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Chapter 1

Introduction

In a dynamic graph problem one would like maintain a data structure to answer
a certain query, such that when a simple change is introduced, e.g. the insertion
or deletion of an edge, the data structure can be updated faster than recomputing
from scratch. As an example, think of a graph of a communications network,
where nodes are relay stations, and edges are communication links (phone lines).
In such a system, it is relevant to know

1. If a link accidentally breaks down or is rebuild, are all stations still connected?

2. If a link breaks down, is it cheaper to build a new link (and which) than to repair
the old?

3. Is the system secure such that all stations will still be connected, no matter which
link breaks down? Which links should we build to secure it?

4. If a station is suddenly out of order, are the other stations still connected about it?
Which links should we build to secure this?

These are important questions with applications to assembly planning, chip-
design, graphics, communication networks, and more [6]. Thus as cpu’s grow
larger, and the Internet expands, it becomes increasingly more important to find
efficient dynamic graph algorithms.

This thesis address questions 1 through 4, more formally known as connec-
tivity, minimum spanning forest, 2-edge connectivity and biconnectivity in fully
dynamic graphs. For connectivity we provide an

���������
	���

time algorithm, for

minimum spanning forest, 2-edge connectivity and biconnectivity the time com-
plexity is

��������������

. Our solutions to these problems have been presented in [28].

Chapter 5 contains further introduction to these problems and an overview of pre-
vious solutions.
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In many dynamic graph algorithms, a data structure for dynamic trees is used.
A well known data structure for dynamic trees is the topology trees of Frederick-
son [12]. The topology trees are only defined for ternary trees, and it has been
an open problem whether topology trees can be generalized to general trees with
unbounded degree. Such a variant, called top-trees, is provided in this thesis. The
top-tree data structure is subsequently used to provide

������������

time solutions to

the Diameter, 1-Center, and 1-Median problems, and is basis of the data struc-
tures used in the dynamic graph algorithms described above. Further introduction
to these problems is found in chapter 2. The top-tree data structure and the diam-
eter algorithm has previously been presented in [1].

1.1 Acknowledgements

We would like to thank Mikkel Thorup who has been our supervisor on this mas-
ters thesis. We have had many valuable discussions, and Mikkel has been a great
help in getting the algorithms right and presenting them properly.

Stephen Alstrup, our co-supervisor, started this project up by showing us the
diameter problem. In addition, we must thank him for many valuable discussions.
Stephen has worked hard to push students to research level. This thesis is one of
the results of this work.

Finally we must thank the following people: Niels Christensen and Hans Hen-
rik Stærfeldt, for always being ready to listen to another algorithm and helping
us present them in a understandable manner. In addition to Niels and Hans Hen-
rik, Martin Appel, and Peer Sommerlund also proof read the final thesis and gave
many helpful suggestions.

1.2 Organisation of this thesis

This thesis has two main parts. Part I, chapters 2 through 4, is about dynamic
tree algorithms. Part II, chapters 5 through chapter 9, is about dynamic graph
algorithms.

In part I we present our dynamic tree data structure called top-trees and apply
them to give simple solutions to the 1-Median, 1-Center, and Diameter problems
in fully dynamic trees. In the process we provide a general framework for finding
edges with certain global properties. Chapter 2 contains an introduction to other
data structures for dynamic trees and to previous work on the 1-Median, 1-Center,
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and Diameter problems.
In part II we consider the connectivity, minimum spanning forest, 2-edge con-

nectivity, and biconnectivity problems in fully dynamic graphs. For the minimum
spanning forest, 2-edge connectivity, and biconnectivity, the algorithms are im-
plemented through the top-tree black box interface, and the reader should consult
sections 3.1 and 3.2 before reading the implementation details. Chapter 5 contains
an introduction to the problems considered and an overview of previous work.

In chapter 10 we summarize the contents of this thesis.

1.3 Readers prerequisites

In general the terms used are defined in this thesis, but the reader is assumed to
have knowledge of algorithmics and data structures corresponding to the book
“Introduction to algorithms”, Cormen et. al. [4].
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Part I

Top-trees
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Chapter 2

Introduction to part I

In this part we consider fully dynamic tree problems. In a dynamic tree prob-
lem, we have a forest of trees over a fixed set of nodes � of size ������� �

. The
forest may be updated with insertions and deletions of edges. In chapter 3 we de-
scribe top-trees, a data structures for dynamic trees. In chapter 4 we consider the
fully dynamic tree problems of Maxweight, Diameter, 1-Center, and 1-Median,
implemented through top-trees. In connection with the 1-Center and 1-Median
problem, we provide a general tool for maintaining edges with global properties.
The Maxweight problem was first considered by Sleator and Tarjan [35]. The
top-tree data structure and the algorithm for the Diameter problem was first de-
scribed in [1] while the results for 1-Center and 1-Median are to be included in a
forthcoming article on experimental implementation of top-trees.

2.1 Top-trees

Many dynamic graph data structures are based on a data structure for dynamic
trees. Therefore many different data structures have been developed for dynamic
trees. Examples are the dynamic trees (here ST-trees) of Sleator and Tarjan [35],
the ET-trees developed in [9] based on Euler tours and finally the topology trees
of Frederickson [12, 13, 14, 15].

The ET-trees are simple and efficient but limited, in that they cannot maintain
information about paths. Both the ST-trees and the topology trees partition the
tree into node-disjoint parts. The ST-trees partition the tree according to paths,
whereas topology trees use the topology of the tree in a more clever way. The
structure of the topology tree implies more complicated algorithms but simpler
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data structures for representing paths [6]. The problem is that the topology trees
work only for trees of maximum degree 3, thus it is necessary to transform the tree
to a tree of maximum degree 3 and the solve the problem there. This has given rise
to a number of complicated transformations, and previous articles usually start by
presenting the entire topology tree data structure from scratch, see e.g. [6, 14, 29].

Our contribution is a variant of the topology trees called top-trees. The top-
trees are based on Fredericksons idea of partitioning the tree according to topol-
ogy, but improves over the topology trees in two ways. First, they work directly for
trees of unbounded degree. Second, they come with a complete black box inter-
face, making them applicable without knowledge of the underlying data structure.

In section 3.1 we introduce the terminology of the top-trees. In section 3.2 we
provide a black box interface for their usage. Finally in section 3.3 we describe
how to implement the top-tree data structure.

To round off this brief introduction to data structures for dynamic trees, in
chapter 7 we apply the top-trees to the minimum spanning forest problem, thus all
of the above the mentioned data structures for dynamic trees, ST-trees, topology
trees, ET-trees and top-trees, have been applied to this problem [10, 24, 35].

2.2 Applications

In chapter 4 we give examples of top-tree algorithms.
In the fully dynamic Maxweight problem, we have a tree with weighted edges.

In this tree, we may insert or delete edges and perform path updates (adding a
constant to all edges on a specified path) and Maxweight queries (which returns
the maximum weight of an edge on a specified path). That this can be done in������������


time per operation is a classic result by Sleator and Tarjan, first published
in 1983 [35]. This result has applications in many dynamic graph algorithms [6].
In section 4.1 an implementation using top-trees is included as an illustrative ex-
ample of a top-tree algorithm.

In the fully dynamic tree Diameter problem, the weighted edges can be inserted
and deleted, and our task is to maintain the diameters of the trees in the forest. The
diameter of a tree is the length of the longest simple path in the tree. The length
of a path is the sum of the weights of its edges. The diameter of a tree is an
interesting problem, as many networks use spanning trees to route their packets.
The diameter of a spanning tree is then the longest time it takes a packet to arrive
at its destination, thus it is important to have spanning trees of small diameter.
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For static trees, several linear time algorithms exists. In 1992 Rauch1 [32] pointed
out that too little work has been done to dynamically maintain the diameter. In
section 4.2 we provide an algorithm taking

������������

time per operation.

In the fully dynamic 1-Center problem in dynamic trees, we again have a fully
dynamic forest of trees with weighted edges. For each tree in the forest we must
be able to find the node minimizing the maximum distance to any other node. The
distance between two connected nodes � and � is the sum of the edges on the path
between them and is denoted dist

� �� !� 
 . In section 4.4 we provide an algorithm
using

���������"��

time per operation.

In the fully dynamic 1-Median problem in dynamic trees, the nodes of the
tree are weighted. In addition to insertion and deletion of edges, a constant may
be added to the weight of a node, and for each tree we must be able to find a
node � minimizing #%$'&)(�*,+.- weight

� � 
�/ dist
� �� 0� 
 . In section 4.5 we provide an

algorithm using
������������


time per operation.
For the 1-Center problem, the previous best was the

���������1	���

time solution

provided by Cheng and Ng in [3]. For the 1-Median problem, the previous best
solution was provided by Auletta, Parente and Persiano in [2], using

���������2	���

time per operation. 1-Center and 1-Median were originally static problems with������


time solutions, see e.g. [2, 13, 17, 19]. A long list of references to the
1-Median and 1-Center problem and similar problems can be found in [34].

The Maxweight problem has the nice local property, that if 3 is a tree, 354 a
subtree, then if 687:9 � 3;4 
 is a solution in 3 , then 6 is a solution to 3<4 . As an inter-
mediate step to the 1-Center and 1-Median problems we provide a general tool for
maintaining edges with global (i.e. non-local) properties. We require the user to
define some custom information for the top-tree clusters, provide the update pro-
cedures, and finally, given a root cluster with two children, the user must decide
which child cluster contain the desired edge. After

������������

decisions, Merge and

Split operations, the desired edge is found. To our knowledge, no such tool has
been presented before.

1Now Monica Rauch Henzinger
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Chapter 3

Top-trees

In this chapter we will introduce a variant of Fredericksons topology trees [10].
The original topology trees are defined for ternary trees which can then be used
to encode trees of unbounded degrees. This is often quite technical, so instead
we have developed a variant (first presented in [1]), called top-trees, which works
directly for trees of unbounded degree, and which gives rise to much simpler
algorithms. For most purposes, top-trees are also easier to use than the dynamic
trees of Sleator and Tarjan [35].

The top-tree is a data structure for unrooted dynamic trees that allows simple
divide and conquer algorithms. The basic idea is to maintain a balanced binary
tree = of logarithmic height representing a recursive subdivision of the tree 3 into
clusters, which are subtrees of 3 that are connected to the rest of 3 through at most
two boundary nodes. Each leaf of = represents a unique edge of 3 , each internal
node of = represents the cluster that is the union of the clusters represented by its
children, and the root of = represents all of 3 . We will abuse the notation and use
the word cluster to mean both a subtree of 3 with at most two boundary nodes
and the node in = which represents it, if any.

3.1 Terminology

A node in a connected subtree is a boundary node, if it is connected to a node
outside the subtree by a single edge. A cluster is then a subtree with at most two
boundary nodes.

The set of boundary nodes of a given cluster > is denoted ?.> , and a node in>:@A?.> is called an internal node of > . The simple path between the boundary
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nodes of > is called the cluster path of > and is denoted B � > 
 . If B � > 
 contains at
least one edge, > is called a path-cluster, otherwise > has only one boundary node
and > is called a leaf-cluster.

If C and D are clusters with exactly one node in common, and CFEGD is a
cluster, C and D are said to be mergeable.

As clusters are represented by nodes in a rooted tree, we can apply the
(proper) ancestor/descendant/child/parent relationship among these nodes to the
clusters they represent. The cluster > is said to be a (proper) path-ancestor/path-
descendant/path-child of a cluster C if > is a (proper) ancestor/descendant/child
of C and the cluster paths of > and C have at least one edge in common.

A cluster containing a single edge is called an edge-cluster. A leaf in the
original tree corresponds to an edge-cluster with only one boundary node. Such
a cluster is called a leaf-edge-cluster. Edge-clusters with two boundary nodes are
called path-edge-clusters.

In figure 3.1 is shown an example tree of edge-clusters with its top-tree. The
node H is internal to I , while J is the single boundary node of the leaf-clustersI , K and

� ILEMK 
 , but is internal to the leaf-cluster
�0� INEOK 
 E ��P EOQ 
R
 whose

single boundary node is 6 . P , Q and S are path-clusters, while I , K , 9 , T , U
and V are leaf-clusters. S is the sole path-child of

� 9OEWS 
 while
P

and Q are both
path-children of

��P EXQ 
 . Finally note that the cluster
�R� ILEOK 
 E �YP EMQ 
0
 is a

leaf-cluster and
�YP EZQ 
 is an example of a path-cluster, that is not a path-child of

its parent.
As a slight generalization from the above description we may have up to two
external boundary nodes for each top-tree = . These nodes are always considered
boundary nodes, even if they do not have an edge out of the cluster. In particular,
they are the only boundary nodes of the root cluster of = . This enables us to create
a path-cluster with any given path as cluster-path. For a simple example of why
this is useful, see Corollary 3.3 below and much of the rest of the thesis.

3.2 Black box

We are now ready to describe the black box interface.
The top-tree supports the following update operations:

Link [�\
]_^a` : Where \ and ^ are nodes in different top-trees b1c and b $ . Creates a single
new top-tree b representing b c�d b $ dfe [�\
]_^g`ih .

Cut [�\
]_^a` : Removes the edge [�\
]_^g` from the top-tree b containing it, thus separating
the endpoints and creating two top-trees b c and b $ .
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Figure 3.1: A tree divided into edge clusters and the complete top-tree for it. Filled
nodes in the top-tree are path-clusters, while small circle nodes are leaf-clusters.
The big circle node is the root. Capital letters denote clusters, non-capital letters
are nodes.

Expose [�\
]_^a` : Makes \ and ^ external boundary nodes of the tree b containing them
and returns the new root cluster.

With each cluster > , the user may associate some information Info
� > 
 and

provide some procedures to maintain it. To be more specific, every update to the
top-tree is implemented as a sequence of the following four internal operations:

Merge [��A]���` : Where � and � are mergeable clusters. Create �f��� d � as the parent
of � and � , set ���f����[�� d ��` . Set Info [���`���� Merge [������A]���` , where
Merge [������A]���` is a user defined procedure that computes Info [���` from � and �
and their associated information.

Split [���` : Where �f��� d � . Call Split [�������]���` , delete the node � from b ; where
Split [������A]���` is a user defined procedure that updates Info [��5` and Info [���` before� is deleted, allowing Info [���` to be propagated down to its children.
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Create [_[�\2]_^g`_` : Create an edge cluster � for the edge [�\2]_^g` . Set �1��������[�\
]_^g` . Set
Info [���`���� Create [����
[�\
]_^a`_` , where Create [����2[�\2]_^g`_` is a user defined procedure
that computes Info [���` .

Eradicate [���` : Where � is an edge-cluster for an edge [�\2]_^g` . Call
Eradicate [����2[�\
]_^a`_` , delete � , where Eradicate [����
[�\2]_^g`_` , is a user defined
procedure that stores Info [��f��[�\
]_^a`_` . When updating the tree, an edge cluster may
change from a leaf-cluster to a path-cluster or vice versa. Since the information
stored in leaf-clusters and path-clusters may be different, to implement the change,
we delete the edge-cluster using Eradicate [�����[�\2]_^g`_` and then reinsert it changed
with Create [�����[�\
]_^g`_` using the stored information.

Each of the above four internal operations uses constant time plus the time used by
the corresponding user-defined procedure. We can therefore state the time com-
plexities involved in maintaining the top-tree as the number of internal operations
used:

THEOREM 3.1 (MAIN THEOREM). We can maintain a forest of top-trees of
height

������������

supporting the operations Link, Cut and Expose, using a se-

quence of at most
������������


Merge and Split plus a constant number of Create and
Eradicate per operation. In addition this sequence can be computed in

���������"��

time. Furthermore the top-tree data structure can be initialized using

������

Create

and Merge operations.

The proof of the Theorem is rather involved and is the subject of section 3.3 which
also includes a more detailed description of the top-tree data structure.

Note that since the height of any top-tree is
������������


, we have that an edge
is contained in at most

������������

clusters. A node is internal to at most

���������"��

clusters, and we assume a pointer from each node � to the cluster with least height
it is internal to, or if � is an external boundary node, the pointer points to the root-
cluster. As a result, we can test whether a pair of nodes has an edge between them
in constant time.

COROLLARY 3.2. Given a pair of nodes �� !� , we can test whether the edge
� �� !� 


is in the top-tree data structure in constant time per operation.

PROOF. Let = be the toptree, and let > c denote the unique smallest cluster in =
in which � is internal. If > c is a leaf-edge cluster,

� �� !� 
 is an edge if and only
if � is the boundary node of > c . Otherwise > c is not an edge cluster. Assume its
height is less than the height of the corresponding > $ . This means that � must
be a boundary node of > c if

� �� !� 
 is an edge and that a child cluster C of > c has
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boundary nodes ?�C������� 0�A� . We then just need to check if B � C 
 consists of a
single edge. This can easily be stored in the cluster.

If > c and > $ have the same height, they cannot be the same cluster, since at
most one internal node of a cluster > can be a boundary node of a child of > . �
To illustrate the power of our machinery, we now give a short proof of a result
from [35]:

COROLLARY 3.3. We can maintain a fully dynamic forest S and support queries
about the maximum weight edge between any two nodes in

���������"��

time per

operation.

PROOF. For each path-cluster > we maintain the maximum weight ��� on the
cluster path. Create

� >�� � �� !� 
R
 sets ����� � weight
� �� !� 
 if > is a path-edge

cluster. Merge
� >���C� !D 
 sets �:�¡� �£¢�¤�¥��¦�X§¨� ©ª7���C� !D«� is a path-child of >"� ,

while Split
� >£��C� !D 
 and Eradicate

� >¬� � �� !� 
R
 does nothing. All internal oper-
ations take constant time. To answer the query Maxweight

� � /�/�/ � 
 we just call>­�®� Expose
� �� !� 
 and return �:� . The Corollary is established by Theorem 3.1.�

3.3 Implementation

In this section we describe how to build the top-tree data structure and how to
maintain it under Link, Cut and Expose operations.

First, in section 3.3.1 we give a high level description of the data structure
assuming we have a strategy for creating partitions of a tree into edge-disjoint
clusters. It turns out that the main difficulty is to select the right such strategy,
and this problem is addressed in section 3.3.2. In section 3.3.3 we show that our
strategy yields top-trees with

������������

height, and finally in section 3.3.4 we show

how to maintain our data structure.

3.3.1 The top-tree data structure

Recall from the high level description of the top-trees, that a cluster in a tree 3 is
a subtree of 3 , that is connected to the rest of 3 through at most two boundary
nodes. By a cluster-partition of 3 , we mean a partition of 3 into edge-disjoint
clusters, such that no cluster contains more than two edges.

14



Any cluster-partition of 3 can be represented by a cluster-partition tree (CPT)3 4 , by replacing each cluster in 3 with an edge.
Each edge in 3«4 is said to be composite if its cluster contains two edges from 3 ,

and simple if it contains only one. Similarly, an edge is a leaf-edge if it represents
a leaf-cluster, and a path-edge if it represents a path-cluster.

Let ¯ be a strategy for creating cluster-partitions for trees (to be specified
later). By a partition strategy we mean a set of rules the clusters in the partition
must obey. Let CPT ° � 3 
 denote the function that constructs a tree representing a
cluster-partition of 3 in accordance with the rules of ¯ .

DEFINITION 3.4. Let 3 be a tree, and ¯ a cluster-partitioning strategy. A mul-
tilevel (cluster-)partition of 3 with respect to ¯ is then a set of trees (levels)S²±) )³)³)³´ µS�¶ where S·±a�¬3 and S²¸�� CPT ° � S²¸�¹�º 
 , »¼7��1½� )³)³)³´ ¿¾�� .

ÀÀÁÁ
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ÊÊËË
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ææçç èèéé
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ììíí

îîïï

ððññ
òòóó

Figure 3.2: An example of a multilevel partition.

Let S·±� )³ô³)³ô µS·¶ be a multilevel partition. An edge 6 in S"¸õ !»Wöø÷ is said to be the
parent of the edges in its cluster in S�¸�¹�º and they are said to be 6 ’s children. The

15



definition of ancestor and descendant then follows. Each node in S¼¸ , is also a
node in S²¸�¹�º , an for this reason, they are considered identical. Each edge in Sù±
represents a unique edge of 3 and each edge in S�¸ , »«7L�1½� )³)³ô³ô ¿¾�� represents the
cluster that is the union of the clusters represented by its children.

A top-tree = for a tree 3 is then implemented by maintaining a multilevel par-
tition for 3 : Each node � in the toptree corresponds to an edge 6 c in the multilevel
partition, and its children/parent in the top-tree is the nodes corresponding to the
children/parent of 6 c . Note that a multi-level partition may have edges which have
only a single child. This corresponds to nodes in the top-tree that have only one
child, which were not allowed in the high-level description. This modification is
introduced to simplify the description of the data structure. Creating a composite
edge is what corresponds to a Merge, deleting a composite edge corresponds to a
Split. The edges in S"± corresponds to edge-clusters and are created by Create and
deleted by Eradicate. The remaining simple edges in S�¸ú !»¼ö�÷ is made by copying
their child on the previous level.

With the reduction from the multilevel partition to the top-tree data structure
described, we will now only consider how to create and maintain a multilevel
partition.

3.3.2 Selecting a partition strategy

To complete the description of the multilevel partition data structure, we now
consider the problem of selecting a partition strategy. We will select a strategy
that fulfills the following requirements.

R1. For any tree û , ü ýA[ CPT ° [�ûa`_`µü�þ�ÿ�ü ýA[�ûa`µü , for some contraction constant ÿ�þ�� .
R2. If an insertion or deletion is introduced into � ± in a multilevel partition, the remain-

ing levels � º ]������´]�� ¶ can be updated to a multilevel partition with respect to � for� ± using at most a constant number of insertions and deletions in each � ¸ .
Requirement R1 ensures that S�¸ in the multilevel partition of 3 has less than� � 9 � S²¸�¹�º 
 �	� � ¸ � 9 � S·± 
 � edges, and thus the multilevel partition based on ¯ con-

tains at most ¾<��

�
������ ��� trees. Since the height of the top-tree is the same as the
number of levels in the multilevel partition, the height of the top-tree is 

�
������ ��� .

When the logarithmic number of trees in the multilevel partition has been es-
tablished, Requirement R2 ensures that the multilevel partition can be updated,
using at most

������������

insertions and deletions to the trees.

We now describe a partition strategy that fulfills requirement R1 and R2. We begin
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by defining which clusters we will allow.
For each node � we introduce a cyclic order on the incident edges (see Fig-

ure 3.3 for an example).
For an edge

� �� 0� 
 , we call the next edge in the cycle around � in its successor
around � , and similarly the preceding edge in the cycle around � is said to be its
predecessor around � . If � only has a single incident edge, this edge is its own
successor/predecessor.

Figure 3.3: An example tree. For each node for each edge an arrow points to its
successor (leaf nodes excluded).

A pair of edges
� �� µH 
 and

� �� �� 
 are said to be neighbours around � if
� �� �� 
 is

the successor of
� �� µH 
 around � . Thus an edge can have at most four neighbors.

DEFINITION 3.5. A cluster > is good if either:� � is a simple cluster.� � consists of a leaf-edge and its successor.� � consists of two path-edges which are neighbors around a common endpoint.

Figure 3.4 is an example of a tree with an arrow for each of the possible good
composite clusters. Note that this definition excludes composite clusters that con-
sist of a path-edge and a leaf-edge, where the path-edge is not the successor of the
leaf-edge.

A pair of edges whose union is a good cluster are said to be mergeable. If
an edge forms a mergeable pair with a neighboring edge, that edge is called a
mergeable neighbor. The most important property of definition 3.5 is that no
edge can have more than two mergeable neighbors.

Based on the definition of a good cluster, we now define our partition strategy.
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Figure 3.4: An example tree as in Figure 3.3. For each good composite cluster,
an arrow points from the predecessor to the successor.

DEFINITION 3.6. A Maximal Restricted Partition (MRP) of 3 , is a partition of
the set of edges of 3 into good clusters, such that� Each cluster is a good cluster.� No two clusters can be combined to a good cluster.

This partition strategy does not necessarily result in the minimum number of clus-
ters, and for each tree several such partitions may exist. It does however have the
nice property that if the parent of an edge is deleted, we only have to check if it
has a mergeable neighbor that is not represented by a composite edge. For this
reason. the MRP is said to be a locally greedy strategy.

For a tree 3«45� CPTMRP
� 3 
 , in addition to representing an MRP partition

of 3 , the order of the parents around each node is synthesized from its children
such that if

� H� �� 
 is the predecessor of
� �� µJ 
 are around � and they have different

parents, then the parent of
� H� �� 
 is the predecessor of the parent of

� �� !J 
 . See
Figures 3.5 and 3.6.

LEMMA 3.7. Let 6 and � be mergeable edges in 3 , with different parents 6¦4 and��4 in 3«4.� CPTMRP
� 3 
 , then 6)4 and ��4 are mergeable.

PROOF. Assume w.l.o.g. that 6 is the predecessor of � around their common node� . If 6 is a leaf-edge then 6)4 is a leaf-edge that is a predecessor of ��4 , thus 6ô4 and ��4
are mergeable. If 6 is a path-edge, then since 6 and � are mergeable they must be
the only edges incident to � in 3 . In this case 6�4 and �'4 are the only edges incident
to � in 3«4 , and they must be mergeable. �
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As a consequence of the lemma, if a pair of edges 6 4 and � 4 in 3 4 are not
mergeable, then 6 4 cannot be parent of an edge 6 , � 4 parent of an edge � 4 such that6 and � are mergeable.

Order

DC’ ’

A B A’ B’

A’ B’

3

2

1

A

B

C

D

C
D

A’

B’

C’

D’

A B

Figure 3.5: The tree ways a composite cluster can be created, and its parents
relation to the parents of their neighbors. Left, dashed edges denotes neighbors,
right parents of neighbors. The circle of arrows indicate the successor direction
around all nodes.

For a tree 3 and a tree 3;4.� CPTMRP
� 3 
 , if an edge 6)4�7O3¨4 is simple, the edge

it represents in 3 is said to be single and similarly if an edge 6 4 7O3 4 is composite,
the two edges it represents in 3 are said to be matched. An edge with no parent in3 4 is said to be an orphan. To compute a CPTMRP of a tree 3 , we take each edge6 7�3 and if it has a mergeable orphan neighbor, they are matched. Since each
edge has at most 2 mergeable neighbors, this can be done in linear time.

COROLLARY 3.8. A maximal restricted partition of a tree 3 can be computed in
linear time.

We have now presented our partition strategy. In the next section we prove that
any MRP of a tree 3 fulfills requirement R1 and in section 3.3.4 we prove that it
fulfills requirement R2.
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Figure 3.6: To the left is an example tree with a maximal restricted partition. To
the right is a representation of the partition. Normal lines denote simple edges,
dashed lines denote composite edges.

3.3.3 Bounding the number of levels

LEMMA 3.9. Let 3«4 represent a MRP for a tree 3 with � 3 �1ö ½ , then � 3<4Y�������� 3 � .
PROOF. Let

P
be the set of composite edges from 3<4 . We will prove that� P �1ö! +#"  � . Since � 3«4Y�%$ � P �¦� � 3 � it then follows that � 3;4õ�&$' +("  � � � 3f� and thus� 3 4 �(� ���� 3 � as desired.

For the sake of the proof, we look at the unique partition ) of 3W4 into clusters) �ø�)>'º¿ ô³)³)³ô i>  *+ � , such that a pair of edges 6 and � are in the same cluster >�¸ if
and only if there is a sequence of edges 6<��6¦±� ô³)³)³  µ6-,��.� such that ��6&/µ¹�ºµ µ6�/�� is
a good cluster for 0�ö�÷ (see fig 3.7).
Note that there is no upper limit to the number of edges in a cluster in ) .

All leaf-clusters in ) must contain at least one leaf of 3 4 , and since � 3 4 ��ö ½ ,
any leaf-edge 6 has a mergeable neighbor, thus all leaf-clusters in ) contain at
least two edges.

Since 3«4 represents an MRP, every good cluster in 3<4 must contain at least one
composite edge and since an edge can be part of at most two good clusters, we
must have that � P21 >.¸!��354� �76  ¹�º	98 . Thus if >.¸ has at least : edges then � P;1 > ¸!��3 �76  < .

Let = be the set of edges in leaf-clusters in ) , let ¯ be the set of edges in path-
clusters in ) with at least : edges, and let > be the set of edges in simple clusters
in ) . Then = , ¯ and > form a partition of the edges of 3 4 , and since all clusters in) containing edges from = and ¯ are composite, we must have � P?1 =W�@$M� P?1 ¯��A3
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Figure 3.7: An example of a tree 3<4 and the partition ) in the proof of Lemma 3.9.
Here � = ���CB , � ¯���� ½ and �D><�¦� ½ .
 E# FG °  < and thus H � PI1 = �J$ H � PI1 ¯��K3 �D= �L$ ��¯��(3.1)

Let 3 * represent ) and let 3+M be the subtree of 3 * representing all clusters from) that has a boundary node that is shared by at least : path-clusters, then 3NM has at
most � PO1 = � leaves. For each node of degree : in 3PM there must be a path-cluster
in ) with more than one edge and this cluster can be shared with at most one other
node of degree : in 3+M . Thus the number of nodes of degree : in 3PM is at most:�� PQ1 ¯�� . Since a tree with � leaves and R nodes of degree : has at most :A�S$TRVU H
edges and all edges in > correspond to edges in 3WM , we must have that

:�� P;1 = �%$;:�� PX1 ¯���U H 3 � 3YM¼��3 �D> �(3.2)

Combining (3.1) and (3.2) we getH � PI1 = �%$ H � PI1 ¯��L$ � :�� PX1 = �%$2:�� PX1 ¯��ZU H 
 3 �D= �%$ � ¯��L$ �[><�
and since � P ��3 � P\1 = �]$�� P\1 ¯�� and �D= �]$���¯��]$��[><�¦� � 3 4 � we have ^�� P �_U H 3 � 3 4 �
and thus � P ��3  + "  F <� ö  + "  � as desired. �
We how now proven that the MRP fulfills Requirement R1.

COROLLARY 3.10. Let 3 be a tree, any multilevel partition by MRP of 3 has at
most 
 �����G`a �b�Vc H ³]d ����� 	 � levels.
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Note that this estimate of the number of levels is based on the assumption
that each level is a worst case tree. In reality this cannot happen, and we believe
that a more detailed proof can be constructed, based on a multilevel analysis of
the behaviour of this partition strategy, that will show the worst case height to beH ����� 	 � . However, such a multilevel analysis is beyond the scope of this thesis.

Combining Lemma 3.9 with Corollary 3.8:

LEMMA 3.11. Any multilevel partition of a tree based on an MRP can be created
in linear time and uses linear space.

PROOF. By Corollary 3.8 we use at most e � ��9 � S�¸ 
 � 
 time to construct S·¸ F º , »57÷. ô³)³)³  ¿¾ for some constant e;ö�÷ . By Lemma 3.9 the combined time used can be
bounded by

¶f
¸hg ± e�� 9

� S ¸ 
 ���;e ¶f
¸hg ±

� �� 
 ¸ ��9 � S·± 
 ���;e�� 9 � S²± 
 �jif ¸hg ±
� � � 
 ¸ �lkme���9 � S·± 
 �

By the same equation, the multilevel partition contains at most k'� 9 � S ± 
 � edges. �
3.3.4 Updating the multilevel partition

When an edge is deleted or inserted in a dynamic tree 3 , this introduces a change
in S²± in the multilevel partition of 3 . Our task is then for each »8� ½� )³ô³)³ô ¿¾ to
update S²¸ to a CPTMRP of S²¸�¹�º .

Each step of making S·¸ a CPTMRP of S²¸�¹�º involves replacing a set of edges Qf¸
of S²¸ with another set of edges Vô¸ , each depending on the changes introduced inS ¸�¹�º and therefore on Q ¸�¹�º and V´¸�¹�º . For all » , we show that the size of Qf¸ andV ¸ is bounded by a constant, implying that the multilevel partition can be updated
using

���������"��

insertions and deletions.

We start by handling the case where an edge is inserted. When this case has
been handled, proving the deletions case is a corollary. Finally we implement
Expose.

Link

When inserting an edge
� �� 0� 
 (we assume �� !� were not connected), we insert� �� 0� 
 in an arbitrary position in the cyclic order of the edges around � and � inS²± . If � was a leaf node, the corresponding leaf edge

� �� 0� 4 
 is now a path-edge in
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S²± and so we delete it with Eradicate, put it in Q�± , reinsert
� �� !� 4 
 as a path-edge

and put it in V)± . Symmetrically for � and
� �� !� 4 
 . Thus the set of edges V)± inserted

in S·± is � � �� !� 
 � plus possibly
� �� !�14 
 and

� �� !�;4 
 . The set of edges deleted, Qf± isV´±�@ ���� !�A� .
Computing QZ¸ and V´¸ of S²¸ , »·� ½� )³ô³)³´ µ¾ consists of 3 steps.

1. Delete all parents of edges n ¸�¹�º in � ¸ .
2. Delete edges in � ¸ which, as a result of replacing n ¸�¹�º with o ¸�¹�º , no longer repre-

sent good clusters.

3. Compute o ¸ from the children of the edges deleted in � ¸ in step 1 and 2.

To create V´¸ , we need to take all the orphans created in step 1 and 2 and match
them with a single neighbor. If no match is possible without breaking a previously
created match, the edge is single.

In step 1, we delete all edges in S�¸ whose children have been deleted/replaced
(possibly by an edge with same endpoints). In step 2, we delete all edges inS ¸ that represent pairs of matched edges in S�¸�¹�º which are no longer mergeable
neighbors. This can only happen if an edge of V�¸�¹�º has been inserted as a neighbor
between them, e.g. in S�± . It follows that all edges in V)¸ created in step 3 are parents
of edges in Vô¸�¹�º or parents of orphaned neighbors to edges in V�¸�¹�º .

To bound the size of Vô¸ , we divide it into two disjoint sets and then bound them
independently: Let TA¸ denote the set of good edges in V)¸ that has a child in Vô¸�¹�º and
let K;¸��£V ¸ @¨TW¸ be the set of bad edges in V)¸ which has no child in V)¸�¹�º . We will
bound � V´¸0������TW¸0�%$ � K;¸0� by bounding ��K<¸R� and � T5¸0� . For all » , we will bound � K ¸0�
by a constant

��p
. For � T5¸0� we will show that for all » , � T8¸0�(� � � V ¸�¹�º��%$ �Kq , where� � ½ and

��q
are constants. This bounds � Vô¸0� by

� � V ¸�¹�º��%$ �Kq $ �Kp implying� V´¸0���srut F r7vº_¹ r .
As each edge in K<¸ is a parent of a neighbor to an edge in V�¸�¹�º , we can bound� K;¸0� by the number edges in S·¸�¹�º"@WV ¸�¹�º which has a neighbor in V)¸�¹�º . For a set

of edges >'¸�w 9 � S²¸ 
 , we define the boundary edges ( ?#x�>'¸ ) of >�¸ to be the set of
edges in >�¸ which has a neighbor edge in S�¸¦@y>'¸ . Clearly ��K<¸R��� ��?Kx � S²¸�¹�º.@"V ¸�¹�º 
 � ,
and since each edge has at most 4 neighbors, ��?#x � S²¸�¹�º�@¨V ¸�¹�º 
 �#�XB'��?KxRV ¸�¹�º�� .

To bound the size of K ¸ further, we will construct Vô¸ by greedily trying to match
each edge in ?�x0V ¸�¹�º with an orphan edge in ?#x � S ¸�¹�º�@<V´¸�¹�º 
 . This maximizes the
number of children of edges in T8¸ , and since all edges in TA¸ and K;¸ are parents of
orphans in S²¸�¹�º , this minimizes the number of orphaned children of edges in K8¸ .

An edge in S²¸�¹�º is said to be free, if it is either orphaned or single. Step 3 in
the algorithm above is then implemented as:
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3a. For each edge z of � x o ¸�¹�º , if z has a mergeable orphaned neighbor { in� x [|� ¸�¹�ºY} o ¸�¹�º ` , then z and { are matched.

3b. For each remaining orphan z in o ¸�¹�º , if it has a free mergeable neighbor { , then z
and { are matched. Otherwise z is simple.

3c. For each remaining orphan z in � x � ¸�¹�ºP} o ¸�¹�º , if z has a free mergeable neighbor{ , then z and { is matched. Otherwise z is simple.

Note that step 3a and 3b computes TA¸ , while step 3c computes K ¸ and therefore
this algorithm correctly computes V�¸��%TW¸2EOK;¸ .

We wish to bound the number of boundary edges of V�¸ . We can divide ?(xiV´¸
into two sets

� ?�x0V ¸ 
P1 T5¸ and
� ?�xiV´¸ 
W1 K«¸ . As all edges in

� ?(xRV´¸ 
W1 TW¸ are parents
of boundary edges in Vô¸�¹�º , if � � ?KxiV´¸ 
W1 K;¸R�2� ÷ , ��?KxiV´¸0��� � � ?KxiV´¸ 
+1 T5¸R��� ��?KxRV ¸�¹�º�� .
Thus � ?�xiV´¸�¹�º�� bounds ��?�xiV´¸0� . If however, � � ?�xRV ¸ 
W1 K;¸0��ö ÷ , we wish to show that
for all »<� � ?KxRV ¸ 
�1 TW¸0�m$ � � ?KxRV ¸ 
~1 K«¸0� is bounded by a constant regardless of the
set boundary edges of Vô¸�¹�º . This involves a careful analysis of the parents of the
boundary edges of T5¸2EMK;¸ , »�7G�1½� )³)³)³  ¿¾�� .
The update forest

We now consider the structure of the boundary edges of V�¸ú !»¡7 ��÷. )³)³ô³´ ¿¾�� . We
divide the nodes connected to the inserted edge

� �� !� 
 into two sets: nodes in 3 c
are those connected to � in S"±"@5� � �� !� 
 � and nodes in 3 $ are those connected to� in S²±�@ � � �A !� 
 � .

For a node � in S·¸ , where � in S�± is also in 3 c @¡����� , the expansion edge is
the edge incident to � which is ancestor to the first edge on the path from � to � inS²± . Similarly for � in 3 $ and � . For � and � , the expansion edge is defined to be� �� 0� 
 .
DEFINITION 3.12. An expansion node of V�¸ corresponding to � is a node e such
that:� The only edges in o ¸ incident to � are the expansion edge and at most two boundary

edges of o ¸ , which are (predecessor/successor) neighbors to the expansion edge
around � .� If the expansion edge has a preceding boundary path-edge in o ¸ then it also has a
succeeding boundary path-edge in o ¸ and no other edges are incident to � .

DEFINITION 3.13. An update forest of a forest S"¸ in a multilevel partition, with
respect to

� �� 0� 
 , is a forest of subtrees of S�¸ with at most one expansion node e c in
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3 c and at most one expansion node e $ in 3 $ and all boundary edges in the update
forest of

� �� !� 
 are incident to e c or e $ .

It follows that an update forest contains at most two trees and four boundary nodes
and edges.

We now proceed to show that for »g7­�1½� )³ô³)³´ µ¾�� , if V)¸�¹�º is an update forest ofS ¸�¹�º with respect to
� �� !� 
 , then Vô¸ is an update forest of S·¸ with respect to

� �� !� 
 .
Initially V)± is just a path of maximum length 3, which is an update forest with its
endpoints as expansion nodes.

The proof runs in stages. First we prove that if ��¸�¹�º is an update forest ofS ¸�¹�º with respect to
� �� 0� 
 , with a set of parents �"¸ created by applying step 3a

and 3b, then ��¸ is an update forest of S·¸ with respect to
� �� !� 
 . Let

P p
be the set

of orphaned children remaining before step 3c. Clearly all edges in K8¸ are parents
of
P p

. We show that � P p �N��B and V´¸�¹�º"E P p is an update forest of S·¸�¹�º with
respect to

� �� !� 
 . We can then apply step 3a to find
P p

, and then apply steps 3a
and 3b on Vô¸�¹�º
E P p . This implies that we can create V)¸�� T5¸�EZK;¸ from V ¸�¹�º2E P p
such that Vô¸ is an update forest and K<¸ contains at most 4 edges.

In fact, when step 3a has been applied on V�¸�¹�º , we have applied step 3a on all
edges in

� ?�x � V´¸�¹�º�E P p 
R
+1 V ¸�¹�º and what remains is to apply step 3a to the edges
of
P p

. This is what step 3c does. So applying steps 3a-3c on V�¸�¹�º creates V´¸ as an
update forest as described.

We now proceed to show that if �"¸�¹�º is an update forest (of orphans) of S�¸�¹�º ,
and �²¸ is the parents of the edges in �"¸�¹�º created by applying step 3a and 3b, then�²¸ is an update forest of S·¸ with respect to

� �� !� 
 . The proof is rather involved,
and is based on a number of cases. It is therefore necessary to introduce further
terminology about the edges incident to an expansion node.

For each expansion node e of an update forest ��¸�¹�º , if the predecessor of the
expansion edge of e is in ��¸�¹�º , it is a boundary edge and we call it the left boundary
edge. Similarly, if the successor of the expansion edge is in �¼¸�¹�º , it is called the
right boundary edge, and by the definition of an expansion node, no more than
the left and right boundary edges and the expansion edge may be incident to e in�²¸�¹�º . Further, if the left boundary edge exists at e and is a path-edge, then the
right boundary edge must exist an be a path-edge. Figure 3.8 contains an example
of how edges can be arranged around expansion nodes. Note that the expansion
edge may still be a boundary edge, if either the right boundary edge or the left
boundary edge does not exist. However it is only when the predecessor of the
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expansion edge around the expansion node is in ��¸�¹�º , that we have a boundary
edge.
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Figure 3.8: To the left is the general case of an update forest with an expansion
node e and the other expansion node at the bottom. To the right, the 7 cases of how
the expansion edge (dashed) and the left (A) and right (B) boundary edges may
appear around a expansion node. To the right, black nodes are internal nodes of
the update forest, whereas white nodes are boundary nodes. Thus I in case 1 is a
left boundary edge that is a leaf. The only allowed case where the left boundary
edge is a path-edge, is 4.

As can be seen in Figure 3.8, ex. 4, if the left boundary edge ( I ) is a path-
edge, then the right boundary edge ( K ) is its predecessor around the expansion
node 3 . This means that each left/right boundary edge has at most one external
mergeable neighbor. If the left boundary edge is a leaf, it is its predecessor arounde , (and by the definition of a good cluster, it must be leaf). If the left boundary
edge is a path-edge, it is its predecessor around e04 4 , (and then it must be a leaf,
unless no other edges are incident to e04 ). If the right boundary edge is a leaf
edge, its external neighbor is its successor around e , and it is always a mergeable
neighbor (if it is free). Finally, if the right boundary edge is a path-edge, only its
predecessor around e 4�4 can be a mergeable neighbor.

To prove that �·¸ is an update forest, we need to prove that its boundary edges
are arranged around at most two expansion nodes. We first state a simple lemma.

LEMMA 3.14. If an edge is a boundary edge in ��¸ , then it is the parent of a
boundary edge in ��¸�¹�º .
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PROOF. As the order of the edges i �"¸ are synthesized from the children, a bound-
ary edge in �·¸ must have a child in ��¸�¹�º which had an external neighbor. �
Thus we need to examine the boundary nodes at each expansion node of � and
their parents to determine which parents are boundary edges of �¼¸ . By symmetry
we can examine one expansion node e 7���e c  7e $ � of �²¸�¹�º at a time.

LEMMA 3.15. The boundary edges of �"¸ , which are parents of boundary edges
arranged around the same expansion node e in �"¸�¹�º , are arranged around the
same expansion node of ��¸ .
PROOF. Let e be an expansion node of �"¸�¹�º . We examine how the parents of the
expansion edge, the right and the left boundary edge are arranged in �ù¸ . If none
of the edges can match a free mergeable boundary edge of S�¸�¹�º�@V�²¸�¹�º or they do
not exist, e is an expansion node of �"¸ (possibly) with parents of the left and the
right boundary node as left or right boundary nodes, and an expansion edge which
is the parent of the expansion edge in ��¸�¹�º .

Figure 3.9 and Figure 3.10 contains an overview of which external neighbors
the left/right boundary leaf/path-edge can match, and the result in �ù¸ .

Boundary edges in ��¸ must be parents of boundary edges of �"¸�¹�º and incident
to e in �²¸ . Since there is at most two boundary edges incident to e , there is at most
two boundary edges incident to e in �"¸ .

If none of the boundary edges incident to e is a boundary edge of �ù¸ , it means
that all boundary edges incident to e become leaf edges in �ù¸ .

If
� e_4� 7e 
 is the only boundary edge, then either eR4 or e is a boundary node with

a single (now expansion edge of the boundary node) edge
� e04� 7e 
 incident. And

therefore an expansion node, see fig 3.8, ex. 7.
Assume that there are two boundary edges. Then we know that they are in-

cident to e , and e is an expansion node of ��¸ if the boundary edges are arranged
as in Figure 3.8 ex. 1-7. In particular we only need to show that, if e has a left
boundary path-edge, it also has a right boundary path-edge in �¼¸ .

If
� e_4� 7e 
 is a left boundary path-edge of e in �"¸ , by the definition of the cyclic

order and since e was an expansion node in �"¸�¹�º , it must be the parent of a left
boundary path-edge of e in ��¸�¹�º . Since e was an expansion node of �"¸�¹�º , this
implies that e had a right boundary path-edge in ��¸�¹�º . In particular, only the left,
the right and the expansion edge are incident to e in �¼¸�¹�º , see Figure 3.11 (left).
If the right boundary edge’s parent in �"¸ is a leaf-edge, Figure 3.11 (middle),
this leaf-edge is not a boundary edge, since its successor around e in �ù¸ is the
left boundary path-edge

� ei4� 7e 
 (in �²¸ ) and its predecessor around e must be the
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Figure 3.9: Four general cases of how boundary edges are matched at a expan-
sion node e for � . (1) left leaf-edge. (2,3) left path-edge. (4) right leaf-edge. White
nodes are boundary nodes, black nodes are internal, and � nodes are boundary
nodes if the incident tree contains edges outside � . � is a possibly empty subtree
outside � and � is a non-empty subtree.

parent of the expansion edge. In this case, Figure 3.11 (right),
� eµ4� 7e 
 , is the single

boundary edge adjacent to e in �"¸ (and therefore not a left boundary edge) and e04
is the new expansion node of ��¸ with expansion edge

� e 4  7e 
 .
Note that if e has been replaced by an expansion node e 4 in �·¸ , then

� e 4  7e 
 is an
edge in �·¸ which is not a parent of the expansion edge of e in ��¸�¹�º , (since e 4 is a
boundary node of �·¸ ). �
COROLLARY 3.16. If �·¸�¹�º is an update forest (of orphans) of S�¸�¹�º , and �²¸ is the
parents of the edges in ��¸�¹�º created by applying step 3a and 3b, then ��¸ is an
update forest of S·¸ with respect to

� �� 0� 
 .
PROOF. By Lemma 3.14 all boundary edges of ��¸ are parents of a boundary edge�²¸�¹�º . All boundary edges of ��¸�¹�º are either arranged around an expansion node
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Figure 3.10: The remaining four general cases of how edges are matched at a
expansion node e of � . (5,6) right path-edge. (7,8) expansion edge. White nodes
are boundary nodes, black nodes are internal, and � nodes are boundary nodes if
the incident tree contains edges outside � . � is a possibly empty subtree outside� , � is a non-empty subtree outside � , and � is a subtree with edges both in and
out of � .

e c or e $ . By Lemma 3.15, for each expansion node e c , there exists at most one
expansion node in ��¸ , and boundary edges in �"¸ which are parents of boundary
edges incident to e c in �·¸�¹�º are incident to the new expansion node. �

We have now shown that applying step 3a and 3b to produce parents of an
update forest of S·¸�¹�º yields a corresponding update forest of S�¸ . To complete the
proof that Vô¸ is an update forest, we need to bound the set of bad orphans

P p
and

show that
P p E V´¸�¹�º is an update forest.
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Figure 3.11: An example of what happens when the left boundary edge is a path-
edge, and the right boundary edges parent is a leaf. Left, how it looks in � ¸�¹�º .
In the middle, how it looks in �"¸ when the right boundary edge’s parent is a leaf,
(we assume the left boundary edge is a single edge). Right, how the middle tree is
oriented in relation to the new expansion node e!4 .
LEMMA 3.17. The remaining set of orphans

P p
after step 3a and 3b is bounded

and V´¸�¹�º�E P p is an update forest.

PROOF. After step 3b, no orphans exists in V�¸�¹�º . In step 3a we match all boundary
edges, that can match any free edge outside V�¸�¹�º . This leaves

P p
, the neighbors

of boundary edges which cannot match any boundary edges. Recall from the
description of left and right boundary edge, that each boundary edge that is not
the expansion edge, has at most one mergeable neighbor, thus if an edge is in

P p
,

this means that it could not match its boundary edge neighbor.
We show that any such edge is a neighbor of the expansion edge, by proving

that an unmergeable neighbor of any left or right boundary edge either cannot exist
or is a neighbor to the expansion edge. We then consider the possible neighbors
of the expansion edge, and show that they can be included as boundary edges inV ¸�¹�º�E P p .

An edge 6 can be in
P p

for two reasons. First, if 6 were previously matched
with a neighbor edge that has been deleted and replaced by an edge in V¦¸�¹�º , but
with which it can no longer merge. Second, if as a result of inserting an edge as a
predecessor of 6 , 6 can no longer merge with a neighbor not in V�¸�¹�º .

If the left or right boundary edge is a path-edge, there are two boundary nodese 4  7e associated with the expansion node, (see Figure 3.8). Since the expansion
edge (and therefore

� �� !� 
 ) is not on the path between the boundary nodes, this
implies that e�4 and e was connected in S·¸�¹�º before. This in turn means that a
left/right boundary path-edge cannot have replaced a leaf edge, but since they do
represent a path in S·¸�¹�º and previously another path-edge represented the same
path (from its neighbors point of view), a left/right boundary path-edge cannot
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have an external neighbor in
P p

since this would contradict 3.7. See Figure 3.12
ex. 1 and 2.
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Figure 3.12: Ex.1 and 2, a sketch of how unmergeable neighbors of the left/right
boundary path-edge are arranged. Ex.3, if the left boundary edge is a leaf edge,
the only way it could have been matched with a predecessor path-edge is if only
the expansion edge is incident to e . eR4 is then the new expansion node. Ex.4. If
at most one other edge is incident to e and the left/right boundary edges does not
exist. Ex. 5. If the expansion edge has a predecessor path-edge and a successor
leaf, the path-edge can only be an orphan if it was previously matched with the
successor leaf edge. Ex. 6. If the predecessor of the expansion edge is a path-edge
and the successor of the expansion edge is a path edge, the left could only be an
orphan if it was previously matched with the right.

A right boundary leaf edge can match any free successor, so it cannot have an
orphan neighbor in

P p
.

By Lemma 3.7, a left boundary leaf edge can only have a neighbor in
P p

if
it was an orphan predecessor path-edge, Figure 3.12, ex.3. Since the path-edge
could not have matched a successor leaf edge, they can only have been split as a
result of an insertion in S·¸�¹�º . This means that before deleting Qf¸�¹�º and insert-
ing V´¸�¹�º , the path-edge must have been a successor of an edge represented by the
leaf. But this means that the left leaf, the expansion edge and the orphan prede-
cessor path-edge are the only edges incident to the expansion node, particularly,
the predecessor path-edge is the successor of the expansion edge and so we make
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the predecessor path-edge’s other endpoint the new expansion node, and the edge
itself the new expansion edge.

Finally, if the expansion edge has an orphan neighbor, Figure 3.12, ex.4., we
simply make it a new boundary edge unless its a predecessor path-edge and not
also the successor of the expansion edge, Figure 3.12, ex.5. If such a predecessor
path-edge is an orphan, it must have become an orphan because of the change
introduced by inserting the expansion edge or changing a leaf to a path-edge (the
expansion edge), and therefore can only have become an orphan as a result of
having previously been matched with a path-edge that is also a neighbor of the
expansion edge (since it can only affect neighbors), Figure 3.12, ex.6. However,
then we make them both boundary edges, and we have not violated the rule that a
left boundary edge can only be a boundary path-edge, if the right boundary edge
is a path-edge. �
From Lemma 3.17 and Corollary 3.16 and the above discussion we get:

COROLLARY 3.18. If V´¸�¹�º is an update forest of S·¸�¹�º with respect to
� �� !� 
 , thenV ¸ is an update forest of S·¸ with respect to

� �� !� 
 .
For an update forest, we define the internal forest as the set of edges that are

not left or right boundary edges.

LEMMA 3.19. For each expansion node e of V�¸�¹�º , if e is not an expansion node
in V ¸ , then the internal forest of V)¸ contains at most 2 edges (parents of boundary
edges adjacent to e in V)¸�¹�º ) which are not a parent of an edge in the internal forest
of V´¸�¹�º .
PROOF. If e is an expansion node in V)¸�¹�º , then it has at most two adjacent bound-
ary edges. If e is not an expansion node in V�¸ , then at least one parent of one of its
boundary edges is not a boundary edge in V�¸ (and thus internal) and the endpoint
of the other is the replacing expansion node of V�¸ . Thus the parents of the two
boundary edges can become edges of the internal forest of V�¸ . �
LEMMA 3.20. If the internal forest in V�¸�¹�º has ¾ edges, then the internal forest inV ¸ has at most ���¾µ$2k edges.

PROOF. Let > denote the internal forest in V)¸�¹�º , and let ¾¡� �[><� . By Lemma 3.9
any MRP for > has at most �� ¾ clusters. In particular this holds for any MRP
created by taking any MRP for S�¸�¹�º , removing all clusters containing edges not
in > , and merging each orphaned edge in > with its mergeable neighbor (if any).
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This MRP clearly has at most two clusters less than the number of edges in V�¸
containing edges from > . Thus the number of edges in the internal forest of V¦¸
representing edges in > is at most ���¾µ$�: , and by Lemma 3.19 at most four edges
in the internal forest of Vô¸ does not contain edges from > , thus the total number of
edges in the internal forest of V)¸ is at most �� ¾¶$2k . �
COROLLARY 3.21. Each update forest V)¸ contains at most a constant number of
edges.

PROOF. By Lemma 3.20, we have that the size of the internal forest is bounded.
Since an update forest has at most 4 boundary edges, this bounds the size of V¦¸ . �

We have now bounded the size of V�¸ to a constant. We now proceed to bound
the size of QZ¸ , the forest of deleted edges. We first bound the number of edges
which was not a parent of an edge in Qf¸�¹�º and we then use this to bound the size
of QZ¸ .
LEMMA 3.22. At most d edges of Q ¸ does not represent edges from Q ¸�¹�º .
PROOF. Each edge in Q ¸ that is not a parent of a an edge in Qf¸�¹�º , is either inP p

or is a neighbor to Vô¸�¹�º E P p .
P p

contains at most 4 edges, and V)¸�¹�º E P p is
an update forest, so it has at most 4 mergeable neighbors, which could get their
parent deleted when merging with a boundary edge of V�¸�¹�º E P p . �

As an important observation, notice that ?�Q�¸8� ?�V´¸ . This is clear, since V)¸
reconnects the disconnected subtrees of S"¸ .
LEMMA 3.23. ��QZ¸R��� ���� Q¡¸�¹�º��%$£½�:
PROOF. By Lemma 3.9 any MRP for Q ¸�¹�º has at most �� ��Q¡¸�¹�º�� clusters. In par-
ticular this holds for any MRP created by taking any MRP for S�¸�¹�º , removing all
clusters containing edges not in Qf¸�¹�º , and merging each orphan edge in Qf¸�¹�º with
its mergeable neighbor (if any). This MRP clearly has at most four clusters less
than the number of edges in Q ¸ containing edges from Q ¸�¹�º . Thus the number of
edges in QZ¸ representing edges in Q ¸�¹�º is at most �� � Q¡¸�¹�º��·$¸B , and by Lemma 3.22
at most d edges in Q ¸ does not represent edges from Q ¸�¹�º , thus the total number
of edges in QZ¸ is at most �� ��Q¡¸�¹�º��%$¬½Z: . �
COROLLARY 3.24. Each deletion tree Qf¸ contains at most a constant number of
edges.
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We have now bounded the size of V)¸ and Q¡¸ . In addition we have provided an
algorithm to compute them. The simple algorithm of steps 1,2,3a-3c can then be
implemented by using Corollary 3.8 using constant time per level.

COROLLARY 3.25. After a Link operation, the multilevel partition can be up-
dated by deleting and inserting a constant number of edges per level.

Cut

Handling the cut operation is analogous to the link operation. The only difference
is that step 2 is replaced by a corresponding step 2’.

2’. Delete parents of mergeable pairs of single edges, which have become mergeable
as a result of replacing n ¸�¹�º with o ¸�¹�º .

The edges whose parents are deleted in step 2’ are identical to the edges who
had their parent deleted in step 2. Similarly these becomes the boundary edges ofV ¸ and the rest of the proof is analogous, except that here, at each expansion node
boundary edges may match each other.

COROLLARY 3.26. After a cut operation, the multilevel partition can be updated
by deleting and inserting a constant number of edges per level.

Expose/Deexpose

Expose
� �� 0� 
 is implemented by inserting a special leaf to each of the exposed

nodes such that this special leaf can never be matched by its neighbors. Because
of the definition of the MRP and the special edge, at some time, we may end up
with a set of edges where no one can match another. See Figure 3.13.

As a special case, if this occurs, we allow the two leaf clusters to ignore the
cyclic order and match

� �� !� 
 with a leaf neighbor. The Expose is complete when
only the path-edge

� �� !� 
 and the two special leafs are left, and we return the
path-edge

� �� !� 
 .
Since this corresponds to linking each external boundary node of 3 to a tree3¨4 of size :�� 3 � such that the special edge is always matched in 3W4 , the resulting

Exposed top-tree has height
��������� ^ ��
 � ������������


.
De-Expose is the operation of turning a boundary tree with external boundary

nodes into a top-tree with no external boundary nodes. To De-Expose
� �� 0� 
 we

cut the special leafs.
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Figure 3.13: When the Expose(v,w) reach the root, the leaf clusters, left and right,
cannot merge with

� �� !� 
 because of the special leaves. If this happen, we merge
past the special leaves (right side).

We have not defined link, cut or Expose in top-trees with external boundary
nodes, therefore, if a top-tree has external boundary nodes, we De-Expose it be-
fore updating.

COROLLARY 3.27. Expose and De-Expose changes at most a constant number
of edges per level.

PROOF (OF THEOREM 3.1). We have shown (corollaries 3.25, 3.26, and 3.27)
how to maintain a multilevel partition under Link, Cut, Expose, and De-Expose by
deleting and creating at most a constant number of edges in each level. Whenever
we delete an edge in the multilevel partition we know that all its ancestors will
also be deleted, thus we can start by deleting them from the top. Recall from
section 3.3.1 that whenever we create a composite edge we call Merge and when
we delete a composite edge we call Split. Thus we use at most

������������

Merge

and Split operations to maintain the top-tree. In addition, we may have to use a
constant number of Create and Eradicate in S�± .

Finally by Lemma 3.11) that we can build a top-tree in linear time plus a linear
number of Create and Merge operations. �
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Chapter 4

Applications

In this chapter we show how to use top-trees. We give
������������


time fully dy-
namic tree-algorithms which supports queries about the diameter and Maxweight.
In addition we provide a general tool to help searching for edges with global prop-
erties, and apply it to provide

������������

time fully dynamic tree algorithms for the

1-center and 1-median problem.
Let 3 � � �� µ9 
 be a tree with

�
nodes. For a subtree 3 4 of 3 let � � 3 4 
 and9 � 3¨4 
 denote the nodes and edges of 3<4 respectively. With each edge is associated

a non-negative weight. For two nodes �� !� 7�� , let � /�/�/ � denote the simple path
from � to � in 3 . In this chapter, C� !D denotes mergeable clusters and >:�¬C�E D
is their parent.

4.1 Maxweight

Let �� !� be nodes in 3 . Maxweight
� �� !� 
 is then the maximum weight of an

edge on � /�/�/ � . Addpath
�ÃÂ  !�� !� 
 adds

Â
to all edges on � /�/�/ � . It is assumed

that no weight becomes negative as a result of this. The ST-trees of Sleator and
Tarjan [35] supported both of the above operations in

������������

time. We now

expand on Corollary 3.3 and show how to support both of these operations in������������

time using top-trees. This serves as a simple example of how to use

Split; in chapters 8 and 9, the usage of Split is much more involved. This also
serves as an example of how an ST-tree algorithm might be implemented in top-
trees.

To implement Addpath we store
Â

in a lazy fashion, that is for each cluster >
we store

Â � a weight that should be added to all edges on B � > 
 . In addition we
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maintain �X� which is the maximum weight of an edge on B � > 
 when only
Â � " for

path-descendants of > are considered. Thus for any cluster > the maximum weight
of an edge on B � > 
 is �:� plus the sum of

Â � " over all proper path-ancestors > 4
of > . In particular, if �� !� is a pair of nodes, and >�� Expose

� �� !� 
 , then > has
no proper path-ancestors and ��� is the correct maximum weight of an edge on� /�/�/ � . Maxweight and Addpath are then:

Maxweight [�\
]_^a` : Set ����� Expose [�\
]_^a` , return Ä � .
Addpath [ÆÅ¡]_\2]_^g` : Set ����� Expose [�\
]_^a` , set Ä � ���OÄ �¶Ç Å and Å � ���ÈÅ �¶Ç Å .

To maintain this information we must ensure that
Â � is propagated down when >

is deleted. The rest of the internal operations are straightforward.

Create [����.[�\
]_^g`_` : Set Å � ���ÊÉ . If � is a path-cluster, set Ä � ��� weight [�\
]_^a` .
Merge [������A]���` : Ä � ���ÊËÍÌJÎ e Ä § ü ÏÑÐ e ��]��ùh is a path-child of �'h . Å � ���ÊÉ .
Split [������A]���` : For each path-child Ï of � set Ä § ����Ä §¸Ç Å � , Å § ���ÈÅ §TÇ Å � .
Eradicate( ���2[�\
]_^a` ): If � is a path-cluster, weight [�\
]_^a`"��� weight [�\
]_^g` Ç Å � ;

LEMMA 4.1. We can maintain a fully dynamic forest S and support queries
about the maximum weight between any two nodes interspersed with path-updates
in
������������


time per operation.

PROOF. The above procedures maintains � � and
Â � in constant time. The

Lemma is established by Theorem 3.1. �
4.2 Diameters

We define the distance between two nodes � and � , denoted dist
� �� !� 
 , to be the

sum of the weights of all edges on the simple path from � to � . If � and � are
not connected the distance is undefined. The diameter of a tree 3 is the maximum
distance between any pair of nodes in 3 . In this section we show how to maintain
the diameter of trees in a dynamic forest of trees. Let diam

� > 
 denote the diameter
of a cluster > . For a node � in > , let radius � � � 
 denote the maximum distance from� to any node in > .

LEMMA 4.2. diam
� > 
 is the maximum of diam

� C 
 , diam
� D 
 and radius Ò � J 
 $

radiusÓ � J 
 , where J is the common boundary node of C and D .
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PROOF. Let Ô º¿ �Ô 	 7 > be nodes of > with maximum distance: dist
� Ô�ºµ �Ô 	 
 �

diam
� > 
 . If Ô º¿ �Ô 	 are both contained in the same child of > , diam

� > 
 is the diam-
eter of that child. Otherwise assume w.l.o.g. Ô�º 7XC and Ô 	 7XD , then J 7ÕÔ º /�/�/ Ô 	
and dist

� Ô º¿ �Ô 	 
 � dist
� Ô.º¿ µJ 
 $ dist

� J� �Ô 	 
 � radius Ò � J 
 $ radiusÓ � J 
 . �
From the lemma it follows that we can maintain the diameter of a cluster, if we
can maintain the radius of the boundary nodes. Computing radius for boundary
nodes reduces (with symmetry) to

radius� � H 
 � ¢�¤�¥�� radiusÒ � H 
  dist
� H� µJ 
 $ radius Ó � J 
 �1³(4.1)

Thus to maintain the radius of the boundary nodes we need dist
� ?.> 
 , the length

of B � > 
 . For each cluster > we maintain:Ö diam
� > 
 .Ö dist
� ? > 
 .Ö radius � � J 4 
 , J 4 7:?.> .

From the above discussion the following internal operations correctly maintains
the information. Split and Eradicate are not used in this algorithm and so do
nothing:

Create [����.[�\
]_^g`_` : Set diam [���`���� weight [�\
]_^g` . If � is a path-cluster, set
dist [ �1��`���� weight [�\
]_^a` , otherwise set dist [ �1��`"���ÊÉ . For each × 4 Ð��1� set
radius � [|× 4 `���� weight [�\2]_^g` .

Merge( � : � , � ): Set diam [���`����ÊËÍÌJÎ e diam [��W`R] diam [��"`R] radius Ò [|×¿` Ç radius Ó [|×µ`ih .
Set dist [ �1��`"����Ø dist [ �1� 4 ` , � 4 Ð e ��]��¼h is a path-child of � . Compute
radius � [|× 4 `R]�× 4 Ð���� using equation (4.1).

THEOREM 4.3. We can maintain a fully dynamic forest S and support queries
about the diameter of trees and the distance between nodes in

������������

time per

operation.

PROOF. By Lemma 4.2 the diameter is maintained in the root cluster of the tree.
Both Merge and Create takes constant time. To answer the query dist

� �� !� 
 , set>ø� � Expose
� �� !� 
 , then dist

� �� !� 
 � dist
� ?.> 
 . The time complexity is estab-

lished by Theorem 3.1. �
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4.3 Global search

In this section we present a black-box for searching edges with global properties.
The black box is applied in sections 4.4 and 4.5 to maintain nodes with global
properties. The black box works only for top-trees with no external boundary
nodes.

Recall from section 4.1 how the maximum weight of an edge on a path was
found. The Maxweight problem has the nice property, that if 3 is a tree, 3 4 a sub-
tree, then if 6�7�9 � 3;4 
 is a solution in 3 , then 6 is a solution to 3<4 . Global search
was developed for problems that do not have this property, where the solution
depends on the entire tree.

The search requires that given a root cluster > of a tree with children C andD , the user must decide whether the desired edge is in C or in D . The point in> being a root cluster is that it represents the whole tree, which is needed if we
are considering global properties. In the style of a binary search, the black box
is going to present us with at most

������������

such decisions, and at the end tell

us which edge we were looking for. More formally, beyond the Split and Merge
procedures, the user needs to present a procedure Decide

� >%��C E:D 
 that given
the root cluster > with children C and D tells whether the desired edge is in C
or in D . Possibly, Decide can also interrupt the search because the edge has been
found by other means.

4.3.1 Implementation

Throughout the search we have a selected cluster, subject to the following invari-
ant.

(i) The selected cluster contains the desired edge.

Starting from the root-cluster, in each step, a child of the selected cluster becomes
the next selected cluster, thus the search ends after

���������"��

steps with an edge-

cluster. By (i) the edge-cluster must contain the desired edge.
Initially we use Decide to select one of the child-clusters of the root. This

then becomes the first selected cluster and (i) is initially true. In each step, the
selected cluster © and its ancestors are Split. Let ©�º  0© 	 denote the children of
the selected cluster. The top-tree is then reassembled such that ©�º and © 	 are
contained in distinct children of the root. Note that this is only possible when the
top-tree has no external boundary nodes. We then use Decide to choose between
these children and thus between ©�º and © 	 . Assume w.l.o.g. Decide chose the
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child C , containing ©�º . We then know the desired edge is in ©�º since © 1 C �¬© º .© º then becomes the next selected cluster, and (i) is maintained.

THEOREM 4.4 (GLOBAL SEARCH). Given a top-tree with no external boundary
nodes, after

������������

calls to Decide, Merge and Split, there is a unique edge� �� 0� 
 contained in all clusters chosen by Decide, and then

� �� !� 
 is returned.
Furthermore the top-tree is restored in its shape from before the search.

PROOF. By the above discussion the search correctly finds the desired edge in������������

steps. What remains is to bound the number of Splits and Merges used

in a step: Throughout the search, the selected cluster is either a child of the root,
or a grand-child of the root of the current top-tree, thus we use at most 3 Splits
per step, resulting in at most 4 clusters. It is always possible to remerge 4 clusters
into 2, such that any given two clusters are not merged, but it may cause the height
of the top-tree to grow by a constant. Thus we use at most 3 Merges in each step
to reassemble the top-tree and through-out the search, its height is

������������

. To

ensure that the height doesn’t grow too large, when the search is complete we
reassemble the top-tree as it was, using another 3 Splits and Merges per step. �
4.4 1-center by global search

In this section, we will show how to maintain 1-center nodes efficiently. The
1-center of a tree is a minimum radius node, where the radius of a node � is
defined as the maximum distance to any node in 3 . The median of a tree is a node
minimizing minimizing U + � � 
 � # c &)( weight

� � 
·/ dist
� �� !� 
 , where in addition

to the non-negative weight associated with each edge, we have a non-negative
weight associated with each node.

From Jordan, 1869, we have

THEOREM 4.5 ([30]). Every tree has a center consisting of either one vertex or
or two adjacent vertices; every tree has a median consisting of either one vertex
or or two adjacent vertices.

Both for the 1-center and the 1-median we will use Theorem 4.5 with the global
search to find an edge containing the desired (pair of) nodes, and having found
this edge, we just need one additional test to check if both endpoints are a cen-
ter/median.

Suppose we had found an edge
� �� !� 
 containing the 1-center(s). Then to find

out which of � and � is a 1-center, we maintain the radius of the boundary nodes
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as in section 4.2, and we set >­�®� Expose
� �� !� 
 , and then return the one of � and� minimizing radius� �i/ 
 or both if radius � � � 
 � radius� � � 
 . Thus it suffices to

find the edge
� �� !� 
 .

Our Decide is based on the following lemma:

LEMMA 4.6. Let 3 be a tree, let Ù be a 1-center of 3 and let C and D be child
clusters of the root cluster and J¡7­?�I 1 ?�K . Then radius Ò � J 
 3 radius Ó � J 
ÛÚÙX7:C
PROOF. If radiusÒ � J 
 3 radius Ó � J 
 then radius+ � J 
 � radius Ò � J 
 . For �µ4 7� � D 
 :

radius+ � � 4 
 � ¢�¤�¥�� radiusÓ � � 4 
  dist
� � 4  µJ 
 $ radiusÒ � J 
 �3 radiusÒ � J 
 � radius+ � J 
 ³

We conclude ÙÈÜ7XD�@W��J�� . �
Thus Decide selects from C and D the cluster in which their common boundary
nodes has the greatest radius. By Lemma 4.6, no Ù is in the other cluster.

THEOREM 4.7. We can maintain a fully dynamic forest S and support queries
about the 1-centers of trees in

���������"��

time per operation.

PROOF. The radius of the boundary nodes is maintained as in section 4.2. Decide
takes constant time and the Theorem is established by Theorem 4.4. �
4.5 1-median by global search

The 1-median problem in a tree 3 � �� µ9 
 is finding a (pair of) nodes Ý minimiz-
ing U + � � 
 ��# c &)( weight

� � 
�/ dist
� �� 0� 
 , where in addition to the non-negative

weight associated with each edge, we have a non-negative weight associated with
each node. As before, we use Theorem 4.4 to find an edge containing the Ý (s),
and then test if both endpoints apply.

Suppose the edge
� �� !� 
 contains Ý . To test which endpoints is a 1-

median, we maintain UZ� ��/ 
 for each boundary node of a cluster and we set> � Expose
� �� !� 
 and return the node minimizing U � ��/ 
 or both. Thus it suf-

fices to find the edge
� �� 0� 
 .

In addition to linking and cutting edges we wish to be able to change the
weight of a node. Changing the weight of a node � affects Uf� �i/ 
 in all the up
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to Þ ����
 clusters in which � is a boundary node. Instead of doing this explic-
itly, for each boundary node J57X? P we maintain ß�� � J 
 � # c &)(�* � -áàãâ%ä dist

� J� !� 
�/
weight

� � 
 , since changing the weight of a node � only affects ß�� ��/ 
 in the
������������


clusters in which � is internal (not a boundary node). Furthermore if > has bound-
ary nodes H� �� then UZ� � H 
 �Ñß.� � H 
 $ dist

� H� �� 
¦/ weight
� � 
 , thus ß � �i/ 
 is sufficient to

compute U¡� ��/ 
 and thus to find the 1-median nodes once
� �� !� 
 has been obtained.

For any tree 3 , let � � 3 
 denote the sum of node weights of 3 . To find an
edge containing the 1-median we use the global-search provided in Theorem 4.4.
Our Decide is based on this lemma below which follows from Goldman [18].

LEMMA 4.8 ([18]). Let 3 be a tree, let Ý be a 1-median of 3 and let C and D
be child clusters of the root-cluster. Then � � C 
 3£� � D 
yÚ Ý 7XC .

Again we cannot maintain � � > 
 but instead we maintain � � > 
 �# c &)( * � -áàãâLä weight
� � 
 still allowing a

������������

update to the node weight. Corre-

spondingly � � > 
 �%� � > 
 $�# c &Jâ%ä weight
� � 
 .

To decide whether Ý is in C or D , compute � � C 
 and � � D 
 , and use
Lemma 4.8.

To maintain ß.� ��/ 
 we maintain the distance between boundary nodes as in
section 4.2. Create is straight-forward, and Split and Eradicate are not used.

Merge( � : � , � ): Set ^ � ���G^ Ò¸Ç ^ ÓåÇ ^ [|× 4 `R]�× 4 ÐM[ �
� d �
��` } �1� . If � and � are
both leaf-clusters with boundary node × , æ � [|×¿`����Èæ Ò [|×µ` Ç æ Ó [|×µ` . Otherwise assume
without loss of generality � is a path-cluster, �
��� eLç ]�×´h and setæ � [ ç `����Oæ Ò [ ç ` Ç æ Ó [|×¿` Ç dist [ ç ]�×¿`Yèµ^ Ó [ Ç dist [ ç ]�×¿`Yè weight [|×µ` , if ×êéÐ��1��` . If � is
a path-cluster, let �
�:� e ×ô]ìë h and compute æ � [Æëµ` symmetrically, otherwise ë��Ê×
and æ � [|×¿`����Oæ Ò [|×¿` Ç æ Ó [|×¿` .

To implement Changeweight, we need to update the information for all the clusters
where � is internal:

Changeweight [�\2] weight ` : Set ����� Expose [�\2]_^g` , weight [�\�`���� weight, where ^ is an
arbitrary node connected to \ .

When � is an external boundary node, it is not internal to any cluster.

THEOREM 4.9. We can maintain a fully dynamic forest S with Changeweight
updates and support queries about the 1-median’s of trees in

������������

time per

operation.

PROOF. By Lemma 4.8 the search finds Ý . Merge, Create, Split and Decide all
take constant time. The Theorem is established by Theorem 3.1. �
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Part II

Dynamic graph algorithms
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Chapter 5

Introduction to part II

In this part we consider the fully dynamic graph problems of connectivity, mini-
mum spanning forest, 2-edge connectivity and biconnectivity. These results were
first published in [28]. In a fully dynamic graph problem, we are considering an
undirected graph T over a fixed vertex set � , ����� � �

. The graph T may be
updated by insertions and deletions of edges. Unless otherwise stated, we assume
that we start with an empty edge set.

For the fully dynamic connectivity problem, the updates may be interspersed
with connectivity queries, asking whether two given vertices are connected in T .
Both updates and queries are presented on-line, meaning that we have to respond
to an update or query without knowing anything about the future.

The connectivity problem reduces to the problem of maintaining a span-
ning forest (a spanning tree for each component) in that if we can maintain any
spanning forest S for T at cost

��� e ����
.��������
 per update, then, using dynamic
trees [35], we can answer connectivity queries in time

�����������Gí������ e ����
0
 . In chap-
ter 6, we present a very simple deterministic algorithm for maintaining a spanning
forest in a graph in amortized time

��������� 	 ��

per update. Connectivity queries are

then answered in time
�����������+í"��������������


.
In the fully dynamic minimum spanning forest problem, we have weights on

the edges, and we wish to maintain a minimum weight spanning forest S of T .
Thus, in connection with any update to T , we need to respond with the corre-
sponding updates for S , if any. In chapter 7 we will present a deterministic
algorithm for maintaining a minimum spanning forest in a graph in

��������� � ��

amortized time per operation.

A graph is 2-edge connected if and only if it is connected and no single edge
deletion disconnects it. The 2-edge connected components are the maximal 2-
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edge connected subgraphs, and two vertices � and � are 2-edge connected if and
only if they are in the same 2-edge connected component, or equivalently, if and
only if � and � are connected by two edge-disjoint paths. A graph is biconnected
if and only if it is connected and no single vertex deletion disconnects it. The bi-
connected components are the maximal biconnected subgraphs, and two vertices �
and � are biconnected if and only if they are in the same biconnected component,
or equivalently, if and only if either

� �� !� 
 is an edge or � and � are connected
by two internally disjoint paths. In the fully dynamic 2-edge and biconnectivity
problems, the updates may be interspersed with queries asking whether two given
vertices are 2-edge or biconnected. In chapters 8 and 9 we present

���������
����

algorithms for these two problems.

5.1 Previous work

For deterministic algorithms, all the previous best solutions to the fully dy-
namic connectivity problem were also solutions to the minimum spanning tree
problem. In 1985 [10], Frederickson introduced a data structure known as
topology trees for the fully dynamic minimum spanning tree problem with a
worst case cost of

����î ïO

per update, permitting connectivity queries in time�����������+í"����� � î ïðí���������
R
 � ��� ½ 
 . In 1992, Epstein et. al. [7] improved the up-

date time to
��� î ��


using the sparsification technique. Finally in 1997 Henzinger
and King [25] gave an algorithm with

���Pñî �W�����¼��

update time and constant time

per connectivity query.
Randomization has been used to improve the bounds for the connectivity prob-

lem. In 1995 [22], Henzinger and King showed that a spanning forest could be
maintained in

��������� < ��

expected amortized time per update. Then connectivity

queries are supported in
�����������+í"��������������


time. The update time was further
improved to

��������� 	 ��

in 1996 [27] by Henzinger and Thorup. No randomized

technique was known for improving the deterministic
��� ñî �W��������


update cost
for the minimum spanning tree problem.

In 1991 [11], Frederickson succeeded in generalizing his
��� î ï 


bound from
1983 [10] for fully dynamic connectivity to fully dynamic 2-edge connectivity. As
for connectivity, the sparsification technique of Eppstein et.al. [7] improved this
bound to

��� î ��

. Further, Henzinger and King generalized their randomization

technique for connectivity to give an
��������� � ��
 expected amortized bound [22,

23]. It should be noted that the above mentioned improvement for connectivity
of Henzinger and Thorup [27], does not affect the

��������� � ��
 bound for 2-edge
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connectivity.
For biconnectivity, the previous results are a lot worse. The first non-

trivial result was a deterministic bound of
���òï 	�ó < 


from 1992 by Rauch [20].
In 1994 [33], Rauch improved this bound to

��� ¢?ô·õ�� î ï%�������  � � 
 . In 1995,
(Rauch) Henzinger and Poutré further improved the deterministic bound to��� î �W�������W����� 4 ïðí¦� 8 
 [26]. In 1995 [21], Henzinger and King generalized
their randomized algorithm from [22] to the biconnectivity problem to achieve
an
���ÃÂ �����¦����


expected amortized cost per operation, where
Â

is the maximal
degree (In [21], the bound is incorrectly quoted as

���������1����

[Henzinger, personal

communication, 1997]).
Finally, we note that for all of the above problems, we have a lower bound ofö5�������¼�+í"�����������¼��


which was proved independently by Fredman and Henzinger
[16] and Miltersen, Subramanian, Vitter, and Tamassia [31]. Figure 5.1 contains
an overview over the previous results together with our own.

For the incremental (no deletions) and decremental (no insertions) problems,
the bounds are as follows. Incremental connectivity is the union-find problem, for
which Tarjan has provided an

���Ã÷g�
ï  ��
R
 bound [36]. Westbrook and Tarjan have
obtained the same time bound for incremental 2-edge and biconnectivity [38].
Further Sleator and Tarjan have provided an

������������

bound [35] for incremental

minimum spanning forest.
Decrementally, for connectivity and 2-edge connectivity, Thorup has provided

an
������������


bound if we start with
ö5���W����� � ��


edges, and an
��� ½ 
 bound if we

start with
ö5��� 	 


edges [37]. For decremental minimum spanning tree and bicon-
nectivity, no better bounds were known than those for the fully dynamic case.

5.2 Our results

First we present a very simple deterministic fully dynamic connectivity algorithm
with an update cost of

��������� 	 ��

, thus matching the previous best randomized

bound and improving substantially over the previous best deterministic bound of��� ñî �W��������

.

Our technique relies on some of the same intuition as was used in Henzinger
and King [22] in their randomized algorithm. Our deterministic algorithm is, how-
ever, much simpler, and in contrast to their algorithm, it generalizes to the mini-
mum spanning tree problem. More precisely, a specialization of our connectivity
algorithm gives a simple decremental minimum spanning tree with an amortized
cost of

��������� 	 ��

per operation for any sequence of

ö5�òï 

operations. Then we use
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Connectivity MSF
2-edge

Connectivity
Bi-

Connectivity

Fre’85
��� î ï 
 ��� î ï 


- -

Fre’91 - -
��� î ï 


-

EGIN’92
��� î ��
 ��� î ��
 ��� î ��


-

Rau’92 - - -
���òï 	�ó < 


Rau’94 - - - ø��� î ïM

HK’95

��������� < ��

-

��������� � ��
 ø���òÂ�

HP’95 - - - ø��� î ��

HT’96

��������� 	 ��

- - -

HK’97 ø��� ñî � 
 ø��� ñî ��
 - -

Now
����������	���
 ���������¦����
 �����������'��
 ���������¦����


ø��� � ����
R
 � ��� � ����
	ù'���áú
�����.����
0
 .
Boxed means randomized complexity.Â

is the maximal degree of a vertex.

Figure 5.1: Overview over previous and current results

a technique from [25] to convert our deletions-only structure to a fully dynamic
data structure for the minimum spanning tree problem using

��������� � ��

amortized

time per update. This is the first polylogarithmic bound for the problem, even
when we include randomized algorithms.

Finally, our connectivity techniques are generalized to 2-edge and biconnec-
tivity, leading to

�����������'��

algorithms for both of these problems. The general-

ization uses some of the ideas from [11, 21, 23] of organizing information around
a spanning forest. However, finding a generalization that worked was rather deli-
cate, particularly for biconnectivity, where we needed to make a careful recycling
of information, leading to the first polylogarithmic algorithm for this problem.

The reader is referred to [5, 7, 8, 10, 11, 22] for discussions of other problems
that get improved bounds by our new fully dynamic graph algorithms.
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Chapter 6

Connectivity

In this chapter, we present a simple
��������� 	 ��


time deterministic fully dynamic
algorithm for graph connectivity. First we give a high level description, ignoring
all problems concerning data structures. Second, we implement the algorithm
with concrete data structures and analyze the running times.

6.1 High level description

Our dynamic algorithm maintains a spanning forest S of a graph T . The edges
in S will be referred to as tree-edges, while the edges in Tø@ZS is referred to
as non-tree edges. Internally, the algorithm associates with each edge 6 a levelû�� 6 
 �l=��ü
 ����� 	 ��� . For each » , S·¸ denotes the sub-forest of S induced by edges
of level at least » . Thus, S �£S"±jý¬S¼º¶ý /�/�/ ý¬S E . The following invariants are
maintained.

(i) The maximal number of connected nodes in a tree in S�¸ is 
 �Gí : ¸ � . Thus, the
maximal relevant level is = .

(ii) S is a maximum (w.r.t.
û
) spanning forest of T , that is, if

� �� !� 
 is a non-tree
edge, � and � are connected in Sÿþ * c�� $�- .

Initially, all edges have level 0, and hence both invariants are satisfied. We are
going to present an amortization argument based on increasing the levels of edges.
The levels of edges are never decreased, so we can have at most = increases per
edge. Intuitively speaking, when the level of a non-tree edge is increased, it is
because we have discovered that its end points are close enough in S to fit in a
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smaller tree on a higher level. Concerning tree edges, note that increasing their
level cannot violate (ii), but it may violate (i).

We are now ready for a high-level description of insert and delete.

Insert [Æz´` : The new edge is given level 0. If the end-points were not connected in� �Ê� ± , z is added to � ± .
Delete [Æz´` : If z is not a tree-edge, it is simply deleted. If z is a tree-edge, it is deleted and

a replacement edge, reconnecting � at the highest possible level, is searched for.
Since � was a maximum spanning forest, we know that the replacement edge has to
be of level at most

� [Æz´` . We now call Replace [Æz�] � [Æz´`_` . Note that when a tree-edge z
is deleted, � may no longer be spanning, in which case (ii) is violated until we have
found a replacement edge. In the time in between, if [�\
]_^a` is not a replacement
edge, we still have that \ and ^ are connected in � þ * c�� $ - .

Replace [_[�\
]_^a`R]��õ` : Assuming that there is no replacement edge on level ��� , finds a
replacement edge of the highest level �	� , if any.
Let û c and û $ be the trees in � ¸ containing \ and ^ , respectively. Assume, without
loss of generality, that ü û c ü
�Lü û $ ü . Before deleting [�\
]_^g` , ûG��û c�d�e [�\2]_^g`ih d û $
was a tree on level � with at least twice as many nodes as û c . By (i), û had at most�
����� ¸�� nodes, so now û c has at most

�
����� ¸ F º�� nodes. Hence, preserving our
invariants, we can take all edges of û�c of level � and increase their level to � Ç � , so
as to make û c a tree in � ¸ F º .
Now level � edges incident to û c are visited one by one until either a replacement
edge is found, or all edges have been considered. Let { be an edge visited during the
search.
If { does not connect û c and û $ , both endpoints of { are in the same tree, either û c
or û $ , and we increase its level to � Ç � . This increase pays for our considering { .
If { does connect û c and û $ , it is inserted as a replacement edge and the search stops.
If there are no level � edges left, we call Replace [_[�\
]_^a`R]���� � ` ; except if ���ÊÉ , in
which case we conclude that there is no replacement edge for [�\2]_^g` .

Figure 6.1 contains a graph and snapshot of how it might look in the connectivity
data structure.

6.2 Implementation

For each » , we wish to maintain the forest S�¸ together with all non-tree edges on
level » . For any vertex � , we wish to be able to:� Identify the tree û c in � ¸ containing \ .� Compute the size of û c .
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G:
C: 3

L: 0
C:14

L: 1
C: 7

L: 2

Figure 6.1: An example graph (left), and how it might look in the connectivity
data structure (right). Full lines are tree edges, dashed lines are non-tree edges.
In the data structure, = denotes the level, J¨��
ú½-B í : E � is the maximum number of
nodes allowed in each connected component of level = .

� Find an edge of û c on level � , if one exists.� Find a level � non-tree edge incident to û c , if any.

The trees in S²¸ may be cut (when an edge is deleted) and linked (when a
replacement edge is found, an edge is inserted or the level of a tree edge is in-
creased). Moreover, non-tree edges may be introduced and any edge may disap-
pear on level » (when the level of an edge is increased or when non-tree edges are
inserted or deleted).

All the above operations and queries may be supported using the ET-trees
from [9, 22], to which the reader is referred for additional details. An ET-tree is a
standard balanced binary tree over the Euler tour of a tree. Each node in the ET-
tree represents the segment of the Euler tour below it. The point in considering
Euler tours is that if trees in a forest are linked or cut, the new Euler tours can be
constructed by at most 2 splits and 2 concatenations of the original Euler tours.
Rebalancing the ET-trees affects only

���������"��

nodes. Top-trees also supports

these operations in
������������


time, but ET-trees are much more simple to use.
Here we have an ET-tree over each tree in S"¸ . Each node of the ET-tree con-

tains a number telling the size of the Euler tour segment below it, a bit telling if
any tree edges in the segment have level » , and a bit telling whether there is any
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level » non-tree edges incident to a vertex in the segment.
Given a vertex � we can find the tree 3 c containing � by moving

���������"��

steps up till we find a root of an ET-tree. This root represents the Euler tour of 3 c .
The size ¾ of the Euler tour of a tree is twice the number of edges, so the number
of vertices is ¾ í :j$%½ . To find a tree edge of level » or an incident non-tree edge,
if any, we move

������������

steps down the ET-tree, using the bits telling us under

which nodes such edges are to be found. If a tree edge
� �� 0� 
 is moved from level» , we only need to update the bits on the paths from

� �� !� 
 and
� �� !� 
 to the root,

using
������������


time. If a non-tree edge
� �� !� 
 is introduced/disappear, we only

need to update the bits on the paths from � and � to their respective roots. This
takes

������������

time. When the trees are cut or linked, only

���������"��

nodes are

affected, and the information in each node is updated in constant time.
It is now straightforward to analyze the amortized cost of the different opera-

tions. When an edge 6 is inserted on level 0, the direct cost is
���������"��


. However,
its level may increase

������������

times, so the amortized cost is

��������� 	 ��

.

Deleting a non-tree edge 6 takes time
������������


. When a tree edge 6 is deleted,
we have to cut all forests SG/ , 0¸� û�� 6 
 , giving an immediate cost of

��������� 	 ��

. We

then have
������������


recursive calls to Replace, each of cost
���������"��


plus the cost
amortized over increases of edge levels. Finally, if a replacement edge is found,
we have to link

������������

forests, in

��������� 	 ��

total time.

Thus, the cost of inserting and deleting edges from T is
���������
	���


. The bal-
anced binary tree over S�±�� S immediately allows us to answer connectivity
queries between arbitrary nodes in time

������������

. In order to reduce this time to�����������+í"��������������


, as in [22], we introduce an extra balanced Þ ����������
 -ary B-tree
over the Euler tour of each tree in S . The B-tree has depth

�����������+í"�����������¼��

,

which is hence the time it takes for a connectivity query. Each delete or insert
gives rise to at most one cut and one link in S , and for Þ ����������
 -ary B-trees, such
operations can be supported in

��������� 	 �Gí"�����¼��������

time. Thus, we conclude:

THEOREM 6.1. Given a graph T with
ï

edges and
�

vertices, there exists
a deterministic fully dynamic algorithm that answers connectivity queries in�����������+í"��������������


time worst case, and uses
��������� 	 ��


amortized time per Link
or Cut.

Curiously, the
����������	���


amortized time-bound is completely independent of the
number of edges in T .
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Chapter 7

Minimum spanning forest

We will now expand on the ideas from the previous chapter to the problem of
maintaining a minimum spanning forest (MSF). First we present an

��������� 	 ��

deletions-only algorithm, and then we apply a general construction from [25]
transforming a deletions-only MSF algorithm into a fully dynamic MSF algo-
rithm.

7.1 Decremental minimum spanning forest

It turns out that if we only want to support deletions, we can obtain an MSF-
algorithm from our connectivity algorithm by some very simple changes. The first
is, of course, the initial spanning forest S has to be a minimal spanning forest. The
second is that when in replace (cf. page 49). we consider the level » non-tree edges
incident to 3 c , instead of doing it in an arbitrary order, we should do it in order of
increasing weights. That is, we repeatedly take the lightest incident level » edge 6 :
if 6 is a replacement edge, we are done; otherwise, we move 6 to level »Y$%½ , and
repeat with the new lightest incident level » edge, if any. For the above changes
to work, it is crucial, that all weights are distinct. To ensure this, we associate a
unique number with each edge. If two edges have the same weight, it is the one
with the smaller number that is the smaller.

To see that the above simple changes suffice to maintain that S is a mini-
mum spanning forest, we will prove that in addition to (i) and (ii), the following
invariant is maintained:

(iii): If 6 is the heaviest edge on a cycle
P

, then 6 has the lowest level on
P

.

The original replace function found a replacement edge on the highest possible
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level, but now, among the replacement edges on the highest possible level, we
choose the one of minimum weight. Using (iii), we will show that this edge has
minimum weight among all replacement edges.

LEMMA 7.1. For any tree edge 6 , among all replacement edges, the lightest edge
is on the maximum level.

PROOF. Let 6¦º and 6 	 be replacement edges for 6 . Let
P ¸ be the cycle induced by6ô¸ ; then 687 P ¸ . Suppose 6�º is lighter than 6 	 . We want to show that

û�� 6�º 
 3 û�� 6 	 
 .
Consider the cycle

P � �YP ºaE P 	 
 @ �YP º 1LP 	 
 . Since S is a minimum
spanning forest, we know that 6�¸ is the heaviest edge on

P ¸ . Hence 6 	 is the
heaviest edge on

P
. By (iii) this implies that 6 	 has the lowest level on

P
. In

particular,
û�� 6�º 
 3 û�� 6 	 
 . �

Since our algorithm is just a specialized version of the decremental connectivity
algorithm, we already know that (i) and (ii) are maintained.

LEMMA 7.2. (iii) is maintained.

PROOF. Initially (iii) is satisfied since all edges are on level 0. We will now show
that (iii) is maintained under all the different changes we make to our structure
during the deletion of an edge. If an edge 6 is just deleted, any cycle in T%@A��6��
also existed in T , so (iii) is trivially preserved. Also note that replacing a deleted
tree-edge cannot in itself violate (iii) since it does not change the levels or weights
of any edges.

Our real problem is to show that (iii) is preserved during Replace when the
level of an edge 6 is increased. This cannot violate (iii) if 6 is not the heaviest
edge on some cycle, so assume that 6 is the heaviest edge on a cycle

P
. To prove

that (iii) is not violated, we want to show that before the increase, all other edges
in
P

have level 3�»b$£½ .
No tree edge is heaviest on any cycle, so 6 is a non-tree edge. When

û�� 6 
 is to
be increased from » to »Y$%½ , we know it is the lightest level » edge incident to 3 c
(cf. the description of replace on page 49). Moreover, by (iii), all other edges onP

have level at least » . Thus, all other edges from
P

incident to 3 c have level at
least »b$£½ .

To complete the proof, we show that all edges in
P

are incident to 3 c . Sup-
pose, for a contradiction, that

P
contained an edge � leaving 3 c . Since 6 is to be

increased, 6ÕÜ� � . Also, the call to Replace requires that there is no replacement
edge of level ö » , so

û�� � 
 �¬» . This contradicts that all edges Ü� 6 from
P

incident
to 3 c have level 3�»b$¬½ . �
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It has now been established that the above change in replace suffice to maintain
a minimum spanning forest. A last point is that we need to modify our ET-trees
to give us the lightest non-tree edge incident to a tree. So far, for each node in
the ET-trees, we had a bit telling us whether the Euler tour segment below it had
an incident non-tree edge. Now, with the node, we store the minimum weight of
a non-tree edge incident to the Euler tour segment below it. Clearly, we can still
support the different operations in

������������

time. We conclude

THEOREM 7.3. There exists a deletions-only MSF algorithm that can be initial-
ized on a graph with

�
nodes and

ï
edges and support any sequence of

ö5�
ï 

deletions in total time

���òï£������	���

.

7.2 Fully dynamic minimum spanning forest

To obtain a fully dynamic minimum spanning forest algorithm we apply a general
reduction, which is a slight generalization of the one provided by Henzinger and
King [25, pp. 600-603]. The reduction, proven later, is described as follows.

THEOREM 7.4. Suppose we have a deletions-only MSF algorithm that for any
�
,� , can be initialized on a graph with

�
nodes and � edges and support any sequence

of
ö5� � 
 deletions in total time

��� � / e � �  �� 
R
 where e is non-decreasing. Then there
exists a fully-dynamic MSF algorithm for a graph on

�
nodes starting with no

edges, that for
ï

edges, supports an update in amortized time

��������� < � $��������� f
¸_g'º

¸f
/7g'º e"!õ¢?ô·õ�� �  &: / �1 �: /�#�$ ³

Applying the Theorem to our deletions-only algorithm:

THEOREM 7.5. There is a fully-dynamic MSF algorithm that for a graph with�
nodes and starting with no edges maintains a minimum spanning forest in��������� � ��


amortized time per edge insertion or deletion.

PROOF. From Theorem 7.3, we get e � �  �� 
 � ��������� 	 � 

, and hence, Theorem 7.4,

we get a fully dynamic algorithm with update cost

� � ����� < � $ ����� �  f
¸_g'º

¸f
/ug'º

����� 	 !õ¢¸ô õ'� �  &: / � # $ � � ! ����� � � # ³ �
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Note for comparison, that in [25], Henzinger and King had e � �  �� 
 � ��� ñî � ����� � 
 ,
giving them an update cost of

��� ñî ï%��������

. Then sparsification [7] reduces the

cost to
��� ñî �<�����¼��


.

7.2.1 High level description

We will support insertions via a logarithmic number of decremental MSF-
structures. When an edge is deleted, it will be deleted from all the decremental
structures, and a replacement edge will be sought among the replacement edges
returned by these. When an edge is inserted, we will union it with some of the
decremental structures into a new decremental structure.

More precisely, besides maintaining a minimum spanning forest S of T , we
will maintain a set I � ��IW±� ô³)³)³  !I ¶µ� , ¾ � ����� 	 ï , of subgraphs of T , and for
each I;¸ , we will maintain a minimum spanning forest S"¸ . All edges of T will be
in at least one I<¸ , so S w&% ¸ S²¸ . Further, we have the following invariant:

(iv) For each edge �X7:T�@aS , there is at exactly one » such that �X7XI5¸2@aS²¸ , and
if ��7:Sb/ , 0�ö�» .

LEMMA 7.6. If � is the lightest replacement edge for a tree edge 6 in T , then �
is the lightest replacement edge for 6 in at least one I5¸ .
PROOF. Since � is not in S yet, there is an » such that � 7øIW¸ @AS²¸ . When 6
has been deleted from T , there is no path between the end-points of � with edges
lighter than � . Hence, there cannot be such a path in I5¸Ww¬T , so � has to be in S·¸
after 6 has been deleted. �
Thus, when a tree edge is deleted, we delete it from all I5¸ . If 6 was a tree edge ofI«¸ and not a bridge, we get a replacement edge ��¸ . If 6 was a tree edge of T and
not a bridge, we just check if one of the at most ¾�� ����� 	 ï ��¸ is a replacement
edge for 6 in T . Our problem now is to reinsert all the replacement edges 6¦¸ intoI so as to restore (iv). The replacement edges are inserted one by one following
the scheme below.

Inserting edges When an edge 6 is to be inserted in I , we first find the smallest» such that # /�'1¸ ��9 � I�/�@«Sb/ 
 ���C: ¸ . Then we set

I;¸²�®� S�E���6��)(/�'1¸ � I¶/�@«Sb/ 
  (7.1)
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and afterwards, we set I /��®��* for all 0 �ø» . Clearly, this restores (iv), and the
number of non-tree edges in the resulting graph I5¸ is at most ½#$ # /�+1¸ : / �l: ¸ and
at least : ¸�¹�º $ ½ , thus ¾ � ����� 	 ï , as desired. Since # /�+1¸ � 9 � I�/�@¼SY/ 
 ��3Ñ: ¸�¹�º we
let each of the non-tree edges of IÛ/� 0?��» pay for the reinitialization of a non-tree
edge of I<¸ . We can now bound the number of times a non-tree edge must pay for
its initialization in (7.1).

LEMMA 7.7. Before it is deleted, a non-tree edge must pay for its initialization
at most once for each »��£÷. )³)³ô³ô ¿¾ and 0Z�%÷. ô³)³)³ô 0» .
PROOF. When a non-tree edge is deleted, we remove at most one copy of it from
each I;¸ . By (iv) the copy in I ¸ can have been used at most once as a non-tree
edge to initialize each IÛ/ , 0?��» . �
At present the number of initializations of tree edges is not bounded. To resolve
this, we will only maintain S implicitly. Instead of adding S to I8¸ , we will add
a forest S54 of “super edges”, each representing a path in S . The super edges are
chosen to be the minimal maximally connected set of super edges containing all
endpoints of non-tree edges, and the super edge 6¦°�� � �� !� 
 in S 4 represents the
path ¯ �F� /�/�/ � , and has the maximum weight on ¯ . When an edge 6O7�S is
deleted, we delete all super edges 6�° with 6�7G¯ . Note that there can be at most
one such edge for each I ¸ . When creating I<¸ with super edges, we get at most 3
super edges for every non-tree edge. Hence the total number of edge initializations
is at most 3 times the number of non-tree edge initializations. Thus, from Lemma
7.7, we get:

LEMMA 7.8. When an edge is deleted it has for each »:� ÷. )³)³ô³ô ¿¾ and 0 �÷. ô³)³)³  !» payed for the initialization of at most 3 super-edges and 2 non-tree edges
into I�/ .
7.2.2 Implementation

In order to complete the reduction, we need to show how to identify the super
edges when I;¸ is created, and how to identify the super edges 6¦° with 6�7 ¯ ,
when an edge is deleted. To check whether any of the replacement edges �1¸ is the
real replacement edge we use the top-tree based algorithm of Corollary 3.3. This
takes

������������

time per ��¸ .

For each I;¸ we maintain a copy of S , S ¸ . To identify the super-edges when IW¸
is created, we take the endpoints of the non-tree edges one at a time, incrementally
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Figure 7.1: In (1) is a tree with non-tree edges (dashed lines). In (2) the same tree
with non-tree edges, after super-paths consisting of more than one edge (dotted)
has been contracted.

adding nodes to the tree of super-edges. The paths between these nodes in S ¸ is
then the paths to be contracted to super-edges. In each step of the algorithm these
super-paths corresponds to the paths to be contracted into super-edges if no more
endpoints are added. To be more precise, we take each non-tree edge endpoint �
in turn and mark it: if it is not connected to another marked node, we do nothing.
Otherwise we find the nearest node which is either marked, or on the path between
two marked nodes and mark it. Let � be an endpoint, � the found node on the
super-path H /�/�/ � . Then the super-path H /�/�/ � is split into H /�/�/ � and � /�/�/ � and in
addition the new super-path � /�/�/ � is created. If �¡�%H or �¡� � no paths needs to
be split. When there are no more non-tree edge endpoints to take, we have found
all the super-edges. To implement this we need to be able to find the nearest node
on a super-path, and which super-path it was on. Note that if the nearest node is
on more than one super-path, then it must be marked.

We use top-trees for the implementation. For each tree we store which node is
the first marked and call it , for root.

When a new endpoint � is introduced, we first check if it is connected to
another marked node. If it is not, we set ,Z� � � making � the root of the tree. If �
is connected to another marked node we examine the path from � to , . The nearest
node on a super-path, � must be on the path to the root. Thus for each cluster > we
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maintain for each boundary node J 4 7�?.> , NSPnode � � J 4 
 : the nearest node on the
cluster-path which is on a super-path containing an edge from B � > 
 , and NSP � � J 4 
 :
which super-path was it. To find � we just set >X� Expose

� �� -, 
 and NSPnode � � � 

is the desired node and NSP � � � 
 is the desired super-path. Furthermore, an edge� �� 0� 
 is contained in a super-path if >ª� Expose

� �� !� 
 contains a super-path
NSP � � � 
 � NSP � � � 
 . Thus this information is sufficient to determine which
super-edge contains

� �� !� 
 in its path.
To maintain super-paths we mark the edges of the paths in a lazy fashion, stor-

ing what information should be propagated down if the cluster was deleted: Since
the lazy information can only be affected by path-ancestors, it is always correct
for the root cluster and the leaf-clusters. For each cluster > the lazy information
is: � × F� and × ¹� meaning all edges z Ð/. [���` are on the same super-path if × F� � � and

no edge on . [���` is if × ¹� �I� . If × F� �I� , 0 � is the path. If × F� �Ê× ¹� �1� � , the lazy
information has no effect.

To mark and unmark the edges on a cluster-path:

Mark( � ,(a,b)): Set × F� ���I�)]�× ¹� ���1� � , 0 � ����[ ç ]ìëµ` and for × 4 Ðf�1� set
NSPnode � [|× 4 `·���È× 4 ] NSP � [|× 4 `����¬[ ç ]ìëµ` .

Unmark( � ): Set × F� ���2� �)]�× ¹� ���I� , 0 � ��� nil and for × 4 Ðf��� set
NSPnode � [|× 4 `·��� nil, NSP� [|× 4 `·��� nil.

To mark or unmark a path � /�/�/ � , set > � Expose
� �� !� 
 and apply the desired

procedure on > .
Create and Eradicate are simple and therefore omitted.

Merge [������A]���` : If � has no path-children, set × F� ���1� �)]�× ¹� ���1� � , 0 � ��� nil.
If � has only one path-child, � , copy all information from � to � .
If � has two path-children, let �1�¬� eLç ]�× h and �1� � e ×´]ìë h . Set× F� ���1� �)]�× ¹� ���1� � , 0 � ��� nil. If NSPnode Ò [ ç `¶é� nil, set
NSPnode � [ ç `"��� NSPnode Ò [ ç ` , NSP � [ ç `"��� NSP Ò [ ç ` , otherwise
NSPnode Ò [ ç `²� nil and we set NSPnode � [ ç `���� NSPnode Ó [|×¿` ,
NSP� [ ç `���� NSP Ó [|×¿` . NSPnode � [Æëµ` and NSP � [Æëµ` is computed symmetrically.

Split [������A]���` : For each path-child � 4 of � : if × F� �I� , call mark( � ’,0 � ), if × ¹� �I� ,
call unmark( � ’).

LEMMA 7.9. The set of super-edges can be found from � non-tree edges in��� ¢?ô·õ ���  �� 
.��������
 time. Furthermore to identify, insert or delete a super-edge
takes

������������

time.
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PROOF. Merge and Split takes constant time. Thus, by Theorem 3.1 Expose takes������������

time. To insert or delete a super-edge

� �� !� 
 set >­� Expose
� �� !� 
 and

call Mark or Unmark on > . �
PROOF (OF THEOREM 7.4). By Lemma 7.9 we use

������������

time per non-tree

edge and super-edge per initialization. By the assumption of the Theorem and
Lemma 7.8, when all edges are deleted we can have used at most

� � �����3�� f
¸_g ±

/�+1¸f
/ug'º ! ������� $Èe � ¢?ô·õ��m: /  � �1 �: / 
 # $

� � � ����� < � $ �����3�4 f
¸hg'º

¸f
/ug'º e ! ¢?ô·õ'� �  &: / �1 &: / #4$ ³

amortized time per edge. This concludes the proof. �
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Chapter 8

2-edge connectivity

In this chapter we present an
��������� � ��


deterministic algorithm for the 2-edge
connectivity problem for a fully dynamic graph T . An important secondary goal
is to present ideas and techniques that will be reused in the next chapter for dealing
with the more complex case of biconnectivity.

As in the previous chapters we will maintain a spanning forest S of T . If �
and � are connected in S , � /�/�/ � denotes the simple path from � to � in S . If
they are further connected to 5 , meet

� 5  !�� !� 
 denotes the intersection vertex of
the three paths 5 /�/�/ � , 5 /�/�/ � , and � /�/�/ � .

A tree edge 6 is said to be covered by a non-tree edge
� �� !� 
 if 6X7£� /�/�/ � ,

that is if 6 is in the cycle induced by
� �� !� 
 . A bridge is an edge 6 whose removal

disconnects a component, or, equivalently, an edge whose end-points are not 2-
edge connected. Hence 6 is a bridge if and only if it is a tree edge not covered by
any non-tree edge. Since 2-edge connectivity is a transitive relation on vertices,
it follows that two vertices 6 and 7 are 2-edge connected if and only if they are
connected in S and all edges in 6 /�/�/ 7 are covered [11].

Recall from connectivity that our spanning forest S was a certificate of con-
nectivity in T in that vertices were connected in T if and only if they were so inS . If an edge from S was deleted, we needed to look for a replacement edge re-
connecting S , if possible. An amortization argument paid for all non-replacement
edges considered.

Now, for 2-edge connectivity we have a certificate consisting of S together
with a set

P
consisting of a covering edge for each non-bridge edge in S . Thus two

vertices are 2-edge connected in T if and only if they are so in S¬E P . However,
if an edge �­7 P is deleted, we may need to add several “replacement edges” toP

in order regain a certificate. Nevertheless, by carefully choosing the order in
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which potential replacement edges are considered, we will be able to amortize the
cost of considering all but two of them.

8.1 High level description

The algorithm associates with each non-tree edge 6 a level
û�� 6 
 � =�� 
 ����� 	 ��� .

However, in contrast to connectivity, the tree edges do not have associated lev-
els. For each » , let T8¸ denote the subgraph of T induced by edges of level at
least » together with the edges of S . Thus, T �%T�±jý£T¡º�ý /�/�/ ý¬T E ý¬S . The
following invariant is maintained:

(i’) The maximal number of nodes in a 2-edge connected component of TZ¸ is
 �+í : ¸ � . Thus, the maximal relevant level is = .

Initially, all non-tree edges have level ÷ , and hence the invariant is satisfied. As for
connectivity, we will amortize work over level increases. We say that it is legal to
increase the level of a non-tree edge 6 to 0 if this does not violate (i’), that is, if
the 2-edge connected component of 6 in Tå/ % ��6�� has at most 
 �Gí : / � vertices.

For every tree edge 687:S , we implicitly maintain the cover level J � 6 
 which is
the maximum level of a covering edge. If 6 is a bridge, J � 6 
 � U8½ . The definition
of a cover level is extended to paths by defining J � ¯ 
 � ¢¸ô õ�x & °5J � 6 
 . During
the implementation of an edge deletion or insertion, the J -values may temporarily
have too small values. We say that � and � are J -2-edge connected on level » if
they are connected and J � � /�/�/ � 
 3¬» . Assuming that all J -values are updated, we
have our basic 2-edge connectivity query:

2-edge-connected [�\
]_^g` : Decides if \ and ^ are × -2-edge connected on level É .
Further note that with updated J -values, 6�7 S is a bridge in T¡¸ if and only ifJ � 6 
 �L» . For basic updates of J -values, we need

InitTreeEdge [�\
]_^a` : ×�[�\2]_^g`"���8� � .
Cover [�\2]_^«]��õ` : Where \ and ^ are connected. For all z Ð \¶è�è�è�^ , if ×�[Æz´`�þ�� , set×�[Æz´`����9� .
Uncover [�\
]_^«]��ú` : Where \ and ^ are connected. For all z Ð \¶è�è�è�^ , if ×�[Æz´`"��� , set×�[Æz´`����1� � .
We can now compute J -values correctly by first calling InitTreeEdge

� �� !� 
 for all
tree edges

� �� !� 
 , and then calling Cover
�;:  -,� û��;:  -, 
0
 for all non-tree edges

�;:  -, 
 .
Inserting an edge is straightforward:
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Insert [�\
]_^g` : If the end-points of [�\2]_^g` were not connected in � , [�\
]_^a` is added to �
and InitTreeEdge [�\
]_^a` is called. Otherwise set

� [�\
]_^a`"���ÊÉ and call Cover [�\
]_^«]�É�` .
Clearly (i’) is not violated in either case.

In connection with deletion, the basic problem is to deal with the deletion of a
non-tree edge. If a non-bridge tree edge

� �� !� 
 is to be deleted, we first swap it
with a non-tree edge as described in Swap below. The sub-routine FreeTreeEdge
is dummy for now, but is included so that Swap can be reused directly for the
biconnectivity problem.

Swap [�\2]_^g` : Where [�\
]_^g` is a tree-edge which is not a bridge. Let [=<']�>�` be a non-tree
edge covering [�\2]_^g` with

� [=<�]�>1` �Ê×�[�\2]_^g`²�?� , and set
� [�\
]_^a`"���9� . Call

FreeTreeEdge [�\2]_^g` . Replace [�\
]_^a` by [=<']�>�` in � . Call InitTreeEdge [=<�]�>1` and
Cover [�\
]_^«]��ú` .

To see that the above updates the cover information, note that it is only the edges
being swapped whose covering is affected. We are now ready to describe delete.

Delete [�\
]_^g` : If [�\2]_^g` is a bridge, we simply delete it. If [�\
]_^a` is a tree edge, but not a
bridge, we call Swap [�\
]_^g` . Thus, if [�\
]_^g` is not a bridge, we are left with the
problem of deleting a non-tree edge [�\2]_^g` on level ��� � [�\
]_^g` . Now call
Uncover [�\
]_^«]��ú` and delete the edge [�\
]_^g` . This may leave some c-values on\¶è�è�è�^ to low and thus for ��� � [�\
]_^g`R]������ô]�É , we call Recover [�\
]_^;]��õ` .

Recover [�\2]_^«]��õ` : We divide into two symmetric phases. Set @����G\ and let @ step
through the vertices of \µè�è�èi^ towards ^ . For each value of @ , consider, one at the
time, the non-tree edges [=<']�>�` with A?zLz��µ[=<�]_\2]_^g`��9@ and B z ÐC@jè�è�è�<�]�×�[Æzô`)D�� . If
legal, increase the level of [=<']�>�` to � Ç � and call Cover [=<�]�>.]�� Ç � ` . Otherwise, we
call Cover [=<�]�>.]��õ` and stop the phase.
If the first phase was stopped, we have a second symmetric phase, starting with@¡�G^ , and stepping through the vertices in ^ è�è�è�\ towards \ .

The problem in seeing that the above algorithm is correct, is to check that the calls
to Recover computes the correct J -values on � /�/�/ � . We say that � /�/�/ � is fine
on level » if all J -values in S are correct, except that J -values �%» on � /�/�/ � may
be too low. Clearly, � /�/�/ � is fine on level

û�� 6 
 $¬½ when we make the first call
Recover

� �� !�A û�� �� !� 
0
 . Thus, correctness follows if we can prove

LEMMA 8.1. Assuming that � /�/�/ � is fine on level »b$¬½ . Then after a call
Recover

� �� !�A !» 
 , � /�/�/ � is fine on level » .
PROOF. First note that we do not violate � /�/�/ � being fine on level »�$¬½ if we
take a level » edge

� 6  -7 
 and either call Cover
� 6  -7� !» 
 directly, or first increase the

level to »�$£½ , and then call Cover
� 6  37' !» $£½ 
 .
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Given that � /�/�/ � remains fine on level »�$¬½ , to prove that it gets fine on level» , we need to show that for any remaining level » non-tree edge
� 6  -7 
 , all edges 6

in 6 /�/�/ 7 have J � 6 
 3�» . In particular, it follows that � /�/�/ � does become fine on
level » if phase 1 runs through without being stopped.

Now, suppose phase 1 is stopped. Let 5²º be the last value of 5 considered, and� 6�º  -7
º 
 be the last edge considered, thus increasing the level of
� 6�º  -71º 
 is illegal.

Then phase 2 will also stop, for otherwise, it would end up illegally increasing the
level of

� 6�º  37
º 
 . Let 5 	 be the last value of 5 considered, and let
� 6 	  37 	 
 be the

last edge considered in phase 2.
Since the phases were not interrupted for non-tree edges

� 6  37 
 covering edges5 before 5�º or after 5 	 , we know that if
� 6  -7 
 remains on level » , it is because6 /�/�/ 7 1 � /�/�/ � w&5�º /�/�/ 5 	 . Hence, we prove fineness of level » , if we can show

that all J -values in 5 º /�/�/ 5 	 are 3�» .
From the illegality of increasing the level of

� 6 r  -7 r 
 , � � ½� &: , it follows that
the 2-edge connected component

P r of 6 r in T5¸ F º�E � � 6 r  -7 r 
 � has ö 
 �+í : ¸ F º �
nodes. However, we know that before the deletion of

� �� !� 
 , P º and
P 	 where

both part of a 2-edge connected component Q of T�¸ , and this component had at
most 
 �Gí : ¸ � nodes. Hence

P º 1MP 	 Ü�E* . Thus, they are contained in the same
2-edge connected component

P
of T�¸ F º E:� � 6�º  -71º 
  � 6 	  -7 	 
 � . Since covering

is done for all level »µ$ª½ edges, it follows that our calls Cover
� 6�º  37
ºµ 0» 
 and

Cover
� 6 	  -7 	  0» 
 imply that all tree-edges in

P
has got J -values 3 » . Moreover5 r 7 P r , so 5�º /�/�/ 5 	 w P

, and hence all edges in 5²º /�/�/ 5 	 have J -values 3�» . �
After the last call Recover

� �� 0�� µ÷ 
 , we now know that � /�/�/ � is fine on level ÷ ,
that is, all J -values in S are correct, except that J -values � ÷ on � /�/�/ � may be
too low. However, since U8½ is the smallest value, we conclude that all J -values
are correct, and hence our fully dynamic 2-edge-connectivity algorithm is correct.

8.2 Implementation

The algorithm maintains the spanning forest in a top-tree data structure. For each
cluster > we maintain J¿�W� J � B � > 
R
 . Thus, 2-edge connectivity queries are imple-
mented by:

2-edge-connected [�\
]_^g` : Set ����� Expose [�\
]_^g` . Return [|× � D É�` .
In connection with Swap, for a given tree edge

� �� 0� 
 , we need a covering edge6 with
û�� 6 
 � J � �� !� 
 . This is done, by maintaining for each cluster > a non-tree

edge 6ô� covering an edge on B � > 
 with
û�� 6)� 
 � Jµ� . Then the desired edge 6 is
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found by setting >G� � Expose
� �� !� 
 and returning 6�� . Calls to cover and uncover

also reduces to operations on clusters:

Cover [�\2]_^«]��õ` : Set ����� Expose [�\
]_^g` . Call Cover [���]���] [�\
]_^a`_` .
Uncover [�\
]_^«]��ú` : Set ����� Expose [�\
]_^a` . Call Uncover [���]��õ` .
The point is, of course, that we cannot afford to propagate the cover/uncover in-
formation the whole way down to the edges. When these operations are called on
a path-cluster > , we will implement them directly in > , and then store lazy infor-
mation in > about what should be propagated down in case we want to look at the
descendants of > . The precise lazy information stored is� × F� , × ¹� and z F� , where × F� �Ê× ¹� and

� [Æz F� `·��× F� . This represents that for all edgesz ÐF. [���` , if ×)[Æzô`G� × ¹� , we should set ×�[Æz´`"���È× F� and z�[Æz´`"���Oz F� .

The lazy information has no effect if J F� �ªJ ¹� ��UA½ . Trivially, the cover infor-
mation in a root cluster is always correct in the sense that there cannot be any
relevant lazy information above it. Moreover, note that the lazy cover information
only effects B � > 
 , hence only path descendants of > . Thus, the cover information
is always correct for all leaf clusters.

In order to guide Recover, we need two things: first we need to find the level »
non-tree edges

�H:  3, 
 , second we need to find out if increasing the level of
�;:  -, 
 to»�$�½ will create a too large level »�$�½ component. Thus, we introduce counters size

and incident that are further defined so as to facilitate efficient local computation
of all of Cover, Uncover, Split, and Merge.� For any node \ and any level � , let size c�� ¸ ���X� and let incident c�� ¸ be the number of

level � non-tree edges with an endpoint in \ .� Let � and I be levels, and let \ be a boundary node of a path-cluster � . LetJ c�� � � ¸ � / be the set of internal nodes from the cluster � that are reachable from \
by a path � where ×�[|�LK/. [���`_`MDN� and ×)[|� } . [���`_`"D/I . Then size c�� � � ¸ � / �[
Ø $�&PORQTS U�S 6 S V size $ � ¸ ` is the number of nodes in

J c�� � � ¸ � / and incident c�� � � ¸ � / �[ Ø $�&PORQTS U�S 6 S V incident $ � ¸ ` is the number of (directed) level I non-tree edges [�W�]�X�`
with W Ð J c�� � � ¸ � / . By directed we mean that [�W�]�X�` is counted twice if X is also inJ c�� � � ¸ � / .� Similarly for any level � and any leaf cluster � with �1� � e \1h let

J c�� � � ¸
be the set of internal nodes W from � such that ×�[�\¶è�è�èTW�`YD � . Then
size c�� � � ¸ ��[ Ø $'&ZO[QTS U�S 6 size $ � ¸ ` is the number of nodes in

J c�� � � ¸ and incident c�� � � ¸ �[ Ø $�&PORQTS U�S 6 incident $ � ¸ ` is the number of (directed) level � non-tree edges [�W�]�X�`
with WêÐ J c�� � � ¸ .

We are now ready to implement all the different procedures: Merge has been split
in two parts, one creating a leaf cluster, and one creating a path-cluster > .
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Cover [���]���]ìzô` : If × � þ�� , set × � ���9� and z � ���Èz . If �²þ × F� , do nothing. If× ¹� D���D × F� , set × F� ���?� and z F� ���Oz . If �\� × ¹� , set × ¹� ���9� and × F� ���9� andz F� ���Oz . For
J Ð e size,incident h and for all �j�]�/I^��� and �j�_��ÿ`�	a and for\ Ð��cb set
J c�� � � / � r ��� J c�� � � ¹�º � r .

Uncover [���]��õ` : If × � ��� , set × � ���1� � and z � ��� nil. If �²þ × F� , do nothing. If �\D × F� ,
set × F� ���2� � and × ¹� ���ÊË ÌJÎ e × ¹� ]��_h and z F� ��� nil. For

J Ð e size,incident h and for
all � �_�/I^��� and � �_��ÿd�	a and for \ Ð��eb set

J c�� � � / � r ��� J c�� � � ¸ F º � r .
Clean [���` : For each path-child � of � , call Uncover [��A]�× ¹� ` and Cover [���]�× F� ]ìz F� ` . Set× F� ���1� � and × ¹� ���2� � and z F� ��� nil.

Split [���` : Call Clean [���` . Delete � .

Merge [������A]���` : Where ç Ð��
� and ����� eLç h . Let × be the node in �1��KZ�2� .
For

J Ð e size,incident h and for I5���ÈÉ�]������ ]�a : If � is a leaf cluster, setJgf � � � / ��� Jgf � Ò � / Ç Jgf � Ó � / . Otherwise setJ f � � � / ��� J f � Ò � / � / [ Ç Jgh � /WÇ Jgh � Ó � / if × Ò D��õ` .
Merge [������A]���` : Where ç Ð��ji , ëµÐ��jk , and �1��� eLç ]ìë h . Let × be the node in�
�lKZ�2� . Let Ï be the path-child of � minimizing × § , then set × � ���Ê× § andz � ���Èz § . Set × F� ���8�j� and × ¹� ���1� � and z F� ��� nil. For

J Ð e size,incident h and
for ��];I5���2� �)]������¿]�a compute

J f � � � ¸ � / as follows (
Jgm � � � ¸ � / is symmetrical): If � is a

leaf cluster, set
J f � � � ¸ � / ��� J f � Ò � /ÿÇ J f � Ó � ¸ � / . Otherwise if � is a leaf cluster, setJgf � � � ¸ � / ��� Jgf � Ò � ¸ � / [ Ç J h � Ó � / if × Ò D��õ` . Finally if both � and � are path-clusters,

set
J f � � � ¸ � / ��� J f � Ò � ¸ � / [ Ç Jgh � /WÇ Jgh � Ó � ¸ � / if × Ò D��õ` .

Recover [�\2]_^«]��õ` :� For @�����\
]_^
– Set ����� Expose [�\
]_^a` .
– While incident n � � � ¹�º � ¸ÃÇ incident n � ¸ � É and not stopped,o Set [�W�]�X�`���� Find [=@']ú��]��õ` .o Ï%��� Expose [�W�]�X�` .o If size p � § � ¹�º � ¸�Ç � � ����� ¸ ,è Cover [·ÏA]��i] [�W¦]�X�`_` .è Stop the while loop.o Elseè Set

� [�W�]�X�`����9� Ç � , decrement incident p � ¸ and incident qr� ¸ and
increment incident p � ¸ F º and incident qr� ¸ F º .è Cover [·ÏA]�� Ç �)] [�W�]�X�`_` .o ����� Expose [�\2]_^g` .

Find [ ç ]ú��]��õ` : If incident
f � ¸ � É then return a non-tree edge incident to ç on level � .

Otherwise call Clean [���` and let � and � be the children of � . Let � be the cluster
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containing ç as a boundary node. If ç is a boundary node in both � , � , at least one
of them must be a leaf cluster, let � be a leaf-cluster. If � is a leaf cluster and
incident

f � Ò � ¸ � É or � is a path cluster and incident
f � Ò � ¹�º � ¸ � É , then return

find [ ç ]_�A]��õ` . Else, let ë be the boundary node nearest to ç in � , return find [Æë´]�� ]��õ` .
THEOREM 8.2. There exists a deterministic fully dynamic algorithm for main-
taining 2-edge connectivity in a graph, using

��������� � ��

amortized time per oper-

ation.

PROOF. Cover
� >� !»R µ6 
 and Uncover

� >" !» 
 both take
��������� 	 ��


time. This means
that Clean

� > 
 and thus Split
� > 
 takes

��������� 	 ��

time. Since Merge

� C� !D; &> 

also takes

��������� 	 ��

time we have by Theorem 3.1 that Link

� �� !� 
 , Cut
� 6 


and Expose
� �� !� 
 takes

��������� < ��

time. This again means that 2-edge-

connected
� �� !� 
 , Cover

� � /�/�/ �� 0»0 µ6 
 and Uncover
� � /�/�/ �� 0» 
 take

��������� < ��

time.

Find
� H� R>" !» 
 calls Clean

� > 
W������������
 times and thus takes
��������� < ��


time. Fi-
nally Recover

� �� !�� !» 
 takes
���Hs"����� < ��


time where
s

is the number of non-tree
edges whose level is increased. Since the level of a particular edge is increased at
most

������������

times we spend at most

��������������

time on a given edge between its

insertion and deletion. �
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Chapter 9

Biconnectivity

In this chapter we present an
��������� � ��


deterministic algorithm for the biconnec-
tivity problem for a fully dynamic graph T . We will follow the same pattern as
was used for 2-edge connectivity. Historically, such a generalization is difficult.
For example, it took several years to get sparsification to work for biconnectiv-
ity [7, 26]. Furthermore, the generalization in [21] of the

��������� � ��
 randomized
2-edge connectivity algorithm from [23] has an expected bound of

���ÃÂN�����2����

,

where
Â

is the maximal degree [Henzinger, pc 1997]. Our main new idea for
preserving the

��������� � ��

bound for biconnectivity, is an efficient recycling of the

information as described in Lemma 9.2 below.
As for 2-edge connectivity we have a certificate for when vertices are bicon-

nected. A triple is a length two path 6t7#� in the graph T , and a tree triple 6t7	� in S
is said to be covered by a non-tree edge

� �� !� 
 if 6t7#�\w£� /�/�/ � , that is if 6t7#� is a
segment of the cycle induced by

� �� !� 
 . Covered triples are also transitively cov-
ered, and if 6t7#� and 6�4u7#� are transitively covered, then so is 6t7v6'4 . An articulation
point is a vertex whose removal disconnect a component of T .

LEMMA 9.1 ([20]). � is an articulation point if and only if there is an uncovered
tree triple 5��1� . Moreover, � and � are biconnected if and only if for all 6t7#� w� /�/�/ � , 6t7#� is transitively covered.

9.1 High level description

As with 2-edge connectivity, with each non-tree edge 6 , we associate a levelû�� 6 
 7£��÷. )³)³ô³ô �=g� , =�� 
 ����� 	 ��� , and for each » , we let T8¸ denote the subgraph
of T induced by edges of level at least » together with the edges of S . Thus
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T �%T8± ý¬TZº¶ý /�/�/ ý¬T E ý¬S . Here, for biconnectivity, we will maintain the
invariant:

(i”) The maximal number of nodes in a biconnected component of T¡¸ is 
 �+í : ¸ � .
As for 2-edge connectivity, the invariant is satisfied initially, by letting all non-tree
edges have level 0. We say that it is legal to increase the level of a non-tree edge6 to 0 if this does not violate (i”), that is, if the biconnected component of 6 inT / % ��6�� has at most 
 �+í : / � vertices.

For each vertex � and each level » , we implicitly maintain the disjoint sets of
neighbors biconnected on level » . If 5 is a neighbor of � , the set of neighbors of �
biconnected to 5 on level » is maintained as J c�� ¸ � 5 
 . As for 2-edge connectivity, theJ -values may temporarily not be fully updated. If ¯ is a path in T , J � ¯ 
 denotes
the maximal » such that for all triples 6t7	� w ¯ , ��7LJPw � ¸ � 6 
 . If there is no such» , J � ¯ 
 � U8½ . Thus J � ¯ 
 3 » witnesses that the end points of ¯ are biconnected
on level » . Typically ¯ will be a tree path, but in connection with Recover, we
will consider paths where the last edge

�;:  -, 
 is a non-tree edge. We say that �
and � are J -biconnected on level » if they are connected and J � � /�/�/ � 
 3£» . If allJ -values are updated, we therefore have

biconnected [�\
]_^a` : Decides if \ and ^ are × -biconnected on level É .
To update J -values from scratch, we need

InitTreeEdge [�\
]_^a` : For �²���ÊÉ�]�è�è�è']�a¼] set ×-x�� ¸ [=>�`"��� e >
h and × w � ¸ [=< `���� e <�h .
FreeTreeEdge [�\
]_^a` : Remove > from × x���y [ è�` and remove < from × w ��y [ è�` .
Cover [=<j>{z�]��õ` : Where <v>|z is a tree triple, unions × w � / [=<�` and × w � / [}z�` for I8���ÊÉ�]������ ]�� .
Cover [�\2]_^«]��õ` : Calls Cover [=<j>{z�]��ú` for all <v>|z�~�\ è�è�èR^ .

Now, as for 2-edge connectivity, we can compute all J -values by first calling
InitTreeEdge

� �� !� 
 for all tree edges
� �� !� 
 , and then calling Cover

�H:  -,� û��H:  -, 
0

for all non-tree edges

�H:  3, 
 . The above routines immediately complete the de-
scriptions of Insert and Swap. In order to describe Delete, we need to define both
Uncover and Recover. To do this efficiently, we have to recycle cover information
using the following:

LEMMA 9.2. Let
� �� !� 
 be a level » non-tree edge covering a tree triple 6t7#� w� /�/�/ � . Suppose ¾ is a neighbor to 7 biconnected on level 0 � » to 6 , and hence

to 7 , and � . Then, if
� �� !� 
 is deleted, afterwards, ¾ is biconnected on level 0 to 6

or � , and it may be biconnected to both.

PROOF. If ¾ was biconnected to 6 via
� �� 0� 
 , ¾�7#� must be covered on level 0 .

Otherwise 6t7.¾ is still covered on level »y3O0 . �
68



The Lemma suggests, that when
� �� !� 
 is deleted, we should store the neighbors ¾

mentioned. This is done in J�w � / � 6�� � 
 by Uncover. More precisely, JZw � / � 6��D� 
 will be
the set of neighbors to 7 that we know are biconnected to 6 or � , but that are not yetJ -biconnected to either. This will be used in one of two ways. Either 6 and � get J -
biconnected on level 0 , in which case we just restore J�w � / � 6 
 and J�w � / � � 
 by settingJ�w � / � 6 
 �®� J�w � / � � 
 � � J�w � / � 6��D� 
 E�J�w � / � 6 
 E�J�w � / � � 
 and J�w � / � 6�� � 
 � �&* . Alternatively,
suppose we know we have finished updating JZw � / � 6 
 and that �XÜ7£J�w � / � 6 
 . Then
we can set J�w � / � � 
 � � J�w � / � 6��D� 
 EOJ�w � / � � 
 and J�w � / � 6��D� 
 �®�E* .
Uncover [=<v>|z�]��õ` : where <v>|z is a tree triple × -biconnected on level � .

If <j>{z is × -biconnected on level � Ç � , do nothing; otherwise, for I8���9��]������ ]�É , set× w � / [=<�ü z�`����È× w � / [=<�` } [|× w � / F º [=< ` d × w � / F º [}z�`_` , × w � / [=< `"���Ê× w � / F º [=<�` , and× w � / [}z�`����Ê× w � / F º [}z�` .
Strictly speaking, above, we should also set JPw � / � ¾ 
 �®� J�w � / F º � ¾ 
 for all¾57�J�w � / � 6��D� 
 , but our algorithm will never query any subset of JPw � / � 6��D� 
 .
Uncover [�\
]_^«]��ú` : Calls Uncover [=<j>{z�]��ú` for all <v>|z�~�\µè�è�è�^ .

Cover [=<j>{z�]��õ` : Where <v>|z is a tree triple. For I<�ÊÉ�]������´]�� , if × w � / [=<�ü z�`¶é�l� , union× w � / [=< ` , × w � / [}z�` , and × w � / [=<�ü z�` , and set × w � / [=<�ü z�`������ . Otherwise, union × w � / [=<�` and× w � / [}z�` , subtracting them from any × w � / [ è�ü]è�` they might appear in.

To complete the description of Delete, we need to define Recover.

Recover [�\2]_^«]��õ` : We divide into two symmetric phases. Phase 1 goes as follows:

Set @f����\ and let @ 4 be the successor of @ in \ è�è�èR^ .

(*) While there is a level � non-tree edge [�W�]�X�` such that@Z� meet [�W�]_\
]_^a` and ×)[=@ 4 @ è�è�è3W�X�`\D�� , if legal, increase the level
of [�W�]�X�` to � Ç � and call Cover [�W�]�X´]�� Ç � ` ; otherwise, just call
Cover [�W�]�X´]��ú` and stop Phase 1.

While �
@ 4 @v@ 4�4 ~ \µè�è�è�^ with × w � / [=<�ü z�` é�l� ,
Let @ 4 @j@ 4�4 be such a triple nearest to \ .
Run (*) again with the new values of @ and @ 4 .
Union ×3n � / [=@ 4�4 ` and ×3n � / [=@ 4 ü @ 4�4 ` , and set ×3n � / [=@ 4 ü @ 4 4 `"���l� .
Run (*) again with @ 4 4 in place of @ 4 .

If Phase 1 was stopped in (*), we have a symmetric Phase 2, which is the same
except that we start with @¡��^ and in the loop choose the triple @ 4 @v@ 4�4 ~�^ è�è�è�\
nearest to ^ .

The proof of correctness is essentially the same as for 2-edge connectivity. As
a small point, note that different biconnected components may overlap in one
vertex. Nevertheless, we cannot have two different biconnected components withö'
 �+í : ¸ F º � nodes whose combined size is �5
 �Gí : ¸ � .
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Note that at the end of Recover
� �� 0�� 0 
 , all sets JPw � / � 6�� � 
 , 6t7#� w � /�/�/ � ,

will be empty. Hence, for each 7 , there can be at most one pair 6 and � withJ�w � / � 6��D� 
 Ü�&* . Then we refer to 6 and � as the uncovered neighbors of 7 .

9.2 Implementation

The main difference between implementing biconnectivity and 2-edge connectiv-
ity, is that we need to maintain the biconnectivity of the neighbors of all vertices
efficiently. For each vertex 7 , we will maintain JPw ��y �i/ 
 as a list with weights on
the links between succeeding elements such that J � 6t7	� 
 is the minimum weight
of a link between 6 and � in JZw ��y �i/ 
 . Then J�w � ¸ � 6 
 is a segment of J�w ��y ��/ 
 and using
standard techniques for manipulating lists, we can easily find J � 6t7	� 
 or identifyJ�w � ¸ � 6 
 in time

������������

.

Now, if J�w � /µ¹�º � 6 
 �£J�w � /¿¹�º � � 
 , we can union J�w � / � 6 
 and J�w � / � � 
 without affect-
ing J�w � /µ¹�º � 6 
 , simply by moving J�w � / � � 
 to J�w � / � 6 
 on level 0 as follows. First we
extract J�w � / � � 
 , replacing it by the minimal link to its neighbors. Since both of
these links are at most 0?U�½ , this does not affect the minimum weight between
elements outside J�w � / � � 
 . Second we insert J�w � / � � 
 after J�w � / � 6 
 with link 0 in be-
tween. The link after J�w � / � � 
 becomes the link we had after JZw � / � 6 
 . Note that if6:7�J n ��y � 5�4Y� 5�4 4 
 and we move J n � / � 6 
 to J n � / � 5�4 
 , then, implicitly, we delete J n � / � 6 

from J n � / � 5�4õ� 5�4 4 
 , as required.

InitTreeEdge [�\
]_^a` : Link ^ to × c���y [ è�` on level -1 and \ to × $ ��y [ è�` on level -1.

FreeTreeEdge [�\
]_^a` : Extract ^ from × c���y [ è�` and \ from × $ ��y [ è�` .
Cover [=<j>{z�]��õ` : Where <v>|z is a tree triple. For I<�ÊÉ�]������´]�� , if < and z are uncovered

neighbors of > and × w � / [=<�ü z�`�é��� , move × w � / [=<�ü z�` and × w � / [}z¦` to × w � / [=< ` . Else, if < is
an uncovered neighbor of > , move × w � / [}z�` to × w � / [=<�` . Else move × w � / [=< ` to × w � / [}z�` .

Uncover [=<v>|z�]��õ` : where ×�[=<v>|z�`GD�� , if ×�[=<v>|z�`G�	� , do nothing; otherwise, forI8���9��]������ ]�É , first extract × w � / [=< ` and set × w � / [=<�ü z¦`����È× w � / [=< ` . Then move × w � / F º [=<�`
and × w � / F º [}z¦` back to the neighbor list × w ��y [ è�` on level -1.

Biconnectivity by top-trees As for 2-edge connectivity, the algorithm main-
tains the spanning forest in a top-tree data structure. For each cluster > we main-
tain Jµ�8�£J � B � > 
0
 .
Biconnected [�\
]_^a` : Set ����� Expose [�\2]_^g` . Return [|× � D É�` .
Also, 6ô� , J F� , J ¹� , and 6 F� are defined analogously to in 2-edge connectivity. The
cover edges 6ô� and 6 F� are exactly the same, while J F� and J ¹� , like Jµ� , now refer to
covering of triples instead of edges.
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A main new idea is that we overrule the top-trees by using the neighbor listsJ�w ��y �i/ 
 to propagate information from minimal leaf-clusters to path-clusters. Recall
that in 2-edge, the information in leaf-clusters is never missing any lazy informa-
tion. Let � be the boundary node of a path-cluster > , and let � be any neighbor
to � in >�@;B � > 
 . Then we call � a non-path neighbor of � . It is easy to see that
there is then a leaf-cluster C w > with �����Z� ?�C and �F7­C . We call the min-
imal such cluster C the minimal leaf-cluster of

� �� 0� 
 , and denote it MLC
� �� !� 
 .

Note that the ordering of � and � matters. It is easy to see that there cannot be
another

� �� !�;4 
 with MLC
� �� !�;4 
 � MLC

� �� 0� 
 . We are going to use the neigh-
bor lists to propagate counters directly from minimal leaf-clusters to the minimal
path-clusters containing them, skipping all leaf-clusters in between.

We are now ready for the rather delicate definitions of the counters size and
incident for path-clusters and minimal leaf-clusters.� Let I and ÿ be levels, and let � be a path-cluster with �1� � e \
]_^¨h . Let

size c�� � � / � r denote the number of internal nodes W of � such that either W Ð�. [���`
and ×�[�\¶è�è�èTW�`\D�� or there exist a triple @ 4 @j@ 4 4 ~	. [���` with @Z�9A?zLz&�![�\2]_^«]�W�` and[=@�]�< `yÐ�@ è�è�èTW such that ×�[�\µè�è�è�@�`"D�I , ×�[=@ è�è�è-W�`)D­ÿ and either ×�[=@ 4 @j< `�D�ÿ or×)[=@ 4 @v@ 4 4 `�D�I and < ÐQ× n � r [=@ 4�4 ` d × n � r [=@ 4 ü @ 4 4 ` . Let incident c�� � � / � r be the number
of (directed) non-tree edges [�W�]�X�` with the path \ è�è�è�WPX satisfying the conditions
from above for the path \µè�è�è�W .� Similarly let ÿ be a level and let � be a minimal leaf-cluster of an edge [�\2]_^g` . Let
size c�� � � r be the number of internal nodes W of � such that ×�[�\�^ è�è�èTW�`�D­ÿ , and let
incident c�� � � r be the number of (directed) non-tree edges [�W¦]�X�` where W is an internal
node of � and ×�[�\�^ è�è�èTWPX�`\D�ÿ .

To get from minimal leaf-clusters to path-clusters, and vice versa, we need the
following functions:

Size [�\
]uÄ�]��õ` : where Ä is a set of neighbors of \ , returns Ø $'&�� [ Size c��MLC * c�� $ - � ¸ if ^
non-path neighbor of \ , 0 otherwise).

Incident [�\
]uÄ�]��õ` : where Ä is a set of neighbors of \ , returns Ø $�&4� [ã� if ^ non-tree
neighbor of \ , Incident c��MLC * c�� $�- � ¸ if ^ non-path neighbor of \ , and 0 otherwise).

Neighbor
J [=@']�@ 4 ]��õ` : J Ð e Size, Incident h , J [=@']�×3n � ¸ [=@ 4 `R]��õ`

Neighbor
J [=@']�@ 4 ü @ 4 4 ]��õ` : J Ð e Size, Incident h ,J [=@']�×3n � ¸ [=@ 4 ` d ×3n � ¸ [=@ 4�4 ` d ×3n � ¸ [=@ 4 ü @ 4�4 `R]��õ` .

NeighborFind [=@']�@ 4 ]��ú` : Finds z Ð?× n � ¸ [=@ 4 ` such that z is either a non-tree neighbor of @
or a non-path neighbor with incident n �MLC * n � � - � ¸ � É .

Whenever the counters of a minimal leaf-cluster MLC
� �� !� 
 are updated, we up-

date corresponding counters of � in the neighbor list J c���y �i/ 
 of � . Standard list

71



data structures allow us, in logarithmic time, to update any one of the :A= counters
of a neighbor, or to answer a query Neighbor � . The remaining operations are
implemented analogously to in 2-edge connectivity.

Cover [���]���]ìzô` : First we do as in 2-edge connectivity. If � has path-children � and �
and e @�hg�­�1��KZ�2��é~��1� and @ 4 @j@ 4 4 is the triple with @ 4 Ðf� and @ 4 4 Ð � , then we
call Cover [=@ 4 @v@ 4 4 ]��õ` .

Uncover [���]��õ` : First we do as in 2-edge connectivity. If � has path-children � and �
and e @�hg�­�1��KZ�2��é~��1� and @ 4 @j@ 4 4 is the triple with @ 4 Ðf� and @ 4 4 Ð � , then we
call Uncover [=@ 4 @v@ 4 4 ]��ú` .

Merge [������A]���` : Where ç Ð��
� and ����� eLç h . If � is a leaf-cluster, we are done.
Otherwise, let @ 4 @v@ 4 4 be the unique triple such that @ 4 ÐC. [��W` , e @�ha�G�
��K¡�
� and� is the minimal leaf-cluster of [=@�]�@ 4�4 ` . Then for

J Ð e size,incident h andÿ¡���1�j�)]������ ]�a ,
J f � � � r ��� J f � Ò � r � r if × Ò þ�ÿ ,J f � � � r ��� J f � Ò � r � r Ç Neighbor

J [=@�]�@ 4 ]iÿ1` if × Ò D�ÿ��º×�[=@ 4 @v@ 4�4 `·þ�ÿ , and finallyJ f � � � r ��� J f � Ò � r � r Ç Neighbor
J [=@�]�@ 4 ü @ 4 4 ]iÿ1` Ç J n � Ó � r if × Ò D�ÿ��º×�[=@ 4 @j@ 4 4 `\D�ÿ .

Let ç 4 be the successor of ç in . [��W` . Then �f� MLC [ ç ] ç 4 ` , so we have to update the� a counters associated with ç 4 in ç ’s neighbor list × f ��y [ è�` .
Merge [������A]���` : Where ç Ð��
� , ëµÐ��2� , and �1��� eLç ]ìë¿h . × � , z � , × F� , × ¹� and z F� are

maintained as in 2-edge connectivity. For
J Ð e size,incident h and I�]iÿ¡���2� �)]������¿]�a

compute
J f � � � / � r as follows (

J^m � � � / � r is symmetrical): If � is a leaf-cluster, setJ f � � � / � r ��� J f � Ó � / � r . Otherwise if � is a leaf-cluster, set
J f � � � / � r ��� J f � Ò � / � r . Finally

if both � and � are path-clusters, let @ 4 @v@ 4 4 be the triple such that @ 4 ÐF. [��5` ,e @�ha���1� d �2� , and @ 4�4 ÐF. [���` . Then
J f � � � / � r ��� J f � Ò � / � r if × Ò þ/I ,J f � � � / � r ��� J f � Ò � / � r Ç Neighbor

J [=@']�@ 4 ]iÿ1` if × Ò D/I_�º×�[=@ 4 @j@ 4 4 `"þ/I , and finallyJ f � � � / � r ��� J f � Ò � / � r Ç Neighbor
J [=@']�@ 4 ü @ 4 4 ]iÿ1` Ç J n � Ó � / � r if × Ò D/I_�º×�[=@ 4 @j@ 4 4 `)D/I .

Recover [�\2]_^«]��õ` : We divide into two symmetric phases. Phase 1 goes as follows:

Set ����� Expose [�\2]_^g` .
Set @f����\ and let @ 4 be the successor of @ on @ è�è�èR^ .

(*) While NeighborIncident [=@�]�@ 4 ]��õ`G� É ,� Set [�W�]�X�`���� VertexFind [=@�]ú��]���]�@ 4 ` .� Ï%��� Expose [�W�]�X�` .� Let [�W�]�W 4 ` and [=X 4 ]�X�` be edges on WNè�è�è�X� If size p � § � ¹�º � ¸�Ç � Ç NeighborSize [�W�]�W 4 ]��ú` Ç
NeighborSize [=Xô]�X 4 ]��õ`�� ����� ¸ ,
– Cover [·ÏA]��i] [�W¦]�X�`_` .
– Stop the phase.� Else
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– Set
� [�W�]�X�`����9� Ç � , updating the corresponding incidence

counters ×-p ��y [ è�` and × qr��y [ è�` .
– Move ×-p � ¸ F º [=X�` to ×-p � ¸ F º [�W 4 ` and × qr� ¸ F º [�W�` to × qr� ¸ F º [=X 4 ` on

level � Ç � .
– Cover [·ÏA]�� Ç �)] [�W�]�X�`_` .� ����� Expose [�\2]_^g` .@f��� FindBranch [�\
]ú��]��õ` .

While @ðé� nil,

Let @ 4 be the predecessor, and let @ 4 4 be the successor of @ in\¶è�è�è�^ .
Run (*) again with the new values of @ and @ 4 .
Move × w � / [=<�ü z�` to × w � / [}z�` and set × w � / [=<�ü z¦`"���l� .
Run (*) again with @ 4 4 in place of @ 4 .@���� FindBranch [�\
]ú��]��õ` .

If Phase 1 was stopped in (*), we have a symmetric Phase 2 with the roles of \ and ^
interchanged.

FindBranch [ ç ]ú��]��ú` : If incident
f � � � ¹�º � ¸ �ÊÉ return nilelse call Clean [���` . If � has only

one path-child ç then return FindBranch [ ç ]_��]��õ` . Otherwise let � and � be the
children of � . Let � be the cluster containing ç as a boundary node, if both containsç , let � be a leaf-cluster. Let @ 4 @v@ 4 4 be the triple such that @ 4 ÐC. [��W` and @ 4�4 ÐF. [���`
and @?Ð��
� d �
� . If incident

f � Ò � ¹�º � ¸ � É then return FindBranch [ ç ]_��]��õ` .
Otherwise if ×-n � ¸ [=@ 4 ü @ 4�4 `¶é�l� then return @ else return FindBranch [=@�]�� ]��õ` .

VertexFind [=@']ú��]���]�@ 4 ` : Call Clean [���` . Let z ��� NeighborFind [=@�]�@ 4 ]��õ` . If z is a
non-tree neighbor, return [=@']Tz�` . Otherwise z is a non-path neighbor. If MLC [=@�]Tz�` is
an edge-cluster we set z 4 ��� NeighborFind [}z�]�@�]��õ` and return [}z�]Tz 4 ` . If MLC [=@�]Tz�` is
not an edge-cluster it has two children � and � with @¸Ðf� , �lK¡�X� e ë¿h . If
incident n � Ò � ¸ � ¸ � É , return PathFind [=@�]_��]��õ` . Otherwise, return VertexFind [Æë ]�� ]���]ìë 4 `
where ë 4 is the predecessor of ë in @ è�è�èuë .

PathFind [ ç ]ú��]��õ` : Call Let � and � be the children of � . Let � be the cluster
containing ç as a boundary node. If incident

f � Ò � ¸ � ¸ � É then return PathFind [ ç ]_��]��õ` .
Else let ë be the boundary node nearest to ç in � . If incident

m � Ó � ¸ � ¸�� É return
PathFind [Æë ]�� ]��õ` . Else return VertexFind [Æë´]ú��]���]ìë 4 ` , where ë 4 is the predecessor of ë
on ç è�è�è7ë .
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THEOREM 9.3. There exists a deterministic fully dynamic algorithm for main-
taining biconnectivity in a graph, using

��������� � ��

amortized time per operation.

PROOF. Cover
� 6t7	�2 !» 
 and Uncover

� 6t7#�. !» 
 and thus Cover
� >" !»0 !6 
 and

Uncover
� >� 0» 
 all take

����������	���

time. This means that Clean

� > 
 and thus
Split

� > 
 takes
��������� 	 ��


time. Since NeighborSize and NeighborIncident each
take

������������

time, Merge

� C� !D 
 also takes
��������� 	 ��


time and we have by
Theorem 3.1 that Link

� �� !� 
 , Cut
� 6 
 and Expose

� �� !� 
 takes
��������� < ��


time.
This again means that biconnected

� �� !� 
 take
��������� < ��


time. NeighborFind
takes

���������"��

time, and FindBranch

� H� R>� !» 
 and VertexFind
� 5² i>� !»R -5�4 
 calls

Clean
� > 
 and NeighborFind

������������

times and thus takes

��������� < ��

time.

Finally Recover
� �� !�� !» 
 takes

���Hs������ < ��

time where

s
is the number of non-tree

edges whose level is increased. Since the level of a particular edge is increased at
most

������������

times we spend at most

��������� � ��

time on a given edge between

its insertion and deletion. �
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Chapter 10

Summary and conclusions

We have succeeded in generalizing the topology trees to unbounded degree. The
result is top-trees, a data structure for dynamic trees, which is easy to use in theory.
As a direct result, we have developed effecient dynamic tree algorithms for the
diameter, 1-center and 1-median.

We have provided the first deterministic polylogarithmic time algorithms for
connectivity, minimum spanning forest, 2-edge connectivity and biconnectivity.
For the 2-edge connectivity and the biconnectivity the top-trees was instrumental
in their development. For the connectivity problem, our

���������2	���

bound matched

the previous best randomized time complexity. For the minimum spanning forest,
2-edge connectivity, and biconnectivity, our

��������� � ��

complexity improved on

the previous best randomized complexities.
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Index

è�è�è (simple path), 36� x , see boundary edge��� , see boundary node. [���` , see cluster-path
1-center, 9, 40
1-median, 9, 41
2-edge connected, 44

addpath, 36, 37
articulation point, 67

biconnected, 45
boundary edge, 23
boundary node, 10

external, 11
bridge, 60

× -2-edge connected, 61× -biconnected, 68
changeweight, 42
cluster, 10

-partition, 14
tree, 15

-path, 11
edge-, 11
good, 17
leaf-, 11
leaf-edge-, 11
path-, 11
path-edge-, 11

cluster-partition tree, 15
composite edge, 15
connectivity, 44

cover level, 61
covered

edge, 60
tree triple, 67

CPT, see cluster-partition tree
create, 12
cut, 11
cyclic order (of the edges), 17

decide, 39
diam, 37
diameter, 8, 37
dist, 9, 37

edge
-cluster, 11
boundary, 23
composite, 15
covered, 60
expansion, 24
free, 23
leaf-, 15
left boundary, 25
matched, 19
mergeable, 17
neighbor, 17
orphan, 19
path-, 15
predecessor, 17
right boundary, 25
simple, 15
single, 19
successor, 17
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eradicate, 13
ET-trees, 7, 50
expansion edge, 24
expansion node, 24
expose, 12
external boundary node, 11

free edge, 23

global properties, 4
global search, 38

lazy information, 64
leaf

-cluster, 11
-edge, 15

left boundary edge, 25
legal level increase, 61, 68
link, 11

matched edge, 19
maximal restricted partition, 18
maxweight, 8, 14, 36, 37
merge, 12
mergeable

clusters, 11
edges, 17
neighbor, 17

minimal leaf-cluster, 71
minimum spanning forest, 44
MLC, see minimal leaf-cluster
MRP, see maximal restricted partition
MSF, see minimum spanning forest
multilevel partition, 15

neighbor
edge, 17
non-path, 71
uncovered, 70

node
boundary, 10
expansion, 24

non-path neighbor, 71
non-tree edge, 48

orphan, 19

partition
cluster-, 14
maximal restricted, 18
multilevel, 15
strategy, 15

path
-ancestor, 11
-child, 11
-cluster, 11
-descendant, 11
-edge, 15
cluster-, 11
super-, 57

predecessor edge, 17

radius, 37
replacement edge, 49
right boundary edge, 25

simple edge, 15
single edge, 19
split, 12
ST-trees, 7, 36
successor edge, 17
super-path, 57

top-trees, 8, 10
topology trees, 7
tree-edge, 48
triple, 67

tree, 67
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