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The rectilinear Steiner tree problem (RSTP) asks for a shortest interconnection
of a set Z of n terminals (points in the plane) using only horizontal and vertical
Alternatively we may say that we would like to interconnect Z using
the rectilinear (or Manhattan) distance metric L;. This NP-hard problem [5]
has important applications in, e.g., VLSI-design. Many exact algorithms and
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Abstract

The fastest exact algorithm (in practice) for the rectilinear Steiner tree
problem in the plane uses a two-phase scheme: First a small but sufficient
set of full Steiner trees (FSTs) is generated and then a Steiner minimum
tree is constructed from this set by using simple backtrack search, dy-
namic programming or an integer programming formulation. FST gener-
ation methods can be seen as problem reduction algorithms and are also
useful as a first step in providing good upper- and lower-bounds for large
instances. Currently, the time needed to generate FSTs poses a signifi-
cant overhead for FST based exact algorithms. In this paper we present a
very efficient algorithm for the rectilinear FST generation problem which
removes this overhead completely. Based on information obtained in a
preprocessing phase, the new algorithm “grows” FSTs while applying sev-
eral new and important optimality conditions. For randomly generated
instances approximately 4n FSTs are generated (where n is the number
of terminals). The observed running time is quadratic and the FSTs for a
10000 terminal instance can on average be generated within 10 minutes.
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heuristics have been proposed for the problem; for an extensive survey see the
book by Hwang, Richards and Winter [11].

The Steiner points for a rectilinear Steiner minimum tree (SMT) may be confined
to the vertices of the grid graph for Z [9]. An SMT is a union of full Steiner
trees (FSTs), in which every leaf is a terminal (having degree one) and all other
nodes (having degree three or more) are Steiner points. The FSTs of an SMT
are also denoted full components. Furthermore, our definition of F'ST's should be
compared to the definition of FSTs in [18, 23] where FSTs are required to span
terminal sets for which every SMT is a full topology. The SMT shown in Figure 1
consists of 7 FSTs; each FST spans from 2 to 6 terminals.

Figure 1: Grid graph and Steiner minimum tree.

Recently Warme [23] made a breakthrough in the construction of exact algo-
rithms for the problem. The new algorithm uses a two-phase scheme originally
suggested by Winter [24] for the Euclidean problem and later applied to the rec-
tilinear problem by Salowe and Warme [18]. The idea is following: In the first
(FST generation) phase we generate a (small) set of FSTs F containing at least



one SMT identified as a subset. In the second (FST concatenation) phase we find
a subset F* C F with minimum total length such that the FSTs in F* inter-
connect Z. Warme [23] noticed that FST concatenation is equivalent to finding
a minimum spanning tree in the hypergraph H = (Z, F) and formulated this
problem as an integer program. He solved this problem using branch-and-cut,
allowing the exact solution of rectilinear Steiner tree problem instances with up
to 1000 terminals.

However, the first phase (FST generation) now seems to be the bottleneck for a
large fraction of the problem instances considered by Warme [23]. Salowe and
Warme [18] gave the first FST generation algorithm for the rectilinear problem.
Although being very fast for small instances (n < 100), the exponential running
time growth of the algorithm made it impractical for larger instances (a 400
terminal instance required several days of CPU-time!). Warme [23] improved
this algorithm significantly, reducing the observed running time to O(n3). FSTs
for a 1000 terminal instance could be generated in a few hours. In this paper we
reduce the observed running time to O(n?); the algorithm generates FSTs for a
1000 terminal instance in less than 10 seconds and for a 10000 terminal instance
in less than 10 minutes.

A precise description of the topology of rectilinear FSTs was given by Hwang [10].
This characterization and other properties of rectilinear FSTs are given in Sec-
tion 3. In Section 4 we give an overview of the FS'T generation algorithm which
is based on “growing” FSTs. Section 5 describes the important preprocessing
phase while Section 6 presents the tests performed while growing FSTs. Theo-
retical bounds on the expected number of FSTs generated are given in Section 7.
Computational results are reported in Section 8 and concluding remarks are given
in Section 9.

2 Definitions and Basic Notions

Let u = (ug, uy) and v = (v, v,) be a pair of points in the Cartesian plane R?.
The distance in the L,-metric, 1 < p < oo, between u and v (or simply the
L,-distance) is ||uv||, = (Juz — ve|P + |u, — v,|[P)}/P. As special cases we have the
rectilinear (or Manhattan) L;-distance |uv| = ||uv||;, the Euclidean Ly-distance
[uv]] = |luv]|z and [Juv||e = max(|ue — v, [uy — vy)).

Define C,(u,r) to be the interior of an L,-circle centred at u with radius r > 0:
Cp(u,r) = {z € R? | ||uz|l, < r}. An L,-lune L,(u,v) is the set of points in
the plane which are closer to both u and v than » and v are to each other,
ie., Ly(u,v) = Cplu, ||uv|l,) N Cp(v, ||uv]|y). Finally we define R(u,v) to be the

LAll running times measured on a workstation comparable to the one used in this study.



interior of the smallest axis-aligned rectangle that contains v and v; thus v and
v are opposite corners of the rectangle.

In general we use the terminology in [18] for geometric primitives related to rec-
tilinear Steiner trees. A rectilinear Steiner tree consists of vertical and horizontal
segments. Segments intersect only at their endpoints which are either termi-
nals (belonging to Z), corner points (having degree two), T-nodes (having degree
three) or cross-nodes (having degree four). A Steiner point is either a T-node or
a cross-node.

A line is a sequence of one or more adjacent, colinear segments with no terminals
in its relative interior (where relative interior is used in the usual geometric sense).
A complete line is a line of maximal length. One horizontal and one vertical
complete line incident to a common corner point form a corner; the complete
lines are the legs of the corner. A set of segments incident to a common line [ are
said to alternate along [ if each intersection point forms a distinct T-node and no
two successive segments are on the same side of [.

A segment uw is oriented according to the direction of vector uv. We may restrict
our attention to four directions « = 0,1,2,3, corresponding to East (positive
x-axis), North (positive y-axis), West (negative x-axis) and South (negative y-
axis), respectively. Define o — 1 to be the direction corresponding to « turned
90° clockwise and « + 1 to be the direction « turned 90° counter-clockwise; for
a given direction v we thus say that o + 1 points to the left and oo — 1 points to
the right. Similarly the direction o+ 2 (= a — 2) points in the opposite direction
of a.

Let MST(Z) be a minimum spanning tree for Z using distance metric L; and
zi,zj € Z a pair of terminals. The bottleneck Steiner distance b, ,; between z;
and z; is equal to the length of the longest edge on the (unique) path between z;
and z; in MST(Z). Note that no edge on the path between z; and z; in an SMT
for Z can be longer than b,,, .

3 Full Steiner Tree Properties

Hwang [10] proved that there always exists an SMT for which every FST has
one of the two generic forms shown in Figure 2: An FST spanning k terminals
consists of a corner (also denoted the backbone) given by a root zy and a tip
2x—1- The root is incident to the long leg and the tip incident to the short leg of
the corner?. There are two main types (i) and (ii) and two degenerate cases of

type (i):

2The terminology short leg and long leg is not meant to connote geometric length, according
to the L; metric. Rather, the long leg can have more incident segments than the short leg.
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e Type (i) has k — 2 alternating segments incident to the long leg and no
segment incident to the short leg. The first degenerate case (i’) has a zero-
length short leg, i.e., the corner is degenerated into a line. The second
degenerate case (i) is a cross spanning exactly four terminals (the two
alternating incident segments are on the same line); the two Steiner points

are degenerated into one Steiner point having degree four.

e Type (ii) has k£ — 3 alternating segments incident to the long leg and one
segment incident to the short leg.

. .. Rk—1
Type (i) Type (i)

Figure 2: Generic full Steiner trees.

If £ > 5 the two legs are uniquely identified; otherwise they may be interchanged
except when £ = 4 and both segments are attached to one single leg (type (i)).
However, the important observation is that every FST has a terminal which may
be identified as root.

In the following every FST is assumed to have Hwang topology. Note that this
gives an upper bound of O(2") on the total number of FSTs, i.e., for every subset
of terminals at most four Hwang topologies exist, one for each of the four root
candidates having minimum or maximum x- or y-coordinate in the subset.

We say that the long leg has direction « if the vector from the root to the corner
point of the FST points in direction a. An FST is oriented according to the
direction of the long leg and the position of the tip (left/right of the long leg
when looking in direction «). In the following we use the FSTs shown in Figure 2
as our generic F'STs, i.e., we assume w.l.o.g. that the long leg has direction v = 0
and the tip is to the right of the long leg when looking in direction a.

Since we are only interested in FSTs that may be part of an SMT for Z, we
need a series of simple but strong necessary conditions for an FST to be part
of an SMT. Assume that F' is an FST spanning the terminal set Zp C Z of
length |F'|. If F is a subtree of an SMT for Z then F' must be an SMT for Zp.
Otherwise it would be possible to shorten the SMT spanning Z. Furthermore we
may assume that there exists no union of smaller FSTs spanning Z5 and having



total length |F|. That is, we can disregard an FST spanning Zp for which a
concatenation of smaller FSTs spanning Zy with the same total length exists.

Bottleneck Steiner distances (defined in Section 2) provide very effective condi-
tions that must be fulfilled. The conditions given here are essentially the same as
those known for the Steiner problem in graphs [11]. Let z;, 2; € Zp. The longest
edge on the (unique) path between z; and z; in F' cannot be longer than b,,,,.
One implication of this condition is that no edge in /' — and hence in the SMT
for Z — can be longer than the longest edge in MST(Z).

Another powerful condition based on bottleneck Steiner distances is the following:
|F'| cannot be greater than the length of a minimum spanning tree over Z using
distances b,,,; for every pair of terminals.

3.1 Empty Regions

In this section we will generalize the concept of [unes from the Euclidean Steiner
tree problem to the rectilinear case. A Euclidean lune Ly(u,v) for u and v is
the set of points in the plane which are closer to both v and v than v and v are
to each other (see also Section 2) . The so-called lune property states that if uv
is a segment in an SMT then no other point (terminal, Steiner point or interior
segment point) of the SMT, except for the segment uv itself, can be in Ly(u,v):
Assume on the contrary that such a point z exists. Delete the segment uv and
form a shorter tree by adding the segment ux or v depending which component
of the SMT z falls into when uwv is deleted.

The same result applies immediately to the rectilinear problem. Let uv be a
segment or a corner in a rectilinear SMT, i.e., an edge between nodes u and
v in an SMT. Then no other point of the SMT can lie in £;(u,v). When uv
is a (horizontal or vertical) segment we call this the empty diamond property
(Figure 3a) and when uv is a corner the empty skew diamond property (Figure 3b).
In Figure 4 the areas covered by empty diamonds in FSTs are shown.

Let uw and vw denote two perpendicular segments sharing a common endpoint w.
The nodes u, v and w may be any combination of terminals, Steiner points and
corner points. Assume w.l.o.g. that the segments are oriented as in Figure 5a.

Lemma 1 Assume that uw and vw are segments in an SMT. Then no other
point (and in particular no terminal) of the SMT can lie in the interior of the
smallest azis-aligned rectangle R(u,v) containing u and v.

Proof. Assume on the contrary that € R(u,v), where z is some point of the
SMT. The unique path P from x to w in the SMT visits either u or v first — or
none of them — before reaching w.
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a) Empty diamond b) Empty skew diamond

Figure 3: The empty (skew) diamond property.

D R

Figure 4: Empty diamonds in FSTs.



Assume that P reaches u first. Delete the segment uw and reconnect the tree by
adding a vertical segment from x to a point y on the interior of vw. The resulting
tree is shorter since |ry| < |uw|. A similar result is obtained if P reaches v first.

Now assume that P reaches neither u nor v before reaching w. Let [ be the line
bisecting the perpendicular angle (Figure 5b). The point z is either above, below
or on the line [. If x is above [ then |uz| < |uw| so by deleting uw and adding
ux a shorter tree is obtained. Similarly if p is below [ we obtain a shorter tree by
deleting vw and adding vx. Finally if p is on [ we note the following: The path
P consists of vertical and horizontal segments only and therefore there exists a
point 2’ € P for which 2’ € R(u,v) and which is either above or below [, i.e.,
not precisely on [. By repeating the arguments above for ' we again obtain a
shorter tree. ]

o U

a) Empty corner rectangle b) Proof illustration

Figure 5: Empty corner rectangle and proof illustration.

The condition given in Lemma 1 is a very strong necessary condition for any pair
of adjacent and perpendicular segments in an SMT and is denoted the empty
corner rectangle property (Figure 6).

Figure 6: Empty corner rectangles in FSTs.



Let uv be a segment and assume that we would like to attach exactly one terminal
to one side of uv and no terminal on the other side. In particular, uv may be the
short leg of a type (ii) FST. The empty corner rectangle property then implies
that at most one candidate need to be considered; we say that there is a unique
candidate. More precisely, if z; is attached to uv via Steiner point s; then |z;s;|
must be minimal among all candidates. Even if two or more terminals have
the same minimal distance, only one (arbitrarily chosen) candidate need to be
considered: Assume that the segment z;s; was chosen but the SMT contains uv
and another segment z;s; such that |z;s;| = |z;5;|. Then we may simply delete
zs; from the SMT and add the segment z;s; without disconnecting the tree.
Otherwise there would be a path from z; to, say u, in the SMT. By deleting the
segment wv (in addition to zs;) and adding the segments z;z; and zv (or z,v),
we can prove that the tree cannot be optimal.

Other types of empty regions can be obtained by looking at configurations like
those in Figure 7. Assume that the node s (typically but not necessarily a Steiner
point) is adjacent to the nodes u, v and w such that us and vs are colinear. We
obtain a triangular-like empty region given by all points that are no further from
w than |ws| and no further to some point on the segment uv than |ws| (Figure 7a).
This region was used by Salowe and Warme [18] (their Theorem 6).

Another empty region is Ci(s,7min), where rp;, = min(|us|,|vs|, |ws|) (Fig-
ure 7b). Both regions shown in Figure 7 are usually, but not always, covered
by diamonds or corner rectangles and have not been used in the current imple-
mentation.

............

a) Triangular empty region b) Circle empty region

Figure 7: Other empty regions.

3.2 Corner-flipped Topologies

A rectilinear FST can always, except in degenerate cases, be transformed into
equal-length trees by flipping corners and sliding segments [17, 18]. Figure 8
shows a sequence of such flips and slides. In particular, an FST can be trans-
formed into the so-called corner-flipped version of itself in which the backbone



essentially is a flipped version of the original backbone corner. The Hwang topol-
ogy type of the new FST depends on the type of the original FST and on the
parity (odd/even) of the number of segments incident to the long leg (Figure 9).

T ) P

— P

Figure 8: Flip/slide sequence for obtaining the corner-flipped topology.

The topologies corresponding to type (i)-even (i.e., type (i) FST with an even
number of terminals incident to the long leg) and type (ii)-odd (i.e., type (ii) FST
with an odd number of terminals incident to the long leg) are equivalent since any
non-degenerate type (i)-even FST (not type (i') nor type (i”)) can be transformed
into an equal length type (ii)-odd FST and vice versa. More importantly, any
FST having direction « of the long leg can be transformed into an equal-length
FST having the opposite direction o 4 2 of the long leg. Thus we only need to
consider two perpendicular directions, say a = 0 and o = 1, for the direction of
the long leg when generating FSTs.

For k£ < 3 and type (ii) with £ = 4 only one direction (e.g., & = 0) actually suffices.
This can be seen by simple case study, i.e., by transforming any such FST with
long leg direction o = 1 into an equal length FST with long leg direction oo = 0.
However, some care is needed in degenerate cases in which a zero-length long leg
has to be accepted (consider, e.g., a type (i) FST spanning three terminals with
long leg direction o = 1).

3.3 Short Leg Upper Bounds

The length of the short leg in an FST F' can be upper bounded on basis of the
length of other segments in F'. We will give four simple upper bounds on d; which
is the length of the short leg for a type (i) FST and the distance from the corner
point to the Steiner point on the short leg for a type (ii) FST. All bounds are
obtained by corner flipping and segment sliding.

The sequence of segments alternating along the long leg of an FST (in the direc-
tion from the root to the corner point) are denoted by z;s;, 2259, etc.

Upper bound (A) Let z;s; be a segment attached to the long leg such that z;
is on the same side of the long leg as the tip z; 1. If dy > |z;s;] it is possible to
split F' into two smaller FSTs sharing the terminal z;. This can be achieved by
flipping and sliding until the terminal z; is hit. Thus we have d; < |z;s;].

10
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Figure 9: Corner-flipped topologies.
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We can actually state an even stronger condition based on the non-intersecting
property of the SMT: For type (i) the interior of the smallest axis-aligned rectan-
gle R(2p, zx_1) containing the root 2, and the tip z;_; contains no terminal. For
type (ii) we similarly have that R (2, 2;) must be empty where z; is the terminal
attached to the short leg. This is denoted the empty inner rectangle property
(Figure 10) and is obtained by applying upper bound (A) and the empty corner
rectangle property to both F' and its corner-flipped topology.

Figure 10: Empty inner rectangle.

Upper bound (B) When an FST F is transformed into its corner-flipped
version the length of segments attached to the long leg on the opposite side of
the tip increases by exactly ds, except when the segment is the closest to the
original root (Figure 9). Assume that we have an upper bound dyp on the length
of such a segment z;s;, i > 1 (it will be described later how such an upper bound
can be obtained). Then we have dy < dyp — |z;s;].

Upper bound (C) Let s;s,41 be a segment on the long leg and z; and z;4; the
corresponding terminals such that z;,; is on the opposite side of the long leg as
the tip (Figure 11). Then, ds < |s;s;11]-

Transform F' as shown in Figure 11. Since F'is an SMT we must have [s;s;41| >
|si+15;,1| = d, since otherwise it would be possible to shorten the tree by deleting
the segment s;;15;,, and adding the segment s;s;,1.

Upper bound (D) Let s;, s;11 and s;;2 be successive Steiner points on the
long leg and z;, z;11 and z;,5 the corresponding terminals such that z; and z;,,
are on the opposite side of the long leg as the tip (Figure 12). Then, d, <

|SiSivo| — min(|2isi], |zit28ital)-

Assume w.l.o.g. that |z;s;| < |zij2Si42|. Transform F' as shown in Figure 12.
Since F' is an SMT we must have |s;si12] > |2],,5], 5| = min(|zis;|, |zip25i2|) + ds
since otherwise it would be possible to shorten the tree by deleting the segment
Zi195;. and adding the segment z;2; .

12
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Zi+1 Zit+1

1 A 1
S; 1Si+1 : d Si 1Si+1
I o Us I
iJ‘_/ ______ Y iJ‘_/ _________ e
! ! ! !
Si Sit1 Rk—1 Si Siy1
Zi Zi k-1
Figure 11: Violation of short leg upper bound (C).
. Zi42 Zi4+2
l ....... ZI zl !
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20
1 1 A 1 1
153 Si+1 15i42 “d 15i]Si4+1 15i42
I I o Us I I
|_/_ _ j_ ‘_/ _______ Y |_/_ _ j_ 4% e
! ! ! !
S Sit2 Rk—1 S Sit2
Zi+1 Zi+1 Zk—1

Figure 12: Violation of short leg upper bound (D).

Naturally, the upper bounds (C) and (D) can be generalized to include more than
three successive Steiner points on the long leg, but we found that the effect of
these bounds diminished when larger subsets of Steiner points were considered
(note that the terminal which is closest to the backbone determines the effect of
the bounds). By studying the conditions for optimality for small SMTs given by
Hanan [9] we can prove that the upper bounds (C) and (D) are actually necessary
conditions for the optimality of FST spanning five or fewer terminals. Since more
than 90% of the FSTs generated span five or fewer terminals (see Section 8), these
simple tests are very effective for guaranteeing the optimality of a large fraction
of the FSTs generated.

4 Full Steiner Tree Generation Algorithm

The FST generation algorithm works by “growing” FSTs. For a given terminal
zp and direction o we try to grow an FST with 2z, as root and having direction
« of the long leg [y (seen as a half-line originating in z). The algorithm can be
visualized by sweeping a line perpendicular to [y forth and back along ly. The
recursive algorithm works as follows: Let {z1,...,2 1} be the current list of
terminals attached to [y via Steiner points {sq,...,$;_1} such that the segments

13



{z181,...,2i_15;_1} alternate along [y (initially this list is empty). Denote by T;_;
the corresponding partial tree; note that if {zysq,...,z,_15;_1} is non-empty then
T; 1 has the form of a valid FST and that the segment z; 1s; 1 in this case is the
short leg of the backbone (Figure 13b).

>
[ ] [ ]
21 21
? z3
®
Zlise o0 @ Zg |s1 l83 * )a
R : 52
; b °
: 22
° .
° .
[ ] [
>
a) Line-sweep b) Partial FST

Figure 13: Growing an FST.

Now we seek a terminal z; on the opposite side of the long leg as z;_;. If the new
tree T; = T; 1 U {s; 15} U {z;s;} survives a series of FST tests (Section 6) it is
stored permanently as a type (i) FST candidate. Also the type (ii) FST obtained
by attaching a single segment z;s; to the short leg z;s; is evaluated. The direction
from z; to s; is required to be o + 2.

Finally the tree T; is grown (recursively) if it survives a series of partial-tree tests
(also described in Section 6). For example, if there is a shorter interconnection of
the vertices 2y, 21, 22, - . ., 2, S; then there is no need to try to grow 7; any further;
we say that the partial tree 7} is non-optimal.

In order to speed up this process, i.e., avoid attaching terminals to the leg [
which cannot constitute a (partial) FST in an SMT, we perform FST independent
preprocessing (Section 5). This preprocessing primarily uses empty regions to find
upper bounds on the length of segments attached to a backbone. In addition it
identifies terminals which may be attached to short backbone legs.

14



5 FST Independent Preprocessing

In this section we describe a O(n?) time and space preprocessing phase which
is used to reduce the average complexity of the FST growing phase. The main
purpose of the preprocessing phase is to reduce the set of terminals that can
be attached to a backbone (long or short leg). This will be accomplished by
using bottleneck Steiner distances, empty diamonds (Figure 3a) and empty corner
rectangles (Figure 5a).

The first step of the preprocessing phase is to sort the terminals according to
each direction «. For a given terminal z; we thus assume that its successor z;* in
direction « is available in constant time.

Then we compute the bottleneck Steiner distance b,,., for every pair of terminals
2i, zj € Z. Since this distance is equal to the length of the longest edge on the path
between z; and z; in MST(Z), this can be done in time O(n?); the space needed
is obviously O(n?) also. That is, the MST can be computed in O(nlogn) time
by using, e.g., nearest neighbour graphs [7]; bottleneck Steiner distances from a
given terminal to all other terminals can be found in O(n) time using depth-first
traversal of the MST. An alternative is to set up MST(Z) as a dynamic search
tree in time O(nlogn) using only O(n) space such that longest edge queries can
be answered in amortized time O(logn) [19]. This and other alternatives will be
discussed in Section 8.

Finally we determine, for every pair of terminals 2; and z;, whether R(z;, 2;) is
empty (contains no other terminals). We use a simple O(n?) time and space
algorithm which makes one line sweep for every terminal. A boolean matrix is
used to store empty rectangle information. Alternatively the algorithm by Giiting
et al. [8] could have been used; this algorithm uses time O(nlogn + k) where k
is the number of empty rectangles, but still O(n?) in the worst-case.

5.1 Long Leg Terminal Candidates

Let (z;, @) be any (terminal, direction) pair. Consider a segment z;s; having
direction o which attaches z; to a backbone via Steiner point s;. First we will
look for an upper bound dypo(z;, @) on the length of z;s; such that if z;s; is a
part of an SMT then |z;s;| < dypo(zi, @).

We use the condition that the empty diamond property must be fulfilled for z;s;,
that is, no terminal can be in £;(z;, ;). Draw two perpendicular 45° lines through
z; and let @) be the quadrant in direction « given by these two lines (Figure 14).
The distance from z; to the closest terminal z; in () is then a valid upper bound.
If there exists no terminal in @ we set dypo(2;, @) = oc.

15



Figure 14: Long leg terminal segment upper bound.

Finding the closest such terminal for every (z;, ) pair can be accomplished in
O(nlogn) time [7]. A simple alternative which is O(n?) but in practice very fast
since the terminals are assumed to be sorted in each direction is to start from z;
and make a sweep in direction o until it can be concluded that the closest terminal
in () has been found. We choose to use this simple alternative since there are
other parts of the preprocessing phase which require O(n?) time anyway.

5.2 Short Leg Terminal Candidates

In this phase we identify candidates which may be attached to the short leg
of an FST backbone. Recall that a short leg has either zero or one attached
terminal; this makes it possible to prune the candidate list quite effectively. Let
(zi, ) be any (terminal, direction) pair. Assume that z; is a tip and incident to
a short leg which points in direction a. Since we only need to grow FSTs in two
perpendicular directions (say, & = 0 and o = 1) a terminal can only be attached
to one side of a short leg pointing in direction a. We would like to determine
an ordered list Z,(z;, ) of terminals that may be attached to the left or right
(depending on «) of the short backbone leg.

The key observations are the following: Let z;s; be a segment attached to the
short leg of a backbone with tip z;. Assume that the direction from z; to s; is 3
(Figure 15). Then we must have

° |Zi8j| < min(dUBO(ziaa)7bZiZj)
e |zjs;] < min(dypo(z;, ), z,2;)

e R(z,%;) is empty (contains no terminals)

16



Figure 15: Short leg terminal candidates.

The short leg candidates Z(z;, ) are identified by making a sweep from z; in
direction . We use the first condition above to stop the scan when |z;s;| >
dupo(%i, ). One implication of the third condition is that the distance |z;s;|
for any accepted terminal z; must be smaller than or equal to the shortest such
distance seen during the sweep, otherwise the corner rectangle would be non-
empty. The first two conditions are easily checked in constant time by using
precomputed information.

Once Z4(z;, ) is determined, upper bounds dyp (2, @) on the length of short
legs (with tip z; and pointing in direction «) which have exactly one attached
terminal are obtained. Recall that dy po(z;, ) already is an upper bound on the
length of a short leg without any attached terminal.

If Zs(zi,c) = 0 we set dypi(z;, ) = 0; this means that no short leg with one
attached terminal exists. Otherwise we seek the longest z;w such that there
is a z; € Zs(z;, ) having both an empty lune £,(s;,w) and an empty corner
rectangle R(z,w). Let z; be the last terminal accepted into Z,(z;, cv), i.e., |2;s;]
is maximum. Then it is sufficient to check the empty regions for z; only, since
for all other 2, € Z,(z;, ) \ {#;} the regions £;(s;, w) and R(z;,w) are covered
by L1(s;, w) and R(z, w), respectively.

The upper bound dypi(2;, «) is found by making a sweep from s; (or equiva-
lently z;) in direction ce. The largest possible lune £, (s;, w) (Figure 16a) is found
by using the algorithm described in Section 5.1. The empty corner rectangle
property is equivalent to testing whether there exists a terminal z; and corner
point w such that |zw| < |z;s;|; when such a terminal is encountered during the
sweep we set dyp1(2;, @) = |zw| and stop (Figure 16b).
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Figure 16: Short leg upper bound.
6 Growing Full Steiner Trees

The basic idea of the FST growing algorithm was presented in Section 4. In
this section we give a more detailed description of the algorithm which uses
information obtained in the preprocessing phase. The main algorithm makes a
call to the recursive procedure grow_FST ({zp}, «) for every root zy € Z and
a € {0,1} (Figure 17).

The procedure performs four different types of tests; these will now be described
in detail. Tests for degeneracies and duplicate tests for small FSTs have not been
included in the description.

Let 3 be the direction from z; to the Steiner point s; on the long leg. If z; is
to the left when looking in direction a from 2, then 8 = o — 1 and otherwise
f=a+1.

6.1 Distance Tests

The upper bounds dypy and dyp; obtained in the preprocessing phase are used
to eliminate terminals from consideration. We must have

|zisi| < max(dypo(zi, ), dusi(zi, 5))

otherwise the segment z;s; can neither be attached to the long leg directly nor
be a short leg in a type (ii) FST.

This test only depends on the root zy and on the direction a of the long leg and
not on the current partial tree 7;_;. This actually allows us to make a (short)
list of candidates before calling grow_FST ({z}, «). However, since the FST
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procedure grow_FST (T;_,, o)
// T;—1 has segments 2151, ...,2; 15; 1 attached to the long leg
zi = 2; 1% // successor to z; 1 in direction «
while (z; # nil) do
// Assume that z; is attached to the long leg via Steiner point s;
if (2; passes distance tests (Section 6.1)) then
if (s;_15; passes long leg segment tests (Section 6.2)) then
T, = T; 1 U{s; 15;} U{z;s;} // new partial tree
if (short leg candidate z; exists) then
// Assume that z; is attached to short leg z;s; via Steiner point s;
if (T; U {z;s;} passes type (ii) FST tests (Section 6.4)) then
Save T; U {z;s;} as a permanent type (ii) FST
endif
endif
if (z;s; passes attachment tests (Section 6.3)) then
if (7} passes type (i) FST tests (Section 6.4)) then
Save T; as a permanent type (i) FST
endif
Update short leg upper bound and longest edge information
grow_FST (T;, o) // make recursive call
endif
endif
endif
zi = 2;® // get next terminal candidate
enddo

end

Figure 17: FST growing algorithm.
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growing algorithm typically stops well before reaching the end of the candidate
list, we do not construct this list before calling grow_FST ({2}, «). Instead we
add candidates to the list when needed, that is, whenever we are at the end of
the list.

When a terminal candidate is added to the candidate list the corresponding short
leg candidate (if it exists) is also identified. This is done by scanning the short
leg candidate list Z;(z;, 3) constructed in the preprocessing phase.

6.2 Long Leg Segment Tests

This series of tests depends on the partial tree T; ; and the new long leg segment
si_15;. A long leg segment s; 1s; fails this test if the tree T; ; U {s; 15;} cannot
be a subtree of any larger FST that also spans z;. We assume that z; is either
connected directly to s; or via a short leg Steiner point.

The first and obvious condition is that z; must be on the opposite side of the
long leg as z; 1. The empty diamond property must be satisfied for s; ;s; and
R(z;_1, 2;) should contain no terminals. The former condition can be checked by
maintaining an upper bound on the length of the segment s;_;s; based on the
previous terminal candidates seen for z; (see also Section 5.1).

Finally we have the following strong condition: The longest edge on the path
between s; and any terminal z, [ < ¢ —1in 7; ; U {s; 1s;} cannot be longer
than b,,,,. This condition holds since the same (longest) edge will also appear on
the path between z; and z; in any tree having T; 1 U {s;_1s;} as a subtree. By
updating this longest edge information dynamically while growing the tree this
test can be performed very efficiently.

6.3 Attachment Tests

These tests check if the partial tree T; = T; U {s;_15;} U{z;s;} can be a subtree
of any larger FST (including 7; itself). This is done by testing whether |z;s;| <
dUBO(Zi;ﬁ) and if |ZlSZ| S bZiZz for all 21, l S 1 — 1.

6.4 FST Tests

These tests check the optimality of a specific FST candidate. The most efficient
tests are based on the short leg upper bounds presented in Section 3.3. These
upper bounds are dynamically updated while growing the tree so this test can be
performed in constant time for a specific FST candidate.
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The empty diamond property (resp. empty corner rectangle property) is tested
for every segment (resp. pair of adjacent segments), also in the corner-flipped
topology. Note that these conditions are satisfied by construction for every edge
in the primary topology, except for segments in or connected to the short leg in
a type (ii) FST. Furthermore, the empty inner rectangle property is checked.

Finally the longest edge test and minimum spanning tree test using bottleneck
Steiner distances are performed (Section 3). It should be noted that we also tried
to compute an upper bound on the FST length by using one of the available
heuristics for the rectilinear Steiner tree problem, but since all FSTs spanning
up to five terminals are optimal by construction (Section 3.3) this only had a
negligible effect on the number of surviving FSTs.

7 Expected Number of Full Steiner Trees

In this section we give a theoretical bound on the expected number of surviving
FSTs for randomly generated instances (recall that FSTs are assumed to have
Hwang topology). Our interest in the ezpected number of surviving FSTs is due
to the fact that current worst-case bounds are exponential.

FoBmeier and Kaufmann [4] constructed an infinite series of instances for which
the number of FSTs fulfilling a so-called tree star condition is exponential. An
FST F with Steiner points {si, s2,..., Sk} is a tree star if all corner rectangles
are empty and MST(Z U {sy, Sa,...,Sk}) contains every edge of F. The latter
condition is equivalent to the following condition which is much faster to verify
when bottleneck Steiner distances are given (see also Section 3): For every pair
of terminals 2; and z; spanned by F' the longest edge on the unique path between
z; and z; is not longer than b, . Fofimeier and Kaufmann also presented ex-
perimental evidence showing that the average number of tree stars for randomly
generated instances is almost linear. Thus there is a huge gap between the worst-
case bound (which is exponential) and the average number of surviving FSTs for
randomly generated instances (which is almost linear).

Computational experience reported in Section 8 indicates that even when using
the strong screening tests described in the previous sections it does not seem
possible to prove a worst-case polynomial upper bound. However, we prove that
the expected number of FSTs fulfilling a weak version of the tree star condition
and spanning up to K terminals is O(n(loglogn)®~2), that is, almost linear
(where K > 3 is a constant). Thus this is also a bound on the number of FSTs
fulfilling the original tree star condition given above. Note that the trivial worst-
case bound is O(n’).

Unfortunately, we have not been able to prove that the expected total number of

21



F'STs is polynomial. But our bound is a significant improvement on two bounds
given by Salowe and Warme [18]. They gave an O(nlogn) bound on the expected
number of FSTs spanning exactly three terminals and an O(n?) bound on the
expected number of FSTs spanning up to K terminals (where K is a constant).
In addition, they gave an O(1) bound on the expected number of FSTs spanning
Q(n) terminals.

We first give a bound on the expected length of the longest MST-edge (Sec-
tion 7.1). This is also a bound on the longest SMT-edge and it holds for any
metric L, for 1 < p < oo; similar proof techniques as in [3] are applied. Then we
present some previously known properties for empty rectangles (Section 7.2) and
finally give our main result in Section 7.3.

7.1 Bounding the Longest MST-edge

The probability that there exist long MST-edges is bounded by the following
theorem, which is proved in the Appendix.

Theorem 1 Let Z be a set of n > 4 terminals randomly distributed with uniform
distribution within the unit square. Let C' be a constant and B = Cy/logn/n. The
probability that there exists an MST-edge (z;, z;) under the L, metric, 1 < p < oo,
such that ||2z;]|, > B is bounded by n>=¢"/16,

Corollary 1 With high probability the longest edge in an MST (and SMT) under
any metric L,, 1 < p < oo, is O(y/logn/n). Also the expected length of the
longest edge in an MST (and SMT) is O(y/logn/n).

Proof. Choose C' = /41, such that 2 — C?/16 < —1/2. Then the probability
that there exists an MST-edge longer than C'\/logn/n is n>~¢*/16 — 0 as n — co.

The expected length of the longest MST-edge is bounded by

(1 —n?= /1% x Cy/logn/n + n>= /16 x /2

< C’\/logn/n—i- \/Q/n
< (C+2)y/logn/n

7.2 Empty Rectangle Properties

Two terminals z;, z; € Z make an empty rectangle if R(z;, z;) contains no other
terminal from Z. Empty rectangles are related to so-called mazimal points in a
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point set. A maximal point is a point which is not dominated by any other point
in the set, i.e., there is no point which has both a greater x- and y-coordinate.

Consider a point z; € Z. Let Z; C Z be the set of points dominated by z;. These
are all points in Z located in the third quadrant of z;. Then all maximal points
in Z; are exactly those that make an empty rectangle with z;. By making appro-
priate transformations we see that the problem of determining empty rectangles
is equivalent to finding maximal points.

Bentley et al. [2] proved that the expected number of maximal points in a point
set with n uniformly distributed points is O(logn). Thus we have:

Lemma 2 Let z; € Z be a terminal. The expected number of terminals making
empty rectangles with z; is O(logn).

7.3 Expected Number of FSTs

The bound on the expected number of FSTs is obtained by using the bound
on the longest MST-edge and the bound on the number of terminals making an
empty rectangle with a given terminal. Denote by b,,., the largest bottleneck
Steiner distance (which is the same as the length of the longest MST-edge).

Assume that z; and z;,1 are two successive terminals attached to the long leg of an
FST in an SMT for Z (z; may be the root of the FST). Then both the horizontal
and vertical distance between z; and z;4; is at most 2b,,,, (more precisely the
distance along the long leg is at most b,,,, and the perpendicular distance at
most 2b,,4,). Also z; and z;41 define an empty rectangle.

Since the expected value of by, is bounded by O(y/logn/n) (Corollary 1) the

expected number of candidates for z;,; when z; is given is O((y/logn/n)? x n) =

O(logn). In addition, z; and z;;; must make an empty rectangle and thus by
Lemma 2 the expected number of candidates for z;;1 is O(loglogn).

Let K be a constant, K > 3. Since any type (i) FST can be obtained by first
choosing a root and then growing the FST from this root, selecting alternating
segments along the long leg in order, we obtain the bound O(n(loglogn)*~!) on
the expected number of type (i) FSTs spanning up to K terminals. For type
(ii) the distance between last terminal attached to the long leg and the tip in
the direction perpendicular to the long leg may be as large as 3b,,,,; however,
this does not change the O(loglogn) bound. On the other hand, the terminal
attached to the short leg is uniquely given once the backbone is constructed.
Thus we obtain the stronger bound O(n(loglogn)®~2) on the number of type (ii)
FSTs.
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We can obtain the same bound for type (i) FSTs by “growing” the FST in a
different order. Having chosen the root we first choose the tip of the F'ST. Since
both the vertical and horizontal distance to this terminal is at most (K — 1)by0
there are only O(loglogn) candidates for the tip since K is a constant. When
choosing the terminals along the long leg the last terminal is now uniquely given
(since we have already chosen the tip). The main result of this section follows:

Theorem 2 Assume that the terminals are randomly distributed with uniform
distribution within the unit square. Let K be a constant, K > 3. Then the
expected number of FSTs (i.e., Hwang topologies) spanning up to K terminals
for which no edge is longer than the longest MST-edge and all corner rectangles
are empty is bounded by O(n(loglogn)X=2).

Since any FST fulfilling the tree star condition also fulfills the conditions in this
theorem we have the same bound on the number of tree stars.

8 Computational Experience

The new rectilinear FST generator was experimentally evaluated on an HP9000
workstation® using the programming language C++ and class library LEDA (ver-
sion 3.4.1) [14]. The random number generator used was the random_source class

in LEDA.

The test-bed consists of problem instances from three sources: Public library
instances (Section 8.1), randomly generated instances (Section 8.2) and a series of
constructed pathological instances producing an exponential number of surviving
FSTs (Section 8.3).

8.1 Public Library Instances

The first series of problems instances is from the OR-Library [1]. FSTs for each
of the 46 instances by Soukup and Chow [20] (3-62 terminals) were generated
within 0.2 seconds and the number of surviving FSTs similar to those given
by Warme [23]. Results for the other series of instances from the OR-Library
(randomly generated instances, 15 for each size for n < 1000 and one 10000
terminal instance) are given in Table 1.

3Machine: HP 9000 Series 700 Model 735/99. Processor: 99 MHz PA-RISC 7100. Main
memory: 96 MB. Performance: 3.27 SPECint95 (109.1 SPECint92) and 3.98 SPEC{p95 (169.9
SPEC{p92). Operating system: HP-UX 9.0. Compiler: GNU C++ 2.7.2 (optimization flag
-03).
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The total number of FSTs is almost linear with relatively small variation. The
average FST size (number of terminals) increases very slowly and stabilizes below
four terminals. The CPU-time for the preprocessing phase is — as expected
— quadratic. Interestingly, the CPU-time for the FST growing phase is sub-
quadratic and for n = 10000 the CPU-time for the preprocessing phase clearly
dominates the CPU-time for the F'ST growing phase. We discuss this interesting
observation in detail in Section 8.2. The total CPU-times are only fractions of
the CPU-times reported in [23]; recall that the FST generation algorithm in [23]
required a few hours on a 1000 terminal instance. In addition, the FST-counts
reported here are approximately 15% smaller.

n| FST-count | FST-size | CPU-prep | CPU-grow | CPU-total |

10 23 £7]27 £0.29 0.00 +£0.00| 0.01 =+£0.00 0.01 +£0.00
20 62 £16 | 3.17 £ 0.36 0.01 £0.01| 0.02 =£0.01 0.04 =+£0.02
30 103 £23| 334 £0.32 0.02 £0.00| 0.04 =£0.01 0.06 =+ 0.01
40 135 +£22 (330 +£0.25 0.03 +£0.01| 0.06 = 0.02 0.09 =+0.01
30 168 £24 | 332 +0.20 0.05 £0.01| 0.07 =£0.02 0.12 £ 0.02
60 225 £32| 351 +0.27 0.06 +£0.01] 0.11 =£0.03 0.16 =+ 0.03
70 254 £31 344 =+£0.21 0.07 £0.01] 012 =+£0.02 0.19 +£0.02
80 293 £34|349 =£0.23 0.09 +£0.01]| 015 =+£0.03 023 =+£0.03
90 326 +41 344 =£0.24 0.10 +£0.01| 0.16 =+£0.03 0.25 +£0.03
100 386 +£63 | 3.55 +£0.24 0.11 +£0.01| 0.20 =+£0.05 0.31 £+ 0.05
250 963 76| 3.52 +£0.12 044 £0.01| 056 =+ 0.06 1.00 =+ 0.06
500 | 2006 £ 112 | 3.61 =£0.11 1.28 £0.05| 1.37 +£0.14 265 =+0.17
1000 | 4172 £220 | 3.69 =£0.11 421 £0.04| 350 =£0.30 771 £ 0.30
10000 | 40933 3.65 363.75 82.24 445.99

Table 1: OR-Library instances. FST-count: Number of FSTs generated (in-
cluding MST-edges). FST-size: Average number of terminals spanned by gen-
erated FSTs. CPU-prep: Preprocessing CPU-times. CPU-grow: FST-growing
CPU-times. All CPU-times are in seconds. Second numbers in each column are
standard deviations.

The FST generator was also evaluated on 26 instances from TSPLIB [15] (198-
7397 terminals). This library is a collection of instances for the Traveling Sales-
man Problem (TSP), mainly plane real-world Euclidean problem instances. The
26 selected instances are the same as those chosen in a study by Reinelt [16]
on heuristics for the TSP; in addition we have chosen the instance pla7397, the
largest TSP instance solved to optimality to date. These instances are quite
representative for the whole TSPLIB collection.

Computational results are presented for each instance in Table 2. For many of the
instances the FST-count, FST-size and total CPU-time is lower than the average
for randomly generated instances of the same size. The only exceptions are the
instances rat783 and fnl/461 which have their points distributed in a random and
uniform fashion. Thus instances with a less random and less uniform distribution
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are in general easier, in particular rl1323, u1432 and rl59%/ which have many co-
linear and equidistant terminals.

| Instance | FST-count | FST-size | CPU-prep | CPU-grow | CPU-total

d198 995 2.80 0.29 0.25 0.54
lin318 1378 3.37 0.51 0.83 1.34
1417 1624 3.04 0.91 0.73 1.64
pch442 914 2.57 1.02 0.41 1.43
attd532 2267 3.76 1.34 1.54 2.88
us74 1733 3.11 1.58 1.16 2.74
p654 2103 2.89 1.84 1.43 3.27
rat783 4560 4.08 2.56 4.01 6.57
pr1002 3154 3.05 3.85 1.78 9.63
ul060 3453 3.13 4.41 211 6.52
pchb1173 3308 3.13 5.21 1.97 7.18
d1291 4266 2.73 5.83 2.19 8.02
rl1323 2541 2.64 6.75 1.69 8.44
11400 8689 3.16 7.36 9.32 12.68
ul43?2 3604 2.60 7.08 1.75 8.83
11577 9665 2.89 9.30 3.05 12.35
d1655 4142 2.66 9.63 2.29 11.92
vm1748 4646 3.17 10.49 3.83 14.32
rl1889 3659 2.69 11.92 2.71 14.63
u2152 9855 2.63 15.21 2.79 18.00
pr2392 6782 2.95 14.46 4.55 19.01
pch3038 10694 3.34 28.06 8.92 36.98
13795 12993 2.86 49.08 8.57 57.65
fnl4461 29229 4.59 61.84 46.74 108.58
rl5934 11584 2.60 115.40 12.04 127.44
pla7397 20497 2.76 174.69 22.92 197.61

Table 2: TSPLIB instances.

8.2 Randomly Generated Instances

One hundred instances were generated for each size 1000, 2000, ...,10000. Ter-
minals were drawn with uniform distribution from the unit square. It should be
noted that we did not choose the coordinates from a 10000 x 10000 grid which
is common in the literature, since this would impose a significant number of co-
linear terminals for larger instances. However, as far as the number of surviving
FSTs is concerned, preliminary experiments showed that it did not seem to make
any noticeable difference whether a grid was used or not.

Computational results presented in Table 3 and Figures 18 and 19 show a very
regular pattern. The total number of FSTs grows almost linearly, the FST pre-
processing time quadratically and the FST growing time sub-quadratically. In
fact, the FST growing time seems to be n times some poly-logarithmic factor.
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This behaviour can be explained by studying two interesting statistics. The first
is the average number of short leg candidates (Section 5.2). This number in-
creases extremely slowly: From n = 1000 to n = 10000 the number of candidates
increases from 0.89 to 0.90 candidates. Note that the analysis in Section 7 gives
a theoretical upper bound of O(loglogn).

Secondly, we have the average number of long leg candidates considered for a
given root and direction (Section 6.1). Surprisingly, this number also grows very
slowly: From n = 1000 to n = 10000 this number increases from 5.28 to 5.59.
Currently, we do not have any tight theoretical upper bound on this value, but
this shows that the FST growing procedure is cut-off very early and that the
running time therefore is close to being linear.

n| FST-count | FST-size | CPU-prep | CPUgrow | CPU-total |

1000 | 4092 +£188 | 3.66 =+ 0.09 410 £0.07| 3.36 +0.26 746 £ 0.29
2000 | 8286 +£244 | 3.68 £0.06| 1360 £0.30]| 835 £041| 2195 +049
3000 | 12405 £ 277 | 3.67 £0.04 | 2939 £0.15 | 1452 £044 | 4391 £048
4000 | 16626 +348 | 3.69 +£0.04 | 49.11 =£0.57 | 218 £075| 7099 £1.09
5000 | 20793 +£412 | 3.69 £0.04 | 7938 £0.38|29.87 £0.87|109.26 £091
6000 | 24970 +£504 | 3.69 £ 0.04 | 121.39 £1.17 | 39.61 =+ 1.17 | 161.01 =+ 1.62
7000 | 29126 £ 552 | 3.69 £0.04 | 171.33 £0.98 | 49.24 £ 1.45 | 220.57 £1.88
8000 | 33374 +£582 | 3.69 +£0.04 | 232.10 £2.63 | 60.93 £ 188 | 293.03 £ 3.50
9000 | 37550 £ 564 | 3.69 £0.03 | 30428 £6.16 | 73.01 £282 | 37729 +£8.12
10000 | 41652 £ 590 | 3.69 £ 0.03 | 359.51 £ 7.87 | 84.65 £ 3.77 | 444.16 £ 10.45

Table 3: Randomly generated instances.
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Figure 18: Total FST-count.
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Figure 19: CPU-times: Preprocessing and total.

The average number of terminals spanned by the F'ST's is approximately 3.7. The
FST-size distribution for n = 10000 is shown in Figure 20. Approximately 90%
of the FSTs span five or fewer terminals and less than 1% span more than ten
terminals. From n = 1000 to n = 10000 the relative (i.e., normalized by n)
increase in the total number of FSTs is approximately 2%. This increase mainly
comes from a relative increase in the number of large FSTs: There are only 1%
more FSTs spanning three terminals while there are 5% more FSTs spanning,
e.g., six terminals.

For large instances the running time of the preprocessing phase clearly domi-
nates the running time of the FST growing phase and we may therefore ask if
it is possible to reduce the former without increasing the latter too much. The
dominating part of the preprocessing phase is the ©(n?) time and space procedure
for computing bottleneck Steiner distances.

By using the (dynamic) search tree data structure by Sleator and Tarjan [19], this
part of preprocessing phase can be reduced to O(n logn) time and O(n) space, but
longest edge queries then take O(logn) amortized time instead of O(1) (matrix
lookup). We used the dynamic_trees class in LEDA in order to evaluate this
option.

For n = 1000 the running time of the preprocessing phase unfortunately re-
mained approximately the same while the running time of the FST growing phase
increased from 3 to approximately 15 seconds. Thus the large constant factor in-
volved in the search tree data structure does not make this approach favourable
for this instance size.
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Figure 20: FST size distribution for n = 10000.

When n = 10000 the running time of the preprocessing phase was halved while the
running time FST growing phase approximately doubled. The total CPU-time
was reduced from 7.5 minutes to 6.0 minutes. Consequently, for large instances
it is possible to reduce the total running time, but this requires the application of
relatively advanced data structures. We leave this topic open for future research.

8.3 Pathological Instances

FoBmeier and Kaufmann [4] constructed an infinite series of “bad” instances with
respect to the so-called tree star condition (see Section 7). They showed that the
number of tree stars was 2(1.32") for the series of instances given in Figure 21.
The base case consists of the 12 leftmost terminals; the 10 rightmost of these are
repeatedly scaled down and added to the right.

In Table 4 we give statistics for the first six of these instances with 12, 22, 32, 42,
52 and 62 terminals. Apparently, the number of surviving FSTs is exponential,
approximately €2(1.06™). This slower growth was to be expected because all FST's
generated by the new generator are tree stars and, in addition, a number of other
optimality tests are fulfilled. These computational results present evidence that
it may be difficult to find simple conditions which will guarantee a polynomial
number of surviving FSTs.
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Figure 21: Pathological instances. The small rectangle is a scaled-down version
of the large rectangle. The infinite series of instances is constructed by repeatedly
adding a scaled-down copy of the terminals inside the current rectangle to the
right of the rectangle.

| n | FST-count | FST-size | CPU-prep | CPU-grow | CPU-total

12 108 5.37 0.00 0.08 0.08
22 251 7.71 0.02 0.32 0.34
32 475 10.88 0.03 1.09 1.12
42 853 15.10 0.04 3.32 3.36
92 1551 20.09 0.05 10.13 10.18
62 2865 25.69 0.09 28.72 28.81

Table 4: Pathological instances.
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9 Conclusion

We presented a new algorithm for generating rectilinear full Steiner trees (FSTs).
The algorithm outperforms previous approaches [18, 23| by orders of magnitude.
New optimality conditions for rectilinear FSTs were presented. Furthermore, we
gave a tighter upper bound on the expected number of FSTs spanning up to K
terminals for randomly generated instances (where K is a constant).

The proposed algorithm is very fast and has applications both with respect to
exact algorithms and heuristics:

FST based exact algorithms The first and natural application is to use
the generator in conjunction with the integer programming based concatenation
method by Warme [23]. This would on average allow the exact computation of
rectilinear Steiner trees for 100 terminals in less than 10 seconds and for 500
terminals in less than 15 minutes. Also, tight lower bounds (and in some cases
optimal solutions) for problems with a few thousand terminals could be computed
in less than an hour. Computational results will be presented in a forthcoming
paper [22].

FST based heuristics The generator can be used as a first phase for greedy
and local search based heuristics. The approach presented in [27, 26] can easily
be extended to the rectilinear problem.

Grid graph reduction We can obtain a grid reduction method by overlaying
the generated FSTs on the Hanan grid (Figure 22). On average, the number
of Steiner points left in the grid is almost linear, approximately 3n (e.g., for
n = 1000 only 0.3% of the Steiner points are retained). The reduced problem
may be transformed into the corresponding graph problem; exact algorithms and
heuristics for the graph problem can then be applied.

Winter [25] proposed a series of reduction tests for the rectilinear Steiner tree
problem. Computational experiments showed that it was possible to reduce the
total number of Steiner points to 15 — 20% of the original number (for n <
25). For this problem size the FST generation method retains 10 — 15% of the
Steiner points. By combining the both techniques even better reductions may be
obtained.

The best performing heuristic for the rectilinear Steiner tree problem is the
iterated 1-Steiner heuristic [12]. An efficient implementation of this heuristic
runs in time O(n3) [6], but requires approximately 30 minutes for a 300 terminal
problem (on a SUN4 workstation). Since this heuristic is based on iteratively
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Figure 22: FST generation as a grid reduction algorithm.
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choosing Steiner point candidates from the Hanan grid, a simple and practical
way of speeding it up would be to preprocess the Hanan grid by generating F'STs.
This would reduce the number of Steiner points from O(n?) to approximately
O(n), cutting the running time down by a factor of O(n).

As noted in Section 8.2 the running time of the generator can be further reduced
for large instances (n > 1000) by using advanced data structures, e.g., for answer-
ing bottleneck Steiner distance queries [19, 21]. This would also reduce memory
requirements from ©(n?) to O(n).

Obtaining a tight upper bound on the expected (total) number of surviving FSTs
is still the most prominent open theoretical problem. The bound given in this
paper on the expected number of FSTs spanning up to K terminals is a significant
improvement over previous bounds, but it still not entirely satisfactory.
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Appendix

In this appendix we prove Theorem 1. The unit square is denoted by 4 and the
area of a planar region R denoted by Area(R).

Let z;,2; € Z be any pair of terminals in U sharing an edge in some MST for
Z using distance metric L,, 1 < p < oo. First we note that ||2;z;|, < V2|22
(e.g., see [13]). Let D(z;, z;) be the interior of the square having the line segment
z;izj as a diameter. We have D(z;, zj) C L,(z;, z;) (Figure 23) and since £,(z;, z;)
is empty (contains no terminals from Z) we also have that D(z;, z;) is empty.

“ Iy ."'~L2‘-‘”L1

Figure 23: Lunes for L,, Ly and Lo, metrics. The square D(z;, z;) is also shown
(shaded).

The area covered by D(z;, z;) is Area(D(z;,2;)) = ||2izj]|*/2. No matter how
zi and z; are located in U, at least one of the two triangles on each side of the
segment z;z; will be entirely inside ¢. Thus at least half of D(z;, z;) is inside U,
or Area(D(z;,z;) NU) > ||ziz]]* /4.

Now we bound the probability that z; and z; are further apart than distance B:
Pr( (2, z;) is an MST-edge and ||z;z||, > B )

Pr( (2, 2;) is an MST-edge | V2||zi%]| > B)

Pr( D(z;, 2;) is empty | ||z:2j|| > B/V?2)

(1 (B/V2)*/4)"*

e

—B2(n—2)/8

VAN VAN VAR VAN

—C?logn(n—2)/8n

e
_ (2
/16

[N

Finally we bound the probability that there exists an MST-edge with terminals
further apart than distance B:

Pr( 3 MST-edge (z;, 2;) such that ||z;z;|l, > B) < <Z> n-C6 < 2016
u
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