
Dominators in Linear Time�Stephen Alstrupy Dov Harelz Peter W. Lauridseny Mikkel ThorupyAbstractA linear time algorithm is presented for �nding dominators in control ow graphs.Key words. Control ow analysis, dominators, algorithms.AMS subject classi�cations. 68Q25, 68N20.1 IntroductionFinding the dominator tree for a control ow graph is one of the most fundamental problems in the areaof global ow analysis and program optimization [2, 3, 4, 5, 10, 15]. The problem was �rst raised in 1969by Lowry and Medlock [15], where an O(n4) algorithm for the problem was proposed (as usual, n is thenumber of nodes and m the number of edges in a graph). The result has been improved several times (seee.g. [1, 2, 17, 20]), and in 1979 an O(m�(m;n)) algorithm was found by Lengauer and Tarjan [14]. Finally, atSTOC'85, Dov Harel [11] announced a linear time algorithm. Based on Harel's result, linear time algorithmshave been found for many other problems (see e.g. [4, 5, 10]). Harel's description was, however, incomplete.In this paper, we give a complete description of a di�erent and simpler linear time dominator algorithm.The paper is divided as follows. In section 2 the main de�nitions are given. In section 3 we outline theLengauer-Tarjan algorithm and in section 4 we give a linear time dominator algorithm. Finally an appendixis included, in which we briey discuss dominators in the simpler case of reducible control ow graphs.Furthermore the appendix contains implementation details of the algorithm in section 4.2 De�nitionsA control ow graph is a directed graph G = (V;E), with jV j = n and jEj = m, in which s 2 V is a startnode, from which all nodes in V are reachable through the edges in E (see e.g. [2]). If (v; w) 2 E we saythat node v is a predecessor of node w and w is a successor of v. Node v dominates w if and only if all pathsfrom s to w pass through v. Hence, if both u and v dominates w, one of u and v dominates the other. Thusthe dominance relation is the reexive and transitive closure of a unique tree T , rooted in s. The tree T iscalled the dominator tree of G. If v is the parent of w in the dominator tree, then v immediately dominatesw, denoted as idom(w) = v.3 Lengauer and Tarjan's algorithmIn this section we outline Lengauer and Tarjan's algorithm, since the idea behind our algorithm is to optimizesubroutines used in this algorithm.Lengauer and Tarjan's algorithm [14] runs in O(m�(m;n)) time. Initially a Depth First Search (DFS) [19]is performed in the graph resulting in a DFS-tree T ; in which the nodes are assigned a DFS-number. In thispaper we will not distinguish between a node and its DFS-number. The nodes are thus ordered such thatv < w if the DFS-number of v is smaller than the DFS-number of w.�An extended abstract of this result was presented by the second author at STOC'85.yDepartment of Computer Science, University of Copenhagen. E-mail: (stephen,waern,mthorup)@diku.dk.zMicrosoft Israel Ltd., R & D Center, Matam Haifa 31905. E-mail: dovh@microsoft.com.1



The main idea of the Lengauer-Tarjan algorithm is �rst to compute the so called semidominators,sdom(v), for each node v 2 V nfsg, as an intermediate step for �nding dominators. The semidominatorof a node v is an ancestor of v de�ned assdom(v) = minfuja path u;w1; : : : ; wk ; v exists, where wi > v for all i = 1; : : : ; kg.The semidominators are found by traversing the tree T in decreasing DFS-number order while maintaininga dynamic forest, F , which is a subgraph of the DFS-tree T . The following operations should be supportedon F :� LINK(v; w): Adds the edge (v; w) 2 T to F . The nodes v and w are root nodes of trees in F .� EVAL(v): Finds the minimum key value of nodes on the path from v to the root of the tree in F , towhich v belongs1.� UPDATE(v; k): Sets key(v) to be k, where the node v must be a singleton tree.We will now give a more detailed description of the Lengauer-Tarjan algorithm. The forest F initiallycontains all nodes as singleton trees and the computation of semidominators is done as follows:� Initially we set key(v) = v for all nodes v 2 V .� The nodes are then visited in decreasing DFS-number order, i.e. v is visited before w if and only ifv > w. When visiting a node v, we call UPDATE(v; k), where k = minfEVAL(w)j(w; v) 2 Eg.� After visiting v, a call LINK(v; w) is made for all children w of v.After running this algorithm we have key(v) = sdom(v). The correctness of the algorithm (i.e. that when anode is updated, it is with the correct sdom-value), follows from the following theorem given by Lengauerand Tarjan [14, Theorem 4]:Theorem 1 For any node v 6= s, sdom(v) = min(S1SS2) where S1 = fwj(w; v) 2 E ^ w < vg andS2 = fsdom(u)ju > v ^ (w; v) 2 E ^ u is an ancestor of wg. 2To see the connection between Theorem 1 and the algorithm above consider the visit of node v in thealgorithm. Since EVAL(w) = w for w < v, S1 = fEVAL(w)j(w; v) 2 E ^ w < vg. To see that S2 =fEVAL(w)j(w; v) 2 E ^ w > vg, note that if u > v, (w; v) 2 E and u is an ancestor of w in T then u and whave already been visited. Thus u is an ancestor of w in a tree in F , so EVAL(w) includes sdom(u).Tarjan and Lengauer show that having found the semidominators, the immediate dominators can befound within the same complexity.The EVAL-LINK operations in the algorithm are performed using a slightly modi�ed version of Tarjan'sUNION-FIND algorithm for disjoint sets [21]. Since n LINK and m EVAL operations are performed thecomplexity is O(m�(m;n)). Thus a linear time algorithm can be obtained if the EVAL and LINK operationscan be performed in O(n+m) time.4 A linear time algorithmIn this section we present a linear time dominator algorithm. The overall idea is to convert the on-lineEVAL-LINK algorithm to an o�-line algorithm by exploiting the fact that the tree resulting from LINKoperations is known in advance. The inspiration for this stems from the linear UNION-FIND algorithmfor disjoint sets by Gabow and Tarjan [9]. In the Gabow-Tarjan algorithm, the tree, T , resulting from allUNION operations is known in advance. More speci�cally this means that a UNION(v; w) operations is onlypermitted if the edge (v; w) is in T . The FIND queries are then de�ned as usual, whereas UNION(v; w) is1In [14] EVAL operations only include the root of the tree in case the root is the only node in the tree. We have giventhe de�nition above to avoid confusion, as it is this de�nition which will be used in our algorithm. The Lengauer-Tarjanalgorithm presented here is therefore a slight modi�cation of the original algorithm. More speci�cally the modi�cation consistsof performing the LINK(v; w) operation when v is visited instead of when w is visited.2



de�ned as the union of the sets to which v and w belongs. The linear time is achieved by tabulating thebehavior of UNION-FIND within small \microtrees" of size O(log n).The original approach of Harel was to convert this linear UNION-FIND algorithm into an EVAL-LINKalgorithm [11]. Roughly speaking, the basic idea was to de�ne a new parameter of nodes, referred to aspseudo-dominator, which satisfy the following two conditions: (a) pseudo-dominators can be propagatedin linear time, and (b) using pseudo-dominators we can compute semidominators in linear time. Thisapproach had a couple of drawbacks, further elaborated upon in appendix B. Here we do not involvepseudo-dominators, but calculate the semidominators directly. We use, not only that we know the resultingtree-structure, but also that we know that the LINK operations come in reverse DFS-order. Instead ofconverting the linear UNION-FIND algorithm, we end up using it as a black box. Moreover, the informationneeded for tabulating EVAL is found using Fredman and Willard's Q-heaps [7], which were not available atthe time of [11]. Finally, our choice of microtrees leads to simpler calculations.To be more speci�c, we will construct an algorithm which performs the n LINK and UPDATE operationsinterspersed with m EVAL operations in O(n + m) time. As an intermediate step we will �rst present asimple algorithm with complexity O(n logn + m) and then extend it to handle a special kind of update.Next we present a faster algorithm for the case, in which the DFS-tree T is a path. The combination ofthese algorithms gives a fast algorithm for trees with few leaves. We then limit the number of leaves in Tby removing small subtrees. Finally we apply the algorithm recursively to the small subtrees in order to getsubtrees small enough for tabulation.4.1 An O(n logn +m) algorithmWe consider a forest, F ; of trees. Recall that to each node a key is associated, which initially contains theDFS-number of the node. Let Tv denote the tree in F , to which v belongs. We will use the term selfcontainedfor nodes, for which EVAL(v) = key(v). Hence a node v is selfcontained if all ancestors of v in Tv have keyvalues � key(v). Note that the de�nition implies that all root nodes in F are selfcontained. A node v stopsbeing selfcontained when Tv is linked to a root node u, for which key(u) < key(v).Lemma 1 Let nsa(v) denote the nearest selfcontained ancestor of v.(a) For any node v 2 V , we have EVAL(v) = key(nsa(v)).(b) For any node pair u; v 2 V , if nsa(v) = u at some point in the Lengauer-Tarjan algorithm, thennsa(v) = nsa(u) in the remainder of the algorithm.Proof.(a) By the de�nition of selfcontained nodes key(nsa(v)) is the least key value of nodes on the path fromnsa(v) to the root of Tv. By the same de�nition, if nodes with key values < key(nsa(v)) were on thepath from v to nsa(v) in Tv, the node with least depth among these nodes would be selfcontained.(b) By de�nition nsa(u) is the �rst selfcontained node on the path from u to the root of Tu. The fact thatnsa(v) = u implies that Tv = Tu and that all nodes on the path from v to u in Tv have key values> key(u). By the de�nition of UPDATE none of these nodes will change key values again. The nodensa(v) will therefore always be the �rst selfcontained node on the path from u to the root of Tu. 2By the second part of lemma 1 we can represent the nsa-relation e�ciently by using disjoint sets. Let eachselfcontained node, u, be the canonical element of the set fvjnsa(v) = ug. By the �rst part of lemma 1 anEVAL(v) operation is then reduced to �nding the canonical element of the set to which v belongs, henceEVAL(v) = key(SetF ind(v)).When a LINK(u; v) operation is performed, the node v will no longer be the root of Tv. Therefore a setof nodes in Tv may stop being selfcontained. Let A be this set of nodes. A node, w 2 A, is the canonicalelement of a set containing nodes, whose EVAL values change from key(w) to key(u) by lemma 1. We canthus maintain the structure by unifying the sets associated with nodes in A with the set associated with u.To �nd the set A, a heap, supporting HeapFindMax, HeapExtractMax and HeapUnion (e.g. [6, 22]), isassociated with each root of a tree in F . Each heap contains the selfcontained nodes in the tree (see �gure 1).3



1

2

4

5 6

7 10

 9

 8

 8

4 7

10

{10}

3

4 4

91

8 1

3 3

32

1

1

Heap(4)

Heap(8)

11

12 12

{4,5,6} {7}

{8,9,11} {12}Figure 1: To the left a sample DFS-tree in which the nodes are labeled by their DFS-numbers is given. The fulllines indicate the part of the tree, which has been linked, hence the node to be processed is node \3". The dottedarrows are graph edges. The numbers beside the nodes are their key values. To the right the two non-trivial heapscontaining selfcontained nodes are illustrated as lists. Below the selfcontained nodes the sets associated with themare listed.The set A can then be found by repeatedly extracting the maximum element from the heap associated withv until the maximum element of this heap is � key(u).The algorithm LINK(u; v) is thus� While not Empty(Heap(v)) and key(FindMax(Heap(v))) > key(u) do� w := ExtractMax(Heap(v));� SetUnion(u;w); /* The canonical element of the resulting set is u */� od;� Heap(u) := HeapUnion(Heap(u); Heap(v));Lemma 2 The algorithm presented performs the n LINK and UPDATE operations interspersed with mEVAL operations in O(m+ n logn) time.Proof. At most O(n) HeapExtract, HeapF indMax and HeapUnion operations are performed. Each ofthese operations can be done in O(log n) time using an ordinary heap (e.g. [6, 22]). Since the tree structureis known in advance, the set operations can be computed in linear time using the result from [9]2. It willhowever su�ce to use a simple disjoint set algorithm which rearranges the smallest of the two sets.24.2 Decreasing rootsIn section 4.4 we will need the ability to decrease the key value of a node, while it is the root of a tree. Wewill therefore extend the algorithm from the previous section to handle the DecreaseRoot(v; k) operation,which sets key(v) = k, where v is the root of Tv. The DecreaseRoot(v; k) operation should be done inconstant time.Assume that a DecreaseRoot(v; k) operation has been performed. In analogy with the LINK operationfrom the previous section, this may imply that some selfcontained nodes in Tv are no longer selfcontained.We should therefore remove such nodes from the heap and unify the sets associated with them, with the setassociated with v, as was done in the LINK operation. However, in the algorithm from the previous sectionthe root node v is the maximum element in the heap associated with it. In order to remove nodes from theheap we would therefore �rst have to remove v, which would require O(log n) time. We should note thatsince the heap returns maximum values the usual decreasekey operation for heaps cannot be used. We can2If this result is used, the SetUnion operation should be changed according to the description given earlier in this section.More speci�cly the call would be SetUnion(parent(w); w) and the canonical element of the resulting set would be the canonicalelement of the set parent(w) belongs to. 4



however take advantage of the fact that the root node will always be the maximum element in the heap itbelongs to. It is therefore not necessary to explicitly insert the root into the heap before it is linked to itsparent. The DecreaseRoot(v; k) operation is performed as follows.� While not Empty(Heap(v)) and key(FindMax(Heap(v))) > k do� w := ExtractMax(Heap(v));� SetUnion(v; w);� od;� key(v) := k;Lemma 3 We can perform d DecreaseRoot and n LINK and UPDATE operations interspersed with mEVAL operations in O(n logn+m+ d) time.Proof. We change the algorithm from the previous section by postponing the insertion of a root node, r,into Heap(r), until r is linked to its parent. This has no e�ect on the complexity of EVAL and UPDATEoperations stated in lemma 2. Since each node may be deleted from a heap at most once, the total number ofExtractMax and SetUnion operations invoked by LINK and DecreaseRoot is still O(n). The cost of theseoperations can therefore be charged to the LINK operations. Since the remaining operations invoked byDecreaseRoot are done in constant time each, the additional complexity of the d DecreaseRoot operationsis O(d).24.3 A linear time algorithm for pathsWe consider the situation in which the tree T is a path. Recall that in the algorithms from the previous twosubsections we needed a heap to order selfcontained nodes. The property which distinguishes paths fromtrees in this context is that this ordering is induced by the path. More speci�cly, any pair u; v of selfcontainednodes on the part of the path, which has been linked, are ordered such that key(v) � key(u) if and only ifdepth(v) � depth(u). To perform LINK operations on a path we can therefore use the algorithm from theprevious section, where the heap is replaced by a stack. The algorithm for the operation LINK(u; v) on apath is thus.� While not StackEmpty and key(StackTop) > key(u) do� w := StackPop;� SetUnion(u;w);/* The canonical element of the resulting set is u */� od;� StackPush(u);An EVAL operation on a path is performed in analogy with the previous section, hence EVAL(v) =key(SetF ind(v)).Lemma 4 If the tree T is a path, we can perform the n LINK and UPDATE operations and the m EVALoperations in O(n+m) time.Proof. The stack operations are done in linear time since each node will only be on the stack once. Byusing the result from [9] the set operations are performed in amortized constant time. We should note thatthe result from [9] is more general than necessary and that it is possible to construct a simpler linear timealgorithm for set operations on paths.24.4 A faster algorithm for trees with few leavesWe can take advantage of the linear time algorithm from the previous section by using it on the paths inT . More speci�cly let R be the tree obtained by substituting each path in T , which consist of (at least two)nodes with at most one child, by an arti�cial node. We will refer to such paths as I-paths and the arti�cialnodes as I-nodes. The correspondence between R and the forest F is the following:� When the node with largest depth on an I-path is linked to its child, c, in F , the I-node is linked to cin R. 5



� When the node with least depth on an I-path is linked to its parent, p, in F , the I-node is linked to pin R.We will use the result from section 4.2 for nodes in R and the result from the previous section for nodes onI-paths. The above correspondence means that EVAL queries on nodes in R correspond to EVAL queries inF if, for any I-path P , key(I-node(P )) is the least key value on the part of P which has been linked. In otherwords we use I-node(P ) to represent the minimum selfcontained node on P in R. During the processingof an I-path P the key value of I-node(P ) should thus be properly updated. This is done by invoking aDecreaseRoot(I-node(P ); k) operation each time a new minimum key value k is found on P .The EVAL queries on nodes on an I-path, P , will be correct, as long as the node with least depth onP has not yet been linked to its parent. We can therefore construct an interface between R and I-paths asfollows. We associate a pointer, I-root, with each node on an I-path. The pointer is initially set to be NULLand when the node with least depth on an I-path is linked to its parent p, we set I-root(v) = p, for all nodesv belonging to the I-path. The algorithm for EVAL(v) is thus (we use subscripts to distinguish between thestructures EVAL operations are performed in):� if v belongs to an I-path P then� if I-root(v) =NULL then return EVALP (v)� else return minfEVALP (v);EVALR(I-root(v))g� else return EVALR(v);Lemma 5 Let l denote the number of leaves in T . We can perform m EVAL and n LINK and UPDATEoperations in O(l log l +m+ n) time.Proof. The I-paths are processed in linear time by lemma 4. Since the I-paths have been contracted the treeR contains O(l) nodes. Thus by lemma 3, R can be processed in time O(l log l+m+ n+ d), where d is thenumber of DecreaseRoot operations. The number of DecreaseRoot operations is however bounded by thenumber of nodes on I-paths.24.5 Reducing to small subtreesFrom lemma 5 we have that the EVAL-LINK algorithm can be performed e�ectively on trees with few leaves.However the number of leaves is only bounded by the number of nodes. To reduce the number of leaves inT , subtrees of size � logn can be removed. We will refer to such subtrees as S-trees. Assume that all S-treeshave been removed from the tree T . Then each leaf in the remaining tree must be a node in T with atleast logn descendants. Thus the remaining tree has at most n= logn leaves. By lemma 5 we can thereforeperform amortized constant time EVAL, LINK and UPDATE operations in the remaining tree.We now show how to process the S-trees. Recall that the LINK operations are performed in decreasingDFS-number order. This implies that EVAL operations of nodes in S-trees induced by nodes outside, willonly take place at a time when all links have been performed inside the structure. Furthermore the linksinside S-trees are performed successively, hence each S-tree can be processed independently. Analogouslywith I-paths we can associate a pointer S-root with each node in each S-tree, which points to the parent ofthe root of the S-tree after the LINK between the root and its parent has been performed. Then an EVALoperation on a node v in an S-tree becomes:EVALS(v); if S-root(v)=NULLminfEVALS(v);EVAL(S-root(v))g; otherwiseTo perform EVAL, LINK and UPDATE operations inside an S-tree we could use lemma 2. Alternativelywe could repeat the removal of subtrees on the S-trees because of the independent nature of S-trees. LetT (m;n; a) denote the time it takes to support the the m EVAL and n LINK and UPDATE operations in theLengauer-Tarjan algorithm within subtrees of T each of size � a. For example, the construction of lemma 2,gives T (m;n; a) = O(m+ n log a).Lemma 6 T (m;n; a) = O(m+ n) + T (m;n; loga). 6



Proof. Choose the S-trees to be of size at most logn. Then, in the upper tree, we have at most n= lognleaves, so, by lemma 5, the cost of the LINKs and UPDATEs there is O(n). EVAL queries to the uppertree have a constant cost by lemma 2. An EVAL query to an S-tree may propagate to the root via theS-root-pointer, but retains constant time complexity.2Since T (m;n; 1) = O(m+ n), repeating the above recurrence log� n times, we immediately getT (m;n; n) = O((m+ n) log� n)However, in this paper, we only need to repeat it twice, givingCorrolary 1 T (m;n; n) = O(m + n) + T (m;n; log logn).2In the next subsection, we will show that T (m;n; log logn) = O(m+n), implying a linear time algorithmfor �nding dominators.
2

5 6

7

14

 15

1610

1

4

 9

 8

1

4

11

3

 A

 B
3

13

12Figure 2: To the left a sample DFS-tree is given. The boxes indicate S-trees of size � 2. To the right the reducedtree is given. The nodes \A" and \B" are replacing I-paths. Note that if S-trees of size � log2 16 = 4 were removed,the tree would be reduced to a single node representing the I-path 1; 3; 8.In �gure 2 the division of a tree into I-paths and S-trees in one level is illustrated.4.6 Tabulation of small treesIn this section we show how to perform constant time EVAL, UPDATE and LINK operations on treesof size � log logn, henceforth denoted as microtrees. We will do this by constructing a table containingEVAL values for all possible forest permutations. We �rst show how to compute such a table assumingthat a superset of sdom values is known for each microtree. Following that we show how to choose thissuperset. Combining these results we show that the microtrees can be processed in linear time. Finally wegive the theorem, which completes the dominator algorithm. We start out by giving a lemma by Fredmanand Willard [7].Lemma 7 The Q-heap performs insertion, deletion, and search operations in constant time and accommo-dates as many as (logn)1=4 items given the availability of O(n) time and space for preprocessing and wordsize � logn. 2For a set M 0 of di�erent values we de�ne the rank of a value x 2M 0 as the number of values < x in M 0.Lemma 8 If the rank of sdom-values for all nodes in a tree of size k are known in advance, we can preprocessthe tree in O(k) time, such that all EVAL operations can be done in constant time.Proof. Let r denote the root of the tree. We traverse the tree top-down and set EVAL(r)=r and for eachnode v 6= r set EVAL(v)=min(key(v),EVAL(parent(v))).27



Theorem 2 Assume that to each microtreeM we are given a set of valuesM 0, where jM 0j = O(jM j) and thatfor all UPDATE(v; k) operations, v 2 M ) k 2 M 0. Assume also that the order in which LINK operationsoccur is known. It is then possible to perform constant time EVAL, LINK and UPDATE operations, giventhe availability of O(n) time and space for preprocessing and word size � logn.Proof. In order to perform constant time EVAL queries we tabulate all possible forest con�gurations asfollows:We construct each possible tree of size � log logn. Since in general there are at most O(2k) trees ofsize k (all trees of size k can be uniquely represented by a bitmap of size 2k), there are at most logn suchtrees. For each of these trees we construct the log logn possible ways the nodes in the tree can be partiallylinked. Finally for each of these forests we construct copies holding all possible permutations of ranks tonodes. In each of these forests we compute the EVAL-value for each node. We then construct a table whichoutputs the computed EVAL-values. By lemma 8 this computation can be done in a time proportional tothe number of nodes in the trees. The number of nodes is the product of the number of trees (logn), thenumber of LINK's (log logn), the number of rank permutations ((C1 � log logn)log logn) and the number ofnodes in each tree (log logn), thus the number of nodes is (Ci are constants):logn � log logn � (C1 � log logn)log log n � log logn =lognC2 � (log logn)2 � log lognlog logn �lognC3 � log lognlog logn =lognC3 � lognlog log logn =lognC3+log log log n = O(n).To store each forest, the forest table from [9], which require log logn space, can be used. The rank of each noderequire log log logn space. If we attach a new number to each node inside the forest we can identify each nodeusing log log logn space. Hence each entry to the table requires log logn+log log logn� log logn+log log lognspace, which will �t into a computer word of size � logn. The size of the table is thus O(n) (for details seeappendix A.2).Given this table each microtree can be processed as follows: For each microtree we sort the sets M 0 ofsize O(log logn) in linear time using lemma 7. The key value of each node is replaced by their rank in M 0,which simply is an index into the sorted set. To carry out the operations given a microtree, we �rst computethe table entry for the tree without any links. The EVAL operations are done by looking up the table andthe LINK and UPDATE operations are done by updating the entry (again we refer to appendix A.2 fordetails). Finally in order to perform UPDATE and EVAL operations we need a table which maps key valuesto ranks and vice versa. Since all key values are < n, this table only requires O(n) space.2Theorem 2 requires a superset M 0 of sdom values for nodes in a microtree M . The next lemma showshow M 0 can be chosen.Lemma 9 Let M 0 = M Sfminf(EVAL(w))j (w; v) 2 E ^ w 62 Mgj v 2 Mg. For all v 2 M we have thatsdom(v) 2M 0.Proof. The lemma is obviously true in case sdom(v) 2 M . Assume therefore that u = sdom(v) 62 M andthat u 62M 0. By the de�nition of semidominators a path u = w0; w1; : : : ; wk�1; wk = v exists where wi > vfor i = 1; : : : ; k � 1. Let wj be the last node on the path not in M . Since u 62M 0 the node wj+1 must havea predecessor x for which EVAL(x) < u. This means that a path exists from a node u0, with u0 < u, towj+1 on which all nodes except u0 are > v. This path can be concatenated with the path wj+1; : : : ; wk; v,contradicting that sdom(v) = u.2We now complete the microtree algorithm by showing how to compute the sets M 0 of lemma 9.Theorem 3 Let M be a microtree of size � log logn. Each EVAL, UPDATE and LINK operation insideM in the Lengauer-Tarjan algorithm can be performed in constant time, given the availability of O(n) timeand space for preprocessing and word size � logn.Proof. By theorem 2 and lemma 9 we only need to show how to compute the sets M 0 de�ned in lemma 9 inO(jM 0j) time. We will show this by induction on the visits of microtrees. Recall that the Lengauer-Tarjan8



algorithm visits nodes in decreasing DFS-number order. When the �rst microtree is reached all nodes withlarger DFS-numbers have thus been processed. By corollary 1 EVAL queries on processed nodes outsidemicrotrees can be done in constant time. Furthermore all nodes with smaller DFS-numbers will at thisstage be singleton trees. The EVAL queries required in lemma 9 can thus be performed in constant timefor the �rst microtree. Given an arbitrary microtree M we can therefore assume that constant time EVALqueries can be performed in microtrees containing nodes with larger DFS-numbers than the nodes in M .For nodes not in microtrees, we can compute the EVAL values needed in lemma 9 in constant time By thesame arguments as above. By induction this is also the case for nodes in previously visited microtrees.Finally we should note that in the proof of theorem 2, O(n) space was used for the table, which mapskey values to ranks for a microtree. Since the microtrees are computed independently, this space can bere-used, so that the overall space requirement is O(n).2We can now combine the results of this section in the following theorem.Theorem 4 The EVAL, LINK and UPDATE operations in the Lengauer-Tarjan algorithm can be performedin linear time.Proof. Follows directly from corollary 1 and theorem 3.25 Concluding remarksA linear time algorithm has been presented for �nding dominators. The result, as presented, is purelytheoretical, in the sense that Fredman and Willard's Q-heaps require that n � 21220 [7]. Some of our ideasmay still be of practical relevance. If, for example, we take corollary 1, giving a rather simple linear timereduction to subtrees of size at most log logn, and then use lemma 2 within each of these, we get a simpleO(m+n log log logn) algorithm, which in practice may be competitive with the one of Lengauer and Tarjan[14].In the following appendices we present the pseudo-code of our algorithm, some details of the tabulation,and a very simple linear time dominator algorithm for the common special case of reducible control-owgraphs.Acknowledgment: Dov Harel wishes to thank Eli Dichtermann for recent discussions.References[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. On �nding lowest common ancestors in trees. In AnnualACM Symposium on the theory of computing (STOC), volume 5, pages 115{132, 1973.[2] A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Compiling, volume II. Prentice-Hall, Englewood Cli�s, N.J., 1972.[3] A.V. Aho and J.D. Ullman. Principles of compiler design. Addison-Wesley, Reading, MA, 1979.[4] G. Bilardi and K. Pingali. A framwork for generalized control dependence. In ACM SIGPLAN Confer-ence on Programming Language Design and Implementation (PLDI), pages 291{300, 1996.[5] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadek. E�ciently computing static singleassignment form and the control dependence graph. ACM Trans. Programming Language Systems(TOPLAS), 13(4):451{490, 1991.[6] J.R. Driscoll, H.N. Gabow, R. Shrairman, and R.E. Tarjan. Relaxed heaps: An alternative to �bonacciheaps with application to parallel computation. Communcation of the ACM (C.ACM), 31(11):1343{1354, 1988.[7] M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms for minimum spanning trees and short-est paths. Journal of Computer and System Sciences, 48(3):533{551, 1994.9



[8] H.N. Gabow. Data structure for weighted matching and nearest common ancestors with linking. InAnnual ACM-SIAM Symposium on discrete algorithms (SODA), volume 1, pages 434{443, 1990.[9] H.N. Gabow and R.E. Tarjan. A linear-time algorithm for a special case of disjoint set union. Journalof Computer and System Sciences, 30:209{221, 1985.[10] G.R. Gao and V.C. Sreedhar. A linear time algorithm for placing �-nodes. In ACM SIGPLAN-SIGACTSymposium on the Principles of Programming Languages (POPL), pages 62{73, 1995.[11] D. Harel. A linear time algorithm for �nding dominators in ow graphs and related problems. In AnnualACM Symposium on theory of computing (STOC), volume 17, pages 185{194, 1985.[12] D.E. Knuth. The art of programming, volume 1. Addison-Wesley, 1968.[13] P.W. Lauridsen. Dominators. Master's thesis, Department of Computer Science, University of Copen-hagen, 1996.[14] T. Lengauer and R.E. Tarjan. A fast algorithm for �nding dominators in a owgraph. ACM Trans.Programming Languages Systems (TOPLAS), 1:121{141, 1979.[15] E.S. Lowry and C.W. Medlock. Object code optimization. Communication of the ACM (C.ACM),12(1):13{22, 1969.[16] R. Ochranova. Finding dominators. Fundamentals (or Foundations) of Computation Theory, 4:328{334,1983.[17] P.W. Purdom and E.F. Moore. Immediate predominators in a directed graph. Communication of theACM (C.ACM), 15(8):777{778, 1972.[18] G. Ramalingam and T. Reps. An incremental algorithm for maintaining the dominator tree of a reducibleowgraph. In Annual ACM Symposium on Principles of Programming Languages (POPL), volume 21,pages 287{298, 1994.[19] R.E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM Journal on Computing, 1(2):146{160,1972.[20] R.E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing, 3(1):62{89, 1974.[21] R.E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. Journal ofcomputer and system sciences, 18(2):110{127, 1979.[22] J. Vuillemin. A data structure for manipulating priority queues. Communcation of the ACM (C.ACM),21(4):309{315, 1978.[23] N. Wirth. Programming in modula-2(3rd corr.ed). Springer{verlag, Berlin, New York, 1985.A Implementation detailsThis section contains details about the algorithm presented in the paper. The main algorithm is describedin section A.1 and details about the construction and use of microtables are described in section A.2.A.1 The main algorithmWe assume that a DFS-search has been performed in the graph. The I-paths are removed from the tree inthe following way:The child pointer of the parent to the �rst node and the parent pointer of the child of the last node areremoved. Instead an I-node is inserted (see �gure 3). The I-node is numbered by a unique number largerthan n. Furthermore the I-paths are numbered by a number > 0.The algorithm uses the following arrays in which the DFS-number of nodes are used as indices (the arraysmarked � are also used in the Lengauer-Tarjan algorithm):10



7

8

1

9

7

8

1

9

n+k

Figure 3: An I-path and the representation of the I-path in the tree. Both child and parent pointers areillustrated� pred(v)�: The set of nodes w such that (w; v) 2 E.� parent(v)�: The parent of v in the DFS-tree. To simplify the EVAL operation we set parent(v) = 0 ifv = 0.� child(v); sibling(v): Pointer to the �rst child and �rst sibling of v respectively in the DFS-tree.� I-path(v): If v does not belong to an I-path, I-path(v) = 0. Otherwise I-path(v) contains the numberof the I-path to which v belongs.� S-tree(v): True if v belongs to an S-tree.� microtree(v): True if v belongs to a microtree.� root(v): This �eld is de�ned for nodes in S-trees, microtrees and I-paths. Before the root of thestructure has been linked to its parent, p, root(v) = 0. Afterwards root(v) contains the number of p.� first(v): If v belongs to an I-path, this �eld contains the number of the �rst node on the I-path.� stack(v): If v is the �rst node on an I-path, this �eld contains the stack used for the I-path.� microroot(v): If v belongs to a microtree then microroot(v) is the number of the root of the microtree.� key(v)�3: After the semidominator of v has been computed key(v) is the number of the semidominatorof v. Initially key(v) = v.� bucket(v)�: The set of nodes whose semidominator is v.� dom(v)�: A number which will eventually be the number of the immediate dominator of v.The main algorithm is a slight modi�cation of the Lengauer-Tarjan algorithm:Beginconstructmicrotable; /* This procedure computes the microtable */for v := 1 to n do bucket(v) := ;;v := n;While v > 1 do beginif microtree(v) then beginmicrodominator(v;microroot(v)); /* see below */v := microroot(v)� 1;end else beginFor each w 2 pred(v) do begink :=EVAL(w);if k < key(v) then UPDATE(v; k);end;/* The remainder of the algorithm computes dominators *//* from semidominators and is analogous to [14] */3In the Lengauer-Tarjan algorithm this array is called semi.11



For each child w of v do LINK(v; w);bucket(key(v)) := bucket(key(v))Sfvg;While bucket(parent(v)) 6= ; do beginbucket(parent(v)) := bucket(parent(v))nfwg;k :=EVAL(w)if k < key(w) then dom(w) := kelse dom(w) := parent(v);end;v := v � 1;end; /* While /*end; /* While /*for v := 2 to n doif dom(v) 6= key(v) then dom(v) := dom(dom(v));else dom(v) := key(v);End;Procedure microdominator(v; root : integer);Themicrodominator procedure is analogous to the main algorithm. The only real di�erence is that EVAL, LINK andUPDATE operations are replaced by microEVAL, microLINK and microUPDATE operations. Furthermore thereare no I-paths in a microtree.For the EVAL and LINK operations we need the following additional �elds:� heap(v): A heap associated with v.� I-node(v): If v is the root of an I-path then I-node(v) is the number of the node which represents theI-path.Function EVAL(v: integer):integer;beginif v = 0 then EVAL:=1else if microtree(v) then EVAL:=min(EVAL(root(v);microEVAL(v)))else if I-path(v) or S-tree(v) then EVAL:=min(EVAL(root(v)); key(SetF ind(v)))else EVAL:=key(SetF ind(v));end;Procedure LINK(v; w: integer);beginif microtree(w) then /* w is the root of a microtree */For each u in the microtree to which w belongs do root(u) := velse if S-tree(w) and not S-tree(v) then /* w is the root of an S-tree */For each u in the S-tree to which w belongs do root(u) := velse if I-path(v) > 0 then beginif first(v) = v then Init-I-path(v; w) /*see below */else if I-path(w) = I-path(v) then beginS := stack(first(v));While not StackEmpty(S) and key(StackTop(S)) > key(v) do beginu := StackPop(S);SetUnion(v; u);end;if key(I-node(v)) > key(v) then DecreaseRoot(I-node(v); key(v));StackPush(v; S);end;end else if I-path(w) > 0 then begin /* the path is fully linked */For each u on the I-path do root(u) := v;/* Add I-node(w) to heap(I-node(w)) */4LINK(v; I-node(w));end else begin /* Neither v or w is on an I-path */While not Empty(heap(w)) and key(HeapF indMax(heap(w)))> key(v) do beginu := HeapExtractMax(heap(w));4The I-node has not been a member of the heap while the I-path has been processed. The pseudo code for this operationis omitted to improve program clarity, as it involves creating a dummy heap and performing a HeapUnion operation on thedummy heap and heap(I-node(w)). 12



SetUnion(v; u);end;HeapUnion(heap(v); heap(w));end;end;Procedure Init-I-path(v; w: integer);/* v is the �rst node on an I-path and should be linked to its child w */beginCreateStack(S);stack(v) := S;StackPush(v; S);While not Empty(heap(w)) and key(HeapF indMax(heap(w)))> key(v) do beginw := HeapExtractMax(heap(w));SetUnion(I-node(v); w);end;heap(I-node(v)) := heap(w);key(I-node(v)) := key(v);end;Procedure DecreaseRoot(v; k: integer);beginWhile not Empty(heap(v)) and key(HeapF indMax(heap(v)))> k do beginw := HeapExtractMax(heap(v));SetUnion(v; w);end;key(v) := k;end;Procedure UPDATE(v; k: integer);beginkey(v) := k;end;A.2 The microalgorithmIn the proof of theorem 3 the forest table from [9] was suggested to store the forests. The forest from [9]support any ordering of the LINK operations, whereas in the dominator algorithm the links are performedin decreasing DFS-number order. We can therefore simplify the representation by using the DFS-traversalto represent each tree. More speci�cally we start at the root and use a bitmap in which '1' means that anedge is followed down in the tree and a '0' means that we move to the parent of the current node. The treetraversal is �nished when a '0' is encountered while the root is the current node. As a special case this meansthat a single node tree is represented by the bitmap "0". The mapping is illustrated in �gure 4. Insteadof representing the LINK's explicitly we can save the number of nodes in the tree, which at some point intime has been processed by the algorithm. Since the size of the forests can di�er we also need to save thesize of each tree. Finally the key and EVAL values of the nodes can be saved in order of the DFS-traversal.The bitmap of an entry can thus have the following con�guration [SIZEkTREEkKEYSkEVALkLINK], whereSIZE and and LINK are blocks of log log logn bits, EVAL and KEYS uses SIZE bits and TREE uses (2*SIZE-1) bits.To construct the entry of a microtree we traverse it in DFS-order and set the bits of TREE and SIZEaccordingly. The KEYS are initialized to the rank of the DFS-numbers and LINK is initalized to 0. AmicroLINK operation is performed by incrementing the LINK value and the microUPDATE(v; k) operationis done by replacing the value of v in the entry with k.The pseudo code of the microalgorithm is rather tedious and therefore omitted.
13



1

2 6

43

5Figure 4: A sample tree labeled by DFS-numbers. The bitmap of the tree is '11011000100'.B Relation to Harel's algorithmThe proof of Theorem 1 of [11] which is omitted, employs a linear time table construction using a variant ofdynamic programming. The details of this construction are beyond the scope of this paper.Harel's original value propagation required the construction of supersets of the sets of sdom values for allmicrotrees in a separate phase, in order to presort the values. The main drawback of the technique is thatit leads to a rather complicated case analysis, and checking correctness is pretty tedious. In fact the originalvalue propagation algorithm in [11] contains an error (more precisely Theorem 3b in [11] is false as statedand a concrete counterexample is given in [13, Section 4, p. 12]).The algorithm described in this paper avoids the above problems by replacing the tables required toprove Theorem 1 of [11] by the use of Fredman and Willard's priority queues. This technique is more generaland allows us to propagate semi-dominator (sdom) values on a per microset basis, just prior to computingthe exact semi-dominators values for all members of a microset.C Algorithms for reducible graphsThe problem of �nding dominators in reducible graphs has been investigated in several papers (e.g. [1, 16, 18]).The reason why reducible graphs are considered is that the control ow graphs of certain programminglanguages (e.g. Modula-2 [23]) are reducible. A graph is reducible if the edges can be partitioned into twodisjoint sets E0 and E00 so that� The graph induced by the edges in E0 is acyclic.� For all edges (v; w) 2 E00, w dominates v.Since the edgesE00 have no inuence on the dominance relation the problem of �nding dominators in reduciblegraphs is analogous to �nding dominators in acyclic graphs. In this section we therefore assume that graphsare acyclic.C.1 The former algorithm is not linearIn 1983 Ochranova [16] gave an algorithm which is claimed to have complexity O(m)5. Unfortunately thepaper does not contain a complexity analysis. In order to disprove the complexity of the algorithm it istherefore necessary to outline the behavior of the algorithm. For an acyclic graph we have the followingfacts:5Citation: "At least no counterexample was found." 14



(a) If a node, x, has a single predecessor, y, then idom(x) = y.(b) If each of the successors of a node x has more than one predecessor then no node is dominated by x.Since at least one successor of the start node s will satisfy the condition in (a) the dominators can be foundby starting at s and using the two facts interchangeably as follows:1. If (a) is true for a successor, v, of the current node, w, then set idom(v) = w and the current node tov.2. If (b) is true for all successors of the current node w then merge w and idom(w) (by unifying theirsuccessor and predecessor sets respectively). Set the current node to be the merged node.In order for the algorithm to be linear the detection of whether (a) is true in 1 should have constant timecomplexity. Furthermore the merge of two nodes in 2, which involves union of two sets which are not disjoint,should also have constant time complexity. The authors are not aware of a general algorithm with the aboveproperties.C.2 A linear time algorithmIn this section we give a simple linear time algorithm for �nding dominators in reducible graphs. Thealgorithm is constructed by combining new techniques [8] with previously presented ideas (see e.g. [1, 18]).In other words the algorithm is a compilation.The computation is divided into two main steps as follows.1. The graph G = (V;E0) is acyclic and can therefore be topologically sorted [12] ensuring that if (v; w) 2E0 then v has a lower topological number than w.2. Now the dominator tree T can be constructed dynamically. Set s to be the root of the dominator treeT and process the nodes from V nfsg in increasing topological order as follows. (Notice that the partof T , built so far, is used for determining idom for the rest of the nodes.)� Let W = fvj(v; w) 2 E0g be the set of predecessors of w in G and let A be the set of ancestors inT to all nodes in W . The node idom(w) is then the node in A with the largest depth in T . Henceidom(w) can be computed by repeatedly deleting two arbitrary nodes from W and inserting thenearest common ancestor (nca) of these nodes into the setW until the set contains only one node.� After computing idom(w) the edge (w; idom(w)) is added to T .The only unspeci�ed part of the algorithm is the computation of nca in a tree T which grows under theaddition of leaves. In [8] an algorithm is given which processes nca and addition of leaves in constant timeper operation.Theorem 5 The algorithm above computes the dominator tree for a reducible control ow graph with nnodes and m edges in O(n+m) time.Proof. Step 1 in the algorithm has complexity O(n +m). In step 2 each node is visited and each edge canresult in a query about nca in T , so at most m nca-queries are performed, which establishes the complexity.2
15


