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Abstract

The main objective of this thesis is to understand why polymorphic sub-
type inference systems may be inherently difficult to scale up. This is done
through a study of the complexity of type size, constraint simplification and
constraint entailment in simple subtyping systems.

Simplification aims at presenting subtyping judgements in irredundant
and succinct form. It is a bottleneck problem for scalable polymorphic
subtype inference. Deciding entailment is a key problem in simplification
and in information extraction from subtyping judgements.

We study the structure of principal typings and the limits of simplifi-
cation in a variety of simple subtyping frameworks. Comparing the rela-
tive power of simplification in systems of increasing strength, we show that
all known frameworks for atomic subtyping lead to worst case exponen-
tial dag—size of principal typings, thereby indicating that presenting typings
succinctly is intrinsically harder than deciding typability, even in very well—-
behaved systems.

We study the complexity of deciding subtype entailment over lattices of
type constants, for all combinations of atomic, structural, non—structural,
finite and recursive subtype orders. Entailment turns out to be much more
complex than satisfiability, which is in PTIME for all structures considered.
We find that, while atomic entailment is linear time decidable, the addition
of syntactic structure alone renders the entailment problem intractable. We
show that entailment for finite structural subtyping is coNP—complete and
PSPACE—complete for structural recursive subtyping, thereby indicating
that recursive types incur additional computational complexity. Entailment
for finite and recursive non—structural subtyping is shown to be PSPACE-
hard, thereby indicating that, in the finite case, non—structural subtype
orders are more complicated than structural ones.
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Chapter 1

Introduction

The main objective of this thesis is to understand why polymorphic sub-
type inference systems may be inherently difficult to scale up. This is done
through a study of the complexity of type size, constraint simplification and
constraint entailment in simple subtyping systems. The remainder of this
introduction will explain our motivation in more detail.

1.1 The complexity of subtype inference systems

There are two major aspects of the complexity of subtype inference systems:
1. The complexity of the typability problem
2. The structure and complexity of typings

The first is the problem to decide, when given a program M as input,
whether M has a type in a given subtyping system. An important reason
for solving the problem is to obtain information about type safety [50] of a
program. The second aspect concerns representing and manipulating typings
efficiently. While the typability problem is fairly well understood by now,
the problem of representing and manipulating typings efficiently in subtype
inference systems is not. Whereas the combinatorial bottleneck problem in
deciding typability is to decide satisfiability of subtype constraints in partial
orders, one could say that the combinatorial bottleneck problem in repre-
senting typings is to decide entailment of subtype constraints. The former
problem has previously received more attention than the latter.

This thesis mainly investigates the second aspect of the complexity of
subtype inference, by studying the two closely related topics:
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1. The problem of subtype simplification
2. The problem of subtype entailment

Simplification aims at presenting typings in an irredundant and succinct
form. Deciding entailment is a key problem in simplification and in in-
formation extraction from subtyping judgements. The thesis falls in two
corresponding parts, Part I studies the former problem, Part II the latter.
The emphasis is on algorithmic and complexity aspects. In Part I we ex-
plore the limits of subtype simplification, in a variety of subtyping systems,
regardless of how clever we are at simplifying. In Part II we explore the
cost of subtype simplification by studying the computational complexity of
deciding entailment in a variety of systems. An overall message of the thesis
is:

o Simplification is complex, even in weak subtype logics, and more gen-
erally,

e Fven in simple and well-behaved subtyping systems, typings possess
highly complicated structure, which must be controlled in practice

The work presented in the thesis is intended to be foundational, but it
was directly motivated by practical concerns. We seek to understand what
features of subtyping systems contribute to their complexity, in the hope
that we may be in a better position to identify subtyping systems with good
scalability properties in the future.

In the remainder of this introduction we explain why the problems of
simplification and entailment are important in subtyping and why they lead
to interesting problems of complexity.

1.2 Simple subtyping systems

Simple subtyping [53] arises from the simple typed A—calculus (called A4 for
short) [8, 54] by extending it with a subsumption rule of the form

[sub) CCTHFM:7 Cp7<7
C,THEM:7

meaning that, whenever a program has type 7, then it also has any type 7’
larger than 7, with respect to the subtype order <. A typing judgement

CI'EFM:r
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expresses that the program M has the type 7 under the assumptions con-
tained in C' and I'. The subtyping system is a proof system for deriving
typing judgements. A program is typed under a set of subtyping constraints
C consisting of inequalities of the form 7 < 7/, where 7 and 7' are type ex-
pressions; the constraints express hypotheses about subtype relations which
must hold between the types for the program to be well-typed. The set T’
contains type assumptions of the form z : 7, one for each of the free program
variables z occurring in M. The relation C'>7 < 7/ holds if 7 < 7’ somehow
follows from the hypotheses in C. There are several possible relations we
can use to give meaning to [>. Whenever 7 < 7’ holds, we say that 7 is a
subtype of 7/ or that 7' is a supertype of 7. As a consequence of subsumption,
a subtyping system allows an object of type 7 to be type correctly used in
any context expecting a supertype of .

1.3 Uniqueness and size of principal typings

A very important new problem arising in subtyping systems as opposed to,
say, simple typed A—calculus and ML, is the breakdown of strong uniqueness
properties of principal typings. It is well known that principal types in A
and ML are unique modulo highly trivial equivalences. In A; there exist
principal typing judgements of the form I' = M : 7 which are unique up
to renaming of type variables [35], and ML has principal quantified type
schemes [19, 18] of the form V&.7 which are unique up to renaming of bound
variables, reordering of quantifiers and dropping of dummy quantifiers. A
similarly simple situation does not hold for subtyping systems, where equiv-
alent, principal typings for the same term may differ in highly non—trivial
ways. This is basically caused by constrained types in subtyping judgements.
Intuitively, a principal subtyping judgement of the form

CI'FM:r

typically prescribes a type 7 for M with a higher degree of freedom than the
corresponding simple principal type. However, the subtyping assumptions
appearing in C' may be necessary to constrain the type 7 to avoid too much
freedom. This gives rise to a complicated interplay between type information
and constraints. The complications appear to be inherent, and constrained
types have always been found to be necessary for the existence of principal
typings in subtyping systems [28, 29, 53, 37].
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Let us illustrate the points made above with simple examples. In the
subtyping system studied by Fuh and Mishra [29], a principal typing of the
function twice = Af. \x.f(f z) is

{a <8}, 0 F twice: (8 — a) = (8 — )

whereas the principal simple type for twice is (¢ - a) = (o = «a). To
indicate the nature of the difference, suppose we have type constants int
and real ordered by int < real in the subtyping system. Then the type
(real — int) — (real — int) is one possible type that twice has; however,
this type is not a substitution instance of the principal simple type. The
solution adopted in subtyping systems is to enrich typing judgements with
constraint sets that allow types with a higher degree of freedom than corre-
sponding simple types'. This way, the expected instances can be generated
from the type by substitutions that respect the subtyping hypotheses ex-
pressed in the constraints. Accordingly, we can generate the instance type
(real — int) — (real — int) from the principal subtyping shown, be-
cause the substitution {e»iint, 5 — real} satisfies the constraint set

{a < B} in the subtype order int < real. The constraint set is intuitively
necessary, because leaving the type (3 — «) — (6 — «) unconstrained
would not exclude invalid instances such as (int — real) — (int — real).

To see how uniqueness of principal typings breaks down, consider the
identity function Az.z. In the subtyping system studied by Fuh and Mishra
[28], this term has at least the following principal typings:

L{a—=pB<v,a<p},0FAzxz:y
2. {a<BL0F X2z 0> [
3. 0,0 F Xz —

It already requires non—trivial reasoning to realize that these typings can all
be regarded as equivalent, principal typings for the identity. The reader is
invited to sit back for a while and imagine how complicated the situation
could become for real programs.

The principal type of a simple typed or an ML—typed program is guaran-
teed to be the syntactically shortest possible type for that program, because
any other type can be produced from the principal one by substitution, and

'The type (8 = a) = (8 — ) has a higher degree of freedom than (o — a) = (a —
a), because the former type does not impose the constraint that all its type variables must
be the same.
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substitution can only increase the size of a type. This is another very sig-
nificant property which breaks down in subtyping systems, where generality
(principality) is no longer synonymous with succinctness. In fact, we will
see in this thesis that in some subtyping systems there are terms for which
all principal subtyping judgements must be exponentially larger than some
other typings for the same terms. As a less spectacular but immediately
accessible example, consider that the term twice above has the instance

0,0 b twice : (real — int) — (real — int)

which is shorter than the principal typing shown (we have removed the
constraint.)

1.4 Simplification

The situation described in Section 1.3 leads to the problem of subtype simpli-
fication. Simplifications are transformations on subtyping judgements which
aim at removing redundant information from typings. Redundant informa-
tion can be understood intuitively as unnecessary degrees of freedom. In our
example typings of the identity Az.z, we should clearly prefer the principal
typing shown last, because all freedom has been eliminated; the resulting
typing is evidently more informative and more succinct than the others.

Even though several type inference algorithms have appeared for sev-
eral subtyping systems (e.g., [53, 28, 29]), it is generally recognized that
the problems mentioned above represent a serious obstacle to practicable,
larger scale subtype inference. To quote from [37], “the main problems
seem to be that the algorithm is inefficient, and the output, even for rela-
tively simple input expressions, appears excessively long and cumbersome
to read”. The problem has generated a significant amount of work which
aims at simplifying constraints in the typings generated by subtype infer-
ence algorithms; works addressing the subtype simplification problem in-
clude [28, 17, 41, 67, 21, 59, 73, 22, 4, 25]. As is argued in [4], simplification
is beneficial for at least three reasons: first, it may speed up type inference,
second, it makes types more readable, and, third, it makes the information
content of a typing more explicit.

The point about the speed of type inference comes out most forcefully
when we consider polymorphic subtyping, where ML-style parametric poly-
morphism [50] is combined with subtyping. In addition to the rule [sub], such
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systems contain rules for generalization, instantiation and polymorphic let:

[gen] CUC,TFM:71 (a; € FV(C,T))
C,T+M:Va.C'/t

[insf] C,TF M :Va.C'/r C > C'{a@ 7}
C,T+M:r{@nt}

[let)f CTFHM:o CTU{z:0}FN:7
Cl'Hletx=Min N: 71

Here, type schemes o of the form V&@.C/t are polymorphic qualified type
schemes [40], allowing instantiation of the quantified variables, provided
that the instantiation respects the subtype constraints in C. If the ML type
inference algorithm W is adapted to polymorphic subtyping, then it will

typically have a case of the form:

W(F’a:) = if F(a:) = V&;C/T .
then (C{é& G}, 7{& (})

where ﬁ are fresh

The noticeable thing here is that polymorphic instantiation of qualified type
schemes requires that fresh versions of the constraint set C get duplicated
into each context of polymorphic use of the let—bound variables z. This is
potentially very costly, and it is generally agreed that simplification prior to
instantiation is essential for scalable performance of polymorphic subtype
inference [59, 73, 4, 25].

Simplifications must satisfy soundness conditions which guarantee that
they preserve the information content of typings. In this thesis, we take
the standard approach of regarding the information content of a typing
judgement to be the set of all its instances. Let us write t <, t' to
signify that the subtyping judgement t’ is an instance of the judgement
t. Accordingly, two subtyping judgements t and t’ for the same term are
considered equivalent, written t =, ; t’, if and only if they have the same
instances, or, equivalently, if and only if they are instances of each other. The
soundness condition for a transformation +— on judgements then becomes
the condition

tst =t~ t

The condition guarantees that the transformation — loses no typing power;
in particular, a sound transformation will preserve principality of typings.
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1.5 Instance

It turns out that there are several meaningful definitions of <;;,¢¢ in subtyp-
ing systems. A natural requirement on any instance relation is formulated
by Hoang and Mitchell in [37]. Here, an instance relation <, is called
sound if and only if we have

1. The relation <;,s is independent of terms, ie., C,I' F M : 7 <;pst
C'"T"FM:7 ifand only if C,T'F N : 7 <jpst C', IV F N : 7' for all
terms N.

2. The relation <;y,s; preserves derivability of judgements, i.e., if C,T F
M : 7 is a derivable well-typing of M and C,T'F M : 7 <jpst C', T
M : 7', then C',T" + M : 7' is again a derivable well-typing of M.

While the second requirement hardly needs explanation, the first one is
perhaps more subtle. Even so, it is natural and it is satisfied by all known
instance relations in any known type system. It effectively says that a notion
of instance should only depend upon the logical rules of the type system.
Here, a rule is called logical, if it can be applied to a term regardless of the
structure of the term. In simple subtyping, the only logical rule is [sub].

As a consequence of the soundness properties above, a notion of instance
for simple subtyping will depend in an essential way on the relation > used in
the subsumption rule. There are several possible choices for >. The relation
most widely used in earlier formulations of subtyping [53] is a syntactic
proof relation +p. Subsumption judgements C p 7 < 7/ mean that 7 < 7/
is a provable consequence of the hypotheses C. The proof system assumes
a finite poset P of base types (type constants), such as, e.g., int < real.
Typically, the relation -p has been very weak, axiomatizing only the general
partial order properties (reflexivity, transitivity and anti-symmetry of <)
together with rules that allow the order on P to be lifted from base types
to constructed types, including the contra—variant rule [53] for ordering of
function types:

[arrow] C Fp 11<m Ctp <)
Cltpm—=1nlt—

The first instance relation suggested for simple subtyping was given by
Mitchell [53] and used the relation -p in the subsumption rule. The relation,
called <yeqr here, is defined by setting C,T' = M : 7 <year C', T' = M : 7' if
and only if there exists a substitution S such that
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1. C'Fp S(C)
2. 7'=5(7)
3. S(T) C T

An important property of <, eqx is that the type system has the principality
property with respect to it: any typable term has a principal typing with
respect t0 <yeak, Se€ [53, 29]. The relation <yeqr i not very interesting,
though, as a foundation for simplification, since it does not validate even
quite simple typing transformations. For instance, one cannot eliminate
any variable from the typing {a < },0 Fp Az.z : @ — (3 without losing
principality with respect to <yeqk, due to the requirement 7 = S(7).

This inspired Fuh and Mishra [28] to introduce a more powerful notion of
instance, called “lazy instance”, which was still based on the proof relation
Fp, but which exploited the subtype logic to a larger degree. The aim
was to obtain a larger instance relation (relating more typings) in order to
support more powerful simplifications. The rationale is that, if the relation
<inst 18 large, then the condition t — t' = t ~;,4 t’ allows more powerful
simplifications (—). The lazy instance relation will be denoted <y, here?,
and was defined by setting C,T' - M : 7 <4y, C',T" = M : 7" if and only if
there exists a substitution S such that

1. C'Fp S(C)
2.C'kp S(r) <7
3. D(T) C D) and Vz € D(T). C' Fp T'(z) < S(T'(x))

where D(T') is the domain of the assumption set I', regarded as a map from
term variables to types. Clearly, <yesk € <syn-

Intuitively, <,y allows some subtyping constraints on the type of a pro-
gram M to be deferred to the (unknown) future contexts of use of M. This
validates the adoption of the judgement (), ) - A\z.xz : @« — « as principal for
the identity. Often, a simplification step can be expressed as the application
to a judgement of a substitution which eliminates variables by collapsing
them. For example, using <y, we can validate the transformation

{a<pBhb-dzz:0a—>03 — 0,0FIzz:a—

*We call <.y, a syntactic relation, because it is still based on the proof system for p
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by applying the substitution {3 +— «} and realizing that the resulting judge-
ment is equivalent to the original one with respect to ~yp, at each simpli-
fication step:

{a<p}L0F X zz:a0—> 0

{a<allFXzz:00—>a —

0.OFXrr:00 > @

Here, the second judgement arises from the first by mapping « and g to
a, thereby transforming the constraint set to the trivial constraint a < «,
which can be eliminated entirely.

1.6 Entailment

It is a natural next step, in the process of empowering simplifications, to use
more powerful relations than Fp to play the role of > in the type system
and in the notions of instance. Since the weakness of Fp lies in the fact that
it does not exploit the algebraic properties of the specific order structure
generated by P, it is natural to turn to a model theoretic notion of entail-
ment, leading to what is sometimes called “model theoretic” or “semantic”
subtyping frameworks. This development took place in recent years both
within the field of subtyping and set constraint based program analysis.

If C is a constraint set and ¢ is an inequality (such as a subtype in-
equality or a set inclusion), we say that C entails ¢, written C = ¢, if every
assignment of meanings to expressions that satisfies all the constraints in C
also satisfies ¢; an inequality is satisfied under the assignment, if it is true in
the intended model. The intended model for subtyping constraints consists
of ordered ground types (and for set constraints, the powerset lattice over a
Herbrand universe.)

A main motivation in entailment based subtyping is to support, justify
and reason about powerful simplification. As a very simple example, suppose
that C is the set of subtyping constraints {a < int, < bool,y < o,y <
(3}; we assume that int and bool are incomparable types, and that there
is a smallest type, denoted 1, and no other base types. Then we have
C = v = L. Based on this entailment, we might simplify C' by substituting
1 for ~, yielding {v = L,a < int, < bool, L <a, Ll < (}; since L < is
true no matter what ¢ is, we can simplify further, yielding just C' = {y =
1,a < int, < bool}. The justification of simplifying C' to C’ is that
CEC" and C' |E C, ie., C and C' are logically equivalent. Using instance
relations such as <y, based on |= rather than F-p, we can typically reduce
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the constraint set further, leaving just the set {a < int,3 < bool} after
suitable substitutions on the entire typing judgement.

Recent work in subtyping systems and in set constraints using notions
of constraint entailment includes [3, 14, 59, 73, 22, 4, 25, 48, 13].

With this step to entailment based subtyping taken, we have arrived at
the simplification frameworks under study in this thesis. Our reference type
system will be one in which the subsumption rule [sub] uses various forms
of entailment relations (=) in the réle of >.

1.7 Main problems and results

We are now in a position to explain what the main problems studied in this
thesis are, and what we have achieved.

The structure and complexity of principal typings (Part I)

Since the objective of simplification is to eliminate unnecessary degrees of
freedom in typings, a natural way to test the power of a simplification frame-
work is to ask:

e How many distinct variables must be present in a principal typing, in
the worst case, regardless of how clever we are at simplifying?

Here, the number of distinct variables is taken as the measure of freedom,
and simplification is viewed as a variable elimination procedure (see also [4]
for this view.)

In Part T of the thesis, we will answer the question above for a vari-
ety of simplification frameworks, based on notions of instance of increasing
strength. We show that all known instance relations lead to worst case ez-
ponential asymptotic growth of the number of distinct variables that must
be present in principal typings in atomic subtyping systems. This holds no
matter how clever we are at simplifying typings relative to a given instance
relation. The number of variables is measured as a function of the size of the
terms being typed. Atomic systems allow only type variables and constants
to occur in constraint sets.

We argue that the exponential growth in the atomic case also charac-
terizes the degree of freedom of typings inherent in non—atomic systems,
because such systems only bypass exponential growth by keeping informa-
tion implicit which is forced to be explicit in atomic systems.
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We compare a series of instance relations with respect to the simpli-
fications they validate, and we find that they can be separated by expo-
nential gaps, in the sense that simplifications under stronger relations can,
in the extreme, yield exponential compression of typings in comparison to
weaker relations, even though none of the instance relations guarantee sub—
exponential size of principal typings.

The question above is closely related to the question of type size. It is
well-known that principal types in A\; grow exponentially, in the worst case,
under textual representation but at most linearly under dag-representation
(see [42]), and principal ML types grow doubly exponentially under textual
representation but at most exponentially under dag-representation (see [42]
and [54, Chapter 11.3]). Here, type size is measured as a function of the
size of the term being typed. The common characteristic of A; and ML in
this respect is that in both systems dag-representation yields exponential
compression of types. The question of asymptotic worst case type size is not
so well understood for subtyping systems. The only previous result in this
area was given by Hoang and Mitchell, who showed that the size of constraint
sets must grow at least linearly in the size of terms for principal typings with
respect to any sound notion of instance (as defined in Section 1.5).

Our results show that, relative to any known instance relation, subtyp-
ing systems are characterized by the absence of compression under dag—
representation. This is a reflection of a fundamental difference between
subtyping systems and systems such as A; and ML, which are based on
equality constraints (in the sense of [74]) rather than inequality constraints.
Another manifestation of this difference is that, in subtyping systems, it is
typically much more difficult to present principal typings succinctly than it
is to decide the typability problem. In the other systems, these problems
have the same complexity.

The study of type-size for subtyping systems is considerably more com-
plicated than for systems such as A; and ML, because of the lack of strong
uniqueness properties of principal typings (Section 1.3), and our results re-
quire new methods.

Part I of the thesis extends results published by the author in [65].

The complexity of entailment (Part IT)

Verifying that a simplification step +— is sound amounts to checking that
the condition
t=t =t~ t
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is satisfied. With instance relations <;,s; based on entailment, this check
essentially involves deciding the entailment problem:

e Given a constraint set C and types T and 7', is it the case that C |
T<7'?

If simplification is automated, then the simplification algorithm typically has
to decide entailment problems in order to justify (or reject) a potential sim-
plification step. It is therefore interesting to develop entailment algorithms
and to know the computational complexity of deciding entailment.

In Part II of the thesis, we study the computational complexity of decid-
ing entailment over a variety of subtype orders, viewed as ordered structures
of labeled trees. We confine ourselves to considering simple and very well—-
behaved structures, generated from lattices of base types, for all of which
the satisfiability problem is in PTIME.

We prove that non—structural subtype entailment is PSPACE-hard, both
for finite trees (simple types) and infinite trees (recursive types). For the
structural subtype ordering we prove that subtype entailment over finite
trees is coNP—complete and entailment over infinite trees is PSPACE-complete.
Our proof methods centre on viewing constraint sets as nondeterministic fi-
nite automata and may have independent interest.

These are the first complexity—theoretic separation results that show
that, informally, non—structural subtype entailment is harder than struc-
tural entailment, and recursive entailment is harder than non-recursive en-
tailment. More precisely, assuming NP # PSPACE, we show that both fi-
nite non—structural and recursive structural subtype entailment are strictly
harder than finite structural subtype entailment.

The results show that passing from the satisfiability problem to the en-
tailment problem exposes an entirely different structure of complexity, since
the satisfiability problem is in PTIME for all structures considered. Since
the satisfiability problem is the bottleneck in deciding typability, our re-
sults again confirm that presenting simplified typings is much harder than
deciding typability in subtyping systems.

Summaries of core results presented in Part II of the thesis have been
published jointly with Fritz Henglein, in [33, 34].

A personal note on simplicity

It is a common characteristic of all systems considered in this thesis that
they are simple and logically weak. In Part I, this is manifested especially
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in the decision to consider simple subtyping systems, and in the fact that
our constraint languages have no algebraic operators at all, only inequalities
between terms built from variables, constants and syntactic constructors will
be allowed at any time. In Part II, simplicity is manifested in the decision
to consider only lattice-based orders. This is the result of a very conscious
decision. In general, most of my work is driven by a desire to discover
program logics that have a chance to scale up to very large programs. To
me, at least, a central message of this thesis is that, when seen through the
spectrum of the problems of simplification and entailment,

o FEuven the simplest and weakest subtype logics are very complex

and the lesson I personally draw from this is that the logics considered in this
thesis may have to be further limited, in some cases to a very considerable
degree, before they have a chance to become useful in the setting of very
large scale program analysis.

Ultimately, my interest lies in polymorphic subtype based program anal-
ysis. This is where the problems studied in this thesis are most forcefully
present and have the greatest practical relevance. The decision to consider
only simple subtyping was made, because I believe that the most funda-
mental problems in subtype simplification are already present and are seen
in sharper focus at this level. Moreover, highly expressive formalisms have
already been studied by others. Notably, a very impressive body of knowl-
edge has been obtained for set constraint languages containing full boolean
machinery. Given this, I decided that it might be useful to contribute to our
understanding of very weak subtype logics.



Chapter 2

Subtype orders and
subtyping systems

In this chapter we introduce basic concepts from the literature about sub-
type orders (Section 2.1), we define the subtyping systems under study (Sec-
tion 2.2), and we recall some previous results from the theory of subtyping
(Section 2.3), which will be used pervasively in the thesis. Section 2.3 will
also point to a few background results provided in this thesis. The reader
may wish to just skim quickly through the chapter in order to return to it
for more detailed reference later when needed.

2.1 Subtype order and subtype constraints

The distinctive feature of subtyping systems is that they exploit order struc-
tures on types. At the level of generality needed for this thesis, types are
best viewed as labeled trees. We will therefore begin by defining subtype
orders in the form of ordered tree structures.

2.1.1 Ordered trees

Let ¥ be the ranked alphabet of constructors, ¥ = B U {x,—}; here
B = (P,<p) is a finite poset of constants (constructors of arity 0, to be
thought of as base types, such as, e.g., int, real) and x,— are binary con-
structors. The order on P defines the subtype ordering on type constants
in the standard way (see, e.g., [53] for a full introduction.)

Let A be the alphabet A = {f,s,d,r}, and let A* denote the set of

14
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finite strings over A; elements of A* are called addresses. Typical elements
of B are ranged over by b, typical elements of A are ranged over by a, and
typical elements of A* are ranged over by w. We consider types as labeled
trees in the style of [45].

A tree over X is a partial function

t:A* > X%
with domain D(t), satisfying the following conditions:

e D(t) is non-empty and prefix-closed

if t(w) = x, then {a € A | wa € D(t)} = {f, s}

if t(w) =—, then {a € A | wa € D(t)} = {d,r}

if t(w) € B, then {a € A |wa € D(t)} =0

A tree t is finite (resp. infinite) if and only if D(t) is a finite (resp. infinite)
set. If w € D(t) and w is not a proper prefix of any string in D(t), then
w is called a leaf address of t (i.e., t(w) € P); we write Lf(t) to denote the
set of leaf addresses in ¢. If w € D(t) and w is not a leaf address, then
w is said to be an interior address of t; we write In(t) to denote the set of
interior addresses in t. Notice that, whenever w is an interior address in ¢,
then ¢(w) is completely determined by D(t), e.g., t(w) = x if and only if
{wf,ws} CD(t).

We let Ty denote the set of trees over ¥. For a partial order <, we let <°
denote the order < itself and <! the reversed relation, >. For w € A*, we
define the polarity of w, denoted 7(w), to be 0 if w contains an even number
of d’s and mw = 1 otherwise. We write <* as a shorthand for <™®). The
reversal of order in accordance with polarity captures contravariance of the
subtype order with respect to the function space constructor — (see [45].)
If ¥ is equipped with a partial order <y, we induce a partial order on T
by setting

t < t'if and only if Yw € D(¢t) N D(t). t(w) <¥ t'(w)

Let 7y be the set of finite trees over ¥.. Then T inherits the order on Ty,
so that the ordered structure 7y is a conservative extension of ’TEF
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X \—>
L

Figure 2.1: Lattice ¥ for non-structural subtype order

2.1.2 Type expressions

Let V be a denumerable set of variables, distinct from elements of ¥. Type
expressions (also called terms or just types) over X are finite trees in Txy,
where elements of V are regarded as constructors of arity 0 (however, only
members of ¥ of arity 0 are called constants); type expressions are ranged
over by 7. Type expressions that are either constants or variables are referred
to as atoms or atomic types (they have no complex syntactic structure.)
Atoms are ranged over by A. The set of terms is denoted 7s (V). Terms can
be defined by the grammar

T Alrx7'|t—=>7
A == alb

where A ranges over atoms, a ranges over V and b ranges over B = (P, <p).

2.1.3 Non-structural subtype order

The non—structural subtype order is obtained by fixing P to be the two—
point lattice, P = {L, T}, and ¥ to be the set {x,—, T, L} organized as
a lattice by the order 1 < o, 0 < T for ¢ € .. The Hasse-diagram of X
is shown in Figure 2.1. See [45] for further details. This organizes Tx as
a complete lattice under the non—structural order. We will sometimes use
a special name for the structure 7y under this ordering. In such cases, we
will denote the set of non-structurally ordered trees by 7x[n|, and the set
of finite trees under the non-structural order by T3 [n].

A characteristic feature of the non—structural order is the ability to com-
pare trees with different “shapes” (domains). For instance, one has | <t
and t < T for all ¢.
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Figure 2.2: Ordered set ¥ for structural subtype order

2.1.4 Structural subtype order

The structural subtype order is obtained by fixing 3 to be ¥ = PU{x, —},
where the order <p on P is extended to ¥; that is, by adding x and —
as new, incomparable elements to P. The Hasse-diagram of ¥ is shown in
Figure 2.2. We will sometimes use a special name for the structure 7y under
this ordering. In such cases, we will denote the set of structurally ordered
trees by Tx[s], and the set of finite trees under the structural order by T+ [s]-

A characteristic feature of the structural order is that, for any two trees
t and t' to be comparable, ¢ and ¢' must have the same “shape” (domain);
the ordering of such trees ¢ and #' is reducible to the way corresponding
constants at the leaves of ¢ and ¢’ are ordered in P.

Lemma 2.1.1 In the structural subtype order, we have t < t' if and only if
the following conditions hold:

1. D(t) =D(t)
2. for every interior address w of t and t', one has t(w) = t'(w)

3. for every leaf address w of t and t', one has t(w) <% t'(w)

PROOF The “if” direction is obvious from the definitions. For the “only
if” direction, assume ¢t < ¢’ and that (w.l.0.g.) there is a string w of shortest
length such that w € D(¢) \ D(t'). Write w = w'a, a € A (this is pos-
sible, since the empty string is in both domains), then w' € D(t) N D(t)
with t(w') <y #'(w'); the requirements on the order <y together with the
requirements on tree domains then show that ¢(w’) and ¢'(w’) must be the
same binary constructor, and hence w'a € D(t) if and only if w'a € D(¥'),
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a contradiction. This shows that D(t) = D(t'), and the other conditions
follow easily from the definition of <s. O

Lemma 2.1.1 shows that we could as well have defined the order < on trees
by the three conditions of the lemma, and henceforth we shall tacitly assume
this.

Suppose that the poset (called P above) of constants happens to be a
lattice, L. For each tree t in 7x[s], let L; be the set of trees {t' € Tx[s] |
D(t) = D(')}, and let L = {L; | t € Tx[s]}. Using Lemma 2.1.1 it is easy
to verify that each L; is a complete lattice (under the order inherited from
Tx[s]). Moreover, the ordered structure 7x[s] is the disjoint union of all the
distinct L;:

Ts[s] = L—lj L

LeLl

2.1.5 Summary of structures

It is convenient to summarize in one place all the ordered structures we shall
be working with:

P = A finite partial order of type constants
L = A finite lattice of type constants

Ts[s] = General trees with structural order
Ts[n] = General trees with non—structural order
T¥[s] = Finite trees with structural order

T¥[n] = Finite trees with non-structural order

To avoid heavy notation, we shall sometimes avoid using these explicit
names. In such cases we will stipulate, within a given context of discus-
sion, that 7y denote a particular one of the structures mentioned above.

2.1.6 Subtype inequalities and constraint sets

A constraint set is a finite set of formal inequalities of the form 7 < 7/,
where 7 and 7/ are type expressions. We sometimes let ¢ and 1) range over
inequalities, when we are not interested in the form of the component type
expressions. We write Var(C) to denote the set of variables that occur in C.
The notation <" may be extended to formal inequalities (denoting reversed
formal inequality if 7(w) = 1.) We write 7 = 7’ (formal equality) as a
shorthand for the simultaneous inequalities 7 < 7/ and 7/ < 7.
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Type expressions and constraints will be interpreted in the various struc-
tures of ordered trees, by mapping type variables to trees. Under such a
mapping, type expressions denote trees and constraints are predicates over
ordered trees. By slight abuse of words, a constraint set C' is called struc-
tural (resp. mon—structural) if its intended interpretation is in structurally
(resp. non-structurally) ordered trees. Notice that this has nothing to do
with the syntactic form of constraint sets (which is in all cases the same),
only the intended model.

A constraint set C is called atomic if every inequality in C has the form
A < A, ie., only atomic type expressions occur in C. In the literature,
atomic inequalities are sometimes called flat inequalities.

2.1.7 Recursive and finite subtype orders

Both structural and non—structural subtype constraints have finite and infi-
nite variants, according to whether variables range over finite or infinite
trees; in the infinite case, we talk about recursive subtype constraints.
Again, the language of subtyping constraints remain the same, viz. in-
equalities 7 < 7/ between simple type expressions, whether we consider the
model of infinite trees or the model of finite trees. There will be constraints
such as for instance a = a x § which have solutions in the former case but
not in the latter.

In the case of finite trees, we can define the subtype order by simple
logical systems, and it may sometimes be convenient to refer to that formu-
lation. For the finite, structural case the subtype order can be defined by
the rules given in Figure 2.3. The subtype logic defines provable judgements
of the form C Fp 7 < 7/, meaning that the inequality 7 < 7' is a provable
consequence of the subtype assumptions in constraint set C. For the finite,
non-structural case, one adds the axiom schemes | < 7 and 7 < T to the
rules of Figure 2.3.

2.1.8 Valuation, satisfaction, entailment

In different contexts we shall fix one of the ordered structures mentioned in
Section 2.1.5 to be the current constraint model. We then consider valu-
ations, satisfaction and entailment relative to this fixed model. Let M be
any one of the ordered tree structures mentioned above.

A waluation is a ground substitution, i.e., a map v : ¥V — M, extended
canonically to a substitution v : Tx(V) — T.
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[const] C Fp b< V', provided b <p b’
[ref] Chtp <7
[hyp] Cu{r<r} tp <7

[trans] C Fp 7<7 Cltp <7
Clkpr<t

[prod] Ctp <7 Chtpn<mn
Chtp X171 XT1H

[arrow] C Fp 11<7 Clkp <
Chrrpmn—onlt—

Figure 2.3: Subtype logic for finite structural subtyping over an arbitrary
poset P

A valuation satisfies a constraint 7 < 7/, written v = 7 < 7/, if v(7) <
v(7') is true in the (appropriate, structural or non-structural) ordered struc-
ture of (finite or infinite) trees, 7x. We write v = C if v satisfies all the
constraints in C, i.e.,

vr<reCovEr< T

A constraint set C' entails a constraint 7 < 7/, written C = 7 < 7/, if
every valuation satisfying all the constraints in C also satisfies the constraint
7 < 7/, in symbols

VoV o MovEC=>vETLST

Often we shall leave M implicit in our notation, as is done above, but
sometimes we will make it explicit, by writing |=x.

There are standard logical decision problems associated with the notions
of satisfaction and entailment. The satisfiability problem is

e Given a constraint set C' as input, determine whether there exists a
valuation satisfying C' (in the appropriate structure of ordered trees)



CHAPTER 2. SUBTYPE ORDERS AND SUBTYPING SYSTEMS 21

The entailment problem is

e Given a constraint set C and variables «, 3 as input, determine whether
C |= a < 8 holds (in the appropriate structure of ordered trees)

Notice that the problem of deciding C' = 7 < 7/ can be stated in the above
mentioned form, modulo a trivial transformation, namely as the problem
CU{a =r1,8=1"} F a < 3, where a and 3 are fresh variables not occurring
in C (recall that we use formal equality, 7 = 7', as an abbreviation for the
two inequalities 7 < 7/ and 7/ < 7).

We say that a set C entails another set C' if and only if C =7 < 7/
for all 7 < 7/ in C'. We say that C and C' are logically equivalent, written
C ~ (' ifand only if C = C" and C' = C.

2.2 Subtyping systems

The subtyping systems considered in this thesis all arise from extending
the simply typed A—calculus [8] (As for short) by a rule of subsumption, as
explained in Section 1.2. Figure 2.4 gives the rules of our standard system.
This system will be referred to as A< for short. The subsumption rule,
called [sub] in Figure 2.4, uses the entailment relation |= to define the valid
subsumptions. The rules in Figure 2.4 is a logic for deriving judgements of
the form
C,TFpM: 7

Here, C is a constraint set containing formal inequalities of the form 7 < 7/
between simple type expressions; I" is a set of type assumptions of the form
x : 7, one assumption for every variable z free in M. The rule [base] assigns
to a term—constant ¢ a pre-defined type of ¢, called TypeOf(c). The system
is often parametric in a finite poset P of base types, as signified by the sub-
scripted turnstile, Fp. We say that a judgement is derivable if it has a proof
in the system. Using the rules in Figure 2.4, we can define a number of dif-
ferent variants of subtyping by fixing any one of the structures summarized
in Section 2.1.5 to be the intended constraint model. The intention is that
a typing judgement C,I' -p M : T represents a well-typing of the A—term
M if and only if

1. the judgement is derivable, and

2. the constraint set C' of the judgement is satisfiable in the intended
structure
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[var] C,TU{z:7}kpx:7
[base] C,T' Fp c: TypeOf(c)
[abs] CTU{z:7}FpM:7

C,TkpXzM:7— 7

[app) C,TFpM:7—7 CTUFpN:T
CTtpMN:7

[sub] C,ltpM:7 CETL<T
CkpM:7'

Figure 2.4: Subtyping system

We then have the following catalogue of different subtyping systems, all of

which have been studied in the literature on subtyping (main references are

given below):

e Atomic subtyping is obtained by requiring that only atomic constraint

sets may occur in typings and fixing the constraint model to be a
finite poset P of base types. The structure of P is significant for the
properties of the system. In particular, if P is a lattice, then we talk
about atomic subtyping over a lattice.

Structural subtyping is obtained by fixing the constraint model to be
Tz[s] or T [s]. In the former case, we have structural recursive sub-
typing, and in the latter case we have finite structural subtyping. In
each case, the structure ¥ = B U {—, x} is significant. In particular,
if B=(L,<p) is a lattice of base types, we have structural subtyping
over a lattice (in either the recursive or the finite variant).

Non-structural subtyping is obtained by fixing the constraint model
to be Tx[n] or Ty [n]. In the former case, we have non-structural
recursive subtyping, and in the latter case we have non-structural finite
subtyping.

Many of the systems discussed in the literature have been based on a syn-
tactic proof system for derivable judgements, which arises from the rules in
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Figure 2.4 by exchanging the relation = in the subsumption rule [sub] with
the relation Fp defined in Figure 2.3. In the syntactic version, atomic and
finite structural subtyping was introduced and studied by Mitchell [51, 53]
and subsequently many others, including Fuh and Mishra [28, 29]. Struc-
tural recursive subtyping arises as a natural generalization and has been
studied by, among others, Tiuryn and Wand [72]. Non-structural recur-
sive subtyping was introduced by Amadio and Cardelli [5, 6], and its finite
version corresponds to Thatte’s partial types [69, 70]; type inference with
non-structural subtyping has been investigated in a series of papers authored
(in various combinations) by Kozen, O’Keefe, Palsberg, Schwartzbach and
Wand [45, 44, 57, 56, 58].

2.3 Basic concepts and properties

This section concerns background information about basic concepts and
properties of subtyping systems, which will be pervasive. The properties
are mainly given for the non-recursive, structural case. Some of the prop-
erties will be generalized to other systems later.

The following concepts will be pervasive:

Definition 2.3.1 (Weak unifiability) If C is a constraint set, x is an arbi-
trary, fixed constant and 7 a type expression, let 7* be the type expression
which arises from 7 by replacing all constants in 7 by the same constant *.
Define the set E¢ by

Eg={rf=n|n<neC}

We say that C' is weakly unifiable if and only if E¢ is unifiable. In the
case of finite, structural subtyping, unification is tacitly understood to be
non-circular (i.e., it has the occurs—check), whereas unification is implicitly
taken to be circular for the case of recursive, structural subtyping. We let
Uc denote the most general unifier for E¢ (under circular or non-circular
unification, as appropriate). O

Definition 2.3.2 (Constraint closure) A constraint set C is said to be
closed if and only if the following conditions are satisfied:

o (transitivity)
nm<nelCn<<nelC=>n<<el
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e (product decomposition)
7'1><7'2§7'3XT4€C:>{7'1§7'3,7'2§7'4}§C

e (arrow decomposition)
7'1—>7'2§73—>T4€C:>{73§71,72§T4}§C

We define the closure of C, denoted CI(C), to be the least closed constraint
set containing C. We let C* denote the transitive closure of C' (the least set
containing C closed under the transitivity rule above.) O

Definition 2.3.3 (Consistency) There are standard notions of consistency
for subtyping constraint sets (see, e.g., [71, 59]), but the definition for non—
structural sets is slightly different from the one used for structural sets. A
non-structural constraint set C' is called consistent if and only if at least one
of the following conditions are satisfied for every inequality 7 < 7’ € CI(C):

e 7=_1,0r

o 7'=T,o0r

Con(7) = Con(7"), or
e 7 or 7' is a variable.

Here Con(7) denotes the main constructor of 7. A set, which is not consis-
tent, is called inconsistent.

We now define what it means for a structural constraint set to be consis-
tent. A set C' is called ground consistent, if b < b € CI(C) implies b <p ¥V,
for all b,b' € P. A structural set C is called consistent if and only if it is
weakly unifiable and ground consistent. O

Definition 2.3.4 (Substitution) A substitution S is a total function map-
ping type variables to trees, and a substitution is lifted homomorphically to
types. The support of S, written Supp(S), is {a € V | S(a) # a}, ie., the
set of variables not mapped to themselves by S. If the support of S is finite
with Supp(S) = {a1,...,a,}, then we sometimes write just

S={a s S(ar),...,0n s S(an)}

If V. C V then the restriction of S to V, denoted S |y, is the substitution S’
such that S’(a) = S(a) for « € V and S’(a) = «a for a ¢ V. The notation

Se{ar —v1,...,an = vp}
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refers to the substitution defined by

i if 8=0q
S@®{ar = vy,...,e5v,}(0) = { g(ﬁ) i)t}ferw(ilse

If S(a) is an atom (i.e., a constant in P or a variable) for all o then S is
called an atomic substitution. If S(a) # S(B) for all a, 8 € V with a # £,
then S is said to be injective on V. If S maps all variables in V' to variables
and S is injective on V', then S is called a renaming on V.

Ift=C,'Fp M : 7 is a typing judgement, then we let Var(C), Var(I')
and Var(7) denote, respectively, the type variables appearing in C, T', 7.
We let Var(t) = Var(C) U Var(I') U Var(7). If S is a renaming on Var(t), we
sometimes say that S is a renaming on t, for short. For constraint set C' we
write S(C) = {S(7) < S(7') | < 7' € C}, and for type assumption set I’
we write S(I') = {z : S(7) |  : 7 € I'}. We sometimes write the application
of a substitution with finite support in reverse order, as in C{ex A}. O

2.3.1 Matching

This section mainly concerns finite structural subtyping.

A distinctive feature of structural as opposed to non-structural subtyping
is the first property of Lemma 2.1.1: for two trees to be comparable, they
must have the same shape (domain.) This entails (as is well known, see [72])
that any satisfiable constraint set must be weakly unifiable. As a further
consequence of this, a recursive inequality, such as a < « X 3, can only be
solved by mapping the recursion variable («) to an infinite tree in which the
recursion is “unwound” into an infinite branch (e.g., @ = py.y x 8 would be
a solution for any value of .)

More precisely, let us say that two trees (or type expressions) t; and to
C are matching if and only if D(t1) = D(t2) (i-e., t1 and ty have the same
shape). A constraint set C is called matching if and only if we have 7 and
7!/ matching whenever 7 < 7/ € C.

We now turn to the notion of a most general matching substitution (see
[53]) for finite, structural subtyping. Let Uc be the most general (non—
circular) unifier of Ex for a weakly unifiable and structural set C. Let
u$ = Uc(a), and let {ay, | w € A*} be a set of variables not occurring in
C. For each variable a in C define the term 6S with D(0$) = D(uf) and
with

0 () = { uf(w) fwe In(u%)
Qy if w e Lf(ug)



CHAPTER 2. SUBTYPE ORDERS AND SUBTYPING SYSTEMS 26

Define the substitution ¢ from terms to terms by setting
Oc(a) = 63

For the case of finite, structural subtyping, a matching substitution for a
constraint set C' is a substitution S : V — Tx (V) such that S(C) is matching.
If C is weakly unifiable, then O¢ is a most general matching substitution for
C, i.e., O¢(C) is matching, and for any other matching substitution S for
C' there is a substitution R such that S = R o ©¢ holds on the variables
occurring in C.

These properties are standard for finite, structural subtyping in the liter-
ature (see [53] for the finite case); we shall generalize the notion of matching
to the case of structural, recursive subtyping later in this thesis.

Lemma 2.3.5 (Match Lemma) In the model Ty [s] one has:
1. If v = C, then v(C) is matching.

2. If v E C, then v = v' 0 O¢ holds on the variables in C for some
valuation v'

3. CET1<71"if and only if Oc(C) E O¢ (1) < Oc(7)

4. If C is an atomic, satisfiable set and C |=p 7 < 7', then 7 and 7' are
matching.

PROOF See Appendix A.1l. m|

This property holds for both finite and infinite structural subtyping.

Example 2.3.6 (Matching)
Let C be the constraint set

C={a<BxBB<x0b}
Then one has
Oc¢(B) = By x Bs and
Oc(a) = (app X afs) X (asp X ass)

Oc(v) = Ve
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Oc(d) = de

So the set O¢(C) has inequalities
(app X ays) X (asp X ass) < (B x Bs) x (B x Bs)
Br X Bs < Ye X de

The following example illustrates two important properties of O¢:

1. The substitution ©¢ may (even in the absence of type recursion) incur
an exponential blow—up in the size of types, but

2. If ©¢ maps a variable to a finite type, then that type must have depth
at most linear in the size of C.

Example 2.3.7 (Exponential blow—up)
Let C be a constraint set of the form

C ={a; < ajt1 X Qiy1}iz=1.m

Then it is easy to verify that the tree ©¢(aq) has an exponential number
(exactly 2™) leaves. However, the tree O¢(ay) has depth of size linear in the
size of C, because the depth of O¢ is no greater than that of Ugz(aq), which
can be computed (in the form of a graph representation) in linear time. O

2.3.2 Flattening

This section is again about a basic property of finite, structural systems.
It can be generalized to recursive structural systems, and this will be done
later.

Lemma 2.3.8 (Leaf Lemma) Let 61, 02 be terms with D(61) = D(02), and
let v be a valuation, v :V — Tx. Then v(61) < v(02) holds in T if and only
if v(61(w)) <Y v(02(w)) for every (common) leaf address w in 01 and 6,.

PROOF The lemma is an easy consequence of Lemma 2.1.1 together with
the fact that a valuation preserves constructors homomorphically. O

For a weakly unifiable set C, define the flattened set C” by

C" = {B(w) <P ' (w) | 0 < O € Oc(C), w € LF(O) N LF(G)}
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Observe that, if C' is weakly unifiable, then Lf(@) = Lf(8') for all § < 0’ €
O¢(C). Given constraint set C' and variables «, 3 we define the set of
inequalities [a < f(]¢ to be the flattened set

[ < Bl = {05 (w) < 05 (w) | w € LF(O5) NLF(G5)}

Definition 2.3.9 If C is weakly unifiable, then we say that two variables
a and 8 are matching in C if and only if ©¢(a) and O¢(0) are matching.
In this case, Lf(8$) = Lf(Qg). O

The following lemma is an easy consequence of the defining properties of
the most general matching substitution.

Lemma 2.3.10 (Flattening Lemma) Let C be a weakly unifiable constraint
set. Then

1. C is satisfiable if and only if C* is satisfiable. More specifically, one
has

(a) If v |E C, then there is a valuation v' such that v = v' 0 O¢ holds
on the variables in C, and with v' |= C”

(b) vI=C" if and only if vo O¢ | C
2. If « and B are matching in C, then

ClEa<Bifand only if C* = [a < Blo
PROOF See Appendix A.1 O

2.3.3 Decomposition

The following lemma, holds for all systems of subtyping under consideration
(structural, non-structural, finite, recursive) in this thesis:

Lemma 2.3.11 (Decomposition for Tx) Let t1,ta,ts3,ts be arbitrary trees in
Ts.. Then

1. 11 X 19 < t3 X tg Zf and only iftl < t3 and to < 14

2. t1 = to <tz —tygif and only if t3 < t1 and ta < iy
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PROOF Direct consequence of the definition of the order < on 7. O

Lemma 2.3.12 (Decomposition for -p) Let C be atomic. Then
1. Crprixme <13 xT74if and only if C Fp {r1 < 73,70 < 14}

2. Cl—p T — T2 S T3 — T4 Zf and only ifCl—p {T3 S T1, T2 S 7'4}.

PROOF  See [53]. O

Notice that the previous lemma does not hold for non-atomic constraint
sets in general. For instance, one has {ax 8 <y xd} Fp ax < v x4d, but
not {a x f <~ x4} Fp a <4§. However, decomposition holds unrestricted
for the entailment relation:

Lemma 2.3.13 (Decomposition for |=)
1. C |= T1 X T9 S T3 X T4 7,f and only ZfC |= {7’1 S T3, T2 S 7’4}
2.CEmn—>mn<1m3—1ifand only if C = {13 < 711,70 < 74}

PROOF The implications from right to left are obvious. The implications

from left to right follow from Lemma 2.3.11 together with the definition of
entailment. O

2.3.4 Substitutivity
Both relations Fp and |= are closed under type substitutions.
Lemma 2.3.14 (Substitutivity) Let S be a substitution. Then one has
1. If Ckp 7 <7, then S(C) Fp S(1) < S(7)
2. If C =1 <7, then S(C) = S(1) < S(7)
PROOF The first property is proven by induction in the proofof C Fp 7 < 7/

(see [53]). For the second property, supposing C = 7 < 7" and v = S(C),
one has vo S = C, hence vo S =7 < 7/, hence v = S(1) < S('). O
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2.4 Typability and satisfiability in partial orders

For the type systems considered in this thesis, the problem of typability (does
a given term have a type?) is linear time reducible to the problem of satis-
fiability of subtype constraints! in an appropriate structure of ordered trees
Ts [37, 57]. For these systems, the satisfiability problem is the combinatorial
bottleneck, and typability is decidable by performing the following steps on
a given program M:

1. Extract a linear number of subtype constraints from M, typically ex-
tracting one constraint at each node in the syntax tree. Call the re-
sulting constraint set C'y.

2. Test whether C) is satisfiable in the appropriate structure 7x.

It matters for the complexity of the satisfiability problem what kind of poset
we assume at the base types. In Part IT of this thesis, we will assume that the
subtype ordering on trees is generated from lattices. The significance of this
can be seen from previous results on the complexity of subtype satisfiability
problems.

An important set of results from previous work establishes that sub-
type orderings generated from lattices have PTIME satisfiability problems,
whereas other orderings may generate intractable satisfiability problems.
The reason lattices lead to tractable satisfiability problems is that satisfia-
bility becomes equivalent to consistency. This fundamental property leads to
PTIME algorithms for the satisfiability problem, because consistency check-
ing can be reduced to checking properties of the closure of the constraint
set, which in turn can be computed via (in some cases, dynamic) transitive
closure. Systems for which such results have been shown include atomic
subtyping over a lattice of base types, finite structural subtyping with the
order on trees generated from a lattice of base types and non-structural
recursive subtyping where ¥ is a lattice of constructors. On the other hand,
it is known that relaxing the structure of the poset ¥ may lead to highly
complex (intractable) satisfiability problems.

Thus, it appears that lattices are the “right” structure to use, if we
wish to construct systems with tractable satisfiability problems ? Together

'Tn most cases, the typability and satisfiability problems will be polynomial time equiv-
alent, [37]

2To be precise, it is known that, in many cases, one does not need to require exactly a
lattice, but one can do with structures that are in a certain sense sufficiently “lattice-like”.
See in particular the works of Benke [9, 10].
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with the well established fact that lattices are highly useful structures for
program analysis, this is our main reason for requiring subtype orders to be
generated from lattices in Part II of the thesis.

It will be useful to consider in more depth what is known about the
complexity of satisfiability problems, because we will need several results
later.

2.4.1 Atomic subtyping

Atomic subtype satisfiability over a poset P is the problem of deciding
whether a set C of constraints of the form A < A’, involving only atomic
types, is satisfiable in P. The constants mentioned in C are drawn from P.

The language of atomic inequalities is very inexpressive. There are no
operators and no syntactic constructors at all. Nevertheless, it turns out
that, already at the level of atomic inequalities, the structure of the poset
P is critical for the complexity of the satisfiability problem.

Atomic inequalities over a lattice

If P is a lattice, then one has that satisfiability is equivalent to ground
consistency. To explain this in more detail, let C' be an atomic constraint
set, let a be a variable, and define the sets T¢ () and ¢ () relative to a
given poset P of base types by

Tela) ={be P|[Ckrpa<b}

lela)={beP|CFpb<a}

Then, as was noted by Tiuryn [71] and by Lincoln and Mitchell [47], one
has

Theorem 2.4.1 (Tiuryn [71], Lincoln & Mitchell [47]) Let C be an atomic
constraint set over a lattice L of constants. If C is ground consistent, then

1. The valuation vy = {en \ To(@)} e Var(c) 18 @ solution to C
2. The valuation vy = {ex\ lc(@)}, ¢ Var(c) 15 @ solution to C

In general, an atomic constraint set over a lattice is satisfiable if and only
if it is ground consistent.
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Linear time algorithms

To decide satisfiability of atomic subtype inequalities over a finite lattice,
one should not proceed in practice by using Theorem 2.4.1 directly, checking
ground consistency by computing the closure (which comes down to transi-
tive closure) of the constraint set. Instead, one can regard the satisfiability
problem as a fixed—point problem, which can be solved in linear time, for
any fixed finite lattice, using essentially Kildall’s worklist based fixed point
algorithm for data—flow analysis [43]. Satisfiability can be decided in time
h(L) - |C|, where h(L) is the height of L and |C| is the (textual) size of C.
This method works with any monotone functions on L occurring on the left
hand side of inequalities of the form

f(oq,...,an) SA

See [66] for an adaptation and a more comprehensive survey of the scope of
this method.

To understand the limitations of the linear time framework mentioned
above, it is useful to regard inequalities over a lattice as a generalization
of propositional Horn—clauses. Horn—clauses emerge in this framework by
fixing the lattice L to be the two—point boolean lattice, and by fixing the
set of monotone functions to be logical conjunction. Then a Horn—clause
T1A. .. Axy = y is equivalent to the inequality z1A. . . Az, < y. One then gets
back the linear time Horn—clause decision procedure of Gallier and Dowling
[20] as a special case of Kildall’s fixed point framework (when the data—flow
part is abstracted away, see [66] where this view is developed.) Under this
view, it is easy to see, e.g., that adding both A and V to the language of
inequalities leads to an NP—complete satisfiability problem.

Hard posets

Contrasting with the case of lattices, it is known that there exist very simple
looking posets for which the atomic satisfiability problem is NP—complete.
In particular, this holds for the so—called n—crowns studied by Pratt and
Tiuryn in [62]. Since these posets are interesting and we shall use them
later in this thesis, let us mention here that the n—crown is the poset with
2n elements 0,1, ...,2n ordered by 2i < (2¢ £+ 1) mod 2n. Figure 2.5 shows
the simplest interesting crown, the 2-crown. It was shown in [62] that
satisfiability of atomic constraints over any n—crown, for n > 2, is NP-
complete. This result was proven as a core part of a more general attempt
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1 >< 3
0 2
Figure 2.5: A 2-crown

to characterize the structure of posets for which the atomic satisfiability
problem is tractable; see also the works of Benke [9, 10].

The conclusion so far is that, even at the level of the weakest possi-
ble subtype constraint language, it is reasonable to focus on lattices (or
lattice-like structures) of base types, if we want to stay within a tractable
framework.

2.4.2 Structural subtyping

The first tractability result for non-atomic subtyping was given for struc-
tural, finite subtyping over a lattice of type constants, by Tiuryn [71] who
shows

Theorem 2.4.2 (Tiuryn [71]) A constraint set C is satisfiable in Ty [s]
if and only if C is consistent (weakly unifiable and ground consistent), when
the order on ’TEF[S] is generated from a lattice. In particular, satisfiability and
hence typability with structural, finite subtyping over a lattice is in PTIME.

Finite, structural satisfiability over a lattice

We briefly consider what is known about the low—level complexity of deciding
subtype inequalities over 7'EF[3], when order is generated from a lattice. The
PTIME procedure immediately present in the theorem cited above is as
follows:

1. Check for weak unifiability, using unification

2. Compute the closure of the constraint set and check for ground con-
sistency.

The first step is in linear time. It is obvious that the check for ground
consistency can be done by computing dynamic transitive closure (DTS) in
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a graph representation of the constraint set. However, it is worth noticing
that the DTS problem is not inherent for finite structural subtyping, and
the cubic time bottleneck, which appears hold to for non—structural recur-
sive subtyping [31, 49], does not, in theory at least, characterize the finite
structural case. As has been noted before, (see, e.g., [32, 2]), closure in the
finite structural case can be computed within subcubic time M (n) required
to compute the product of two boolean n x n matrixes [1]. The reason is that
the finite structural order allows a topological stratification of the constraint
set, which can be used to control repeated static transitive closure of seg-
ments of the constraint set; when controlled in this way, these partial static
transitive closures can be amortized over the entire constraint set to yield
an upper bound of M (n). Intuitively, stratification is based on the shape of
Uc(7) (Definition 2.3.1) for each subterm 7 in the constraint set. Because
constraint cycles are not present in a weakly unifiable set over 7'EF[3], this
leads to a topological ordering, which essentially puts a subterm 7 earlier
than 7' if D(Uc(7)) C D(Uc(7')). More details can be found in [32] and in
[2]. It is not clear if the sub—cubic result has any practical significance. Tran-
sitive closure via boolean matrix multiplication on sparse matrixes appears
to be outperformed in practice by dynamic transitive closure algorithms,
and constraint graphs are typically sparse.

Finite, structural satisfiability over hard posets

We have so far considered satisfiability in T3 [s], where we assume that the
order is generated from a lattice of base types. The significance of this as-
sumption was also highlighted by Tiuryn in [71], who showed that assuming
a non-lattice at the basis of the ordering of trees may lead to PSPACE-
hard satisfiability problems. In particular, for each n > 2, the satisfia-
bility problem in finite trees ordered structurally over any fixed n—crown,
is PSPACE-hard (and, by the subsequent result of Frey [27], PSPACE-
complete.) Proving PSPACE-hardness is non—trivial; the proof [71] uses
techniques from [62] (which was published later.)

Structural, recursive satisfiability

We now consider satisfiability in 7x[s], i.e., structural recursive subtyping
constraints. The proof of Theorem 2.4.2 for the finite case was obtained by
an induction over levels, essentially defined by the topological stratification
of the constraint set mentioned earlier. This method is not applicable to



CHAPTER 2. SUBTYPE ORDERS AND SUBTYPING SYSTEMS 35

recursive subtype constraints, because cyclic constraints (such as, e.g., a <
a X 3) may be present in a solvable constraint set.

Later, Tiuryn and Wand [72] studied the satisfiability problem for struc-
tural recursive subtyping over arbitrary posets of base types, using new
methods. They show that the satisfiability problem is polynomial time re-
ducible to the problem REG-SAT, satisfiability of infinite, regular sets of flat
(atomic) inequalities over the poset of base types; the satisfiability problem
for such sets was shown to be PSPACE-hard and in DEXPTIME, by a re-
duction to the emptiness problem for exponentially large Biichi automata.
Moreover, their PSPACE-hardness result was shown to hold for any non-
trivial poset of base types (in particular, including “nice” structures, such as
lattices.) They did not, however, show that the general, infinitary problem
(REG-SAT) is polynomial time equivalent to the original problem (struc-
tural recursive subtype satisfiability, i.e., satisfiability over infinite trees of
finite sets of inequalities between finite type expressions), and therefore their
PSPACE-lower bound does in fact not transfer automatically to the original
problem.

In fact, it appears that no proof has so far been published for the exact
complexity of structural recursive subtype satisfiability over a lattice of base
types. Later in this thesis (Chapter 10, Corollary 10.4.3) we show that
the problem is in fact in PTIME, again by a reduction of satisfiability to
consistency. The resulting algorithm does not bypass the dynamic transitive
closure problem, because the unification graph (with respect to E¢) for a
satisfiable constraint set may be cyclic, so the stratification method fails in
this case; the best upper bound we can give at present is therefore cubic.
A sketch of an alternative reduction of the satisfiability problem to the
counsistency problem can be found in the note [26] by Frey.

2.4.3 Non-structural subtyping

Results of Palsberg and O’Keefe [57] and of Pottier [59], show that satisfi-
ability of recursive subtype inequalities over non-structurally ordered trees
(ordered by the Amadio-Cardelli ordering, as in the present thesis) is in
PTIME. Indeed, the problem was again shown to be equivalent to consis-
tency of the constraint set, which can be decided in time O(n?), using dy-
namic transitive closure (n is the size of the constraint set.) The techniques
used to prove this result involves the use of a special kind of automata, which
we shall use in this thesis also (we call them constraint automata.)
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Theorem 2.4.3 (Palsberg & O’Keefe [57], Pottier [59]) A constraint
set C is satisfiable in Tx[n] if and only if C is consistent. In particular, sat-
isfiability is in PTIME.

By using constraint graphs and automata techniques, Kozen, Palsberg
and Schwartzbach [44] have shown that satisfiability in Ty [n], non-structural
finite trees, can also be computed in time O(n?). In this case also, it is not
known how to bypass the dynamic transitive closure problem; stratification
methods fail already at the level of finite trees for the non—structural order,
because stratification is based on unification (wrt. E¢), and unification may
certainly fail for a set satisfiable in 75 [n]; moreover, a satisfiable set may
well contain cyclic constraints (consider, e.g., that @ < a X a can be solved
by mapping « to L.)

Theorem 2.4.4 (Kozen, Palsberg & Schwartzbach [44]) Satisfiability
of subtype constraints over ’TEF[n] is decidable in cubic time.

2.4.4 Summary

The previous review of subtype satisfiability has shown that the structure of
the underlying poset of base types can have a drastic effect on the complexity
of subtype satisfiability. We are motivated by these results to make the
following decision for Part II of the thesis:

o We consider only entailment complezity over structures that are gen-
erated from lattices of base types

Our review of the complexity of lattice—based subtype satisfiability can
be summarized in the following table:

‘ ‘ structural ‘ non-structural ‘

atomic types O(n) O(n)
finite types M(n) O(n3)
infinite types | O(n?%) O(n?)

By the end of this thesis, we will obtain a similar table for the complexity
of the corresponding entailment problems, and we shall be interested in mak-
ing a comparison. Let us notice already from the outset, though, that there
is not a priori any tight relationship between the complexity of satisfiability
and the complexity of entailment for the constraints considered in this thesis.
The only immediately obvious relationship is that non—entailment is just as
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hard as satisfiability (- satisfiability of a constraint set C' is equivalent to the
non—entailment C' [~ ¢, where ¢ is a formula false in M, and — assuming
M is not the singleton set — such a formula can always be found.) However,
for the logically weak constraint language under consideration here, entail-
ment is not necessarily reducible to unsatisfiability, because we do not have
a negation sign (or negative constraints, £) in our language, so we cannot
use the direct reduction of C = ¢ to unsatisfiability of C'U{—¢}, and upper
bounds for unsatisfiability cannot be expected to transfer. Indeed, we shall
see that this is in fact very far from the case. Still, we shall find that the
table above is in some sense reflected in the complexity of entailment.



Part 1

The structure and
complexity of principal
typings
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Chapter 3

Minimal typings in atomic
subtyping

This chapter shows that equivalence classes of typings, with respect to in-
stantiation, have interesting and useful structure. The instance relation,
called < below, is an entailment—based version of Fuh and Mishra’s syntac-
tic “lazy” instance relation (<, Section 1.5). The type system is atomic.

Our main goal is to characterize minimal typings, which, intuitively, are
typing judgements with a minimal degree of freedom. Since typings are
finite, it is immediate that every term with a typing has a principal typing
with a minimal number of distinct variables. It is not obvious, however, how
one recognizes that a judgement is minimal in complicated situations, and
it is not obvious how typings in an equivalence class are related to minimal
typings. We characterize minimal typings and show that they have strong
uniqueness properties. This can be understood as a confluence property for
simplification.

The results in this chapter will be used in Chapter 5, where we study
the size of typings. In that chapter, we will compare the power of several
instance relations (<syn, < and a third relation still more powerful than <)
with respect to the simplifications they validate.

The development beginning in the present chapter and continuing through
Chapter 5 represents a generalization and extension of our results reported
in [65], which were based on the syntactic instance relation <.

We fix a subtyping system, called A(}=p), to be the atomic system (see
Section 2.2), which arises by taking the entailment relation in rule [sub
of Figure 2.4 to be =p. We will always assume that the poset P of type

39



CHAPTER 3. MINIMAL TYPINGS IN ATOMIC SUBTYPING 40

constants is non-trivial (i.e., non-discrete), since otherwise inequalities are
equivalent to equalities, and no interesting subtype relations can emerge.
The relation C |=p 7 < 7/ with C atomic holds if and only if every valuation
v: YV — P satisfying all constraints in C' also satisfies the inequality 7 < 7/
in finite structural trees, Ty [s].

3.1 Instance relation

The following definition gives the instance relation called <. It has the form
of the so—called “lazy instance relation” (called <y, Section 1.5) defined by
Fuh and Mishra in [28], only our relation is more powerful (larger), because
we use the model theoretic entailment relation =p instead of the syntactic
provability relation Fp.

Definition 3.1.1 (Instance relation, principal typing)

Lett; =C1,T1 Fp M : 1y, tyg = Cy, o Fp M : 79 be two atomic judgements,
and let S be a type substitution. We say that to is an instance of t1 under
S, written t1 <g to, iff

1. Cy =p S(Ch)
2. Oy Fp S(11) <19
3. D(Fl) - D(F2) and Vz € D(Fl) Cy IZP FQ(.Z‘) < S(Pl(l'))

We say that to is an instance of tq, written t1 < to, iff there exists a type
substitution S such that t; <g to. We say that t; and ty are equivalent,
written t1 = to, iff t; < to and to < t1. Clearly, = is an equivalence relation.

A typing judgement for a term M is called a principal typing for M if
it is derivable in the type system, and it has all other derivable judgements
for M as instances. o

Ift=CTFp M: 7 and S is a type substitution, we write S(t) =
S(C),S(T) Fp M : S(r). We say that S is a renaming on t as a shorthand
for saying that S is a renaming on Var(t).

Notice that t; <g to implies S(t1) <;q t2, and that one always has
t <g S(t).

As was mentioned in the Introduction (Chapter 1), subtyping systems
have many different ways of representing equivalent typings. This point is
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illustrated again in the following simple example ! from [28].

Example 3.1.2 Let comp be the composition combinator defined by
comp = A\f.Ag.\z.f(gx)

Then both of the following typings are principal for comp:

1. tg:

{0 <an<v,B<vh0Fp comp:(a— B) = (y—0) = (n—v)
2. to:
0,0 Fp comp: (a— B) = (y = a) = (v = B)
O

The remainder of this chapter is organized as follows. We first define what it
means for a typing judgement to be minimal. We then prove that minimal
typings (if they exist) are essentially unique up to renaming substitutions.
We then prove that minimal typing judgements always exist. The hard part
is to prove existence, because we have by definition built strong uniqueness
properties into minimal typings.

3.2 Minimal typings and uniqueness

Kernels

We will need to reason about logical equivalence (~p, Section 2.1.8), and in
order to do so the following notion is sometimes very useful:

Definition 3.2.1 Let Th(P) be the set of all inequalities ¢ such that =p ¢,
i.e., the inequalities logically valid in P. The kernel ? of a constraint set C
is denoted Ker(C') and is defined by

Ker(C) = {¢ | C =P ¢,Var(¢) C Var(C),¢ & Th(P)}

That is, Ker(C) is the set of all inequalities entailed by C that are not
logically valid in P and which have all their variables constrained in C'. O

!The reader should be aware that examples can be scaled up to become much more
complex. For more examples consult works on subtype simplification, such as [28, 17, 41,
67, 21, 37, 59, 73, 4].

*In [73] a notion of constraint kernels is also defined, but it is not the same as ours.
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Notice that, since P is finite, Ker(C) is always a finite set of inequalities.
Any constraint set C is logically equivalent to its kernel:

Lemma 3.2.2 C ~p Ker(C)

PROOF It is obvious that we have C =p Ker(C). To see that Ker(C) =p C,
suppose that ¢ € C. Then Var(¢) C Var(C), and if ¢ € Th(P), then
Ker(C) Ep ¢, and otherwise ¢ € Ker(C). O

Notice that one has
Var(Ker(C)) C Var(C)

for any set C. It can occur that C' contains more variables than Ker(C),
because C' might contain a logically valid inequality, such as « < T (as-
suming here that P has a top element.) More generally, as our next lemma
shows, non—trivial inequalities involving unconstrained variables effectively
state that P has a top element or a bottom element. This shows that Th(P)
is not a very interesting set; in fact (as is implied by the lemma below),
Th(P) contains only inequalities of the form o < «, b < ¥ with b <p ¥, and
in addition to these, in case P has a top element, resp. a bottom element,
inequalities o < T and L < «, for all variables a.

Lemma 3.2.3 Let C be satisfiable.

1. If C Ep a < A with a # A and o € Var(C), then, for some b € P,
one has C Ep A =0 and =p a < b. In other words, P must have a
top element equivalent to A.

2. If C Ep A < a witha # A and o € Var(C), then, for some b € P,
one has C Ep A =b and =p b < a. In other words, P must have a
bottom element equivalent to A.

PROOF See Appendix A.2 |

Specialization and minimality

In order to define minimality we first need the following notion of special-
1zation.
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Definition 3.2.4 (Specialization)

Let t1 = C1,T1Fp M : 7y and tyg = Cy, o Fp M : /5. We say that t1 is a
specialization of to, written t1 < to, iff there exists an atomic substitution
S such that

1. Cp C Ker(S(Cy))

2. 11 = 8(m2)

3. D(I'1) € D(I'y) and I'y(z) = S(Ta(z)) for all x € D(T'y).
We may write t; <g to to signify that t; < to under substitution S. O
Notice that, if t g t’, then t <;4 S(t').

Example 3.2.5 Consider the typings t; and ty shown in Example 3.1.2
and take S = {0 — «a,n — v,v +— [}. Then ty g t;. O

Lemma 3.2.6 The relation < is transitive: if t1 <g, t2 and t2 g, t3,
then t1 <s,08, t3.

PROOF See Appendix A.2 |

We restrict attention to derivable judgements with satisfiable constraint
sets, since only such judgements represent well-typings. For a derivable typ-
ing judgement t with satisfiable constraint set we let [t] denote the equiva-
lence class of t with respect to =, i.e., [t] = {t' | t’' = t}.

We now define what it means for a typing judgement to be minimal.
Intuitively, a minimal typing t is a most specialized element within [t]. It is
therefore, in a certain sense, an irredundant representative in its equivalence
class, where the typing information has been made as explicit as possible.

Definition 3.2.7 (Minimality)
A typing judgement t is called minimal iff it holds for all t’ € [t] that t < t.
a

Notice that it can be quite non-trivial to establish that a given typing is
minimal, because the definition of minimality quantifies over all the infinitely
many members of an equivalence class, which may be related in non—trivial
ways. In order to reason about minimality it will therefore be necessary to
develop some characterizations of this notion. We shall do so in Section 4.2
below (Theorem 4.2.5).
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Uniqueness

The relation < is a partial order up to renaming substitutions and “taking
the kernel” of constraint sets:

Theorem 3.2.8 (Uniqueness of minimal typings)
If t1 s, t2 and ty <g, t1 then S; is a renaming on t;, i = 1,2.

PROOF See Appendix A.2 O

3.3 Fully substituted typings

We will show that minimal typings can be found in every equivalence class
[t], essentially by taking a full substitution instance (see definition below)
of t within [t]. Minimality will follow from a strong uniqueness property of
fully substituted judgements within each equivalence class [t]. Uniqueness
of fully substituted typings can be regarded as a confluence property for sim-
plification transformations that work by applying substitutions to typings
(recall Section 1.5 where this idea was introduced.) We generally assume
that constraint sets in typing judgements are satisfiable, since we have no
interest in other typings.

Definition 3.3.1 (Full substitution instance)

If t' = S(t), then we say that t’ is a substitution instance of t under S. A
typing judgement t is called fully substituted iff, whenever S(t) € [t], then
S is a renaming on Var(t). A full substitution instance of a typing t is a
substitution instance of t which is fully substituted. O

Notice that t' = S(t) implies t' <g t but not vice versa. Any substitution
instance S(t) of a typing t is an instance of t, provided S is an atomic
substitution such that S(C) is satisfiable, since in this case S(t) is an atomic
judgement with t <g S(t). Hence, if S(t) < t, then S(t) ~ t.

Lemma 3.3.2 Let t be an atomic judgement. If S(t) € [t], then S ‘Var(t)
s an atomic substitution.

PROOF Lett =C,['Fp M : 7. By the assumptions, t' = S(t) is an atomic
judgement, so S |Var(c) must be an atomic substitution. Since t’ € [t], we

have t &~ t/, which entails, via the Match Lemma (Lemma 2.3.5) together
with the definition of &, that S(7) matches 7 and that I'(z) matches S(I'(z))
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for all z € D(T). It follows that S |Var(T)uVar(F) is an atomic substitution.
We have now shown that S |Var(t) is atomic. O

By repeated application of non-renaming atomic substitutions to a typ-
ing, Lemma 3.3.2 entails that for any typing judgement t, there exists a
full substitution instance of t within [t]. Hence, every atomic typing has
a substitution instance which is fully substituted. We will now study how
any two equivalent, fully substituted typings are related. To this end the
following lemma is useful.

Lemma 3.3.3 Ift; <g, te and t2 <g, t1, then S1(t1) <g, t1 and Sa(t2) <,
ty.

PROOF See Appendix A.2 |

Definition 3.3.4 If t; <g, t2 and t2 <g, t; where S; is a renaming on
Var(t1) and Ss is a renaming on Var(ts), then we say that t; and to are
equivalent under renaming and we write t1 =°® t9 in this case. O

Lemma 3.3.3 leads to:
Lemma 3.3.5 If t1 = to and t1 and ty are fully substituted, then t1 =° ts.

PROOF By t; = ty we have t; <g, t2 and t2 <g, t; for some substitutions
S1,52. By Lemma 3.3.3 we then have Si(t1) <g, t1 and Sa(t2) <gs, to,
hence S1(t1) € [t1] and Sa(te) € [to]. Since t; is fully substituted, it follows
that S7 is a renaming on Var(t1) and since to is fully substituted, it follows
that Sp is a renaming on Var(te). Then t; <g, t2 and tg <g, t; establish
that t; =°® tq. O

3.4 Acyclic constraints

In order to show that fully substituted typings lead to minimal typings, we
need to strengthen the conclusion of Lemma 3.3.5. Before doing so, we must
consider cycle elimination in constraint sets.?

3Cycle elimination is perhaps the pragmatically single most important optimization of
constraint sets in constraint based program analysis; see [23] for a recent contribution.
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Definition 3.4.1 An atomic constraint set C is called cyclic, if and only if
C entails a non—trivial equation, i.e., there are atoms A and A’ with A # A’
such that C |Ep A = A’. A constraint set, which is not cyclic, is called
acyclic. O

We generally assume here that constraint sets are satisfiable. For such sets,
only cycles involving a variable (i.e., where either A or A’ is a variable in the
definition above) are possible, and these are the only interesting cases here.
The following lemma says that it is sound to eliminate cycles in a typing:

Lemma 3.4.2 (Cycle elimination) Let t = C,T' -p M : T be any atomic
Jjudgement.

1. If C Ep a= A, then S(t) = t, with S = {a — A}.

2. There is a substitution instance t' of t such that t' has an acyclic
constraint set and with t' ~ t.

3. If t is fully substituted with C satisfiable, then C is acyclic.

PROOF See Appendix A.2 m|

If a constraint set C is acyclic and satisfiable, then it can only entail
relations between variables that are actually constrained in C":

Lemma 3.4.3 Let C be satisfiable. If C is acyclic and o # (3, then C =p
a < (3 implies {a, 5} C Var(C).

PROOF  Suppose that C =p a < 8. If a ¢ Var(C), then Lemma 3.2.3
shows that we would have C' = = b with =p a < b, for some b € P. Then
C would be cyclic, so a € Var(C) must be the case, because C is acyclic. A
similar argument establishes that § € Var(C). O

Lemma 3.4.4 Let C1 and Cy be atomic constraint sets.
1. If Ker(C1) C Ker(Cs) then Cy Ep Cy

2. If Cy is acyclic and satisfiable, then C1 =p Cy implies Ker(Cy) C
Ker(C1)

3. If Cy and Cy are both acyclic and satisfiable, then C1 ~p Co if and
only if Ker(Cy) = Ker(C3)
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PROOF See Appendix A.2 |

Lemma 3.4.5 Let C1,Cs be atomic constraint sets, both of which are acyclic
and satisfiable. Assume that Cy |Ep S2(C2) and Co Ep S1(Ch) where S; is
a renaming on Var(C;), i = 1,2. Then Cy ~p S3(C2) and Cy ~p S1(C4).

PROOF See Appendix A.2 |

Lemma 3.4.6 (Anti—symmetry) Let C be atomic and satisfiable. If C is
acyclic, then C l=p 7 <7 and C l=p 7' < 7 imply 7 = 7'.

PROOF See Appendix A.2 O

3.5 Existence of minimal typings

We continue to strengthen the uniqueness properties of fully substituted
typings. After that, we can show how minimal typings can be obtained. A
main technical lemma, follows first:

Lemma 3.5.1 Let S be a substitution and C an atomic, satisfiable con-
straint set with variable o € Var(C). Assume

(¢) S is a renaming on Var(C)

)

(i) Cl=p S(C)
)
)

(131) C 1is acyclic

(i) either C l=p S(a) < a or C =p a < S(«)
Then S(a) = a.
PROOF See Appendix A.2 |

The following proposition is the central technical result in this section. The
tricky part is to prove properties (i7) and (7i7) of the proposition.

Proposition 3.5.2 Let t1 = C1,I'1 Fp M : 1y and to = Cy,To Fp M : 1
be judgements with satisfiable constraint sets. If t1 =* to and t1,ty are both
fully substituted, then there is a renaming S on to such that
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(i) C1~p S(C)
(ZZ) T = S(TQ)
(131) D(T'1) = D(T9) and T'1(z) = S(Te(x)) for all x € D(T).

PROOF Since the judgements are fully substituted with satisfiable constraint
sets, we know from Lemma 3.4.2 that the sets C; and Cy must be acyclic.
By t1 =* ta, we know that t; <g, t2 and ta <g, t1 with S a renaming on #;
and Sy a renaming on ts.

We claim that the proposition holds with S = Ss. Part (i) follows easily
from Lemma 3.4.5 (applicable, since the constraint sets are satisfiable and
acyclic) together with the assumptions, which yield

Ch )Zp 52(02) (3.1)

and
C2 Ep 51(C1) (3.2)

Part (4¢) and (i7i) are similar to each other, so we consider only part (i7).
To see that (i) holds with S = Sy, we first record that, by our assump-
tions, we have

Cy IZP 52(7'2) <7 (3.3)
and
(s |=P 51(7'1) < Ty (3.4)
Now, we know from Lemma 3.3.3 that So(S1(t1)) <iq t1, hence we have
S2(51(t1)) =t (3.5)
We therefore have
Ci Ep S2(51(m)) <71 (3.6)

and, together with the assumption that t; is fully substituted, (3.5) shows
that
S50 51 is a renaming on Var(t) (3.7)

Moreover, by S2(S1(t1)) <iq t1, we also have
C1 =p 52(51(C1)) (3.8)
We now claim that in fact we can strengthen (3.6) to

(*) S2(Si(m)) =7
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To see that (%) is true, assume that

S2(S1(m)) #71 (3.9)

aiming for contradiction. Then there is a variable a occurring in 77 such
that
(S 0851)(a) #« (3.10)

Because (3.7) Sy0 5 is a renaming on t; and « € Var(7;) C Var(ty), it must
be the case that S3 0 .S] is a variable, so we can set Sp 0 S1(a) = 3 for some
variable 3. Now, because of (3.6), the Decomposition Lemma entails that a
and 8 must be comparable under C1, i.e.,

either C1 =p S2(S1(a)) < aor C) EFp a < S2(S1(a)) (3.11)
Since a and [ are variables and (3.10) 8 # « , we must have
a € Var(C) (3.12)

since otherwise a and § could not be comparable under the hypotheses Cf,
according to Lemma 3.4.3; this lemma, is applicable, because C is satisfiable
and

C is acyclic (3.13)

which, in turn, is true by Lemma 3.4.2, because t; is assumed to be fully
substituted. Now, (3.7), (3.8), (3.11), (3.12) and (3.13) allow us to apply
Lemma 3.5.1 to the substitution Sy o S1 on C4, and the Lemma shows that
we must have S3(S1(a)) = a. This contradicts (3.10), and so we must reject
the assumption (3.9), and (*) is thereby established.

Now, by (%) together with part (i) of the present lemma, established
above, we have C; ~p S2(C3). By the assumptions, which yield Co =p
S1(71) < 79, we then get, via the Substitution Lemma using the substitution
SQ, that

C1 Ep 52(51(m1)) < S2(72)

Applying the equation (*) to this relation, we get
Ci E=p 11 < Sz(12) (3.14)

We know (3.13) that C is acyclic, and we have (3.3) that C1 =p Sa(72) < 715
together with (3.14), this shows (using Lemma 3.4.6 and C; acyclic) that,
in fact, 71 = Sa(72), as desired. We have now shown property (ii) of the
proposition. Property (4i7) follows by the same reasoning. a



CHAPTER 3. MINIMAL TYPINGS IN ATOMIC SUBTYPING 50

Let Red(C) = C \ Th(P). Then Red(C) = C N Ker(C), and we have
Red(C) C Ker(C). We are now ready to prove:

Theorem 3.5.3 (Ezistence of minimal typings)
Lett =C,I'Fp M : 7 be any atomic, judgement with C satisfiable, and let
S(t) be a full substitution instance of t within [t]. Define t by

t = Red(S(C)), S(T) Fp M : S(7)
Then t is a minimal judgement in [t].

PROOF  Clearly, t is fully substituted, and moreover t = t because one
has Red(S(C)) ~p S(C). Now let t' = C',T' Fp M : 7' be an arbitrary
judgement in [t] with C’ satisfiable. We must show that t < t’. Let S'(t’)
be a full substitution instance of t’ within [t'] = [t]. Then S(t) ~ S'(t'),
and therefore Lemma 3.3.5 and Proposition 3.5.2 together imply that there
exists a renaming R on S’(t’) such that

(1) S(C) ~p R(S'(C"))
(i) S(r) = R(S'(1"))
(it) D(T) =D(I') and S(T'(z)) = R(S'(I"(x))) for all z € D(T).

D(
Since S(C) and R(S'(C")) must both be acyclic (by Lemma 3.4.2), it follows
from (i) and Lemma 3.4.4 (part 3) that

Ker(S(C)) = Ker(R(S'(C"))

But Red(S(C)) C Ker(S(C)), and together with (i¢) and (i4¢) this shows
that B
t <pRosr t'

thereby proving the theorem. O

3.6 Minimality and the size of judgements

Minimal typings are intended to be optimized presentations of equivalent
typings. If t = C,I' -p M : 7 is a minimal judgement, then the types 7 and
I'(z) for x € D(T") are optimal, in the sense that these types are as specific
as possible within the equivalence class [t]. We may say that these types are
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irredundant, because they exhibit a minimal degree of freedom: whenever
they distinguish between two type variables, it is logically necessary to do
s0, on pain of losing typing power (falling out of the equivalence class). We
have the following important property, stated in the proposition below. It
shows that, with respect to “degree of freedom” as measured by the number
of variables distinguished, our minimal typings are optimal. This property
will be a key element in our lower bound proof for the size of principal
typings in Chapter 5.

Proposition 3.6.1 Ift = C,T -p M : 7 is minimal and t' = C",T' Fp
M : 7" is any typing judgement such that t ~ t', then

1. |Var(C)| < |Var(C'")|
2. |Var(r)| < |Var(')|
3. |Var(T)| < |Var(T")]
PROOF Because t is minimal, we have t <g t’ for some substitution S. By
the definition of < g, this means that
(i) C CKer(S(C")
(11) 7= S(7")
(it7) D(T) C D(I') and T'(z) = S(I'(z)) for all z € D(T)

The last two claims of the proposition are clearly implied by (i7) and (%),
respectively. To see that the first claim is also true, (i) shows that we have

Var(C)) C Var(Ker(S(C"))) C Var(S(C"))

and therefore [Var(C)| < |Var(S(C"))|; on the other hand, we evidently have
[Var(S(C"))| < [Var(C")|. In total, |Var(C)| < |Var(C")|. O

Using this proposition, we can prove lower bounds on the number of variables
present in all principal typings for a given term by proving corresponding
lower bounds for minimal principal typings only.



Chapter 4

Minimization in atomic
subtyping

In this chapter, we will study two typing transformations, called G and S;
these will be entailment-based versions of corresponding transformations
defined by Fuh and Mishra [28], which were based on the relation +p?

We studied the transformations of [28] in [65]. There are two reasons
why we study the transformations here. Firstly, Theorem 4.2.5, the main
result in this chapter, shows that S—simplification is partially complete, i.e.,
it computes minimal typings, provided certain conditions are satisfied. Since
S—simplification is a relatively simple transformation, Theorem 4.2.5 thereby
singles out specific conditions under which it is easy to recognize what a
minimal typing looks like. This result is used in the lower bound proof for
A<(Ep) in Chapter 5. Secondly, the G- and S-simplification are important
transformations in their own right, and they will be used to simplify typings
in Chapter 5. If one looks at the literature on subtype simplification, one
will find that a very significant subset of all transformations suggested for
practical use can be understood in terms of S and G. A possible explana-
tion for this is that these transformations apparently capture most of the
interesting PTIME—-computable simplifications we can come up with. In
contrast, we show (Theorem 4.1.5 below) that, unless P = NP, there can
be no polynomial time procedure for computing minimal typings, no matter
what the structure of P is.

T do not know what the names G and S, used by Fuh and Mishra, stand for or are
intended to suggest; perhaps “general” and “special”, respectively.

52
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4.1 G-simplification and G—minimization

We need a few definitions in order to introduce the G- and S—transfor-
mations.

Definition 4.1.1 (Observable types and internal variables) Given typing
t = C,T' Fp M : 7, let the observable types in t, denoted Obv(t), be the
constants in P and type variables appearing in I" or 7, i.e., Obv(t) = Var(I')U
Var(t) U P. Let the internal variables in t, denoted Intv(t), be the set
Intv(t) = Var(C) \ Obv(t). a

The G-transformation changes only the internal variables of a typing, whereas
S—transformation changes only the observable variables of a typing.

There are two kinds of G-transformation, one stronger than the other.
The weaker one is called G-simplification, the stronger one is called G-
minimization. They both eliminate internal variables (and only such) from
constraint sets. To define the transformations, first define the functions ¢
and |lc by?

fo(A) = {4'| C =p A < A}

and
Ue(A) ={A"| C Ep A" < A}

We use these functions to define
Definition 4.1.2 (G-subsumption, G-simplification) For a variable a €

Var(C) and an atom A, we say that « is G-subsumed by A with respect
to C, written o Cg A (where C is understood), if and only if we have

L. fre(a) \ {a} € frc(A), and
2. Jela) \ {a} C Je(4)

The transformation —g on typings, called G-simplification, is then defined
as follows. Let t = C,T'p M : 7. Then t g C{a— A},T Fp M : 7 if
and only if we have

2The sets ft¢ and ¢ correspond to the sets t¢ and |c, introduced in Section 2.4.1,
the former using |=p instead of Fp in their definition. The G- and S—transformations to
be introduced here are variations on corresponding transformation defined by Fuh and
Mishra [28] and studied by the author in [65], with the only difference that we now use
the sets ff¢ and |}¢ instead of t¢ and |c¢.
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1. a € Intv(C), and
2. a# A, and
3. a Eg A with respect to C.

O

Note that, if t = C,T' Fp M : 7 and t' = C{a — A},T' Fp M : 7' with
t g t’, one has I' = I and 7 = 7. Moreover, G-simplification is sound,
because we have t ~ t', whenever t g t'. To see this, we first show
that C =p C{a — A}. So suppose that ¢ € C{a + A}. Then w.lLo.g.
¢p =A< A witha < A" € C (the case ¢ = A" < A is similar), and therefore
A" € fic(a), hence (by a Eg A) we have A’ € fi¢(A) and so C |=p A < A,
which shows that t' <;4 t. On the other hand, we evidently have t <g t’
with S = {a — A}.

An important property of G—simplification is that it may be efficiently
computable. This depends on what P is. For instance, if P is an n—crown,
n > 2, then clearly the problem C =p a < 3 is coNP—complete (by NP-
completeness of the corresponding satisfiability problem, see Section 2.4.1),
and in such cases, the transformation will be intractable. However, we will
show later in this thesis that, if P is a lattice, then the atomic entailment
problem C Ep a < ( can be computed in linear time. Moreover, the
simplifications defined by Fuh and Mishra (using p instead of =p) are
computable in PTIME regardless of what P is. These transformations can
be considered as natural approximations to the corresponding simplifications
based on =p.

G-simplification can be regarded as an approximation to a more powerful
transformation, which we will denote g+, called G-minimization. It is
defined as follows. Given typing t = C,T' Fp M : 7, let Subs(t) be the set
of atomic substitutions § such that

fa if o ¢ Intv(t)
S(a) = { A€ Var(C)UP ifac lntv(t)

Then t1 —g+ to iff there exists S € Subs(t1) such that C, = S(C4), S is not
a renaming on Var(Cy) and C; Ep S(Cy).

Observe that both g and g+ are terminating, since the size of Intv(?)
shrinks at every reduction step.

The following example shows why g is an incomplete approximation
to =g+ The example shows that, in order to G-minimize, it is not sufficient
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to consider substitutions with singleton support?, and this explains, in part,
why G-minimization is hard to compute (Theorem 4.1.5.)

Example 4.1.3 Counsider constraint set C' below, where observable vari-
ables are shown inside a box:

@/\/\@

Call an atomic substitution S simple if Supp(S) is a singleton set. It can
be seen that C' is G-simplified (i.e., in normal form with respect to +—g),
because it is not possible to find a simple, non—identity substitution S of
the form {0; — A}, A € {a, 8,7, 61,02, 03}, such that C |=p S(C). However,
the set C' is not G-minimal, because the substitution

Smin = {01 = 7,00 = 7,03 — 7}

satisfies C' =p Spin(C). Note that even though Sy, can be factored into a
sequence of simple substitutions, as Sy, = {61 = v} o {2 — v} o {d3 — 7},
still there is no simple non-identity substitution S’ which satisfies C =p

S'(C). O

4.1.1 Constraint crowns and hardness of minimization

In Example 4.1.4 below we will re-introduce an important poset, called 2—
crown (recall Section 2.4.1). This poset will play a major réle both in the
proof of Theorem 4.1.5 below and in the lower bound proof in Chapter 5,
as well as in several examples later. Pratt and Tiuryn [62] studied so-called
n-crowns to show that, for some finite posets P, the problem P-SAT is
NP-complete (P-SAT is: given atomic constraint set C over P, determine
if C is satisfiable in P.) This result holds for P = n-crown, for all n > 2,
and it has been used by several researchers in the study of the complexity
of subtype inference [71, 47, 9, 10]. Our use of crowns in this thesis is

3 A related phenomenon is noticed by Pottier [59] for simplification with recursive types.
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different, though, in that we will be interested in studying constraint sets
that constitute 2—crowns when considered as ordered sets on the variables
(in the obvious way: if, say, « < § € C, then « is below 3 in the ordering
defined by C.) In the remainder of Part I of the thesis we will show several
cases where such constraint sets are particularly complicated to simplify,
much as crowns define hard satisfiability problems.

Example 4.1.4 (2-crowns)
Recall that the 2-crown is the poset with 4 elements 0,1,2,3 ordered as
Y )

shown below (left):
x| X
0 2 b

Let C be the set of internal variables in a typing, C = {a < 7,8 < v,a <
0,8 < 0}, If we regard C as a set ordered by inequalities, we see that
it constitutes a 2-crown of variables (figure, right). The reader can verify
that C r—)é {a < a} by using the successive G-subsumptions § <g o,y <g
a,0 <g a. |

(6]

The example shows that crowns of internal variables are harmless. How-
ever, in sufficiently complex situations crowns of observable variables are
not harmless, as our next observations show. Let G-minimization be the
following problem: given an atomic constraint set C' with a subset of Var(C)
designated as observable, compute a g'-normal form of C. Then it is not
difficult to see that we have:

Theorem 4.1.5 If P # NP, then G-minimization cannot be computed in
polynomial time for any non—trivial partial order P.

PROOF Fix the constraint set D shown in Figure 4.1 with variables o, 3, 7y, §
and 7; through 74, all designated as observable. Note that D can be regarded
as three copies (in variables) of 2—crown which are “spliced together” at -y
and J, and at « and ; in particular, the middle part {a, 3,7, d} of D is iso-
morphic to 2-crown under the embedding 7 = {0 — a,1 — 7,2 — (3,3 — §}.

Now let C be any atomic constraint set over 2—crown, and assume w.l.o.g.
that Var(C') N Var(D) = (. We also assume w.l.o.g. that all constraint sets
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X
X

Y

72
(4]

8]

4]

Figure 4.1: Constraint set D with all variables observable

considered are irreflexive (i.e., there are no inequalities of the form A < A.)
Translate C to C with

C=DUr(C)U{d <m,d <ma,m3 <a',m<d'|d €Var(O)}

with all @' € Var(C) designated as internal variables in C. Let C be a
G-minimal form of C, where all reflexive inequalities A < A have been
removed. We claim that

(¥)  C is satisfiable in 2-crown if and only if C = D

Clearly, the theorem will follow from (*) by NP—completeness of the satisfi-
ability problem for 2—crown, since the condition C = D can be checked in
polynomial time if G-minimal forms can be obtained in polynomial time.
To see that (*) is true, suppose that C is satisfiable in 2—crown. Then
v(C) is true in 2—crown, for some valuation v. But then wov(C) = D (after
removal of reflexive inequalities), because the middle part of D is isomorphic
to 2—crown under 7. This shows that there exists a G-minimized form of
C, where all internal variables are eliminated. It is easy to check that any
substitution S eliminating all internal variables and satisfying C' =p S(C)
must map internal variables in C to variables in D (i.e., unless P is trivial,
there can be no constant b € P such that S maps any internal variable
to b.) On the other hand, if S’ is any other minimizing substitution, then
C Ep S'(C), hence S(C) =p SoS'(C), hence C =p S0 S'(0), ie., SoS"is
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a sound substitution for G-minimizing C. It follows that C has no internal
variables left, by G—minimality of C. But then C = D follows.

Conversely, suppose that C = D. Then there is a substitution S such
that S G-minimizes C, with S(C) = C = D (after removal of reflexive
inequalities). Since all variables from C' are forced in C to be below both of
the observable variables n; and 72 and above both of the observable variables
13 and 1y, it follows from C = D that S must map all the variables in C to
the middle part of D. But this shows that 7! o S satisfies C' in 2—crown.
O

Theorem 4.1.5 already holds for G-minimization defined in terms of -p,
as shown in [65].

4.1.2 Formal lattice types

It is worth while to note (as is done in [59, 55]) that, if P happens to be a
lattice L, then we can trivially eliminate all internal variables from typings,
provided that we have formal meets or joins in the constraint language (we
need only one or the other). Assuming that we can form constraints AV A’
(with the obvious semantics v(AV A') = v(A) VL v(A4")), then any set C' can
be transformed by the substitution S given by

S={a—\/ 0 (@)} aelntvic)

where Obv(C) and Intv(C) are the observable types and the internal vari-
ables, respectively, in C, relative to a given typing judgement with constraint
set C, and where

1 (@) = {A € 0bv(C) | C =p A< a}

The transformation is sound, because C' [=r S(C), which, in turn, is true
because C' =1, V ¢8 () < a and for a < g € C with o, € Intv(C),
one has |9 (@) € 19 (8). So, for a < A € C with A € Obv(C), we
have C =1 S(a) < S(A); for a < g € C with o, 8 € Intv(C), we have
C 1 V19 (@) <V 19 (8); and for A < a € C with A € Obv(C), we have
A€ 19 (@), so C =1, S(4) < S(a).

We will see later (Section 5.4.3) that there is an instance relation stronger
than < such that complete elimination of internal variables becomes possi-
ble without extending the constraint language. In contrast, Theorem 4.1.5
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shows that, in the absence of formal lattice—operations, elimination of inter-
nal variables becomes highly non—trivial, and as we will see in Section 4.2,
there are situations where not all internal variables of a typing can be elim-
inated under G-minimization. Theorem 4.1.5 could be taken as good ev-
idence, therefore, that for subtyping over a lattice, one should allow (one
of the) formal lattice operations in the language (or, alternatively, stronger
instance relations than <; see Section 5.4.3).

4.2 S—simplification
S—simplification eliminates observable variables from constraint sets.

Definition 4.2.1 (S—subsumption, S—simplification) Given atomic constraint
set C, type 7, variable « and atom A, we say that « is S—subsumed by A
in C' and T, written a Cs A, iff at least one of the following conditions is
satisfied

1. either
(a) CEp A<a,and

(b) « does not occur negatively in 7, and
(©) dela) \ {a} € 4e(4)

2. or
(a) CEpa< A, and
(b) « does not occur positively in 7, and
(¢) frele) \{a} € fe(4)

Ift=CTFp M: 71, with D(T') = {z1,...,2,}, then we define the type
Closr(t) by
Closp(t) =T(z1) » ... > T(z,) = 7

We then define the reduction s on typings, called S—simplification: Let
tl = Cl,Fl |—p M T1 and tg = CQ,PQ }—p M : 725 then

(1) aCs A in Cy and Closr, (t1)
(2) Cy = Cl{Oé — A}
t1 —g to iff (3) PQ = ]_"1{04 = A}
(4) TQZTl{al—)A}
(5) {a— A} is not a renaming on t;
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We say that a typing is in S—normal form, if and only if there is no variable
in its constraint set, which is S—subsumed by an atom. O

Notice that a Cs A implies « Eg A (but not vice versa). Hence, if t; s to,
we have C) |=p Ca. Moreover, if a occurs only positively in Closr, (71), then
C =p A < a ensures that C; [=p Closp, (11) < Closp,(72); similarly for the
case where a occurs only negatively. This shows that S—simplification is
sound, i.e., t1 g to = t1 = to.

The following lemma shows that constraint sets constituting 2—crowns
of variables cannot be S—simplified, under certain conditions. We shall use
this property in an essential way later, when we prove a lower bound on
type size.

Lemma 4.2.2 Let C be a set of the form
C={a<v,a<§pB<y,8<d}

constituting a 2-crown of variables. If t = C,0 bp M : T is a typing in
which o and B occur negatively in 7 and v and 0 occur positively in T, then
t is in S—normal form, for any non—trivial poset P.

PROOF Notice first that, by the assumptions about positive and negative
occurrences of the variables in C, for no valid S—subsumption oo Cg A could
A be a constant in P, provided that P is non—trivial. For instance, if we
tried with a Cs b, then (since a occurs negatively in 7), we would need to
have C =p a < b, which would evidently entail =p a < b, so b would have
to be top element in P; but then the transformed constraint set C{a +— T}
would contain the inequality T < «, and the condition C |Fp C{a — T}
would not hold, unless P is the singleton set, showing o Cg b impossible for
any non-trivial P. Similar arguments show that no other variable in C' can
be S—subsumed by a constant in P.

The lemma can now be verified by considering all possible S—subsumptions,
which must be between variables in C. For instance, if one tries with a Cg 7,
then fic(a) \ {a} C fic(y) is forced by the definition of Cg; but this condi-
tion fails in any non—trivial poset P, which must contain two elements by,
by such that by <p be and by £p by; clearly, we have § € f¢(a) \ {a}, but
0 & fic(y) since we can map « and § to by and v to be in some satisfying
valuation. The other possible cases are symmetric to this one. O

Notice that the assumptions about negative occurrence of a, # and positive
occurrence of «y, § is necessary for the lemma. If, e.g., all variables in C
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occurred positively, then we could simplify the constraint set by mapping
all variables to | (assuming P has a bottom element.)*

The next example shows that there are indeed situations where we
cannot eliminate all internal variables, even under the combination of G-
minimization and S—simplification.

Example 4.2.3 Let P be any non-trivial poset (i.e., P not discretely or-
dered.) Then there are two distinct elements 0,1 € P with 0 < 1. Let C be
the constraint set over P:

s

n

[ (4]

We assume that C' occurs in a typing t where the variables «, 3, 7, § are
observable with « and § having negative occurrences and v and ¢ having
positive occurrences. The variable 7 is internal.

The set C is G-simplified (hence also G-minimized, since there is just
one internal variable) over any non—trivial order P. This shows that, indeed,
there are situations where not all internal variables can be eliminated. We
leave it to the reader to check that there exists no atom A such that n Cg A
with respect to C' (for A € P we must use that P is not a singleton set).
The set C' cannot be S—simplified either, by Lemma 4.2.2. Tt is not difficult
to check, then, that the constraint set C' cannot be simplified at all, i.e.,
there is no non-renaming substitution S such that (t <g t. |

The reader has now seen a number of examples involving 2—crowns defined
by constraint sets, and one may wonder whether such sets can actually occur
in real typings of terms (programs). The fact is that they can; in Chapter 5
we will construct terms that generate large numbers of crowns.

4This is one place where a system built on I=p differs from a system built on Fp; in
[65], where we used the relation Fp, we did not have to take into account the polarities
of variables, since no crown of observable variables can be S—simplified in any non—trivial
order P, no matter how the variables occur in the type.
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4.2.1 Partial completeness of S—simplification

We now prove the main technical result of this chapter. It shows that S—
simplification has an interesting partial completeness property. We show
that, for typings of a certain form, S—simplification leads to minimal typings
in the sense of Definition 3.2.7. The essential property needed to prove this
is contained in the following proposition.

Proposition 4.2.4 Lett = C,I'tp M : 7 and 7" = Closp(t). Assume S is
not the identity on Var(t) with

(i) CFpS(C)
(i)) Clp S(7) <
) Supp(S) € Obv(t)

(131
(iw) C 1is acyclic
Then there exists o € Supp(S) such that o <s S(a) with respect to C and

T

PROOF The proof is by contradiction, so suppose, under the assumptions
of the proposition, that

—3Ja € Supp(S). a <s S(a) wrt. C and 7' (4.1)

Pick any a € Supp(S) (by assumption Supp(S) # 0), so we have a # S(a).
By (#%), @ must occur in 7. It is then easy to verify, by induction in 7' that
(#3) implies that

1. if & occurs negatively in 7/, then C' Ep a < S(«), and
2. if « occurs positively in 7/, then C =p S(a) < «

Now, since C' is acyclic, these two statements cannot both be true, since if
they were, then we would have C' =p o = S(«), implying that C is cyclic
(remember that we have a # S(«)). On the other hand, since a occurs in
7/, it has either negative or positive occurrences. Therefore we can conclude
that either C =p S(a) < a with « not occurring negatively in 7/, or else
C Ep a < S(«) with a not occurring positively in 7. Assume that we have
(the alternative case is similar)

CkEpSla)fa

with a not occurring negatively in 7/

()
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By C Ep S(a) < a and S(a) # a we get that, if S(a) is not a constant,
then S(«) must be a variable occurring in C, by Lemma 3.4.3. Therefore
{a@ = S(a)} cannot be a renaming on t. By (4.1) we must then have
Jo(a) \ {a} € Jc(S(a)), since otherwise we should have @ Cs S(a). So
there must be an atomic type A; € |c(a) \ {a} such that

A1 ¢ 4o(S(a)) (4.2)

In particular, we therefore have
A1 # S(a),A1 #aand C =p A1 < a (4.3)

By the Substitution Lemma, we then have S(C) Ep S(A1) < S(«), and so,
by (i), we also have
CEp S(A1) <S(a) (4.4)

If Ay = S(A;), then by (4.4) it would follow that C =p A; < S(«), hence
A; € J¢o(S(a)) in contradiction with (4.2). Therefore we must have

Ay # S(A1) (4.5)
from which it follows that

A; is a variable in Supp(S) (4.6)

Now, by (4.6) and assumption (4i7), A; is an observable variable, occurring
in 7/. Then (4¢) implies that A; and S(A;) must be comparable under the
hypotheses C. We already know (4.5) that A; # S(A1), and if C =p 41 <
S(A1), then it would follow by (4.4) that C =p A1 < S(«) in contradiction
with (4.2). We must therefore conclude that

C =p S(A1) <A

with no negative occurrence of A; in 7/

(4.7)

Summing up so far, we now have the situation
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where the dotted line means “less than or equal to” and the solid lines mean
“strictly less than”, and the relations shown hold under entailment with
the hypotheses C. But this, together with (4.7) shows that the situation
described in (x) now holds with A4; and S(A4;) in place of @ and S(«), and all
the reasoning starting from (*) can therefore be repeated for A; and S(A4;),
leading, again, to the existence of an atom As (which must be a variable
in C) with C Ep Ay < Ay and As # A; etc. Hence, by repetition of the
argument starting at (*), we obtain an arbitrarily long strictly decreasing
chain (under entailment with C) of variables in C:

a>A; > A > ...

implying that C is cyclic and thereby contradicting (iv). We have now
reached the desired contradiction, and we must therefore reject the assump-
tion (4.1), and the proof of the Proposition is complete. O

Using Proposition 4.2.4, we can now prove the following result.

Theorem 4.2.5 (Completeness of S wrt. observables)
Ift=C,T'Fp M : 7 is an S—simplified typing with C acyclic and Var(C) C
Obv(t), then the typing to = Red(C),T' Fp M : T is minimal.

PROOF  We will show that any typing t satisfying the conditions of the
theorem must be fully substituted. Now suppose that S is a non-renaming
substitution on t such that S(t) < t. We can assume w.l.o.g. that S is the
identity on variables not appearing in t. Since Var(C) C Obv(t) it follows
that Supp(S) C Obv(t). Since S(t) < t, there is a substitution S’ such that

1. CEp S0 S(C)
2. C'|=p S o S(Closr(7)) < Closp(T)

Since S is not a renaming on t, it follows that S’ oS is not a renaming on t,
and then Proposition 4.2.4 shows that t is not S—simplified. This contradicts
the assumption that t is S—simplified. Therefore, any substitution S such
that S(t) € [t] must be a renaming on t. This establishes that t is fully
substituted. Theorem 3.5.3 then implies that t( is minimal in its equivalence
class. m|

This theorem allows us to conclude that certain typings are minimal. Since
S—simplification requires some fairly strong conditions to be satisfied by the
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typing, it may be an easy matter to establish that the conditions of the
theorem are satisfied. Theorem 4.2.5 will be used in Chapter 5, where we
prove an exponential lower bound for the worst case size of constraint sets
and types in principal typings of A<(F=p).



Chapter 5
The size of principal typings

This chapter investigates the asymptotic worst case dag—size of principal
typings in atomic subtyping systems. We prove a tight worst case exponen-
tial lower bound for the dag-size of both constraint sets and types of principal
typings in atomic subtyping systems, relative to any specific instance rela-
tion proposed so far in the literature. To the best of our knowledge, the only
lower bound result previously proven for type-size in subtyping systems is
the linear lower bound for a whole class of so—called sound instance relations
shown in [37] (see Section 1.5). Moreover, we separate the known instance
relations by studying the relative power, with respect to simplifications, of a
series of increasingly large instance relations. We show that each larger rela-
tion validates simplifications which, in the extreme, can yield an exponential
compression in the size of principal typings, in comparison with the smaller
relations. We argue that the exponential lower bound is also significant for
non-atomic systems. The proof of the exponential lower bound as well as
the separation results draw on the results of Chapter 3 and Chapter 4 with
Theorem 4.2.5.

For the simple typed A—calculus, As, we know (see [42]) that while tez-
tual type size can be exponential, dag-size (see, e.g., [42] and [54, Chapter
11.3]) is at most linear. The basic property responsible for this is that
the type system of A\; imposes enough equality constraints, in the sense of
[74], so that sharing yields exponential succinctness. In the case of ML,
succinctness of let-expressions leads to doubly exponential textual size of
types and exponential dag-size, in the worst case (see [42, 54] with further
references.) Simple subtyping (A< for short) as studied here, is a system
based on inequalities, and, as shown below, this alone leads to exponential

66
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dag-size of typings (constraint sets as well as of types), for the reason that
exponentially many distinct variables must be present in a principal typing,
in the worst case. The situation is summarised in the table:

As | ML | A<

text | 27 | 22" | 2»

dag | n | 27 | 27

The table shows that the distinctive property of the subtyping system is the
absence of dag—compression. Both A; and ML have exponentially succinct
dag—types, even though the ML system lies an exponential higher than sim-
ple types. Needless to say, the system A< has no quantified types and no
let—construct, so the loss of dag-compression, in passing from As; to A<,
must be explained solely in terms of the presence of subtyping. This phe-
nomenon is a reflection of the intuitive property that subtyping introduces
a higher “degree of freedom” in type structure. However, up until now, no
“hard” evidence has ever been given to support this intuition.
This result is interesting for at least the following two reasons.

1. It gives a complexity theoretic foundation to the observed phenomenon
that subtyping systems are hard to handle in practice.

2. It identifies an intrinsic limit to how much type-simplification tech-
niques can possibly achieve for atomic subtyping, relative to any notion
of instance suggested so far, no matter how clever we are at inventing
simplifications validated by any of those instance relations.

The remainder of this chapter is organized as follows. Section 5.1 through
Section 5.3 prove the exponential lower bound for the system A<(=p), which
uses the instance relation <. The idea here is not just to prove the lower
bound, but to do it in such a way that we can separate the power of < from
the power of other notions of instance. The proof must therefore be “tai-
lored” for the system A<(}=p). Section 5.4 studies a more powerful simplifi-
cation framework called “semantic subtyping”, using the to our knowledge
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strongest known notion of instance, called <gen,- In Section 5.4 we prove an
exponential lower bound for the size of principal typings relative to <gem,
and we separate the relations <gy,, < and <sem, with respect to simplifica-
tion, showing that, in extreme cases, the more powerful relation may yield
exponentially more succinct principal typings than the less powerful ones.
Section 5.5 shows that non-linearity is an essential property of terms with
large principal typings. The remaining sections are less technical, focusing
on the significance of the lower bound results. Section 5.6 discusses the
difference between the typability problem and the problem of representing
principal typings. Section 5.7 argues that the lower bound results on type
size remains significant for non—atomic systems.

5.1 Preliminaries

We begin now to prove the exponential lower bound for A<(=p). The proof
has two core parts. One is the construction of a series of terms Q,,, with the
intention that, for all n > 0, the principal typing of Q,, generated by a certain
standard procedure has the form C,,0 Fp Q, : 7,, where C), contains more
than 2" distinct type variables and 7,, contains more than 2" distinct type
variables. The second main ingredient in the proof is Theorem 4.2.5 and the
characterization of minimal typings of Section 3.2, which are employed in
order to prove that the same property in fact holds for all principal typings
of Q, viz. that any principal typing must have a number of variables in
both constraint set and type which is exponentially dependent on the size
of the terms.

For the purpose of the following development we shall first assume that
we have a conditional construct with the typing rule

i C,'tpM:bool C.,T'FpN:7 C.,T'FpQ:7T
C,T Fpif M then N else Q : 7

Moreover, we shall assume pairs (M, N) and product types 7 X 7/ with the
usual typing rule
CTtFpMi:11 C,'Fp Ms:m

C,F I_P (Ml,M2> 71 X T2

[pair]

together with projections m; and 7o using the standard typing rules

C,TEp M :7 X1 CThpM:7i Xy
C,FFP(WI M):Tl C,Fl_P(TFQM):TQ

[proj1] [proj2]



CHAPTER 5. THE SIZE OF PRINCIPAL TYPINGS 69

The subtype ordering is lifted co-variantly to pairs in the usual way, such
that 7 x 75 < 7{ X 75 holds if and only if 7y < 7{ and 75 < 74 both hold. The
additional constructs are introduced only because it is easier to understand
the essence of the lower bound proof, and we show how to eliminate them
form the proof.

5.1.1 Standard procedure

We will be analyzing the form of principal typings of certain terms. We use
the fact, shown in [53], that a principal typing can always be obtained by
the following standard procedure:

(1) first extract subtyping constraints only at the leaves of the term, i.e.,
coercions (applications of the rule [sub], see below) are applied to vari-
ables and constants only, and then

(2) perform a match-step in which a most general matching substitution
(see [53] for details) is applied to the extracted constraint set (the
match-step may fail, but if so then the term has no typing with atomic
subtyping at all) and finally

(3) decompose the matching constraints into atomic constraints, using the
Decomposition Lemma (any matching set can be decomposed)

Once steps (1) through (3) have been performed, we can then apply trans-
formations such as G and S to the typing, without losing principality.

5.1.2 Coercions and completions

We shall sometimes indicate the form of a typing derivation by completions.
Completions are terms with explicit subtyping coercions and type assump-
tions for bound variables. Coercions, as used here, serve the purely logical
purpose of indicating what a typing proof looks like. A coercion from 7
to 7" applied to a term M will be written as TII M, so, for instance, the
completion

Aot

encodes the typing judgement {a < },0 Fp Az.z : @ — [ as well as a
derivation of that judgement; coercions indicate where the subsumption rule
[sub] is used in the term and to which types it is applied.
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5.2 The construction

In order to prove the lower bound on the size of typings, we want to construct
a series of terms Q,,, such that for all n > 0, any principal typing of Q,, must
contain an exponential number of distinct type variables in both constraint
set and type. It is not difficult to write down a series of lambda terms that
will produce types of textual size exponential in the size of the terms. A
well known (see [42, 54]) series of terms with this property is

D"M
the n-fold application to M of the “duplicator”
D = Az.(z, 2)

Sure enough, if we extract constraints from these terms in a standard, me-
chanical way, then we may get an exponentially large number of subtyping
constraints. But that is only one of infinitely many possible representations
of the principal typing. And in fact, the principal typings of these terms,
as derived by the standard procedure in the subtype system, can be simpli-
fied (using, in fact, only G-and S-simplification) in such a way that we get
back their simple types of linear dag-size, as the reader may like to verify.

Assuming that we have
(b,@ l_p M:T

Then
0,OFpD"M:7TXTX...XT
—_————
2"

so that dag-representation of the type yields exponential succinctness:

R

e N
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The situation here is no different from what we have in simple types, and
so the terms D™ will not give us what we are after.

This leads to the idea that, in order to get an exponential blow-up in dag-
size of types in every possible principal typing, we must somehow produce a
series of terms with the following properties

1. The terms must in some uniform way generate exponentially large
minimal typings, and

2. The terms must be such that we can easily tell what their minimal
typings look like

To achieve these goals, we construct the terms Q,, essentially in such a way
that the standard procedure will generate an exponential number of 2-crowns
of observable variables in the constraint sets. We know from Lemma 4.2.2
that observable 2-crowns cannot be S—simplified, if the variables at the bot-
tom of the crowns occur negatively and those at the top occur positively in
the type of the judgement. We shall construct our terms Q,, in such a way
that this becomes true of the crowns in the constraint sets. We can then
invoke Theorem 4.2.5 to argue that the minimal typing of the Q,, must have
exponentially many distinct variables. From this the lower bound will follow
from Proposition 3.6.1.

The terms Q,

We proceed to explain the construction of the terms Q,,. Let cond, y denote
the expression with two free variables z and y, given by

condy y = if true then (z,y) else (y,z)

For a term variable f, define the expression P; with free variable f as
follows:
P; = MK

(if true then (z,(me z,m 2))

else ((me z,m 2),2))

(f 2)
where K is the combinator Az.\y.z. Let fi, fo,... be an enumeration of
infinitely many distinct term variables, and let N be any expression; then
define, for n > 0, the expression P"N recursively by setting

PN = N,
P"M'N = Py, (P"N)
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Write Afjn).M = Afp....Af1.M for n > 1 and Afjo.M = M. Now we can
define the series of terms Q,, for n > 0 by setting

Qn = M)Az Ay.P" condy
So, for instance, we have

Qo = Az.\y.condy ,

and
Ql = )\fl./\a:./\y.()\z.K

(if true then (z,(me z,m 2))
else ((wq z,m1 2),2))

(f12))

condy y

The behaviour of Q,

Before delving into the details of the proof that the terms Q, behave as
claimed, let us give an intuitive explanation of what is going on.
Consider the term Qq. It is easy to see that a principal typing of Qg has
the form
to = Co,0 Fp Az Ay.condgy : o = (B8 = 71 X 72)

with
CO = {a < Y1, & < 721/8 < 713ﬁ S'YZ}

This typing is derived by the standard procedure described earlier, where
G-simplification has been performed to eliminate internal variables. The
resulting typing derivation is given by the completion:

AT Ay : Buif true
then (13! =, 15" y)
else (1} 9,12 2)

All variables in Cj are observable, and () is the 2-crown shown in Figure 5.1.
The set Cy is evidently acyclic. Moreover, the variables at the bottom of
the crown (i.e., the variables @ and ) occur negatively in the type of tg,
and the variables at the top of the crown (i.e., the variables v; and ~9)
occur positively in the type of ty. It follows from Lemma 4.2.2 that t; is
S—simplified; Theorem 4.2.5 then allows us to conclude that tg is a minimal
judgement for Q. Notice that the mechanism responsible for the generation
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Figure 5.1: Constraint crown for n =0

A X

Figure 5.2: Constraint crowns generated by Py,

of the crown is the alignment, within the conditional, of permutations of
the same pair. Two objects are “aligned” if they appear in corresponding
positions in a pair, one object in each branch of the same conditional. Such
two objects are forced to have a common supertype, by the typing rule for
the conditional. Thus, this rule forces a common supertype v; X 72 for
both of the permuted pairs, and thereby it forces the “crown—inequalities”
ax <9 Xy and 8 X a <y X 72; these inequalities generate the crown,
when they are decomposed.

To understand what happens at n = 1, consider the term Py, defined by

P;, = AzK
(if true then (z,(me z,m 2))
else ((mg z,m1 2),2))

(f1 2)

Assuming that Py, is applied to an object of type 1 X 72, it is easy to
verify that the following completion represents a principal typing of P,:

P; = Xz:m1x7nK

- 516 5 5
(if true then (1535, 2, (m T?iii’; Z, M1 Tviizi z))

X9 2 X d3 X0,
else ((my 17500 2,1 192502 2), 12508 )

(f1 2)
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A X

< 4

Figure 5.3: Constraint crowns for n =1

at the type
Y1 X Yo — ((51 X (52) X ((53 X (54)

This typing appears after G-minimizing the typing generated by the stan-
dard procedure. The coercion set corresponding to the coercions shown in
the term constitute the double 2-crown shown in Figure 5.2. It is not too
difficult to verify that, combining the completion shown for cond,, with
the one shown for P , results in a completion of Q; with constraint set C
shown in Figure 5.3, at the type

((’}/1 X’YQ) —)1’]) —>a—>ﬁ—> (((51 X 52) X (53 X 54))

where (1 X 72) — 7 is the type assumed for the variable f; in Q;. We
notice that we now have two “towers” of 2—crowns, with new variables (d;
thru d4) sitting at the top of two copies of the crown generated for n = 0. It
still holds that « and 3 sit at the bottom of each crown, and o and 3 occur
negatively in the type of Q1, while the other variables occur positively; and
in particular, all variables in C; are observable.

The general pattern should now be discernible at n = 2, referring to
Figure 5.4. The term Qg will force that the previous crowns get doubled,
resulting in 2"(= 4) “towers” of 2-crowns and introducing 2"*!(= 8) new
variables (named vy thru vg in Figure 5.4) sitting at the top of the previous
towers of crowns generated at n = 1, resulting in a total of 2”2 (= 16) dis-
tinct variables, organized in 2™ “towers” of crowns, as shown in Figure 5.4.
It remains invariant that « and 3 sit at the bottom of all the crowns, occur-
ring negatively in the type, while the remaining variables occur positively,
and therefore the crowns cannot be eliminated from the principal typing
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(i.e., there is a minimal principal typing in which the crowns are present.)
The construction of Q,, uses the application (f, z) in order to force that
intermediate variables in the crowns become observable; this is in fact not
strictly necessary, but it simplifies the correctness proof for the construction.
The fact that the towers of crowns grow “incrementally”, by continuing, at
step n + 1, to build new crowns on top of the towers of crowns generated at
step m, makes it possible to organize an induction proof (induction in n) of
the correctness of this construction.

5.3 Exponential lower bound proof

The main lemma in the proof of the lower bound is the following, which
formalizes the intuitive explanation given above.

Lemma 5.3.1 (Main Lemma) Let P be any non—trivial poset. For all n >
0, there is a minimal principal typing for Q, having the form Cp,,0 Fp Q,, :
7'["], where all variables in C,, are observable, and C,, contains at least 2"t!
distinct variables.

PROOF See Appendix A.3 O

In Appendix A.3 we show that the lower bound construction can be made in
pure A—calculus, without conditional, pairing and projection. We can now
prove
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Theorem 5.3.2 For any non—trivial poset P of base types it holds for ar-
bitrarily large n, that there ezist closed terms of length O(n) such that any
principal typing (wrt. <) for the terms has a constraint set containing 282(n)
distinct observable type variables and a type containing 2% distinct type
variables.

PROOF Take the series of terms Q,,; clearly, the size of Q,, is of the order
of n, and Lemma 5.3.1 shows that Q, has a minimal principal typing t
with constraint set containing more than 2" distinct variables and a type
containing more than 2" distinct variables. Any other principal typing t’
satisfies t ~ t’, and hence t < t’, by minimality of t. By Proposition 3.6.1,
this entails that t must have at least as many distinct type variables in both
constraint set and type as t. m|

The theorem immediately implies that the dag-size of constraint sets as
well as of types in principal typings are of the order 2%(") in the worst case.
Since it follows from standard type inference algorithms such as those of
[53] and [28] that a principal atomic typing can be obtained by extracting
a set C of (possibly non—-atomic) constraints of size linear in the size of the
term followed by a match—step which expands and decomposes C to atomic
constraints under at most an exponential blow-up, we have in fact a tight
exponential bound:

Corollary 5.3.3 For any non—trivial poset P of base types, the dag-size of
constraint sets as well as of types in atomic principal typings (wrt. <) is of
the order 2°(") in the worst case.

There are two limitations on the lower bound result proven in this sec-
tion. The first limitation is that we were pre-supposing a particular notion
of instance, <. The second limitation is that the type system is assumed
to be atomic. While the lower bound proof obviously depends on both of
these assumptions, we will argue below (Section 5.4 and Section 5.7) that
the result remains significant for systems that do not obey these restrictions.

5.4 A hierarchy of instance relations

It is possible to envisage instance relations stronger (that is, larger) than <,
and it is a theoretical possibility that there might exist meaningful instance
relations strong enough to validate simplifications of such power that the
exponential lower bound could be by—passed. The rationale here is that
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a larger instance relation allows more typings to become equivalent, hence
there will be more ways of presenting principal typings, and hence there
might exist more (possibly exponentially) succinct presentations. However,
as we will argue in this section, it is doubtful that the exponential lower
bound can be overcome this way.

5.4.1 Instance relations

In this section we present a catalogue of increasingly large instance relations.
The catalogue covers all instance relations suggested so far in the literature.
In the sequel, we will work with the notational convention that, by default,
t; denotes a typing judgement of the form C;,T; Fp M : 7;, and t’ denotes
a judgement of the form C',T" Fp M : 7'.

Weak instance relation (<yeqk)

For completeness, we mention the weakest (smallest) known instance rela-
tion, introduced by Mitchell [53]; it was defined in Section 1.5, where it
was called <y eqr- As mentioned there, it does not validate even very trivial
simplifications, and we will not consider it further.

Syntactic instance relation (<)

A stronger (larger) notion of instance is the following “syntactic” version of
<, called “lazy instance” by Fuh and Mishra [28], who introduced it precisely
for the sake of validating more powerful simplifications. It arises from the
definition of < by exchanging the relation |=p with the relation Fp. We
denote the syntactic relation <y, and we have t <, t' if and only if there
exists a substitution S such that

1. C'"+p S(C)
2. C'Fp S(r) <7
3. Ve e D). C'Fp T'(z) < S(T'(x))

Clearly, <weak c ‘<syn-

Model theoretic instance relation (<)

The relation < defined in Definition 3.1.1 and studied in previous chapters
is an intermediate relation, obviously larger (relating more typings) than
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<syn- We call it “model theoretic” instance here, to distinguish it from the
others.

Semantic instance relation (<;em)

In [73], Trifonov and Smith introduced and studied a highly natural and
very powerful subsumption relation, called “semantic subtyping”, on poly-
morphic qualified type schemes of the form V&@.I' = 7/C. This notion of
subsumption is closely related to the second order polymorphic subsumption
relation introduced by Mitchell [52]. Trifonov and Smith considered sub-
sumption in the model of infinite trees equipped with the Amadio—Cardelli
order [5]. However, the relation makes sense for other models as well, and we
consider here a version appropriate for the present setting of simple subtypes
over a partial order of ground types.

A combination of a simple type 7 and a constraint set C, written 7/C,
will be called a qualified type. The set of ground instances of a qualified type
7/C is the set

{v() [v P C}
that is, an instance is produced by applying a valuation satisfying C' to
7. Relative to a poset P of type constants we order qualified types by a
subsumption relation called <gem, by setting 7/C <sem 7'/C" if and only if,

for every instance of 7//C’ there is a smaller instance of 7/C. That is, we
have 7/C <sem 7'/C" if and only if

Yo' =p C'. Ju Ep C. v(r) <o'(1)

We can generalize the order <, to arbitrary typings, by setting t <gem, t/
if and only if

W' =p C. Fv =p C. /(1) < o(T) Au(r) < o'(r)

where we order typing contexts by setting I'' < T if and only if D(T") C D(T)
and I''(z) < T'(z) for all z € D(I).

The relation < can be regarded as a relation between qualified types in
the obvious way. We clearly have < C <gem, because 7/C < 7'/C' evidently
holds if and only if

S Vo Ep C.voSEp CAv(I') <voST)AvoS(T) <wv(r')
Summing up, we have the increasing series of relations:

<weak Cc '<syn c<C <sem
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We write ~;y,, = and =gy, for the equivalence relations induced by the
corresponding instance relations (we shall not consider <yeqx any further).

Type systems

We can define atomic type systems corresponding to each instance relation,
by exchanging the rule [sub] in Figure 2.4 by a suitable rule in each case, as
follows:

e The subtyping system A<(-p) is obtained by exchanging the relation
= in rule [sub] in Figure 2.4 with the relation Fp.

e The subtyping system A< (}=p) is just the system defined by Figure 2.4,
taking = to be =p.

e The subtyping system A<(<sem) is obtained by exchanging the rule
[sub] in Figure 2.4 with the rule

CTtpM:7 C;TFpM:7T <5enn C'\ TV Fp M : 7'
C'\I"kpM:7

The system )\5(-< sem) collapses the notion of subsumption with the notion
of instance (see [73] for further details.) In this system, a principal typing
is a minimal judgement with respect to < em, i-e., t is a principal typing
judgement for a term M if and only if it holds for any other valid typing
judgement t’ for M that we have t <gep, t'.

The system A<(Fp) is considered together with the instance relation
<syn, the system A< (|=p) is considered together with the instance relation
<, and the system A<(<sem) is considered with the instance relation <gepm,.
Using this convention, it is easy to see that each notion of instance is indeed
sound for the corresponding type system, in the sense of Hoang and Mitchell
[37]. All these systems type the same pure (constant—free) A-terms, since
they all type exactly the simple typed constant—free terms. This follows
immediately from the following theorem, which states that every judgement
derivable in the system A< (<sem) has a corresponding derivable judgement
in simple types:

Theorem 5.4.1 For an arbitrary fized variable o, let the S¢ denote the
map that sends every variable in V and every constant in P to the variable
«. Suppose that M is a constant—free A\—term such that C,I' -p M : T is
derivable in the system A< (<sem). Then S*(T') = M : S%(7) is derivable in
the simple typed A—calculus, Xs.
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PROOF  The proof is by induction on the derivation of the judgement
C.,T Fp M : 7 in A<(<sem) (in which the rule [base] is not used). In the
case of rule [sub] (using the relation <senm), consider the proof step

CTtpM:7 CTbpM:7 <, C'\T'Fp M = 7'
C'"\T"rFpM:7'

By induction hypothesis, we have S*(T") - M : S%(7) in A,. Since C,\T Fp
M :7 <4em C',T" Fp M : 7', we must have I'(z) and I'(z) matching for all
z € D(T) and 7 must match 7'. It follows that S*(T") C S¥(I') and S%(7) =
S%(7'), and therefore S*(I'") F M : S*(') follows from S%(T') F M : S*(1).
The remaining cases are obvious and left out. O

Standard procedure for principal typings

It can be shown by well-known methods (induction in typing derivations)
that the standard procedure (Section 5.1.1) remains valid for generating prin-
cipal typings in the system A<(f=p). The proof is analogous to well-known
proofs for A<(p), see [53, 28]. As for the system A< (<sem), We can use the
property proven by Trifonov and Smith [73], that a principal typing can be
obtained by extracting subtyping constraints at every application point in a
term (more generally, at every point in a term, where a destructive operation
is performed); the resulting principal typing in A<(<sem) is well-typed in
A<(Fp), and by results in [53, 28], we know that an equivalent typing with
respect t0 <yeqr Can be obtained by the standard procedure. We will be
looking at only a few rather simple terms here, and for these terms it will
not be difficult to verify principality of typings in each case.

5.4.2 Exponential lower bound for semantic subtyping

We will show that an exponential lower bound on the dag-size of typings
continues to hold for principal typings the system A< (<sem), under the most
powerful instance relation known, <gep,. In the light of this, it appears to be
plausible that there may not exist any meaningful instance relation at all,
which by—passes the exponential lower bound for atomic subtyping systems.

We will show that there exists a series of terms Q¢ such that Q™
has a principal typing t, with 2(® distinct type variables and such that
any other typing t! with t, /e, t,, must also contain 29(n) distinct type
variables. We assume a non—trivial poset P of base types, containing at
least two distinct constants, denoted 0 and 1, with 0 < 1.
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There is a natural notion of contextual (observable) equivalence as-
sociated with qualified types, introduced in [73]. Let ¢; and ¢2 be two
qualified types, g1 = 71/C1 and g2 = 79/Cs. A pair (D, ) consisting
of a constraint set D and a type 7 is called a context for ¢; and ¢o if
and only if D and 7 have no variables in common with ¢; or ¢, i.e.,
(Var(D) U Var(7)) N (Var(q1) U Var(gz)) = 0. It is then easy, using defi-
nitions, to prove the following useful property, which corresponds to the
“full type abstraction” theorem in [73] (Theorem 23).

Lemma 5.4.2 71/C1 <sem T2/C2 if and only if CoUDU{m, < 7} satisfiable
implies C1 UDU{m < 7} satisfiable, for every context (D, 7) for 71/Cy and
72/C.

The next definition singles out the set of addresses in a type where a given
variable has positive (resp. negative) occurrences:

Definition 5.4.3 If 7 is a type expression and « a variable, let P, (7) denote
the set of addresses w in D(7) such that n(w) = 0 and 7(w) = «, and
let N, (7) denote the set of addresses w in D(7) such that m(w) = 1 and
T(w) = a O
Using the Match Lemma (Lemma 2.3.5) and the fact that valuations are
atomic, it is easy to see that 7/C <sem 7'/C" with C' satisfiable implies

that 7 and 7’ are matching types, with D(7) = D(7'). We will tacitly
appeal to this fact in the sequel.

Lemma 5.4.4 Assume 7/C <gem 7'/C'. Let o € Var(t) with a occurring
both negatively and positively in 7. Let w € P,(7) and w' € Nu(7), and
let AP and A™ be atoms such that AP = 7'(w) and A™ = 7'(w'). Then
O =p A" < AP

PROOF  Since 7/C <gem 7' /C' we have
V' Ep C'. Ju p C. v(r) <'(7) (5.1)

To show that C' Ep A™ < AP, suppose that v' =p C'. Then (5.1) shows
that the inequality 7 < v'(7') is satisfiable, by some valuation in P. Since «
occurs both positively and negatively in 7, the inequality 7 < v'(7") implies
(by decomposition) the inequalities

v'(A™) < a < v'(AP)

Since 7 < (') is satisfiable, it follows that v'(A™) <p v'(AP) is true. O
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Definition 5.4.5 Let V be a set of variables and C' a constraint set. We
say that C differentiates V if and only if for every pair of distinct variables
«a and § in V both of the sets C{a — 0,3 +— 1} and C{a — 1,5 + 0} are
satisfiable. m|

Proposition 5.4.6 Assume that 7/C Rsem ' /C'. Suppose that V' C Var(r)
is such that:

1. Every variable in V' occurs both positively and negatively in 7, and
2. C differentiates V

Then, for any two distinct variables a and 8 in V', and for any w € P, ()
and any w' € Pg(1), the atoms 7'(w) and 7' (w') are distinct variables in
Var(7'). In particular, |V| < |Var(7')|.

PROOF Let o and § be any two distinct variables in V. We have P,(7)
and N, (7) non-empty, for v € {e, f}. Let w and w’ be any addresses such
that w € P,(7) and w' € Pg(7), and let A% = 7'(w) and A} = 7'(w'). We
claim that

AP AT (5.2)
To prove (5.2), choose w1 € Nyo(7) and wy € Ng(7), and let A} = 7'(w1)
and A} = 7'(ws). Then Lemma 5.4.4 shows that we have

C' f=p AT < AP, (5.3)
and
C'p Af < A (5.4)

Let 0 be a renaming of 7{a +— 0,3 +— 1} with variables distinct from the
variables in 7/C and 7//C". Then we have

Vw € P,(1) U Ny(7). O(w) =0
and
VYw € Pg(1) UNg(7). §(w) =1

Since C differentiates V', we know that the set C U {r < 0} is satisfiable.
Then, by Lemma 5.4.2, the set C' U {7’ < 0} is also satisfiable. But decom-
posing the inequality 7/ < 0, we get that the following inequalities (among
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possibly others) must be satisfiable together with C”:

AP = 7'(w) < O(w) =0

Ap=71'(w') <O(') =1
Al =1 (wy) > O(w1) =0
Af = 1'(w2) > O(w2) =1

Now, if our claim (5.2) were false, then we should have AR, = A% and there-
fore (by the inequalities above) A% < 0 and A% > 1 would be satisfiable
together with C’. But this obviously contradicts (5.4). We must therefore
conclude that the claim (5.2) is true.

We have now established the following property:

(¥) For any two distinct variables @ and § in V, it is the case that, for
any w € P, (1) and any w’ € Pg(7), we have 7'(w) # 7'(w')

It is easy to show, by a similar argument, that

(#x) For any two distinct variables @ and § in V, it is the case that, for
any w € Py(7r) and any w' € Pg(r), we have 7'(w) € Var(r') and
7'(w') € Var(1')

To see (x*), we assume that, say, AP is a constant, 0 or 1. If A? is 0, then
we choose @ in such a way that A7 > 1 becomes forced, which contradicts
satisfiability with C" because C' =p A7 < AP. If AP =1, then we choose 0
in such a way that A%, < 0 becomes forced, contradicting satisfiability again.

Now, there is a function f mapping V to addresses such that for each
a € V we have f(a) € Py(7). Then it follows from (x) together with
(#+) that the map 7/ o f is an injection from V to Var(7'), i.e., for any
a,f € V with a # 8 we have 7/(f(a)) # 7'(f(8)) and 7'(f(a)) € Var(7')
and 7'(f(08)) € Var(r'). This shows that |V| < |Var(7')|, and the lemma is
proven. O

We will now construct a series of terms Q;*™ such that the dag-size of
principal typings of these terms must grow exponentially, with respect to

<sem- Let
D = Az.(z, 2)

and define as usual D"N to be the n—fold application of D to N. For
variables z,y let Py, = (z,y), and define for n > 0 the terms Q> by

n = AT Ay Aw.Ag.((g (D" Pry), g w), Pry)
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It is not too difficult to verify (starting with constraint extraction by the
standard procedure and then applying G- and S—simplification, as usual) that

the following completion represents a principal typing for Q;¢™:

AT Ay AW Ty Mg Ty — 1)
(g T?JDJ (D" Pw,y)ag w)an,y>

at the type
M =a = B =1, = (T = 1) = (nx 1) x (axf) (5.5)

and where 7, has has the shape of T}, (the full binary tree of height n with
2" leaves) with 2" distinct variables y; thru 7o~ at the leaves,

Tw = ((71 X 72) X (73 X 74)) X - X ((Y2m—3) X Y2n—2)) X (V2r—1) X Y2~))

and 7p has the shape of T;,, with leaves alternating between a and g,

™ = ((axf) x (axf)x...x ((a xf) x(axp))
Hence, a principal typing of Q;°™ has the form
Cp, 0 Fp Qiem - 7]
where C},, the decomposition of 7p < 7, is just the set

Cn ={a <7vitier U{B < j}jes (5.6)

where I is the set of uneven numbers between 1 and 2", and J is the set of
even numbers between 1 and 2".

The types 7™ all have the important property that every variable occur-
ring in 7™ occurs both positively and negatively in the type. This property
allows us to prove:

Theorem 5.4.7 For any non—trivial poset P of base types, the dag-size of
constraint sets as well as of types in atomic principal typings with respect to
<sem 18 of the order 20(n) in the worst case.

PROOF We prove that, over any non—trivial poset P, every principal typ-
ing for Q;f™ with respect to <g¢y, has 29(n) distinct type variables in its
constraint set as well as in its type.

Let n > 1 be given; we know that Q:*" has a principal typing of the

form C,,0 Fp Q™ : 7", where C,, is given by (5.6) and 7" is given by
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(5.5). To simplify notation, let C' = C), and 7 = 77, To fix variable names,
write
T=a—= 01y — (Tw—=1n) = (nx1n) X (axf)

where 7, uses variables vy; thru von. Let C',0 Fp Q5™ : 7' be any other
principal typing for Q3¢™. We have 7/C =sem 7'/C".
With
Go={7|la<vy€eC}

and
Gs={y|B<v€eC}

it is clear that C' differentiates all variables in G, U Gg, and hence Proposi-
tion 5.4.6 is applicable to the variables in G, U Gg. It is also clear that C'
differentiates the set {a, 3}, so the proposition applies to this set also. We
have

C={a<~vy|veG,UGg}

and |G, U Gg| = |Var(C)| — 2 = |Var(7)| — 3 (the variable n occurs in 7 but
not in C). It follows from Proposition 5.4.6 that we have

[Var(7')| > |Var(7)| — 3 (5.7)
We will now show that we also have
|Var(C")| > |Var(C)| — 4 (5.8)
To prove (5.8), choose arbitrary w, € No(7) and wg € Ng(7) and let
o =7'(wy) and ' = 7'(wp)

(Proposition 5.4.6 shows that 7/(wa) and 7/(ws) are indeed variables). De-
fine the sets of variables G, and G5 by

Gy ={7'(w) | Iy € Go. w € Py(1)}

and

GQ; ={7'(w) | Iy € Gg. w € Py(1)}
Then Proposition 5.4.6 implies that |G}, U G| > |Go U Gg| = |Var(C)| — 2.
Finally, define the sets of variables Gy, and G by

Gq = Go \ {'} and G = G \ {8}
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Then we have
|G U Gg| > |Var(C)| — 4

To show (5.8) it is therefore sufficient to show that we have
G” C Var(C") (5.9)

and

G C Var(C) (5.10)
We will show how to prove the first inclusion (5.9), the second one follows
by the same reasoning.

To prove (5.9), suppose that there exists v/ € G with v/ ¢ Var(C"),
aiming for a contradiction. Then, for some v € G, and some w, € P,(7),
we have

' =7'(w,) and v = 7(w,)
Notice that we have 7(w,) = 0 and 7(w,) = 1. Finally, by the definition of
GY, we have
,_yl # al
It is easy to see that we can choose a valuation v satisfying C such that
v1(a) = 1. Because 7' /C" <;em 7/C, it follows that there exists a valuation
v’ satisfying C' such that
v'(7) < vi(7)

Since 7(wq) = 1, this implies that
1 =wvi(a) = vi(7)(wa) < V'(7")(wa) = v'(c)

so that we have
1 <'(d)

Let the valuation vj be given by
v =2 ®{y — 0}

Because we have assumed that 7' ¢ Var(C'), we have v, =p C' (because
v' =p C"). Moreover, since 7' # o/, we have

vhle) = v'(a') > 1

Now, because 7/C <gem 7'/C’, it follows that there exists a valuation v such
that
v Ep C and v(1) < v)(7') (5.11)
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Since m(wq) =1 and 7(w,) = 0, this implies that
v(7)(wa) > v5(7")(wa) (5.12)

and
v(7)(wy) < vp(7") (wy) (5.13)

But we have
o(r) (wa) = v(a) and vh(r') (wa) = vh(a’) = 1

so therefore (5.12) implies
v(a) >1 (5.14)

Moreover, we have

v(7)(wy) = v(y) and vo(r) (wy) = vp(7') = 0

Therefore, (5.13) implies
v(y) <0 (5.15)

But o < v € C, so (5.14) and (5.15) are in contradiction with v | C,
obtained in (5.11).

We must conclude that G% \ Var(C') = 0, so G C Var(C"), thereby
proving (5.9); the property (5.10) is proven analogously. This concludes the
proof of (5.8).

The theorem now follows from (5.7) and (5.8), because

Var(7)| > [Var(C)| = 2" + 2

5.4.3 Separation

We will now compare the relations <y, < and <se;, With respect to the
power of the simplifications they validate. We will show that these relations
constitute a hierarchy with exponentially large gaps, in the following sense:
there is a series of terms such that principal typings with respect to <, are
exponentially large, whereas principal typings with respect to < are linear;
and there is a series of terms such that principal typings with respect to <
are exponentially large, whereas principal typings with respect to <gey, are
linear.
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Separating <, and <

In the paper [65], we showed an analogue of Theorem 4.2.5 for a system based
on <syn. Here, a weaker form of S-simplification is assumed, based on Fp
rather than |=p. We will call this “syntactic S-simplification”. Defining 1%
and |, by

16 (A) = {A'| O rp A< A}

and
Vo (A) = {4 | Crp A < 4)

we obtain the syntactic version of S by exchanging the sets ff¢ and | ¢ and
the relation |=p in Definition 4.2.1 with the sets 1% and |, and the relation
Fp, respectively. We also use a syntactic notion of cyclic sets, according
to which C is cyclic if and only if there are atoms A and A’ with A # A’
such that C Fp A = A’. Tt was shown that, with these syntactic notions of
S—simplification and cyclicity, any S—normal form typing with all variables
observable and acyclic constraint set is minimal, implying that any other
equivalent typing with respect to <y, must have at least as many distinct
variables in constraint set and type as the minimal one. We can use this
result to separate <4y, from <, as follows.
Consider a 2—crown of observable variables,

C:{QS’)/,O{S(S,,BS’Y,,BS(S}

It is easy to verify that, even though all variables in C' occur only positively
in a typing, no S—subsumptions are possible under the syntactic notion of S.
It then follows from Theorem 5.6 of [65] that a typing with constraints con-
stituting observable crowns is minimal. Compare with Lemma 4.2.2, which
showed that such a crown with the bottom variables occurring negatively
and the top variables occurring positively is in S—normal form, with respect
to the notion of S—subsumption which uses the relation |=p rather than Fp.

Suppose now that P is the poset with three elements {a,b, T} ordered
by a < T,b < T, and suppose that the term language contains a constant
a of type a and a constant b of type b. Consider the series of terms Q;¥"
defined by

Q" = Mn-P"(a, b)

where P and the notation Afp,... are as defined in Section 5.2. Then,
using the analysis of principal typings given in Section 5.2, it is easy to see
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that there is a principal typing of Q;¥" with constraint set C,, consisting of
exponentially many crowns of the form

2

(9]

& [b]

where all variables in the crowns are observable in the typing, and all vari-
ables occur only positively in the typing. It follows from [65], Theorem 5.6,
that the typing is minimal, and that any other principal typing must have
exponentially many distinct variables in its constraint set as well as in its
type.

However, with respect to <, all the crowns in these principal typings can
be collapsed, because the sets C,, are cyclic with respect to |=p (though not
with respect to Fp): for every variable v in C,,, we have C,, EFp v = T.
Therefore, a principle typing under < can be given with no type variables at
all, and with a type containing only the type T at the leaves of trees labeled
X. As an indication of how this works, consider that the term

(Az.if true then (z,(my z,m 2)) else ((wq z,m1 2),2)) (a,b)

has a principal typing with type (T x T) x (T x T) and empty constraint
set. This evidently leads to principal typings for Q3Y" of linear dag-size,
with respect to <.

Separating < and <,

The relation <y, supports simplifications not validated by <. An interest-
ing case is complete elimination of internal variables over a lattice L of type
constants, which, as we know from Example 4.2.3, is not always validated
under <. In contrast, given a qualified type 7/C with internal variables
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Intv(C), we can always find a constraint set C° with no internal variables at
all, such that 7/C Rgem 7/C°. For let

C%={A < A €Ker(O) | A, A" € Obv(C)}

Clearly, then, 7/C° <em 7/C. Conversely, to see 7/C <gem 7/C°, suppose
that v° =1 C°. Let v be given by

v=2"®{a— Vv°(¢8 (@)} aelntv(c)

Here, the function ig is as defined in Section 4.1.2; the application of vg

to the set Lg () is pointwise. Then one can verify that v = C, with
the argument given in Section 4.1.2 for the elimination of internal variables
using formal joins. Moreover, we have v(7) = v%(7), so v(7) < v%(7) also
holds, showing 7/C =sem, 7/C°. Comparing with Section 4.1.2, we see that
there is a possible trade—off between either extending the constraint language
or extending the instance relation, with respect to enabling more powerful
simplifications.

We will now prove that there is an exponential gap between < and
~sem, in terms of the simplifications these relations validate. In order to
do this, the terms Q,, from Section 5.2 will be useful. We showed that all
principal typings of these terms with respect to < have exponentially many
variables in constraint sets and types. We will now show that an exponential
compression can be gained in principal typings for Q,,, if we simplify under
the instance relation <ge,. To see this, recall that principal typings of Q,,
had exponentially many constraint crowns of the form where o and 3 occur
negatively (and not positively) in the typings, and the remaining variables
occur positively (and not negatively) in the typings. However, suppose that
P happens to be a lattice L; then any constraint crown C} of the form
shown in Figure 5.5 can be transformed, under the equivalence ~¢p,, into
the following constraint set C', where w is a fresh variable:

w

RN

(] ]

provided that the top variables in Cy (i.e., all variables different from « and
() occur only positively in the typing. Recall that all crowns generated
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2

[@  [g]

Figure 5.5: Typical constraint crown Cj generated for Q,,

for Q, have this form. To see that the transformation mentioned above is
sound with respect to <sem, consider a qualified type 7/C with C containing
constraint crowns of the shape of Cj, above and variables occurring positively,
except a and 3 sitting at the bottom of the crowns. Let ;, §;, i = 1...k,
be the set of variables occurring at the top of a crown in C, having « and
(B at the bottom, with all the +; and J; occurring positively in 7. Then we
have

S(1)/S(C) <sem T/C

with
S={vi—wd— w1k

where w is a fresh variable, occurring nowhere in 7 or C'. For suppose that
v [=r, C. Then, taking v’ to be the valuation given by

V=0 {we= () Vo(B)}

then it is easy to see that we have v’ =1, S(C) and +'(S(7')) < v(7). This
shows that 7/C =gem S(7)/S(C). Applying this transformation exhaus-
tively will effectively map every variable different from o and § to a single,
fresh variable w, representing o'V 8. Interestingly, this transformation could
be validated in a system with explicit join—operations in the constraint lan-
guage, using the relation < (compare with Section 4.1.2).
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syn sem
n Qn n

< | 2% |2 | 2m

< sem n n 2m

Figure 5.6: Tight lower bounds for dag—size of principal typings relative to
instance relations shown left and witnessed by sequences of terms shown at
top

It is straightforward to see that the transformation described above leads
to principal typings of Q, with respect to <sem, where all crowns get col-
lapsed into three variables, w, @ and 8. As an illustration, consider that the
term

M = Az \y.(Az.if true then (z,(mo z,m 2)) else ((m z,m 2),2)) (z,y)
has the principal typing
{a<w,B<whltFpM:a— 08— (wXxw)X (wxXw)

This evidently leads to principal typings for Q, of linear dag-size, with
respect to <sem-

Summary of results

We can summarize our results about the size-complexity of principal typings
in the table shown in figure 5.6. This shows that the series of instance
relations

<syn C < C <sem

constitutes a hierarchy separated by exponential gaps with respect to the
worst case size of principal typings, thereby showing that the simplifications
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validated by each relation are exponentially increasing in strength. While
showing that there is potentially a lot to gain by moving to more and more
powerful simplifications, the rightmost column of the table shows that, so
far, no notion of instance has been proposed which by—passes worst case
exponentially sized principal typings. Since <, already appears to exploit
the logical structure of subtyping systems to an extreme degree, one may
doubt that there exists any sensible notion of instance that would guaran-
tee sub—exponential principal typings. We conjecture that this exponential
“degree of freedom” is in fact inherent in subtyping systems.

The features exploited in the series of terms separating the instance
relations can be summarized as follows:

QY™ : crowns with only positive variables
Q) : crowns with both positive and negative but no neutral variables
Q;¢™ : simple constraints with all variables neutral

Here, a variable is called neutral if it occurs both positively and negatively
in the typing.

5.5 Linear terms

We know from [37] that subtyping constraints cannot always be eliminated
from principal typings in the system A< (-p), relative to any so—called sound
notion of instance; by the results of [37], series of A-terms can be defined
such that constraint sets must grow at least linearly in the size of the terms,
for any principal typing. We have seen in the previous section that the
number of constraints may have to grow even exponentially in the system
A<(<sem), for any non-trivial P. It is clear that the constructions showing
these results must exploit A-terms that are in some sense “difficult”, and
there is obviously an interesting relation between the structure of typings
and the structure of the A—terms being typed. It is therefore natural to ask
what “difficult” terms look like in general. It may be next to impossible to
come up with an exact answer to this question. It seems unlikely that there
should be a natural characterization of just those terms that generate large
principal typings.

In this section we give a theorem characterizing a very simple set of
terms that do mot require any subtyping constraints at all. The theorem
states that every linear A\-term has a principal typing, with respect to <yn,
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with empty constraint set. A linear term is one in which every A-abstracted
variable has exactly one free occurrence in the body of the abstraction. This
shows that non—linearity is a necessary property of difficult terms, thereby
singling out a (no doubt extremely rough) superset of those terms. For these
terms, the principal simple type (of As) remains principal in the presence of
subtyping. Even though a very rough approximation to the real answer,
this result is quite useful when one studies difficult typings and the logic of
simplifications. The proof will be quite sketchy, since many details can be
recovered from standard A—calculus theory as found in [7, 8, 36].

Theorem 5.5.1 In the system A<(Fp), it holds for every closed linear A—
term M that M has a principal typing with respect to <syn, containing no
subtyping constraints at all.

PROOF The first step is to realize that every linear term is strongly nor-
malizing with respect to S-reduction (the number of abstractions decrease
strictly under [-reduction.) The next step is to show that the subject
ezpansion property holds for linear terms in the system A<(-p), ie., if
C,T' Fp M : 7 is derivable and M’ is a linear term which f-reduces (in
zero or more steps) to M, then C,T Fp M’ : 7 is derivable. (Subject ex-
pansion does not, of course, hold for general terms.) One proves the subject
expansion property by first proving it for a f-redex, inspecting the form of
the subtyping proof for its contraction; one then proves the property for a
[-redex in any term context, by induction on the structure of the context;
one finally proves general subject expansion by induction in the length of
an arbitrary g-reduction starting from a linear term.

The idea now is to prove that every term in S—normal form can be typed
using a particularly simple typing proof. Subject expansion then allows us
to “pull back” this property to any term.

Recall (from,e.g., [36], p.14) that the set SNF of lambda terms in (-
normal form can be defined inductively, as follows:

1. every term variable z is in SN F
2. if My,..., M, are in SNF, then so is (z M; ... M,) for any variable x
3. if M is in BN F', then so is Axz.M

Let us say that a subtyping proof of the judgement C,T' Fp M : 7 is simple,
if every use of the rule [sub] is either an application of the rule to a free
variable of M or occurs as the last step in the proof. Then one can show, by
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induction in the form of a SN F—term, that every linear term in S—normal
form has a principal typing with a simple typing proof; showing this is
an interesting exercise, and we leave it as such here. It then follows that
every closed linear term in SN F has a principal typing with no subtyping
constraints at all, because (by the previous result) any such term can be
typed by a proof which uses the rule [sub] only at the last step in the proof;
it is easy to see, in turn, that any such application of the rule [sub] can
be eliminated under <y, i.e., if the last step of the proof of the principal
typing is
CCTtpM:7 Crpr<7!
C,TkpM: 7

then the judgement C.I' -p M : 7 is already principal, with respect to
<syn- We have now established that every closed, linear term in 3-normal
form has a principal typing with no subtyping assumptions at all. Let M
be an arbitrary closed linear term. Let M’ be its S-normal form. It has a
principal typing with no subtyping assumptions. By subject expansion, so
has M. O

Indeed, going back to the “difficult” terms constructed previously in the
present chapter, the reader will find that they all exploit non—linearity.

5.6 Typability vs. presentation

The result that principal typings can have exponentially large dag—size shows
that, for certain atomic subtyping systems, the type presentation problem is
strictly harder than the typability problem. The problem of type presentation
is

e Given a term M, present its principal typing, if it has one
and the typability problem is:
e Given a term M, decide whether it has a typing

The complexity theoretic separation between these two problems follows
from the exponential lower bound result proven here together with previous
results in the literature, when we consider subtyping over a lattice of base
types. We know from Tiuryn’s work [71] (see Theorem 2.4.2) that satis-
fiability of subtype constraints in finite structural subtyping over a lattice
of base types is in PTIME. We also know that deciding typability in the
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system A< (Fp) of finite, structural subtyping is linear time reducible to the
satisfiability problem (see Section 2.4.2). Hence, typability for finite struc-
tural subtyping over a lattice is in PTIME. Now, for atomic subtyping over a
lattice L of base types, typability can be decided in polynomial time, by the
previously mentioned results. To see this, recall that, by the standard proce-
dure (Section 5.1, see also [53, 28]), one can test typability by the following
process:

1. Constraint extraction: For a given term M, extract a general (non—
atomic) constraint set Cps of size linear in M (by generating a single
inequality of the form 7 < 7/ at each node of the syntax tree of M)

2. FEzpansion: Expand C)j; into atomic form, C}’V[, by flattening Cas (see
Lemma 2.3.10)

3. Satisfiability test: Test whether C’}’VI is satisfiable in L

However, since we know from Lemma 2.3.10 that CIZ’VI is satisfiable in L if
and only if Cyy is satisfiable in ’TEF[S], we need not perform the expansion
step, if we are only interested in typability. Performing the satisfiability test
directly on the set Cjs then allows us to test typability in PTIME:; indeed,
since the expansion step can incur an exponential blow—up in the size of the
constraint set, performing the step is potentially catastrophic.

The situation contrasts with the situation for both simple typed A\—
calculus and ML, where we can present typings (under dag-representation)
within the same time-bound as is required for deciding typability (linear
time and exponential time, respectively).

5.7 Non—atomic systems

The results obtained so far may prompt us to question whether atomic
subtyping systems are any good at all. We will discuss pro’s and con’s
in this section. In doing so, we will also discuss the question whether non—
atomic systems by—pass the exponential degree of freedom found in principal
atomic subtypings.

5.7.1 Type size vs. explicitness of information

Non—atomic subtyping systems allow typings of the form C,I" -p M : 7 with
C a general, non—-atomic constraint set, containing arbitrary inequalities of
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the form 7 < 7/. Within such frameworks, one can always find principal
typings of size linear in the size of the term. This follows from the well-
known fact mentioned in Section 5.6, that principal typings can be generated
from a term by extraction of a constant number of constraints at each node in
the syntax tree of the term. For structural subtyping systems (see [53, 28]),
a typing extracted from a term in this way can be transformed into atomic
form by first applying a most general matching substitution to the constraint
set and then decomposing the resulting matching set to atomic form (recall
the standard procedure from Section 5.1). It is the match—step that can
cause an exponential blow—up in the size of the typing.

However, avoiding the blow—up in type—size by the use of general inequal-
ities, appears to come at the cost of loss of explicit information content. To
see a very simple example of this, suppose we consider typing the term

M = Az )y (z,y)

under structural, finite subtyping. A principal completion of M obtained as
described above, using general constraints, is

Az s P (T 17 @,m 1577 @)
resulting in the typing
{a<Bxy,B8xy<éhL0FpM:a—§

It appears to be obvious that this typing is less informative than the principal
atomic typing
0,OFpM:axp—axf

because the latter makes it explicit that a type of pairs is required as argu-
ment, and that the term acts as the identity on the argument. To be sure,
the latter typing can be obtained from the former (by atomization followed
by simplifications), but the point is that the latter typing is only implicitly
given in the former. Saying, tout court, that the former typing already con-
tains the same information as the latter and that’s it, is really no different
from saying, e.g., that instead of the numerical constant 1 we might as well
always write down any mathematically equivalent expression, such as for
instance Stirling’s formula

lim Iz +1)
T—00 (x/e)w\/%



CHAPTER 5. THE SIZE OF PRINCIPAL TYPINGS 98

Most (normal) persons would, in many contexts at least, prefer the constant
1 to this formula, because 1 is a simplified form of the formula, in which
the complex mathematics needed to compute the simplification has been
applied and discarded.

The situation above can be realized in non—structural systems also. All
we have to do is to consider constraints of the form

g X B <d<ag x [

In any of the tree models considered (see Section 2.1.5), such a constraint is
equivalent to the atomic set

{a1 < 81,01 < 62,61 < 9,82 < B}

considered over the given tree structure, where ¢ has been expanded to
51 X (52.

We may summarize by saying that non-atomic systems only by—pass the
exponential lower bound by making information implicit which is explicit in
the atomic systems. Thus, there seems to be an “exponential trade—off”
between type size and explicitness of information: if types are kept small,
then explicit information must be lost. Moreover, it is clear that non—atomic
systems do not by—pass the exponential degree of freedom found in atomic
systems, in the sense that, once the structure of types is made as explicit
as possible, there has to be exponentially many distinct variables present in
principal typings, in the worst case, under any instance relation suggested
so far.

5.7.2 The entailment problem

In many applications it is doubtlessly desirable to avoid expansion of typings.
In particular, for systems with PTIME—-decidable typability (satisfiability)
problems (which include all the lattice-based systems considered in this
thesis, see Section 2.4), it seems preferable to avoid atomization when pre-
senting typings, in order to stay within a PTIME-framework. Needless to
say, the trade—off depends on the purpose of the type system. If the sole pur-
pose is automatic checking of type soundness, then atomization is definitely
not advisable. If a major concern is to give back useful type information to
a human reader in small scale systems, then explicitness of information is
more of a concern, and one may have a stronger desire to apply atomizing
transformations in such a setting. In the setting of polymorphic subtyping,
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the trade—off is delicate: on the one hand, we would like to simplify much in
order to avoid copying constraint sets with redundant information, but on
the other hand we cannot spend too much time doing the simplifications.

In all cases, though, it is an important concern that one should not apply
type—expansions unless they are necessary. We have seen extreme cases of
this in Section 5.4.3, where we found terms that would yield exponentially
large atomic constraint sets, if the atomic typing is generated by the stan-
dard procedure, but for which ensuing simplifications can yield exponential
succinctness. The simplest example of this is the series D" M, with D de-
fined as earlier (Section 5.2), for which naive atomic constraint generation
will result in an exponentially sized constraint set, but for which subsequent
simplification gives back a typing of linear dag—size. It would obviously be
desirable to try to perform the simplifications without first expanding the
constraint set. With some luck, one might hope to be able to compute the
simplified typing in polynomial time. This raises the question:

o What is the cost of performing simplifications on a general constraint
set?

Another, related concern, is that, even though we do not intend to
present typings in completely simplified form, we may want to be able to
answer queries about the constraint set. Under this view, a constraint set
extracted from a program is a database containing information about the
program, from which we may wish to extract information.

The basic computational problem appears in all cases to be the entail-
ment problem:

e Given a constraint set C and types 7 and 7', decide whether C =1 < 7'

The entailment relation is the natural relation to use, when we wish to query
the information contained in a typing, and it is the basic relation involved
in the more powerful simplification frameworks of < and <sey,. Therefore,
we are led to consider the computational complexity of entailment in Part
IT of the thesis.



Chapter 6

Conclusion to Part 1

6.1 Significance of the lower bound

The investigation of the structure of principal typings carried out in Chap-
ter 3, Chapter 4 and Chapter 5 was motivated by a desire to understand the
limits of subtype simplification techniques. We have found that equivalence
classes of typings with respect to < have interesting and useful structure,
and that simplification is a confluent process. We used these results to
characterize minimal typings, to prove an exponential lower bound on the
dag—size of principal typings and to separate a series of instance relations
with respect to the simplifications they validate.

The lower bound results do not by themselves allow us to draw defini-
tive conclusions about the practicability of (atomic) subtyping. For example,
type inference for ML teaches us to be cautious about jumping to conclusions
from theoretical lower bounds. ML has a DEXPTIME-complete type infer-
ence problem, and yet this appears to be no problem in actual ML-programs
(see [54, Chapter 11.3] with further references.) However, this argument, in
its turn, has its limitations too, and it should not be misused to attempt
dismissal of all complexity results in the area of programming languages.
Moreover, in the case of subtyping, experience definitely shows that subtyp-
ing systems are generally very difficult to scale up and that the simplification
problem is critical in practice (see references given in Section 1.4).

The construction given in the lower bound proofs do not, of course,
explain this observed difficulty in a naively direct way; programs like Q,,
are perhaps not very likely to occur in real systems. However, the proofs do
offer an explanation of the logical mechanisms that are responsible for the

100
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complexity of subtyping systems falling within the present frameworks. And
certainly, the results show that, for such systems, one will look in vain for
simplification procedures that guarantee good (say, polynomial) size worst
case behaviour. That this should be so is not obvious a priori.

6.2 Related work

The present lower bound results strengthen the result obtaind by the author
in [64], because the present subtyping framework is based on a notion of
model-theoretic entailment relations (=p) rather than the syntactic relation
Fp used in [64]. It is easy to see that the present lower bounds imply the
result of [64] (and not vice versa).

Most closely related to the present work is that of Hoang and Mitchell
[37] and that of Fuh and Mishra [28]. In [37], the authors prove a linear lower
bound on the size of principal typings for a whole class of sound instance
relations. Our results do not subsume theirs, because we are working with
specific notions of instance. However, it may appear difficult to imagine
meaningful instance relations considerably stronger than <ge,.

The techniques used by Kanellakis, Mairson and Mitchell in [42] to an-
alyze type size for simply typed lambda calculus and ML are related to our
technique for the lower bound proofs in the present chapter, but the main
parts of our proofs rely on new techniques tailored for subtyping. The pi-
oneering work by Fuh and Mishra [28] on subtype simplification provided
important background in the form of their S- and G-transformations. Fuh
and Mishra operate with a notion of minimal typings, but their notion is
defined in terms of their transformations, the notion is distinct from ours.
The works by Pottier [59], by Trifonov and Smith [73] and by Aiken, Wim-
mers and Palsberg [4] study entailment based simplifications for polymorphic
constrained types. Moreover, the paper by Aiken, Wimmers and Palsberg
initiates a systematic study of completeness properties of simplification pro-
cedures, which seems closely related in spirit to the investigations made in
Part I of this thesis. However, no work apart from [37] appears to have
studied the asymptotic behaviour of principal typings with subtyping.

6.3 Open problems

There is much work one could do in continuation of Part I of this thesis,
which, admittedly, raises more questions than it answers. One obvious open
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problem is to settle the question of type size for principal well-typings rela-
tive to any sound notion of instance (see Section 1.5 and [37].) The question
is whether the abstract definition of soundness has enough information to
allow a proof of a tight result. We believe (see also [68]) that the relation
<sem Must be pretty close to exploiting all relevant logical power of simple
subtyping, and based on the lower bound for this relation, it may be doubted
that there exists any sound notion of instance at all, which by—passes expo-
nential type size in the worst case.

Another interesting line of research would concern establishing normal
forms for typings (in the style of Chapter 3) for more expressive systems
over lattices. Such systems would come with strong instance relations or
formal lattice—operations (meet and join) in the type- and constraint lan-
guage or both. We have seen (Theorem 4.1.5) that elimination of internal
variables is intractable with respect to <, but we have also seen that it triv-
ializes over lattices, provided that we have either stronger instance relations
such as <sem (Section 5.4.3) or we have one of the formal lattice operations
(Section 4.1.2). Moreover, it is known [68] (and in any case not too diffi-
cult to see, compare also with [46]) that, under sufficiently strong notions
of instance, one can get completely rid of constraint sets over a lattice by
having both of the formal lattice operations (meet and join) in the language.
However, this happens at the expense of introducing a much more compli-
cated constraint language (now with an NP—complete satisfiability problem
instead of a linear time decidable one, see Section 2.4) and much more com-
plicated types; in such a system, types effectively represent the constraint
set by containing meets (in negative positions) and joins (in positive posi-
tions). It remains to be seen if any of these systems has particularly good
properties, and it really does not appear to be known which (if any) system
is the “right” one. Ideal properties are:

1. Tractable simplification problems
2. Highly succinct principal typings

3. Natural canonical (minimal) forms of simplified typings with strong
uniqueness properties

Unfortunately, it is to be expected that there is an inherent trade—off here,
so that systems with very strong succinctness properties will have (poten-
tially very highly) intractable simplification problems. Part IT of this thesis
clarifies and confirms this.



Part 11

The complexity of subtype
entailment over lattices
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Chapter 7

Introduction to Part I1

The main objective of this part of the thesis is to understand the com-
putational complexity of deciding the entailment problem over a variety of
structures, in order to determine which properties of subtyping systems con-
tribute to complexity. The entailment problem is:

e Given a set of subtyping constraints C and type variables o, (3, does
C |= a < (8 hold in the appropriate structure Ts, of ordered trees?

We will consider the complexity of the entailment problem in the following
variants:

1. Atomic entailment over a lattice. Here C is an atomic constraint set,
and the entailment relation is =7, where L is a lattice of constants.

2. Finite non—structural entailment. The entailment relation is = with

3. Non-structural recursive entailment. The entailment relation is =y

with M = Tx[n].

4. Finite structural entailment over a lattice. The entailment relation is

= with M = T [s].

5. Structural recursive entailment over a lattice. The entailment relation
is [ with M = Txs].

We have already motivated the entailment problem in general, mainly from
the perspective of simplification, see in particular Chapter 1 and Section 5.7.2.
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The atomic entailment problem is relevant for simplification and query
of atomic subtyping systems, including subtype based polymorphic program
analysis. We show (Chapter 8) that entailment over a lattice can be solved in
linear time. This result is based on a characterization of atomic entailment,
which will be used in later chapters.

The non—structural recursive entailment problem is relevant for subtype
inference for object oriented programming languages. Thus, the problem
is central in the subtype simplification system proposed by Pottier [59],
which has an entailment algorithm at its core; however, the algorithm is
incomplete, as pointed out by Pottier [59]. The problem also occurs (as
a special case) in the simplification framework of Trifonov and Smith [73].
The problem of finding a complete algorithm to decide recursive subtype
entailment over non—structurally ordered trees remains open. However, no
nontrivial lower bounds on the problem have been given up until now. After
some technical preliminaries we prove (Chapter 9) a PSPACE lower bound
for this problem, and we show that the problem remains PSPACE-hard even
when restricting trees to be finite (non—structural, simple subtyping.) We
conjecture that the problem is PSPACE—complete (in PSPACE).

Structural subtyping was introduced by Mitchell [53] and has been used
in many subsequent subtyping systems, both with finite and recursive types.
We study structural subtyping over a lattice because it is known [71] that
even the satisfiability problem is PSPACE-hard for many non—lattices, but
in PTIME for large classes of partial orders, including lattices of base types,
which are of practical interest (see Section 2.4 for full background). This
makes subtyping over lattices of base types particularly interesting from
both a practical and a complexity-theoretic point of view.

We begin (Chapter 10) by giving some basic properties for structural
recursive subtyping, which will be needed later. We show that satisfia-
bility with structural recursive subtyping over a lattice is in PTIME. We
then show (Chapter 11) that finite, structural subtype entailment is coNP-
complete [33]. We answer (Chapter 12) the corresponding question for re-
cursive structural subtype entailment: it is PSPACE-complete. This settles
the question of the cost of recursive types for structural subtyping over a
lattice of base types:

e For structural subtyping, the addition of recursive types (i.e., the pas-
sage from a model of finite trees to a model including infinite trees)
has computational cost, unless NP = PSPACE.
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In contrast, and somewhat surprisingly, our proof of PSPACE-hardness of
entailment with non—structural, finite trees leaves open the possibility that,
for non—structural subtyping, entailment with finite trees may be as hard as
with infinite trees (and we conjecture that this is the case).

By our PSPACE-hardness result for finite, non—structural subtyping,
we have the to our knowledge first result on the relative complexity of a
structural vs. a non-structural theory:

e For finite types, non—structural subtyping is computationally harder
than structural subtyping with respect to entailment, assuming NP #
PSPACE.

Our results are summarized in the following table.

‘ ‘ structural ‘ non-—structural ‘

atomic types O(n) O(n)
finite types coNP PSPACE
coNP ?
infinite types PSPACE PSPACE
PSPACE ?
Here a complexity class above a line indicates a lower bound (“hard for ...”)
and below a line an upper bound (“contained in ...”). The question marks

indicate that no upper bounds for non-structural entailment are known, and
this problem remains unsolved at the time of writing. As said, we conjecture
that it is in PSPACE and hence PSPACE-complete.



Chapter 8

Atomic entailment

Simple things first. Accordingly, we begin our study of the complexity of
subtype entailment with atomic inequalities. Like the problem, the results
are simple. But they will be useful later, when problems get less simple.
We consider entailment with atomic inequalities over an arbitrary lattice
L. Thus, we are restricting both the constraint language as well as the
model. In order to make it clear that the intended model is L, we shall
write entailment as =r,. To be precise, we define C' =1, a < 3 to hold if and
only if we have, for all valuations v : V — L, that v = C implies v = a < .

8.1 Characterization of atomic entailment

We will prove a characterization theorem for atomic entailment. Recall
Theorem 2.4.2 and the definition of the sets 1¢ and . Recall also the
proof system Fr from Figure 2.3.

Lemma 8.1.1 Assume C atomic, letb € L, and let o and 3 be two distinct
variables. Assume that

(i) b&lc(B) and
(it) Clra<p
Then Lc(B) =lcfams}(B)

PROOF By Lemma 2.3.14 we have (since a # ) that C Fp b’ < 8 implies
Clb/a] Fr V' < B, for any b' € L, which shows that |c(8) Clep/a(8)-
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To prove the inclusion |ciamey () Sle (B), we use that, whenever
V' €lc{assy (B), there must exist a path Py in C{a + b} U L (regarded
as a digraph) witnessing this fact. The inclusion then follows from the prop-
erty

(¥) For any b’ € L and any path Py in C{a ~ b}UL witnessing b’ €]c{arsb}
(B) there is a path P' in C' U L witnessing b’ €]c(0).

We proceed to prove () by induction on the length |Py| of a path Py
in C{a = b} U L of shortest length witnessing b’ €lcfase} (6). In case
|Py| = 0, we have b’ = 3, which is impossible, because b’ is a constant and
3 is a variable. For the inductive case with |Py| > 0, let Py be the path

Py=b <A1 <Ay <...<A<p

We proceed by cases on the form of Py.

Case 1. Suppose first that b is the only constant on the path, so we have
A; = ; for some variables «y;, i = 1...k. Then, since Py isin C{a + b}UL,
we have v; # « for i = 1...k. Therefore the path

N<PN<...<Hn<pB

is in CUL. Hence, to show b’ €]¢(0) it suffices to show that b’ <~ € CUL.
Suppose it is not. Then a < ~; must be in C U L with ' = b, contradicting
the assumptions (z) and (iz), and hence b’ €|c(3) in this case.

Case 2. Suppose next that at least one of the A; is some constant b” € L.
Let A, =b", 1 <m < k, where we can assume w.l.o.g. that m is the least
index such that A,, is a constant, so for i = 1...m—1 we have A; a variable
v;. The path Py now looks as follows

Py=bt<mn<.. . <yma <V <Apni <... <A <B

Then we have b €| {asp}(3) by a path strictly smaller than Py, and so, by
induction hypothesis, we have b” €l¢(8). It is therefore sufficient to show
that o' <" € (C U L)*. We proceed to show this by analysis of sub-cases.
Case 2.1. First consider the case where m = 1, so we have b’ < b’ €
C{lar— b} UL. If b/ <V ¢ CU L, then we must have either (1) ¥ =¥/, or
(2) a<d’'" e CULwithd =b,or (3) ¥ <a € CUL with b" =b. In case
(1) we get b < V" € (CUL)* as desired. In case (2) we get C Fp a <
from b" €lc(B) (which holds by induction), contradicting assumption (%),
so this case is impossible. In case (3) we get b €l¢(8) from V" €lc(8),
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contradicting assumption (z), so this case is also impossible. This shows
that o' <" € (C U L)* holds in the case where m = 0.

Case 2.2. Next consider the case where m > 1. Notice that none of the
7 (1<i<m—1)canbea,andso v; <yjy1 € CULfor j=1...m—2.
Therefore, it is sufficient to show that (1) v,—1 < ¥ € C UL and (2)
b <~ € CUL. As for (1), if 7,1 < V" & C UL, then (since v, 1 # )
we must have y,,—1 < a € C U L with b = b, which entails b €/¢(8) (since
we have b" €/¢(8) by induction), contradicting assumption (7). So we must
conclude that (1) holds. As for (2), if ¥ <~ ¢ C U L, then (since 1 # «)
we must have a < v € CU L with ¥ = b. But then, by (1) together with
Y <91 ECUL, 1 <i<m—2,and V"' €l¢c(B), we get that C - a < 3,
in contradiction with assumption (i7). Therefore, we must conclude that
(2) also holds, thereby proving ¥’ < b” € (C U L)*, and the proof of (*) is
finished. O

We can now prove the main result of this chapter (Theorem 8.1.2 below).
For the later purposes, it will be convenient to consider entailment with
infinite atomic constraint sets.

Theorem 8.1.2 Let C be a possibly infinite, atomic constraint set, which
is satisfiable in a complete lattice L of constants. Then C =1 a < (8 for
distinct variables o and (B if and only if one of the following conditions is
satisfied:

(1)) Ctra<p
(i) Ate (o) <r Vlc (8)

PROOF (=). Assume C =1 a < f and C /1 a < 5. We must then show

N\ tele) <2\ 1e(B) (81)

We proceed by contradiction, assuming

A te(@) £\ de(B) (8-2)

Since C' =1, @ < 8, we have by substitutivity of =7 (Lemma 2.3.14) and
a # 3 that

Clam A\ tc(@)} o A\ tela) <8 (8.3)
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Let CT = C{a — A tc(@)}. By the characterization of satisfiability (Theo-
rem 2.4.1) we know, since C is consistent, that the map

{a = A\ tc(e)}

can be extended to a satisfying valuation for C. It follows that C' is con-
sistent. Then, by Theorem 2.4.1 again, we get that the valuation

{v+= \/ ‘LCT(/‘/)}ferar(CT)
satisfies Ct. By (8.3) we then have

N tel@) <o\ der(B) (8.4)
Now, if C =1, A Te(a) < B were the case, then Theorem 2.4.1 would entail

A to(@) <z V le(B) via the satisfying map {y = V lc (1} eVar(oy:
contradicting (8.2). We must therefore conclude that

Ctp \tela) <8
Hence we must have

A tela) Ela(B) (8.5)

But (8.5) together with the assumption that C t/1, a < § allows us to apply
Lemma 8.1.1, which shows that

Le(B) =let(B) (8.6)
Composing (8.6) with (8.4) we get
N\ tele) <0 \/ Le(B) (8.7)

But (8.7) contradicts (8.2), thereby proving (8.1) and hence the implication
(=).

(«). If (7) is the case, the result follows immediately, and if (i) is the
case, the result follows because we evidently have

CEra< /\ tc(a) and C = \/ lo(B) <8

O

We will now draw some direct consequences from Theorem 8.1.2. The-
orem 8.1.2 and the method of its proof shows that, whenever we have
C WL a < @ with C satisfiable, then the map

{a— \ tc(@), 8~ Lo(8)}

is a witness to this fact:
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Corollary 8.1.3 Assume that C is a consistent atomic constraint set. If
C WL a < 3, then one has

1. C{a— ATcla),B— V lc(B)} is consistent, and
2. Ntol(e) £V dc(B)

PROOF By the assumption C £, a < 3, Theorem 8.1.2 implies that we
have

Cra<p (8.8)

and
A tele) 0\ 1e(8) (8.9)

From (8.9) we get (by the argument used in the proof of Theorem 8.1.2)
that

A tela) Ee(8) (8.10)
From (8.8) and (8.10) one then gets (by the argument used in the proof of
Theorem 8.1.2) that [c(8) =lct(8) with Ct = C{a — A tc(a)}. Tt then
follows, as in the proof of Theorem 8.1.2, that C{a — A T¢(a),8 — V lc
(B)} is consistent. a

Theorem 8.1.2 shows that we get a sound and complete axiomatization of
the relation =7, on atomic constraint sets by adding the following rules to

Fr:
CHLA<L<b Crkp A<L<Db

Chp A<bi AL b
Chkrbhih <A Chpb<A
CrrbiVvp by <A
Chpb <b b £ by
Crrpr <7
The theorem also shows that the predicate C' =1, a < 3, where C' is atomic,
can be decided very efficiently; this is discussed in the following section.

8.2 Linear time decidability of atomic entailment

Theorem 8.1.2 immediately yields a linear time decision procedure for atomic
entailment over a complete lattice, because the theorem reduces entailment
to a single—source reachability problem:
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Corollary 8.2.1 Assuming Vi,Ar and <p are constant-time operations,
given consistent constraint set C of size n (number of symbols in C) it can
be decided in linear time whether C =1, a < (.

PROOF Note that C, viewed as a directed graph, has O(n) vertices and
O(n) edges. Criterion (i) can be decided in time O(n) by computing the
set of of nodes reachable from « in C. As for criterion (i7), both A\ T¢(«)
and \ l¢(8) can be computed in time O(n), again by computing the set of
nodes reachable from « in C' and by computing the set of nodes reachable
from [ along the reverse edges in C. m|

It is not surprising that atomic entailment over a finite lattice should
be in PTIME, by a naive algorithm. This is so, because we can represent
negation by explicit enumeration, in a finite lattice. We can therefore realize
the standard logical reduction of entailment to unsatisfiability, and since
satisfiability is in PTIME, the result follows. In full detail, the naive PTIME
algorithm for deciding the entailment C' =7, a < 3 is just this:

for (bl,bg) € L x L do
if by £, b then
C':=C{la—b,0— b};
if C' is satisfiable then return NO;
(* end for *)
return YES;

This naive algorithm, apart from being restricted to work on a finite lattice,
is quadratically dependent upon the size of the lattice, which the algorithm
implicit in Theorem 8.1.2 is not. Moreover, the repeated calls to the sat-
isfiability test is a substantial additional overhead in the naive algorithm.
It appears to be intuitively obvious that the algorithm of Theorem 8.1.2 is
optimal, and that it yields a very fast procedure to decide atomic entailment
in practice.

8.3 Representation

So far we have restricted the constraint language as well as the model, fix-
ing the model to be L. It makes sense, however, to consider the language of
atomic constraints over Ty as well. In this section, we consider what hap-
pens when we choose structurally ordered trees, so consider 7y to be that
structure for now. We focus on this case, because it will be important for
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our understanding of entailment with general constraints over structurally
ordered trees, and the results obtained here will be used later.

Exchanging the model L with 7y, for atomic constraints makes a differ-
ence. To see this, consider the following example:

Example 8.3.1 Let C be the atomic constraint set C = {T < (3}, and
consider the query C |1, a < 7 This entailment obviously holds in L
(even though « is completely unconstrained) and the explanation, in terms
of Theorem 8.1.2, is that we have

A tela) =T =V La(B)

However, the entailment C' = a < ( clearly does not hold in Tx, because
a satisfying valuation could map « to any structured tree (such as, e.g.,
T x T.) This means that the characterization in Theorem 8.1.2 is invalid
for 7x ordered structurally. O

This example is quite pathological, exploiting that one of the variables («)
is unconstrained and the other (5) is not. As we will show now, this is
essentially the only way such examples can be produced, and Theorem 8.1.2
will therefore remain a useful tool for understanding atomic entailment over
Tx. This is not surprising; atomic constraints cannot talk about structured
trees in anything but a trivial way, since such constraints cannot mention
tree structure explicitly. We will now make this observation technically, for
the record.

Definition 8.3.2 Given constraint set C' and variable o, we say that « is
equivalent to a constant in C, if and only if we have

Vo:V—=>To.vEC=v(a) el
i.e., all solutions to C' must map « to a constant. O

The following lemma states that, for atomic sets, satisfiability and (un-
der certain conditions) entailment over the model 7y can be faithfully rep-
resented in the model L. The lemma shows that C =7, a < 3 is equivalent
to C =1 a < [ except for the pathological special case where one of the
variables is (indirectly) constrained by elements of L and the other is not.
The lemma, while not very surprising, will be useful to have later, when
we will consider entailment over 7Tyx; there also, we shall need to sort out
pathological special cases, and in that setting there will be more of them.
The lemma below will help us do so.
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Lemma 8.3.3 (Representation in L) Let C be a possibly infinite, atomic
constraint set.

1. If v =7, C, then v =1, C where v: YV — L is given by

5(a) = 2(04) ifv(a) € L
b ifv(a) € L

where b is an arbitrary, fized constant in L. In particular, C is satis-
fiable in Ty, if and only if C is satisfiable in L.

2. Let C be satisfiable in Tx. Then

(a) if neither a nor 3 are equivalent to a constant in C, then
CEra<pifand only if C = a<p

(b) if both o and (8 are equivalent to a constant in C, then
CEra<lBifand only if Cl=pa < p

(¢) if one but not the other of a and (3 is equivalent to a constant in
C, then C e, a < 8

PROOF To prove the first claim, assume v satisfies C in 7x;. Then ¥ satisfies
every inequality in C":

e Ifa < € C, then we have v(a) and v(3) matching (by Lemma 2.3.5),
hence either () = v(«) and 9(8) = v(3), or else v(a) = v(B) =b. In
either case, the inequality is satisfied by v.

e Ifa<be(C,be L, then (by Lemma 2.3.5) v(a) € L, hence v(a) =
v(a), and v satisfies the inequality.

Remaining cases are symmetric and left out. This proves the first part of
the lemma.

We now prove the second claim of the lemma. The implication C =7
a< = C kL a<isobvious in all cases. To see the opposite implication
in the first sub-claim, assume that neither « nor (3 is equivalent to a constant
in C, and assume C =1, a < (. Since neither a nor g is equivalent to a
constant in C, we have

T (o) =lc (B) =0



CHAPTER 8. ATOMIC ENTAILMENT 115

and hence
Nte(@=T%L L=\ 1c () (8.11)

Since C is satisfiable in L, by the first claim of the present lemma, we can
apply Theorem 8.1.2, which together with (8.11) shows that C F, a < 3,
end therefore obviously C =7, @ < # must hold.

To prove the second sub-claim, assume that both « and 3 are equivalent
to a constant in C, and assume C |=r a < 3. Let v =7, C; then ¥ = v,
since v must map both « and § to a constant in L. By the first claim of
this lemma, we have ¥ =7, C, hence v |51, C, and so v =1, @ < 3, hence also
v =7, a < B. We have now shown that C =1, o < § implies C =75, a <
in this case also.

To see the third sub-claim, if one, say a, but not the other, say 3, is
equivalent to a constant in C, then there is a satisfying valuation v mapping
B to a non—constant and « to a constant; then v(a) € v(0). O



Chapter 9

Non—structural entailment

In this chapter we consider entailment over non-structural trees, so we fix
the ordered structure 7y to be Tx[n|, ie., trees over ¥ = {T,L1,x,—}
ordered non-structurally, where ¥ is the lattice shown in Figure 2.1. Sec-
tion 9.1 contains various technical preliminaries, mainly related to connec-
tions between constraints and automata, which we will be using heavily
later. Section 9.2 and Section 9.3 establish that recursive non—structural
entailment is PSPACE-hard. Section 9.4 establishes PSPACE-hardness for
the finite case. We leave the upper bound question open; we conjecture that
the problem is in PSPACE, both in the finite and in the infinite case.

9.1 Constraint graphs and constraint automata

To understand the complexity of the entailment problem over trees, we
shall find it useful to consider constraint sets as non-deterministic finite
automata. This section gives several technical preliminaries related to that.

We will describe two ways of constructing finite automata from con-
straint sets. The first construction amounts to the observation that a con-
straint set can be regarded as a non-deterministic finite automaton, when in-
equalities are viewed as e-transitions and constructed types have transitions
on elements of A. The second construction is essentially a determinization
of the first one, by the standard subset construction; it was used in [57]
and [59] to show that any consistent constraint set has a solution (recall the
notion of consistency for non-structural sets, Definition 2.3.3).
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9.1.1 Constraint graph

For a given constraint set C, we define a labeled digraph, called the con-
straint graph associated with C' and denote it Go = (V, E). The vertex set
V' is the set of subterms occurring in C. The edge relation F in G¢ is a set
of edges labeled with elements of A U {e}; an edge from 7 to 7’ labeled with
a € AU {e} is written 7 —, 7/, for 7,7' € V. The set E of labeled edges is
defined as the least relation £ C V x (A U{e}) x V satisfying the following
conditions:

e ForallreV, 7—¢7

o Ifr<7'e€C,then 7,7

e If T=7 xXmisinV, then 7 +—; 7 and 7 =, 7
e IfrT=7 > misinV, then 7 —4 7 and 7 =, T

The relation —. represents (the reflexive closure of) the inequalities in C,
by the first two conditions. The next two conditions represent the syntactic
structure of terms by the relations —,, a € A. It is clear that G¢o can be
constructed from C' in polynomial time.

Drawing constraint graphs

In order to have a convenient way of drawing constraint graphs, we will
identify a term 7 in V with a unique copy of its main constructor. In order
to avoid cluttering of drawings, we shall sometimes use one or both of these
conventions when drawing constraint graphs:

1. We shall normally not show reflexive edges (e-loops).

2. Often we shall not decorate e-edges explicitly as such — edges without
labels are to be taken as e-edges.

A simple example of a constraint graph follows.

Example 9.1.1 (Drawing a constraint graph)
Consider as an example the constraint set

C=faxB<Bxv,Bxy<bxn}

The constraint graph G¢ is shown in Figure 9.1. O
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Figure 9.1: Constraint graph G, Example 9.1.1

9.1.2 Constraint graph closure

Figure 9.2 shows the three closure rules (transitive closure, product de-
composition, arrow decomposition) defining CI(C) in the form of rules for
edge—additions to Go. The closure rules add the dashed e-edges to the graph,
provided the solid edges are already present in the graph. The closure Cl(G¢)
is the least graph containing G¢ and closed under the rules of Figure 9.2. It
is obvious that CI(Gc) represents G| ©)-

We give an example of constraint graph closure, continuing the example
constraint set and constraint graph from Example 9.1.1.

Example 9.1.2 (Constraint graph closure)
Figure 9.3 outlines the closure of Go from Figure 9.1 for the set C of
Example 9.1.1.

Edges added under closure are shown as dashed edges. We have not
shown reflexive edges, and to avoid clutter, not all transitive edges added
are shown in the figure; the transitive edges a —¢ v, a ¢ § and (8 +— 7 are
left out in the figure. m|
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Figure 9.2: Constraint graph closure rules: (i) transitive closure, (i) product
decomposition and (iii) arrow decomposition. Given the solid arcs, the
closure rules add the dashed arcs.
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Figure 9.3: Closure (partial) of Go, Example 9.1.1

9.1.3 Non—deterministic constraint automaton

The constraint graph Go can be directly regarded as a nondeterministic fi-
nite automaton (NFA) over the alphabet A, where the labeled edge relation
FE defines the transition relation dy. The nondeterministic constraint au-
tomaton (NCA for short) associated with a set C' and with a specified start
state qo, is denoted A% (q0) = (@, A,dn,q0, Q). The state set Q is V; the
alphabet ¥ is A; every state is an accept state.

The iterated transition relation of an NFA, denoted EN, is defined in
the standard way (see [38]). We sometimes write ¢ —* ¢' to denote a
w-transition from ¢ to ¢’ in the automaton, i.e., ¢’ € dn (g, w).

Notice that the transition relation —* of the automaton is different from
the relations —, of the constraint graph. For instance, if 7 —, 7’ and
7' +¢ 7", then 7 —2 7" is a transition in the automaton, but 7 —, 7" is not
a single edge in the constraint graph.

9.1.4 Deterministic constraint automaton

We shall now define a deterministic constraint automaton (DCA for short)
associated with a non—structural constraint set C, along the lines of [57, 59].
We shall later modify the construction to encompass structural constraint
sets as well.

We shall assume here that constraint sets are given in a special form.

Definition 9.1.3 Call a set C' simple, if for every inequality 7 < 7/ in C
both 7 and 7' have depth at most 1, i.e., every term is either an atom
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(variable or constant) or a binary constructor applied to atoms. |

It is easy to convert any constraint set into simple form, by a linear time
transformation which recursively substitutes a term of the form, e.g., 7 x 7/
by the set {a x B,a=1,8="1"}.

We define a DCA associated with a non—structural, simple and closed
constraint set C. The automaton can be constructed from any given non—
structural constraint set, provided the set is transformed into simple form
and then closed (the closure of a simple set is again simple.) In the sequel,
we assume that this has been done.

Let Nvt(C') be the set of subterms occurring in C which are not variables
and not T. For a given type 7 and variable «, the set of terms f}¢ (7) is
defined by setting

o (@) ={7 e Nvt(C) |a < 7 € C}

For non-variable terms 7 we set ffc (7) = {r}. We now define a DFA
constructed from C, with designated start state qp, in the style of [57, 59];
the DFA is called A% (qp) and is of the form (Q, ¥, gy, 6p) with state set Q
given by @ = p(Nvt(C)), the set of subsets of Nvt(C), alphabet ¥ = A,
initial state gy € @, transition function §p given by:

e For g = {o; = o} }s:

ép(g,d) =N; frc ()
ép(g,r) = U; to (o)

e For g ={a; x o} }i:

op(g, f) =U; tc (i)
ép(g,s) = U; to (of)

e For ¢ not of the forms above, the transitions functions are undefined.

9.1.5 Term automata

As is done in [57, 59] for non-structural subtyping, we can use deterministic
constraint automata to define regular trees presented as term automata, in
the style of [45]. To do so, we need to provide a labeling function (see [45])

0:Q— X%



CHAPTER 9. NON-STRUCTURAL ENTAILMENT 122

With Con(7) € ¥ denoting the main constructor of a constructed type 7,
we define for g € @ the set Con(g) = {Con(7) | 7 € ¢}. Then we define the
labeling function £, by

r(q) = /\ Con(q)

Here, the operation A is the greatest lower bound operation in the non-
structural lattice . Notice that A0 = T.
Given a constraint set C' and a term 7, we define the tree t$ (7) as follows:

t$(7) = MwLa(Bp (e (1), w))

Thus, the automaton A% induces a regular tree t§(7) for each term 7.

Similar definitions can be given for structural subtyping, once we have
defined deterministic constraint automata for the structural theory. This
will be done later.

9.1.6 Satisfiability and consistency

Using the methods of [57, 59], one can show the following theorem, which
states that satisfiability coincides with consistency for non—structural sub-
typing (see also Section 2.4.3 for background). The theorem is an elegant
use of constraint— and term automata. It shows that, whenever C is con-
sistent, then the deterministic automaton Ag effectively translates C' into a
solution to itself through its induced term automata. Moreover, since ¢ (c)
is a regular tree (as induced by a finite state automaton), we see that it is
immaterial, from the perspective of the satisfiability problem, whether we
work with general trees or just regular trees.

Definition 9.1.4 A constraint set is called monotone, if and only if it does
not mention the constructor —. O

Theorem 9.1.5 Let C be a non—structural set. If C' closed and consistent,
then C has a regular solution given by the valuation va with the definition

| t§(a) for a € Var(C)
vnla) = T for a & Var(C)

If C is monotone, then this is the largest solution to C.
In particular, any constraint set is satisfiable if and only if it is consis-
tent.
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Theorem 9.1.5 leads to a PTIME (in fact, cubic time) decision procedure for
satisfiability with non-structural (recursive) subtyping, because satisfiability
reduces (by the theorem) to checking consistency, which, in turn, can be done
by computing the closure of the constraint set; the set CI(C') can be obtained
from C' in cubic time, using a dynamic transitive closure algorithm.

9.2 Prefix closed automata

In this section, we begin our proof that the entailment problem is PSPACE-
hard. The proof is essentially a reduction from the universality problem for
NFA’s. This problem, called UNIV in the sequel, is:

e Given an NFA A over a non-trivial alphabet ¥, does A accept all
strings, I.e., is it the case that L(A) =3* 7

Here, L(A) is the language accepted by A; an alphabet is non-trivial, if
it contains more than one element. The problem UNIV is known to be
PSPACE-complete [30].

However, we cannot reduce UNIV directly to entailment; rather, we shall
need to reduce a special case of this problem to entailment. The reason is
that a basic idea (found in both [65] and [24] but used differently here) of
our reduction is to represent sets of strings as domains of trees, and since
the latter are always prefiz-closed languages, we shall need to consider only
automata that accept such languages. We therefore begin, in this section, by
proving that the universality problem for automata that accept only prefix-
closed languages remains PSPACE-complete; we then give the reduction to
entailment in Section 9.3.

In this section, ¥ denotes an arbitrary, non-trivial alphabet (i.e., ¥ has
more than one element.)

An NFA (non-deterministic finite automaton) is called prefiz closed, if
all its states are accept states. Thus, the only way a prefix closed NFA can
fail to accept a word w is by getting into a stuck state on input w. Note
that any language recognized by a prefix closed NFA must be a prefix closed
language (a language L is prefix closed if every prefix of any string in L is
again in L). Conversely, it is not difficult to see that every prefix—closed
regular language is recognized by a prefix—closed NFA.

Let CLOSED-UNIV be the computational problem:

o Given a prefiz—closed NFA A over a non-trivial alphabet ¥, is it the
case that L(A) = £*7
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The construction used in the proof of the following lemma, is due to Vaughan
Pratt [61].

Lemma 9.2.1 The problem CLOSED-UNIV is PSPACE-complete.

PROOF Membership in PSPACE is obvious, since we know that UNIV is
in PSPACE. To see hardness, we reduce from UNIV, as follows. Given an
NFA A over 3, to decide L(A) = £* we construct a prefix closed automaton
A over an enlarged alphabet X, as follows:

1. Add a new letter, 7, to the alphabet 3., and call the resulting enlarged
alphabet X.

2. Add a new state g with transitions on all letters out of it (including
7); all transitions loop straight back to g. (So starting in state g, every
string over X leads to that state.)

3. For each accepting state ¢’ of A, add a F-transition from ¢’ to the new
state g.

4. Make all states of the resulting automaton accepting, and call that
automaton A.

- =*

We will show that L(A) = ¥* if and only if L(A) =X .

Assume first, for the implication from right to left, that we have L(A) =
¥". Let w be an arbitrary word in ©*. Since L(4) = ¥", we have w € L(A);
inspection of A shows that this implies the existence in A of a w-transition
from the start-state to some state which is an accept-state of A. But then
there must already be a w-transition in A from the start-state of A to an
accept-state of A, so w € L(A).

Assume now, for the implication from left to right, that we have L(A) =
¥*, and let @ be an arbitrary word in X. If @ is in ©*, we clearly have @ €
L(A), since A certainly accepts everything accepted by A. We can therefore
assume from now on that w ¢ ¥*. Then we can write w as w = wow' with
w e Y* and w' € &', Since L(A) = T*, there is a w-transition in A from
the start-state to an accepting state ¢’, and hence there is a w-transition in
A from the start-state to ¢’, and hence there is a wa-transition in A from
the start-state to the state g; since everything in & is accepted from g, it
follows that A accepts w.

The above construction is a log-space reduction of UNIV to CLOSED-
UNIV. i
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Strictly speaking, the above reduction shows that the universality prob-
lem for closed automata over an alphabet with at least three letters is
PSPACE-complete. However, it is easy to remove this limitation by stan-
dard techniques (we can encode a large alphabet into bit strings.)

9.3 PSPACE-hardness for recursive subtyping

Consider the two letter alphabet {f,s} C A and let ¢ denote the empty
string. We will show that, for any prefix closed NFA A over {f, s}, we can
construct a constraint set C4 such that L(A) = {f,s}* if and only if C4 E
«a < (3, for some variables o and § in C4. The types in C4 will be built from
variables and the pairing constructor only. The resulting construction will
be a log-space reduction of CLOSED-UNIV to the entailment problem C |=
a < 3, thereby proving the latter problem PSPACE-hard, by Lemma 9.2.1.

We proceed to describe the construction of C4. Assume we have given
the prefix closed NFA A = (Q,{f,s},0,q0,Q) (state set is @, transition
relation is &, start-state is gg, and — since the automaton is prefix closed —
the set of accept states is the entire set of states, Q).) We write ¢; =" g,
to indicate that there is a w-transition from state ¢; to state ¢; in A. If
w € {f,s}U{e}, we say that a transition ¢; =" g; is simple. A is completely
determined by its simple transitions, since these just define its transition
relation.

Suppose that A has n simple transitions, and assume them to be ordered
in some arbitrary, fixed sequence. For each k’th simple transition ¢; —* g;
we define a constraint set Ci; we associate a distinct variable «; to each
state ¢; (so, in particular, the variable ag corresponds to the start state of
A), we associate a distinct variable dy to each k, 1 < k < n, and we further
use two distinct variables, vy, and 7. The construction of Cj, is as follows:

e If the k’th simple transition in A is ¢; —/ gj, then

Ck ={ai Saj X (Sk}

e If the £’th simple transition in A is ¢; —* ¢;, then

Cr = {a; < 6 x a4}

o If the £’th simple transition in A is g; —* g;, then

Cr = {a; < o5}
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Now define Cy4 to be

n

Ca= (U Cr)u{B=5xp}

k=1

Notice that any solution to C'4 must map ( to the complete, infinite
binary tree t*° = pvy.y X 7, hence (3 is just a name for that tree.

The constraint sets C'4 have a particular form. In order to capture this
technically, we give the following definition.

Definition 9.3.1 A simple and monotone constraint set C is called directed
if and only if every inequality in C' has either one of the following forms:

e a<d
o o< a; Xag
O

It is easy to see that all the sets C'4 are directed, when the equation defin-
ing (3 is removed. Notice also that a directed set is trivially closed under
decomposition, i.e., for C directed we have C* = CI(C).

Entailment with directed sets is never completely trivial:

Lemma 9.3.2 FEvery directed set has a solution.

PROOF It is obvious from the form of directed sets that mapping every
variable to L results in a solution. m|

We can now prove the main lemma for PSPACE-hardness.
Lemma 9.3.3 Let A be a prefiz closed NFA over {f,s}. Then
L(4) = {f,s}" if and only if Ca |= ag < B

PROOF  First notice that, by construction of Cy, there is a transition
g; —" gj in A if and only if there is a transition a; —* «a; in the constraint
automaton A%“. Moreover, Cy4 is closed under decomposition, in the sense
that one has CI(C4) = (%, because there are no upper bounds on con-
structed types in Cy (and hence the decomposition rule for closure cannot
be used.) Because Cy is closed under decomposition and Cy4 is monotone,
the set dp(fic (a),w) is determined by the set of vertices reachable in AgA
on a w—transition; here, dp is the transition function of AgA.
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We first prove the implication

L(A) #{f,s} = CalF o <

So assume that there exists a word w € {f, s}* such that w & L(A). Since
we can assume w.l.o.g. that A has at least one state, and since A is prefix
closed, we have ¢ € L(A), so L(A) # (. Then there is a prefix w’ of w of
maximal length such that w’ € L(A); we can assume that w can be written
as w = w' fw” (the alternative case w = w'sw" is similar.) Now, because
A is a prefix closed automaton, it follows that for any state g such that
q0 W' gk, there can be no state ¢; such that g, —/ ¢;; inspection of the
construction of C4 then shows that, for any k such that gy —% g, the
only non-variable upper bounds in the transitive closure of C4 on «y are
of the form ap < §,, X as, where d,, is unbounded in Cj,; it follows that
one has either dp(ag,w') = 0 or else dp(ag,w'f) = 0, and hence either
va(ap)(w') = T or else va(ag)(w' f) = T, where v, is the largest solution to
Ca, by Theorem 9.1.5. In either case, we have va(ag) £ 3, thereby showing
Ca F o < B

To prove the implication
L(A)={fs}"=CaFa<p

let w be an arbitrary element in {f,s}*. Then wa € L(A), a € {f,s},
assuming the left hand side of the implication. Then there is a transition
qo —" gj —* qi for some g;, gi; by construction of C4, there is a transition
ag = ay or ap —¥* q in A%‘. Then, using that reachability in A%A
determines SD, and the simple form of C'4 (only X and variables occur there),
it is easy to verify that w € D(va(ay)) with x € ép(ft (o), w), and hence
va(ap)(w) = X, where v, is the largest solution to C4, by Theorem 9.1.5.
It follows that, for any w € {f, s}*, one has v(ag)(w) < X, whenever v is a

solution to Cy, thereby showing Cy = o < .
O

Theorem 9.3.4 The problem of non-structural recursive subtype entailment
is PSPACE-hard.

PROOF By reduction from CLOSED-UNIV, using Lemma 9.3.3 together
with Lemma 9.2.1. m|
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9.4 PSPACE-hardness for finite subtyping

In this section we show that the entailment problem remains PSPACE-hard,
when considered over finite, non-structural trees, T [n].

Anticipating Chapter 11, it will be shown that subtype entailment for
structural subtyping over a lattice is coNP-complete. As we will see, mem-
bership in coNP follows from the fact that the non-entailment problem
C £ a < (3 has a succinct certificate in the form of a word w € A* of
length at most n (the size of the constraint set); intuitively, the certificate
w identifies a common leaf address in v(«) and v(f3) for a possible solution
v to C such that v(a)(w) £ v(8)(w).

At first sight, it might be thought that a similar approach would be
possible for non-structural subtyping over finite trees. However, it turns out
that entailment here is PSPACE-hard. The reason, as we will see, is that
infinite trees can be approximated in the non-structurally ordered space of
finite trees, and one can use this to encode the universality problem for
NFA’s with entailment, just as was done for infinite trees.

When taken together with the coNP-completeness result of Chapter 11,
our result shows that, unless NP = PSPACE, entailment with non-structural
subtyping is strictly more difficult than entailment with structural subtyp-
ing, in the finite case.

The definition of entailment over the structure of finite trees 75 is ob-
tained by restricting valuations. Thus, for v : V — ’TEF, the satisfaction
relation, written v = 7 < 7', holds if and only if v(7) < v(7') holds in 7y,
and entailment is defined by

Clkpr<rifandonlyif Vo:V = Th.vEC=>vET<7

Since the order on Ty is a conservative extension of the order on 7'EF, sat-
isfaction with valuations in 7'2F is unchanged, i.e., for v : VYV — 7'EF one has
v [=r C if and only if v = C.

In order to prove PSPACE-hardness of entailment with non-structurally
ordered finite trees, we shall need to talk about approximations of infinite
trees by finite trees. To this end, we recall from [6, 45] the definition of the
level-k truncation of a tree ¢, denoted ¢[; it has domain

D(t[}) = {w € D(#) | |w| <k}

and is defined by

£ (10) = { P
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This definition is simplified, since it does not take into account the con-
travariance of —; this is so, because we shall only consider monotone con-
straint sets here.

We shall use the properties stated in the following lemma; the first two
are taken from [6, 45], and the third is an immediate consequence of the
definitions, so we leave out the proof.

Lemma 9.4.1 Lett and t' be trees in Tx.. Then
1. t <t if and only if Vk > 0. t[, <[,
2.t <t

8. (X )y =t x '],

As was exploited in the proof of Lemma 9.3.3, the constraint sets used
to encode automata have a particularly simple form. The following lemma
exploits this. In order to state the lemma, we need one more definition. If
v is a valuation in Ty, we define for all k£ > 0 the valuation v[, in 73 by

o[ () = v(a)[y

A key observation for proving PSPACE-hardness for finite trees is now the
following lemma, which establishes that directed constraint sets over 7x[n]
(as are used to simulate NFA’s) can be solved with arbitrarily good finite
approximations over Ty [n]. We let Tx, be Tx[n] and let Ty be T3 [n].

Lemma 9.4.2 Let C be directed, and let v be a valuation in Tx such that
v = C. Then one has

PROOF All inequalities in C' have one of the forms o < o/ or a < a1 X ao.

It is sufficient to show that v[, satisfies all such inequalities in 7y, because
the order on 7y, is a conservative extension of the order on TEF:

o a<a € (C: We have

v(a) < v(d) = (1)
v(@)[), <v(d)[, ©
v[i(a) < o[, ()
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e < a; Xxay € C: We have

v(a) < v(ar X as) = (1)
v(a)[ S vlan X ag)fy < (3)
v(@)[), Sv(@)[p xv(@)[; = (2)
v(e)[}, < (@) x v(@)[y <
v[p(a) <vfi(e) x vfi(a) <
v[(e) < vfi(ar x a2)

The numbers refer to the properties of Lemma 9.4.1 justifying the implica-
tions. 0O

We can now show that entailment over 75 is PSPACE-hard.

Given an NFA A, we define a constraint set C}Z; it is defined exactly as
C4 in Section 9.3, except that, instead of the equation 8 = 8 x 3, we now
take the single inequality

BxpB<p (9.1)
Lemma 9.4.3 Let A be a prefiz closed NFA over {f,s}. Then
L(A) = {f,s}" if and only if C} Ep ap < 8
PROOF For n > 0, define the trees t, € Tg by

to = T
tn_|_1 = 1 X1y

Let ¢t*° denote the complete, infinite binary tree pvy.y x v. We have t, x t, <
tn, n >0, in Ty, and the trees t,, can be regarded as increasingly good finite
approximations “from above” of t*°. Moreover, we clearly have t*° < v(()
in 7y for any valuation v satisfying 8 x 8 < (8. Because CE contains (9.1)
and (3 occurs nowhere else in CE, the possible solutions for £ in C}Z include
all the trees {t, | n > 0}, and any such solution for § can be combined with
any solution for the other variables in Cg to a solution for the entire set C}Z.
To prove the implication

L(A) ={f,s} = Ch Frag <

assume L(A) = {f,s}*, and let v be a valuation in 75} satisfying C%. The
valuation v can be regarded as a valuation in 7y, and it satisfies all the
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inequalities in C'4 except the ones for § in C4. By the same argument as
was used in the proof of Lemma 9.3.3, we have v(ap) < t* in the structure
Ts. Since t*° < v(f3), we have v(ag) < v(8) in Ty, and since these are finite
trees, it also holds in 7'EF; this proves the implication.

To prove the implication

L(A) #{f,s} = Ch Frag < B

assume L(A) # {f, s}*. By the argument used in the proof of Lemma 9.3.3,
there is a valuation v in 7y such that v = C4 with v(ap)(w) = T for some
w so that v(ag) £ t*. Let C; = CY\ {8 x 8 < B}. Then C} is clearly a
directed set, and by Lemma 9.4.2 we have

Vk > 0. v[, =p Ca (9.2)

in 7. Let k = |w| + 1, then v[, Er Cj, by (9.2), and we have w €
D(v[, (o)) with
vf(ao)(w) =T

Now, v[, can be extended to a satisfying valuation v of CE by mapping
B to t, for any n > 0, because C'j is independent of 3. By choosing n
sufficiently large (n = k will do) we get a valuation ' satisfying C% and
with v'(ag)(w) = T and v'(8)(w) = X, thereby proving C} Fp ap < 8. O

Theorem 9.4.4 The problem of non-structural subtype entailment over fi-
nite trees is PSPACE-hard.

PROOF By reduction from CLOSED-UNIV, using Lemma 9.4.3 together
with Lemma 9.2.1. O

We leave the upper bound problem open. In Chapter 12 we will give a
PSPACE upper bound for structural recursive subtype entailment (and a
matching lower bound). We believe that rather similar techniques can be
employed to show that non—structural entailment is in PSPACE. However,
we have not yet obtained a satisfactory correctness proof, and we confine
ourselves to stating the following

Conjecture 9.4.5 The problem of non—structural subtype entailment is in
PSPACE and hence PSPACE-complete, both over finite and infinite trees.
a



Chapter 10

Structural trees

The purpose of this chapter is to develop concepts and methods which will be
useful later, when we consider entailment over structural trees. As promised
in Section 2.4.2, we show that satisfiability in infinite structural trees over
a lattice is in PTIME (cubic time), thereby completing the classification of
satisfiability complexity for lattice based structures (see the table in Sec-
tion 2.4.4).

Recall from Section 2.1.4 that, in structural subtyping over a lattice, we
have ¥ = LU{x, —} where (L, <p,) is a lattice of constants, and ¥ is ordered
by taking the disjoint union of L, {x} and {—}, i.e., for 0,0’ € 3 we have
o <x, o' if and only if either o and ¢’ are both in L and o <[, ¢/, or 0 and o’
are both X, or ¢ and ¢’ are both —. In structural subtyping, only trees with
the same “shape” (domain) can be compared, and comparability is reducible
to the order <y on constants at the leaves. This was captured technically
in Lemma 2.1.1. We gave a number of further standard properties for finite,
structural subtyping in Chapter 2. These will be generalized to the recursive
case in the present chapter. We fix 7y, to be 7x[s] in this chapter.

As was noted in Section 2.4, previous work by Palsberg and O’Keefe
[57] and by Pottier [59] has shown that satisfiability of constraint sets in re-
cursive, non-structural subtyping is equivalent to consistency and therefore
in PTIME (recall Theorem 2.4.3). The method used to prove this was to
consider deterministic constraint automata, which translate a constraint set
to a solution, whenever the constraint set is consistent. See Section 9.1.6
with Theorem 9.1.5. As was also noted earlier, in Section 2.4, no exact
classification has so far been given for the structural, recursive case. The
best previous result is the PSPACE lower bound and DEXPTIME upper

132
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bound for the problem REG-SAT (satisfiability of infinite, regular sets of
atomic inequalities) of Tiuryn and Wand [72]. We prove here that struc-
tural recursive subtype satisfiability is equivalent to consistency, when the
order is generated from a lattice of base types, and therefore the satisfiability
problem is in PTIME for this model also.

In the light of the previous results for the non—structural case by Palsberg—
O’Keefe and Pottier, it may not be so surprising that a similar approach
would work for structural, recursive subtyping, and, indeed, our method
is an adaptation of theirs. Nevertheless, adapting the method in detail to
the structural model requires a good amount of technical work, which (even
though it may be found to be somewhat boring) requires some care. A sketch
of an alternative reduction of satisfiability to consistency can be found in
the note [26] by Frey. !

10.1 Infinitary matching

Infinite terms

In order to talk about matching properties of constraint sets, it is useful
to introduce special terms and substitutions. We first introduce a form of
infinitary type expressions. A generalized term is a tree in Txyy, where
variables in V are regarded as constructors of arity 0 (however, only non-
variable constructors of arity 0 are called constants); thus, a generalized
term is just like a term, but with possibly infinite domain. We write 7:5°(V)
to denote the set of generalized terms. Valuations (mappings from V to
Tx) and substitutions (mappings from V to 73°(V)) can be considered as
homomorphisms on generalized terms in the obvious way. We can also con-
sider generalized constraint sets, which are finite sets of inequalities of the
form 6 < @', where 8 and €' are generalized terms. The notion of matching
constraint sets carries over in the obvious way.

Lemma 10.1.1 (Leaf Lemma) Let 61, 05 be generalized terms with D(61) =
D(62), and let v be a valuation, v : V — Tx. Then v(01) < v(62) holds in
T if and only if v(61(w)) <™ v(02(w)) for every (common) leaf address w
in 01 and 0.

PROOF The lemma is an easy consequence of Lemma 2.1.1 together with
the fact that a valuation preserves constructors homomorphically. O

'T am grateful to Alexandre Frey for illuminating discussions about these matters.
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Most general matching substitutions

Let Uc be the most general (possibly circular) unifier of E¢ for a weakly
unifiable set C' (see Definition 2.3.1). If C is a structural set, let u§ = Uc(a),
let {aw, | w € A*} be a set of variables not occurring in C. For each variable
a in C define the generalized term S with D(0S) = D(u$) and with

(& : (&
crn ) ug(w) ifwéeln(ugy)
O (w) = { Qy if w e Lf(uf)

Define the substitution ¢ from terms to generalized terms by setting
Oc(a) = 65

A matching substitution for a structural, recursive constraint set C is a
substitution S : V — T°(V) such that S(C) is matching. If C' is weakly
unifiable, then it has a matching substitution, and O¢ is a most general
matching substitution for C, ie., ©¢(C) is matching, and for any other
matching substitution S for C there is a substitution R such that S =
R o O¢ holds on the variables occurring in C. This is a straight-forward
generalization of the corresponding property from finite terms (Section 2.3.1,
see [53] for the finite case, and see [72, 27| for other generalizations to the
infinitary case.)

Next we give a simple example involving infinite terms introduced by
Oc¢, arising due to circular constraints.

Example 10.1.2 (Infinite expansion)
Let
C={a<a-—p}

Then O¢(C) produces the inequality with infinite terms shown in Fig-
ure 10.1. The domain of the type O¢(«) is found by unifying E¢. |

The Match Lemma holds in the case of structural recursive subtyping,
with the same proof as that of Lemma 2.3.5, only now using the generalized
notion of terms:

Lemma 10.1.3 (Match Lemma)
1. Ifv = C, then v(C) is matching.

2. If v = C, then v = v' 0 ©¢ holds on the variables in C for some
valuation v'

3. CE7<7"if and only if Oc(C) E Oc (1) < Oc(7)
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/\ /\

— Qdr Qr
— Qddr — Ay
adddr : addr

Figure 10.1: Constraint set C = {a < a — (3} expanded by O¢

Flattening
For a weakly unifiable set C, define the flattened set C” by
C’ = {0(w) <V '(w) | 0 < 0 € Oc(C),w € LF(H) N LF(O')}

Observe that, if C is weakly unifiable, then Lf(9) = Lf(¢') for all § < 0 €
O¢(C). Notice also that a generalized type ©¢(7) may be a non-regular
tree, because it could contain infinitely many distinct variables. Notice
finally that the set C” may be infinite.

Given constraint set C' and variables «, 8 we define the set of inequalities
[ < B¢ to be the flattened set

[a < Blo = {6 (w) < 05 (w) | w € LF(6T) NLF(65)}
Example 10.1.4 Consider again the set C' from Example 10.1.2 and Fig-
ure 10.1. We have

Cb = {6\47« < ﬁe}
U {agnr < agrtr,} n>0,n even
U {ag+i, <agny} n>0,no0dd
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Recall from Definition 2.3.9 the notion of variables matching in a constraint
set. This notion evidently transfers to the setting of infinite terms as well.
The following lemma is a consequence of elementary properties of the most
general matching substitution. It is a straight—forward generalization of
Lemma 2.3.10 from the finite case; the wording of the lemma remains the
same, and so does its proof. We repeat the lemma here for convenience:

Lemma 10.1.5 (Flattening Lemma) Let C be a weakly unifiable constraint
set. Then

1. C is satisfiable if and only if C* is satisfiable. More specifically, one
has

(a) If v |= C, then there is a valuation v' such that v = v' 0o ©¢ holds
on the variables in C, and with v' = C”

(b) vI=C" if and only if vo O¢ = C
2. v=C" if and only if vo O¢ = C
3. If a and B are matching in C, then
CEa<fifandonly if C' = [a < flc

PROOF  The proof is the same as the proof of Lemma 2.3.10, using the
generalized definition of matching substitutions and terms. |

10.2 Representation

In this section we show that satisfiability and entailment over 7y can (under
certain conditions) be faithfully represented in a substructure of 7x. To
this end, we introduce the notion of C-shaped valuations (a precise defi-
nition is given later.) Intuitively, a C-shaped valuation for a set C is one
which maps every variable « in C' to a tree with shape ©¢(a), i.e., v uses a
“minimal amount” of the structure 7x and contains no “garbage”. It is the
goal of this section to establish that, under certain conditions, satisfiability
and entailment problems are completely determined by the behaviour of C-
shaped valuations. This turns out to be a very useful property for defining
constraint automata for constraint sets over structurally ordered trees.

Recall from Definition 8.3.2 that a variable « is said to be equivalent
to a constant in an atomic constraint set C' if and only if every valuation
satisfying C maps « to a constant in L.
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C—shaped valuations

Definition 10.2.1 We say that a valuation v : V — Ty is C-shaped if and
only if v(a) matches ©¢(«) for every variable a occurring in C. Hence, if v
is C-shaped, then v maps « to an element in a component lattice L; where
t matches O¢(«), and if v |= C, then v = v, 0 O¢ for some vr, : V — L (the
equality holding on the variables in C). O

Non—trivially related variables

Definition 10.2.2 We say that o and 8 are non-trivially related in C if
and only if the following conditions are satisfied:

e both a and § occur in C

e for all A < A’ € [a < f]¢, either both A and A" are equivalent to a
constant in [ < f]¢, or else neither of them is
e « and B are matching in C

If one of these conditions is not satisfied, then we say that a and 3 are
trivially related in C. |

The following theorem states that satisfiability and (under certain con-
ditions) entailment over 7y can be faithfully represented in the structure

Tc = [#{L: | t matches O¢(7), T subterm in C}

that is, 7¢ is the least union of lattices L; containing the range of C-shaped
valuations applied to inequalities in C.

Theorem 10.2.3 (Representation in T¢) For any constraint set C one has:

1. C is satisfiable in Ts if and only if C is satisfied by a C-shaped valu-
ation

2. If C is satisfiable and «, B are non-trivially related in C, then C = a <
B if and only if it holds for any C-shaped valuation v that vE a < 8
whenever v = C.

PROOF See Appendix A.4 |

Lemma 10.2.4 Let C' be satisfiable. If o and (8 are trivially related in C,
then C = a < 3.

PROOF See Appendix A.4 O
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10.3 Structural constraint automata

We can modify the construction of constraint automata from Section 9.1 to
work for structural subtyping. The non-deterministic automaton A% can
be defined as before. However, the deterministic version does not transfer,
mainly because the labeling functions are not defined on empty sets, in the
absence of a global top element in the structural ordering. As a consequence,
the value

N /\ Con(q)

will be undefined in case ¢ = §) (of course, the lattice operation above might
be undefined in the case of structural subtyping for other reasons than g = 0,
but that is not so serious). This can occur for states g reachable in A%,
whenever a set of variables {a;}; is reached with ¢ = U; ft¢ (o) = 0 or
g =); ftc (a;) = 0. One way of solving this problem, therefore, would be
to make sure that, for all such sets {a;};, one would have ; ¢ (c;) # 0.

Using our results on representation of the previous section we can ac-
complish this by picking the top element of an appropriately chosen lattice
L;. The idea is, roughly, that every variable « in the constraint set C' will be
qualified with an inequality a < top*(®), where s(a) is the shape of O¢(a)
and T*®) is the top element of the lattice of trees of shape s(a). To make
this precise, it is useful to introduce the notion of a shape. A shape is a
tree in Try . If C is a structural set, then we can assign a shape to
each variable « in C, denoted sc(c), which is the tree in 7¢y _, .3 matching
Oc¢(a). We call the function s¢ the shape map associated with C. It has
support Var(C), i.e., it is a total map on V acting as the identity outside
Var(C). Notice that this means that, for variables a, 8 not in Var(C), we
have s¢(a) = s¢(B) if and only if @ = . Notice that s¢(«) is always a regu-
lar tree (even though ©¢(a) may not be), since it arises from the unification
graph underlying U¢ by insertion of x at the leaves of Ug(a). The regular
tree sc(@) can be regarded as a term automaton recognizing the domain of
O¢(a). (Notice that the map s¢ depends on a given weakly unifiable set
C, but for notational simplicity we will not always make this explicit, when
the set C is clear from context.)

The idea then is to use the lattice L,(,), that is

Ly = {t € Tx | t matches O¢(a)}

Let s be a shape. Define the regular tree top® with domain D(s) and
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given by

ifw € Lf(s) and 7w =0
if w € Lf(s) and 7w =1
s(w) ifw € lIn(s)

T
top®(w) =< L
It is easy to see that top® is the top element in the component lattice L
(prove t(w) <" top®(w) for all t € L, by induction on |w|, w € D(t)).

We wish to extend a constraint set C' with inequalities of the form
a < top* @, for all @ € Var(C), to obtain an extended set C’, where the
new inequalities force that C’ can only be solved by C-shaped valuations.
However, for some rather subtle technical reasons (that will become clear)
we will do this in a particular way. First, we wish to keep the constraint set
finite and simple, so we cannot mention the (possibly infinite) trees top*()
directly in C’. However, as regular trees, the elements top*(® can all be
defined by sets of regular and contractive equations (see [16]), of the form
Y =71 X ¥2 or ¥ =71 — 72, which are evidently expressible by simple in-
equalities. Such sets have unique solutions (they define contractions in the
complete metric space of trees, see [16].)

We can assume, therefore, that for any structural constraint set C' and
any shape s, a € Var(C), there is a simple constraint set C*° of regular
equations defining top®. We assume that the defining equations in the C*
use variables, ranged over by v which occur nowhere else, and we let T’
denote the set of those variables. We can further assume that C° has a
variable «; representing the top level definition of top?, i.e., s is a variable
in C* such that the unique solution to C* maps v* to top?®.

Notice that, for any 7 in C?, v has a non-variable upper bound, i.e., there
is an inequality v < 7 in C* where 7 is a constructed type or a constant (L
or T).

We now define an extension of a given set C, called C'T. The set C'T is
just another version of C’ where all inequalities are simple and all variables
v involved in defining the elements top® have been identified, whenever they
have the same shape. The set C'| is defined in three steps, as follows:

(¢) Let s¢ be the shape map associated with C, and let S be the set of
shapes of variables in C, i.e., S = {s¢(«) | @ € Var(C)}. Define Cr by

Cr=CU{a< v |aeVar(C),s=scl@)}ulC?
seS

(17) Let sp be the shape map associated with Cr. For each shape s in
{sr(7) | 7 € T'} we assume a variable d; occurring nowhere else, and
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we let A denote that set of variables. Define Ca by
Ca=CrU{y=4ds|v€eT,s=sr(y)}
(#3i) Define C'T by
C" =Cl(Ch)

Define now ft¢ () to be the set of non—variable terms that are upper bounds
in C for a:

o (o) ={r|a<T€C}\V

If C is a weakly unifiable set and 7T is a set of terms, then we say that T is
matching with respect to C if and only if all terms in T have the same shape
under the shape map of C, i.e.,

Vr, 7' € T. sc(1) = sc(7)

Lemma 10.3.1 Let C be weakly unifiable. If V is a non-empty subset of
Var(C") and V is matching with respect to C", then

() ot (@) #0

acV

PROOF See Appendix A.4 m|

Corollary 10.3.2 For any weakly unifiable constraint set C' one has:
1. C is satisfiable if and only if C" is satisfiable
2. If C is satisfiable and «, 8 are non-trivially related in C, then C |=
a< Bifand only if CT = a < f.
PROOF See Appendix A.4 O

We define the deterministic constraint automaton A%, as before, assuming
that C is simple and closed. Only now we do not have transitions from a
set of terms unless all terms have the same top level constructor:

o for q = {Oti — Ot;}ie[

0p(g,d) = Nier Mo (i)
0p(g,7) = Uier e (o)
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e For g = {a; x & }ier:

0p(q, f) = Uier e (i)
0p(q,5) = Uier e (o)

e For ¢ not of the forms above, the transition functions are undefined.

We can now supply a labeling function £,. We define

X if Con(q) = {x}
lh(g) =¢ — ifCon(q) ={—}
ANg ifqgCL

The function £, is partial, since it is only defined for non-empty sets ¢ such
that either all types in g have the same top level constructor or else g is a
set of constants.

For a structural set C and a € Var(C'), we can induce a term (automaton)
t$ () as we did in the non-structural case:

t$ () = Aw.La (1 (e, w))
where
9o :ﬂCT (Ot)

and dp is now the transition function of AgT (¢a) (notice the use of C'T here
rather than C.) Our definitions are meaningful:

Lemma 10.3.3 If C is weakly unifiable and o € Var(C), then t$(a) is a
well defined term automaton (i.e., its labeling function is defined on all states
reachable from the start state of the automaton.)

PROOF See Appendix A.4 |

10.4 Satisfiability and consistency

We will show that a structural recursive constraint set is satisfiable if and
only if it is consistent. The proof is similar to Pottier’s proof [59] of the
corresponding property for non—structural recursive sets; this proof, in turn,
was based on ideas in [57]. The essential property needed is the following:
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Lemma 10.4.1 (Main Lemma) Suppose that C is consistent (weakly unifi-
able and ground consistent). Let {} denote the function {fo7. Let 11 < 19 €
c’ (deql =1 (11), a2 =1} (12). Then , for any string w € A* accepted by
both AS (q1) and A% (go) one has

A (6p(q1,w)) < €r(Op (g2, w))

PROOF See Appendix A.4 |

Theorem 10.4.2 C is satisfiable in the structurally ordered set of trees Ty,
if and only if C is consistent (weakly unifiable and ground consistent).

PROOF It is obvious that any satisfiable set must be weakly unifiable and
ground consistent. To see the other implication, suppose that C' is weakly
unifiable and ground consistent. Define the valuation v, by setting

va(a) = 15 (a)

For a type expression 7, let A(7) be the term automaton A% (f¢(7)), and
let £ 4(;) denote the term defined by this automaton (in the standard way,
according to [45]). Because {t¢(7) = {7}, whenever 7 is not a variable, one
has

OA(T) = ta(r)

for non-variable 7. Lemma 10.4.1 therefore states that va(7) < va(7') for
all 7 < 7' € C. Hence, v, is a solution to C. O

Since weak unifiability of a constraint set is decidable by cyclic unifi-
cation in almost linear time, and ground consistency can be checked by
computing constraint closure using a dynamic transitive closure algorithm,
we have:

Corollary 10.4.3 Satisfiability of a constraint set in the structurally or-
dered set of trees Tx. can be decided in time O(n3) (where n is the size of the
constraint set).



Chapter 11

Structural finite entailment

In this chapter we study the complexity of deciding entailment over struc-
turally ordered finite trees. We prove that the problem is coNP—complete,
even in the presence of just a single covariant constructor (x).

To recall, the finite structural entailment C' = a < 3 holds if and only if

Vo:V o T vEC=>vEa<p

where TEF is short notation for the set of finite trees with the structural
order, T [s].

We may note immediately that there is a naive algorithm to decide this
problem. The algorithm proceeds by first flattening the constraint set C,
using Lemma 2.3.10), to obtain the equivalent, atomic entailment problem,
C" = [a < Blc. This problem, in turn, can be solved in time linear in
the size of C?, using the characterization of atomic entailment developed in
Chapter 8. However, flattening a set can induce an exponential blow—up in
the size of the resulting set, i.e., C” may be of size 2" where n is the size of
C, because a most general matching substitution may incur such a blow—up
(recall Example 2.3.7). The algorithm sketched above would therefore only
yield an exponential time upper bound.

11.1 Leaf entailment

A restriction of entailment, which makes sense for structural subtyping sys-
tems, is to ask for entailment at a given address. This amounts, for instance,
to querying whether a certain component of a variable (known to denote a

143
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product) has to be less than the corresponding component of S (also known
to denote a product.)

In more detail, suppose that C' is such that @ and  have the same shape
in C (otherwise, the entailment C' |= a < [ is uninteresting), i.e., O¢(«)
and ©¢ () have the same domain, and let w be a leaf address in ©¢(a) and
O¢(B). We then say that C w-entails o < (3, written C =" o < g, if and
only if

Vo:V = Ts. v EC=v(a)(w) <Y v(8)(w)

The notion of leaf entailment gives rise to the following decision problem:

e Given constraint set C and a leaf address w for ©¢(a), decide whether

CEYa<p.

The notion of leaf entailment may be of practical interest in its own right;
however, in this thesis, we shall use it for theoretical purposes later. It is
easy to see that leaf entailment characterizes entailment completely, in the
case of structural subtyping:

Proposition 11.1.1 Let C' be consistent, and suppose that o and (3 are
matching in C. Then C = a < B if and only if C EY a < B for every leaf
address w in O¢(a) and Oc(f).

PROOF The proposition is an easy consequence of Lemma 2.3.8 together
with Lemma 10.1.3. O

It is not too difficult to see that one can decide leaf entailment in PTIME.
For now we will restrict ourselves to entailment over C—shaped valuations
only (recall Definition 10.2.1). As we shall see later, the generalization
to arbitrary valuations is easy enough and remains within PTIME for leaf
entailment.

We will begin by describing a conceptually simple (if inefficient) algo-
rithm. For now, we will assume that C is satisfiable (otherwise entailment
trivially holds), and that the given address w is a leaf address for both
O¢(a) and O¢(B). So assume we are given a satisfiable set C, a goal in-
equality @ < 8 and an appropriate address w. We will show how to decide
the complementary, non—entailment problem

CHYa<p (11.1)

over C—shaped valuations. In order to do so, we shall need the notion of a
w-template:
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Definition 11.1.2 For a word w € A*, we call a finite term T% a w-
template if D(T") is the least tree domain containing w and the leaves
contain fresh, pairwise distinct variables. O

Now, let Ty and T§ be two distinct w-templates, each having variables
disjoint from each other and C. Let a,, = Ty (w) and 8, = T§'(w), and let
C'=Cl{la—T¥ B~ Ty }. It is then easy to see that an address w satisfies
(11.1) over C—shaped valuations, if and only if there exist constants b; and
by in L such that

1. by £¥ by, and
2. C" = C'{ay — b1, Bw — by} is satisfiable

Soundness and completeness of this test follows, because any C—shaped val-
uation v such that v = C and v(a) £¥ v(f) can evidently be obtained by
composition with the substitution which maps a to T¥{a,, — b1} and 3 to
Té" {Bw — b} for some b1,be € L with by €% by. These observations are
summarized in the algorithm shown in Figure 11.1.

The algorithm runs in PTIME, because satisfiability is in PTIME, by
Theorem 2.4.2. The algorithm presented in Figure 11.1 is rather naive and
inefficient. It is similar to the naive algorithm for deciding atomic entailment
by explicit representation of the negation of inequalities, via an exhaustive
search for constants by, be in L such that b, £ bs combined with repeated
checks for satisfiability (see Section 8.2).

We can do better if we take into account our linear time characterization
of atomic entailment, contained in Theorem 8.1.2. Such a solution is shown
in Figure 11.2, which calls a linear time entailment procedure for atomic
constraints as a subroutine. It uses an operation At on constraint sets which
we shall define next.

Say that a variable a occurring in C' is atomic in C' if and only if Ug(«)
is a constant or a variable (i.e., @ does not get compared to a structured type
under unification.) Such a variable can evidently be mapped to a constant
in L under a satisfying valuation (if any such exists.) We say that a constant
is trivially atomic in C. Then define the atomic constraint set At(C) by

At(C) ={A< A" € C| A and A’ are atomic in C}

Correctness of the algorithm shown in Figure 11.2 can be seen as follows. If
the atomic entailment test C' =p, oy <Y 3, succeeds, the leaf entailment is
easily seen to hold (details are left to the reader.) Conversely, if the atomic
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Given C, « and 3 with C satisfiable and w a leaf address in both O¢(a)
and ©¢(F). The algorithm accepts if and only if C =¥ a <" f over
C-shaped valuations in finite trees ordered structurally.

1. Build w-templates T} and Té” ;

2. Initialize for Loop:
oy i =T’ (w);
Pw = Té”(w);
C'=C{la—TV,B Tg’};

3. Loop:

for (bl,bg) € L x L do
if by ﬁ% by then
C":= C'{ay — b1, Bw — ba};
if C" is satisfiable then REJECT;

4. If step 3 did not lead to rejection, then ACCEPT.

Figure 11.1: PTIME algorithm for leaf-entailment.

entailment test fails, then there must exist constants by, by € L with by £ by
such that C{ay — b1, By — by} is consistent (and hence satisfiable); then
the set C"{ay + b1, By — be} must also be consistent (this should be
rather obvious, but a detailed argument for this can be found in the proof
of Theorem 5 in [71]), and it easily follows that C becomes consistent when
« is mapped to Ty {a, + b1} and B is mapped to T§'{By > b2}, thereby
constituting a counterexample to the leaf entailment.

By generalizing the characterization of atomic entailment found in The-
orem 8.1.2, it is possible to come up with a more sophisticated algorithm,
which avoids constructing the templates for o and 8 and computing closure
explicitly. However, in order to avoid tedious repetitions, we postpone doing
so until we have given a similar generalization suited for recursive structural
subtyping (Chapter 12); this will contain the techniques necessary for an
improved algorithm for both finite subtype entailment and leaf entailment
as well. For now, we limit ourselves to recording

Proposition 11.1.3 Assume that C is satisfiable and that w is a leaf ad-
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Given C, « and 3 with C satisfiable and w a leaf address in both O¢(a)
and ©¢(F). The algorithm accepts if and only if C =¥ a <" f over
C-shaped valuations in finite trees ordered structurally.

1. Build w-templates T} and Té” ;

2. ay =T (w);

Puw 1= Téu(w);
C':=Cla—Ty,8— T§}
C" = Cl(C";
C := At(C™);

if C =L awy <Y B, then ACCEPT else REJECT;

Figure 11.2: Improved PTIME algorithm for leaf-entailment.

dress in both ©¢(a) and ©c(B). Then the leaf entailment problem C ="
a < B in structurally ordered finite trees over C—shaped valuations is decid-

able in PTIME.

11.2 coNP-hardness of finite entailment

We prove that structural, finite entailment is coNP-hard, i.e., deciding the
complementary problem C [~ o <  is NP-hard. Moreover, we show that
this already holds in the presence of a single binary covariant type construc-
tor (that is, including x but excluding —.)

The intuitive reason why finite (non—)entailment is intractable can al-
ready be explained from Proposition 11.1.1. According to that proposition,
deciding the non—entailment C' [~ a <  comes down to checking the con-
dition

Jw € Lf(O¢(a)). CEY a< g (11.2)
assuming here that a and (3 are matching in C' (otherwise the entailment
trivially does not hold.) Since there may be exponentially many distinct leaf
addresses in O¢(«) in the worst case (recall Example 2.3.7), it is a relatively
short step to the idea that such addresses might be used to encode propo-
sitional truth valuations, thereby reducing the propositional satisfiability
problem SAT (see [30]) to the problem of non—entailment. The reduction
is given in the proof of the following theorem. Example 11.2.2 below gives
a pictorial view of the reduction, which should make it very easy to under-
stand.
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Theorem 11.2.1 For any non-trivial lattice L, the predicate C = a <
B over finite, structurally ordered trees is hard for coNP under log-space
reductions. Moreover, this holds in the presence of a single binary, co-variant
type constructor.

PROOF In the following construction, we assume only the type constructor
X. Moreover, since L is assumed to be a non-trivial lattice, we can assume
that there are two elements |, T € L such that | # T and 1 < T.

Fix two distinct variables o and 3. Let NENT be the problem:

e Given C, decide whether C' }E a <

We reduce SAT (propositional satisfiability, [30]) to NENT. This shows that
NENT is NP-hard, which in turn shows that the problem of deciding C =
a < 3 is coNP-hard.

The basic idea is that an address w € {f, s}* defines a truth assignment
of an instance of SAT. Given n variables 1, ..., z, containing all the propo-
sitional variables occurring in an instance of SAT, we say that an address
w=aj...ap € {f,s}" of length n defines a truth assignment T, as follows:
Tw(z;) = true if a; = f and Ty, (x;) = false if a; = s, so f means true and s
means false. Henceforth we shall think of addresses both as such and as the
truth assignments they induce in this fashion.

Let us assume now that we are given an instance I of SAT, which is a
set of clauses {C1,. .., Cy,} over the propositional variables z1, ..., z,. Each
clause is a finite disjunction of atoms A. An atom is a propositional variable
or its negation. Fach clause defines a set of truth valuations which falsify
the clause; we call this set the exclusion set of the clause. Then, a truth
valuation T' € {f, s}" satisfies I, if and only if 7' is not in the exclusion set
of any clause in I.

Given I, we construct an instance C'(I) of NENT (that is, a constraint
set) with the following intuition. For every clause C; = A; V...V Ay in I we
build a set of constraints that ezcludes exactly every address w that (when
read as a truth assignment) falsifies the clause. By “excluding” we mean
that every such address w satisfies

C) " a<B

so that, by Proposition 11.1.1, w is not a witness that the NENT-problem
has a positive answer. This is done by making sure that w becomes a leaf
address for O¢()(a) and O¢()(8) in C(I) such that O¢()(C(I)) implies
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the inequalities iy < L and T < By, with ay = O¢(p)(a)(w) and G, =
O¢(1)(8)(w). Furthermore, our construction is such that a,, < By, is never
deducible from C(I). This means that existence or nonexistence in C(I) of
an address w such that a,, < 1L and T < (3, determines whether C(I) -
a<porC)Ea<p.

Let us now describe in detail the construction of the set C(I). We
assume that we have m clauses C4,...,C,, with a total of n propositional
variables z1,...,z,. The exclusion set of each clause C; can be described
by a unique address pattern P; € {f,s,#}™. An address pattern defines the
set of addresses that arise by replacing # arbitrarily by either f or s. For
example, s## fs##+# is the address pattern that represents the falsifying
truth valuations for the clause z1 V —x4 V x5 for n = 8.

Given an address pattern P we define the constraint set C*(P,v) as
follows:

) {6 x & <~}UCT(P',8) (6,8 new)
Ct(sP',y) = {§xd§ <~yucH(P,d) (6,8 new)
) = {dx86<~A}UCT(P',6) (6 new)
) = {T<

Similarly, we define C~(P,~y): This is done by reversing the inequalities in
the first three clauses for C* above and replacing the last clause by C~ (¢,v) =

{y<1}
Let P; be the address pattern that falsifies clause C;. The constraints
generated for C; are

Ci=CH(P,B)UCT (P, a)

The constraints C(I) generated for I is the union of the constraints generated
for the individual clauses in I,

Example 11.2.2 and Figure 11.3 illustrate this construction.
Now, to see that C(I) is a reduction of SAT to NENT we have to check:

I is satisfiable if and only if C(I) o < (11.3)
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Suppose first that I is satisfiable. Then there is a truth valuation w € {f, s}"
satisfying I. There is therefore no pattern P; defining the exclusion set
of C; such that w matches P;. It then follows by construction of C(I)
that the variables «,, and £, (defined as above) will be unconstrained in
the expansion of C(I) under a most general matching substitution. Using
Lemma 2.3.10 together with Theorem 8.1.2 on C(I)’, it is easy to verify
that C(I) " a < 8 must hold, and hence C'(I) j# @ < . On the other
hand, if C(I) £ o < 3, then there must be a leaf address w for O¢()(a)
and O¢(p)(B) such that C(I) £ a < (3 is true. By construction of C(I), it
is easy to see that this implies that there can be no pattern P; such that w
matches P;, hence w is a valuation which is not in the exclusion set of any
of the clauses in I, and therefore w must satisfy I. |

We end the section by illustrating the reduction pictorially, in the following
example.

Example 11.2.2 Suppose we have an instance of SAT with n = 5 and
consider the clause —x2 V 4. The address pattern defining the exclusion set
of this clause is P = # f#s#. The constraint set C*(P,3) is computed as
follows:

C*(P, ) = {01 x 01 < BYUCH(f#s#,01)
C+(f#$# 61) = {02 x 03 <01} UCT(#s#,02)
(#S# (52) = {54 X (54 < 52} UC+(8# (54)
C+(S#,(54) = {55 X dg < 54} @] C+(# 56)
CT(#,04) = {67 x 67 < dg} UCT (€, 67)

C* (e, d7) = {T <47}

The constraints C~ (P, ) are obtained by reversing these inequalities (using,
of course new variables) and exchanging the last inequality with ¢, < L.

In order to get a pictorial view of this process, it is instructive to note
that inequalities are only needed at two points, namely in the first step
(introducing S, resp. «, into the system) and in the last step (introducing T,
resp. L, into the system); the remaining inequalities might as well have been
taken as equalities. As a consequence, this construction can be regarded as
constructing two trees, t, and tg, and the inequalities

a < t,
tg<p
ta(w) < L
T <tg(w)
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Figure 11.3: Constraints generated for the pattern #f#s# for —zo V x4
withn =25

where w ranges over address matching P.

The trees ¢, and tg may be exponentially large in n, but they can be
defined by n inequalities, because each constraint generated for # repeats
a variable. Pictorially, this can be made clear by using sharing in a graph
representation of the constraint set. This is done in Figure 11.3 for the
example above (the picture uses other variable names than the example
above.) O

11.3 coNP upper bound for finite entailment

We show that the non—entailment problem, C' £ a < 3, can be solved
non—deterministically in polynomial time. Proposition 11.1.1 with the char-
acterization (11.2) again yields the basic insight: in order to decide non—
entailment, we may non—deterministically guess an appropriate address w €
A* such that the condition (11.2) is witnessed by w.

The reason why this observation yields an NP—-algorithm for non—entailment
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is that the representation result in Theorem 10.2.3 shows that non—entailment
over C-shaped valuations (recall Definition 10.2.1) has a succinct witness,
in the form of an address w € A* of length at most n satisfying (11.1). Let
us now explain this in more detail.

Outline of coNP-algorithm

To recall from Theorem 10.2.3, we know that, if o and § are non—trivially
related in C (recall Definition 10.2.2), then entailment can be decided by de-
ciding entailment restricted to C—shaped valuations. This restricted version
of entailment, in turn, has succinct (in fact, linearly bounded) witnesses, be-
cause any value v(a) under a satisfying C—shaped valuation v must match
Oc(a); the depth of any tree ©¢(a), in turn, is bounded by n (the size of
(), because O¢(«) matches the value Ug(a) which can be computed and
(graphically) represented in linear time. Hence, for non-trivially related
a and f, restricted entailment can be decided by guessing and verifying a
witness w € A* of size linearly bounded in the size of C; since w is lin-
early bounded, it can be guessed non—deterministically in polynomial time,
and since leaf entailment is in PTIME (by Proposition 11.1.3), the verifica-
tion step can be performed in PTIME. Finally, as is argued below, deciding
whether o« and 3 are non—trivially related can be done deterministically in
polynomial time, and deciding entailment in the case where o and (3 are
trivially related can be done deterministically in polynomial time.

We go on to describe this algorithm in detail. The description of the
algorithm is divided into two parts, a pre—processing phase and a main step,
shown in Figure 11.4 and Figure 11.5, respectively. Input to the algorithm
is a constraint set C' and variables «, 8. The algorithm accepts if and only if
the non—entailment C [~ a < (3 holds over finite trees ordered structurally.

Pre—processing (Figure 11.4)

Figure 11.4 defines a pre—processing phase which performs a number of
checks. Once this phase has been completed, the algorithm performs the
operations described in Figure 11.5, unless the pre—processing phase already
results in acceptance or rejection.

The first part checks that C' is satisfiable. This check is implemented by
checking weak unifiability and ground consistency, and correctness of this
follows from Theorem 2.4.2 proven by Tiuryn ([71], Theorem 5), that sat-
isfiability over finite structural trees generated from a lattice of base types
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is equivalent to consistency. The first of these checks is performed by unifi-
cation, and the second is performed by computing the closure CI(C); both
checks can therefore be performed deterministically in polynomial time.

The second part assumes (by the previous part) that C' is satisfiable and
checks that « and £ occur non—trivially in C. If not, the algorithm accepts
(i.e., non—entailment is accepted.) Correctness follows from Lemma 10.2.4.
The second step of this check determines whether or not the shapes of o
and 8 in C are the same. This check can be performed by computing U ()
and U%(53), where U* is the unifier Uc with all variables collapsed to the
same element (arbitrarily chosen to be x).

The third step determines whether it is the case that one but not both
of O¢(a) or O¢(fB) has a leaf variable that is equivalent to a constant in C
and hence forced to be mapped to a constant; this check can be performed
in linear time by inspecting the unification graph of U¢ (of size linear in the
size of C') to see whether x is present in one (but not both) of the equivalence
classes of a leaf of Ug(a) and Ug ().

Main step (Figure 11.5)

The second phase of the algorithm can assume that C' is satisfiable and that
« and @ occur non—trivially in C, by the pre—processing phase. The second
phase, shown in Figure 11.5, non—deterministically checks non—entailment
over C-shaped valuations. Proposition 11.1.1 and Proposition 11.1.3 show
that this phase is correct.

In this phase, we non—deterministically guess a leaf-address w in Ug(«),
of length at most linear in the size of C. The leaf-addresses in Uc(a) are
just the leaf-addresses in both ©¢(«) and ©¢(f): « and S are matching in
C, since « and 3 occur non—trivially in C.

Once a candidate witness w has been guessed, we verify that w is in-
deed a witness of non—entailment, by verifying that the corresponding leaf—-
entailment fails; correctness of this test follows from Proposition 11.1.1, and
the test is in PTIME by Proposition 11.1.3.

We can now conclude from the coNP-algorithm together with Theo-
rem 11.2.1 that we have

Theorem 11.3.1 The problem of subtype entailment is coNP-complete for
structurally ordered finite trees over a lattice of base types. Moreover, this
holds in the presence of a single binary covariant type constructor.
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By adding suitable parts of the pre—processing step shown in Figure 11.4
to the leaf entailment algorithm shown in Figure 11.2, it is easy to see that
we can drop the restrictions of Proposition 11.1.3 and get

Corollary 11.3.2 The leaf entailment problem C " a < (3 in structurally
ordered finite trees is decidable in PTIME.

As was said in Section 11.1, the PTIME leaf entailment algorithm can be
improved by using a more subtle generalization of Theorem 8.1.2, which will
eventually characterize structural recursive entailment. Once that has been
done, we shall also obtain an improved coNP-algorithm for entailment in
structural finite trees. As said, we postpone this until Chapter 12 in order
to avoid too many tedious repetitions.

Given C, a, (3, check that C is satisfiable (consistent). If C' is inconsis-
tent, reject.

1. (Check for weak unifiability) Compute Uc (most general unifier
admitting infinite terms). If unification fails, REJECT.

2. (Check for ground consistency) Compute CI(C). If CI(C) is not
ground consistent, REJECT.

Given consistent C, o and 8. Check that o and (§ are non—trivially
related in C. Non-entailment C' £ a < 3 is accepted, if @ and (3 are
trivially related.

1. (Occurrence check) Check that both « and 8 occur in Cj if not,
then ACCEPT.

2. (Match check) Check that Uf () = Ug(B); if not, then ACCEPT;

3. (Constant constraint check) If x = Ug(a)(w) and * # Uc(B)(w),
or x # Uc(a)(w) and * = Ug(B)(w), for some leaf address w in
Uc(a) and Ug(S), then ACCEPT

Figure 11.4: coNP algorithm for entailment. Preprocessing phase.
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Given C,a and @ with C consistent and «, 8 occurring non—trivially
in C. The algorithm accepts if and only if C = a < 8 over C—shaped
valuations in finite trees ordered structurally.

1. Guess a leaf-address w in U («);

2. If C Y a < 8 then ACCEPT;

Figure 11.5: coNP algorithm for entailment. Main step.



Chapter 12

Structural recursive
entailment

In this chapter, we prove that the entailment problem for structural recur-
sive subtyping is PSPACE—complete. The structure 7y is now fixed to be
Ts[s], structurally ordered finite and infinite trees. The lower bound proof is
an extension of the PSPACE lower bound for the non-structural case (Chap-
ter 9). The upper bound is based on a generalization of our characterization
of atomic entailment (Chapter 8).

12.1 PSPACE-hardness for recursive entailment

In the remainder of this chapter we will prove that the entailment prob-
lem C = a < (3 over Tx[s] is PSPACE-hard. First, let us observe that
the reduction used to prove PSPACE-hardness for non-structural recursive
subtyping in Section 9.3 does not transfer directly to the structural case. To
see the difference, let A be the NFA shown in Figure 12.1, with start state
qo and all states accepting, and consider the constraint set C'4 as defined
in Section 9.3. A accepts (in addition to the empty string) just the strings
over {f,s} of either one of the forms ff", fs", ss", sf™, n > 0. Thus, we
certainly have L(A) # {f,s}*. However, by weak unification of C4 (i.e.,
solving unification for F¢,) the reader can easily verify that any solution
to C4 must map «p to the complete, infinite binary tree t*° = pvy.y x 7.
What happens under unification in C4 corresponds to collapsing the states
q1,92,93,q4 of A into a single state. This means that, for this particular
set C4, we have Cy = ap < t*° but not L(A) = {f,s}*, and our previous

156
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Figure 12.1: NFA accepting f(f* | s*) | s(s*| f*)-

reduction is seen to be incorrect for the structural case.

Even though we cannot use exactly the same technique as was used
in the non-structural case, it turns out that non-determinism can still be
faithfully represented by structural constraints, using the basic idea of en-
coding automata by constraint-automata. Only, one has to elaborate the
construction, and we now outline how this is done.

The basic idea is to allow the variable ag (representing the start state
of a given automaton) to have one particular, fixed shape, which will be
compatible with all inequalities generated from the automaton A. As can
be seen from our example, that shape must presumably be infinite. Define
the infinite trees ¢ and t" by

tt=py.(yx L)@ (yx L)and tT = py.(y x T) @ (y x T)

(Here we have used ® as another name for x, in order to single out special
occurrences of x, because the constructor x will play two distinct réles in
the reduction in a way that will be explained later.) Our reduction, then,
will be such that in all cases o will satisfy

ag <t (12.1)
The inequality in (12.1) implies by Lemma 2.1.1 that we have in fact
tt<ap<t' (12.2)

and the encoding of an automaton A will only depend upon whether or not
the leaves of v(ag) must be L, for any solution v to C4. More specifically,
the relation (12.2) implies (via Lemma 2.1.1) that, for any solution v to Ca,
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Figure 12.2: Tree so showing the shape of o
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Figure 12.3: Constraint automaton corresponding to NFA transition g —f ¢’

v(ap) must have the shape of the tree sy shown in Figure 12.2, where the
leaves constitute an infinite collection of distinct variables §,, which must
satisfy 1 < §, < T, and so, in particular, each leaf variable §,, must be
mapped to a constant in any solution for ay. The annotations on the tree
used in Figure 12.2 will be explained later.

We now give the definition of a constraint set C'4 constructible in logspace
from a given NFA A. As before, we construct C4 from sets Cj corresponding
to each k’th simple transition in A. The C}, are defined as follows:

e If the k’th simple transition in A is ¢; —7 gj, then
Cr ={ai < (aj x L) ® v}
e If the £’th simple transition in A is ¢; —* ¢;, then
Cr ={ai <y ® (o x L)}
o If the £’th simple transition in A is g; —* g;, then
C ={ai < oy}

Here the v are fresh variables. The set C4 is defined to be the inequality
shown in (12.1) together with the union of all the Cj (the element ¢" can be
defined by regular equations.) Figure 12.3 shows the constraint automaton
generated from a transition ¢ —7 ¢/. We have not given the inequalities in
simple form, but we can think of C4 as simple, by trivial transformation.

Lemma 12.1.1 Let A be a prefiz—closed NFA over {f,s}. Then
L(A) = {f,s}" if and only if C4 = op < t+
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PROOF We first give an intuitive explanation of the construction of Cjy.
Looking at Figure 12.2, the reader will notice that going down a branch of
S0, the products alternate between ® and x (which, to recall, are really all
the same product constructor, only named differently to distinguish occur-
rences.) Let us call all occurrences labelled ® primary products and all those
labelled x secondary. Then one has that primary products are located at
the addresses in the language !

Lg =[(f [ 9)f]"

and that leaf variables (denoted d,, in Figure 12.2) are located at the ad-
dresses in the language

La=Lg-[(f | s)s]

Secondary products only serve the purpose of attaching a pair of leaf vari-
ables §,, to each primary product (sitting at addresses fs and ss from the
primary product.)

In order to explain the significance of this, we need a few definitions. If
w=a1as...a, is a word in {f, s}*, let

w||f =aifasf...anf

ie., w||f is w interleaved with f (and we take €||f = €). Then define, for
w=w'a, a € {f, s}, the operation A by setting

A(w) = (w']|f)as

Then, for any w € {f,s}* \ {€}, one has A(w) € La. The idea now is
that the inequality (12.2) forces ©¢ ,(ap) to have the fixed shape shown in
Figure 12.2, where d,, is a fresh leaf variable sitting at address A(w). The
set Ca, in turn, is constructed in such a way (see Figure 12.3) that a non—
empty word w € L(A) will give rise to the constraint é,, < L (implied in the
expansion of C4 under O¢,). This way, the variables d,, sitting under the
secondary products in O¢, (o), serve as markers that a transition on f or
s out of the primary product has been taken. Since there is such a marker
variable d,, at address A(w) for each non—empty word w, constraints on the
fixed shape of ag can represent the fact that an arbitrary non—-empty word
w is accepted by A.

In our notation we identify a regular expression with the language denoted by it. The
operator - is concatenation of languages.
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The intention of our encoding can now be stated precisely. We say that
an address w is marked if and only if the following two properties hold for
all valuations v satisfying Ca:

1. A(w) € D(v(ay)), and
2. v(y)(A(w)) < L
Then we claim:

w € L(A) with w # € if and only if w is marked (12.3)

First notice that, because (12.2) always holds by construction of C4, the
first condition above holds for every address w # €. Suppose then that
w # ¢, w € L(A). Then, by construction of Cy4, there is a w-transition
in A%‘. By expanding g to the shape shown in Figure 12.2, it is easy
to see that this transition in A%‘ implies the condition &, < 1 on the
variable d,, in the expansion ©¢, (ag) (0, sitting at address A(w) in the
expansion of ag). It follows that any valuation v satisfying C'4 must also
satisfy v(ap)(A(w)) < L, showing that w is marked. Conversely, assume
w ¢ L(A). Then, because A is prefiz closed, there can be no w-transition
in A starting from ¢y at all. By construction of C'4, there is therefore no
A(w)-transition in A%‘. It is easy to see that this implies that the variable
0y sitting at address A(w) in the expansion of «y (according to Figure 12.2)
will not be bounded by L in the expanded set ©¢,(C4). In particular, the
satisfying valuation vs of Theorem 10.4.2 must have va(ag)(A(w)) = T,
showing that w is not marked. We have now shown that (12.3) is true.

We can now prove the lemma from (12.3). First observe that the value
of v(ap)(w) is fixed to be the product constructor for any address w & L,
whenever v satisfies C4. Therefore, one has v(ap) < t+ if and only if
v(a)(A(w)) < L for all w € {f,s}* \ {e}. If L(A) = {f,s}* and v = Ca,
then all addresses in w € {f,s}* \ {e} are marked, by (12.3), and hence
v(ap) < tt, showing Ca = ap < tt. Conversely, if L(A) # {f,s}*, then we
can assume that w ¢ L(A) for some w # €, because A is prefix closed and
any non-empty prefix closed automaton must accept e. Then, by (12.3),
w is not marked, and hence v()(A(w)) € L for some v satisfying Ca,
showing C4 W~ ap < t+. ]

The above lemma shows that the construction C4 is a logspace reduc-
tion of CLOSED-UNIV to structural entailment over infinite trees, and we
therefore have:
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Theorem 12.1.2 The problem of structural, recursive subtype entailment
is PSPACE-hard.

12.2 Witnessing non—entailment

Beginning this section and continuing through Section 12.4, we will show
that the problem of structural recursive subtype entailment can be solved in
PSPACE. We give a non—deterministic algorithm for deciding non-entailment
(ie., deciding C' = a < # 7) that runs in polynomial space. The PSPACE
result follows, because PSPACE = NPSPACE = coNPSPACE by Savitch’s
Theorem.

A starting point for the non—deterministic algorithm is the following
obvious observation. The entailment C = a <  does not hold if and only
if there exist trees ¢1 and 9 in T such that

(i) t1 £ t2, and
(#3) C[t1/a,t2/ 0] is satisfiable

However, while ¢; and t2 could be infinite in the general, recursive case,
there will always be a finite witness in A* of the fact (i) that ¢; £ to9; this
witness is a finite address w € D(t1) ND(t2) such that t1 (w) £* to(w). This
means that, in case the entailment C' = o < 3 does not hold, then we can
always choose finite and “thin” trees to witness this fact. More precisely,
if t; and t9 are any trees in Ty, satisfying (i) and (i7) and w is a witness of
(i), then we can define finite trees ¢}’ to be smallest trees (having least tree
domains) such that w € D(t}") and ¢’ (w) = t;(w). It is easy to see that this
can always be done in such a way that (i) and (4i) are equivalent to

(i) 0 £ £, and
(ir") C[t¥/a,ty /(] is satisfiable

As an additional simplification of the problem, we can read “consistent”
instead of “satisfiable” in the conditions (i7) and (i7'), since consistency
and satisfiability are equivalent (Theorem 9.1.5). An idea then, for a non—
deterministic algorithms to decide non—entailment, would be to guess a wit-
ness w and somehow verify that conditions such as (i') and (i7') are satisfied
for w.
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The serious complication with this idea is that a witness might be ex-
ponentially long, so we cannot actually construct the witness explicitly, re-
maining within PSPACE. This is quite analogous to the situation for the
non—universality problem for NFA’s (does a given automaton A not accept
all strings over its alphabet?). A witness to the non—universality property
is a word w not accepted by the automaton A, and such a word might be
exponentially long in the size of A. The solution, in the NPSPACE algo-
rithm for non—universality [1], is to guess the witness w bit by bit, forgetting
all but the last bit of the witness; the reason this works is that the algo-
rithm can simulate the behaviour of the automaton sufficiently, using this
bit together with a subset of the state set of the automaton; the state set
contains the states reachable from the start state on the witness guessed so
far; the last bit of the witness is sufficient to compute the next state set. Our
NPSPACE algorithm for deciding non—entailment will, at the bottom of it,
be very similar to this. Our algorithm will construct its witness w € A* by
keeping track of the last bit guessed together with subsets of the nodes in
the constraint graph. Intuitively, the node sets are used to simulate relevant
information about the closure CI(C[tY /a, t¥ /5]).

12.3 Characterization

Our algorithm is founded on a characterization theorem, which we proceed
to present. In order to state the characterization, we fix a constraint set C'
and consider the constraint graph Go = (V, E) and define a relation

RCV xV x{|,ft} x A*

Intuitively, this relation captures properties of the closure of the constraint
set C. In order to define R, let w € A*, and let the relation — denote
(the e-transitions in G¢) or the reverse relation, according to the polarity
of w (m(w) = 0 and m(w) = 1, respectively), and we let —¥ denote the
reverse of —{. This notation will be used to make sure that contravariance
is respected by the algorithm. Intuitively, the relation R holds of (v,v’,{}
,w) if there is a w-path in Go from v to v' where e-edges are followed in
reversed direction according to the polarity of w. The relation R is defined
by induction on w € A*, as follows:

o w=c¢:
R(v,v',h,w) & v
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R(v,v,|,w) & v —cv

R(/U’ /Ul’ ﬂ’ w) <:>
EI’013712- R(Uavlaﬂawl) A
V1 F>q V2
v =¥ v
R(’U’ /UI, ‘U” w) @
El’UlaUQ' R(Uavla'uaw,) A
V1 > V2 A
vg =T o'
Let
1% (v) ={v' € V| R(v,v', 1, w)}
and
V& (v) ={v' € V| R(v,v, |,w)}
and define

a =6 B

to hold if and only if there exists a prefix w' of w such that
fie (N V& (8) # 0

Recall from Definition 11.1.2 that, for a word w € A*, a w-template is a
finite term 7% such that D(T") is the least tree domain containing w and
the leaves contain fresh, pairwise distinct variables. Now, we can assume
that @ and 8 have the same shape in C, i.e., sc(a) = s¢(8) (otherwise the
entailment C' |= a < § trivially does not hold if C' is satisfiable). For a word
w of maximal length (i.e., a leaf address) in s¢(a)(= sc(8)) we let T and
T4 be two distinct w-templates, having no variables in common with each
other or C. Then we have the following lemma:

Lemma 12.3.1 Let C be closed and let w be a leaf address in the com-
mon shape of o and B in C. Let ayy = T3 (w), By = T§ (w) and ct =
C(CITY e, TF /B). Then

1. ay <Y By, € CT if and only if a <% 3

2. ay < be CT if and only if b f¥ ()
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3. b<¥ By, € CT if and only if b €¥ (B)

PROOF The implications from right to left are quite obvious, and can easily
be proved by induction on the length of w. For the implications from right
to left, we show how to prove the implication of the first claim of the lemma;
the two other implications are proven by similar methods and the details
are left out. To prove the implication from left to right of the first claim of
the lemma, we first prove the following claim:

(¥) Let w' be a prefix of w and let v¥ and vg" be the vertices in G+
representing Ty’ (w') and T (w') respectively, and let v be a vertex in

Go. If v —»" v holds in Go+, then v €N (@), and if v =" vy’
holds in Go+, then v €% (B).

We show only the first part of the claim (concerning the situation where
v¥ Y p), since the other part is analogous. The claim is proven by
induction in the length of w’, and for the base case (w’ = €), the transition
a ¢ v must already be present in (]C|(C), and hence v 1§, () is clear. For
the inductive case, suppose that w’ = w"d (this case showing contravariance
is representative and other cases are left to the reader). Clearly, the only
way the transition Ugjl |—>g" v could get into G-+ is by an application of the
decomposition closure rule (possibly followed by a number of applications
of the transitive closure rule). A schematic view of the situation is shown
in Figure 12.5, where we assume that w' is negative (i.e., w(w') = 1) -
the situation where w' is positive is similar and left out. Let v; be the
vertex shown as —’ in the figure and let vy be the vertex —7. Then, by
induction hypothesis, we have vy €(t%" (a), i.e., R(a, v2, f,w") holds, with
w' positive. Then, by continuing from v9 on a d-transition to v’ and further
along reversed e-transitions to v, we arrive at a continuation of the w'-
transition witnessing R(«, vo, 1, w") such that R(c, v, {, w') holds. This ends
the proof of the claim ().

Now, to prove the first claim of the lemma, assume that o, <¥ 8, € CT,
i.e., there is a transition a,, —¥ By, in Go+. Then either o < g is in CI(C),
or else there must be a prefix w' of w and a vertex v in G such that we
have v =% v and v —¥’ v‘é” in G+, where v’ (resp. vg") is the node in
Go+ representing T’ (w') (resp. T§'(w')). A typical situation falling under
the latter case is shown in Figure 12.6 for illustration. In this case, it follows
from the property (x) that one has v €f% ()N 4% (B), thereby proving
a <@ B in the former case where a < 8 € CI(C), we have a <% (. This
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Figure 12.4: View of C and extension to CT. Types added to C in C* are
shown with dotted arcs. Transitions added under closure of C* are shown
with dashed arcs. The w'-transitions in Go+ from root of T to vertices in
Gc commute with paths in G¢ traced by % (o)

proves the first claim of the lemma. The two remaining claims are proven
by the same technique, and details are left to the reader. O

Let A" be the greatest lower bound operator in L, if 7(w) = 0, and the
least upper bound operator if 7(w) = 1; dually, let \/* denote least upper
bound in the first case and greatest lower bound in the second case. If S C V
is a set of vertices in a constraint graph, then we define A" (S) = A*¥(LN.S),
i.e., the operation is taken on the set of vertices in S that represent constants
from L (the operation \/*(S) is defined analogously, of course).

Using the previous lemma, we can prove the following theorem which
characterizes entailment over C-shaped valuations. The theorem is a gener-
alization of Theorem 8.1.2 for the atomic case.

Theorem 12.3.2 C = a < 8 (over C-shaped valuations) if and only if one
of the following conditions holds for every address w of maximal length in
the common shape of o and 3 in C':

(i) o <% B or
(i1) A" ¢ (@) <F V¥ I8 (B)

PROOF We begin by showing the implication (i) V (ii) = C = a < ( over
C-shaped valuations. So assume that we have

() a =¥ Bor
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Figure 12.5: The transition v¥ —% v (with w' = w"d and w' negative
o €

added to G-+ by an application of the decomposition closure rule followed
by an application of the transitive closure rule. (The vertex —* represents
Ty (w').)
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Figure 12.6: View of C' and extension to CT. Types added to C in C'T are
shown with dotted arcs. Transitions added under closure of C* are shown
with dashed arcs. With w = fd and w’' = f we have oy, <% 3, in G+ and

also 1% (a)N U4 (8) = {v1,6:} in G
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(i) A" 1% (o) <T V¥ I& (B)
for every w € Lf(O¢(a)) = Lf(O¢(F)). By Lemma 10.1.5, it is sufficient

to show that C” = [a < B]¢. Since we are only considering C-shaped
valuations, this will follow from

C’ =1 e < e (12.4)

because every C-shaped valuation on C factors through a corresponding
valuation on C” in I (Lemma, 10.1.5, first part.) In order to show (12.4), in
turn, we must show

C’" =1 aw <" Bu (12.5)

for all w € Lf(O¢(a)) = Lf(Oc(P)), and with o,y = O¢(a)(w), By =
Oc(B)(w). So let w be an arbitrary address in Lf(O¢(a)) (or Lf(Oc(5)))-
Suppose first that (by our assumption, (i)) o, =@ By holds. The trees
O¢(a) and O¢(f) induce w-templates, namely such that agree with ©¢(«)
(resp. O¢(B)) at the leaves of the latter. More precisely, let 6% (resp.
0%) be w-templates such that 0 (w') = ©c(a)(w') for all w' € D(O) N
Lf(©¢(a)) (and similarly for 6§). Then Lemma 12.3.1 implies that a,, <"
Bw € CI(C[07 /v, 0 /B]), and therefore it is easily seen that we must have

Cb Fr g <Y Buw (12'6)

On the other hand, suppose that the other possible case, (ii), holds, by our
assumption. Recall that we define

To () ={beL|ChtLa<b}
and
le(@)={beL|Ctrb<a}

Let 1&="1¢ if 7(w) = 0 and otherwise (if 7(w) = 1) set 1¢=.lc (and @ is
defined likewise.) By (i7) we have AV & (o) <¥ V¥ & (8). Then, by
Lemma 12.3.1, we have

A2 () <2 \/ 12 (B)

with O = CI(C[0y /., 0% / B]), where 6 and 0} are w-templates defined as

before. Since C” clearly imposes at least the constraints on «,, and 3, as
does CT, it is easy to see that we must have

A 1% (aw) <2\ 15 (8) (12.7)
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We conclude that either (12.6) or (12.7) must be the case. Then (12.5)
follows from Theorem 8.1.2. We have now shown the desired implication.

We will now show the converse implication, C =« < 3 = (i) V (ii). To
prove this implication, assume that neither (i) nor (i¢) holds for some address
w € Lf(©¢(a))(= Lf(O¢(a))). Fix such an address w. We must show that
C = a < 8 over C-shaped valuations. Let T and Té" be w-templates and
let C* = CI(C[Ty /a, T§ /B]). Let

Ct={A<A|A<A eC", and A, A’ are atoms}

It follows from Lemma 12.3.1 (together with the assumption that neither (7)
nor (77) is the case) that

(") aw <% By & CT and

(ii") A 1& (o) £7 V7 12 (B)
It follows Afrom Theorem 8.1.2 applied to the atomic constraint set C+ that
we have/\C’Jr e ay <% (By. Hence, for some by,by € L with by £% by we
have S(C™) consistent with S = {ay, + b1, By, + b2}. But then we claim

that
S(C™) is consistent (12.8)

To see that (12.8) is true, consider that the closure of the set S(C*) can be
obtained from C'* (which is already closed) by applications of the transitivity
rule alone (no decomposition rules need to be used, because a,, and 3, each
have just a single occurrence in fresh templates, and «,, and (3, cannot be
compared to any structured types in S(CT)). It is therefore easy to see
that consistency of S(C*) implies that (12.8) is true. By Theorem 10.4.2,
it then follows that S(C™) is satisfiable. By Theorem 10.2.3, S(Ct) is then
satisfied by a C*-shaped valuation, v. Then the valuation ¥ = v o {a
S(I¥), 8 — S(TF)} is C-shaped and satisfies C. We have

v(a)(w) = b1 £ by = 0(B)(w)

thereby showing v(a) £ ©(5). Hence, ¥ witnesses that C (= o < [ over
C-shaped valuations, as desired. O

12.4 PSPACE algorithm

Theorem 12.3.2 yields the central idea for our PSPACE-algorithm: Given a
structural constraint set C, which is consistent (weakly unifiable and ground
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consistent), and in which « and 8 occur non-trivially, we guess a path w €
D(O¢()) and check that both conditions of Theorem 12.3.2 are violated. If
so, we accept (which corresponds to reporting “not-entails”), otherwise we
reject. More precisely, we iterate the following loop, with w initialized to e:

1. If a <& B then reject.

2. Otherwise, if w is a leaf address in O¢(a) and AY ¢ (o) <P V¥ &
(8), then reject.

3. Otherwise, if w is a leaf address then accept.

4. Otherwise, if w is not a leaf address, then guess a € A such that
wa € D(O¢(w)), set w := wa and go to Step 1.

What essentially makes this a (nondeterministic) PSPACE algorithm for
deciding non-entailment is that we do not actually need to store w, only
& (o) and @ (B) because just these sets are required to perform the test
for the conditions of Theorem 12.3.2. Furthermore, &% (a) and & (3) can
be computed from a and ¢ («) and @ (8) in polynomial time and space
(full details are given below). Thus the algorithm essentially requires only
space for % (a) and @ (), which is polynomial in the number of vertices
and thus also in the size of the input; in addition, we need to know the
(leaf) addresses in O¢(a)(= O¢(0)), but this information can be obtained
by computing the unifier Uc () (stored as a graph structure of size almost—
linear in the size of the constraint set.)

We now prepare to give the algorithm in full detail. We begin by showing
how to compute the sets 1%, & from the sets 11§, ||@. Fix the constraint
set C and its constraint graph Go = (V, E). For a € A, let Fy, : V — p(V)
be given by

Fo={v eV ]vm,'}

and F,: {0,1} x V — p(V) by
F.(b,v) = {v' €V |v =Y}

Here, b € {0,1} is a bit which controls the direction of — in the usual way.
IfSCV, welet

Fo(S) = |J Falv) and F.(b,5) = | J Fe(b,v)
vES vES
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Now, if m(wa) = b, then we can write (by definitions)
18={v' € V| Ju; €@ (v). Jvg € V. vy 34 v3 Ao |—>(€’ v'}
which shows that we have

18" () = F0.Falh ()
Similarly, we have

1¢" (v) = Fe(b, Fa(U& (v)))
where b is the boolean negation of b.

The description of the algorithm is divided into two parts, a pre—processing
phase and a main loop, shown in Figure 12.7 and Figure 12.8, respectively.
Input to the algorithm is a constraint set C' and variables «, 8. The al-
gorithm accepts if and only if the non—entailment C [~ a < ( holds over
general (finite and infinite) trees ordered structurally. Correctness of the al-
gorithm is founded on Theorem 12.3.2, Theorem 10.4.2, Lemma 10.2.4 and
Theorem 10.2.3, as is argued below.

Pre—processing (Figure 12.7)

Figure 12.7 defines a pre—processing phase which performs a number of
checks. Once this phase has been completed, the algorithm performs the
operations described in Figure 12.8, unless the pre—processing phase already
results in acceptance or rejection. The first part checks that C is satisfiable.
This check is implemented by checking weak unifiability and ground consis-
tency, and correctness of this follows from Theorem 10.4.2. Both steps can
obviously be performed in polynomial time (hence also polynomial space).
We assume that the closure CI(C) is performed on the constraint graph Gc.
The second part assumes (by the previous part) that C is satisfiable and
checks that a and £ occur non—trivially in C. If not, the algorithm accepts
(i.e., non—entailment is accepted.) Correctness follows from Lemma 10.2.4.
The second step of this check determines whether or not the shapes of a and
B in C are the same. This check can be performed by computing U} («) and
U&(3), where U* is the unifier Uc with all variables collapsed to the same
element (arbitrarily chosen to be ). The third step determines whether it
is the case that one but not both of ©¢(a) or O¢(5) has a leaf variable
that is forced to be mapped to a constant; this check can be performed by
inspecting whether x is present in one (but not both) of the equivalence
classes of a and (3 with respect to the most general unifier U (equivalence
classes of Uc are denoted [o]¢).
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Main loop (Figure 12.8)

The second phase of the algorithm can assume that C' is satisfiable and that
«a and B occur non—trivially in C, by the pre—processing phase. The second
phase, shown in Figure 12.8, non—deterministically checks non—entailment
over C-shaped valuations. Theorem 12.3.2 together with Theorem 10.2.3
show that this phase is correct. The algorithm stores only a bit b and the
sets Ua, LB which are subsets of the set V' of vertices in the constraint
graph, hence it certainly consumes only polynomially bounded space.

We can now conclude from the PSPACE-algorithm together with The-
orem 12.1.2 that we have

Theorem 12.4.1 The problem of structural, recursive subtype entailment
is PSPACE-complete.
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Given C, a, (3, check that C is satisfiable (consistent). If C' is inconsis-
tent, reject.

1. (Check for weak unifiability) Compute Uc (most general unifier
admitting infinite terms). If unification fails, reject.

2. (Check for ground consistency) Compute CI(C). If CI(C) is not
ground consistent, reject.

Given consistent C', @ and . Check that o and (§ are non—trivially
related in C. Non—entailment C' £ o < [ is accepted, if @ and S are
trivially related.

1. (Occurrence check) Check that both « and 3 occur in C; if not,
then accept.

2. (Match check) Check that Uj(«) = UE(B); if not, then accept;

3. (Constant constraint check) If x € [a]c and * & [B]c, or * € [o]c
and % € [f]¢, then accept

Figure 12.7: PSPACE algorithm for entailment. Preprocessing phase.
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Given C,a and 8 with C consistent and «, 8 occurring non—trivially
in C. The algorithm accepts if and only if C = o < 8 over C—shaped
valuations in infinite trees ordered structurally.

1. (Initialize for loop)
S :=Uc(a);
b:=0;

Ua : =G (o);
LB =g (8);

2. (Loop)
If Ua N LB # () then reject.
If Con(S) € LUV (leaf address reached) and A\’ Ua <4 \/° L3 then
reject

3. Case S of:

S1 X So: Guess a := f or s;
Ua:= Fy(b,Ua);
Lp := Fp(b, Lp);
S := S.a; goto Step 2.
S1 — S9: Guess a :=d or 7;
If a = d then b:=b;
Ua := Fy(b,Ua);
Lﬁ = FL(ba Lﬁ)a
S := S.a; goto Step 2.

B: Accept.

where :

and S.a is defined by

Sf = Sl, if S = 51 X SQ
S.s SQ, if S = Sl X 52
Sd = Sl, if S = 51 — SQ
Sr = 52, if S = Sl — SQ

Figure 12.8: PSPACE algorithm for entailment. Main loop.



Chapter 13

Conclusion to Part 11

13.1 Significance of the results

We have already given a table summarising the main results of this part
of the thesis (see the Introduction, Chapter 7). In relation to the over-
all topic of this thesis, the main lesson to be drawn from this part of the
thesis is that entailment and hence simplification in entailment based sub-
typing systems becomes intractable, as soon as we have non—flat structures
of trees. The only source of complexity is syntactic structure, and already
at the simplest level, syntactic structure takes us from a linear time problem
(atomic entailment) to a coNP—complete problem (finite, structural entail-
ment); non—structural order even takes us to a PSPACE-hard problem (fi-
nite, non—structural entailment). We have shown that, in the structural case,
recursive types increase complexity, and we have shown that, in the finite
case, non-structural order is more difficult that structural order. We con-
jecture (Conjecture 9.4.5) that the non—structural problems are in PSPACE
hence PSPACE—complete. We have also shown that the satisfiability prob-
lem for structural recursive subtyping is in PTIME.

Comparing the table in Section 2.4.4, showing the complexity of the
satisfiability problems, with the table summarising our results on the cor-
responding entailment complexity (see the Introduction, Chapter 7), we see
two things. First, entailment complexity is much higher than the com-
plexity of satisfiability, indicating that the problem of representing typings
succinctly is much more difficult than solving the typability problem in sub-
typing systems. Second, it appears that the two tables are “isomorphic”,
in the sense that entailment complexity appears to be a blown—up version

175
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of the table for satisfiability (with M (n) corresponding to coNP and cubic
time corresponding to PSPACE.) This would be the more striking, if our
Conjecture 9.4.5 turns out to be correct.

13.2 Related work

Bloniarz, Hunt and Rosenkrantz [39] studied the complexity of deciding
logical equivalence of constant—free functional expressions over lattices and a
variety of other algebraic structures [11, 12]. Their work includes complexity
results on several forms of minimization of such expressions, with motivation
related to ours (e.g., minimizing functional expressions over a lattice in
order to speed up data flow analysis.) These problems are characterized
by the presence of strong algebraic operations in the formal languages and
the absence of syntactic structure. In comparison to this, the formalisms
studied in the present thesis are characterized by the absence of algebraic
operations (like formal meet and join) and the presence of syntactic structure
(type expressions and trees).

Cosmadakis [15] studied the uniform word problem for lattices, i.e., the
problem of deciding E = ¢ = 1, where ¢, are formal expressions built
from variables, meet and join, and where F is a set of equations between
such expressions. Entailment is uniform as in first order model theory, so
in our jargon the problem is to decide whether E =, ¢ = 1 for all lattices
L. Interestingly, the problem is in PTIME, by a complete axiomatization.
Again, a major difference in comparison to the work presented in this thesis
is that we are dealing with complexity arising from syntax, not algebraic
operations, and entailment in the present work is not uniform.

The study of entailment by Flanagan and Felleisen [25] is related to the
present study, although they work in a different model of complete infi-
nite trees labeled with sets of constructors, and their notion of entailment
is different from ours. Even though the exact relation between their work
and ours remains unclear, we have to some extent been inspired by their
methods. Thus, Flanagan [24] proves PSPACE-hardness of their entailment
predicate by reduction from the NFA containment problem (see [30].) How-
ever, the proof relies on a complicated (and impressive), complete axioma-
tization of entailment, whereas our proof uses non—syntactic methods and
a different reduction from a special form of the NFA universality problem
(their reduction appears not to be directly applicable to our cases.) Their
axiomatization leads to a complete algorithm for entailment, but since it
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runs in exponential time and consumes exponential space they do not give
a tight classification of complexity.

13.3 Open problems

The most obvious and pressing open problem is to settle Conjecture 9.4.5.
Another interesting open problem is to determine decidability and com-
plexity of the “semantic” relations, with the the logical form of <,,, over
various structures. The problem was conjectured to be undecidable over
Ts[n] (non—structural recursive types) in [73].



Appendix A

Proofs

A number of proofs were left out of the main text. They are given in the
following sections. Each section is devoted to proofs for a chapter in the
main text. Proofs for theorems and lemmas should be read in the context
of the main text in which they are stated, i.e., notation, definitions etc. will
not be redefined here.

A.1 Proofs for Chapter 2

Proof of Lemma 2.3.5

Lemma 2.3.5 In the model Ty [s] one has:
1. If v = C, then v(C) is matching.

2. If v E C, then v = v' 0 ©¢ holds on the variables in C for some
valuation v’

3. CET7<71"if and only if ©c(C) E Oc¢c(1) < O¢(7)

4. If C is an atomic, satisfiable set and C |=p 7 < 7', then 7 and 7' are
matching.

PROOF The first claim is an immediate consequence of Lemma 2.1.1. The
second claim is a consequence of the first together with the properties of O¢
as most general matching substitution. To prove the third claim, suppose
that C =7 < 7', and let v = ©¢(C). Then v o O¢ |= C, hence v o O¢ =
7 < 7/, hence v = O¢(1) < O¢ (1), showing O¢(C) E Oc¢(r) < Oc¢(r').
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Conversely, assuming O¢(C) E O¢(1) < O¢(7'), let v | C. Then, by
the first part of the lemma, we have v = v' o0 ©¢ for some valuation v,
and therefore we have v | ©¢(C). By the assumption, it follows that
v E Oc(1) < Oc¢(7'), ie, v"oO¢ =7 < 7', and hence v |= 7 < 7' (the
variables in 7 and 7/ must occur in C, by O¢(C) E O¢(r) < O¢('), so
v' 0 ©¢ = v on all relevant variables.)

To prove the last claim, suppose that C' |Fp 7 < 7’ with C atomic and
satisfiable. Then there is a valuation v in P such that v =p C, hence v(1) <
v(7') holds in 7y [s]. Then v(r) and v(7') are matching, by Lemma 2.1.1.
Since v is a valuation in P, 7 and 7’ must already be matching. O

Proof of Lemma 2.3.10
Lemma 2.3.10 Let C be a weakly unifiable constraint set. Then

1. C is satisfiable if and only if C* is satisfiable. More specifically, one
has

(a) If v |E C, then there is a valuation v' such that v =v' 0 O¢ holds
on the variables in C, and with v' |= C”

(b) v = C” if and only if vo Oc = C
2. If a and B are matching in C, then

C E a<pif and only ifCI’IZ[aSﬂ]C

PROOF To prove the first claim, assume v |= C. Then, by the most general
matching substitution property for ©¢ together with Lemma 2.3.5 we have

v =1 0O for some v’ (A1)

Then v’ = C” follows from Lemma 2.3.8 applied to ©¢(C).
To prove the third claim, assuming v = C’, we can show that

voOc = C (A.2)

To see (A.2), let 7 < 7' € C, then O¢(7) and O©¢(7') are matching, and
therefore they have the same set of leaf addresses. If w is such a leaf address,
then it follows from v = C” that we have

v(0¢(7))(w) < v(O¢(1)) (w)
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and by Lemma 2.3.8 this shows that (A.2) is true. Conversely, assume
v0O¢ = C. Then v = O¢(C), from which we get v = C” by Lemma, 2.3.8.

To prove the second claim, consider first the implication (=). Assume
C = a < Bandletv = C”. Then (A.2) holds, by the proof of the first claim
of the lemma. Since C' = a < 3, (A.2) entails that v o ©¢ = a < 3, hence
v | Oc(a) < O¢(f), and by Lemma 2.3.8 this allows us to conclude that
v E [a < f]¢ as desired.

To prove the implication (<), assume C” |= [ < §]¢ and let v |= C.
Then v/ = C” by the first claim of this lemma, where v’ is given by (A.1)
and therefore one has v' = [@ < (]¢. Since a and 3 are assumed to be
matching in C, we have O¢(a) and ©¢ () matching. It then follows from
Lemma 2.3.8 that v E O¢(a) < ©¢(8), hence v 0 O¢ = a < 3, ie,
v E a <, as desired. O

A.2 Proofs for Chapter 3

Proof of Lemma 3.2.3
Lemma 3.2.3 Let C be satisfiable.

1. If C Ep a < A with a # A and o € Var(C), then, for some b € P,
one has C Ep A =0 and =p a < b. In other words, P must have a
top element equivalent to A.

2. If C Ep A < a witha # A and a € Var(C), then, for some b € P,
one has C Ep A =0 and =p b < a. In other words, P must have a
bottom element equivalent to A.

PROOF  We only prove the first claim, since the second one is similar. So
suppose that C' |=p a < A with a ¢ Var(C). Since o ¢ Var(C) and a # A,
it is easy to see that we have

Vb € P. C |=p by < A (A.3)

Suppose that v; and vy were any two valuations satisfying C' and with
v1(A) # va(A); then either vi(A) €p va(A) or else va(A) £p v1(A4). As-
sume w.l.o.g. that v1(A) £p va(A). Then, by (A.3) we have C =p v1(A) <
A. Since vy = C, it follows that v1(A4) <p wva(A), a contradiction. We
must therefore conclude that, for all valuations vy, ve satisfying C, one has
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v1(A) = v2(A). By satisfiability of C, choose a valuation v with v =p C.
Let b = v(A). Then we must have C' |=p A = b by the previous argument,
and, moreover, C' =p a < b, by (A.3). O

Proof of Lemma 3.2.6

Lemma 3.2.6 The relation < is transitive: if t1 <g, to and ty g, t3,
then t1 <s,08, t3.

PROOF Let t; = C;,T; Fp M : 7; for i = 1,2,3. Suppose that t; <g, to
and to g, t3. Then we can show that t; <g,05, t3. Only the property

C1 C Ker(S7 0 52(Cs)) (A.4)
is not obvious, so we show only that. By the assumptions, we have
C1 C Ker(S1(C3)) and Cy C Ker(S2(C3))
We now show that, for any constraint set C' and substitution S, one has
Ker(S(Ker(C))) € Ker(5(C)) (A.5)

So suppose that ¢ € Ker(S(Ker(C))); then ¢ & Th(P), Var(¢) C Var(S(Ker(C)))
and S(Ker(C)) Ep ¢. Since C ~p Ker(C), we have S(C) ~p S(Ker(C)),
hence S(C) Ep ¢. Moreover, we have

Var(S(Ker(C))) = S(Var(Ker(C))) C S(Var(C)) = Var(S(C))

and therefore Var(¢) C Var(S(C)). We have now shown ¢ € Ker(S(C)),
thereby proving (A.5).
To prove (A.4), we now reason as follows, using previous relations and
(A.5):
02 C Ker(Sg(Cg,))
S1(C2) C S1(Ker(52(Cs)))
Ker(Sl(Cg)) g Ker(Sl(Ker(Sg(Cg,))))
Ker(Sl(Cg)) - Ker(S1(SQ(03)))
Cl - Ker(51 o SQ(Cg))

U e
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Proof of Theorem 3.2.8

Theorem 3.2.8 If t; g, to and to g, t1 then S; is a renaming on t;,
1=1,2.

PROOF Assuming t; <g, to and to <g, t1, it follows that we have
(1) C1 C Ker(S3051(Ch))
(12) 11 = S2081(m1)

(13i) D(T'1) = D(T'2) and T'y(z) = S2 0 S1(T'1(z)), for z € D(Ty).

By our assumptions, () follows, because we have t; <g,05, t1, by transitiv-
ity (Lemma 3.2.6). We get (i¢) from the assumptions which yield 71 = Sa(72)
and 79 = S1(71), hence So(m2) = S2(S1(m1)). The property (iii) follows the
same way. Consider now the action of the map Se 0 S; on C;. By (i) we
have

Var(Cl) - Var(Ker(SQ o 51(01))) - Var(SQ o 51(01))

Since evidently |Var(S2 o S1(C1))| < |Var(Cy)|, it follows that Var(Cy) =
Var(S3 0 51(C1)) = S5 0 S1(Var(C1)). We can conclude that

(a) S20S] is a renaming on Var(Cy) mapping Var(Cy) to itself.
Moreover, (i7) shows that

(a) S20851 is a renaming (in fact, the identity) on Var(71) mapping Var(ri)
to itself

and (i4¢) shows that

(a) S205; is a renaming (in fact, the identity) on Var(I';) mapping Var(T';)
to itself

From (a), (b) and (c) we can conclude that the image of Var(t;) under S20.5;
is Var(ty) itself, that is

Sz o Sl (Var(tl)) = Var(tl)

Since Var(t1) is a finite set, we can conclude that S30.5; is a renaming on the
entire set Var(t1). It then follows that S; must be a renaming on Var(ty).
One proves that Ss is a renaming on to by an entirely symmetric argument.
a
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Proof of Lemma 3.3.3

Lemma 3.3.3 Ift; <g, to and ty <g, t1, then S1(t1) <g, t1 and So(t2) <sg,
ty.

PROOF Let t; = 01,1“1 Fp M : 11, ty = CQ,FQ Fp M : 7. By the
assumption, we have

(1) Ca l=p 51(C1)

(1) Cy fp Si(m) <1
(¢47) D(I'1) C D(I'2) and Vo € D(I'1). Oz [=p Ta(z) < 51(T1(2))
and

(iv) Cy Ep S2(Ch)

(v) C1 Ep S2(m2) <mi

(vi) D(T5) C D(T1) and Va € D(Ty). O |=p T1(z) < S (Ta(x))
By (¢) and the Substitution Lemma (Lemma 2.3.14) we have

52(C2) Ep 52(51(Ch)) (A.6)
and so, by (iv) and (A.6), we get
C1 =P 52(51(Ch)) (A7)
Moreover, by (ii) and the Substitution Lemma we have
S2(C2) P 52(51(11)) < S2(72) (A.8)
hence, by (iv) and (A.8) we get
C1 =p $2(51(m1)) < Sa(72) (A.9)
and then, by (v) and (A.9)
C1 Fp S2(51(m1)) <7 (A.10)

In analogous manner one obtains
Ci1 EpTi(z) < S2(S1(T1(x))) (A.11)

Then (A.7), (A.10) and (A.11) show that Si(t;) <g, t1. The proof that
Sa(t2) <g, to is symmetric and left out. |



APPENDIX A. PROOFS 184

Proof of Lemma 3.4.2

Lemma 3.4.2 Lett = C,T'Fp M : 7 be any atomic judgement.
1. If C =p a= A, then S(t) = t, with S = {a — A}.

2. There is a substitution instance t' of t such that t' has an acyclic
constraint set and with t' =~ t.

3. If t is fully substituted with C satisfiable, then C s acyclic.

PROOF To show that S(t) = t it is sufficient to show S(t) < t, and it is
easy to verify that one has S(t) <;4 t, whenever the conditions of the lemma
are satisfied.

By repeated application of non-renaming substitutions S of the form
mentioned in the lemma, one evidently obtains a typing with acyclic con-
straint set. This shows that the second claim of the lemma is true.

By the previous observations, any cycle of the form C = a = A with
A # « gives rise to a non-renaming substitution S = {a — A} such that
S(t) € [t]; this shows that no typing with cyclic constraint set can be fully
substituted. a

Proof of Lemma 3.4.4

Lemma 3.4.4 Let C1 and Co be atomic constraint sets.
1. If Ker(Cl) g Ker(Cg) then 02 |:p Cl

2. If Cy is acyclic and satisfiable, then Cy =p Ca implies Ker(Ca) C
Ker(C)

3. If C1 and Cy are both acyclic and satisfiable, then C; ~p Co if and
only if Ker(Cy) = Ker(C3)

PROOF  To see the first claim, assume that Ker(Cy) C Ker(C2), and let
¢ € C1. If ¢ € Ker(C1), then C2 =p ¢ follows immediately from the
assumptions. If ¢ ¢ Ker(C1), then ¢ € Th(P) (because Var(¢) C Var(Ch)),
and so Cy E=p ¢.

To prove the second claim, assume that C; is acyclic with C; =p Cs, and
suppose that ¢ € Ker(Cy). Then we have Cy Ep ¢, Var(¢) C Var(Cs) and
¢ & Th(P). We have Cy |=p ¢, because C; =p C2 and |=p is transitive. We
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only need to show, then, that Var(¢) C Var(C1). To see this, suppose for the
sake of contradiction that Var(¢) € Var(C4). Then we can write g =a < A
with a & Var(C1) (the case ¢ = A < a with a & Var(C}) is similar and left
out.) Since ¢ ¢ Th(P), we must have a # A. By Lemma 3.2.3 we then have
C) Ep A=bwith =p a < b for some b € P. If A =, then ¢ = a < b and
s0 ¢ € Th(P), which is not the case, so we must assume A # b. But A # b
together with C; Ep A = b implies that C is cyclic, which contradicts our
assumptions. We must conclude that Var(¢) C Var(Ch).

The third claim follows from the second. a

Proof of Lemma 3.4.5

We first need the following lemma:
Lemma A.2.1 Let S be a renaming on C. Then Ker(S(C)) = S(Ker(C)).

PROOF To see that S(Ker(C)) C Ker(S(C)), suppose that ¢ € S(Ker(C)).
Then there is an inequality 1 € Ker(C) such that C' |=p ¢ and ¢ = S(¢).
Since 1 € Ker(C), we have ¢ ¢ Th(P). Because S is a renaming, it then
follows easily that ¢ € Th(P). By C =p ¢, we get S(C) =p ¢, by substi-
tutivity. Now we only need to show that Var(¢) C Var(S(C)). Observe first
that we have Var(Ker(C)) C Var(C), hence S(Var(Ker(C))) C S(Var(C));
but S(Var(C)) = Var(S(C)). We can conclude that Var(S(Ker(C))) C
Var(S(C)). Since ¢ € S(Ker(C)), it then follows that Var(¢) C Var(S(C)).
To see that Ker(S(C)) C S(Ker(C)), suppose that ¢ € Ker(S(C)), so
that S(C) =p ¢ with Var(¢) C Var(S(C)) and ¢ ¢ Th(P). Since S is a
renaming on Var(C), it has an inverse S~!, which is a bijection of S(Var(C))
onto Var(C). By S(C) =p ¢, we then get C |=p S~!(¢). It is sufficient to
show S71(¢) € Ker(C). Since Var(¢) C Var(S(C)) = S(Var(C)), we have
Var(S71(¢)) = S~1(Var(¢)) C Var(C). Since S~! is a renaming on Var(¢),
we get S~ 1(¢) € Th(P) from ¢ & Th(P). This shows that S~ 1(¢) € Ker(C),
thereby proving the desired inclusion. O

Lemma 3.4.5 Let Cy, Cy be atomic constraint sets, both of which are acyclic
and satisfiable. Assume that Cy |=p S2(C2) and Co |=p S1(Ch) where S; is
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a renaming on Var(C;), i = 1,2. Then Cy ~p S3(C2) and Cy ~p S1(C4).

PROOF Assume C; =p S2(C2) and Cq =p S1(C1) where S; is a renaming
on Var(C;). Since S; is a renaming on C; with C; acyclic and satisfiable,
it easily follows that S;(C;) is again acyclic and satisfiable, ¢ = 1,2. By
Lemma A.2.1 and Lemma 3.4.4, it is then sufficient to prove (A.12) and
(A.13) :

Ker(Cl) = SQ(KGF(CQ)) (A.12)

Ker(Cg) = Sl(Ker(Cl)) (A.13)

Now, C; Ep S2(C2) and Cy |Ep S1(C1) imply (by Lemma 3.4.4) that
we have Ker(S2(C2)) C Ker(C1) and Ker(S1(C1)) C Ker(Cs), hence (by
Lemma A.2.1)

SQ(KGF(CQ)) - Ker(Cl) (A.14)

and
Sl(Ker(Cl)) g Ker(CQ) (A.15)

Because S; is a renaming on C}, it must be the case that S; is a renaming on
Ker(C;) (i = 1,2); S; is therefore an injection on Ker(C;) (i = 1,2). Because
Ker(C;) is a finite set for ¢ = 1,2, it then follows from (A.14) and (A.15)
that we have

|Ker(C2)| = [S2(Ker(C2))| < |[Ker(C1)| = |S1(Ker(Ch))| < [Ker(Cy)
These relations show that
|S2(Ker(C2))| = |[Ker(C1)| and |S1(Ker(C1))| = |Ker(C2)|

Consequently, (A.14) and (A.15) show that (A.12) and (A.13) must be true.
a

Proof of Lemma 3.4.6

Lemma 3.4.6 Let C be atomic and satisfiable. If C is acyclic, then C =p
T<7'and C Ep 1 <7 imply T =71".

PROOF Assuming C Ep7<7'and C Ep 7 <7, we have C Fp 7 = 7.
We prove 7 = 7/ by induction on the size of 7. Assume first that 7 is an atom.
Then, by the assumptions of the lemma together with the Match Lemma
(Lemma 2.3.5), it follows that 7’ is also an atom. But C' |Ep A = A" implies
A = A’ because C is acyclic and satisfiable. Assume, for the inductive step,
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that 7 = 71 — 79. Then the Match Lemma implies that 7/ = 7{ — 73, and
C Ep 7 = 7' then implies (via Decomposition, Lemma 2.3.13) that we have
C Ep {m1 = 7{,72 = 75}. The claim now follows ny induction hypothesis
applied to this entailment. Remaining cases are similar and left out. O

Proof of Lemma 3.5.1

The proof of this lemma has a simple abstract core, which it may be in-
structive to sketch before giving the proof in detail. Suppose f : A — A
is a bijection of a finite set A onto itself, and suppose that < is any bi-
nary relation on A (we use a very suggestive notation, <, but it could be
any binary relation) such that f is “monotone” with respect to <, i.e.,
a < ad = f(a) < f(a'). Then it will be the case, for any a € A, that if
f(a) # a and either f(a) < a or a < f(a), then A must contain a proper
cycle with respect to <, i.e., there is a sequence of elements a1,...,a, in
A with a1 < ... < a, and a1 = a,, where a < o' means that a < d'
and a # a'. To see this, consider that f injective and f(a) # a imply
f™(a) # f™ a) for all n, and, moreover, assuming f(a) < a (the other
case where a < f(a) is similar) we also have f"(a) < f" !(a) for all n,
by “monotonicity” of f; in total we have f"(a) < f™ !(a) for all n. Now
consider the set V' = {f™(a) | n > 0}. Since V' C A is finite, there must be
i < j with f/(a) = f%(a). Then fi(a) < f/"1(a) < ... < fi(a) constitutes a
proper cycle in A.

Lemma 3.5.1 Let S be a substitution and C' an atomic, satisfiable constraint
set with variable o € Var(C). Assume

(¢) S is a renaming on Var(C)

)

(i) Ckp S(C)
)
)

(1i1) C 1is acyclic

(v
Then S(a) = a.

either C =p S(a) < a or C =p a < S(a)

PROOF  The proof is by contradiction, assuming (z), (i), (¢), (iv) and
S(a) # a. We show how to derive a contradiction under the assumption
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that C =p S(a) < a; the proof under the alternative assumption C =p
a < S(a) is similar and left out.

So assume « € Var(C), S(«a) # «, (i), (i7), (7i) and C =p S(a) < a.
We will derive a contradiction. We first show the following claim:

For all n > 0 one has:

(a) The set Dy, = {S*(a) | 0 < k < n} satisfies
D,, C Var(C)

(b) S™(a) # 5" H(a)
(c) Ctp 8™ (a) < S Ha)

All three items are proven simultaneously by induction on n > 0. For
n = 1, the set D is just the set {«, S(a)}, so to establish (a) we need only
show that S(a) € Var(C). By assumption we have C =p S(a) < « and
S(a) # . Since S is a renaming on C, we have that S(«) is a variable, which
is distinct from a. By our remaining assumptions (C acyclic, satisfiable)
Lemma 3.4.3 applies, and it shows that S(«) € Var(C). To see (b) for n =1,
we need only show that S(a) # «, which holds by assumption. To see (c) for
n = 1, we need only show that C =p S(a) < «, which holds by assumption.
We have now shown the claim in the base case where n = 1.

For the inductive step, assume n > 1. We have by induction hypothe-
sis that the set D,_; C Var(C), hence, in particular, S"~!(a), S"2(a) €
Var(C). By induction hypothesis applied to (c), we have C |=p S""!(a) <
S™2(a), hence we get by the Substitution Lemma that S(C) & S"(a) <
S"~!(a) and so, by (i), C =p S™(a) < 8" !(a). This shows that (c) holds
in the inductive case. Further, by induction hypothesis applied to (b), we
have S"~!(a) # 8" 2(a), and so, since S is injective as renaming on Var(C)
with $"71(a), S"2(a) € Var(C), we have S™(a) # S"!(a), which estab-
lishes (b) for the inductive case. Now, to see (a), note that, since S™(«) and
S™1(a) are two distinct variables (by (b) as just shown) which are compa-
rable under the entailment hypotheses in C' (by (c) as just shown), it follows
from Lemma 3.4.3 that both variables must be mentioned in C, hence, in
particular, S"(a) € Var(C). Since we have, by induction hypothesis, that
D,,_1 C Var(Q), it follows that D,, C Var(C). The proof of the claim is now
complete.

Now, to prove the lemma, consider the set

V ={5")|n=>0}
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By property (a) of our claim above, we have V' C Var(C), and therefore V is
a finite set of variables with S an injection of V' into itself (and, by finiteness
of V, S is therefore a bijection of V onto itself.) Hence, by finiteness of V,
there must exist ¢ < j such that S/(a) = S*(a). By property (b) of the
claim we have S7(a) # S7~!(a), and by property (c) one easily sees that
C l=p S9(a) < S*(a) whenever i < j. We have therefore established that C
entails the relations

Si(a) < 877 Ha) < ... < S (a)

with S*(a) = $/(a) (and S7(a) < S/~!(a) shorthand for C =p S7(a) <
S7=1(a) with $7(a) # S771(a).) The sequence shown establishes that C is
cyclic. We have now obtained the desired contradiction, because we have
assumed (7i7), that C' is acyclic. O

A.3 Proofs for Chapter 5

Proof of Lemma 5.3.1

To prepare for a proof that the Q,, behave as claimed in the lemma, let o and

[ be two fixed, distinct variables and let vy, v1, ..., Vg, ... and wo, w1, ..., Wk, - - -

be two distinct enumerations of infinitely many type variables (so, all the w;
are different from all the v; and all of these are distinct from o« and 3.) Let
T,, denote the full binary tree of height n with 2" leaf nodes, with internal
nodes labeled by x and leaf nodes labeled by variables

V0, Um+1,---,V27—1

from left to right. So, for instance, T is just the variable vg, T3 is the type

vg X v, Ty is the type (vg X v1) X (ve X v3), and so on. Let us say that

a type 7 has the shape of T, if 7 is built from x and variables only and,

moreover, T matches T,; so, in this case, 7 differs from 7, only by having

possibly other variables than T, at the leaves.

Define the type 7 for n > 0 by setting

710 = a— (8-T),

>0 = (op > wp) = ...(00 = w) —
a— = Thp
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where ¢; is a renaming of T; for ¢ = 1...n, using fresh variables which occur
nowhere else in the type.

Lemma 5.3.1 Let P be any non—trivial poset. For all n > 0, there is a
minimal principal typing for Qn having the form Cp,0 Fp Qy : 71, where
all variables in C,, are observable, and C, contains at least 2"! distinct
variables.

PROOF We prove the following property by induction on n > 0:

(¥) There is a minimal principal typing of Q,, having the form C,,0 Fp
Q,, : 7", where all variables in C,, are observable, and C, contains
at le ast 2"t! distinct variables occurring in in 7,1, constituting 2-
crowns with « and § at the bottom, where o and 8 occur negatively
in 7["] and the remainder of the variables occur positively in 7,

To prove (x), consider the term Qg for the base case. We have already seen
that a principal typing for Qp has the form

Co,0 bp Az : oy : B.condyy : o = (8 — v X V1)

with Cy = {a < vp,a < v1,0 < vy, < v1}. This typing is derived
by the standard procedure described earlier, where G-simplification has been
performed to eliminate internal variables. All variables in Cj are observable,
and, moreover, Cj is a 2-crown, with variables o and 8 occurring negatively,
the remainder of the variables occrring positively, and a and 8 are at the
bottom of the crown. It follows from Lemma 4.2.2 that the typing is S-
simplified. It then follows from Theorem 4.2.5 that the typing is a minimal
principal typing for Qq, and this typing satisfies the claim of the lemma for
the case n = 0.
For the inductive case, consider Q1 =

AMnt1- M)Az Ay. (A2 K
(if true then (z,(2nd z, 1st z))
else ((2nd z, 1st z), z))

(fn+12))
(P"condy )

By induction hypothesis for Qy, (P"cond4) has a minimal principal typing
with type Tj,1 and coercion set C, with at least 2"T! distinct variables,
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assuming the appropriate types o; — w; for the f; (i = 1...n), «a for z
and @ for y. Now imagine that we have inserted coercions at the leaves
in the remaining part of Q1 (cf. the standard procedure.) Consider the
type which must be assumed for f, 1. Because (P"cond,,) is applied to
Az...., the type of z must be T},;1, and due to the application (f,+12), the
type assumed for f,4; must therefore have the form 7, x 7 — 7, where
T1 X T is a renaming of T),;1 (using fresh variables, and 7 fresh.) However,
since every variable in 7 X 7o occurs only positively in the type of the
entire expression Q,1, it follows by S-simplification that 7 x 7 can be
identified with 7,11, and hence we need apply no coercion to z or fr1i.
Using elimination of internal variables by G-simplification, it can be seen
that a principal completion of Q.1 is obtained by inserting coercions as
follows (assuming suitable coercions inside (P" cond, y))

M1t Tog1 = 0-Mfln) 2 [op] Az 2y = 6.
()\z(;fq;?::jjhen
(757, 2 (20d 1117 2, 1st 17T 2)
else
((2nd 17258 2, 1st 122LT 2), 19 X7; 2))
Eljgb’jclofzgm,y)

Here 77 and T3 are such that 77 x Tp = 1,41, so 71 and 75 match each
other and each has 2" distinct variables, and Aff,) : [0,] abbreviates the list
of typed parameters A\f; : 0; = w;, ¢ = 1...n. The types 6; are renamings,
using fresh variables, of T7 (or, equivalently, of 75.) This shows that a
principal typing for Q41 can be obtained by adding to C), the two 2-crowns
C1, C5 of coercions shown in the completion above:

Ci = {T1 <61,T1 <02, T2 < 0,5 <61}
Co = {T1<04,T1 <03,T <03, T> <04}

Now, these crowns are not atomic, since the types in them are all of the shape
of T),, hence to add them to C, we need to decompose them. It is easy to
see that each C; decomposes into a set C} of 2" atomic 2-crowns (since T,
has 2" leaves) resulting in a total of 2 - 2" = 2"*! new crowns; since the 6;
have fresh variables, each C; contains 2 - 2" = 2"t! new, distinct variables,
and since, by induction, C,, already has at least 2"*! distinct variables, it
follows that the number of distinct variables in Cy, 11 = C, UC] U C} is at
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least 27! 4 27+1 = 97+2 Moreover, since T and T contain 2—crowns with
«a and ( at the bottom, it follows from the form of C; and Cs that the new
crowns have « and 3 at the bottom, too.

The type of Qp41 under the principal typing shown has the form

(Th+1—n) 2ol — ... >0 —
a—>ﬁ—>((91x92)x(93x04))

(with ¢! = 0; — w;) which can be renamed to 7"*1. Since, by induction,
all variables in C,, are observable in T["], and since all new variables in Cj, 11
are in the 0;, it follows that all variables in C),; are observable in the typing
of Qp41- It is immediate from the type that o and 8 occur negatively, and
the remaining variables occurring in 77,41, 0; and 6; all occur positively in
the type.

It remains to show that the typing shown for Qu41 is minimal. By
induction hypothesis, C, is minimal as part of a minimal typing of Q,
hence, in particular, it is S-simplified. By the shape of 2-crowns and the
structure of the type, Lemma 4.2.2 shows that adding the crowns of C] and
CY, preserves this property, so Cp, 41 is S-simplified also. It then follows from
Theorem 4.2.5 that the typing shown for Q41 is minimal. This completes
the proof of the lemma. O

Lower bound construction in pure A—calculus

We show that the lower bound construction can be accomplished in pure
A—calculus, without assuming conditionals, pairing and projection.

First consider the conditional. The only property of the conditional used
in the construction is that it requires the types of both of its branches, say
M; and Ms, to be coerced to a common supertype. This can be effected
without the conditional by placing M; and Ms in the context

which requires the types of M7 and M, to be coerced to the domain type of
x. This eliminates the need for the conditional.

Eliminating pairing and projections is more subtle. A first attempt might
be to use the standard lambda-calculus encodings (see [7, Chapter 6.2]),
taking an encoded pair of M and N to be (M, N |) with the definition

(M,N) = p.(p M) N
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and m; = Az.\y.xz, m2 = Azx.A\y.y. This will not work, however, because
the application of a variable z of encoded pair-type (1 — o — 0) — 0
(corresponding to 7 X o) to both projections will force 7 = o3 this is well-
known in simple types and the same identification is also made (via valid
simplifications) in subtyping. ! For example, the expression

M = (Az.{z (Ax.Ay.x), z (Az. ) y.y) D) (=, y)
gets principal typing
0 {z:ayy:atFrpM:(a—>a—p)—p

This identification of types will render the lower-bound proof invalid for
these encodings. However, instead of writing expressions such as

if true then (z,(me z,m 2)) else ((my 2,71 2), 2)
we can do without the projections, by using the term
if true then ({z,s)),(z t)) else {{s,z),{t,z])
where s and ¢ are distinct, free variables. Summing up, we use the definitions

eqty(M,N) = Xz.K(zM)(zN)

(M,N) = Xp.(pM)N

Pf,s,t = Xz.K
eqty (({ 2,5, (2tDD, { (s, 2D, (%, 2] )
(f 2)

Pn+1N = an+1;5n+lytn+1(PnN)

Q. = Mn]-AS[n]- At Az Ay. P  eqty (z, y)

It is tedious but not difficult to see that all the relevant effects on coer-
cions which is exploited in our construction above are also present under this
encoding, using the encoded pair-type (11 — 7 — o) — o (for arbitrary
type o) to encode the type 71 X 79. In particular, G- and S-simplification still
leaves an exponential number of observable 2-crowns, and Theorem 4.2.5 can
therefore be used as before.

!This can be explained in terms of the Curry-Howard isomorphism, because one cannot
define logical conjunction as a derived notion from implication in minimal logic (see, e.g.,

[63].)
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A.4 Proofs for Chapter 10

Proof of Theorem 10.2.3

Theorem 10.2.3 For any constraint set C' one has:

1. C is satisfiable in Ts if and only if C is satisfied by a C-shaped valu-
ation

2. If C is satisfiable and «, B are non-trivially related in C, then C = a <
B if and only if it holds for any C-shaped valuation v that v E a < 8
whenever v = C.

PROOF As for the first claim, if C is satisfiable in 7y, then C' is structural,
and C” is satisfiable, by Lemma 10.1.5; by Lemma 8.3.3, in turn, this entails
that C” is satisfiable in L. This shows the implication from left to right, and
the other implication is obvious.

To prove the second claim, assume that it holds for any C-shaped valu-
ation v’ that v | a < 3 whenever v' = C. We have C = a < 3 if and only
if C” = [a < B¢, by Lemma 10.1.5 (applicable since a, 8 are matching in
C.) It is therefore sufficient to prove

C" Ela<Blo
In order to prove this, let A < A’ € [@ < B]¢. We must prove
A< A (A.16)

where A = O¢(a)(w), A" = O¢(8)(w) for some leaf w in O¢(a) and O¢ ().
By our assumption that « and 8 are non-trivially related in C, one of the
follwing conditions is satisfied:

(i) A and A’ are equivalent to a constant in C”, or
(i3) neither A nor A’ is equivalent to a constant in C°.

Assume that (i) is the case. Let v = C’. Then Lemma 8.3.3 entails that
7 |= C” and hence (by Lemma 10.1.5) we have 5 0 O¢ |= C. The valuation
v o O¢ is C-shaped, because ¥ is a valuation in L. Then, by our assumption
that the entailment holds for C-shaped valuations, we get

5000 Ea<p (A.17)
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By (i) and ¥ |= C”,  must map A and A’ to constants in L, from which it
follows that ©(A) = v(A) and 9(A") = v(A’). It then follows from (A.17)
together with Lemma 10.1.5 (applied to v = C”) that v = A < A’, thereby
proving the entailment (A.16).

Assume now that (iz) is the case. By (i7) and Lemma 8.3.3, the entail-
ment (A.16) is equivalent to C” =1 A < A’. So let v be a valuation in L
such that v = C*. By Lemma 10.1.5 we have v o0 O¢ |= C. The valuation
v o O¢ is C-shaped, because v is a valuation in L, and consequently we get

500cEa<p (A.18)

by our assumption that the entailment holds for C-shaped valuations. As in
the previous case, it follows from (A.18) together with Lemma 10.1.5 that
v A< A, thereby proving (A.16) in this case also. O

Proof of Lemma 10.2.4

Lemma 10.2.4 Let C be satisfiable. If a and B are trivially related in C,
then C = a < (.

PROOF  If the first non—triviality condition is violated, because, say, «
does not occur in C, any satisfying valuation can map « to anything, and
the entailment obviously does not hold in this case; suppose the second
condition is violated, then some leaf of, say, O¢(«) is forced to be mapped
to a constant in L, but this is not the case for the corresponding leaf of
O¢(f), and a satisfying valuation (of ©¢(C')) can map that leaf of O¢(f3) to
a non-constant (a tree), witnessing non-entailment; if the third condition
is violated, then ©¢(a) and ©¢(3) do not have the same shape, and by
Theorem 10.2.3 we can satisfy C' by a C-shaped valuation v, where v(«)
and v(() do not match, so v(a) < v(3) cannot hold, by Lemma 2.1.1, again
resulting in non—entailment. O

Proof of Lemma 10.3.1

Lemma 10.3.1 Let C be weakly unifiable. If V is a non-empty subset of
Var(CT) and V is matching with respect to C, then

) for (@) #0

acV
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PROOF Let sT be the shape map associated with C'T. Notice that, for
a € Var(C), one has

sc(a) = sr(a) = sa(a) = s1(a)

and for v € I" one has

st(y) = sa(y) = s7(7)

The effect of adding the new equations in Ca to Cr is just to identify all
variables v € I' that have the same shape and therefore define the same
shape. Using these observations, it is easy to see that every valuation sat-
isfying Cr extends uniquely to a valuation satisfying C'7. The set Cr, in
turn, is obviously equivalent to C’ given by

C'=CU{a<top® |ae Var(C),s = sc(a)}

in the sense that any valuation satisfying C’ extends uniquely to a valuation
satisfying Cr. Hence, in total, C'T is just another version of C’ where all
inequalities are simple and all variables « involved in defining the elements
top® have been identified, whenever they have the same shape.

Since C' is weakly unifiable, its shape map s¢ is defined. We have

Var(C") = Var(C)UT U A

We first show:
Va € Var(C) UT. @ < §sp(a) €C' (A.19)

To prove (A.19), suppose first that a € Var(C). Let s = s¢(a). Then
a < 5 € Cp. Since s = sp(a), we have v = §; € Ca. It follows that
a < §; € CT, since C' is closed. Because s = sT(c), the claim follows.
Suppose now that v € T', and let s = sp(y). Then v = §; € Cp. Since
s = s71(7), the result follows.

Finally, suppose that d; € A. Then v = ds € Cr for some . Since v is
part of a contractive system of equations, there is some non-variable type 7
such that v < 7 € Cr. Hence, §; < 7 € CT, because CT is closed.

Now let s be the common shape (under s1) with respect to C'T of all the
variables in V. Then, for any o € V '\ A we have a < d;, € C'T, by (A.19).
If a € VNA, then a = d;, because J; is the only variable in A with shape
sin C'. Since §; < 7 € C' for some non-variable type 7, it follows that,



APPENDIX A. PROOFS 197

there is a non-variable type 7 such that for all « € V we have a < 7€ C'.
Then
TE ﬂ ot (@)

acV

thereby proving the lemma. |

Proof of Corollary 10.3.2

Corollary 10.3.2 For any weakly unifiable constraint set C' one has:
1. C is satisfiable if and only if C" is satisfiable

2. If C is satisfiable and «, 3 are non-trivially related in C, then C =
a< Bifand only if CT E a < B.

PROOF As for the first claim, only the implication from left to right is not
trivial. So assume C' satisfiable. Then C is satisfied by a C-shaped valuation,
by Theorem 10.2.3. It is easy to see that any C-shaped valuation v satisfying
C must also satisfy v(a) < top*® for all « in C' (observe that v(a) € Ly(a),
and recall that top*(® is the top element in this lattice.) The second claim
follows from the same observation together with Theorem 10.2.3. O

Proof of Lemma 10.3.3

In order to prove Lemma 10.3.3, we first prove two technical lemmas. The
following lemma says that, starting .Ag in a set matching wrt. C, one reaches
only sets which are again matching wrt. C:

Lemma A.4.1 Let w be a string in A* accepted by AS(qo) with C weakly
unifiable and gy matching with respect to C, and suppose that 0p(qo,w) = q.
Then q s again matching with respect to C.

PROOF By induction on |w| > 0.

For the base case, the statement is just that ¢y is matching wrt. C,
which we have assumed.

Suppose for the inductive step that w = fw'. Let ¢' = dp(qo, f), so that
g = p(q’,w'). Then (since a transition on f is defined) it must be that
go = {a; x & }ier, and since qo is matching wrt. C, we must have {a; }ier
matching wrt. C also. Let s be the common shape of all the a; wrt. C.
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For each i and 7 €ff¢ (o) we evidently have s¢(a;) = s¢(7); it follows that
sc(r) = s for all 7 €ff¢ (ey) and all ¢, and therefore the set |J; ¢ (o) is
matching wrt. C. But this set is just ¢, and induction hypothesis applied
to ¢’ now proves the claim. Other cases are similar to this one and are left
out. O

Lemma A.4.2 Let w be a string in A* accepted by AgT (qo) with C weakly
unifiable and qo nonempty and matching with respect to CT, and suppose

that 5AD (go,w) = q. Then q is again nonempty and matching with respect to
CT.

PROOF That ¢ is matching wrt. C'7 follows from Lemma A.4.1.

To prove non-emptyness, we proceed by induction on |w| > 0, and the
base case is trivial, since the statement is true of gg by assumption.

Assume for the inductive case that w = dw’ (other cases are similar and
are left out), and let ¢ = dp(qo,d), so that ¢ = SD(q',w'). Then (since a
transition on d is defined) it must be that ¢o = {a; — «}}icr, where the
set {a;}ier is non-empty and matching wrt. CT because g is. We have
¢ = ; for (i), where ¢’ is matching wrt. C7 by Lemma A.4.1; since
the set {;}ics is non-empty and matching, Lemma 10.3.1 shows that ¢’ is
non-empty. We have now shown that ¢’ is non-empty and matching wrt.
C'", and induction hypothesis applied to ¢’ proves the lemma. O

We can now prove:

Lemma 10.3.3 If C is weakly unifiable and o € Var(C), then t§(a) is a
well defined term automaton (i.e., its labeling function is defined on all states
reachable from the start state of the automaton.)

PROOF Because C is weakly unifiable, the singleton sets {a} (a € Var(C))
are necessarily non-empty and matching with respect to C, and therefore
Lemma 10.3.1 shows that the start states g, are non-empty; they are also
matching with respect to C, because C is weakly unifiable. It then follows
from Lemma A.4.2 that ¢, is well-defined on all states reachable from ¢, in

CT
A% . O
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Proof of Lemma 10.4.1

In order to prove Lemma 10.4.1, we first prove two small lemmas. Let T(CT)
denote the set of non—variable subterms occurring in C.

Lemma A.4.3 Let C be weakly unifiable, and let ¢ and g2 be non-empty
subsets of T(CT) each of which is matching with respect to C'. If w is
accepted by A%T(ql) and AgT (g2), then

01 C g5 implies 3p(q1,w) C 6p(ga, w)
PROOF By induction on the length of w, as in [60]. O

Our labeling function is anti-monotone:

Lemma A.4.4 Let ¢1 and g2 be sets of terms for which £ is defined, b €
{0,1} a polarity.
Then
g1 C qo implies £x(q2) <° Ln(q1)

PROOF The claim follows from the fact that the greatest lower bound of a
smaller set results in a larger element. O

We can now prove

Lemma 10.4.1 Suppose that C is consistent (weakly unifiable and ground
consistent). Let 1} denote the function {tot. Let 11 < 19 € CT and ¢1 =1
(11), @2 =1 (12). Then , for any string w € A* accepted by both AgT(ql)
and A%T (g2) one has

A(p(g1,w)) < €r(0p (g2, w))

PROOF  First notice that C'T is weakly unifiable, ground consistent and
closed: The set C'T arises from C by adding to C (representations of) in-
equalities of the form « < top®, s = s¢(«). This results in a ground con-
sistent set if C' was already ground consistent, because the only new atomic
inequalities thereby introduced in C'" must be of the form A < T or L < A.
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Hence, since C is weakly unifiable and ground-consistent, so is C'". More-
over, C'T is by definition closed.

Since we assume that C' is given in simple form, we know that one of 7
and 7o is a variable, and that the depth of 71 and 75 is at most 1. Notice
also that, since C'" is weakly unifiable, one has f}(«) matching with respect
to C'" for all « € Var(C), and therefore (by Lemma 10.3.1) ft(a) # 0 and
again matching with respect to C'T. It follows that £, is well defined on
such sets. This observation is tacitly used throughout the remainder of this
proof.

We proceed by cases over the form of w and 7 < 7 € CT.

Case (1). Assume first that 7 is a variable, 77 = «. In this case, if
T9 = [ is also a variable, we have 1} (8) Cf(«). Therefore, Lemma A.4.3
shows that

SD(ﬂ(ﬂ)a w) cv SD (ﬂ(a), w)
and together with Lemma A.4.4 this entails

-~

Sp(fi(a), w) < Sp(1(8),w)

thereby proving the lemma in this case. If 5 = b is a constant in L, we must
have w = € and (o) C L (and, by definition, f}(b) = {b}). Here b €ft(c),
and it follows that

En(f(@)) <r LA(1N())

thereby proving the lemma in this case. Finally, if 79 is a constructed type,
assume 7o = [y — (2 (other cases for 7o are handled similarly and are left
to the reader.) We have

(B = Ba) = {B1 = B2} C MNe)

and Lemma A.4.3 entails

Sp(M(B1 — Ba),w) C¥ dp(fH(), w)

and the result now follows from Lemma A.4.4.

Case (2). Now assume that 71 is not a variable and 7 = (3 is a variable.
71 is either a constant or a constructed type.

Case (2.1). Assume first that 71 = b is a constant in L. The inequality
under consideration is therefore b < (. Accordingly, {}(8) C L (by weak
unifiability), and w = € must be the case. Since C'" is ground consistent,
we have

VB enB). b<p t
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It follows that
CA(PH(D)) = b <p LA(1(B))

since ¢, acts as the greates lower bound operation in L. This proves the
lemma in this case.

Case (2.2). If 7 is not a constant, then it is a constructed type. We
assume that 71 is a function type, 71 = @y — a9 (the other possibility for 7;
is similar and is left to the reader.) We proceed by cases over the form of w.

Assume first that w = e. The set {} () must be a non-empty set of
function types (by weak unifiability of C'T), so we can write }(8) = {8; —
Bi}i- On the other hand, (a1 — a2) = {1 = a2}, and therefore

(a1 = a2)) = = = LaA(1(B))

proving the lemma in this case.

Now assume w # e. We show how to reason in the case where w = duw’,
in order to demonstrate how contra-variance is handled. Remaining cases
are left to the reader (the principles of the argument can be seen from what
follows.) We consider the inequality a; — az < 3. We have (a1 = ag) =
{a1 — a9}, and f}(B) is (by weak unifiability) a non-empty set of function
types, so we can write ff(3) = {8; — 0 }i;. We must show that

LA(Bp(Nax — az),dw')) <™ L, (6p(N(B), dw')) (A.20)
Let
q1 = dp(fi(ar = az),d)

and

92 = 0p(1(8),d)

Then, by the definition of 6 together with change of polarity in passing
from w' to dw', we have (A.20) equivalent to

Cn(p(g2,0") <* £A(Gp (g1, w')) (A.21)

which we now proceed to prove.

Since C is transitively closed, we have a; — as < 8; — g; € CT for
all i. Because C' is closed under decomposition, this implies in turn that
B; < ai € CT for all i. It follows that () Cf(3;) for all 4, and hence

fiar) € H(8)
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By Lemma 10.3.1 and the fact that C'" is weakly unifiable, both sets men-

tioned above are non-empty and matching with respect to CT. By the
.. T

definition of the automaton .Ag , we have

q1 =()

and

g = ﬂ (3)

so we have just shown that ¢; C g9, with ¢; and ¢o both non-empty and
matching wrt. C'7. Then Lemma A.4.3 shows that

dp(q1,w') € 6p(ga,w')
and therefore, by Lemma A.4.4 we get

A (0p(gz,w')) <% €r(Gp (g, w'))

which is just the property (A.21) we aimed to prove. O
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