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AbstractThe fastest exact algorithm (in practice) for the rectilinear Steiner treeproblem in the plane uses a two-phase scheme: First a small but su�cientset of full Steiner trees (FSTs) is generated and then a Steiner minimumtree is constructed from this set by using simple backtrack search, dy-namic programming or an integer programming formulation. FST gener-ation methods can be seen as problem reduction algorithms and are alsouseful as a �rst step in providing good upper- and lower-bounds for largeinstances. Currently, the time needed to generate FSTs poses a signi�-cant overhead for FST based exact algorithms. In this paper we present avery e�cient algorithm for the rectilinear FST generation problem whichremoves this overhead completely. Based on information obtained in apreprocessing phase, the new algorithm \grows" FSTs while applying sev-eral new and important optimality conditions. For randomly generatedinstances approximately 4n FSTs are generated (where n is the numberof terminals). The observed running time is quadratic and the FSTs for a10000 terminal instance can on average be generated within 10 minutes.1 IntroductionThe rectilinear Steiner tree problem (RSTP) asks for a shortest interconnectionof a set Z of n terminals (points in the plane) using only horizontal and verticallines. Alternatively we may say that we would like to interconnect Z usingthe rectilinear (or Manhattan) distance metric L1. This NP-hard problem [5]has important applications in, e.g., VLSI-design. Many exact algorithms and�Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen �,Denmark. E-mail: martinz@diku.dk. 1



heuristics have been proposed for the problem; for an extensive survey see thebook by Hwang, Richards and Winter [11].The Steiner points for a rectilinear Steiner minimum tree (SMT) may be con�nedto the vertices of the grid graph for Z [9]. An SMT is a union of full Steinertrees (FSTs), in which every leaf is a terminal (having degree one) and all othernodes (having degree three or more) are Steiner points. The FSTs of an SMTare also denoted full components. Furthermore, our de�nition of FSTs should becompared to the de�nition of FSTs in [18, 23] where FSTs are required to spanterminal sets for which every SMT is a full topology. The SMT shown in Figure 1consists of 7 FSTs; each FST spans from 2 to 6 terminals.

Figure 1: Grid graph and Steiner minimum tree.Recently Warme [23] made a breakthrough in the construction of exact algo-rithms for the problem. The new algorithm uses a two-phase scheme originallysuggested by Winter [24] for the Euclidean problem and later applied to the rec-tilinear problem by Salowe and Warme [18]. The idea is following: In the �rst(FST generation) phase we generate a (small) set of FSTs F containing at least2



one SMT identi�ed as a subset. In the second (FST concatenation) phase we �nda subset F� � F with minimum total length such that the FSTs in F� inter-connect Z. Warme [23] noticed that FST concatenation is equivalent to �ndinga minimum spanning tree in the hypergraph H = (Z;F) and formulated thisproblem as an integer program. He solved this problem using branch-and-cut,allowing the exact solution of rectilinear Steiner tree problem instances with upto 1000 terminals.However, the �rst phase (FST generation) now seems to be the bottleneck for alarge fraction of the problem instances considered by Warme [23]. Salowe andWarme [18] gave the �rst FST generation algorithm for the rectilinear problem.Although being very fast for small instances (n � 100), the exponential runningtime growth of the algorithm made it impractical for larger instances (a 400terminal instance required several days of CPU-time1). Warme [23] improvedthis algorithm signi�cantly, reducing the observed running time to O(n3). FSTsfor a 1000 terminal instance could be generated in a few hours. In this paper wereduce the observed running time to O(n2); the algorithm generates FSTs for a1000 terminal instance in less than 10 seconds and for a 10000 terminal instancein less than 10 minutes.A precise description of the topology of rectilinear FSTs was given by Hwang [10].This characterization and other properties of rectilinear FSTs are given in Sec-tion 3. In Section 4 we give an overview of the FST generation algorithm whichis based on \growing" FSTs. Section 5 describes the important preprocessingphase while Section 6 presents the tests performed while growing FSTs. Theo-retical bounds on the expected number of FSTs generated are given in Section 7.Computational results are reported in Section 8 and concluding remarks are givenin Section 9.2 De�nitions and Basic NotionsLet u = (ux; uy) and v = (vx; vy) be a pair of points in the Cartesian plane <2.The distance in the Lp-metric, 1 � p � 1, between u and v (or simply theLp-distance) is kuvkp = (jux � vxjp + juy � vyjp)1=p. As special cases we have therectilinear (or Manhattan) L1-distance juvj = kuvk1, the Euclidean L2-distancekuvk = kuvk2 and kuvk1 = max(jux � vxj; juy � vyj).De�ne Cp(u; r) to be the interior of an Lp-circle centred at u with radius r > 0:Cp(u; r) = fx 2 <2 j kuxkp < rg. An Lp-lune Lp(u; v) is the set of points inthe plane which are closer to both u and v than u and v are to each other,i.e., Lp(u; v) = Cp(u; kuvkp) \ Cp(v; kuvkp). Finally we de�ne R(u; v) to be the1All running times measured on a workstation comparable to the one used in this study.3



interior of the smallest axis-aligned rectangle that contains u and v; thus u andv are opposite corners of the rectangle.In general we use the terminology in [18] for geometric primitives related to rec-tilinear Steiner trees. A rectilinear Steiner tree consists of vertical and horizontalsegments. Segments intersect only at their endpoints which are either termi-nals (belonging to Z), corner points (having degree two), T-nodes (having degreethree) or cross-nodes (having degree four). A Steiner point is either a T-node ora cross-node.A line is a sequence of one or more adjacent, colinear segments with no terminalsin its relative interior (where relative interior is used in the usual geometric sense).A complete line is a line of maximal length. One horizontal and one verticalcomplete line incident to a common corner point form a corner; the completelines are the legs of the corner. A set of segments incident to a common line l aresaid to alternate along l if each intersection point forms a distinct T-node and notwo successive segments are on the same side of l.A segment uv is oriented according to the direction of vector ~uv. We may restrictour attention to four directions � = 0; 1; 2; 3, corresponding to East (positivex-axis), North (positive y-axis), West (negative x-axis) and South (negative y-axis), respectively. De�ne � � 1 to be the direction corresponding to � turned90� clockwise and � + 1 to be the direction � turned 90� counter-clockwise; fora given direction � we thus say that �+ 1 points to the left and �� 1 points tothe right. Similarly the direction �+2 (= �� 2) points in the opposite directionof �.Let MST (Z) be a minimum spanning tree for Z using distance metric L1 andzi; zj 2 Z a pair of terminals. The bottleneck Steiner distance bzizj between ziand zj is equal to the length of the longest edge on the (unique) path between ziand zj in MST (Z). Note that no edge on the path between zi and zj in an SMTfor Z can be longer than bzizj .3 Full Steiner Tree PropertiesHwang [10] proved that there always exists an SMT for which every FST hasone of the two generic forms shown in Figure 2: An FST spanning k terminalsconsists of a corner (also denoted the backbone) given by a root z0 and a tipzk�1. The root is incident to the long leg and the tip incident to the short leg ofthe corner2. There are two main types (i) and (ii) and two degenerate cases oftype (i):2The terminology short leg and long leg is not meant to connote geometric length, accordingto the L1 metric. Rather, the long leg can have more incident segments than the short leg.4



� Type (i) has k � 2 alternating segments incident to the long leg and nosegment incident to the short leg. The �rst degenerate case (i0) has a zero-length short leg, i.e., the corner is degenerated into a line. The seconddegenerate case (i00) is a cross spanning exactly four terminals (the twoalternating incident segments are on the same line); the two Steiner pointsare degenerated into one Steiner point having degree four.� Type (ii) has k � 3 alternating segments incident to the long leg and onesegment incident to the short leg.
z0 zk�1 z0 zk�1Type (i) Type (ii)Figure 2: Generic full Steiner trees.If k � 5 the two legs are uniquely identi�ed; otherwise they may be interchangedexcept when k = 4 and both segments are attached to one single leg (type (i)).However, the important observation is that every FST has a terminal which maybe identi�ed as root.In the following every FST is assumed to have Hwang topology. Note that thisgives an upper bound of O(2n) on the total number of FSTs, i.e., for every subsetof terminals at most four Hwang topologies exist, one for each of the four rootcandidates having minimum or maximum x- or y-coordinate in the subset.We say that the long leg has direction � if the vector from the root to the cornerpoint of the FST points in direction �. An FST is oriented according to thedirection of the long leg and the position of the tip (left/right of the long legwhen looking in direction �). In the following we use the FSTs shown in Figure 2as our generic FSTs, i.e., we assume w.l.o.g. that the long leg has direction � = 0and the tip is to the right of the long leg when looking in direction �.Since we are only interested in FSTs that may be part of an SMT for Z, weneed a series of simple but strong necessary conditions for an FST to be partof an SMT. Assume that F is an FST spanning the terminal set ZF � Z oflength jF j. If F is a subtree of an SMT for Z then F must be an SMT for ZF .Otherwise it would be possible to shorten the SMT spanning Z. Furthermore wemay assume that there exists no union of smaller FSTs spanning ZF and having5



total length jF j. That is, we can disregard an FST spanning ZF for which aconcatenation of smaller FSTs spanning ZF with the same total length exists.Bottleneck Steiner distances (de�ned in Section 2) provide very e�ective condi-tions that must be ful�lled. The conditions given here are essentially the same asthose known for the Steiner problem in graphs [11]. Let zi; zj 2 ZF . The longestedge on the (unique) path between zi and zj in F cannot be longer than bzizj .One implication of this condition is that no edge in F | and hence in the SMTfor Z | can be longer than the longest edge in MST (Z).Another powerful condition based on bottleneck Steiner distances is the following:jF j cannot be greater than the length of a minimum spanning tree over ZF usingdistances bzizj for every pair of terminals.3.1 Empty RegionsIn this section we will generalize the concept of lunes from the Euclidean Steinertree problem to the rectilinear case. A Euclidean lune L2(u; v) for u and v isthe set of points in the plane which are closer to both u and v than u and v areto each other (see also Section 2) . The so-called lune property states that if uvis a segment in an SMT then no other point (terminal, Steiner point or interiorsegment point) of the SMT, except for the segment uv itself, can be in L2(u; v):Assume on the contrary that such a point x exists. Delete the segment uv andform a shorter tree by adding the segment ux or vx depending which componentof the SMT x falls into when uv is deleted.The same result applies immediately to the rectilinear problem. Let uv be asegment or a corner in a rectilinear SMT, i.e., an edge between nodes u andv in an SMT. Then no other point of the SMT can lie in L1(u; v). When uvis a (horizontal or vertical) segment we call this the empty diamond property(Figure 3a) and when uv is a corner the empty skew diamond property (Figure 3b).In Figure 4 the areas covered by empty diamonds in FSTs are shown.Let uw and vw denote two perpendicular segments sharing a common endpoint w.The nodes u, v and w may be any combination of terminals, Steiner points andcorner points. Assume w.l.o.g. that the segments are oriented as in Figure 5a.Lemma 1 Assume that uw and vw are segments in an SMT. Then no otherpoint (and in particular no terminal) of the SMT can lie in the interior of thesmallest axis-aligned rectangle R(u; v) containing u and v.Proof. Assume on the contrary that x 2 R(u; v), where x is some point of theSMT. The unique path P from x to w in the SMT visits either u or v �rst | ornone of them | before reaching w. 6



a) Empty diamond b) Empty skew diamondFigure 3: The empty (skew) diamond property.

Figure 4: Empty diamonds in FSTs.
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Assume that P reaches u �rst. Delete the segment uw and reconnect the tree byadding a vertical segment from x to a point y on the interior of vw. The resultingtree is shorter since jxyj < juwj. A similar result is obtained if P reaches v �rst.Now assume that P reaches neither u nor v before reaching w. Let l be the linebisecting the perpendicular angle (Figure 5b). The point x is either above, belowor on the line l. If x is above l then juxj < juwj so by deleting uw and addingux a shorter tree is obtained. Similarly if p is below l we obtain a shorter tree bydeleting vw and adding vx. Finally if p is on l we note the following: The pathP consists of vertical and horizontal segments only and therefore there exists apoint x0 2 P for which x0 2 R(u; v) and which is either above or below l, i.e.,not precisely on l. By repeating the arguments above for x0 we again obtain ashorter tree.

w
u

va) Empty corner rectangle w
u
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b) Proof illustrationFigure 5: Empty corner rectangle and proof illustration.The condition given in Lemma 1 is a very strong necessary condition for any pairof adjacent and perpendicular segments in an SMT and is denoted the emptycorner rectangle property (Figure 6).
Figure 6: Empty corner rectangles in FSTs.8



Let uv be a segment and assume that we would like to attach exactly one terminalto one side of uv and no terminal on the other side. In particular, uv may be theshort leg of a type (ii) FST. The empty corner rectangle property then impliesthat at most one candidate need to be considered; we say that there is a uniquecandidate. More precisely, if zj is attached to uv via Steiner point sj then jzjsjjmust be minimal among all candidates. Even if two or more terminals havethe same minimal distance, only one (arbitrarily chosen) candidate need to beconsidered: Assume that the segment zjsj was chosen but the SMT contains uvand another segment zlsl such that jzlslj = jzjsjj. Then we may simply deletezlsl from the SMT and add the segment zjsj without disconnecting the tree.Otherwise there would be a path from zl to, say u, in the SMT. By deleting thesegment uv (in addition to zlsl) and adding the segments zjzl and zlv (or zjv),we can prove that the tree cannot be optimal.Other types of empty regions can be obtained by looking at con�gurations likethose in Figure 7. Assume that the node s (typically but not necessarily a Steinerpoint) is adjacent to the nodes u, v and w such that us and vs are colinear. Weobtain a triangular-like empty region given by all points that are no further fromw than jwsj and no further to some point on the segment uv than jwsj (Figure 7a).This region was used by Salowe and Warme [18] (their Theorem 6).Another empty region is C1(s; rmin), where rmin = min(jusj; jvsj; jwsj) (Fig-ure 7b). Both regions shown in Figure 7 are usually, but not always, coveredby diamonds or corner rectangles and have not been used in the current imple-mentation.u s v
w

u s v
wa) Triangular empty region b) Circle empty regionFigure 7: Other empty regions.3.2 Corner-ipped TopologiesA rectilinear FST can always, except in degenerate cases, be transformed intoequal-length trees by ipping corners and sliding segments [17, 18]. Figure 8shows a sequence of such ips and slides. In particular, an FST can be trans-formed into the so-called corner-ipped version of itself in which the backbone9



essentially is a ipped version of the original backbone corner. The Hwang topol-ogy type of the new FST depends on the type of the original FST and on theparity (odd/even) of the number of segments incident to the long leg (Figure 9).�! �! �!Figure 8: Flip/slide sequence for obtaining the corner-ipped topology.The topologies corresponding to type (i)-even (i.e., type (i) FST with an evennumber of terminals incident to the long leg) and type (ii)-odd (i.e., type (ii) FSTwith an odd number of terminals incident to the long leg) are equivalent since anynon-degenerate type (i)-even FST (not type (i0) nor type (i00)) can be transformedinto an equal length type (ii)-odd FST and vice versa. More importantly, anyFST having direction � of the long leg can be transformed into an equal-lengthFST having the opposite direction � + 2 of the long leg. Thus we only need toconsider two perpendicular directions, say � = 0 and � = 1, for the direction ofthe long leg when generating FSTs.For k � 3 and type (ii) with k = 4 only one direction (e.g., � = 0) actually su�ces.This can be seen by simple case study, i.e., by transforming any such FST withlong leg direction � = 1 into an equal length FST with long leg direction � = 0.However, some care is needed in degenerate cases in which a zero-length long leghas to be accepted (consider, e.g., a type (i0) FST spanning three terminals withlong leg direction � = 1).3.3 Short Leg Upper BoundsThe length of the short leg in an FST F can be upper bounded on basis of thelength of other segments in F . We will give four simple upper bounds on ds whichis the length of the short leg for a type (i) FST and the distance from the cornerpoint to the Steiner point on the short leg for a type (ii) FST. All bounds areobtained by corner ipping and segment sliding.The sequence of segments alternating along the long leg of an FST (in the direc-tion from the root to the corner point) are denoted by z1s1, z2s2, etc.Upper bound (A) Let zisi be a segment attached to the long leg such that ziis on the same side of the long leg as the tip zk�1. If ds � jzisij it is possible tosplit F into two smaller FSTs sharing the terminal zi. This can be achieved byipping and sliding until the terminal zi is hit. Thus we have ds < jzisij.10



Type (i)-odd �! Type (ii)-even
Type (i)-even �! Type (i)-even
Type (ii)-odd �! Type (ii)-odd
Type (ii)-even �! Type (i)-oddFigure 9: Corner-ipped topologies.
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We can actually state an even stronger condition based on the non-intersectingproperty of the SMT: For type (i) the interior of the smallest axis-aligned rectan-gle R(z0; zk�1) containing the root z0 and the tip zk�1 contains no terminal. Fortype (ii) we similarly have that R(z0; zj) must be empty where zj is the terminalattached to the short leg. This is denoted the empty inner rectangle property(Figure 10) and is obtained by applying upper bound (A) and the empty cornerrectangle property to both F and its corner-ipped topology.z0 zk�1 z0 zk�1 zjds ds
Figure 10: Empty inner rectangle.Upper bound (B) When an FST F is transformed into its corner-ippedversion the length of segments attached to the long leg on the opposite side ofthe tip increases by exactly ds, except when the segment is the closest to theoriginal root (Figure 9). Assume that we have an upper bound dUB on the lengthof such a segment zisi, i > 1 (it will be described later how such an upper boundcan be obtained). Then we have ds � dUB � jzisij.Upper bound (C) Let sisi+1 be a segment on the long leg and zi and zi+1 thecorresponding terminals such that zi+1 is on the opposite side of the long leg asthe tip (Figure 11). Then, ds � jsisi+1j.Transform F as shown in Figure 11. Since F is an SMT we must have jsisi+1j �jsi+1s0i+1j = ds since otherwise it would be possible to shorten the tree by deletingthe segment si+1s0i+1 and adding the segment sisi+1.Upper bound (D) Let si, si+1 and si+2 be successive Steiner points on thelong leg and zi, zi+1 and zi+2 the corresponding terminals such that zi and zi+2are on the opposite side of the long leg as the tip (Figure 12). Then, ds �jsisi+2j �min(jzisij; jzi+2si+2j).Assume w.l.o.g. that jzisij � jzi+2si+2j. Transform F as shown in Figure 12.Since F is an SMT we must have jsisi+2j � jz0i+2s0i+2j = min(jzisij; jzi+2si+2j)+dssince otherwise it would be possible to shorten the tree by deleting the segmentz0i+2s0i+2 and adding the segment ziz0i+2.12



sizi si+1zi+1 sizi si+1zi+1z0 zk�1 z0 zk�1ds dss0i s0i+1 s0i s0i+1Figure 11: Violation of short leg upper bound (C).
sizi si+1zi+1 si+2zi+2 sizi si+1zi+1 si+2zi+2z0 zk�1 z0 zk�1ds dss0i s0i+2

z0i+2 s0i s0i+2z0i+2
Figure 12: Violation of short leg upper bound (D).Naturally, the upper bounds (C) and (D) can be generalized to include more thanthree successive Steiner points on the long leg, but we found that the e�ect ofthese bounds diminished when larger subsets of Steiner points were considered(note that the terminal which is closest to the backbone determines the e�ect ofthe bounds). By studying the conditions for optimality for small SMTs given byHanan [9] we can prove that the upper bounds (C) and (D) are actually necessaryconditions for the optimality of FST spanning �ve or fewer terminals. Since morethan 90% of the FSTs generated span �ve or fewer terminals (see Section 8), thesesimple tests are very e�ective for guaranteeing the optimality of a large fractionof the FSTs generated.4 Full Steiner Tree Generation AlgorithmThe FST generation algorithm works by \growing" FSTs. For a given terminalz0 and direction � we try to grow an FST with z0 as root and having direction� of the long leg l0 (seen as a half-line originating in z0). The algorithm can bevisualized by sweeping a line perpendicular to l0 forth and back along l0. Therecursive algorithm works as follows: Let fz1; : : : ; zi�1g be the current list ofterminals attached to l0 via Steiner points fs1; : : : ; si�1g such that the segments13



fz1s1; : : : ; zi�1si�1g alternate along l0 (initially this list is empty). Denote by Ti�1the corresponding partial tree; note that if fz1s1; : : : ; zi�1si�1g is non-empty thenTi�1 has the form of a valid FST and that the segment zi�1si�1 in this case is theshort leg of the backbone (Figure 13b).
z0 z1s1 �
a) Line-sweep

z0 z1s1 z2s2
z3s3 �

b) Partial FSTFigure 13: Growing an FST.Now we seek a terminal zi on the opposite side of the long leg as zi�1. If the newtree Ti = Ti�1 [ fsi�1sig [ fzisig survives a series of FST tests (Section 6) it isstored permanently as a type (i) FST candidate. Also the type (ii) FST obtainedby attaching a single segment zjsj to the short leg zisi is evaluated. The directionfrom zj to sj is required to be � + 2.Finally the tree Ti is grown (recursively) if it survives a series of partial-tree tests(also described in Section 6). For example, if there is a shorter interconnection ofthe vertices z0; z1; z2; : : : ; zi; si then there is no need to try to grow Ti any further;we say that the partial tree Ti is non-optimal.In order to speed up this process, i.e., avoid attaching terminals to the leg l0which cannot constitute a (partial) FST in an SMT, we perform FST independentpreprocessing (Section 5). This preprocessing primarily uses empty regions to �ndupper bounds on the length of segments attached to a backbone. In addition itidenti�es terminals which may be attached to short backbone legs.
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5 FST Independent PreprocessingIn this section we describe a O(n2) time and space preprocessing phase whichis used to reduce the average complexity of the FST growing phase. The mainpurpose of the preprocessing phase is to reduce the set of terminals that canbe attached to a backbone (long or short leg). This will be accomplished byusing bottleneck Steiner distances, empty diamonds (Figure 3a) and empty cornerrectangles (Figure 5a).The �rst step of the preprocessing phase is to sort the terminals according toeach direction �. For a given terminal zi we thus assume that its successor zi� indirection � is available in constant time.Then we compute the bottleneck Steiner distance bzizj for every pair of terminalszi; zj 2 Z. Since this distance is equal to the length of the longest edge on the pathbetween zi and zj in MST (Z), this can be done in time O(n2); the space neededis obviously O(n2) also. That is, the MST can be computed in O(n logn) timeby using, e.g., nearest neighbour graphs [7]; bottleneck Steiner distances from agiven terminal to all other terminals can be found in O(n) time using depth-�rsttraversal of the MST. An alternative is to set up MST (Z) as a dynamic searchtree in time O(n logn) using only O(n) space such that longest edge queries canbe answered in amortized time O(logn) [19]. This and other alternatives will bediscussed in Section 8.Finally we determine, for every pair of terminals zi and zj, whether R(zi; zj) isempty (contains no other terminals). We use a simple O(n2) time and spacealgorithm which makes one line sweep for every terminal. A boolean matrix isused to store empty rectangle information. Alternatively the algorithm by G�utinget al. [8] could have been used; this algorithm uses time O(n logn + k) where kis the number of empty rectangles, but still O(n2) in the worst-case.5.1 Long Leg Terminal CandidatesLet (zi; �) be any (terminal, direction) pair. Consider a segment zisi havingdirection � which attaches zi to a backbone via Steiner point si. First we willlook for an upper bound dUB0(zi; �) on the length of zisi such that if zisi is apart of an SMT then jzisij � dUB0(zi; �).We use the condition that the empty diamond property must be ful�lled for zisi,that is, no terminal can be in L1(zi; si). Draw two perpendicular 45� lines throughzi and let Q be the quadrant in direction � given by these two lines (Figure 14).The distance from zi to the closest terminal zj in Q is then a valid upper bound.If there exists no terminal in Q we set dUB0(zi; �) =1.15



zi
zj

� QNo backbone above this line needs to be considered
Figure 14: Long leg terminal segment upper bound.Finding the closest such terminal for every (zi; �) pair can be accomplished inO(n logn) time [7]. A simple alternative which is O(n2) but in practice very fastsince the terminals are assumed to be sorted in each direction is to start from ziand make a sweep in direction � until it can be concluded that the closest terminalin Q has been found. We choose to use this simple alternative since there areother parts of the preprocessing phase which require O(n2) time anyway.5.2 Short Leg Terminal CandidatesIn this phase we identify candidates which may be attached to the short legof an FST backbone. Recall that a short leg has either zero or one attachedterminal; this makes it possible to prune the candidate list quite e�ectively. Let(zi; �) be any (terminal, direction) pair. Assume that zi is a tip and incident toa short leg which points in direction �. Since we only need to grow FSTs in twoperpendicular directions (say, � = 0 and � = 1) a terminal can only be attachedto one side of a short leg pointing in direction �. We would like to determinean ordered list Zs(zi; �) of terminals that may be attached to the left or right(depending on �) of the short backbone leg.The key observations are the following: Let zjsj be a segment attached to theshort leg of a backbone with tip zi. Assume that the direction from zj to sj is �(Figure 15). Then we must have� jzisjj � min(dUB0(zi; �); bzizj )� jzjsjj � min(dUB0(zj; �); bzizj)� R(zi; zj) is empty (contains no terminals)16



zi zj�w �sj
Figure 15: Short leg terminal candidates.The short leg candidates Zs(zi; �) are identi�ed by making a sweep from zi indirection �. We use the �rst condition above to stop the scan when jzisjj >dUB0(zi; �). One implication of the third condition is that the distance jzjsjjfor any accepted terminal zj must be smaller than or equal to the shortest suchdistance seen during the sweep, otherwise the corner rectangle would be non-empty. The �rst two conditions are easily checked in constant time by usingprecomputed information.Once Zs(zi; �) is determined, upper bounds dUB1(zi; �) on the length of shortlegs (with tip zi and pointing in direction �) which have exactly one attachedterminal are obtained. Recall that dUB0(zi; �) already is an upper bound on thelength of a short leg without any attached terminal.If Zs(zi; �) = ; we set dUB1(zi; �) = 0; this means that no short leg with oneattached terminal exists. Otherwise we seek the longest ziw such that thereis a zl 2 Zs(zi; �) having both an empty lune L1(sl; w) and an empty cornerrectangle R(zl; w). Let zj be the last terminal accepted into Zs(zi; �), i.e., jzisjjis maximum. Then it is su�cient to check the empty regions for zj only, sincefor all other zl 2 Zs(zi; �) n fzjg the regions L1(sj; w) and R(zj ; w) are coveredby L1(sl; w) and R(zl; w), respectively.The upper bound dUB1(zi; �) is found by making a sweep from sj (or equiva-lently zj) in direction �. The largest possible lune L1(sj; w) (Figure 16a) is foundby using the algorithm described in Section 5.1. The empty corner rectangleproperty is equivalent to testing whether there exists a terminal zl and cornerpoint w such that jzlwj < jzjsjj; when such a terminal is encountered during thesweep we set dUB1(zi; �) = jziwj and stop (Figure 16b).
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b) Empty corner rectangleFigure 16: Short leg upper bound.6 Growing Full Steiner TreesThe basic idea of the FST growing algorithm was presented in Section 4. Inthis section we give a more detailed description of the algorithm which usesinformation obtained in the preprocessing phase. The main algorithm makes acall to the recursive procedure grow FST (fz0g, �) for every root z0 2 Z and� 2 f0; 1g (Figure 17).The procedure performs four di�erent types of tests; these will now be describedin detail. Tests for degeneracies and duplicate tests for small FSTs have not beenincluded in the description.Let � be the direction from zi to the Steiner point si on the long leg. If zi isto the left when looking in direction � from z0 then � = � � 1 and otherwise� = � + 1.6.1 Distance TestsThe upper bounds dUB0 and dUB1 obtained in the preprocessing phase are usedto eliminate terminals from consideration. We must havejzisij � max(dUB0(zi; �); dUB1(zi; �))otherwise the segment zisi can neither be attached to the long leg directly norbe a short leg in a type (ii) FST.This test only depends on the root z0 and on the direction � of the long leg andnot on the current partial tree Ti�1. This actually allows us to make a (short)list of candidates before calling grow FST (fz0g, �). However, since the FST18



procedure grow FST (Ti�1, �)// Ti�1 has segments z1s1; : : : ; zi�1si�1 attached to the long legzi = zi�1� // successor to zi�1 in direction �while (zi 6= nil) do// Assume that zi is attached to the long leg via Steiner point siif (zi passes distance tests (Section 6.1)) thenif (si�1si passes long leg segment tests (Section 6.2)) thenTi = Ti�1 [ fsi�1sig [ fzisig // new partial treeif (short leg candidate zj exists) then// Assume that zj is attached to short leg zisi via Steiner point sjif (Ti [ fzjsjg passes type (ii) FST tests (Section 6.4)) thenSave Ti [ fzjsjg as a permanent type (ii) FSTendifendifif (zisi passes attachment tests (Section 6.3)) thenif (Ti passes type (i) FST tests (Section 6.4)) thenSave Ti as a permanent type (i) FSTendifUpdate short leg upper bound and longest edge informationgrow FST (Ti, �) // make recursive callendifendifendifzi = zi� // get next terminal candidateenddoend Figure 17: FST growing algorithm.
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growing algorithm typically stops well before reaching the end of the candidatelist, we do not construct this list before calling grow FST (fz0g, �). Instead weadd candidates to the list when needed, that is, whenever we are at the end ofthe list.When a terminal candidate is added to the candidate list the corresponding shortleg candidate (if it exists) is also identi�ed. This is done by scanning the shortleg candidate list Zs(zi; �) constructed in the preprocessing phase.6.2 Long Leg Segment TestsThis series of tests depends on the partial tree Ti�1 and the new long leg segmentsi�1si. A long leg segment si�1si fails this test if the tree Ti�1 [ fsi�1sig cannotbe a subtree of any larger FST that also spans zi. We assume that zi is eitherconnected directly to si or via a short leg Steiner point.The �rst and obvious condition is that zi must be on the opposite side of thelong leg as zi�1. The empty diamond property must be satis�ed for si�1si andR(zi�1; zi) should contain no terminals. The former condition can be checked bymaintaining an upper bound on the length of the segment si�1si based on theprevious terminal candidates seen for zi (see also Section 5.1).Finally we have the following strong condition: The longest edge on the pathbetween si and any terminal zl, l � i � 1 in Ti�1 [ fsi�1sig cannot be longerthan bzizl. This condition holds since the same (longest) edge will also appear onthe path between zi and zl in any tree having Ti�1 [ fsi�1sig as a subtree. Byupdating this longest edge information dynamically while growing the tree thistest can be performed very e�ciently.6.3 Attachment TestsThese tests check if the partial tree Ti = Ti�1 [fsi�1sig[fzisig can be a subtreeof any larger FST (including Ti itself). This is done by testing whether jzisij �dUB0(zi; �) and if jzisij � bzizl for all zl, l � i� 1.6.4 FST TestsThese tests check the optimality of a speci�c FST candidate. The most e�cienttests are based on the short leg upper bounds presented in Section 3.3. Theseupper bounds are dynamically updated while growing the tree so this test can beperformed in constant time for a speci�c FST candidate.20



The empty diamond property (resp. empty corner rectangle property) is testedfor every segment (resp. pair of adjacent segments), also in the corner-ippedtopology. Note that these conditions are satis�ed by construction for every edgein the primary topology, except for segments in or connected to the short leg ina type (ii) FST. Furthermore, the empty inner rectangle property is checked.Finally the longest edge test and minimum spanning tree test using bottleneckSteiner distances are performed (Section 3). It should be noted that we also triedto compute an upper bound on the FST length by using one of the availableheuristics for the rectilinear Steiner tree problem, but since all FSTs spanningup to �ve terminals are optimal by construction (Section 3.3) this only had anegligible e�ect on the number of surviving FSTs.7 Expected Number of Full Steiner TreesIn this section we give a theoretical bound on the expected number of survivingFSTs for randomly generated instances (recall that FSTs are assumed to haveHwang topology). Our interest in the expected number of surviving FSTs is dueto the fact that current worst-case bounds are exponential.F�o�meier and Kaufmann [4] constructed an in�nite series of instances for whichthe number of FSTs ful�lling a so-called tree star condition is exponential. AnFST F with Steiner points fs1; s2; : : : ; skg is a tree star if all corner rectanglesare empty and MST (Z [ fs1; s2; : : : ; skg) contains every edge of F . The lattercondition is equivalent to the following condition which is much faster to verifywhen bottleneck Steiner distances are given (see also Section 3): For every pairof terminals zi and zj spanned by F the longest edge on the unique path betweenzi and zj is not longer than bzizj . F�o�meier and Kaufmann also presented ex-perimental evidence showing that the average number of tree stars for randomlygenerated instances is almost linear. Thus there is a huge gap between the worst-case bound (which is exponential) and the average number of surviving FSTs forrandomly generated instances (which is almost linear).Computational experience reported in Section 8 indicates that even when usingthe strong screening tests described in the previous sections it does not seempossible to prove a worst-case polynomial upper bound. However, we prove thatthe expected number of FSTs ful�lling a weak version of the tree star conditionand spanning up to K terminals is O(n(log logn)K�2), that is, almost linear(where K � 3 is a constant). Thus this is also a bound on the number of FSTsful�lling the original tree star condition given above. Note that the trivial worst-case bound is O(nK).Unfortunately, we have not been able to prove that the expected total number of21



FSTs is polynomial. But our bound is a signi�cant improvement on two boundsgiven by Salowe and Warme [18]. They gave an O(n logn) bound on the expectednumber of FSTs spanning exactly three terminals and an O(n2) bound on theexpected number of FSTs spanning up to K terminals (where K is a constant).In addition, they gave an O(1) bound on the expected number of FSTs spanning
(n) terminals.We �rst give a bound on the expected length of the longest MST-edge (Sec-tion 7.1). This is also a bound on the longest SMT-edge and it holds for anymetric Lp for 1 � p � 1; similar proof techniques as in [3] are applied. Then wepresent some previously known properties for empty rectangles (Section 7.2) and�nally give our main result in Section 7.3.7.1 Bounding the Longest MST-edgeThe probability that there exist long MST-edges is bounded by the followingtheorem, which is proved in the Appendix.Theorem 1 Let Z be a set of n > 4 terminals randomly distributed with uniformdistribution within the unit square. Let C be a constant and B = Cqlogn=n. Theprobability that there exists an MST-edge (zi; zj) under the Lp metric, 1 � p � 1,such that kzizjkp > B is bounded by n2�C2=16.Corollary 1 With high probability the longest edge in an MST (and SMT) underany metric Lp, 1 � p � 1, is O(qlogn=n). Also the expected length of thelongest edge in an MST (and SMT) is O(qlogn=n).Proof. Choose C = p41, such that 2 � C2=16 < �1=2. Then the probabilitythat there exists an MST-edge longer than Cqlogn=n is n2�C2=16 ! 0 as n!1.The expected length of the longest MST-edge is bounded by(1� n2�C2=16)� Cqlogn=n + n2�C2=16 �p2� Cqlogn=n+q2=n� (C + 2)qlogn=n7.2 Empty Rectangle PropertiesTwo terminals zi; zj 2 Z make an empty rectangle if R(zi; zj) contains no otherterminal from Z. Empty rectangles are related to so-called maximal points in a22



point set. A maximal point is a point which is not dominated by any other pointin the set, i.e., there is no point which has both a greater x- and y-coordinate.Consider a point zi 2 Z. Let Zi � Z be the set of points dominated by zi. Theseare all points in Z located in the third quadrant of zi. Then all maximal pointsin Zi are exactly those that make an empty rectangle with zi. By making appro-priate transformations we see that the problem of determining empty rectanglesis equivalent to �nding maximal points.Bentley et al. [2] proved that the expected number of maximal points in a pointset with n uniformly distributed points is O(logn). Thus we have:Lemma 2 Let zi 2 Z be a terminal. The expected number of terminals makingempty rectangles with zi is O(logn).7.3 Expected Number of FSTsThe bound on the expected number of FSTs is obtained by using the boundon the longest MST-edge and the bound on the number of terminals making anempty rectangle with a given terminal. Denote by bmax the largest bottleneckSteiner distance (which is the same as the length of the longest MST-edge).Assume that zi and zi+1 are two successive terminals attached to the long leg of anFST in an SMT for Z (zi may be the root of the FST). Then both the horizontaland vertical distance between zi and zi+1 is at most 2bmax (more precisely thedistance along the long leg is at most bmax and the perpendicular distance atmost 2bmax). Also zi and zi+1 de�ne an empty rectangle.Since the expected value of bmax is bounded by O(qlogn=n) (Corollary 1) theexpected number of candidates for zi+1 when zi is given is O((qlogn=n)2� n) =O(logn). In addition, zi and zi+1 must make an empty rectangle and thus byLemma 2 the expected number of candidates for zi+1 is O(log logn).Let K be a constant, K � 3. Since any type (i) FST can be obtained by �rstchoosing a root and then growing the FST from this root, selecting alternatingsegments along the long leg in order, we obtain the bound O(n(log logn)K�1) onthe expected number of type (i) FSTs spanning up to K terminals. For type(ii) the distance between last terminal attached to the long leg and the tip inthe direction perpendicular to the long leg may be as large as 3bmax; however,this does not change the O(log logn) bound. On the other hand, the terminalattached to the short leg is uniquely given once the backbone is constructed.Thus we obtain the stronger bound O(n(log logn)K�2) on the number of type (ii)FSTs. 23



We can obtain the same bound for type (i) FSTs by \growing" the FST in adi�erent order. Having chosen the root we �rst choose the tip of the FST. Sinceboth the vertical and horizontal distance to this terminal is at most (K � 1)bmaxthere are only O(log logn) candidates for the tip since K is a constant. Whenchoosing the terminals along the long leg the last terminal is now uniquely given(since we have already chosen the tip). The main result of this section follows:Theorem 2 Assume that the terminals are randomly distributed with uniformdistribution within the unit square. Let K be a constant, K � 3. Then theexpected number of FSTs (i.e., Hwang topologies) spanning up to K terminalsfor which no edge is longer than the longest MST-edge and all corner rectanglesare empty is bounded by O(n(log logn)K�2).Since any FST ful�lling the tree star condition also ful�lls the conditions in thistheorem we have the same bound on the number of tree stars.8 Computational ExperienceThe new rectilinear FST generator was experimentally evaluated on an HP9000workstation3 using the programming language C++ and class library LEDA (ver-sion 3.4.1) [14]. The random number generator used was the random source classin LEDA.The test-bed consists of problem instances from three sources: Public libraryinstances (Section 8.1), randomly generated instances (Section 8.2) and a series ofconstructed pathological instances producing an exponential number of survivingFSTs (Section 8.3).8.1 Public Library InstancesThe �rst series of problems instances is from the OR-Library [1]. FSTs for eachof the 46 instances by Soukup and Chow [20] (3-62 terminals) were generatedwithin 0.2 seconds and the number of surviving FSTs similar to those givenby Warme [23]. Results for the other series of instances from the OR-Library(randomly generated instances, 15 for each size for n � 1000 and one 10000terminal instance) are given in Table 1.3Machine: HP 9000 Series 700 Model 735/99. Processor: 99 MHz PA-RISC 7100. Mainmemory: 96 MB. Performance: 3.27 SPECint95 (109.1 SPECint92) and 3.98 SPECfp95 (169.9SPECfp92). Operating system: HP-UX 9.0. Compiler: GNU C++ 2.7.2 (optimization ag-O3). 24



The total number of FSTs is almost linear with relatively small variation. Theaverage FST size (number of terminals) increases very slowly and stabilizes belowfour terminals. The CPU-time for the preprocessing phase is | as expected| quadratic. Interestingly, the CPU-time for the FST growing phase is sub-quadratic and for n = 10000 the CPU-time for the preprocessing phase clearlydominates the CPU-time for the FST growing phase. We discuss this interestingobservation in detail in Section 8.2. The total CPU-times are only fractions ofthe CPU-times reported in [23]; recall that the FST generation algorithm in [23]required a few hours on a 1000 terminal instance. In addition, the FST-countsreported here are approximately 15% smaller.n FST-count FST-size CPU-prep CPU-grow CPU-total10 23 � 7 2.79 � 0.29 0.00 � 0.00 0.01 � 0.00 0.01 � 0.0020 62 � 16 3.17 � 0.36 0.01 � 0.01 0.02 � 0.01 0.04 � 0.0230 103 � 23 3.34 � 0.32 0.02 � 0.00 0.04 � 0.01 0.06 � 0.0140 135 � 22 3.30 � 0.25 0.03 � 0.01 0.06 � 0.02 0.09 � 0.0150 168 � 24 3.32 � 0.20 0.05 � 0.01 0.07 � 0.02 0.12 � 0.0260 225 � 32 3.51 � 0.27 0.06 � 0.01 0.11 � 0.03 0.16 � 0.0370 254 � 31 3.44 � 0.21 0.07 � 0.01 0.12 � 0.02 0.19 � 0.0280 293 � 34 3.49 � 0.23 0.09 � 0.01 0.15 � 0.03 0.23 � 0.0390 326 � 41 3.44 � 0.24 0.10 � 0.01 0.16 � 0.03 0.25 � 0.03100 386 � 63 3.55 � 0.24 0.11 � 0.01 0.20 � 0.05 0.31 � 0.05250 963 � 76 3.52 � 0.12 0.44 � 0.01 0.56 � 0.06 1.00 � 0.06500 2006 � 112 3.61 � 0.11 1.28 � 0.05 1.37 � 0.14 2.65 � 0.171000 4172 � 220 3.69 � 0.11 4.21 � 0.04 3.50 � 0.30 7.71 � 0.3010000 40933 3.65 363.75 82.24 445.99Table 1: OR-Library instances. FST-count: Number of FSTs generated (in-cluding MST-edges). FST-size: Average number of terminals spanned by gen-erated FSTs. CPU-prep: Preprocessing CPU-times. CPU-grow: FST-growingCPU-times. All CPU-times are in seconds. Second numbers in each column arestandard deviations.The FST generator was also evaluated on 26 instances from TSPLIB [15] (198-7397 terminals). This library is a collection of instances for the Traveling Sales-man Problem (TSP), mainly plane real-world Euclidean problem instances. The26 selected instances are the same as those chosen in a study by Reinelt [16]on heuristics for the TSP; in addition we have chosen the instance pla7397, thelargest TSP instance solved to optimality to date. These instances are quiterepresentative for the whole TSPLIB collection.Computational results are presented for each instance in Table 2. For many of theinstances the FST-count, FST-size and total CPU-time is lower than the averagefor randomly generated instances of the same size. The only exceptions are theinstances rat783 and fnl4461 which have their points distributed in a random anduniform fashion. Thus instances with a less random and less uniform distribution25



are in general easier, in particular rl1323, u1432 and rl5934 which have many co-linear and equidistant terminals.Instance FST-count FST-size CPU-prep CPU-grow CPU-totald198 595 2.80 0.29 0.25 0.54lin318 1378 3.37 0.51 0.83 1.34417 1624 3.04 0.91 0.73 1.64pcb442 914 2.57 1.02 0.41 1.43att532 2267 3.76 1.34 1.54 2.88u574 1733 3.11 1.58 1.16 2.74p654 2103 2.89 1.84 1.43 3.27rat783 4560 4.08 2.56 4.01 6.57pr1002 3154 3.05 3.85 1.78 5.63u1060 3453 3.13 4.41 2.11 6.52pcb1173 3308 3.13 5.21 1.97 7.18d1291 4266 2.73 5.83 2.19 8.02rl1323 2541 2.64 6.75 1.69 8.441400 8689 3.16 7.36 5.32 12.68u1432 3604 2.60 7.08 1.75 8.831577 5665 2.89 9.30 3.05 12.35d1655 4142 2.66 9.63 2.29 11.92vm1748 4646 3.17 10.49 3.83 14.32rl1889 3659 2.69 11.92 2.71 14.63u2152 5855 2.63 15.21 2.79 18.00pr2392 6782 2.95 14.46 4.55 19.01pcb3038 10694 3.34 28.06 8.92 36.983795 12993 2.86 49.08 8.57 57.65fnl4461 29229 4.59 61.84 46.74 108.58rl5934 11584 2.60 115.40 12.04 127.44pla7397 20497 2.76 174.69 22.92 197.61Table 2: TSPLIB instances.8.2 Randomly Generated InstancesOne hundred instances were generated for each size 1000; 2000; : : : ; 10000. Ter-minals were drawn with uniform distribution from the unit square. It should benoted that we did not choose the coordinates from a 10000 � 10000 grid whichis common in the literature, since this would impose a signi�cant number of co-linear terminals for larger instances. However, as far as the number of survivingFSTs is concerned, preliminary experiments showed that it did not seem to makeany noticeable di�erence whether a grid was used or not.Computational results presented in Table 3 and Figures 18 and 19 show a veryregular pattern. The total number of FSTs grows almost linearly, the FST pre-processing time quadratically and the FST growing time sub-quadratically. Infact, the FST growing time seems to be n times some poly-logarithmic factor.26



This behaviour can be explained by studying two interesting statistics. The �rstis the average number of short leg candidates (Section 5.2). This number in-creases extremely slowly: From n = 1000 to n = 10000 the number of candidatesincreases from 0.89 to 0.90 candidates. Note that the analysis in Section 7 givesa theoretical upper bound of O(log logn).Secondly, we have the average number of long leg candidates considered for agiven root and direction (Section 6.1). Surprisingly, this number also grows veryslowly: From n = 1000 to n = 10000 this number increases from 5.28 to 5.59.Currently, we do not have any tight theoretical upper bound on this value, butthis shows that the FST growing procedure is cut-o� very early and that therunning time therefore is close to being linear.n FST-count FST-size CPU-prep CPU-grow CPU-total1000 4092 � 188 3.66 � 0.09 4.10 � 0.07 3.36 � 0.26 7.46 � 0.292000 8286 � 244 3.68 � 0.06 13.60 � 0.30 8.35 � 0.41 21.95 � 0.493000 12405 � 277 3.67 � 0.04 29.39 � 0.15 14.52 � 0.44 43.91 � 0.484000 16626 � 348 3.69 � 0.04 49.11 � 0.57 21.88 � 0.75 70.99 � 1.095000 20793 � 412 3.69 � 0.04 79.38 � 0.38 29.87 � 0.87 109.26 � 0.916000 24970 � 504 3.69 � 0.04 121.39 � 1.17 39.61 � 1.17 161.01 � 1.627000 29126 � 552 3.69 � 0.04 171.33 � 0.98 49.24 � 1.45 220.57 � 1.888000 33374 � 582 3.69 � 0.04 232.10 � 2.63 60.93 � 1.88 293.03 � 3.509000 37550 � 564 3.69 � 0.03 304.28 � 6.16 73.01 � 2.82 377.29 � 8.1210000 41652 � 590 3.69 � 0.03 359.51 � 7.87 84.65 � 3.77 444.16 � 10.45Table 3: Randomly generated instances.
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Figure 19: CPU-times: Preprocessing and total.The average number of terminals spanned by the FSTs is approximately 3.7. TheFST-size distribution for n = 10000 is shown in Figure 20. Approximately 90%of the FSTs span �ve or fewer terminals and less than 1% span more than tenterminals. From n = 1000 to n = 10000 the relative (i.e., normalized by n)increase in the total number of FSTs is approximately 2%. This increase mainlycomes from a relative increase in the number of large FSTs: There are only 1%more FSTs spanning three terminals while there are 5% more FSTs spanning,e.g., six terminals.For large instances the running time of the preprocessing phase clearly domi-nates the running time of the FST growing phase and we may therefore ask ifit is possible to reduce the former without increasing the latter too much. Thedominating part of the preprocessing phase is the �(n2) time and space procedurefor computing bottleneck Steiner distances.By using the (dynamic) search tree data structure by Sleator and Tarjan [19], thispart of preprocessing phase can be reduced toO(n logn) time and O(n) space, butlongest edge queries then take O(logn) amortized time instead of O(1) (matrixlookup). We used the dynamic trees class in LEDA in order to evaluate thisoption.For n = 1000 the running time of the preprocessing phase unfortunately re-mained approximately the same while the running time of the FST growing phaseincreased from 3 to approximately 15 seconds. Thus the large constant factor in-volved in the search tree data structure does not make this approach favourablefor this instance size. 28



0

0.2

0.4

0.6

0.8

1

1.2

1.4

3 4 5 6 7 8 9 10

FS
T-

co
un

t  
/  

n

FST-size (number of terminals)
> 10Figure 20: FST size distribution for n = 10000.When n = 10000 the running time of the preprocessing phase was halved while therunning time FST growing phase approximately doubled. The total CPU-timewas reduced from 7.5 minutes to 6.0 minutes. Consequently, for large instancesit is possible to reduce the total running time, but this requires the application ofrelatively advanced data structures. We leave this topic open for future research.8.3 Pathological InstancesF�o�meier and Kaufmann [4] constructed an in�nite series of \bad" instances withrespect to the so-called tree star condition (see Section 7). They showed that thenumber of tree stars was 
(1:32n) for the series of instances given in Figure 21.The base case consists of the 12 leftmost terminals; the 10 rightmost of these arerepeatedly scaled down and added to the right.In Table 4 we give statistics for the �rst six of these instances with 12, 22, 32, 42,52 and 62 terminals. Apparently, the number of surviving FSTs is exponential,approximately 
(1:06n). This slower growth was to be expected because all FSTsgenerated by the new generator are tree stars and, in addition, a number of otheroptimality tests are ful�lled. These computational results present evidence thatit may be di�cult to �nd simple conditions which will guarantee a polynomialnumber of surviving FSTs.
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12 22Figure 21: Pathological instances. The small rectangle is a scaled-down versionof the large rectangle. The in�nite series of instances is constructed by repeatedlyadding a scaled-down copy of the terminals inside the current rectangle to theright of the rectangle.
n FST-count FST-size CPU-prep CPU-grow CPU-total12 108 5.37 0.00 0.08 0.0822 251 7.71 0.02 0.32 0.3432 475 10.88 0.03 1.09 1.1242 853 15.10 0.04 3.32 3.3652 1551 20.09 0.05 10.13 10.1862 2865 25.69 0.09 28.72 28.81Table 4: Pathological instances.
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9 ConclusionWe presented a new algorithm for generating rectilinear full Steiner trees (FSTs).The algorithm outperforms previous approaches [18, 23] by orders of magnitude.New optimality conditions for rectilinear FSTs were presented. Furthermore, wegave a tighter upper bound on the expected number of FSTs spanning up to Kterminals for randomly generated instances (where K is a constant).The proposed algorithm is very fast and has applications both with respect toexact algorithms and heuristics:FST based exact algorithms The �rst and natural application is to usethe generator in conjunction with the integer programming based concatenationmethod by Warme [23]. This would on average allow the exact computation ofrectilinear Steiner trees for 100 terminals in less than 10 seconds and for 500terminals in less than 15 minutes. Also, tight lower bounds (and in some casesoptimal solutions) for problems with a few thousand terminals could be computedin less than an hour. Computational results will be presented in a forthcomingpaper [22].FST based heuristics The generator can be used as a �rst phase for greedyand local search based heuristics. The approach presented in [27, 26] can easilybe extended to the rectilinear problem.Grid graph reduction We can obtain a grid reduction method by overlayingthe generated FSTs on the Hanan grid (Figure 22). On average, the numberof Steiner points left in the grid is almost linear, approximately 3n (e.g., forn = 1000 only 0:3% of the Steiner points are retained). The reduced problemmay be transformed into the corresponding graph problem; exact algorithms andheuristics for the graph problem can then be applied.Winter [25] proposed a series of reduction tests for the rectilinear Steiner treeproblem. Computational experiments showed that it was possible to reduce thetotal number of Steiner points to 15 � 20% of the original number (for n �25). For this problem size the FST generation method retains 10 � 15% of theSteiner points. By combining the both techniques even better reductions may beobtained.The best performing heuristic for the rectilinear Steiner tree problem is theiterated 1-Steiner heuristic [12]. An e�cient implementation of this heuristicruns in time O(n3) [6], but requires approximately 30 minutes for a 300 terminalproblem (on a SUN4 workstation). Since this heuristic is based on iteratively31



Figure 22: FST generation as a grid reduction algorithm.
32



choosing Steiner point candidates from the Hanan grid, a simple and practicalway of speeding it up would be to preprocess the Hanan grid by generating FSTs.This would reduce the number of Steiner points from O(n2) to approximatelyO(n), cutting the running time down by a factor of O(n).As noted in Section 8.2 the running time of the generator can be further reducedfor large instances (n > 1000) by using advanced data structures, e.g., for answer-ing bottleneck Steiner distance queries [19, 21]. This would also reduce memoryrequirements from �(n2) to �(n).Obtaining a tight upper bound on the expected (total) number of surviving FSTsis still the most prominent open theoretical problem. The bound given in thispaper on the expected number of FSTs spanning up toK terminals is a signi�cantimprovement over previous bounds, but it still not entirely satisfactory.AcknowledgementThe author would like to thank David M. Warme and Pawel Winter for valuablecomments and suggestions.
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AppendixIn this appendix we prove Theorem 1. The unit square is denoted by U and thearea of a planar region R denoted by Area(R).Let zi; zj 2 Z be any pair of terminals in U sharing an edge in some MST forZ using distance metric Lp, 1 � p � 1. First we note that kzizjkp � p2kzizjk(e.g., see [13]). Let D(zi; zj) be the interior of the square having the line segmentzizj as a diameter. We have D(zi; zj) � Lp(zi; zj) (Figure 23) and since Lp(zi; zj)is empty (contains no terminals from Z) we also have that D(zi; zj) is empty.
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L2 L1L1Figure 23: Lunes for L1, L2 and L1 metrics. The square D(zi; zj) is also shown(shaded).The area covered by D(zi; zj) is Area(D(zi; zj)) = kzizjk2=2. No matter howzi and zj are located in U , at least one of the two triangles on each side of thesegment zizj will be entirely inside U . Thus at least half of D(zi; zj) is inside U ,or Area(D(zi; zj) \ U) � kzizjk2=4.Now we bound the probability that zi and zj are further apart than distance B:Pr( (zi; zj) is an MST-edge and kzizjkp > B )� Pr( (zi; zj) is an MST-edge j p2kzizjk > B )� Pr( D(zi; zj) is empty j kzizjk > B=p2 )� (1� (B=p2)2=4)n�2� e�B2(n�2)=8= e�C2 log n(n�2)=8n� n�C2=16Finally we bound the probability that there exists an MST-edge with terminalsfurther apart than distance B:Pr( 9 MST-edge (zi; zj) such that kzizjkp > B ) �  n2!n�C2=16 � n2�C2=1636


