation to provethat weak normalization implies strong normalization in these calculi, andmentions that the technique extends to higher-order typed �-calculus.More speci�cally, in the case of simply typed �-calculus, Loader's trans-lation (j�j) can be viewed as follows:(jxj) = x(jP Qj) = (jP j) (jQj)(j�y:P j) = �y:H�!� (jP j) y:where H� is a family of simply typed �L terms satisfying, for X;Y;Z 2 �K ,(H�!� X Y) Z =�1 H�!� (X Z) Y:and where the choice of � ! � in the third clause is made on the basis of thetype of �y:P . Thus, his translation can be viewed as the permutative innerinterpretation hI; I; I;H� i of �L terms, where we allow a family of H's.2.5.5. Inner models versus sound inner interpretationsWe end the section by explaining the relation between sound inner interpre-tations and inner models, as presented in, e.g., [7].2.5.15. Definition.(i) A pair I = hF;Gi of �K terms is an inner model if �x:F (G x) =� I.(ii) The map [[�]]0I : �K ! �K determined by I is de�ned by:[[x]]0I = x[[P Q]]0I = F [[P]]0I [[Q]]0I[[�y:P]]0I = G (�y:[[P]]0I) :2.5.16. Proposition. If hF;Gi is an inner model, then hI; F;G;Ki is asound inner interpretation.

94 Chapter 2. Weak and Strong Normalization in Type TheoryProof. If hF;Gi is an inner model, then, by the Church-Rosser property,F (Gx)!!�1 x for any variable x, and hence F (GX)Y =�1 XY =�1 I (XY)for any X;Y 2 �K . The remaining two axioms of sound interpretations areclearly satis�ed. utThe converse is not generally true. However, the main property of innermodels is thatM =� N implies [[M]]0I =� [[M]]0I for allM;N 2 �K . The sameholds for sound inner interpretations. Thus, the notion of a sound innerinterpretation is weaker than that of an inner model, but strong enough toentail the main property of an inner model.2.5.17. Remark. Inner models are related to term models of the untyped�-calculus|see [3].2.6. Application to typed �-calculi �a la CurryIn this section we use the CPS translation from Section 2.4 to prove thatweak normalization implies strong normalization in some typed �-calculi �ala Curry.The �rst subsection introduces such calculi in general. The three nextsubsections consider simple types �!, positive recursive types ��+, andsubtypes ��; see, e.g., [4, 133, 88], respectively. The last subsection studiesthe use of permutative inner interpretations, in general, to prove that weaknormalization implies strong normalization; for simplicity we consider onlysimply typed �-calculus.2.6.1. Typed �-calculi �a la Curry2.6.1. Definition.(i) The set Context(�) of contexts over a set � is the set of allfx1; �1; : : : ; xn : �ng;where �1; : : : ; �n 2 �, x1; : : : ; xn 2 V (variables of �K) and wherexi 6� xj for i 6= j.(ii) For context � = fx1 : �1; : : : ; xn : �ng, we write dom(�) = fx1; : : : ; xng.(iii) We write x : � for fx : �g and �;�0 for �[�0 if x : � 2 � and x : � 2 �implies � � � .(iv) A typed �-calculus �a la Curry �S is a pair (�;`), where` � Context(�)� �K ��:(v) M 2 �K is typable in �S if � ` M : � for some � 2 Context(�), � 2 �.

2.6. Application to typed �-calculi �a la Curry 95(vi) We write �S j= WN� if M 2 WN� for all M typable in �S. Similarly,we write �S j= SN�.To prove that weak normalization implies strong normalization in �S itsu�ces to show that [�] preserves typability.2.6.2. Proposition. Let �S be a typed �-calculus �a la Curry. If, for allM 2 �K, M typable) [M] typable ;then �S j=WN�) �S j= SN�:Proof. Assume �!j=WN� and let M be a typable term. By assumption,[M] is typable, so [M] 2WN� . By Corollary 2.4.9, M 2 SN�. utIt is well-known that various CPS translations preserve typability invarious typed �-calculi|see, e.g., [27, 44, 46, 81, 87].2.6.2. Simple types2.6.3. Definition. The simply typed �-calculus �!= (Type(�!);`) is:(i) Type(�!) is de�ned by the grammar:�; � ::= � j � ! �;where U is a set of type variables ranged over by �.(ii) The relation ` is de�ned by:�; x : � ` x : � �; x : � ` P : �� ` �x:P : � ! � � ` P : � ! � � ` Q : �� ` P Q : � :2.6.4. Definition. Let ? be a �xed type, and :� � � ! ?. De�ne maps[�]; [�]0 : Type(�!)! Type(�!)by: [�] = ::[�]0[�]0 = �[� ! �]0 = [�]! [�]:Also, [�] = fx : [�] j x : � 2 �g.

96 Chapter 2. Weak and Strong Normalization in Type Theory2.6.5. Convention. From now on we assume that the translation [�] fromSection 2.4 does not introduce several occurrences of the free variable y,but rather a single occurrence of each of a number of distinct free variables.Thus, instead of[�x:�z:x] � �k:k �x:�h:y ([�l:l �z:�m:y (x m) z] h) x;we shall now have[�x:�z:x] � �k:k �x:�h:y1 ([�l:l �z:�m:y2 (x m) z] h) x:This clearly has no inuence on the normalization properties of [M], butwill be important for typing properties.2.6.6. Lemma. For all M 2 �K, � 2 Type(�!), � 2 Context(Type(�!)),� ` M : �) �; [�] ` [M] : [�];for some � with dom(�) = FV([M])nFV(M).Proof. Induction on � ` M : � using Convention 2.6.5. ut2.6.7. Corollary. �!j=WN�) �!j= SN�.2.6.3. Positive, recursive types2.6.8. Definition. ��+ is as �! but with extra types of form:�; � ::= : : : j ��:�;where � occurs only positively in �|see, e.g., [133]|and with the extra rule:� ` M : � � � �� ` M : �where � is the least congruence on Type(��+) with ��:� � �f� := ��:�g.2.6.9. Definition. De�ne [�]; [�]0 : Type(��+) ! Type(��+) as for �!and: [��:�]0 = ��:[�]0:That [�]; [�]0 2 Type(��+) is easily established by induction on �.2.6.10. Lemma.(i) [�]0f� := [�]0g � [�f� := �g]0.(ii) � � �) [�] � [�].

2.6. Application to typed �-calculi �a la Curry 97(iii) If � ` M : � then �; [�] ` [M] : [�], for some context � withdom(�) = FV([M])nFV(M).Proof.(i) Induction on �.(ii) Since � is a congruence, � � � implies ::� � ::� . Now prove byinduction on � � � that � � � implies [�] � [�], using (i).(iii) Induction on � ` M : � using (ii). ut2.6.11. Corollary. ��+ j=WN) ��+ j= SN.2.6.4. Subtypes2.6.12. Definition. �� is as �! but with some extra base types:�; � ::= : : : j b;and with the extra rule: � ` M : � � � �� ` M : � ;where � is any relation on Type(��) closed under the following rules:� � � �0 � �; � � � 0� ! � � �0 ! � 0 � � �; � � �� � � :2.6.13. Definition. De�ne [�]; [�]0 : Type(��)! Type(��) as for �! and:[b]0 = b:2.6.14. Lemma.(i) � � �) [�] � [�].(ii) If � ` M : � then �; [�] ` [M] : [�], for some context � withdom(�) = FV([M])nFV(M).Proof.(i) First note that � � � implies ::� � ::� . Now prove by induction on� � � that � � � implies [�] � [�].(ii) Induction on � ` M : � using (i). ut2.6.15. Corollary. ��j=WN) ��j= SN.

98 Chapter 2. Weak and Strong Normalization in Type Theory2.6.5. Inner type interpretations in �!We have shown that a speci�c permutative inner interpretation preservestypability in some calculi �a la Curry and hence that weak normalizationimplies strong normalization in these calculi. In this subsection we present acondition guaranteeing that the map determined by any permutative innerinterpretation preserves typability in �!. Each linear permutative innerinterpretation satisfying the condition hence gives a technique to prove thatweak normalization implies strong normalization in �!; similar conditionscan be derived for other systems.2.6.16. Definition.(i) T : Type(�!)! Type(�!) is an inner type interpretation of �! ifT (�)f� := �g � T (�f� := �g):(ii) The map [[�]]T : Type(�!)! Type(�!) determined by T is given by:[[�]]T = T [[�]]0T[[�]]0T = �[[� ! �]]0T = [[�]]T ! [[�]]T :Also, [[�]]T = fx : [[�]]T j x : � 2 �g.(iii) An inner interpretation I = hE;F;G;Hi agrees with inner type inter-pretation T if, for all �; �; � 2 Type(�!), there is a � such that� ` E : [[�]]T ! [[�]]T� ` F : T ([[�]]T ! [[�]]T)! ([[�]]T ! [[�]]T)� ` G : ([[�]]T ! [[�]]T)! T ([[�]]T ! [[�]]T)� ` H : [[�]]T ! [[�]]T ! [[�]]T :2.6.17. Proposition. If an inner interpretation I agrees with an inner typeinterpretation T , then� ` M : �) �; [[�]]T ` [[M]]I : [[�]]T ;for some context � with dom(�) = FV([[M]]I)nFV(M).Proof. By induction on � ` M : � using Convention 2.6.5. ut2.6.18. Remark. Inner interpretations agreeing with inner type interpreta-tions resemble Kleisli triples and monads|see, e.g., [90, 91, 33, 111].

2.7. Application to typed �-calculi �a la Church 992.7. Application to typed �-calculi �a la ChurchIn this section we consider typed �-calculi �a la Church: second-order types�2 and higher-order types �!. It is convenient to study so-called domain-free [14] variants of these calculi in which abstractions have form �x:Mrather than �x:� : M . In the next chapter we show how the technique canbe modi�ed to the usual formulations of �2 and �!.2.7.1. Remark. Domain-free systems are not generally Curry systems. Insystems �a la Curry the terms are those of the untyped �-calculus; in domain-free systems the terms are those of systems �a la Church with type tagsomitted. For �! the two views are equivalent, but for more powerful systemsthe two views diverge. An example term and type in �2 �a la Church is��:� : �x:� : x : 8�:�! �:In �2 �a la Curry the similar term and type is�x:x : 8�:�! �:The similar term and type in the domain-free approach is��:�x:x : 8�:�! �:2.7.1. Second-order types2.7.2. Definition. The system �2 is:(i) �2 has types �; � 2 Type(�2):�; � ::= � j � ! � j 8�:�:(ii) �2 has terms P;Q 2 Term(�2):P;Q ::= x j �x:P j P Q j ��:P j P �:(iii) The notion of reduction � on Term(�2) is:(��:P) � � Pf� := �g(�x:P)Q � Pfx := Qg:(iv) �2 has inference rules:�; x : � ` x : � �; x : � ` P : �� ` �x:P : � ! � � ` P : � ! � � ` Q : �� ` P Q : �� ` P : � � 62 FV(�)� ` ��:P : 8�:� � ` P : 8�:�� ` P � : �f� := �g

100 Chapter 2. Weak and Strong Normalization in Type Theory2.7.3. Definition. Let ? be any type, :� � � ! ?, and de�ne the maps[�]; [�]0 : Type(�2)! Type(�2) by:[�] = ::[�]0[�]0 = �[8�:�]0 = 8�:[�][� ! �]0 = [�]! [�]:A term M is legal if � ` M : � for some �; �.2.7.4. Definition. De�ne [�] : Term(�2)! Term(�2) by:4[x] = �k:x k[�x:P] = �l:l �x:�h:y ([P] h) x[P Q] = �l:[P] �m:m [Q] l[��:P] = �l:l ��:�h:y ([P] h) �[P �] = �l:[P] �m:m [�]0 l:2.7.5. Theorem. [M] 2WN�) M 2 SN�.Proof. Like the proof of Theorem 2.5.13. ut2.7.6. Lemma.(i) [�]0f� := [�]0g � [�f� := �g]0.(ii) If � ` M : � then �; [�] ` [M] : [�], for some context � withdom(�) = FV([M])nFV(M).Proof.(i) Induction on �.(ii) Induction on � ` M : � using (i). utWriting �2 j= WN� to mean that all legal terms in �2 are weakly nor-malizing, and similarly with SN�, we have the following.2.7.7. Corollary. �2 j=WN�) �2 j= SN�.4A small technical di�culty appears in 2.7.4 and 2.7.10. Suppose M is the term to betranslated and �x:P a subterm. Then the second clause should|strictly speaking|read:[�x:P] = �l:l�x:�h:(y�1 : : : �n)([P]h)x, where ��1; : : : ; ��n are all the type abstractionsin M whose scope �x:P is in|see also Discussion 3.4.1.

2.7. Application to typed �-calculi �a la Church 1012.7.2. Higher-order types2.7.8. Definition. The system �! is:(i) �! has kinds k; k0 2 Kind(�!):k; k0 ::= � j k ! k0:(ii) �! has constructors �; � 2 Con(�!) of kind k:1. �k : k for every kind k and � 2 V , where V is a set of variables.2. � � : k0 if � : k ! k0 and � : k.3. ��k:� : k ! k0 if � : k0.4. ��k:� : � if � : �.5. � ! � : � if �; � : �.(iii) �! has terms P;Q 2 Term(�!):P;Q ::= x j �x:P j P Q j ��k:P j P �:(iv) The notion of reduction � on Term(�!) and Con(�!) is:(��k:�) � � �f�k := �g(�x:P)Q � Pfx := Qg(��k:P) � � Pf�k := �g:(v) �! has inference rules:�; x : � ` x : � �; x : � ` P : �� ` �x:P : � ! � � ` P : � ! � � ` Q : �� ` P Q : �� ` P : � � =� �� ` P : � � ` P : � � 62 FV(�)� ` ��k:P : ��k:� � ` P : ��k:� � : k� ` P � : �f�k := �g(vi) A term M is legal if � ` M : � for some �; �.The following is inspired by [38, 2.2.16]; see also [46].2.7.9. Definition. Let ? be a constructor of kind �, :� � � ! ?. De�nemaps [�]; [�]0 : Con(�!)! Con(�!) by:[�] = ::[�]0[�k]0 = �k[� �]0 = [�]0 [�]0[��k:�]0 = ��k:[�]0[��k:�]0 = ��k:[�][� ! �]0 = [�]! [�]:

102 Chapter 2. Weak and Strong Normalization in Type Theory2.7.10. Definition. De�ne [�] : Term(�!)! Term(�!) by:[x] = �k:x k[�x:P] = �l:l �x:�h:y ([P] h) x[P Q] = �l:[P] �m:m [Q] l[��k:P] = �l:l ��k:�h:y ([P] h) �k[P �] = �l:[P] �m:m [�]0 l:2.7.11. Theorem. [M] 2WN�) M 2 SN�.Proof. Like the proof of Theorem 2.5.13. ut2.7.12. Lemma.(i) � : k) [�]0 : k.(ii) [�]0f� := [�]0g � [�f� := �g]0.(iii) � =� �) [�] =� [�].(iv) If � ` M : � then �; [�] ` [M] : [�], for some context � withdom(�) = FV([M])nFV(M).Proof.(i) Note that � : � implies ::� : � and use induction on � : k.(ii) By induction on �.(iii) Note that � =� � implies ::� =� ::� , and prove by induction on� =� � that � =� � implies [�]0 =� [�]0, using (ii).(iv) By induction on � ` M : � using (i),(iii). utWriting �! j= WN� to mean that all legal terms in �! are weakly nor-malizing, and similarly with SN�, we have the following.2.7.13. Corollary. �! j=WN�) �! j= SN�.This shows that weak normalization of all terms implies strong normal-ization of all terms, but states nothing about constructors. However, theconstructors of �! are essentially equivalent to the terms of �! and thiscan be used to prove that weak normalization of all constructors impliesstrong normalization of all constructors.

2.8. Conclusion 1032.8. ConclusionWe have shown that our extension of Klop's technique works on the calculi�a la Curry �!, ��+, and ��. In both ��+ and ��, the smoothness of theproof stems from the fact that �;� are congruences, and so in particularapply to types under negations. For other formulations of ��+ [133] and forthe Curry systems �2 and �\� [4] the straight-forward technique fails, be-cause generalization and intersection introduction do not work under doublenegations.We have also applied our extension to versions of �2 and �! �a la Church.In the next chapter we generalize the technique to a class of calculi whichincludes more traditional formulations of �2 and �!.For dependent type systems our technique is limited by the fact that itis presently not clear how to express CPS translations for dependent typesystems|see, e.g., [27, 139]. Moreover, in such systems terms occur intypes. To preserve typability the translation must map equal terms to equalterms, which does not hold with our CPS translation. In the terminology ofSection 2.5, the inner interpretation must be sound, not just permutative.

104 Chapter 2. Weak and Strong Normalization in Type Theory

CHAPTER 3Normalization in Pure Type Systems
The Barendregt-Geuvers-Klop conjecture states that every weakly normal-izing pure type system is also strongly normalizing|pure type systems area general formalism of which speci�c type theories can be viewed as specialcases. In this chapter, we show that the conjecture is true for the class ofgeneralized non-dependent pure type systems, a class which includes, e.g.,the left hand side of Barendregt's �-cube as well as the system �U studiedin the literature. This seems to be the �rst result giving a positive answerto the conjecture not merely for some concrete systems for which strongnormalization is known to hold, but for a uniform class of systems in whichnot all systems are strongly normalizing.3.1. IntroductionIn Chapter 2 we reduced strong normalization to weak normalization in sim-ply and second-order typed �-calculus and in certain systems with subtypesand recursive types. For a domain-free [14] version of higher-order typed�-calculus we also showed that strong normalization of all legal objects fol-lows from weak normalization of all legal objects, but stated nothing aboutconstructors. As mentioned in Chapter 2, Xi [141] independently uses thesame technique to reduce strong normalization of simply and second-ordertyped �-calculus to weak normalization of the same systems extended withcertain pairing operators and type constants.Each of the systems mentioned above is known to be strongly normal-izing. Thus, for these systems, weak normalization trivially implies strongnormalization. In this chapter we generalize the technique to the class ofgeneralized non-dependent pure type systems|including the left hand sideof the �-cube as well as �U|and show that, for any system in the class,weak normalization implies strong normalization, provided the system sat-is�es certain technical properties (which are satis�ed in the systems men-tioned above). This seems to be the �rst result stating that the Barendregt-Geuvers-Klop conjecture is true for a class of systems. An interesting aspect105

106 Chapter 3. Normalization in Pure Type Systemsof our class is that it includes both systems that are strongly normalizingas well as systems that are not. This shows that the technique does notimplicitly use strong normalization of the systems in question. Moreover,for the speci�c systems of simply, second-order, and higher-order typed �-calculus the present results improve those from Chapter 2 and those by Xiby not relying on any extra pairing operators, by not requiring domain-freeformulations of any of the systems, and by showing that weak normalizationof all legal expressions implies strong normalization of all legal expressionsin the system.Section 3.2 reviews some fundamental de�nitions. This includes a gen-eralization of Coquand and Herbelin's notion of logical non-dependent puretype system to what we call generalized non-dependent pure type systems.The section also presents a classi�cation of legal expressions into terms,types, and sorts due to Berardi. Section 3.3 and 3.4 present continuationpassing style translations on types and terms, generalizing similar transla-tions of Coquand and Herbelin. Section 3.5 uses the translations to inferstrong normalization from weak normalization as in the previous chapter.Section 3.6 assesses the scope of the technique and reviews directions forfurther work.3.2. Pure type systemsThis section presents some fundamental de�nitions. The �rst subsection re-views pure type systems, as presented by Barendregt, Geuvers, and Neder-hof [4, 39, 38]. Throughout the chapter we use implicitly numerous well-known properties about pure type systems. The second subsection intro-duces some notation regarding normalization. The third subsection presentsthe new class of generalized non-dependent pure type systems, in which typesdo not depend on terms, as shown in the fourth subsection.3.2.1. Pure type systemsIn this subsection we introduce pure type systems.3.2.1. Definition. A pure type system (PTS) is a triple (S;A;R) where(i) S is a set of sorts.(ii) A � S � S is a set of axioms.(iii) R � S � S � S is a set of rules.We write (s; s0) 2 R for (s; s0; s0) 2 R.3.2.2. Definition. Let (S;A;R) be a PTS.(i) For each s 2 S, let Vs denote a countably in�nite set of variables suchthat Vs \ Vs0 = ; when s 6= s0, and let V = [s2SVs.

3.2. Pure type systems 107(ii) The set E of expressions is given by the abstract syntax:E = V j S j EE j �V : E :E j �V : E :E :We assume familiarity with the subexpression relation �, with the setFV(M) of free variables of M , and with substitution Mfx := Ng forx 2 V and M;N 2 E . We write A! B for �d:A: B when d 62 FV(B).We use � to denote syntactic identity modulo �-conversion and adoptthe usual hygiene conventions|see [3].(iii) The relation !� on E is the compatible closure of the rule(�x:A :M) N � Mfx := Ng:Also,!!� and =� are the transitive, reexive closure and the transitive,reexive, symmetric closure of !�, respectively.(iv) The set C of contexts is the set of all sequencesx1 :A1; : : : ; xn :An;where x1; : : : ; xn 2 V, A1; : : : ; An 2 E , and xi 6� xj when i 6= j.The empty sequence is [], and the concatenation of � and � is �;�.We write x : A 2 � if � � �1; x : A;�2, for some �1, �2, and wewrite � � � if, for every x : A 2 �, also x : A 2 �. For � 2 C,dom(�) = fx j x :A 2 �; for some Ag.(v) The relation ` � C�E �E is de�ned in Figure 3.1. If � ` M : A, then� is legal andM , A are legal (in �). We use the notation � ` A : B : Cmeaning that � ` A : B and � ` B : C.3.2.3. Convention. To save notation we often consider in the remainder aPTS �S and say, e.g., that s 2 S or M 2 E with the understanding that�S = (S;A;R) and that V, E , C,!� and ` are de�ned as in De�nition 3.2.2.3.2.4. Example. The �-cube consists of the eight PTSs �S, where(i) S = f�;2g.(ii) A = f(�;2)g.(iii) f(�; �)g � R � f(�; �); (2; �); (�;2); (2;2)g.The name of each system and its associated set of rules is given by the table:�! (�; �)�2 (�; �) (2; �)�! (�; �) (2;2)�! = �!2 (�; �) (2; �) (2;2)�P (�; �) (�;2)�P2 (�; �) (2; �) (�;2)�P! (�; �) (2;2) (�;2)�C = �P! (�; �) (2; �) (2;2) (�;2)

108 Chapter 3. Normalization in Pure Type Systems
(axiom) [] ` s1 : s2 if (s1; s2) 2 A(start) � ` A : s�; x :A ` x : A if x 2 Vs & x 62 dom(�)(weakening) � ` A : B � ` C : s�; x :C ` A : B if x 2 Vs & x 62 dom(�)(product) � ` A : s1 �; x :A ` B : s2� ` (�x:A: B) : s3 if (s1; s2; s3) 2 R(application) � ` F : (�x:A: B) � ` a : A� ` F a : Bfx := ag(abstraction) �; x :A ` b : B � ` (�x:A: B) : s� ` �x:A : b : �x:A: B(conversion) � ` A : B � ` B0 : s� ` A : B0 if B =� B0Figure 3.1: Pure type systemsThe �-cube is depicted diagrammatically in Figure 3.2. That traditionalformulations of some of the systems in the �-cube are equivalent with theformulations in terms of pure type systems is explained in [16, 4, 38], wheremore information about following systems may also be found.3.2.5. Example. The following systems extend �! with sort4, axiom2 : 4,and some rules for the new sort. The system �HOL is de�ned by:(i) S = f�;2;4g.(ii) A = f(�;2); (2;4)g.(iii) R = f(�; �); (2; �); (2;2)g.The system �U� is de�ned by:(i) S = f�;2;4g.(ii) A = f(�;2); (2;4)g.(iii) R = f(�; �); (2; �); (2;2); (4;2)g.

3.2. Pure type systems 109�! // �C�2 ??�����������
// �P2 ??�����������

�! //

OO

�P!
OO

�!
OO

//

??����������� �P ??�����������

OO

Figure 3.2: The �-cubeThe system �U is de�ned by:(i) S = f�;2;4g.(ii) A = f(�;2); (2;4)g.(iii) R = f(�; �); (2; �); (2;2); (4; �); (4;2)g.3.2.6. Example. The system �� is de�ned by:(i) S = f�g.(ii) A = f(�; �)g.(iii) R = f(�; �)g.3.2.2. NormalizationIn this subsection we introduce some notation pertaining to normalization.3.2.7. Definition. Let �S be a PTS. A �-reduction path from an expressionM0 is a (possibly in�nite) sequence M0 !� M1 !� M2 !� : : : If thesequence is �nite, it ends in the last expression Mn and has length n.3.2.8. Definition. Let �S be a PTS, and M an expression.(i) M 2 1� , there is an in�nite �-reduction path from M .(ii) M 2 NF� , there is no �-reduction path of length 1 or more from M .(iii) M 2 SN� , all �-reduction paths from M are �nite.(iv) M 2WN� , there is a �-reduction from M ending in N 2 NF�.

110 Chapter 3. Normalization in Pure Type SystemsElements of NF�; SN� ;WN� are �-normal forms, �-strongly normalizing, and�-weakly normalizing, respectively. We also write, e.g.,1�(M) forM 2 1�.3.2.9. Definition. �S is weakly normalizing if all legal expressions are weaklynormalizing, and strongly normalizing if all legal expressions are stronglynormalizing. In this case we write �S j=WN� and �S j= SN�, respectively.3.2.10. Example. All the systems of the �-cube are strongly normalizing|see, e.g., [16, 4, 39, 38]. The system �� is the simplest PTS which is notstrongly normalizing. The system �U is is a natural extension of �! which,surprisingly, is not strongly normalizing. This result shows that, apparently,the fact that �� fails to be strongly normalizing is not merely a consequenceof the cyclicity in its axiom.3.2.11. Conjecture (Barendregt, Geuvers, Klop). For every PTS �S:�S j=WN�) �S j= SN�:We shall prove the conjecture for a certain class of PTSs|see Theorem 3.5.20.3.2.3. Generalized non-dependent pure type systemsThis subsection presents the new notion of a generalized non-dependent PTSin which types do not depend on terms, as explained in Subsection 3.2.4.The following notion is from [16, 4, 39, 38].3.2.12. Definition. A PTS �S is functional i�(i) For all (s1; s2); (s01; s02) 2 A: s1 � s01) s2 � s02.(ii) For all (s1; s2; s3); (s01; s02; s03) 2 R: s1 � s01 & s2 � s02) s3 � s03.3.2.13. Definition. Let �S be a functional PTS. �S is persistent if(i) For all (s1; s2); (s01; s02) 2 A: s2 � s02) s1 � s01.(ii) For all (s1; s2; s3) 2 R: s2 � s3.3.2.14. Remark. Condition (ii) together with functionality ensures that thelegal expressions can be classi�ed into mutually exclusive and together ex-haustive categories which do not depend on contexts|see Proposition 3.2.26.Condition (i) is useful for classifying subexpressions|see Proposition 3.2.32.3.2.15. Remark. Berardi [16] studies classi�cation in functional systemssatisfying (ii). Geuvers and Nederhof [39] study classi�cation in functionalsystems satisfying both (i) and the following condition implied by (ii):

3.2. Pure type systems 111(ii') For all (s1; s2; s3); (s01; s02; s03) 2 R: s1 � s2 & s3 � s03) s2 � s02.For the purposes of this chapter, (ii) turns out to be the simplest condition towork with. Most PTSs in the literature satisfy (i), and most of those whichsatisfy (ii') also satisfy (ii). Hence little generality is lost by our choice.The following relation is also mentioned by Berardi [16].3.2.16. Definition. Let �S be a PTS.(i) The relation <A is the transitive closure of A.(ii) The relation �A is the reexive closure of <A.We often omit A from <A and �A to avoid clutter.3.2.17. Definition. A PTS �S is strati�ed if(i) There is no in�nite sequence s1; s2; : : : 2 S such that s1 < s2 < : : : .(ii) For all (s1; s2; s3) 2 R: s1 � s2 � s3.3.2.18. Remark. Condition (i) gives rise to a useful induction principle|seeRemark 3.5.19|which is used in the proof of Theorem 3.5.20. Condition (ii)ensures that types do not depend on terms|see Remark 3.2.37.3.2.19. Example. The systems in the left-hand side of the cube are strati-�ed, those in the right hand side are not. �U and �HOL are strati�ed, ��is not.3.2.20. Lemma. Let �S be strati�ed. Then s < s0) s 6� s0.Proof. Assume s < s0. If s � s0 then s; s; : : : would be an in�nite sequencewith s < s < : : : which is a contradiction. ut3.2.21. Definition. A PTS is generalized non-dependent if it is both strat-i�ed and persistent.3.2.22. Example. The left hand side of the cube as well as �U and �HOLare generalized non-dependent.3.2.23. Remark. Generalized non-dependent PTSs resemble Coquand andHerbelin's logical non-dependent PTSs [27]. A functional PTS �S withdistinguished sorts P; T 2 S is logical if(i) (P; T) 2 A.(ii) (s; P) 62 A for all s 2 S.(iii) (P; P) 2 R.

112 Chapter 3. Normalization in Pure Type Systems�S is logical non-dependent if, in addition, the only rules concerning P haveform (s; P). With P = � and T = 2, the systems in the left hand side ofthe cube are logical non-dependent, but those in the right hand side are not.Whether or not a PTS is logical non-dependent naturally depends on thechoice of P and T , and the fact that a PTS is logical non-dependent allowsus to conclude something about expressions involving P and T only. Thisis quite adequate in many situations, but if we wish to reason about all thelegal expression in a PTS we must require a notion of non-dependence thatconcerns all sorts. This is what generalized non-dependence attempts.3.2.4. Classi�cationNow we divide the set of legal expressions into certain terms, types, and sorts,and show that in generalized non-dependent PTSs, types do not depend onterms.3.2.24. Definition. Let �S be a PTS and s 2 S.(i) s is a top-sort if there is no s0 2 S with (s; s0) 2 A.(ii) s is a bot-sort if there is no s0 2 S with (s0; s) 2 A.(iii) s is an isolated sort if s is both a bot-sort and a top-sort.S>, S?, S?> are the set of top-sorts, bot-sorts, and isolated sorts, respectively.The following terminology is from [16].3.2.25. Definition. Let �S be a PTS, s 2 S.(i) Types� = fM 2 E j � ` M : sg; Types = [�2CTypes�.(ii) Terms� = fM 2 E j 9A 2 E : � ` M : A : sg; Terms = [�2CTerms�.The members of Types and Terms are s-types and s-terms, respectively.The following fundamental property is proved by Berardi [16]. A relatedresult is due to Geuvers and Nederhof [39].3.2.26. Proposition (Classi�cation). Let �S be persistent, M legal.(i) M 2 Terms for some s 2 S; or(ii) M 2 Types for some s 2 S>; or(iii) M � s for some s 2 S>.Moreover, (i)-(iii) are mutually exclusive and s is unique in (i)-(iii).3.2.27. Example. The table in Figure 3.3 shows the categories in �C. Eachlegal expression is an object, a constructor, a kind, or 2. Figuratively speak-ing, the mutually exclusive and together exhaustive categories are obtainedby taking the left-most column and the top-most row in Figure 3.3.

3.2. Pure type systems 113s-terms s-types sortsTerms Types sconstructors kinds 2objects types �Figure 3.3: Categories in �C.The rest of this subsection is devoted to classi�cation of subexpressionsof a given expression.3.2.28. Remark. Let �S be generalized non-dependent. For simplicity, as-sume S = fs1; : : : ; sng and A = f(s1; s2); (s2; s3); : : : ; (sn�1; sn)g. ConsiderFigure 3.4, which is an abstract version of Figure 3.3. By Proposition 3.2.26,Termsn Typesn sn...Terms1 Types1 s1Figure 3.4: Categories in �S.each legal expression M is in the left-most column or in the top-most row.In the former case one can show that every subexpression of M is(i) in the same category as M ; or(ii) in a category higher in the left-most column, or in the category at thetop of the middle column.1The following notion collects the cases in (ii) in a single set.1In the case of an arbitrary generalized non-dependent PTS, S consists of a (possiblyin�nite) set of disjoint subsets S1;S2; : : : each of which is totally ordered and has a greatest(but not necessarily a least) element with respect to �A. That is, the diagram of categoriesconsists of a (possibly in�nite) number of copies of Figure 3.4, each of which may be in�nitedownwards, but not upwards. The preceding reasoning then applies to each of the copies.

114 Chapter 3. Normalization in Pure Type Systems3.2.29. Definition.Neus� = fM 2 E jM 2 Terms0� & s < s0 or M 2 Types0� & s � s0 2 S>g:Also, Neus = [�2CNeus�. The members of Neus are called s-neutral.All s-types are s-neutral, and s-neutral expressions are not s-terms.3.2.30. Lemma. Let �S be generalized non-dependent, s 2 S.(i) M 2 Types0 & s0 � s) M 2 Neus.(ii) M 2 Neus) M 62 Terms.Proof.(i) SupposeM 2 Types0 , s0 � s. If s0 2 S>,M 2 Neus, trivially. If s0 62 S>,then (s0; s00) 2 A, for some s00. Then � ` M : s0 : s00, for some �, i.e.,M 2 Terms00� and s00 > s0 � s, so M 2 Neus again.(ii) We show the contrapositive. Suppose M 2 Terms. Suppose s0 > s.By Lemma 3.2.20, s0 6� s. Thus, by Proposition 3.2.26, M 62 Terms0 .Now suppose s0 � s and s0 2 S>. By Propositions 3.2.26, M 62 Types0 .Hence, M 62 Neus. ut3.2.31. Lemma. Let �S be generalized non-dependent, M 2Types�, s2S>.(i) M 6� x.(ii) M � s0) (s0; s) 2 A.(iii) M 6� �x:A : B.(iv) M 6� B A(v) M � �x:A: B) A 2 Types� & B 2 Types�;x:A.Proof. Assume � ` M : s, where s 2 S>.(i) If M � x, then by generation, x : A 2 �, for some A with A =� sand � ` A : s0, for some s0. By Church-Rosser and subject reduction,� ` s : s0. By generation, (s; s0) 2 A, contradicting s 2 S>.(ii) By generation.(iii) If M � �x:A : B, then by generation, s =� �x:E: F , for some E;F .By Church-Rosser, this is impossible.(iv) If M � B A, then by generation, � ` B : �x:E: F and � ` A : E,where s =� Ffx := Ag, for some E and F . By correctness of types,� ` �x:E: F : s3, for some sort s3. By generation again, � ` E : s1and �; x : E ` F : s2, for some (s1; s2; s3) 2 R. By substitution,� ` Ffx := Ag : s2. By Church-Rosser, Ffx := Ag !!� s. By subjectreduction, � ` s : s2. By generation, (s; s2) 2 A, contradicting s 2 S>.

3.2. Pure type systems 115(v) IfM � �x:A:B, then by generation � ` A : s1 and �; x :A ` B : s2 forsome (s1; s2; s) 2 R. Since �S is generalized non-dependent, it holdsthat s1 � s2 � s. Since s 2 S>, s1 � s2 � s. ut3.2.32. Proposition. Let �S be generalized non-dependent, M 2 Terms�.(i) M � x) x 2 Vs.(ii) M � s0) (s0; s00); (s00; s) 2 A.(iii) M � �x:A : B) B 2 Terms�;x:A & A 2 Neus�.(iv) M � B A) B 2 Terms� & A 2 Terms� [Neus�.(v) M � �x:A: B) B 2 Terms�;x:A & A 2 Terms� [Neus�.Proof. Assume � ` M : D : s.(i) If M � x, then by generation, x :B 2 � for some B with � ` B : s0,x 2 Vs0 , and B =� D. By Church-Rosser, D !!� E and B !!� E forsome E. By subject reduction and uniqueness of types s � s0.(ii) If M � s0, then by generation, (s0; s00) 2 A for some s00 =� D. ByChurch-Rosser, D !!� s00. By subject reduction, � ` s00 : s. Bygeneration (s00; s) 2 A.(iii) If M � �x:A : B, by generation, �; x :A ` B : C and � ` �x:A: C : s0for some s0 and C with D =� �x:A: C. By Church-Rosser, D !!� Eand �x:A: C !!� E, for some E. By subject reduction and uniquenessof types, s � s0. By generation, � ` A : s1 and �; x :A ` C : s for some(s1; s) 2 R with s1 � s. Then A 2 Types1� � Neus� and B 2 Terms�;x:A.(iv) If M � B A, then by generation, � ` B : �x:C: E and � ` A : Cfor some C;E with D =� Efx := Ag. Then, by correctness of types,� ` �x:C: E : s3. By generation, � ` C : s1 and �; x :C ` E : s3 forsome (s1; s3) 2 R with s1 � s3. By substitution, � ` Efx := Ag : s3.By Church-Rosser, Efx := Ag !!� F and D !!� F , for some F . Bysubject reduction and uniqueness of types, s � s3. Hence B 2 Terms�and A 2 Terms1� � Terms� [Neus�.(v) If M � �x:A: B, then, by generation, � ` A : s1 and �; x :A ` B : s3for some (s1; s3) 2 R with s1 � s3 and s3 =� D. By Church-Rosser,D !!� s3. By subject and predicate reduction, � ` �x:A: B : s3 : s,so B 2 Terms�;x:A. By generation, (s3; s) 2 A. Now, either s1 � s3 andthen A 2 Terms�, or s1 > s3 and then A 2 Types1� , where by injectivityof A, s1 � s, so Types1� � Neus�. ut3.2.33. Proposition. Let �S be generalized non-dependent, M 2 Neus�.(i) M � x) x 2 Vs0 & s0 > s.(ii) M � s0) (s0; s00) 2 A for some s00 � s.

116 Chapter 3. Normalization in Pure Type Systems(iii) M � �x:A : B) B 2 Neus�;x:A & A 2 Neus�.(iv) M � B A) B 2 Neus� & A 2 Neus�(v) M � �x:A: B) B 2 Neus�;x:A & A 2 Neus�.Proof. By Lemma 3.2.31 and Proposition 3.2.32. ut3.2.34. Remark. Proposition 3.2.32 and 3.2.33 will be used to de�ne sepa-rate continuation passing style translations on s-terms and s-neutral expres-sions.3.2.35. Corollary. Let �S be generalized non-dependent and s 2 S.(i) M 2 Neus & N �M) N 2 Neus.(ii) M 2 Terms & N �M) N 2 Terms [Neus.Proof. By induction on M using Proposition 3.2.33 and 3.2.32. utAs a special case we have the following analysis of the sorts of variablesthat can occur in s-neutral expressions and in s-terms.3.2.36. Corollary. Let �S be generalized non-dependent, s 2 S.(i) B 2 Neus & x 2 FV(B) & x 2 Vs0) s0 > s.(ii) B 2 Terms & x 2 FV(B) & x 2 Vs0) s0 � s.Proof. Suppose x 2 FV(B) and x 2 Vs0 .(i) If B 2 Neus, then, by Corollary 3.2.35, x 2 Neus. By Lemma 3.2.31,x 62 Types00 if s � s00 2 S>, so x 2 Terms00 for some s00 > s. ByProposition 3.2.32, x 2 Vs00 , ie, s0 � s00.(ii) If B 2 Terms, then, by Corollary 3.2.35, x 2 Terms[Neus. If x 2 Terms,x 2 Vs, by Proposition 3.2.32. If x 2 Neus, proceed as in (i). ut3.2.37. Remark. Let �S be generalized non-dependent, s 2 S. Also, sup-pose M 2 Types and N � M . By Lemma 3.2.30 and Corollary 3.2.35,N 62 Terms. Thus s-types do not depend on s-terms.3.3. CPS translation of typesIn this section we present a continuation passing style (CPS) translationon s-types. More precisely, we introduce a CPS translation on s-neutralexpressions; this is more convenient than working with s-types, since theformer are closed under subexpressions. The �rst subsection introduces theCPS translation. The second and third subsection show that the translationpreserves �-equivalence and legality, respectively.

3.3. CPS translation of types 117The translation generalizes Coquand and Herbelin's [27] translation forlogical non-dependent pure type systems|see Remark 3.2.23|and the re-sults below are similar to those of Coquand and Herbelin. The main probleminvolved with the generalization has already been solved|to generalize Co-quand and Herbelin's notion of logical non-dependence to deal with all sortsof a PTS. Another, smaller, problem is to �nd conditions ensuring that nega-tion makes sense on s-types; this leads to the notions of negatable sorts andnegatable PTSs in the �rst subsection.3.3.1. TranslationThis subsection introduces a CPS translation on s-neutral expressions. Forthe translation we need a notion of negation; more precisely, we would liketo have an expression ?s such that if A is an s-type, then so is A ! ?s.The following de�nition expresses a requirement on the sort s that allowsthe construction of this product.3.3.1. Definition. Let �S be PTS. An s 2 S is negatable if(i) s is not isolated (see De�nition 3.2.24).(ii) (s; s; s) 2 R.An s 2 S is relevant if (s1; s2; s) 2 R, for some s1; s2 2 S. A PTS isnegatable if all its relevant sorts are negatable.The following then shows how to de�ne negation.3.3.2. Definition. Let �S be generalized non-dependent, s 2 S negatable.De�ne (?s ; �s) by:(?s ; �s) = � (s0 ; Is :s0 ! s0) if (s0; s) 2 A(z ; z :s ; Is :z ! z) else, if (s; s0) 2 A.(the choice of s0 is unique) where z 2 Vs0 and Is 2 Vs. Let :sA � A! ?s.3.3.3. Remark. The purpose of the variable Is will become clear in Sec-tion 3.4.3.3.4. Lemma. Let �S be generalized non-dependent, s 2 S negatable. Then�s is legal, �s ` Is : ?s ! ?s, �s ` ?s : s, and� ` A : s) �s;� ` :sA : s:Proof. We consider two cases.

118 Chapter 3. Normalization in Pure Type Systems1. (s0; s) 2 A, where ?s � s0. Then [] ` ?s : s and so d :?s ` ?s : s,where d is a fresh variable. Since s is negatable, (s; s; s) 2 R. Thus[] ` ?s ! ?s : s and Is :?s ! ?s ` Is : ?s ! ?s. Therefore �s islegal, �s ` Is : ?s ! ?s, and by thinning, �s ` ?s : s.2. (s; s0) 2 A, where ?s � z. Then z : s ` z : s and z : s; d : z ` z : s.Hence z :s ` z ! z : s and z :s; Is :z ! z ` Is : z ! z. Therefore �sis legal, �s ` Is : ?s ! ?s, and by thinning, �s ` ?s : s.Now suppose �s;� ` A : s. By start and thinning, �s;�; d : A ` ?s : s.Hence, in both cases, �s;� ` :sA : s. ut3.3.5. Definition. Let �S be generalized non-dependent, s 2 S negatable.De�ne h�is; h[�]is : Neus ! E and h[�]is : C ! C as in Figure 3.5.hxis = xhs0is = s0h�x:A :Mis = �x:hAis : hMishM Nis = hMis hNish�x:A: Bis = �x:h[A]is: h[B]ish[M]is = (:s:s hMis if M 2 TypeshMis otherwiseh[[]]is = []h[�; x : A]is = � h[�]is; x : h[A]is if A 2 Types0 for some s0 � sh[�]is otherwise :Figure 3.5: CPS translation of types3.3.2. Preservation of equality on neutral expressionsIn this subsection we show that if B1 =� B2 for B1; B2 2 Neus, thenhB1is =� hB2is and h[B1]is =� h[B2]is, if the system is generalized non-dependent, and s is negatable.First a couple of lemmas.3.3.6. Lemma. Let �S be generalized independent and M legal in �.(i) M 2 Types) M 2 Types� for all s 2 S>.(ii) M 2 Terms) M 2 Terms� for all s 2 S.

3.3. CPS translation of types 119Proof.(i) Assume M 2 Types, for some s 2 S>, i.e., � ` M : s, for some �.SinceM is legal in �, � ` M : B for some B (either that, or � ` C :M ,for some C; and since M is not a top-sort, correctness of types implies� ` M : B, for some B again). If B 62 S>, then, by correctness of types,� ` B : s0 for some s0, soM 2 Terms0 , contradicting Proposition 3.2.26.Hence, B 2 S>, and by Proposition 3.2.26, B � s, i.e., M 2 Types�.(ii) AssumeM 2 Terms, for some s 2 S, i.e., � ` M : A : s, for some �; A.SinceM is legal in �, � ` M : B for some B as in (i). If B 2 S>, then,M 2 Types for an s 2 S>, contradicting Proposition 3.2.26. HenceB 62 S>, and by correctness of types, � ` B : s0 for some s0, soM 2 Terms0 , and by Proposition 3.2.26, s0 � s, i.e., M 2 Terms�. ut3.3.7. Proposition. Let �S be generalized non-dependent, M be legal in�; x :A;�, and assume � ` N : A.(i) M 2 S> , Mfx := Ng 2 S>.(ii) M 2 Types�;x:A;� , Mfx := Ng 2 Types�;�fx:=Ng for all s 2 S>.(iii) M 2 Terms�;x:A;� , Mfx := Ng 2 Terms�;�fx:=Ng for all s 2 S.Proof. (i)-(iii)\)": by substitution.(i)-(iii)\(": we show (i); (ii)-(iii) are similar. AssumeMfx := Ng2S>.Since M is legal in �; x : A;�, by Proposition 3.2.26 and Lemma 3.3.6,exactly one of the following situations arise:1. M 2 S>.2. M 2 Types�;x:A;� for some s 2 S>.3. M 2 Terms�;x:A;� for some s 2 S.Suppose, for the sake of contradiction, that M 2 Types�;x:A;�. By (ii)\)",Mfx := Ng 2 Types�;�fx:=Ng. This contradicts Mfx := Ng 2 S>, byProposition 3.2.26. Thus M 62 Types�;x:A;�. Similarly, M 62 Terms�;x:A;�.Hence, M 2 S>. ut3.3.8. Lemma. Let �S be generalized non-dependent, B1; B2 2 Neus�, andB1 =� B2. Then B1 2 Types , B2 2 Types:Proof. Assume B1 2 Types. By Church-Rosser, B1 !!� C and B2 !!� C,for some C. By subject reduction C 2 Types. We consider two cases.1. s 2 S>. If B2 62 Types, then by Proposition 3.2.26, B2 2 S>[Terms0 , forsome s0, and then by subject reduction C 2 S> [Terms0 , contradictingProposition 3.2.26. Hence B2 2 Types.

120 Chapter 3. Normalization in Pure Type Systems2. s 62 S>. Then (s; s0) 2 A, for some s0, i.e., B1; C 2 Terms0 . NowB2 62 Terms0 , yields a contradiction as in (i), so B2 2 Terms0 . ByLemma 3.3.6, � ` B1 : s : s0 and � ` B2 : D : s0. By uniquenessof types, Church-Rosser, and subject reduction, � ` B2 : s : s0, soB2 2 Types. ut3.3.9. Lemma. Let �S be generalized non-dependent, s 2 S negatable. As-sume M 2 Neus�;x:A;� and � ` N : A. Then(i) hMisfx := hNisg � hMfx := Ngis.(ii) h[M]isfx := hNisg � h[Mfx := Ng]is.Proof. LetK� � Kfx := Ng forK 2 C[E . M�2Neus�;�� , by substitution.(i) By induction on M .1. M � x. Then, hxisfx := hNisg � hNis� hx�is:2. M � y 6� x. Then hyisfx := hNisg � y� hyis� hy�is:3. M � s0. Similar to Case 2.4. M � �y:D : P . By Proposition 3.2.33, D 2 Neus�;x:A;� and alsoP 2 Neus�;x:A;�;y:D. Hence, by the induction hypothesis,(h�y:D : P is)fx := hNisg � �y:hD�is : hP �is� h�y:D� : P �is� h(�y:D : P)�is:5. M �M1 M2. Similar to Case 4.6. M � �y:A1: A2. Similar to Case 4, using Proposition 3.3.7.(ii) By (i) and Proposition 3.3.7. ut3.3.10. Lemma. Let �S be generalized non-dependent, s 2 S negatable, andB1 2 Neus. Then B1 !� B2) hB1is !� hB2is:Proof. By induction on B1 !� B2. By subject reduction, B2 2 Neus.

3.3. CPS translation of types 1211. B1 � (�x:A :M)N !� Mfx := Ng � B2. By assumption, B1 2 Neus�,for some �. By a few steps of generation, � ` N : E, where A =� Eand � ` A : s0, so by conversion � ` N : A. By Proposition 3.2.33,M 2 Neus�;x:A. Then, by Lemma 3.3.9,h(�x:A :M)Nis � (�x:hAis : hMis) hNis!� hMisfx := hNisg� hMfx := Ngis:2. B1 � �x:A: B !� �x:A0: B0 � B2, where A !� A0 and B � B0, orvice versa. Then, by the induction hypothesis and Proposition 3.2.33,hAis !� hA0is and hBis � hB0is, or vice versa. Then, by Lemma 3.3.8,A 2 Types , A0 2 Types and B 2 Types , B0 2 Types. Therefore,h[A]is !� h[A0]is and h[B]is � h[B0]is, or vice versa. Thus,h�x:A: Bis � �x:h[A]is: h[B]is!� �x:h[A0]is: h[B0]is� h�x:A: Bis:3. B1 � �x:A : B !� �x:A0 : B0 � B2, where A !� A0 and B � B0, orvice versa. Similar to Case 2.4. B1 � A B !� A0 B0 � B2, where A !� A0 and B � B0, or vice versa.Similar to Case 2. ut3.3.11. Lemma. Let �S be generalized non-dependent, s 2 S negatable, andB1 2 Neus. Then B1 !!� B2) hB1is !!� hB2is:Proof. By Lemma 3.3.10, using transitivity and subject reduction. ut3.3.12. Proposition. Let �S be generalized non-dependent, s 2 S negat-able, B1; B2 2 Neus, and B1 =� B2. Then(i) hB1is =� hB2is.(ii) h[B1]is =� h[B2]is.Proof.(i) By Church-Rosser, B1 !!� C andB2 !!� C, for some C. By Lemma 3.3.11,hB1is !!� hCis and hB2is !!� hCis. Hence, hB1is =� hB2is.(ii) By (i) and Lemma 3.3.8. ut

122 Chapter 3. Normalization in Pure Type Systems3.3.3. Embedding of typesIn this subsection we show that, if M 2 Neus, then hMis 2 Neus, providedthe system is generalized non-dependent and s is negatable.3.3.13. Proposition. Let �S be generalized non-dependent, and assumethat s2S is negatable. Then(i) For all s0 � s: � ` A : s0) �s; h[�]is ` hAis : s0, if s0 2 S>.(ii) For all s0 > s: � ` M : A : s0) �s; h[�]is ` hMis : hAis : s0.Proof. We prove simultaneously by induction on � ` E : F that(i) F � s0 2 S> & s0 � s) �s; h[�]is ` hEis : s0.(ii) � ` F : s0 & s0 > s) �s; h[�]is ` hEis : hF is : s0.Note that E;F 2 Neus. We �rst check the cases of (i).1. The derivation is ` s1 : s0 (s1; s0) 2 A:Since hs1is = s1, h[[]]is � [], and �s is legal, start implies�s; h[[]]is ` hs1is : s0:2. The derivation ends in � ` s0 : s00�; x : s0 ` x : s0 :This contradicts Lemma 3.2.31.3. The derivation ends in� ` M : s0 � ` C : s00�; x : C ` M : s0 :By the induction hypothesis,�s; h[�]is ` hMis : s0:We consider two cases.3.1. s00 � s. If s00 2 S> then by the induction hypothesis�s; h[�]is ` hCis : s00 (�):If s00 62 S> then (s00; s000) 2 A, for some s000. Then � ` s00 : s000,where s000 > s00 � s, and hs00is � s00. Therefore, by the inductionhypothesis (ii), (�) holds also in this case.22In the remainder this type of step will be left implicit.

3.3. CPS translation of types 123By Lemma 3.3.4 (if s00 � s) and Proposition 3.2.26 (if s00 > s),�s; h[�]is ` h[C]is : s00:Hence, �s; h[�]is; x : h[C]is ` hMis : s0:Since s00 � s, h[�; x : C]is = h[�]is; x : h[C]is. Thus,3�s; h[�; x : C]is ` hMis : s0:3.2. s00 6� s. By Proposition 3.2.26, h[�; x : C]is = h[�]is. Thus,h[�; x : C]is ` hMis : s0:4. The derivation ends in� ` A : s1 �; x : A ` B : s0� ` �x:A: B : s0 (s1; s0) 2 Rwhere s1 � s0. Since s0 2 S>, s1 � s0. By the induction hypothesis,�s; h[�]is ` hAis : s1 & �s; h[�]is; x : h[A]is ` hBis : s0:By Lemma 3.3.4 and Proposition 3.2.26,�s; h[�]is ` h[A]is : s1 & �s; h[�]is; x : h[A]is ` h[B]is : s0:Hence �s; h[�]is ` �x:h[A]is: h[B]is : s0Thus, �s; h[�]is ` h�x:A: Bis : s0:5. The derivation ends in � ` �x:A : M : s0where s0 � �x:A: B. This case is impossible.6. The derivation ends in� ` M : �x:A: B � ` N : A� ` M N : s0where s0 � Bfx := Ng. This contradicts Lemma 3.2.313In the remainder this type of step will be left implicit.

124 Chapter 3. Normalization in Pure Type Systems7. The derivation ends in� ` M : A � ` s0 : s00� ` M : s0 A =� s0By generation (s0; s00) 2 A, contradicting s0 2 S>.This concludes the cases of (i). We proceed with the cases of (ii).1. The derivation is ` s1 : s2 (s1; s2) 2 ASince hs2is = s2, hs1is = s1, h[[]]is = [], and �s is legal,�s; h[[]]is ` hs1is : hs2is : s0:2. The derivation ends in � ` A : s00�; x : A ` x : AThen �; x : A ` A : s00. By uniqueness of types s0 � s00. By theinduction hypothesis (i)-(ii),�s; h[�]is ` hAis : s0:By Proposition 3.2.26, h[A]is � hAis. Thus,�s; h[�]is ` h[A]is : s0:Hence, �s; h[�]is; x : h[A]is ` x : hAis:Also, hxis = x. Thus,�s; h[�; x : A]is ` hxis : hAis : s0:3. The derivation ends in� ` M : A � ` C : s00�; x : C ` M : ASince � ` M : A, x 62 FV(M) [FV(M). Hence, by strengthening,� ` A : s0. By the induction hypothesis,�s; h[�]is ` hMis : hAis : s0:Now proceed as in Case 3 in (i).

3.3. CPS translation of types 1254. The derivation ends in� ` A : s1 �; x : A ` B : s3� ` �x:A: B : s3 (s1; s3) 2 Rwhere s1 � s3. By generation, (s3; s0) 2 A, injectivity of A impliess3 � s. Hence, by the induction hypothesis (i)-(ii),�s; h[�]is ` hAis : s1 & �s; h[�]is; x : h[A]is ` hBis : s3:By Lemma 3.3.4 and Proposition 3.2.26,�s; h[�]is ` h[A]is : s1 & �s; h[�]is; x : h[A]is ` h[B]is : s3:Hence �s; h[�]is ` �x:h[A]is: h[B]is : s3Since hs3is � s3, �s; h[�]is ` h�x:A: Bis : hs3is : s0:5. The derivation ends in�; x : A ` M : B � ` �x:A: B : s00� ` �x:A :M : �x:A: BBy functionality s0 � s00. By generation,� ` A : s1 & �; x : A ` B : s0 & (s1; s0) 2 R;where s1 � s0 > s. By the induction hypothesis (i)-(ii),�s; h[�]is; x : h[A]is ` hMis : hBis & �s; h[�]is ` �x:h[A]is: h[B]is : s0:By Proposition 3.2.26, h[A]is � hAis and h[B]is � hBis. Therefore,�s; h[�]is ` �x:hAis : hMis : �x:h[A]is: h[B]is : s0:Thus, �s; h[�]is ` h�x:A : Mis : h�x:A: Bis : s0:6. The derivation ends in� ` M : �x:A: B � ` N : A� ` M N : Bfx := Ng :By correctness of types, � ` �x:A: B : s3;

126 Chapter 3. Normalization in Pure Type Systemsfor some s3 2 S. By generation,� ` A : s1 & �; x : A ` B : s3 (s1; s3) 2 R;where s1 � s3. By substitution,� ` Bfx := Ng : s3:By uniqueness of types, s3 � s0. By the induction hypothesis,�s; h[�]is ` hMis : �x:h[A]is: h[B]is : s0 & �s; h[�]is ` hNis : hAis : s1:By generation, �s; h[�]is; x : h[A]is ` h[B]is : s0:By Proposition 3.2.26, h[A]is � hAis and h[B]is � hBis. Then, by sub-stitution, �s; h[�]is ` hBisfx := hNisg : s0:Hence, �s; h[�]is ` hMis hNis : hBisfx := hNisg : s0:By Lemma 3.3.9, hBisfx := hNisg � hBfx := Ngis. Thus,�s; h[�]is ` hM Nis : hBfx := Ngis : s0:7. The derivation ends in� ` M : A � ` B : s00� ` M : B A =� BAs usual, � ` A : s00:By uniqueness of types s0 � s00. By the induction hypothesis (i)-(ii),�s; h[�]is ` hMis : hAis : s0 & �s; h[�]is ` hBis : s0:By Proposition 3.3.12, hAis =� hBis. Thus,�s; h[�]is ` hMis : hBis : s0:This concludes the proof. ut3.3.14. Corollary. Let �S be generalized non-dependent, s 2 S negatable.� ` A : s0 & s0 � s) �s;� ` hAis : s0:Proof. Assume � ` A : s0. We consider two cases.1. s0 2 S>. Then, by Proposition 3.3.13(i), �s; h[�]is ` hAis : s0.2. s0 62 S>. Then (s0; s00) 2 A, for some s00. By Proposition 3.3.13(ii),�s; h[�]is ` hAis : hs0is, i.e., �s; h[�]is ` hAis : s0. ut

3.4. CPS translation of terms 1273.4. CPS translation of termsThis section presents a CPS translation on s-terms. The �rst subsectiondiscusses certain di�culties with the translation. The second subsectionpresents the translation, and the last subsection shows that the translationpreserves legality.The translation generalizes Coquand and Herbelin's [27] translation forlogical non-dependent pure type systems|see Remark 3.2.23|and the re-sults below are similar to those of Coquand and Herbelin. The generalizationinvolves mainly two problems. First, for technical reasons our translationintroduces some free variables which entail certain typing problems. In fact,it turns out that we are able to translate s-terms only when s has certainproperties. The second problem, which is also encountered in the case oflogical non-dependent systems, concerns the typing of certain bound vari-ables introduced by the translation. These problems are discussed in the�rst subsection below.3.4.1. ProblemsThis subsection discusses two problems involved with formulating a CPStranslation on s-terms.3.4.1. Discussion. A main di�culty with the CPS translation on s-terms,to be introduced below, stems from the introduction of fresh variables. Forinstance, consider in �2 the expression ��:� : �x:� : x which is legal in theempty context. It will be translated into the expression��:� ��:� : ��: �� f(�k:k �x::�:�� :�h:�x :�:�� [(�l:x l) h] x) �g �;where �� and �x are fresh variables, and where we have left out domains onsome abstractions for brevity.To show that the translation preserves legality we must type the trans-lated expression in a context with bindings for the fresh variables �� and�x. Let us �rst consider how to type the subexpression ��: � � � . It turns out,ignoring the argument :�:� � to �x for the moment, that this expression islegal in the context?� :�; �� :?� ! � ! ?�; � :�; �x :?� ! :�:�� ! ?�:However, we cannot type �� : � : ��: � � � . The natural attempt to use theabstraction rule fails because we cannot remove � :� from the context. Theproblem is that the type ?� ! :�:�� ! ?� makes sense only in context � :�.The way out is to use instead the context?� :�; �� :?� ! � ! ?�; � :�; �x :8� : �:?� ! � ! ?�

128 Chapter 3. Normalization in Pure Type Systemsand use an explicit type application �x :�:� � . The generalized type for �xmakes sense also after removal of � : � from the context.On the other hand, the correct type for �� turns out to be ?� ! � ! ?�.The type system is not powerful enough to abstract � analogously to theway :�:�� was abstracted. Fortunately, � contains no free variables, so thereis no need to abstract it.In the general case of CPS translation of an s-term in some PTS �S,one must distinguish between those abstractions �x : A : � � � under whichthe fresh variable �x must be accompanied by a type application, and thoseabstractions ��:A: � � � under which the variable �� must not be accompaniedby a type application.Each fresh variable is introduced in the following situation� ` A : s1 �; x : A ` M : C : s� ` �x:A : M : �x:A: C : s (s1; s) 2 RThe CPS translation will introduce a fresh variable �x under �x : A. Thetype of this variable should be �B:s1:?s ! B ! ?s or ?s ! h[A]is ! ?s.It is simplest to choose the former. This can be done whenever formationof the product in question is allowed, i.e., when there is s2 2 S with(s1; s2) 2 A & (s2; s) 2 R:When the product is disallowed, we must choose the latter type and makesure that no binding y : D for a free variable y of h[A]is can subsequently beremoved from the context. The free variables of h[A]is are the same as thoseof A, and y 2 FV(A)) y 2 Vs01 for some s01 > s1:There are two ways such a variable y can be removed from the context:�; y :D :s01 ` M : E : s� ` �y:D :M : �y:D: E : s (s01; s) 2 R�; y :D :s01 ` M : s0 : s� ` �y:D: M : s0 : s (s0; s) 2 A & (s01; s0) 2 RThese two situations can be prevented by assuming for all s01 > s1:(i) (s01; s) 62 R; and(ii) (s0; s) 2 A) (s01; s0) 62 R.This motivates the following de�nition.3.4.2. Definition. Let �S be generalized non-dependent, s 2 S.

3.4. CPS translation of terms 129(i) s1 2 S is generalizable in s, notation s1 " s, if there is s2 2 S such that(s1; s2) 2 A and (s2; s) 2 R.(ii) s1 2 S is harmless in s, notation s1 # s, if for all s01 > s1: (s01; s) 62 R,and if (s0; s) 2 A then (s01; s0) 62 R.(iii) A rule (s1; s) 2 R is clean if s1 " s or s1 # s.(iv) �S is clean if all (s1; s) 2 R are clean.3.4.3. Remark. Let �S be persistent, (s1; s) 2 R. Each of the followingconditions imply that s1 # s and therefore that (s1; s) is clean.(i) s1 2 S>.(ii) for all s01 > s1: no rule has form (s01; s0).(iii) s 2 S? and the only rule of form (s0; s) is (s1; s).Consider the systems of the left hand side of the cube. By (i), all rulesof form (2; s) are clean. By (iii) the rule (�; �) is clean in �! and �!; in �2and �! the rules is clean since � " �.In �HOL, (�; �) is clean since � " �, and (2; �), (2;2) are clean by (ii).In �U�, (�; �) and (2;2) are clean because � " � and 2 " 2, (2; �) isclean because 2 # � (none of (i)-(iii) apply), and (4;2) is clean by (i).In �U , (�; �), (2; �), and (2;2) are clean because because the �rst sortis generalizable in the second, and (4; �) and (4;2) are clean by (i).The following gives a supply of fresh variables.3.4.4. Definition. Let �S be a PTS.(i) For each s 2 S, let Us denote a countably in�nite set of variables suchthat Us \ Us0 = ; when s 6= s0 and U \ V = ;, where U = [s2SUs.(ii) For each x 2 Vs, let �x 2 Us be such that �x 6= �y when x 6� y.The following shows how to choose fresh variables and typings for them.3.4.5. Definition. Let �S be generalized non-dependent and clean, ands 2 S negatable. For M 2 Terms, de�ne �s(M) a in Figure 3.6.The following lemma will be used to show that, indeed, free variables ofthe types in �s(M) cannot be removed from context.3.4.6. Lemma. Let �S be generalized non-dependent and clean, s 2 S negat-able, and M 2 Terms. Let z 2 Vs01 and x 2 Vs1. Then�z : E 2 �s(M) & x 2 FV(E)nf?sg) s1 > s01 & s01 # s:Proof. By induction on M .

130 Chapter 3. Normalization in Pure Type Systems
�s(x) = []�s(s0) = []�s(�x:A : B) = � �x :�B:s1:?s ! B ! ?s; �s(B) if x 2 Vs1 & s1 " s�x :?s ! h[A]is ! ?s; �s(B) if x 2 Vs1 & s1 # s�s(B A) = � �s(A);�s(B) if A 2 Terms�s(B) else�s(�x:A: B) = � �s(A);�s(B) if A 2 Terms�s(B) else :Figure 3.6: Choice of fresh variables1. M � y. Then the property trivially holds.2. M � s0. Similar to Case 1.3. M � �y:A :M , where y 2 Vs001 . By generation, A 2 Neus001� .3.1. s001 " s. Then�s(�y:A :M) � �y :�B:s1:?s ! B ! ?s; �s(M):Then �z :E 2 �s(M). Now use the induction hypothesis.3.2. s001 # s. Then�s(�y:A : M) � �y :?s ! h[A]is ! ?s; �s(M):If �z :E 2 �s(M) use the induction hypothesis. If �z is �y, thenz � y, so s001 � s01. Since x 2 FV(h[A]is) = FV(A), Corollary 3.2.36implies s1 > s01.4. M � B A. Similar to Case 3.1.5. M � �x:A: B. Similar to Case 3.1. ut3.4.7. Discussion. Another di�culty with our CPS translation on terms isthat it introduces some new bound variables whose types depend on thetype of the term we are translating. For instance, consider again the term��:� : �x:� : x:If we supply the missing domains in the translated version��:� ��:� : ��: �� f(�k:k �x::�:�� :�h:�x :�:�� [(�l:x l) h] x) �g �:it turns out that the type of � should be :� hDi� where D is the type of�� : � : �x : � : x. Our solution to this problem, following Coquand and

3.4. CPS translation of terms 131Herbelin [27], is to de�ne the CPS translation of a term relative to thecontext in which the terms is considered. Another possibility [46] is tode�ne the translation relative to derivations. These issues are discussedfurther in [10].However, even in a �xed context, the type of a term is unique only upto �-equality. This ambiguity is resolved by choosing types in normal form;this is possible since we are working under the hypothesis that the systemwe are dealing with is weakly normalizing.This motivates the following lemma and de�nition.3.4.8. Lemma. Let �S be functional and weakly normalizing.M 2 Terms�) there is exactly one D 2 NF� with � ` M : D : s :Proof. Assume M 2 Terms�. We show that such a D exists. By assump-tion, � ` M : C : s for some C. Since �S is weakly normalizing, C !!� Dfor some D 2 NF�. By subject and predicate reduction, � ` M : D : s.To show uniqueness of D, suppose that also � ` M : D0 : s for someD0 2 NF�. By uniqueness of types, D =� D0. Since D;D 2 NF�, Church-Rosser implies D � D0. ut3.4.9. Definition. Let �S be functional and weakly normalizing. For anyM 2 Terms�, Types�(M) is the unique D 2 NF� with � ` M : D : s.3.4.2. TranslationThis subsection de�nes the translation on s-terms.3.4.10. Definition. Let �S be generalized non-dependent, clean, and weaklynormalizing, and s 2 S negatable. For M 2 Terms� de�ne [M]s� 2 E as inFigure 3.7.3.4.11. Remark. [M]s� is de�ned by induction on M 2 Terms�. The expres-sions D, E, and F which occur in the clauses for, e.g., �x: A : B are notnecessarily smaller than �x:A : B, but this does not matter since h�is, not[�]s�, is applied to D, E, and F . The idea of using two distinct translationsin this way also appears in [27] and [46].3.4.3. Embedding of termsNow we show that, if M 2 Terms�, then [M]s� 2 Terms�s;h[�]is;�s(M).First a lemma.3.4.12. Lemma. Let �S be weakly normalizing, generalized non-dependent,and clean, s 2 S negatable. Let � � � both be legal, M 2 Terms�.

132 Chapter 3. Normalization in Pure Type Systems
[x]s� = �k:D : x k[s0]s� = �k:D : k s0[�x:A : B]s� = (�k:D : k �x:h[A]is : �h:E : �x h[A]is ([B]s(�;x:A) h) x if s1 " s�k:D : k �x:h[A]is : �h:E : �x ([B]s(�;x:A) h) x else[B A]s� = ��k:D : [B]s� �j:F : j [A]s� k if A 2 Terms�k:D : [B]s� �j:F : j hAis k else[�x:A: B]s� = ��k:D : k �x: ([A]s� Is): ([B]s�;x:A Is) if A 2 Terms�k:D : k �x:h[A]is: ([B]s�;x:A Is) elsewhere D � :shTypes�(M)is in each clause for [M]s�.E � :shTypes�;x:A(B)is and x 2 Vs1 in the clause for [�x:A : B]s�F � hTypes�(B)is in the clause for [B A]s�.Figure 3.7: Non-standard CPS translation of terms(i) Types�(M) � Types�(M).(ii) [M]s� � [M]s�.Proof.(i) Since M 2 Terms�, also M 2 Terms� by thinning. Let A � Types�(M)and A0 � Types�(M). Then � ` M : A : s and � ` M : A0 : s. Bythinning, � ` M : A : s. By uniqueness of types, A =� A0. SinceA;A0 2 NF, Church-Rosser implies A � A0.(ii) Let D � :shTypes�(M)is, D0 � :shTypes�(M)is. By (i), D � D0. Nowproceed by induction on M .1. M � x. Then [x]s� � �k:D : x k � [x]s�:2. M � s0. Similar to Case 1.3. M � �x : A : B. By Proposition 3.2.32, B 2 Terms�;x:A andA 2 Neus. Also, Types�(M) 2 Neus and Types�;x:A(B) 2 Neus�;x:A.Moreover, �; x : A � �; x : A are both legal. Finally, let x 2 Vs1 ,and E � :shTypes�;x:A(B)is, F � :shTypes�;x:A(B)is By (i), E � F .We consider two cases.3.1. s1 " s. Then, by the induction hypothesis,[�x:A : B]s� = �k:D : k �x:h[A]is : �h:E :�x h[A]is ([B]s(�;x:A) h) x= �k:D0 :k �x:h[A]is : �h:F :�x h[A]is ([B]s(�;x:A) h) x= [�x:A : B]s�:

3.4. CPS translation of terms 1333.2. s0 6" s. Similar to 3.1.4. M � B A. Similar to Case 3.5. M � �x:A: B. Similar to Case 3. ut3.4.13. Proposition. Let �S be weakly normalizing, generalized non-dependent,and clean, and s 2 S negatable. Then� ` M : A : s) �s; h[�]is;�s(M) ` [M]s� : h[A]is : s:Proof. By induction on � ` M : A. Before proceeding with the individualcases it is useful to make some general observations.LetD �:shTypes�(M)is. By de�nition,A!!� Types�(M). By Lemma 3.3.11,:shAis !!� D. By Corollary 3.3.14 and Lemma 3.3.4 �s; h[�]is ` :shAis : sand �s; h[�]is ` :s:s hAis : s. By subject reduction also �s; h[�]is ` D : s and�s; h[�]is ` :sD : s.We now proceed with the individual cases.1. The derivation is ` s1 : s2 (s1; s2) 2 A:By a few steps, �s ` �k:D : k s1 ::s:s s2:That is, �s; h[[]]is;�s(s1) ` [s1]s[] : h[s2]is:2. The derivation ends in � ` A : s0�; x : A ` x : AThen �; x : A ` A : s0. By uniqueness of types s0 � s. By a few steps,�s; h[�]is; x ::s:s hAis ` �k:D : x k ::s:s hAis:That is, �s; h[�; x : A]is;�s(x) ` [x]s(�;x:A) : h[A]is:3. The derivation ends in� ` M : A � ` C : s0�; x : C ` M : ASince � ` M : A, x 62 FV(M) [FV(A). Hence, by strengthening,� ` A : s. By the induction hypothesis,�s; h[�]is;�s(M) ` [M]s� : h[A]is:By Lemma 3.4.12, [M]s� = [M]s(�;x:C). Hence�s; h[�]is;�s(M) ` [M]s(�;x:C) : h[A]is:We consider two cases.

134 Chapter 3. Normalization in Pure Type Systems3.1. s0 � s. By Corollary 3.3.14,�s; h[�]is ` hCis : s0:By Proposition 3.2.26 and Lemma 3.3.4,�s; h[�]is ` h[C]is : s0:By thinning �s; h[�]is;�s(M) ` h[C]is : s0:Hence, �s; h[�]is;�s(M); x : h[C]is ` [M]s(�;x:C) : h[A]is:Since h[C]is is legal in �s; h[�]is, it holds that z 62 FV(h[C]is), for allz : E 2 �s(M). By permutation,�s; h[�]is; x : h[C]is;�s(M) ` [M]s(�;x:C) : h[A]is:Thus, �s; h[�; x : C]is;�s(M) ` [M]s(�;x:C) : h[A]is:3.2. s0 6� s. By Proposition 3.2.26, h[�; x : C]is = h[�]is. Thus,�s; h[�; x : C]is;�s(M) ` [M]s(�;x:C) : h[A]is:4. The derivation ends in� ` A : s1 �; x : A ` B : s3� ` �x:A: B : s3 (s1; s3) 2 R;where s1 � s3 and x 2 Vs1 . Since (s3; s) 2 A, ?s � s3.4.1. A 2 Terms, i.e., � ` A : E : s, for some E. By uniqueness of types,Church-Rosser, and subject reduction, � ` s1 : s. By injectivityof A, s1 � s3 � ?s. By the induction hypothesis,�s; h[�]is;�s(A) ` [A]s� ::s:s s1&�s; h[�]is;�s(B) ` [B]s(�;x:A) ::s:s s3:By convention, dom(�s(A))\dom(�s(B)) = ;. Therefore, we canreplace �s(A) and �s(B) by �s(�x:A: B). Therefore, in a fewsteps,�s; h[�]is;�s(�x:A:B) ` �k:D:k �x: ([A]s� Is): ([B]s�;x:A Is) ::s:s s3:That is, �s; h[�]is;�s(�x:A: B) ` [�x:A: B]s� : h[s3]is:

3.4. CPS translation of terms 1354.2. A 62 Terms. By injectivity of A, s1 � s3 or s1 � s. SinceA 62 Terms, the former is impossible. By Corollary 3.3.14 andthe induction hypothesis,�s; h[�]is ` h[A]is : s1&�s; h[�]is; x : h[A]is;�s(B) ` [B]s(�;x:A) ::s:s s3:We must now move x : h[A]is across �s(B). Suppose x 2 FV(E) forsome �z : E 2 �s(B)�; x : A. By Lemma 3.4.6, z 2 Vs01 , s1 > s01,and s01 # s. This contradicts (s3; s) 2 A and (s1; s3) 2 R.Hence by permutation,�s; h[�]is;�s(B); x : h[A]is ` [B]s(�;x:A) ::s:s s2:Therefore, in a few steps,�s; h[�]is;�s(B) ` �k:D : k �x:h[A]is: ([B]s�;x:A Is) : :s:s s3:That is, �s; h[�]is;�s(�x:A: B) ` [�x:A: B]s� : h[s3]is:5. The derivation ends in�; x : A ` M : B � ` �x:A: B : s0� ` �x:A :M : �x:A: B :By functionality s0 � s. By generation,� ` A : s1 & �; x : A ` B : s & (s1; s) 2 R;where s1 � s. Hence, by the induction hypothesis and thinning,�s; h[�]is; x : h[A]is;�s(M) ` [M]s(�;x:A) : h[B]is:We must now move x : h[A]is across �s(M). Suppose x 2 FV(E) forsome �z : E 2 �s(M). By Lemma 3.4.6, z 2 Vs01 , s1 > s01 and s01 # s.This contradicts (s1; s) 2 R. Hence by transitivity�s; h[�]is;�s(M); x : h[A]is ` [M]s(�;x:A) : h[B]is:We now consider two cases.5.1. s1 " s. In a few steps�s; h[�]is;�s(M) ` h[A]is : s1&�s; h[�]is;�s(M); x : h[A]is `:shBis : :Therefore, after a few more steps,�s; h[�]is; �x : �B:s1:?s ! B ! ?s;�s(M) ` [�x:A :M]s� : h[�x:A:B]is;i.e., �s; h[�]is;�s(�x:A :M) ` [�x:A : M]s� : h[�x:A: B]is:

136 Chapter 3. Normalization in Pure Type Systems5.2. s1 # s. Similar.6. The derivation ends in� ` M : �x:A: B � ` N : A� ` M N : Bfx := Ng :By correctness of types, � ` �x:A: B : s3:for some s3 2 S. By generation,� ` A : s1 & �; x : A ` B : s3 (s1; s3) 2 R:where s1 � s3. By substitution,� ` Bfx := Ng : s3:By uniqueness of types s3 � s. By the induction hypothesis,�s; h[�]is;�s(M) ` hMis ::s:s �x:h[A]is: h[B]is:By generation, �s; h[�]is;�s(M) ` �x:h[A]is: h[B]is : s00:for some s00. We now consider two cases.6.1. N 2 Terms. By the induction hypothesis,�s; h[�]is;�s(N) ` [N]s� : h[A]is:Therefore, by a few simple steps,�s; h[�]is;�s(M N) ` hM Nis : h[B]isfx := [N]s�g:By Corollary 3.2.36, x 62 FV(B) = FV(h[B]is). Thus,�s; h[�]is;�s(M N) ` hM Nis : h[Bfx := Ng]is:6.2. N 62 Terms. By Proposition 3.3.13,�s; h[�]is ` hNis : h[A]is:Therefore, by a few simple steps,�s; h[�]is;�s(M N) ` hM Nis : h[B]isfx := hNisg:By Lemma 3.3.9,�s; h[�]is;�s(M N) ` hM Nis : h[Bfx := Ng]is:

3.5. Strong normalization from weak normalization 1377. The derivation ends in� ` M : A � ` B : s0� ` M : B A =� B:As usual, � ` A : s0:By uniqueness of types s0 � s. By the induction hypothesis,�s; h[�]is;�s(M) ` [M]s� : h[A]is:By Corollary 3.3.14, Lemma 3.3.4 and thinning,�s; h[�]is;�s(M) ` h[A]is : s:By Proposition 3.3.12, h[A]is =� h[B]is. Thus,�s; h[�]is;� ` [M]s� : h[B]is:This concludes the proof. ut3.5. Strong normalization from weak normalizationIn this section we use the CPS translations of the two preceding sections toshow that in all generalized non-dependent pure type systems|that are alsonegatable and clean|weak normalization implies strong normalization. The�rst subsection shows that our CPS translation on s-terms preserves in�nitereductions. The second subsection proves a conservation result which isuseful for relating weak and strong normalization, and the last subsectionputs all the pieces together.3.5.1. Preservation of in�nite reductionsIn this subsection we show that, for every M 2 Terms�,[M]s� 2 SN�) M 2 SN�when �S is generalized non-dependent, weakly normalizing and clean, ands is negatable. The proof technique, due to Xi [141], uses a variant ofPlotkin's [100] colon translation. Other proofs are discussed in Chapter 2.3.5.1. Definition. Let �S be generalized non-dependent, weakly normaliz-ing, and clean, and s 2 S be negatable. For K 2 E and M 2 Terms�, de�neM :s� K 2 E and M ;s� 2 E as in Figure 3.8.

138 Chapter 3. Normalization in Pure Type Systems
x :s� K = x Ks0 :s� K = K s0(�x:A : B) :s� K =(K �x:h[A]is : �h:E : �x h[A]is (B :s(�;x:A) h) x if s1 " sK �x:h[A]is : �h:E : �x (B :s(�;x:A) h) x if s1 # s(B A) :s� K =� B :s� �j:F : j A;s� K if A 2 TermsB :s� �j:F : j hAis K else(�x:A: B) :s� K =� K �x: (A :s� Is): (B :s�;x:A Is) if A 2 TermsK �x:h[A]is: (B :s�;x:A Is) elseM ;s� = �h:D :M :s� hwhere E � :shTypes�;x:A(B)is, x 2 Vs1 in the clause for (�x:A : B) :s� K.F � hTypes�(B)is in the clause for (B A) :s� K.D � :shTypes�(M)is in the de�nition for M ;s�.Figure 3.8: Colon translation of terms3.5.2. Lemma. Let �S be generalized non-dependent, weakly normalizing,and clean, and s 2 S be negatable, and let � � � both be legal. For allK 2 E and M 2 Terms�: M :s� K �M :s� K:Proof. By induction on M . Note that M 2 Terms� by thinning.1. M � x. Then x :s� K � x K� x :s� K:2. M � s0. Similar to Case 1.3. M � �x:A : B. Then B 2 Terms�;x:A and A 2 Neus. Suppose �rst thats1 " s, where x 2 Vs1 . Let E� � :shTypes�;x:A(B)is and let also E� � :shTypes�;x:A(B)is. By Lemma 3.4.12 and the induction hypothesis,(�x:A : B) :s� K � K �x:h[A]is : �h:E� : �x h[A]is (B :s(�;x:A) h) x� K �x:h[A]is : �h:E� : �x h[A]is (B :s(�;x:A) h) x� (�x:A : B) :s� K:The case where s1 # s is similar.4. M � �x:A: B. Similar to Case 3.

3.5. Strong normalization from weak normalization 1395. M � AB. Similar to Case 3. ut3.5.3. Lemma. Let �S be generalized non-dependent, weakly normalizing,and clean, and s 2 S be negatable. For all M 2 Terms�:(i) k 62 dom(�)) (M :s� K)fk := Lg =M :s� (Kfk := Lg).(ii) K !!� L) M :s� K !!� M :s� L.Proof. By induction on M . ut3.5.4. Lemma. Let �S be generalized non-dependent, weakly normalizing,and clean, and s 2 S be negatable. Let M 2 Terms�;x:A;� and � ` N : A.Let L� � Lfx := Ng for L 2 C [E.(i) N 2 Terms�&L+ � Lfx := N ;s� g) (M :s�;x:A;� K)+ !!� M� :s�;�� K+.(ii) N 2 Neus� & L# � Lfx := hNisg) (M :s�;x:A;� K)# !!� M� :s�;�� K#.Proof. (i) is by induction on M .1. M � x. By substitution, �;�� is legal. Then, by Lemma 3.5.3(i) andLemma 3.5.2, (x :s�;x:A;� K)+ � (x K)+� N ;s� K+!� (N :s� h)fh := K+g� N :s� K+� N :s�;�� K+� x� :s�;�� K+:2. M � y 6� x. By substitution, y 2 Terms�;��, and(y :s�;x:A;� K)+ � (y K)+� y K+� y :s�;�� K+� y� :s�;�� K+:3. M � s0. Similar to the previous case.4. M � �y : B : C. Then C 2 Terms�;x:A;�;y:B and B 2 Neus. Since� ` N : A and N 2 Terms�, A 2 Types� and x 2 Vs.Let T � Types�;x:A;�;y:B(C) and E �:shT is. Also, T 0 � Types�;��;y:B(C�)andE0 �:shT 0is. Since T 2 Types, Corollary 3.2.36 implies x 62 FV(T) =FV(:shT is). Since �; x : A;�; y :B ` C : T , also �;��; y :B ` C� : T �.

140 Chapter 3. Normalization in Pure Type SystemsTherefore, T � !!� T 0. By Lemma 3.3.11,E+ � (:shT is)+� :shT is� :shT �is!!� :shT 0is� E0:If s " s, then((�y:B : C) :s�;x:A;� K)+� (K �y:h[B]is : �h:E : �x h[B]is (C :s(�;x:A;�;y:B) h) y)+!!� K+ �y:h[B]is : �h:E0 : �x h[B]is (C� :s(�;��;y:B) h) y� (�y:B : C�) :s�;�� K+� (�y:B : C)� :s�;�� K+:The case where s # s is similar.5. M � B C. Similar to the preceding case.6. M � �y:B: C.This concludes the proof of (i). The proof of (ii) is by induction on M .1. M � x. This case is impossible: since x 2 Terms�;x:A;�, it follows thatA 2 Types�;x:A;�, hence N 2 Terms�;x:A;� contradicting N 2 Neus.2. M � y 6� x. Then, by substitution, y 2 Terms�;�� , and(y :s�;x:A;� K)# � (y K)#� y K#� y :s�;�� K#� y� :s�;�� K#:3. M � s0. Similar to the previous case.4. M � �y:B : C. Then C 2 Terms�;x:A;�;y:B and B 2 Neus.Let T � Types�;x:A;�;y:B(C) and E �:shT is. Also, T 0 � Types�;��;y:B(C�)and E0 � :shT 0is. Since �; x : A;�; y :B ` C : T , it also follows that�;��; y : B� ` C� : T �. Therefore, T � !!� T 0. By Lemma 3.3.11and 3.3.9, E# � (:shT is)#� :shT �is!!� :shT 0is� E0:

3.5. Strong normalization from weak normalization 141If s " s, then((�y:B : C) :s�;x:A;� K)#� (K �y:h[B]is : �h:E : �x h[B]is (C :s(�;x:A;�;y:B) h) y)#!!� K# �y:h[B�]is : �h:E0 : �x h[B�]is (C� :s(�;��;y:B�) h) y� (�y:B� : C�) :s�;�� K#� (�y:B : C)� :s�;�� K#:The case where s # s is similar.5. M � B C. Similar to the preceding case.6. M � �y:B: C. Similar to the preceding case.This concludes the proof of (ii). utThe following lemma, related to certain results in the theory of perpetualreductions (see Chapter 1), gives a su�cient condition for strong normaliza-tion of terms of a certain form.3.5.5. Lemma. Let (�x:A : M0)M1 : : : Mn 2 E for some n � 1.A; M1; M0fx :=M1gM2 : : :Mn 2 SN�) (�x:A :M0)M1 : : :Mn 2 SN�:Proof. Suppose A; M1; M0fx := M1g M2 : : :Mn 2 SN�. Clearly alsoM0;M2; : : : ;Mn 2 SN�. If (�x:A : M0)M1 : : :Mn 2 1�, then any in�nitereduction must therefore have form(�x:A :M0)M1 : : :Mn !!� (�x:A0 : M 00)M 01 : : :M 0n!� M 00fx :=M 01gM 02 : : :M 0n!� : : : :But then alsoM0fx :=M1gM2 : : :Mn !!� M 00fx :=M 01gM 02 : : :M 0n!� : : : ;contradicting M0fx :=M1gM2 : : :Mn 2 SN� . utThe following lemma summarizes the syntactic form of legal expressions.3.5.6. Lemma. Let �S be a PTS. If M is legal, then(i) M � xM1 : : :Mn, where n � 0; or(ii) M � s; or(iii) M � �x:A: M0; or(iv) M � (�x:A :M0)M1 : : : Mn, where n � 0.

142 Chapter 3. Normalization in Pure Type SystemsProof. Any M 2 E has form (i), (ii'), (iii'), or (iv), where (ii'),(iii') are(ii') M � s M1 : : :Mn, where n � 0.(iii') M � (�x:A: M0)M1 : : :Mn, where n � 0.The job then is to show that n = 0 in (ii') and (iii').For (ii') let s M1 : : :Mn be legal and assume n > 0. Then s M1 is legaland, by correctness of types, � ` sM1 : s0, for some � and s0. By generation,� ` s : �x:A: B, for some �x:A: B. By generation again, �x:A: B =� s00,for some s00, contradicting Church-Rosser. Thus n = 0.For (iii') let (�x: A: M0)M1 : : :Mn be legal and assume n > 0. Then(�x:A:B)M1 is legal and, by correctness of types, � ` (�x:A:M0)M1 : s0,for some � and s0. By generation � ` �x : A: M0 : �y : E: F , for some�y:E: F . By generation again, �y:E: F =� s00, for some s00, contradictingChurch-Rosser. Thus n = 0. ut3.5.7. Lemma. Let �S be generalized non-dependent, weakly normalizing,and clean, and s 2 S be negatable. For all k 2 V and M 2 Terms�:M :s� k 2 SN�) M 2 SN� :Proof. By lexicographic induction on hi; ji, where i is the length of thelongest reduction from M :s� k and j is the size of M . We split into casesaccording to the structure of M .1. M � x M1 : : : Mn, where n � 0. If n = 0, M � x 2 SN�. If n � 1, letM 0i = � Mi;s� if Mi 2 TermshMiis if Mi 2 Neus:Also, for certain F1; : : : ; Fn, letKn+1 � kKi � �ji:Fi : jiM 0i Ki+1 1 � i � n:Then M :s� k � x K1:Since M :s� k 2 SN�, also M 0i 2 SN� for all i. By Lemma 3.3.11 and theinduction hypothesis, Mi 2 SN�. Therefore M 2 SN�.2. M � s0. Then s0 2 SN�.3. M � �x:A: B. Similar to Case 1.4. M � �x:A : B. Similar to Case 1.

3.5. Strong normalization from weak normalization 1435. M � (�x : A : B)M1 : : : Mn, where n � 1. Let M 0i and Ki be as inCase 1. ThenM :s� k � K1 �x:h[A]is : �h:E : �x h[A]is (B :s(�;x:A) h) x!!� �x h[A]is (B :s(�;x:A) K2)fx :=M 01gM 01!!� �x h[A]is (Bfx :=M1g :s� K2)M 01� �x h[A]is (Bfx :=M1gM2 : : :Mn :s� k)M 01:By Lemma 3.3.11, A 2 SN�. Also, Bfx :=M1gM2 : : :Mn :s� k 2 SN�and M 01 2 SN� . Moreover, by Lemma 3.3.11 and the induction hy-pothesis Bfx := M1g M2 : : :Mn 2 SN� and M1 2 SN�. Therefore,(�x:A : B)M1 : : :Mn 2 SN�, by Lemma 3.5.5. ut3.5.8. Lemma. Let �S be generalized non-dependent, weakly normalizing,and clean, and s 2 S be negatable. For all M 2 Terms�:[M]s� !!� M ;s� :Proof. By induction on M using Lemma 3.5.3(i). ut3.5.9. Proposition. Let �S be generalized non-dependent, weakly normal-izing, and clean, and s 2 S be negatable. For all M 2 Terms�:[M]s� 2 SN�) M 2 SN�:Proof. By Lemma 3.5.7 and Lemma 3.5.8. ut3.5.2. A conservation resultIn this subsection we prove a version of the conservation theorem for expres-sions (see Chapter 1).3.5.10. Definition. Let K !` L mean that K !� L by a left-most reduc-tion.3.5.11. Definition. Let �S be generalized non-dependent. An s 2 S issecure if, for all N 2 Neus, N 2 SN�.3.5.12. Lemma. Let �S be generalized non-dependent, s 2 S be secure, andM 2 Terms. Then there is an N such that:M 2WN�) M !!` N 2 NF�:Proof. Rather than derive the result by the usual technique for untyped�-terms we use erasing to infer the result from the one for untyped �-terms.Let L be the language generated by the grammar:L ::= V j S j �V:L j L L j�V:L: L;

144 Chapter 3. Normalization in Pure Type Systemsand let j � j : E ! L be the forgetful map:jxj = xjsj = sjt uj = jtj jujj�x : A:tj = �x:jtjj�x : A:Bj = �x : jAj:jBjIn terms of reduction, L is isomorphic to the set of untyped �-terms|wecan view �x:A:B as xAB. The relation!�� on L is the compatible closureof the rule (�x:b) a �� bfx := ag:For every K 2 E show by induction on K thatK !� L) jKj !�� jLj (4):For every K 2 L, show by induction on K thatK 2 NF�) jKj 2 NF�� : (+)In the converse direction, show for all N 2 Terms, by induction on N ,jN j 2 NF��) N 2 SN�: (�)We write K !`� L if K !�� L by a left-most reduction. Finally, provefor all N 2 Terms,jN j !`� K) 9N 0 : N !!` N 0 & jN 0j � K: (2)by induction on N using (�), splitting into cases according to Lemma 3.5.6.Since M 2 WN�, also jM j 2 WN�� by (4) and (+). This result impliesthat left-most ��-reduction of jM j terminates in a normal form, i.e., thatjM j !!`� N 2 NF��|see Section 1.7.6. By (2), M !!` M 0 & jM 0j � N forsome M 0 2 SN�. Hence M !!` M 0 !!` M 00 2 NF�, by (�). ut3.5.13. Remark. The idea in the proof of Lemma 3.5.12 of studying domain-free expressions (elements of L) to prove properties about expressions (el-ements of E) appears also in [38] and [14]. In the latter paper, so-calleddomain-free pure type systems are introduced, allowing properties aboutlegal expressions to be inferred from properties about legal domain-free ex-pressions.3.5.14. Definition. Let �S be generalized non-dependent and s 2 S.I-Terms = fM 2 Terms [Neus jM � �x:A : B 2 Terms) x 2 FV(B)g:

3.5. Strong normalization from weak normalization 1453.5.15. Proposition. Let �S be generalized non-dependent, s 2 S secure.For all M 2 I-Terms: M 2WN�) M 2 SN� :Proof. By Lemma 3.5.12 we may proceed by induction on lexicographi-cally ordered pairs hm;Mi, where m is the length of the left-most reductionsequence to normal-form of M .1. M � x M1 : : :Mn. Then M1; : : : ;Mn 2 WN�. M1; : : : ;Mn 2 I-Terms,so by the induction hypothesis, M1; : : : ;Mn 2 SN�, so M 2 SN�.2. M �0 s. Then M 2 SN� .3. M � �x:A: B. Similar to Case 1.4. M � (�x : A : M0)M1 : : :Mn. If n = 0, proceed as in Case 1. Nowassume n > 0. If M 2 Neus, then M 2 SN�, so assume M 2 Terms.Then, M !` M0fx := M1gM2 : : : Mn 2 Terms \ I-Terms \WN�. Bythe induction hypothesis, M0fx := M1gM2 : : :Mn 2 SN� . Also, since�x:A : M0 2 Terms, x 2 FV(M0), so M1 2 SN�. Then M 2 SN� byLemma 3.5.5. ut3.5.3. Strong normalization from weak normalizationIn this subsection we �nally show that�S j=WN�) �S j= SN�;provided �S is generalized non-dependent, clean and negatable.3.5.16. Lemma. Let �S be generalized non-dependent, weakly normalizingand clean, and s 2 S secure and negatable. For M 2 Terms�:[M]s� 2WN�) M 2 SN�:Proof. By Proposition 3.5.15 and 3.5.9, noting that [M]s� 2 I-Terms. ut3.5.17. Lemma. Let �S be generalized non-dependent.(i) For all s 2 S>, s 2 SN�.(ii) For all s 2 S>, and M 2 Types, M 2 SN�.Proof. (i) is trivial. (ii) is by induction on M using Lemma 3.2.31. ut3.5.18. Lemma. Let �S be generalized non-dependent and weakly normaliz-ing, and s 2 S secure. If s 2 S is irrelevant thenM 2 Terms) M 2 SN� :

146 Chapter 3. Normalization in Pure Type SystemsProof. Assume that M 2 Terms and s is irrelevant. We show that thenM is not an application. The result then follows by induction on M usingProposition 3.2.32.So, suppose � ` K L : C : s for some K;L;C. Then, by generation� ` K : �x:A: B : s for some �x:A: B. By generation again, there is some(s1; s) 2 R, contradicting irrelevance of s. ut3.5.19. Remark. Let �S be generalized non-dependent, s 2 S. There is noin�nite sequence s � s0 : s1 : s2 : : : with (s0; s1); (s1; s2); : : : 2 A since �S isstrati�ed. In fact, by functionality it easily follows that there is an n suchthat for any sequence s � s0 : s1 : : : : : sm�1 : sm (�)with (s0; s1); (s1; s2); : : : ; (sm�1; sm) 2 A, m � n.Let l(s) denote the least n such that for any sequence of form (�), m � n.3.5.20. Theorem. Let �S belong to the (in�nite) class of generalized non-dependent, clean, and negatable.�S j=WN�) �S j= SN�:Proof. Suppose �S j= WN�. We prove that for any legal expression M ,M 2 SN�. If M 2 S> or M 2 Types for some s 2 S>, then M 2 SN�, byLemma 3.5.17. By Proposition 3.2.26 it su�ces to show for all s 2 S:M 2 Terms) M 2 SN�:We proceed by induction on l(s).1. l(s) = 0. Then s 2 S>. If N 2 Neus, then N 2 Types, so N 2 SN�, byLemma 3.5.17. Thus, s is secure. Now let M 2 Terms, i.e., M 2 Terms�for some �. If s is irrelevant, then M 2 SN� , by Lemma 3.5.18. If s isrelevant, then s is also negatable. By Proposition 3.4.13, [M]s� 2 Terms,so [M]s� 2WN� by assumption. Then M 2 SN�, by Lemma 3.5.16.2. l(s) > 0. If N 2 Neus, then N 2 Types0 for some s � s0 2 S> andthen N 2 SN�, or N 2 Terms0 where s < s0, and then N 2 SN� by theinduction hypothesis. Thus s is secure. Now proceed as in Case 1. ut3.5.21. Corollary. If �S is any of �!; �2; �!; �!; �HOL; �U�; �U , then�S j=WN�) �S j= SN�:

3.6. Conclusion 1473.6. ConclusionWe have shown that for any generalized non-dependent (see 3.2.21) PTSthat is also clean (see 3.4.2) and negatable (see 3.3.1), weak normalizationimplies strong normalization. For dependent systems the technique runs intodi�culties due to its use of the CPS translation|see [12]. In a nut-shell,the CPS-translation of a term involves the CPS-translation of a type of theterm. If types may not contain terms, then we can de�ne CPS-translationof types �rst. However, if types may contain terms, we must use a singletranslation working on both forms of objects, and|unfortunately|thereis no guarantee that our de�nition is \well-founded," since a term may besmaller than some of its types.It is possible to generalize further the notion of non-dependence. In thischapter we have considered the order �A and made certain requirementsrelative to that. We might consider an order � which extends �A by relatingsorts that are incomparable with respect to �A. For instance, Berardi's [16]formulation of the logic cube consists of the eight PTSs �S, where(i) S = f�p;2p; �s;2sg.(ii) A = f(�s;2s); (�p;2p)g.(iii) R is given for each system in the table:�PROP (�p; �p)�PROP2 (�p; �p) (2p; �p)�PROP! (�p; �p) (2p;2p)�PROP! (�p; �p) (2p; �p) (2p;2p)�PRED (�p; �p) (�s; �p) (�s;2p)�PRED2 (�p; �p) (2p; �p) (�s; �p) (�s;2p)�PRED! (�p; �p) (2p;2p) (�s; �p) (�s;2p)�PRED! (�p; �p) (2p; �p) (2p;2p) (�s; �p) (�s;2p)For these systems, one might de�ne s1 < s2 for s1 2 f�p;2pg, s2 2 f�s;2sg.Note that with this understanding of the relation <, all of the above systemsbecome strati�ed. With a slight modi�cation of the notion of cleanliness andthe associated technique for choosing types for fresh variables, one can usethis idea to show that weak normalization implies strong normalization alsofor the systems �PRED! and �PRED! of Berardi's logic cube.However, the extended technique does not work for the two systems�PRED and �PRED2: the sort 2p is not negatable. Moreover, the extendedtechnique does not work in any of the systems in the right hand side ofBarendregt's [4] or Geuvers' [38, 37] version of the logic cube.4 Finally, the4Barendregt's version di�ers from Berardi's in two ways: in the �rst four systems theaxiom (�s;2s) is omitted|this is not an essential di�erence|and the last four systemshave extra sort �f and rules (�s; �s; �f), (�s; �f ; �f) violating persistence. Geuvers' version

148 Chapter 3. Normalization in Pure Type Systemsextended technique does not apply to �C or the other systems in the righthand side of the �-cube: strati�cation still fails.Another way to extend the class of systems for which the Barendregt-Geuvers-Klop conjecture is true is to attack the problem from the other side:instead of extending our technique to prove�S j= WN�) �S j= SN� (�)for increasingly large systems, we can show that (�) for some systems followsfrom (�) of smaller systems. Translations which eliminate dependent types,but preserve reductions [45, 39], might be generalized to classes of pure typesystems with such applications in mind.A problem related to the Barendregt-Geuvers-Klop conjecture is the so-called K-conjecture [8]. It states that for any PTS �S,�S j= SN�) ��S j= SN��;where ��S is the system arising by addition of the rules� `K A : B � `K C : D� `K KA C : B� `K A : B � `K B0 : s� `K A : B0 if B =� B0:where K is a constant and !� and =� are the obvious closures of the ruleKA B � A:It seems that the techniques in this chapter can be used to solve the K-conjecture for the generalized non-dependent systems which are also cleanand negatable. This will be addressed elsewhere.
di�ers from Berardi's in that the last two systems have the additional rule (2p; �s) violatingstrati�cation. For more on the correspondence between traditional formulations of logicsand formulations as pure type systems, and between the �-cube and the logic-cube, see [4,16, 131, 38, 37].

Bibliography
[1] S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Handbookof Logic in Computer Science, volume II. Oxford University Press,1992.[2] Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler.A call-by-need lambda-calculus. In Conference Record of the AnnualACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages, pages 233{246. ACM Press, 1995.[3] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.North-Holland, second, revised edition, 1984.[4] H.P. Barendregt. Lambda calculi with types. In Abramsky et al. [1],pages 117{309.[5] H.P. Barendregt, J. Bergstra, J.W. Klop, and H. Volken. Degrees,reductions and representability in the lambda calculus. Technical Re-port Preprint 22, University of Utrecht, Department of Mathematics,1976.[6] H.P Barendregt, J.R. Kennaway, J.W. Klop, and M.R. Sleep. Neededreduction and spine strategies for the lambda calculus. Informationand Computation, 75(3):191{231, 1987.[7] E. Barendsen. Types and Computations in Lambda Calculi and GraphRewrite Systems. PhD thesis, University of Nijmegen, 1995.[8] G. Barthe. Extensions of pure type systems. In Dezani-Ciancagliniand Plotkin [32], pages 16{31.[9] G. Barthe, J. Hatcli�, and M.H. S�rensen. Classical pure type sys-tems. In S. Brookes, M. Main, A. Melton, and M. Mislove, editors,Mathematical Foundations of Programming Semantics, volume 6 ofElectronic Notes in Computer Science. Elsevier, 1997.149

150 Bibliography[10] G. Barthe, J. Hatcli�, and M.H. S�rensen. CPS translations and appli-cations: the cube and beyond. In O. Danvy, editor, ACM SIGPLANWorkshop on Continuations, number NS-96-13 in BRICS Notes Series,pages 4:1{31, 1997.[11] G. Barthe, J. Hatcli�, and M.H. S�rensen. Weak normalization impliesstrong normalization in generalized non-dependent pure type systems.Submitted for publication, 1997.[12] G. Barthe, J. Hatcli�, and M.H. S�rensen. CPS translations and ap-plications: the cube and beyond. Submitted for publication, 1998.Extended version of [10].[13] G. Barthe, J. Hatcli�, and M.H. S�rensen. An induction principle forpure type systems. Submitted for publication, 1998.[14] G. Barthe and M.H. S�rensen. Domain-free pure type systems. InS. Adian and A. Nerode, editors, Symposium on Logical Foundations ofComputer Science, volume 1234 of Lecture Notes in Computer Science,pages 9{20. Springer-Verlag, 1994.[15] G. Barthe and M.H. S�rensen. Domain-free pure type systems. Sub-mitted for publication, 1998. Extended version of [14].[16] S. Berardi. Type Dependence and Constructive Mathematics. PhDthesis, Universita di Torino, 1990.[17] J.A. Bergstra and J.W. Klop. Church-Rosser strategies in the lambdacalculus. Theoretical Computer Science, 9:27{38, 1979.[18] J.A. Bergstra and J.W. Klop. Strong normalization and perpetualreductions in the lambda calculus. Journal of Information Processingand Cybernetics, 18:403{417, 1982.[19] M. Bezem and J.F. Groote, editors. Typed Lambda Calculus and Appli-cations, volume 664 of Lecture Notes in Computer Science. Springer-Verlag, 1993.[20] R. Bloo, F. Kammareddine, and R. Nederpelt. The Barendregt cubewith de�nitions and generalised reduction. Information and Compu-tation, 126(2):123{143, 1996.[21] C. B�ohm, M. Coppo, and M. Dezani-Ciancaglini. Termination testsinside �-calculus. In A. Salomaa and M. Steinby, editors, �-Calculusand Computer Science Theory, volume 37 of Lecture Notes in Com-puter Science, pages 95{110. Springer-Verlag, 1975.

Bibliography 151[22] C. B�ohm and M. Dezani-Ciancaglini. �-terms as total or partial func-tions on normal forms. In C. B�ohm, editor, �-Calculus and ComputerScience Theory, volume 52 of Lecture Notes in Computer Science,pages 96{121. Springer-Verlag, 1975.[23] V. Capretta and S. Valentini. A general method to prove the normal-ization theorem for �rst and second order typed �-calculi. To appearin Mathematical Structures in Computer Science.[24] A. Church. The Calculi of Lambda-Conversion. Princeton UniversityPress, Princeton, N. J., 1941.[25] A. Church and J.B. Rosser. Some properties of conversion. Transac-tions of the American Mathematical Society, 39:11{21, 1936.[26] C. Consel and O. Danvy. For a better support of static data ow. InJ. Hughes, editor, Conference on Functional Programming and Com-puter Architecture, volume 523 of Lecture Notes in Computer Science,pages 495{519. Springer-Verlag, 1991.[27] T. Coquand and H. Herbelin. A-translation and looping combinatorsin pure type systems. Journal of Functional Programming, 4(1):77{88,1994.[28] Pierre-Louis Curien. Alg�ebre universelle, introduction au �-calcul etaux logiques combinatoires (notes de cours). Technical Report LIENS-95-30, Ecole Normale Sup�eriere, 1995.[29] H.B. Curry and R. Feys. Combinatory Logic. North-Holland, 1958.[30] N.G. de Bruijn. A survey of the project AUTOMATH. In Seldin andHindley [116], pages 579{606.[31] P. de Groote. The conservation theorem revisited. In Bezem andGroote [19], pages 163{178.[32] M. Dezani-Ciancaglini and G. Plotkin, editors. Typed Lambda Calculusand Applications, volume 902 of Lecture Notes in Computer Science.Springer-Verlag, 1995.[33] A. Filinski. Representing monads. In Conference Record of the AnnualACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages, pages 446{457. ACM Press, 1994.[34] J.H. Gallier. On Girard's \candidats de reductibilit�e". In P. Odd-ifreddi, editor, Logic and Computer Science, pages 123{203. AcademicPress Limited, 1990.

152 Bibliography[35] R.O. Gandy. An early proof of normalization by A.M. Turing. InSeldin and Hindley [116], pages 453{455.[36] R.O. Gandy. Proofs of strong normalization. In Seldin and Hindley[116], pages 457{477.[37] J.H. Geuvers. Conservativity between logics and typed lambda-calculi.In H. Barendregt and T. Nipkow, editors, Types for Proofs and Pro-grams, volume 806 of Lecture Notes in Computer Science, pages 79{107. Springer-Verlag, 1993.[38] J.H. Geuvers. Logics and Type Systems. PhD thesis, University ofNijmegen, 1993.[39] J.H. Geuvers and M.J. Nederhof. A modular proof of strong nor-malization for the calculus of constructions. Journal of FunctionalProgramming, 1(2):155{189, 1991.[40] S. Ghilezan. Application of typed lambda calculi in the untypedlambda calculus. In A. Nerode and Yu.V. Matiyasevich, editors, Sym-posium on Logical Foundations of Computer Science, volume 813 ofLecture Notes in Computer Science, pages 129{139. Springer-Verlag,1994.[41] J.-Y. Girard. Interpr�etation fonctionelle et �elimination des coupuresdans l'arithm�etique d'ordre sup�erieur. PhD thesis, Universit�e ParisVII, 1972.[42] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7of Cambridge Tracts in Theoretical Computer Science. CambridgeUniversity Press, 1989.[43] B. Gramlich. Termination and Conuence Properties of StructuredRewrite Systems. PhD thesis, Fachbereich Informatik der Universit�atKaiserslautern, 1996.[44] T.G. Gri�n. A formulae-as-types notion of control. In ConferenceRecord of the Annual ACM SIGPLAN-SIGACT Symposium on Prin-ciples of Programming Languages, pages 47{58. ACM Press, 1990.[45] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics.In Logic in Computer Science, pages 194{204, 1987.[46] R. Harper and M. Lillibridge. Explicit polymorphism and CPS conver-sion. In Conference Record of the Annual ACM SIGPLAN-SIGACTSymposium on Principles of Programming Languages, pages 206{219.ACM Press, 1993.

Bibliography 153[47] J. Hatcli� and O. Danvy. Thunks and the lambda calculus. Tech-nical Report 95/3, Department of Computer Science, University ofCopenhagen, 1995.[48] J.R. Hindley. Reductions of residuals are �nite. Transactions of theAmerican Mathematical Society, 240:345{361, 1978.[49] J.R. Hindley. BCK-combinators and linear �-terms have types. The-oretical Computer Science, 64:97{105, 1989.[50] J.R. Hindley and J.P. Seldin. Introduction to Combinators and �-calculus. Cambridge University Press, 1986.[51] F. Honsell and M. Lenisa. Some results on the full abstractionproblem for restricted lambda calculi. In A.M. Borzyszkowski andS. Sokolowski, editors, Symposium on Mathematical Foundations ofComputer Science, volume 711 of Lecture Notes in Computer Science,pages 84{104. Springer-Verlag, 1993.[52] W. Howard. The formulae-as-types notion of construction. In Seldinand Hindley [116], pages 479{490.[53] W. Howard. Ordinal analysis of terms of �nite type. Journal of Sym-bolic Logic, 45(3):493{504, 1980.[54] G. Huet and J.-J. L�evy. Call by need computations in non-ambiguouslinear term rewriting systems. Preprint 359, INRIA, 1979.[55] J.M.E. Hyland. A simple proof of the Church-Rosser theorem. OxfordUniversity, 1973.[56] B. Jacobs. Semantics of lambda-I and of other substructure calculi.In Bezem and Groote [19], pages 195{208.[57] F. Kammareddine. A reduction relation for which postponement ofk-contractions, conservation, and preservation of strong normalisationhold. Technical report, Glasgow University, 1996.[58] F. Kammareddine and R. Nederpelt. A uni�ed approach to typetheory through a re�ned �-calculus. Theoretical Computer Science,136:183{216, 1994.[59] F. Kammareddine and R. Nederpelt. Re�ning reduction in the lambdacalculus. Journal of Functional Programming, 5(4):637{651, 1995.[60] F. Kammareddine and R. Nederpelt. A useful �-notation. TheoreticalComputer Science, 155:85{109, 1996.

154 Bibliography[61] F. Kammareddine and A. R��os. Generalized �-reduction and explicitsubstitution. In H. Kuchen and D.S. Swierstra, editors, ProgrammingLanguages: Implementations, Logics and Programs, volume 1140 ofLecture Notes in Computer Science, pages 378{392. Springer-Verlag,1996.[62] M. Karr. \Delayability" in proofs of strong normalizability in thetyped lambda calculus. In H. Ehrig, C. Floyd, M. Nivat, andJ. Thatcher, editors,Mathematical Foundations of Computer Software,volume 185 of Lecture Notes in Computer Science, pages 208{222.Springer-Verlag, 1985.[63] A. Kfoury and J. Tiuryn. Type reconstruction in �nite-rank frag-ments of the second-order �-calculus. Information and Computation,98(2):228{257, 1992.[64] A. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML-typability.Journal of the Association for Computing Machinery, 41(2):368{398,1994.[65] A.J. Kfoury and J. Wells. A direct algorithm for type inference in therank-2 fragment of second-order �-calculus. In ACM Conference onLisp and Functional Programming, 1994.[66] A.J. Kfoury and J. Wells. New notions of reduction and non-semanticproofs of �-strong normalization in typed �-calculi. Technical Report94-01, Boston University Computer Science Department, 1994. Alsoin Logic in Computer Science, 1995.[67] A.J. Kfoury and J. Wells. Addendum to \new notions of reductionand non-semantic proofs of �-strong normalization in typed �-calculi".Technical Report 95-007, Boston University Computer Science Depart-ment, 1995.[68] Z. Khasidashvili. �-reductions and �-developments with the least num-ber of steps. In P. Martin-L�of and G. Mints, editors, InternationalConference on Computer Logic, volume 417 of Lecture Notes in Com-puter Science, pages 105{111. Springer-Verlag, 1988.[69] Z. Khasidashvili. Form Reduction Systems and Reductions of Con-tracted Forms and Lambda-Terms. PhD thesis, Tbilisi State Univer-sity, 1988. In Russian.[70] Z. Khasidashvili. Optimal normalization in orthogonal term rewrit-ing systems. In C. Kirchner, editor, Rewriting Techniques and Ap-plications, volume 690 of Lecture Notes in Computer Science, pages243{258. Springer-Verlag, 1993.

Bibliography 155[71] Z. Khasidashvili. The longest perpetual reductions in orthogonal ex-pression reduction systems. In A. Nerode and Yu. V. Matiyasevich, ed-itors, Symposium on Logical Foundations of Computer Science, volume813 of Lecture Notes in Computer Science, pages 191{203. Springer-Verlag, 1994.[72] Z. Khasidashvili. On higher order recursive program schemes. InS. Tison, editor, Colloquium on Trees in Algebra and Programming,volume 787 of Lecture Notes in Computer Science, pages 172{186.Springer-Verlag, 1994.[73] Z. Khasidashvili and J. Glauert. Discrete normalization and stan-dardization in deterministic residual structures. In S. Tison, editor,Algebraic and Logic Programming, volume 1139 of Lecture Notes inComputer Science, pages 135{149. Springer-Verlag, 1996.[74] Z. Khasidashvili and M. Ogawa. Perpetuality and uniform normaliza-tion. In M. Hanus and J. Heering, editors, Algebraic and Logic Pro-gramming, volume 1298 of Lecture Notes in Computer Science, pages240{255. Springer-Verlag, 1997.[75] S.C. Kleene. Origins of recursive function theory. Annals of the Historyof Computing, 3(1):52{67, 1981.[76] J.W. Klop. Combinatory Reduction Systems. PhD thesis, UtrechtUniversity, 1980. Volume 127 of CWI Tracts, Amsterdam.[77] J.W. Klop. Term rewriting systems. In Abramsky et al. [1], pages1{116.[78] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatoryreduction systems, introduction and survey. Theoretical ComputerScience, 121(1-2):279{308, 1993. Special issue in honour of CorradoB�ohm.[79] Y. Komori. BCK-algebras and lambda calculus. In Proceedings of the10th Symposium on Semigroups, pages 5{11. Josai University, Sakado,1987.[80] J.-L. Krivine. Lambda-Calculus, Types and Models. Ellis Horwood Se-ries in Computers and their Applications. Masson and Ellis Horwood,English Edition, 1993.[81] D. Leivant. Syntactic translations and provably recursive functions.Journal of Symbolic Logic, 50(3):682{688, 1985.[82] B. Lercher. Lambda-calculus terms that reduce to themselves. NotreDame Journal of Formal Logic, XVII(2):291{292, 1976.

156 Bibliography[83] J.-J. L�evy. R�eductions correctes et optimales dans le lambda-calcul.PhD thesis, Universit�e de Paris VII, 1978.[84] J.-J. L�evy. Optimal reductions in the lambda-calculus. In Seldin andHindley [116], pages 159{191.[85] R. Loader. Normalisation by translation. Presented at the BRATYPES workshop, Turin, 1995.[86] P.-A. Melli�es. Description Abstraite des Syst�emes de R�e�ecriture. PhDthesis, Universit�e Paris VII, 1996. Th�ese de doctorat.[87] A.R. Meyer and M. Wand. Continuation semantics in typed lambda-calculi (summary). In R. Parikh, editor, Logics of Programs, volume193 of Lecture Notes in Computer Science, pages 219{224. Springer-Verlag, 1985.[88] J.C. Mitchell. Type inference and simple subtypes. Journal of Func-tional Programming, 1(3):245{285, 1991.[89] G. Mitschke. The standardization theorem in �-calculus. Zeitschriftf�ur Mathematischen Logik und Grundlagen der Mathematik, 25:29{31,1979.[90] E. Moggi. Computational lambda-calculus and monads. In Logic inComputer Science, pages 14{23. IEEE Computer Society Press, 1989.[91] E. Moggi. Notions of computation and monads. Information andComputation, 93:55{92, 1991.[92] R. Nederpelt. Strong normalization for a typed lambda calculus withlambda structured types. PhD thesis, Eindhoven, 1973.[93] R. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Pa-pers on Automath. Elsevier Science B.V., 1994.[94] V. van Oostrom. Conuence for Abstract and Higher-Order Rewriting.PhD thesis, Vrije Universiteit Amsterdam, 1994.[95] V. van Oostrom. Take �ve. IR-406, Vrije Universiteit Amsterdam,1996.[96] V. van Oostrom. Finite family developments. In H. Comon, editor,Rewriting Techniques and Applications, volume 1232 of Lecture Notesin Computer Science, pages 308{322. Springer-Verlag, 1997.[97] V. van Oostrom and F. van Raamsdonk. Comparing combinatoryreduction systems and higher-order rewrite systems. In J. Heering,K. Meinke, B. M�oller, and T. Nipkow, editors, Higher Order Algebra,

Bibliography 157Logic and Term Rewriting, volume 816 of Lecture Notes in ComputerScience. Springer-Verlag, 1994.[98] M. Parigot. Internal labellings in lambda-calculus. In B. Rovan, ed-itor, Symposium on Mathematical Foundations of Computer Science,volume 452 of Lecture Notes in Computer Science, pages 439{445.Springer-Verlag, 1990.[99] D.A. Plaisted. Polynomial time termination and constraint satisfac-tion tests. In C. Kirchner, editor, Rewriting Techniques and Applica-tions, volume 690 of Lecture Notes in Computer Science, pages 405{420. Springer-Verlag, 1993.[100] G. Plotkin. Call-by-name, call-by-value and the �-calculus. TheoreticalComputer Science, 1:125{159, 1975.[101] J. van de Pol. Termination proofs for higher-order rewrite systems.In J. Heering et al., editor, Higher Order Algebra, Logic and TermRewriting, volume 816 of Lecture Notes in Computer Science, pages305{325. Springer-Verlag, 1994.[102] J. van de Pol. Termination of Higher-Order Rewrite Systems. PhDthesis, University of Utrecht, 1996. Volume 16 of Questiones In�nitae.[103] J. van de Pol and H. Schwichtenberg. Strict functionals for terminationproofs. In Dezani-Ciancaglini and Plotkin [32], pages 350{364.[104] D. Prawitz. Natural Deduction: A proof theoretical study. Almquist& Wiksell, 1965.[105] F. van Raamsdonk. Conuence and Normalisation for Higher-OrderRewriting. PhD thesis, Vrije Universiteit Amsterdam, 1996.[106] F. van Raamsdonk and P. Severi. On normalisation. Technical ReportCS-R9545, CWI, 1995.[107] F. van Raamsdonk, P. Severi, M.H.B. S�rensen, and H. Xi. Perpetualreductions in �-calculus. Information and Computation, 1998. Toappear.[108] L. Regnier. Une �equivalence sur les lambda-termes. Theoretical Com-puter Science, 126:281{292, 1994.[109] J.C. Reynolds. The discoveries of continuations. LISP and SymbolicComputation, 6:233{248, 1993.[110] J.B. Rosser. Highlights of the history of the lambda-calculus. Annalsof the History of Computing, 6(4):337{349, 1984.

158 Bibliography[111] A. Sabry. A reection on call-by-value. In International Conferenceon Functional Programming, pages 13{24. ACM Press, 1996.[112] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style. Lisp and Symbolic Computation, 6:289{360, 1993.[113] D.E. Schroer. The Church-Rosser Theorem. PhD thesis, Cornell Uni-versity, 1965.[114] H. Schwichtenberg. Complexity of normalization in the pure typedlambda-calculus. In A.S. Troelstra and D. van Dalen, editors,The L.E.J. Brouwer Centenary Symposium, pages 453{457. North-Holland, 1982.[115] H. Schwichtenberg. An upper bound for reduction sequences in thetyped lambda-calculus. Archive for Mathematical Logic, 30:405{408,1991.[116] J.P. Seldin and J.R. Hindley, editors. To H.B. Curry: Essays onCombinatory Logic, Lambda Calculus and Formalism. Academic PressLimited, 1980.[117] P. Severi. Normalisation in Lambda Calculus and its relation to TypeInference. PhD thesis, Eindhoven University of Technology, 1996.[118] M.H. S�rensen. Embeddings and in�nite reduction paths in untyped�-calculus. Presented at the second International Workshop on Ter-mination, La Bresse, France, 1995.[119] M.H. S�rensen. E�ective longest and in�nite reduction paths in un-typed �-calculi. In H. Kirchner, editor, Colloquium on Trees in Algebraand Programming, volume 1059 of Lecture Notes in Computer Science,pages 287{301. Springer-Verlag, 1996.[120] M.H. S�rensen. Properties of in�nite reduction paths in untyped �-calculus. In J. Ginzburg, Z. Khasidashvili, J.J. L�evy, E. Vogel, andE. Vallduv��, editors, Proceedings of the Tbilisi Symposium on Lan-guage, Logic, and Computation, CLSI Lecture Notes, 1996. To appear.[121] M.H. S�rensen. Strong normalization from weak normalization intyped �-calculi. Information and Computation, 133(1):35{71, 1997.[122] M.H. S�rensen. A note on shortest developments. Submitted for pub-lication, 1998.[123] J. Springintveld. Lower and upper bounds for reductions of types in�! and �P . In Bezem and Groote [19], pages 391{405.

Bibliography 159[124] R. Statman. A local translation of untyped � calculus into simplytyped � calculus. Research Report 91-134, Carnegie-Mellon University,1991.[125] W.W. Tait. Intensional interpretations of functionals of �nite type I.Journal of Symbolic Logic, 32(2):190{212, 1967.[126] W.W. Tait. A realizability interpretation of the theory of species. InR. Parikh, editor, Logic Colloquium, volume 453 of Lecture Notes inMathematics, pages 240{251. Springer-Verlag, 1975.[127] M. Takahashi. Parallel reductions in �-calculus. Information andComputation, 118:120{127, 1995.[128] J. Terlouw. Reduction of higher type levels by means of an ordinalanalysis of �nite terms. Annals of Pure and Applied Logic, 28:73{102,1985.[129] J. Terlouw. Strong normalization in type systems: a model theoreticalapproach. Annals of Pure and Applied Logic, 73:53{78, 1995.[130] J. Terlouw. A proof of strong normalization for generalized la-beled �-reduction by means of Howard's successor relation method.Manuscript, Rijksuniversiteit Groningen, the Netherlands, February1998.[131] T. Tonino and K.-E. Fujita. On the adequacy of representing higherorder intuitionistic logic as a pure type system. Annals of Pure andApplied Logic, 57:251{276, 1992.[132] A.S. Troelstra.Metamathematical Investigation of Intuitionistic Arith-metic and Analysis, volume 344 of Lecture Notes in Mathematics.Springer-Verlag, 1973.[133] P. Urzyczyn. Positive recursive type assigment. In J. Wiedermann andP. H�ajek, editors, Mathematical Foundations of Computer Science,volume 969 of Lecture Notes in Computer Science, pages 382{391.Springer-Verlag, 1995.[134] D. Vidal. Nouvelles Notions de R�eduction en Lambda Calcul. PhDthesis, Universit�e de Nancy, 1989.[135] R.C. de Vrijer. A direct proof of the �nite developments theorem.Journal of Symbolic Logic, 50:339{343, 1985.[136] R.C. de Vrijer. Exactly estimating functionals and strong normaliza-tion. Koninklijke Nederlandse Akademie van wetenschappen, 90(4),1987. Also appeared as [137].

160 Bibliography[137] R.C. de Vrijer. Exactly estimating functionals and strong normaliza-tion. Indagationes Mathematicae, 49:479{493, 1987.[138] R.C. de Vrijer. Surjective Pairing and Strong Normalization: TwoThemes in Lambda Calculus. PhD thesis, University of Amsterdam,1987.[139] B. Werner. Continuations, evaluation styles and types systems.Manuscript, 1992.[140] H. Xi. An induction measure on �-terms and its applications. ResearchReport 96-192, Department of Mathematical Sciences, Carnegie Mel-lon University, 1996.[141] H. Xi. On weak and strong normalisations. Research Report 96-187,Department of Mathematical Sciences, Carnegie Mellon University,1996.[142] H. Xi. Separating developments. Manuscript, 1996.[143] H. Xi. Upper bounds for standardization and an application. Toappear in the Journal of Symbolic Logic. An earlier version appearedin the Proceedings of the 5th Kurt G�odel Colloquium, volume 1289 ofLecture Notes in Computer Science, pages 335{348, Springer-Verlag,1997.[144] H. Xi. Weak and strong beta normalisations in typed �-calculi. InP. de Groote and J.R. Hindley, editors, Typed Lambda Calculus andApplications, volume 1210 of Lecture Notes in Computer Science,pages 390{404. Springer-Verlag, 1997.

Index
SN-substitution, 53neutral, 54�-contractum, 2�-normal form, 3�-redex, 2�-reduction, 2, 107non-erasing, 74
-theorem, 34�-redex, 3�-reduction, 3�I-calculus, 4�K-calculus, 4�-calculus, 1�-cube, 107�-term, 1I, 1K, 1K�, 1
, 3!, 3Church-Rosser, 15�nitely branching, 15good, 54labeled, 42legal, 100, 101normal form, 15, 73simply typed, 38strongly normalizing, 4, 15, 73typable, 94weakly normalizing, 4, 15, 73��-calculus, 3���-calculus, 3abstraction, 1duplicating, 30

application, 1Barendregt-Geuvers-Klop conjecture,110, 146Bergstra-Klop theorem, 57Church-Rosser theorem, 2classi�cation, 112colon translation, 83, 137combinatory logic, 5conservation theorem, 145for �I, 4, 50for �K, 52for K-redexes, 56consistency, 6constructor, 101context, 94continuation passing style (CPS),83continuation passing style transla-tion, 83of terms, 131of types, 118Curry-Howard Isomorphism, 5denotational semantics, 5development, 4, 43complete, 43inside-out, 48expressionlegal, 107neutral, 114normal form, 110strongly normalizing, 110term, 112161

162 Indextype, 112weakly normalizing, 110�nite developments theorem, 4, 43,45fundamental lemma of maximal-ity, 25fundamental lemma of perpetual-ity, 21halting problem, 6higher-order typed �-calculus, 101I-redex, 51inner interpretation, 87agreeing with inner type inter-pretation, 98language determined by, 88map determined by, 87permutative, 88sound, 88inner model, 93inner type interpretation, 98K-conjecture, 148K-redex, 51kind, 101monad, 98Newman's Lemma, 6normalization theorem, 4, 60, 143polymorphic typed �-calculus, 99proof theory, 5pure type systemaxioms of, 106clean, 129contexts of, 107expressions of, 107functional, 110generalized non-dependent, 111logical non-dependent, 111negatable, 117persistent, 110rules of, 106

sorts of, 106strati�ed, 111strongly normalizing, 110variables of, 106weakly normalizing, 110pure type system (PTS), 106recursion theory, 5recursively typed �-calculus, 96redexargument of, 51body of, 51essential, 67external, 35labeled, 42maximal, 19, 58minimal, 19needed, 61perpetual, 12, 19, 52, 56, 58reduction path, 14, 73, 109canonical, 35constricting, 34length of, 14, 73longest, 15quasi-leftmost, 60shortest, 15standard, 32upper bound for length of, 28,41reduction strategy, 4, 11, 16leftmost, 22, 143limit, 27maximal, 4, 11, 17, 26minimal, 4, 11, 17normalizing, 4, 11, 17, 22partial, perpetual, 19path of, 16perpetual, 4, 11, 17, 24zoom-in, 35rule clean, 129S-term, 35second-order typed �-calculus, 99

Index 163simply typed �-calculus, 95simulation of reduction, 82sort bot-, 112generalizable, 128harmless, 129isolated, 112negatable, 117relevant, 117secure, 143top-, 112strong normalizationof simply typed �-calculus, 40substitution, 2thunki�cation, viitype, 4higher-order, 101polymorphic, 99recursive, 96second-order, 99simple, 37, 95type theory, 4strongly normalizing, 5weakly normalizing, 5type variable, 95typed �-calculus �a la Curry, 94variablebound, 1

