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PrefaC€

I had a friend in my first school years, who had a little indian tent.
One day we had gotten hal of some cigars which we decided to smoke

in the tent. The massive amounts of smoke sent out by a single mgar

small tent, an
soon proved to be too much to b tained 1nrt%1fﬁ ray }rle Ié (iio

t
wer qulcé{ll}; dlscgv%vggl é) %&mesﬁmoecnt 1111%01 ?d’nt have another c1gar
Ii%renlf1 joined tﬁe Image group at DIKU.

“So”, you may ask, “how did cigars contribute to the Sclence per-
formed?”. To this I can truly answer, “not much!”. The times whel
we have been drunk enough to defy once, agaml1 our fergale ﬁgp I‘lOI'S

raw out the cigars, the quality, of science has not been
de%lllntgl Tun. El

ank yo?e %‘ all the c1gars.

There are many peop at truly deserve a personal remark, but I

dare not start on an ever incomplete list, so let me just say: Thank you
collaborators and friends. The past three years have been fulfilling.
Nanna and Vibe to you I'm forever in debt.

Jon Sporring
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Chapter 1

Measuring and

Modelling Image
Structure: Introduction

his thesis is a collection of articles wfrigersltgle{fsi%% e tfgé{DSosl%dg
ome haye heen published, othe!'S are o the . :

the articles have been written in collaboration with coauthors, and for

this reason have I chosen to include the articles as they were completed

in their most final form. T have only taken the liberty to massage thei
gormats to fit this theSis, i-e. rearranging some of the equations an
gures, corrected a ‘%ew errors according to the defense committe, and

I have used a single common list of references.

sis is organised in two parts. The first part inly. concerns
The the g p ol%y arlll(]ia tlﬁy

. i i éir uses to
introduction to scale-space and information the 0
solye practical proplems. The second part focuses on, more theoret

ical aspects of scale-space and information theOry- Eth chap@er is
readable on its own, which I find appropriate for a theSIS covering a
number of different topics. This also imgliefs1 tha; tl}ere are more than
one introduction to scale-space etc., and that the level and notation

is somewhat inconsistent between chapters. To emphasise the general
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Figure 1.1: A scalar image as seen by the computer: Numbers arranged
on a two dimensional grid.

cope, of the thesis, three introductory chapters and a final summary
ave been written. First, below, will be given a very general introdu®

tion to image processing and informagion theor}I’i ?Vi‘lll teezilc mn m%ntl‘l’%
no‘gtls) eg“%gé’es(iin Xpellitiilslgrz) 1& S(,%%efl y gllé ters at a slig t‘iy more
O e B e A . the thesis 1s encgeg by an overall discussion of

the work and interesting problems that the thesis has raised. We will
now introdu€€ 1mMage processing.

1.1 A Psychophysical Experiment

We would like to illustrate the task of image processing by a psy-
chophysical experiment. Figure 1.1 shows a small part of an image as
seen by a computer. We see that an image is a scalar valued func-
tion sampled on a grid. Each point on this grid we call a pixel, and

scalar valued images we call gray scale images. Besides theS¢ facts,
little information 1s available to guide the human visual system to the

contents of this image. In Figure 1.2 is shown a little larger part of the




1.2 Measuring Images

same image. This time each pixel is represented by a small square of
corresponding grayness. We have experienced that given no preknowl-
edge about the image context few have been able to correctly interpret

this subimage. The full image is shown in Figure 1.3. The previously
presented subimages were taken of the tomato flowe in 1%1 middle
e

%f the ima, e. Ve observe th after the context of t mage in
igure 1.2 en 1dent1ﬁe , most people will agree that it is now

easy to recognise detalls such as the stem and the leaves etc..
With this example we hope to have emphasized how model de-

pendent the human visual system is, and how effective such a model

dependence can be. Details of the subimage cannot be confidently
identified before the global model, the tomato, has been identified.

With a global model we easily distinguish details such as the leafs and
stem, and the details in turn confirm the global model.

Although model driven systems such as the human visual system
certainly are powerful, they also have their drawbacks. New features
may be very difficult to identify if a model has been selected. We see
only what we expect to see.

1.2 Measuring Images

We will now take a closer loo athth[eescg tcg taog lgé?cga S. mgls%%nr%%ﬁ%

sis, are all
ggggle%greo(% %}E icehég tt%l}?e simulation of one. The process is illustrated mn

igure 1.4. A scene is investigated with a measurement device resulting
in a discrete set of points arranged on a grid. This concept of images
covers a large range of measurements, such as:

pictures where the measure is on infalling light,

medical images wher€ the measure can be either on the density of
protons {magnetic resonance), the human body’s shadowing of

X-rays (X-ray images or computer tomography) or the echo of
ultra-sound, and

statistics where the measure is often on a probability density.
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Figure 1.2: A larger subsection of the Same image as seen in Figure 1.1.
This time each pixel is represented by a small square with correspond-
ing grayness. Even theD; the image can be difficult to interpret by

humans.
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Figure 1.4: The Processing of imaging: A measurement device (middle)
is used to probe the real world (right) to obtain a discrete image (left).

measured the image modality and the measurement pro-
nges"%lé E}éﬁ sampling. Ther® gis 10 restiiction for the image to be a

two dimensional function. One dimensional images are usually called
ignals, but, fit easjly into the concept of images. Also three and highe®
allmensional samplés can and will be considered images.

As Figure 1.1 illustrates, each pixel in itself conveys very little in-
formation on what is being sampled. In many applications a detailed
knowledge of the image modality is of utmost importane, but each

image processing algorithm shares a number of common elements. Ba-

sic to all algorithms is that they examine the relation between neigh-
bouring pixels. For instance many algorithms will try to estimate
derivatives by examining the change of pixel values in prespecified di-
rections, an image may be preprocessed by filtering to reduc€ no& or
a function may be fitted to the image samples. To give an example,
consider the concept of an edge. Examining Figure 1.3 most people
will agree that there exists a curve around the tomato which we may

call the tomato’s edge. In contrast, the zoom in Figure 1.2 shows that
the edge of the tomato is not quite so intuitive: Should we include or

e omnt overlape (e mABIBNE AWE e kichf the(the
edge we choose depends on the contents that we perceive. ¢ choose
(e SRR B S PR A HSRTEOR T e, o 3 SUREpmess
tﬁe transition between light and dark pixels, o Og global models such

Pty

€r an

Ficure 1.3: The previous two figures (Figures 1.1 and 1.2) showed a onceived tomato. . Both approacheS
zo%m of the tomato flower in the middle of this image. Try now to %ﬁegli‘s", ut we have experlence}gl that ‘the nu

reinterpret Figure 1.2 and note that the task is now much easier.




1.3 Reverse Engineering and Data Mining

of global models is tremendously large in almost all real applications.
This is not the case for local models. We are thus in practice dictated
a hierarchical approach. For example, by examining each pixel and
its immediate neighbours we may assert a likelihood of edgeness. This

again can be considered an image, and ét will have lines of maximal

RT se to be the edges. Next step cou e to
};}ég}g%ggdfhev‘é%ggﬁ%S Y)}beSsib e identi‘tay the tomato. Psychophysical
and biological experiments have shown it to he very likely that this is
also the overall design of the €arly stages in the huiman visual system.

1.3 Reverse Engineering and Data Mining

We identify two trends in the fields of image processing and computer

vision: Reverse engineering of the human visual system and data min-
ing. The reverse engineering approach has two merits. Firstly, it is an

excellent tool to study and learn human behaviour, and secondly, the
human visual system is by far the most versatile and successful image

processing system known to date. Data mining is the Process of finding
hidden patterns and relationships in data. The usual application area
is databases, but we find it appropriate to use the term also for image

analysis. Specifically, we will use data mining to mean the Process of
using systems that allow us to learn mostly from data. In this view,

a computer is basically a visualisation tool that takes a complicated
data set and transforms it into a carefully chosen feature set which
can be visualised for human inspections. A simple example is the
processing of three dimensional images such as computed tomography
images from medical diagnostics. An example is shown in Figure 1.5.
It takes years of training for a human to be able to interpret such
images by hand. In contrast, a simple technique such as viewing only
pixels with a specific vale, also known as the isosurfae, immediately
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Figure 1.5: Two orthogonal views of a three dimensional dataset.
LEFT: A horizontal slice. RIGHT: A vertical slice. The images are
courtesy of 3Dlab, Dept. of Pediatric Dentistry, University of Copen-
hagen, Ngrre Allé 20, DK-2200 Copenhagen.

simplifies this task. In Figure 1.6 is shown an isosurface corresponding

to the gray tone of bone from the previous dataset. We see that three
dimensional bone structures become much easier to understand once

visualised as a surface.

Fi 1.6: An i £ f the skull also shown in Figure 1.5. The
Reverse engineering and data mining have different aims, but re- igure 1.6: An isosurfaco of the

images are courtesy of 3Dlab, Dept. of Pediatric Dentistry, Univer-
sity of Copenhagen, Ngrre Allé 20, DK-2200 Copenhagen.
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This thesis will

sHhishAReme ane diegsninuRiisarprk in the othe™

1.4 A Guide to the Rest of the Thesis

The main focus of this thesis is on the interplay between image mea-

suring and the modelling of structﬁre. The theSis is organised in two
parts. Part I will introduce some key aspects of modelling and mea-

. . a7 s tion of measurin
suring image structure. We will introduce the 7° &
tﬁrouggh lin%ar scale-spae, spend some t?me on modelling with differ-

] usage of cafastrophe theory, and we will end
e%fg%%%%%%t %’c%‘ﬂ tBenodel sefection usi%g Inlf'orm;ltion TheOTy- Hor
this we use two examples: images from a chemical system and images

of characters from a fax-document, The second part is more the©-
retical. In the first two chapters of Part II we take a closer look at

gray-value histograms and its sibling from information theOry called
generalized entropy. An obvious extension is to examine the evolu-
tion of histograms, while the function itself is smoothed by scale-space

techniques. We will specifically study the mathematical structure of
generalized entropies under smoothing transforms, and show how this

can be used to select scales in images. Thell W€ will study continuous
histograms for one dimensional functions and show that the continuous
histograms contain much information about the function itself. The

last chapter in Part IT we use information theOry to examine a model
selection algorithm from the field of neural networks called Optimal

Brain Damage. We show that the Optimal Brain Damage algorithm
has an unspecifiedut implicit assumption on which neural networks
to favour.




Part 1

Practical Problems




Chapter 2

Practical Problems:
Introduction

Structures in images have a wide variety of sizes, and a general image

processing algorithm should be adaptable to the size of structures. An
example is edges in images. Coordinates whel® the intensity _change
is maximal we call edge points, and the collection of edge points we
call edges. In Figure 2.1 are several edges present. This is a 512 x 512
image, but that is in no way the intrinsic resolution. In fact thel®
does not exist such a thing as the intrinsic resolution for an image. If
this image is represented at smaller resolution, e.g. downsampled to a
256 % 256 image. thed certain edges will not be visible. For instane,
the feathel contains many small edges that are not, visible at smaller
olution. while the edge of the hat and the shoulder is still present.
rlgﬁls 1S 1 ’ustrate(ti in Figure 2.2. A simila _restul vycil,l occu‘g iftt}ge
r was to move away from the OPbject, but in contrast to
hotographe e};a ﬁlrth}e}r /

; away will reveal new parts
§f?ﬁlg%%&%%& B Rg B border.

Downsampling is a useful operation in image processing, since large

structures become small, and small structur?f élisappear. The set of
sequentially downsampled images is the SO-Called 1mage pyramid. The

Practical Problems: Introduction

50 100 150 200 250
Pixels

Figure 2.1: An image containing edges at many different scales.

200
Pixels Pixels

Figure 2.2: The edge images at two different resolutions. LEFT: Edges

of Figure 2.1. RIGHT: Edges of Figure 2.1 wheR the image is down-
sampled.
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advantage of the Pyramid representation is that it allows us to design
a single algorithm for the analysis of structure at pixel resolution, and
reuse it for each image in the pyramid. This is equ_ivale;nt to writ.ing
several algorithms that analyse structures in the original image at sizes
1 x 1 pixel, 2 x 2 pixels, 4 x 4 pixels etc., and apply them to the
original image. Although the idea of the Pyramid is good, only very
few structures reside at integer exponents of the basic downsampling

rate. For true scale independent algorithms we therefore seek a tool
that allows us to represent an image at any downsam&ﬂ,ing ate in the

least destructive faﬁhion. We sha] see that the Pyramidisonly a crude

representation of this tool and the is;foun the_convolution
i a Gai;ssia filter, whete the sBlaFafoRudasy l}%presents the
1

ownsampling factor.
Let us for a moment study the Physics of a simple digital camera. A
camera is a collection of light sensitive material ot a rectangular grid.

Each pixel arises from an integratjon of the igfall%n light duflng some
time interval also known as the shutter speed. The integration has a

ositional dependency on the grid, and for mat tic nyenjiepce
P e asgu e th}z;t the 'c‘egnter 5 often the hggwt il iguy e

angecﬁ%i%%rders the least s{en51 1ve_1. f we aﬁ%lé%&@f"ttaklfﬁ positional

; same for a els, the g an 1mage
ggg%%d‘?v%ctlfesnag;% % convolution %F(ehf?lter with the incoming light and

a%%%ﬂa%l?&ﬁhe nge &hidi P l;gzggg p%?gr%?g%gl%%cég ttoot%}elis class of
algorithms, using a uniform filter corresponding to the downsampling
factor.
One may argue that the uniform filter is not the best choie, since
an image of an image should not change the image qualitatively. Tak-
ing an image of an image is equivalent to performing two consecutive

convolutions, and a well known result from mathematics states that

1This may not be true for most CCD cameras. Studies have been performed
that indicate the border to be the most sensitive part of a CCD pixel cell.
2A convolution is the mathematical term for the process of taking local average.
Given a function f(z) and a profile g(x) (also know as a filter, kernel, or distribu-
tion), the convolution of the two is defined as: (f * gfz) = [ f(a)g(z — ) da,
where a is a dummy parameter

Practical Problems: Introduction

Figure 2.3: The self convolution of a box filter. LEFT: A box filter.
RIGHT: The box filter convolved with itself.

two consecutive convolutions can be replaced by a single convolution

with a modified filter®. Assume tharf t‘?ll}ee ﬁ%ﬁ‘fﬁ%m%rislsu (?gngﬂb%)

i same filter is ysed twice, the
lc'gh\;(})lﬁiing t‘ile filter with itself. A Il%lter will in almost all cases change

shape by self filtering. For example, a uniform filter is changed to

a triangular filter as shown in Figure 2.3. We may ask, can we now
ces the same result as

find ey aaniens Hin Haketedts uniform filter. The
answer is no. Since self filtering of a uniform filter produces a triangu-
lar filter, this will in almost all cases result in a different image than
that produced with any uniform filter. For all positive filters haying
%nitepvari ce 8ere is one filter that stays qualitatively the Same: he

aussian % terz ramér, 1946, p.215). A self filtering of the Gaussian is
itself a Gaussian with the double variance. That is, we can easily find a
Gaussian camera that produces the identical result as taking an image
of an image using a Gaussian filter. In Figure 2.4 is a Gaussian filter
shown. Thus, if we use the Gaussian filter in the downsampling pro-

cess, we need not treat each level in a pyramid as produCed by ditferent

3Convolution follows the associative rule: f x (g * h) = (f * g) * h. Thus if h is
the original image, then the consecutive convolutions can be replaced by a single
with the filter f * g.




2.1 Tracking Target and Spiral Waves

Figure 2.4: A Gaussian function with standard deviation 1.

filters. As a side-remark, note that the Sequence of n times self filtering
of almost all filters will converge to a Gaussian filter whell 7 80€S t(g
infinity. For most algorithms (at least those discus in_the Bresen
thesis? it is not necesgsary to o(wnsa ple the r(é&ﬁ% SF%RGT ng. 'Iﬁ %115
way we get a relatively highe! resolution whell comparing wi ¢
downsample(? image. ’f(hroug% these arguments we have reached the

Gaussian or linear scale-space. A general introduction to linear scale-
space can be found in (Koenderink, 1984; Lindeberg, 1994; Sporring

et al., 1997), and detailed review of the numerous axioms leading to
linear scale-space can be found in (Weickert et al., 1997a). An intro-
duction to nonlinear scale-spaces that can be used to direct filtering

according to image contents can be found in (Weickert, 1998).
Linear scale-space is a useful tool in image processing, and we have
applied it to various tasks such as tracking chemical systems and cod-

ing blobs in black and white images. We will now shortly introdu®®
Chapters 3-5.

2.1 Tracking Target and Spiral Waves

Differential geometry is a useful tool to define features in images. We
have already hinted upon the concept of edges defined through differ-

ential geometry, and in Chapter 3 we give a detailed discussion on the
problem of tracking spirals and ellipses in a sequence of images.

Practical Problems: Introduction

Taking derivatives is intrinsically an ill-posed problem*. Take for
example a simple function,

f() = g(z) — ccos(z/e),

re ¢ is verv small. The second term can be thought of as unnotice-
nglg high freq}{lency noise. But in the derivative of f, the second term
%ecomes as large as € is small.

of(z
) _ Og(z)
Oz ox

In discrete data such noise is always present du€ t0 the discretization
process. Thus any well-posed discrete differentiation operation should
dampen the higch frequencies. Gaussian filtering is a very effective
metﬁ)o? éor dal;glp inng igh frequencies®. The calculationof deriva-
tives of Gaussian ﬁﬁere 1mages is very conveniently done by filtering
with the derivative of the Gaussian.

1
+ —sin(z/€?).
€

Hli+d)
g+i) poo oo
GO = S [ fep)GE—ay—p) dads

o o 9li+d)
|| red) Gl — ay — B) dods

In Chapter 3 the chemical Belousov-Zhabotinsky reaction is consid-
ered. This is a dynamical system which if left alone in many cases will
organise itself in spiral and elliptical or target patterns. The spirals
and targets seemfo oxieinate, fou, & 1GeRLCT & Beh v R GRELBENS

Wec%lﬁgl%%lileye%ﬂed with two aspects in relation to image processing:
Findine the spiral and target centerfs and_tracking them over time.
The solution demonstrates the €ase of which linear scale-space can be
ap;?lied to stabilise differential geometric features.

4A problem is ill-posed in the sense of Hadamard (Hadamard, 1902), if the
addition of an infinitely small term has an infinitely large effect.

5Convolution corresponds to multiplication in the Fourier representation, i.e.
FI(f = glz)] = F[f(x)]Flg(z)], where F is the Fourier transform. The Fourier
transform of a Gaussian filter is a Gaussian with the inverse variance. Thus the
convolution with a Gaussian filter dampens the frequencies exponentially.
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}éigure 2.5 Gassianiltgrnee ces, b o b SRR Al

cates th
auss?an gltered function.

2.2 A Note on Differential Corner Mea-
sures

Scale-spaces are tools that simplify images. For the linear scale-space

on a one dimensional function it can be shown that the number of
extrema is non-increasing as scale increases. In Figure 2.5 is shown an

example of a one dimensional function before and after filtering with a

Gaussian function. We see that the number of extrema is redyced by
Gaussian filtering, but also that the Temaining extrema are dislocated
from their original position. We may illustrate this for the complete set

of scales by a fingerprint image as shown in Figure 2.6. This figure has
ition of the extrema is

9 .
})ne(%réﬁ%%e%?%dofﬁtgoé%‘gsﬁlﬁF Qf’ﬁg Sgﬂ]é%cgb%pofs hnes 1s the ﬁnggr_prmt
image. We see that pairs of extrema have a scale whel® they annihilate,
except for two which will only join at scale infinity. The small extrema
annihilate at small scales while large extrema annihilate at large scales.

Thus if we wish large scale extrema in the original function, we may

anﬁlyse th? function at lafge cale and trﬁck the posit'ion of the extrema
to low scale to improve Iocalisation. The tracking is far from always

Practical Problems: Introduction

| .“J

50 100 150 200
Pixels

Figure 2.6: The fingerprint image.

as simple as the one dimensional example and often requires a careful
study of the deep structure. Chapter 4 studies the deep structure of a
small set of corner measures, defined through differential geometry.

The topological studies we will be concerned with in this and the
following chapter will be the configuration of singular points. An exam-
ple is the set of alternating maxima and minima for a one dimensional
function. Al% functions haying the same number of extrema belongt}tlo
either one of two topologically identical function classes: Eithel the
extremum for smallest z is a minimum or maximum. The linear scale-
space on a function f has a set of scales where the function changes
flll)nction lasses. T}{ so events are callod catastrophes- Pictorially,
imagine t%e ﬁ‘fming oef\ a piece of wood being bended with increasing
force. At some point the wood will break, but if we assume that the

breaking takes infinitely short time, this is a catastrophic event, ]a%d
the €xact time of breaking will never be ﬁlmeii. Always ther® will be
two neighbouring frames: One with the complete piece of wood, and
one with two pieces. This is illustrated in Figure 2.7. In our onq dic

mepsiongl ﬁ{(@yﬂ}@.,Iﬁgggibglalli@ge@ﬁcedanhhtﬁﬁaa}ﬁin%efﬁ&téeasecg. At




2.3 A Piecewise Polynomial Blob Representation

Figure 2.7: The filming of a piece of wood breaking.

some scale a pair of neighbouring maxima and minima will annihilate
and disappear for almost all functions. This is a catastrophic event
since the time for annihilation is infinitely short. We can thus only see

a function before and after a catastrophe €vent, but the effect will be
topologically apparent.
In two dimensions, the singular points are defined as the inter-

section between curves, and Chapter 4 examines corners defined as
follows. The curves of constant intensity we call the isophote. All

the isophotes will h an isophote curvatue, and at. ints o
se cé)rv s thel® will be extrémal curvature, The 351%%918%% nfdl
E}Lll?vature ?ormﬁines in the image. We define a corner to be the inter-

section between an isotphote and an extﬁerfnaltiﬁ,ophoge curvature line.
ed for

Th f catastrophe structure is Investigat 1S and similar corners,
an

in general we conclude that these measures are both annihilated
and created as scale is increased.
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this is a very, very large number! If for example the image has size
256 x 256, the number of distinct models is approximately 10157826,
To get a feeling of how huge this number is, imagine we are to search

a model space of this size, and we are ahlg to check one model per
second. Tt would then take us about 10 years to investigate all

models. In comparison, the universe is only about 1013 years old. This
implies that for any realistic task, we only have time to consider a very,

very, limited number of models. TheS¢ W€ call the model class under
consideration.

A model from the chosen model class will never fit the image exactly
and in a sense need not. What is outside the model class we will call

nois le;md with noislel we imply r nfdom ess, The randomness can
eithel be a true stochastic source (if such exists), a chaotic process,

or the result of a number of minor but complicated processes that

are not easily modelled. An example of such a noise process is the
the sampling process.

R Aot (B o feilal EARERESt of fioise only has meaning
as the dual concept of models; one cannot speak of noise without
implying a model since noise implies an error. Conversely, a model
always defines the error or noise image. To model images thus implies
the investigation of the model and the resulting noise.

Comparing a model with the implied noise is in no way trivial.
We will now give a simple artificial example to illustrate this. The

example is one dimensional, but the conclusions hold for any image.
Consider N data points such as shown in Figure 2.8. TheS€ data
could for example be temperature measurements taken at the Same
time and day a number of years in succession. One question that one

sentation could ask is, what the general trend in the data is. Is ther® a rise or
fall, and perhaps is the trend accelerating. To answer this,twe must
hoose a model class. The choice should reflect the €xpectancy we
ﬁave to the data, 1.e. if we suspect periodic pattetrlgﬁetggglgp nusoid; }

2.3 A Piecewise Polynomial Blob Repre-

We have in the previous sections seen that linear scale-space can be
used to analyse structures of different sizes. We will in Chapter 5 study , 5 @ usolc

explicit models of image structure defined via differential geometry ¢ %%‘élec%,a(‘) ‘syﬁv(g) ulidlé).e alplll)goagsast%f%ogl}%gﬁﬁaﬁOare intimately linked
and see how linear scale-space can be used to speed up the modelling to the notion o Uerivatives through the Taylor series®. In this class

process. .
There is no way around models whe We wish to make sense of data,
but we cannot consider all possible models. That is, for an,image of

size N x N with 256 different pjxel values thel© are 256,N disti'nct
models that we may considel- Even for relatively small image sizes

6The Taylor series of a function f(z) at z = a is defined as the infinite sum,
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Figure 2.8: A one dimensional dataset.

we have N distinct models that minimise the mean square error’, the
s€ are
e

i _ t d t th
Rolynomials of order 0 40, Noigide diphathts Bafculated by ufm t%Eg
. model and thé
the mode} from,the datasety shehheritheal Wtk Exactly. Te. the
model and the ROIse Is an exact representation of the dataset. We thus
have N 4+ 1 different representations: The dataset without a model

and the N polynomials together With their noise signals. In terms of
modelling, the dataset without a model is not very interesting, since

nothing is modelled, i.e. no trend is identified. Likewis the N — 1
order polynomial is uninteresting since it fits the dataset exactly and
thus has no or zero noise signal. The latter situation is identical of

i ¢ lete signal is trapsformed onto_anothe!
%g‘slf; }?eop%]lglg%lmigihceoe%gnts, angcil no trend is 1 entiﬁeg. Hene, it

is among the remaining N — 1 models that the interesting models are

to be found.

Let us for the moment focus on the noise signal. The concept of

9(z) =302, %m". If f and g are identical then f is said to be analytical.
"The mean square error for a dataset X = {z1,%1),.-., (zn,yn)} and a func-

tion f(z) is defined as YN, (f(x:) — vi)2/N.

Practical Problems: Introduction

1

Figure 2.9: The Polynomials of order 0 to N — 1 that minimise the
mean square error.

noise is often attributed ? statistical meaning in the S€nse that only the
distribution of the signal value can be modelled, not its functionality.
While this need not be, we will in this theSIS subscribe to this view,
since we find it reasonable that if the noise signal has a non-statistical
term, i.e. something that we may include in the model class, the™ this
should be included within all reasonable effort. VYle will thus, concen-
trate on the statistical properties of the NO% anéi this usually implies

: ioati mean and the varjance®. Hjghe! ofder mo-
f}}een?;‘g%%g, agl%lvgsftitg%%ed’ but theSe are often numerigzhi:y difficult to

estimate., Wehm}lght also try to estinilate a distribution of th st‘atistics
of the nots which’ again is dn example of meaguring an %(l:lemv%it

)

: : . sis. In the present discussion, we will su
gﬁ%cgtgﬁﬁg?i]ﬁlg@flstﬁg%ariane, since the mean is assumed to be zero.
It is important to note that the true noise and the estimated or per-

ceived noise are two different entities. Particularly, for all non-artificial
signals the true noise is unobtainable! All that can be analysed is the

8The mean p of a discrete source X may be estimated as p = Efvzl zi/N
where x; are samples of X and N is large. The variance o? is usually estimated as

02 = YN (@i — p)?/(N — 1),
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difference between a model and the data, the perceived noise. HOW'
ever, given some weak assumptions 013l the signal, some may be said

about the true noise from the perceived noise. In almost all cases, the
variance of the perceiveg1 noise falls with increasing polynomial order.

But as Figure 2.9 shows, even though the Perceived noise of high or-
der polynomials has low variane, the functions vary increasingly, in

bet cen data pOintS and seem ver de en ent on the partlcu ar nOise. Variance of 1'st order polynomial fits Variance of 4'th order polynomial fits
In e’i,lis situation it is o%lten said that %)he ata is overfitted, since the

stochastic part is sought fitted with a deterministic model. To illus-
trate this we have performed an experiment as shown in Figure 2.10.

An artificial data source has been generated as follows: A line is sam-
pled in ten points and the result is added normal distributed noise

with zero mean and unit standard deviation®. Several datasets were

drawn from this soure, and to each we fitted polynomials of various
orders. The resulting functions were analysed for mean and variance
and plotted in the figure. We see that the standard deviation of the 8
fitted functions is a growing function of order, and in particular that
the variance of first order polynomials is smaller than the variance of
the Doise. A similar experiment is shown in Figure 2.11. Here we hav

incregsed the number of sampling. pojnts, o HheiSHireazhd thelPt
{eancs §8G 1 %ﬁr}zpl%ns also degrgﬁgegeb the same factor

The Statistics of the DOISE an eés of freedom in the model
are two different measures that cannot be directly compared. One
powerful conversion stems from information theory- The basic idea

is that the best description of a f%ata,i_gi;u is th‘i's ortest, which is also
. ca

v [ LLEs! Ao
sometimes_ca cCaIm’s razor e impljcation is that Eh
ments in the lﬁ%ldg class are given a unique description of‘l which we

may calculate a description length, and likewise for the corresponding
noise signals. The theory of descriptions is also called the theOry of

Figure 2.10: The results of the fitting a random 10 point source with

polynomials of order 1, 4, and 8. The mean and standard deviation _o(f
the source is shown by a solid and two dashed lines. Th(f second soh
and two dash-dotted lines show the mean and standard deviation of
the fittings.

9A one dimensional normal or Gaussian distribution is given as G(z,u,0) =

2
Va7 P ( ot
1OWilliam of Ockham (1288-1348) did among other things formulate Occam’s
razor also known as the Law of Parsimony as “Essentia non sunt multiplicanda
praeter necessitatem” (Entities should not be multiplied unnecessarily) according
to the Catholic Encyclopedia, Electronic Version, 1996.
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Variance of 1'st order polynomial fits Variance of 4'th order polynomial fits

Variance of 8'th order polynomial fits

Figure 2.11: A similar experiment as in Figure 2.10. This time the
random source is sampled 10 times as densely.

28 Practical Problems: Introduction

coding, and essentially it implies that both the model class anr(ll ggfl’
nojse, are zilss' ned a probability. From the PTObablht}’ we the
calculate the [ower bound on t escription length using a very gen-
eral class of descriptors, and the lower bound is thus a tool for model
ion: i smallest lower bound is the on€
selection: That model which hag;the SIS RO Sk KrlmSoum
Description Length (MDL), and in Statistics it is called the Maximum
A Posteriori principle (MAP). The reader should note that while theS€
two principiers) are gery( sim]iEI) r, onely MDL takes direct account for the
dependence on the Size of the dataset. In our example, we thus have to
assign a probability to each polynomial degree n%,{;aranpeter V&’LIIII%S.
This is a heh and egg problem: how can the Probability of a model be
measured before the model class has been assigned probabilities, and

vice versa? This problem becomes even greater if we do not have a

number of datasets from thﬁ same soure, that is, we have no possible
way of estimating tlf probability for the model class. For this reason
the pro%a%lilility I%or the mode] class is ofﬁtl]%-ﬁgllﬁ%ethﬁ)%l’%}g& and
B, élmgywqﬁrasdiwrép ¥s wvsible, the de%cription‘ en%fllé

inci n be used to refine the €xpectancy, by choosing
g;gle% i%cc}?%faghgﬁnimises the Sum o}l ?lescriptions over all datasets

from the Same source. In tho best cases this is what an experienced

data analyst will do in the first case. He will use his intuition to]fe%
u

expectancy function to reflect the behavioyr of the Source.
g}}%ﬂaﬁy to tlile psyc ophysicaﬁ1 experiment 1n ](lfhapter 1, the refine-

ment process relies on the first, subjective expectancy function, and
thus new features can be difficult to identify.




Chapter 3

Tracking Target and
Spiral Waves!

3.1 Introduction

Target and spiral waves in biological, chemical, and physical systems
have attracted much attention since the original discovery of such
structures in the Belousov-Zhabotinsky (BZ) reaction. Such spatial

structures are also observed in convective Rayleigh-Bénard systems,
in the aggregating phase of the slime mold Dictyostelium discoideum

and intercellular Ca®* waves (Cross and Hohenberg, 1993; Field and
Burger, 1985; Siegert and Weijer, 1992; Lechleiter and Clapham, 1992).
In real experiments the observed patterns usually appear in the form

of multiple target and spiral waves separated by more or less sharp
boundaries or by regions of spatio-temporal chaos. In order to analyse
the long time dynamics of such systems, a huge amount of experimen-
tal data must be processed. This type of time consuming analysis is

LAn earlier version of this chapter has been published as a technical report
(Jensen et al., 1998). The current version is submitted for journal publication as:
Flemming G. Jensen, Jon Sporring, Mads Nielsen, and Preben Graae Sgrensen,
“Tracking Target and Spiral Waves”.
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icallv performed after the €xperiments have been conducted, and it
‘1513;1; untﬁ I1)10w oﬁydbeen performed automatically with methods whéch
er

special physics or chemistry of the experiment un
idrfx%%%%a%?o}lh H;fnusse Iét yal., 1990; Grill e}t, al., 1996; Winfree et al.,
1996).

The method presented in this paper can identify elliptical and spiral
waves independently. of the merbenirhabiha ol s Targe Al b el
as well as computer generated patterns. The method combines filter-
ing techniques known as scale-space methods, differential operators on
the image level and statistical methods (see (Weickert et al., 1997a)
and references hghhel of pS it 1S e BRI b Wit
}ﬁ%ﬁtiﬁes the coordinates of all centers and spiral tips in an image of
256 x 256 pixels within 40 sec whe implemented in Matlab 5.1 on a
HP9000s889 running HPUX 10.20.

In Section 2 the details of the image processing method are de-
scribed, and in Section 3 spiral and target centers are traced in 12 BZ
experiments catalyzed by the metal complex ruthenium-tris-bipyridyl.

3.2 An Image Processing Approach

In the following we will describe an image processing approach to the
analysis of the dynamics of patterns as generated by the Belousov-
Zhabotinsky reaction.

The image is an intensity surface sampled ol* @ regular spatial grid
(z,y), resulting in a matrix of intensity values L(z,y). In Figure 3.1

are shown images of a target and a spiral pattern from the Belousov-
Zhabotinsky reaction.
To study large scale behaviour of spiral patterns Grill et al. (Grill

et al., 1996) have used the dy ics of the points of constant intensity
(loosely speaking the spiral tlll)l). e have used an alternative approach
by noting that the evolute of iche yave fronts are compactly located
fose to the center of ;che spiral and target pattern. We thus propos
tOefioe the center of spiral and target patterns to be the center o
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spirall
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(a)

Figure 3.1: An example of a spiral (a) and a target pattern (b) in
a Belousov-Zhabotinsky experiment with the initial concentrations
[HoSO4]= 0.8 M, [BrO3]o = 93.2 mM, [MA], = 93.2 mM and
[Ru(bpy)2t]o = 0.34 mM.
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the evolute of wave fronts. We will use the dynamics of Xhis center to
define the dynamics of the spiral and target patterns. An advantage
i5, thatisadkingsminedmicalds on the speed of the center '

3.2.1 Calculating the Evolute

We will in_the following examine the 9volut§es of isophotes and edges,
where 1sophotes are curves of constant intensity, and edges are the locus
of points of maximal intensity change. By examining the intensity
change in the gradient direction we find the edges as the following
equation:

L2L,, + L;Lyy +2L,LyL,,
LY

=0. 3.1
L+ L (38.1)
he notation introduced in the above formula is a convenient short-
and and will be used in the rest of this article: (z,y) is the Cartesian

spatial coordinates, while (w,v) is a local right hand coordinate sys-

tem, whete w is along the image gradiont,q Jhif48i621d7 thie 22186

w

ﬁ?%‘iﬂﬁ%ﬁ% %@ﬁ?%&%@%ﬁl#ﬁhe gauge coordinate system is undefined

in extremal points, whel© the gradient length L, =

L + L is zero.
The €volute of a two dimensional curye jis defined e the _loius of
. center of the osculating circle. For a circle the
p01Tts generated by t&u% . . T
evolute’is a point, and for a symmetrical spiral shown in Figure 3.2 (a)
the evolute is limited by a circle as shown in Figure 3.2 (b5
The osculating circle is a geometrical interpretatign o ¢
i : . radius
gganglgfc%Ifagg fllmensignal curyes Lidelinetthod tormat N1
or an isophote of an image L, the normal is along the gradient
direction

the curva-
¢ circle,

N = L. L)/

L+ L3,

and the curvature is calculated as

L' L2Lyy + L2Laq — 2L, Ly Ly,

Lo (L2 + L2)3/2

K
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Ficure 3.2: The spiral: f(s) = [s cos(s),ssin(ls)]T (a) and its evolute
(b% Note that the €volute is limited by a circle.

Due to the discrete nature of images, edges will also be a discrete
et of points and therefore also the evolute. Hence we work with the
ioflowing set:

o, = {2,y + K~ N|L(z,y) = k}. (3.4)

The evolute of the L,,,, = 0 edges is estimated in the Same manner
as above simply by replacing L with L, in all the above equations

or

g}r(lg msgfé’int%ekcﬁr&itlinee %vi%ﬁﬁg%on the zero isophote of L,""

2 2

(L2,5 + L2 (8.5)

ww wwy

)3/2

In this case up to fourth order deriyatives are used to extract the
edges. Note that &' # L L since the L%

ﬁ‘ﬁ%"g”et‘ﬁ‘"a%s éndim‘f‘entggauge coor Z1lnate fystleuﬁlv%ﬁaff b e
The image derivatives can conveniently be estimated using Linear

cale-Space (se eickert_et al, 1997a) and the references theteln),
1S.e. smo%t in(g t e(YYnage Witeh a auss?a% l%ernelhof standard deviation
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V2t
L(z,y,t) = G(z,y,t) * L(=,y), (3.6)
isinal i is I d t is the scale. The advantage of
mﬁgﬁhggﬁleg&ﬁ?ngﬂatgﬁ;f it (fe’dygc%lsl the grid and noise effects, allows
for a uniform analysis of image structures at all scales, and allows for

a well posed estimation of spatial derivatives,
Lyiyi(z,y,t) = Gyigi(z,y,t) % L(z,y).

In this manner, taking image derivatives of up to fourth order is
not an unprecise process for appropriate ¢ (see (Blom et al., 1993;
Haar Romeny et al., 1994) for a noise analysis).

We will now demonstrate fhe differenceretween the ,iSO]fhotes and
he e€dge approaches on a single image. In Figure 3.3, a single 1sophote

has been shown for the two images togethel with the correspond-
ing evolute set using Equation 3.37 Immediately we observe that the
isophotes are very dependent on the large scale behaviour of the image.

he spiral is for example lighter at the top than at the bottom, hellc€

the isophotes can be seen as a dividing line. this case heuristics
must bIé introduced, an lfisop%otes vgit% thelll;rge gradient lengths

are included i thehestimate. Still, the drawback of the evolutes of the
1sophotes 1s that they are only loosely coupled to the wave fronts.
In contrast as shown,in Fﬁguﬁe 3.4, we demxns,trate the use of the
q S 1t

edges given uation 3.5 is seen, the edges
?&fg%,t ltlfl% %Erti%% strguctlglre better and the Btnsts ISR noisy.

3.2.2 Analysing the Dynamics of the Evolute
%ﬁcﬁ PoIRLQAHE egglfn‘i%ﬂé"é%“tt}(‘f | pitbygag peiaovie FlH G T ARg

ay be interpreted as noise in the image, and some will be situated in

clusters. For computational reasoris, the €asiest method of finding the
cluster centers is to sample the €volute points on a regular grid, e.g. the
same grid as the image is given by, and use Linear Scale-Space to locage

he maxima. The Scale-space may be applied in two ways: Eithel BY
%nding extremal points image by image or by stacking the images into
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(d) (d)

Figure 3.3: The above images show a s1ng1e isophotes Igbla k lines) for Figure 3.4: The above i 1mages gow the edge lines (L for the

and he correspon&'ing evo ute sets

1( d the corresponding evdlute t d the Spira
gg‘?st %tn%at( S(e) i tft%e Sl%rgra 1eriltnls 1ingh and at scale t = 8. E Sge Ny a(d e?z}mke vs}lhe%e he gradiént is high and at scale ¢ = 8.
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a single three dimensional image and locating the three dimensional
ridge of extremal points. The latter very reasonably implies that the
dynamics is continuous, and it is even possible to implement time
causal algorithms that only use past data. But to achieve maximal
speed we have chosen to implement the image by image analysis.

To validate the definition of the spiral center, a stable spiral gen-
erated by a numerical simulation has been investigated as shown in
Figure 3.5. The simulated model is a three variable autocatalator
(Peng et al., 1994). The simulation is performed on 256 x 256 grid us-
ing a simple 5 point discrete Laplace operator. The spiral tip performs

loid moti inFigure 3. . i m
_ gé)ggtglthglgeﬁgragfsafgvgwm%%%hoét@ﬂe by dlaiw Gaidie A BN
in(b).

3.3 The Experiments

The chemicals used in the experiments were prepared from potas-
sium bromate (Riedel-de Haén 30205), malonic acid (Aldrich M129-6),
Ru(bpy)sClo (Fluka 93307 Tris(2,2-bipyridyl)ruthenium(II)-chloride
Hexahydrate), sulfuric acid (J. T. Baktir) and double distil_leﬁ w?f‘petr.

sulfate

chloride ions of the catalyst complex were replaced wit
'iglﬁg using a column. The Product was tested with a chloride selective

electrode.
The €xperiments were performed in a 9 cm Petri dish and the

reaction layer was 0.85 mm thick, i.e. with an aspect ratio Feﬂ >
eld at

100. The dish was placed in a thermostated compartment h
S . . . .
25+ 0.1 °C, which was purged with N2 gas to avomtsurfa%ee regctions

tant 05 in t t here above t
]ﬁltév Fz%rnerﬂ%}?ageﬁfu?rﬁrfaggc{l fro2ml%e o%vawrir%ﬁsg ??00 W Xenon arc lamp
(Oriel model 66083). The lamp was equipped with a UV grade fused (b)
condenser and a photo-feedback system (Oriel model 68850) to obtain

a homogeneous distribution of the light on the reaction layer. The light . . 1 thod imulated svstem. h
of illumination passed through a central bandwidth filter of 450 + 10 Figure 3.5: Validating the MBI Of & SUNHALEE Systel (a) s oS
the image of one component of a simulation of a spiral. The tip is

nm. (Spindler & Hoyer). The intensity of the light in the reaction . . ter is sh N loid moti
- / : moving. In (b) the detection of the center s shown. INo cyclold motion
layer was 120 + 10 nWem™2. Such low intensity does not perturb the i% (;,elt égc d.( 121 (lc) a maéniﬁcat_ion of the motion of the splraintlp 1s
s

own. ere cyc oid moveément 1s seen.
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chemistry of the chemical reactions, and in the following we do not
consider any interactions between catalyst and light. Nevertheless,
we obtained images with high tontiastrhetieegedhe o Heschidnwihe
Eﬁ%%ﬁ%edm\ﬁgiﬁloa %&D camera (VarioCam PCO CCD) with 720 x 540
imaging pixels, zoom optics (Fujinon TV-Z 1:18/12.5-75) and a frame-

grabber (Imagraph Imascan Chroma-P) before they, were stored o
a P Afteé mixine the chemicals the reaction solution was covere
i

. n
and left undistur e%. Band of travelling waves, oscillating centexis ta,nd
ution

; ; reaction layer, and_ the €VO
spirals developed, SROHBNPAN Mithethey disappeated, in some cases
for more than 1 hour depending on the concentrations of the Chernicais. S et

3.3.1 Tracking Target Centers

The Program is able to identify target centers. Waves emitted from
such centers are often only visible for short ¢jmmince target centers
are annihilated by travellin ves in the reaction layer because of
their lower freque%lcy. iong I%afng target centers in ruthenium cat-
alyzed experiments eventually become distorted from circular to ellip-
tic geometry or even more irregular shapes, which make them difficult
to identify. Target centers in the ruthenium catalyzed reaction can
move through the reaction solution, as it is seen in Figure 3.6. This
center is defected by the Program for an interval of 14 min, in which
it moves 5.6 mm with a mean speed of 0.39 mmmin~—!. The speﬁd of
the center is not constant while it was observed. The speed oscillates
aperiodic around a mean vale, such that the Position of the target
center is some times almost fixed, while occasionally it moves through
the solution.

Figure 3.6: In (a) the path of a target center is shown for an experiment
with [H2SO4]= 0.4 M, [BrOjz Jo = 93.2 mM and [MA]o = 93.2 mM. The
arrows indicate the direction of movement. In (b) the mean velocity
3.3.2 Tracking Spiral Centers of the target center is shown as function of time.

In the €xperiments spirals are the dominating spatial structure. In
total we have traced the paths of 37 spiral centers in 12 experiments
with different values of [HySO4], [BrOj ]o and [MA]y. The initial con-
centration of the catalyst is fixed to .34 mM in all experiments. In
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Name: [HgSO4] [BI'O3_]0 [MA]O Time <v>
/M /mM /mM /mm | /sec. | sec/mm
ru233, 1.0 93.2 93.2 6.8 59.0 0.11
ru2384 1.0 46.6 93.2 44.0 0.36
ru237; 1.0 46.6 139.8 7.2 16.0 0.44
ru2024 0.8 139.8 139.8 8.4 29.0 0.28
ru208s 0.8 93.2 93.2 5.6 42.0 0.13
ru213, 0.8 93.2 46.6 12.9 36.0 0.35
ru2l3s 0.8 93.2 46.6 20.6 46.0 0.45
rul00s 04 93.2 93.2 11.0 54.0 0.20
rul004 04 93.2 93.2 11.4 54.0 0.21
rulOlqg 04 93.2 46.6 18.6 50.0 0.37
rulOlg 04 93.2 46.6 11.5 48.0 0.23
rull9y 0.2 233.1 93.2 7.8 23.0 0.33

Table 3.1: The characteristics of 12 spiral centers %%ﬁf’c{‘%fiefptg g}gﬁf%{}%
pRL Rt e Ho R e fifonts. cHEE

g le 3.1 the characteristics of 12 paths ar .li%ﬁg’s%%%tt}ilﬁr with the

G t numbers
ifferent combinations Pf the Ch_emlc% S use : .
refer to a numbering of the trajectories observed in the same experi-

ment. Note, in this table how centers detected in the Same experiment
can have different mean speeds.

Figure 3.7 shows trajectories of motion of spiral and target cen-
ters in six different experiments. The trajectories are superimposed

on images taken halfway through each experiment. The analysis is

erformed for all the subimages indicated by black squares. The €X-
gmp?es were selected to show tazi)ilgal types o otign of th%pgserved
patterns. The experiments rul iguie 3.7 alglan rul02 Figure 3.7
(b) are typical and contain mainly spiral centers moving along straight

or slightly bended curves. In experiment rul02 Figure 3.7 (b) a big

spiral in the CoRtet. 0% (a8 ‘CeFea" (D TheUBERI A M A TRERIE B

Tracking Target an8piral Waves

Figure 3.7: Examples of large scale motion of a spiral and target pat-
tern. The movement of the centers are shown superimposed”onthe

midway 1mage. The 256 x 256 subimage analysed is indicated by a
box. Not all paths shown correspond to centers present in the midway

image. In general the target patterns are much more unsymmetrical
than the spirals. The noisy paths shown in (e) are du€ to €arly target
patterns.
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experiment ru119 Figyre 3.7 (c) the reaction becomes turbulent shortly
aft% r the, time of thegs]}llown hg ge, and the splra?gllssolves in turbulent

waves without any detectable centers. Experiment ru213 Figure 3.7

(d) shows a successful tracking of centers ggd%éfg%ﬁeﬂ%i?ba@@mhlw
Mbﬁﬁs@@%ﬁ%fh@%sﬁ(%g%g Eh? %géléemonstrates a complicated

s-shaped movement of a spiral center. In this experiment the noisy
paths are du€ to some early very elongated target patterns, for which

it is difficult to define a true center. The €xperiment ru238 Figure
3.7 (f) shows bended as well as almost straight trajectories within the

same experiment.

For the spiral centers we find, that the mean speed of different cen-
ters observed in the same experiment can vary more than a factor 1.5,

see Table 1. In all experiments tlile Spira%) gg;ggst%lg\ﬁnbeuatnc a %crtgé";sﬁ

i aths, the
gi,cge%u%}% £ J}&%A%gﬁtlir%falﬁ?egent. ’Tj}rllder our experimental conditions
we have not been able to relate the mean speed of a spiral center to
[H2S04], [BrOj3]o or [MA]o. This property of spiral centers is in con-
trast to the empirical relation found by Ram Reddy et al. (Reddy et al.,

1994) for the velocity of travelling waves: v

[H2S0,4][BrOg]. As
an example we find the fastest moving spiral center has < v >= 0.45
mmmin~! at [H2S04]= 0.8 M, [BrOj Jo = 93.2 mM and [MA], = 46.6
mM: while the slowest moving center with < v >= 0.13 mmmin~
is found at almost identical reactant concentrations [HzSO4]= 0.8 M,

[BrO3 Jo = 93.2 mM and [MA]y = 93.2 mM. See the trajectories ru213;

and ru208; in Table 1. In both experiments the veloc11ties persisted ft())r
more than 45 min. The speed of the moving spiral centers can be
grouped 1n tﬁree different types, as it is illustrated in Figure 3.8 for

three typical systems. The mean speed of the center shown in Figure
3.8 (a) is initially decreasing, later it becomes almost constant. This is

the most common development observed. In Figure 3.8 (bg the speed

oscillates s_lig{ltly aroun_(‘ghits1 meztn vahée tthro ghout tﬁe X%%ﬂlzﬁlﬁ%’
Spir oves with almqst cons velocity.

gnd tgl &nd o ﬁle de_te(i}gon per(go re d'lli% to 1%% € gl%{m spee

of the center shown in Figure 3.8 c? initially is growing until it passes
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ru099 Path no. 4 ru213 Path no. 3
T T T T 08 T T T

ru233 Poth no. 1

a0
t /min

(c)

Figure 3.8: The time development of the speed of thrpe spiral centers
detected in the €xperiments Tu099, ru213 and ru233 with the following

initial conditions. (a): [HoSO4]= 0.4 M, [BrO3]o = 93.2 mM, [MA], =
mM. (c): [HaSO4)=1.0 M, [BrOj]o = 93.2 mM, [MA]; = 93.2 mM.
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through a maximum and decreases to the original value again. The
trajectory corresponding to this velocity profile is seen in Figure 3.7

(e).

The directions in which the spiral centers move can also be groupe
into three types.. These¢ are shown in Figure 3.9. The most” typica
s%apes of the trajectories are slightly curved paths as shown in Figure

3.9 (a). This path is 20.6 mm long, and the spiral center is first detected
in the interiO]: of the dish. The center 1s also ey (Ifflgc%ree del@h

n several centers are detected in the S& .
Mlly}é‘% they will most o?ten_ mgqve in &ehs%me irection, as it 1s seen

in the experiment rul0l in Figure 3.7 (d) and (f). The trajectory
shown in Figure 3.9 (b) is an example of a more curved path, whe'®

the direction of movement tlﬂrlns nearly 360 e%rees within the 54 min
the center is observed. The € aracteristics of this center and a nearby

efected center are both listed in Table 3.1. These two centers have
almost identical mean speeds. In Figure 3.9 (c) an example of a s-

shaped curve is shown.,K This spiral center is observed in 1 hour, but
the speed of the center is slow.
In several cases, spirals are initially formed as pairs of counter ro-

i ; n grow, if the djstance betwee
tﬁg%%n%g?g%féwEé?filfn%p%{ﬁ}e.cBWet]B%veginve’stigated the double spira

centers formed spontaneously in the experiments in order to detect
similarities and differences in such pairs. In Table 3.2 we list the char-
acteristics of 6 centers. The first 4 centers are formed as pairs., The

2 last centers ich develop closed to each other, in the experiment
ru2l3, are eiist’eglﬁ)r comparli)son. e[n %Qigure 3.10 the typical develop-

ment of the trajectories of a double center is shown in (a). In (b) the
distance between the 2 centers as function of time is shown. Spon-
taneously formed double centers are common in our experiments, but

any centers do not move ayay frg%gﬁcﬁh@m@far&ﬁﬁ(fﬁ{%at}c%egfggvss
IREANGH wiEH R @¥alie BpeRE 2 Bhown in the plot. In Figure 3.10 (c)

an example of two atypical centers are shown. TheSe centers are also
initially formed as a pair.

The diameter of the petri dish is 9 cm. In most cases the we find
the direction and velocity of different centers are related over short

Tracking Target an8piral Waves

ru213 Path na.3
T

ru233 Poth no.1
T T

Figure 3.9: Three typical trajectories of spiral centers. The initial
conditions are: (a): [H2SO4]= 0.8 M, [BrO3]o = 93.2 mM, [MA], =
46.6 mM; (b): [HySO4]= 0.4 M, [BrO;]o = 93.2 mM, [MA], = 93.2
mM, and to the (c): [HaSO4]= 1.0 M, [BrOj ]op = 93.2 mM, [MA]; =
93.2 mM.
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ru099 Double Center ru099: Distance between Centers

ru101 Double Center
T T

Figure 3.10: In (a) is shown the trajectories of two spiral cen-
ters initially formed as a double spiral with reactant concentrations
[H2SO4]= 0.8 M, [BrO3 o = 93.2 mM, and [MA]g = 93.2 mM. In (b)
the distance between the two centers shown in (a) are calculated as

function of time. It is seen that the distance between the centers grows
almost linearly. In (c) are the trajectories of a different pair of centers

shown. They were initially formed as a double center and move in a
fashion so their trajectories cross.

to fourth order spatial e
%o %ontrast and noise. 'This is dy€ to the use Ot the Linear
ec

Tracking Target an8piral Waves

Name: | [HoSO4] | [BrOj o | [MA]o | Length | Time | <v >
/M /mM | /mM | /mm | /sec
ru099; 0.4 93.2 93.2 7.6 33.0 0.23
ru099g 04 93.2 93.2 16.6 54.0 0.31
rul(Ols 0.4 93.2 46.6 9.1 34.0 0.26
rulQly 0.4 93.2 46.6 9.3 54.0 0.17
ru2l3s 0.8 93.2 46.6 20.6 46.0 0.45
ru2l3, 0.8 93.2 46.6 12.9 36.0 0.35

Table 3.2: Characteristics of the Paths traced by two double centers in
the experiments ru099 and, rul01 and two single é:e;nte s in, tge same
part of the dish in the €xperiment ru213. The speed is of the individual

centers. The indices in the first column refer to different paths in the
same experiment.

distances, but unrelated over distances comparable to the diameter of
the petri dish. Tt is not, likely that, copyectign fon e BGHORs loyes
{Hition S'Itl%(g {g?ﬁegéergein%nt vgith observations made by e.g. Rodriguez
and Vidal (Rodriguez and Vidal, 1989). The zones of coherence which

are spontaneously established are separated by zones of annihilation of
waves. The coher€nce zones form a superstructure which persists over

long time but change eventually. Such cohel€C€ zones can be seen in
all experiments shown in Figure 3.7.

3.4 Discussion

A system for automatic tracing of large scale dynamics of spiral and

target waves has been presented. It uses a new operationai deﬁn'ti%n
of the center of spiral and target wayes based on the evolute of the

waves. Although computation of the eévolute as presentetlef® USes up
gerlvatlve& it is very stable _hoth vglthl respect
cale-Space

niques and natural integration over a large support.




3.4 Discussion

n the aspect ratio of the coordi-

Eﬂﬁgrﬁygt%}n iq;}ie.lr,e §%l'ti]pé)ev:ol stceogv(l?ss, 1.1ssin(s)]T. This evolute has

no limiting area.

Note however, the evolute of imbedded ellipses (oval target pattern)
(f(s,k) = [cos(s),ksin(s)]T, k # 1) and an ’oval’ spiral (f(s,k) =
[s cos(s), sksin(s)]T, k # 1) does not have compact support with a well
defined density maximum. See e.g. Figure 3.11 where an example of the
evolute for an oval spiral is shown. This does not seem to be a problem

for the real target and spiral waves observed in theSe experiments,
wlgic evolve towards regular patterns with com%)act support.

In the current implementation the processing time is approximately
40 seconds for a 256x256 image using a Matlab 5.1 implementation

running on a HP9000s899 under HPUX 10.20. A preliminary study

in(cilicat%s that it may be possible to reduce the Processing time by an
order of magnitude.

For future development we note that spiral and target waves camt be
istinguished by a simple analysis of the neighbourhood of the center:
rawga cirgle o¥ ra iusp } er %,ﬁa_n the wave leng(ih ﬁround the center

and count the number of transitions encountered. If an odd number

ips . ttern is a spiral. otherwise it 1s a target
g}fa%rez?ns ltllot Sisls“fg;nt ’etlilﬁe%ﬁo enasb?equuah‘gtative and automatic
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identification of spiral and target patterns in experimental data.

By preliminary experiments we expect that othel types of geo-

metrical wave configurations may be %'den‘%iﬁed by the use of Linear
Scale-Space, e.g. the Cusp 1n the interface between two planar waves.

This is left for further development.

From the application of the én%t%od to large aﬁpect ratiq wave paf—
terns in the ruthenium catalyze reaction we have found no simple

correlations between fth patterns of waves of the individual centers and
the concentrations o the main reactants. We have, however, found a

strong indication of local correlation of the speed and movement of
centers arranged in a slowly changing superstructure of regions, but a

detailed explanation requires more experiments.




Chapter 4

A Note on Differential
Corner Measures!

4.1 Introduction

Corner detection plays a central role in many image analysis appli-
cations ranging from character recognition to landmark identification.
The literature on corner detection roughly divides into two classes.
Some use explicit models, see e.g. (Rohr, 1992) for an overview. Oth-

ers use derivative expressions like the Gaussian curvatue, the structure
tensor (interest operator, second moment matrix), expressions involv-

ing the isophote curvatue, and the curvature of Canny edges, see e.g.
(Rohr, 1994) for an overview.

One subclass of the latter is corners defined as extremal points
of the isophote curvature times the absolute gradient length to some
power a:

C=|VL]% = L&' L, (4.1)

LAn earlier version of this work has been published in a conference proceeding
(Sporring et al., 1998). The current version is submitted for journal publication
as: Jon Sporring, Mads Nielsen, Joachim Weickert, and Ole Fogh Olsen, “A Note
on Differential Corner Measures”.
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where¢ we have used notation w being the gradient direction and v the

(perpendicular) tangent direction of the isophote in a right hand CF?é—
dinate system (w,v). Kitche and Rosenfeld (Kitchen and Rosentfeld,
19825 stiggested to use a = 1, Zuniga and Haralick (Zuniga and Har-

alick, 1983) proposed a = 0, and Blom (Blom, 1992) and Lindeberg
(Lindeberg, 1994) investigated a = 3.

The advantage of using a corner measure with a > 0 is that the
product will focus on high isophote curvatures close to high contrast
edges. There are two special values of a that deserve a note: a =0

is invariant under monotonic transformation of the image intensities
(morphological invariance), and a = 3 is invariant under affine trans-

formations (the angle of the corner).
We will investigate the above subclass of corner measures in an

embedded Gaussian Scale-Space (see (Weickert et al., 1997a) and the
references therein):

L(z,t) = G(z,t) x L(x)
where the original image L(z) is convolved with a Gaussian G of vari-

ance 2t.

The advantage of such an embedding is that it redu¢es the grid and
noise effects and allows for a uniform analysis of corners of all sizes or
resolutions. The disadvantage is that the COrners are dislocated at
high scale and should be traced back to low scale in order to improve
their location. We will show that this process — altho&lgh comm%n
in the literature — is problematic du® t© the complicated catastrophe

structure across scale. . . .
il sketch the catastrophe structure in two different settings.

Firs\éYfr., vf)y examining the spatial singularity structure of the corner
measures. However, Rieger (Rieger, 1992) noted that such corner
points usually do not correspond to corners of Canny edges. Therefore
in a second approach we will extend Rieger’s analysis of corners on
Canny edges to edges defined as single isophotes.

Related to this work in terms of Catastrophe Theory is Damon
(Damon, 1997), Rieger (Rieger, 1992; Rieger, 1995), Griffin & Colch-
ester (Griffin and Colchester, 1995), Olsen (Olsen, 1997), and Johansen
(Johansen, 1997).
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4.2 Image structure

Assume a multi-scale 2D image L(z,vy,t) : R* x R, > IR, whet® %, ¥
are the spatiall coor e1nates an% t a(S(’:za/Ie )parameter.+We are ‘{Vnterestéd

in spatial point features defined as the intersection of zero loci of two
differential expressions: A(z,y,¢) = 0 and B(z,y,t) = 0. In our case of

corners, this may be 4 = 9,C and B = 9,C, whel'® ¢ = IVL|*k, a €
0; 3], or in the ¢ase of corners constrainell to a single isophote: A =

— Iy and B = 9,C, We analyse the scate—s ace C‘tlrvfeshsagﬂ‘%
dor e et e bl o
parametrisation of the curve

A(z,y(z), t(z)) = 0, B(z,y(z),t(x)) =0

such that it is identified by the two scalar functions y(z) and ¢(z).
By differentiation with respect to =z and solving a linear system of
equations, we obtain:

_ A;By — B, A,

T

ABy — Ay B,

: : . n the taneent of the curye points in
e denomnaton = kst SR o lional pdlv el
to two curves that meet at one scale yielding an annihilation or creation

of a pair of feature points. Whethe! it is an annihilation or creation
for increasing scale can be accessed through the Sign of ¢z, negative

for annihilation and positive for.creation. If t econd order structure
tre ’ﬁ’]nisées’ we get B event of even %lgheq Bder.
e

aussian scale space image satisfies the heat equation (0; =
>; 02,2, ), changing the general program of catastrophe theory slightly
(Damon, 1997). To describe the local jet in space and scale we develop
the image in heat polynomials, i.e. polynomials satisfying the heat
equation. In 1D they can be generated by the following recursion
formula

Up = TUp—1 + 2(n — Dtvp_a, vo=1, v =uz.
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A local polynomial model of the 2D image may thel be constructed
from the jet (the local derivative structure) as

L = aggvg + a1ov1 (lI:) + ap1v1 (y) + azg’l)z(ilﬁ) + ay11v1 (.’E)’I)l (’y) + ...

re the @’s are constants proportional to the spatial derivatives in
fvzl}%,t) = (0,0,0) by factorial factors.

Given L, we compute A, B. We count the linear constraints on the
jet (the a’s) to be satisfied for a given event to hap%en. tIn getneral
Wehhave 3 translational degrees ofre?dom_ of the €oOr '1na ¢ system

so that in a generic 1image we can satisfy linear constraints on three
different coefficients. Furthermore we can choose the spatial rotation
of our coor(?inate system freely to simplify expressions.

We have analysed the corner definitions outlined above. In all

ases. the curves have generically points at which the curve’s tangent
ﬁas Ho scale component and second order curve structure such that

both creation gnﬁl a nigfﬁl%tig{ﬁé@ilé ‘gee&(ér'caly happen. On top of this,
as highe

— appening in critical points
t?e case a ring maxima

0 fa image bgt(?ﬂffg}fe?“h?é Q@eﬁ'ﬁéef@ﬁtcﬂﬁi?ﬁ}l whidein & are the
approach of a saddle to a minimum or maximum. The events for

the isophote constrained measure is that a minimum on the Curve

. r
meefs a maximum. In both cases, thef® 18 no constramnt on whethe
minima must be posifive or maxima negative or vice versa. Hence we

can conclude that both annihilation and creation happens generically
involving maxima of the absolute value of C'. The implication of this
is that tracking a corner over scale can only be performed over an open

interval of scales. At scales outside this interval, _thel corner does not
exist. In Figure 4.1-4.3, we have shown the critical points of C on

the letter ‘c’ over scale for the four different corner measures, and in
Figure 4.4-4.5 we show a zoom of a particular interesting set of critical
points.
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4.3 Experiments on Characters

The experiments we have performed are on binary images of characters.
The quantization implies that the images are non—g%aler‘ic .at lowegsi(‘c5
scale but will. behave as a generic jmages WhaRitha§ W HEAEEEC

%1%-81:‘%5%}110,5?1(1&%({"\’%3, %ggwe;‘; fight and dark), and we may hefce
approximate their behaviour as the behaviour of the ™M1 -1sophote.
This also suggests that the image will evolve initially according to
Eucledian Shortening Flow, since the isophotes evolve according to

oS = (K-i— L™

L—)N in Linear Scale-Spae, where S is an isophote,  is
its curvatue, and N is its normal (Oshet and Sethian, 1988). We will
thus expect creations to be high scale phelomena.
In Figure 4.1-4.6 some experiments on the letter ‘ct’_ are sthown1
i t 1 t the, spatial extrema
Fro thtehg%egﬁ}gg%}%‘%% gpvg‘gog%ﬁgsugl%ptllﬁ?i sﬁﬁﬂl}ir thawour w.r.t.l%]he
fol owing points: Creation events occur, localisation is poor at high
scale, and finally, the number and localisation of critical points at low
scale is similar for all a, hut the evolution is very different. .
Conversely, the spatial extremal approach is very sensitive to noise
with respect to the topology (notice the shear explosion in critical
points in Figure 4.1 in comparison with Figure 4.2). The single isophote
approach is so stable that we have ch sténﬁnot to display the 1018y ver-
sion of Figure 4.5; ther¢ was no visual difference. .
’ n the corners of a single

inally, we conclude by Figure 4.6 that wh
isop]iote g’re or ere&1 accgrgigg to t?leir absofute strength, varying a
changes this ordering. Notice especially that the peak. at approx. arc-
length 40 is practically removed when @ is increased while its neighbour

at approx. arc-length 20 becomes the dominating corner point for a =
3.

Figure 4.1: Critical points of the noiseless image of ‘C’ for a = 0,...,3
4.4 Summary counting from right to left and top to bottom.

We have studied the family of corner measures k|VL| for a € {0, ..., ?;d}
embedded in Gaussian Scale-Space. Two approaches have been used:
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Flgure. 4.‘2: CI.‘ltl(Zal pomt.s of a noisy image of ‘C .for‘a =0,.. 5 3. The Figure 4.3: Critical points of the mid-isophote of ‘C” for ﬂ ~0,...,3
noise is identically and independently normal distributed noise with The Structure for the noiseless and noisy 1mage are visually equal.

mean 0 and standard deviation 5.




4.4 Summary A Note on Differential Corner Measures

G VIRe ¢

Figure 4.4: Stereo pairs showing a zoom of Figure 4.1 for (TOP) a =0 Figure 4.5: Stereo pairs showing a zoom of Figure 4.1 for (TOP) a = 2
and (BOTTOM) a = 1. and (BOTTOM) a = 3.
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Isophote curvature Isophote Curvature x Gradient

0 1(‘)0 5‘0 100
Arc length Arc length

Isophote Curvature x Gradient"2 Isophote Curvature x Gradient"3

0 100 5‘0 150
Arc length Arc length

ioure 4.6: L1 for the letter ¢ at { = 61.8 and for @ = 0, ..., 3.
Eo% the isoph8te curvature (a = 0) the arc-leneth functions dti)eéi%cs)

: ar COrRer correspondin
outer side of ‘c’, reacheS the p p

%et}}leamma peak, travels along th? tiﬁreleg 1&1&9 Bgr‘g’ a\éiglgigg Es%%gi)yl@

the onset o

ﬁ&gé’&g{ugﬁc@{l@%gﬁ%@@? The same arc-length function is used for the
othet ‘corner measures as well.
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Thasatostronhs SsHEe.RfRoth thphatial extrema of the COTREr
For both aplproach s we have concluded that ¥he value a .= o oS
i { Wit tt number of catastropheS-
i0ahtg the &Y hany catasbiaphis Hispear.
Finally, the isophote approach has been shown to shift the focus

away from high isophote curvature points for a > 1. The resulting
corners do not correspond well with intuition.
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page design, which if neglected seriously worsen reading quality.

Several compression systems have been suggested to date. Some
systems try to identify the font and theR encode the document as
ASCIT augmented with character placement, but since the number of

fonts increase each day, the task becomes, increasingly, d,ifﬁcu,lftl. Also,
errors in these systems, wher® the wrong font or type’is identified, are

very disturbing to the human eye.
The most popular systems are based o the algorithm CONTEXT

(Rissanen, 1983). This algorithm completely disregards the geome,txl‘l—

al content and ¢ resses solely hased on the statistics of the n€18
%ouring pixeﬁ. éﬁl(]:fl) systems a%’e ig‘i(ljly successful in terms of com-

pression, but they have some disadvantages. Firstly, it is a one di-

mensional system which scans the document line wis partitioning
the document into what has been read and what has not. I.e. the
full two dimensional structure is not used. Secondly, these systems

do not use a model class which is close to what originally produCed
the data. At low scanning resolution, the discretization noise will be
dominating which corresponds well with the model class used by the
algorithm CONTEXT, but at high scanning resolution the no1se will
be less prominent. Hene, it is possible to do better by choosing a
trically based model class. Finall model is not present in
gioglealr;li?ca}{ foarslfl. m%egef%gfstherlg &8 yOntllgrea limited possibility to
da:eco e at various resolutions.
This report is on the compression of blobs or more precisely of
coherent structures such as a character. The blobs are representable
by their contours, since each contour is closed, and the filling of the

space between contours can easily be asserted, e.g. by the odd /even

Chapter 5

A Piecewise Polynomial
Blob Representation!

5.1 Coding Office Documents

Many office documents scanned for electronic storage or transmission

consist mainly of black and white text and figures. Such data are often
the result of a geometrical description. For instane, characters in the

Postscript language and the MetaFont program are represented by a

collection of polynomials, and figures often consist of line drawings.
A full page is roughly ninety square incheS and with a scanning
resolution of six hundred dots per inch this corresponds to thiflty Slil—
and, a

ion black and white pixels, or four megabytes. Qn the othe’
kl(l)ﬁl page 0? text consgts of on]fy appro%?m}z’lteiy ve thousand charac-

ters out of an alphabet of about two hundred and fifty possible. That

is, five kilobytes of information.

It woul seem that storing or transmitting a document as plack and
ge carries other 1N ormation

{ }gﬁejgis’ée%iiesﬁgﬁikxe st Bty the &8 Tont and with a certain

LAn earlier version of this chapter has been published as a technical report
(Sporring, 1998).

fill rule: Examine any straight line on a page starting from a known
colour, and flip colour each time a contour is crossed.

The blobs are segmented and combined into an alphabet of symbols
by an external process. The goal of this work is to code the alphabet

in a lossless manner, by splitting the code into an analytical model and
a noise sienal. It is tﬁ,e i eﬁ%ing intent to investigate the 1155%1 ity
of the mo e? alone as a lossy code.

The list of literatue, where geometrical descriptors are studied, is

extremely long, but we especially found (Lindeberg and Li, 1997; Rosin
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and West. 1995: Chent and Chin, 1993) to be valuable in this context.
Tt seems that the novelty of this work is to combine the myopic view

of differential geometry with information theory to gain a connection
between local and global models. Connecting local and global is not

possible without comparison of description complexity with the €rror
of the approximation. The Minimum Description Length methodology

(Rissanen, 1989; Rissanen, 1996) may be the best for this means.

This chapter is organised as follows. First we will introdu¢® the
imaging model of Linear Scale-Spae, and demonstrate how this model

enables us to extract geometrical information from the image in a con-
sistent fashion. The? we will discuss various geometrical descriptors

in relation to compression and finally we will discuss the theOTy of de-
scriptive complexity and MDL and we will demonstrate an algorithm

for compressing images of text on an alphabet of 158 blobs of various
size.

5.2 Linear Scale-Space Analysis

The Shapes to be coded will be characters formed by a collection of

polynomials, converted to very high resolution raster and printed, and

finally scanned by a fax machine at high resolutio The result is a
binary function sampled on discrete grid also called the image. To
ease geometrical measurements on such data we will use the theOry of
sampling called Linear Scale-Space.

Linear Scale-Space was first introduced by Iijima in 1962 (Lijima,
1962; Tijima, 1971; lijima, 1972; Weickert et al., 1997a) as a descriptive
tool for signal analysis, and then rediscovered in 1983 by Witkin and
Koenderink (Witkin, 1983; Koenderink, 1984). Linear Scale-Space is
an axiomlatic deri‘?'ti(;? oftan in;:imgingdmc%(sieé;.flidT}c}%{clt(%d? ﬁfc ﬁl}(esfu;
in several ways. Firstly, .it greatly redyc® (C:

TR e R LA A
differentiation of sampled signals, which in turn allows for the us€
of differential geometrical tools on sampled signals. Finally, it is an
algorithmically unifying approach to analyse signals and images for

A Piecewise Polynomial Blob Representation

Figure 5.1: The original and smoothed image at scale 1 /2

contents of different sizes (Florack, 1997).

We will now shortly review the basis of Linear Scale-Space. The
essence of Linear Scale-Space is smoothing with isotropic Gaussian
kernels,

L=1xG(t), (5.1)
whete * is the convolution operator, and
1
G(t) = —ll=113
W@ a (52)

here D is the dimensionality (2 in the present c.ase) : and || -||2 is the
guclidean length operator. The stan ard deviation is ¢ = 5. The

effect for ¢ = 1/2 is shown in Figure 5.1. The Gaussian kernel is the
Green’s function of the Heat Diffusion Equation,

0= Oniass (5.3)

the right-hand side is understood to be the Sulll over all ‘di'
%}%%rs‘ieonseat hand, e.g. Oz¢ + Oyy in the present case. This diffusion

equation is particularly sensible to study because of the following prop-
erties (Koenderink, 1984):

e Invariance to translation and rotation.
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e Causality (in 1D this is equal to the non-increasing of critical
points, and in ND this translates into: all isophotes are upward

(large ¢) closed).

e Treats all scales (¢) equally.

We here treat the initial image as the boundary point of the diffusion
equation, i.e. L — I for ¢t — 0. The uniqueness of the Gaussian kernel
in the linear setting can also be derived from othe! Sets of axioms, see
(Weickert et al., 1997a) for a review.

Since Linear Scale-Space uses the Gaussian kernel and this kernel
obviously has exponential decay, Linear Scale-Space is a very con-
venient tool for studying differential geometry of data of polynomial
order. That is by partial differentiation it is seen that

DL =D(I«G)=1x%DG, (5.4)
re I is the sampled signal of image and D is any linear differential

Sator. In contrast to many othet methods of calculating derivatives
?}i};es one is well-posed in the Yense of Hadamard (Hadamard, 1902).

5.2.1 Differential Geometry on Discrete Data

To illustrate one of the above points, we will now review a number of
non-linear differential operators used to extract geometrical structure

in 2D scalar image data.

A commonly used edge operator is the maximum of the absolute
gradient magnitude,
G=,/

12 + 12, (5.5)

hete L. is the derivatiye (if the image in the Z: th direction. For
%e o

presenit example the absolute gradient magnitude is shown in Fig-

ure 5.2.
Anothe! operator is the isophote-curvature which conveniently can

be calculated as,

| 2Ly LyLgy — LyyL? — Ly, L2

K

(5.6)
(L2 + 12)3°
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10 20 30 40 50 60

Figure 5.2: The gradient magnitude at scale 1/2

The isophote-curvature is undefined in critical points wher® the gradi-
ent magnitude is 0, and it is numerically unstable for small gradient

magnitudes. To ensure that corners are placed at high gradient mag-
nitudes similar corner detectors have been suggested, which multiply
x with the gradient magnitude to some power, i.e, K, :thcaérger§

ﬂld%é;eel}{glﬁgrgpmgq&yoctéz,%s‘éffﬁ%&%gg&%&g rf(gg%nﬁlg(ﬂf to low scale

can become very difficult (Sporring et al., 1998). Figure 5.3 shows the

isophote-curvature at reasonably large gradient magnitudes. For this
particular, image the selected image points have an accumulated fre-
quency o% absolute isophote-curvature values as shown in Figure 5.4.

Noted should be that the accumulated frequency curve is almost flat
for absolute curvature values above 0.5. Although Gaussian smoothing

is not very good for detecting corners, this distribution is an indication
of the relatively few corner marks in the image detected by k.

5.2.2 Noise and Derivatives

Although the Gaussian function generates high frequency suppressing
derivatives. thete are several factors to consider. One is the aliasing
error du€ to a necessary assumption of band-limitation. In the Fre-
quency domain, differentiation can be seen to equal a multiplication
with the function (wi)™, where w is the angular frequency, i =

_1’
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and n the differentiation order. This effect has been studied by Haar

Romeny et al. (Haar Romeny et al., 1994) and they express the alias-
ing error as the power of the aliased frequencies relative to the total
power is given as,

00 g2
fﬂ w2he—tw /2 dw

error(n,t) =

= 3 , 5.7
fO wine—tw /2 dw ( )

here n is the differentiation order, ¢ the scale, and w the angular
gequency. This error is generally relatively unimportant even for very

high derivatives at a comparatively small scale, e.g. the relative error
wooow o o® o® ow® of a 100 fold derivative at scale 6.5 (standard deviation of 3.6) is less
than 1%.

Figure 5.3: The isophote-curvature at reasonably large gradient mag- The second type of errors is understood through the additive noise

nitudes at scale 1/2. White corresponds to positive curvatures, while model. Here noise is seen to be a (]usually) low ampli‘gcudt bﬁgbl}hg}l

i i i i ; i original signal. Again dy¢ to the d
black points are negative curvatures with respect to the isophote nor %‘?\[gpﬁgﬁXvﬁ’lgﬁl@%?‘flﬁlg(éiti?e%(}alﬁtiat%on opegrator ing‘?he g‘équency domain,
mal vector. this noise will be amplified as the differentiation order increases. Blom

et al. (Blom et a]T, 19932 have studied the Propagation of noise in rela-
tion to the spatial derivdtives in Linear Scale-Space in terms of the mo-

noise of derivatioThe results are quite complicated
an dmentlvlvi glfet_l]]ﬁst summarise the su%p est case of independently

€
identically distributed noig

2 o 62 <N2>Q2nm Q2ny

Ng,Ny

T 55)

where 7z and ny are the differentiation orders, € is the distance between
samples, (N2) is the mean of the squared nots and @, is defined as,

2 oo iprotecure -+ 12 1 ifn=20

Q,=¢ 0 if n odd . (5.9)
Figure 5.4: The accumulated frequency of the isophote-curvatures at H:;/ f (2i —1) if n even

reasonably large gradient magnitudes at scale 1/2.

This of course assumes that the noise characteristics are known (which
is never the case except for artificial data) or at least estimated.
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5.2.3 From Black/White to Gray and Back

Due to the nature of Linear Scale-Space black/white images are in-
stantly transformed into continuous valued images and although the

image is simplified it is not clear how to makel lllﬁe ﬂf this simplifi-
cation. In_ contrast, ‘Yhe relation to the origimal black/white images
1s simpler for morphological scale-spaces such as suggested by Boom-

gaard et al. (Boomgaard et al., 1996). We have chosen not to utilise

these scale-spaces in order to be able to emulate a sampling at differ-

ent resolutions, i.e. to take advantage of the implicit analysis of the

catastrophe structure imposed by sampling, see e.g. Damon (Damon,

1997) for more details. Hence we wiP assume that the sampling device
o

hﬁtS a glO]Tlal threshold and we therefore need not consider edges other!
than isophotes. We will in the following investigate a binarization of

the continuous valued images.

Viewing the image as landscapes with the intensity as the height
function, a slice of an ideal edge that is one with infinite extend, would
look like the Heaviside function,

1 zz>0
H(z) :{ 0 othetwise ’ (5.10)

and the family of functions generated by Linear Scale-Space H % G,

would all have identical values [° G, dz = 1/2 in 0. This would lead
to the conclusion that the 1/2 isophote (equal intensity value) should

be used to distinguish black from white. This is shown in Figure 5.5.

But black and white images are not made from a collection of ideal
edges, rather from box-like functions,

1 |z| <w/2
By(z) = { 0 otherwise ’ (5.11)
This family of functions is significantly different for o approximately

equal to or larger than w jn that it rapidly approaches @ Gaussian
d(ilstribution anﬁence gﬁle vaiues o éw * E‘la Z) d) Por o — oo. Hence

the 1/2-isoph. il h he effect that small blobs in comparison
toethe/z sészﬁg v?z%ﬁ %’é igl?(‘),fe gr removed. A second possibility is to

choose the threshold to be midway between maximum and minimum,
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Smoothing an ideal edge

Figure 5.5: The Heaviside function and a smoothed (dashed) version

but the effect of this choice is difficult to predict for images consisting
of more than one blob. Finally, a third choice might be to use the
mean value as threshold vale, since the ideal box model assumes the

image to be zero beyond its border implying that the mean value is 0.
In the common Fourier Transformation implementation, the image is

ssumed to be periodi¢ and the mean value is thel not zero, 1. the
?unction converges to t(ﬁe mean value instead of 0. Such a choice would
make the result depend on the black to white ratio which is arbitrary
for office documents. TheSe images might as well be modelled to have
the colour of paper outside the image border. We will in this report
use the 1/2-isophote as the representative of a blob on any scale.

5.2.4 Superficial and Deep Structure

Even though Linear Scale-Space simplifies the image contents struc-
ture is also dislocated. Thus to focus on large scale structure we may

conveniently locate them at high scale, while to Jocali Se_same
structure 13;1 the origina imagge we must track tllle WEGCHIES “across
scales. Wshat can be tracked are goints. I.e, gn a straight hcﬁz the only
distinguishable points are the endpomts, while most curved lines have

singularities in the derivatives that can be tracked. In this work we

will focus on extremal points in the curvature function and call them
corners.
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The study of the family of signals and images generated by the Lin-

ear Scale-Space is usually divided into two classes in terms of structure.
The superficial structure is the differential structure present aﬁ_? peﬁ"—

icular scale, i.¢. the configuration of the extremal points, while"the
gleep structure is a study in how the differential structure changes as

a function of scale. The last part r,%l_'es .on the theOry of catastro-
phe, where a catastrophe is the annihilation or creation of extremal

points. For references see (Gilmore, 1981; Koenderink, 1984; Grif-
fin and Colchester, 1995; Rieger, 1995; Olsen, 1996; Damon, 1997;

Sporring et al., 1998). o h
The catastropﬁles can be seen to be non-generic in the sense that
they %xist at each individual scale with probability 0, but since the

Linear, Scale-Spaceis,a fptiapgudpmiberbibitetimnscdhed RlR ol
ghf;lece of WOO(f being broken, and imagf'lnﬁ that the process of breaking
goes infinitely fast. First the camera will have some images of the wood

bending, and at one point the images will show the two pieces, but the
actual breaking point will never be caught on film. The breaking event
can be considered a catastrophe.

For 1D signals the deep structure in Linear Scale-Space is simple:
the only catastrophe that takes place are pair-wise annihilations of a
maximum and a minimum, but for 2D images, creations may occur.
The annihilations and creations are always occurring jn pairs of ex-

trema and saddle pints and th catastrophe theOry thus suggests a
grammar ofs events. Untﬁ)rtunatefy, it is easy to see that at a catastro-

phe, the involved extrema travel at very large speeds, and the problem
of assigning correspondence between scales is generally very difficult
to solve (Lindeberg, 1994).

Finally, although a grammar of generic events can be assembled,

ing i close to unlikely events, E.g. it is a non-generic
gggﬁéﬁghft E}?lldt}?ef Stélceond order spatiaY(ferivativesgof an image 226 zero

at some point in the image, but in practice the lines of zero 9., 6939,

and 0, is sometimes seen to pass withi ixel distance. of each othe?>
and it even seems that the prgﬁa?)ﬁ,ity OI%' ?hﬁl)s)ilappening increases with
scale.

We will return to a deeper discussion on thes¢ matters in relation
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to corners later in Section 5.3.3.

5.2.5 Non-linear Scale-Spaces Designed for Curves

. . . . . le of the sampling and
X‘éﬁ&lg udé ¢ e%li]ﬁeglrogléa%l%peégpgé%sﬁgl %erlﬁ(i)n%a% Scale-Spaces have
been proposed especially designed for the study of curves. Some au-
thors have investigated the convolution of each coordinate function
(Granlund, 1972; Lowe, 1988; Mokhtarian and Mackworth, 1992; Olien-

sis, 1993), which is not a rotational invariant scale-spae, but by con-
stantly resampling of the arch length function and infinitesimal steps
it does perform similar to Euclidean Shortening Flow as described

below (Mokhtarian and Mackworth, 1992). Some have examined con-
volution of variants of the curvature function (Horn and Weldon Jr.,

1986), and some have chosen to work directly on the curve in the arc
length parameter (Alvarez and Morel, 1994; Sapiro and Tannenbaum,

1995; Sethian, 1996). The later methods use the geometrical evolution
equation,
8, = 30," (5.12)

where ¢ is time and s is arc-length. Usually (3 is taken to be the isophote

curvatue, and the Scale-Space is theR called Euclidean Shortening
Flow. Note especially, 8’s can be defined to preserve the area of closed

Sapi d T b , 1995 d i jections,
C“”Oejh( r and Sethian (Osher and P 8BTS P ave

shown tehat the geometrical evolution equation on all isophotes in an
image can be calculated as,

Iy = BIVI], (5.13)

where |VI| is the gradient length image. Also, fast algorithms have
been devised approximating the geometrical evolution equation for a

single isophot%ilgl an jmage by Sethian and othels (Sethiap, 1996)_-
Thes€ methods will evolve any closed curves smoothly into a circle

or a point and are thus simplifiers. But for the Purpose of the algorithm
to be developed later in this work, this type of smoothing is of less

interest. It is the behaviour of shapes under image and signal sampling
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An alternative approach is to cut the shape into pieces repre-
sentable as functions each with its own coordinate system. This is

known as a Monge patch. One obvious advantage is that the shape
is studied as a one dimensional entity, and although it is not the in-

trinsic curvature function, each piece will converge towards the Frenet
approximation as the density of cutting points (knots) tends to infinity.

that we choose to focus on in order to mimic fax-like processes at
different sampling resolutions.

5.3 141D and 2D Contour Models

In the previous chapter we described a well-posed model for image
formation which has the intrinsic property that differential geometric
measurements are also well-posed. We will now discuss various differ-

ential geometric methods for two dimensional shape description.
There are basically two ways of viewing curves in two dimensional

space. Rither as a tuple of coordinate functions [z(s), y( )1)T whel€ 5 18
an ar itrary step-function or as the curvature fsulj&lg’n Hfs as function

of the arc-length.

The tuple perspective we immediately disregard since it is not rota-
tionally invariant. The analysis and coding we wisl}c,to perfofr% S}})(}H%%
notdepsnd, onthedaiftion ofibe Righpie. the POSIIONIE OFLAC

The Fundamental Theorem of Curves states that any continuous
two times differential 2D space curve can be described by the curvature
functions up to a Euclidean movement (Koenderink, 1990). In the
(local) Frenet coordinate system this implies that the curves are locally
well represented by the Frenet approximation,

82

#(s) ~ #(so) + sT(so) +

En(so)ﬁ(so), (5.14)
whete T and N are the normalized tangent and normal vectors for the

curve.

Although the curvature uniquely describes the intrinsic properties
of the c1(1)1}lvge, it Ienight not be the computatlonaf y most feasible repre-
sentation. One major draw-back is that in order to solve the Frenet

approximation given a curvature function oge has to sglve diff%rengial
andle.

i errors accumulated thereby seem ditlicult to
%%‘;ﬁtlle‘%? #1¢ {hécar how to incorporate the full knowledge of the lim-

ited set of curvature functions that generate closed non-intersecting
curves.

Further if the knots are distributed according to the absolute curva-

tue, the deviatjon from the infrinsi i tly reduced. To se
Jtue, the deviatjon from the iy ieip shne i 8Ty doming unti
everything looks linear. Clearly, a representation by piecewise linear
functions differs very little from the intrinsic shape in this perspective.

The amount of z omin%hnecessary is a function of curvature: Whe
the curvature is large the zooming has to be great, and vice versa

for small curvatures. The major disadvantage is that the cutting is a
global procegs. fe. cach placorent of g, dengnds o kbs Rl wicel
8nlty few Lnots are usedo, the functions between knots are far from the
intrinsic shape. E.g. a circle needs at least 2 cuts, while its curvature
function is a constant.

To summars this approach makes use of a set of coordinate pairs
called knots and connecting 1D functions. Please note that although
we make use of 2D coordinates this representation is still rotational in-
variant since the majority of contour points is modelled as rotationally
invariant 1D functions, and the knots will be chosen in a rotationally
invariant fashion. We call this the 1+1D model.

We will in the following make deeper analysis of the curvature func-
tion and the 141D model, and we will sketch a contour approximation

algorithm.

5.3.1 A Classification of Shape Algorithms

Much effort in the literature on shape apl%oxim%tjons s been spent

on the study of the contour as the two coordinate functions, but
since these Tunctions are not rotationally invariant they are not the

intrinsic functions of shape. Whichever functions one chooses to work
with the €ssential structure is of second order. That is to say, in the
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following model-review one may tlll\i/lnk of itheélf each tcl(l)OIiC}Ii—Iiate func-
ion i one Monge function in the case.
tion in the 2D cas Oﬁe(;(l%g %}ethe curvature function, a classification

(I)?‘ tt}?élgﬁg%fe&bedccoo% our 1hodels in the literature is:

e Piecewise zero-value curvatue, i.e. polygonal approximation in-
cluding chain-codes (Freeman, 1961; Ramer, 1972).

e Piecewise constant curvature (different from zero), i.e. circular
arcs (Lindeberg and Li, 1997).

e Highe! order curvature functions, i.e. polynomials (Chel and
ghm, 1993), splines (Boor, 1978), elliptical arcs (Lindeberg and

Li, 1997), sinusoidals (Granlund, 1972; Rosin and Venkatesh,
1993), and abstract curvature ‘sketch’ models (Asada and Brady,
1986; Rosin and West, 1995).
t k bel to the last class. essence being three
;‘[‘Oil((f: p%%see%iﬁzvzt;(plofeortllglz li)se oef ﬂfnegra % caf[‘e}jsepace to select break

points between polynomials, we will use Monge gatch S as approxi-
mations of the curvature to contour problems, and finally we will use

oescriptive compIEXity ecbriguse dortostodHdshvaeshl BRHGoon
tﬁe myopic view (local differential geometry) and global models.

5.3.2 The Rod Model

As an illustration let us investigate the simplest case of piecewise linear
models: In Figure 5.6 is a piece of the so-called rod model (Koenderink,

1990) shown. One could say that_ all the cqrvature.in.formatio.n is
placed at the joins of the straight lines, and in fact it is sometimes

feasible to view the curvature as the limit of a/l for [ — 0, whe® &
is tile angle between two successive rods and [ is the distance between

joins.
We can thus represent a contour as successive rod lengths and angle

changes. To reconstruct beginning from only one tangent vector as
specified by, the starting point and the rotation angle, it is necessary
to assume ¥he tangent vector at a junction of two lines to be equal to
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\/a

Figure 5.6: The Piece-wise linear model showing the first-order effect
of curvature as the angular change a.

Figure 5.7: The Placing of the tangent information in a recursive fash-
ion.

this previous line, see Figure 5.7. Hence a new point can be calculated
recursively as,

#(i) = 2(i — 1) + s(4) [

cosa sino

] T (4), (5.15)

—sina  cosa

using,
f(z) _ F(i—2)—Z(—1)
12(i = 2) = 2 — 1]’
where || - ||2 is the Euclidean length operator.
The reader should note that although in the limit of infinitely small
rod lengths, the Frenet approximation and the above sketched algo-
rithm coincide, the Frenet approximation cannot be used as a recon-
struction algorithm unless length and angle functions are artificially

(5.16)




5.3 141D and 2D Contour Models

l

) a

—

alN /2

Figure 5.8: The truncation in the Frenet Approximation results in
reconstruction errors.

modified to account for higher order structure. The difference is illus-
trated in Figure 5.8. The €rror is close to linear in angle and length.
As discussed previously, the essential information of the 2D shape
is in the local curvature function. While the algorithm sketched in
Equations 5.15 and 5.16 does produce a one-to-one transformation, it

is poorly suited for shape analysis. The approximatiog of curvature as
the discretization

noise du€ to
gﬁ%“é%rdcthﬁaf’tggi ﬂ?g%ﬁg&i‘f%ﬁfﬁg.tpﬁ Figure 5.9 is the approximated
curvature plotted as a function of accumulative rod length. The ‘true’
sional is forever lost at the point of discretization, but the grid effect
agn be re ucedr %)y smoo%]hing, i.e. sampling the same contour at dif-
?erent scales in the Linear Scale-Spae, and calculating the angular

changes at each scale does have a regularising effect.
The large scale curvature is related to the rim of the letter ‘e’ as
follows: Starting from the left most part of the letter ‘e’ in Figure
i i ini i curvature
21 and going downwards, the, B0 ypRe:s R RAR B Ehe bottom
rlilg Ct lorflhlgnaftoﬁg%s a maximum corresponding to the next right turn,
and finally the last significant minimum is the following left turn.

Another common ‘smoothing’ algorithm is to calculate a local ap-
proximation of the contour and evaluate the curvature of the approxi-
mation. As an example we have tested a pair of second order polyno-
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The Angular Change at scale 2

The angular change at scale 8.7

Angular change per step length
\
length

Angular change per step I

I3

&

20 40 60 100 120 140 160

80
Arc length

Figure, 5,95 Tho CRpiEG Sckipalitaad'sh the Bdsdalers &/

Elﬁ% the 1mage is taken at scale 2 and 8.7.

mials, one for each coordinate function, approximated all consecutive
sets of 5 points, and fitted the polynomials using the method of linear
least square. The curvature can be found as (Mokhtarian and Mack-
worth, 1992)

1., )
K=

(22 + y2)3/2" (5.17)

re z and y arg the coordinate functio%ls and the mark denotes
y de

this method can be seen

%}é?r respectivel rivatives. The result o

in Figure 5.10.
Finally, the Linear Scale-Space imaging model allows for the design

of a particular imaging device for measuring the curvature (given in
Equation 5.6). The salme experiment as above yields curvature func-

tions as shown in Figure 5.11.
Comparing Figure 5.9-5.11 we see that both the polynomial coor-
dinate approximation and the Linear Scale-Space have super'ior reg&;—

larization effect com%)are to the rod model. Th_e po yr.10m1a co.or
nate approximation two disadvantage in comparison with the Linear

Scale-Space. Firstly, the coordinate fu%%tig)éﬁﬂs%l%taiﬂﬁ%;ﬁ%a%%%

. ; r are t
rotation of contour hence neithe
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olynomial approximation have two unkno ors:
Secon(ily, the DO ce andptI})le number of points on hle BoRREES

olynomjal degr 1€ ] L ] :
Eh?d% ased on t%e above, it is our opinion that Linear Scale-Space
The pomomialaproimasion at sl 8.7 is the better of the three for measuring curvature.

The polynomial approximation at scale 2

5.3.3 A Coarse to Fine Analysis

In order to separate the corners that survive at high scale from those
that probably are du¢ to discretization nogs we have to track corners

from high to low scale. For this we need a %r mmar of possible changes

Curvature
1

; structure . of tlhe corners, i.e. what kind of events can occur
(furtﬁ{% tracking from high to low: Can a corner just dis%ppear% Can
Mgy 0 MO 0w two corners annihilate each other? etc.. This is the subject o deep
Arc length 20 40 60 100 120 140 160 Struct ure

Although the deep structure of signals and images is fairly well un-
of cornefs on an 1 ophote 1s

i i catastrophg®
Figure 5.10: The Polynomial approximation for estimating the curva- ;if{ﬁg?oc%rﬁﬁﬁk%%.thﬁst&f }é%idae, the E(l,jaele-spaces esigned Ior curves
ture and the effect of Linear Scale-Space. are well understood in terms of deep structure of the curvature func-
tion, since its simple 1 dimensional form applies directly. Alas this is
not the Scale-Space we have chosen to work with.
Thete are two levels of deep structure an algorithm has to accom-
modate. Firstly, the number of isophotes might change, for instane,
the hole in the letter ‘e’ might disappear. This is called a topological
change. Secondly, the extrema structure in the isophote curvature can

The Liear Scale-Space approsimation aiscale 86 Cha,nge ( Sporring et a,l. s 1 998) .

The following eyents can occur with regards to the number of
isophotes as the Scale increases:

40 60

80
Arc length

1. Nothing

Curvature
1

. An isophote disappears, which is a very common low scale phe-
nomenon. E.g. a high spike like salt/pepper noise will at some
intensity value have a small isophote that disappears quickly.

40 60 100 120 140 160

o . Two isophotes join, this is more common at high scale, whel€
two nearby blobs melts into one below certain intensity values.
Figure 5.11: The Linear Scale-Space approximation for estimating the

curvature at different scales.
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4. An isophote splits into two. This is most common whell! COn-
nected blobs of alternating big and small size are present. The
classical example is the image of two circles conn b i

b gﬁeé aster than t%e ‘Eﬁt(ﬁ%s é’r@aﬁﬂg

ramp_is thel! €ro
fev%l}g'ep'g%lzfte isoI[))hotes.

The events above are well understood, and while they can occur at

i i : i chosen isophote. The

2oy gpg;fgﬂg%rml&}ehg}fﬁfgt@ﬁ{%\ﬁ% Affectishior a single isophote 1s
given as oflows (Sporring et al., 1998):

1. Nothing
2. A maximum and a minimum pair is annihilated.
3. A maximum and a minimum pair is created.

In terms of analysis, the e%(tre%nal curafature ﬁints EOtlh tmu‘cat‘e
accor dén.g to the catastrophe structure and move their absolute posi-

tion. Given a curvature function, a desired result of an analysis is a
classification of the €xtremal points according to their stability with
respect to scale changes. Ie. at low scale the positional' p'recis'ion is
high, but also the nuniber of extremgl points 1s high. To distinguish we
would like to track the €xtremal points at high scale to low scale, and
as such obtaining a ranking of the extremal points at high positional
precision.

5.3.4 A Shape Approximation Algorithm

In ordet to approximate a contour by the 1+1D model, we r}ceed to
‘dentify a number of knots on the contour and model the contour m
etwee};l ?(nots y 1% Emctslons. RGbove is described a method for iden-
tifying semantically important points on a contour, and we believe
that the Placement of these high scale corners are psychophysic;ﬂly
e_

i xact approxjmation of the contour in
n‘}v%reenjlﬁgﬁgga%te tvlvlﬂfl ﬁ“&%et%e set (I))tp high scale corners as knots. But

the corner set does not guarantee that the contour in between can be
viewed as a 1D function, and we are forced to introduce extra knots.
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Several methods have been suggested in the Spline literatue, and we
choose to sample the integral of square root of the absolute curvature

}inea'rly in lt::etween knots as 'sutggzstggdbszv }fleen ]%ESF e(goﬁ)ﬁi C£9g§)Va’E}11[ig
W&ﬁscggftor r\%ikﬁl%‘hse OPICFiw as described earlier.
The algorithm so far is as follows:

1. Calculate a range of image scales and the isophote contour
. Extract the mid contours and their curvatures

. Find and classify/track the scale range of each extremum

curves between knots as a 1D function din
- Represent the re either the 1D function assumption is ’vi(ﬂateg

(e))r(t% ekgﬁt&rvﬁlegreat, e.g. by equal increment in the integral of
the square root of the absolute curvature.

The algorithm has 4 parameters: 3 for controlling the sampling in
scales and 1 for controlling the frequency of non-extremal knots.

. . : 1 d densit
- Most iproriantly iitheossikngiel i Tairdy ekslly Be Sef &«?%ﬁ
epeli_ding on which range of blobs one wifiheS to cover and the OI'8

sampling density of the’images compared with the sampling densit
of the originals. I.e. an exponential scale of standard variances £0.8, 6

sampled 3 times is a fair choice. If the s.cqnnling _hiti? be(«ien per orzneg
i riginal printi nsi
?ﬁigo&ﬂp‘ix(,%f}“s%%ﬁlp Ce e Waihe (3%dpi Bidpi)® The Sttt
density should be sét as close as allowable with respect to computa-
tional ¢jmince this effects the precision of the tracking algorithm.
In our experiment 3 samples appear to be enough, though.
Finally, the Monge Patch approximation restricts the allowable

constant increment iﬂ the integfal of thﬁ square root of the gbsol'ute
curvature. The smaller this value is, the better the approximation.

It is clear that the integral steps cannot be larger than m, and a rea-
sonable guess is to set it to m/2, i.e. to disallow turns larger than 90
degrees.
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5.4 Model Selection by Descriptive Com-
plexity

So far we have discussed various alternative representations and some
of the choices made have been hinted upon to have been made from

a compression viewpoint. We will now fully illustrate why we believe
this to be a very important viewpoint, and orcheStrate our algorithm
with a fine tuning with respect to compression.

In the following we will use the concept of a coder—decoder pair,
the main issue being a reformulation of data into a form that can be
reversed to yield the same data again. This is also called lossless cod-
ing. This is an important perspective since it highlights the interplay

between syntax and semantics.

5.4.1 Kolmogorov and Stochastic Complexity

In the general cas the reformulation is in terms of a particular uni-
versal machine, e.g. Turing machines, which can be thought of as a

i i machine
computer language e e progaii- o REoHlTEL0h Bhiosen 18
semantic choice. There are of course a huge number of programs to

express a single set of data.

Independently did Chaitin, Solomonoff, and Kolmogorov discover
the concept of Kolmogorov Complexity (Solomonoff, 1964; Kolmogorv,
1965; Chaitin, 1966), Tt is simply the length of the shortest program

 Chaitin, 1 e o2 S”gpdﬁta Snd Fats Phe alti

ce 'a specific set o . cqneept
ﬁggﬁcggot % runni%g time to finite d;;Iﬁut 1t aﬁso implies tﬁ%t t(ile P

Kolmogorov Complexity is non-computable since the problem of de-
ciding if a particular program will halt is generally non-computable.

Thus the Kolmogorov Complexity should be seen as a lower unattain-
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strained version of the Kolmogorov Complexity in the sense that the
reformulation no longer needs to be in terms of Universal Machines
Instead the reformulation is over a smaller class such as the ¢!ass of
poiynomlafs etc..

The MDL principle states that data should be described in the
shortest possible fashion (using a class of functions not necessarily a
fully fledged Universal Machine). To understand the following, we will
first describe a historical interpretation of this. An approximation of
the MDL principle used often in the literature is,

arg 1151,i9n [L(z) = L(z|0) + Ls(0)], (5.18)

where z are the data points, and 6 are the parameters identifying a
model given a model class up to a given precision d, Ls(#) is the nu%ng)_er

i arameters, and L(z|6) is the number of bits
ﬁgg’&tﬁo“g‘g et(t)hceoggmt&lga? Tgle well know \gels'on is the Maximum A

Posteriori equivalent, where the code-lengths are calculated through
Shannon’s relation L(y) = —log P(y) (Shannon and Weaver, 1949;
Wiener, 1948).

As indicated in (Rissanen, 1989, p. 58) this particular version is
usually not the shortest possible. Take an example of the €/ass O
poTynomials and an assumed normal distributed error function. For

each polynomial all possible data sets have a non-zero probability and
henice a code length, i.e. a particular data set has infinitely many code-

_ trict
lengths Tq redyce the actial cadgdengih aagCWlh has a single
code-length.

Several attempts to derive concrete algorithm achieving this im-

provement (for small sets of data) have been proposed (Clarke and

Barron, 1990; Nohe, 1994; Rissanen, 1996; Dom, 1996), where Ris-
sanen and Dom’s approaches are similar and will be “discussed in the

following. The improved scheme suggests that given a model estima-

able bound for compression.

An important concept in descriptive complexity is the Minimum
Description Length (MDL) principle (Rissanen, 1983; Rissanen, 1989)
also called Stochastic Complexity?. MDL can be seen to be a con-

tor, only a limited number of data sets will result in the exact same

Polaroid Corp. Cambridge 39, Mas. (Privately circulated report) as the inventor
of this principle (Solomonoff, 1964, p. 254), and Wallace and Boulton (Wallace
and Boulton, 1968) have proposed the Minimum Message Length (MML) principle
which is similar (Baxter and Oliver, 1994)

2Solomonoff mentioned Van Heerden, 1963, “A General Theory of Prediction”,
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model, and we are thus able to refine the functional by normalising
the error code with respect to this restriction,

. P(z[6)
L(z) =L*(z|0)+ Ls(f) =—log ____~~ 1, .
(z) (z[0) + Ls(9) ngP(yIO) W log P(80), (5.19)

i set of data sets ieldi same estimation paint
hﬁi%sgnlgntiie shown that wh’e%’ gsing {}%ﬁtr}é‘fz’s prior this 1s equzﬁ to
Rissanen, 1 gg, eqn.%),

k
5 log o + log / VIO d6 + o(1),  (5.20)

‘ght e}fe IqA i%B“QF ri;naximum—likelihood of the parameter on the data, k
whg e nu o

82 log P(z|6)
s5-50— 15 the Fishet information matrix.
In (Dom, 1996) this code-length functional has been evaluated for

L(z) = —logP(:c\é) +

parameters, n is the size of the data set, and I;; =

the Gaussian error and the general linear regression model class. It is
generally found (Dom, 1996, corrected version of eqn. 66) that,

e (5"

k2T (5)0("5%)

L(z) =nlogé + log , (5.21)

where I' is the gamma function, ¢ is the maximum likelihood estimate
of the standard deviation, dy is the quantisation constant given by the
data set, and d is the range of values to be considered. Rissanen also
offers an approximation of the same functional for the Gaussian error

(Rissanen, 1996, eqn. 40) as,

2rea?  k
—log 7 4 glog 2|%|

5
Ok — 1)

+s(k — 1) + log 1 log*r + log™ s + o(1), (5.22)

which increase by the factor r(k — 1) for variances less than 1. §
is a constant related to the conversion of densities into probability
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. . i i i iables, s is
functions. 3 is the covariance matrix of the regression variables,

t]ﬁe least integer such that 22¢ > 676, r is the least integer such that
27" < o (the ML estimated standard deviation of the error), and
finally C(!) is the volume of a | dimensional ball. This last functional
is the one we will use because of its relative computational simplicity
over Dom’s functional. One should note, that Equation 5.22 is written

in terms of density functions and not probability functions. To achieve
the correct code-lengths, § must be chosen in an intelligent fashion such
that at least §/02 > 2me. For this purpose we will calculate ™

-1 2mec?

. og, =7
re H is the entropy of a discrete approx afiord of

%enl%ilgél/ hig%}rlfioution discretized to the Same precision asﬁ%he data.
similar argument could be made for the covariance matrix of the
regression variables, but we will assume that the determinant is larger

than 1.
Under the restriction that the contour between knots must be 1D

functions, we are now ahle to decide on the number and placement of
knots and the number 0118 parameters, we need to model the contour in

between knots, in order to describe a blob. .
Either one of Equation 5.20-5.22 is highly non-linear and thel'® 18 IO
guarantee that an optimal solution can be found. A greedy algorithm

has been implemented which utilise an initial code for the model and
the residuals. This algorithm is initialised with a large set of knots

and at ea iter?tion the kn]0t yile ding h&gheSt code, length reduction

is removed, until no removal yields a ¢oding reduction. This in turn

yields a set of frequencies of the models and residuals which in the
following will be analysed to tailor specific codes.
We have described a blob as a list of knots and a polynomial rep-

resentation connecting adjoining knots into a closed, non-intersecting
curve. We will split the coding problem in two. First the knots will be

coded /send followed by the polynomial descriptions. I.e. the descrip-
tion length is calculated as the Sum,

L = Ly ots + Lmonge- (5.23)

The knots are coded by Elias’ codes (Rissanen, 1989) and the Monge
parameters by the implied codes of Equation 5.22.
We are now ready to complete our algorithm from section 5.3.4:
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5. For each polynomjal piece between knots, find the optimal MDL
degree fr(f’m }A;henclfasspof models with or without the knot based

models.

6. Iteratively remove the knot yielding la,rges%re yction in the total
coding cost until no furthel decrease can be found.

5.5 Coding an Alphabet

We have modeled 158 blobs by their contours as a list of knots and a
2 parameter polynomial representation per knot with a total of 1193
polynomial pieces and an equal number of knots, which is an average

of about 7.5 pieces per blob with the Use of a total of 55957 bits (as
estimated by the MDL functional). A representative selection is shown

in Figure 5.12. The top row shows the representations for small blobs,
in the second row models wit very good correspondence are shown.

In the third row, models for italic characters are demonstrated, and in
the last row, a selection of models with the worst experience fits are
shown.

The model for the blob ‘e’ (lowest left in Figure 5.12) demonstrates
the effect of setting the lowest scale level. Two severe noise instances

are present. At the leftmost edge two pairs of pixels are flipped. This
is ignored by the contour algorithm, since it is on a detail level below
the lowest scale. Anothel noise instance occurs in the hole of the ‘e’.
This detail is above the lowest scale level, helce the hole is coded as
two contours. Note that for the left part of the hole, the model is seen
to be a line. This is not an error but implies that this hole is coded
solely as noise.

The setting of the lowest scale level does also effect the amount
of cornerness that can be modelled as demonstrated for the blob ‘¢’
(lowest right in Figure 5.12). Here the accent has melted togethel
with the ‘e’ creating a very sharp corner. Linear Scale-Space erodes
sharp corners very quickly, resulting in a contour which is more blunt.
This effect is always present whell using two dimensional operators
to estimate derivatives. It is not considered a major problem for this
alphabet.

A Piecewise Polynomial Blob Representation

Figure 5.12: The top Jow shqws the representations for small blobs,

in the second row models with very good correspondence are shown.
In the third row, models for italic characters are demonstrated, and in
the last row, a selection of models with the worst experience fits are
shown.
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For a collection of 157 blobs from a fax-page, we observe that the

model uses 3-4 knots to code a circular boundﬁlr , whel'© 4 k'nots are
used for large circles. Thel® 1S a tendency that straight pieces are

not coded as suchut we conclude that this is only natural since
straight pieces are not a generic part of the 2 parameter polynomial
model class. Be reminded that 2 parameters imply a polynomial of 3rd
degree. Finally, the models resulting from the described optimisation
scheme is judged as being good.

We will at this point restrict ourselves to Jnvesti ate the frequency
data of the various aspects of the contour description whic will be
presented in the following.

5.5.1 A Code for Knots

It is immediately clear that the knots should not be coded by their
absolute value as e.g. indirectly suggested by Banerjee et al. (Banerjee

et al., 1996). Alternatively one could represent them as displacement
vectors from the center of gravity, or what we will prefer, relative
displacement with respect to each othel 111 @ sequential manner. The

last two representations allow for a clear-ﬁltglisatign 8f the ffactt}%hat
contours are closed anHence thet® WITDE & BERCEnoy 10t LHC
angﬁ‘fa B l;l?

r change between two knots to be skewedy€ to the fact that

the integral of the curvature of a closed curve 1s alllways 2m. We will
compare the following two representations of the knots.

Figure 5.13: Frequency data for the vectors connecting the knots in
each closed contour. TOP: a Gaussian model, BOTTOM LEFT the
e Cartesian codes for the displacements. absolute coordinates with a geometric model, and BOTTOM RIGHT

a hyperboloid (Rissanen’s Universal Prior) model.
e Polar representation of the displacements.

Cartesian codes are easily implementable in terms of choosing the Pre- skewness in the distribution of the angles. The length parameter will

cisions, which are identical for all coordinates. Codes for Cartesian bablv be close to 1 v distributed. while th le is 1
dinat e tioat Elias’ code (Elias, 1975) (or Rissa- probably be close to log-normally distributed, while the angle is less
COOI: 1na.es we Wl, vestigate are . 1as- code 138, R or tussa likely to correspond to simple distributions. Furthel; the truncation
nen’s Universal Prior of Intfgers (Rissanen, 1989)), which is suspected of the length is like in the Cartesian case simple, but angular pre-
to be optimalu® to Benford’s law (Buck et al., 1993) and exponential cision required will be proportional to the length, helic€ 2 bit more
distributions that have the advantage of being parameterisable. The complicated. ’

polar representation, uses ?he length and ar'lg.;le Parameters betweeg For the implemented MDL functional the distribution for the Car-
consecutive knots which will allow for a utilisation of the expecte tesian representation together with three models are shown in Figure

5.13.  The fi ies for the polar representation togethel With a
model ?E)reth(gel%llllegl‘% 1sesare0 Iéhowisn in Figure 5.14.
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Figure 5.14: Frequency data for the vectors connecting the knots in
each closed contour in polar form. The lengths (TOP) are nicely log-
normal distributed, and the angular changes (BOTTOM LEFT) are
distributed geometrically after truncation. Before truncation the an-
gular changes are clearly bimodal (BOTTOM RIGHT). This property
has been investigated, but the coding improvement is not noteworthy.
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Form Code and Parameters Code length
Cartesian | Entropy 13952.75 bits
Normal (0.0,15.5) 14344.92 bits
Exponential (10.9) 14083.54 bits
Geometric (11.04) 14086.74 bits
Universal Prior 18100.63 bits
Log-normal (2.7,0.7) 6544.29

and Geometric (54.6) | +8627.09 = 15171.38 bits

Table 5.1: A comparison of the bit cost using different representations

and coders for the knots. The exponential, geometric, and the UnI-
versal prior are calculated on the absolute values (gabslolute plus ’fﬂe
e

r the universal? adding one bit for the sign per displacement.
olar angle is calculated to 1/1 precision, where [ is the length of the

particular displacement. Some of the above distributions are param-
eterised. These are first sent by Universal Prior code to one decimal

point precision.

Of the before mentioned 55957 bits the knots coded are assumed to
be coded using Elias’ code or equivalently to be distributed according

to Rissanen’s Universal Prior of Integers. As demonstrated this is
not the optimal code. In Tables 5.1 and 5.2 are given a comparison

of the above described model distrib%tions in terms of the resulting
code lengths at a precision of 1pixel®. The longest displacement

vector may be inferred since all contours are closed. Also, the absolute
displacement of the blobs can be inferred since the bounding box does
not include a white boarder.

5.5.2 A Code for Polynomial Parameters

o d]}ng of the parameters for the Polynomial pieces is a little more
%[Ajc(ky. or one thing, it is unavoidable not to have a truncation de-

pending on the length of th%polynom'al arc. We are only going to

! . lynomial parameters direct ough
investicate the coding of the POLY p J .
we notge that this information may also be coded as the slope of each
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Form Code and Parameters Code Length
Cartesian | Entropy 11278.77 bits
Normal (0.0,13.1) 11512.67 bits
Exponential (8.9) 11378.76 bits
Geometric (9.6) 11372.19 bits
Universal Prior 14725.18 bits
Log-normal (22.6,0.7) 5204.45

and Geometric (47.4) | +7006.22 = 12210.67 bits

Table 5.2: The same data as Table 5.1. Here the longest displacement

has been ignored since it can be reconstructed by the knowledge that
the contours are closed.

knot.
Given two knots the polynomials are defined as,

f(z) = (z — zn)(z + z,) (az + b), (5.24)

where the coordinate system is aligned with the line joining the two
consecutive knots with the zero point exactly midway. Since we have
restricted ourselves to only use polynomials that go through the knots,

we only have to consider the coding of the (a,b) pair.
The truncation issue will be determined by the following condition,

max(z) = max ( g];(é));g‘z )‘ <, (5.25)

whete 6 will be taken to be 1. I.e. we will truncate such that the

maximum difference at any point along the curve will be less than a
pixel. This implies,

l(z) = |22 — 22| |( T |22 — 22|/

22 + 1. (5.26)

The points of extremal change of this length with respect to z are
the pomts z € {O’i\/x% —2/+/3} of which 0 is a maximum when
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0 < z, < V2, and +4/22 — 2/4/3 are maxima whel! Ty > 2+ 2}

Le. below v/2 we have a single maximum, and above there¢ are two
maxima. It is safe to assume that for polynomial pieces whel® the

distance between two knots is less than 2 5’ the MDL optimisation

will with very high probability choose a polynomial of degree 0. Hence

we will concentrate on z,, > v/2. This implies that the sensitivity to
truncation as a function of z,, is given as,

l(i\/x%—2)_2 1 +22)°
v3 T svE

Hene, the truncation should be chosen such that,

(5.27)

83V 3
2/(1 +22)3

Following Nohre (Nohe, 1994) we view a and b as parameters of an

orthogonal system and we will thus assume equal truncation: da =
5b = 33V 3
2,/2(1422)3"
The distributions for the Parameters extend very far and are very
leptokurtic. This makes a difficult distribution to code. And for the

same reason, we will not present any graphs of the distributions.

. cost of coding the parameters jointly, in Tables
5.4 Q%E%%%E%%\S/e%hg}le oSt OF cogi%g each first and Secong’parameter
ely.

separat e conclude that the Universal Prior is best suited to
code the truncated parameters and that ther® is no need to partition
the description into two distributions.

|(6a,6b)T| < (5.28)

5.6 Blob Coding in Perspective

Models for describing blobs are a central issue in applications related

to image storage or transmission. In this work, a novel model class has
been suggested taking the one dimensional nature of blob borders into

account, yielding both compact codes and good descriptors. Optimi-
sation is very much a part of finding good models within a class, and
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Form

Code and Parameters

Code length

Cartesian

Entropy

Normal (5.5,170.2)
Exponential (167)
Geometric (33.47)
Universal Prior

11784.76 bits
22599.78 bits
20717.70 bits
17945.95 bits
14663.43 bits

Table 5.3: Estimated coding cost of discrete but ideal codeS for the

total number of parameters.

Form

Code and Parameters

Code length

Cartesian

Entropy

Normal (0.0,47.5)
Exponential (46.9)
Geometric (7.47)
Universal Prior

3955.37 bits
9105.58 bits
8117.11 bits
6439.46 bits
5216.63 bits

able 5.4: The same estimation procedur® as in Table 5.3 but for the

rst parameter.

Form

Code and Parameters

Code length

Cartesian

Entropy

Normal (11.0,235.9)
Exponential (228.6)
Geometric (59.5)
Universal Prior

7449.76 bits
11879.56 bits
11012.16 bits

9967.15 bits

9448.41 bits
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here we have presented a greedy thinning algorithm applied on a care-
fully selected set of knots. We judge from the €xperiments that this
algorithm is a good tradeoff between compression time and rate, and
we conclude that for large blobs this model class is a good competitor
to the algorithm CONTEXT.
Coding the knots first hi‘:l,S the éﬁ tinct advantage that in the “}}1101‘36
£ knot é epy %)ﬁrﬁ 1es a definjte statement about the shape.
?.e. ?he PERATRCPERatiols 11p between knots glveg ?11 cr Ji‘e escription
of the shape and thereby 1ts curvature. Two'models solely based on a
sequence of knots immediately come to mind:

e A two dimensional cubic spline through each knot.

e A local estimation of the slope at each knot.

The local approach is preferable for several reasons. Firstly we be-
lieve that the structure is locally determined, i.e. large extrema in
the curvature which are likely candidates for optimal knot placements
structurally distinguish regions on the curve. Secondly, a strictly lo-
cal approach will be faster to compute. Finally we acknowledge that
the blobs we will describe will have discontinuities in the curvature
function.

In Figure 5.15 is shown how we can calculate a local estimation of
the slope as the angular mean between the two lines connecting three
consecutive knots. Since Linear Scale-Space makes everything smooth,
we may infer that the closer the knots are, the better this model will be.
Conversely, if the knots are far apart, it is less likely that this model
is good, hence we will allow for a coding, indicating if the model is to
be used or not at the cost of one bit per segment. Assume that we
will optimise over polynomials of degree 0-3. This yields 8 different
polynomial descriptions: polynomials of 0-3 degree with or without the
above model. The optimisation problem is a little simpler though. We

require the polynomial to pass through the knots fixing two degrees
ofreedom leaving 6 possible choices: the zero function or 2nd or 3rd

Table 5.5: The same estimation procedure as in Table 5.3 but for the
second parameter.

degree polynomial all with or without the knot based models. It should
be noted that this spline model is similar to the Catmull-Rom splines,
but not identical.
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Figure 5.15: The modeled and the actual derivatives at a knot. 3

consecutive knots are connected with straight lines. The derivatives
the smoothly varying curves) at knot k are

f tcheS |
Iﬁﬁéﬁgdl\%gnc%%gﬁgc ealf the angular change between the two straight

lines. The Monge constraint restricts the value o — f3; to the closed
interval (—m/2,7/2).

From a few experiments it is estimated that with the Us€ of the
above spline models and increasing the Optimisation space form 2 pa-
rameters to {0, 1,2} parameters it will be possible to decrease the total
coding length with approximately 20%.

To end, this work has shown that it is feasible to have analyti-
cal representation of blobs, and that is is possible to estimate such a
representation from bitmaps. Analytical representations are useful in

several ways. If, for instane, the bl(ﬁb‘ is, to be d_eﬁoded at ?nother
resolution than the original. Although it is not without prob] ems ;10

o finer resolution for a number of the Shapes in the eXamin
%%a et, 1t is certainly aestheticaﬁy possﬁ)le. I.e. one might interface

such a model between bitmaps at low resolution and printers with high
resolution. It might also be feasible to derive a resolution dependent
description on the described model class. This could be useful if the
blobs are to be decoded in a coarse to fine manner e.g. in an Internet
application. Finally, this model class may also be used to refine the
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font technology used in the Postscript language in order to compress
the very large font dictionaries.
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Chapter 6

Theoretical Aspects:
Introduction

n Part I we saw the usefulness of scale-space and information theOTY
;1[n i?nage processing. In the following chapters we will take a close look

at information theOry-
entropy. The €0~

tro;r)gzh?s hasic function ?,éﬂfﬁ%ﬁiﬁﬂytbﬁogysltsogﬁgstlc sotire, whel®
a stochastic source is a data generatPr dQscrib?d by the istributifon
of the output. ILe. the entropy is a function of the distribution of a
stochastic source. A source for which one symbol has probability one
rest zero, has the lowest uncertainty; it is statistically fully de-
and the “ero, symbols from th sourc%’wtill be. tj?‘(,)r t?ii ys%%ug{%%
termined, what the Sy{abo s « opposite situation whe ¥
we set-the T to ﬁmlmmab.Te PP uatior
pgsgﬁ)lg ymbol s equally probable is most uncertain in its output, we
set the entropy to be maximal. Such considerations led Shannon to
define the entropy as (Shannon and Weaver, 1949):

N
S(p(z)) = — Zpi log p;,
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where P = (p1,...,pn)7 is a discrete probability distribution®.
We have already seen the Use of entropy for modelling in Chapter 5.

In this part we will investigate the effect of Scale-space on the ehtropy
function and related uncertainty measures. We will see that the gen-
eralization of the €ntropy is equivalent to a number of representations,

and that this generalization carries a wealth of information about the

source. Finally we will use the €ntropy to interpret a model selection
algorithm.

6.1 Information measures in scale-spaces

In Chapter 7 we study the effect of scale-space on uncertainty measures
like the entropy, and this is used in image processing for global scale-
selection and size estimation, and to indicate new basic results on the
gray-value histogram under a scale-space of the image.

A distribution is a measure of probability, and can be viewed as an

image: Assume a source generating real numbers. We will never know
the true distribution of the Soure, since we would need infinitely many
numbers to measure the Probability density. We have to suffice with an

estimation of the density. T}fﬁﬁ,can be di)lne by cqllec%ing the outcome
of the source m a number of bins, i.e. the domain of réal numbers is

discretized and each discrete location integrates the outcome over the
corresponding area. This is a process identical to, taking i), pictue,
and the chosen discretization is in the Same sense arbitrary. It is thus
natural to study all discretizations between the chosen and the worst
using scale-space.

Applying scale-space to probability functions generates a family of
functions that converges towards a constant function. In Figure 6.1
we have given an example of a one dimensional function embedded in

linear scale-space. The figure shows both the function and the €Orre-
sponding histogram of function values. The €ntropy is a measure of a
distribution, and both the function and the histogram can be viewed

as distributions through proper normalisation. Hene, to attribute a

LA discrete function p = (p1,...,pn)T is a discrete probability distribution if
pi>0foralliand ¥}, p; = 1.
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Entropy of the Function Entropy of the Histogram

The function at scale t=0.5 Histogram of f(x,0.5)

32 64 96 26
X y
The function at scale t=8 Histogram of f(x,8)

. ; entropy for two views of a function
Flgslér e(-ié%:acTeh eVFO}F_UOI}lIZ %%E?gpy 5131[ the function is viewed as a

1istri ution. RIGHT: The entropy of the histograms.

single notion of complexity to the data we must choose a view of the
function. In general the information content of a source is only de-

fined up to its representatign. In_Fi 2 W .evolution
of the gntmpy o IE e two v(iews. T glgr?tr%gy ot Sf:}ﬁ%“fu@cetlon seems

] i i entro 0? the histogram seems to be de-
to be increasing, while the thpyscale is largegf the function will be
32 64 9% 24 creasing. We know that whell the e T .

X y approxiiately constant. V%n terms of distributions, this implies that
The function at scale t=128 Histogram of f(x,128) . . . . . .
‘ : ‘ ‘ the function will converge to the uniform distribution, while the his-

togram converges to the Dirac delta? distribution. Hene, the entropy
of the function will converge to the maximal enltropy, while the entropy

of the histogram will converge to the minimal entropy. In Chapter 7
we will show that the €ntropy of the function is monotonic. A similar

result is not known for the evolution of the entropy of the histogram.
At a fixed scale, the entropy contains no information of spatial

relations between function values. In that sems the €ntropy of the
function only depends on the histogram justifying the direct compar-

ison done above. Both in information theory and image processing it

Figure 6.1: A function in scale-space and the corresponding histogram
of function values. LEFT COLUMN: The function at various scales.
RIGHT COLUMN: The corresponding histogram. 2The Dirac delta function §(z) is defined by §(x) = 0, when = # 0 and
> d(z)de=1
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is of interest to extend the notion of entropy to that of generalized en-

tropy. The direct result is that the spectrum of generalized entropies
is equivalent with the histogram.

The generalized entropies are defined as (Rényi, 1976¢; Rényi,
1976a; Rényi, 1976b):

The Parameter « is called the information order. The generalized
entropies are not defined for « = 1, but by 'Hopital’s rule we see

that the generalized entropies converge fo the entropy at this point.
Thus the entropy is considered part of the generalized entropies. For

negative information orders, the generalized entropy,is \%ﬂﬁ delgine‘d
whent the distribution is larger than zero everywhel®" - ile this 1s
a problem for distributions in general, all distributions embedded in
scale-space fulfil this restriction except at scale zero.

In Figure 6.3 is given an example of a random function, its his-
togram, and the generalized entropy for positive orders. It can be
proven that the generalized entropy is a decreasing function of order,
as confirmed by the figure. For a fixed scale the generalized entropies
are independent on the spatial relation between probability values.
Howeverpth evolution of the generalized entropies, whell tLe function
18 embedde((f in scale-spae, is strongly restricted. One basic result

obtained is that also the generalized entropies are monotonic in scale.
In the linear scale-space we may use the generalized entropies to

perform size analysis of image structure. This cfat be done, sinﬁe th

entropies will depend on_the Size of the Gaussian kerne
g}ﬁ n%ﬁeogit}éeo ima%e structute. In Figure 6.4 is given an example.

A blob is shown together With two circles denoting kernels of two
different sizes. Consider the image of the blob smoothed by the small
kernel. A slight change of the kernel size will not alter the result
significantly. Likewis for an image of the blob smoothed by the very

large kernel. A slight change of the kernel size will not alter the result

3 Alternatively, it is possible to define 5o = 12— S ilpi>0 PS, which is defined
for all a.

Theoretical Aspects: Introduction

A Random Function

20 40 60 80 100 120
X

The Hist f
? ' ograr‘n of gt . The Generalized Entropies of g(x)

h(y)

o P N W N D N 0«

Figure 6.3: A random function normally distributed (TOP), its his-
togram (BOTTOM LEFT), and its generalized entropy for positive
order (BOTTOM RIGHT).
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Figure 6.4: A blob (DASHED) and two Gaussian kernels of different
size denoted by circles.

significantly. The smoothing results using the small and the large
kernel are, however, significantly different images, and we can conclude
that the change must have taken place somewhere between small and
large kernel size. In fact, we expect that the change of kernel size will
have the largest effect, when the kernel size is approximately that of
the image structure. This effect must be visible in the change of the
generalized entropies. Chapter 7 demonstrates the effect and usage in
image processing.

The work on generalized ropies gave,inspiratjion to take a cloS€r
look at histogran%s, which Wﬁﬂ)e Riscissed In the %olt(l)wing.

6.2 Some theorems on continuous histo-
grams
The discrete histogram of images is not only intimately linked to the

generalized entropies as described above, but also to the multifractal
spectrum and the spectrum of moments. The precise relation is given
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in Chapter 7.7. The work presented in Chapter 8 is strongly motivated
by these relations.

In Chapter 8 we study the continuous histogram of a one dimen-
sional function, which may seem like a severe limitation of the above
relations, but we consider the continuous histograms as the first step in
a deeper understanding of the discrete histograms. At least, a discrete
histogram for a very finely sampled function shares some key aspects
of the corresponding continuous histogram. In Figure 6.5 is shown a
third degree polynomial at various samplings, and the corresponding
histogram. We note that the discrete histogram seems to have a pole
structure corresponding to the extrema of the function. Such consider-
ations lead us to use the folowing definition of a continuous histogram
for a C! function g(z).

M= D

wig(0)=y

Here ¢'(z) denotes the derivative of g with respect to z. Using this
definition we may calculate the continuous histogram for the polyno-
mial in Figure 6.5 as shown in Figure 6.6. As discussed in the previous
section, the discrete histogram is oblivious of the spatial relations be-
tween function values. The main result of Chapter 8 is that this is
definitely not the case for continuous histograms. We prove that for a
large class of functions the continuous histogram uniquely specifies a
function up to translation and mirroring of the domain. While we have
not been able to prove this for all functions, we can show that severe
constraints on all functions exist by their continuous histograms.

6.3 On the invariance of saliency based
pruning algorithms

Finally, in Chapter 9, we revisit the subject of model selection by
information theory. In contrast to Chapter 5 we will study a model
selection algorithm that can be interpreted in terms of information
theory.
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A Discrete Histogram Using 3 Samples A Discrete Histogram Using 33 Samples
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A Discrete Histogram Using 513 Samples
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Figure 6.5: A function and its histogram under different sampling
rates. The function f(z) = (z — 2)(z — 10)(x — 18) is shown using 3,
33, and 513 sampling points on the horizontal axis. The histogram is
shown using the same sampling rates as a projection onto the vertical
axis. The interference between these two samplings causes the Moiré
patterns noticeable in the bottom graph.
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Continuous Histogram

0
y

Figure 6.6: The continuous histogram of the polynomial f(z) = 23 —

64x.

In 1990 (Cun et al., 1990), it was suggested to reduce the complex-

ity of a function by examining an error measure by its lower order terms
in a Taylor series. The field of application was that of feed-forward

neural networks, but this shall not concern us further. The basic idea
was that for models with a high number of parameters compared to the
size of the dataset being analysed, the number of parameters could be
reduced (explicitly be set to zero) according to an analysis of saliency.
That is, using some measure on the difference between the function
and the dataset, the effect of explicitly setting a parameter to zero
could to sufficient accuracy be estimated by the lower order terms of
a Taylor series of the measure. The algorithm Optimal Brain Damage
(Cun et al., 1990) hence suggest an ordering of the parameters by their
saliency, and to reduce the complexity by removing the least salient
parameter.

This seems like a very general technique, but also seems to fail to
take into account the complexity of the model class as emphasized by
Minimum Description Length and Maximum A Posteriori techniques.
Based on previous work we realized however that this failure is only
apparent, and Chapter 9 demonstrates that any Taylo!' series used as
described above will be invariant to certain functions of the model

parameters. The key issue being that of symmetry in the Taylo!r €X-
trapolation and the derivatives. As an example consider a model class
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of just one parameter 6, and an analytical error measure F/, hence also
dependent on #. The Taylor Series of E is given by:

o0

&7 pi
E(0+6) = Z _'aJE(H)

Setting 6 to zero is equivalent to examining the above equation for
d = —0. Thus if we add a function F(6) to E which fulfils the following
constraint: )
OIF(6) 1
005~ 03’

then the effect of the ordering obtained by a truncated Taylor series
will be independent on F'. Such functions will be independent on the
dataset, and can in some cases be interpreted as a distribution on the
parameter. In these situations, we may conclude that F' represents
the complexity of the model class, or equivalently the implicit prior of
Optimal Brain Damage.

Theoreticadl Aspects: Introduction




Chapter 7

Information Measures in
gcale-Spaces!

7.1 Introduction

In recent years multiscale techniques have gained a lot of attention in
the image processing community. Typical examples are pyramid and
wavelet decompositions. They represent images at a small number of
scales and have proven their use for image compression in numerous
implementations. Another important class of multiscale techniques
consists of so-called scale-space representations (lijima, 1962; Weickert
et al., 1997a; Witkin, 1983; Koenderink, 1984). They embed an orig-
inal image into a continuous family of subsequently simpler versions.
Many scale-spaces can be formulated as the evolution of the initial
image under a suitable linear or nonlinear diffusion process. Such an
image evolution is useful for tasks such as feature extraction, scale se-
lection, and segmentation, see (Lindeberg, 1994; Haar Romeny, 1994;

L An earlier version of this chapter has been published in a conference proceeding
(Sporring and Weickert, 1997). The current version is resubmitted for a journal
publication as: Jon Sporring and Joachim Weickert, “Information Measures in
Scale-Space”.
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Sporring et al., 1997) and the references therein.

Besides multiscale ideas, also information theoretical concepts such
as the Shannon—Wiener entropy (Shannon and Weaver, 1949; Wiener,
1948), Rényi’s generalized entropies (Rényi, 1976¢; Rényi, 1976a;
Rényi, 1976b), and the Kullback—Leibler distance (Kullback and
Leibler, 1951) have made contributions to image analysis; for instance
Brink and Pendock (Brink and Pendock, 1996), Brink (Brink, 1996),

and Sahoo et al. (Sahoo et al., 1997) have used them for local image
thresholding, and Vehel et al. (Véhel, 1998) and Chaudhuri and Sarkar

(Chaudhuri and Sarkar, 1995) study images in a multifractal setting.
It is not difficult to see that the generalized entropies, the multifractal
spectrum, the gray-value moments and the gray-value histogram it-
self are equivalent representations: they can be transformed into each
other by one-to-one mappings. More details can be found in Section
7.7.

Since scale-spaces simplify images, it is only natural to investigate
their simplification properties in terms of information measures. Al-
ready in 1949, Shannon mentioned that the Shannon—Wiener entropy
decreases under averaging transformations(Shannon and Weaver, 1949,
p. 52). In 1993 Illner and Neunzert (Illner and Neunzert, 1993) studied

a biased diffusion process, where the original image evolves towards a
background image b alot8 a path where its Kullback-Leibler distance

with respect to b increases monotonically. Jagersand (Jagersand, 1995)
used the Kullback—Leibler distance in linear scale-space for focus-of-
attention. Oomes and Snoeren (Oomes and Snoeren, 1996) used the
entropy relative to a background measure to estimate the size of objects
in images. Sporring (Sporring, 1996) applied the Shannon—-Wiener en-
tropy in linear scale-space to perform scale selection in textures and
showed the monotone behaviour using concepts from thermodynamics.
Weickert (Weickert, 1998) proved monotony of the Shannon-Wiener
entropy in linear and nonlinear diffusion scale-spaces by regarding it as
a Lyapunov functional. Lyaponov functionals have been used for scale-
space synchronisation (Niessen et al., 1997) and for a uniform sampling
of the scale axis with respect to its information content (Weickert et al.,
1997b; Niessen et al., 1998). Peleg et al. (Peleg et al., 1984) used the
fractal dimension in a morphological scale-space to study texture. Re-
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lations between Shannon—Wiener entropy and multiscale concepts in
terms of wavelets have been established by Krim and Brooks (Krim
and Brooks, 1996), where inequality theory was applied to propose
optimal measures for feature-directed segmentation.

The present paper extends previous work in this field by study-
ing both theoretical aspects and the practical potential of generalized
entropies in a linear and nonlinear multiscale setting. Generalized en-
tropies are complete in the sense that they alow for a reconstruction of
the gray-value histogram (see Section 7.7). A scale-space extension is
used to complement the entropies with spatial information. We prove
monotony and smoothness properties with respect to the information
order and the scale parameter. We use the scale-space behaviour of
generalized entropies for scale selection and size estimation, and we in-
troduce a fingerprint-like description for textures. The results indicate
that our extensions broadens the potential use of entropy methods in
image analysis. Some preliminary results in this paper have been pre-
sented at conferences (Sporring, 1996; Sporring and Weickert, 1997).

Throughout this paper we identify an image by its two-dimensional
distribution of light on a rectangular image domain. It should be noted
that this representation is invariant under multiplication with, but not
under addition of, a constant. It is important to note that this two-
dimensional distribution is not the gray-value histogram.

The outline of this chapter is as folows. In Section 7.2 will be
given a brief introduction to linear and nonlinear scale-spaces. Then in
Section 7.3 we will investigate a scale-space extension of the generalized
entropies. Finally in Section 7.4 we will describe some applications in
image processing. A conclusion is given in Section 7.5.

7.2 A Short Introduction to Scale-Spaces

The images considered in this work are all discrete, but for simplicity
we will in this section introduce two scale-spaces in the continuous
setting. Discrete scale-space aspects are discussed by Lindeberg (Lin-
deberg, 1994) for the linear framework, and by Weickert (Weickert,
1998) for the nonlinear setting. Scale-spaces can be considered as an
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alternative to traditional smoothing methods from statistics (Simonoff,
1996).

In scale-space theory one embeds an image p(x) : R? - IR into a
continuous family {p(z,t) | ¢ > 0} of gradually smoother versions of

it. The original imagei,forresp,onds to the scale ¢ = 0, and increasing
the scale should simplify the image without creating spurious struc-

tures. Since a scale-space creates a hierarchy of the image features, it
constitutes an important step from a pixel-related image description
to a semantical image description.

It has been shown that partial differential equations are the suitable
framework for scale-spaces (Alvarez et al., 1993). The oldest and best

studied scale-space obtains a simplified version p(z,t) of p(x) as the
solution of the linear diffusion process with p(z) as initial value.

6tp = lezlp + amzmzp, (71)
p(wa 0) = p(w), (72)
mathematical literature

where @ < (idte (e pknoWa, ko8BS Tonvolving p(z) with a

Gaussian of standard deviation o =
2t:

p(:l:,t) = (Gt *pﬁm)a (73)
Gi(z) = BE (7.4)

This process is called Gaussian scale-space or linear scale-space. It was
first discoverelly Iijima (Iijima, 1962; Weickert et al., 1997a) and be-
came popular two decades later by the work of Witkin (Witkin, 1983)
and Koenderink (Koenderink, 1984). A detailed treatment of the vari-
ous aspects of Gaussian scale-space theory can be found in (Lindeberg,
1994; Florack, 1997; Sporring et al., 1997) and the references therein.
Unfortunately, Gaussian smoothing also blurs and dislocates se-
manticaly important features such as edges. This has triggered people
to study nonlinear scale-spaces. Perona and Malik (Perona and Malik,
1990) proposed to replace the linear diffusion equation (7.1) by the
nonlinear diffusion process

dp =V - (g(|Vp|) Vp), (7.5)
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where V = (8,,0,)T, and the diffusivity g(]Vp|) is a decreasing func- ¢ denotes scale. TheS¢ scale—spac‘es can be‘ obtainetly a spatiz‘ll' dis-
tion in |Vp|. The idea is to regard |[Vp| as an edge detector and to en- cretization of Equation 7.1 or 7.5 with reflecting boundar condltlons.f
i i i i i i We will now discuss some details of the mathematical structure o
courage interregional smoothing over intraregional smoothing.s,Thu generaeli"% d entropiea
locations where the gradient is large have a large likelihood of being '
an edge, and the diffusivity is reduced.
In our experiments we consider a nonlinear diffusion process where
the diffusivity is given by (Charbonnier et al., 1994)

Proposition 7.1. The generalized entropies are decreasing in o.

1
V14 |Vp2/A2

Such a choice guarantees that the nonlinear diffusion filter is well-
posed.
This is one of the Simplest representative of nonlinear scale-spaces.

Overviews of other nonlinear scale-spaces can be found in (Weickert,
1998; Haar Romeny, 1994).

9(|Vp|) == (A >0). (7.6)

7.3 Generalized Entropies

Let us now consider a discrete image p = (p1,...,pn)T, where p; > 0
for all 7. Note that a single index is used for the two-dimensional
enumeration of pixels. Its family of generalized entropies is defised a

S ) 1 N
a(P): log ) pf (7.7)
=1

1—-«

for « # 1. The limit from left and right at & = 1 is the Shannon-
Wiener entropy,

N
Si(p) = = _ pilogpi, (7.8)
=1

and we might thus as well consider it as part of the continuum. The
parameter « is called information order.

Let the vector-valued function p(t) = (p1(t), ..., pn(t))” be the lin-
ear or nonlinear scale-space extension, where the continuous parameter

Proof. Follows immediately from (Rényi, 1976¢; Hentschel and Pro-

caccia, 1983).
O

Proposition 7.2. The generalized entropies S, (p(t)) are increasing
in t for a > 0, constant for « = 0, and decreasing for o < 0. For
t — 00, they converge to the zeroth order entropy Sy.

Proof. The Proof is based on a result from (Weickert, 1998, Theorem
5): For a discrete image p(t), which is obtained from a spatially dis-
crete diffusion scale-space, the following holds. The €Xpression

o(p(t) := ZT(Pi(t)) (7.9)

N
=1

is decreasing in t for every smooth convex function r. Moreover,
tliglopi(t) =1/N for all s.

Using this we first prove the monotony of S, with respect to ¢. Let
a>1and s > 0. Since r(s) = s® satisfies

r'(s) = ala —1)s*72 > 0, (7.10)

it follows that 7 is convexs,Thu
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is decreasing in ¢ and

Sa(p(t) log @(p(1)) (7.12)

1-«
is increasing in ¢.
Similar reasonings can be applied to establish monotony for the ¢ases
0<a<land a<0.

For a = 1 we obtain the Shannon-Wiener entropy for which mono-
tony has already been shown in (Weickert, 1998).

Let « = 0. Then

N
So(p(t)) = log Zpg(t) =log N = const. V(. (7.13)
i=1

To verify the asymptotic behaviour of the generalized entropies we
utilise tlim pi(t) =1/N. For a # 1 this gives
—00

. 1 Yo
Jim S, (p(t) = T log Z ~a = log N = So, (7.14)

=1

and a = 1 yields

t—o00

N

. 1 1

lim Sy (p(t)) = — ;_1 Nlog N log N = S. (7.15)
This completes the proof. ]

The following smoothness results constitute the basis for studying
derivatives of generalized entropies as will be done in Section 7.4.

Proposition 7.3. The generalized entropies are C* for o # 1 and al
least C' in o = 1. For linear scale-space they are C™ in t, and for the
nonlinear scale-space they are C in t.
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Proof. In order to prove smoath wi ct tQ oo -consider
Lot ah o PG o S o HREhig & hietien 1
—Q
and log Zivzl pg, and thus also C* in a.

The sSmoothness in o = 1 is verifiedy applying ’'Hépital’s rule.

Straightforward calculations show that

im 2% TN pillogpi)® — (Sir, pilogp;)?
a—1 da - 9 :

(7.16)

s, Thie 55 exists and S, is in Ct.
For linear scale-space, C* in ¢ follows directly from the fact that

Gi(z) is in C* with respect to t. In the nonlinear case, C! in ¢ is a

consequence of the fact that the solution p(t) is in C' with respect to
t. This is proven in (Weickert, 1998, Theorem 4). 0

Figure 7.1 illustrates the monotony of the generalized entropies
both in scale and order for both scale-spaces. The figures have been

created by finite difference algorithms which preserve the monotonic
properties established in this section (Weickert et al., 1998).

7.4 Experiments

We will in this section demonstrate some applications for the gener-

alized entropies in image processing. We will consider the change of
entropies by logarithmic scale,

954 (p(1)

ca(p(t)) :
X TTR (7.17)

since this appears to be the natural parameter (at least for linear scale-
space) (Koenderink, 1984),(Florack et al., 1992),(Lindeberg, 1994, sec-
tion 8.7.1),(Sporring and Weickert, 1997). We emphasise that the
generalized entropies are global measures and are thus best suited for
images with homogeneous textures.
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7.4.1 Shannon—Wiener Entropy and Zooming

This section analyses the zooming behaviour of the Shannon-Wiener
entropy in linear scale-space.

Figure 7.2 (top left and right) shows images from a laboratory ex-
periment: The camera is placed fronto-parallel to a plane with a simple

texture: pieces of paper with discs arranged in a regular manner. A se-
quence is produced as a series of increasing zoom values. In Figure 7.2

(bottom) we plot the Scale 0 = Vg7 1 point of maximum entropy
change against the mean size of the discs: As can be seen the relation

is close to linear. It appears that in linear scale-space the point of
maximal entropy change by logarithmic scale corresponds to the 514€
of the dominating image structures.

Fabric.0011

A S 7.4.2 Spatial Extent of Structures

Pixels
Fabric.001Llin Fabric.001Lnonlin In this section we show that the scaling behaviour in linear scale-space

carries over to the generalized entropse and that they can be used

/ to simultaneously measure the size of light and dark structures. We
-2 6

shall also see that the latter cannot be done with the Shannon—Wiener
entropy.

The idea is as follows: The definition of the generalized entropies
implies that entropies for large positive a focus on high gray values
(white areas), while for large negative value they analyse low gray
values (dark areas).

We expect that c, (g(t)) is especia,g high for structures of diameter

; ; 5 ; . d, when the variance 0 =1/2 of the Gaussian is close to the variance
Log Scale Log Scale of the structures. Let us for simplicity consider disc shaped structures.
The second radial moment of a disc of diameter d is?,

Figure 7.1: Examples of some generalized entropies. TOP: A 512 x 2 /2 g2
512 gray-valued image. BOTTOM LEFT: Generalized entropies in 7= o Jo
linear scale-space. From top to bottom o = 1,34,67,100. BOTTOM ——rdrd¢ = 5 (7.18)

2

RIGHT: Ditto for nonlinear scale-space. m(d/2)?

2After the defense I have realized that there is probably an error of a factor 2 in
the equation and the experiment below: The second radial moment is equivalent to
calculating the trace of the covariance matrix, and since the trace for an isotropic
Gauss is 202, equation 7.18 should probably be 20 = ....
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Hence we expect a light (or dark) structure of diameter d to have a
significant entropy change by logarithmic scale at time 02/2 = d?/16.

This size estimate remains qualitatively correct for non-disc structures.

In this case, it gives the size of the largest minimal diameter. .
Figure 7_% shows the result of a performance analysis. The S14€

estimate (7.18) has been applied to a number of simple sinusoidal im-

ages with structures (half wavelengths) between 1 and 257 pixels. As
can be seen in the bottom graph, for sufficiently large structures the
estimated sizes are close to the true size. Althoughy definition, the
generalized entropies are not symmetric in order, both positive and
negative orders have similar scaling behaviour which is close to linear.
In Figure 7.4 we show an experiment on a texture with a more com-
plicated periodicity. This real image has been created by the Belousov—
Zhabotinsky reaction (Jensen et al., 1998). From orders +20 we find
dominating low intensity values corresponding to a diameter 7.9, while
00 0 0 0 100 g0 20 20 the dominating high intensity values suggest structures of diameter 3.7.
Zooming From this we conclude that the distance between the light spiral arm:

in the mean is approximately 7.9 pixels, and the width of the SpPa
arms is approximately 3.7 pixels. In spite of the fact that the disc

model (7.18) is not very appropriate, for the liﬂe like structure, the size
estimates are in the correct order of magnitude.
The Shannon—Wiener entropy cannot be used for size estimation

since it is a mixture of information from both light and dark areas.
Thus is does not allow for a distinction between fore- and background.

level003 level013
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5

N
=]

std at Maximum Change

7.4.3 Fingerprints for Entropies in Scale-Space

Section 7.4.1 and 7.4.2 have shown that the scales of extremal entropy
change carry significant information for selected information orders.

Thus it would be interesting to introduce a compact description of the
extremal changes for the continuum of information orders. In analogy

with edge analysis in linear scale-space (Yuille and Poggio, 1986) we
call such a description a fingerprint image. In Figure 7.5 are finger-
print images for two textures given, both in the linear and nonlinear

scale-space. The fingerprint lines are the extrema of ca(p(t)) in t.
Our monotony results immediately imply the following consequences:

40 5
Estimated Diameter

Figure 7.2: A zooming sequence. TOP: First and last image. BOT-

TOM: The o = v/2¢ values maximising ¢; (p(t)) versus the estimated
disc sizes.
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Test Pattern
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Figure 7.3: Scaling behaviour and size estimation with general-

ized entropies. TOP LEFT: Test ima%e %enerateﬂ 25772(1 +
0.6 cos(wT1) cos(wzz)) with w = 97/257. TOP RIGHT: The cOrre-
SpOIl%Sl g cq(p(t)) curves for « = +100. Top curve is for positive order

and bottom curve for negative order. BOTTOM: A double logarith-
mic plot of the true size versus the esﬁmated size for various w. The

i i ; les the estimation from order
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Figure 7.4: LEFT: Spiral generately a chemical reaction. RIGHT:
Entropy changes for orders 20 (top curve) and -20 (bottom curve).

If there is only one fingerprint line for a given positive order, then it
corresponds to a maximum (likewise to a minimum for negative or-

ders); see also Figure 7.3. For almost all orders there will be an odd
number of fingerprint lise which correspond to alternating maxima

and minima. This can be seen for instance in the middle right graph in
Figure 7.5. For information order 60, the leftmost line is a maximum

followelly alternating minima and maxima.

It appears that the location of the fingerprint lines is more stable

over information orders for the nonlinear scale-space than {for the linear

ne. Dye tq the reduced diffusivity of the nonlinear scale-space, the
gngerprlnt lines are shifted towards higher scales.

7.5 Conclusions

In this paper we have investigated entropies as a means for extracting
information from scale-spaces. This has lead to the following contri-
butions.

e Monotony and smoothness properties for the Shannon—Wiener
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entropy and Rényi’s generalized entropies have been proven for

the linear and a nonlinear diffusion scale-space. The proofs hold
Tile 0001 Fabric.0011 also for all other nonlinear diffusion scale-spaces treated in (We-

ickert, 1998).

We have illustrated that the generalized entropies can be used to
perform size measurements for periodic textures. This is not pos-
sible with the Shannon—Wiener entropy. We have proceeded to
define a fingerprint image for entropies in scale-space and anal-
ysed some of its basic properties. The localisation of the fin-

— o gerprint lines can be improved using nonlinear instead of linear
TFi‘II:.T]:(S)Ol.Iin Fabr:i)e(:il.lin scale—space.

U U U The following topics appear promising for future work.

e In the context of texture analysis, it would be interesting to

perform an in-depth study on the relation between the fingerprint
topology and the structure of the texture.

This paper has focused on the maximal entropy change by scale
to stIi) I;te the stz 0‘%dirnage structures. The hifnimal cehange %Y

2 0 5 y scale, however, indicates especialy stable scales with respect to
Log Scale Log Scale . . .
Tile.0001.nonlin Fabric.0011.noniin evolution time. We expect theS€ scales to be good candidates for
stopping times in nonlinear diffusion scale-spaces.

e The entropies in this paper are global measures. For topics such
as focus-of-attention it would be interesting to study local vari-
ants of them-

It should be emphasized that the analysis carried out in this pa-
per is directly transferable to the analysis of multifractals, gray-value
A4 moments, and gray-value histograms.

0 0

2 2
Log Scale Log Scale
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Since vj,j = 1,..., M are distinct, the matrix is invertible (but ill-
conditioned). Thus there is a one-to-one relation between the moments

my,...,ma—1 and the histogr .
O/The’ eqﬂéivzlﬂence of the mguﬂlilflra{ét’al sb@cltrum and the generalized

. Y. . . entropies is discussed in (Halsey et al., 1986; Véhel and Vojak, 1998).
spiral image in Figure 7.4. The images in Figure 7.5 are taken from

the ‘“VisTex’ collection (Picard et al., 1995).

7.7 Relations to Gray Value Moments,
Histograms, and Multifractal Spectra

The gray-value moments of an image are defirzd a
(7.19)

From the definition of S, in (7.7) it is clear that there is a one-to-one
relation to my,.

Let the image (py,..,pn)" consist of M distinct gray values vy, .., vy
occurring f1,.., fasr times. We may use this gray-value histogram f to
rewrite the MOMents a

)T

ma(p) = > fivg- (7.20)

Considering the moments mg, ..., ma—1 gives the relation:

1 1.1 f1

Vg . UM fa
v2 s vy f3

M-1 _M-1 M-1
my—1 J vy vy S Uy J fum J

The System matrix is a so-called Vandermonde matrix. By induc-

tion over M the determinant can be shown to be T (vm—wn).
1<n<m<M




Chapter 8

Some Theorems on
Continuous Histograms

This chapter discusses continuous histograms of one dimensional func-
tions. We define a continuous histogram by the first order structure of
the function, and as such they seem to be one-to-one mappings of the
function up to translation and mirroring. This is proven for a large
class of functions including almost all uneven polynomials. We further

show that if the function has an extremum, thel the histogram can be
used to find the first non-zero derivative of the function in almost all

cases.

8.1 Why Study Continuous Histograms?

The gray-value histogram is a simple function with a wide range of

applications. For example, in signal and image_ processing the shape of
the histogram is used to reduce the number of function values or in the
extreme case to segment the signal. In coding theory the histogram is

used as a basis of code design, since the histogram dictates the lengths

of the optimal codes. In this article we will examine the continuous
histogram as the first step in obtaining a deeper understanding of the

Some Theorems on Continuous Histograms

A Random Function

X

Figure 8.1: A random positive function.

discrete histogram.

We will in the following examine the central importance of the
discrete histogram in various fields, and thereafter introduce the €oR-
tinuous histograms as the limit of infinitely finely sampled discrete

histograms.

8.1.1 Some One-To-One Relations with the Dis-
crete Histogram

We will shortly digress on the relations in the discrete setting, since
it is here easiest shown that gray-value histogram is equivalent to the

spectrum of gray-value moments, the generalized entropies and the

multifractal spectrum. An example of these representations for the
random function in Figure 8.1 is shown in Figure 8.2.

Let § = (g1,---,9m)T be a discrete function where g,, > 0 for
m = 1... M. For each distinct function value yy,...,yn of § we may
count the frequency of occurrence h = (h1,...,hn)T. We call h the
discrete gray-value histogram.

The gray-value moment of order « is defined as (Gonzales and
Woods, 1993),

N
My = Z hnyy, (8.1)
n=1
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The Histogram of g(x) The Spectrum of Moments of g(x)

20 30
a

(b)

The Generalized Entropies of g(x) The Multifractal Spectrum of g(x)

F(Exponent)

a2 4.3 4.4 4.5 4.6 4.7
Exponent

()

Figure 8.2: Four equivalent representations of the random function in
Figure 8.1. The hormalised discrete histogram is shown in (a). (b) is
the spectrum of moments on logarithmic scale, (c) is the generalized

entropse and (e) is the multifractal spectrum.
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and the spectrum of moments myg, ..., my—; gives the following rela-
tion,

y? ¥ YN hy

vi - Un ha

yy " hn

The above matrix {y2} is a Vandermonde matrix. The matrix can be
shown to be ill-conditioned but invertible for all N. This shows that
the spectrum of moments and the histogram are equivalent represen-

tations.
For a discrete function g the generalized entropy S of order « is
defined as (Rényi, 1976¢; Rényi, 1976a; Rényi, 1976b),

So= ! M a
(S )) e

where ¢ = an\le gm is a constant. The generalized entropy is not
defined for o = 1, but the limit of a going to 1 from below or above
can be seen to be S = — Z%ﬂ(gm/c) log(gm/c) by ’'Hopital’s rule.
This function is usualy taken as part of the generalized entropies.
Using 22;1 hnyd = Zfr/f:l g% we rewrite (82) a
me =exp ((1 — a)S,) c®.

This demonstrates that the spectrum of moments and the generalized

entropies are equivalent representations.
Finaly, the one version of the multifractal spectrum is defined as

the Legendre transform of (o —1)S, (Halfca%( et a{., 1986). The Legen-
- . nce the multilractal spectrum is equiva-
re traniform is invertible, he
ent to the generalized entropy.

8.1.2 Continuous Histograms

Continuous histograms are the limit of discrete histograpwhe? the
sampling both of space and intensity values is infinitely small. Con-

sider a simple third degree polynomial. What happens to the discrete
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histogram, when the function is sampled at finer and finer resolution?
In Figure 8.3 we see the evolution of a third degree polynomial as the

number of sampling points is increased. Besides the interference be-

tween the two samplinf; rates Tausing, the Moiré pattern, we see that

flhe extrema for the Polynomial give Fise to pole like structures in the

1stogram.
In the limit of infinitely fine sampling, any analytical function will

be dominatelly the linear term. Let us therefore examine histograms

of straight lines. Lines give rise to uniform histograms. In Figure 8.4
are two lines of different slope given. If we investigate the amount of
a straight line that is projected onto an interval on the horizontal axis
illustrately the two horizontal lise we see that a line of high slope

will have a smaller projection than a line with low slope. Particularly

we see that the only lines that do not give uniform histograms are lines

of zero slope. Zero slope lines project everything into a single point

on the vertical axis. We make the following observations regarding the

projection of straight lines:

e It is independent on the Particular offset of the domain.

e Mirroring of the domain yields does not change the projection.

e Two lines with the same absolute slope have identical projections
Linear structures are the basis of all analytical functios, hence the
above is easily generalized to all analytical functions.

We are thus motivated to used the following definition for contin-
uous histograms.

Definition 8.1 (Continuous Histogram).

A continuous histogram of a monotonic, one dimensional function y =
g(z), where g € Ct, is defined as,

h(y)

lg' ()|

A continuous histogram of a non-monotonic function is defined as the
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A Discrete Histogram Using 3 Samples A Discrete Histogram Using 33 Samples

10 15
x and h(y)

(b)

A Discrete Histogram Using 513 Samples

10 15
x and h(y)

(c)

Figure 8.3: A function and its histogram under different sampling
rates. The function f(z) = (z — 2)(z — 10)(z — 18) is shown using 3,
33, and 513 sampling points on the horizontal axis. The histogram is
shown using the same sampling rates as a projection onto the vertical

axis. The interference between these two samplings causes the Moiré
patterns especialy noticeable in (c).
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(a) (b)

Figure 8.4: Two lines of different slope and the density on the vertical
axis. In (a) is shown a line with high slope and an interval of sampling
on the vertical axis. In (b) is shown a corresponding line with low
slope.

sum over intervals where the function is monotonic,

hy)= 7@ (8.3)

z:g(z)=y

In Figure 8.5 and 8.6 are shown two examples of continuous his-
tograms.

8.1.3 Final Introductory Remarks

The goal of this work is to show that the continuous gray-value his-
togram is a complete representation of a one dimensional function up

to translation and mirroring.
Related to this article are reconstructions from zero-crossings in

the image (Yuille and Poggio, 1983; Hummel and Moniot, 1989), re-
constructions from the sign information of Fourier coefficients (Curtis

et al., 1985), and reconstruction from Top-points (Johansen, 1997).
The Process of studying continuous histograms of one dimensional

functions is broken into several steps. Firstly, in Section 8.2, we study
the histograms of monotonic functions. In the Same section the results

Some Theorems on Continuous Histograms

Monotonic Pieces Contributions

Continuous Histogram

i . - i i clements, in the sum of
THBdEe S Do ORIt SRR iSg R Gor the Tunction f(z) =

3 — 64x. The function is shown in (a) indicating the three monotonic
pieces. In (b) is, the contribution of each piece to the histogram, and
in (c) is the ontinuous histogram shown.
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are extended to partially injective functions. We prove that continuous
histograms of partialy injective functions uniquely define a function up

to translation and mirroring of the domain. In the class of all polyno-
mials, all odd degree polynomials have an injective neighbourhood, and

Monotonic Pieces Contrbutions are thus uniquely definelly their histogram up to translation and mir-
roring. The discussion on one dimensional functions that do not have
an injective interval is split into two: Section 8.3 and 8.4. Section 8.3

will examine the algebraic structure available through the poles of the
histogram, and Section 8.4 will discuss the analytical structure avail-
able in the Poles. The uniqueness of the histograms for non-injective

01 one dimensional functions is not proven, but it is conjectured to be
005 E true by the algebraic and analytical analysis performed.

—?50 -100 -50 0 50 100 150

(b)y 8.2 Monotonic Functions

Continuous Histogram

The simplest functions to reconstruct from histograms are monotonic
functions. We will prove the following.

Proposition 8.1 (Histograms of Monotonic Functions).

Let g be a monotonic and analytical function. The continuous his-
togram of g is a full representation up to a translation and mirroring
of the domain.

Proof. Assume the continuous histogram of g(z) is given by h(y). Since

5 100 150 g is monotonic and analytic we may write the spatial coordinates of g
as

0
y

(c)

y
o0) = oun) = | h(y) dy
Yo
Figtulfs s%?n 0[? tﬂlg%‘iggggi‘;afm“?ﬁg‘gl tﬁétkoﬁtﬁ.{ﬂg%aﬁf%oéﬁme 1%? NI up to the offset z(yg) and sign of ¢’. Since the histogram is monotonic
Pinction f(z) = 3. The function is shown in (a) indicating the two we may write g(+z + z(yo)) = 7 '(y). The arbitrary offset z(yo)
monotonic pieces chosen. In (b) is the contribution of each piece to corresponds to an arbitrary translatiofn and the sign to a mirroring of
the histogram, and in (c) is the continuous histogram shown. the domain. This completes the ProoL.

O

In Figure 8.7 is given an example of the continuous histogram of
tanh(z) and its corresponding reconstruction. In Figure 8.8 are the

same functions shown for a monotonic interval of cos(z). By the
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i The continuous histogram of cos(0.1...3.0)
The function tanh(-1.8...1.8) The continuous histogram of tanh(~1.8...1.8) The function cos(0.1...3.0)

The Reconstruction of cos(0.1...3.0)
The Reconstruction of tanh(-1.8...1.8)

Figure 8.8: The function cos(z) in a limited interval (a), its continu-
ous histogram (b), and the reconstructed function (c). Note that the
reconstruction function differs by a translation and a mirroring of the
domain.

Figure 8.7: The function tanh(z) in a limited interval (a), its continu-
ous histogram (b), and the reconstructed function (¢). Note that the
reconstructed function differs only by a translation of the domain.
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reconstructed function from the histogram we see that the histogram In Figure 8.5 and 8.6 is shown two third degree polynomials and
represents the function up to translation and mirroring of the domain. their continuous histograms. As shmllld be expected, we see in Fig-

. . . S oy maximum the Pole 1s continuous from below arr
We will now examine a function which is partialy injective. Hfsec §1'15tirt1}111%tu sfofr g}&? above and vice versa for the minimum. In Fig-

ure 8.6 we note that although there is no extremum, the derivative of

Definition 8.2 (Partially Injective Functions). . . . :
; ) 4 . . . T g is zero and the histogram has a pole that is continuous both from
An analytical one dimensional function g(x) is partially injective if above and below

there exists an interval Y such that if g(x1) = g(x2) and g(z1) € Y Tn & pole y . the Sum in (8.3) is co pletelifi dominatetly the single
then 1 = .. term originating from the extrenium 9(}’711)1 antenct:

For the class of partialy injective functions we can use the above lim h(y)| g'($1)\ =1.
proposition to prove the following. Y=
This can be used to obtain the singularity structure in the extrema.
Note that the limit taken in this and the following assumes a direction,
i.e. from below for a maximum and above for a minjnum. TheS€

Lemma 8.1 (Histograms of Partially Injective Functions).
Let g(z) be a non-monotonic but partially injective function. The con-

tinuous histogram defines a class of functions differing from g(z) only directions can be inferred directly from the continuous histogram.

by translation and mirroring of the domain. Although the continuous histogram h(y) is given as a function of
y and not z, its structure at poles (zy,yy) reveals information on the

Proof. By Proposition 8.1 we may reconstruct g in the injective neigh- spatial structure of g(z) at the singularity.

bourhood up to translation and mirroring. Since g is analytic, the . .
Taylor series for the neighbourhood will converge to g. This completes Proposition 8.2 (Structure from Histogram).

the proofr. 0 Let g(z) be an analytical function for which g'(z) = 0 and if ¢'(z;) =0
and g(z;) = g(xy) then z; = z. Both the mulliplicity my and the

. . . g™t (z1) may be obtained directly from the histogram h(y).
We note that the above lemma is valid for all polynomials of odd

degree. Further, for the class of polynomials, it is always possible to Proof. Denote the known intensitv values of the poles by yx. tha corre-
identify the injeyctive intervals, since the pole structure identifies the s onéﬁng linl%mwn Spa‘év'al1 oségi]l?g;;?itt e(% %E%%%ﬁ@sﬁ%gﬁifggﬁ&}%
ole

extrema. ?rag%icon % aky :T“Tﬁle% ¥8fues can be found as follows: Obtaining

‘oo ; imple process of noting the function valyes
grfo?lghpeo el;to ot ésnté}gh ourhdod of a pole the function 1 similar
. o my+1 ; ; constant we may find the
8.3 Algebraic Structure of Poles to glz) =y = cxz™ . Disregarding G 1) The multiplicity s

multiplicity my, using fhe inverse z, = | .
thus given as the smallest positive integer n for whic

Extremal points of the function will give rise to poles in a continuous

. ] 17 s . . struc- lim _ n
OB Dolos 18 diraciy Tokee (0 Rig o araer Bertvatives of the oy, 1y~ el

function at the €xtrema. In this section we will examﬁne the _algetgaic
structure of the pode and in the next section we will examine the
analytical structure of poles. As in the Previous section we note that
the histogram is invariant to translation and mirroring of the domain.
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In practice however the limit cannot be handled correctly in a com-

puter, and we are forced to examine the convergence to yy.

To solve for the local structur(f we will tr nsl,ei.fe the coor.dinate
system and examine the €xtremum for y = 0. We will now examine the

effect of the constant ¢ in g(z) = y = cz™* 1. Write the histogram
s, a

lim A(y) = ),

Y—Yk [
{z:9(z)=y} |7 (z)]
godd(my)

(s + 1 len |7 fy 7 )

where odd is the indicator function defireed a

odd(my) :{ (1] if my, is odd

if my even

We see that the limit in y is easily related to c as:

( godd(my) ) Mt

¢ = £ lim — .

o (mi + 1)h(y)ly| ™+

The above is easily generalized to g(m)( =47 (z — xk)mk‘*"l + Y
truct th h g\m* =4 Dleg. 1

and'relatedt tontt ess{élr(l: (?fLr %k cgr)luge o] tained(%)y a silgge gna)l;s%s o%

i }?oﬁgﬁymélye structure of h(y) as demonstratetly Figure 8.5. This

completes the proof.

O

In the rest of this section we will study regular polynomials.

Definition 8.3 (Regular Polynomial).
A polynomial of degree L for which the derivative has L — 1 real roots
we call a reqular polynomial.

In passing we note that all polynomials fof finite degree can b\%]{an\?vcllﬁ

. . tive
regular using the Heat Equation 8; = 9, °F S0Me nega
now discussthe f(Hlowmél. b
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Conjecture 8.1 (Histogram of Regular Polynomials).
A one dimensional regular polynomial g can be represented by the con-
tinuous histogram up to a translation and mirroring of the x-axis.

The histogram h(y) of a regular L’th degree polynomial y = g(z),
whose derivative has all real roots, will have K poles each with a
multiplicity my, such that Zszl mp =L —1.

For a Regular Polynomial g(z) = Zleo a;z' we now have the fol-
lowing 2K + L — 1 equations for L + 1 unknown ay,...,ar,

9(@k) = ks
d(zx) = ...=g™)(z) =0, (8.4)
g(mk+1)(.’l?k) = :i:(mk + 1)!Ck.
Due to translational invariance we might as well fix z; = 0. T? ether
ith the constraints on the derivatives this immediately Y1€'0S the
F(])ﬁowmg equatiosn,
g(z1) = ao=wu
a = ...=0am, = 0
Amy+1 =  E(mg + 1)leg,
leaving 2K + L — 1 — 2 — m; equations.
We see that when all roots are equal, K =1 and m; = L —1

implying zero unused equatios, which proves this special instance of
the conjecture. We will in the following subsections give two examples,

where the conjecture is true.

8.3.1 Example: Regular Polynomial, One Extre-
mum

For an example of the above consider the polynomial

1
g(z) = 1
6(13;33 + §a2w2 + a1z + ap,

where ¢'(z) has two real roots. Le.

g'(z) = yas(z —z1)(z —22)
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for real z; and z».
A third degree regular polynomial with just one extremum has
x1 = ¢2. Such a function and its histogram is drawn in Figure 8.6. The

polynomial is monotonic and we may perform a Taylor expansion as
mentioned earlier, but for the sake of illustration we will reconstruct al-

gebraicaly. The values {g(z1) = y1; m1 = 2; ¢'(z1) = ¢"(z1) = 0; ¢1}
are all obtained from the histogram. Fixing z; = 0 we immediately
get,

ao
ay
a2
as = :i:ficl .

The unknown sign of ag is due to the undetermined mirroring.

8.3.2 Example: Regular Polynomial, Two Extrema

Let us continue with the €xample in (8.5) and now assume that z; #
z2. Such a function and its histogram is drawn in Figure 8.5. The

polynomial has two extrema, and we helice create 3 monotonic pieces:
z € {—o00,z1},2z € {z1,22}, and z € {z2, 00}, assuming position of the
two extrema to be z1 < za. The values {g(z) = yx; mg = 1; g’(xk{}v:

0; cx} are all obtained from the histogram (the Tk S are unknown). We
set 1 = 0 and get,

a = Y,
ay = 0,

as
To solve for zo and as we use

1/6aszh + c1z3 + y1 = Yo,
1/2a3x3 + 2c129 = 0,

asxs + 2¢1 = 2cs.
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Using (8.7) and (8.8) we find ¢; = —c,. Using (8.6) and (8.7) we get
Ty = 4./3%27Y%1  The coefficient az may be calculated directly by
C1

(8.8).
Again we see an undetermined sign for the 23 coefficient (equiva-
lently z5) corresponding to an undetermined mirroring of the domain.

8.4 Analytical Structure of Poles

One feature of non-partialy injective functions is that they have at

least one global extxﬁa_mum. If donly one glob;g extremum i? present,
then the continuous histogram degénerates to being a sum of only two
terms. We will in this section try to take advantage of this. We have

not been able to prove uniqueness in the Sénse of previous sectios, but
we will sketch an algorithm that has been implemented and appears
to converge to the correct solution up to translation and mirroring of

the domain.
Let g(z) be an analytical function with one global extremum (z, yx)
with multiplicity my. Without loss of generality we will assume that

this is a global minimum. For a sufficiently small constant § the €01~
tinuous histogram h is given by:

h(yx + 0) =
1

gz +e) glzr—n)

where the constants J, ¢, and 7 are related through

g(zp +€) = g(zy, —n) = yp + 9.

We now set zj = 0 and analyse the histogram sufficiently close to

yg such that only lower order terms of g are detectable. More precisely,
choose a § such that the structure of g is sufficiently representetly

the following truncated Taylor series:
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In the neighbourhood around yi we may solve for the left and right
solution of the inverse function of gz, obtaining approximations of
€r(0) ~ e and nL(d% ~ 7). Analytical solutions of theSe are rather com-

plicated and we will suffice with stating that only these two solutions
exist for sufficiently small §, and that these can at least be found nu-
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curvature function, we will be able to disregard the phase completely.
The histogram is further invariant to mirroring, which in terms of the

curvature function corresponds to a mirroring in the two dimensional
plane. Such invariances are often desirable for some shape recognition
tasks.

mericaly. We can thus write an approximation to the histogram based

on gr: .
hi(yr +6) = 1

grler)  gp(—nw)’ : - o . ,
L L This work was initiatey discussions with Robert Maas in Utrecht

; _ nce that . . ;
Le‘%hus pefume &g%iﬁgggtgr%ggg{eagdkgg élogv%_to or aléilxlfgn ar we during the Scale-Space '97 Conference, where we discussed the POSSl-
ar 1s tue [ighe bility of reconstruction from histograms for a large number of kernels.

he problem as a
may. sqlve. for efL((S) and 7z,(), hence we may write the The Present weaker result using continuous histograms was spawnetly
later discussions with Mads Nielsen, Peter Johansen, Ole Fogh Olsen,

minimisation o
Jgrgen Sand, and Joachim Weickert.
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E(ar) = (hr(yx + ) — hiys +9))*,

and seek the solution by gradient descent. We have not proven conver-
gence, but the experiments we have performed indicate that at least

for small polynomials, the above brute force method converges to the
right solution.

8.5 Discussion

In this article we have examined the Structure of continuous histograms
of one dimensional functions. We have proven that the histogram of

partialy injective functions defines a class of functions differing only by

a translation and mirroring of the domain. Further, we ha}i)ele amined
the strong algebraic and analytical constraints on the Possible function
class determined by continuous histograms in general.

The contributions of this work are both to provide theoretical in-
sight into continuous histogramand to indicate the viability of us-
ing histograms for shape representation. For example, in the context
of two dimensional shape it is known that any two dimensional con-
tour can be representelly its curvature function up to a rotation
and translation. The curvature function of a closed contour has an

arbitrary phase, but by examining shape from the histogram of the
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(OBD) (Cun et al., 1990), can be used to generate a similarity class
of algorithms based on invariance, which in turn can be interpreted in
a statistical manner as a Maximum A Posteriori (MAP) or informa-
tion theoretical code length functional, and it is thus shown how OBD
can be interpreted in terms of the implicit prior on the function clas,
usualy the feed forward networks.
Chapt er 9 Before we begin, the reader should note that although the founda-
tions of MAP and coding are very different, there is in the idealized
code length setting appliellere, a one to one correspondence between
the two. Idealized code lengths are determined through Shannon’s

O n t he Invariance Of entropy-inequality (Rissanen, 1989) a
[ ° L(9) = —log P(@),
Salle ncy Based Prunlng where 5 is the code length for the particular entity # and P is its cor-

responding probability. Under the assumption that P is known, there

L ]
Algorlt hmsl exists algorithms, such as the Huffman and especialy the Arithmetic

coding algorithm, that approach an equality of the above. Conversely,

it is straightforward through the €quality to design a probability dis-
tribution given a set of complete prefix codes. We are thus in this loose

sense free to choose the formalism best suited for our needs.
9.1 Introduction
9.2 Pruning

For some function classg such as the feed forward eurﬁl nethrks,

the number of parameters is very large whe? compared to the usual size s . . . .
01% datasets to be fitted. To §ive an example, in the simplest universal Fitting a function to a set of data points is often accomplishelly

feed forward network f : R™ — R™ (Hornik, 1989; Cybenko, 19 92, minimizing an error function E(8), where 8 is the set of parameters.
t}fle number of parameters grow as d(M+ N —1—13, where d is the humber The definition of saliency as we use it in this chapter is the increase
)

internal nodes (or hidden neurons). in E whell one or more parameters are removed, i.e. set to zero. The

To reduce complexity and increase generalization, a function class increase by removal of the parameter set {0iy- -, 0:,} will be called

can be analyzely examining each individual parameter for its im- Ao;,.,...0:, 1, and an ordering is thus induced,
portance or saliency. The Process of removing parameters based on
saliencies is known as pruning and is the subject of this chapter. We Api B2 ApE 2> Ap B
will illustrate how a specific pruning sche™¢, Optimal Brain Damage )
where we used the sloppy notation of p; to denote a set of parameters.
The €xact pruning decision performed is not of importance to the work

presented in this chapter, as long as the decision is based only on the

LAn earlier version of this chapter has been published as a technical report
(Sporring, 1997). The current version is submitted for journal publication.
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ordering. Generaly the set of parameter removals that generate the

lowest increase in the error function is pruned.
The €xact increase is often too computationally expensive to eval-

uate, and for analytical error functions (usualy implying analytical
functions) the ordering may be estimated by a truncated Taylor se-
¢

AE(9,A0) = (o — AB) — E(8)

T Z e Z Z A@,M,- -

89 89

As an example the error functional used in OBD is E = ) (yn —

f(z,))? for the data points {z,,y,} and the function f, and the Taylor

series for AE is truncated to second order.
A mathematicaly as well as computationaly convenient restriction

is to consider only single parameter prunings. is refduces the number
of saliencies to be computed to equal the num er of parameters (not
yet pruned), and it simplifies the Taylor series to

OE(0
ApE(0,A8) = -6, @) Lol 16%E(0)

80, ' P2 962

for each parameter 6,,. Note that in this case, A@ = [0, ..,0,6,,0,..,0]T.

How well the truncated Taylor series approximates AFE is usualy

ignored in the literature. Further, the ordering itself does not indicate
to what extend the pruning is to be continued. This must be deter-

minely exterior constraints such as generalization maximization, see
g. (Sporring, 1995; Svarer et al., 1993; Rasmussen, 1993) and the
references therein and many others.

9.3 Monotonic Transformations of Prun-
ing Order

For the simplicity of the following argument we will investigate single
parameter pruning algorithms, but note that the results holds for multi
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parameter prunings as well. Assume that we have an ordering of the
parameters such that,

Ap, \E>ApE>A, B
It is at once noticed that since monotonic transformation with positive
slope preserve inequality, the above ordering is also unaffected,

T(Ap  E) 2 T(Ay B) = T(Ap,,, B),

Pi+1

I.e. continuous transformation 7' : IR — IR with 9,7 > 0 for all x does
not affect the pruning order. We will now study a linear transformation

T(AE) = aAE + b, for constants ¢ > 0 and b, and show that the
pruning algorithms described in this chapter can be interpreted in
terms of a model expectancy.

Examine the following function,

L(6) = aE(6) + 3 filog |6 + 7. (9.1)

where «, f;, and v are constants. « must be greater than or Squal
zero, and the set of fi’s must be chosen such that the saliency order is

not disturbed. Gen%ral Yve w111 assume that 8; = 0 whel 0; = 0 and
use the convention that"0log 0

Proposition 9.1 (Existence). For a > 0 and a constrained set of
Bi’s L preserves the pruning order of any analytical error function E
in a Taylor series truncated to finite order.

Proof. The proof is given in Section 9.7.
O

Proposition 9.2 (Uniqueness). For a > 0 and a constrained set of
Bi’s L is the only functional of any analytical error function E for
which the change of L is a linear function of the change of E in the
Taylor series truncated to finite order.

Proof. See Section 9.8 for the Proof. m




9.3 Monotonic Transformations of Pruning Order 157

There are several key points to notice. First of all, the particular
set of 8;’s where 3; = (3 for all j does not upset the pruning order. To
see this, write the constraints on f; as (Equation 9.3),

Api—lE - APiE A E—-—A.E
“ —Bim1 > —fi > a— PP

J . - .

Zj:l] ! Zj:l] !

where J is the truncation order. For identical 3;’s the original order
is retained.

Secondy, this particular choice of identical constants 3;’s is pre-

cisely the limit for the truncation order going towards infinity, sﬁnce
the sum in the denominator will tend to infinity as J deg hen¢e the
bang of different allowable 3;’s will tend to zero, i.e. 8; — B for all j

as J — oo.

Finaly, if F is an analytical fmﬁction thent L is, too. We have a
semi-group property in the sense that we can define two sequential

non-pruning disturbing extensions as in Equation 9.1 and get a third
non-disturbing pruning. Thus definesl’ a

L'(6) = o’L(6) + ) _ Bilog |6i] + 7/,

- ﬂi+1

with a new set of constants chosen as prescribed previously, but this
time based on L instead of E. This is of course just

L'(0) = o'aB(0) + ) (/B + B}) log 0] + o'y + 7/,

7
Again we see that the requirements to be fulfilled are
A,  E—A,E
a Pi—1 Pi

W — B — B, > —d'Bi — B
j=1
> a/aAmHE B AmE

= 7 L
21:1.7 !

and for 8; = B and [3; = [ this requirement is trivialy fulfilled. Note

that this is a different approach than choosing two different sets gf Bi’s
h chosen from the same analytical function and then combined.

bot,
T%ls last approach is in general not a pruning order invariant.

c%/

— & Big1 — Bis
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9.4 A Prior of Saliency Based Pruning Al-
gorithms

We will now examine the choice of 8; = 1 for all j. Equation 9.1

; ; coding setting as the sum of code lengths of
(t:ﬁg Egiggtﬁf(? ee %% tfl}éeparamgter mo%eﬁ, anﬁ in the MAP setting as

minus the logarithm of the noise probability times the prior,

L = L(D|0) + L(8) = —log P(D|6) — log P(), (9.2)

where,
P(D|6) = exp(~aF(6) — o).
xample of OBD. E is the sum over data points of the Square
B‘? gheﬁi nor%l, an Bhis’; can be interpreted as a normal product dis-
tribution with a unit standard deviation, and

P(8) = exp(m) [T 16:1 7%

(2

~ exp(z —logn — log||d6;|] — loglog||06:]] — .. .),

i

where v = 79+ 71, 7 is a normalization constant, § is the discretization

constant to truncating reals into integers, and |:| is the truncation op-
erator. The sum is continued just until the repeated logarithm yields

a negative number. This last equation is also known as Rissanen’s
Universal Distribution of Integers (Rissanen, 1989) and most clearly
demonstrates the difference between coding and the MAP methods.
While the MAP methodology is best suited for continuous distribu-

tios, such as Jeffrey’s semi-prior v, /|0; E(Jayme 1968), the problems
of normalization and discretization is much better handled in the c0d-
ing methodology. The key difference between the two is that while

Jeffrey’s prior can only be implemented on a finite interval of the real
axis in order for it to be normalized, Rissanen’s distribution is normal-

izable for all countable sets like the set of all positive integers. Hence
using Jeffrey’s prior one is concerned with the inDterval size D in order
to evaluate the normalization constant 41 = [~ 1/z dz, while one’s
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concern whel using Rissanen’s distribution is the discretization con-
stant d, i.e. the number of digits accounted for. It should be noted

that there are of course other more sophisticated MAP and coding

implementations of distributions for real numbers. TheS¢ and other
implementation issues concerning this coding prior can be found in

(Sporring, 1995).
We may thus view the OBD pruning algorithm as a greedy algo-
rithm searching for the minimum in Equation 9.2 by removing the least

significant parameter through the error estimate. This will increase the
actual error, but decrease the €0t of the moadgl.

9.5 Conclusion

This paper has demonstrated that a large class of saliency based prun-
ing methods, where the saliency is calculated from analytical functios,

can be used to generate a similarity class of pruning algorithms all hav-
ing same pruning order. The (in a sense most) general extension in this
similarity class is used to interpret OBD in terms of Bayesian Maxi-
mum A Posteriori (MAP) or code-length functionals and a Prior has
thus been made explicit. This is found to be Jeffrey’s Prior (Jayse

1968), which is a very natural un-committed result for the following
reasons:

e Jeffrey’s Prior is scale invariant in the Sense that it assign equal
probability mass to the intervals 1 — 10, 10 — 100, etc.. It is

also the basis of what is known as Benford’s law, which although
surprising has been empiricaly validated on numerous datasets

of very different nature, see e.g. (Buck et al., 1993).

e A very close relative, Rissanen’s Universal Distribution of Inte-
gers is frequently used in the coding industri¢and one can show
(Rissanen, 1989) that it is an optimal code for large integers.

Finaly e Nahics P ke hepel ORRpdsqE RO gekiinalss
3‘6}}fimitted choice in the view of the scale invariant properties of the
implicit prior.
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9.7 Proof of Proposition 9.1

We will now prove that the change of L (Equation 9.1) under certain
restriction generates the same pruning order as the change of any an-
alytical function £ up to any but finite truncation order in the Taylor
series.

The change of L can be written as,

AL(0,A6) = L(6 — AB) — L(6)

L N Oy I PLO) o
__Zi:8(91)A92+2§a(91)6(0j)A91A0,

Clearly, the mixed derivatives of the sum of the logarithms are zero,
so we need only examine non-mixed terms. First we need to evaluate
the n’th derivative of log |z|. For simplicity write log |z| as 1/2log z2,
we will now prove by induction that

(=1)"(n - 1)lz™™.

Assume that the n’th derivative is given as above. The n+ 1’th deriva-
tive is then 2 (—1)""}(n — 1)lz™ = (-1)*Y(n — 1)!(—n)z "1 =

(—1)"nlz=(*+1)_ For n = 1, the first derivative is seen to be: 2 1log 2
1

= 1 = (-1)%!z~1, thus completing the proof.

xz
The j’th term in the Taylor expansion of L is given as,

OEO) (ng,p - o (ng,y.

71 (0(6y)) 7%

We identify the first term to be o times the identical term in the Taylor
expansion of E, and further because of the symmetry, i.e. Af, = 0,,

(1) 2 LO)

— " _(AG,)! = (-1)a
ey Y
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we quickly find that

ALL(0,A8) = aALE(0, A) — ﬁng—l,

up to any finite truncation order J. The 3;’s are to be chosen such that

the pruning order is maintained, i.e. since A,, | E > A, E > A
then so must A;L and thus for positive «,

pz+1

Ap \E—AyE A E—A,
Q=P T By > —f > a— P

Z]:lJ E] 1.7

This completes the proof.

9.8 Proof of Proposition 9.2

We will show that L of Equation 9.1 is the unique function that gen-

erates linear invariance to the change of any analytical function E.

A linear transformation of the change in error E must have the

form,
AL(6,A0) =aAE(6,A0) + b,

where a and b are constants. We will now investigate the possible

functions in the Taylor description for a ahd

The constant a is a scaling constant and it is trivially seen that if a
is a function of @ and A8 then the contribution can be eliminated by
an opposite term in b. We will thus assume a to be a positive constant.
The constant b is another matter. We are faced with the choice of a
function h such that

L(6)=aE(0)+h(0) +c
which in the Taylor series behaves such that

~ ; 7h(0) ;
b=3 (-1 107 %)

7j=1

B
- ﬂH—l (9'3)
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is a constant for arbitrary but finite J. The first order terms constraint
the problems to sums of functions of only one parameter. Thus either
h is independent on 6, or,

one) _, 1
(aep)j - p(gi’)j

for any j and p, and constants b, restricted as discussed in Section 9.7.

0) = b;log 6] + bo

Thus

is the only solution for arbitrary constant bg. This completes the proof.




Chapter 10

Measuring and
Modelling Image
Structure: Summary

One basic problem in image processing is that of scale: Objects in
images do not have predefined sizes. A general purpose image process-
ing algorithm should thus be adaptable to handle objects of a range
of sizes. A second basic problem is that of resolution: The resolution
and pixel configuration of an image is most often set by the physics
of the imaging device. A general purpose image processing algorithm
should hence take into account the arbitrariness of the resolution and
the configuration of the pixel grid.

Linear scale-space is a very useful tool to handle the above men-
tioned problems, as illustrated by Chapters 3 and 5 of this thesis.
Linear scale-space is not the only candidate, but it is the only one that
is linear (through the convolution operator), and it seems that it is the
easiest to apply in image analysis. For example, differential geometric
operators are very general and useful tools for image processing, and it
is easy to design algorithms using such operators by linear scale-space.
Unfortunately, linear scale-space dislocates features in images, and this
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forces one to consider the scaling behaviour and the catastrophe struc-
ture of the feature under consideration. An example of this is given in
Chapter 4. Another approach is to design scale-spaces which reduce
the amount of dislocation. These are all non-linear scale-spaces, and
one is studied in Chapter 7.

Scale-spaces are often considered pre-processing algorithms prepar-
ing the input for a modelling phase. This thesis has demonstrated
several models. In Chapter 3 was a Hough Transform of spirals and
target patterns designed for the task of tracking a dynamical chemi-
cal system, and in Chapter 5 we designed an almost one dimensional
contour representation for the coding of black and white blobs. These
two examples both use models of the image data, but they differ in
one important fact: The model for the spirals and target patterns was
designed to be a feature for human inspection, while the contour repre-
sentation was designed to choose a single and complete representation
of the image.

Analysing dataset via a model implies that the dataset is bisected
into a model and a residual or noise part. The justification for such a
perspective is that datasets obtained from physical sources are always
a mixture of something deterministic and stochastic. For example even
the best imaging technique will contain electric noise and discretization
effects. The balance between model and noise can only be learned
by example, and in the general case there does not seem to be any
justification for attributing more importance to either of the model or
the noise. In the general case we are thus forced to examine a model
selection scheme that explicitly does not favour one over the other. The
minimum description length scheme uses compression terminology to
choose models, hence enforcing a common representation of the model
and the noise, and thus enforcing a proper balancing of the two. This
perspective is examined in the practical setting in Chapter 5 and in
the theoretical setting in Chapter 9.

The basis of information theory is the entropy function, which mea-
sures the uncertainty of a stochastic source by its distribution. The
concept of uncertainty is very important and has a widespread use. We
have in this thesis worked with a generalization of the entropy called
the generalized entropies, which is a family of uncertainty measures,
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and which are all functions of the distribution of the stochastic source.
One fundamental property of the entropies is that they do not include
information on the spatial relations between points in the distribu-
tion. Conversely, scale-spaces on a distribution perform information
reducing operation using the local spatial structure of the distribution.
We have thus been led in Chapter 7 to study the interplay between
entropies and scale-spaces. One major result has been that the gener-
alized entropies are monotonic in scale, and hence may be used as a
measure of causality in the sense of Koenderink (Koenderink, 1984).
Although the entropies in scale-space seem simple, they also seem to
be applicable in analysing spatial structures of distributions (such as
images). We have examined this for the linear scale-space through the
intuition that given a point of scale, a small change will tend to have
the largest effect on objects of sizes comparable to the particular scale.
While we do not have any analytical justification for the intuition, we
have illustrated it for several examples, and relates the results to sizes
of objects in the images.

A possible property of the scale-space extension of the generalized
entropies is that they might describe the function or distribution up to
a simple group of actions. This was the starting point for the analysis
of histograms. It very quickly became apparent, that the evolution of
the discrete histograms was rather complicated and we sufficed with a
study of continuous histogram without a scale parameter. For continu-
ous histograms of one dimensional functions we succeeded in Chapter 8
in proving that for a large class of functions, called partially injective,
the histogram indeed describes the function completely up to transla-
tion and mirroring. Non partially injective functions were then shown
to have strong bindings through the histogram, but we were not able
to prove the identical result for this class of functions. It is the opinion
of this author, that there still remains much to be said in this context,
but that the methods used to analyse the continuous histogram might
not easily be translated to analysis of discrete histograms.

Finally, in Chapter 9 we use information theoretic arguments to
study a well-known model selection algorithm. Although this is not di-
rectly related to image processing, the intent has been to demonstrate
that many algorithms can be interpreted in a modelling perspective.

g and Modelling Image Structure: Summary
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Thus even if we build an image processing algorithm that does not
make use of the minimum description length or maximum a posteriori
formalism, we may often attribute a prior to the model class anyway,
and we have hence implicitly used one.




Appendix A

Some Open Probdems

This thesis does in no way cover all aspects of scale-space and informa-
tion theory. We have however along the way stumbled onto a number
of seemingly important open questions, which we either have judged
as being too hard to solve for us, or to be outside the time scope of the
thesis. This list is intended to suggest future fields of study, and I've
mainly included it in the thesis for my own enjoyment. The questions
that T have encountered frequently in the past three years are:

Curvature functions generating closed contours
For Chapter 5 we initially analysed the space of curvature func-

tions, since these capture essential parts of shape. For coding
purposes these have one major advantage compared to the im-
plementation presented and the works of others: Curvature func-
tions of contours in two dimensional images are one dimensional
functions. This is an advantage since as a general rule we may
assume that one dimensional functions have shorter description
length than two dimensional functions describing the same ob-
ject. However, the curvature functions we are interested in are
only those describing closed contous, and for coding purposes
it is therefore important to be able to distinguish these from all
curvature functions. It is for instance not at all likely, that a
spline approximation of a curvature function corresponds to a

Some Open Problems

closed contour. Even such fundamental questions as the enu-
merability and measure of this subset of curvature functions we
have not been able to establish.

Minimum description length and scale-space

Minimum description length or its cousin maximum a posteriori,
have been used with success for model selection. It is, however,
not clear, how the simplification properties of scale-space is to be
incorporated into the formalisms. A desirable analysis would be
the interplay between the complexity of the chosen model and the
scale of the data. Consider the model class of truncated Taylor
series. By the work of Nielsen (Nielsen, 1995) we know that
scale-space damps terms exponentially by order. I.e. smoothing
a dataset is equivalent to minimizing,

2=Y [ (@ gt + 3 521

|
7 I

where f(z) is the resulting function, g is the original, and ¢ is the
scale. It thus seems plausible that the complexity of the model
class should decrease exponentially with scale. Such a result
is quickly established in the Fourier representation of periodic
signals, but it is not clear how to generalize this to other function
classes.

Analytical verification of scale selection paradigm

In Chapter 7 we used the point of maximal entropy change by
logarithmic scale as a scale selection paradigm. It is however
unsatisfying that this paradigm is not verified analytically even
for simple functions. The main problem being the sum under the
logarithm. This seems to be a hard problem.

Choice of local entropies

In Chapter 7 we studied the global behaviour of generalized en-
tropies and their use in image processing. Carrying these meth-
ods to local neighbourhoods is desirable for example in segmen-
tation by texture tasks. However, there exist several ways lo-
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cal entropies may be defined, and it is not clear which is best.
Theoretically, the problem is the monotonic behaviour of the
generalized entropies in linear scale-space. Scale-space is an im-
plementation of the physical process of heat diffusion. By the
second law of thermodynamics, at least the entropy of the total
distribution will be monotonic. This is definitely not the case
locally. Hence it is not known if the change of entropies is the
best function to study. Alternatively, we may define a separate
scale-space for each local neighbourhood by extracting possibly
overlapping sub-distributions, and apply the scale-space to this.
Then will the monotonicity properties hold for each local neigh-
bourhood, and we may do local size estimations and hence tex-
ture segmentation etc.. The overall choice may depend on the
task to solve.

partially injective functions

In terms of the effort we have put into the analysis of continuous
histograms it is clear that we consider it important to prove the
same result for non partially injective functions as we have for
partially injective functions.

We thus end this thesis with a list of what we feel are interesting open
questions connected to the work presented.
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Sammenfatning

(Danish)

At male og modellere billeder har vaeret det centrale tema i denne
athandling. Vi har taget udgangspunkt i en méalingsteori kendt som det
Linezre Skalarum, og argumenteret for denne metodes anvendelighed
i billedbehandling indenfor konventionelle billedhandlingsproblemer.

Med den som udgangspunkt har vi ogsa belyst fundamentale problem-
stillinger indenfor athandlingens andet hovedtema: Informationsteori.

Informationsteori blev fgrst benyttet som et modelleringsvaerktgj, og
derefter analyseret for dens skaleringsegenskaber ikke blot i det linezere
skalarum, men ogsa i en raekke ikke-linezre skalarum.

Et billede bestar af pixels arrangeret i et kvadrat. Pixlerne er hver
isaer resultat af en maling, f.eks. aktiveres hvert billedelement i almin-
delige lommekameraer af det indfaldne lys, sa lzenge lukkemekanismen
er aben. Billedbegrebet er meget bredt, sdledes kan en-, tre- og hg-
jeredimensionelle data samt statistiske sandsynlighedsfordelinger be-
tragtes som billeder.

Billedbehandling er altsa metoder der anvender og behandler bil-
leder. Nogle gange er det en fordel at betragte et billedbehandlingspro-
gram som et, der tager et billede som indata og som udata pro-

ducerer et billede af samme format. Dog vil sada €t billedbehan-
dlingsparadigme kun meget klodset kunne handtere spgrgsmal som:

Er det et billede af et hus? Hertil ville man forvente et ja/nej svar,
og ikke et billede. Skalarum falder derimod klart indenfor billedbe-
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handlingsparadigmet: Et skalarum er en udvidelse af billedet med
en skalaparameter, saledes at skridt langs skalaparameteren sndrer
billedet i alle pixlerne efter den lokale struktur. Altsa billede ind og
billede ud. De skalarum, der blev er behandlet i denne afhandling, kan
alle skrives som en diffusionsligning. Specielt det linesere skalarum
har veeret i fokus. Det linezere skalarum har den egenskab, at det kan
omskrives til en foldning af det oprindelige billede med en Gauss funk-
tion (ogsa kendt under navnet Normal fordeling), hvor variansen er
proportional med skalaparameteren. Dette er en nyttig egenskab til
billedanalyse opgaver.

Objekter i billeder har ikke pa forhand nogen fastsat stgrrelse, og
det er her at skalarum har sin berettigelse. Istedet for at skrive en
algoritme til behandling af objekter for hver mulig stgrrelse, kan man
med hjelp af skalarum ngjes med at skrive en enkelt algoritme til
behandling af de mindste objekter. Derefter vil skalaparameteren au-
tomatisk og pa en entydig made modificere billedet, sa store objek-
ter bliver sma, og sma objekter forsvinder. F.eks. definerede vi i
kapitel 3 centrum for spiraler ud fra deres lokale og globale struktur.
Da vi ikke pa forhand var klar over, praecist hvilke stgrrelser pro-
grammet skulle tage hgjde for, indlejrede vi programmet i det linezere
skalarum. Til sidst brugte vi de to skalaparametre, en for den lokale og
en for den globale struktur, til at finjustere programmet til de faktiske
billedata. Det omvendte var tilfzeldet i kapitel 5, hvor vi benyttede

den fulde skalastruktur til at analysere billeder med. Maélet var at
komprimere billeder af sort/hvide bogstaver (klatter) ud fra deres ge-
ometriske struktur. Strukturen for sort/hvide klatter er seerlig enkel,
idet man kun behgver at beskaftige sig med overgangene mellem sort
og hvid. Ydermere vil alle disse overgange kunne grupperes i lukkede
kurver kaldet konturer. Trods alt dette indbefatter komprimeringen af

klatter et stgrre sggningsarbejde, da antallet af mulige konturbeskriv-
elser er meget stort. Til komprimering gnsker man netop en af de korte

beskrivelse. Skalarum var for komprimering af klatterne en uvurderlig
hjelp til at reducere sggetiderne med. Vha. skalarum blev der skrevet
et billedbehandlingsprogram, som analyserede konturerne ud fra deres
skalastruktur. Derefter skulle kun de mest sandsynlige beskrivelser
gennemsgges istedet for alle mulige.




191

Analyse af skalastrukturer i billeder har vidtraeekkende muligheder
og anvendelser. For eksempel er der en klasse af billeder kaldet tek-
sturbilleder, som udmerker sig ved at vaere reguleere i deres rum-
lige struktur, samt tilnsermelsesvis uafthangige af den perspektiviske
projektion. Et teksturbillede kunne f.eks. vare et narbillede af en
dgrmatte. Det fgrste trin i en analyse af teksturbilleder vil som oftest
veere en estimering af stgrrelsesforholdene, dvs. skalastrukturen. Her
er altsa tale om et eller flere tal, der indikerer hvor store eller sma
strukturer, der er tilstede i billedet, svarende til om man er langt fra
eller taet pa dgrmatten. Der er selvsagt mange funktioner, som tager

et billede som indata og giver et tal som udata. Vi har valgt at anal-
ysere generaliserede entropier i det ovennaevnte perspektiv. Der er to
grunde hertil: For det forste er de kompleksitetsmal i informationste-
oretisk forstand, og for det andet indeholder de ingen information om
de rummelige forhold imellem pixlerne. Til gengaeld forholder de gen-
eraliserede entropier sig til billedet pa samme made som histogrammet
af pixel veerdier, gratonehistogrammet. Studiet af skalastrukturen af
de generaliserede entropier er altsa ogsa studiet af skalastrukturen af
gratonehistogrammet. Det skal understreges, at det ikke er entropierne
af gratonehistogrammet, som analyseres, men entropierne af billedet
selv. I kapitel 7 gennemgik vi den matematiske struktur af de gen-
eraliserede entropier ikke blot for det linesr skalarum men ogsa for
de ikke linezere skalarum. Strukturen viste sig at veere sezrlig simpel,
og analysen er gjensynlig anvendelig for flere forskellige billedbehan-
dligsproblemer relateret til skala.

Studiet af de generaliserede entropier har rejst et vaesentligt spgrgs-
mal: Hvilke billeder vil have identisk spektrum af entropier paa alle
skalaer? Begrznser man sig til det oprindelige billede er svaret enkelt,
idet spektret af generaliserede entropier er sckvivalent med gratone-
histogrammet. Altsa vil alle billeder med samme gratonehistogram
have samme spektrum. Derimod er det endnu ikke lykkedes os at finde
et definitivt svar for alle skalaer. Som fgrste skridt analyserede vi i
kapitel 8 gratonehistogrammet af endimensionelle funktioner i graensen
af meget fin oplgsning, dvs. det kontinuerte gratonehistogram. For
diskrete gratonehistogrammer kan en hvilken som helst funktionsveerdi
ombyttes med en anden, uden at gratonehistogrammet sendres. 1 det
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kontinuerte gratonehistogram er der derimod en direkte sammenhaeng
mellem gratonehistogrammet og funktionens differentialkvotient. Det
er dermed ikke muligt at sndre funktionen vaesentligt uden ogsa at
@ndre gratonehistogrammet. Iszer for de analytiske funktioner, der i
en lille omegn er injektive, blev det bevist at kun de endimensionelle
funktioner, som er translationer og/eller spejlinger af hinanden, har
identiske kontinuerte gratonehistogrammer. For de funktioner, som
ikke har injektive omegne, fandt vi ikke et tilsvarende bevis. Det er dog
sikkert, at mulige variationer af disse funktioner er stzerkt begreaenset
af det kontinuerte gratonehistogram.

Afhandlingens sidste videnskabelige arbejde, kapitel 9, beskaftig-
ede sig ligesom det forrige udelukkende med informationsteori. Visse
modeller for data har et overmade stort antal parametre. Selvom
disse modeller kan indstilles til at stemme godt overens med et givent
datasat, er det langt fra sikkert, at de dermed har fanget trenden i
data — at de generaliserer godt. Som i kapitel 5 kan man benytte
informationsteori til at vaelge modeller for data ved at afveje komplek-
siteten af modellen kontra dens afvigelse pa data. Ofte viser det sig,
at feerre parametre i en model er bedre end mange, idet for mange
frihedsgrader tenderer til at blive brugt til at modellere stgj. I kapitel
9 studerede vi en metode kaldet Optimal Brain Damage, som har en
meget generel tilgangsvinkel til modelvalg ud fra dataafvigelsesfunk-
tionen. Metoden benytter sig ikke eksplicit af en afvejning mellem
modellens kompleksitet og dens afvigelse pa data, men tilsyneladende
kun af afvigelsen. Det viste sig dog, at metoden har en indbygget
symmetri, saledes at der findes en ikke triviel afvejning af model og
afvigelse, hvor kun afvigelsen far betydning for modelvalget. Dermed
kan man sige, at metoden benytter en ikke triviel og implicit afvejning
af model- og datakompleksitet.

Afhandlingen blev indledt med en anvendelse som illustrerede nyt-
tigheden af at opdele problemanalysen i en male- og en modelfase. Som
maéleteori har vi benyttet skalarum, og til modelvalg informationsteori.
Som basis for modelvalg har vi siledes brugt informationsmal. Ergo er
modelvalg ogsa en til tider meget simpel maling. Nar man analyserer
begreberne mere ngje, indser man, at en opdeling i maling og mod-
ellering giver bedst mening ved praktiske problemanalyser. Omvendt




193

kan en sadal teoretisk analyse give inspiration til nye mal at basere
modelvalg pa som illustreret ved de kontinuerte histogrammer.
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