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Chapter 1

Generic image structure:
Introduction

The intended focus of this thesis is the role of genericity in image analysis.

One motivation for this quite theoretical angle has offset in our view on
images as physical measurements. A physical measurement has to be stable
in the sense that a small perturbation of the input only alters the measured
quantity slightly. As we shall see later stability and genericity are closely
related.

Another important motivation is to investigate the notion of structure.
A common approach in singularity theory is to define structure via equiva-
lence. More specifically one defines an allowed class of smooth deformations
which locally can transform the image into a canonical appearance. The set
of local forms which can be transformed into the same canonical form con-
stitutes an equivalence class. Each equivalence class corresponds to one type
of structure.

In image analysis a common approach is to define the structure of interest
as the solution to an algebraic set of image derivatives. Each task, like edge
detection or blob detection, has its own definition of structure. This view
of structure can also be analysed using theorems from singularity theory.
For instance, do we expect a smooth curve as output from the given edge
detector? Do we expect any output at all? Do edges intersect themselves?
Are corners on an edge?

The two approaches can both be analysed within the frame of singularity
theory but there are differences in the strength of the results. We will return
to this and elaborate.

We also believe that scale plays an important role in image analysis. Scale
space theory supplies a way to simulate change of measuring scale in a con-
tinuous manner. The image is embedded in a family of images measured at



2 Generic image structure: Introduction

continuously coarser scales; in practice simulated with a partial differential
equation. This embedding can not be handled by the classical singularity
theory developed by Thom [128], Mather[77, 78, 76, 79, 80, 81] and others.
The starting point for the classical theory is the full set of all smooth func-
tions. Hence restricting the class of permitted images by the embedding does
not fit into the premise for the classical approach. Fortunately Damon|[25]
has proved similar results for certain partial differential equations including
the linear diffusion equation and some non linear diffusion equations.

To illustrate the practical use of genericity considerations the machinery
has been used to compare properties of different corner detectors, and a multi
scale segmentation tool has been developed for use in a clinical research lab.

The following sections will elaborate on the above themes and finally end
the chapter with a guide to the rest the thesis.

1.1 Images are measured

We will consider images in a broad sense. An image is a collection of physical
measurements acquired by an ensemble of detectors in a known spatial and
temporal ordering. This includes a wide range of types of measurements like
pictures and medical scannings.

e A picture could be acquired with a digital camera and the measured
quantity would be the number of photons per area. An example of this
modality can be seen in Figure 1.1

e A medical scanning could be a two dimensional x-ray picture where the
density in a column of tissue is measured by its ability to absorb x-ray
radiation.

e Another type of medical scanning is magnetic resonance (MR) in which
the relaxation times T1 and T2 are measured. The relaxation times
describe how fast the spin of nuclei return to their equilibrium after
a magnetic pulse. These times differ between tissue types and can
therefore be use to distinguish between different tissues.

Image features are per necessity something the observer defines. The
observer has to supply the model in order to infer information from the
images. In the mathematical sense the differential structure of the image
has an existence of its own but in order to give operational access to these
structures the finite limits of the measuring device have to be taken into
account. The structure is assessed with an aperture of finite size and only a
finite number of derivatives with finite precision can be used.
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Figure 1.1: A picture of a desk scene.
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Figure 1.2: Edge maps at two different scales for the image in Figure 1.1.
The standard deviation of the Gaussian for the left and right subfigure is
respectively 1.5 pixels and 8 pixels. The zero crossing of L., = 0 is used as
edge detector (The second order derivative in the direction of the gradient).
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Figure 1.3: Illustration of the importance of connecting structure across
scales. Both scenes have two blobs at coarse scale and face details together
with house details at fine scale. Without a description of the connection
across scales the description of the two scenes are the same.

The inner resolution of the image is given by area and denseness of the
detectors. The outer resolution is given by the dimension of the image. In
between a continuum of resolutions exists.

Structure change caused by scale variation is central for image under-
standing. Details disappear with increasing scale but the same process dis-
locates the remaining structure. A visual example of edges at two diffused
scales is given in Figure 1.2. Structure simplifies with increasing scale but
structure can also locally appear with coarser scale (depending on the defi-
nition of structure).

How does structure connect in the scale direction? With a connection,
structure at different scales can be related and the family of images over scale
can be regarded as a family and not an unrelated collection of images. In
Figure 1.3 is illustrated two scenes with the same features at coarse scale
and fine scale; without a description of the connection the two scenes have
identical descriptions!

1.2 Singularity theory in image analysis

An image is often perceived as the graph of an intensity function over the
spatial domain. However, not every characteristic of this graph is of interest
to the observer. An observer only interested in image edges, will consider two
images having the same edges as being per definition identical, since every
observable (edge) is identical. This leads to the conclusion that the most
appropriate operational definition of image structure is the collection of image
features. The set of image features is not fixed for all observers/tasks, thus
two images of identical structure for one task may have deviating structure
for another task (set of features). Since the number of possible operationally
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defined features is infinite, we may attribute an infinite number of different
structures to a given image.

The structure of a given image is easily assessed in practice since we
demand the features to be operationally defined. This is solely a problem of
implementation and representation. However, it is also possible to determine
how we expect the image structure to express itself even in the case when
the image is yet unknown. That is, given a feature or a set of features some
structures are impossible, and other structures are unlikely. One well-known
example is given in the classical paper by Koenderink [66]: The multi-scale
iso-intensity surfaces will never close downwards in scale. Another example
is a specific iso-intensity curve in an image. In general one would expect it
to be a simple closed curve and it is unlikely that it will intersect itself.

The emphasis is on the likely structure to arise from an arbitrary image.
More precisely, we will analyse for the local generic image structure. That
is, we will analyse which structures will occur in an open and dense set of
images. In this sense we will attribute to a given feature detector the typical
structure it implies.

Quite some work has been done in this area of attributing generic proper-
ties to locally defined feature detectors. We mention here, iso-intensity curves
[66, 23], singularities [66, 58, 34, 60], singularities of gradient magnitude [97],
edges [106, 107, 108], ridges [26, 27|, cores [26, 27|, corners [125, 106], and
parabolic lines [108]. However, these analyses have been performed “feature
by feature”. The central focus of this section is to provide a general scheme,
which may to a high degree be automated. The spirit of this methodology
follows the lines first outlined in image processing by Rieger[106, 107, 108],
and later successfully applied to other features by Olsen and Nielsen[94, 97],
and Sporring et al.[125] .

The fundamental work of finding generic properties of solutions to par-
tial differential equations and especially to the Heat Equation (the Gaussian
scale-space) was performed by Damon [23]. However the spirit in his work
is quite different from this one. Damon defines a class of admissible defor-
mations of images, and then in turn finds events or structures that may not
be removed by the admissible deformations. Finally he attributes normal
forms to these events. In this way, he defines equivalence classes of images.
These classes in turn define what is the image structure. Our approach is
different, since we define what is image structure directly in terms of feature
detectors. We believe that observables (features) constitute the key to image
analysis. The image analyst defines the feature a priori and may then in
turn ask the question: “Which structure may I expect that the features ex-
hibit?”. This paradigm corresponds to what is normally adopted in analysis
of shape singularities. Here the features such as parabolic lines, umbilici, etc.



6 Generic image structure: Introduction

are pre-defined and their generic relations and evolutions may then in turn
be derived [102, 17].

1.2.1 Caustics and shocks

Another branch in image analysis using results from singularity theory is
focused on caustics and shock formation. This kind of partial differential
equation was the first in mathematics to be analysed for generic behaviour
[116, 42, 4, 5, 8, 7]. In image analysis these kind of evolutions are often used
in conjunction with shape representation, for instance curvature evolution
(Euclidean shortening flow), grass fire evolution, medial axis and skeletons.

One of the latest efforts to bring this into image analysis is by Giblin and
Kimia [39] based on previous work by Bruce and Giblin [16, 15].

This thesis will not explore this direction in the field. But the reader is
referred to the above mentioned literature and references therein.

1.3 Outline of the rest of the thesis

This thesis consists in part of published articles written during my Ph.D.
study. The articles are written in collaboration with others therefore I have
chosen to include the articles in the original form and only altered the layout
for a more homogeneous presentation including collecting the references in
one common list plus correcting some errors according to the defence com-
mittee. This implies that most chapters can be read without reading other
chapters first. The drawback is repeated information in different chapters for
instance several similar short introductions to scale space theory.

This thesis is organised in two major parts introduced by this general
introduction. Each part has its own introduction where a short summary of
each chapter is given.

The first part discusses what generic structure is and how to establish
it. Examples are given for the generic structure of the gradient squared and
corner measures in Gaussian scale space as well as the generic structure of
the optic flow.

The second part presents a multi scale segmentation tool based on knowl-
edge of the deep structure of the image feature, the gradient squared. The
application is presented all the way from theory to a semi-automatic segmen-
tation tool in clinical use as well as to a prototype for automatic segmenta-
tion.

Two appendices elaborate on derivations in the chapters 6 and 8, respec-
tively.
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Genericity






Chapter 2

Genericity: Introduction

This part will give a framework for and examples on establishing generic
properties for image features expressed by local differential expressions. A
vast amount of methods exist for extracting image features, here we will
mainly develop a framework for analysing features defined by semi algebraic
equations of image derivatives.

First an introduction to singularity theory is presented followed by a
framework for using this on image structure. Examples on the use of the
framework on the gradient magnitude and corner detectors are then pre-
sented. The end of this part is devoted to presenting theory and an example
on generic structure via equivalence. The major example used for illustration
is the structure of the optic flow.

The first category of examples applies this to geometric properties repre-
sented by varieties in jet space (loosely speaking the space of Taylor coeffi-
cients). Since the library of image features is indefinite even in our restricted
view, we aim for constructing an algorithm for analysing the generic structure
imposed by any new differential feature detector. The illustrating features
are the singularities for the gradient magnitude usually applied in segmenta-
tion and in junction detection, and the isophote curvature times the gradient
magnitude often applied as corner measures.

Furthermore we focus on the Gaussian scale-space, so that multi-local
features may be expressed as features at a finite scale. The features of an
image change as a function of the free scale parameter, and this total scale-
space behaviour of features in general describes the image graph to a very
high degree. For instance, it has been proven that one may reconstruct the
total image from the multi-scale behaviour alone from the multi-scale zero-
crossings of the Laplacian (in the 2D case) [51] or alone from the scale-space
top-points in the band-limited one dimensional case [58, 57].

Changing the focus from the general class of infinitely differentiable func-
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tions to a subset with members which are solutions to a specific partial
differential equation changes the premises for the general results of Thom
[127]. Fortunately Damon [23, 25] has proved similar results for the solution
space to certain partial differential equations including the heat equation.

The last two chapters 7 and 8 in this part take a different approach by
defining structure via equivalence under deformation. It is applied to the
structure of the optic flow.

In the first approach the task is to establish whether or not a variety in
jet space can be stratified into smooth submanifolds and then apply transver-
sality arguments. In the second approach the task is to establish that equiv-
alence classes of functions map to stratifiable subsets of jet space. The latter
task demands a lot more mathematics than the former.

A very short and straightforward introduction text to catastrophe theory
is written by Saunders [115] including illustrations of the geometry. A short
introduction and an array of nice applications is presented by Arnold [7]. For
a more and more thorough introduction the reader is referred to Gilmore [41]
and Poston & Stewart [103]. The book by Bruce and Giblin [17] is also highly
recommended for thorough presentation of singularity theory relevant for the
analysis of curves. If the focus is on generic properties for partial differential
equations one could start with papers by Damon and Rieger [24, 106, 107,
108]. For the mathematically inclined the following literature will be worth
a look: Mather [77, 78, 76, 79, 80, 81] has made a very important series of
papers , also a book by Gibson, Wirthmiiller, du Plessis and Looijenga [40]
gives valuable insight to the subject. In the PDE direction one starting point
are the papers by Damon [23, 25]. The above is by no means a complete list
but will provide a good starting point.

A summary of the chapters in this part are presented in the following
sections.

2.1 Singularity theory I

The first chapter on singularity theory (chapter 3) presents properties of
functions as smooth manifolds in the jet space. For a given coordinate sys-
tem, jet space is the space of Taylor coefficients equivalent with Euclidean
space. The “property manifold” can be represented as a variety which can
be split into disjoint smooth manifolds (this splitting process is called strat-
ification). A function is represented by a map (jet extension map) from its
domain to jet space. The graph of the jet extension map is a manifold in jet
space. Transversal intersection between the property manifold and the func-
tion graph manifold is generic. Transversal in the previous sentence implies
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that the property/feature will be a smooth manifold in the function domain
with the same codimension as the “property manifold”; if the codimension
is larger than the dimension of the domain the feature will not be present.
Codimension is the dimension of the embedding space minus the dimension
of the manifold. The generic part of the statement implies (on a compact
domain) that the well behaved behaviour will occur for an open and dense
subset in the function space of interest.

2.2 Generic events for the gradient squared

Chapter 4 focuses on minima for the gradient squared for an image embedded
in a linear scale space. The main focus on minima is driven by the direct
application to segmentation; the knowledge derived in this chapter is utilised
in part two of this thesis. The main results are the presence of two generic
events. The first one is the expected one where two singularities appear or
disappear as a pair. If one counts the number of positive principal curvatures
at the two singularities respectively before/after the disappearing/appearing
then the count will differ by one. The less obvious event is the event of two
global minima joining a saddle point and becoming one minimum. The re-
verse process is also generic going from one minimum into two global minima
and a saddle.

2.3 Watershed junctions as feature detectors

Chapter 5 gives an analysis of the singularities of the gradient magnitude
where the focus is on the maxima not the minima. The correspondence with
junctions of watershed is established and their occurrence is connected to
geometric properties of the images. It is shown that the watershed junction
generically speaking is always part of the classical edges.

2.4 Smoothing creates corners

Chapter 6 explores corner measures of the following type: singularities of the
isophote curvature times some power of the gradient magnitude where some
power equals zero, one, two or three. The results with respect to generic
structure of scale space images show that it is generic for each of the corner
measures to exhibit both creation and annihilation events. Another direction
in the comparison is changing the exponent on the gradient magnitude. The
interesting point here for feature extraction is how the corners are selected as
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the best ones (or if one prefers which corners are disregarded). One can order
the corners for a given measure simply by the absolute value. The question
is: will the different corner measures give the same ordering? The answer is
no. One can get a quick feeling for this by considering the isophote curvature
times some power of the gradient magnitude as members of one family con-
tinuously indexed by the exponent as parameter. Changing the parameter
will cause a continuous change from one member to another including the
singularities; maxima will appear and disappear together with saddles. Not
only the singularity set (sometimes called the bifurcation set) but also the
Maxwell set is of interest here. On the Maxwell set two or more critical val-
ues are equal. Subsets of the Maxwell set correspond to two maxima having
equal value and different orderings exist on each side of the Maxwell set.
Crossing this set is generic for one parameter families. Literature pointers
on the Maxwell set is Gilmore [41] and Bruce et al. [16, 15].

2.5 Singularity theory II:
Genericity via equivalence

The second chapter on singularity theory (chapter 7) focuses on genericity
via equivalence. The usual way is to define allowed warpings of the function
domain. If two functions can be put on the same form by warping one of
the domains then the two functions are equivalent. Equivalent functions
define an equivalence class where all members have the same qualitative
properties. The restriction on the warping determines how coarse the final
classification will be. The most commonly used warping is a diffeomorphism;
that is a one-to-one mapping where both directions of the map are smooth.
A diffeomorphism can stretch the level lines to the extreme in all directions
but cannot introduce singularities. That is new sharp corners can not be
removed or introduced. For instance a convex shape can be shaped to a
circle but not to a point or a square.

It can be proved that these equivalence classes are mapped to smooth
manifolds in jet space by the jet extension map. Next step is to use transver-
sality arguments for proving that the equivalence classes are generic. From
each equivalence class a representative can be picked usually a simple poly-
nomial and denoted normal form. The list of normal forms gives all generic
types of local appearance induced by the chosen warping.
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2.6 The structure of the optic flow

In chapter 8, the optic flow field is defined as preserving the intensity along
flow-lines. Due to singularities in the image at fixed time, poles are created
in the optic flow field. In this chapter we describe the generic types of flow
singularities and their generic interaction over time. In a general analytic
flow field, normally the topology is characterised by the points where the
flow vanishes again subdivided into repellers, attractors, whirls, and com-
binations hereof. We point out the resemblance, but also the important
differences in the structure of a general analytic flow field, and the structure
of the optic flow field expressed through its normal flow. Finally, we show ex-
amples of detection of these singularities and events detected from non-linear
combinations of linear filter outputs. This relates to the previous chapter by
defining structure by equivalence classes.
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Chapter 3
Singularity theory I

We would like to know which specific properties to expect for members of a
function set (images). More specific we will investigate the set of infinitely
differentiable functions C'* and the solution set for certain partial differential
equations, in particular the heat equation. Here we define a property by a
set of algebraic equations of derivatives.

In general to list all expected properties for all members is an impossible
mission since anything can occur if the right member in the set is picked.
Instead the aim is set for the feasible goal of determining expected properties
for most members.

Section 3.1 introduces a few definitions and notions within topology and
differential geometry. This is followed by section on typicality of regular val-
ues k and with an explanation on why f~!(k) is a smooth manifold. Section
3.2 is meant as an example on typicality warming up to generic properties for
function classes. The next section 3.3 introduces transversality , a natural
extension of regular values. In section 3.4 the notion of jet space (with fixed
coordinates it is the space of Taylor coefficients) is presented. In this space,
properties and functions can be represented as submanifolds. Transversal in-
tersection of these manifolds implies that the properties express themselves as
smooth manifolds in the domain for the function. This is followed by section
3.5 which presents theorems showing transversal intersection to be generic.
We define properties/features by an algebraic set. Section 3.6 describes how
an algebraic set can be broken into smooth manifolds (stratified) and sub-
sequently each submanifold fits into the notions and theorems presented in
the previous sections.

15
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3.1 Preliminaries

This section is meant as a reminder and not as a complete introduction to
the subjects presented.

3.1.1 Topological notions

In the following we assume given a topological space which is a set with an
assigned topology. The subset A in the following is part of a topological
space.

A topology on a non-empty set M is a system G of subsets of M with
the following properties:

e ) Med

o If ¢g1,..., g, are finitely many sets from G then their intersection g; N
...Ngyisin G.

o If (g;)ier is an arbitrary family of sets from G then their union U;crg;
isin G

Given a metric the neighbourhood N(a) of a point a is defined as all
member within the distance . We will define a metric in definition 13 to be
used on the function space. Using a metric, the topological notion open can
be defined as below. The system of open sets defines a topology.

Definition 1 (Open set)
A subset A is open if and only if Va € A Je >0 N(a) C A

Open implies that a sufficiently small continuous perturbation of a member
will yield a new member also in the subset. If members with a specific prop-
erty form an open set, then we call the property stable because a sufficiently
small perturbation yields a new member with the same property.

For example, the interior of a simple closed surface in Euclidean space
will be an open subset. For instance, the interior of a circle or a square in
the plane will be an open subset.

Definition 2 (Dense set)
A subset A is dense in a base set B if and only ifVb € B Ve > 0 N(b)NA # ()

Dense implies that any member in the base set can be transformed by an
arbitrary small transformation into a member of the dense subset. Note that
denseness always refers to a base set. A set has to be dense compared to some
other set. The closure of a dense set is the base set. For example, the rational
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numbers is a dense but not an open subset of the reals. A dense subset has
a member almost every where or at least in the immediate neighbourhood.
A dense and open subset implies that almost all members are in the subset.

When combining several subsets it is interesting to know if the result of
the operation possesses the same properties as the operands. It is called
closed under this or that operation. A set of open and dense sets is closed
under the intersection of a finite number of sets but not under the intersection
of a countable infinite collection of open and dense sets [24]. The latter set
is called residual.

Definition 3 (Residual set[24])
The intersection of a countable infinite collection of open and dense sets is
called residual.

The intersection of a countable infinite collection of residual sets is obviously
residual. Hence the set of residual sets is closed under this operation. A
residual set is dense but not necessarily open [24].

Open and dense are the properties we hope for when considering typi-
cality. Openness insures stability of the property and denseness gives that
arbitrarily close is a member with the property, in this sense the property
is typical. Often openness and denseness can be achieved but in the most
general cases the given property only holds for a residual set.

The solution space to some particular partial differential equation (for
instance the heat equation) is denoted H.

Definition 4 (Genericity [24])
A local property of functions in C*°(U) (respectively H(U)) is generic if:

e the set of functions having the property at each point of U is residual;
and

e for any compact subset C C U, there is an open and dense set of
functions in C*(U) (respectively H(U)) which have the property at
each point of C.

The assigned topology is the regular C*°-topology. See definition 14

3.1.2 Manifolds

A manifold is a set which locally “looks” like the Euclidean space.

Definition 5 (Differentiable Manifold)
A differentiable manifold M is a set M together with a differentiable manifold
structure on it.
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A differentiable manifold structure of class C* is given on the set M if a
family A (often called an atlas) of charts f; is prescribed. A = {(f;, O;) }ier
where I is an index set. The following must be true:

1. Vi € I: O; is an open subset of R™ and f;(O;) is an open subset of M.
2. Vi € I: f; is a homeomorphism on O;.
3. M = Uicr fi(0s)

4. Vi, jel: f71f; « f7H(fi(0) N f(05) = f7H(fi(0:) N £5(05)) is a
C* mapping

If 0 < £ < oo in definition 5 then we call the manifold differentiable.
If £ = 0 then the manifold is called a topological manifold. If £ = oo we
will refer to the manifold as a smooth manifold. If the mapping is not only
smooth but also analytic! the manifold is called analytic. We will almost
always consider smooth manifolds.

3.2 Typical solutions

Let f : IR" — IR be a smooth function and study the solution set for f(z) =
0. In general one would expect the set f~1(0) to be a smooth manifold of
dimension n — 1 but theorem 1 by Whitney [14] tells what happens if all
members are considered:

Theorem 1 (H.-Whitney)
Any closed subset in IR™ occurs as the solution set f~1(0) = {z € R" :
f(z) = 0} for some smooth function f: R" — R [14]

Hence even an awful set like the Cantor set is the solution set to f(z) =0
for some smooth f. But in general one can expect well behaved structure.
Let us introduce some notions in order to present this result and results to
come.

Definition 6 (Submersion)

Let f : R" — IR™ be a smooth function where — means the domain is
an open subset of the left argument. The mapping f is a submersion at z if
D f(x) is surjective (the Jacobian of f has rank m which implies that m < n).
D f(z) is the first order derivative of f represented by a matrix.

LA function is analytic if its Taylor series converges to it in a neighbourhood of each
point
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Definition 7 (Regular Point and Value, Critical Point)
Let f:IR" — IR™ be a smooth function. If f is a submersion at x then x is
a regular point. A regular value of f is a point a € IR™ such that every z in
the domain of f with f(x) = a is a regular point.

A point is called critical if the rank of the Jacobian matrix is less than
min(n,m). If m < n then non-regular and critical is the same.

The following theorem by Sard describes that regular values are the com-
mon kind of values.

Theorem 2 (Sard)
Let f: IR® — IR™ be a smooth map. Then the set of non regular values of f
in IR™ has measure zero in the sense of the Lebesgue measure. [17]

The complement of a set of measure zero is dense and open (note dense-
ness alone or openness alone does not imply measure zero for the comple-
ment). In the following we will see that for regular values the solution set
will have the well behaved structure one would expect.

Theorem 3 (The inverse function theorem.)

Let f : R™ +— IR™ and u € domain(f). Assume the Jacobian matrix of f
at u is nonsingular then there exists an open set U C domain(f), such that
f:U — f(U) is a diffeomorphism. f is called a local diffeomorphism at u

The implicit function theorem ( a consequence of the inverse function theorem
) states

Theorem 4 (The implicit function theorem)

Let f : R"™ — TR* be a smooth map, defined on a neighbourhood of
(z,y) € R™ x RF, with f(zo,) = a. The coordinates in R"** are denoted
x; and y; respectively. Consider the k x k submatrix g—’y% of the Jacobian
matrix for f. If the submatrix is nonsingular at (zo,yo) then there exist
neighbourhoods A of xy and B of yy such that Vx € A there is an unique

point g(x) in B with f(z,g(z)) = a and the map x — ¢(x) is smooth.

In other words the implicit function theorem states: If the submatrix of the
Jacobian matrix is non-singular then f~'(a) can be parametrised using the
n x’s.

Now if f : R® — IR™ is a submersion at = with f(z) = a then the
Jacobian has rank m and according to the implicit function theorem the set
f~Y(a) is a parametrised n — m manifold. If a is a regular value then the f
is submersion for all z € f~'(a). Consequently f~'(a) is a smooth n —m
manifold for all regular values a which according to Sard’s theorem are the
common ones.



20 Singularity theory I

3.3 Transversality

Transversality is an essential notion in singularity theory. It is based on
the intuitively appealing fact that two randomly picked embedded manifolds
only intersect if the sum of their dimensions is equal to or greater than the
dimension of the embedding space. If they do intersect their tangent spaces
will span the embedding space. This is true with probability one.

In a sense transversality is the natural generalisation of regular values[17].
First of all the results in section 3.2 have straightforward generalisation to
manifolds by replacing the Euclidean space R™ and IR™ in definition 7 and
Sard’s theorem 2 with smooth manifolds N and M. The next step is to go
from a regular value to a “regular” manifold f~!(X), X C M. The question
is which conditions on the manifold X and the mapping must hold for f~(Y)
to be a smooth manifold. The answer is transversality and in section 3.5 we
will see that transversality is generic.

Here follow a couple of examples on transversal and not transversal inter-
section. In figure 3.1, are plotted two surfaces which intersect transversely.
At each point of the intersection set the two tangent planes have to span the
embedding space to form a transversal intersection. We will check this. The
two surfaces are graphs over the same domain and we use the two obvious
maps:f(z,y) = {z,y, —2* — y*} and g(z,y) = {z,y,2* + y* — 4}. The in-
tersection set is given by 2z% + 2y? — 4 = 0. The tangents to the surfaces

are:
1 0 1 0

[T131T231T152T232] = 0 1 0 1 (31)
—2x -2y 2z 2y

This matrix has rank 3 unless x = y = 0. Since z = y = 0 is not part of the
intersection set the tangents span the embedding space at all points of the
intersection set. In other words a transversal intersection.

In figure 3.2 is an example on a non transversal intersection. Checking
the algebra establishes this. The intersection set in the domain of the maps
is 22 +y® = 0 (a cusp shaped curve). The tangents are given by:

1 0 1 0
[T131T231T152T252] = O 1 0 1 (32)
2r 3y? —2z 3y?

The rank of the matrix is less than 3 if x = 0. Since x = 0 = y is part of the
intersection set we have an intersection point where the tangents for the two
surfaces only spans a plane and not the entire 3-space. Consequently it is
not a transversal intersection. The two surfaces have a higher order contact.
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Figure 3.1: Transversal intersection of two surfaces. The defining equations
are z+ 22 +y =0and z — 22 — 9y’ +4=0

Definition 8 (Transversality)
e Transversal intersection in a point
Two manifolds intersect transversely or are transverse at an intersection
point xg if the tangent spaces to the two manifolds span the embedding
space.

e Transversal intersection of manifolds
Two manifolds intersect transversely or are transverse if

— They do not intersect at all or

— They intersect transversely at all points of intersection.

e Transversal intersection of mapping(s)
A mapping is said to be transverse to a manifold if the image of the
mapping is transverse to the manifold. Two mappings are transverse
if their images meet transversely.

Proposition 1 (Inverse image of transversal intersection)
If f: N — IR™ is transverse to M then f~'(M) is a smooth m — dimM
manifold.
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Figure 3.2: Non transversal intersection of two surfaces. The defining equa-
tions are z — 22 +y> =0and z+ 22 — 3 =0

The number (m — dimM) is called the codimension of the manifold M.
It counts the number of constraining equations needed locally to describe
the manifold. The dimension of the manifold dimM describes the number
of parameters required for a local parametrisation. For instance the codi-
mension of a hyperplane is always one. The dimension is (n — 1) where n
is the dimension of the embedding space. Another example is a curve: The
dimension is always one and the codimension is (n — 1).

3.4 Jet space

In order to relate functions and properties the two types of entities are
mapped into the same space referred to as a jet space. In this space, both
functions and properties can be represented as smooth manifolds. Transver-
sal intersection of the two types of manifolds insures that the property ex-
presses itself in the function domain as smooth manifolds with the same
codimension as the manifold representing the property in jet space. In the
next section 3.5 we shall see that it is generic for mappings and manifolds to
be transverse.

Definition 9 (Contact)
A pair of smooth maps f and g between smooth manifolds. f,qg : N —
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M,z — y = f(x) = g(z) has k order contact at x if | f(x) — g(z)| = O(|z|*)

The choice of coordinates (x1,...,2,) on N and (yi,-..,Ymn) on M does not
affect the order of contact. The contact order k£ at x defines an equivalence
relation ~y.

Definition 10 (k-jet)
The k-jet of a C* map f at x is the equivalence class:

" flx)={g € C®(N,M): g~ f at z} (3.3)

Definition 11 (Jet space J*(N, M))
The jet space
TH(N, M)ay

is the set of all k-jets for smooth f: N — M,y = f(z) and let
Jk(N7 M) = U(w7y)€NXMJk (N7 M)x,y

If coordinates are given on N and M then the jet space is the space of Taylor
polynomials of degree < k. We can now establish a k-jet extension map
which maps from the function domain to jet space; simply by mapping each
point to the corresponding k-jet at that point.

Definition 12 (k-jet extension map)

J*f N = JNN, M), z— j"f(z) (3.4)

The k-jet extension maps to a “function” manifold in jet space. Properties
can be represented by conditions given in terms of smooth manifolds in jet
space. Now we can bring transversality to play between these manifolds.
According to proposition 1 the following holds: if j*(f) is transverse to W
then j*(f)~!(W) is a smooth manifold with the same codimension as W.

3.5 Transversality theorems

In this section we will see that the transversal intersection between a given
smooth manifold and the jet extension mapping is a generic property.

Results on genericity can only be stated with reference to a topology on
the function space of interest because the definition 4 refers to topological
notions such as open and dense subsets of the function space.

A distance measure on the space of C* differentiable functions is easily
obtained via the well known measures on Fuclidean spaces. Here we use the
max norm:
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Definition 13 (The max norm)
Let f,g € C*(C) be defined on a compact set C. A distance measure is given
by:
di(f,9) = mazx|D*(f)(z) — D*(9)Vla| <k, Vo € C
where o is multi index and |a| = Y7 | ;.
For example if « = {1,0,3} then D*(f) o

= 8110x3% "

The max norm on C* for a fixed k and one particular compact set does

not give a distance measure on C'™ but it can be use to define a topology on
C*.

Definition 14 (Regular C* topology)
A topology is made from the open sets for all possible C and k in definition
13

Using this topology the residual sets are dense [23]. The essence of Thom’s
lemma on transversality is that it is a generic property for a mapping to have
a jet extension map which is transverse to a given submanifold:

Theorem 5 (Thom’s transversality lemma)
Let P C J¥(N, M) be a closed smooth submanifold then

S ={f € C®(N,M): j*f is transverse to P} (3.5)
is open and dense. [127]

This lemma imply that the strong statement of genericity can be estab-
lished merely by stating a property in terms of smooth submanifolds and
determine their codimensions.

3.5.1 Transversality theorem for the heat equation

When embedding the image in a family of images via an evolution equation
one would like statements of genericity based on this new base set. In other
words, one is more interested in generic phenomena within a subspace of
solutions to the PDE of interest rather than the space of all smooth functions.

One cannot use the theorems and results presented by Thom. The reason
for this is that the open and dense subsets of the space of all smooth functions
g, for which the generic features occur, might fail to intersect the subspace
H of smooth solutions g; of some diffusion equation in dense open sets.

Damon’s transversality theorem for the heat equation makes it possible
to establish genericity results in the standard way but the generic properties
are generic in the subspace of solutions to the heat equation. The regular
C* topology insures that residual subsets of H(U) are dense.
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Definition 15 (H(U) and H*(U))

HU) = (3.6)
{f € C*(U) : f is a solution to the heat equation on U C R" x R, }

H*(U) = {k-jets of solution to the heat equation} (3.7)

On an open subset U C IR" x R, the transverse mappings form a
residual set in H(U). Here R, . is the strictly positive reals.

Theorem 6 (Damon’s Transversality Theorem[23, 107])

Suppose W is a smooth submanifold of H'(U) , then the set of mappings
f € H that are transverse to W (i.e. for which j'(f) is transverse to W) form
a residual set for the regular C*-topology (I +1 < k < o).

If the domain is compact the result can be strengthened such that the
mappings form an open and dense set in H(U).

Theorem 7 (Damon’s Transversality Theorem[24, 25])
Suppose W is a smooth submanifold of H'(U), then the set of mappings
f € H(U) for which j'(f) is complete transverse to W on a compact subset
C C U is an open and dense set for the regular C'*°- topology.

If a mapping is transverse to the closure of a manifold we say that the map-
ping is completely transverse to the manifold. See Damon [25] for further
details.

Using these theorems the normal procedure for establishing genericity
can be followed by representing properties in terms of smooth manifolds and
determine their codimension.

3.5.2 Transversality theorem for Nonlinear PDE’s

Damon’s result also applies to a certain class of non-linear differential op-
erators which satisfy certain “filtration conditions” and whose initial value
problem has at least one local C*°-solution [108, 25].

In theorem 6 the space H(U) is simply replaced with the solution space
to a specific partial differential equation.

Damon [25] and Rieger [107] have given two examples on these non linear
cases:

Pilg) = % — din(r(Vg*)Vg) = 0,40 € (U, R) (3.8)
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where r is a globally positive analytic function. This type of PDE was first
suggested by Perona and Malik [101].
The new partial differential equation investigated by Rieger was :

0 h(|Vgl|?
Py(g) = a_i — (VG x g|*) x (Ag — % < Hy(Vg),Vg>)=0 (3.9)

where gy € W2(U,IR) and W} € L, having generalised derivatives up to order

2, r is a global positive C*® function and h(v) = %,c > 0,e >0

where for v > 0: I(v) = e v and for v < 0 : [(v) = 0.

A special case of P, corresponds to the modification of the Perona-Malik
scheme made by Alvarez et al. [2]. See Rieger [107] for further details. Rieger
[107] suggested further that the result will hold for most types of autonomous
evolution equations of the type in Equation 3.10 whose initial value problem
has smooth local solutions. The main problem according to Rieger is proving
smooth local solutions to the initial value problem.

dg

ot
where () is a non-linear function of the image coordinates and the spatial
derivatives of the image g¢.

This thesis will not go further in this direction. We will just state here
that the generic properties for the heat equation examined in the rest of
the thesis also hold for at least the two above mentioned partial differential
equations P; and P,. It is an open question to what extent it holds for
equation 3.10.

Q(z,y,D%;|a| < d) (3.10)

3.6 Stratification

A set of algebraic equations on derivatives defines a variety ? in jet space.
Since we only have results on how to handle properties given as smooth
manifolds we need a way to break a variety into smooth manifolds. This
task is called stratification.

A stratification of a subset V' of a smooth manifold M is a partition P of
V' into disjoint smooth manifolds of M, each one called a stratum. A good
example to keep in mind is an algebraic set V' C IR™ defined by finitely many
polynomial equalities. That is a common way to define a feature detector.

2A Variety is the geometric object defined by the set of all solutions of a system of
equations f;(z1,...,2,) = 0. See Cox et al.[20] for further details.
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Example 1 (Stratification of ab — ¢®> = 0)

Let a variety be defined by ab — ¢ = 0 in a three dimensional Euclidean
space. The variety is plotted in Figure 3.3. One stratum (the surface) has

codimension one and the second stratum (the intersection point at origin)
has codimension 3. Two smooth maps for the surface could be:

f@y) = {z— (@ + )% -z — (2 + )%y}, (z,9) € R*\ (0,0)
f@y) = {z+ @+ )% -2+ @+ )%y}, (z,y) € R\ (0,0)
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Figure 3.3: The surface given implicit by ab—c? = 0. A stratification is given
by the origin being one stratum and the rest of the surface another stratum

Definition 16 (Stratification[40])

Let X be a closed subset of a smooth manifold M. A Stratification of X
is defined as a partition P of X into subsets called strata and denoted X,
satisfying the following conditions:

1. Fach stratum X, of X is a smooth submanifold of M
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2. The family P is locally finite

Here locally finite means that for each point in X there exists a sufficiently
small neighbourhood such that the number of subsets in P in the neighbour-
hood is finite.

With the right kind of stratification it is possible to determine the codimen-
sion for each stratum separately and draw conclusions concerning genericity
etc. Let us take a simple example and see what can go wrong.

Example 2 (Stratification of zy = 0)

One stratum could be x = 0, that is the y axis. The second stratum could be
x # 0,y = 0 which consists of the x axis except x = 0. Of course this covers
all points of the variety and the two strata are disjoint smooth manifolds.
Each of the strata has codimension 1. This line of reasoning could give
the misleading impression that the whole variety would give structures of
codimension 1 but the conditions on the stratification are not strict enough
to draw that conclusion.

One improvement could be to avoid having singular and non-singular
point on the same stratum. This would handle the problem for the variety
defined by zy = 0. Let V C IR™ be an algebraic set. The set SV of singu-
larities for V' is also an algebraic set of strictly lower dimension than V. The
difference V\SV is a smooth manifold[40]. Next one can find the difference
set between SV and the singularity set SSV for SV. The construction of
difference sets will terminate since the dimension strictly decreases for each
new difference set and the set of difference set will be a stratification of V.

Example 3 (Stratification of Whitney Umbrella)

The Whitney Umbrella is defined by x? = zy?. Using the mentioned partition
method (where a set of smooth manifolds is constructed by difference between
an algebraic set and its singular set) the surface will be stratified into two
strata. One stratum being the z-axis and the other stratum being the surface

with the following map »z = x?y~2,y # 0. A visualisation is given in Figure
3.4.

Even with this construction there is still an unpleasant property for such
a stratification namely on the same stratum the variety can have changes in
topology. In the above stratification of the Whitney umbrella the variety has
three different topologies on the stratum consisting of the z-axis. For z < 0
the topology is a line , for z > 0 the topology is two surfaces intersecting
transversely, and for z = 0 the local topological type changes.

The solution is to strengthen the demands on the stratification with con-
ditions first given by Whitney [138, 139]
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Figure 3.4: Two views of the variety defined implicit by 22 = zy? usually
referred to as Whitney’s Umbrella.

Definition 17 (Whitney stratification[40, 82])
A Whitney Stratification is a stratification as in definition 16 which fulfils

the following extra conditions:

1. The condition of the frontier: if Xg U X, # 0, then Xp C X, where
X, denotes the closure of X,.

2. Regularity condition: If X, and X4 are strata and X5 C X,, then X,
is Whitney regular over Xpg

A Whitney stratification of Whitney’s Umbrella is given by the following
four strata: the surface consisting of two connected components and the
z axis split into three namely z > 0, 2z < 0 and z = 0. This Whitney
stratification has the property that all points on the same stratum have the
same local topological type.
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The regularity condition gives relations for X5 C X, between limiting
tangent planes from X,, limiting secant lines, and tangent planes of Xjg:

Definition 18 (Whitney regular[40])
Let X andY be smooth submanifolds of a smooth manifold M and let x € X.
Y is Whitney regular over X at x if the following holds.

If (z;), (y;) are sequences in X,Y (x; # y;) both converging to x,
and if the sequence of tangent space (T,,Y") converges to a subspace T
and if the sequence (zjy;) of lines containing x; — y; converges to a line L

then L C T.



Chapter 4

Generic events for the gradient
squared L

4.1 Introduction

The very introduction of the scale-space formalism [140, 66] emphasised the
importance of relating structures at different scales, the deep structure?. We
can quote Koenderink [66]:

Study the family as a family, i.e. define deep structure, the rela-
tions between structural features of different derived images.

When an image is embedded into a family governed by the standard linear
diffusion equation, transitions between objects of qualitative different ap-
pearance will take place. It has been argued that the understanding of these
changes is an essential key to the understanding of shape [67].

The deep structure for several image descriptors like image extrema, blobs,
edges and ridges has been analysed[72, 55, 46, 24, 107]. This article follows
this line of work by revealing the generic deep structure of singularities for
the gradient magnitude squared L;L; in Gaussian scale-space.

Due to a duality between catchment basins (basins of attraction) and the
minima of the function of interest, it is possible to transfer the derived deep
structure to the catchment basins. Since segments can be defined as catch-
ment basins (for which watersheds are boundaries), the deep structure of a
multi-scale watershed segmentation is established with this analysis. The
deep structure of blobs[72] reveals a similar property where the deep struc-
ture of singularities can be transfered to the structural changes of blobs with

LThis chapter has been published in a conference proceedings [97]
2In this chapter, we used the term “deep structure” as first introduced by Koenderink.
It is equivalent to the term “multi-scale structure”

31
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varying scale. The multi-scale structure of alternative ridge definitions has
been analysed [107, 27]. These results are however not directly applicable to
ridges in a non-linear expression (such as the gradient magnitude).

The choice of watersheds/catchment basins for segmentation is somewhat
arbitrary, but it facilitates a mathematical clean formulation by the above
mentioned analysis, and single scale watershed segmentation has been re-
ported [90] to give good intuitive results although with a problem of over-
segmentation. The problem of over-segmentation has been approached in
a number of ways. A common solution in mathematical morphology[90] is
flooding from special interest points. Another approach is fine scale smooth-
ing followed by grouping of neighbouring regions according to a Minimum
Description Length principle [75]. In the multi-scale formulation, the over-
segmentation is greatly reduced merely by detecting the interesting objects
at a coarse scale. The price is a dislocation of structure caused by the blur-
ring. This can be counteracted by detection at coarse scale and localisation
at fine scale. In order to do this, the structures must be linked across scale.
This is a well-known approach for feature detection in scale-space, and in
particularly for multi-scale segmentation [66, 133, 71, 72]. The region-based
definition of segments allows a robust region-based detection and linking,
and avoids the difficult problem[71] of linking point entities.

The diffusion scheme and notation is presented in the next section. In Sec-
tion 4.3 the generic catastrophe events for the gradient squared have been
derived. Watersheds, catchment basins and segmentation based on this are
defined in Section 4.4. Based on the catastrophe analysis and the segment
definition, Section 4.5 presents the segment linking scheme. Verified segmen-
tation results based on the defined multi-scale segmentation are put forward
in Section 4.6. Finally, in Section 4.7 we summarise and suggest further
studies.

4.2 Scale-space

Definition 19 (Scale-space)
The scale-space L(-,t) is generated from an image I(-) = L(-,0) by Gaussian
blurring

L(x,t) = /I(x')g(x — ' t)dx'
where g(-,t) is a Gaussian and t = 02 /2 its spread.

The scale-space formalism facilitates well-posed differentiation because the
Gaussian can be differentiated prior to convolution. We use L;, ;, (x,t) for
spatial derivatives of L with respect to the variables i; ...7;. The scale space
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L follows the diffusion equation 0;L = AL, as does any linear combination
of image derivatives, e.g. the Laplacian. The scale-space image L(-,t) is
infinitely differentiable (€ C*°). Morse functions form an open and dense
set in the C'™ function space, and in this sense Morse functions are typical
(formally generic) and highly suitable as image models[72, 46, 24].

4.3 Generic events for the gradient squared

In this section, we determine how interacting critical points for the gradient
squared, L;L;, create an abrupt change of structure when the scale parameter
varies smoothly; this change is referred to as a catastrophe. Algebraically
a catastrophe corresponds to a degeneracy in the Hessian matrix (H;; =
L;j) of the studied functional. The degree of degeneracy in the Hessian
determines the number of degenerate directions. The central splitting lemma
[41, 103] states that non-degenerate directions can be safely ignored. In the
following we first establish a local model for L;L;; secondly the Hessian for
this local functional is analysed in order to determine the generic number
of degenerate directions and finally we end the section by analysing possible
generic catastrophes.

The local model and degenerate directions

For simplicity we study the square of the gradient magnitude L;L;, but the
derived results are applicable to any strict monotonic transformation of the
gradient magnitude as well. That is, the local topology is preserved by a
strict monotonic transformation. The result holds in general for the gradient
squared of an entity following the standard linear diffusion equation. In 1D,
this is every image derivative.

Our local image model is an expansion at (z;¢) = (0;0) to fourth order
in heat polynomials® (polynomials obeying the diffusion equation Af = 8, f
[67, 33, 31]) using a Cartesian coordinate system:

1 1
1 1
+Lijjxit + ﬂLijklximjxkxl + §Lijkk$ixjt
1
+§Liikkt2 (41)

3 A recursion formula for the heat polynomials in 1D is given by: v, (z,t) = zv,_1(z,t)+
2t(n — Vvp—a(z,t),v1(z,t) = z,v0(z,t) =1
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Where L; ; are image derivatives evaluated at (z;t) = (0;0), 4,5,k and [
are indices running over the N spatial variables and Einstein summation
convention* applies. First order derivatives can easily be calculated:

1
L(Zt) = L+ Limj®j + 5 Lmjjn + Lt
1
+6Lmjkl$jxkxl + Lmjkk.’l?jt (42)

Hence the functional of interest GG, the gradient squared, becomes

G(Z;t) = L (Z3) L (Z52) (4.3)

In the following we assume without lack of generality that a singularity for
G and a possible degeneracy of the Hessian for G is located at (z;t) = (0;0).
This approach of expanding at the catastrophe is general applicable [41, 103]
and usually result in a tremendous simplification. A singularity for G at
(z;t) = (0;0) is given by

Gy (0;0) = 2Ly L = 0,V (4.4)

For each spatial index j there is an equation. This corresponds to an N
dimensional sub-manifold of the D dimensional jet-space. The singularities
can be split in two distinct types: global minima for G (i.e. critical points
for L) and the rest:

L, = 0,Vm global minima (4.5)
Ly, = 0 the rest

In both cases, there are N equations given by the free indices m or j. In

the latter equation, the notation has been abused slightly. The equation is

expressed in “gauge coordinates” [32, 31] , where one direction denoted w is

fixed to the direction of the image gradient. Hence, Equation 4.6 expresses

that all second order derivatives involving the w direction must equal zero.
The Hessian Hg for G evaluated at (Z;¢) = (0;0) is given by

Hgji, = 2L;; Ly + 2L; Ly, (4.7)

We are interested in the generic values for the co-rank of Hg. A diagonalised
Hessian Hg will have off diagonal elements equal zero:

2L;jLig + 2L;Liji, = 0,if j # k (4.8)

4Tmplicit summation over identical indices
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In the coordinate system implied by Equation 4.8 the co-rank is equal to the
number of eigenvalues equalling zero. The eigenvalues are given by:

ZLULZk + 2LZLZ]IC) where _7 =k (49)

We can split the analysis according to the two types of singularities of G:

Assume a singularity of the type L; =0
The Hessian is diagonalised by turning to the Cartesian coordinate system
where L;; = 0,7 # j. The eigenvalues of H are 2L;; Ly, = j = k = (. Hence
only constraints imposed on the second order derivatives, like L,, = 0, can
degenerate the Hessian. A degenerated singularity is a generic event for a
scale-space image[55], since this event coincide with this type of degenerated
singularity for GG, we conclude that it is a generic event for G.

Assume a singularity of the type L,; = 0, where w is in the gradient
direction and j is a free index. The remaining directions (u, ..., v) can fixed
by changing the coordinate system in such a way that mixed second order
terms are zero: L;; = 0,7 # j. In terms of algebra, we have the following
setup: a real symmetric n X n matrix A as in Equation 4.10 with a (n —
1) x (n — 1) submatrix B. There exists a matrix X such that X 'BX is a
diagonal matrix D.

() (b)) () o

In the constructed (u,...,v,w) coordinate system the Hessian is

2L§k if 7 =k A k # w, No summation over j and k
Hij = 2Lwijk +< 0 ifj=k=w
0 ifj#k
(4.11)

Equation 4.11 is derived from equation 4.7 by using L,, # O0AL; = 0,1 # w
and L;; = 0,7 # j and Ly, = 0.

Since no special constraints connect the terms of Det(H) the determi-
nant will not by coincidence equal zero. Only a constraint like Det(Hg) = 0
can raise the co-rank. This corresponds to a manifold of codimension 1 in
the jet space. A manifold of higher codimension than 1 will not intersect the
manifold corresponding to the function family of interest (1-parameterised
jet) which has codimension D — 1 (a curve). Hence, generically the co-rank
for the Hessian Hg is 1 for specific values of the parameter ¢, and never
higher. The direction of degeneracy is determined by Equation 4.8. In this
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coordinate system a degeneracy, say in the x direction, is given by:
2L} +2LiLin = 0 (4.12)

It has been shown that when a catastrophe occur then it occur in one
and only one direction. Consequently the non-degenerate directions can be
ignored in the further analysis according to the splitting lemma [41, 103, 72,
93].

Local structure around catastrophes

We start this section by presenting in figure 4.1 the result of the following
analysis. The result is that the fold and cusp catastrophes are the only
generic events.

In the following we assume without loss of generality that the degenerate
direction is the z direction (or index 1). We are only interested in the imme-
diate neighbourhood of (0;0), and disregard terms of O(¢?). Since the value
of G (defined below) is unimportant the zeroth order term in z is disregarded.

f,m(x,t) = Ln(z,0,...,0;t)
Lm + Lmjjt -+ (me + Lmlkkt)ﬂf

1 1
+§Lm11$2 + éLm111x3 (413)

G = Lpln
2L Limt + 2Lmj; L1t + 2Ly Lin1st) T

(

( ml + L Lmll + (2Lm1Lm1kk + LijLmll) ) 2
1

(L1 Lin11 + 3L mLmi11 + Lmikk Lm1t

+ +

1
+§Lmijm111t).’L'3

L%  LpmiLmin  LogkLmin 4
- t
( 4 + 3 + 3 )T

+7Lmllémm z° + 0(2?) (4.14)

Again we split the analysis according to the type of the assumed singularity:
A singularity of type L; =0

The Hessian for G is diagonalised by choosing the coordinate system where
mixed second order image derivatives are zero, hence Ly = 0,k # [. So
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Figure 4.1: The top subfigure displays a 1D signal embedded in a family of Gaussian
blurred versions of the signal. The top frame is the original signal and the degree of
blurring increases downwards from frame to frame with the most blurred version presented
at the bottom. From the top frame to the middle frame a fold catastrophe takes place
approximately at x = 2.3, the minimum at z = 1.7 and the maximum at z = 2.7 in the top
frame annihilates in the middle frame. From middle frame to the last frame the concavity
at approximately x = 2.3 disappears. The bottom subfigure displays the squared first
order derivative of the signal in the top subfigure. From the top frame to the middle the
minima at x = 1.7 and z = 2.7 and the maximum at z = 2.3 meet in a cusp catastrophe.
In the middle frame the singularities have merged into one minimum at z = 2.3. From
the middle frame to the bottom frame the fold catastrophe happens. The minimum at
x = 2.3 annihilates with the maximum at z = 1.4.
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far we have change the coordinate system to simplify the terms and we are
analysing an event of codimension n due to the constraint L; = 0. Next
we increase the codimension with one by introducing an extra constraint
and analyse the outcome of this: The constraint L;; = 0 is imposed in this
system, the geometrical meaning is that the degenerate direction is aligned
with one of the main curvature directions for the image. The local structure
is given by:

o 1
G = LpjjLmutz® + (Lygk L + ngijmu)tx?’

2

+ (L’Z“ + L’"”“’“:,)L"““t)g;4 +0(z) (4.15)
For ¢t = 0, all structures up to fourth order vanish for the gradient squared.
This event described algebraically by Equation 4.15 is known as a cusp catas-
trophe. It is observed that the algebraic constraints L; = 0 and Ly; = 0 for
a cusp catastrophe in the gradient squared coincide with a fold catastrophe
in the image. In 1D, the annihilation of a minimum and a maximum in the
image L corresponds to the merging of two minima and one maximum into
one minimum for I;L;.

Note that the sign of the z? coefficient LyyjjLmiit determines whether
singularities emerge or disappear. In the 1D case (m = j = 1), the sign
depends solely on ¢ and since t is increasing (and never decreasing) only
disappearing is possible. For higher dimensionality, appearing singularities
are possible.

The type of the singularity, a minimum, can be read from the fourth order
coefficient evaluated at ¢ = 0 equal to %11.

A singularity of type L,; = 0.
The singularity condition in Equation 4.4 (L, Ly,; = 0) and the degeneracy
condition in Equation 4.12 (L% + L;L;;; = 0) reduce Equation 4.14 to :

G = (2LmjjLm1 + 2L Lunikk)t% 4 (2L Lok
1
+LinjjLm11)t@” 4 (L1 Ly + ngLmu +

1
(Limikk L1 + ngijmul)t)ﬂCg + O(z*) (4.16)

For ¢t = 0 all structure up to third order disappear, this event is referred to
as the fold catastrophe. In the 1D case, Equation 4.17 makes it clear that
only annihilation of a maximum and a minimum is possible:

o 1
G = L1L1111 (th + gfl:s) + O(.’L'4) (417)
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In higher dimensions, say 3D, the reverse event is possible. The number and
position of the singularities can be determined from equation 4.16. The num-
ber and positions will be a function of ¢, and this dependency tells whether
it is an annihilation or creation catastrophe.

Summary

The types of catastrophes generically occurring for L;L; are determined by
the dimensionality of the domain, and the type of singularities involved. This
is summarised in table 4.1.

Condition Singularity | Type | Creating events
Catastrophe

Table 4.1: All generic catastrophes for L;L; are listed with the necessary conditions for
their presence. The dimensionality of the domain is denoted N. The singularity condition
has to be fulfilled for a catastrophe to occur. The additional condition is required for
creating events to be possible.

In the event of the cusp catastrophe, terms of order three and less dis-
appear. This event coincides with the fold catastrophe in the image struc-
ture following the linear diffusion equation. The fold catastrophe for L;L;
corresponds to a degeneracy in the second and third order in the underlying
image structure. Singularities can generically disappear with increasing scale
regardless of the dimension of the domain. Appearing singularities can and
will occur for domains of dimension two or higher.

4.4 Watersheds and catchment basins

In this section we review definitions of segments based on the watersheds
of a differentiable function. View the function as a topographic relief with
height identified with the image intensity. Slope lines on this follow the
gradient field and begin/end in critical points. Most slope lines begin in a
minimum and end in a maximum, however the atypical slope lines begin or
end in saddle points. In each saddle two slope lines end and two slope lines
begin. These slope-lines are denoted the separatrices of the graph of the
function. A subset of these form the watersheds: if the slope line begins in a
saddle which is connected by slope-lines in descending direction to more than
one minimum, then it is part of the watershed structure. The watersheds
surround the catchment basins of the minima. Intuitively, a rain drop falling
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on the topographic relief will drain to a minimum if it falls in catchment basin
of the minimum. For proper mathematical definitions of the above mentioned
topological entities see e.g. [93] and for illustration see Figure 4.2.

@
(b) (c)

Figure 4.2: A mesh plot (a) and a contour plot (b) for a simple surface patch is il-
lustrated. The positions of the critical points and the separatrices are projected to the
domain in subfigure (c¢). Maxima, the minimum and saddles are indicated with respec-
tively upward triangles, downwards triangle, and circles. The watersheds are obtained
from the separatrices by removing the dotted lines.

Watersheds capture the global image structure with the implication that
watersheds are not in general locally detectable. Formally stated (following
Najman [90]);

Proposition 2

Let b be a point of the domain of f such that Vf(b) # 0. Let N, be a
neighbourhood of b which does not contain any critical point. Let v be a
path containing b and parallel to the gradient of f on Ny. Then there exists
a function fy, equal to f on N, such that v is in the watershed of f;.

Hence, a gradient field patch not containing critical points does not contain
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enough information for determining whether or not a watershed is present.
This global probing of structure is one of reasons that watersheds handle
junctions more flexible than zero-crossings. Generically any number of wa-
tersheds may meet in a point. The possible topology for zero-crossings is
that 2n,n € N meet in a point, and generically this will only happen for
n < k, where k depends on the invariant expression at hand.

Another important property especially interesting for segmentation is the
fact that watersheds form closed hypersurfaces for Morse functions. Hence,
the watersheds of a function give a full partitioning of the multi-dimensional
image domain, and consequently the problem of closing or connecting edges
to get a partition is overcome. We suggests the general view of segmentation
by watersheds on a dissimilarity measure:

Definition Segment: A segment is the catchment basin for a minimum
of a dissimilarity measure.

4.5 Linking

We have established the generic superficial and deep structure of the gradient
magnitude squared. The only generic events in scale-space of the gradient
magnitude image is a fold catastrophe and a cusp catastrophe involving a
minimum. The duality between segments on the one hand and the minima
of the gradient magnitude on the other hand suggests the linking scheme for
the segments. Figure 4.3 illustrates the idea in 2D.

4.6 Segmentation Results

Without a prior knowledge of which objects are interesting (and equally
important: their range of scale), it is not possible to make an automatic
segmentation. Based on this observation, we have made a segmentation tool
where an user interacts with the multi-scale segmentation by selecting a de-
tection scale and a segment from the partitioning on this scale. The selected
object is then localised at a lower scale (the localisation scale); the locali-
sation scale is also selected by the user. Complex or multiple objects can
be segmented by selecting or de-selecting segment roots possibly on differ-
ent detection scales. The idea applies for any dimensionality and has been
implemented in the two and three dimensional case. See [93] for further de-
tails. The figures 4.4, 4.5 display results on two types of 3D images: digital
photos from the visible human project and a CT head scan. The tasks are
to segment the liver and jaw muscles, respectively.
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Figure 4.3: Multi-scale linking of generic events in watersheds of the gradient magnitude.
Scale increases upwards in the figure. Minima and saddles are symbolised with triangles
and circles, respectively. The events (annihilation, merging, creation, splitting) are named
after the interaction between the saddle and the minimum (or minima). In the cases of
annihilation (b) and merging (c) two minima and a saddle are reduced to one minimum,
corresponding to the disappearing of a border between the two segments. The cases of
creation (d) and splitting (e) are the reverse events where the emerging saddle corresponds
to the appearing of a border between the segments (dual to the two minima). Hence, the
linking is in all cases given by the saddle connecting the involved minima. A line from a
segment to a segment indicates a link.

4.7 Conclusion

For families of functions obtained by convolution with Gaussians of increas-
ing width, the generic catastrophe events for the gradient magnitude squared
have been established to be the fold catastrophe and the cusp catastrophe.
The results hold for domains of arbitrary finite dimension. The cusp catas-
trophe in L;L; corresponds to a fold catastrophe in the image L, and con-
sequently only occurs when global minima for L;L; are involved. The fold
catastrophe for L;L; corresponds to simultaneous degeneracy in second and
third order structure in the image. For one dimensional signals, the number
of singularities for L;L; decreases strictly monotonically. For higher dimen-
sional cases, singularities can also be created when scale increases. The result
carries directly to any linear combinations of image derivatives.

The duality between minima and catchment basins has been pointed out.
This duality plus the established generic events form the rationale for a
multi-scale linking scheme for catchment basins on L;L;. Using the link-
ing scheme, the well known single scale watershed segmentation has been
embedded in a multi-scale framework. The embedding has greatly reduced
the over-segmentation problem often encountered with single scale water-
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(c)

Figure 4.4: Segmentation of the liver is challenged by two problems: similarity between
liver tissue and the neighbouring muscle tissue; and the inhomogeneity of the liver tissue
itself. Subfigure (a) shows the boundary of the liver segment superimposed on three
orthogonal slices of the subject cube. (b) and (c) visualise surface renderings of the liver
segment. The views are (relative to a standing patient): above from the right side ( (a)
and (b)) and above from the back (c). The view from the back (c) clearly reveals the
imprint from other internal organs.

Figure 4.5: Jaw muscles segments and iso-surface cranium visualised for a patient with
abnormal growth. The head scan has been provided and segmentation verified by Professor
Sven Kreiborg, School of Dentistry, University of Copenhagen, Denmark. The muscular
structures are located next to bone (high value), skin (low value) and salivary glands
(approximately same value) which makes the task difficult for standard techniques.
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shed segmentation. The interactive selection of root segments at detection
scales and automatically combining the selections at a lower localisation scale
provides a fast way of doing semi-automatic segmentation.

The idea can be extended to a general framework for multi-scale segmen-
tation. The definition of segments can be changed by using another measure
of dissimilarity instead of the gradient magnitude, for instance a texture
measure [93]. This is possible within the same general framework although
different structural changes might occur generically for other measures and
diffusion schemes.

Future studies are in establishing a thorough theoretical basis for alter-
native dissimilarity measures and extensions to other blurring schemes that,
for example, enhance elongated structures. Furthermore alternative segment
definitions based on ridges can be analysed. Using locally defined boundaries
sub-pixel segmentations may be easily computed.
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Chapter 5

Watershed junctions as feature
detectors

The idea of partitioning a landscape into hills and dales dates back at least
as early as Maxwell [83]. There has been differences in the definition of wa-
tershed and watercourses [59, 113] although it seems the controversy depends
on nongeneric cases (see Rieger [108] for a discussion).

Flowlines are the integrated curves along the gradient field. Per definition
these flow lines start and end at singularities. They are the complement
of isophotes. The common flow lines run from a maximum and end at a
minimum. The uncommon ones run from a maximum to a saddle or from
a saddle to a minimum. The union of the points on all flowlines ending at
the same minimum together with the minimum point is called a catchment
basin.

In special but generic cases saddles, maxima and the flow line connecting
them can be part of catchment basin. If the two downwards flow lines from a
saddle end at the same minimum then the saddle point plus the two upwards
flow lines coming from maxima are part of the catchment basin belonging to
that particular minimum. If a maximum only has flowlines to saddle points
and to the same minimum then the maximum point belongs to the catchment
basin for the minimum.

The saddles, maxima and the flow lines between them, which do not
fall into the special case described in the previous paragraph, constitute the
border between catchment basins and are referred to as watersheds.

Only certain configurations of separatrix and singularities are stable [88].
The stable ones are shown in Figure 5.1. One can build the whole graph of
separatrices by combining these configurations.

A interesting point in watershed detection on general surfaces is that
plateaus are not generic. Hence for a sufficiently fine quantification in the

45
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Figure 5.1: Stable configurations of separatrices and singularities.

intensity domain one can speed up the watershed detection with this knowl-
edge. Of course if one works with for instance artificial images with constant
areas then it is necessary to use implementations like the one presented by
Vincent et al.[131].

Junctions in the watershed on the gradient image have been suggested
as junction detectors. Although watersheds and their junctions can not be
expressed with a local differential expression one can give necessary but not
sufficient local conditions and their generic behaviour can be determined.
The watershed junctions are located at maxima of the gradient magnitude
image. Watersheds are a subset of the separatrices which are the special flow-
lines connecting critical points. In saddle points four separatrices meet: two
going up to a maximum and two going down to a minimum. In a minimum
several separatrices can meet but they do not separate different catchment
basins. In a maximum several separatrices can meet which separate several
minima. Hence these are candidates for junctions.

5.1 Necessary conditions for watershed junc-
tions

The first and second order structure of the gradient magnitude squared G is
given in tensor notation by:

Gjk = LijLik + LijeLi

For a two-dimensional domain, the second order invariants, the determi-
nant and trace of the Hessian matrix, are given by :

Det(ij) = ijGkk - GijGji (53)
= (LijLij + LijiLi)(LijLij + Lij; L)
— (LijLik + LijkLi)(Lig Lij + Lig; L;) (5.4)



5.1. Necessary conditions for watershed junctions 47

G]'j - Lz]Lz]+Lzy]Lz (55)

Equation 5.1 equal zero is the condition for a critical point in G. A
global minimum for G coincides with a critical point for L ( VL = 0).
Hereafter in this chapter we will only consider the points where VL # 0.
The conditions for a critical point for G describe a degeneracy in the second
order structure for L in the direction of the gradient for L. Points fulfilling
this condition lie on the parabolic curves for L (parabolic hypersurfaces)
where the direction for the degenerated second order structure coincide with
the gradient direction for L.

The condition for a critical point for G expressed in the gauge coordinate
system (v, w) where w is the gradient direction is:

0 # Ly (5.6)
0 = Ly (5.7)

Using the equations 5.7 and the equations 5.4 and 5.5 for the determinant
and the trace we have in a maximum:

0 < Lw(vavaww - L?uwv) + Lngwww
O > wa + (vav + waw)Lw

—~ o~~~
o o

Figure 5.2 (bottom right) illustrates the conditions.
Expressed in terms of G the conditions for a maximum are G2,, < GGy
and 0 > G- The last condition plus L,,; = 0 give us :

0> Guw = Luwwluw (5.10)

We conclude that 0 > Ly, is always true for a maximum. So the maxima
will always lie on the classical edges Ly, = 0 A0 > Lyyu,- Consequently
watershed junctions will also always lie on the classical edges. Note that
these watershed junctions are not the same as the intersection points for
L, = 0. Rieger [108] considers the closure of {p € Q|VL # 0 A Ly, = 0}.
He shows that this set has intersection points in saddle points for L and that
the set never has intersection points when 0 > Ly ,-

In the previous we showed the connection between watershed junctions
and the classical edge measure. For completeness, we will in the following
describe the conditions for local minima and saddles for the gradient squared.
Minima and saddle points for G can both lie on edges and not. Figure 5.2
(bottom row) illustrates the singularities for the gradient magnitude except
global minima.
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Figure 5.2: A blurred version of an image generated by random values. Top
row, left: the image is depicted with intensity proportional to value. Top,
right: the image is plotted as a graph over the image domain. Middle, left:
the image plotted as a graph with a shading proportional to the magnitude
of the gradient. Middle, Right: The magnitude of the gradient plotted as
a graph. Bottom left. The gradient magnitude with zero-crossings for L,
and L,,. Bottom, right: The zerocrossing for L, and L,, on the gradient
magnitude with the black areas where the conditions for a maximum are not
fulfilled.
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In a minimum we have:
0 < Lu(LuwwwLwww — L2,4,) + L2, Luww 5.11)
0 < L2 4 (Luww + Luww)Lw 5.12)
In a saddle we have
0 > Luy(LwwwLwww — L2y,) + L2y Luww (5.13)
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Chapter 6

Smoothing images creates
corners !

6.1 Introduction

Corner detection plays a central role in many image analysis applications
ranging from character recognition to landmark identification. The literature
on corner detection roughly divides into two classes. Some use explicit models
[12, 105, 111, 119], while others use derivative expressions like the Gaussian
curvature, the structure tensor (interest operator, second moment matrix),
expressions involving the isophote curvature, and the curvature of Canny
edges [85, 89, 112].

One subclass of the latter defines corners as singularities of the following
expression: the isophote curvature times the absolute gradient magnitude to
some power a.

C(z,y,a) = |VL(z,y)[*k(z,y) (6.1)
= Ly(w,v)* 'Ly, (w,v),

where L is an image, |VL| is its gradient magnitude, and & is its isophote
curvature image. Further, (w,v) is a local right hand coordinate system,
where w is the gradient direction of L and v the (perpendicular) tangent
direction of the isophote. Subscript denotes differentiation. We only consider
the measure in point |[VL| # 0. Kitchen and Rosenfeld [63] suggested to use
a = 1, Zuniga and Haralick [141] proposed a = 0, and Blom [13], Lindeberg
[73], and Alvarez and Morales [3] investigated a = 3.

!This chapter has been accepted for publication in Image and Vision Computing as
“Smoothing Images Creates Corners” by Jon Sporring, Mads Nielsen, Joachim Weickert,
Ole Fogh Olsen
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The advantage of using a corner measure with a > 0 is that the product
will focus on high isophote curvatures close to high contrast edges. There are
two special values of a that deserve a note: a = 0 is invariant under a mono-
tonic transformation of the image intensities (morphological invariance), and
a = 3 is invariant under affine transformations (the angle of the corner).

Scale is an essential part of detecting corners. At pixel scale, differential
corner measures will be dominated by the pixellation, but a simple smoothing
reduces the effect of the pixel grid, while still retaining important features.
We will investigate the above subclass of corner measures in Linear Scale-
Space (see [136] and the references therein):

L(z,y,t) = G(z,y,t) x L(x,y),

where the original image L(z,y) is convolved with a Gaussian G(z,y,t) =
fﬂ exp(—%) of variance 2t. The parameter ¢ is called scale. Henceforth,
when we refer to scale-space we will mean Linear Scale-Space. There exist
essentially three implementations of scale-space: Spatial convolution, multi-
plication in the frequency domain, and direct solution of the Heat Equation
Ly = Lyz+ Ly,. We use here the frequency implementation, since it is fastest
for large scales, and it easily extends to the calculation of derivatives. How-
ever, we note that for small scales the direct solution of the Heat Equation
is more stable [134].

The advantage of such an embedding is that it reduces the grid and noise
effects and allows for an uniform analysis of corners of all sizes or resolutions.
The disadvantage is that the corners are dislocated at high scale and should
be traced back to low scale in order to improve their location. Such an
algorithm typically involves the following steps:

1. Produce a stack of images L(z,y,t) for a range of scales.

2. For each scale and some constant a € {0,1, 2,3}, calculate the corner
image C(z,y,a,t).

3. Detect corner points in each corner image.
4. Link corner points across scales.

5. At fine scale, choose the corner points that can be linked to coarser
scale.

An essential part of the algorithm is thus the linking of corners across scales.
We will show that this process — although common in the literature — is
problematic, since new corners may arise as the scale is increased.
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Studying the behaviour of corners across scales is conveniently done with
Catastrophe Theory. We will sketch the catastrophe structure in two dif-
ferent settings. Firstly, we will examine the unconstrained, spatial singu-
larity structure of C(z,y,a,t). We find that new corners do generically ap-
pear for increasing scales. Secondly, we extend Rieger’s analysis [106] to
single isophotes, since the definition of C(x,y,a,t) is intrinsically linked to
isophotes, and since the corners do lie on the curves under study in contrast
to Canny edges as noted by Rieger [106]. Also for single isophotes, creations
of corners do occur for increasing scales.

Some authors have studied corners by first obtaining edge curves, and
then analyse the curves for corners, see e.g. [85] and references therein. These
studies do typically not analyse the effect of image resolution.

Related to our work in terms of Catastrophe Theory is Damon [23], Rieger
[106, 107], Griffin & Colchester [46], Olsen [97], Johansen [56], and Gauch
and Pizer [38].

6.2 Image structure

Corners are spatial point features, and for the differential corner measures
(6.2), these points are found as the intersection between curves: A(z,y) =0
and B(z,y) = 0. We will investigate two pairs of intersecting curves:

1. Corners defined as critical points of C, i.e. A =C, and B = C,,.

2. Corners defined on the isophote, Ly, as extrema of C' along the isophote,
ie. A=L—Lyand B=C,.

We analyse the solution set satisfying A = B = 0 and its evolution, when L
is evolved in scale-space.

In Figure 6.1(LEFT) are shown typical intersections between curves: Ei-
ther two curves intersect with non-parallel tangents or their intersection is
empty. This typical type of intersection is called transversal. A consequence
of the transversal intersection is that closed curves given by zero-crossings of
any pair of image derivatives have an even number of intersections or none
at all.

The intersection points form smooth curves in scale-space. Such feature
curves will have points, where the tangent is perpendicular to the t-axis. This
typically corresponds to the interaction of spatial point features, i.e. feature
points annihilate or are created in pairs as illustrated in Figure 6.1(RIGHT).
We refer to such points as catastrophe points.

It is always possible to come up with an example where the intersection set
exhibits extreme and atypical behaviour. However, in this chapter we will



54 Smoothing images creates corners

D

'I
’I
T

1

L um QQ@)

Figure 6.1: The superficial and deep structure of the intersection of curves.
LEFT: Two curves A and B intersect generically in an even number of points
or not at all. RIGHT: A stack of images illustrating the evolution of an
intersection (dashed line). Top image corresponds to an annihilation event.
A creation event is identical with reversed scale.

only consider typical behaviour (in a well defined mathematical manner).
We will consider properties which hold for an open? and dense?® subset of
all images. Such properties are called generic, and corresponds well with
the general notion of being typical: An image picked at random will with
probability 1 be generic, and any image is infinitesimally close to a generic
image [46]. We will now illustrate how transversal intersections in jet space
describe geometric properties of our feature points, where after we will discuss
the genericity of transversal intersections.

6.2.1 Geometric properties by transverse intersections
in jet space

We shall establish generic properties in jet space (the space of k-th order
Taylor expansions of solutions to the Heat Equation, L, = Ly, + Ly,). A
property is represented by its defining equations (A = B = 0) expressed
in terms of image derivatives. This implicitly defines a manifold of some
codimension* called the property manifold. To establish generic properties,
we have to show that the property manifold is defined and determine its
codimension.

2A set X is open if Vo € XJe > 0: N(x) C X, where N (z) is an e-neighbourhood of
X.

3A set X is dense in Y if and only if Vy € YVe > 0: N (y) N X # 0

“The codimension of a manifold is the dimension of the embedding space minus the
dimension of the manifold. E.g. the codimension of a sphere is always 1, while its dimen-
sion depends on the embedding space: A sphere in 3D is 2 dimensional and in 4D is 3
dimensional.
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A scale-space image can be mapped to a smooth manifold in jet space in
the following way: The k-th order local Taylor expansion is in each point of
the scale-space mapped into jet space, thus sweeping a manifold, which we
call the image manifold.

If the image manifold is transverse to the property manifold, then the set
of points in scale-space, where the property occurs, is a smooth manifold with
the same codimension as the property manifold. Hence we have described
our feature manifold in scale-space.

6.2.2 Transversal intersections are generic

The scale-space images which have a transversal intersection between the
image manifold and the property manifold form an open and dense set in
the space of all scale-space images. This result is due to Damon [23]. Note
that a scale-space image satisfies the Heat Equation, hence the evolution of
spatial feature points is restricted in comparison to a general evolution. This
changes the general program of catastrophe theory slightly [23].

By the above we conclude that typical feature properties can be deter-
mined by transversal intersection between images and a property in jet space.

6.2.3 Generic catastrophes for differential corner mea-
sures

The codimension of a manifold describes the number of constraints imposed
on the degree of freedoms in the embedding space. We will now illustrate
how the codimension for corner feature curves is found.

With some local parametrisation of the feature curve is an implicit pa-
rametrisation given by:

Az (s),y(s), t(s)) = 0,
B(z(s),y(s),t(s)) = 0.
Differentiating with respect to the parameter s yields:

was + Ayys + Atts = 0,
Byzs + Byys + Bit, = 0,

In a catastrophe point (t; = 0) and with a non-zero curve tangent we have:
AuB, — ByA, = 0. (6.3)

We have analysed (6.3) combined with A = B = 0, and we have deter-
mined that they define a smooth manifold of codimension 3 in jet space. See
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Appendix A for further details. The equations A = B = 0 alone define a
property manifold of codimension 2. The solutions to A = B = 0 there-
fore are smooth curves in scale-space with catastrophes occurring in isolated
points on these curves. Geometrically, catastrophes for critical points in C
correspond to the annihilation or creation of a saddle with either a mini-
mum or a maximum. The catastrophes for the isophote constrained measure
correspond to the annihilation or creation of a minimum and maximum pair.

The sign of t,; determines the catastrophe type: negative is an annihi-
lation and positive is a creation. Recall that ¢, = 0 at a catastrophe point
therefore the sign of ¢, determines if the curve moves towards positive or neg-
ative t-values from the catastrophe point and consequently the catastrophe
is either a creation or an annihilation.

We have been able to create generic examples of both types, hence both
annihilation and creation can occur. If ¢,;, = 0, we get a catastrophe of even
higher order. Where t; = t;, = 0 defines a manifold of codimension 4 and
are not, generic, since scale-space images only have 3 dimensions.

We conclude that tracking a corner over scale can only be performed for
an open interval of scales. At scales outside this interval, the corner does
not exist. Hence, both annihilations and creations are generic events. In
particular, it is in general not possible to trace back corners to arbitrary fine
scales.

6.3 Experiments on two typical images

The above analysis shows that in the continuous case, annihilations and es-
pecially creations are likely when scale is increased. To verify these results in
the discrete setting we have calculated corners of two typical images shown in
Figure 6.2. The number of corners as a function of scale for Figure 6.2(LEFT)
is shown in Figure 6.3. The corners are found as points where |C| is larger
than its 4 neighbours®. We see that it is not a monotonic decreasing sequence
and conclude that creations do occur. In Figure 6.4 are shown a sequence
of scales for ¢ = 0 in which a corner creation occurs approximately in the
middle image. The creation events for other a’s are similar. We thus con-
clude that corners defined as C; = Cy = 0 also have creations in the discrete
setting.

We have tested the isophote approach (L = Ly and C, = 0) on the image
in Figure 6.2(RIGHT). For binary images the mid-isophote (intensity value
0.5) is an edge operator, and it is to be expected that the mid-isophote is close
t0 Ly = 0 edges for low scales. However, binary images are not generic.

5This neighbourhood size is used to reduce computation time
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Figure 6.2: Two test images. LEFT: A typical hallway, courtesy C. Colios, FORTH.
RIGHT: The letter ‘c’.
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Figure 6.3: Corners of Figure 6.2(LEFT) given by C, = C,, = 0 have frequent creations
foralla=0,...,3.
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Figure 6.4: A zoom of Figure 6.2(LEFT) showing lines of C, = 0 (red) and C, = 0
(blue) for a = 0 and scale t = 17.60, 17.70, 17.86 from left to right. Arrows mark creations.
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Figure 6.5: Corners given by L = Ly and C, = 0 have frequent creations for all a =
0,...,3.
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Figure 6.6: The function C on the mid-isophote for Figure 6.2(RIGHT) at ¢t = 12.5 and
for a =0,...,3. The arc-length functions starts on the outside of ‘c’ at its leftmost point
and travels downwards.

Fortunately, an arbitrary small scale larger than zero will transform a binary
image into a generic gray-valued image.

The number of corners for a range of scales for the mid-isophote is shown
in Figure 6.5. Corners are here found as points in which |C| is larger than its
2 neighbours on the isophote. Again we see that this is not a monotonic de-
creasing sequence and conclude that the isophote approach also has creations
in the discrete setting.

The final experiment we have performed concerns the selection of seman-
tically important corners: Some approaches order the extrema of C' according
to their absolute strength at coarse scales and uses this ordering to choose
the semantically important extrema at fine scale [73]. Varying a can alter the
ordering dramatically and possibly catastrophically. In Figure 6.6 we show
the value of C' on the mid-isophote of the letter ‘c’ at scale 12.5 for various
a. Notice the sharp peak for a = 0 at arc-length 40. This corresponds to
the sharpest turn of the contour of the letter ‘c’. For a = 3 this peak is
practically removed and replaced by the neighbouring peak at arc-length 20.
This shift in ordering also occurs for corners given by C, = Cy, = 0.



6.4. Summary 29

6.4 Summary

We have studied the family of corner measures x|VL|* for a € {0,...,3}
when the image is embedded in Linear Scale-Space. Two approaches have
been analysed: The catastrophe structure of the spatial extrema of the corner
measure and the extrema along an isophote.

We have found in both approaches that the evolution of corner points are
smooth curves in space and scale, and that both annihilations and creations
are generic events at isolated points on these curves. Hence, corners cannot
always be tracked to arbitrary coarse or fine scale.

For both approaches we have experienced that the value ¢ = 1 seems
to generate the fewest number of creations. Coincidentally, this is also the
measure with the simplest intrinsic form: C(z,1,t) = L,,. Conversely, we
have experienced that especially many catastrophes occur when a = 0.

Finally, the isophote approach has been shown to shift the focus away
from high isophote curvature points for ¢ > 0. The resulting corners do
not always correspond well with intuition. A similar result holds for corners
defined as spatial extrema of C'.
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Chapter 7

Singularity theory II:
Genericity via equivalence

This chapter build on the theory presented in chapter 3. Here will be in-
troduce concepts related to genericity via equivalence relations and stability
under deformations. This chapter is meant to introduce concepts and ideas
from the literature to be used in the next chapter on “The Structure of The
Optic Flow”.

The basic idea is to define an equivalence between functions. Each of
the resulting equivalence classes is then considered as one type of structural
behaviour. The equivalence is given by a diffeomorphic warping of the do-
main (see Figure 7.1). A homeomorphism is a bijective mapping which is
continuous in both directions, a diffeomorphism is a homeomorphism which
is infinitely differentiable in both directions. An ellipse, a circle and a square
can be warped into each other by a homeomorphism. A square can not be
transformed by a diffeomorphism into an ellipse but an ellipse and circle can
transformed into each other by a diffeomorphism.

Mapping a smooth function to a smooth function by a local transfor-
mation of the coordinate system requires a smooth transformation. A dif-
feomorphic transformation cannot introduce or remove singularities in the
level set. (see Figure 7.1). This is basically why it is interesting to study
diffeomorphic transformations. The singularities in the level set for the trans-
formed function is the same as for the original function. Hence, a horribly
formed function can be transformed by a diffeomorphism into a function on
a simple form. The topology of the simple form is easy to analyse and the
obtained results are directly applicable to the original function. Even though
diffeomorphisms preserve the topology they can make tremendous changes to
the landscape, the limitations are that the transformation has to be smooth
and is not allowed to introduce singularities. An equivalence relation can be

61
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defined in the following way:

Definition 20 (Right-Equivalence)

Let U,V be open subsets of R" and let f, g : U,V — IR be smooth functions.
The functions f (at x € U) and g (at y € V) are right equivalent if there
exists open neighbourhoods X,Y of x and y, a diffeomorphism h : X — Y
and a constant c such that:

hz)=y A flz)=g(h(z))+c (7.1)

In the following we will sketch the path from an equivalence relation to
a list of normal forms. That is a list of germs which each represents an
equivalence class. The list only consists of the generic types of behaviour.

The space of functions defined near zero is referred to as the space of
germs. For example, let f(x,y) = a(x — 1) + b(y — yo)?. If 2y or y, are
changed the germ az? + by? for this function f doesn’t change but changing
a or b does change the germ. Hence when considering germs, we consider
functions moved to the same origin.

Right equivalence (and other types of equivalence) can be represented as
a group of diffeomorphic germs. When a group acts on a germ in jet space
a so called orbit is traced in jet space. The orbit consists of all members
which can be reached from the original germ. This orbit, a set of jets, is
a smooth submanifold [80]. Hence the results on transversal intersection
between manifolds can be applied. All the orbits with sufficiently small
codimension will be intersected transversely by jets from a residual set of
functions. By this, it is established that these equivalence classes describe
generic behaviour. The next move is to represent each class with a normal
form, a germ with a simple form.

A deep result by Malgrange [80, 40, 24] often referred to as Malgrange
preparation theorem allows to state the transversality conditions as infinites-
imal stability under deformations. The unfolding theorem connects infinites-
imal stability and global stability. The final piece is the determinacy theorem
which insures that a stable germ is equivalent to a finite part of the Taylor
series for the germ.

Now it is possible to list normal forms for simple germs.

Theorem 8 (Classification by Arnold [4])
A complete list of normal forms of a function in the neighbourhood of a
simple critical point.
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Ay f=x""+224QEk>1 codim Ay =k —1
Dy f=22zo4+25'4+Q, k>4 codimD,=k—1

Es f=23+zi+Q codim Eg =5
E: f=x3+x123+Q codim E; = 6
Ey f=zi+23+Q codim Eg =7
where Q = —a% — ... — 2?4+ 22, +...22. !

A simple germ does not depend on parameters in contrast to t-modal
germs which depend on t parameters. Orbits can either form discrete “strat-
ifications” or continuous families [4]. The discrete case results in a simple
germ. The case with moduli we will not consider further.

7.1 Determinacy

Here we will present a version of the determinacy theorem. We follow more
or less the presentation by Bruce and Giblin [17]. We will not give proofs
here the reader is referred to Bruce and Giblin and references therein[17].

We will need a bit of algebra to present the next result. A nice introduc-
tion to the subjects can be found in the book by Cox et al. [20].

The smooth germs f : IR",0 — IR form a ring (denoted R,,) with simple
point wise multiplication and addition. The subset of functions that vanish
at 0 is an ideal in Ry, we denote it M,. It is actually the maximal ideal in

R,.

Proposition 3 (Generating Ideals)
e Theideal M, is generated by x1, ..., x,. Which means that any f € M,
can be written as f = Y. | z;f; for some f; € R,,. We will write this
as M, =R, <Ty,...,T, >

e The set of germs vanish on the subspace x1 = ... = x,_1 = 0 is also an
ideal, denoted M,_, and is generated by z1,...,Tp_1.

Definition 21 (MF)
If M, is a maximal ideal in R, then we can recursively define a finitely
generated ideal M* k > 1 in the following way:

MF =M, - M MP = M, (7.2)

n

A germ f lies in MP if and only if f and its partial derivatives of order
< k all vanish at 0. Now we are in position to state the determinacy theorem.

'In theorem 8 the index s indicates the transition between negative and positive sign
for the quadratic terms
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Theorem 9 (Determinacy[17])

Let f : R",0 — IR,0 be a smooth germ with the following ideal I = M? <
aa—jl, ceny % >, if MF*! is contained in the I then f is right equivalent to
any other germ g having the same k-jet (the same Taylor series up to and

including the terms of order k). In this case f is called k-right-equivalent.

7.2 How to read a list of normal forms

A list of normal forms gives a canonical representative (the normal form)
of the equivalence classes deduced from the equivalence relation. It is the
smallest list for which it is true that there is a residual set of functions for
which all points in their domain can be locally described by one of the local
forms in the list. In this sense the list is complete.

This does not imply that all functions in the residual set exhibit all the
normal forms in their domain. For example the list of normal forms for func-
tions include regular points and non-degenerated critical points. The open
and dense set A of functions which can exhibit these properties are called
Morse functions. The subset B of strictly increasing monotonic functions
(Vx : fo(z) > 0) are also Morse functions but they do not have critical points
at all.

One could ask if the set A\ B where all members have at least one critical
point cover almost all types of functions. But that is not the case: the set
A\B is not dense because B is an open set. Hence the set B can not be
ignored without losing genericity.

7.3 Genericity via equivalence for the heat
equation

The results presented in this section are due to Damon[23, 24, 25] and ref-
erences therein. The used equivalence relations are especially designed to
capture the special role played by the time parameter in the heat equation.
Two equivalence relations, H-equivalence and IS-equivalence, are in play.

Definition 22 (H-equivalence[24])

Germs f,g : R"™ 0 — R, 0 are H-equivalent if there is a local change of
coordinates ¢ : R"™' 0 — IR"**, 0 of the form ¢(z,t) = (¢1(x, 1), po(t)) with
#5(0) > 0 and a germ c(t) : R,0 — IR, 0 such that

g(z,t) = fod(x,t)+ c(t) (7.3)
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Note how ¢, only depends on ¢ by this, the special role of the variable ¢
is preserved. In order to keep track of both the isointensity surface as well
as the intensity level of the critical point Damon introduces a more restric-
tive equivalence than H-equivalence. The new equivalence class is denoted
Intensity-Sensitive equivalence.

Definition 23 (IS-equivalence[24])
Germs f,g : R"™,0 — IR, 0 are IS-equivalent if there is a local change of
coordinates ¢ : IR™™',0 — IR™*', 0 of the form ¢(z,t) = (¢1(x,1), ¢p2(t)) with
#,(0) > 0 and a local change of coordinates 1(y,t) : IR>,0 — IR?,0 of the
form (y,t) = (¢1(y, 1), 1) with G2(0,0) > 0 and ¢,(0,¢) = 0 for all t, so
that

g(x,t) = 1 (f o d(x,1),1) (7.4)

Note that the two types of equivalence do not preserve the heat equation.
Hence, a solution to the heat equation is equivalent to a function outside
the solution space. The equivalences are designed by Damon to capture ex-
actly the structures of interest. The designed equivalences can be viewed
as lying in between two limiting equivalences. In one limit, the equivalence
results in a too fine classification: All quadratic functions where the coeffi-
cients sum to zero are solutions to the heat equation. An equivalence which
preserves the heat equation will have to leave the eigenvalues unchanged but
this will result in an equivalence class for each possible set of eigenvalues
even though the level set only depends on the sign of eigenvalues. In the
other limit, Morse theory states that for a function with a critical point with
a nonsingular Hessian matrix there exists a diffeomorphism which warps the
function to a quadratic form where all the coefficients are plus or minus
one. Using this kind of equivalence will result in a too coarse classification.
H-equivalence and IS-equivalence are two possible choices in between. IS-
equivalence is a refinement of H-equivalence. Not only are the changes in the
isosurfaces tracked also the intensity level of the critical point is tracked by
[S-equivalence.

Example 4 (H-equivalence and IS-equivalence)
The following functions are H-equivalent

f(xayat) = $2—y2
g(z,y,t) = 32° —2y*+2t
h(z,y,t) = x®—2y*—2t

f and g are H-equivalent by the following transformation:

9(z,y,t) = fodo(z,y,t)+ c(t) where
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bz, y,t) = ((vV3z,v2y),t) and

c(t) = 2t
f and h are H-equivalent by the following transformation:

h(z,y,t) = foo(x,y,t)+ c(t) where
o(z,y,t) = ((z,v2y),t) and
c(ty = =2t

None of the three functions are IS-equivalent. IS-equivalence refines the
equivalence class induced by H-equivalence and the three functions are mem-
bers of different equivalence class.

Based on the equivalence relations Damon introduces the notion of sta-
bility under deformation. A deformation of a germ ¢ : R"™,0 — IR,0 is a
germ f: R"™17 0 — IR, 0 such that f(x,t,0) = g(,1).

Definition 24 (H-stable)

A germ g : R™,0 — IR, 0 is H-stable if for any deformation f there is a
local change of coordinates ¢ : R™ 179 0 — IR™"*% 0 of the following form
d(zr,t,u) = (¢1(z,t,u), po(t, u),u) with %‘;—2(0, 0) > 0 and a germ c(t,u) :
R'™ 0 — IR,0 so that

g(x,t) = fod(x,t,u)+ c(t,u) (7.5)

Definition 25 (IS-stable)

A germ g : R™' 0 — IR, 0 is IS-stable if for any deformation f there is a
local change of coordinates ¢ as in definition 24 and 1 : IR*T?,0 — IR*™, 0 of
the form (y,t,u) = (¢¥1(y,t,u),t,u) with %’Z—l((], 0,0) > 0 and ¥ (0,t,u) =0
for all (t,u) and a germ ¢ : IRY,0 — IR, 0 so that

9(x,t) = i (f o d(x,t,u),t,u) + c(u) (7.6)

The functions in example 4 are all H-stable but only g and A are IS-stable.
For f the critical value remains the same for all values of ¢, intuitively a highly
unstable situation. This intuition is formalised by [S-stability.

A germ f is H-stable respectively [S-stable if it is its own versal unfolding.
In other words, a sufficiently small perturbation of f is H-equivalent, respec-
tively IS-equivalent to itself. This stability under deformation corresponds to
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the stability formulated in topological terms, namely openness. The equiv-
alence relation can “act” in jet space by the corresponding diffeomorphism
group. The orbits traced by the group action are submanifolds in jet space
and via transversality arguments topological stability can be established for
the equivalence.

Damon [23, 24] proves that it is a generic property to be H-stable or
IS-stable for solutions to the heat equation. A list of H-stable and IS-stable
germs which describe the local structure in the neighbourhood of the point
of interest is presented in table 7.1 from [24].

Case Normal form Description/conditions
0 T submersion

1 m L a;x? + 2ct Va; #0,c =31 a;

v " az? £+ E(t?) Va; # 0,5 1a; =0

2 23 + 6tz + Yoo a;T; + 2ct Va; #0,c = > 5a;

3 x3 — 6tz — 62173 + Y0 5 a0 + 2¢t Va; #0,c=3" 5 a4

Table 7.1: A complete list of H-stable and IS-stable germs. All cases are
in use for IS-equivalence and only 0,1,2 and 3 are used for H-equivalence.
For two normal forms to be H or IS-equivalent within the same case the
quadratic forms have to have the same index. There are extra conditions for
IS-equivalence: If >7 , a;, = 0 then case 1" is used. Also the sign of ¢ has
to be the same for two forms to be IS-equivalent. The index is determined
by counting the signs of a;’s. E(t?) is the lowest order polynomial solution
to the heat equation which has t* as one of the terms. In 2D E(#?) =
2+ tr2/2 +1r*/32,r = 2% + 9?
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—x? +y? —2zy? —y* and h(z,y) =

The following transformations warp f to g and h,

—a?+ %, g(z,y)

—z?2 + y? — 2293 — 5.

Figure 7.1: A diffeomorphic transformation of a saddle structure. The three
graphs are equivalent under right equivalence. From top to bottom the graphs

are given by f(a,b)

(z+9°y)

respectively: (a,b) = (z + %%, v), (a,b)



Chapter 8

The structure of the optic flow
1

8.1 Introduction

A lot of work on optic flow has been devoted to its definition [50, 30] and
to regularisation schemes for its robust computation [50, 89, 9, 99, 137]. In
this thesis, we follow the Horn and Schunck definition of the optic flow field
[50]. We do not regularize the solution, but only wish to classify it. The
motivation is fourfold: we seek a classification, in mathematical terms, of the
flow field and its temporal changes. We want to emphasise that the events
we describe or detect in images must be generic events. We will develop
mechanisms for detecting these events, and finally we wish to indicate that
this purely academic examination of the optic flow field may sub serve the
development of algorithms for many different visual tasks. In this chapter
we give simple examples using the flow structure for guiding an attention
mechanism and for computing the degree of turbulence in a flow field. The
inspiration is mainly from the analysis of autonomous dynamical systems [8]
to which we will describe the analogy.

An object moving with respect to a camera induces a motion field on the
image plane. This motion field is the projection of the motion of physical
points fixed to the object, and will only under very restricted lighting and re-
flectance circumstances directly relate to the optic flow field [54]. We analyse
the singularities of the data induced optic flow field while the singularities
of the motion field have earlier been analysed for recovery of object motion
parameters [65, 130]. Since we do not in this work relate the optic flow field
to the motion field, we can not make similar observations.

!This chapter has been published in a conference proceedings [92]
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The structure of a general analytic flow field is normally assessed through
the singularities of the field, i.e. points where the flow vanishes[8]. The first
order structure of the flow field round these points can classify the points
as attractors, repellers, or whirls. The optic flow field is a special flow field
since computed as a simple intensity preservation. Generically the optic flow
field is not everywhere analytical. Furthermore, the tangential component
of the flow is not determined by the constraint equation. These differences
cause new flow structures to be created generically and ill-define the classical
flow structures in an optic flow field. This chapter analyses these differences,
show examples, and applications.

A temporarily changing image may be obtained from imaging a dynamic
scene. A physical conservation law then defines a spatial vector field tem-
porarily connecting conserved properties. In computer vision the Horn and
Schunck (HS) equation [50] expresses the preservation of intensity over time.
The derived spatial vector field is the optic flow field. The HS equation only
solves locally for one component of the vector field, giving rise to the so-called
aperture problem. An unique representation of the optic flow field is given
by the normal flow: the flow perpendicular to the local isophote.

The normal flow is well defined in all image points with non-vanishing spa-
tial gradient, elsewhere the flow is undefined. However, in a neighbourhood
round these singular points the flow field exhibits some typical behaviour.
The flow magnitude typically increases towards infinity, the direction will be
inwards, outwards, or combinations hereof. In Section 8.7 we analyse the
flow around these singularities, categorise it, and see how these poles change
over time. The purpose of this exercise is to gain insight in the structure of
the optic flow field.

In general analytic flow fields, vanishing flow points can describe the flow
field structure. In optic flow fields only the normal flow is directly accessible
and this will generically vanish at hypersurfaces of codimension 1, i.e. at
curves in 2D images. This means, that the standard classification of the
flow field structure can not directly be applied to the normal flow fields. We
can, however, define whirls in the normal flow field as second order temporal
events and apply the detection of these to the quantisation of turbulence.

A proper definition of structure change in the flow field needs a definition
of structure. We do this through the mathematical concept of equivalence
of flow fields under deformations. In Section 8.6 we review this method
and its application to structural classification of analytical flow patterns. In
Section 8.7 we define and derive the generic structure of the optic flow field.

Normally, the optic flow has been defined and computed directly based
on pixel values, so as if they represent the true value of the intensity field.
Recently [30] the optic flow definition and computation have been formulated
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in a scale-space framework taking the finite extent of pixels and filter-outputs
into account. In Subsection 8.10 we comment on some aspects of the change
of structure of the optic flow field when scale changes.

In Section 8.11 we describe how changes of flow field structure can be
detected from outputs of linear filters. These events may be useful to detect
violations of continuation models: structure emerging or disappearing, and
thus guide an attention mechanism. We give examples of computations of
the flow structure, and apply this to simple examples from computer vision
and turbulent flow.

First, however, we look into the necessary notation and definitions.

8.2 Optic flow: notation and definitions

In this section we establish notations of what images, optic flow, normal flow,
and the spatio-temporal iso-surface are. Furthermore we link the geometric
properties of the spatio-temporal iso-surface to the flow and normal flow-field.
We assume that [ is sufficiently differentiable.

Definition 26 (Image sequence)
An image sequence I(z,t) : R” x R — IR is a mapping from D spatial
dimensions (¢ = (z1,%2,...,2p)) and a temporal dimension (t) into scalar
values, normally denoted intensities.

Definition 27 (Spatio-temporal optic flow field)
The spatio temporal optic flow field v : RP*! — IRP*! is any vector field
preserving image sequence intensity along flow lines.

The preservation of intensity along flow-lines of v is expressed through the
full (or Lie) derivative along the flow:

Lo =01 + 01+ ...+ 0", + 0", =0

where upper index denotes component of vector and lower index denotes
partial differentiation. In the following we will often use notation from 2D
(z,y) to simplify expressions: L, = v*I, + oY1, + v'I; = 0.

8.3 Temporal gauge
The optic flow equation yields one equation in D + 1 unknowns. In gen-

eral, the length of the vector is unimportant as only the actual connection
of spatio-temporal points carries information. Often the length of the vector
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field is normalised to unit temporal component, i.e. v* = 1. This normal-
isation is referred to as the temporal gauge. In this normalised flow field
we denote the spatial components u. This reveals the well known Horn and
Schunck equation

uly +u'ly +1; =0

We call (u®, u¥) the spatial optic flow field or simply the optic flow field.
This flow field answers the typical question asked by the computer vision
programmer: in next frame of my image sequence, where did points move?

Definition 28 (Spatial optic flow field)
The spatial optic flow field u : RP — RP is any vector field preserving
image sequence intensity along flow lines of the spatio-temporal vector field

v:m.

The normalisation of the temporal component is, however, only possible
(finite) when v* # 0. In cases where the temporal component vanishes, the
above formulation yields singularities (poles) in the flow field. In Section 8.7,
we analyse the flow field round these poles, show that they exist generically,
and that they exhibit certain generic behaviours/interactions. In order to do
this, even though the spatial flow field is our main concern, we must stay in
the spatio-temporal formulation of the flow field. In this way, we can derive
properties of the spatial flow field from simple geometric considerations.

8.4 Normal flow

The temporal gauge, i.e. v* = 1, (or another normalisation) results in one
equation in D unknowns. This shows the intrinsic degree of freedom in the
flow, normally denoted the aperture problem. Using the temporal gauge, the
spatial optic flow constraint equation reads wu-VI = —I; where u is the
spatial flow field and V denotes the spatial gradient. The component of u
along the spatial image gradient (the normal flow) is uniquely determined
by the constraint equation, while any component in the iso-intensity tangent
plane is unresolved. The normal flow will therefore often be considered the
solution to the optic flow constraint equation, keeping in mind that any
tangential component can be added.
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8.5 Spatio-temporal iso-surfaces

When looking at the spatio-temporal flow at a given point in space-time
(xo, to) it is constrained to preserve intensity.

Definition 29 (Spatio-temporal iso-surface)
In every point (xg,ty) where I, # 0, I(x,t) = I(xo,to) defines the corre-
sponding spatio-temporal iso-surface.

Any flow line is constrained to lie within the spatio-temporal surface.
This surface is only defined for points where the spatio-temporal gradient
I, does not vanish. Whenever the image is continuous, the spatio-temporal
surface is a closed surface differentiable to the same order as the image.

If I(xo,t0) # O then the spatio-temporal iso-surface can be locally pa-
rametrised by the spatial coordinates. In this situation, both the intensity
change in the time direction and the tangent plane to the iso-surface will not
locally be perpendicular to the spatial directions, i.e. the normal flow is not
Zero.

Definition 30 (Spatio-temporal iso-function)

The function s(z) : IR? — IR is defined in an open set round every point
(xo,to) where Ii(xg,to) # 0 such that I(z, s(x)) = I(x, to).

The graph of the (spatio-temporal) iso-function is simply the iso-surface. The
iso-function is linked to the local flow pattern through proposition 4:

Proposition 4 (iso-function normal flow)
The spatial normal flow through a point (xg,to) iS un (o, to) = ||Vs||72Vs.

Proof 1

The flow is determined by the equation u-VI+1; = 0. By spatially differenti-
ation of the definition of the iso-function 0,1(x, s(z)) = 0 we find Vs = —%
and thereby the optic flow equation reads u - (—I;Vs) + I; = 0. This reduces

to u - Vs = 1 which is obviously fulfilled by u = VV—;H?' Since Vs is directed

along the image gradient VI, this is the normal flow.

We are now capable of linking the geometric structure of the iso-function
to the local normal flow. In the points where its tangent (hyper)plane coin-
cides with the (hyper)plane spanned by the spatial dimensions, the normal
flow is not defined, but in neighbouring points on the iso-surface, we can find
the flow and categorise the undefined flow by its limiting structure.

In the following we will analyse the generic shape of the spatio-temporal
iso-surfaces in terms of the spatio-temporal iso-function. Especially we will
analyse the generic properties and the corresponding generic flow patterns.
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8.6 Structure and genericity

We define, as in common catastrophe theory [41], structure as equivalence
classes under deformations. That is, given a function f(z,c) : R” xIRF — TR,
where z are the D spatial coordinates and ¢ are the k£ control parameters of
the function, define equivalence classes from a class of allowable deformations
of z and ¢. In common catastrophe theory, we define 2’ = ¢(z, ¢), ¢ = ¥(c),
where ¢ and 1 are diffeomorphisms. Now the game is, given a function f, to
choose ¢, such that f(z', ') takes a special algebraic form. As an example,
any point where the spatial gradient of f does not vanish, can by a correct
choice of ¢, be put on the form f(2',¢') = z}. We call this representation
of f the normal form. Such an analysis of C'* functions leads to Thom’s
classification of catastrophes: regular points, critical points, folds, cusps,
swallow tails, etc., each represented by a normal form.

An event is generic if one can not perturb it away with an infinitesi-
mal perturbation. Mathematically that is, the event occurs in an open and
dense set of all functions f. We expect to see only generic events in real
image sequences, as all other events have measure zero in C*°. Using the
transversality theorem|[41], one can argue on genericity simply by counting
dimensions. In the product space of spatial coordinates and control param-
eters we expect an event to occur at a manifold of dimension D + k£ minus
the number of linear constraints on the functions jet to be satisfied for the
event to take place.

In the case of flow fields, or dynamical systems, the class of diffeomor-
phisms is constrained since the flow field represents a connection of physical
points. That is, the deformation of the coordinate system is not allowed to
change the flow fields connection of physical points, only its coordinate rep-
resentation. The result of this is that one cannot remove points of vanishing
flow, and one cannot alter the eigenvalues of the matrix containing the spatial
first order derivatives of the flow [8]. This leads to a very fine classification
of flow fields since the eigenvalues index the equivalence class. Generically
we find in a flow field at a given time instance points of vanishing flow (fixed
points), and in 2D we categorise them according to their eigenvalues: two
positive implies an unstable node (repeller), two negative a stable node (at-
tractor or sink), two of opposite sign a bistable node (saddle node), and a
pair of complex conjugate eigenvalues yields a spiralling flow called a focus
and which may be stable or unstable according to the value of the real part
of the eigenvalues.

When time varies the fixed points may interact changing the fixed point
topology of the flow. Transitions which takes place generically when a single
parameter (the time) is varied are called codimension 1 events. In case of
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the flow field, one generically meets three different events at codimension 1:
scatter, saddle bifurcation, or Hopf bifurcation.

8.7 Structure of the optic flow field

In this section, we apply the general scheme outline above to the analysis
of the structure of an optic flow field. An optic flow is defined through the
conservation of image intensity along flow-lines. We define equivalence of the
flow-field as identical up to a diffeomorphism of the image sequence:

Definition 31 (Image isophote equivalence)

Two images I(x,t) : R” x R~ IR and J(z,t) : R” x R ~ IR are isophote
equivalent or I-equivalent if I(x,t) = J(&,1), where n, v and ¢ are diffeomor-
phisms with the following constraints:

J(.’L‘,t) :n(J(xat))ﬂ z :w(%t)a t~:¢(t)

where 7/(0) > 0, ¢'(0) > 0 and Jacobian(¢(.,0)) > 0 since we want to
distinguish also the direction of flow on flow-lines.

Notice, that 7 is not a function of x or ¢. This is because the optic flow
is dependent on the iso-intensity line (isophote) structure, and a varying dif-
feomorphism would change this structure. 7 can only change the intensity
values, but not change the isophotes. Without further restrictions the clas-
sification of flow structure is rather crude, and we make the following class,
which leads to a finer classification.

Definition 32 (Image stationary equivalence)
Two images I(z,t) : R” xR — IR and J(z,t) : R” xR ~ IR are stationary
equivalent or S-equivalent if they are I-equivalent with (0,t) = 0.

This more restrictive equivalence cannot change points of zero flow, unlike
I-equivalence. None of them can remove critical points in the iso-functions.
We introduce S-equivalence to make the analogy to nodes and foci of ana-
lytical flow fields. An even more restrictive equivalence class could be con-
structed, not allowing the spatial diffeomorphism to vary in time. This would
be even more analogous to the classification of the analytical flows since the
total first order flow structure would be invariant under the diffeomorphisms.
This classification is, however, too fine in our taste and the S-equivalence
suffices for our purposes, so we will not pursue this direction further in this
thesis.

We define local I-equivalence (local S-equivalence) in (zg,ty) as being I-
equivalent (S-equivalent) in an open set round (zg, tg).



76 The structure of the optic flow

8.8 I-equivalent structure of the optic flow
field

The normal flow is uniquely determined by the spatio-temporal iso-surface
whenever the spatio-temporal image gradient does not vanish, and in po-
sitions where its tangent plane is not parallel to the time axis, the flow is
uniquely determined by the spatio-temporal iso-function. Under I-equivalen-
ce the tangent plane of the iso-surface can be tilted away from being parallel
to the time axis, and we need not treat this case separately. Hence we only
analyse for general analytic iso-functions and vanishing spatio-temporal gra-
dient.

Proposition 5 (I-normal forms of 2D optic flow, codim 0)
At a fixed time-slice t = t, the normal flow is generically in any point I-
equivalent to one of the following normal forms:

no(z,y) = (1,07

_ 1 +x
no(z,y) = m +y

where the sign combinations in ne: (+, —) and (—,+) are equivalent.

Proof 2

At a fixed time slice, the spatio-temporal gradient of the image will not vanish
generically (this happens at codimension 1), and thereby the iso-surface is
defined in every point. According to the arguments above we need only
to analyse analytic iso-functions. Any regular point on the iso-function is
I-equivalent to s(z,y) = x, and by using Prop. 4, we find ny. The only
generic critical points are Morse critical points, which are I-equivalent to
§= j:%xz + %yz. Again using Prop. 4, we find n,.

The normal form ny has respectively identical spatial flow-lines to the stable
node (—, —), the saddle (—, +), and the unstable node (4, +) of an analytical
flow field. However, the velocity increases towards plus/minus infinity when
the point approaches (0,0).

The classification of the flow follows directly from the classification of
critical points in analytical functions making the progress simple. The only
twist is that for codimension > 1 there exists generically points where the
iso-surface is not defined.

Proposition 6 (I-normal forms of 2D optic flow, codim 1)

At a fixed time-slice t = t, the normal flow is generically in any point I-
equivalent with codimension 1 to the normal forms of Prop. 5 or one of the
following normal forms:
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not1(z,y) = . ( xt )

1'2 + y2 yt

ny(e.y) = o ( x2+t>

(22 4+ 1)% + y? y
where z, y, and t may independently change sign.

Proof 3

At codimension 0 we find the normal forms of Prop. 5. In codimension 1 we
divide the analysis into two distinct case. Firstly we analyse the case where
the spatio-temporal iso-surface is defined (the fold), secondly the case where
it is not defined (the spatio-temporal critical point).

When the spatio-temporal surface is defined, we can using I-equivalence

transform it into the normal form of general analytical functions. We use
the theorem that iso-surfaces behave as generic functions [62], and find, at
codimension 1, the only extra normal form compared to codimension 0 is
the fold[41]: s(z,y) = x* + tx + y*>. By use of Prop. 4, we find n3. Since
I-equivalence only allows positive Jacobians in the diffeomorphisms, we must
represent the signs of y and t explicitly.
When the spatio-temporal image gradient vanishes in (xg, to), the iso-surface
is not defined in this point. We can bring a spatio-temporal critical point
on the following normal form by I-equivalence (up to signs of the individual
terms): I(x,y,t) = 2% + y* + t>. We divide into two cases dependent on the
sign of t, and find s = j:\ﬁlo — 12 — y?), where I, is the intensity of the
iso-surface. By Prop. 4 we find the normal flow:

VI —22 =% [ x
n= 2 1 .2
re+y )
By substitution of the expression for t = s(x,y) into this, the sign cancels
out, and we find in both cases ng,1.

Codimension one events take generically place in fixed time slices in a time
sequence; The top of Figure 8.1 illustrates these events. A stable pole will
always meet the saddle pole in its unstable direction while an unstable pole
meets a saddle in its stable direction. This is illustrated in Figure 8.2.

Proposition 7 (I-normal forms of 2D optic flow, codim 2)
At a fixed time-slice t = t, the normal flow is generically in any point I-
equivalent with codimension up to 2 to one of the normal forms in Prop. 5
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Figure 8.1: Top, the generic events of codimension 1. na41 is a pole, where the directions
of the flow are reversed. ns describes the interaction of two poles, where a saddle pole and
a (un)stable pole interact and annihilate or are created. Bottom, the generic events of
codimension 2. nay is a pole that may change direction twice. nsy; is an annihilation in
ta, but ¢, interchanges the stability of the poles. For instance, a stable pole and a saddle
approach like at an annihilation, but they scatter and become a saddle and an unstable
pole. n4 is a pitchfork bifurcation. An example is a stable pole and two saddles approach,
interact and become a single saddle.

or Prop. 6 or one of the following normal forms:

_ t%+t2 s
n2+2($ay) = W y

. tl .’132 + tg
n3+1(fv,y) - (xQ +t2)2 +y2 y
1 2+t +t
(3 4+ tox + t1)% + y? Yy

n4($, y)

where x, y, and t; may independently change sign. Any of the t; may corre-
spond to the physical time parameter.

Proof 4

The proof follows the lines of the proof in Prop. 6. First we divide into cases
where the spatio-temporal iso-surface is defined or not. n4 follows easily from
a cusp in the iso-function: s(z,y) = x* + tox® + tix + 2.

In case of a vanishing spatio-temporal gradient, we subdivide into two
cases dependent on whether I, or I;; vanishes in the spatio-temporal critical
point. In the first case we have a spatial fold as in ns, but augmented by
a vanishing temporal derivative, yielding ns,;. In the latter case we have a
spatially critical point in which a temporal fold happens, yielding ny,s. The
algebraic derivations are similar to the derivation of ny. .
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Figure 8.2: The n3 normal form for t = —0.25,0,0.25. A saddle and an unstable pole
(left) meet (middle) and annihilate (right). Only the orientation of the flow is shown. The
magnitude increases towards infinity near the poles.

In these normal forms we use two control parameters of which one is
the time parameter and the other are maybe most easily visioned as a scale
parameter even though these forms have not been proven to be the normal
forms when the evolution along a control parameter is constrained as in the
case of Gaussian scale space.

The codimension two events are illustrated schematically at the bottom of
Figure 8.1. Assume ¢; is the time parameter, and t, is negative. Then when
2 > |ty| nyyo is an unstable pole, and when #2 < |t,] it is a stable pole. If #,
is positive, it is always unstable. Exactly when ¢, = 0, the pole disappears
for t; = 0 but reappears with same orientation infinitesimally later.

8.9 S-equivalent structure of the optic flow
field

The more restrictive S-equivalence cannot as I-equivalence remove vanishing
flow. Hence, points with vanishing flow refines the classification. The in-
tuitive key to the additional normal forms is the spatio-temporal surface of
vanishing temporal derivative T = {z,y, t|I;(x,y,t) = 0}. Since the image
sequence is assumed to be differentiable, generically 7" will be a differentiable
non self-intersecting surface.

Proposition 8 (S-normal forms of 2D optic flow, codim 0)

At a fixed time-slice t = t, the normal flow is generically in an open spatio-
temporal neighbourhood round any point S-equivalent to one of the following
normal forms:
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no(z,y) = (1,0)7

mi(z,y) = (x—1t0)7

mo(z,y) = (z—(y+1)t,0)"
1 +x

na(z,y) = W(iy)

where the sign combinations in ny: (+,—) and (—,+) are equivalent.

Proof 5

The iso-surface is defined everywhere since at a fixed time the spatio-temporal
image gradient is not generically zero. For non-vanishing temporal derivative
we arrive at ng and ngy for regular respectively critical spatial points. m; or
msy occurs for I; = 0. In a spatial coordinate system (v, w) where w is the
image gradient direction, we find the parameters of the diffeomorphism such
that the normal flow takes the form of my. This form of the diffeomorphism
is only valid whenever Iy # 0. For I;; = 0 we find my. Examples of the
computation can be found in appendix B.

The codimension for a particular form determines the dimension of the
set with points equivalent to the form. Hence, ng, mi, mo and ns points
group in manifolds of dimension two, one, zero and zero, respectively.

The normal form m; shows a line of zero normal flow, denoted a fixed
line. In terms of the spatio-temporal iso-surface, the normal form m; applies
when the tangent plane is perpendicular to the spatial axis. Notice that S-
equivalence do not distinguish attracting and repelling lines. my counts for
that the fixed line rotates locally, and we denote this event a “whirl”. In
terms of the spatio-temporal iso-surfaces, the normal form ms corresponds
to an inflection point.

Proposition 9 (S-normal forms of 2D optic flow, codim 1)

At a fixed time-slice t = ty, the normal flow in a generic one-parameter family
is in an open spatio-temporal neighbourhood round any point S-equivalent
to one of the normal forms of Prop. 8, Prop. 6, or the following:

mio(r,y) = (Y +2*+1t,0)7
ma(z,y) = (x4 (y°+1)t,0)7
ms(z,y) = (z—(y+1°)t,0)"

where the sign combinations in mq,9: (+,—) and (—, +) are equivalent.
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2+1

Figure 8.3: Top, Two events of codimension 1: mi42 and may1. Bottom, left is the
stationary fixed line whirl. Time is vertical. It corresponds to the cusp point of the surface
of I; = 0. The dashed lines are the fixed line at different time instances (horizontal planes
cutting the surface). The dots are the corresponding whirls. They move on a parabola
open in the direction towards the reader. Right is an illustration of the principle that a
perturbed curve crosses the original curve an even number of times, and equally many
times from inside as from outside.

Proof 6

mi42 follows from m; when also the spatial gradient of I, vanishes. mg1(z, )
follows from mq with the additional constraint that the spatio-temporal line
of a whirl is locally orthogonal to the temporal dimension. mg follows from
mo when Iy = 0. Examples of the algebraic derivations are presented in
appendix B

The event mq,o is, for our purposes, the most important event arising
from the S-equivalence next to mq, if one is interested solely in the fixed lines.
The latter describes that the normal flow vanishes at lines. mj o describes
topology change of zero flow lines, denoted fixed lines. Depending on the
signs, it is either a creation event (—, —), an annihilation event (4, +) or a
fixed line saddle event (+,—) or (—,+). During an annihilation or creation
event a circular zero flow line vanishes/appears. During the fixed line saddle
event the connectivity of two zero flow lines changes. Four incoming lines
meet in a cross exactly during the event. Before and after two different pairs
of incoming lines are connected.

The event ms,; describes the annihilation/creation of a pair of whirls.
The two whirls will have opposite rotation directions. In a point they meet
and annihilate. Even though mgy does not distinguish the rotation direction,
since two whirls of opposite rotation are S-equivalent, ms,; constrains the
whirls to having opposite rotation since the diffeomorphism can only change
direction for both simultaneously. In Figure 8.3 top are mi, o and mayq
illustrated.
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mg accounts for a locally stationary whirl. This point corresponds to
a cusp in the function surface I; = 0. Figure 8.3, bottom-left illustrates
this. Going through the cusp, does not in codimension 1 change the rotation
direction of the whirl. Whirls may change direction, but this event is not
singled out since it is S-equivalent to the whirl itself. If one is interested
in orientation of whirls another equivalence class must be constructed to
subserve this analysis. However, what one can say directly is that in the real
spatial plane, there will always be equally many left and right whirls. This
holds for any subset of the plane where all fixed lines form closed curves,
since a curve will after an infinitesimal perturbation cross the un-perturbed
curve an even number of times, and these crossings will be equally many
outwards and inwards crossing. This is illustrated in Figure 8.3 (right).

The S-equivalence implies that on top of the poles, points of zero motion
is the basis of the taxonomy of image sequence structure. The S-equivalence
first picks up lines of zero flow, fixed lines. Then points where these lines do
not move (whirls) and points where the fixed lines changes topology. It does
not distinguish attracting and repelling lines.

8.10 A comment on the multi-scale optic flow
structure

A scale space is constructed by convolving the image by Gaussians so that the
scale-space fulfils the Heat equation I, = AI, where s is the scale parameter
and A denotes the spatial, the temporal, or the spatio-temporal Laplacian
dependent on which scale-space one constructs. The analysis of structure in
scale-space can not be done by simply using transversality arguments and
referring to Thom’s classification. The proper analysis has been performed
by Damon|23]. In conjunction with flow, we believe however that the heat
equation does not constrain the spatio-temporal iso-surface in its local defor-
mation, only in its topology changes. The idea is that the second derivative
across the surface, may make the surface evolve in any direction in its jet
space. The importance of this is that we can argue of genericity simply by
counting constraints on the iso-function. If the heat equation does not locally
constrain the spatio-temporal iso-surface then in all the above normal forms,
time may be exchanged with scale. The only limitation is that the time and
the scale parameter may not coincide.

In general, intensities at larger scales will not be preserved since intensities
will change weight under the Gaussian aperture functions due to the flow.
This is treated in detail by Florack et al. [30]. The above normal forms are
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though still valid as they deal with the infinite resolution flow, but argued
from a scale-space point of view, they can never be assessed.

8.11 Detection of structural changes

The change of topology in the poles or lines of zero normal flow is charac-
terised by the corresponding normal forms. Thus, to detect change in the
structure of the flow field we must detect when and where the normal forms
apply. Table 8.1 list the conditions for the events and name the events. The
conditions arise from the proofs for the propositions on I- and S-normal forms
as necessary conditions on the image structure for bringing the flow at the
correspond normal form under the given equivalence. Please see the proofs
and appendix B for further details.

We compute derivatives of digital images as scale space derivatives. That
is, we observe the image under a Gaussian aperture defining the spatial and
temporal scale (inverse resolution). By differentiation of this spatio-temporal
Gaussian prior to convolution, the computation of image derivatives is well-
posed. The side effect is that it is not the image at grid resolution but at
a lower resolution which is the object of analysis. We do not in this thesis
take into account the aspects due to the non-commutation of the Gaussian
convolution and the deformation due to flow field. These effects have been
analysed by Florack et al. [30].

The zero locus of pre-computed differential expression is computed using
an algorithm similar to the Marching Cubes algorithm [74]. For each differ-
ential expression, the zero locus is computed, and the intersection of loci is
computed using an algorithm resembling the Marching Lines algorithm [126].
In this way the normal flow events are detected and their spatio-temporal
position simultaneously computed.

In the following we detect some of these in two different image sequences.
First, we detect the poles and their temporal interaction in a sequence of a
person walking in a hallway. Secondly, we detect the lines of fixed flow and
their interaction in a sequence of turbulent flow, and use the scale interaction
for quantifying the amount of turbulence in the sequence.

8.12 Temporal pole evolution

Figure 8.4 illustrates the detection of flow poles and their temporal interac-
tion in a sequence of a person appearing in a hallway. We see poles due to
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ng Regular point I, #0V I, #0

o Pole I,=1,=0

noy1 | Pole stability reversion I,=1,=0,1,=0

N3 Pole pair creation Li=1,=0, Iz lyy — I2, =0
noyo | Pole stability fold I,=1,=1;=0,1;; =0

nsy1 | Pole scatter Li=1,=05=0, I,;1,,— I =0
o Pole pitchfork bifurcation | I, = I, = I,z 1y, — I, fu = ILppp =0
m Fixed line ;=0

Mo Fixed line whirl I,=0,1;=0

my4o | Fixed line creation I;=0,1,;=0,1, =0

moy1 | Fixed line whirl creation I, =0, I =0, Lyylyy — Liglyy = 0
ms Stationary fixed line whirl | I; =0, I;; =0, I;;; =0

Table 8.1: Symbol and name for the generic events and the condition for
their occurrence. In the table, the sign p denotes the direction in which the
spatial second order image structure vanishes. The connection between the
conditions and the normal forms is elaborated in appendix B

critical image points at the scale at hand. These are distributed all over the
image, and most have close to constant positions. However, in the center
region, where the person appears in the hallway we see poles created and an-
nihilated. These points correspond to points where the topology of the flow
pattern changes. That is, these creation/annihilation points are invariant
to any additional flow added to the normal flow. In this way they are not
influenced by quantitative aspects such as speed, orientation etc. We suggest
that they may be used for guiding an attention mechanism.

8.13 Fixed line scale-evolution

In turbulent flow, the degree of turbulence can be assessed through the scaling
properties of the “eddies”. Kolmogorov introduced the cascade models of
turbulent flow, looking at the energy transport from large scale eddies to
small scale eddies [68]. Frisch introduced a variant of these called the (-
model [35] where the variable of interest is the scaling properties of the space
filling of eddies. The so-called structure function characterising the flow is
defined in terms of the scaling exponent of the space filling of the eddies.
In the following, we sketch how this can be assessed through the multi-scale
optic flow structure.

At every scale a number of whirls is present. As an approximation we
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assume that a whirl corresponds to an eddy and that its space filling corre-
sponds to its area, that is its spatial scale squared. The scaling exponent of
the energy as a function of scale may then be estimated from counting whirls
at a number of different scales.

In Figure 8.5, smoke induced into a ventilated pigsty is shown. The
smoke is illuminated by a laser scanning through a plane such that the smoke
in a vertical 2D plane in the 3D pigsty is imaged. In Figure 8.5 bottom-
right the scale evolution of whirls in the Pigsty sequence is shown including
annihilation (and the few creation) events. As indicated above the scaling
properties of the whirls may be used for assessing the degree of turbulence
in the flow. From the number of detected whirls as a function of scale we
find approximately that V oc s°®. That is, only 70 percent of the energy is
transported to whirls at the half length scale?. This computation is, though,
based only on approximately 100 whirls and a scaling interval of a single
decade. This is clearly insufficient to state that we have proven selfsimilarity
or precisely computed the degree of turbulence. We have merely indicated
a direction in which the structure of the optic flow field as suggested in this
thesis can be used for more practical exercises.

8.14 Summary

We have introduced two equivalence classes of optic flow and derived normal
forms of codimension 0, 1, and 2 (the latter only in case of I-equivalence).
I-equivalence leads to a definition of structure as the poles in the flow field
whereas the S-equivalence leads also to fixed points.

The major differences to normal analytical flow fields as in autonomous
dynamical systems, is the presence of poles and that the tangential compo-
nent of the optic flow field is undefined. Poles are generic. The only way
to avoid them in a solution is to regularize the solution space and thereby
confine the solutions to a more restricted space consisting solely of solutions
without poles. This is the approach taken by classic computer vision algo-
rithms [50] to compute the optic flow field. An arbitrary “gauge condition”
could be imposed to fix the tangential component and in this way fixed points
as in dynamical systems can be introduced. Restricting the equivalence class
of flows could make the analogy to dynamical systems even larger.

We have introduced a concept of whirls. These however have a very
different nature than the nodes in dynamical systems since the whirl include
second order temporal structure, and the analogy to nodes is not clear.

2Dimensional analysis indicates a scaling of S, so this is not a trivial result
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The natural continuation of the research presented in this thesis is to
look at a gauge fixed tangential flow, and to introduce temporarily constant
diffeomorphisms for definition of the equivalence of flow. In this way the only
difference to dynamical systems may be the poles.

The theoretical results in this thesis has been applied to two simple ex-
amples: computation of spatio-temporal points in which the topology of the
flow field changes, as a mechanism for guiding attention, and computation
of the scaling properties of whirls as to characterise turbulent flow.
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Figure 8.4: Top, the first, middle, and last frame of the hallway sequence. Bottom,The
spatio-temporal curves of the poles and their creation points for spatial scale s = 5 (left)
and s = 8 (right). Temporal scale is 2. Sequence is 256 x 256 x 32 pixels cubed
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\
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Figure 8.5: Top, the first, middle, and last frame of the pigsty sequence. The fixed
lines and the whirls are superimposed on the middle frame. Middle and Bottom, In the
middle is the temporal evolution of whirls and their creation/annihilation points. In the
bottom are the whirls in the middle frame as a function of scale. Points mark annihilations
or creations.
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Chapter 9

Segmentation using deep
structure: Introduction

A fundamental problem in image analysis is the partition of the image scene
into semantically meaningful regions. This task is usually called segmenta-
tion. Examples of tasks that often rely on segmentation are shape analysis,
many medical visualisation tasks, quantitative measurements of objects and
surgery planning.

The focus in this part is to build a segmentation tool based on a visual
front-end like the linear Gaussian scale space. In this sense our segmentation
process is uncommitted to any particular scale. The three chapters have an
increasing commitment in other aspects. The common denominator is the
definition of regions as catchment basins. The borders (called watersheds)
between the catchment basins can not be detected locally. One could call it
a semi global feature since its detection rely on a neighbourhood with a size
similar to the size of the regions on the particular scale. Defining regions in
this way is of course a restriction compared to no commitment at all.

In the first chapter the linking across scale between the catchment basins
is described. This connection is shared by all three approaches. The linking
structure is a tree-like structure where an user or modelling process can select
one region by pointing to a leaf or group a collection of regions by point to
a branching point of the tree (an internal node).

The first chapter gives examples for minima in the gradient magnitude
squared and an example on a texture measure. The scale selection is done
interactively. The second chapter is committed to the gradient magnitude
as a measure of dissimilarity and the scale selection is interactive. In the
third chapter a model is imposed in order to perform scale selection. The
minimum description length (MDL) principle is used to select the specific
internal nodes in the tree.
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9.1 Automatic segmentation

Automatic algorithms for segmentation work without user interaction. Be-
cause of the complexity of the general segmentation problem the automatic
methods are often dedicated to one specific task. By this restriction of the
problem better solutions can be achieved by controlling the partitioning with
prior knowledge of the task. The general problem is a hard nut to crack,
actually segmentation is a NP-complete problem [18], however reasonable
solutions may be found automatically in polynomial time. One coarse cate-
gorisation of automatic methods is : thresholding[49, 100], regional split and
merge, variational & partial differential equation (PDE) based approaches[87]
and combinations thereof. Chapter three falls in the last category being a
combination.

Thresholding is very fast but requires that the acquisition process is tuned
to have a one to one relation between intensity and objects. This is sometimes
possible to achieve for instance for simple objects in an industrial setting or
bone tissue in CT scannings.

Variational and PDE-based algorithms have a wide range of usage. A well
known approach is the Mumford-Shah functional [87]. The ideal solution to
this functional is piecewise smooth segments including a regularisation of the
segment boundaries. A fast algorithm for close to global solutions for a class
of segmentation functionals has been developed [135]. Well-posedness and
stability has been proved for some of these functionals [117].

The split and merge approaches [49, 100, 11] start by splitting the domain
into a large number of small segments based on one criterion, and thereafter
merge the segments to achieve the overall goal. In our approach, the catch-
ment basin of the gradient squared can be thought of as a splitting criteria.
The merging is provided by the scale space. What is missing before one
has an automatic method is a stopping criteria. Stopping the merging at
an appropriate scale could handle the presence of objects at different scale
in the image. Chapter three suggests a solution and thereby an automatic
approach and chapter one and two let the user take the decision on when to
stop.

9.2 Multi scale watershed segmentation

A lot of segmentation research has been based on watershed either on the
image or the gradient magnitude. We will not try to give a complete reference
list just pointers into the literature. Gradient watersheds or watershed on
the image itself is being used extensively within the field of morphology
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[84, 90]. Also scale space approaches to segmentation have been abundantly
used [69, 133, 132, 47, 45].

Multi-scale watershed segmentation has been carried out based on the
intensity and on ridges: Gauch[36] used the image intensity function directly
as local measure of homogeneity. Eberly [28] defined a homogeneity measure
based upon local “ridgeness”. Griffin [47] used the image intensity or the im-
age intensity gradient and based the segmentation on a multi-grid method.
Also Pratikakis et al. [104] has presented an hybrid of scale space, water-
shed and other methods. Recently Gauch [37] has discussed the combination
of scale space and watershed. The combination of watershed on the gradi-
ent magnitude image and nonlinear scale spaces has been investigated by
Weickert [135] and also by Dam [21] .

The following three sections each introduces one of the next three chap-
ters.

9.3 Multi-scale gradient magnitude
watershed segmentation

In chapter 10, a partitioning of an nD image is defined as the watersheds
of some locally computable inhomogeneity measure. Dependent on the scale
of the inhomogeneity measure a coarse or fine partitioning is defined. By
analysis of the structural changes (catastrophes) in the measure introduced
when scale is increased, a multi-scale linking of segments can be defined.
This chapter describes the multi-scale linking based on the generic events.
A prototype of an interactive segmentation tool is presented together with
results on synthetic and real 3D medical images.

9.4 The interactive segmentation tool

Chapter 11 presents the latest development towards a clinical use of the ideas
presented previously in this thesis. The interactive segmentation tool con-
sists of a preprocessing of the three-dimensional cells in the four-dimensional
scale space of medical scannings. The linking and visualisation is partly
preprocessed for fast presentation. The preprocessing and a friendly user in-
terface facilitate use of the tool by a non expert in computer supported image
analysis. The tool is being validated by regular use in the clinical research
laboratory , 3D-Lab, School of dentistry, University of Copenhagen. A pro-
totype and results were presented at the European Conference of Radiology
1999 [22].
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9.5 Segmentation by compression

In chapter 12 segmentation is performed with watersheds of the gradient
magnitude. Linear Scale-Space is used to generate the neighbourhood struc-
ture of the catchment basins in a tree structure, which has previously been
shown to be a convenient tool for semi-automatic segmentation. This chap-
ter investigates a fully automatic segmentation procedure using Minimum
Description Length. The three tools jointly form a very useful and general
algorithm, which incorporates local scale-selection and parametric descrip-
tions. Further, the algorithm can form a basis for a large range of auto-
matic segmentation algorithms when choosing different similarity measures
and model priors.



Chapter 10

Multi-scale gradient magnitude
watershed segmentation !

10.1 Introduction

The goal of an image segmentation is a description of the shape of some
image structure of predefined semantics. However, addressing the shape of
an object is not simple since the shape is not intrinsically defined[64]; shape
1s defined through an interpretation of measurements. This introduces the
measurements apparatus and its intrinsic resolution as an important part of
a shape definition. This is well-known from the definition of coast-lines.

In this chapter, we use a Gaussian probe as a linear measurement appa-
ratus (i.e. Gaussian convolution) and thereby introduce the Gaussian scale-
space formalism [140, 66]. We base the shape definition on the local scale-
space n-jet. In general, the definition of shapes cannot be based solely on
local information; global information may constrain local decisions. Fol-
lowing this line, segmentations have been defined as the minimum of an
energy functional [86, 70]. This is computationally expensive and difficult
to tune to prior information unless extensive statistical material is available
[44, 19]. Also split and merge techniques[43] have been introduced. However,
this strategy is captured more elegantly in multi-scale linking approaches
[66, 132, 71, 36, 28|.

Locally we compute a measure of dissimilarity of the image, at a certain
scale. The watersheds of this measure define the segmentation. Watershed
cannot be identified locally, i.e. they capture global properties of the image.

A segment boundary is defined as a watershed of a dissimilarity measure
in turn defined using a certain width (scale) of the Gaussian aperture func-

IThis chapter has been published in a conference proceedings[98]
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tion. When varying the scale parameter, the watersheds deform continuously
until a transition point where a watershed appears/disappears. Analysis of
such transitions in the multi-scale structure has been carried out for a num-
ber of local image functionals (i.e. feature detectors) which may be used
as dissimilarity measure. Damon established the catastrophe theory for dif-
fused images [23] and also analysed ridge measures [27], Lindeberg analysed
blob detectors [73], and Rieger analysed edge and corner detectors [107]. We
analysed the gradient magnitude[97].

Multi-scale watershed segmentation has been carried out based on the
intensity and ridges: Gauch[36] used the image intensity function directly as
local measure of homogeneity. Eberly [28] defined a homogeneity measure
based upon local “ridgeness”. Griffin [47] used the image intensity or the im-
age intensity gradient and based the segmentation on a multi-grid method.
We use the recent results on the multi-scale structure of the gradient magni-
tude [97] to establish the multi-scale linking. The watersheds in the gradient
magnitude intuitively partition the image where the gradient is large.

An object is defined through a root segment and its linking to a localiza-
tion scale. To interactively select roots and scales, an interactive tool (serving
same task as Pizer et al.’s [71]) has been constructed. Since the multi-scale
structure can be pre-computed and hashed, interaction is fast.

The following section defines the scale space and the local dissimilarity
measures. Then, watersheds, catchment basins, segments and multi-scale
linking are defined in Section 10.3. Section 10.4 describes the interactive
segmentation tool. Section 10.5 presents experimental results. Finally, in
Section 10.6, we summarise.

10.2 Scale-space and local dissimilarity mea-
sures

Definition 33 (Scale-space)

The scale-space L(-,t) is generated from an image I(-) = L(-,0) by Gaussian
blurring L(z,t) = [I(2")g(z — 2',t)dz" where g(-,t) is a Gaussian and t =
0%/2 it’s spread.

Derivatives of the scale-space can be obtained robustly by differentiation of
the Gaussian prior to convolution.

For images where segments are assumed to have homogeneous intensity we
use the gradient magnitude |VL|* = L2 + L2 4 L? as dissimilarity measure.
In images where only the texture differs from segment to segment a local
texture measure is used: the local frequency contents of an image can be
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measured with a Fourier transform under a Gaussian window function:
Lz, k,t) = /I(x')g(x — 2 t)e " g’

where k is the wave-vector and the total filter is an oriented Gabor function.
When spatially differentiating this the local phase shift is taken into account
so that 8,L(x, k,t) = (0y — ik - e,) L(x, k, ) is assumed to be small in regions
of same texture. e, denotes a unit vector in the z direction. We define a local
dissimilarity measure for texture segmentation (K is a subset of frequencies
chosen to discriminate textures) as

m(-,t) = 3 0y, L(- k02 . (10.1)

kEK;ﬂ?iE{mayaz}

10.3 Segments and linking

This section defines segments based on watersheds of an arbitrary local dis-
similarity measure. The notion of watersheds and catchment basins arises
when a function is viewed as a topographic relief with height identified with
the image intensity. The watersheds are the boundaries between areas, the
so-called catchment basins, which drain to one local minimum.

Definition 34 (Catchment basin)
A catchment basin of a local minimum is the inner points of the closure of
the union of all steepest descent lines ending in the minimum.

Definition 35 (Watersheds)
The watersheds are the boundaries of the catchment basins.

A property especially interesting for segmentation is the fact that water-
sheds form closed hypersurfaces for Morse functions. Hence, the watersheds
of a function give a full partitioning of the multi-dimensional image domain;
there is no need for closing or connecting edges to get a partition. This
partition has a very flexible topology. As an example in 2D, any number of
segments may generically meet in a point. On the contrary, a partition based
upon zero-crossings of a feature detector will generically only exhibit 2- and
4-junctions.

Each catchment basin contains exactly one local minimum, the seed of
the basin. Instead of directly analysing the multi-scale structure of the wa-
tersheds, we can analyse the dual : the local minima. This makes analysis
feasible in terms of catastrophes[41]. We suggest:
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Definition 36 (Segment)
A segment is the catchment basin for a local minimum of a dissimilarity
measure.

Often the image structure is probed on a much finer scale than the scale of the
structures of interest, giving rise to over-segmentation. A common solution
[90] is to “flood” the image. Maes et al.[75] post-processed the segmentation
by merging neighbouring regions using a MDL Principle. Griffin et al. [47]
simplified the image stepwise by treating districts (bounded by maximum
gradient paths) as one point and recalculating the slopelines. We suggest to
detect objects at coarse scale and localise them at finer scale. In order to do
this, the structures must be linked across scale.

Single scale watershed segmentation on the gradient is well known [84,
48]. The singularities of the gradient magnitude and with them the seeds
of segments occur in the critical points of the image but also in the points
where the second order structure of the image vanishes in one direction.
These points evolve when scale is changed, and at certain catastrophe points
in scale-space, they interact: appear or annihilates.

The only generic events in scale-space of the gradient magnitude image
is a fold catastrophe and a cusp catastrophe involving a minimum[97]. The
duality between segments and the minima of the gradient magnitude suggests
the linking scheme. A cusp is the interaction between three singularities, in

| [ [ 60| [
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No change  Annihilation Merging Creation Splitting

Figure 10.1: Multi-scale linking of generic events in watersheds of the gradient mag-
nitude. The events (annihilation, merging, creation, splitting) are named after the in-
teraction between the saddle and the minimum (or minima). Minima and saddles are
symbolised with triangles and circles, respectively. A line from a segment to a segment
indicates the linking.

the present case two minima and a saddle. The two minima and the saddle
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either meet and become one minimum or the reverse event. A fold is the
interaction between two singularities, in the present case one minimum and
a saddle. The two singularities meet and annihilate or the reverse creation
event.

Figure 10.1 illustrates the idea in 2D with scale increasing upwards. In
the cases of annihilation (b) and merging (c¢) two minima and a saddle are
reduced to one minimum, corresponding to the disappearing of a border
between the two segments. The cases of splitting (d) and creation (e) are the
reverse events where the emerging saddle corresponds to the appearing of a
border between the segments (dual to the two minima). Hence, the linking
is in all cases given by the saddle connecting the involved minima.

The implementation of the linking exploits the fact that image struc-
ture changes smoothly with scale, therefore a spatial maximum correlation
between segments at neighbouring scales can be used as linking criterion.
Lindeberg [73] used a similar idea for blob linking.

10.4 The interactive segmentation interface

A user-interface has been constructed for assessing the multi-scale segment
structure (Figure 10.2). Raising the detection scale gives generally fewer
segments and vice versa. Raising the localisation scale results in more smooth
boundaries and vice versa. The user gets interactive 3D feedback on the
selections limited in speed mainly by the computers rendering capabilities.

10.5 Results and verification

This section presents results on three types of images using the gradient
magnitude squared as the dissimilarity measure. The images are a software
simulated liver phantom (Figure 10.3), a CT head scan of a patient with
abnormal growth (Subfigures 10.5.c,d) and digital photos (red channel) from
the visible human project (Subfigures 10.5.a,b). The tasks are to segment
the phantom, jaw muscles and the liver, respectively. Furthermore results of
texture segmentation on a toy image is shown in Figure 10.6.

Figure 10.3 (a) displays a rendering of the true phantom. Different levels
of noise has been added: respectively 0, 25, 50 and 75 percent of the voxels
have been modified with Gaussian additive noise with zero mean and stan-
dard deviation of 80% of the phantom to background contrast. We shall refer
to the different noise level as the 0, 25, 50 and 75 percent case. Segmentation
has been performed using an appropriate high detection scale in order to de-
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Figure 10.2: User interface windows. In window (a), the localisation and detection
scale is selected as well as a slice in one of the three Cartesian directions. This gives a
partition of the domain. Window (b) displays the image slice (top left), the partition
superimposed on the image slice (bottom left), the union of the selected segments (top
right) and the selected segments superimposed on the image slice (bottom right). The
object is defined by selecting/deselecting volume segments in one of images in window (b).
The third window (¢) continuously renders the union of the selected volume segments.

fine the object as one single segment, which has automatically been tracked
to a lower localisation scale (see Figure 10.3).

Figure 10.3: The true object is presented in (a) as a bright surface rendering. In (b),
(c) and (d) is a bright surface rendering of the segmentation for noise level 25, 50 and 75,
resp. . The true object (a) is for comparison superimposed as the dark surface in (b), (c),
(d). The phantom consists of 57708 voxels in a 643 volume.

Segmentation has been performed using an appropriate high detection
scale in order to define the object as one single segment, which has automat-
ically been tracked to a lower localisation scale (see figure 10.3).

The errors in localisation of the boundary are due to two different sources.
The noise pixels influences the multi-scale linking so that a noisy boundary is
created at low scales. By increasing the localisation scale, a smooth boundary
can be constructed. However, at this scale, the Gaussian blurring has de-
formed the object deterministically so that sharp corners (convex or concave)
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Figure 10.4: Number of erroneous voxels as a function of localization scale for noise level
25. Figure 10.3 (b) shows the segmentation corresponding to the minimum of erroneous
voxels. Bold crosses indicate total number of erroneous voxels, circles indicate missing
voxels on surface, crosses indicate missing interior voxels, and pluses indicate additional
voxels. The sum of the “curves” given by circles, crosses and pluses equals the bold
“curve”. The qualitative shape of the curves are similar for the other noise levels. The
optimal localisation scale and the corresponding number of erroneous voxels for different
noise levels are summarised in table 10.1

are rounded. An optimal scale may be established from prior information on
noise level, object size, etc. This in done empirically in Figure 10.4. The
statistics for the different noise levels are summarised in table 10.1. In Fig-
ure 10.3 (d) the phantom is generally exposed in convex patches while the
segmentation is exposed in concave patches due to the deterministic shape
distortion at higher scales.

10.6 Summary

A framework for multi—scale segmentation has been presented. The partition
by the watersheds of the gradient magnitude has been analysed and imple-
mented in the case of Gaussian scale space. The multi-scale linking has been
defined on the basis of results from catastrophe theory.

The selection mechanism of interactively picking objects at an appropriate
scale and combining the result at localisation scale provides a fast way of
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Noise level: 0% 25% 50% 75 %
Best localization scale (o) 0.605 1.18 1.73 2.78
Number of wrong voxels 79 1342 2830 7121

Wrong voxels / size of phantom  0.0014 0.0233 0.0490 0.1234

Table 10.1: Figure 10.3 shows renderings of the best segmentation result (with one
segment selected at detection scale) for different levels of noise. Figure 10.4 plots the
number of erroneous voxels as a function of localisation scale for noise level 25. The
position and the value of the minimum from Figure 10.4 and similar plots for the other
noise levels are summarised in this table.

doing semi—automatic segmentation.

The definition of segments can be changed by using another measure of
dissimilarity instead of the gradient magnitude. This is possible within the
same general framework although different structural changes might occur
generically for other measures and diffusion schemes.

Acknowledgements We thank S. Kreiborg, P. Larsen, and A. B. Do-
brzeniecki, 3D-Lab, School of dentistry, University of Copenhagen, for pro-
viding the CT data and phantom image and supervising the interactive seg-
mentation.
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(b) (d)

Figure 10.5: Liver segmentation (a) and (b) from a cube of size 128x128x112 voxels
each 1.758 mm3. In (a), the liver boundary is superimposed on three orthogonal slices
of the subject cube. The same liver segment is visualised in (b) as a surface rendering.
The view from the spine (b) clearly reveals the imprint from other internal organs. The
segmentation is difficult for mainly two reasons: The high similarity between liver tissue
and the neighbouring muscle tissue; and the inhomogeneity of the liver tissue itself. Jaw
muscles. The segmentation was verified by Professor Sven Kreiborg. The subject is a
256x256x64 cube of size 1x1x2 mm®. The muscular structures are located next to bone
(high value), skin (low value) and salivary glands (approximately same value) which makes
the task difficult for standard techniques. A fine detection scale must be used because
the muscles are flat structures, that is fine scale structure in one direction. The coarse
structures of a muscle was selected with a few (< 5) mouse clicks using a coarse detection
scale (o & 3.06 pixels) , and the segmentation was then refined with a few (< 10) clicks
using a finer detection scale (o ~ 0.805 pixels). Localisation scale is 0.5 pixels.

Figure 10.6: Multi-scale texture segmentation based on local frequency differences de-
fined by Gabor functions. Two distinctive textures with Gaussian noise added is segmented
using the dissimilarity measure defined in Eq. 10.1. These are preliminary results serving
only as indication of the generality of the multi-scale watershed segmentation approach.
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Chapter 11

The interactive segmentation
tool 1

This chapter is meant as a short illustration of the practical use of image
analysis tools based on scale space theory. After preprocessing of the scale
space and the linking structure the application provides real time interaction.
The user interacts either directly in a visualisation of the data or in two-
dimensional slices through the data cube. By providing a front end with
access to the image data at all scales and a flexible geometric structure for
segmentation the user has a tool with flexibility as drawing by hand but up
to an order of magnitude faster.

The main menu is designed for ease of use (Figure 11.1). Visualisation
is done by dragging a loaded object to a viewing window where interaction
including selecting segments is possible. Two kinds of viewing windows are
provided: a two-dimensional slice through the three-dimensional data and a
visualisation of the three dimensional data. Figure 11.2 shows a CT scanning
of the abdominal region. The user selects a working scale which can be altered
any time. The application responds by presenting the preprocessed geometric
structures at the given scale of selection. For a three-dimensional scanning
the data domain is fully divided into cells; in the 2D view the intersection
between a plane and these cells is presented.

Figure 11.3 displays a visualisation of the same data set and segments as
in Figure 11.2. Here the user gets the impression of three-dimensional feed-
back when rotating, moving and rescaling the objects. Selection of segments
is also immediate and direct in this window. Both in 2D and 3D windows the
user effectively selects a three-dimensional cell in the data space. Hence, glu-

IThe software presented in this chapter has been developed in collaboration with An-
dreas Thomsen and Erik Dam. The prototype was presented at the European Conference
of Radiology [22]
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Figure 11.1: The main menu of the interactive segmentation tool. The menu
provides three work areas: The top area show available data objects. Bottom
left show available visualisation windows. Data objects are visualised by drag
and drop to a visualisation window. Bottom right is content of a selected
viewing window.

ing two dimensional segmentations together to reach the three-dimensional
segments is not an issue. The figure shows three orthogonal slices through
the data cube and the rendered surfaces of the selected objects. In Figure
11.4 is shown a full body PET scanning. The brain and tumour in the area
of the mouth has been segmented by a few mouse clicks.
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Figure 11.2: Three different settings of a two-dimensional viewing window.
The data is a CT scan of the abdominal region. The segmented objects are
the kidney, the spin and the gall bladder. At the top the selected anatomical
objects are coloured on the raw data. Bottom left a slice of the raw data set
is presented. Bottom right, the preprocessed regions are displayed as lines on
the data. We thank 3D-lab, school of Dentistry, University of Copenhagen
for providing the data set.
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Figure 11.3: A visualisation of the abdominal region. The segmented
anatomical objects are a rib, the spin, a kidney and the gall bladder. We
thank 3D-lab, school of Dentistry, University of Copenhagen for providing

the data set.

Figure 11.4: A full body PET scanning. The brain and a tumour have been
segmented. The tumour is located close to the mouth. The left image show
the fully body scanning; to the right is a zoom on the area of interest. We
thank 3D-lab, school of Dentistry, University of Copenhagen for providing

the data set.



Chapter 12

Segmentation by compression !

12.1 Introduction

The goal of a segmentation is to fully partition a data set into a number of
non-overlapping segments. For example, a semantically meaningful segmen-
tation of an indoor scene as in Figure 12.1(LEFT) would be piecewise smooth
regions corresponding to walls, floor, ceiling, and human. Each of these areas
are fairly smooth, and their borders seem to constitute discontinuities in the
image. Other types of images also posse regular structure but are very much
the subject of experts. E.g. in the brain in Figure 12.1(RIGHT) the location
of border of the skull is readily agreed upon, but medical experts will look
for more subtle clues to identify important biological structures such as a
hypothetical tumour etc.. Some images are not at all smooth. These are
called textured images and are not the main subject of this article.

The above examples illustrate that segmentation is strongly task depen-
dent. This is usually solved by segmenting an image indirectly through some
similarity measure, and our main interest in this article will be the gradient
magnitude. For piecewise smooth images, edges are likely where the gradi-
ent magnitude is high and unlikely elsewhere. Hence, our image model is
piecewise smooth images.

Generally, segmentation is a NP-complete problem [18] for two dimen-
sional images, however reasonable solutions may be found in polynomial
time. Segmentation algorithms may be divided into three broad categories:
Intensity thresholding, regional split and merge, and variational and partial
differential equation (PDE) based approaches.

Intensity thresholding [49, 100] is a very fast segmentation method. How-
ever, they are only applicable in situations where there is a direct relation

!This chapter has been published in a conference proceedings [124]
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Figure 12.1: Two different images to be segmented. LEFT: An image of an
indoor scene with smooth and regular structure. RIGHT: A MR slice of a
human head with a different kind of structure.

between the object and its intensity. This can often be achieved in factory
settings where the objects can be placed as silhouettes on a bright back-
ground.

Variational and PDE-based algorithms have a wide range of usage. For
example, the Mumford-Shah functional [87] elegantly directs the solution
towards piecewise smooth segments including a regularisation of the segment
boundaries, and the results are relatively insensitive to noise and lighting
conditions. Further, a fast algorithm has recently been discovered based
on the solution of PDEs [135] that achieves a near global minimum for a
large class of segmentation functionals. For some of these functionals the
algorithms are guaranteed to be well-posed and stable [117]. Segmentations
based on PDEs use a non-parametric representation of the segments.

Split and merge algorithms [49, 100, 11] are perhaps the most versatile
class of segmentation algorithms. They can either use a parametric or non-
parametric representation of segments. The basic idea is to split an image
into a large number of small segments based on one criterion, and thereafter
merge the segments to achieve the overall goal, which is often different from
the splitting criterion. Global optimum has been shown to be intractable
[18]: An optimal merging of n segments will have to consider 2" — 1 subsets,
and is at least exponential in computation complexity. However there exist
many algorithms which quite effectively achieve reasonable local optimum
[11, 122].

Finally, algorithms also exist which mix various parts of the above [94,
53, 121, 70]. This is also the topic of this article. The algorithm presented
here uses a PDE based technique [94] for hierarchical splitting regions, which
is based on a well-founded, thoroughly studied, and least committed scale
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analysis [136, 47, 97]. These regions will be merged using the modelling
consistent merging ability of Minimum Description Length (MDL) [109] to
find parametric descriptions of segments.

12.2 Least Committed Splitting

The gradient magnitude is an indicator for the presence of an edge and will
tend to partition the image into regions bordered by edge-like structure.
It is a strictly local operator thus very fast to calculate. Defining regions
by the gradient magnitude can conveniently be performed by the watershed
algorithm, which is only semi-local but still very fast to evaluate [29]. Partic-
ularly, it is worth noticing that in contrast to the Mumford-Shah functional,
the watersheds are not restricted to intersect in T-junctions at 120 degree
angles.

However, without sufficient regularisation, any edge operator will be use-
less, and so will any segmentation. Several authors have therefore investi-
gated various scale-spaces [47, 97, 53, 135] and their properties with respect
to the gradient magnitude and the watershed algorithm. Linear Scale-Space
[62, 136] is convenient for studying the deep structure, and the combination
of the gradient magnitude and the watershed algorithm has been thoroughly
analysed [47, 97]. By this analysis a semi-automatic segmentation tool us-
ing the watersheds of the gradient magnitude in the Linear Scale-Space has
been developed previously [94], henceforth called Olsen’s segmentation tool.
This is a convenient tool for many applications, where the segmentation task
is user-defined. E.g. many experimental applications need not a complete
and automatic system, since such systems are always based on some prior
expectancy, which possibly is under development.

Olsen’s segmentation tool organises segments at different scales in a hi-
erarchical data structure, which makes it convenient to use for a splitting
operation. Since Linear Scale-Space is the least committed tool for scale
analysis [136], and watersheds are perhaps the simplest morphological tool
for segmentation, Olsen’s segmentation tool makes the least committed as-
sumption on the gradient magnitude of the image.

12.2.1 Olsen’s Segmentation Tool

In the previous chapter 10 was Olsen’s segmentation tool presented [94].
This work forms the basis of the automatic segmentation algorithm to be
described in the next section.

Olsen’s segmentation tool calculates the watersheds [29] of the gradient
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Figure 12.2: A split or merge event for the gradient magnitude. The thick
lines show the signal at two different scales, the horizontal lines indicate the
approximate positions of the watersheds, and the arrows show the subgraph.

magnitude of an image. This segments the image into a set of catchment
basins, where there is exactly one catchment basin for each minimum of the
gradient magnitude. The borders constitute a definition of edges and the
basins regions of homogeneity up to second order.

When an image is evolved in Linear Scale-Space [52, 136], the evolution of
the catchment basins of the gradient magnitude has a simple structure [97]:
Only pairwise merging and splitting of basins are generic (probable) events.
Since there is an one-to-one relation between the catchment basins and the
minima the tracking algorithm only needs to keep track of the minima. How-
ever since the saddle-points play an active role in the merging and splitting,
it is convenient to take them into account, when inferring the deep structure.
We illustrate the basic idea in Figure 12.2, and hint on the corresponding sin-
gularity graph data structure, that stores the merging and splitting events.
In practice, the number of splittings are small for the gradient magnitude,
and the singularity graph can be approximated with a singularity tree. We
call this the Scale-Space Tree. Although catchment basins due to splittings
will be present at coarse scale, the subset not due to splittings represents the
total image domain at scale zero.

Further it has been found practical to perform the tracking by mere area
overlap [73], and it is certainly sufficient for sufficiently small logarithmic
scale increases. We see that the principle of tracking by area overlap prag-
matically extends the algorithm [94] to a large range of similarity measures.
Olsen’s segmentation tool is linear in the number of scales and number of
image pixels: For T scale levels and N pixels the computational complexity
is O(TN).

In Figure 12.3 are given examples of partitions at different levels in the
Scale-Space Tree. Each image consists of 3 intensity values (64,128, 192) plus
independent and identically distributed (i.i.d.) normal noise with zero mean
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Figure 12.3: The Scale-Space Tree includes segments for ellipses of varying
size. Each row shows the watersheds as white lines for the same image using
integration scales low, middle, and high and measurement scale zero. The
ellipse is well represented in the diagonal. The watersheds on the gradient
magnitude do not regularize the segments in anyway that is left for the scale
space. From the figure, it is clear that a small peak of noise in a flat area is
not removed before a large scale is reached in the linear scale space

and standard deviation 5. The watersheds are the white two pixel wide lines.
Each row illustrates integration scales varying from low, medium, and high
scales all tracked to measurement scale zero. Note that the ellipses are one
pixel further into the light than the dark area.

The integration scales have been chosen such that the watersheds are on
good agreement with the ellipses of the diagonal. This illustrates the task of
merging: Structure of varying size seems to be sufficiently represented in the
Scale-Space Tree, and the task of the merging algorithm is to perform the
local scale-selection.
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12.3 Consistent Merging

For segmentation algorithms that assume piecewise constant regions, there
is no need to consult advanced model selection methods. However, when
models have the inclusion property, such that increasing the number of de-
grees of freedom monotonically decreases the distance to the data set [61], we
clearly need some criterion to counter-weigh this monotonicity. An example
of a function class with the inclusion property is the class of polynomials:
A constant may be modelled by a first degree polynomial, which may be
modelled by a second degree polynomial, and so on. Put in other words, it is
a commonly known fact that too many degrees of freedom generally overfits
data and does not capture the essence of the problem.

There are at present three competing model selection methods: Akaike’s
Information Criterion (AIC) [1, 61], Schwarz’s Bayes Information Criterion
(BIC) [118], and Rissanen’s Minimum Description Length (MDL) [109, 110].
In the original formulation by Akaike AIC is known to be inconsistent in
the sense that it will not always converge to the correct model with increas-
ing samples. This may have been improved by Kanatani’s recent work on
geometric reasoning. In contrast, both BIC and MDL have been shown to
be consistent and converge to each other, but MDL is special since it is the
only method that is derived from a principle outside the problem of model
selection in itself. Hence in contrast to AIC and BIC does MDL give a clear
interpretation of the resulting model selection, as that which achieves optimal
compression [10].

Due to the above considerations we will use MDL to merge segments
created by Olsen’s segmentation tool to yield parametric models of segments.

12.3.1 Specifying Semantics by Compression

The essence of MDL is lossless coding. That is, for the model selection crite-
rion to be consistent, every investigated model, must include everything that
is needed to completely reproduce the data set modelled. Mixing models from
deterministic and stochastic domains is quite natural, since every physical
signal, e.g. as produced by a CCD-chip, contains a portion of randomness.
A generic MDL functional is the sum of L(Z|d) and L(f), where Z and 6 de-
notes the data and the model (parameters), L(-) is the number of bits used
to describe the model, and L(-|-) is the number of bits used to describe the
deviation from the model — the noise. Model selection is performed as,

~ = —

6 = arg main L(Z)0) + L(9) (12.1)
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This is the Two-Part MDL version [109], which is apt for model selection.
By the pioneering work of Shannon [120] we known that for all practical
coding schemes the optimal code lengths of data are proportional to their
probability as, L = —log P.

A key point to note is that in almost all cases, the model parameters
must be rational numbers, since almost all irrational numbers do not have
a finite code length, and it is thus quite natural to study a quantisation of
the parameter space with respect to the total code length: It is standard
practice in physics to evaluate the precision of a parameter, however, the
MDL formalism takes this practice one step further. Centred around the
Maximum Likelihood estimate this implies that the needed precision is in
practice inversely proportional to the second order structure of the sum in
(12.1). The second order structure of an estimator around its minimum is
inversely proportional to the variance of the estimator, and for almost all
estimators this variance is found to be 1/|Z|. Except for the square root we
are intuitively led to the classical result of [109]:

1

lim L(Z|6) + L(6) = L(Z|

|z|—00

~
— —

)+ L(0) + —logn + O(|0)) (12.2)

>
|

where 6 denotes the truncated parameters, the maximum likelihood estimates

are denoted by 0 and n is the size of the data. This limit has recently been
sharpened to be an o(1) estimate [110, 10]. The per data point difference
between the improved estimate and (12.2) can be ignored, when |Z| > |4].
Hence, for computational efficiency (12.2) suffice.

Choosing a coding scheme for segmentation naturally divides into a code
for the border and interior [70]. For many large segments there will be a
natural tendency for the code length of the border to be diminished by the
code length of the interior, because of the simple fact that the fraction of
the length of the border over the area of the interior grows as ﬁ There is
a large group of shapes, where this is not the case. E.g. for a triangle where
the length of one side goes to zero, and the length over area fraction goes to
infinity. However we do not expect these shapes to be typical, but expect by
experience blob like segments. Therefore a simple chain code for the border
will suffice. A better and model driven code for borders may be found in
[122]. For the interior, the choice of model class is much more interesting.
In the piecewise smooth case, low order polynomials are obviously suitable
and have a nice interpretation in terms of the extended local structure, but
it is unlikely that higher order polynomials are suitable. A harmonic basis is
definitely also a valid possibility, and cosine waves may be versatile enough to
handle both smooth regions and texture like regions. Certainly have discrete



116 Segmentation by compression

wavelets proven their usage for compression tasks. For simplicity however,
we will use the class of lower order polynomials plus i.i.d. normal noise with
zero mean. We will use the centroid of a segment as the origin of the basis
functions. The parameters will be coded as the universal prior of integers
[109]. We thus derive the total functional for a segment as,

Ly = % (log?we—i— log) (x, - f(xi’g))2)

0] +1

+ > log"(;) + log |Z| + |07 (12.3)
J

where f is a function in the function class, the maximum likelihood estimate
for the variance, 0? = ¥, (3:, — f(zy, 5))2 /|Z|, has been used, log* is minus
the logarithm to the universal distribution, and using a 4-connected chain
code who's length is given by the border, 0%, of the two dimensional segment.
We have divided the code length estimate for the chain code by two, since
almost all border points are used for exactly two segments. The total code
length for the image is given by independence as, L = 3", Ly. The task of
the merging algorithm is thus to find a minimum for L over the number and
placement of segments. The computation complexity of calculating L, for
typical segments is limited by the functional fit: For an orthonormal basis,
calculating each parameter is linear with respect to the number of pixels.
Hence, for |f]-dimensional orthonormal basis and a segment of |Z| pixels
where |0], 07| < |Z| we need O(|0]|Z|) operations per segment.

12.3.2 A General Merging Algorithm

We will now describe a general algorithm for merging segments given by a
tree. The algorithm will be similar to a previously studied merging algorithm
[11], but the model class is more powerful, and hence the merging algorithm
is more involved.

A general problem of the watersheds in scale-spaces is the sensitivity to
noise: For constant image added with i.i.d. normal noise, the watersheds of
the gradient magnitude will be present at random location. To illustrate this
point, we have conducted the following experiment: Since watersheds of the
gradient magnitude are stable at near high gradients, we can use an image
as a source by adding i.i.d. normal noise, and averaging the results of the
watersheds. An example is shown in Figure 12.4. An original image was
produced as Figure 12.3(BOTTOM-LEFT). For each iteration, this image
was added i.i.d. normal noise with the same standard deviation, such that the
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Figure 12.4: Large gradient magnitudes have stable watersheds. An image
as Figure 12.3(BOTTOM-LEFT) was added noise 10 times, and the average
watersheds were found.

resulting standard deviation became /50. This is a different scale analysis
than the traditional scale-spaces, and we see that the watersheds due to noise
are grayish. However, this does not seem to lead to an useful algorithm,
since we need to know the noise source in advance. This is not the case for
traditional scale-spaces. However, it is quite likely that there exists no linear
or non-linear scale-space algorithm that does not produce random watersheds
for such an image, since these scale-spaces are all smooth. In the non-linear
scale-spaces studied in [135], this problem is elegantly handled by merging
proportional to the intrinsic contrast parameter of the scale-spaces. However,
such a solution is outside the domain of the Linear Scale-Space and must be
handled by the MDL formalism.

For the following algorithm we assume that at any given scale ¢, the
image I(t) is partitioned into a number of non-overlapping segments S;(t),
where image I is given by the union of the segments : I(t) = UU; S;(t) with

Further, we will assume that there exists a linking tree 7' governed by
inclusion, such that for a given pair of scales s,t, where s < ¢, and any
segment S;(s) there will be one and only one segment S;(¢) which includes
Si(s). We will write inclusion as S;(s) < S;(t). This implies that at any
scale ¢t we may find the representation of S;(t) as a set of segments at scale
s using the tree: T[S;(t)] = {Si(s)|Si(s) < Sj(t)}. We call S;(t) the parent
or ancestor and 7T'[S;(t)] its children or descendants. Further the elements
of T'[S;(t)] we will say are related as siblings, and children that have no
descendants are called leaves of the tree.

To merge segments we need a cost function C. E.g. for two sibling seg-
ments S;(s) and S;(s) we may calculate C[S;(s)], C[S;(s)], and C[S;(s) U
S;(s)], and we will merge the two segments if the cost is decreased by the
process, i.e. if C[S;(s) U S;(s)] < C[S;i(s)] + C[S;(s)]. Given a cost function



118 Segmentation by compression

/N

A B C+D

A B C D A B C+D

Figure 12.5: A single step of the merging algorithm. LEFT: the original
tree, MIDDLE: Node A is not merged since it does not have any siblings,
and B,C,D is merged into segments B and C+D (as an example). RIGHT:
Immediate ancestors are replaced with the optimally merged children.

such as (12.3) we may now sketch the algorithm:

1. For all sibling tuples that also are leaves, find the merging that has
the least description length, taking into account also the no merging
situation.

2. For each newly merged sibling tuple replace the ancestor with the
merged siblings.

3. Return to step 1 until the root has been reached.

A single iteration of the algorithm is illustrated in Figure 12.5. Since at
step 1 there is no direct cross-talk between neighbouring sibling tuples, the
tree defines a hierarchical neighbourhood structure. The merging process is
restricted by this neighbourhood structure therefore the final segmentation
result relies heavily on the tree structure.

This algorithm does in no way guarantee that we obtain the global min-
imum with respect to C'. A hypothetical example, where we end in a local
minimum, is given by a three-valued signal, I = ABCA. Assume that the
global minimum is given by A, B + C, A and that the tree is given by the
sibling tuples (A4, B) and (C,A). Then if C(A+ B) < C(A) + C(B) the
algorithm will immediately merge A and B in first iteration and never later
consider merging B + C'. However, this is a general problem with all merge
algorithms: Considering all possible merges of a given segment set is compu-
tationally intractable even for small sets of segments. Since one step of an
optimal merging algorithm is to consider the cost of each element in the set of
all sets of the segments, we get a lower bound on the computational complex-
ity as 2" where n is the number of segments. A tractable algorithm thus has
to suffice with a local minimum. As in [11] we choose a greedy algorithm that
merges the best two siblings iteratively. For n leaves at the lowest scale the
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Figure 12.6: Corners generate outliers. The ‘extra’ segment is caused by two
misplaced corner pixels.

cost function will have to be evaluated maximally n(n—1)+ (n—1)(n—2)/2
times.

12.4 Corners Generate Outliers

The least squares fitting procedure is well suited for the normal distributed
noise assumed above. However, it is very ill suited in the case of outliers,
and has the worst possible break down point: It takes just a single deviating
point to make the fit arbitrarily bad. Such outliers do occur for simple image
structure such as corners and T-junctions, near which a few pixels may be
misplaced no matter how careful the gradient magnitude is calculated. There
will thus be a tendency to oversegment images due to outliers as shown in
Figure 12.6.

Outliers are large scale phenomena because the statistics for the data has
to be stable in order for the notion of outliers to have a meaning. However,
the problem of finding outliers is similar to that of segmentation: We need
a model to identify outliers. MDL is suitable for outlier detection, but it is
not without problems in the present context: A relatively large area may be
identified as an outlier for a small segment early in the merging procedure
and will then never again be considered as an independent segment. In that
sense, outlier detection counteracts the merging algorithm described in the
previous sections. We will therefore apply outlier detection only in the last
merge iteration in the Scale-Space Tree.

In the spirit of Least Median of Squares [114], we have implemented
a method that uses 1% of a segment’s pixels as test-inliers (an elemental
subset), refits the model on this subset, and calculates the median of squared
deviation of the inliers as a quality measure. This process is iterated till
sufficient confidence, and the parameters for the subset that minimises the
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Figure 12.7: The segmentation algorithm segments simple structures. The
top row shows images as Figure 12.3. The bottom row shows light dark
ellipses on a lighter background (intensity values 112 and 128 respectively)
added normal noise of standard deviation 5.

quality measure are used to dissect the segment into inliers and outliers.

The above yields an ordering of the pixels according to Least Median of
Squares. Starting from the worst fitted pixel we may grow the set of outliers
iteratively, and stop when the combined codelength of the inliers and the
outliers is minimised. The inliers are coded as described previously, and the
outliers are coded by their position and their value using the universal prior
of integers. This has proven to be a very effective outlier detector.

12.5 Shapes in Data

Interpreting data has two basic steps: Firstly, a proper syntax must be found,
which can contain all data sets to be considered. Secondly a sentence must be
composed that describes a particular data set. This is the basic philosophy
behind data interpretation by compression. In this article we have described a
system that uses the Scale-Space Tree to define the neighbourhood structure
of regions, and we have given an algorithm that seeks the particular combi-
nation of neighbourhoods that reduces the description length according to a
prespecified preference. In Figure 12.7 are shown several examples of what
this preference yields on very simple image structure. With these results we
see that the structures captured at various levels of the Scale-Space Tree can
be collected such that the basic properties of an image are respected. These
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Figure 12.8: The segmentation of two different types of images. The images
are 128 times 128 pixels. The linking tree was generated by sampling in
the scale direction 30 times starting at 0.5 pixels and ending 32 pixels using
exponential steps in between.

results are further remarkable in the smallness of detail detectable both with
respect to size and intensity difference. This illustrates that the watersheds
of the gradient magnitude in the Linear Scale-Space do capture a wide va-
riety of image structures, and it seems that the algorithm presented in this
chapter correctly deciphers the tree for these simple structures.

On more complex images such as shown in Figure 12.8 the algorithm
displays a range of behaviours. It is difficult if not impossible to obtain the
ground truth or the ‘correct’ segmentation of such images. However, we note
that the algorithm does distinguish a number of significant regions.

This ends a preliminary study of a very general algorithm. Our future
work will concentrate on the obvious and simple extensions with a range of
scale-spaces such as non-linear diffusion scale-spaces and morphological scale-
spaces, and we will consider other model classes such as harmonic basis’ and
Markov random fields. A regularisation of the segment boundaries will also
be the topic of future research.
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Appendix A

Smoothing images creates
corners

This appendix provides mathematical details of the derivations presented in
chapter 6. It is elaborated how to establish that the definition of the corner
detectors correspond to a manifold of codimension 2 in jet space and how
the catastrophe points for the corner detectors correspond to a manifold of
codimension 3.

The following functional of the image is used as basis for detecting corners
where ¢ = 0,1, 2, 3.

Clz,y,a) = |VL(z,y)|"k(z,y)
= Ly(w,v)* Ly, (w,v)
Here we study the type of corners defined as critical points for C'. In the
following we will only go through the case (a = 3). The calculated derivatives
can be reused in the other cases due to the structure of C.

Let H(z,y) = C(x,y,3) we have the following first and second order
derivatives in tensor notation. Summation over all double index is implied.

Hy = LixL;L; +2LiL;Lis — LijgLiL; — 2Li;LiL;  (A.2)
Hy = LiwL;Lj+ 2L LiLj

+ 2LiyL;Lj, + 2L Ly Ly + 2L L L

— LijuLiLj — 2L Ly L

— 2Ly LiLj, — 2L Ly L, — 2L L; L (A.3)

In the following equations, the expressions for the first and second order
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derivatives have been partly expanded in the (v, w) coordinate system where
w is in the direction of the image gradient.

Hy = Ly(Lowk Lo + 2Ly Lk — 2Ly Lok)

Hy = LywLi + 2Ly, Ly Loy
+ 2Ly Ly Lok + 2L Lji Ljj 4 2Ly Loy Loy
— 2Lk L Ly
— 2Ly Loy Loy — 2L45 Ly Ljy, — 2Ly Ly Ly

A full expansion of the expressions for the first and second order deriva-
tives in the (v, w) coordinate system follows:

Hy = Lu(LowwLw + 2LosLuww — 2LwyLow)
Hy, = L)Ly
Hyw = Lowwwl?
4+ LuyLuw(4Lyww — 2Lopws)
+ 2Lyw(LopLow — L2,)
+  Lu(2Loy Loww — 4Lyww Low)
Hyw = LuowwoL? + 2LuLuy(Lyvy — Luwo)
+ 2va(waLm} - ng)

Hyy = Lyl

2Ly (Lyy Luw — L2,,)
2Ly (Lyy Lusww + Loy Luww)
— 2Ly Ly (Lwww + Lvw)

+ -

The variety of interest is defined by 0 = H,, = H, = HywHy — H2,.
This variety in jet space corresponds to the catastrophe points for H. First
assume L,, = 0 then the defining equations can be reduced to the following:

= Lw
= (vawa—sz)

These equations state that the first order derivatives of the image have to be
zero and the determinant of the Hessian of the image has to be zero. One can
solve the equations and use this locally as a smooth parametrisation. This
determines a manifold of codimension three outside the point L,, = L,, =
Lyw = Lyw = 0. The first equation defines a corner point and corresponds
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to a manifold of codimension 2. This is so because the equation gives linear
constraints therefore the resulting variety is a vector space which is a smooth

manifold.

Next assume L,, # 0 then the defining equations can be reduced to the

following:

0 £ Ly,
0 = Ly (A.4)
detlL = LyyLyw _ng
Lowwlw = 2detL (A.5)
0 = HywH,, — H2, where (A.6)
Hyw = Lypwwl?
+ 10LywdetL — 2Ly Luw Luwwe
+ 2Lw Loy Lwww — 4Lw Lyww Low

va mevLi; - 2Lvavaww + 2vadetL
H, Luyyow L2, — 2Ly det L
+ 2LwL'u'uLv'ww - 2Lvawwaw

The equation A.6 can be rewritten as follows. So the defining equations

become:

detL
LUUU) L’LU

+

Ly

Loy

vawa - ng

2detL

al?,  + bLyww + ¢ where

—4L, Ly,

ALy Ly (Lyyww L2, — 2Lyydet L 4+ 2Ly Ly L)

2Ly (Lyy — Luw)(Lyywo L2, — 2Lay Ly Lywy + 2Ly det L)
(Lyyww L2 + 10Lypdet L — 4Ly Ly Liw)

(Lywwo L2, — 2Ly Lyw Lyww + 2LypdetL)

(Lywow L2, — 2LydetL + 2Ly, Ly Ly )?

Locally one can make a parametrisation of the variety by solving the equa-
tions and by this parametrise some of the derivatives by the rest of deriva-

tives.



126 Smoothing images creates corners

It can be seen from the equations above that there exists solutions where
Lyvys Lypw and Ly, are parametrised smoothly by the rest of the derivatives.
In the case of Lyyy, Lyyw and L, one has to assume that L,,, # 0 to solve
for Lyww-

If one is only interested in the corner points and not the catastrophe the
defining equations are :

0 # Ly
0 = L
L'U'quw = 2(vawa - ng)

vUv

Solving for L., and L., yields a smooth parametrisation of the variety.
Hence we have a smooth manifold of codimension 2.



Appendix B

The structure of optic flow

This appendix provides mathematical details of the derivations presented in
chapter 8. It is shown how to come from the definition of the equivalence class
to the normal forms. We will shall focus on the derivations for S-equivalence.
We start with a Taylor series for a general image f. Coefficients are
denoted with a letter followed by three numbers which count the order for
the different variables. The zeroth order derivative for f is ignored since
S-equivalence allows to change the value using the diffeomorphism 7.

f = al00p+ a200p* + a300p® +a010q + allOpgq
+ a210p? ¢ + a020 ¢*> + a120p ¢ + 030 ¢
+ a001ls+al0lps+a20lp®s+a0llgs+alllpgs
+ a021¢* s+ a002 s* + al02ps® + a012 g s* + a003 s> + O(4)(B.1)

Next we make Taylor expansions for the local changes of coordinates.
The coordinate changes for p and ¢ do only have mixed terms involving ¢
but no terms only with ¢. This is so because of the following restriction on
S-equivalence : V¢ (0,t) = 0.

newP = 22100+ tz 2101 4+ ¢z 2102 + 22 2200 + t 2% 2201 + 2> 2300
+ 2010y +tz011y + 22012y + 22110y + tx 2111y + 2% 2210y
+ 2020 y% 4+ t 2021 4% + v 2120 y* + 030 > + O(4) (B.2)

I

yy010 4+t yy011 + % yy012 + 3?4020 + ¢ 3* y021 + 3° 030
zy100 +txyl01l + 2 y102 + zyyl110 + tz yy111 + 2 y? 4120
2% 5200 + t 2% y201 + 2% y ¥210 + 2° y300 + O(4) (B.3)

new)

+ +
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newS = ttl+t*12+tt3+ 0(4) (B.4)

The Jacobian x100y010 — z010y100 has to be greater than zero and ¢1 > 0
to fulfil the restrictions on the equivalence.

In equation B.1 we substitute p,q and s with newP, new@ and newS
from equations B.2, B.3 and B.4. The flow equals :

( v ) = s tvs = |- Lo Y pvpvrvy) B5)
v AT

where V denotes the spatial gradient.

The job is to bring u on a normal form. The coefficients a;;, are delivered
by the enemy and we can change the z;;, yi;x and ?; under the restrictions
given by S-equivalence.

In the following we assume to have a regular point for f. Under this
assumption we can assume a010 = 0 and @010 # 0 in order to simplify the
algebraic expressions.

Without further assumptions the zeroth order term for u is

001 £1 2100
u = - 2 2
100(z010% + 21002
2001 ¢1 2010
- B.6
Y 100 (20102 + £100?) (B:6)

If a001 # 0 then by a suitable choice of the parameters t1, 2100 and x010
one can reached the normal form ng. The higher order terms of u can be
eliminated by successively solving for the free parameters x;;x, y;x and t;,
and by this remove the terms in u order by order.

Normal from m;

If a001 = 0 one has the situation where I; = 0 and we can derive the normal
form m; = (x — ¢,0)T. The zeroth order terms are zero. The following
equations (see B.7 and B.8) must have a solution in order to reach the normal
form my. From the equation u; = —1 one can derive that 002 # 0 must be
true for a solution to exist. That is I; # 0. The solution is printed in the
equations B.9. Again the higher order terms can be removed by successively
solving for the free parameters z;j, ¥i;5 and ;.

Upg=1Auy=0Au=—-1Av,=0Av, =0Av; =0 (B.7)
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2100 (a101¢1 2100 + @100 2101 + a011¢1 y100)

Uy =
a100 (:c0102 + x1002)
2100 (al01 12010 + a100 2011 + a011 ¢1 y010)
U =
Y 100 (950102 + x1002)
2400212 £100
Uy =
! 100 (2010 + £100?)
2010 (a101#1 100 + 1002101 + @011 ¢1 y100)
Uy =
100 (330102 + x1002)
2010 (a101¢1 2010 + a100 2011 + a011 ¢1y010)
v =
Y a100 (x0102 + x1002)
2a002+12 010
_ B.8
YT 4100 (20107 + £1007) (B8)
2010 = 0
ol - _ (fL(2a002a100¢1 + 2a002a101 #12 + 011 a100 y100)
N a1002
ol — (aOll t1 yOlO)
a100
24002 ¢12
100 = B.9
o @100 (B.9)

Normal form ms

Next we analyse if the above assumption I;; # 0 is not true. Hence, we
assume now that I; = 0 and I = 0. We aim for the normal form m, =
(x — t(y +1),0)T. First we solve the following equations:

Up =1Auy=0Au=0Av; =0Av, =0A0v, =0 (B.10)

The equations u; = 0 and v; = 0 are trivially true since u; and v; equals
zero. Solving the rest gives the following bounds on the diffeomorphisms.

010 = 0
1002101 4+ a01171y100
100 = —
al100 + a101¢1
1 11
yor0 — — 2002011 (B.11)

a011¢1
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We have to assume a011 # 0. Next we solve for the second order derivatives
for the flow:

Uy = —1

Uy = —2

ui; = 0 otherwise
Uij =0

The solution restricts the parameters x021, 2102, 111, 012, 020, 2201, 110
and 101 as a function of the remaining parameters and the coefficients for
f- The higher order formal forms m; 9, mo,; and m3 can be constructed in
the same manner.
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Sammenfatning (in danish)

Afhandlingens titel er ”Generic Image Structure”. Generisk er et centralt
begreb for athandlingen. Generisk er i Ilgse vendinger det samme som at
veere typisk. Projektet handler om hvad typisk billedstruktur er og dermed
ogsa om hvad struktur i billeder er. Fokus har vaeret pa en teoretisk forstaelse
og praktisk udnyttelse af den dybe struktur i skalarum.

Afhandlingen er delt i to hovedomrader det fgrste med fokus pa teorien
og det andet med fokus pa det praktiske.

B.1 Den teoretiske del

Et skalarumsbillede er en kontinuert varierende familie af billeder. Familien
genereres ud fra det optagede billede for eksempel ved at udjevne det mere og
mere. Genereringen er kendt i form af en eller anden partiel differentialligning
med billedet som begyndelsesbetingelse. Ofte beskrives skalarumsbilledet
som en kontinuert stabel af billeder. For hvert billede i familien beregnes
den samme type billedstruktur (for eksempel hjgrner). Den gennemgaende
opgave er at bestemme de typiske sendringer i billedstrukturen, nar man
bevaeger sig igennem familien. For eksempel kan der bade opsta og forsvinde
hjgrner i de fleste skalarumsbilleder.

Billedstruktur beskrives i termer af differential geometriske operatorer,
og til bestemmelse af generiskhed bruges singularitetsteori (katastrofeteori).

Indenfor billedhandling er det en almindelig metode at opfinde en eller
anden differential geometrisk operator, der er god til eksempelvis at finde
kanter eller hjgrner eller liner. Naeste skridt er at undersgge egenskaber ved
resultatet fra en sadan operator. Hvilken type af resultat er generisk? Kan
kanterne for eksempel krydse sig selv og sa videre?

Indenfor matematikkens verden er en almindelig metode at ga udfra
sakaldte sekvivalens relationer. Man starter med at definere, hvornar to lokale
omrader af en funktion er ens. Det sker ved, at man tillader en bestemt type
af transformation mellem de to omrader, nemlig en diffeomorfi (en glat en-
til-en afbildning). Alle &ekvivalente funktioner samles i en akvivalens klasse,
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og denne klasse defineres til at vaere en type af struktur. Med et endeligt
antal af skvivalens klasser kan man daekke en aben og teet delmaengde af
hele funktionsrummet, som bestar af de uendeligt differentiable funktioner.
Disse resultater er postuleret og bevist af mange forskellige personer, nogle
af ngglepersonerne er Thom[127, 128, 129], Mather[76, 77, 78, 79, 80, 81] og
Arnold[4, 6, 7].

Det viser sig, at man kan benytte nogle af saetningerne fra den matema-
tiske tilgang til at bevise generiske egenskaber for operatorerne fra billedbe-
handlings tilgangen. Denne sammenhang behandles i kapitel 3.

De generelle saetninger er ikke umiddelbart gyldige, nar man skifter fokus
til en speciel maengde af funktioner. I dette tilfeelde har lgsninger til var-
meledningsligningen speciel interesse. For at kunne udlede resultater om
generiske egenskaber i dette tilfaelde er det ngdvendigt at bruge resultater
udviklet af James Damon[23, 24, 25]. Disse resultater tillader tilsvarende
raesonnementer og konklusioner som for maengden af alle glatte funktioner.

Kapitlerne 4,5 og 6 bruger disse resultater til at udlede generiske egensk-
aber for gradientstgrrelsen og en klasse af hjgrnemal for skalarumsbilleder.

e Generiske overgange for kvadratet pa gradient stgrrelsen gennemgaes i
kapitel 4
Et skalarum genereres med lineser diffusion Ly(z,y;t) = Ly, (z,y;t) +
Lyy(x,y;t), L(z,y;0) = f. Billedstrukturen er singulariteter for gradi-
enten kvadreret: V(|VL[?) = 0. De typiske struktursendringer er:

1. Extremum og sadel for |V L|? forsvinder eller opstar

2. To extrema og en sadel for |[VL|? forsvinder eller opstar.

e Kapitel 5 relaterer maxima for gradientstgrrelsen til det klassiske kantmal.
Desuden knyttes singulariteterne for gradientstgrrelsen til geometriske
egenskaber ved billedet. Der findes to typer af singulariteter for gradi-
entstgrrelsen: (1) singularitetspunkter for billedet selv og (2) punkter,
hvor andenordens strukturen for billedet degenererer i samme retning
som gradienten for billedet.

e Kapitel 6 viser, at hjgrner bestemt ved maxima for krumningen af
konturkurver gange gradient stgrrelsen oplgftet til en potens bade kan
opsta og forsvinde. En ordning af hjgrnerne efter deres veerdi ggr det
muligt at vaelge de mest fremtraedende hjgrner. Men kapitel 6 viser
ogsa, at de forskellige hjgrnemal indenfor klassen giver forskellige ord-
ninger.



Kapitel 7 beskriver den saedvanlige matematiske tilgang til struktur, og
prasenterer desuden Damons udvidelser[23, 25] til den klassiske teori.

Kapitel 8 bestemmer den generiske struktur for det optiske flow ved at
definere struktur udfra sekvivalensklasser. Dernaest opbygges listen over ak-
vivalensklasser, som dakker de typiske tilfeelde.

B.2 Den mere praktiske del

En segmentering af et billede inddeler (i det idelle tilfzelde) billedet i omrader,
der svarer til objekter i den verden, som billedet afspejler.

En type segmentering kan laves ved at knytte et omrade til hvert min-
imum i gradientstgrrelsen. Da de typiske @ndringer for minima kendes,
kan zndringerne af omrader udledes. Denne viden bruges til at forbinde
omraderne mellem nabomedlemmer i billedfamilien. Det mest udtvaerede
medlem er nemmest at segmentere, fordi der kun er de stgrste strukturer
tilbage i billedet, mens det mindst udtvarede medlem har graenserne mellem
omraderne bedst placeret. Via forbindelsen kan de stgrre strukturer i billedet
findes med en god placering.

Kapitel 10 praesenterer en protoype pa et sadant system. Kapitel 11
kommer med en opfglgning, hvor en egentlig applikation til brug for klinikere
i forskninggjemed er udviklet.

Kapitel 12 kombinerer ovenstaende med en modellering af hvornar omra-
derne hgrer sammen; altsa at omraderne faktisk burde sammenlagges til et
omrade, selvom geometrien fanger en mindre forskel. Denne ekstra model-
lering ggr det muligt at lave en fuldautomatisk segmenteringmetode.
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