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Abstract

This thesis investigates whether region-based memory management can suc-
cessfully be applied to Prolog programs. The answer is affirmative.

It is shown how region-based memory management can be extended to
work with backtracking and logical variables. Experiments with a prototype
region-based Prolog implementation show that the time efficiency of the ex-
tended region-based model compares favorably with garbage collection and
is not prohibitively worse than a purely stack-based Prolog implementation.

The thesis also describes a method for translating a subset of Prolog into
C programs that use the extended region-based memory manager. The trans-
lation involves several typed and untyped intermediate languages with rig-
orously defined semantics. Informal arguments for the correctness of most
of the individual transformation phases are provided; they are meant to be
expandable into fully rigorous proofs.
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Preface

This Master’s Thesis (Danish: speciale) was submitted to the University of
Copenhagen on February 1, 2000, as part of the author’s work towards the
M.Sc. (Danish: cand.scient.) degree in Computer Science. The project car-
ries a nominal workload of 1�2,3�4$5 of one year’s full-time study. The project
advisor was Professor Neil D. Jones.

This report is accompanied by an electronically available prototype im-
plementation which appears in the list of references as [Makholm 2000].

Audience

The intended audience of the report is computer scientists and computer
science students with a background in programming languages. I have done
my best not to assume any prior knowledge of regions and assume no partic-
ular knowledge of Prolog implementation techniques. I do, however, assume
that readers know the absolute basics of Prolog programming.

Readers whose programming-languages background have a formal slant
will perhaps feel dissatisfied by the lack of rigorous proofs of the soundness
of the various transformations I propose. That lack is intentional—I pre-
ferred to use the available time on producing a working implementation that
could be used in actual experiments rather than on writing down detailed
proofs. The reasoning is that a proof is not worth much if the technique it
describes turns out to be hopelessly inefficient in practise, whereas an im-
plementation that seems to work fine in practise but has not been proven
rigorously correct is at least a proof of concept.

It should also be noted that I have deliberately chosen the of the various
semantics and other applicable definitions so that they support the construc-
tion of rigorous proofs.

Thanks

I want to thank Neil Jones for proposing the project and for his support,
proofreading, critique, and helpful suggestions throughout the work.

Thanks to Leo Schou-Jensen at Thomas Linder Puls at Prolog Develop-
ment Center for a couple of inspiring discussions in the beginning of the
project. It was originally intended that the project would involve a higher
amount of cooperation with PDC; that it did not turn out that way is entirely
my fault.
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Various subscribers to the Usenet newsgroup ��� �76,89! ���&�:896	
� ! �$� patiently
answered my naïve questions about traditional Prolog implementation tech-
niques.

Henning Niss, Fritz Henglein, and Morten Voetmann Christensen dis-
cussed my early design with me and asked many enlightening questions.

Peter Makholm helped with proofreading.
A lot of people, most of whose names I don’t even know, created the

excellent free software I used for conducting experiments and writing the
report, including Moscow ML, the GNU C compiler, GNU Emacs, ;=< > , ?A@B;C<�> ,
>�D=EGF H�I , and dvips.

Language and notation

I refer to myself, from this point on, as “we”. It may seem arrogant to use
“majestic plural” in this manner, but we feel that using “I” would be more
disturbing, drawing undue attention to ourselves by continually forcing the
reader to adjust for whether the text she is reading was written by a single
person or a collective.

We also assume that any anonymous person mentioned in the text is
a “she”. The intention was to provide a counterweight to the traditional
tendency to use “he” in that position, but some proofreaders thought it was
“sexist” to imply that women are always uninteresting and anonymous. Oh,
well.

Following standard mathematical notation, we use J for the set of inte-
gers and K for the set of natural numbers.

When we use lists as abstract semantical objects, we use ML notation,
that is, we write LNMOMQPL for the “cons” operation that is notated as R�LTS�PLCU in
Prolog.

Revised version

In this revised version, published as a DIKU technical report in August 2000,
a number of typographical and spelling errors have been corrected. A few
changes of notation have also been made, but the text is otherwise un-
changed.

It can now be told that the thesis received the maximum grade of the
Danish ten-step “13-scale” at the oral defence on March 9th. An article that
summarises the most important results of the thesis will appear at the ACM-
SIGPLAN–sponsored International Symposium on Memory Management in
October 2000.
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Chapter 1

Introduction

This thesis is about how to use region-based memory management in imple-
mentations of the programming language Prolog.

We trust most computer scientists to have at least a passing knowledge of
Prolog. No computer science curriculum would be complete without a basic
introduction to logic programming, and Prolog is the unchallenged lingua
franca of logic programming.

Most people in this report’s intended audience (which is computer scien-
tists with a background in programming language definition, processing, or
implementation) also have a good mental model of what memory manage-
ment is about and which services a memory manager provides.

The “region-based” bit, however, may be new to many readers. Therefore
we begin this chapter with a quick introduction to what region-based mem-
ory management is, compared to other ways of doing memory management.

1.1 A quick tour of memory-management para-
digms

The basic problems of memory management are when to deallocate mem-
ory1 and how to efficiently reuse deallocated memory.

1.1.1 Explicit individual deallocation

Explicit individual deallocation is the simplest strategy for deciding when
to deallocate memory. Here, the programmer must request deallocation of
each individual memory block. Examples are the VCW�X�X,Y,Z / [�\�]�] discipline of
C, or C++’s ^:]`_ and a�]�X$]$b ] operators.

1When to allocate memory is less of a problem. In functional programming languages
it is common that memory allocation is implicit in the construction of compound values.
Where this is not the case, for example in procedural languages with explicit pointers, it
is generally considered acceptable that the programmer is supposed to ask for memory
explicitly—even though it is known to be error-prone to rely on the programmer for telling
when to deallocate things.
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In theory, explicit individual deallocation gives the programmer excellent
chances of trimming the space usage of programs. The problem is that it
can be complex to determine when it is safe to deallocate what, even for
a programmer who understands the logic of her program. If she specifies
too early deallocation for some memory blocks, the resulting misbehaviour
is very subtle and hard to trace. It is a common experience that errors of this
kind account for a significant fraction of the bugs experienced in software.

Additionally, in many applications it requires significant algorithmic over-
head to keep track of convenient deallocation opportunities. The program-
mer may decide it is not worth the trouble and never deallocate anything at
all. When this happens, explicit deallocation becomes a very bad strategy.

1.1.2 Garbage collection

A better choice is garbage collection, which is widely used for functional
languages and also for some procedural languages (notably Java). Here, the
programmer is not involved in deallocation at all. Instead, a run-time com-
ponent called the garbage collector periodically deallocates memory blocks
whose addresses are not known to the running program anymore. This elim-
inates the danger of programmer error.

The cost, however, is the time overhead that is used at run time keeping
the garbage collector informed about which memory blocks the main pro-
gram has direct pointers to, the so-called root set. The active phase of the
garbage collector also takes substantial—and unpredictable—time to com-
plete. This can be a problem in real-time applications2 where unexpected,
unpredictable delays are not acceptable.

Worse yet, there is a time/space tradeoff involved: if one has more mem-
ory available the garbage collector needs to run less often and hence uses
less time. Some garbage collectors prefer to postpone collection until there
is no fresh memory to get from the operating system; a tactic which may not
be ideal in multiprogrammed environments.

1.1.3 Reference counting

Reference counting is a lightweight garbage collection scheme where mem-
ory blocks are deallocated as soon as no more pointers point to them. The
main problem with it is that it fails when circular data structures are cre-
ated. Languages that do not allow circular data structures (such as Prolog
with “occurs-check” unification) might use reference counting to get rid of
the time/space tradeoff of garbage collection. Still, it takes a lot of time to
maintain the reference counters, so the performance of such systems may
still be poor.

2As well as interactive applications where one wants to guarantee a timely response to
the user’s actions.
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1.1.4 Stack allocation

Finally, in stack allocation, the allocation operation pre-schedules the deal-
location of a memory block to happen at some specific point in the future
execution history of the program. Stack allocation is very efficient regarding
running time as well as space usage; in practise it seldom gives rise to prob-
lems with too early deallocation even in languages that allow pointers to
stack-allocated data. However, stack allocation is not suited for all kinds of
data, as it requires the lifetimes (which here means the time from the block
is allocated to it is deallocated) of all the stack-allocated memory block to
be properly nested.

Stack allocation also performs excellently with respect to the other big
memory management problem: how to reuse deallocated memory effi-
ciently. Explicit deallocation, some garbage collection schemes, and refer-
ence counting all suffer from potential fragmentation of the heap. With stack
allocation, the unused memory is always contiguous and no fragmentation
occurs.

The efficiency of stack allocation makes it attractive enough that most
procedural programming languages use it in the default case and require
the programmer to specify explicitly when she wants to allocate memory
whose lifetime does not correspond to the stack model. And many imple-
mentations of non-procedural languages use sophisticated analyses to select
stack allocation for as much of the program’s data as possible.

1.1.5 Stack-of-regions allocation

Now enter the stack-of-regions allocation paradigm, proposed by Tofte and
Talpin [1993, 1994, 1997] as a generalisation of normal stack allocation.
This paradigm relaxes stack allocation’s requirement that the lifetimes of
values must be properly nested by introducing a mediator concept called a
region.

Regions can be thought of as abstractions of lifetimes, or as the “handles”
of pre-scheduled deallocation points. They are run-time objects that live
on a region stack; hence, the lifetimes of regions must be properly nested.
Normal memory blocks can be allocated at any point in time; they are always
allocated in a particular region and are deallocated at the end of that region’s
lifetime. Figure 1.1 illustrates this.

Figure 1.1 makes it apparent that the memory blocks themselves cannot
live on the region stack, because all of the regions that are alive at a given
point in time need to be able to grow. In the ML Kit [Tofte et al. 1997] the
memory blocks in a region are allocated from fixed-size pages. The pages
used for each region are tied together in a linked list; when the region is
deallocated the entire page list is appended to a list of free pages, making it
available for use in other regions. This scheme eliminates fragmentation of
the heap and has low administrative overhead because there is no need to
keep track of how the used part of a page is divided into individual memory
blocks.
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c�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�dfe
time

Figure 1.1: Memory-block lifetimes in the stack-of-regions model. Each hor-
izontal line corresponds to the lifetime of one memory block. The triangular
collections of blocks are regions.

A compile-time analysis called region inference is used to determine
when in the program regions are created and destroyed, and which of the
existing regions each allocation operation uses. The programmer does not
include any explicit any memory-management directives in her code at all;
they are provided by the region inference.

A downside of region-based memory management is that the lifetime of
a memory block must still be decided when it is allocated. Imagine a pro-
gram that allocates two blocks of memory and shortly thereafter asks the
user which of them to use, after which the unwanted block is never refer-
enced again. With region-based memory management both blocks must be
allocated in a long-lived region, so the unwanted one cannot be deallocated
early. Nevertheless, the experience with the ML Kit shows that with care-
ful programming such problems can be eliminated or at least kept under
control.

Region-based memory management was originally formulated for func-
tional languages, and has been implemented for Standard ML in the ML Kit
[Tofte et al. 1997]. Some work (but not nearly as developed as the ML Kit
yet) has also been done on adapting region-based memory management to
object-oriented languages [Velschow and Christensen 1998].

1.1.6 Non-stacked regions

As observed by Aiken et al. [1995]3, the attractiveness of the region concept
is really not closely tied to the principle that the regions form a stack. The

3The observation is not explicitly present in the article but nevertheless is the funda-
mental intuitive principle behind Aiken et al.’s work. The “storage mode analysis” [Birkedal
et al. 1996] that was part of even Tofte and Talpin’s early prototypes can also be seen as
building on this principle, but that was apparently not realised at the time.
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fact that the lifetimes of regions must be properly nested is more a product
of the structure of Tofte and Talpin’s formal specification than of the region
concept itself.

The important idea is that of a region as a “place” where memory can
be allocated, such that all of the memory allocated from a region can later
be deallocated in a single operation. The list-of-pages idea from the ML Kit
provides an efficient implementation of these primitive operations; it is not
an important part of the general idea that the way the ML Kit uses these
primitives implies a stack discipline for regions.

(The reader may wonder why we introduce regions in this roundabout
way, first claiming they need a region stack, then proceeding to say that stack
is inessential. The reason is that much of the existing literature about region-
based memory management, even after Aiken et al. [1995], has presented
“the stack-of-regions model” as an integral whole. We feel that it is worth
some energy to point out explicitly that it is not).

1.2 Prolog

We assume you know approximately what Prolog is about, at least well
enough to get up to date by the following quick summary. If you are one
of the readers we just offended on page 9 by claiming their education was
incomplete4 we suggest you consult a textbook such as Bratko [1990].

We would like to emphasise that the Prolog we talk about is Prolog
the programming language—not Prolog the theorem prover nor Prolog the
artificial-intelligence engine. We acknowledge that Prolog programs can be
used for applications in logic and AI research, but what Prolog programs
do is really not the perspective that interests us here. So if you expect to
see phrases like “SLD resolution” or “knowledge representation” in what
follows, then you’re probably reading the wrong thesis. Consider yourself
warned.

That being said, we also acknowledge that Prolog’s origins in theo-
rem proving have led to some concepts being called something differ-
ent from the names they have in most other. We’re not trying to in-
vent a new vocabulary in addition to a new memory-management tech-
nique, so we use the normal Prolog words for Prolog’s concepts. Most
notably, a “predicate” is what other programming languages would call
a “procedure”, and a “functor” is what other programming languages
would call a “(value) constructor”. And a “variable” is something com-
pletely different from the thing other programming languages call “vari-
ables”.

We view Prolog as a mostly normal, first-order, typeless programming
language with a slightly unusual syntax and two principal features that make
it stand out from other programming languages:

4Or if you don’t have a computer science degree we can offend but would nevertheless
like to understand this report.
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1. Backtracking. Prolog’s basic control-flow concept. Backtracking con-
sists of going back to an earlier point (a choice point) in the execution
history of the program, forgetting everything that happened since the
first time we were there, and then continuing to execute some code
that was saved as an alternative continuation at that time.

Prolog does not have any primitive if–then–else construct, but back-
tracking can be invoked conditionally, which is enough to build a work-
ing control structure.

In addition to being the only control-flow tool, for unfortunate his-
toric reasons backtracking also doubles as Prolog’s default reaction to
many kinds of run-time errors which in other languages would simply
abort execution with an error message. This makes life difficult for
Prolog programmers who have a hard time finding out which of a mul-
titude of possible errors made their program backtrack unexpectedly.
In this report (which is concerned with implementing Prolog programs,
correct or not) the problem is mainly one of terminology, namely that
that the command to unconditionally initiate backtracking is spelled
“ �g���"! ” but used when the programmer deliberately wants the program
to backtrack. We reluctantly adopt that usage and say “failure” about
anything that causes the program to backtrack. When we talk about
genuine error conditions that ought not to happen, we say “error” or
“wrong”.

2. Logical variables and unification. A logical variable5 is a “hole” or a
“placeholder” which can be inserted in a data structure to signify some
data that is not there yet. When a logical variable is duplicated the
two copies stay connected in the sense that if one of the copies are
instantiated to some value (which may also be another variable) the
same value automatically appears where the other copy of the variable
used to be. In this thesis we try to use the word “variable” exclusively
about logical variables, so we use the adjective “logical” only where we
fear confusion.

Unification (which some authors call matching) is how variables
get instantiated. It is an operation which takes two terms and instanti-
ates the variables it finds in the terms to whatever values are necessary
to make the to terms completely identical6. If it is not possible to make
the terms identical, backtracking is initiated.

The main challenge in adapting region-based memory management to Pro-
log is to make it work for these two features, because they are the ones
that are not present in the languages region-based memory management
has previously been used for.

5Which has nothing to do with a “boolean variable” in other programming languages.
6This description tacitly ignores an above-average number of fine points, but we suppose

the readers who would appreciate them at this point already know what they are. The
details are all in Section 3.6.
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h
program ijM/MOk h

clause i�l�lml h clause ih
clause ijM/MOk h

atomic ion�p h goal irqrl�lmlq h goal i�lh
goal ijM/MOk h

atomic is h
term itk h

term is u
s �g�$�%!h

atomic ijM/MOk v�w$x h term i�y)z�lml�l{z h term iG|~}h
term ijM/MOk �	x h term i�y)zml�lmlmz h term iG|�}s lml�l s d 4 s d 1 s c s 1 s 4 s l�lmls �

Figure 1.2: The “core” Prolog subset we work with.

Prolog, like many other programming languages, has developed into a
variety of dialects—including a committee-created ISO standard—which all
offer slightly different features. The differences are of little concern in our
context, because we only work with a subset consisting of the “core” features
that are common to all implementations.

The Prolog subset we work with are those programs that can be written
in the syntax shown in Figure 1.2 and executed without any “built-in” pred-
icates but primitives for rudimentary arithmetic and I/O. In Section 8.1 we
list some convenient programming constructs that can be viewed as “syntac-
tic sugar”. Section 12.1.3 discusses common Prolog constructs that can not
be expressed in our subset.

Our Prolog subset is almost what is known as the pure fragment of Pro-
log, except that we support the cut, “

u
”, which is used to direct future back-

tracking operations to ignore certain otherwise valid destinations.7 Our rea-
son for including cut is twofold. First, very little serious Prolog programming
is possible without it. Second, it provides unique implementation problems
of its own, so our demonstration that region-based memory management is
possible for Prolog would have little weight if we ignored cut.

1.3 Memory management in Prolog

We now turn to describe various ways of doing memory management in
Prolog implementations.

7It is not easy to define the meaning of cut precisely with a few succinct sentences. If
this quick resume does not ring a bell you may either consult a textbook or decide to let the
matter rest until Section 2.5 where our formal semantics for GP defines rigorously what we
take cut to mean.
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1.3.1 The WAM

The classical reference model for Prolog implementations is the Warren Ab-
stract Machine [Aït-Kaci 1991]. It essentially uses two stacks for its memory
management. A local stack holds temporary results and is used to keep
track of the control flow. Deallocation on the local stack happens often. The
heap or global stack shrinks only at backtracking and is used to store terms
and variables whose lifetime may be too long for the local stack. There are
subtle (but local) rules for choosing which intermediate variables are known
to be short-lived enough to be allocated on the local stack.

The problem with the WAM strategy is that the heap shrinks too seldom
for some programs. For “functional-style” programs that only backtrack as
a way to do case analysis on terms, the heap tends to grow monotonically
even though the amount of data actually used remains small throughout
the computation. (Cuts are often used to improve the efficiency of such
programs but do not solve this problem: a cut does not reclaim any memory
in the heap in the WAM).

As a result, Prolog programmers who use an implementation with WAM-
like memory management (such as Visual Prolog [Prolog Development Cen-
ter 2000] or one of its predecessors) need to adopt a certain style of pro-
gramming in order to avoid space problems. The \�]��C]�W`b - [ W:�$X loop is an
excellent example. A \�]��:],W`b - [�WC�$X loop causes good memory reuse on the
WAM, but it also tends to make the program harder to understand, because
imperative tricks are needed to pass information between the iterations.

1.3.2 WAM with a garbage collector

Due to the problems with unlimited growth of the global stack, many other-
wise WAM-based Prolog implementation use a garbage collector to compact
the stack when it grows too big.

Adding a garbage collector to the WAM is not entirely trivial, (see, for ex-
ample, [Demoen et al. 1996] which describes the design of one such garbage
collector)—especially because one wants to retain the WAM’s efficient stack-
based deallocation for programs that do backtrack. Nevertheless the idea
seems to work reasonably well in practise.

However, “reasonably well” in this context does not necessarily mean
much: garbage collection is presently the only practical alternative for those
Prolog programs that need it.

1.3.3 Region-based memory management for Prolog

The purpose of this thesis is to try to adapt region-based memory manage-
ment to logic programming languages, in particular Prolog, and to assess
the utility of the paradigm in this context.

The latter part of this goal is not trivial: what is known about the perfor-
mance of regions for ML is not directly transferable to Prolog. There are two
main reasons for this.
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First, for ML, the main “competition” is garbage collection, whose main
perceived problem is execution speed. Region-based memory management
could be declared a success for ML because it was faster than garbage collec-
tion and did not use unacceptably more memory. On the other hand the the
WAM amounts for much of the “competition” on the Prolog scene: garbage
collection is not always as big a burden on a Prolog program as it would be
on an equivalent ML program. That may shift the performance balance in
favour of existing techniques.

Second, the original region model cannot be used unchanged in Prolog,
because it does not support backtracking. It is not known a priori how to
adapt regions to support backtracking or how much that adaption will cost
in terms of running time.

1.4 Our approach

A common problem with “apply technique
�

to programming language � ”
projects is that the programming language is too rich and complex for an
initial study of the technique’s feasibility. The canonical way of solving it is
to restrict one’s attention to a subset of the programming language which
is just big enough to exhibit its most prominent characteristics and allow
nontrivial example programs to be written. In our case we did that with the
definition of the “core Prolog” subset in Figure 1.2.

Having done that, we then find ourselves in the less common situation
that the programming language is too tight, too orthogonal, and too “ele-
gant” (in a minimalistic sense) to allow the theory to be applied to it. In
particular, the unification operation is so versatile and powerful that Prolog
programs use it for a multitude of purposes, some, but not all, of which re-
quire memory allocations. If we are to reason efficiently about the memory-
use properties of Prolog programs, we first need to convert the program into
a form where it is more explicit what happens at each point in the program.
That is, the region inference must work at the level of intermediate code
rather than source code.

This means that we must decide on a form of intermediate code to use.
The only widely-known “intermediate language” for Prolog is WAM code
[Aït-Kaci 1991], which does not distinguish precisely enough between allo-
cations and non-allocations for our purposes. We have also looked as Visual
Prolog [Prolog Development Center 2000] whose execution model has most
of the properties we want, but it turns out that Visual Prolog does not use
intermediate code at all; it generates machine code directly from Prolog.

This left us with defining our own intermediate code. The result is the
little language P which we define in Chapters 2–3. (“P” stands for “Very Re-
duced Prolog”). We then imagine this architecture for a region-based prolog
implementation:

� The Prolog source code is parsed and translated to P. A translator that
does this is developed in Chapter 8.
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GP
Chapter 2

P
Chapter 3

RP
Chapter 4

RP imple-
mentation

Chapter 5

TGP
Chapter 6

TP
Chapter 7

TRP
Chapter 9

Compiling
Prolog
into TP
Chapter 8

Region
inference
Chapter 10

Figure 1.3: An overview of the central chapters of the thesis.

� A region inference algorithm adds explicit region annotations to the
P program. The result is a program in a P-like language with explicit
region-based memory management which we call RP. We describe RP
in Chapter 4 and develop the region inference algorithm in Chapter 10.� The RP program is translated to machine code which links to a run-
time memory-management module which we develop in Chapter 5. In
our prototype implementation we use C [Kernighan and Ritchie 1988]
as an intermediate step, such that the RP program is first translated to
C and then compiled to machine language with a standard compiler.

We have developed a prototype implementation of this architecture,
available as [Makholm 2000].

1.4.1 Overview of the thesis

Figure 1.3 depicts the relations between the central chapters of the thesis,
with the arrows corresponding roughly to reading-order constraints.

The chapters that are shown with with double frames present languages
or type systems. All of these have names ending in “P”; the prefix letters
from the following list indicate other features:

G – programs in the language can only manipulate ground terms (i.e.,
terms with no uninstantiated variables in them).

R – the language has explicit region-based memory management.

T – the language has a type system.

The P and RP languages are directly used in our region-based Prolog imple-
mentation. The GP language is used as a stepping stone in the introduction
of P.

The translation from Prolog to P uses the type system TP to help with
reasoning about the program. TGP is used as a stepping stone in the intro-
duction of TP.
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Our region inference algorithm uses the region-based type system TRP to
help guarantee that the resulting RP program is region safe, that is, it never
tries to reference memory that has been deallocated.

Not shown on Figure 1.3 are Chapter 11, which reports on experimental
results with our prototype RP implementation and compares its performance
to other memory-management strategies, and Chapter 12, which concludes
and suggests directions for further work, including improvements to the re-
gion model and the region inference that we did not have time to implement
for this thesis.
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Chapter 2

GP: a ground Prolog subset

The present chapter presents notation that we use in the following chapters.
We define the language GP, whose entire purpose is later to be extended to
form P (in Chapter 3). Purposefully, next to nothing is said about memory
management here.

GP can be viewed as a first-order functional language with backtracking
and cuts. It differs from P in that only ground terms are possible. This has
the effect that we can define the language without needing to talk about
storage and sharing. Thus, in the next chapter when we introduce the full
P language, we will already be familiar with the mechanics of the language
and our style of operational semantics. Then we can pay full attention to the
important points about storage.

2.1 GP as a Prolog subset

GP arises as a syntactical subset of “core” Prolog by requiring that each goal
(or predicate head) have one of the forms

v�w:� � y qrl�lmlq � |=�� k��,� � y qrlml�lq � |=�� k ���
u
�g�$�%!

Furthermore,
� The parameters to each predicate are classified as either input or output

parameters. When calling a predicate all of the input parameters must
be instantiated to ground terms1, and the output parameters must be
fresh distinct variables. If the predicate succeeds it instantiates the
output parameters to ground terms. We refer to this division as para-
meter moding.

1A ground term is a term that contains no variables, or at least no uninstantiated ones.
In our storage model, a variable continues to matter after it has been instantiated; to prevent
confusion we shall only use the word “ground” in informal contexts where it is clear that
instantiated variables are not an issue.
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� In a goal of the form
� k���� � y qrlml�lq � |=� either

�
or all of the

���
s must

be instantiated to ground terms in advance; if
�

is instantiated, no
�Q�

may also be.
� In a goal of the form

� k �o�
at least one of

�
and

���
must be instanti-

ated in advance.
� �g���"! only occurs as the last goal of a clause.

If the parameter modes for each predicate are given, it can be checked
statically that these rules are obeyed. One simply scans through each clause
from the beginning, keeping track of which variables have yet been instan-
tiated.

The two upper sections of Figure 2.1 shows a naïve list reversal function
written in Prolog and the GP subset. Imagine the cuts in the GP version to
have been inserted by a Prolog-to-GP translator noting that no ground terms
match both clauses for the predicate.

2.2 A better syntax for GP

It is not technically convenient to represent GP programs in traditional Pro-
log syntax. The

� k��,� � y qrl�lmlq � |=� goal form has two different roles: it serves
to construct new terms as well as to inspect old ones. In connection with
memory management this difference is quite important, because construc-
tion involves a memory allocation and inspection does not. Therefore, we
want to be able to discriminate between these two roles syntactically.

Similarly,
� k�� can be used for simple assignment or for checking that

two terms are identical.
The Prolog-like syntax also does not make the parameter modes explicit.
Therefore we notate GP programs in the somewhat less Prolog-like syn-

tax shown in the lower pane of Figure 2.1. We now describe this syntax
formally.

2.2.1 Lexical elements

GP programs consist of the following lexical elements:

punctuation – such as n�p and
e

.

keywords – �	���'��
 , �g���"! , ����� � , ����!/! , # �$�%! ���%� , ��� �&�'��
(�	��� , � ���'��
(�	�)� , ��!O���&� , and ���$� ��� .
predicate names v�w – for example W����:]`^�a and \�]`� . Predicates roughly cor-

responds to what other languages call “procedures” or “functions”.
We assume that each predicate name v�w has associated a nonnega-

tive input arity �mv�w�� and a nonnegative output arity �mv�wr� .
functor names � – for example Z�Y	^~� and ^���X . In classical Prolog the canoni-

cal spelling of these two are “ � ” and “ R�U ”, but we chose to use a more
colloquial alphanumeric notation here. Functors correspond to value
constructors in a typical functional language.
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W`���:]�^�a�� R�U��G� �G�~¡¢�
W`���:]�^�a�� R�£¤Sg¥,U��G�t��RG£¤S�¦�U�¡§n�p¨W����:]�^ a©��¥��G� ��¦C¡¢�
\ ]`��� R�Ut��R�U�¡¢�
\ ]`��� R�£ªSg¥�U���¦�¡«n�p¬\ ]`����¥���¥�\�¡�®W��,�:]�^�a©�¯¥�\���R�£,U���¦C¡
° �:W$\ W	VC]`b ]�\�V�Y�a�] �±n²W��,�:]�^�a©���r^ �)�r^Q��Y&³,b~¡
W`���:]�^�a��'´=µ¶�G� �G·�¸C¡¹n�pº´=µ&»tR�U��½¼$�¾��»$·�¸t�
W`���:]�^�a��'´=µ¶�G� �G·�¸C¡¹n�pº´=µ&»tR�£¤Sg¥,U��¿W����:]�^ a©��¥��G� ��¦C¡�À· ¸�»tR�£¤S(¦�U �° �:W$\ W	VC]`b ]�\�V�Y�a�] �±nÁ\�]$�����r^ ��Y&³,b~¡
\ ]`���'´=µf�G· Â:¡«n�p¬´=µ�» R�U��Ã¼$�¾·:Â�»tR�U �
\ ]`���'´=µf��¦C¡«n�pº´=µ�»tR�£ªSg¥�U��À\�]$����¥��'¥,\�¡�Ä µ�»tR�Ut� Ä Â�»tR�£¤S Ä µrU��®W��,�:]�^�a©�¯¥�\�� Ä Â©��¦C¡¢�
W`���:]�^�aºn�p �����'��
 e xÅ�¶µ�z`Æ:}Ç � ���'��
(�	�)� �fµ �	� ^��$X e x,}Ç �	���Ç ��!O���&� Æ e \,¸Ç �)��� � x(\,¸,}�È�����'��
 e xÅ�¶µ�z`Æ:}Ç � ���'��
(�	�)� �fµ �	� Z�Y&^~� e xgÉ~z�W�}Ç ����!"! W����C]�^�aÊxGW:z`Æ:} e x¯Z`}Ç ��� �&�'��
(�	�)� Z�Y&^��,x�É~z Z$} e \�¸Ç �)��� � x(\,¸,} 8
\ ]`�ºn�p �	���'��
 e xÅ�fµ&}Ç � ���'��
(�	��� �¶µ �&� ^��$X e x�}Ç �	���Ç ��� �&�'��
(�	�)� ^=�$X�x,} e \ ÂÇ �)��� � x(\�Â,}�È�	���'��
 e xÅ�fµ&}Ç � ���'��
(�	��� �¶µ �&� Z�Y&^�� e x�É~z,W�}Ç ����!"! \�]$�Ëx(W,} e x(W$\:}Ç ��� �&�'��
(�	�)� ^=�$X�x,} e b¶µÇ ��� �&�'��
(�	�)� Z�Y&^~�,x�É�z$b=µ	} e b ÂÇ ����!"! W��,�:]�^�aÊxGW$\~z$b:Â�} e x¯Z`}Ç �)��� � x¯Z`} 8

Figure 2.1: The naïve reverse function in Prolog, in the Prolog-like syntax for
GP (note that the parameter modes are not explicit in that syntax), and in our
preferred GP syntax.
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We assume that each functor name � has associated a nonnegative
arity

s � s .
We handle each integer as a special functor with arity

c
.

Note that functor and predicate names are strictly separate con-
cepts in P.

register names L – for example, W , b Â or \�µ in the example program. Regis-
ters are used to refer to intermediate values during the evaluation of a
predicate. The registers correspond to the variables in the Prolog-like
syntax, but when we add real logical variables in Chapter 3 we will
keep that concept strictly separate from the local intermediate values.
Thus henceforth the latter will be called “registers” and never “vari-
ables”.

The precise lexical definition of predicate, functor, and register names is not
important here; our GP syntax makes it explicit how each identifier is to be
interpreted.

2.2.2 Grammar

GP programs are defined by this pseudo-grammar2:

h
program ijMOM/k h

predicate i�y¤l�lml h predicate i'| �mÌ�Í½1 �h
predicate iÎMOMOk v�wÏn�p h

clauses ih
clauses ijMOM/k h

clause i 8s h
clause iÐÈ h clauses ih

clause ijMOM/k �����'��
 e xgL y zml�l�l{z L±Ñ Ò�ÓÅÔ�} Ç h
body ih

body ijMOM/k h
instruction i Ç h

body is �g�$�%!
s ����� � xgL y zml�lmlmz L¢Õ Ò�ÓÅÖ�}h

instruction iÎMOMOk ����!"! v�w � x�L y zml�lmlmz L±Ñ Ò�Ó�×OÔB} e xÅL y zml�lmlmz L±Õ Ò�Ó�×�Ö�}s # �$�"! ���%� v�w � xgL y z�lml�lmz L Ñ Ò�Ó × Ô } e xgL y z�lml�lmz L Õ Ò�Ó × Ö }s ��� �&����
��	��� �	xgL y zml�l�l{z L�Ø Ù(Ø } e Ls � ������
��	��� L �&� � e xgL y z�lml�lmz L Ø Ù(Ø }s ��!/�0�	� L e Ls ���$� ��� LCÚ�Ls �&���
Note that the length of register tuples depend on the arities of other

names; the v�w whose arities appear in the
h
clause i and

h
body i productions is

of course the name of the predicate for which the
h
clause i applies.

2The “pseudo” is because of the informal way to specify repetition. Of course the gram-
mar could be replaced with a standard context-free grammar and the list-length constraints
construed separate sanity checks, but we believe this exposition is clearer.
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In this grammar, “goals” have been renamed to “instructions” and always
start with a keyword that identifies a particular kind of instruction. Both of
these changes emphasise a conception of GP as an abstract machine rather
than a programming language3. This perspective will become unavoidable
once we introduce memory management primitives, so we might as well use
notation and terminology that supports it mentally.

We use a “
Ç

” sign rather than a comma to separate instructions. This
makes symbolic manipulation of program fragments easier. If commas with-
out enclosing parentheses were to appear in a

h
body i , it would be awkward

to write down, say, elements of
h
body i�Û h

body i with standard pair notation.

2.2.3 Informal semantics

The instruction ����!/! v�w$xgL y zml�lmlmz L¢Ñ Ò�ÓÅÔ�} e x�L y zml�lmlmz L¢Õ Ò�ÓÅÖ�}
corresponds to the goal v�w:� � y qrl�lmlq � Ñ Ò�ÓÅÔ�q �T�y qrlml�l�q ���Õ Ò�ÓÅÖ � in the Prolog-like syntax
of Section 2.1.

The # �$�%! ���%� instruction is similar to the ����!/! instruction but is used when
the called predicate is a built-in that the GP implementation provides for
doing, for example arithmetic or I/O. We discuss it further in Section 2.3

The instructions ��� �&�'��
(�	��� ��xÅL �y zml�l�l{z L �Ø Ù(Ø } e L
� ������
��	��� L �&� � e xgL �y z�lml�lmz L �Ø Ù(Ø }

are versions of the goal
� k��,� � �y qrlml�l�q � �Ø Ù(Ø � in Section 2.1’s notation. ��� �&�'��
(�	���

handles the case where
�

is unbound before the goal and the
�Ü��

s all are
bound. It binds L and never fails. � ���'��
(�	�)� handles the case where

�
but no�©�

are bound in advance. It either fails or binds all of the L �� s.
The instructions ��!/���&� L e L ����$� ��� L y ÚÝL +

are versions of the goal
� k ���

. ��!/�0�	� handles the case where
�

but not
�o�

is already bound. ���$� ��� handles the case where
�

and
�Þ�

are both bound in
advance. In GP, ���$� ��� simply checks that the terms bound to L y and L + are
identical, and fails if they are not.

The �&��� instruction is the cut goal “
u
”.

2.2.4 Scope rules for GP

We expect, without further comments, every GP program to adhere to the
following scope conventions. They also apply to the rest of the xP languages.

3As we use the words here, the difference between a programming language and an
abstract machine is mainly one of perspective. A programming language is one in which
people write programs. The emphasis is on the human programmer who constructs code
to solve a specific problem. On the other hand, an abstract machine is viewed as a model
of a computation process. The program is given, and we want to study how the machine
executes it.
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Box 2.1—WHY IS THERE AN ��!/�0�	� INSTRUCTION?

The reader may wonder why we chose to include the ß&àOá ß�â instruction in GP.
After all, ß&àOá ß�âCã¢ä¨ã ��å®æ

is operationally equivalent to ç ã �%è ã�é æ (where ç è é is the
obvious substitution operator).

The reason is that ß	à�á0ß)â will turn out to be of technical importance in the
typed TP language which employs a form of subtyping to allow a value of
some type to be used as if it had a more general type (i.e., a type that describes
a larger set of values). We then use the ß&àOá ß�â command to allow the same
value to be called different names when viewed as having different types. This
allows us to isolate the technicalities of subtyping to a single construct and to
attach type information to names rather than to appearances of names.

Thus we need to introduce the ß&àOá ß�â instruction sooner or later. As it is in fact
possible to do so in the elementary setting of GP we might as well do it now.
There’s plenty of complications ahead anyway.

� When a register name appears to the right of the “
e

” symbol it is a
binding instance of that register name. The scope of the binding is theh
body i that follows the “

Ç
” sign immediately after the binding instance.

Except for binding instances, register names may only appear inside
the scope of a binding instance for the particular name.

We generally assume that each register name in the program has
exactly one binding instance in the entire program. We do not ad-
here strictly to this convention in example code; the reader is sup-
posed to suitably alpha-rename the examples before applying theory
to them.

� The scope of a predicate name v�w is the entire program.
Any predicate name that appears in a ����!/! instruction must have

exactly one definition in the program.
The name space for # �$�%! ���%� instructions is separate from the name

space for ����!"! instructions.
� Functor names � are not declared. Every mention of each functor name

specifies the same functor.

2.3 Built-in predicates

The # �$�"! ���%� instruction allow the addition of extra primitive operations to GP.
We use it in our prototype implementation (and in examples) for features
that are not essential to memory management.

The idea is that we can leave the semantics of these built-ins more weakly
defined than the rest of the primitives and avoid wasting space on an abso-
lutely rigorous treatment of them.

We now describe the built-ins supported by our prototype implemen-
tation. They all expect integers as input and produce integers as output;
this simplifies our semantic treatment of # �$�%! ���%� . It would not be conceptu-
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ally difficult to allow built-ins to have as complex interfaces as user-written
predicates, but it would need a more verbose semantics.

The first group of built-ins support integer arithmetic: ��X&³~� , V=�r^,³~� ,
b���VC] � , a��&�~�&a�] and V~Y�a$³�X,Y . Each of these have input arity 4 and output arity
1 . If the input parameters are not numbers the result is undefined. (The
reason for this is that our prototype works that way. It would make perfect
sense to have built-in predicates that tested their input for numberness and
backtracked if the test failed; but the question is not important as our type
system GP checks statically that the situation does not arise in practise).

We also suppose that there are two imperative built-ins for communicat-
ing with the outside world through a single input-output channel. We do
not invent a special kind of functors for representing characters but repre-
sent characters by numbers as in Edinburgh Prolog (though our names for
the I/O primitives follow the ISO standard).ê ]`b ë:Z�Y�a�] reads a character from a standard input channel. It has input
arity

c
and output arity 1 .

��³,b ë:Z�Y�a�] outputs a character to a standard output channel. It has input
arity 1 and output arity

c
.

An important point about these imperative operations is that their effect
on the outside world persist even if the execution path that called them
eventually fails and backtracks past the operations.

This may not be in strict accordance with the declarative logical intuition
behind the backtracking mechanism. However, practical implementations of
Prolog all have these constructs. When Prolog is viewed as a programming
language rather than as a theorem prover, this is no problem. Backtracking
is not a time machine, it is simply a control-flow device.

2.4 The main goal

There is no explicit main goal in a GP program. Instead there is a designated
predicate v�w�ì with zero input and output arities, and an implicit main goal
which would read í

pTv�w�ì�q �g���"! l
in Prolog notation.

This calls v�wrì and keeps backtracking into it every time it succeeds. If
v�w ì eventually fails the program terminates. A GP program thus does not
directly return any useful information other than the fact that it did not get
caught in an infinite loop. (The primary rationale for this decision is that
is relieves the operational semantics of having to define how to extract a
structured result from the final state of the computation. The semantics of
built-in predicates can be left comparatively vaguely defined).

However, during the computation the program may use the impera-
tive I/O built-ins ê ]`b:ë Z�Y�a�] and ��³,b ë Z�Y�a�] to communicate with the out-
side world. For example, Figure 2.2 shows how a conventional Prolog-like
answer-sequence dialogue could be programmed in GP using these features.
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v�w�ìËn�p �����'�	
 e x�}Ç ����!/! \�]�W�X�p ê Y$W�Xîx�} e x�W�^��&_ ]$\:}Ç ����!/! _,\���b ]:�&b,\��r^ ê x�W`^~�&_ ]$\C} e x,}ï
Ask whether the user wants more answers:Ç # �$�"! ���%� ê ]$b ë Z�Y�a ]:x�} e x¯Z�Y�V,VCW�^�aC}ï
Backtrack into \�]�W�X p ê Y$W�X unless the user said “ ð ”ï
(whose character code is 59)Ç � ������
��	��� Z�Y�V�V�W�^�a �	�tñ�ò e x,}Ç �&���Ç ����� � x�}�È�����'�	
 e x�}ï \�]�W�X�p ê Y$W�X failed; answer “no.”. First the n...Ç ��� �&����
��	��� µ�µ&ó:x�} e ^Ç ����!/! _,\���b ]ôxg^:} e x�}ï
...then the o...Ç ��� �&����
��	��� µ�µ�µ$x�} e YÇ ����!/! _,\���b ]ôx�Y$} e x�}ï
...then the full stopÇ ��� �&����
��	���tõ$ö x,} e aCY	bÇ ����!/! _,\���b ]ôx(a:Y	b:} e x,}Ç ����� � x�} 8

_�\���b ] �	b,\��r^ ê n�p �	���'��
 e x��$}Ç � ������
��	��� � �	� ^��$X e x,}Ç �&���Ç ����� � x,}�È�	���'��
 e x��$}Ç � ������
��	��� � �	� Z�Y&^~� e x�Z�÷CW$\~z$\�] �	b:}Ç # �$�"! ���"� ��³,b ë:Z�Y�a�]:x�Z&÷:W$\ } e x,}Ç ����!/! _,\~��b ] �&b�\��r^ ê x�\�]:�&b:} e x�}Ç ����� � x,} 8
Figure 2.2: An example that shows how a normal Prolog-like answer-sequence
dialogue could be programmed in GP. \�],W�X�p ê Y�W�X is supposed to compute some
number ( Í c

) of answers in the form of strings (i.e., lists of character codes).
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2.5 Operational semantics for GP

We give a small-step operational semantics for GP.
The primary role of this semantics is to introduce our ways of handling

control-flow before we need to include store manipulations in the semantics.
The portions of this semantics that deal with predicate calls and backtracking
(in ways that are inspired by Jones and Mycroft [1984]; Debray and Mishra
[1988]) will recur without substantial changes in the semantics for P and
RP.

Though this semantics is formally the ultimate definition of what GP pro-
grams mean, we need to address the question of how it relates to our original
definition of GP as a subset of Prolog. The answer is that a GP program that
does not “go * 
���&� ” in one of various ways discussed below behaves the
same as the Prolog program it would be in the Prolog-like syntax for GP we
introduced in Section 2.1.

It would be straight-forward, though tedious, to substantiate this claim
by proving this equivalence when the Prolog program is to be interpreted
according to interpreter V in Jones and Mycroft [1984] or the operational
semantics with cuts in Debray and Mishra [1988]. The structures of the
semantics are related enough that a correspondence relation between the
states of either could be formulated. One could then show that each step
of the present semantics is simulated by one or more steps of the Prolog
semantics4.

2.5.1 Objects used in the semantics

ø ù h
Term i k � h Term i Ø Ù(Ø

L ù h
Register iú ù h
Env i k h

Register i finû e h
Term iü ù h

body iý ù h
clause iþ ù h
clauses iÿ ù h
Cont i k � h ValEnv i¤Û h

Register i��ªÛ h
body i¤Û h

Dump i � �
�"w ù h

Frame i k h
ValEnv i¤Û h

body iÐÛ h
Dump i¤Û h

Cont i
� � ù h

Frames i k h
Frame i �� ù h

Dump i k h
Frames i� ù h

State i k h
Frames i���� � � q�* 
�� �&� y q�* 
���&� +	�

h
Frame i is a “nondeterministic state” which contains all the state infor-

mation that does not concern backtracking. Its main components are
ú

with
bindings of visible variables and a program point

ü
.h

Cont i is a stack of frames that have been suspended by ����!"! instructions.
The

h
Register i list is the variables the should be bound to the called predi-

cate’s return values.
4That is, as long as the GP program did not use built-ins, as none of the cited Prolog

semantics consider those at all.
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A
h
Frame i together with its enclosed

h
Cont i corresponds to the

h
Stack i

domain of Jones and Mycroft [1984] or Debray and Mishra [1988]. We
need a separate representation of the front frame because of the out-
put parameters which means that the ����!"! instruction is not quite finished
before after the predicate has returned. In contrast, a Prolog seman-
tics can safely forget about a goal once the named predicate has been
started.

A
h
Frames i is a stack of alternative

h
Frame i s the first of which is currently

being executed. If it fails it gets popped off the stack, whereby execution
backtracks to the next

h
Frame i on the stack. A

h
Dump i is the set of alter-

native states that are still relevant after a �	��� (in addition to the frame that
executes the �	��� ).

A
h
State i either is a

h
Frames i , or one of the final states � � , * 
�� �&� y , and

* 
�� �&� + .
Generally * 
� �&� � is the semantic equivalent of a “program crash”: error

conditions that should be avoided by static checks because it is expensive or
impossible to check for them at run-time.

* 
���&� y is the kind of error that occurs when an undefined name is men-
tioned or predicate arities do not match. If the scope rules of Section 2.2.4
had been stated in a more formal way one would have been able to prove
that “well-formed GP programs do not go * 
�� �&� y ”.

* 
���&�`+ is caused by using a built-in predicate with input arguments that
are not numbers. In Chapter 6 we present a type system TGP that can check
that “well-typed TGP programs do not go * 
�� �&� + ”.� � means that the program has terminated without going * 
� �&� � . Accord-
ing to the decisions in Section 2.4 this happens when the program eventually
fails.

2.5.2 The initial state

Following the decisions in Section 2.4, the initial
h
State i consists of a single

frame that calls v�w ì and fails each time v�w ì succeeds:� ì k�
���îq ����!/! v�w�ì&x,} e x�} Ç �g�$�%! q�
�� � �
2.5.3 The transition relation

A
h
State i that consists of

h
Frames i is a non-final state. We now define a

successor state for each non-final state:
The state 
�� (i.e., the empty list of

h
Frame i s) means that the main goal has

eventually failed. This is the normal way of termination for GP programs, so
the successor of 
�� is � � .

Any other non-final state has the shape

� ú q ü q � q ÿ � M/M�� �
and we now proceed by case analysis on

ü
.
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ü k ����!"! v�w�xgL y zml�l�l{z�L¢Ñ Ò�Ó�ÔB} e xgL �y z�lml�l{z0L � Õ Ò�ÓgÖ } Ç ü �
� There must be a unique

þ
such that v�wÊn�p þ is in the program. It

must have the form,

þ k �����'�	
 e xgL y'y z�lml�lmz L y Ñ Ò�ÓÅÔ } Ç ü y ÈCl�lml:È �����'��
 e xgL�� y zml�lmlmz L ��Ñ Ò�ÓgÔ } Ç ü � 8
Otherwise * 
���&� y� If any L����ù Dom

ú
then * 
� �&� y ; else� ú ��� �(L � ���e ú ��L�� � s 1������ �{v�w�� � for 1��! "�$#� � � � � �� ÿ � � � ú q���L �y qrl�l�l�q�L � Õ Ò�Ó�Ö � q ü � q � � MOM ÿ� �"w ��� � ú � q ü � q � � q ÿ � � for 1��! %�$#� The next state is �"w y MOM	�"w + M/M�l�l�l�MOM	�"w&��MOM�� �ü k # �$�%! ���%� v�w�xÅL y zml�lmlmz L Ñ Ò�ÓÅÔ } e xÅL �y zml�lmlmz L � Õ Ò�ÓÅÖ } Ç ü �

The implementation is supposed to provide a function' Ò�Ó M�J Ñ Ò�Ó�Ô e ( J Õ Ò�ÓgÖ �)� �g���"! q+* �-,
� If any L � �ù Dom

ú
then * 
�� �&� y ; else� If any

ú ��L � � �ù J then * 
���&� + ; else� Compute
' Ò�Ó	� ú ��L y�� qrl�lmlq ú ��L¢Ñ Ò�ÓgÔ ��� .

If the result is �g���"! , then the next state is � � .
If the result is * , then the current state is its own successor (mod-
elling nontermination when the builtin predicate does not return
or when trying to divide by zero).
Otherwise, let the result be �{Ì y qrl�lmlq'ÌÜÕ Ò�ÓÅÖ � .� If any L �� ù Dom

ú
then * 
���&� y ; else� ú �.� ú ��L �� �e Ì � s 1/�! "� �{v�w�� �� The next state is � ú � q ü � q � q ÿ � MOM�� �ü k ��� �&�'��
(�	�)� �	xgL y zml�lmlmz L~Ø Ù(Ø } e L � Ç ü �

� If any L � �ù Dom
ú

then * 
�� �&� y ; else� If L � ù Dom
ú

then * 
���&� y ; else� ú � � ú ��L � �e ��� ú ��L y)� qrl�lmlq ú ��L Ø Ù(Ø �B� �� The next state is � ú � q ü � q � q ÿ � MOM�� �ü k � ���'��
(�	�)� L �	� � e xÅL �y zml�l�l{z L �Ø Ù(Ø } Ç ü �
� If L0�ù Dom

ú
then * 
�� �&� y ; else� If not

ú ��L � k �,� ø y qrl�lmlq ø Ø Ù(Ø � for some
ø �

s, then the next state is � � ;
else� If any L �� ù Dom

ú
then * 
���&� y ; else� ú �.� ú ��L �� �e ø �©s 1��! "� s � s �� The next state is � ú � q ü � q � q ÿ � MOM�� �
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ü k ��!O���&� L e L � Ç ü �
� If L0�ù Dom

ú
then * 
�� �&� y ; else� If L � ù Dom
ú

then * 
� �&� y ; else� ú � � ú ��L � �e ú ��L � �� The next state is � ú � q ü � q � q ÿ � MOM�� �ü k ���$� ��� L y ÚTL + Ç ü �
� If any L � �ù Dom

ú
then * 
�� �&� y ; else� If

ú �mL y�� �k ú ��L + � then the next state is � � ; else� The next state is � ú q ü � q � q ÿ � M/M�� �ü k �	��� Ç ü �
� The next state is � ú q ü � q � q ÿ � M/M �ü k �g���"!
� The next state is � �ü k �)��� � xgL y z�lml�l{z0L | }
� If any L � �ù Dom

ú
then * 
�� �&� y ; else� If ÿ is an empty list then * 
� �&� y ; else� � ú � q���L �y qrl�l�l�q�L �1 � q ü � q � � � MOM ÿ � � ÿ

� If Ì2�k43 then * 
�� �&� y ; else� If any L �� ù Dom
ú �

then * 
� �&� y ; else� ú � � � ú � ��L �� �e ú ��L � � s 1��� 5�¬Ì �� The next state is � ú � � q ü � q � � q ÿ � � MOM�� �
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Chapter 3

P: A Prolog-like intermediate
language

In this chapter we extend GP with two new instructions, ���������	��
 and � ��
��� ,
that allow uninstantiated variables inside terms; we also describe the inter-
action between variables and the GP instructions. The result is the language
P.

The intention is that P should be a sufficiently strong language that ev-
ery Prolog program has a natural translation into P. Here, by a “natural”
translation we mean that the terms manipulated by the P version should be
the same terms as the original Prolog program manipulates; and that there
is a P predicate that corresponds to each Prolog predicate. (The point of
these conditions is that we do not consider a Prolog interpreter written in
GP that interprets a ground encoding of the Prolog program to be a natural
translation).

We describe how such a translation can be done in Chapter 8.
At the same time, the instructions of P should be orthogonal and prim-

itive enough to facilitate adding explicit memory-management annotations
to it (which we do in Chapter 4). The design of GP has already been heavily
influenced by this; the influence will continue as we define P.

Furthermore, P should allow memory-efficient translation of those parts
of a Prolog program that are written in a functional style. The reason for
this requirement is that region-based memory management (in particular
region inference) proves to work much better when there are no variables
around. It is common that large parts of actual Prolog programs do not
use (logical) variables for anything else than returning ground terms from
predicates. These parts can be translated into the GP subset of P, which is
why that subset exists at all. However, it is also common that certain parts
of program do use variables in a non-trivial way; so P should allow GP-like
code to interact with (and blend into) code that needs to have variables.

We generally avoid optimizations that are unrelated to memory manage-
ment, unless they are very simple to describe and implement.

Unlike GP, P cannot be understood simply as a fancy syntax for certain
restricted Prolog programs. It is a separate, rather low-level, language with
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its own run-time restrictions that cannot easily be expressed in Prolog.
However, there is a translation back to Prolog that is valid and meaning-

preserving for P programs that do not “go * 
�� �&� ” in ways we discuss below.
In Chapter 7 we present a type system for P; P programs that can be typed
in this type system are known not to go * 
���&� . So we can consider the set
of typeable programs to be a common subset of P and Prolog, and these are
the programs we are really interested in.

3.1 The store model

P is marked out from Prolog by the fact that an explicit store model of term
representations is needed to understand it. The store model we use is related
to, but somewhat more abstract than, the heap in the WAM [Aït-Kaci 1991].

Let a countably infinite set
h
Addr i of addresses be given. A store is then

a finite map from
h
Addr i to data which is defined thus:6 ù h
Addr ih
Datum iÎk 7 Ù h Addr i Ø Ù(Ø ��� ���$�%�&�'� � � h

Addr i8 ù h
Store i k h

Addr i finû e h
Datum i

The first of the three possibilities for
h
Datum i can be used to build ground

terms in a hopefully obvious manner1. An element of 7 Ù h Addr i Ø Ù(Ø is called a
structure and written ��� 6 y qrlml�lq 6 Ø Ù(Ø � .

The same
h
Addr i can be referenced from several different places lead-

ing to a kind of “shared” representation common in implementations of
functional languages. This must not be confused with the entirely differ-
ent “structure sharing” concept used in some implementations of Prolog.���$�"�&��� stands for an uninstantiated logical variable. The variable is iden-
tified by the address at which the ���$�"�&��� is found; two ���$�%�&�'� s stored at dif-
ferent addresses denote distinct variables.

Finally a store cell with a value from
h
Addr i is an indirection that is left

when a variable is instantiated. Because of the “sharing” we just mentioned
it would be impractical to seek out and redirect all of the references to a
variable when it is instantiated; rather the ���$�%�&�'� marker is replaced with an
reference to the term the variable is unified with. We call these indirections
instantiated variables2.

1You may note that we use a boxed representation of integers: the operands to a functor
are all addresses, and integers live in store cells of their own. Thus, in the representation
of the term 9;:&:=<?>A@�B the store cell with the 9;:&: contains an pointer to the cell where the
number >A@ is stored. Similarly, when a register is bound to a number, the register really
contains a pointer to a store cell where the actual number can be found.

There is no intrinsic reason why integers could not be unboxed (which would correspond
roughly to letting integers be a special kind of C Addr D rather than a special kind of func-
tor). We chose to box integers because that allows test programs to put extra stress on the
memory management principles with a given amount of programming put into them.

2This might be contrary to some Prolog programmers’ intuition, according to which vari-
ables cease to be variables when they are instantiated. We have no other good intuitive
word for this concept, however.
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]�É�W	V,��X�]Nn�p �	���'��
 e x,}Ç ��� �&�'��
(�	�)��ö Â:x,} e ^�³�VÇ ���������	�	
 e W$\ ê µÇ ���������	�	
 e W$\ ê ÂÇ ��� �&�'��
(�	�)� ÆCW$\�xg^�³�V�} e W$\ ê ¸Ç ��� �&�'��
(�	�)� [CY�Y�xGW$\ ê µ�} e b ]$\$VfµÇ ��� �&�'��
(�	�)� [CY�Y�xGW$\ ê Â�} e b ]$\$VCÂÇ ��� �&�'��
(�	�)� [CY�Y�xGW$\ ê ¸ } e b ]$\$V:¸Ç ���$� ��� b ]$\`VµoÚÝb ]�\`VCÂÇ ���$� ��� b ]$\`V�Â ÚÝb ]�\`V:¸Ç �)��� � x�b ]$\`Vµ	} 8

b:]$\`Vfµ [CY�Y ���$�%�&�'�

b:]$\`VCÂ [CY�Y ���$�%�&�'�

b:]$\`VCÂ [CY�Y Æ:W�\ ö Â

b ]$\`Vµ [:Y�Y �

b ]$\`V�Â [:Y�Y ���$�%�&�'�

b ]$\`V�Â [:Y�Y Æ:W$\ ö Â

b:]$\`Vfµ [CY�Y �

b:]$\`VCÂ [CY�Y �

b:]$\`VCÂ [CY�Y Æ:W$\ ö Â

Figure 3.1: An example of how variables in terms behave. The three graphs
show part of the store and the b ]$\`Vµ , b ]$\`V�Â , and b:]$\`V:¸ registers before, be-
tween, and after the ���$� ��� instructions.
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Figure 3.1 shows examples of all four kinds of
h
Datum i . Notice that after

the second unification there is a chain of instantiated variables that need
to be traversed when one wants to find the real operand to b ]$\`Vfµ ’s [CY�Y
structure.

3.1.1 Local cycles in stores

Definition 3.1 A local cycle in store 8 is a cycle consisting entirely of instan-
tiated variables. That is, 6 ì q 6 y qrl�lmlq 6 | k 6 ì with ÌFE c

and 8 � 6 � � k 6 �HG y .
In general we will only consider stores that have no local cycles. It can

be checked in our operational semantics that no computation step can intro-
duce a local cycle. In general, when we quantify over stores, it is implicit
that the quantification is over stores that have no local cycles.

As long as we only consider stores without local cycles, the action of
follow a chain of (possibly zero) instantiated variables to its end is well-
defined:

Definition 3.2 IKJ�M h Addr i e h
Addr iKL is the function defined by

IMJ � 6 � k case 8 � 6 � of

NOQP (not defined in 8 ) �e *6 � ù h
Addr i �e IMJ:� 6 � �

(anything else) �e 6
Despite the recursive case, this is clearly well-defined as long as there are no
local cycles in 8 .

We use this function in the formal semantics of � �	
��� , and in Appendix A’s
construction of the meaning of stores.

3.1.2 The formal meaning of stores

In formulas we use the notation 8 
 
 6 � � to mean the term represented by the
pointer 6 in the store 8 .

Theorem 3.3 There is a countably infinite set of variable names R and a no-
tion of “terms” over R (the variables ø q ø � q ø � q etc. range over terms) such that for
each store 8 with no local cycles there is a function 8 
 
�� � which maps addresses
to terms such that

� 8 
 
 6 � �k case 8 � 6 � of

NOQP ��� 6 y qrlml�lq 6 |�� �e ��� 8 
 
 6 y � �Bqrl�l�l�q 8 
 
 6 | � � �6 � ù h
Addr i �e 8 
 
 6 � � ����$�"�&��� �e some

� ù R
� 8 � 6 y�� k ���$�%�&�'�TS 8 � 6 + � k ���$�%�&�'�VUXW 6 y �k 6 + W 8 
 
 6 y � �%�k 8 
 
 6 + � �

If 8 contains no cycles at all (local or otherwise), the notion of “terms” can be
taken to be ordinary finite terms built from the chosen set of functors.
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This theorem is obvious in the special case that 8 is cycle-free: One can
take R k h

Addr i and let 8 
 
 6 � �k 6 when 8 � 6 � k ���$�%�&�'� .
In the general case where 8 may contain (non-local) cycles a more ad-

vanced notion of “term” than the usual one is necessary. We give one in
Appendix A where a rigorous proof of the theorem also appears. (The rea-
son why the definition and the proof has been postponed to an appendix is
that they are somewhat involved mathematically and not directly relevant
to regions).

3.2 The Y[Z5\^]`_�Zba instruction

The syntax for the ���������	��
 instruction is:
h
instruction iÎMOM/k ���������	��
 e L

This instruction creates a fresh, uninstantiated variable and binds L to it.
In Prolog the instruction is invisible, or could perhaps be represented as

the goal VCWdc ]`� W$\ � � � , where V�W=c ]`� W�\.e:µ is defined by the fact “ VCW=c ]`�:W$\ � � � l ”.
3.3 The f5]ba	]^g instruction

The syntax of the the � ��
���� instruction is
h
instruction i M/MOk � �	
��� L e L �

� �	
��� can be viewed as an elimination construct corresponding to the
variable introduction of ���������	��
 .

If L is bound (perhaps indirectly) to an uninstantiated variable, the � ��
���
instruction fails, causing backtracking to occur.

If L is bound, though a chain of zero or more instantiated variables, to
a structure, the � �	
��� instruction succeeds. It also binds L � to that structure,
without any intervening indirections.

The Prolog equivalent of the � ���'��
(�	��� instruction is

^�Y	^,� W$\¢� � � q � � k �
(note that this does not capture the variable-chain traversal, because instan-
tiated variables are invisible in Prolog).

3.4 The f5]Thji�alknm`i instruction and variables

In P the � ������
��	��� instruction has two restrictions that were not present in GP.
The first restriction arises as our response to the problem of what the

effects of the instruction

� ������
��	��� L �&� � e xgL �y z�lml�lmz L �Ø Ù(Ø }
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should be if L is bound to an uninstantiated variable. If we were to be true to
the interpretation in Chapter 2 of � ������
��	��� as a fancy way to write the Prolog
goal

� k �,� ���y qrl�lmlq ���Ø Ù(Ø � , the only reasonable answer would be to bind the L �� s
to fresh uninstantiated variables and instantiate the variable bound to L to a
newly-created � structure consisting of the new variables.

This would, however, directly contradict our reasons for discriminating
between �����&����
��	��� and � ���'��
(�	�)� in the first place, which was that ��� �&�'��
(�	���
must allocate memory and � ���'��
(�	�)� must not.

The theory that follows would become messy and awkward if we allowed
� ������
��	��� to allocate memory. Instead we simply decide that

� the operand to � ���'��
(�	�)� must not be an uninstantiated variable.

Violating this rule should not be just a failure that leads to backtracking;
then some P programs would have an apparently valid behaviour that is
different from the behaviour of the corresponding Prolog program. Instead
we declare violations of the rule to be * 
� �&� - , allocating a new suffix 2 for
this kind of error. This decision means that it is still sound to let � ������
��	���
correspond to

� k��,� ���y qrlml�l�q ���| � .
The type system TP we present in Chapter 7 can be used to prove that a P

program never goes * 
� �&� - ; hence that it is equivalent to its corresponding
Prolog program.

One way to avoid going * 
� �&� - would be to replace
(...)Ç � ������
��	��� W �	� [:Y�Y e xgÆ�z{Z`}
(...)

with
(...)Ç ���������	��
 e ÆÇ ���������	��
 e ZÇ ��� �&�'��
(�	��� [CY�Y�x�Æ�z9Z$} e b ]	V��Ç ���$� ��� W Ú�b:]	V,�
(...)

whenever there is a risk that W might be bound to an uninstantiated variable.
This always allocates memory, though, no matter what W is bound to. The
� �	
��� instruction offers a more economic replacement, as we shall see shortly.

The other restriction on � ���'��
(�	�)� is primarily motivated by aesthetics.
Consider the situation after the unifications on Figure 3.1 (page 34), and
imagine that

(...)Ç � ������
��	��� b ]$\`Vfµ �	� [:Y�Y e x�b ]	V��C}Ç � ������
��	��� b ]	V,� �	� [�\:Y&Æ e x�}
(...)

were to follow. The first � ������
��	��� instruction goes well, binding b ]	V�� to the
first of the instantiated variables. Now, the second � ���'��
(�	�)� instruction has
to traverse the chain of instantiated variables before it can find that the Æ:W$\
structure is not a [�\:Y&Æ and backtrack.
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We think it is inelegant that the � ���'��
(�	�)� instruction should do two sepa-
rate tasks, so we set the rule that

� It is * 
� �&� - for the argument register in a � ���'��
(�	�)� instruction to be bound
to an instantiated variable.

This second rule would probably not be justifiable if any extra work were
needed to ensure it was satisfied. It turns out, however, that the TP type
system that protects against � ���'��
(�	�)� on uninstantiated variables also protects
against � ������
��	��� on instantiated variables.

Under these circumstances we think that the elegance of letting � ������
��	���
be a direct inverse to �����&����
��	��� , and use a separate � �	
��� instruction for
traversing instantiated-variable chains, should be allowed to govern the de-
sign choice.

3.5 Examples of P code

We can summarise P’s syntax as follows. The scope rules are as outlined in
Section 2.2.4.

h
program ijMOM/k h

predicate i�y¤l�lml h predicate i'| �mÌÝÍ 1 �h
predicate iÎMOMOk v�wÏn�p h

clauses ih
clauses ijMOM/k h

clause i 8s h
clause i¤È h clauses ih

clause ijMOM/k �����'�	
 e xgL y zml�lmlmz L Ñ Ò�ÓgÔ } Ç h
body ih

body ijMOM/k h
instruction i Ç h

body is �g�$�%!s ����� � xgL y zml�lmlmz L Õ Ò�ÓÅÖ }h
instruction iÎMOMOk ����!/! v�w � xÅL y zml�lmlmz L±Ñ Ò�Ó�×OÔB} e xÅL y zml�lmlmz0L±Õ Ò�Ó�×�Ö�}s # �$�"! ���"� v�w � xgL y z�lml�lmz L¢Ñ Ò�Ó�×OÔB} e xgL y z�lml�lmz L¢Õ Ò�ÓB×/ÖB}s ��� �&�'��
(�	��� �	x�L y zml�l�l{z L�Ø Ù(Ø } e Ls � ������
��	��� L �&� � e xÅL y z�lml�lmz L~Ø Ù(Ø }s ���������	��
 e Ls � �	
��� L e Ls ��!/�0�	� L e Ls ���$� ��� LCÚ�Ls �&���

We expand the “reverse” example program from Figure 2.1 (page 22)
to a version that can also reverse a partially unknown list (giving multiple
answers) yet only creates new variables if necessary. This new version is
shown on Figure 3.2.

The difference from the GP version is that some of the � ���'��
(�	�)� instruc-
tions (in the main \�]`� predicate) has been replaced by calls to auxiliary
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W`���:]�^�a�� R�U��G� �G�~¡¢�
W`���:]�^�a�� R�£¤Sg¥,U��G�t��RG£¤S�¦�U�¡§n�pÝW����:]`^�a©��¥��'�t��¦C¡¢�
\ ]`��� R�Ut��R�U�¡¢�
\ ]`��� R�£ªSg¥�U���¦�¡«n�p¬\ ]`����¥���¥�\�¡�®W��,�:]�^�a©�¯¥�\���R�£,U���¦C¡oqp&r�sAt�uAvqw;xzy{u�|&}	~-|&� ä���� p&�j�å�� |&��|K� � p&� ä�� p&rjpå��&� ~å�� | â ~K� �A� ~ � p&rjp ß�â vqw;x ä�� �å |M� á ~ � �M�|&}	~-|&� ä���� p&�j� � � p;� is now known to be uninstantiatedå��+� } â ~K� �A� ~�vqw&x � � ä rj��o=�å�� } á �H� � p;����rj��o=�å |M� á ~ � �K�oqp&r�sAt�u�s&�;v���yMuV|&}	~-|&� ä���� p;�d�å�� |&�H|K� � p&� ä � p;rdpå��&� ~å�� | â ~K� �A� ~ � p;rdp ß)â s;�&vq� ä����¡;¢l�=£ �å |M� á ~ ���¡;¢l�d£ �K�|&}	~-|&� ä���� p;�d� � � p;� is now known to be uninstantiatedå�¤ ßl¥ |K¦ ß � ä���¡å�¤ ßl¥ |K¦ ß � ä��=£å��+� } â ~K� �A� ~§s&�;v�� ���¡;¢��=£ � ä rd��od�å�� } á �¨� � p&���©rd��od�å |M� á ~ ���¡;¢l�d£ ���p;���j�&v � y{uª|&}	~-|&� ä�� � ¡;¢l« �å�� | â ~M� �A� ~T� ¡ ß�â vqw;x ä�� �å��&� ~å ß&àOá ß�â�«ªä �d¬å |M� á ~ � �=¬=�M�|&}	~-|&� ä�� � ¡;¢l« �å�� | â ~M� �A� ~T� ¡ ß�â s&�;v�� ä���q¢ p��å�� ß&à/à p&���d�;v ��� p ¢;« � ä®� s&�å��+� } â ~M� �A� ~ns&�&vq� ���¢ s&� ä �d¬å |M� á ~ � �=¬=�K��j� � y{uª|&}	~¯|&� ä�� � ¡ �å°� ß	àOà o�p;rqsAt�u	v�w&x � � ¡ � ä�� �å°�+� } â ~M� ��� ~�v�w&x � � ä � £å |M� á ~ � � £ �M�|&}	~¯|&� ä�� � ¡ �å°� ß	àOà o�p;rqsAt�uls;�&v�� � � ¡ � ä���q¢ p��å°� ß	àOà �d� ��� p�� ä±� p&�j�å°�+� } â ~M� ��� ~�v�w&x � � ä r ¡å°�+� } â ~M� ��� ~§s;�&vq� ��q¢ r ¡ � ä r £å°� ß	àOà p&���d�&v ��� p;� ¢ r £ � ä�� s;�å |M� á ~ � s&�K�

Figure 3.2: The naïve reverse function in Prolog, and a P translation that can
reverse a known or (partially) unknown list.
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V�W`b�Z�÷�p�^��$X and VCW$b�Z�÷�p�Z�Y&^~� predicates that use � ��
���� to check whether the
argument is an uninstantiated variable and choose among according imple-
mentations of the original ² y k³
�� and ² y k³
 �Ts ´ � goals. (The �$���-µG�'��
(�	�)����
�
instructions in the WAM [Aït-Kaci 1991] can be viewed as an optimized im-
plementation of this idea.)

The �	��� in \�]`� is gone because an uninstantiated variable should be al-
lowed to match both clauses.

We assume that the compiler, like our prototype implementation, is smart
enough to realise that the “spine” of the lists that are arguments to W��,�:]�^�a
can never contain variables (even though the list’s elements may be vari-
ables), and thus use the efficient GP implementation of W��,�:]�^�a .

3.6 Unification in the store model

We have skipped over an important point in the previous development: how
does the ���$� ��� instruction react to variables? We can see examples of its
behaviour on Figure 3.1 and from the implied working of VCW`b~Z�÷�p�Z�Y	^~� on
Figure 3.2. Both of these examples support the obvious notion that ���$� ���
does the instantiations that are necessary to make 8 
 
 Ld� � and 8 
 
 L � � � identical.

However, if we need to do any kind of formal reasoning about P, we
need a more precise statement than that. The task of this section is to give
one, phrased in our store model rather than the usual formalism of first-class
terms and substitutions.

3.6.1 Basic definitions

In the definitions below, it is tacitly assumed that none of the stores have
local cycles or contain references to undefined addresses.

Definition 3.4 A store 8 + extends 8 y , notated 8 +·¶ 8 y iff Dom 8 y¹¸ Dom 8 +
and º 6 ù Dom 8 y M 8 y � 6 � �k 8 + � 6 � UXW 8 y � 6 � k ���$�"�&���^S 8 + � 6 � ù Dom 8 + l
It is easy to see that ¶ is a partial order on stores.

An extension 8 +�¶ 8 y defines a substitution » by »� 8 y 
 
 6 � � � k 8 + 
 
 6 � � . This
definition of » agrees with the usual extension of substitutions from variables
to terms.

It is not difficult to see that if 8 y is given together with and a substitution» with Dom » ¸ Codom � 8 y 
 
�� � � , we can always find an extension 8 +0¶ 8 y
such that the substitution defined by 8 +�¶ 8 y is identical to » up to variable
renaming.

Definition 3.5 We call two stores 8 y and 8 + similar, notated 8 y½¼ 8 + , iff
Dom 8 y k Dom 8 + and

º 6 ù Dom 8 y M 8 y 
 
 6 � �¶k 8 + 
 
 6 � �Bl
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[:Y�Y ÆCWd¾b:]$\`Vfµ [�\:Y&Æ ���$�%�&�'�
[:Y�Y ÆCWd¾b:]$\`VCÂ [�\:Y&Æ Æ:Wd¾
[:Y�Y Æ:Wj¾b ]$\`Vfµ [�\:Y&Æ �
[:Y�Y Æ:Wj¾b ]$\`VCÂ [�\:Y&Æ Æ:Wd¾

Figure 3.3: A most general unifier that ought not to be valid in P. The lower of
the depicted stores is a most general unifier of b ]$\`Vµ and b:]$\`VCÂ in the topmost
store, but not one that the ���$� ��� instruction should be allowed to create.¼ is obviously an equivalence relation

Definition 3.6 A store 8 + is less general than 8 y if there is a store 8 � that
extends 8 y and is similar to 8 + .
Definition 3.7 A unifier of 6 ì and 6 ì'ì in 8 ì is a store 8`¿ ¶ 8 ì such that8`¿ 
 
 6 ì � � k 8`¿ 
 
 6 ì�ì � � .
Definition 3.8 A most general unifier of 6 ì and 6 ì'ì in 8 ì is a unifier 8^¿
with the property that any unifier is less general than 8X¿ .

3.6.2 Store-based unification, first attempt

Intuitively, it is reasonable to expect the instruction ���$� ��� L y ÚTL + to either fail
or compute a most general unifier of 6 y and 6 + (which are the addresses in
the registers L y and L + ) in the current store.

It can be proved that whenever 6 y and 6 + have a unifier they also have
a most general unifier (in fact, we prove this in Appendix A). Therefore it is
tempting to simply use that description as the definition of P unification.

It turns out, however, that this definition is not precise enough when
memory management is an issue. Consider the example in Figure 3.3. The
store shown at the lower half of the figure is, according to the definitions in
the previous section, a most general unifier of b:]$\`Vfµ and b:]$\`VCÂ , but it would
wreak total havoc with the memory management if the ���$� ��� instruction was
allowed to produce it. The variable has been instantiated to a ÆCWd¾ , but not
the Æ:Wd¾ we would have expected. In fact, if all we knew about ���$� ��� was
that it produced a most general unifier, it could pick any Æ:Wd¾ anywhere in
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the store, and we might need to be very conservative about the lifetimes of
ÆCWd¾ s.

The morale of this example is that when it comes to memory manage-
ment, similar stores may have different properties. Because we have only
defined most general unifiers up to similarity (and this is essential for ob-
taining a meaningful “most general” property), they are not enough to de-
fine what can be reasonably expected from the ���$� ��� instruction.

We need to take a more operational approach to defining unification.
One extreme strategy would be to fix one particular unification algorithm,
but that would appear to be too specific. A proof, based on such a definition,
that region inference is safe would tell nothing about region inference in
a system where another algorithm is used. And at the detail level we are
working at, even trivial changes to the algorithm, such as considering the
operands to a functor in reverse order, may lead to a significantly different
result.

3.6.3 Store-based unification, second attempt

We choose to specify P unification by the following nondeterministic algo-
rithm. (Note that the nondeterminism involved here is “don’t-care” non-
determinism, which is different from the kind of nondeterminism that is
realised by backtracking in Prolog. Our definition simply allows an oracle to
choose arbitrarily among a range of results; the possible results not chosen
are simply forgotten, and the ���$� ��� instruction never leaves a choice point).

Definition 3.9 Define a binary relation À d in��� 8 q�Á � s 8 ù h
Store i�q�Á ¸ h

Addr iÐÛ h
Addr i �

by

a. If � 6 y q 6 + � ù Á
then � 8 q�Á � À d � 8 q�ÁÃÂ)��� 6 + q 6 y�� � �

b. If � 6 y q 6 + � ù Á and 8 � 6 � � k���� 6 � y qrlml�lq 6 � Ø Ù(Ø � for � k�1�q�4
then � 8 q�Á � À d � 8 q�ÁÃÂ)��� 6 y � q 6 + � � � �

c. If � 6 y q 6 + � ù Á and 8 � 6 y�� ù h
Addr i

then � 8 q�Á � À d � 8 q�ÁÃÂ)��� 8 � 6 y�� q 6 + � � �
d. If � 6 y q 6 + � ù Á , 8 � 6 y�� k ���$�"�&��� , 8 � 6 + � �ù h

Addr i , and 6 y �k 6 +
then � 8 q�Á � À d � 8 � 6 y �e 6 + � q�Á �

Definition 3.10 Let À d � be the reflexive, transitive closure of À d .

Now, the result of unifying 6 y and 6 + in 8 ì can be computed by

1. If there exists � 8 q�Á � with � 8 ì qÄ��� 6 y q 6 + � � � À d � � 8 q�Á � and � 6 � q 6 � � � ù Á and6 � �ù Dom 8 , then the unification may go * 
���&� , attempting to follow
the dangling pointer. As described later (page 44) we use the suffix 5
for this kind of * 
� �&� : * 
�� �&��. .
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2. The oracle may chose a 8 such that � 8 ì qÄ��� 6 y q 6 + � � � À d � � 8 q�Á � for someÁ , and decide that the unification succeeds with 8 as the result.

3. The oracle may decide that 6 y and 6 + are not unifiable. In that case
the result of the unification is �g���"! .

This definition allows the oracle to perform normal unification as well
as non-standard interpretations of unification. The non-standard interpre-
tations include concepts such as the “half-match unification” proposed by
Gabriel et al. [1984, Section 12.2] as well as totally degenerate strategies
that, say, always fail or always succeed with an unchanged store.

The safety properties for region inference that we aim to eventually es-
tablish should hold for non-standard unification interpretations, but the ob-
served behaviour of programs could be “incorrect” if a non-standard inter-
pretation is used.

So we define a cyclic standard interpretation to be an oracle that al-
ways chooses a store that unifies 6 y and 6 + if it lets the unification succeed,
and that only lets the unification fail if it is impossible to choose such a
store. Our prototype implementation uses a cyclic standard interpretation
to realise the ���$� ��� instruction.

An occurs-checking standard interpretation is like a cyclic standard
interpretation, except that it fails if the store that unifies 6 y and 6 + contains
cycles.

In Appendix A we rigorously prove

Theorem 3.11 (Correctness of the unification algorithm) Any unifier
produced by our unification algorithm is most general. If there is any unifier of6 y and 6 + , then our algorithm can find a unifier.

Thus, an occurs-checking standard interpretation corresponds directly to the
most-general-unifier functions commonly used in Prolog semantics.

3.6.4 Comparison with other unification algorithms

Our definition of unification is essentially equivalent3. to the nondetermin-
istic algorithm of Martelli and Montanari [1982, Section 2], when the pairs
in Á are interpreted as representing equations. This means that any of the
unification algorithms they cite as special cases of theirs are also a special
case of our algorithm and could be used for implementing unification in an
implementation of P.

One can also view our algorithm directly as a generalisation of simple
iterative imperative unification algorithms such as the one given by Aït-Kaci
[1991, Figure 2.7]. Given a trace of a single run of Aït-Kaci’s algorithm, it is
easy to construct a matching À d sequence, maintaining the invariant that the

3One difference is that we do not remove equations from the Å after they have been
rewritten, but that is an insignificant technicality that does not affect the set of possible end
stores.
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set of pairs on the unification stack is always a subset of Á , and that �ÄÆ y q&Æ + �
is also always in Á .

A similar technique can be used to simulate other unification algorithms
that are based on synchronous depth-first (or breadth-first, for that matter)
traversals of the terms to be unified [Manna and Waldinger 1981; Robinson
1971].

Multiequation-based unification algorithms such as those discussed by
Martelli and Montanari [1982] can not be modelled by our definition, be-
cause a “transitivity” rule such as

� 8 q�Á½ÇÈ��� 6 y q 6 + � q�� 6 + q 6 - � � � À d � 8 q�ÁÃÂ)��� 6 y q 6 - � � �
seems to be necessary to move between “corresponding” sets of equations.
We cannot admit such a rule, because it would cause Theorem 7.5 to
fail. (This is interesting: apparently Martelli and Montanari’s multiequation-
based algorithm is not a special case of their own nondeterministic algo-
rithm, because the latter does not contain a rule of transitivity).

3.7 Operational semantics for P

We extend the semantics of Section 2.5 to cover all of P.
The primary purpose of this semantics (and in particular the RP seman-

tics in Chapter 4 that builds on this one) is not to define the observable ef-
fects of running P programs, but to describe which memory allocations, ref-
erences, and deallocations takes place as the programs runs. This is needed
both to understand regions properly, and to prove that region inference is
safe.

The connection between this semantics for P and the Prolog translations
of the P instructions we have given is

Theorem 3.12 When the ���$� ��� instruction is implemented by a occurs-check-
ing standard interpretation of our unification specification, it holds that if the
P program does not go * 
� �&� , its behaviour under this semantics is the same as
the Prolog version’s behaviour under one of the existing Prolog semantics.

As for GP, we omit the proof, as it would be somewhat tedious and not give
any insights deeply relevant to region-based memory management.

See Figure 3.4 for the kinds of objects that are used in the P semantics.
Each

h
Frame i in a state now contains its own

h
Store i . Operationally, we

imagine that the store in the first frame of the state is the current store; when
that frame is discarded by backtracking, the current store gets replaced with
one that was saved on frame stack earlier.

This gives a clear formal description of what backtracking does to vari-
ables, but it becomes the implementation’s problem to maintain enough data
at run-time to be able to get back to the stored state.

We add a new kind of * 
�� �&� , * 
���&� . , to signal an attempt to reference
an address that does not exist in the current store, a “dangling pointer”. It
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6 ù h
Addr i k an abstract countably infinite setù h
Datum i k 7 Ù h Addr i Ø Ù(Ø � h

Addr i½��� ���$�%�&�'� �8 ù h
Store i k h

Addr i finû e h
Datum i

L ù h
Register iú ù h
Env i k h

Register i finû e h
Addr iü ù h

body iý ù h
clause iþ ù h
clauses iÿ ù h
Cont i k � h ValEnv i¤Û h

Register i�� Û h
body i¤Û h

Dump i � �
�"w ù h

Frame i k h
Store i¤Û h

ValEnv iÐÛ h
body iªÛ h

Dump iÐÛ h
Cont i

� � ù h
Frames i k h

Frame i �� ù h
Dump i k h

Frames i� ù h
State i k h

Frames i���� � � q�* 
�� �&� yÄÉ + É - É .	�
Figure 3.4: Objects used in the P semantics

is straightforward to prove that P programs never go * 
� �&� . : the transition
rules all preserve the property that every address that is known in a given
state will be defined in the store that appears in the containing

h
Frame i .

3.7.1 The initial state� ì k�
m���îq+� q ����!"! v�w ì x,} e x�} Ç �g�$�%! q�
�� � �
3.7.2 The transition relation

The successor of 
�� is � � . Any other non-final state has the shape

� 8 q ú q ü q � q ÿ � MOM�� �
and we now proceed by case analysis on

ü
.

The successor state is implicitly * 
� �&� y if the computation of it would
involve looking up a register name in a environment that does not define
it, or extending a environment with a binding for a register name that it
already defines. (These checks were explicit parts of the GP semantics, but
we don’t think there is any good reason to repeat them over and over).

ü k ����!"! v�w�xgL y z�lml�l{z0L Ñ Ò�ÓgÔ } e xgL �y z�lml�l{z0L � Õ Ò�ÓgÖ } Ç ü �
� Let

v�wôn�p �����'�	
 e xgL y'y z�lml�lmz L y Ñ Ò�ÓgÔ } Ç ü y È�l�l�l�È �����'��
 e xgL�� y zml�lmlmz L ��Ñ Ò�ÓÅÔ } Ç ü � 8
be the definition of v�w .� ú ��� �(L � �T�e ú ��L�� � s 1������ �{v�w�� � for 1��� %�$# .
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� � � � � �� ÿ �Ê� � ú q���L �y qrl�l�l�q�L � Õ Ò�Ó�Ö � q ü � q � � MOM ÿ� �"w ��� � 8 q ú � q ü � q � � q ÿ � � for 1��! "�$#� The next state is �"w y MOM	�"w + M/M�l�l�l�MOM	�"w&��MOM�� �ü k # �$�%! ���%� v�w�xÅL y zml�lmlmz L Ñ Ò�ÓÅÔ } e xÅL �y zml�lmlmz L � Õ Ò�ÓÅÖ } Ç ü �
The implementation is supposed to provide a function' Ò�Ó M�J Ñ Ò�Ó�Ô e ( J Õ Ò�ÓgÖ �)� �g���"! q+* �-,
� If any

ú ��L � � �ù Dom 8 then * 
� �&��. ; else� If any 8 � ú ��L � �B� �ù J then * 
�� �&�`+ ; else� Compute
' Ò�Ó	� 8 � ú ��L y���� qrlml�lq 8 � ú �mL Ñ Ò�ÓgÔ ���B� .

If the result is �g���"! , then the next state is � � .
If the result is * , then the current state is its own successor.
Otherwise, let the result be �{Ì y qrl�lmlq'Ì Õ Ò�ÓÅÖ � .� 6 ��� fresh �ù Dom 8 (for 1/�! "� �mv�wr� ; 6 � �k 6 � )� 8 � � 8 � 6 � �e Ì ��s 1��! "� �mv�w�� �� ú � � ú ��L �� �e 6 � s 1��! %� �mv�wr� �� The next state is � 8 � q ú � q ü � q � q ÿ � MOM�� �ü k ��� �&�'��
(�	�)� �	xgL y zml�lmlmz L~Ø Ù(Ø } e L � Ç ü �

� 6 � fresh �ù Dom 8
� ú � � ú ��L � �e 6 �
� 8 � � 8 � 6 �e ��� ú ��L y�� qrl�lmlq ú ��L Ø Ù(Ø ��� �� The next state is � 8 q ú � q ü � q � q ÿ � MOM�� �ü k � ���'��
(�	�)� L �	� � e xÅL �y zml�l�l{z L �Ø Ù(Ø } Ç ü �
� If

ú �mL � �ù Dom 8 then * 
� �&��. ; else� If 8 � ú ��L �B� ù h
Addr iËÂ�� ���$�"�&��� � then * 
� �&� - ; else� If not

ú ��L � k ��� 6 y qrl�l�l�q 6 Ø Ù(Ø � for some 6 � s, then the next state is � � ;
else� ú � � ú ��L �� �e 6 � s 1��! %� s � s �� The next state is � 8 q ú � q ü � q � q ÿ � MOM�� �ü k ���������	��
 e L � Ç ü �

� 6 � fresh �ù Dom 8
� 8 �Ê� 8 � 6 �e ���$�%�&�'� �
� ú � � ú ��L � �e 
���� 6 �
� The next state is � 8 � q ú � q ü � q � q ÿ � MOM�� �ü k � ��
���� L e L � Ç ü �
� If IMJ � ú ��L �B� kÌ* then * 
���&� . ; else� 6 � IMJ:� ú �mL �¯�� If 8 � 6 � k ���$�%�&�'� then the next state is � � ; else
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� ú � � ú ��L � �e 6 �
� The next state is � 8 q ú � q ü � q � q ÿ � MOM�� �ü k ��!O���&� L e L � Ç ü �
� ú � � ú ��L � �e ú ��L � �� The next state is � 8 q ú � q ü � q � q ÿ � MOM�� �ü k ���$� ��� L y ÚTL + Ç ü �
� Try to unify

ú ��L y�� and
ú ��L + � in store 8 according to the description

in Section 3.6.3.
If the result is * 
� �&� . then that is the next state; if the result is �g�$�%!
then the next state is � � ; else the result is a new store 8 � .� The next state is � 8 � q ú q ü � q � q ÿ � MOM�� �ü k �	��� Ç ü �

� The next state is � 8 q ú q ü � q � q ÿ � M/M �ü k �g���"!
� The next state is � �ü k �)��� � xgL y z�lml�l{z0L | }
� � ú � q���L �y qrl�l�l�q�L �| � q ü � q � � � M/M ÿ � � ÿ
� ú � � � ú � ��L �� �e ú ��L � � s 1��� 5�¬Ì �� The next state is � 8 q ú � � q ü � q � � q ÿ � � MOM�� �
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Chapter 4

RP: Adding regions to P

In this chapter we add explicit region-based memory-management instruc-
tions to P, forming the language RP. The memory we’ll use regions to man-
age is the memory that was modelled by the store in the P semantics.

4.1 Key decisions

This section presents the key decisions that define our approach to adapting
regions to logic programming. If other decisions were made here, the result-
ing theory could look very different. We have not investigated exactly what
consequences other decisions would have; but we think that our decisions
are reasonable for a first attempt at using region-based memory manage-
ment for Prolog.

If you are not familiar with regions, please review the compact introduc-
tion in Section 1.1.5ff before reading further on.

4.1.1 Transparent backtracking

We decide to define the region-based language RP without regard for back-
tracking. Backtracking is supposed to be handled by the RP implementation
in a transparent way. That is, the RP program can kill some “old” regions
and create some “new” ones. If it then backtracks to a point before the “old”
regions were killed, the RP implementation is responsible for making them
reappear with their contents unharmed. The RP implementation should also
kill the “new” regions when the program backtracks past their creation. Ad-
ditionally, the backtracking process should shrink any surviving regions to
the size they had when the choice point was created. (And of course, the
backtracking should also undo any variable instantiations that were done
after the choice point was created).

In short, for the creator of a RP program, as far as memory management
is concerned backtracking is a time machine.

The advantages of this decision should be obvious. The region inference
can simply assume that backtracking never occurs and that a clause is chosen
at random when a predicate is called. There is no need for using intricate
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determinacy analyses to find out about the program’s real-time control-flow
patterns so as not to kill regions prematurely.

From the viewpoint of the region inference, the input program is simply
a first-order functional language which sometimes makes a nondeterministic
choice, and which has logical variables that are sometimes instantiated by���$� ��� instructions.

This view of the program corresponds to a certain subset of ML: The log-
ical variables can be considered a weak form of ML references that are only
updated once. This property suggests that the region inference algorithms
that have been developed for ML [Tofte and Birkedal 1998] should be trans-
ferable to RP without major effort. Indeed, the main complication of Tofte
and Birkedal is the handling of higher-order functions which P don’t have,
so the prospects for an RP region inference are excellent.

On the other hand, this decision can also be seen as simply pushing the
hard problems into to the implementation. It is worthless unless there is an
efficient implementation of the backtracking-as-time-machine concept for
regions. In Chapter 5 we develop such an implementation and hope it will
be efficient in practise.

It is an important fact that the problems to be solved for region inference
and the problems to be solved for the RP implementation are completely
disjoint once it has been decided to handle regions transparently. As long as
both subproblems are solvable, this is our basic evidence that the decision
is sound. A solution that did not make this division might be more efficient
than ours but it would most probably also be more complicated, thus not a
good candidate for a first investigation of how to adapt regions to Prolog.

4.1.2 The lifetime of regions

We now turn to the question of how the allocation and deallocation points
for each region can be related.

Obviously, a region must be allocated before it can be deallocated, but it
is common to impose additional restrictions. Tofte and Talpin [1993] and
most of subsequent work on regions dictate that the lifetime of a region
must coincide with the evaluation of a specific expression in the program.
This does not seem unreasonable to the programmer, because Standard ML
already has a hierarchic expression structure.

However, Aiken et al. [1995] showed that the memory usage of certain
programs can be asymptotically better if this restriction is lifted. Also, Prolog
does not have the strictly hierarchic syntax that makes the restriction natural
for Standard ML (and in P, even the hierarchic syntax of terms has been
sequentialised). These considerations support the idea that we should be
more liberal about where regions can be allocated and deallocated.

We decide on the principle that

� The create and kill points for each region should be lexically given points
in the same clause, but there needs not be any relationship between the
create and kill points for different regions.
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This is stronger (i.e., it allows more region-usage patterns) than Tofte
and Talpin’s region inference rules. It is weaker than the system of Aiken
et al., because the latter allows a procedure to create a region and leave it
to its caller to later kill it, or to kill a region created by its caller.

The primary reason why we chose to use a weaker system than Aiken
et al. is that we haven’t yet had time to investigate how best to make
use the added liberty in the region inference phase. Certainly Aiken et al.’s
constraint-based analysis could be easily adapted to work in our framework,
but we’re not sure it’s the most elegant solution.1

4.2 Extensions to the P syntax

We can now extend P’s syntax to support explicit region-based memory man-
agement.

We start by adding a new class of identifiers, region registers. Following
standard notation, we use the Greek letter Í to stand for region registers.

4.2.1 The Î½Ï�Ð=ÑÊÒÓÑdÔÖÕ?×ÖØ instruction

The first construct we have to be able to express is the creation and killing
of a region. The �������	
�����0� � instruction creates a new region and binds it to
a region names.

h
instruction ijM/MOk ��������
������ � � e Í

As for register names, we assume that there is at most one �������	
���,�0� � in-
struction for each region name in the program. The scope of the region
register is the part of the clause that follows the �������	
���,�0� � instruction, until
the corresponding �&�%!"!/
�����0� � is met.

4.2.2 The Ð.ÕHÙHÙ�ÒÓÑdÔ�ÕÚ×ÖØ instruction

h
instruction ijM/MOk �&�%!/!"
������ � � Í

This instruction marks the point in a clause where the named region should
be killed. There must be exactly one �&�%!/!"
�����0��� instruction to match each��������
������ � � instruction in the program, and it must occur in the same clause,
and after, the ��������
������ � � instruction.

(As an exception, in a clause that ends in a �g�$�%! instruction rather than an�)��� � instruction, �������	
���,�0� � s need not be matched by �	�"!"!"
������ � � instructions.
What is important is that when a predicate returns it has killed all of the
regions it created. If a clause ends in �g�$�%! it does not return, so that is not an
issue).

1See also Section 12.1.1.
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4.2.3 Additions to the Û�Ü�ÕHÙÞÝ�ÕHØ , ßj×�Ø�àáÝ�Ò�ÜÊß=Ý , and Î½Ï�Ð=Ñ=â`ÏÊÒ instruc-
tions

The instructions that allocate memory are the # �$�"! ���%� , ��� �&����
��	��� , and ���������	�	

instructions. We need to extend the syntax of these with an indication of
which region to allocate the structure or variable in:

h
instruction ijM/MOk # �$�"! ���"� v�w � xgL y z�lml�l{z0L Ñ Ò�Ó�×/Ô } e xgL y ��� Í y z�lml�lmz0L Õ Ò�Ó�×OÖ ��� Í Õ Ò�Ó�×OÖ }s ��� �&�'��
(�	�)�t�&� Í7�	xgL y z�lml�l{z0L~Ø Ù(Ø } e Ls ���������	�	
f��� Í e L

4.2.4 Additions to the predicate-call mechanism

We need to let a predicate allocate memory in one of the calling predicate’s
regions. This is essential for predicates that allocate data that need to sur-
vive after the predicate itself returns. Intuitively, the caller must pass the
predicate references to the regions where it wants the data structures to be
allocated. This means that we must extend the syntax for predicate calls
with region parameters. Region parameters are like normal input parame-
ters, except that they carry region bindings between region registers instead
of carrying term bindings between normal registers.

Again following traditional notation, region parameters are written in a
separate parameter tuple notated with square brackets.

We assume that each RP predicate name v�w has a region arity 
 v�w+� . The
new syntax is:

h
predicate ijMOM/k v�wjãäÍ y zml�lmlmz�Í.å Ò�ÓæèçNn�p h

clauses ih
instruction ijMOM/k ����!"! v�w � ãäÍ y zml�lmlmz�Í å Ò�Ó × æ ç xÅL y z�l�l�l{z L Ñ Ò�Ó × Ô } e xÅL y zml�lmlmz L Õ Ò�Ó × Ö }

There is not any deep reason why we let the formal region parameters
appear in the

h
predicate i definition and not in the �	���'��
 pseudoinstruction

along with the formal value parameters. It simply turned out to be techni-
cally convenient in our prototype implementation to do it that way.

The scope of a formal region parameter is the entire definition of the
predicate. A formal region parameter may not appear in a ��������
������ � � or�&�%!/!"
������ � � instruction.

4.3 Examples of RP code

We summarise RP’s syntax as in Figure 4.1. The scope rules are as outlined
in Sections 2.2.4, 4.2.1, and 4.2.4.

Figure 4.2 shows a region-annotated version of the P reverse function
from Figure 3.2 (page 39). Here \�]`� has three region parameters:

´�é : This is the region where the cons cells of the input list are allocated.
\�]$� needs to know this if it finds an uninstantiated variable in the input
list and hence needs to allocate a list structure itself.
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h
program iÎMOM/k h

predicate i�yÐlml�l h predicate i�| �mÌÝÍ½1 �h
predicate ijM/MOk v�wjãäÍ y zml�l�l{z�Í å Ò�Ó�æ ç n�p h

clauses ih
clauses iÎMOM/k h

clause i 8s h
clause iªÈ h clauses ih

clause iÎMOM/k �����'�	
 e xÅL y zml�lmlmz L Ñ Ò�ÓÅÔ } Ç h
body ih

body iÎMOM/k h
instruction i Ç h

body is �g���"!s �)��� � xgL y z�lml�l{z0L Õ Ò�Ó�Ö }h
instruction ijM/MOk ����!/! v�w � ãäÍ y zml�l�l{z�Í.å Ò�Ó × æèç xgL y z�lml�l{z0L¢Ñ Ò�Ó × Ô�} e xgL y z�lml�l{z0L¢Õ Ò�Ó × ÖB}s # �$�%! ���"� v�w � xgL y z�lml�l{z0L¢Ñ Ò�Ó × ÔB} e xgL y ��� Í y z�lml�lmz L¢Õ Ò�Ó × Ö �&� Í=Õ Ò�Ó × ÖB}s ��� �&�'��
(�	�)���&� Í7�	xgL y zlml�l{z0L Ø Ù(Ø } e Ls � ���'��
(�	��� L �&� � e xgL y z�lml�l{z0L Ø Ù(Ø }s ���������	�	
f��� Í e Ls � ��
��� L e Ls ��!O���&� L e Ls ���$� ��� LCÚTLs �	���s ��������
������ � � e Ís �	�"!"!"
������ � � Í

Figure 4.1: The grammar for RPê
: This is the region where the list data are allocated. \�]`� only needs this

if it finds an uninstantiated variable in the input list; then it allocates
variables to represent unknown elements in region

ê
.

·�é : This is where the cons cells that make up the resulting list will be
allocated. The actual list elements are shared with the input list.

\ ]`� itself creates a region
Ä é where the intermediate list W$\ is allocated. As

soon as this list has been traversed by W`���:]�^�a the region is killed, freeing the
storage used by the intermediate list.

4.4 Operational semantics for RP

We extend the semantics of Section 3.7 to model the region-based allocation
and deallocation of structures and variable cells.

The primary purpose of this semantics is to allow reasoning about when
RP programs commit the fatal error of trying to inspect a piece of memory
that has been deallocated. If that happen, the semantics will let the program
go * 
� �&��. .
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oqp&r�sAt�uAvqw;xjëíìdî&ï�yMuV|&}	~-|&� ä���� p;�d�å�� |&�H|K� � p&� ä � p;rdpå��&� ~å�� | â ~K� �A� ~ � p;rdp ß)â v�w&x ä®� �å |M� á ~ � �M�|&}	~-|&� ä���� p;�d�� � p&� is now known to be uninstantiatedå��+� } â ~K� �A� ~ ß ~Tìdî%vqw;x � � ä rd��od�å�� } á �¨� � p&���0rj��od�å |M� á ~ � �K�oqp&r�sAt�u�s&�;v��=ëÞì=î ¢ ì ¡;¢ ì £ ï0yMu�|&}A~¯|&� ä���� p;�d�å°� |&�H|K� � p&� ä � p;rdpå°�&� ~å°� | â ~K� �A� ~ � p;rdp ß)â s;�&vq� ä����¡;¢l�=£ �å |M� á ~ ���¡;¢��d£ �M�|&}A~¯|&� ä���� p;�d�� � p&� is now known to be uninstantiatedåð¤ ßl¥ |K¦ ß � ß ~�ì ¡²ä ��¡åð¤ ßl¥ |K¦ ß � ß ~�ì £ ä �=£å°�+� } â ~K� �A� ~ ß ~Tìdîñs;�&v�� ���¡l¢l�=£ � ä rd�áo=�åð� } á �¨� � p&���©rd��od�å |M� á ~ ���¡;¢��d£ �K�p;���j�&v � ëíìdò&ï�yMuV|&}	~-|&� ä®� � ¡;¢;« �å�� | â ~K� �A� ~�� ¡ ß)â v�w&x ä±� �å��&� ~å ß	à�á ß�âX«Ðä �d¬å |M� á ~ � �d¬��M�|&}	~-|&� ä®� � ¡;¢;« �å�� | â ~K� �A� ~�� ¡ ß)â s;�&v�� ä®���¢ p��å�� ß	àOà p;���d�;v � ëÞìdò&ï � p ¢;« � ä�� s;�å��+� } â ~K� �A� ~ ß ~�ìdòñs&�;v�� ���¢ s&� ä �=¬å |M� á ~ � �d¬��K��j� � ëÞó=ò ¢�ô�¢ ìjòáï�yMuV|&}	~-|&� ä®� � ¡ �å�� ß	àOà oqp&r�sAt�uAvqw;xñëÞódòáï � � ¡ � ä�� �å��+� } â ~K� �A� ~ ß ~Tìjò5vqw;x � � ä � £å |M� á ~ � � £ �K�|&}	~-|&� ä®� � ¡ �å�� ß	àOà oqp&r�sAt�u�s&�;v��õëQó=ò ¢�ô�¢ ó=ò&ï � � ¡ � ä����¢ p��å�¤ ßl¥ |&�H|�ö á � } ä�÷ òå�� ß	àOà �j� � ëÞó=ò ¢�ô�¢;÷ òáï � p�� ä�� p&�j�å��+� } â ~K� �A� ~ ß ~Tìjò5vqw;x � � ä r ¡å��+� } â ~K� �A� ~ ß ~Tìjò�s&�;v�� ��q¢ r ¡ � ä r £å�� ß	àOà p;���j�&v � ëíìdò&ï � p;� ¢ r £ � ä®� s;�å ¥�á/à/à ��|�ö á � } ÷ òå |M� á ~ � s;�K�
Figure 4.2: A RP version of the naïve reverse function. Except for the region
annotations, this is the same code as in Figure 3.2.
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A program that does not go * 
���&� y or * 
���&�`. should behave the same
under the RP semantics as it would under the plain P semantics if the region
annotations were removed. (That could be proved formally by defining a
appropriate consistency relation between states of the two semantics and
showing that consistency is preserved by each computation step).

The only differences between this semantics and the P semantics are

� An address is now pair of a region number (not to be confused with
a region register which is a syntactic entity) and an offset within the
region. This representation originates from Tofte and Talpin [1993]
except that they call region numbers “region names”. We feel that
the word “name” for a dynamic concept could be misleading; region
numbers exist at run time.

In the intended implementation of RP, an address is a single, con-
ventional pointer. The separation of it into region number and offset is
simply a formal tool to make it easy to express in the semantics what
happens when a region is deallocated.

� Computation states include a region environment which maps region
registers to region numbers, and a �&�%!/!"
�����0��� set consisting of those
regions that have been made locally and should be killed before the
current predicate returns.

� The definitions of # �$�"! ���"� , ��� �&����
��	��� , and ���������	��
 use the region envi-
ronment to select the address of the newly allocated store cell.

� The definition of the ����!"! instruction and the ����� � pseudoinstruction
have been extended with machinery to handle region parameters in
a way completely similar to normal input parameters.

Figure 4.3 defines the domains used in the semantics.

4.4.1 The initial state

The initial state is� ì k�
���� q+�îq+� q+� q ����!"! v�wrì&x�} e x,} Ç �g���"! q�
�� � �
4.4.2 The transition relation

The successor of 
�� is � � . Any other non-final state has the shape

� 8 qKø qKù²q ú q ü q � q ÿ � MOM�� �
and we now proceed by case analysis on

ü
.

The successor state is implicitly * 
� �&� y if the computation of it would
involve looking up a register name in a environment that does not define
it, or extending a environment with a binding for a register name that it
already defines. The same convention applies to region environments.
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w ù h
RegNum itk�Kú ù h
Offset i k�K6 ù h
Addr i k h

RegNum i¤Û h
Offset iù h

Datum i kÌ7 Ù h Addr i Ø Ù(Ø � h
Addr iû�ü� ���$�%�&�'� �8 ù h

Store i k h
RegNum i finû e h

Offset i finû e h
Datum iý h

Addr i finû e h
Datum i

L ù h
Register iú ù h
Env i k h

Register i finû e h
Addr iÍ ù h

Region iø ù h
RegEnv i k h

Region i finû e h
RegNum iù ù h

KillSet i k4þ�� h Region i �ü ù h
body iý ù h
clause iþ ù h
clauses i

ÿ ù h
Cont i k³ÿ h

RegEnv iÐÛ h
KillSet i¤Û h

ValEnv i
Û h

Register i � Û h
body i¤Û h

Dump i�� �
�"w ù h

Frame i k h
Store i¤Û h

RegEnv iÐÛ h
KillSet i¤Û h

ValEnv i
Û h

body i¤Û h
Dump i¤Û h

Cont i
� � ù h

Frames i k h
Frame i �� ù h

Dump i k h
Frames i� ù h

State i k h
Frames i½�ü� � � q�* 
� �&� yÄÉ + É - É . �

Figure 4.3: The objects used in the RP semantics. By slight abuse of notation we
sometimes manipulate a

h
Store i as if it were a curried function and sometimes

as if it were a function from
h
Addr i to

h
Datum i . The choice of symbols should

make clear at each place what is meant.

ü k ����!"! v�wjãäÍ y zml�lmlmz�Í.å Ò�Ó�æ ç(xgL y z�lml�lmz L¢Ñ Ò�ÓgÔB} e xgL �y zl�lmlmz L � Õ Ò�ÓgÖ } Ç ü �
� Let v�wjã¨Í �y z�lml�l{zHÍ �å Ò�Óæ ç n�p �	���'��
 e x�L y'y zml�l�l{z L y Ñ Ò�ÓgÔ } Ç ü y È

lml�l{È�	���'��
 e x�L�� y zml�lmlmz L ��Ñ Ò�ÓÅÔ } Ç ü � 8
be the definition of v�w .� ø � � �+Í �� �e ø �ÄÍ � � s 1/�! "� 
 v�w	� �� ú ��� �(L � �T�e ú ��L�� � s 1������ �{v�w�� � for 1��� %�$#� � � � � �� ÿ � � ��ø qKù q ú q���L �y qrl�lmlq�L � Õ Ò�ÓgÖ � q ü � q � � MOM ÿ� �"w ��� � 8 qKø � q+�îq ú � q ü � q � � q ÿ � � for 1��� %�$#� The next state is �"w y MOM��"w + M/M,l�l�l�MOM��"wá�oMOM	� �ü k # �$�%! ���%� v�w�xÅL y zml�lmlmz L±Ñ Ò�ÓÅÔ�} e xÅL �y �&� Í y z�lml�l{z0L � Õ Ò�ÓgÖ �&� Í=Õ Ò�Ó�ÖB} Ç ü �

The implementation is supposed to provide a function' Ò�Ó M`J Ñ Ò�Ó�Ô e ( J Õ Ò�ÓgÖ �z� �g���"! q+* � ,
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� If any
ú ��L � � �ù Dom 8 then * 
� �&��. ; else� If any 8 � ú ��L � �B� �ù J then * 
�� �&� + ; else� Compute

' Ò�Ó	� 8 � ú ��L y���� qrlml�lq 8 � ú �mL±Ñ Ò�ÓgÔ ���B� .
If the result is �g���"! , then the next state is � � .
If the result is * , then the current state is its own successor.
Otherwise, let the result be �{Ì y qrl�lmlq'ÌÜÕ Ò�ÓÅÖ � .� w ��� ø �ÄÍ � �� If any w � �ù Dom 8 then * 
�� �&�`. ; else� ú �§� fresh �ù Dom 8 ��w � � (for 1/�! "� �{v�w�� ; ú � �k ú � )� 8 � � 8 �r��w � q ú � � �e Ì ��s 1��! %� ��v�wr� �� ú �.� ú ��L �� �e ��w � q ú � � s 1��� 5� ��v�w�� �� The next state is � 8 � qKø qKù²q ú � q ü � q � q ÿ � M/M&� �ü k ��� �&�'��
(�	�)����� ÍÞ��xÅL y zml�l�l{z L Ø Ù(Ø } e L � Ç ü �

� w � ø �ÄÍ �� If w)�ù Dom 8 then * 
�� �&� . ; else� ú � fresh �ù Dom 8 ��w �� 6 � ��w,q ú �� ú � � ú ��L � �e 6 �
� 8 � � 8 � 6 �e ��� ú ��L y�� qrl�lmlq ú ��L~Ø Ù(Ø ��� �� The next state is � 8 � qKø qKù²q ú � q ü � q � q ÿ � M/M&� �ü k � ���'��
(�	�)� L �	� � e xÅL �y zml�l�l{z L �Ø Ù(Ø } Ç ü �
� If

ú �mL � �ù Dom 8 then * 
� �&� . ; else� If 8 � ú ��L �B� ù h
Addr iËÂ�� ���$�"�&��� � then * 
� �&�$- ; else� If not 8 � ú ��L ��� k ��� 6 y qrlml�lq 6 Ø Ù(Ø � for some 6 � s, then the next state is

� � ; else� ú �.� ú ��L �� �e 6 � s 1��! %� s � s �� The next state is � 8 qKø qKù q ú � q ü � q � q ÿ � MOM�� �ü k ���������	��
f��� Í e L � Ç ü �
� w � ø �ÄÍ �� If w)�ù Dom 8 then * 
�� �&� . ; else� ú � fresh �ù Dom 8 ��w �� 6 � ��w,q ú �� 8 �Ê� 8 � 6 �e ���$�%�&�'� �
� ú � � ú ��L � �e 6 �
� The next state is � 8 � qKø qKù²q ú � q ü � q � q ÿ � M/M&� �ü k � ��
���� L e L � Ç ü �
� If IMJ � ú ��L �B� kÌ* then * 
���&�`. ; else� 6 � IMJ:� ú �mL �¯�� If 8 � 6 � k ���$�%�&�'� then the next state is � � ; else� ú �.� ú ��L � �e 6 �
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� The next state is � 8 qKø qKù q ú � q ü � q � q ÿ � M/M&� �ü k ��!O���&� L e L � Ç ü �
� ú �.� ú ��L � �e ú ��L � �� The next state is � 8 qKø qKù q ú � q ü � q � q ÿ � M/M&� �ü k ���$� ��� L y ÚTL + Ç ü �
� Try to unify

ú �mL y�� and
ú �mL + � in store 8 according to Defini-

tions 3.9ff (page 42).
If the result is * 
� �&� . then that is the next state; if the result is �g�$�%!
then the next state is � � ; else the result is a new store 8 � .� The next state is � 8 � qKø qKù²q ú q ü � q � q ÿ � M/M&� �ü k �	��� Ç ü �

� The next state is � 8 qKø qKù q ú q ü � q � q ÿ � MOM �ü k �������	
���,�0� � e Í Ç ü �
� w � fresh �ù Dom 8
� ø � � ø5�	Í/�e w �� 8 �Ê� 8 �(w��e � �� ù �Ê� ù Â)�	Í �� The next state is � 8 � qKø � qKù � q ú q ü � q � q ÿ � MOM�� �ü k �	�"!"!/
���,�0� � Í Ç ü �
� If Íû�ù ù then * 
���&� y ; else� 8 � � 8��

Dom J����	��
������ ø � � ø �
Dom ���������� ù � � ù��ª�+Í �� The next state is � 8 � qKø � qKù � q ú q ü � q � q ÿ � MOM�� �ü k �g���"!

� The next state is � �ü k �)��� � xgL y z�lml�l{z0L | }
� If ùð�kÌ� then * 
� �&� y ; else� ��ø � qKù � q ú � q���L �y qrl�l�l�q�L �| � q ü � q � � � M/M ÿ � � ÿ
� ú � � � ú � ��L �� �e ú ��L � � s 1��� 5�¬Ì �� The next state is � 8 qKø � qKù � q ú � � q ü � q � � q ÿ � � MOM�� �
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Chapter 5

A run-time design for RP

In this chapter we describe how to implement the region-based memory-ma-
nagement primitives of RP at run time.

We do not address those facets of an RP implementation that are not re-
lated to the region-based memory management. Examples of such facets are
how to manage the program’s control flow in the presence of backtracking,
and how to find space to spill the values of registers while calling a predicate.
These issues can be handled with well-known techniques1, and knowledge
of these techniques is not necessary for understanding this chapter.

The governing idea behind the exposition is that of the region model as
an abstract data type: the RP code treats a “region” as an opaque concept,
manipulated through a small set of primitives. It does not depend on any
particular implementation of the region model. On the other hand, the set
of primitives of course influences which implementations are possible.

We call the program module that implements the primitives the mem-
ory manager. The RP code (which may be interpreted or compiled into a
lower-level language) will be called the client program. The memory that
is managed by the memory manager is the heap.

We start by a simple set of primitives that allow a simple implementa-
tion, and add new primitives and change the implementation until we have
described a complete implementation of the region-based memory manage-
ment for RP.

5.1 A simple region model

The first model we describe is a simple one, similar to the one used in the
ML Kit. It has only three primitives:

1The standard reference model here is the WAM [Aït-Kaci 1991]. Almost everything
about executing RP programs that this chapter does not explain can be implemented by
direct analogy with the WAM’s “local stack”. The exception is output parameters, but the
straightforward convention of returning them in the argument registers should work well.

Quite a number of extensions and variants of the original WAM model for the local stack
exist and are described in the literature. Most of these can be used in a region-based
implementation as well. Indeed, our prototype RP implementation does not follow the
WAM design closely.
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��������� �"!$#�%'& : (nothing)
e Í : REGION

Create a new region Í .��()(�%�* : Í : REGION, Ì : integer
e 6 : pointer

Allocate Ì machine words of memory “in” the region Í . The returned
pointer points to the first of Ì consecutive words of memory which
are guaranteed not to be used for any other purpose until a �+#)()(����,!$#)%'&
operation on Í is performed.�+#)(�()� �"!$#�%'& : Í : REGION

e
(nothing)

Destroy the region Í . Any memory that has been ��()(�%�* ated in Í be-
comes available for allocation in other regions. It is an error to used Í
in any primitives after �+#)(�()���,!$#)%-& has been called.

Each of the primitives will terminate the program with a “out of mem-
ory” message if it would need more memory than is avaliable to perform its
specified function.2 A good implementation should of course make sure that
this only happens when the total number of regions and allocated words
gets large.

5.1.1 Implementation

The implementation problem in the simple region model is that an unlimited
number of regions can exist at the same time, and each of those may grow
to an unlimited size.

This means that we cannot hope for being able to let the addresses of all
the words allocated in a particular region be contiguous. To see that: Sup-
pose we have a program that allocates a single word in each of Í y , throughÍ=� and afterwards allocates a lot of words in one of those regions. When the
first # words are allocated the memory manager does not yet know which
of the # regions is going to grow big. It is not difficult to see that no matter
where it places the initial # allocations, there is a way for the client pro-
gram (the “adversary”) to choose a region that cannot expand to more than
a ��# d 1 � th of the heap before it collides with one of the already-allocated
words. That is clearly unacceptable.

A bad solution

One solution would be to build the region-based memory manager on top of
a traditional memory manager with an explicit allocation and deallocation
operations. When the client program requests Ì words we could allocate
Ì/. 1 words from the underlying memory manager, using the first to keep a
linked list of all blocks belonging to each region. This design would work,
but is burdened by the (memory and running-time) overhead of the tradi-
tional memory manager. Also, the ��#�()(����"!�#)%'& primitive might take long time
to execute, making it hard to reason about the running time of the program.

2This could even happen for the 0214343457698�1 :�; operation, if there is not enough memory to
store the administrative data that make sure that the kill can be undone by backtracking.
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A better solution

The solution we do use is from the ML Kit [Tofte et al. 1997]. Each region
consists of a linked list of fixed-size pages. In each page a single word is
used to point to the next region in the list, and the entire rest of the page is
available for the client program’s allocations.

We implement the abstract type REGION as a pointer to the oldest of the
region’s pages. In this page the ���-�������,!$#)%-& operation allocates a record of
management data at the beginning of the payload area (thus it is not the
entire remainder of that page that is available for the client program’s data).
This management record must contain

� a pointer to the newest page: the newest-page pointer.� a count of how much space is left for allocation in the page: the free-
count.

We see that the �<������� �"!$#�%'& primitive has to allocate the first page for the
region and initialise the management record properly.

The ��()(�%�* primitive allocates memory only in the region’s newest page.
If there is not enough room for the allocation in the currently newest page,
it adds a fresh page at the “new” end of the region and tries again3. The
remaining words in the previously newest page are wasted as “slack”, as
least until the region is eventually killed.

Where do ���-���=���,!$#)%'& and ��()(�%�* get fresh pages? We maintain a linked list
of unused pages, the free-list; when a new page is needed it can usually be
removed from the front of that. If the free-list is empty the primitive must
request a batch of, say, 1 c�c fresh pages from the operating system and turns
those it does not use into a new free-list. (It would also work to get only
one fresh page from the operating system. That would make the individual
primitive that found the free-list empty faster, but it would mean the the
program needed to make 1 c�c times as many operating system calls, and
those are usually a lot slower than simply popping the free-list).

The ��#�()(����"!�#)%'& simply concatenates the entire region onto the free-list.
That is fast, because the pages in the region have already been linked to-
gether, and the management record allows us to locate both ends of the
region in constant time.

5.1.2 Time efficiency

Our solution has the desirable property that all of the three primitives can
be implemented as constant-time operations. At worst, the ��()()%>* primitive
may have to

3The client program has better not try to allocate more memory at once than what fits
in a single page. In RP as we have described it, it is easy to determine statically how big the
largest possible allocation is and adjust the page size accordingly before the program starts.
With richer languages where that is not the case—such as if strings were to be implemented
more efficiently than as linked lists of characters—special workarounds and primitives are
needed for the potentially big data types. There is a solution in the ML Kit but we do not
go into detail here.
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� determine that there is not enough room in the currently newest page
and that the free-list is empty,� obtain a constant number of pages from the operating system and link
them together to form a new free-list,� unlink the first page in the free-list,� link it into the region, and� update the region’s management record

all of which take constant time. �+#)(�()���,!$#)%-& is obviously also a constant-time
operation.

This property has been the source of great enthusiasm about the region
model, because it makes it possible to establish upper bounds on the time it
takes from the client program to get from point

´
to point ? . This is in con-

trast to memory management by garbage collector, where it is virtually im-
possible to predict when the garbage collector suddenly needs to mark and
compact several megabytes worth of heap space before it can complete an al-
location. Such matters are important for real-time or interactive programs.
(Of course, to get real running-time guarantees one needs to have a real-
time operating system which can deliver fresh pages in a known bounded
time).

We shall see that we are not able to keep to the “all operations take
constant time” slogan as we expand the model to cover all of RP, but it will
still, in general, be possible to determine statically which primitives in the
client program risk being slow.

5.1.3 Space efficiency

If we assume that regions grow big and that the page size is large compared
to the size of individual allocations, our scheme has an excellent ratio of
words used for memory management per word used for the client program’s
payload data. On average, only a few words per page full of payload data
will be used for the link to the next page or wasted as slack at the end of a
page.

However, if a region does not grow big—i.e., if only a couple of words
is ever allocated in it—the figure is not as favorable because an entire page
will be used to hold that couple of words. This suggests that pages should
not be too big, and definitely should be smaller than the “pages” of several
hundred words each that are used for implementing virtual memory. In the
experiments we report on in Chapter 11 we use a total page size of 1A@ words.
This might seem excessively small, but remember that the administrative
overhead per page is only one word.

The ML Kit contains a multiplicity analysis which aims at statically iden-
tifying regions that provably do not grow bigger than a small number of
words. Those regions are handled differently at run time. We have not con-
sidered how to implement this idea efficiently for Prolog, but it would be
natural to do so as a continuation of the work in this thesis.
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5.2 Backtracking

We now extend our region model to support backtracking.
The important point here is that backtracking should act as a time ma-

chine: When we backtrack to an earlier point in the execution history, all
the changes that have been made to the program’s memory since that time
should be undone. Regions that have been created should be forgot. Alloca-
tions that have been made should be undone. Regions that have been killed
should magically reappear in the same place and with the same contents as
they had at the point we backtrack to.

Obviously this is impossible without some cooperation from the client
program. In this section we shall require three different kinds of coopera-
tion. The first is that the client program tells us when it reaches a point it
might later want to backtrack to:BDCAE2FG*HFI%'#J*H� : (nothing)

e
(nothing)

This primitive conceptually pushes the entire state (i.e., the size, lo-
cation and contents of each existing region) of the memory manager
onto an (implicit and global) choice point stack.

The description of BDCAE�FG*=FI%'#)*=� also reveals the second kind of cooperation,
namely that the client program must obey a stack discipline for backtracking.
It can only ever backtrack to the state that was saved by the most recentBDCAE2FG*HFI%'#J*H� :B�%AB�*=FI%'#)*=� : (nothing)

e
(nothing)

Replaces the memory manager’s state with the topmost state on the
choice point stack, and removes that state from the stack.

This second form of cooperation is less reasonable than the first in that it
does not allow the �&��� instruction to be implemented. We’ll describe in Sec-
tion 5.3 how to relax the restriction enough to allow �&��� .

The third form of cooperation is that the client program must not change
any data in the heap. It can write some data into the newly-allocated mem-
ory block immediately after an �-(�()%>* operation, but must not change them af-
terwards. This restriction prevents logical variables from being implemented
yet, but we’ll add special support for logical variables in Section 5.4.

5.2.1 Implementation

Of course it is impractical to make BDCAE�FG*=FI%-#J*=� actually make a copy of the
entire heap. Our stategy will be to maintain enough information about what
has happened since the BDCAE2FG*HFI%'#J*H� to be able to undo that quickly whenB�%AB�*=FI%'#)*=� is called. That information in a data structure we created by BDCAE2F�K*=FI%'#)*=� and called a choice point.
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Snapshots

To begin with, we assume that the only primitive that is used between BDCAE�F�K*HFI%'#J*H� and B�%AB�*=FI%'#)*=� is �-(�()%>* . Then the situation at the BL%ABM*HFI%'#J*H� is that some
regions may have grown since the BDCAE�FG*=FI%'#)*=� ; we must then shrink these
regions accordingly.

This means that we need to remember which size the regions had at
the time of BDCAE�FG*=FI%'#)*=� . A choice point must contain a (pointer to a) list
of little structures that we call snapshots. Each snapshot contains enough
information to restore one region to the state it had when it was created. For
now4, that means that a snapshot contains a pointer to the region and a copy
(a “snapshot”) of the entire management record at the time the snapshot was
created.

For now, we deliberately ignore the question of how to manage the mem-
ory that is used to store the snapshots (and choice points) themselves. We’ll
get to that in due time, but not until we’ve examined exactly how and when
they are used.

When are snapshots created? A naïve answer would be that BDCAE2FG*HFI%'#J*H�
should create snapshots for every existing region. This idea can be dismissed
out of hand: it is hopelessly inefficient when many regions exist and few
or none of them actually grow before the B�%�BM*=FI%-#J*=� is executed (the vast
majority of choice points are very short-lived in practise).

The solution is to create shapshots on an as-needed basis. BDCAE�FG*=FI%'#)*=�
creates none, but each time an ��()()%>* is executed it checks whether the newest
choice point has a snapshot for the region and creates one if it hasn’t. The
check can be made fast if we extend the region’s management record with a
owner-of-newest-snapshot pointer which points to the newest choice point
that has a snapshot for the region. That way BDCAE2FG*HFI%'#J*H� and �-(�()%>* both stay
constant-time operations, and unnecessary snapshots do not get created.

How to shrink a region

We’re still assuming that the only thing that happens between BDCAE2FG*HFI%'#J*H� andBL%ABM*HFI%'#J*H� is �-(�()%>* . Then BL%ABM*HFI%'#J*H� ’s job consists of popping a choice point and
traversing its snapshot list while shrinking each region accordingly. But how
does one actually shrink a region?

We know that a region is a linked list of pages, but we have not yet
decided which way the links go. We now decide that old pages contain point-
ers to newer pages. That means that it is easy to shrink a region given the
snapshot’s copy of the newest-page pointer:

1. Update the region’s newest page’s successor field to point to the first
page in the free-list.

2. Update the management record with the saved data from the snapshot
(including the saved newest-page pointer).

4Eventually we’ll add fields to the management record that do not need to be saved in
snapshots
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3. Let the new “head of the free-list” be the successor of the page that is
the region’s newest page according to the new newest-page pointer.

(If the old and new newest-page pointers point to the same page,
its successor will be the current value of the free-list pointer that was
stored in step 1, and the entire operation has been a no-op with re-
spect to the free-list. Otherwise the net effect is that the pages that
were added to the region after the snapshot was taken have now been
pushed onto the front of the free list).

4. Let the successor of the newest page be NULL, terminating the linked-
list structure of the region.

This is enough to shrink the region. The snapshot is not needed anymore
and can be forgotten. But that also means that the choice point we’re pop-
ping is not anymore the owner of the newest snapshot for the region, so we
also need to update the owner-of-newest-snapshot field in the management
record. That again means that the snapshot should contain a copy of the
owner-of-newest-snapshot field just before it was created itself.

To summarise: A region management record now contains

� a newest-page pointer,
� a free-count, and
� an owner-of-newest-snapshot pointer,

and a snapshot contains copies of all three in addition to a pointer to the
region itself.

The termination list

Now let’s consider what should happen if a ���-�������,!$#)%-& primitive is executed
between BDCAE�FG*=FI%'#)*=� and B�%AB�*=FI%'#)*=� .

In this case, the BL%ABM*HFI%'#J*H� will be backtracking to a point in time where
the region did not exist at all. This means that B�%AB�*=FI%'#)*=� must deallocate
the region exactly as if the �+#)(�()���,!$#)%-& implementation from Section 5.1.1. SoB�%AB�*=FI%'#)*=� must be able to find the region. We extend the choice point with
a list of regions that should be deallocated when it is popped off the choice-
point stack. We call this list the termination list.

Intuitively, the fact that a region is mentioned in a termination list serves
the same purpose as a snapshot: it tells something about the region’s state
at the time the choice point was created. Only in the case of a termination
list entry the saved state is not “so-and-so big” but “not there at all”.

The implementation of the ���-�������,!$#)%-& primitive must be extended with
preparations for this:

1. Obtain a fresh page and make it into a one-page region with its own
management structure allocated at the beginning of the payload area
of the page. This is what �<�����=���"!�#)%'& did before we began to consider
backtracking.
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2. Add the new region to the termination list of the topmost choice point.

3. Let the owner-of-newest-snapshot pointer point to the topmost choice
point5. This will actually be a lie, because there are no snapshots for
the regions yet. It works out fine, however: A snapshot will only be cre-
ated if another choice point is pushed and something is subsequently
allocated in the region—which is precisely when a snapshot will be
needed.�+#)(�()� �"!$#�%'& and backtracking

Now we come to the difficult question: What happens when ��#�()(����"!�#)%'& occurs
between BDCAE�FG*=FI%'#)*=� and B�%AB�*=FI%'#)*=� ?

There are two different cases to consider. The first isBDCAE�FG*=FI%'#)*=� l�l�l ��������� �"!$#�%'& lml�l �+#)()(����,!$#)%'& l�lml B�%AB�*=FI%'#)*=�
which is not difficult. Backtracking does not interfere with the region’s life at
all, and �+#)()(����,!$#)%'& can do just what it did in Section 5.1.1. The only problem
is to know that this easy case applies; we’ll get to that in a moment.

The difficult case is�<������� �"!$#�%'& lml�l BDCAE�FG*=FI%'#)*=� l�lml=� �-(�()%>*ON � l�lml ��#�()(����"!�#)%'& l�l�l B�%AB�*=FI%'#)*=� l
Here the intended semantics of the primitives say that ��#�()(����"!�#)%'& should make
the region disappear, and B�%AB�*=FI%'#)*=� should make it reappear in the same
place.

The only practical way to implement this is of course to make sure that
the region is never deallocated at all. A first approximation to an implemen-
tation would be to have ��#�()(����"!�#)%'& do nothing at all in this case. Then it would
be right there for B�%AB�*=FI%'#)*=� to restore to its saved condition.

A unsatisfactory side of this approach shows if we imagine that ��()(�%�* op-
erations added a lot of pages to the region between BDCAE2FG*HFI%'#J*H� and �+#)(�()� �"!$#�%'& .
The only thing BL%ABM*HFI%'#J*H� does to these pages is add them to the free list, and
by calling �+#)(�()� �"!$#�%'& the client promises that it is not going to need the data
again. The pages just sit there being unused. It would be better to add them
to the free-list as soon as the �+#)(�()� �"!$#�%'& call happens.

So that we do: When ��#�()(����"!�#)%'& can’t entirely deallocate the region, it in-
stead shrinks it to the size it would assume anyway at the next B�%AB�*=FI%'#)*=� .
This means that ��#�()(����"!�#)%'& has to be able to find the snapshot telling how
many pages to free. Searching through the snapshot list for the appropri-
ate choice point might be slow, so we add a newest-snapshot pointer to
the region management record. (We also add a copy of it to the layout of
snapshots).

The newest-snapshot pointer also provides a solution to the problem of
finding out whether �+#)(�()� �"!$#�%'& may deallocate the region or not. We specify

5We assume there is always a topmost choice point, at least a dummy choice point that
the memory manager created as part of its start-up code. The client program will never pop
that, because it does not know it exists.
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that �<������� �"!$#�%'& should initialise the newest-snapshot pointer to NULL, cor-
rectly recording that there is no newest snapshot. The algorithm for �+#)(�()� �"!$#�%'&
then becomes

1. If the owner-of-newest-snapshot pointer does not point to the currently
topmost snapshot, then create a new snapshot for the region. (This is
the same operation as ��()(�%�* does to make the snapshot up-to-date).

2A. If the newest-snapshot pointer is NULL (even after step 1 has possibly
created a snapshot and pointed the pointer at it), then deallocate the
region entirely, contributing its pages to the free-list.

The region should also be removed from the termination list that
references it lest it pages get added to the free-list twice with confusion
to follow.

2B. On the other hand, if there is a newest snapshot, then shrink (in the
same way BL%ABM*HFI%'#J*H� does) the region according to the saved data in the
snapshot. The snapshot can then be removed from the choice point list.

Summary of the data structures used so far

A region management record now contains

� a newest-page pointer,
� a free-count,
� an owner-of-newest-snapshot pointer (initialised by �<�����=���"!�#)%'& to

point to the topmost choice point), and
� a newest-snapshot pointer (initialised by ��������� �"!$#�%'& to be NULL),

and a snapshot contains copies of all four in addition to a pointer to the
region itself.

5.2.2 Time efficiency

We have not yet decided how the snapshot and termination list belonging
to a choice point are to be held together. However, it is evident that we can
find a representation which makes all the list operations we yet need take
constant time.

Under this assumption it is easy to see that �<�����=���"!�#)%'& , ��#�()(����"!�#)%'& , �-(�()%>* ,
and BDCAE2FG*HFI%'#J*H� can still be implemented to run in constant time.

The running time of B�%AB�*=FI%'#)*=� is not so nice, because it has to traverse the
snapshot and termination lists of the choice point and to a (constant-time)
operation on each of their elements. Each of these lists can in principle be
aribtrarily long.

However, each of the snapshots and regions-to-be-terminated that are
handled by B�%AB�*=FI%'#)*=� has been created somewhen since the choice point
was created. If we charge the time used to “finalise” each of them on their
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creation, we can conclude that each primitive operation still takes constant
time—when amortised over the lifetime of each choice point.

This is still better than garbage collection—because a garbage collector
might need to trace each pice of memory arbitarily many times, the cost of
tracing cannot be amortized—but is not completely satisfactory, as it breaks
the property that regions make it easy to reason about how long time it
might take for a program to get from any point

´
to any point ? . It now

holds only when the execution path that contains point
´

has not yet failed
when point ? is reached.

We argue, however, that these situations still account for most of the
cases where one would want to reason about running times. The time to get
from

´
to ? is really interesting only when

´
and ? represent interaction

with the program’s environment. And Prolog programs rarely interact with
their environment in execution paths that might fail and backtrack; consid-
eration of program structure and readability usually mandate that just as
severely as does memory management costs,

For the exceptions to this general rule, such as a top-level \�]��C]�W`b – [�WC�$X
loop, it is often a simple task to derive by hand a bound on the number
of regions that are affected by a backtracking operation. It would be an
interesting extension of the work in this thesis to try to automate such an
analysis.

5.2.3 Space efficiency

In the worst case, the backtracking machinery can use a lot of memory. It
is not difficult to produce a pathological RP program such that each6 heap
allocation triggers the creation of a new snapshot. With the optimized rep-
resentation we use in our prototype system a snapshot takes up 5 words of
memory. This means that when regions do “grow big” in the sense of Sec-
tion 5.1.3, the region-based memory manager may result in up to five times
as much memory being used as the client program needs.

Our only answer to that scenario is that is does not seem to happen in
practise. Our prototype implementation counts the memory used to hold
snapshots, and in none of our benchmark programs do very many snapshots
need to exist simultaneously.

Our benchmarks do not attempt to span the entire range of Prolog pro-
gram behaviour. However, we are confident that our observation covers
most of the programs that are met in practise. Our argument is that the
number of choice points that exist at any given time is usually bounded,
either due to “indexing” and other tricks on behalf of the compiler, or due
to explicit �&��� s (which we add to the system in a little while). Regardless
of memory-management paradigm it is ill-advised to write Prolog code that
leaves “dead” choice points (i.e., choice points that correspond to alternative
execution paths that will fail immediately), so if there are many active choice
points even after these factors have been considered it usually means that a

6Or at least, an arbitrarily large fraction of all
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brute-force search through an exponentially large search space is going on.
Prolog programmers do know to shy away from that.

5.3 Cuts

The “cut” is one of the most difficult constructs to master for a novice Prolog
programmer. We shall now see that it also introduces complications of its
own in region-based memory management.

Fortunately, our abstraction of the interface between memory manager
and client program at least makes it easy to specify what a cut does: It pops
some number of choice points off the top of the choice point stack without
restoring the saved memory-manager states they represent.

In our model we can phrase that by splitting the task formerly done byBDCAE2FG*HFI%'#J*H� and B�%�BM*=FI%-#J*=� into two separate primitives each:�<�A� � : (nothing)
e �

: MARK
Pushes a mark onto the choice point stack and returns a magic token�

which identifies the mark uniquely.BDCAE2FG*HFI%'#J*H� : (nothing)
e

(nothing)
Unchanged.P �'*H�IQ �R�'*H� : (nothing)

e
(nothing)

Replaces the memory manager’s state with the topmost state (ignoring
marks from ���A��� ) on the choice-point stack. The choice point is left
on the choice point stacks; that is, if two

P �'*H�IQ �R�'*H� operations directly
follow each other, the latter of them has no (observable) effect.*�CGQ : �

: MARK
e

(nothing)
Pops saved states and/or marks off the top of the choice-point stack
until the mark

�
is at the top of the stack.

Any mark that get popped off the stack by a *�CGQ becomes invalid
and may not be used as argument to another *�CGQ . The

�
mark itself

stays valid, though.
The “main” state of the heap is not changed.

What was previously BDCAE�FG*=FI%'#)*=� l�lml B�%AB�*=FI%'#)*=�
must now be replaced by���A� � q BDCAE�FG*=FI%'#)*=� l�lml P �'*H�IQ �R�'*H� q *�CGQ l
This sequence leaves a mark on the choice-point stack. Fortunately, as we
shall see, marks do not actually take up space.

The marks on the choice point stack represent the
h
Dump i component in

the states of the RP semantics in Section 4.4.
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5.3.1 Implementation

A MARK is simply a copy of the top-of-choice-point-stack pointer at the time
of the �<����� operation. Nothing is actually pushed onto the stack. (The
metaphor of marks as items on the stack merely served to define when

�
values become obsolete).

The
P �'*H�IQ �R�'*H� operation is easy. It simply does what we found out in Sec-

tion 5.2 that B�%�BM*=FI%-#J*=� should do—except that it does not remove the choice
point from the choice point stack. It does, however, empty its termination
and snapshot lists.

The *�CGQ operation is more intricate. We only describe how to pop a single
choice point off the stack; it is less complicated to generalise this to simulta-
neous pops of more than one choice point than it would be to describe the
generalisation in detail. Throughout the discussion we call the choice point
that is to be cut away

þ ì and the one immediately beneath it (the one that
becomes the new topmost choice point)

þ y .
Superficially it is not a big problem to just pop a choice point off the

choice point stack. The challenge is, however, to keep the snapshot struc-
ture (and the associated summary information in the region management
records) consistent. Our guiding principle will be that *�CGQ should leave the
memory management structure in the state they would have had if the cor-
responding BDCAE�FG*=FI%'#)*=� had never been executed.

We now proceed by considering the events which may have taken place
between BDCAE�FG*=FI%'#)*=� and *�CGQ .*�CGQ and ��������� �"!$#�%'&BDCAE2FG*HFI%'#J*H��SUT l�l�l BDCAE2FG*HFI%'#J*H��S'V l�l�l ��������� �"!$#�%'& lml�l=� ��()(�%�*�N � lml�l *�CGQ�S-V
Here, ���-�������,!$#)%-& has inserted the new region in

þ ì ’s termination list and set
its owner-of-newest-snapshot pointer to point to

þ ì . We know that this is
still the value of the owner-of-newest-snapshot pointer: The region has no
proper snapshots because snapshots are only created if the owner-of-newest-
snapsnot pointer does not point to the topmost choice point (which has beenþ ì in the region’s entire lifetime).

Also, this is only way a region can end up in
þ ì ’s termination list, so the

termination list allows to easily find the regions where this case applies.
If

þ ì had not existed, the regions would have been in
þ y ’s termination

list instead, and their owner-of-newest-snapshot pointers would point to
þ y .

Thus what *�CGQ needs to do is to adjust the the owner-of-newest-snapshot
pointers for each region in the termination list and append the entire list toþ y ’s termination list.*�CGQ and ��()(�%�* BDCAE2FG*HFI%'#J*H��S T l�l�l BDCAE�FG*=FI%-#J*=�=S V lml�l ��()(�%�* lml�l *�CGQ�S V
Now consider an allocation in a region that already existed when

þ ì was
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created. The allocation has left a snapshot in
þ ì ’s snapshot list; because

þ ì
is the topmost choice point any snapshots found in its snapshot list will be
the newest snapshot of their respective regions.

What would have happened if
þ ì did not exist? Perhaps the allocation

would have created a snapshot for
þ y , perhaps it would not. The decision

would have been governed by the value of the region’s owner-of-newest-
snapshot pointer at the time when

þ ì was created. At the time of the *�CGQ ,
we can know which decision would have been taken, because exactly that
value is stored in the

þ ì snapshot.
This analysis implies that the *�CGQ operation should inspect each of the

snapshots in
þ ì ’s snapshot list. If the owner-of-newest-snapshot pointer in

a snapshot points to
þ y , the snapshot becomes obsoleted, meaning that we

should adjust things to look like it had never been created. Specifically, this
means that the newest-snapshot and owner-of-newest-snapshot pointers in
the region management record should be restored from the saved values in
the obsoleted snapshot (the other half of the snapshot, containing copies of
the newest-page pointer and the free-count should not be restored as we’re
not undoing the allocations).

Those snapshots that are not obsoleted would have been created in any
case, only owned by

þ y instead of
þ ì . The *�CGQ operation should reassign

them to
þ y . This involves inserting the snapshot in

þ y ’s snapshot list and
adjusting the owner-of-newest-snapshot pointer in the region management
record to point to

þ y instead of
þ ì .*�CGQ and �+#)(�()� �"!$#�%'&BDCAE�FG*=FI%-#J*=�=S>T lmlg� A � l�l BDCAE2FG*HFI%'#J*H��S-V l�lg� B � l�l l�lml ��#�()(����"!�#)%'& l�lml *�CGQ S'V

Once again, ��#�()()� �"!$#�%'& is the most complex case. According to the analysis
in Section 5.2.1, the �+#)(�()� �"!$#�%'& operation has undone any allocations in the
region that happened during “ lmlg� B � l�l ”. If

þ ì had never been created, ��#�()()� �"!$#�%'&
would also have undone the allocations that happened during “ lmlg� A � l�l ”. If
“ l�lg� A � lml ” contained the creation of the region, it would have been entirely
deallocated.

It now becomes the job of *�CGQ to complete the ��#�()()� �"!$#�%'& operation. The
first problem is to know which regions are affected at all. Remember that
Section 5.2.1’s implementation of ��#�()(����"!�#)%'& made sure that

þ ì had a snapshot
for the region, then immediately removed that snapshot after shrinking the
region. Then there is no way for *�CGQ to know that there is a “kill in progress”.

Our solution is that �+#)(�()� �"!$#�%'& should not remove the snapshot after shrink-
ing the region. The snapshot should be left in

þ ì ’s snapshot list, and a flag
in the region management record should be set to indicate that the region
has been killed.

This way *�CGQ will come across the snapshot while it scans the snapshot
list. If the owner of the previous snapshot was not

þ y , the snapshot should
simply be reassigned to

þ y whether or not the region has been killed. How-
ever, when a snapshot is obsoleted (because it has a separate snapshot for
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þ y ) the killed-flag for the region is inspected. If it is set, an “artificial” �+#)(�(WK� �"!$#�%'& operation is executed, which restores the region to the state it had
when

þ y was created.
We also see that it does not hurt for �+#)(�()� �"!$#�%'& to leave an extra shapshot

behind if it is followed by a
P �'*H�IQ �R�'*H� operation. The

P �'*H�IQ �R�'*H� will shrink
the region to the size recorded in the snapshot—this is harmless even though
it has just been shrunk to that size once.

P �-*=�'Q � �-*=� should also clear the
killed-flag for each of the regions it shrinks.

The killed-flag does not need to be copied in snapshots, because it is
never set when snapshots are created.*�CGQ and other choice point operationsBDCAE2FG*HFI%'#J*H��S-V l�lg� A � lml BDCAE�FG*=FI%'#)*=��S × lmlg� B � l�l *�CGQ�S × l�lÅ� C � l�l *�CGQ�S-V
We do not need to provide special support for this situation (where a
matched BDCAE�FG*=FI%-#J*=� – *�CGQ pair occurs before

þ ì is cut away). If the first *�CGQ
works correctly, the state before the second cut will be exactly as afterBDCAE�FG*=FI%-#J*=��S-V lmlg� A � l�l l�lg� B � l�l:lmlg� C � lml *�CGQRS-V

Likewise, BDCAE�FG*=FI%'#)*=��S V lmlg� A � l�l P �'*H�IQ �R�'*H� lmlg� B � l�l *�CGQ
causes the *�CGQ to see the same state as afterBDCAE�FG*=FI%'#)*=��S V lmlg� B � l�l *�CGQ
5.3.2 Memory management for choice points and snap-

shots

It is now time to consider how to organise the memory where choice points
and snapshots are stored.

The lifetimes of choice points obey a stack discipline, so it is natural to
use stack allocation for them. An area of memory separate from the heap is
set aside for storing choice points.

Each choice point consists of a termination list and a snapshot list. We
now consider representations for each of those.

Termination lists

The key facts about termination lists are:

1. Every region belongs to one and only one termination list.

2. ���-���=���,!$#)%'& may add a region to the topmost choice point’s termination
list.

3. �+#)()(����,!$#)%'& (and *�CGQ ) may remove a region from the topmost choice
point’s termination list.
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4.
P �-*=�'Q � �-*=� empties the topmost choice point’s termination list.

5. *�CGQ concatenates the topmost and next-to-topmost choice points’ ter-
mination lists.

Given these usage patterns the natural choice is to organise the termination
list as a doubly-linked list with forward and back pointers embedded in the
region management records (These pointers do not need to be stored in
snapshots). Then all of the necessary operations can be implemented in
constant time.

Snapshots and snapshot lists

The key facts about snapshots and snapshot lists are:

1. Each snapshot list contains at most one snapshot for each region. A
region may have multiple snapshots if they are in different snapshot
lists.

2. ��()()%>* (and �+#)()(����,!$#)%'& ) may add a snapshot to the topmost choice point’s
snapshot list.

3.
P �-*=�'Q � �-*=� empties the topmost choice point’s snapshot list. The snap-
shots themselves become unused.

4. *�CGQ empties the topmost choice point’s snapshot list. Some of the snap-
shots become unused, others must be inserted in the next-to-topmost
choice point’s snapshot list.

These requirements admit several possible memory management strategies.
One strategy we have considered is to allocate the snapshots in the re-

gions themselves. This is an attractive idea, because the address of the snap-
shot itself would identify the values of the newest-page pointer and the fill
count, so there would not be any need for storing them explicitly. The prob-
lem with the strategy is that it would be impossible to reclaim the memory
used by snapshots that become obsoleted by a *�CGQ .

Another strategy would be to store the snapshots inside the choice points
themselves. The only snapshot list that ever grows is that of the topmost
choice point, so if the last element of a choice point was an extensible array
of snapshots it would be free to grow into the unused part of the choice-
point–stack area as long as the choice point was topmost.

This scheme is also attractive because it eliminates the need to reserve
link fields in the snapshot to hold the snapshot list together. It would be
slightly messy to reassign snapshots to another snapshot list, however.

In our prototype implementation we use a variant of the array strategy.
We use a separate stack for storing snapshots and let each choice point con-
tain a pointer to the first snapshot in its snapshot list. Then “the topmost
choice point’s snapshot list” becomes the snapshots between that pointer
and the stack top.

The advantage of this variant is that in some cases snapshots can be
reassigned to an earlier snapshot list without physically moving. The *�CGQ
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XAXAXZY � Y � Y � Y � Y � Y � Y � Y � Y � Y � (a)
þ y þ ì [ ú vXAXAXZY � Y � Y � Y � Y � Y � Y � Y � Y � Y � (b)
þ y þ ì [ ú vXAXAX Y � Y � Y � Y � Y � Y � Y � Y � (c)
þ y þ ì [ ú vXAXAX Y � Y � Y � Y � Y � Y � Y � Y � (d)
þ y [ ú v

Figure 5.1: Operations on a snapshot stack during a *�CGQ operation. Each “ Y � ”
is a snapshot. (a) Before the *�CGQ . (b) Some snapshots become obsoleted. (c)
The snapshot stack is compacted. (d) When

þ ì disappears the two snapshot
lists implicitly become concatenated.

operation first traverses the snapshot list(s) of the choice point(s) to be cut
away, potentially marking some of the snapshots as obsoleted. Afterwards it
compacts the resulting list, that is, it overwrites the “lowest” obsoleted snap-
shots with the “highest” reassigned snapshot until the all of the reassigned
snapshots are contiguous at the bottom of the stack segment. Then the list
of reassigned snapshots is implicitly concatenated with the previous choice
point’s snapshot list. This algorithm means that if most of the snapshots are
reassigned only a few of them actually need to be moved. See Figure 5.1.

5.3.3 Time efficiency

The bad news is that *�CGQ can, in principle, take a long time to execute and it
isn’t even possible to amortise it over other primitives. Each *�CGQ may need to
reassign an aribitrary number of snapshots, and each choice point may need
to be reassigned arbitrarily many times.

As an example of worst-case behaviour, consider a client program that

1. creates Ì regions

2. executes Ì BDCAE�FG*=FI%'#)*=� operations

3. allocates something in each of the Ì regions, triggering the creation of
Ì snapshots.

4. *�CGQ s the Ì choice points away one by one. Each of the cuts need to
reassign each of the Ì snapshots to the previous choice point.

The program executes 5�Ì primitive operations, but the memory manager
needs to decide Ì + times whether a choice point should be reassigned or
obsoleted.
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This might not be so bad as it looks, however. The example depends
on a client program that uses the primitives in a specific sequence, but it is
not at all clear that a client program that implements RP can ever behave
in this way. We have not been able to construct an example Prolog program
that actually exhibits this behaviour when translated to RP by our prototype
translator.

Conjecture 5.1 The region type system TRP we present in Chapter 9 implies
that the first Ì memory-management primitives a TRP-correct program exe-
cutes can be completed in \Ê�mÌ � time, with a program-dependent constant fac-
tor.

This not trivial claim is primarily supported by our inability to find coun-
terexamples. We’re not sure of how to construct a proof of it.

It is possible to construct an RP program that exhibits quadratic running
time, see Figure 5.2. This program “cheats” by using logical variables to
provoke snapshot creation in regions not passed as region parameters; it is
not TRP-correct.

A second comforting factor is that cut can also take long time to execute
in non-region-based Prolog implementations. Specifically, for the WAM [Aït-
Kaci 1991, Section 5.11] a cut implies that a potentially slow “tidy_trail”
operation must be performed because a cut may free memory on the WAM’s
local stack and trail entries referring to that memory must be deleted. The
quadratic-time example above can be restated to use trail entries instead of
snapshots to waste time; and then the example can be expressed as a Prolog
example program.

5.3.4 Space efficiency

There are no additional space costs in supporting *�CGQ (except that we added
a killed-flag to the region management records, but there are plenty of un-
used bits we can use for that), so the analysis and arguments in Section 5.2.3
still apply.

5.4 Logical variables

Now the only feature we need to add to our model before it can be used
to implement RP is logical variables. Recall that we forbid the client pro-
gram to change heap memory except immediately after the ��()(�%�* ; therefore
the primitives we have defined so far cannot be used to implement instan-
tiable variables. We now define primitives to allow a controlled amount of
destructive update:�-(�()%>*+]��A� : Í : REGION

e 6 : pointer
Allocate a machine word of memory in the region Í , and initialise it
to have the value ���$�"�&��� (the client program and the implementation
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Figure 5.2: A pathological RP program with quadratic memory-management
overhead. The program reads an unary number Ì from the input stream and
performs b �{Ì � memory-management operations that take b �{Ì + � time.
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are supposed to agree on which bit pattern that means). The client
program promises never to write anything to the allocated word except
by using the #�&+E�QR��&>Q #��IQ � primitive.#)&+E=QR�-&>Q #c�GQ � : 6 : pointer, L : word

e
(nothing)

The pointer 6 must be the result of an earlier �-(�()%>*+]��A� operation. The
result of #�&+E�QR��&>Q #��IQ � is to write the value L into the word pointed to by6 . A later

P �'*H�IQ �R�'*H� operation may undo the effect of #�&+E�QR��&>Q #��IQ � , that
is, reset the the word pointed to by 6 to ���$�%�&�'� .

The client program may not use #)&+E=QR�-&>Q #c�GQ � twice with the same 6
except when the first operation has been undone by a

P �'*H�IQ �R�'*H� oper-
ation.

The �-(�()%>*+]��A� primitive implements RP’s ���������	��
 instruction; #�&+E�QR��&>Q #��IQ � is
used in the implementation of ���$� ��� . (It should be noted that a Prolog-to-P
translator need not use these instructions at all when compiling functional-
style Prolog code. They are only when Prolog-level variables are used in a
nontrivial way).

5.4.1 Implementation

The traditional way of implementing logical variables in an environment
with backtracking is to have a global data structure called the trail which
is simply an array of addresses to memory words that have been instanti-
ated. Backtracking works by traversing an appropriate segment of the trail,
resetting all of the referenced words to ���$�%�&�'� .

This scheme does not work well in the region-based context: When a��#�()()� �"!$#�%'& operation frees memory in a region, any references to the freed
memory would need to be removed from the trail, lest the trail might grow
arbitrarily large if the client program never backtracks—even though the��#�()()� �"!$#�%'& s may keep the size of the heap bounded.7

Instead we choose to let each region have a private trail. The trail is a list
of references to those variables in the region that have become instantiated.
Instead of representing the list as an array (which would impractical for the
same reasons that a region cannot occupy a contiguous part of the heap) we
decide to use a linked list with the links allocated in the region’s payload
area. Because each variable can not be in the trail more than once, we can
save space by letting the variable be embedded in the trail list cells rather
than pointed-to by them.

Thus the representation of a variable that has been instantiated becomes
a two-word structure. One word is the public word the client program sees,
containing the “real” contents of the variable. The other, private word is a

7Contrarily to what (at least the author’s) intuition suggests it would actually not be
unsound to leave a global trail unchanged when deleting a region. The trail might con-
tain references to cells that are now freed and later become used for something else—but
those trail references are only going to be used in a backtracking operation that undoes the
“something else” allocation anyway.
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pointer to the next variable in the trail. We decide that variables that have
been instantiated late point to variables that have been instantiated early,
because that makes the trail operations we now describe easiest.

We extend region management records with a pointer to the head of the
trail, that is, to the most recently instantiated variable in the region. The
head-of-trail pointer is copied in snapshots.

This structure makes the job of
P �-*=�'Q � �-*=� with respect to variables easy:

1. When shrinking a region according to a snapshot met druring
P �-*=��KQ � �-*=� , repeat the following steps as long as the head-of-trail pointer

in the region management record is different from that saved in the
snapshot:

2. Reset the variable pointed to by the region management record’s head-
of-trail pointer to ���$�%�&�'� .

3. Let the new head-of-trail pointer be a copy of the link word of the
just-reset variable.

There is no reason to touch the trails for regions found in the termination
list. As these regions are totally deallocated it does not matter whether or
not the variables found in them are reset to ���$�%�&�'� .

The same untrailing procedure should be followed by �+#)(�()���,!$#)%-& when it
shrinks a region on behalf of a later

P �'*H�IQ �R�'*H� operation (as described on
page 65); and by *�CGQ when it restarts an unfinished ��#�()(����"!�#)%'& operation (page
70).

We can also specify what #�&+E�QR��&>Q #��IQ � should do:

1. Make sure that the region has an up-to-date snapshot, the same way�-(�()%>* does it.

2. Write the specified data into the public word of the variable.

3. Write the head-of-trail pointer from the region’s management record
into the private word of the variable.

4. Let the head-of-trail pointer point to the variable itself.

but we have glossed over an important detail: Which region is “the region”?
It is the region where the variable has been allocated, but how should #�&�KE=QR��&>Q #��IQ � know where that is? By design, the client program does not specify
it when it calls #�&+E�QR��&>Q #��IQ � —the client program simply does not know which
region it is unless we changed RP to require that each ���$� ��� instruction some-
how specify the regions of each of the variables that might be instantiated.

Our solution is to store a pointer to the region in the variable itself. Until
the variable is instantiated, the first word of the variable contains the ���$�"�&���
marker which the client program can inspect, but the second word is only
used after the instantiation. We can use this second word to store a pointer
to the region as long as the variable is uninstantiated. The pointer is not
needed once the variable has been instantiated; when

P �'*H�IQ �R�'*H� must restore
the pointer as it uninstantiates the variable, it knows well in which region it
found the trail entry.
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We can now implement ��()(�%�*d]��A� :
1. Allocate two words in Í with the plain ��()(�%�* operation.

2. Write ���$�%�&�'� into the public words, and Í into the private one..

5.4.2 Time efficiency

It is easy to see that ��()(�%�*d]��A� and #)&+E=QR��&>Q #��IQ � are both constant-time opera-
tions.P �-*=�'Q � �-*=� may use non-constant time for resetting variables according
to the trail information. This is inevitable; similar time is used for other
memory-management models as well8. Also, this time can be amortised
over the preceding #�&+E�QR��&>Q #��IQ � operations in a straightforward way.

The work with resetting variables can also occur in �+#)(�()���,!$#)%-& or *�CGQ . This
is unfortunate, because �+#)()(����,!$#)%'& used to be a constant-time operation. The
extra cost of ��#�()()� �"!$#�%'& is amortisable and only applies to regions where vari-
ables might have been allocated. Nevertheless it still makes it potentially
difficult to reason about “from

´
to ? ” running times, and there can well be

interesting
´

– ? intervals that contain ��#�()()� �"!$#�%'& instructions.

5.4.3 Space efficiency

In a conventional implementation with a global trail, a variable occupies one
word of heap for its entire lifetime and one word of trail once it has been
instantiated.

In our model, a variable occupies two words of heap for its entire life-
time.

Thus the traditional implementation is more efficient for variables that
are never instantiated, or only instantiated late in their life. Our hope is that
such variables are rare.

5.5 Summary of the implementation

We now give a summary of our primitives and the implementation we have
developed.

5.5.1 Primitives�<������� �"!$#�%'& : (nothing)
e Í : REGION

Create a new region Í .
8Here we ignore systems such as Mercury [Somogyi et al. 1996] where, thanks to potent

mode analyses, instantiated variables do not need to be reset at backtracking at all. A
region-based manager for such a system would also not need to reset variables, and this
entire section could be ignored.
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�+#)(�()� �"!$#�%'& : Í : REGION
e

(nothing)
Destroy the region Í . Any memory that has been ��()(�%�* ated in Í be-
comes available for allocation in other regions. It is an error to used Í
in any primitives after �+#)(�()���,!$#)%-& has been called.��()(�%�* : Í : REGION, Ì : integer

e 6 : pointer
Allocate Ì machine words of memory “in” the region Í . The returned
pointer points to the first of Ì consecutive words of memory which
are guaranteed not to be used for any other purpose until a �+#)()(����,!$#)%'&
operation on Í is performed.

The client program promises not to write to the allocated cells other
than filling values into them immediately after the �-(�()%>* operation.��()(�%�*d]��A� : Í : REGION

e 6 : pointer
Allocate a machine word of memory in the region Í , and initialise it
to have the value ���$�%�&�'� (the client program and the implementation
are supposed to agree on which bit pattern that means). The client
program promises never to write anything to the allocated word except
by using the #�&+E�QR��&>Q #��IQ � primitive.#�&+E�QR��&>Q #��IQ � : 6 : pointer, L : word

e
(nothing)

The pointer 6 must be the result of an earlier �-(�()%>*+]��A� operation. The
result of #�&+E�QR��&>Q #��IQ � is to write the value L into the word pointed to by6 . If a

P �-*=�'Q � �-*=� operation is later performed, the word pointed to by6 will be reset to ���$�%�&�'� .
The client program may not use #�&+E�QR��&>Q #��IQ � twice with the same 6

except when the first operation has been undone by a
P �'*H�IQ �R�'*H� oper-

ation.���A� � : (nothing)
e �

: MARK
Pushes a mark onto the choice point stack and returns a magic token�

which identifies the mark uniquely.BDCAE�FG*=FI%-#J*=� : (nothing)
e

(nothing)
This primitive conceptually pushes the entire state (i.e., the size, lo-
cation and contents of each existing region) of the memory manager
onto an (implicit and global) choice point stack.P �-*=�'Q � �-*=� : (nothing)

e
(nothing)

Replaces the memory manager’s state with the topmost state on the
choice point stack. The choice point is left on the choice point stacks;
that is, if two

P �'*H�IQ �R�'*H� operations directly follow each other, the latter
of them has no (observable) effect.*�CGQ : �

: MARK
e

(nothing)
Pops saved states and/or marks off the top of the choice-point stack
until the mark

�
is at the top of the stack. The “main” state of the heap

is not changed.
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5.5.2 Data structures

The address space of an RP program is divided into the following major
areas:

� The heap, divided into pages.
� The snapshot stack.
� The choice-point stack.
� The local stack (which we have not mentioned yet. The client program

uses it for its private purposes).
� Global variables.
� Program text.

Unlike for the WAM, we do not assume anything about the relative positions
of these memory areas.

Pages

Pages make up the heap. A page consists of

� A number of payload words. Our prototype implementation uses 1=e
payload words per page.

� A link word. The link field is used to tie pages together in the free
list, and in regions. In region, the links in older pages point to newer
pages.

Region management records

The management record in each region occupies the first payload words in
the oldest of the region’s pages. It consists of

� A newest-page pointer.
� A free-count. The number of unallocated payload words in the newest

page.
� An owner-of-newest-snapshot pointer. ���-���=���,!$#)%'& lets this point to

the topmost choice point even though no snapshot exists there.
� A newest-snapshot pointer. ���-���=���,!$#)%'& initialises this to be NULL.
� A killed-flag. Initially false, set to true by �+#)(�()� �"!$#�%'& , reset to false byP �'*H�IQ �R�'*H� . Is not saved in snapshots.
� A head-of-trail pointer. �<������� �"!$#�%'& initialises this to be NULL.
� Forward and backward pointers for the termination list. Not saved in

snapshots.
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Snapshots

Snapshots are allocated on the snapshot stack. Each consists of

� A pointer to the region for which the snapshot applies.
� A copy of the region’s newest-page pointer.
� A copy of the region’s free-count.
� A copy of the region’s owner-of-newest-snapshot pointer.
� A copy of the region’s newest-snapshot pointer.
� A copy of the region’s head-of-trail pointer.

Choice points

A choice point is allocated on the choice-point stack. It consists of

� Forward and backward pointers for the termination list. The termi-
nation list is a doubly-linked circular list. One of its elements is the
choice point, the rest are region management records.

� A copy of the (global) snapshot stack pointer when the choice point
was created.

Variables

Variables are allocated in the payload area of region pages along with other
of the client program’s data. A variable can be uninstantiated or instantiated.
It is a two-word structure consisting of

� A public word which can be inspected by the client program. When
the variable is uninstantiated the public word is a special “ ���$�%�&�'� ” bit
pattern.

� A private word which is only used by the memory manager. When the
variable is uninstantiated the private word is a pointer to (the man-
agement record for) the region that contains the variable. When the
variable is instantiated the private word is a trail link and points at the
variable that was the top of the trail before this variable was instanti-
ated.

Global data for the memory manager

Stack pointers for the choice point stack and the snapshot stack. A pointer
to the head of the free-list.
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5.5.3 Algorithms�<������� �"!$#�%'& : (nothing)
e Í : REGION

1. Obtain a fresh page from the free-list or by allocating new pages
from the operating system.

2. Set the page’s link word to NULL.
3. Initialise the first words as a region management record, using

the values described for each word in Section 5.5.2. Link the
page into the topmost choice point’s termination list.��#�()()� �"!$#�%'& : Í : REGION

e
(nothing)

1. Make sure the region has an up-to-date snapshot.
2. If the newest-snapshot pointer is NULL after step 1, then add the

entire region to the free-list. Otherwise continue with the follow-
ing steps.

3. Shrink the region by performing steps 3A–3F of the
P �'*H�IQ �R�'*H�

primitive (below) on the newest snapshot for the region.
4. Set the region’s killed-flag.�-(�()%>* : Í : REGION, Ì : integer

e 6 : pointer
1. Make sure the region has an up-to-date snapshot.
2. Do the following steps 2A–2E if the free-count is less than Ì :

2A. Obtain a fresh page from the free-list or by allocating new
pages from the operating system.

2B. Set the link word of the new page to NULL.
2C. Set the link word of the previously newest page (the one

pointed to by the newest-page pointer for the region) to point
to the new page.

2D. Let the newest-page pointer point to the new page.
2E. Set the free-count to the number of payload words per page.

3. Decrease the free-count by Ì ; return a pointer to the first of the
words thus reserved.�-(�()%>*+]��A� : Í : REGION

e 6 : pointer
1. Allocate two words in Í as if by ��()(�%�* .
2. Write ���$�"�&��� into the public (first) word, and Í into the private

(second) word.
3. Return a pointer to the public word.#)&+E=QR�-&>Q #c�GQ � : 6 : pointer, L : word

e
(nothing)

1. Locate the region pointed to by the private word of the two-word
structure pointed to by 6 .

2. Make sure that the region has an up-to-date snapshot,
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3. Write the specified data into the variable’s public word.
4. Write the head-of-trail pointer from the region’s management

record into the variable’s private word.
5. Let the head-of-trail pointer be 6 .���A� � : (nothing)

e �
: MARK

Return a pointer to the topmost choice point.BDCAE�FG*=FI%-#J*=� : (nothing)
e

(nothing)

1. Create a new choice point on the choice point stack with an empty
termination list. (The snapshot list implicitly becomes empty
when the current top-of-snapshot-stack is copied into the new
choice point).P �-*=�'Q � �-*=� : (nothing)

e
(nothing)

1. For each region found in the topmost choice point’s termination
list, add the entire region to the free-list.

2. Afterwards the termination list is empty.
3. Do the following shrink operation for each snapshot that is newer

than9 the saved snapshot-stack top in the choice point:
3A. Locate the region Í referred to by the snapshot.
3B. Repeat the following steps as long as the head-of-trail poin-

ter in the region’s management record is different from that
saved in the snapshot:
3B(i). Reset the variable pointed to by the region manage-

ment record’s head-of-trail pointer, by writing ���$�"�&��� into
the public word and Í into the private word.

3B(ii). Let the new head-of-trail pointer be the previous value
of the variable’s private word.

3C. Update the region’s newest page’s link word to point to the
first page in the free-list.

3D. Update the management record with the saved data from the
snapshot (including the saved newest-page pointer). Clear
the killed-flag.

3E. Let the new “head of the free-list” be the successor of the
page that is the region’s newest page according to the new
newest-page pointer.

3F. Write NULL into the link word of the newest page be NULL,
terminating the linked-list structure of the region.

4. Set the snapshot-stack top to the one saved in the choice point.

9That is, stored higher on the snapshot stack than
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*�CGQ : �
: MARK

e
(nothing)

1. Call the snaphot pointed to by
�

(which is topmost of those snap-
shots that are not cut away)

þgf
.

2. Move all regions found in any of the cut choice point’s termination
lists to

þhf
’s termination list.

3. Do the following for each snapshot in a snapshot list belonging
to one of the cut choice points, beginning with the newer choice
points:
3A. If the saved owner-of-newest-choice-point pointer in the

snapshot points to a choice point that is older than
þif

, then
reassign the snapshot to

þhf
’s snapshot list. Proceed with the

next snapshot.
3B. Otherwise, the snapshot is obsoleted. Remove it without

shrinking the region.
3C. If the snapshot was obsoleted and the killed-flag of the region

it referred to was set, then repeat steps 2 through 4 of the�+#)(�()� �"!$#�%'& algorithm for the region.
4. Let

þhf
be the new topmost choice point.

5.5.4 Optimizations

We now suggest a number of small optimizations with respect to the design
we have just summarised. In general, the optimizations aim at reducing
the size of snapshots and region management records as much as possible
without costing more than increased constant factors in the running-time of
the primitives. They also make the algorithms harder to understand, which
is why we have not incorporated them in the description from the start.

With the optimizations we describe here, a region management record in
or prototype implementation takes up @ words (which might be reduced toe by an optimization we have not implemented), and a snapshot takes up 5
words.

A unified end-of-region pointer

As we have described the region management record, the newest-page poin-
ter and the free-count are stored in separate words. We can pack these
values into a single word by deciding that

� The size of a page (including the link field) must be a power of 4 .� The address of each page should be a multiple of the page size.� The link word is stored at the end of the page.� The payload words in each page are allocated highest address first.� The newest-page pointer and free-count fields of the region manage-
ment structure are replaced with an end-of-region pointer which
points to the most recently allocated word in the region.
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With these conventions the newest-page pointer and the free-count can be
recovered from the end-of-region pointer by simple bit masking operations.

This optimization is used in our RP prototype. Of course, the snapshot
copies of the newest-page pointer and free-count is similarly optimized.

Encoding the killed-flag

The killed-flag in region management records needs not occupy a word by
itself. It is easy to pack the killed-flag into the least-significant bit of one of
the pointer fields (we’re assuming a byte-addressed machine), but there is
an even simpler solution than that.

The killed-flag is only set by �+#)(�()� �"!$#�%'& operations. Before the killed-flag
is set, the region has been shrunk back to the size recorded in the newest
snapshot, and that snapshot continues to exist. This means that the region-
size data in the management record is redundant as long as the region is
killed.

In our prototype the kill flag is set by pointing the region’s head-of-trail
pointer to a reserved location that can never be a genuine trail entry. The
real head-of-trail is found in the snapshot.

The choice of the head-of-trail pointer for this purpose is arbitrary. Any
of the words that are copied in the snapshots would do.

Saving one further word in each snapshot

Suppose at some time there are # snapshots for a region Í . Each of the #
snapshots contain a pointer to Í , but only the newest of them risks actually
being accessed. Thus # d 1 words store redundant information. If we can
find one more redundant word, there’ll be # redundant words in total, and
it’s concievable we can make each snapshot one word smaller.

There are no redundant words in the newest snapshot, but there is one
in the oldest one: the copy of the newest-snapshot pointer in the oldest
snapshot is always NULL.

That makes two redundant words in the oldest snapshot, no redundant
words in the newest snapshot, and one redundant words in every snapshot
in between. If we move one word of non-redundant data one level back
in the chain of snapshots, we can end up having freed one word in each
snapshot.

In our implementation we choose to use the saved owner-of-newest-
shapshot pointer for this. That means that the three snapshot words con-
taining

� A pointer to the region for which the snapshot applies.
� A copy of the region’s owner-of-newest-snapshot pointer.
� A copy of the region’s newest-snapshot pointer.

get replaced by two words:
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� The first word is a copy of the newest-snapshot-pointer, except in the
oldest snapshot; there it contains the copy of the owner-of-newest-
snapshot pointer.

� The second word points to the owner of the snapshot itself (i.e., what
was previously the owner-of-newest-snapshot copy of the above snap-
shot), except in the newest snapshot; there it contains a pointer to the
region for which the snapshot applies.

We assume a byte-addressed machine, so we can use the least significant
bit of the first of these words to signal whether the snapshot is an oldest
snapshot or not.

We do not need any bits to tell which snapshots are newest: The only
snapshots we ever handle are found in the snapshot list of the topmost
choice point or pointed to by the newest-snapshot pointer in a region man-
agement record, and those snapshots are always newest.

This optimization makes is more involved to create and remove snap-
shots, but each of the necessary operations are still constant-time operations.

Termination of a region’s list of pages

The algorithms have assumed that the link word of the newest page for a
region should be set to NULL to signal the end of the list of pages. In reality
this link field is never inspected; the last page in the list is identified by
being the one the region’s newest-page pointer points to, not by having a
NULL link word.

We could save one word of the region management record by storing it
in the unused link word.

Our prototype implementation does not incorporate this optimization ex-
cept that it does not write NULL into the link word when the region’s size
changes.

5.6 A prototype implementation of RP

We [Makholm 2000] have implemented a prototype implementation of RP
based on the principles described above. The prototype has been used in the
experiments we report on in Chapter 11.

The prototype consists a translator written in Moscow ML [Romanenko
and Sestoft 1999] which translates RP code to a client program written in
C, and a region-based run-time module written in C.

5.6.1 The run-time module

The larger part of the run-time module consists of a region-based mem-
ory manager which closely follows the design described in this chapter. It
statically allocates a fixed-size stack area where the choice-point stack grows
from high addresses and the snapshot stack grows from low addresses. Heap
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pages are allocated in batches of 1 c�c from the C library’s VCW�X,X�Y,Z��¡ function.
The default size of pages is 1=e payload words, but that figure can be changed
when the system is configured (before the run-time module is compiled).

The memory manager contains code to collect statistics information such
as the number of obsoleted snapshots per *�CGQ operation, the number of re-
gion shrink operations per

P �-*=�'Q � �-*=� operation, the number of freed words
and pages per region shrink operation, and so on. The statistics collection
slows down the program considerably, so we use C’s conditional compilation
facilities to turn it off before doing timing runs.

A second part of the run-time module contains a V�W:�r^t��¡ function and
a unification function which is called by the client program to implement a���$� ��� instruction. The unification function then makes a number of #)&+E=QR��&>Q #��IQ �
operations and decides whehter its operands are unifiable.

The unification function does not implement the occurs check, so it might
create circular structures. It is robust enough to be able to unify circular
structures with each other.

5.6.2 The RP-to-C translator

The RP-to-C translator translates an RP program into a C client program
which is a modestly direct simulation of the RP semantics given in Sec-
tion 4.4.

The semantics’
h
Store i corresponds to the heap and is managed by the

region-based memory manager. The current contents of the heap models
the

h
Store i in the first

h
Frame i of the state. The memory manager’s choice-

point stack models the rest of the frames. Each choice point models the set
of

h
Frames i elements created by a single ����!"! instruction; in the semantics

these frames always contain the same
h
Store i . The prototype extends the

choice point structure described on page 81 with extra words to store the
address of next clause to be tried, and its (region and value) parameters.10

Predicate calls are implemented by building a choice point which con-
tains all clauses of the predicate-to-be called and then backtracking to the
first of them. The last clause for a predicate then cuts the choice point away.
For simplicity, this is done even when calling predicates that have only one
clause.

The simulation is less direct in the handling of the semantics’
h
RegEnv i

and
h
Env i objects. These environments hold the “local variables” for the cur-

rently executing predicate. As in traditional implementations of procedural
languages these values are stored in statically allocated locations within a
environment frame on a local stack. Managing the local stack is not as sim-
ple as for procedural languages, because care must be taken not to overwrite
stack locations as long as their contents may be needed after backtracking.

10This means that the abstract interface between the client program and the memory
manager is not strictly enforced in the prototype. We feel that maintaining separate choice
points for use by the client program in unison with the memory manager’s choice point
stack would be ridiculous.
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We use standard methods from the WAM [Aït-Kaci 1991] to decide where
new environment frames can be allocated.

The translator spends quite some effort on keeping the environment
frames small, so that our experiments yield reliable data on how much extra
local stack space it takes to keep track of regions. Data that does not need
to survive a predicate call is not allocated on the local stack at all. Region
or value parameters that can be found in the choice point that started the
current predicate (because it has not yet been �&��� away) are not stored in
the call stack either. Those frame slots that do need to be allocated are care-
fully arranged such that they can (perhaps) be reused after their last use;
this is called environment trimming by Aït-Kaci [1991]. We use a primitive
determinacy analysis to locate points within each clause where it is safe to
expand or reorder the environment frame.

The
h
Dump i and

h
Cont i objects are also stored in the environment

frames, in the form of pointers to earlier choice points and environment
frames.

As for the control flow within the client program, the call–return disci-
pline of C is of little use because it does not support backtracking. We im-
plement a block of straight-line code (which models the part of an RP

h
body i

that comes between two ����!"! instructions) as a C function which returns the
address of the next function to execute. The VCWC�r^t��¡ function in the run-time
module contains a loop that repeatedly calls the “current” function, letting
its return value be the new current function.11

Output parameters from predicates are transferred in a global array. The
translator supports a limited form of “last call optimization”: If a clause ends
with

(...)Ç ����!/! v�w/ã�Í y qrl�l�l�q&Í � ç xÅL �y qrlml�lq�L �� } e xgL y qrl�l�l�q�L��r}Ç ����� � xgL y qrl�l�l�q�L�j}
(...)

with # Ílk (i.e., when no reordering of the global array of output parameters
is necessary before returning), the call is treated as a tail call and the caller’s
entire environment frame may be deallocated before the jump to v�w (unless it
may be needed by backtracking—that is determined at run time). A similar
optimization is used if the last two instructions of a clause are ����!"! and �g�$�%! .

11This means that each predicate call “costs” two C function calls (one when jumping to
the called predicate and one when returning from it) in addition to the cost of managing
an explicit call stack that is separate from the C call stack. Henderson et al. [1995] describe
methods by which some of this cost can be avoided, but we found them too complex to
justify using them in a proof-of-concept prototype.
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Chapter 6

TGP: a type system for GP

In this and the forthcoming chapters we develop type systems for the xP
languages.

The question naturally arises: why bother with types at all? After all, Pro-
log is a typeless language, and as the previous chapters show, it is possible to
succintly define and implement the region-based language RP without any
notion of types. The answer is that types are a convenient tool for creating
RP programs mechanically.

It is entirely possible to write a compiler from Prolog to P which works
without any concept of types. The trouble arises when we need to add region
annotations to the P program to get an RP program. Any region inference
algorithm needs to reason about which regions the different parts of the
terms manipulated by the programs are allocated in. To do this at all, the
algorithm must have some way of identifying the different parts of the terms
manipulated by the program. In other words, we need a structured, compile-
time, description of the structure of the terms that can be bound to a register
at run time. That is what types are.

It follows that our perspective when talking about types is quite different
from an average language designer’s one. In particular, the common ratio-
nale for types that “types alert the programmer, at compile time, to many
silly programming errors” is not relevant here. For all we care, the human
programmer writes an untyped Prolog program; types are only used inter-
nally in the compiler that translates it to RP. (This does not mean that the
ideas herein cannot be applied to typed logic programming languages; we
are simply noting that the types we speak of do not need to be visible to the
programmer).

Another slogan one frequently sees is that “well-typed programs do not
go wrong”. For the special notions of * 
�� �&� our semantics define, this is
actually true for the type systems we present, but it should be kept in mind
that it is not our primary reason for talking about types.

The slogan that suits the role of types in this thesis best is that “types
help the compiler reason about the program it compiles”. (This view is the
basis for conferences such as TIC [1998, the introduction to the proceedings
contain references to many other applications of the idea]).

The two primary type systems in our design are TP which is used in the
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translation from Prolog to P and TRP which is used by the region inference.
The TGP system we introduce in this chapter is roughly the “common sub-
theory” of those two type systems.

The basic principles of the type system is reminiscent of that of Mycroft
and O’Keefe [1984], with the principal differences that ours does not include
polymorphism and does not require any special syntax for recursive types.
Both of these differences are motivated by our wish to make the type system
invisible to the programmer (who, with Mycroft and O’Keefe’s system, is
supposed to provide explicit declarations of recursive type constructors and
the types of predicates). It is easy to reconstruct recursive types without
having explicit names for them (see Section 8.8.1), but no good algorithms
are known for inferring polymorphic predicate types without explicit user
annotations, given that predicates can be mutually recursive.

6.1 The syntax and meaning of TGP types

Our plan is to attach to every register in a GP program a type built from this
grammar: m

MOM/k �%���s � y �
m
y'y qrlml�lq

m
y Ø Ù T Ø � . XAXAX . � | �

m
|:y qrl�lmlq

m
| Ø Ùon,Ø �

where, in the second line, the � � s are all distinct and none of them are num-
bers.

We use the general shorthand notation of writing � instead of ��� � when-
ever � is a nullary functor (i.e.,

s � s k c
). We also use the abbreviationp

� � � �
m � � � � q � y �

m
y'y qrlml�l�q

m
y Ø Ù T Ø � . XAXAX .º� | �

m
|:y qrl�lmlq

m
| Ø Ù n Ø �

to conserve space when writing formulas about types.
We use the variables

m
,

m �
,

m �
, etc. to range over individual types. r is the

set of all types.

6.1.1 The meaning of types

The type of register describes in a straightforward way the terms that may
be bound to that register. For example, the type

[f�gWs. Æ¶q ê � �%��� �B� . ê �ÅWs.¨Z �
describes the terms “ [f�gW�q ê �m5�4 �B� ”, “ [��Æ¶q ê �m5�4 �B� ”, “ ê �gW � ”, and “ ê ��Z � ” but neither
of “ [f�gW�q ê �gW �B� ”, “ [f��Z q ê �m5�4 �¯� ”, or “ ê �m5�4 � ”.

Formally, we define the meaning of a type by

Definition 6.1 The function that takes a type

m
to its meaning 
 
 m � � is the

(largest) function r e þ�� h Term i � that satisfies the recursive specification,
 
 �%��� � �«k J
 
 p � � � �
m � � � �è� �«k t �vu � � � ø y qrlml�l�q ø Ø Ùow(Ø �yxx ø y ù 
 
 m � y � �Bqrl�lmlq ø Ø Ùow(Ø ù 
 
 m � Ø Ùow(Ø � ��z
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Box 6.1—MIXING INTEGERS WITH OTHER STRUCTURES

Our type system has no type that describes both of “ {�|~}d�U� ” and “ {�| p � ”, so it
might appear that it is impossible to translate a Prolog fragment such as�	�	�~��� ��� |7{�|~}d�U� ��� � ��� ��� |7{�| p � ��� � ���	�	�
into TP.

Our solution is to “wrap” all numbers in the Prolog source in a unary functor�
which we reserve for this purpose. Thus, early in the translation, the Prolog

fragment would be replaced by�	�	�~��� ��� |7{�| � |~}d�U��� ��� � ��� ��� |7{$| p � ��� � ���	�	�
where the first parameter to � ��� has the perfectly good type {�| � |gá }	~ �G� p � .
Calls to predefined predicates (remember that the input and output from pre-
defined predicates are all integers) get augmented with interface code to de-
struct and construct the

�
s.

Later in the compilation it may be found that the
�

wrapping is unnecessary.
This is the case when the type of a term becomes “

� |gá }	~ � ” (rather than, e.g.,
“
� |gá }	~ �I� p ”). In that case the

�
s can be optimized away by replacing each of

the
�+� } â ~M� �A� ~ and

� | â ~K� �A� ~ instructions that refer to such an
�

type with ß	à�á0ß)â
instructions and adjusting the type information accordingly.

This scheme makes run-time tags unnecessary for most numbers in the pro-
gram while still allowing the programmer to mix numbers and structures when
she wants (or by mistake). This is a side advantage of using types internally
in a compiler for a typeless language, but has nothing in particular to do with
regions.

6.1.2 Recursive types

We need to allow types to be recursive so that we can express, for example,
the type of all lists of integers which is a solution to the equation,mU�

kÝ^��$Xy.ÝZ�Y	^~�~� �%��� q
mU�
�

In the compiler such types are easily implemented by letting the representa-
tion of a type be a graph rather than a tree. In Section A.1 of Appendix A we
provide a mathematical underpinning of this simple implementation strat-
egy. With that as our formal excuse we shall henceforth understand that
types may be recursive, even though we have not introduced a formal recur-
sion device such as a � operator or global type names.

When we try to apply Definition 6.1 to recursive types, it is not trivial
that it really defines anything. We give a general discussion of such defi-
nitions in Section A.1.4. In the case of Definition 6.1 the point is that the
codomain of 
 
 X � � is a power set, hence a complete lattice. The fixed point
theorem for complete lattices then guarantees that a unique largest solution
exists.
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6.1.3 Predicate types

We assign a special form of types to entire predicates: a predicate type has
the form ��� T É �4�4�ÞÉ �d�4������ ×T É �4�4�ÞÉ � × � �����'� , where the

m �
s and

m ��
s are the types of the predicate’s

input and output parameters, respectively.

6.2 Well-typed GP programs

Recall that formally we assume that no register name is defined more than
once in a GP program. That makes it easy to view a typing as something that
is given in addition to an already existing GP program.

Definition 6.2 A typing for a GP program is a mapping � which to each regis-
ter name L in the program assigns a type �Þ��L � ù r and to each predicate name
v�w a predicate type �Þ�mv�w � k � � T É �4�4�ÞÉ �d�4������ ×T É �4�4�ÞÉ � × � ����� � ù r ÑOÒ�ÓÅÔ G Õ Ò�ÓgÖ .

Figure 6.1 defines a set of typing rules which determine when a typing
“fits” a given GP program. The rules define a relation�/� h

body i�� �
m
y qrl�lmlq

m
|=�

which intuitively means, “the
h
body i is well-typed under � , and if it ever

executes an �)��� � pseudoinstruction the return values will have the types

m
y

through

m
| ”, and a relation �/� h

predicate i
which intuitively means, “the

h
predicate i is well-typed under � ”.

Definition 6.3 A typing � for a GP program is a well-typing iff the judgement
“ ��� h

predicate i ” can be derived by the rules in Figure 6.1 for each predicate in
the program.

A GP program for which a well-typing exists is a well-typed program. A
well-typed program together with its well-typing is a TGP program.

6.3 Well-typed GP programs do not go �FaO�s �¡ 4
We can now prove that “TGP programs do not go * 
���&�,+ ”. Recall that * 
�� �&�$+
is the kind of run-time error that occurs when an input argument to a built-
in predicate is not an integers. Thus, Theorem 6.4 below states that TGP
prevents a program from using non-numeric terms as integers:

Theorem 6.4 When a TGP program is executed according to the semantics in
Section 2.5, the error state * 
���&��+ never arises.

Theorem 6.4 follows directly from the following main lemma:
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�/� ü � P
m

�/� ����!/! v�w$xgL y zml�lmlmz L¢Ñ Ò�ÓgÔ�} e xgL �y zml�lmlmz L � Õ Ò�ÓÅÖ } Ç ü � P
m �Þ�mv�w � k ��¢ 
 £ T � É �4�4�ÞÉ ¢ 
 £ � �7��� �¢ 
 £ ×T � É �4�4�ÞÉ ¢ 
 £ × � �7��� � ��¤� ü � P

m
�/�®# �$�"! ���"� v�w�xgL y zml�l�l{z L Ñ Ò�Ó�Ô } e xgL �y zml�l�l{z L � Õ Ò�Ó�Ö } Ç ü � P

m¦¥ º   M-�Þ��L � � k �"���º   M-�Þ��L �� � k �"����/� ü � P
m

�/� �����&����
��	��� �	xgL y z�lml�l{z0L Ø Ù(Ø } e L � Ç ü � P
m ¥ � � �ù J�7��L � � k��,���7��L y�� qrlml�lq��o�{L�Ø Ù(Ø ��� . l�l�l�¤� ü � P

m
�/� ��� �&�'��
(�	�)� �	x�} e L � Ç ü � P

m ¥ � ù J�7��L � � k �%����/� ü � P
m

�/� � ���'��
(�	�)� L �	� � e xÅL �y zml�lmlmz L �Ø Ù(Ø } Ç ü � P
m¦¥ � �ù J�7��L � k����o�7�mL �y � qrlml�l�q��Þ�mL �Ø Ù(Ø �B� . l�lml�/� ü � P

m
�/�¾� ���'��
(�	�)� L �	� � e x,} Ç ü � P

m ¥ � ù J�7��L � k �%����/� ü � P
m

�¤� ��!/���&� L e L � Ç ü � P
m �Þ��L � k§�Þ��L � ��/� ü � P

m
�/� ���$� ��� L y ÚTL + Ç ü � P

m �Þ��L yB� k§�Þ��L + � �/� ü � P
m

�/� �	��� Ç ü � P
m

�/� �g�$�%! � P
m �¤� ����� � xÅL y zml�l�l{z L | }g� �o�Þ��L y�� qrl�lmlq��o��L |:����¤� ü � �

m �y qrl�lmlq m � Õ Ò�ÓÅÖ ��¤�ôv�wôn�p �	���'��
 e xÅL y zml�l�l{z L±Ñ Ò�ÓÅÔ�} Ç ü 8 �7�mv�w � k � ¢ 
4£ T � É �4�4�ÞÉ ¢ 
4£ � ����� �� ×T É �4�4�ÞÉ � × � �7��� ��¤� v�wÊn�p ý y 8 XAXAX �/� v�wÊn�p ý | 8�/�Êv�wôn�p ý y Èml�l�l{È ý | 8

Figure 6.1: Typing rules for GP programs. In the rules for �����&����
��	��� and � �Aµ�'��
(�	�)� , the notation “ �,�
m
y qrlml�l�q

m
Ø Ù(Ø � . l�lml ” stands for any type ¨ � � � �

m � � � � such that
for some  (not necessarily the first one), � � k�� and

º �±M m ��k m � � .
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Lemma 6.5 When a TGP program with well-typing � is executed according to
the semantics in Section 2.5, every

h
ValEnv i ú in every state of the computation

satisfies
º
L ù

Dom
ú M ú ��L � ù 
 
 �Þ��L � � �

Lemma 6.5 can be proved by induction on the length of the computation.
We do not give the individual induction steps (each corresponding to one of
the next-state rules in Section 2.5); they all follow almost immediately from
the induction hypothesis (i.e., that the lemma holds for the previous state)
and the typing rule for the instruction in question.

The induction step for �)��� � pseudoinstructions needs the following aux-
iliary lemma which intuitively states that all pending predicate �)��� � s are al-
ways well-typed. The lemma itself can be proved directly by induction on
the length of the computation.

Lemma 6.6 Let a TGP program with well-typing � be given. Define the rela-
tion © ¸ h

body i¤Û h
Cont i by

� ü © 
�� iff
ü

has the form “ l�l�l Ç �g�$�%! ”.
� ü © ��� ú � q���L �y qrl�lmlq�L �| � q ü � q � � � M/M ÿ � � iff �ª� ü � �o�Þ��L �y � qrlml�lq��o��L �| ��� andü � © ÿ � .

When the program is executed according to the semantics in Section 2.5, for
every

h
Frame i �"w�k�� ú q ü q � q ÿ � that occurs in the computation,

ü © ÿ .
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Chapter 7

TP: a type system for P

In this chapter we define the type system TP for P programs. The major
difference between TGP and TP is that types in the latter system contains a
primitive notion of modes.

The term “modes” is used in Prolog contexts about any of a number of
schemes that (statically) encode information about where and when (unin-
stantiated) variables may appear in a logic program. The parts of a program
that, according to the mode annotation, do not need to handle variables,
can be executed faster because they do not need to check whether terms are
variables or not.

As we are interested in memory management, the importance of modes
is even greater: When the Prolog goal “

� k������ � ” is executed and the modes
tell us that

�
is not an uninstantiated variable, the execution consists simply

of inspecting a term that has already been created. If, however
�

can be a
variable, the goal may need to allocate memory for an � somewhere. This
difference is crucial for a region-based implementation.

In our general design, these matters are supposed to be solved in the
translation from Prolog to P. A P program can use the � ���'��
(�	�)� instruction
to inspect only nonvariable terms, and must use another instruction � ��
���� to
tell variables from nonvariables. The Prolog-to-P translator needs to know
about modes so that it can avoid unnecessary � �	
��� instructions, but the
region-based phases we present in Chapters 9 and 10 do not need to be
concerned about modes.

Hence, the reader who is interested primarily in the explicitly region-
based aspects of this thesis may skip directly to Chapter 9 without missing
much that will be used in that and the following chapters.

7.1 Design principles for TP

Our basic approach is to use the TGP we developed in Chapter 6, except
that we annotate each type

m
with a mode 3 ù ��# ��
�� q 
���� � to form a type-

and-mode combination �½k 3 l
m
. Then, for example, “ # ��
�� l �"��� ” describes

something which is an integer, and “ 
��� l �"��� ” describes something which is
either a variable or an integer. The component types of structured types are
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similarly annotated. For example, “ # ��
�� l/� ì .º� y � 
��� l �%��� � ” describes something
which is either an � ì or an � y whose argument can be a variable or an integer.

We’ll make this more precise in a little while, but first we’ll take some
time to describe how and why our system differs from existing mode sys-
tems.

There is a long and still living tradition of automatic mode analyses for
Prolog programs, starting with Mellish [1981]. In those systems the mode
of a (syntactic) variable is a quasi-dynamic concept:

�
’s mode is different at

different points of the clause in which appears. As the clause is executed the
term bound to the (syntactic) variable gets more and more instantiated.

Our system TP is considerably less sophisticated than that. For us, a mode
is part of a P register’s type, which does not change over time. The mode
merely points out where variables may exist at some time in the register’s
life time.

The reason why TP can get away with not changing the mode of a reg-
ister during the execution of a clause is that the static scope of a P register
determines when it has any value at all. The register scoping is reflected in
the explicit parameter moding of P. It is not a coincidence we also call our
parameter classification “modes”: In fact the chief job of early mode systems
(such as the one used by Mellish [1981]) was to distinguish input parame-
ters from output parameters. Thus, with TP and parameter moding we our
language now has two unrelated mode systems.

This design may seem inelegant, especially because the recent mode sys-
tems in the literature1 promise to combine the precision we get from TP
with the time sensitivity we get from register scopes. Thus arises the legiti-
mate question why we chose to use this makeshift combination of two weak
systems instead of one strong one.

Our simple reason is that what we do happens to work well enough for
our purposes, and is relatively simple to describe and implement. It would
not be inherently difficult to use an existing stronger and uniform mode
system for constructing a region-based Prolog implementation; we simply
preferred to spend our energy on other less well-understood parts of the
system rather than on implementing a more advanced mode system.

Another reason is that we originally planned to use the subtyping ideas in
Section 7.4 as an ingredient in a powerful region inference algorithm based
on “region subtyping”. As it turned out, we have not yet had time to develop
those ideas fully (only briefly mentioning them in Section 12.1.9). That is
the reason why we use an entire chapter on describing TP rather than just a
section of Chapter 8.

Finally, the combination of parameter modes and a mode system very
much like TP is used in Visual Prolog [Prolog Development Center 2000].
We originally intended that this project would have somewhat more to do
with Visual Prolog than it ended up doing.

1For example, Somogyi [1987] which is the basis for the Mercury language [Somogyi
et al. 1996].
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7.2 The syntax and meaning of TP types

A type in TP is something built from this grammar:� M/MOk 3 l
mm

M/MOk �"��� s � y �,� y'y qrl�lmlqA� y Ø Ù T Ø � . XAXAX . � | �,� |Cy qrlml�l�qA� | Ø Ùon�Ø �3 M/MOk 
���� s # �	
�
where, in the second production for

m
, the � � s are all distinct and none of

them are numbers.
We call a � a type and 3 a mode. We try to avoid speaking of

m
s except

in formulas, lest we confuse them with types.2 r is still the set of all types � .
As for TGP we need to understand that the types can be recursive.

Now, what does a TP type mean?
TP types are similar enough to TGP types that it is easy to see how a TP

type � may denote a set of ground terms: Just ignore the modes, and an
analogue of Definition 6.1 on page 90 can be applied.

When we want to explain the modes, however, we have to leave the
world of ground terms and use the store model developed in Section 3.1.
Recall that in the store model the intuitive idea of a term is replaced by a
pointer 6 into a store 8 . Instead of defining which terms each type describes,
we define a ternary relation 8 � 6 M��
which intuitively means, “In store 8 , the term represented by 6 has type � ”.

Definition 7.1 The relation �R�M � is defined co-inductively by the following in-
ference system:8 � 6 M 
��� l

m 8 � 6 � k ���$�%�&�'� 8 � 6 � M 
��� l m8 � 6 M 
���� l
m 8 � 6 � k 6 �

8 � 6 M�3ºl �%��� 8 � 6 � ù J
º � 
 8 � 6 ��M�� � � �8 � 6 M�3ºl ¨ � � � �,� � � � � 8 � 6 � k�� � � 6 y qrlml�lq 6 Ø Ùow�Ø �

The word “co-inductive” in the definition intuitively means that we al-
low proof “trees” made with the inference system to be infinitely tall.3 This
technical trick is necessary for being able to assign types to circular terms. It
also allows the following nice characterisation of the meaning of types:

2We borrowed the variable letters « and ¬ from region-annotated types, where there
already is a tradition of letting a «®©<J¬'¯,°lB stand for a “type and place”—where the “type”
component ¬ can include other « s as component types.

We feel that our mode annotations are structurally similar enough to warrant a similar
notation. We use an infix dot rather than a conventional pair notation, however, because
we feel it would be visually confusing to add yet another set of brackets to the type syntax.

Finally, the ± comes before the ¬ because we feel that expressions like “ ±³²,´¶µ+· µ <�« µ¹¸ B ¸ ”
are easier to comprehend than “ ´ µd· µ <�« µ¹¸ B ¸ ² ± ” would be.

3More formally, the meaning of the definition is that <¹ºI»QB is the largest (under normal
set inclusion) set of triples from C Store D�¼zC Addr D�¼¾½ which has the property that every
triples in the set can be derived in at least one way from triples in the set (it is even allowed
to derive a triple from itself). A proof that such a largest set always exists may be found
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Definition 7.2 A store typing ¿ is a finite mapping from addresses to sets of
types.

Theorem 7.3 8 ì � 6 ì M�� ì if and only if there is a store typing ¿ with Dom ¿ k
Dom 8 ì such that for all 6 ù

Dom 8 ì and � ù ¿f� 6 � ,
ST1. If 8 ì � 6 � k ���$�%�&�'� then � k 
���� l

m
for some

m
.

ST2. If 8 ì � 6 � k 6 � then � k 
���� l
m

for some

m
, and � ù ¿f� 6 � � .

ST3. If 8 ì � 6 � ù J then �ôk43 l �"��� for some 3 .

ST4. If 8 ì � 6 � k ��� 6 y qrl�lmlq 6 Ø Ù(Ø � with � �ù J , then �Ýk 3 l ¨ � � � �,� � � � � and
there is an  such that � = � � and � � � ù ¿f� 6 � � for 1��$� � s � s .

and � ì ù ¿f� 6 ì �
Proof.4 ¿ can be seen as encoding a set of judgements of the form 8 ì � 6 M�� .
The conditions ST1–ST4 are really just a paraphrase of the inference system
in Definition 7.1: Essentially they require that for every judgement “in” ¿
the premises of the applicable inference rule must also be “in” ¿ .

If ¿ is given, a (possibly infinite) proof tree for 8 ì � 6 ì M�� ì can be con-
structed bottom-up using only judgements “in” ¿ , because there are always
enough judgements “in” ¿ to add an extra layer to the proof tree.

Conversely, if a (possibly infinite) proof of 8 ì � 6 ì Mv� ì is given, the
set of judgements in the proof tree can be encoded as a ¿ which will then
automatically meet the conditions ST1–ST4. À

The importance of Theorem 7.3, apart from characterising the meaning
of TP types in a way that many readers may find more intuitive than co-
inductive definitions, is that a store typing encodes not only facts (“this type
describes those terms”) but proofs of facts. Thus the store typing allows us
to reason about not only that certain types describe the values manipulated
by a program but also how they do so.

It is important that ¿f� 6 � is a set of types rather than a single type. Other-
wise it would not be possible to find a store typing that certified8 � 6 y M�# ��
� lO�,�(# ��
� l �"��� q 
��� l �"��� �
where 8 � 6 � k case 6 of

¥ 6 y �e ��� 6 + q 6 + �6 + �e 5�4

7.3 Well-typed P programs

Define a TP typing � by analogy with the TGP definition (Definition 6.2 on
page 92).

in Pitts [1994], along with a general introduction to co-inductive definitions, or in Aczel
[1977, Sections 1.1 and 1.6].

Another example of a co-inductive definition is the definition on Á in Theorem A.21 of
Appendix A where we spell out the mathematical details more throughly than here. To see
the connection to Definition 7.1, imagine that Definition A.19 had been phrased in terms of
a (one-rule) inference system.

4The argument is more immediate if one uses the formal interpretation of the co-
inductive Definition 7.1 given by the previous footnote.
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�/� ü � P��¤� ����!/! v�w$xgL y z�lml�lmz L¢Ñ Ò�ÓgÔB} e xgL �y zml�lmlmz L � Õ Ò�ÓgÖ } Ç ü � P� �Þ�mv�w � k � ¢ 
 £ T � É �4�4�ÞÉ ¢ 
 £ � �7��� �¢ 
 £ ×T � É �4�4�ÞÉ ¢ 
 £ × � �7��� � ��/� ü � P��/�®# �$�"! ���%� v�w�xÅL y z�lml�l{z0L Ñ Ò�ÓgÔ } e xgL �y z�lml�l{z0L � Õ Ò�Ó�Ö } Ç ü � P� ¥ º  �M-�7�mL � � k½# ��
�� l �%���º  �M-�7�mL �� � k½# ��
�� l �"����/� ü � P��/� ��� �&�'��
(�	�)� ��xÅL y zml�lmlmz L~Ø Ù(Ø } e L � Ç ü � P� NOQP �Ã�ù Jm
ì k����o�7�mL y�� qrlml�l�q��Þ�{L Ø Ù(Ø �B� . l�lml�Þ��L � � kÃ# ��
� l

m
ì�/� ü � P��/� ��� �&�'��
(�	�)� ��x�} e L � Ç ü � P� ¥ � ù J�Þ��L � � kÃ# ��
� l �%����/� ü � P��¤�¾� ���'��
(�	��� L �&� � e xgL �y zlml�l{z0L �Ø Ù(Ø } Ç ü � P� NO P � �ù Jm

ì k����o�Þ��L �y � qrlml�l�q�����L �Ø Ù(Ø �B� . l�lml�7��L � kÃ# ��
� l
m
ì�/� ü � P��¤�¾� ���'��
(�	��� L �&� � e x,} Ç ü � P� ¥ � ù J�Þ��L � kÃ# ��
� l �%����/� ü � P��/� ���������	�	
 e L � Ç ü � P� �Þ��L � � k 
��� l

m
�/� ü � P��/�Á� ��
��� L e L � Ç ü � P� ¥ �Þ��L � k 
��� l

m�Þ��L � � k½# �	
� l
m

�/� ü � P��/� ��!/�0�	� L e L � Ç ü � P� �Þ��L ��Â �Þ��L � ��/� ü � P��/� ���$� ��� L y Ú L + Ç ü � P� �Þ��L y�� k§�Þ��L + � �/� ü � P��/� �	��� Ç ü � P�
�/� �g�$�%! � P� �/� �)��� � xgL y z�lml�lmz L | }h� �o�7�mL y�� qrlml�l�q��Þ�{L |C����/� ü � �,� �y qrl�lmlqA� � Õ Ò�ÓgÖ ��¤�ôv�wôn�p �	���'��
 e xÅL y zml�l�l{z L±Ñ Ò�ÓÅÔ�} Ç ü 8 �7�mv�w � kÃ��¢ 
4£ T � É �4�4�ÞÉ ¢ 
4£ � ����� �Ä ×T É �4�4�ÞÉ Ä ×� ���7� ��¤� v�wÊn�p ý y 8 XAXAX �/� v�wÊn�p ý | 8�/�Êv�wôn�p ý y Èml�l�l{È ý | 8

Figure 7.1: Typing rules for P programs. Compare with Figure 6.1 on page
93. The “ Â ” relation in the side condition for the ��!O���&� rule will be defined in
Section 7.4.
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A TP well-typing is one that complies with the rules in Figure 7.1. Most
of the rules are completely equivalent to the TGP rules in Figure 6.1, except
that # �$�%! ���%� , ��� �&�'��
(�	�)� and � ���'��
(�	�)� require that certain types have mode # �	
�
rather than 
���� . (That � ������
��	��� requires the destructed value to have mode
# ��
� will eventually imply that the � ������
��	��� instruction cannot go * 
�� �&� - ,
which is the primary purpose of the TP system).

The rules for ���������	�	
 and � �	
��� are not surprising either.
The surprise is in the rule for ��!/���&� which allows the type of a value to

change when the supposedly do-nothing instruction gives it a new name. In
the following section we discuss why this subtyping feature is necessary and
what it means precisely.

7.4 Subtyping in TP

The intuitive motivation behind the subtyping in TP is this. We want to be
able to use the TP type system to show that code such as

(...)Ç ��� �&�'��
(�	��� µdÅCx,} e WÇ � ������
��	��� W �	� µAÅ e x,}Ç ���������	��
 e ÆÇ ���$� ��� W ÚÝÆ
(...)

does not go * 
���&� - —that is, that the operand W to � ������
��	��� is not a variable,
which is clear in this case because is has just been constructed. However, the���$� ��� instruction requires the types of W and Æ to be identical, and Æ ’s type
must be 
��� l

m
for some

m
. Thus the common type of W and Æ must be 
��� l �%���

which does not offer any guarantee that the � ���'��
(�	�)� does not go * 
�� �&� - .
The ��!/�0�	� instruction is designed to help solve this problem. With an ��!/�0�	�

thrown in, the code
(...)Ç ��� �&�'��
(�	��� µdÅCx,} e WÇ ��!/�0�	� W e W,ÂÇ � ������
��	��� W �	� µAÅ e x,}Ç ���������	��
 e ÆÇ ���$� ��� W�Â ÚÝÆ
(...)

can be made to work with the type system. The type of W can be # ��
� l �%���
while the types of W�Â and Æ are both 
��� l �%��� .

After the TP type checking has succeeded it is safe to eliminate the ��!O���&�
instruction. The resulting P program will not be TP well typed, but we still
know it will not go * 
� �&� - , because ��!O���&� elimination is a local optimization
that clearly does not make a program go * 
� �&� - unless it already did before.

Thus the ��!/�0�	� instruction is really just a technical trick that allows us to
isolate the knowledge that any # ��
� l �"��� value can also be 
��� l �%��� value to one
place in the type system. We feel that this makes the presentation of the type
system as well as proofs about it simpler.
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(...)Ç ���������	��
 e W�µÇ ���������	��
 e Z µÇ ��� �&�'��
(�	�)� [:Y�Y x¯Z:µ	} e Æ¶µÇ ��!O���&� W�µ e W,ÂÇ ��!O���&� Æ¶µ e ÆCÂÇ ���$� ��� W�Â Ú¨Æ:ÂÇ � ��
���� W�µ e Æ:¸Ç � ���'��
(�	�)� Æ:¸ �	� [:Y�Y e x¯Z`Â,}Ç � ���'��
(�	�)� Z$Â �	� Æ:W$\ e x,}
(...)

�7�ÅW~µ � k 
���� l/[:Y�Y=��# �	
� l0Æ:W�\ ��7�ÅW,Â � k 
���� l/[:Y�Y=� 
���� l�Æ:W$\ ��7�mÆfµ � k½# ��
�� l/[:Y�Y~� 
��� l0Æ:W�\ ��7�mÆCÂ � k 
���� l/[:Y�Y=� 
���� l�Æ:W$\ ��7�mÆ:¸ � k½# ��
�� l/[:Y�Y~��# ��
�� l�Æ:W$\ ��7�(Z:µ � k½# ��
�� l�Æ:W$\�7�(Z$Â � k 
���� l�Æ:W$\

Figure 7.2: A piece of code which goes * 
�� �&� - even though it would be TP
correct if the first definition of Â was used. The registers W�µ and W�Â are both
bound to the same actual cell in the store; likewise all three Æ�Ì ’s (and both
ZrÌ ’s) refers to the same cell.

Now, of course, the challenge is to find a general and safe way of deriving
facts such as “any # ��
� l �%��� value can also be a 
��� l �%��� value”.

We use the notation # �	
� l �%��� Â 
���� l �%��� for such facts. The intuition be-
hind the notation is that � y¾Â � + requires that � + describes a larger set of
� 8 q 6 � pairs than � y does. (However, we shall see that this condition is not
sufficient).

7.4.1 First attempt (doesn’t work)

An intuitive first attempt at defining Â would be to define that� y�Â � + iff

º 8 q 6 M 8 � 6 M�� y UXW 8 � 6 M�� +
which corresponds to requiring the ��!/���&� instruction to preserve the invariant
that the value of each live register matches the type of the register.

However, this definition does not work, as witnessed by the code in Fig-
ure 7.2. The code is apparently well-typed according to the proposed defini-
tion of Â : Any term that is described by 
���� l/[:Y�Y=�(# ��
� l�Æ:W$\ � or # ��
� lO[:Y,Y~� 
���� l�Æ:W$\ �
is also described by 
��� lO[CY�Y�� 
��� l�Æ:W$\ � . Yet the code manages to point Z`Â
(whose type is # ��
� l

m
) to an uninstantiated variable which makes the sec-

ond � ���'��
(�	�)� instruction go * 
� �&� - .
A closer inspection of the example shows that the invariant still holds

after the ��!/�0�	� instruction, but the ���$� ��� instruction causes it to break. Inter-
estingly, the register for which the invariant breaks is W�µ —which is not used
at all in the ���$� ��� instruction! However, the side effect of the ���$� ��� causes
the value of W�µ to change from

�
(which is described by W�µ ’s type) to [:Y�Y=��� �

(which is not).
The real problem is that the uninstantiated variable bound to W~µ and W,Â

is known by two different types. A ���$� ��� instruction that knows only one of
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the types may then instantiate it to a value which is described by that one
type but not the other.

Similar problems are not uncommon for updateable locations in connec-
tion with advanced type systems. The cure is invariably to make sure that
no updateable location is ever known by two different types. It can be sur-
prisingly complicated to do that without losing the benefits of the advanced
type system (see, e.g., Leroy [1992]). Fortunately this case does not turn out
that bad.

7.4.2 Second attempt

We replace the previous invariant with a new one: At each point in the
execution of the program there is a single store typing ¿ such that for all
the relevant environments

ú
and variables L , �7�mL � ù ¿f� ú ��L ��� and for all

addresses 6 with 8 � 6 � k ���$�"�&��� , ¿f� 6 � has only one element.
We now define a Â which makes the ��!O���&� instruction preserve this invari-

ant:

Definition 7.4 The relation Â is defined co-inductively by the following infer-
ence system:

�"���iÆ �"���

º  �qM�±M � � � Â � �� �¨ � � � �,� � � � � Æ ¨ � � � �,� �� � � � 
��� l
m Â 
��� l

m m Æ m �
# ��
� l

m Â 3 � l
m �

where, for compactness, judgements of the form “

m Æ m
” are used as well as

“ � Â � ” are used.

In this definition co-induction is necessary because types can be recursive.
Despite the co-induction it is decidable whether � yÇÂ � + for given � y and� + ; this can be proven analogously to Corollary A.28.

Intuitively the definition means that a # ��
� in � y can be changed to a 
���
in � + , as long as there are no 
��� s above the original # ��
� in � y . Thus, for
example,

# ��
� l/����# ��
� l/����# ��
�� l/����# ��
�� l �%��� ���B�ZÂ 
���� l/��� 
��� lO�,�(# ��
� l/��� 
��� l �%��� ���B�
��� l/��� 
���� l/����# ��
�� l/����# ��
�� l �%��� ���B� �Â 
���� l/��� 
��� lO�,�(# ��
� l/��� 
��� l �%��� ���B�
# ��
� l/��� 
��� lO�,��# �	
� l/��� 
��� l �%��� ���B�ZÂ 
���� l/��� 
��� lO�,�(# ��
� l/��� 
��� l �%��� ���B�

We will prove that this definition does cause the invariant to be pre-
served. We also claim that it is the most liberal definition that does this, but
we have no proof of that.

It is easy to see that the Â thus defined is reflexive and transitive, hence
a partial order.

7.5 Well-typed P programs do not go � aO�® �¡ 2
We can now prove that the TP type system fulfils its purpose:
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Theorem 7.5 When a TP program is executed according to the semantics in
Section 3.7, the error states * 
� �&� + and * 
�� �&� - never arise.

The theorem follows from this induction lemma:

Lemma 7.6 When a TP program with well-typing � is executed according to
the semantics in Section 3.7, for every

h
Frame i��"w�kÏ� 8 q ú q ü q � q ÿ � that appears

during the computation, there is a store typing ¿ such that

F1. ¿ “matches” 8 in the way described by conditions ST1–ST4 of Theo-
rem 7.3 (page 98).

F2.

º 6 M 8 � 6 � k ���$�%�&�'��UXW # ��¿f� 6 �B� � 1
F3.

º
L ù

Dom
ú M �7��L � ù ¿f� ú ��L ���

F4. Condition F3 also holds for the
ú

in each of the elements of ÿ .
Proof. By induction on the length of the computation. The structure of
the induction steps parallels the definition of the transition relation in Sec-
tion 3.7.2, working by case analysis on the next instruction to be executed.

In most of the cases the required properties of the new state are easily
established. The previous store typings can be used unchanged or with the
addition of the obvious typings for newly allocated cells. In the �)��� � case an
auxiliary lemma analogous to Lemma 6.6 is necessary.

We omit the detailed arguments except for the ���$� ��� and ��!O���&� instructions
which are where the interesting things happen.

For the ���$� ��� instruction we assume that the unification succeeds (if it
fails, the frames in the new state all appeared in the old state, so the in-
duction hypothesis directly contains what we need to prove). Our aim is
to show that the ¿ we get from the induction hypothesis can be reused
unchanged even though the store changes. With the terminology of Def-
initions 3.9ff, we can prove by induction on the number of À d steps that
� 8 ì qÄ�r� 6 y q 6 + � � � À d � � 8 q�Á � implies that

� Conditions F1 and F2 hold for ¿ in 8 as well as in 8 ì .
� For each � 6 �y q 6 �+ � ù Á , ¿f� 6 �y � and ¿f� 6 �+ � has at least one common ele-

ment.

For zero À d steps this is immediate from the induction hypothesis in the
“outer” induction: ¿f� 6 y)� and ¿f� 6 + � certainly has a common element, namely
the (common) type of the two registers being unified.

Then there is an induction step for each of the cases (a)–(d) in Defini-
tion 3.9. Cases (a) through (c) follow directly from the conditions on ¿ ; the
interesting case is (d). Here it is crucial that we know that ¿f� 6 y)� is a single-
ton set whose element � is in ¿f� 6 + � . This means that ¿ still meets condition
ST2 after we change 8 � 6 y)� from ���$�%�&�'� to 6 + .

This completes the case for the ���$� ��� instruction. Now we turn to the ��!/�0�	�
instruction. This is in some sense its dual: the store does not change, but we
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have to show that the store typing can be extended such that the invariant
is preserved.

More precisely, we already know a ¿ that meets conditions F1 through
F4 and for which � y kª�Þ��L � ù ¿f� ú ��L ��� ; we are going to construct a ¿ � such
that ¿f� 6 �)¸ ¿ � � 6 � for all 6 and � + kÈ�7��L � � ù ¿f� ú ��L �B� . Because the ��!/�0�	�
instruction is type-correct we know that � ygÂ � + .

Now define
´ ì k!�r� ú �mL � qA� y qA� + � � ,´ | k

NO P � 6 �GqA� � �GqA� �� � � s � 6 q�3 l ¨ � � � �,� � � � �Gq�3 � l ¨ � qB� � �,� �� � � � � ù ´ |GÉ�y q8 � 6 � k�� � � 6 y qrlml�lq 6 Ø Ùow(Ø � q
1����V� s � �¯s ÊcËÌÂ u � 6 � qA�¢qA� � � xx � 6 qA� qA� � � ù ´ |GÉ�y q 8 � 6 � k 6 � z

and
´ k�ÍÇÎ|GÏ ì ´ | . Then, by induction on Ì , � 6 qA� qA� � � ù ´ implies � ù ¿f� 6 �

and � Â � �
Define ¿ � � 6 � kÐ¿f� 6 � Âz�M� � s � 6 qA� qA� � � ù ´ �
We now have to prove that this ¿ � meets conditions F1–F4. F1, F3, and

F4 follow easily from the just mentioned properties of ¿ and
´

. For F2, let
an 6 with 8 � 6 � k ���$�"�&��� be given. We then know that ¿f� 6 � k!� 
���� l m � for somem
. Then, for any � 6 qA� qA� � � ù ´

, � must be 
��� l
m
. Because � k 
���� l

m Â � � it
must be that � kÑ� � , thus ¿ � � 6 � is a singleton set as required. À
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Chapter 8

Translating Prolog into TP

In this chapter we describe how to translate Prolog into (TP-typeable) P,
thus substantiating our implicit claim that P has anything to do with Prolog
at all.

The main problems to be solved in this translation are

� P has explicit parameter modes that classify the parameters to each
predicate as input and output parameters; Prolog does not distinguish
syntactically between these categories.

� P has specialized instructions for the creation, analysis, and unification
of terms; Prolog has a single language construct that are used for all
three activities.

Both of these can in principle be solved with “brute force and negligence of
quality” by letting every parameter be an input parameter and translating
every Prolog goal to a sequence of ���������	��
 and ��� �&����
��	��� instructions fol-
lowed by a ���$� ��� or ����!"! . The resulting P code would, however, be very badly
suited for reasoning about memory usage, so we want to describe how a
translator can use P’s features with considerably more finesse.

The translation method we describe is the one we use in our prototype
region-based Prolog implementation [Makholm 2000]. Other methods may
well be imagined; we selected on this one primarily because it was easy to
invent and implement, yet does not produce prohibitively bad P code.

Because the exact method of translation is in principle irrelevant to the
region-based techniques that are the main focus of this thesis, and because
none of the techniques we employ are novel, we describe the workings of
the individual steps in the translation only briefly. Our goal is to argue that
one can translate (our “core” subset of) Prolog to P, not to show in detail
how to do it.

The structure of the chapter corresponds to the organisation of the Prolog
translator � \:Y$Â`´ in our prototype implementation [Makholm 2000]. The
translation works in several phases; when ��\:Y$Â$´ is invoked with the switches
p�� and p&a it announces the individual phases and dumps the result of each
to auxiliary files for inspection by curious users (see Figure 8.1).
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�áo « x�p yÓÒAÔ £;� ��x+Ôd���d�js�w;p�x���Ôdw	o=�dx�ÕÐÖ�Ô&���d� £ ó�u � u �Ø×dÙ+Ú ���&v��ÛÖ���d�ìj��p � wAv {Ü×dÙdÚ ���;v��MÖ����j�Ý Ú od�qwAv { rd� ×dÙ+Ú ���;v��ÛÖ �dÚ o=�ÞÖ¯plîÝ �dw�v {©� w���ß Ú vqs�rqw&�;v Ú v � ��x � wAv {Ý Ú od�qwAv { rd� ×dÙ+Ú ���;v��ÛÖ �dÚ o=�ÞÖ¯p ¡Ý �dw�v { �dp;�dp�oq�&rj�&�0o�� � wAv {Ý Ú od�qwAv { rd� ×dÙ+Ú ���;v��ÛÖ �dÚ o=�ÞÖ¯p £Ý �dw�v { v Ú o « �;��à��dp;����wAv {Ý Ú od�qwAv { rd� ×dÙ+Ú ���;v��ÛÖ �dÚ o=�ÞÖ¯pl¬Ý �dw�v { vd�;�;o�p�xdw�á=p&r�w&�;vÝ Ú od�qwAv { rd� ×dÙ+Ú ���;v��ÛÖ �dÚ o=�ÞÖ¯pAâÝ �dw�v {©� ��p � u�s&� � �©��xjw+o�w�vdp;rqw&�;vã td�jsHäqw�v {�� p;�qw;p « x�� ��s&�;�d�d�Ý Ú od�qwAv { rd� ×dÙ+Ú ���;v��ÛÖ �dÚ o=�ÞÖ¯p+åÝ �dw�v { ��w�v { x��&rj�&v ��xjw+o�w�vdp;rqw&�;vÝ Ú od�qwAv { rd� ×dÙ+Ú ���;v��ÛÖ �dÚ o=�ÞÖ¯p+æÝ �dw�v { vd�;�;o�p�xdw�á=p&r�w&�;vÝ Ú od�qwAv { rd� ×dÙ+Ú ���;v��ÛÖ �dÚ o=�ÞÖ¯pdçÝ �dw�v { o�p;rqsAt�uá�;��u «�Ú w;x � r��jp&v��lx�p;rqw&�;v×+ÙdÚ ���&vq�MÖ����d��è ¡ âUéêàjp;��vqw�v { y��jx Ú �dÔl¬ o�pAë � pdw;x �dÚ � rj� Ú v « � Ú v � p&� {+Ú oq�&v�rq�×+ÙdÚ ���&vq�MÖ����d��è ¡ åIéêàjp;��vqw�v { y��jx Ú �dÔl¬ o�pAë � pdw;x �dÚ � rj� Ú v « � Ú v � p&� {+Ú oq�&v�rq�×+ÙdÚ ���&vq�MÖ����d��èÄ¬�îGéêàjp;��vqw�v { y��jx Ú �dÔl¬ o�pAë � pdw;x �dÚ � rj� Ú v « � Ú v � p&� {+Ú oq�&v�rq�Ý Ú od�qwAv { rd� ×dÙ+Ú ���;v��ÛÖ �dÚ o=�ÞÖ¯p ×Ý �dw�v { s Ú r!s;�&vq��r�� Ú s�rqw&�;vã td�jsHäqw�v { � Ú r�� Ú r©���j� { �jp�oì �qw�rqwAv { rd� ×dÙ+Ú ���;v��ÛÖ�ó�áo « x�p yÓÒAÔ £;� ��x+Ôd���d�js�w;p�x���Ôdw	o=�dx�Õ
Figure 8.1: A sample run of the � \:Y$Â`´ translator. The “Doing...” lines announce
transformation phases starting. The “Checking...” lines are internal consistency
checks which are not mentioned in the text.

8.1 Parsing and unfolding of syntactic sugar

The front end of the translator expresses the input program as a series of
pure Horn clauses with cut, i.e., with the abstract syntax shown in Figure 8.2.
The main goal of the program is, implicitly,í

pTV�W:�r^=x�}�q �g���"! l
The input programs can be written in this syntax (with the stan-

dard lexical conventions for distinguishing between variables and func-
tors/predicates). We also support a number of convenient variant forms
(“syntactic sugar”) which the parser translates into canonical form:

� Nullary functors (also known as atoms) can be written without paren-
theses.� Lists in Prolog’s normal notations (such as “ R�µ¶�¯Â ��¸�U ”, “ R)µ¶�BÂQS`RG¸�U,U ”,
or “ �`��µ¶���$�BÂ ���`�B¸©��R�U�¡,¡�¡ ”). All notations are converted to terms built
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h
program ijM/MOk h

clause i�l�lml h clause ih
clause ijM/MOk h

atomic ion�p h goal irqrl�lmlq h goal i�lh
goal ijM/MOk h

atomic is h
term itk h

term is u
s �g�$�%!h

atomic ijM/MOk v�w$x h term i�y)z�lml�l{z h term iG|~}h
term ijM/MOk �	x h term i�y)zml�lmlmz h term i Ø Ù(Ø }s lml�l s d 4 s d 1 s c s 1 s 4 s l�lmls L

Figure 8.2: The “core” Prolog subset we work with. The output of the parsing
phase is an abstract syntax tree built from this syntax. Throughout the im-
plementation, a “ � ” is represented as an alphanumeric identifier with a “ e&Ì ”
suffix, and “v�w ” and “ L ” are simply alphanumeric identifiers. Extending our for-
mal definition of P, the implementation always allows the same “ L ” identifier
to be reused in different clauses. In this step the same “ v�w ” identifier can even
be used with different arities.

from the functors ¦:Y&^~�je$Â and í~�$X�e$ó which cannot be input otherwise
because they lexically ought to be variable names.� Anonymous variables, “ ë ”, are given a name guaranteed not to be used
anywhere else.� Edinburgh strings in î double quotes î stand for lists of character codes.� Certain infix functors, selected by the principle that we add them to the
parser when they occur in legacy code we try to use the prototype on.� Limited support for ���je$Â . Under the assumption that all variables in
the goal are numbers, an ��� goal is translated to a series of calls to our
arithmetic primitives.� Negation-as-failure, spelled “ ï-ð ”. This is implemented by generating an
auxiliary predicate with a cut in it.� Disequalities. “

h
term i�yñï$» h

term i + ” is implemented by applying
negation-as-failure to the primitive “ k ” goal.

� Local disjunctions, i.e., goals of the form

x h goal irqrlml�l�q h goal i"ò h goal irqrlml�l h goal iB}
Also implemented by generating an auxiliary predicate. Cuts inside
the disjunction are not allowed1.

1In Standard Prolog such cuts cut all the way back to the choice point of the clause, not
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� If-then-else, spelled “ x h cond
d

goals i p�ó h
then

d
goals i�È h else

d
goals i¯} ”.

Implemented by generating an auxiliary predicate of the form´ n�p h
cond

d
goals i�zMômz h then

d
goals i�l´ n�p h

else
d

goals i�l
The unfolding of syntactic sugar takes place in the parser. The construc-

tions that need auxiliary predicates leave the code for the auxiliary predicate
in a special construction at the place of the call; a secondary “disjunction un-
folding” phase decides on a predicate name and moves the code to the top
level of the program.

The dumps name �Ga$³�V,�Ð��W�ó and name ��a�³�V,�Ð�'W~µ show the internal repre-
sentation of the program before and after the “disjunction unfolding” phase.

8.2 Parameter moding

The parameter moding phase divides the parameters of each predicate into
input and output parameters. It also converts the program from being a
series of Prolog-like clauses to being a series of P-like predicate definitions,
except that ���$� ��� instructions may unify arbitrary terms, not just registers.

The properties of the new program are:
� A predicate name in the new program is a pair consisting of a predicate

name v�w from the old program and a sequence of “ õ ”s and “ ö ”s that
encode the parameter modes.� The predicate �{V�W:�r^fq�÷ � (where ÷ is the empty sequence) needs to be
defined in the new program.� For each predicate that needs to be defined in the new program, a
definition is obtained in the following way, which may cause other
predicates to need to be defined.

Imagine the predicate to be defined is ��[:Y,YCq�õ�ö�õ-ö � . Then, find each
clause

[:Y,Y�x ø y q ø + q ø - q ø . }on�p h goals i�l
from the old program where the predicate and the number of param-
eters matches.2 Each of these becomes a clause for ��[:Y�Y:q�õ�ö$õ�ö � in the
“new” program:

��[:Y�Y�q�õ�ö�õ�ö � n�p �����'��
 e xÅL y z0L - } Ç ���$� ��� L y Ú ø y Ç ���$� ��� L - Ú ø -Ç h
goals iÇ ���$� ��� L + Ú ø + Ç ���$� ��� L . Ú ø . Ç �)��� � xÅL + z0L . }

where L y through L . are fresh register names and the goals in
h
goals i

get translated as follows:

just the choice point of the local disjunction. Supporting that would require (small) changes
to P.

2If there are no such clauses at all, we generate the definition “ < 9&:&:-¯ÓøHù+øHù;BÞú�û�ü2ý�þ9ü2ÿ��������� �
	�������������
” and emit a warning to the user.
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� A “
h
term itk h

term i ” goal becomes a (pseudo) ���$� ��� instruction.� A “
u
” goal becomes a �&��� instruction.� A “ �g�$�%! ” goal becomes a �g�$�%! in P which causes the rest of the defi-

nition to disappear.� A “v�w � x ø y zml�lmlmz ø | } ” goal is transformed to either a ����!"! or a # �$�"! ���%�
instruction in the following way.

First, each
ø �

in the parameter list which is either a compound
term3 or a register that also appears somewhere else in the para-
meter list, replace

ø �
with a fresh register L and insert a ���$� ��� LCÚ ø �

instruction before the present goal.
After this substitution the parameters are all distinct4 regis-

ters. We classify those that have been mentioned before in the
definition (which includes the newly-created ones that replaced
compound terms) as input parameters and the rest as output pa-
rameters.

If the predicate name v�w � and the distribution of input and
output parameters match one of the built-in predicates known by
the implementation, the goal now becomes a # �$�%! ���%� instruction.

Otherwise it becomes a ����!"! instruction with the name of the
called predicate derived from v�w � and the input–output division.
It needs to be defined somewhere in the new program.

Clearly, the process of generating the “new” program is well-defined (the
generation of one new predicate is not affected by which other new pred-
icates exist) and terminating (each

h
atomic i with Ì parameters in the pro-

gram can cause at most 4 | different new predicates to be generated).
Our implementation uses a simple depth-first algorithm with a global

cache of already-defined new predicates to implement this transformation.
After the transformation is complete, we generate new alphanumeric

names for all of the new predicates. Our implementation tries to reuse as
many of the original names as possible.

The dump name ��a$³�V,�Ð�'W�Â shows the program after the parameter mod-
ing phase.

8.3 Number wrapping

The number wrapping phase transforms the program such that the only
numbers that appear in the data it manipulates are operands to a special
functor í.e:µ which we reserve for that purpose (we can be sure it does not
appear in the program before, because the parser would classify it as a vari-
able name).

Two simultaneous transformations are involved in this:
� Every

h
term i of the form ý ù J is replaced with the

h
term i í.e:µ�x ý } .

3We take “compound terms” to include number constants and unary functors.
4See Box 8.1 for why this is important.

109



Box 8.1—THE IMPORTANCE OF USING DISTINCT REGISTERS IN CALLS

It is important that the parameter moding makes sure that the parameters to a
predicate call are all distinct variables before it selects parameter modes.

To see why, consider this Prolog program:r+àj��x � � |�� ��� � y{u�� �r+àj��x � � |�� � �'� �oqpdwAv�y{uÖrdàj��x � � |�� � �h� �
Here we see that � is unbound before the call to r+àj��x � � , so it might be tempt-
ing to classify the parameters as output and try to unify them only after the
call. However, in that case the first clause of r+àj��x � � would succeed in binding
one of its parameters to � and another to � , and it would cut the other clause
away before it can determined that that decision was wrong. Thus the seman-
tics of the resulting P program would not be faithful to the semantics of the
original Prolog program.

In our solution, the body of o�pjwAv gets rewritten to�! #" � r+àj��x � � |�� � "h�
before the parameters are classified. Then both parameters become input pa-
rameters, and the P version eventually becomeso�pdw�v½yMuV|&}	~-|&� ä®� �å�¤ ßl¥ |K¦ ß � ä �å�� ß	àOà r+àj��x � � � � ¢ � � ä�� �å |M� á ~ � �K�
which means that the first clause of rdà���x � � will be trying to unify the same
variable with � and � at once and (correctly) fail before it cuts the other possi-
bility away.

� Every “ # �$�%! ���%� v�w$xgL y zml�lmlmz0L Ñ Ò�ÓgÔ } e xÅL �y zml�l�l{z L � Õ Ò�ÓgÖ } ” instruction is replaced by
(...)Ç ���$� ��� L y Ú§íÊe:µ�x ˜L y }lllÇ ���$� ��� L¢Ñ Ò�Ó�Ô�Ú§í.e:µ�x ˜L±Ñ Ò�ÓÅÔ�}Ç # �$�%! ���"� v�w�x ˜L y zml�lmlmz ˜L Ñ Ò�ÓgÔ } e x ˜L �y zml�lmlmz ˜L � Õ Ò�ÓgÖ }Ç ���$� ��� L �y Ú§íÊe:µ�x ˜L �y }lllÇ ���$� ��� L � Ñ Ò�Ó�Ô Ú§í.e:µ�x ˜L � Õ Ò�ÓÅÖ }
(...)

where the ˜L � s and L̃ �� s are fresh variables.

This makes sure that the program can be typed, even though our type
systems do not allow numbers and other compound terms to be described
by the same type. See Box 6.1 on page 91 for a further discussion. Most
of the í.e:µ functors disappear again in the singleton elimination phase (Sec-
tion 8.6).

The dump name �Ga$³�V,�Ð��W�¸ shows the program after the number wrapping
phase.
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8.4 Unification normalization

What now prevents the program from being a P program is that the ���$� ���
instructions in it equate arbitrary terms, not just known registers.

The unification normalization transforms the ���$� ��� instructions such that
only two forms remain:� Ordinary P unification between two known registers—that is, registers

that have been mentioned earlier in the clause� Unification of a known register with a compound term

Eventually the latter kind will be transformed into sequences that involve
� ������
��	��� instructions, but it is convenient to have done away with other forms
of unification before tackling that.

The normalization phase transforms the ���$� ��� instructions in each clause
from left to right. The different cases that can be met are:

1. known register versus known register. If the two registers are the same,
then the instruction can be discarded. Otherwise leave it unchanged.

2. known register versus unknown registers. At run time, the two regis-
ters will always have precisely the same value, so we can eliminate the
instruction by substituting one of the registers for the other in the en-
tire clause. Our prototype prefers to use a register whose name comes
from the original Prolog program as the “surviving” one.

3. known register versus compound term. Leave the instruction unchanged
for now (except normalizing the order of the operand such that the
register is always the first operand).

4. unknown register versus unknown register. The main example of this
case is the situation described in Box 8.1. Insert a “ ���������	��
 e L ” in-
struction before the ���$� ��� , where L is one of the registers. This causes
the ���$� ��� instruction to fall under case 2 or (if the two unknown regis-
ters were identical) case 1. Proceed from there.

5. unknown register versus compound term. First, insert ���������	�	
 instruc-
tions before the instruction for every unknown register found in the
compound term.

If that makes the other operand known (such as in the goal “
� k

�,� � � ”) continue as for case 3.
Otherwise, replace the instruction with a series of ��� �&�'��
(�	��� instruc-

tions that build the requested term.

6. compound term versus compound term. If the root functors of the two
terms are different, the instruction can never succeed. Replace it with�g���"! (which causes the rest of the clause to disappear).

Otherwise, replace the instruction by a ���$� ��� instruction for each
matching pair of subterms, and recursively normalize those new in-
structions.

The dump name ��a�³�V,�Ð�'W ö shows the program after the unification nor-
malization phase.
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Box 8.2—SOUNDNESS OF SINGLETON ELIMINATION

It is easy to see that the singleton elimination transformation preserves the
property of typeability, but it may still appear that it is not semantically sound,
because it destroys the difference between an uninstantiated variable and a
needless functor whose operand is an uninstantiated variable.

It is correct that this difference is destroyed, but it does not matter that is is.
The only way for the original program to know the difference between � and$ |��h� is to try to unify the value with something that is not

$ Ô ¡ . And if one does
indeed do that,

$
will not be needless.

This argument is spoiled if the implementation is extended to support the
meta-logical predicates � p&�IÔ ¡ and vd�&v � p;�'Ô ¡ directly. One way of saving it
would be to augment type nodes with a flag that told whether terms of that
types are used as argument to � p;�'Ô ¡ or vd�;v � p;�'Ô ¡ . Types where the flag was
set would not be considered singleton types.

8.5 Dead-code elimination

The dead-code elimination phase transforms every

����!/! v�w$xgL y zml�lmlmz L Ñ Ò�ÓÅÔ } e x�L �y zml�lmlmz L � Õ Ò�ÓÅÖ }
to ����!"! v�w�x�L y zml�lmlmz L±Ñ Ò�ÓÅÔ�} e x�} Ç �g�$�%!
whenever v�w is a predicate that can never succeed because all of its clauses
ends in �g���"! .

The purpose of the transformation is primarily technical. Our internal
P representation does not store the arities of predicates explicitly. The type
inference code therefore expects to be able to find �mv�wr� and ��v�w�� by looking
at the �����'�	
 and �)��� � pseudoinstructions in v�w ’s definition. The dead-code
elimination makes sure that �mv�wr� has the predictable value

c
in the cases

where there are no �)��� � pseudoinstructions to look at.

The dump name ��a$³�V��Ð�'W ñ shows the program after the dead-code elimi-
nation phase.

8.6 Singleton elimination

The singleton elimination phase removes needless unary functors from the
program. The main example of a needless unary functor is the í.e:µ functors
inserted by the number wrapping phase (Section 8.3). These are not always
needless, but for well-behaved programs they usually are.

The singleton elimination phase works by doing type inference on the
program, using a type system that looks like TGP except that (nonsurprising)
typing rules have been added for the ���������	�	
 instruction and the extended
form of the ���$� ��� instruction that is still in use at this point.
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After the type inference, a functor is considered needless if its type has
degenerated from “ ¨ � � � �

m � � � � ” to “ � y �
m
y'y)� ”. The singleton elimination con-

sists of removing needless functors from the
h
term i s in (pseudo) ���$� ��� in-

structions and changing �����&����
��	��� or � ���'��
(�	��� instructions that build or in-
spect them to ��!O���&� instructions. (See Box 8.2 for a discussion of the safety of
doing that).

Type inference for the TGP-like system is easy and can be done by con-
ventional means. There are only two significant difference from a completely
standard unification-based monomorphic type inference.

The first difference is that when we need to unify, e.g., “ � y �
m
y'y qrl�lmlq

m
y Ø Ù T Ø � .

� + �
m + y qrl�lmlq m + Ø Ù&%)Ø � .¨l�lml ” with “ � y �

m
y'y qrlml�lq

m
y Ø Ù T Ø � . � - �

m - y qrl�l�l�q m - Ø Ù&'�Ø � .¨l�l�l ”, the result
must be “ � y �

m
y'y qrl�lmlq

m
y Ø Ù T Ø � .®� + �

m + y qrlml�l�q m + Ø Ù&%�Ø � .®� - �
m - y qrl�lmlq m - Ø Ù&'�Ø � .ºl�l�l ”, instead of

a unification error. The same thing happens when inferring record types for
SML.

The second difference is that we need to be able to infer recursive types.
The only thing that is necessary for that is to do type unification without
an occurs check (and to use a unification algorithm which does not risk
nontermination in the presence of circular terms, of course).

The dump name ��a$³�V��Ð�'W õ shows the program after the dead-code elimi-
nation phase.

Our prototype throws away the type information before the dump opera-
tion. This is because it was easier to to add another call to the type inference
engine in the match-or-build translation phase than to adjust the type data
for the effects of the second normalization phase that comes before.

8.7 Second normalization

The singleton elimination is followed by a second normalization pass which
does the same as the normalization described in Section 8.4. Its job here
is to eliminate any instructions that have become unnecessary because their
only task was to apply or remove a needless functor.

The ��!/�0�	� instructions that are created from ��� �&�'��
(�	�)� instruction by the
singleton elimination are treated like unifications between a known and an
unknown register (and therefore all eliminated).

The dump name ��a�³�V,�Ð�'WGÅ shows the program after the second normal-
ization phase.

8.8 Match-or-build translation

The match-or-build translation phase transforms the remaining pseudo ���$� ���
instructions (those that unify a known register with a compound term) to ei-
ther sequences of � ���'��
(�	��� instructions or auxiliary match-or-build predicates
akin to the ones on Figure 3.2 (page 39).
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The transformation prefers plain � ���'��
(�	�)� instructions, but it has to make
sure that they are only used where the TP system of Chapter 7 allows it.
Thus the first step is to compute a TP typing of the program.

8.8.1 TP type inference

The TP type inference proceeds in four phases.
First, ��!/�0�	� instructions are inserted everywhere in the program, such that

each register is used in at most one non- ��!O���&� instruction.5 This gives maxi-
mal freedom to use TP’s subtyping capabilities.

Second, a TP typing with all the modes set to 
��� is computed. That is
completely equivalent to the type inference step of the singleton elimination
transformation (Section 8.6).

Third, fresh copies of the type of each register are created, such that
the operands of an ��!/���&� instruction do not share any type nodes. This is
necessary for them to be able to have different mode annotations.

Fourth and last, a special analysis determines which of the 
��� s in the
types can safely be replaces by # ��
� .

This analysis uses the logic-based technique developed in Makholm
[1999, Section 4.1]. It consists of building—at analysis time—a little for-
mal theory6 about how the given program can be annotated. For each type
node in the program, the theory contains a proposition meaning, “this type
node is annotated with a 
���� ”, such that each truth assignment for all propo-
sitions describes a (not necessarily well-) typing for the program. The also
contain other auxiliary propositions (to be described in a moment), but the
total number of propositions is finite.

A finite number of inference rules and axioms are then derived from
the program, such that a truth assignment describes a TP well-typing if and
only if it is a model, that is, is satisfies the axioms and inference rules.
Considering a proposition to be true iff it is provable in the theory (which is
decidable because there are only finitely many propositions and rules in the
theory) yields a model7 which clearly is the “least true” model—which again
means that it describes the TP well-typing with the fewest 
��� ’s.

The generation of inference rules is simple for most of the instructions in

5Our prototype immediately optimizes away some of the
�(� � �*)

instructions, where it is
clear that they are never necessary. That is not essential.

6People have different expectations about what concepts the phrase “formal theory” en-
tails. We use the term here in the minimal sense of Mendelson [1997, Section 1.4], where
all that is required is some set of “propositions” (which Mendelson calls “well-formed for-
mulas”) and a way to deduce propositions from other propositions.

7This is true because we do not include implicit connections between the truth values
of proposition. Compare, e.g., with propositional logic which requires that the truth as-
signment of propositions such as + and ,�+ are related in particular way. In such theories,
taking the provable propositions to be true does not necessarily yield a well-formed truth
assignment, let alone a model.
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the program. For example, the instruction

��� �&����
��	��� �	xgLC} e L � where �Þ��L � kF3 y l �"����7�mL � � kF3 + l/���3 - l �"��� � .�l�lml
is only TP well-typed if 3 y k43 - , so we generate the inference rules3 y is 
���3 - is 
���

3 - is 
����3 y is 
����
If �Þ��L � had been a more complex type, we would generate similar pairs of

inference rules for each matching pair of type nodes in �Þ��L � and �7�mL � � . We
do not generate any inference rule corresponding to the requirement that3 + k # ��
�� . That is safe because the only other occurrences of L � will be as
the right-hand arguments of ��!/���&� instructions, so nothing can ever force 3 +
to be 
��� .

����!/! instructions result in similar groups of rules being generated to relate
the types of the formal and actual parameters.

A ���������	��
 instruction result in axiom being generated: the mode anno-
tation of the new variables’ topmost type node must be 
��� .

The ���$� ��� instruction first is more complicated. Consider, for example8

���$� ��� LCÚo� y x�� + xÅL � }B} where �Þ��L y¯� k43 y l/� y �3 + l/� + �3 - lO� - �3 . l �%��� ������7�mL � � k43 �- l/� - �3 �. l �"��� �
The first task of the pseudo ���$� ��� instruction is to make sure that the

value bound to L has the specified shape. This is not purely an inspection
operation; if 3 + or 3 y is 
��� , it may encounter an uninstantiated variable
and have to allocate a new � + and perhaps also a � y itself. What should the
argument of the new � + be? If L � is a known register, the value of that can
be used, but of L � is unknown, the ���$� ��� instruction has no other choice than
to allocate a new uninstantiated variable to use in the place of the � - , but
in that case 3 - has to be 
���� , too. Thus, if L � is unknown (which can be
determined at analysis time), we generate the rules3 y is 
���3 - is 
���

3 + is 
����3 - is 
����
We also need to make sure that the �Þ��L � � is identical to the appropriate

part of �Þ��L � . This applies equally when L � is known (in which case its value
must be unified with the appropriate part of L ’s value) and when L � is un-
known (in which case its value is the appropriate part of L ’s value). To that
end we generate the rules3 �- is 
����3 - is 
���� 3 - is 
���3 �- is 
���

3 �. is 
����3 . is 
���� 3 . is 
����3 �. is 
����
8Strictly speaking, the types in this example do not occur after the singleton elimination

phase. It would only add to the confusion to use more realistic types, however.
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We now turn to the ��!O���&� instruction, for example

��!/�0�	� L e L � where �7��L � kÑ� y k43 y l/� y �3 + l/� + �3 . l �%��� ����Þ��L � � kÑ� �y k43 �y l/� y �3 �+ l/� + �3 �. l �"��� ���
Here we must generate rules to enforce the � y�Â � �y relation defined in
Section 7.4.

Because � y and � + were constructed as fresh copies of the same original
type we know that their type nodes line up in pairs: �Ó� y qA� �y � , �,� + qA� �+ � and
�,� - qA� �- � . Now, the definition of Â implies that for each pair �,� � qA� �� � either� � Â � �� or � � kÑ� �� must hold. So we always need the rules.3 y is 
����3 �y is 
���� 3 + is 
����3 �+ is 
���� 3 - is 
����3 �- is 
����

However, the reverse implications are only necessary if we must have� � k � �� . We do not know in advance whether that will be true, but we
can construct propositions and inference rules to have the theory compute it
for us. We add auxiliary propositions to the theory with the form “we need� � kÑ� �� ” and add the rules3 y is 
���

we need � y kÑ� �y 3 + is 
���
we need � + kÑ� �+ 3 - is 
����

we need � - kÑ� �-
we need � y kÑ� �y
we need � + kÑ� �+ we need � + kÑ� �+

we need � - kÑ� �-
Then we can let 3 ��

conditionally influence 3 �
by adding the rules3 �y is 
��� we need � + kÑ� �+3 y is 
��� 3 �+ is 
���� we need � + kª� �+3 + is 
���3 �- is 
��� we need � + kÑ� �+3 - is 
����

The particular beauty of this scheme is that it works perfectly fine when
the types are recursive.

Once the propositions and rules have all been generated it is a simple
matter9 to compute which propositions are provable, starting with the ax-
ioms and iteratively adding propositions that are immediate consequences
of the already-proved propositions. Then a TP well-typing can be derived
from this set of provable propositions.

8.8.2 The actual match-or-build transformation

Once we have a TP well-typing of the program, we can transform instruc-
tions of the form ���$� ��� LCÚ���x ø y zml�lmlmz ø Ø Ù(Ø }

9An imperative linear-time algorithm is easily constructed [Makholm 1999].
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to appropriate sequences of proper P instructions.
If �Þ��L � kÃ# ��
� l

m
, then it is safe to simply use a � ���'��
(�	�)� instruction to take

L ’s value apart. Replace the instruction with
(...)Ç � ������
��	��� L �&� � e x ˜L y zlml�lmz ˜L~Ø Ù(Ø }Ç ���$� ��� ˜L y Ú ø ylllÇ ���$� ��� ˜L~Ø Ù(Ø	Ú ø Ø Ù(Ø
(...)

where the ˜L � s are fresh registers. Add appropriate types (extracted from�Þ��L � ) for the L̃ � s to the TP typing and repeat the transformation for those of
the new ���$� ��� instructions for which ø � is a compound term.

If �7�mL � k 
���� l
m
, things get more complicated. Let ��L y qrl�lmlq�L 1 � be those

known registers that appear in the original instruction (including L ) and
�mL �y qrlml�lq�L �| � be the unknown registers that appear in the original instruction.
Replace the instruction with

����!"! ˜v�w�xÅL y zlml�l{z0L 1 } e xgL �y z�lml�lmz L �| }
where ˜v�w is a new predicate with the definition

˜v�w²n�p �	���'��
 e xÅL y z�l�lml{z�L 1 }Ç � ��
���� L e ˜LÇ �	���ï
this is the “match” case:Ç ���$� ��� ˜LôÚ �	x ø y z l�lmlmz ø Ø Ù(Ø }Ç �)��� � xÅL �y z�l�lml{z	L �| })È�����'�	
 e xgL y z�l�lml{z�L 1 }ï
this is the “build” case:Ç ���$� ��� ˜LôÚ �	x ø y z l�lmlmz ø Ø Ù(Ø }Ç ��!O���&� ˜L e ˜L �Ç ���$� ��� LôÚ ˜L �Ç �)��� � xÅL �y z�l�lml{z	L �| } 8

where ˜L and ˜L � are fresh registers.
Repeat the transformation for the ���$� ��� instruction in the “match” case.

It handles the case where L ’s value was not an uninstantiated variable; the
� �	
��� instruction removes the 
��� from its type so the new ���$� ��� instruction
eventually becomes a � ������
��	��� sequence.

The “build” case handles the case L ’s value is an uninstantiated variable.
It builds a new term in the fresh register ˜L and uses an ordinary ���$� ��� in-
struction to instantiate the variable. The pseudo ���$� ��� instruction that builds
the term is left in the program for now.

8.8.3 Yet another normalization step

After the match-or-build transformation the type information is removed
from the program, and the normalization transformation described in Sec-
tion 8.4 is run for the third time.
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This time its main job is to translate the pseudo ���$� ��� instructions in the
“build” cases of the newly generated predicates to appropriate sequences of��� �&�'��
(�	�)� (and possibly ���������	��
 ) operations.

The normalization step also eliminates the ��!/�0�	� instruction that was in-
serted before the type inference. They are not necessary anymore, because
now we are sure that the program cannot go * 
� �&� - .

The kind of pseudo ���$� ��� instructions generated by the match-or-build
transformation can all be reduced completely to standard P instructions by
the normalization, so afterwards the program is a correct P program.

The dump name ��a$³�V��Ð�'W.- shows the program after this third normaliza-
tion phase.

8.9 Cut construction

The cut construction phase attempts to insert “green” cuts10 in as many of
the program’s clauses as possible. This is not strictly necessary, but it im-
proves performance of the P program by making the life times of most choice
point shorter. This is especially important with a region-based execution
model, where an active choice point can cause deallocation of a region to be
postponed.

The cut construction phase inserts a cut at the earliest place in each
clause where

� A programmer-supplied cut has not yet been executed.

� No predicates that may leave their own choice points have yet been
called. A conservative, fixpoint-based determinacy analysis is used to
determine which predicates risk leaving choice points.

� Enough � ������
��	��� instructions have been executed to know that the val-
ues of the input parameters will cause a � ���'��
(�	��� instruction to fail in
each subsequent clause before it can do any “dangerous” actions. Here,
“dangerous” actions include the # �$�%! ���%� instruction (which may do I/O),
calling a recursive predicate (which may loop indefinitely), and calling
any predicate that contains “dangerous” actions itself.

The third condition is always true in the last clause, which means that the
cut construction phase always inserts a cut as the first instruction in the last
clause of any predicate. This does not harm performance because our P and
RP implementations expect a cut to be there and insert one by their own
accord if they do not find it.

The final P program is the output of the cut construction case.

10That is, cuts whose effect is not observable in the behaviour of the program.
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8.10 Conclusion

We have shown how to translate Prolog code into P code that makes good
use of P’s facilities.

The translation consists of a series of individual transformations. This de-
sign makes it possible to convince oneself that the translation is correct, that
is, it preserves the semantics of the original P program. If the P-like inter-
mediate code between the phases is interpreted as a Prolog program (using
the Prolog equivalents of each P instruction that we have given in Chapters
2 and 3), it is possible to understand the correctness (if not the eventual
purpose) of each transformation separately. At the end of the translation we
have a P program whose Prolog interpretation is equivalent to the original
Prolog program. We can then invoke the similarity between Prolog seman-
tics and our P semantics we suggested in the beginning of Section 3.7.

Although we have not actually proved any of the transformations correct,
we feel reasonably certain that it can be done. We are therefore confident
that the Prolog-to-P translator produces correct P code.

Our experience from practical experiments with our prototype translator
is that the efficiency of the generated P code is in most cases satisfactory.
It generally manages to distinguish between the possible roles of predicate
parameters and unification in the same way the Prolog programmer thinks
about her program.

Sometimes, however, the TP type inference we describe in Section 8.8.1
exhibited an strange lack of precision, where some modes became 
��� in-
stead of # ��
�� for no apparent reason. We eventually discovered that the
problem is due to unexperienced interference between monomorphic type
inference, declaration-free type recursion, and the type-based mode anal-
ysis. See Section 12.1.8 for an explanation of what goes wrong. Similar
problem can occur in our region inference algorithm, and the effect appears
to be possible for many different type-based analyses. Further research may
be necessary to identify a generally applicable way of avoiding it.

119



Chapter 9

TRP: a region-annotated type
system for RP

In this chapter we define the region-annotated type system TRP for RP pro-
grams. The system builds on the ideas we have presented in the TGP system
of Chapter 6 and to some extent on those of TP in Chapter 7.

TRP’s reason for existing is to help prove that some RP programs are
“region safe”, that is, that it will never try to inspect values in regions that
have been deallocated. Remember that the semantics in Section 4.4 uses the
error state * 
�� �&�$. to signal that that has happened. So we can define

Definition 9.1 An RP program is region safe if, when it is executed according
to the definitions in Section 4.4, the error state * 
���&� . cannot arise.

The time when TRP is used is in the region inference phase of our region-
based Prolog implementation. The region inference takes as input a TP-
typeable P program and is expected to produce an equivalent region-safe RP
program. In this process, TRP serves as

� a design guideline: The region inference works by adding to the P pro-
gram exactly those region annotations that are necessary to make it a
TRP–well-typed RP program.

� a divide-and-conquer point in the argument that the region inference
works. This argument is naturally divided into two parts: First, argue
that the output of (certain phases of) the region inference is always
TRP well-typed. Second, prove that every TRP–well-typed program is
region safe.

TRP is similar to—and derived from—the region inference rules of Tofte
and Talpin [1993]. It is simpler than that, however, because we can look
away from the complex machinery they use to handle higher-order func-
tions. In other aspects, TRP is stronger than the Tofte–Talpin system, be-
cause we allow regions to be deallocated even when types mentioning them
are still in scope.
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9.1 The syntax and meaning of TRP types

Like the TP types, the TRP type system is an extension of the TGP types.
Instead of adding a mode to each type node, we add the name of a region
register: � MOM/k ÍCl mm

MOM/k �%���
s � y �Ó� y'y qrlml�lqA� y Ø Ù T Ø � . XAXAX .º� | �Ó� |:y qrl�lmlqA� | Ø Ùon,Ø �Í MOM/k (a region register from the program text)

where, in the second production for

m
, the � � s are all distinct and none of

them are numbers. Types can be recursive, just as they can in TGP and TP.
As for TP, we call each � a type.1

The intended meaning of a type like “ ÍCl/[:Y�Y��Ó� y�� .ºÆ:W$\�,� + � ” is that it de-
scribes either a variable allocated in the region bound to Í or a [:Y,Y or Æ:W�\
structure allocated in the region bound to Í . In either case any instantiated
variables necessary to find the value must also be allocated in Í .

When we define what this means precisely, we face the problem that
the region annotations in types are region registers (e.g., syntactic identifiers
from the RP program) whereas the region store works in terms of region
numbers which are a dynamic concept. Therefore the relation between types
and pointers in a store must include the region environment ø in which the
type is to be interpreted. We write itø q 8 � 6 M��
which means, “In store 8 the term represented by 6 has the type � when �
is interpreted in ø .

Definition 9.2 The relation ��q��M � is defined co-inductively2 by the following
inference system:

ø q 8 �º��ø �ÄÍ � q ú � M�ÍCl m 8 �äø �ÄÍ �B� � ú � k ���$�"�&���

ø q 8 � 6 � M�ÍCl mø q 8 � ��ø �ÓÍ � q ú � M�ÍCl m 8 ��ø �ÄÍ ��� � ú � k 6 �
ø q 8 � �äø �ÄÍ � q ú � M�ÍCl �%��� 8 ��ø �ÄÍ ��� � ú � ù J

1This is different form the terminology of most of the previous work on region type
systems, where « is called a “type-and-place” and ¬ a “type”. We feel that the role of « ’s in
the typing rules are closer to to the roles of types in ordinary type systems, so the « ’s should
have the privilege of being called types.

See footnote 2 on page 97 for the rationales for other deviations from the Tofte–Talpin
syntax.

2See the remarks following Definition 7.1 on page 97 for a discussion of co-inductive
definitions.
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º � 
 ø q 8 � 6 ��M�� � � �ø q 8 � ��ø �ÓÍ � q ú � M�ÍCl ¨ � � � �Ó� � � � � 8 ��ø �ÄÍ ��� � ú � k�� � � 6 y qrlml�l�q 6 Ø Ùow(Ø �
ø q 8 � 6 M�ÍCl m Í �ù Dom ø

The last rule implies that for Í s not defined in ø , the type ÍCl m describes
everything. That means that removing a region from ø can never cause
anything to cease being described by any type.

We also need a notation for the region variables that occur in a type:

rgns �ÄÍCl �"��� � k �	Í �
rgns �ÄÍCl p � � � �,� � � � � � k �	Í � Â t � É � rgns �,� � � �

(see Section A.1.4 for a discussion of how to give meaning to this when types
can be recursive. We define “rgns” to be the least solution to the recursive
definition).

We extend the T(G)P predicate types to include the names of the predi-
cate’s formal region parameters. A TRP predicate type has the form/10 Í y qrlml�lq&Í.å Ò�Ó�æ32 � y qrlml�l�qA�©Ñ Ò�ÓÅÔ� �y qrlml�l�qA� � Õ Ò�ÓÅÖ�4
where the Í � s are distinct region registers. Such a region-annotated type
is implicitly region polymorphic. That means that when the predicate is
called, the region registers in the types of the actual parameters need not be
identical to the ones in the predicate type, except that identical regions in
the predicate type must correspond to identical regions in the call context.

9.2 Typing rules for RP programs

Define a TRP typing � by analogy with the TGP definition (Definition 6.2 on
page 92).

A TRP well-typing is one that complies with the rules in Figures 9.1 and
9.2. The main judgement form in these rules is��q65Ø� ü � �Ó� y qrlml�l�qA� |��
where 5 is a mapping from

h
Region i to the set � �����	�&� * � q 6	��
�� q ! ������! q�� ��� � �

which describe properties of the region environment prior to the execution
of

ü
. Intuitively,5 �ÓÍ � k �������&� * � means that the region register Í is not in scope, but it is

possible to create a region with that name without risking to create a
name conflict.
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��q65Ø� ü � P���q65 � ����!"! v�wjãäÍ y zml�lmlmz�Í å Ò�Óæ ç
xgL y zml�l�l{z L±Ñ Ò�ÓÅÔ�}e xgL �y zml�l�l{z L � Õ Ò�ÓÅÖ } Ç ü � P�

N77777O 77777P
�7�{v�w � k �98 Í �y qrlml�lq&Í �å Ò�Ó�æ;: Ä T É �4�4�ÞÉ Ä �c�7�7�Ä T É �4�4�ÞÉ Ä � �7�7� �º   M��Þ��L � � k[»M� �º   M��Þ��L �� � k »M� ��º   M�Í � k »TÍ ��º   M<5 �ÄÍ � � ù � 6	��
(� q ! ������! �

��q65Ü� ü � P���q65Ø�¿# �$�"! ���%� v�w$xgL y z�lml�lmz L¢Ñ Ò�Ó�Ô�}e xgL �y ��� Í �� zml�lmlmz L � Õ Ò�ÓÅÖ ��� Í �� } Ç ü � P�
N77O 77P
º   M��Þ��L � � k2Í � l �%���º   M<5 �ÄÍ � � ù � 6	��
(� q ! ������! �º   M��Þ��L �� � k2Í �� l �"���º   M<5 �ÄÍ �� � ù � 6	�	
(� q ! ������! �

��q65Ø� ü � P���q65Ü� ��� �&�'��
(�	�)���&� Í
��x�L y zml�lmlmz L Ø Ù(Ø } e L � Ç ü � P�

N77O 77P � � �ù Jm
ì k����o�7�mL y�� qrlml�l�q��Þ�mL Ø Ù(Ø �B� .�l�lml�Þ��L � � k ÍCl m ì5 �ÄÍ � ù � 6	��
�� q ! � ����! ���q65Ü� ü � P���q65Ø� ��� �&����
��	������� ÍÞ�	x,} e L � Ç ü � P� NO P � ù J�7�mL � � k ÍCl �"���5 �ÄÍ � ù � 6	�	
(� q ! ������! ���q65Ø� ü � P���q65Ø�Á� ������
��	��� L �&� �e xÅL �y zml�l�l{z L �Ø Ù(Ø } Ç ü � P�

N77O 77P � �ù Jm
ì k����o�Þ��L �y � qrl�l�l�q��o�mL �Ø Ù(Ø ��� . lml�l�7��L � k2ÍCl m ì5 �ÓÍ � ù � 6	��
�� q ! � ����! ���q65Ü� ü � P���q65Ü�Á� ���'��
(�	�)� L �	� � e x,} Ç ü � P� NO P � ù J�Þ��L � k2ÍCl �%���5 �ÄÍ � ù � 6	��
(� q ! ������! ���q65Ø� ü � P���q65Ü� ���������	��
¶�&� Í e L � Ç ü � P� ¥ �7�mL � � k ÍCl m5 �ÄÍ � ù � 6	�	
(� q ! ������! ���q65Ø� ü � P���q65Ø�Á� �	
��� L e L � Ç ü � P� ¥ �7�mL � k§�Þ��L � � k2ÍCl m5 �ÄÍ � ù � 6	�	
(� q ! ������! ���q65Ø� ü � P���q65Ü� ��!/�0�	� L e L � Ç ü � P� �Þ��L � kl�7�mL � ���q65Ø� ü � P���q65Ø� ���$� ��� L y Ú�L + Ç ü � P� ¥ �7�mL y�� k§�Þ��L + �º Í ù rgns ���7��L y¯��� M�Í ù � 6	��
�� q ! � ����! ���q65Ü� ü � P���q65Ø� �	��� Ç ü � P� ��q65 � �g�$�%! � P�

��q65Ü� ����� � xÅL y z�l�l�l{z L | }h� �o�Þ��L y�� qrl�lmlq��o��L |:���
º Í M=5 �ÄÍ � �k ! ������!

Figure 9.1: Typing rules for RP programs, part 1. Compare with Figure 6.1 on
page 93.
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��q65ª�	Í¹�e ! � ����! � � ü � P���q65 � �������	
�����0� � e Í Ç ü � P� 5 �ÄÍ � k �������&� * ���q65ª�+Íõ�e � �r� � � � ü � P���q65Ø� �&�%!"!/
�����0� � Í Ç ü � P� 5 �ÄÍ � k ! ������!

��q65Ü� ü � �,� �y qrlml�lqA� � Õ Ò�ÓÅÖ ��/�ôv�wdã�Í y zml�lmlmz�Í.å Ò�Óæèç n�p�����'��
 e xgL y z�lml�lmz0L Ñ Ò�ÓgÔ } Ç ü 8

N7777777O 7777777P
�Þ�mv�w � k � 0 Í y qrl�lmlq&Í å Ò�Ó�æ 2 Ä T É �4�4�ÞÉ Ä �c�7�7�Ä ×T É �4�4�ÞÉ Ä × � �7�7� �º  tM��7�mL � � kÑ� �5Ýk?> ÍCl N77O 77P 6	��
�� if @XÍ � k2Í

� �r� � if @�� � M�Í ù rgns �,� � �
� �r� � if @�� �� M�Í ù rgns �,� �� ������	�&� * � otherwise�/� v�w�ã¨Í y z�lml�l{zHÍ.å Ò�Ó�æ ç n�p ý y 8 XAXAX �¤� v�wjãäÍ y zml�lmlmz�Í.å Ò�Óæèç n�p ý | 8�/�ôv�wjãäÍ y zml�lmlmzHÍ å Ò�Óæ ç n�p ý y Èml�lmlmÈ ý | 8

Figure 9.2: Typing rules for RP programs, part 25 �ÓÍ � k 6	��
(� means that Í is in scope and is a formal region parameter. We
know that the region exists; killing it is not allowed.5 �ÓÍ � k ! ������! means that Í is in scope; the region it is bound to exists but
must be killed before �)��� � ing from the predicate.5 �ÓÍ � k�� �r� � means the region register Í is not in scope, but nevertheless
may occur in the type of a value register. The difference between � ��� �
and �����	�&� * � is that it is not allowed to use a � ��� � region register in a�������	
���,�0� � instruction.

Except for the 5 , the interpretation of the typing judgements is as for TGP.
The rule for the ����!"! instruction implements region polymorphism. The »

that appears in the side condition is a region renaming, that is, a mapping
from region registers to region registers. This mapping naturally generalises
to entire types: » simply gets applied to the region component of each type
node. Note that there is no requirement that » is injective.

Most of the instructions need only the “topmost” regions in the their
operands’ types to exist. This means that a code sequence such as

(...)Ç ��� �&�'��
(�	���©�&� \ óoÆ~X$W$\�[�x } e ÉÇ ��� �&�'��
(�	���©�&� \=µ [CY�Y�x�É�} e ^Ç �&�%!/!"
������ � � \�óÇ � ������
��	��� ^ �	� [:Y�Y e x(É�É�}Ç ��� �&�'��
(�	���©�&� \ ÂoÆCW$\�x�É�É�} e ¾
(...)

is perfectly legitimate. The two latter � ���'��
(�	�)� and �����&����
��	��� instructions
will be pull the É�É pointer (which used to point to the Æ�X$W$\�[ structure
but is now a dangling pointer) out of the [:Y,Y structure and reinstall it in
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a Æ:W$\ structure. This is operationally safe, so the TRP type system only
makes sure that the program does not try to read what that dangling pointer
points to.3

The exception to this general rule is the ���$� ��� instruction. Because a
unification operation may need to traverse the entire terms bound to its
operands, the typing rule for ���$� ��� requires that every region register in the
type of the operands exist.

Note also that ���$� ��� requires the types of the operands, inclusive of the
region annotations, to be identical. That is a conservative way of protecting
against an uninstantiated variable in one term being instantiated to a part
of the other term which is in a different region. This rule could be made
less conservative by employing mode information, but we leave that as a
possible further extension (see Section 12.1.9).

The rule for predicate definitions (on Figure 9.2) contains some sub-
tleties related to region polymorphism. Unlike Tofte and Talpin [1993] we
do not require that all of the regions in the types of the input and output
parameters are among the region parameters. Instead, those region regis-
ters in the types that are not region parameters get marked as � �r� � in the
initial 5 . That means that the body of the predicate must assume that those
regions have been deallocated; it can neither inspect values of the corre-
sponding types nor create new values of them. Whether the regions are in
fact deallocated depends on the caller of the predicate. It is possible for the
same predicate to be called from places where the regions do exists as well
as from places where they don’t. Aiken et al. [1995] call this property state
polymorphism.

9.3 Well-typed TRP programs do not go �FaO�s �¡ 5
The usefulness of the TRP type system depends on the following theorem:

Theorem 9.3 When a TRP program is executed according to the semantics in
Section 4.4, the error state * 
� �&� . never arise.

Recall that * 
�� �&� . is the kind of error that occurs if the program tries to
reference a dangling pointer. In other words, the theorem states that the
TRP type rules prevents a program from allocating a value in a region that
will be deallocated before the last possible reference to the value.

Due to time constraints we only sketch how we think Theorem 9.3 can
be proved.

The proof has two main parts. The first part consists of proving that if
any RP program goes * 
� �&�`. , it does so because it tries to dereference a

3This feature is in contrast to Tofte and Talpin [1993]’s region type system. The most
direct RP analogue of their rule for A(BDCFEGB�HJI	:�K would be to require that all region registers
in the type of a value register exists as long as the value register is “live”. Our rule—
which can be seen as incorporating some of the post-processing suggested by Aiken et al.
[1995] into the type system—is obviously stronger than this; we also found it easier to
implement.
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Figure 9.3: Inductive definition of the “ � ��� ” relation used in Lemma 9.4. The
side conditions of the form “ @ � ” have no formal meaning but draw attention
to the fact that

�
does not occur in the conclusion of the rule. The variableL range over finite sets of region numbers (intuitively interpreted as region

numbers that are “forbidden” in the proofs). The relation consistent � 8 q=¿ � is
defined in the lemma.

pointer ��w�q ú � in a store 8 that does not include the region w . In other words,
whenever the programs knows of a pointer ��w�q ú � , either 8 ��w � does not exist,
or it does exist and its domain includes ú . This part of the theorem can be
proved directly from the RP semantics in Section 4.4.

The second part of the proof is the hard one. It consists of proving that
whenever a TRP program tries to dereference a pointer ��w�q ú � , the region w
will still exist. For this, a couple of new concepts are needed:

Run-time types are types that have the same structure as TRP types
except that each � contains a region number w instead of a region register
name Í (recall that region numbers are a run-time concept; the RP semantics
uses region environments ø to map region registers to region numbers). Let
˜r be the set of all run-time types.

A region environment ø can, in the obvious way, be applied to a TRP
type � , resulting in a run-time type �̃ kFø 
~��� , if all the region registers found
in � are in Dom ø .

A TRP store typing is a function ¿ M h Addr i finû e ˜r . In contrast to the store
typings we used for TP in Chapter 7, we do not need to let a store typing
map each address to a set of types; it is enough with a single type.

With these concepts we can formulate a working induction lemma:
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Lemma 9.4 When a TP program with well-typing � is executed according to
the semantics in Section 3.7, “ � � � � � � ” can be derived by the inference rules
in Figure 9.3 for every

h
State i©� � that appears during the computation.

The relation consistent � 8 q=¿ � that appears in the rules is defined to be true
iff

� Dom ¿ k Dom 8
� For each �mw,q ú � ù Dom 8 , ¿f�mw,q ú � kÝw�l

m
for some

m
.

� For each �mw,q ú � ù Dom 8 with 8 ��w � � ú � k 6 � , ¿f��w,q ú � kÐ¿f� 6 � � .
� For each �mw,q ú � ù Dom 8 with 8 ��w � � ú � ù J , ¿f��w,q ú � kÝw�l �%��� .
� For each �mw,q ú � ù Dom 8 with 8 ��w � � ú � k���� 6 y qrl�l�l�q 6 Ø Ù(Ø � ,¿f��w,q ú � kÝw�l/��� �̃ y qrl�lmlq �̃ Ø Ù(Ø � .�l�l�l such that

º   M 6 � ù Dom 8 UXW ¿f� 6 � � kÑ� � .
The lemma can be proved by induction on the length of the computation.

It is easy to see that the initial state defined in Section 4.4.1 satisfies the
required property. The induction step consists of proving that if “ � �®� � � � ”
can derived and the successor state of � � is � � � , then a derivation of “ � �
� � � � � ” can be constructed from the derivation of “ �/�Ë� � � � ”.

The detailed constructions for each kind of RP instruction are very ver-
bose, so due to time constraints we do not write them down. Instead we
give a few general hints about how they can be constructed.

The most important step is showing that �	�"!"!/
���,�0� � instructions are safe.
Here the L ’s are used to see that the number of the region that is deallocated
is not used in any other region environments than the one of the currently
executing predicate.

When a ��� �&�'��
(�	�)� or ���������	�	
 instruction allocates a new cell in the store,
the (run-time) type of the new cell can generally just be added to the store
typing ¿ . There can be a problem, however, if the type of the new cell con-
tains region registers that are not defined in the current region environment.
In that case we simply enter the unknown region register into the ø � region
environment, mapping to a fresh “tentative” region number4. When (and
if) the unknown region register is eventually created by a ��������
������ � � , we
substitute the new real region number for the tentative region number in
the region environment and everywhere in the store typing ¿ . This does
not break the consistency of ¿ because the tentative region number does not
actually appear in the store5, and we can use the L mechanism to see that
the tentative number does not occur in other region environments than the
current one.

The ���$� ��� instruction may change the store, but the new store is consis-
tent with the previous store typing. This can be seen by induction on the

4We assume, without loss of generality, that the set of region numbers has an infinite
subset which is never used by ^ �(_ ü2ÿJü\` � a ý instructions, so that it is always possible to select
a tentative region number that does not risk colliding with a later ^ �(_ üHÿ)üb` � a ý .

5Auxiliary lemma: none of the numbers we use for tentative region numbers ever get
defined in any store.
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number of “ À d ” steps (Definition 3.9ff) in the unification process. The induc-
tion hypothesis is that ¿ is consistent with 8 and that ¿f� 6 y�� k�¿f� 6 + � for each
� 6 y q 6 + � ù Á .

The construction for the remainder of the cases are straightforward, al-
though there is a lot of detail to take care of in connection with predicate
calls and returns.
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Chapter 10

A region inference algorithm

In this chapter we describe how a TP-typeable P program1 can be trans-
formed to a good equivalent region-safe RP program.

The translation proceeds in three overall phases:

A. Translate the P program to a preliminary TRP-typeable RP program
whose region annotations are as fine-grained as possible—that is, the
RP program does not use the same region for any two allocations, un-
less that is absolutely necessary for the program to be TRP typeable.
Phase A does not decide whether it is desirable to use this extreme
granularity, and it does not even decide when regions should be cre-
ated and deallocated, except for inserting trivial default decisions to
be changed in later phases.

B. Use the fine-grained region annotations to place �&�%!/!"
������ � � instructions
in the program as early as possible, such that every value is deallocated
as soon as the TRP type system allows.

C. Remove unnecessary generality and granularity from the region anno-
tations. The goal here is to make the the program uses the region-
based memory manager more efficiently (e.g., by using fewer regions),
without compromising the decisions about deallocation times made in
phase B.

The fact that a TRP-typeable program occurs already in phase A may
lead to the impression that that the “real work” happens in phase A and that
phases B and C are just finishing touches. That would not be fair, however,
because the task of the region inference is not just to produce some region-
safe RP equivalent of the input program but to produce a good one, where
“good” means that the RP program should make efficient use of the region-
based memory manager.

It is easy to produce a bad RP equivalent of a P program—you just let
everything happen in a single big region. Producing a good one is a much
more intricate problem, and all of our 3 phases contribute importantly to
this task. Phase A is the most complex indivisible step in the region inference

1Or rather, a P program that would be TP-typeable if sufficiently many
�(� � �*)

instructions
were inserted.
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Figure 10.1: A sample run of the \�] ê �r^�[�]$\ program.

process, but it would need to be a lot more complex if not phases B and C
were present to make the decisions that can be made one by one.

The difference between phases B and C is somewhat technical of nature
yet also theoretically important. The transformations in phase B work on
TRP-typeable programs and do not make sense at all for programs that are
not. The argument for their correctness is that they preserve TRP typeability.
On the other hand, the transformations in phase C preserve only region
safety, not TRP typeability (which is a conservative approximation to region
safety). It would be possible to design a type system such that typeability
was preserved by the latter transformations, but such a type system would
be much more complex to specify and reason about. Distinguishing between
the two groups of transformations allows us to use a simple type system and
still get reasonably efficient RP code out of the transformation.

The existence of phase C emphasises that TRP does not occur in a black-
box specification for the region inference. As long as the resulting RP code is
region safe, the rest of a region-based Prolog implementation does not care
whether a TRP typing has been used to obtain that property or not.

We have implemented the region inference described here in the \�] ê -
��^�[�]$\ program which is part of our prototype region-based Prolog imple-
mentation [Makholm 2000]. When \�] ê ��^�[�]$\ is invoked with the switches
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p�� and p&a it announces the individual phases of the translation and dumps
the result of each to auxiliary files for inspection by curious users (see Fig-
ure 10.1).

The organisation of this chapter does not match the phase division in
\�] ê �r^ [�]$\ ’s output as closely as Chapter 8 does that of � \:Y$Â`´ . The reason for
this is that we want to stress our overall three-phase design; such a grand
design was not present for ��\:Y�Â`´ .

10.1 Phase A: Fine-grained region annotation

As we have stated, the purpose of phase A is to find a TRP equivalent of the
input that only puts two values in the same region if absolutely necessary.
We can do that by finding a TRP program where no region register appears
in more places in the TRP typing than necessary.

The first step in this analysis is to compute the general shape of a TRP
typing, that is, a TRP typing where the region annotations are ignored. This
is easy to do with well-known techniques (see Section 8.6 for a short discus-
sion of the few pitfalls).

Next, fresh copies of all of the types are made such that there is no shar-
ing between the types of different registers.2

Then, we have to compute which type nodes need to be annotated with
identical region registers to fulfil the type equalities in the TRP rules on
pages 123 and 124. We can use a standard union-find data structure (with
type nodes as the elements) for most of this job, as most of the constraints
take the form “the region annotations of this type must equal the region
annotations of that type”.

A slight extension of the algorithm is necessary to implement the region-
polymorphic rule for ����!"! . The call rule states that there must be a functional
relationship between the region registers mentioned in the predicate type
(i.e., type of the formal input and output parameters) and the regions men-
tioned in the types of the actual parameters. In other words, if type nodes� y and � + appear in the predicate type and � y and � + are annotated with
a common region register, their counterparts � �y and � �+ in the types of the
actual parameters also need to be annotated with a common (but possibly
different from the one in the predicate types) region register.

It is easy to achieve this when analysing the program by hand, and it can
be implemented efficiently in a union-find–based algorithm as follows: We
distinguish between lead nodes and nonlead nodes. The nodes that make
up a type in a predicate types are all lead nodes; all other nodes are nonlead
nodes. Each lead node has attached a list of dependent nodes3. There is one
dependent node for each ����!"! of the predicate in whose type the lead node

2Sharing inside the type of each register is preserved in these copies, so that recursive
types are supported. This sometimes harms the precision of the analysis; see Section 12.1.8
for a discussion of that.

3A dependent node can itself be either a lead node or a nonlead node
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occurs—namely the type node that occupies the corresponding position in
the type of the actual parameter.

During the analysis the invariant holds that all type nodes in the same
partition of the union-find structure come from the types of registers that
belong to the same predicate. This implies that whenever two lead nodes oc-
cur in the same partition, they have the same number4 of dependent nodes,
matched in pairs by coming from the same ����!/! instructions.

We can also easily maintain the invariant that if a partition contains any
lead nodes at all, one of the lead nodes will be the “root” node of the parti-
tion.

Now replace the C-&I#)%-& algorithm of the union-find structure with the
following � �"!>K,C-&I#)%'& algorithm:

1. If the two partitions to be unified are the same, then stop.

2. If at most one of the partitions to be unified contain lead nodes, do a
normal C-&I#)%'& operation and stop.

3. Otherwise, the “root” node of either partition is a lead node. Save a
local copy of the two dependent-node lists of the root node.

4. Do a normal C-&I#�%'& operation.

5. Recursively, do a ���,!>K"C-&I#�%'& operation on each matching pair of nodes
from the saved dependent-node lists. (It is important that this happens
after step 4, to prevent infinite recursion).

When all the necessary ���,!>K"C-&I#�%'& operations have been performed, a fresh
region register is created for each partition and used to annotate the type
nodes in the partition.

Then only little remains to create a preliminary TRP-typed RP program:

� Construct a formal region parameter list for each predicate containing
all region variables that appear in the predicate’s formal parameter
types.

� Construct the corresponding actual region parameter lists for each ����!/!
statement.

� For each region register that is not a formal parameter, insert a �������Aµ

�����0� � instruction at the beginning of the clause where it appears, and
a �&�%!/!"
������ � � instruction at its end.

� Annotate ��� �&�'��
(�	��� , ���������	�	
 , and # �$�"! ���"� instructions with region anno-
tations as selected by the result register’s type.

In our implementation the internal representation of the program is then
written to the dump name �Ga$³�V,�Ð�(Æ¶µ .5

4A dependent node can occur more than once in a lead node’s dependent-node list; then
it counts more than once here.

5In the internal representation the ^ �(_ üHÿ)üb` � a ý and
_*���c� ÿJü\` � a ý instructions are implicit at

this point. ^ �(_ ü2ÿJü\` � a ý and
_����c� ÿ)üb` � a ý instructions for every region register in each clause that

is not a region parameter are supposed to be clustered at just after the ü2ý�þ9ü2ÿ pseudoinstruc-
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10.2 Phase B: TRP-based region optimizations

Recall that the characteristic of the transformations in phase B is that their
soundness follow from preservation of TRP typeability.

In our design, phase B comprises two optimizations that work together
to make each region in the program be deallocated as early as allowed by
the TRP type system.

10.2.1 Removal of unused region parameters

The first of the optimizations consists of removing as many region param-
eters as TRP permits. The reason for doing this is that regions must not
be used as actual region parameters after they have been deallocated; thus
removing regions from the parameter lists might allow some regions to be
deallocated earlier.

The optimization works by computing which of the region parameters
has any reason not to be removed:

� A region parameter Í cannot be removed if it is used by a # �$�%! ���"� , ��� �&µ����
��	��� , � ���'��
(�	�)� , ���������	�	
 , � ��
���� , or ���$� ��� statement, in the sense that
the typing rule for the statement (on page 123) requires 5 �ÓÍ � ù� 6	�	
(� q ! � ����! � .

� A region parameter Í cannot be removed if it is used by a ����!"! statement
to initialise another region parameter that cannot be removed.

� Any other region parameter can be removed.

In our implementation, the set of region parameters that cannot be re-
moved are computed by a simple fixpoint iteration. Then, in a single pass
over the program, all the removable region parameters are removed from
predicate definitions and ����!/! statements.

The dump name ��a$³�V��Ð��Æ:Â shows the program after unused region param-
eters have been removed.6

10.2.2 Moving Ð.ÕHÙHÙ�ÒÓÑdÔÖÕ?×ÖØ instructions backwards

When unused region parameters have been removed, the �&�%!/!"
������ � � instruc-
tions are moved as far backwards as possible (where “backwards” means
“towards the �����'��
 pseudoinstruction”) using the rules that

� “ �	�"!"!/
���,�0� � Í ” commutes with “ �&�%!/!"
�����0��� Í � ”
� “ �	�"!"!/
���,�0� � Í ” commutes with “ ��������
�����0��� Í � ” if Íû�k Í � .

tion and just before the üed � þ pseudoinstruction, respectively.
The actual TRP types are also implicit, but the important information in the types is

retained as annotations on f=ü ) þ�ÿ�g�h�þ , fHüHÿ)ü � , and g=ý � �;i which name the regions that each
instruction may need to read values from.

6 ^ �(_ üHÿ)üb` � a ý and
_*���c� ÿJü\` � a ý instructions are still implicit in this dump.
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� “ �������	
���,�0� � e Í Ç �&�%!/!"
������ � � Í ” may be removed from the program.
� “ �	�"!"!/
���,�0� � Í commutes with some other instruction if the typing rule

(on page 123) for that instruction does not require that 5 �ÄÍ � ù� 6	�	
(� q ! ������! � .
Because this phase comes after the removal of unused region parameters,
it allows �&�%!"!/
�����0� � instruction to move before ����!"! instructions whenever the
region to be killed is not used as an actual region argument. The region may
still occur in the type of one of the value parameters.

The dump name ��a$³�V��Ð��Æ ¸ shows the program after unused region param-
eters have been removed.7

10.2.3 Removal of excess region annotations

In our implementation, the boundary between phases B and C is marked by
a phase that discards the type annotations from the internal representation
of the RP program.

In fact, the type annotations that have been used in phase B are simpli-
fied annotations on each instruction that enumerate the regions Í for which5 �ÓÍ � must be 6	��
(� or ! � ����! . These annotations are now removed from all in-
structions but the ones where they are part of the official RP syntax, namely����!"! , ��� �&�'��
(�	��� , ���������	��
 , and the output operands of # �$�%! ���"� .

The dump name ��a$³�V,�Ð��Æ ö shows the program after these annotations
have been removed.

10.3 Phase C: Other region optimizations

The transformations in phase C are general optimizations that can be applied
to any RP program independently of its origin. They do not expect their
input to be TRP well-typed, nor do they guarantee their output to be even if
the input is.

Phases A and B have concentrated on the abstract region concept with
the ultimate goal of releasing heap memory blocks as soon as our techniques
can show statically that they are not necessary anymore.

The optimizations of phase C fall in two groups, both of which are mo-
tivated by properties of the region-based memory manager we developed in
Chapter 5, rather than abstract concern over object lifetimes.

The first group of optimizations is motivated by the observation in Sec-
tion 5.1.3 that a few large regions are in general more space efficient than
a lot of small regions. The goal of phase A was to use as many and as small
regions as possible, which was a worthy goal by then because it allowed us
to reason more precisely about the lifetimes of each regions in phase B. Now,

7In this and all of the following dumps, ^ �(_ ü2ÿJü\` � a ý but not
_*���c� ÿ)üb` � a ý instructions are

implicit. Each
_*���c� ÿ)üb` � a ý instruction implies an implicit ^ �(_ ü2ÿJü\` � a ý at the very beginning of

the clause.
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however, the lifetimes have been fixed, so it is time to merge regions to the
greatest possible extent that does not cause any memory blocks to live too
much longer than before.

The second group of optimizations is motivated by the fact that the ���-����K� �"!$#�%'& primitive allocates a page of heap space where it can create a region
management structure. It therefore makes sense to allocate the region as
late as possible. Ideally that would mean immediately before the first in-
struction that allocates something in the region, but because RP does not
allow a region to outlive the clause that contains its �������	
�����0� � instruction
we have to compromise a little here.

10.3.1 Merging regions

The basic transformation for region merging is simple: whenever a sequence
such as

lml�l Ç �&�%!"!/
�����0� � Í y Ç l�lml Ç �	�"!"!"
������ � � Í + Ç l�l�l
occurs in the program and there is no ����!"! instruction between the two �&�%!/!"
��Aµ
�,�0� � instructions, the first �&�%!"!/
�����0� � is removed8 and any references to Í y in
the clause are replaced with Í + .

We do this even if there is an allocating instruction such as ��� �&�'��
(�	�)�
between the two �&�%!"!/
�����0� � statements. It might be argued that that is not
wise, because before the merge the ��� �&�'��
(�	��� could reuse the memory freed
by the �&�%!/!"
������ � � statement. However, eliminating Í y in itself frees @ words
for the region’s management record and—on average—half a page of slack
space, so we believe that in most cases the merge causes a net improvement
in the memory efficiency of the program.

This is, however, not the whole story. Our experience with an earlier
prototype of the region inference algorithm showed that clauses that ended
in something like

l�lml Ç ����!/! v�wdã"\�µAÅ�ç(x�l�lml%} e x�lml�l"} Ç �&�%!/!"
������ � � \�µAÅ Ç �)��� � xBl�lml%}
where “ ����!/! v�w ” is a recursive call, are common at this stage. The first obser-
vation we can make here is that the region inference has caused the call to
cease being a tail call. But what is worse is that each recursive invocation of
the predicate has its own instance of the \=µAÅ region. All of these regions are
deallocated simultaneously when the innermost recursive instance eventu-
ally returns. If each \�µdÅ contains only a few words (which is common), there
is a lot of memory to save by merging all these regions which are already
deallocated at practically the same time.

This calls for an inter-procedural region merging transformation. We can
get that almost for free by the following trick:

8To be precise, the corresponding ^ �(_ ü2ÿJü\` � a ý should also be removed. In the represen-
tation we work on in this phase, all ^ �(_ ü2ÿJü\` � a ý instructions are not present but implicitly
supposed to be clustered at the beginning of each clause, so the removal of the correspond-
ing ^ �(_ üHÿ)üb` � a ý instruction is also implicit.
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Before the real region merging transformation, we do an auxiliary pass
over the program that inserts an extra, “artificial” region parameter at the
beginning of every region parameter list. At the same time, every

(...)Ç ����!/! v�w/ã�Í y qrl�l�l�q&Í å Ò�Ó�æ ç¢xÅL y qrlml�l�q�L Ñ Ò�ÓÅÔ } e xÅL �y qrlml�l�q�L � Õ Ò�ÓgÖ }
(...)

gets replaced with
(...)Ç ����!/! v�w/ã Í̃Cq&Í y qrl�lmlq&Í å Ò�Ó æ ç xgL y qrl�l�l�q�L±Ñ Ò�ÓÅÔ�} e xÅL �y qrl�l�l�q�L � Õ Ò�Ó�Ö }Ç �&�%!/!"
������ � � Í̃
(...)

(which also entails an implicit “ �������	
���,�0� � e Í̃ ” at the beginning of the
clause) where Í̃ is a fresh region register.

The dump name ��a�³�V,�Ð��Æ ñ shows the program after the insertation of ex-
tra region parameters.

After this operation, we know that the first region parameter of every
predicate always gets deallocated immediately after it returns. Therefore
we can let the region merge transformation merge a local region with that
region parameter if there are no ����!"! instructions after the �	�"!"!"
������ � � instruc-
tion; and the new Í̃ s surrounding the ����!/! instructions partake in the region
merge phase.

We do not allow anything to be merged with the region parameter in
clauses where there are allocating instructions after the last ����!"! instruction,
lest the lifetime of a local region at the bottom of a stack of recursive calls
gets prolonged past arbitrarily many allocations.

The dump name ��a$³�V,�Ð��Æ õ shows the program after the region merging.

10.3.2 Removal of unused region parameters

Now we remove all region parameters that are not (directly or indirectly)
used for allocations. Apart from reducing the overhead of passing around
unnecessary region parameters9, it also puts a finishing touch to the region
merge transformations (by removing those of the “artificial” region parame-
ters that turned out not to be used for anything) and prepares for the �������Aµ

���,�0� � placement (which has to assume that a predicate may use any of its
region parameters to allocate something).

This transformation is similar to the one we described in Section 10.2.1—
in fact our implementation uses the same code for both phases. The differ-
ence is how regions that cannot be removed are defined:

� A region parameter cannot be removed if it is mentioned by a # �$�"! ���%� ,��� �&�'��
(�	�)� , or ���������	��
 instruction. (In Section 10.2.1, a region parame-
ter was prevented from being removed just by a value being read from
the region).

9The ML Kit does a similar optimization, which is documented by Birkedal et al. [1996]
under the heading “Removal of get-regions”. For unknown reasons, the optimization is
described as being part of the multiplicity analysis...
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� A region parameter cannot be removed if it is used by a ����!"! statement
to initialise another region parameter that cannot be removed.

� Any other region parameter can be removed.

The dump name ��a$³�V,�Ð��Æ�Å shows the program after regions parameters
have been removed.

10.3.3 Placing Î½Ï�Ð=ÑÊÒÓÑdÔÖÕ?×ÖØ instructions

The final set of transformations in our region inference place �������	
���,�0� �
instructions at appropriate places in the program.

The first step is mostly technical in nature. Our implementation of RP
assume that the VCW:�r^ predicate has neither value nor region parameters.
However, the region merge phase has inserted a region parameter for VCW:�r^ .
If it has not been removed by the the second unused-parameter removal we
need to create a new main predicate which creates an appropriate region
and calls the old one:

^C]`_~p�VCWC�r^Tã	ç�n�p �����'�	
 e x�}Ç �������	
���,�0� � e \�] êÇ ����!"! Y�X�a~p�VCW:�r^ ã%\�] ê ç x,} e x�}Ç �	�"!"!/
���,�0� � \ ] êÇ �)��� � x�} 8
The dump name ��a$³�V,�Ð��ÆQ- shows the program after this step.10

The second and final step actually inserts �������	
���,�0� � instructions into
each clause. The ��������
������ � � is inserted immediately before each mention of
each region register which is not a formal region parameter. If the first (and
only) mention of a region register happens to be its �	�"!"!/
���,�0� � instruction, the
region register is removed entirely.

10If you actually inspect the j
k dump of a program where lJm
I6K replacement was neces-
sary you’ll find that the ^ �(_ üHÿ)üb` � a ý instruction is still implicit and that the üed � þ is actually
a
�������

. The latter is as good as üed � þ because the boundary conditions for xP programs (Sec-
tion 2.4) already say that if the initial call of lJm<I6K ever returns it immediately backtracks.
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Chapter 11

Experimental results

In this chapter we report some experimental findings with our prototype of
a region-based Prolog implementation. The components that make up the
prototype have been described in Chapters 8, 10, and 5.

It is well known that programming style has a large influence on the
space efficiency of a program with a region-based implementation. We have
not performed systematic experiments that investigate this influence. The
effects are already relatively well-understood for them ML Kit (many of them
are described by Tofte et al. [1997]) and our system is sufficiently close to
the one used in the ML Kit that we are certain that this understanding is also
applicable to Prolog.

Another reason for not conducting an extensive study on the interaction
between programming style and our prototype is that the prototype does not
really represent the state of the art in efficient region usage. In particular,
our prototype has problems with loops such as

X,Y�Y&�t��n:W`b W:¡«n�p ��\:Y,Z$] �����n:W`b W �Óí ]`_,a�W`b:W:¡�
� [~�r^�����÷C]$a©�,í�]$_,a�W`b WC¡½p�ó�b,\$³:]
ð¿X,Y�Y&�t�,í ]`_,a�W`b:W:¡
¡¢�

which it implements as

X,Y�Y&�t��n:W`b W:¡«n�p ��\:Y,Z$] �����n:W`b W �Óí ]`_,a�W`b:W:¡�
W�³�É���X���W$\G^��,í�]`_,a W`b W:¡¢�

W`³�É��$X��`W$\G^©��£~¡«n�p¬[~�r^�����÷C]$a©��£�¡ ��¼��
W`³�É��$X��`W$\G^©��£~¡«n�p�X,Y�Y&�t��£~¡¢�

The problem here is that the region(s) where í�]$_,a�W`b W live must be allo-
cated in X,Y�Y&� . Because í�]`_,a�W$b W is used by W�³�É��$X ��W$\G^ , the region can only
be deleted after the call to W�³ É��$X���W�\G^ which is to say after the entire loop
has ended. Thus with our current prototype, code such as this will build
a big pile of intermediate results that are only deallocated after the entire
computation terminates.

This tail recursion problem occurs also in Tofte and Talpin’s system for
ML. The known implementations of that system (including the prototype
used by Tofte and Talpin in 1993 and the ML Kit) have all circumvented the
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problem by using a storage-mode analysis [Birkedal et al. 1996; Tofte et al.
1997]. The storage mode analysis works by using the same region for n W`b W
and í�]`_,a W`b W but arranging for the region to be reset (i.e., entirely deallo-
cated and then reallocated) at an appropriate point during the execution of
��\:Y,Z`]:��� .

However, due to time constraints our prototype does not contain a
storage-mode analysis. We judge that the principles behind the storage mode
analysis are entirely compatible with the extensions to the region model
we have made to accommodate Prolog’s special characteristics, so it should
be possible (given time to do the work) to use storage-mode analysis in a
region-based Prolog implementation.

Therefore, we feel that it would not be fair to use our prototype to as-
sess which constraints region-based memory management puts on Prolog
programming style.

What we can do, however, is to compare the performance of region-based
memory management to the performance of other memory management
paradigms for programs where the absence of a storage-mode analysis does
not handicap our prototype.

The goal of such a comparison is to try to refute the pessimistic hypoth-
esis that region-based memory-management primitives are so much slower
than WAM-like stack allocation or garbage collection that it is futile to try to
develop region-based memory management for Prolog further.

Earlier experience shows that region-based management does not incur
prohibitive time costs in ML [Birkedal et al. 1996]. However, this experi-
ence does not necessarily carry over to our Prolog setting, because we have
needed to add extra administrative burdens to the region-based memory-
management primitives so that they support backtracking.

11.1 The reference implementations

It would not be conclusive to compare the performance of our prototype
against an existing production-quality Prolog implementation. The proto-
type uses very naïve techniques for most tasks that do not concern memory
management, so if the comparisons showed that it was slower than an ex-
isting Prolog implementation we would never know whether the reason was
region-based memory management or some unrelated optimization used by
the other Prolog implementation.

Therefore we compare performance against two reference implementa-
tions that we have derived from our prototype. The WAM-like reference
implementation uses pure stack management for the heap (and is thus not
well suited for long non-backtracking computations). It is meant to be rep-
resentative of non-garbage-collecting Prolog implementations such as Visual
Prolog [Prolog Development Center 2000]. The garbage-collecting refer-
ence implementation is meant to be representative of Prolog implementa-
tions such as BinProlog [Demoen et al. 1996] or SICStus. It uses WAM-like
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heap management as far as possible but resorts to garbage collection if the
heap approaches a maximal size selected by the experimenter.

Either of the reference implementations consists of

� The same Prolog-to-P translator as we use in the region-based imple-
mentation (described in Chapter 8).

� A translator from P to C which is exactly the same as the region-based
implementation’s translator from RP to C, except that when applied to
P code it of course does not create code for region manipulation.

The C code generator always emits special statements to support
the garbage-collecting reference implementation (especially to help
maintain a minimal “root set”). We use the C preprocessor to remove
these special instructions when the C code is compiled for use with the
WAM-like reference implementation or the region-based implementa-
tion.

� A run-time module (written in C) which replaces the region-based run-
time module we described in Chapter 5.

The WAM-like reference implementation’s run-time module is very
simple: it allocates memory by extending the heap and never deallo-
cates anything except at backtracking, where the top-of-heap pointer
is reset to a value stored in the choice point.

The garbage-collecting reference implementation’s run-time mod-
ule is similar, except that it starts a garbage collector when the heap
threatens1 to grow too big. We have implemented a simple two-space
copying garbage collector. The garbage collector is interfaced with the
stack-like heap manager such that heap words allocated after the col-
lection can still be deallocated quickly by backtracking. The words that
survive the collection can only be removed by the next collection2.

Each run-time module (including the one in the region-based im-
plementation) can be compiled with or without statistics collection en-
abled. We actually run each test case twice: once with statistics dis-
abled, to find running-time figures, then once with statistics enabled,
to find precise values for the maximal heap size and the number of
various operations performed

With this design we feel reasonably confident that any observed differ-
ence in behaviour between our region-based prototype and the reference
implementations will be due to the different heap-management strategies.

1The P-to-C translator inserts heap-check operations at the start of every block of
straight-line code which contains allocation instructions. Each heap-check operations
checks that there is enough free space on the heap to accommodate the longest possible
sequence of allocation instructions (whose length has been determined statically by the
P-to-C translator).

2This is not quite the state of the art—Demoen et al. [1996] and others have described
garbage collectors which do not interfere with WAM-like deallocation of collected words.
However, Bevemyr and Lindgren [1994] have found that in practise the amount of deallo-
cation enabled by this tends to be small.
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The reference implementations can be obtained as part of the region-
based prototype implementation [Makholm 2000].

11.2 Experimental procedure

The timing experiments were carried out on the machine ��o&��
�8 � �"���,8 � � which
(according to the computing department) is a HP Apollo 9000/735 worksta-
tion with a p.p MHz PA-RISC1.1 processor, running HP-UX 10.20.

Test programs (generated C code as well as run-time modules) were
compiled with GCC 2.8.1 with optimization level p�ö�Â . We used e&Æ���^`e	b~��V�]
to time them with their standard output redirected to e�a�]$�Êe&^�³�X,X . Each
running-time figure is the median of the “user time” reported in e consecu-
tive runs.

All memory usage measurements are given in machine words. The word
size on the test machine is 2$4 bits.

The Prolog sources for the test programs, as well as ��³�¾�¾:X�] � file used as
input for the ��³�¾�¾:X�]�����\:Y example, are included with the prototype imple-
mentation [Makholm 2000].

11.3 Shallow backtracking search

Our first set of test programs are meant as examples of programs that do
not really need region-based memory management, because their memory
behaviour in the stack-based WAM model is acceptable. This is true for two
classes of programs: programs that do a backtracking search over a rela-
tively shallow search space, and programs that do few enough allocations
that a monotonically growing heap is not a problem. The latter class is not
interesting in our experiment, because either they terminate so quickly that
comparisons are impossible, or their running times are dominated by other
effects than memory management.

We have measured the performance of two programs that do shallow
backtracking searches.

µ&ó.q`³:],]�^~�±��� \:Y finds all solutions to the “ 1 c -queens problem”, which is the
familiar problem of placing eight mutually nonattacking queens on a
chessboard, extended to 1 c queens and a 1 c Û 1 c square chessboard.
The purpose of the extension is to make the running time larger, com-
pared to the

c l�1 second resolution of the timing measurements.
The searching code is taken from Bratko [1990, page 117], but has

been adapted to fit into the Prolog subset supported by our prototype
implementation and generalised to allow easy adjustments to the size
of the problem. We added an output routine which outputs each an-
swer using P’s primitive I/O built-ins.

��³�¾�¾:X�]�����\:Y finds solutions to cryptoarithmetic addition puzzles such as
“find different decimal digits to substitute for each of the letters in

141



µ	ó.q`³:]�]`^~�±����\CY ��³�¾�¾:X$]��(��\:Y
GC WAM regions GC WAM regions

Running time (s) 1rpCl c 1rsCl�2 4 c l c t l�1 @Cl�1 t lO2
Max heap used 2`5 t 1A@�4 4 c 1 c 2 2�p c 2
Max heap size 2`5 t 2U@.s 4 c 1 c 2 5Ge�1�4
Max stacks size 1rp t 2 c�t @.s`2 @.sC1
Max regions alive 1�4 1�2

Figure 11.1: Measurements from the “shallow backtracking search” experi-
ments. The “Max heap used” row shows the maximum number of words that
the client program has allocated on the heap at any time. The “Max heap size”
show the maximum actual heap size, inclusive of region management data and
unused space in pages. For the WAM-like reference implementation, these two
figures are always the same. The “Max stacks size” is the sum of the maxi-
mum size of each of the auxiliary stacks used by each implementation model.
They include the local stack, the choice-point stack, the snapshot stack (for the
region-based implementation), and the trail (for the WAM-like implementa-
tion). é ê í.n. _ ö`· ê_ ö'í êG`

such that the addition is correct”.
The search code is taken from Barker [1999]. We added an out-

put routine to format the solutions nicely, and an ad-hoc parser which
reads problem descriptions from the input stream.

The input for the experiments is a file ��³�¾�¾:X$] � containing con-
tains s different problem instances, most of which are also from Barker
[1999]. Each problem instance is repeated 5 times to give larger run-
ning times.

The results of the experiments are tabulated in Figure 11.1. We see that
region-based memory management causes a slowdown of 1 c to 4 c percent
compared to the WAM-like implementation and about e percent compared
to the garbage-collecting implementation. A garbage collection is never ac-
tually triggered in either of the programs, but the extra work of checking
for heap overflow and maintaining a minimal root set make the garbage-
collecting implementation use more time than the pure WAM-like one.

The table of results also lists key memory usage figures. The example
programs are too small to draw any firm conclusions, but we observe that
even though the region-based manager uses over half of the heap for admin-
istrative data in µ&ó.q$³:]�]�^~� ����\:Y , the actual space need remains comparable
to that of the WAM model, because the region model can free intermediate
data before backtracking occurs.

In the �,³�¾�¾:X$]t����\:Y example, the region-based memory model’s large im-
provement in space efficiency is due to the fact that the test program’s main
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loop is tail recursive such that the WAM-like model never gets to free the
intermediate data allocated while parsing the problem descriptions. The de-
crease in the stacks size for this example is due to the trail in the WAM model
which is superseded by administrative data on the heap in the region-based
model.

11.4 Longer functional computations

Our second set of test programs are examples of programs that backtrack so
seldom that it is not realistic to use the pure WAM model for them at all.

We have three examples in this category.

W ZlcQ��� \:Y computes ackermann �2�q*s � using the standard recursive definition
of Ackermann’s function. The result is 4 c 5Ge .

This example is selected for being extremely friendly to the garbage
collector. During the computation, eight million heap words are allo-
cated one by one, but each time a garbage collection is triggered at
most 5 words are live. The running time of the copying garbage collec-
tor in our reference implementation is proportional to the amount of
live data rather than to the total size of the heap. Therefore one would
expect garbage collection for this example to be as good as cost-less.

On the other hand, in the region-based model the average number
of words ever allocated in each region is 4 , meaning that the complex�<�����=���"!�#)%'& and �+#)(�()���,!$#)%-& operations are performed often.

Tofte and Talpin [1993] also used Ackermann’s function as a bench-
mark, but with a point totally different from ours. In their implemen-
tation a major consumer of memory was auxiliary pair objects that
contained the arguments for each call of the W:Zlc ]$\ function, because
their language only allowed one argument to each function. This prob-
lem does not exist at all in our context, because Prolog (and P) natively
supports multiple arguments to a predicate.q`³���ZlcÐ����\:Y sorts a list of 4 c�c�c�c pseudorandom numbers3 using a list-
processing implementation of quicksort. Quicksort is a classic bench-
mark for region-based memory management, used since Tofte and
Talpin [1993] who proudly reported that they could sort a list of e c�c�c
numbers “in less than five times the memory needed to represent the
list”. If our test program is changed to sort e c�c�c numbers it indeed uses
approximately e times the memory needed to represent a list of e c�c�c
numbers (a little less if only the payload data in regions is counted—
which matches Tofte and Talpin’s way of counting—a little more when
region-management data is also counted).

We sort 4 c�c�c�c numbers rather than e c�c�c numbers because e c�c�c
numbers can be sorted in 1�l04 seconds which we find is too little given

3A built-in predicate Erm�KGu;:*l has been added to the implementations. It uses the C library
function A�Erm�KGu(vGkQwbx to produce the same sequence of pseudorandom numbers between y
and @(ze{}|�~ in all implementations.
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W:ZlcQ����\CY q`³���ZlcÐ����\:Y [��$X$]$\ ]`�Q����\CY
GC reg GC reg GC reg

Running time (s) 1rpCl�2 1rsClO2 @Cl�2 e�l t * 1�l�2
Max heap used 4 c e$5 4�s t @.sI@ p	5=1�4 c
Max heap size 2$4 t 2U@ 2$4 t 2U@ 2 c�t e�s	5 2 c�t e�s	5 1 c s.p�4�s 1 c s.p�4�s
Max stacks size @C1=e�4 1�4�4�s.s @ c�c 4 c s c�c 4�p 4�4�s`2 2U@�e�s
Max regions alive 4 c 5�@ e>@ t 4>@

W ZlcQ��� \:Y q`³=��ZlcQ��� \:Y [��$X$]�\�]`�Q��� \:Y
heap #coll. time heap #coll. time heap #coll. timep.s�4 c s 1 t$c 1rpCl�2 p�4�4 t e�4 @ e�lWe 2$4>@ t s	5 1 c 4�l c@�e$5 t 4 4IeIe 1rpCl04 @C1=e�1A@.s 1 c e�l t 4�1 t s�e>@ 2�s 2~l c
2$4 t 2U@ e�1 c 1rpCl�2 2 c�t e�s	5 2 c @ClO2 4 c�c�c�c�c @ t 5=l c
1A@`2 t 5 1 c 4�1 1rpCl�@ 4�2�2�s c 4 e$5 @Cl�p 1rp c�c�c�c 1�1rp e�l�ssC1rp	5 4 c 5�4 4 c l04 1rpI@.pC1 c p t sCl�4 1 t p�e>@�4 5�@ t 1 t l�s

1�5 � ? � ? 1A@ c�c 1�5 1�1�5�4 t 2'e�pCl�p 1 c s.p�4�s * *
Figure 11.2: Measurements from the “longer functional computation” experi-
ments. In the main comparison for each of the examples, the garbage-collecting
implementation’s heap size limit has been set to equal the maximum heap size
needed by the region-based implementation. The * entries for the �����G�G���r���������
experiment means that the garbage-collecting implementation could not work
at all in that little memory.
The lower table shows running times and number of collections for the garbage-
collecting implementation with different heap sizes.
The heap sizes for the garbage-collecting implementations is measured as the
sum of the sizes of the semispaces.

that e	Æ��r^`e	b���VC] ’s precision is
c l�1 second. Interestingly, when sorting

4 c�c�c�c numbers the quotient between the memory usage of quicksort
with regions, and the memory needed to store the list, drops from e to
about 2~l t .

[~�$X$]$\�]$�Q����\:Y reads in a file from the input stream, storing it as a list of
lines. Then it reverses the list using the naïve quadratic-time reverse
predicate of Figure 2.1 (page 22) and outputs the reversed list.

This example is selected to be extremely hostile to the garbage col-
lector. Each time the heap is collected, the contents of all the lines has
to be traced and copied. Region-based memory management, on the
other hand, only needs to manage the memory used for cons cells in
the intermediate lists of lines used by the reverse predicate.

As input to [���X$]$\�]`�Ð����\:Y we use the output of the µ&ó.q`³C]�]�^~�±�(��\:Y
example. It consists of

t 4$5 lines totalling 4�1 t 4 c characters.

The results of the experiments are shown in Figure 11.2. With the gar-
bage-collecting implementation, the running time depends on how big a
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heap we allow. We think the most fair comparison is to give the garbage
collector the same amount of memory that the region-based memory man-
ager needs. The running times in the upper part of Figure 11.2 have been
measured with this convention.

We have also measured running times of the garbage-collecting imple-
mentation for other heap sizes, shown in the lower part of Figure 11.2. The
heap sized used have been selected as

� One, two, and three times the amount of memory needed by the
region-based implementation.

� The smallest heap in which it is possible to run the example program.
For heap sizes 1�4 , 1A@ c�c 1�4 , respectively 1 t p�e>@ c , the examples die with
an error message from the garbage collector that the heap cannot be
compacted enough.� The arithmetic mean between the “what the region-based implemen-
tation needs” and “smallest possible heap”, and the arithmetic mean
between that and the “smallest possible heap”.

We are surprised to observe that the region-based implementation
is faster than the garbage-collecting one in all three experiments—even
W ZlcQ��� \:Y which was selected specifically to throw the odds in favour of
garbage collection. The q`³=��ZlcQ��� \:Y example can be faster with garbage col-
lection, but only if the garbage collector is allowed to use more than twice
the memory needed by the region-based implementation.

Our only explanation for the behaviour of the W ZlcÐ����\:Y example is that
the region-based version incurs fewer cache misses, because the region-
based memory manager uses the most recently freed page when reusing
memory, whereas the garbage collector always allocates the least recently
used word available to it.

An alternative hypothesis is that the garbage-collecting W ZlcQ�(��\:Y spends
the extra time with procedure-call overhead, in the calls to the run-time
module that check whether a garbage collection is due. This hypothesis can
be refuted by inspecting the generated C code: The region-based version
makes just as many calls to the ���-�������,!$#)%-& and ��#�()(����"!�#)%'& primitives.

The [��$X$]$\ ]`�Q����\CY example could not run with garbage at all collection
without having more memory available than the region-based version needs.
The reason for this is that the copying garbage collector needs all of the live
data to fit in a semispace, so the total heap size must be at least twice the
maximal amount of live data.4

We warn that the good results of these experiments must not be taken
as evidence that region-based memory management always outperforms

4It has been debated whether it is fair to count both semispaces when measuring the
space usage of a copying garbage collector. In the context of our experiments, however,
we think that there can be little doubt that the most fair results come from counting both
semispaces. The machine we use for the experiments has much more physical memory than
any of the examples use, so the running times we compare assume that a garbage collection
can be completed without swapping.
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garbage collection. We have consciously selected the test examples so that
they work reasonably well with the restricted region model we have imple-
mented.

11.5 Conclusion

Our experiments have established that region-based memory management
for Prolog is not inherently less efficient than garbage collection. Our results
indicate that for programs where region-based memory management does
not lead to catastrophic space usage behaviour, the region-based execution
model is quite competitive compared to garbage collection.

The experiments also indicate that the region-based model is not prohi-
bitively expensive compared to a purely stack-based model like the WAM.
The cost of region-based memory management in that context is however
not totally negligible, and it would probably pay to be able to switch to a
more WAM-like memory use pattern in those parts of a program that uses
backtracking search.
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Chapter 12

Conclusion

The stated goal of this project is to investigate the hypothesis that

Region-based memory management can work just as well in Prolog
as it works in Standard ML in the ML Kit today.

To do this, we have shown how to reason about the memory use of Prolog
programs by translating it to a simpler and more explicit intermediate lan-
guage P (Chapters 2, 3, 6, 7, and 8). We have proposed a way to combine
region-based management with backtracking and logical variables (Chap-
ter 4) and developed algorithms for supporting it at run-time (Chapter 5).
We have adapted existing theory and algorithms for automatically creating
region annotations to our model (Chapters 9 and 10). Finally, we have pro-
duced a prototype implementation of these ideas and used it to compare
the time efficiency of region-based memory management to other memory-
management strategies (Chapter 11).

We have not done rigorous proofs that our techniques work as claimed,
but we have provided strict semantic definitions of many key concepts and
suggested how proofs of their most important properties could be structured.

Our work does not provide fully conclusive experimental evidence for
the main hypothesis, because time constraints have prevented us from im-
plementing a region system as advanced as that of the ML Kit. It does, how-
ever, constitute strong circumstantial evidence that the hypothesis is valid.
We have not uncovered any inherent reasons why it would not be possible
to add the missing features to our model; indeed our expectations are that
such a task would be fairly routine.

We therefore feel justified in concluding that the project has met its goal.

12.1 Directions for further work

We now suggest a number of possible areas in which this work can be ex-
tended. They range from mundane tasks such as extending our system to
handle more examples of real-life Prolog code, to problems and shortcom-
ings with region-based memory management in general which it will require
new creative research to solve satisfactorily.
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12.1.1 The tail recursion problem

The tail recursion problem is the one described at the beginning of Chap-
ter 11. In general terms the problem is that even though a parameter to
a procedure (predicate, function) may only be used for a fraction of the
time the entire procedure executes, the regions where the parameter lives
can only be deallocated after the procedure terminates. The problem is not
restricted to tail-recursive calls but shows itself most prominently when it
prevents a tail-recursive procedure from having its expected constant space
usage.

The storage-mode analysis in the ML Kit [Birkedal et al. 1996] and the
enhancements proposed by Aiken et al. [1995] both provide partial solutions
of this problem. We judge it would be relatively easy to add either or both
of them to our RP model.

However, even the combination of the two partial solutions does not
solve all instances of the problem. We are currently participating in a project
also comprising Henning Niss (at the University of Copenhagen) and Fritz
Henglein (at the IT University in Copenhagen), which promises to yield an
elegant general solution to the tail recursion problems, superseding storage-
mode analysis as well as Aiken et al.’s model. This solution will also be
applicable in our Prolog context.

12.1.2 Special handling of small regions

As we described in Section 5.1.3, our run-time implementation of regions
works best with regions that grow big. In practise, the region inference
decides on many regions that are only used for a single or a few allocations.
For these regions, the list-of-pages implementation wastes a lot of space.

The ML Kit contains a multiplicity analysis [Birkedal et al. 1996] which
identifies provably finite regions, that is, regions that are only used for at
most one allocation at run time. Space for objects allocated in finite regions
are allocated directly on the stack, without any management overhead. Tag
bits in region identifiers are used to allow a procedure to allocate its result
in either a finite or an infinite region, according to which kind of region it is
given as a region parameter.

A similar scheme could be used in our Prolog implementation. Finite
regions would be allocated in the environment frames on the local stack.
That would somewhat complicate the layout of environment frames, but not
insurmountably.

It would also incur extra complexity to arrange for trailing of variables
allocated in finite regions. With our current region inference it would not
be necessary, however. An uninstantiated variable in a finite region would
be the only thing that lived in the region at all, so there would never be
anything to instantiate it to; thus it would not need trailing. (It would not
need existing at all, for that matter).

It would be nontrivial (in our system as well as in the ML Kit) to apply
multiplicity analysis and Aiken et al.’s partial solution for the tail recursion
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problem at the same time. Storing finite regions on the call stack depends on
each region being allocated and deallocated by the same procedure, which
is precisely the constraint Aiken et al. propose removing. The net effect
of combining both ideas would become similar to individual allocation and
deallocation, except that the deallocation points would be automatically in-
ferred. An auxiliary heap with a conventional memory manager would be
necessary.

12.1.3 Support for a larger subset of Prolog

We have described region-based memory management for a small and rea-
sonably pure Prolog subset. If region-based memory management is to be
of any value in practise, it needs to support a much larger selection of the
extra-logical features that Prolog programmers expect to have available.

We now list some of the more interesting features our subset is missing,
and estimate what would be needed for supporting them in a region-based
implementation.

� � W�\.e:µ and ^�Y	^,� W$\.eCµ . These predicates test whether or not a term is
an uninstantiated variable. They can already be easily expressed in P
using the � �	
��� instruction.

� W`b�Y�VCë�X$]`^ ê b�÷`e�Â , W$bCY�VCë Z�Y&^~Z`W`b`e`¸ , W`bCY�V�ë Z�÷:W$\��je$Â , and similar predicates
that allow atoms (nullary functors) to be used as strings.

We do not think region-based memory management add compli-
cations to the way these features are usually implemented. For our
type-based analysis passes we would need to add a way to specify “any
nullary functor” in the type systems.

Region-based memory management might make it a worthwhile
option to store the strings that identify each functor on the heap in-
stead of in a separate “symbol table”. The ML Kit can represent ar-
bitrarily long strings efficiently in a region composed of constant-size
pages. A similar technique could be used here.

� [$³,^~Z&bCY�\Êe`¸ , W�\ ê e`¸ , and »t���Me�Â . These predicates allow constructing
and analysing structures using a dynamically-determined atom as the
functor and a dynamically-determined number of arguments.

Once the heap representation of structures has been changed to
allow such dynamically-built structures (which it must regardless of
whether regions are used or not) it should be possible to add these
constructions to P and RP.

They are fundamentally hostile to type-based analyses, however,
and while a well thought-out type system might be able to resolve
some cases to more benign constructs, it would still need to have a
conservative fall-back option, which in turn could have devastating
effects on the region inference’s precision.

� Z`W X�X�e:µ . This is Prolog’s equivalent of “eval”, a predicate that takes
a term and interprets it as code to execute. Such constructions are
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necessarily hard to reason about statically and hard to implement in a
compiler. Advanced type and mode analysis techniques might be able
to convert some cases of Z`W X�X�e:µ to more benign primitive constructs,
but any compiler (region-based or not) will probably always need a
very conservative (and inefficient) fall-back option to duplicate the in-
tended interpretative semantics.� W �,�`]$\�bÊeCµ and \�]`b,\�W:Z&bÊe:µ . These predicates allow a program to modify
itself by adding and removing clauses in its Prolog source. In general,
this is of course terminally destructive to any efficient implementation
technique, region-based or not.

Many programs, however, restrict their use of these predicates to
manipulating simple facts (that is, clauses without subgoals and with-
out variables) for a small statically-determined set of predicates. This
use implements what is known as the database, a global, updateable
storage area that is persistent to backtracking.

Region-based memory management not only tolerates the database
but can actually help optimize its implementation. Implementations
that reclaim heap memory when backtracking need to copy asserted
facts to a separate “persistent heap” lest they get deallocated by back-
tracking before a database query that retrieves them. In a region-based
implementation the region inference may arrange for every value that
might end up being used in an asserted fact to be allocated on the
persistent heap from the beginning, modelled by a special pseudo-
region. That way time-consuming copying of asserted facts can be
avoided.

(This optimization works in the common case that the asserted fact
does not contain any uninstantiated or trailable variables. A mode
analysis such as our TP type inference from Section 8.8.1 can be used
to identify when this applies and use a copying implementation of
W �,�`]$\�bÊeCµ otherwise).� [���^�a�W�X�Xqe`¸ , Æ:W ê Y�[.e`¸ , and �`]`bCY�[Êe`¸ which create lists of the results that
a programmer-specified piece of code produces when it is forced to
backtrack after delivering each result.

Again, region-based memory management may optimize the im-
plementation of these in the common case where the results cannot
contain uninstantiated or trailable variables. Conventional implemen-
tations have to copy each result out of the heap so that it will not be
destroyed by the backtracking that follows. A region-based implemen-
tation may simply (with some cooperation from the memory manager)
exempt the region(s) containing the result from shrinking in that back-
tracking operation, thus still deallocating intermediate results that the
computation may have left in other regions.� Blocking goals are supported in some Prolog implementations. They
are goals that are only executed immediately if “enough” of their
arguments is instantiated (for some programmer-specified definition
of “enough”). Otherwise they lie dormant until enough instantia-
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tions have been performed, at which point they figuratively insert a
call to themselves in front of whatever code happens to be execut-
ing.

It appears to be very difficult to reason about when a blocked goal
might suddenly wake up and need the arguments that were passed to
it to still exist. We do not know whether it is possible at all to combine
blocking goals and region-based memory management.

12.1.4 Programmer feedback from the region inference

Experience with the ML Kit shows that it is generally hard for programmers
to predict how region inference reacts to their code. Minor changes to the
code may often result in dramatic improvements of the space behaviour of
the programs, so it is important for the programmer to get feedback about
how her program got annotated.

With our current prototype the only way of getting this feedback (save
for simply observing how much memory the translated program happens
to use) is to inspect the RP code produced by the region inference phase.
Because P and RP look quite different from Prolog, this option is probably
not attractive to most Prolog programmers.

It would therefore be interesting to develop a way to present the results
of region inference in the context of the original Prolog program, or to de-
velop a region inference algorithm which works on a representation closer
to Prolog.

12.1.5 Estimation of memory-management overhead

The additions to the region-based model we made to support backtracking
had the consequence that not all of the memory management primitives run
in constant time. It would be desirable to have a static analysis that were
able to pinpoint those primitive operations which risk taking arbitrarily long
time.

12.1.6 Separate compilation

We have expressed our techniques as if the entire Prolog program was
present right from the beginning. In practise, a region-based implementa-
tion would be much more convenient if it supported separate compilation
of program modules.

The ML Kit can do region inference during separate compilation [Elsman
1999], so we do not think that it will be a problem to do the same for P.

It will not be as easy to translate Prolog to P with separate compilation.
Programmer-supplied mode annotations for the predicates exported by each
module will most probably be necessary.
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12.1.7 Integration of garbage collection with regions

Not all programs react well to pure region-based memory management.
Consider, for example, a program which creates a list containing a lot of
data and only afterwards decides which few elements of the list it is going
to need for the remainder of a long computation. With region-based mem-
ory management, the program would need to allocate all of the elements in
the same region and keep that region alive during the entire computation.

Now, one could simply conclude that such a program is not suited
for region-based memory management and use a garbage-collecting imple-
mentation to run it instead. But regions could still be a useful memory-
management principle for other pieces of data in the program.

Tofte et al. [1997] suggest that such program be rewritten to create fresh
copies of those elements that are eventually chosen to be long-lived. The
fresh copies can be made in a separate, long-lived region, and the region
containing the original list elements can be deallocated.

We think that another strategy is more likely to appeal to programmers
(which in reality is as pragmatically important as efficiency and elegance, if
not more): that garbage collection can be used for some data and region-
based memory management for other data. For example, the programmer
should be able to specify that all data that needs to be alive at some specific
point in the program’s main loop must be garbage collected; other interme-
diate data can be allocated in regions.

Region inference could easily be extended to accept such annotations.
It might be challenging, however, to design a garbage-collection strategy
that could co-exist peacefully with a region inference that allows dangling
pointers.

12.1.8 Precision problems with type-based analyses

During the preparations for the experiments in Chapter 11 we discovered a
strange behaviour of the algorithms we use to compute TP and TRP typings.
Consider, for example, this little program:

[CY�Y ��£�� ` ¡ n�p���»�[©��£�� ` ¡�!� ��� £ ð ` �
ÆCW$\©� Ä ¡ n�p Ä�Ä ��� Ä ð Ä �
V�W:�r^jn�pº´ »�¸©� [:Y�Y �'´ �G´~¡�� »�¸©�Á·�» ñ � [:Y�Y � � �G·~¡�

ÆCW$\©�'·~¡±�
Most surprisingly, our region inference elects to place

�
and · in the same

region—even though
�

could easily have been deallocated before the call to
ÆCW$\.e:µ and it is easy to exhibit a TRP typing that proves this!

The problem is that our TRP type inference begins with a monomorphic
region-less type inference using the standard unification-based algorithm. In
the first call to [:Y,Y�e$Â means that the types of £ and

`
get unified, so � ’s type
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becomes

[.e�Â
�"���

rather than
[.e�Â

�"��� �"���
After the region-less type inference a fresh copy is made of each of the pro-
gram’s types in preparation for region annotations—but the “fresh copy” of� ’s type has the same structure as its original, so it has only room for a single
region annotation on the �%��� .

In this particular case the problem could have been avoided by specifying
that type nodes must not be shared internally in each fresh copy. That would,
however, not be possible for recursive types. If instead we require the fresh
copies to be the “least shared” representation we encounter the problem that
recursive types have no least shared representation either. For example, the
type �����,��,�����'lml�l �B����� has a chain of less and less shared representations

� � � � �
� �

XAXAX
which has no limit.

The ML Kit does not have this problem because the polymorphic type
inference of ML shields the types inside [:Y�Y from being influenced by irrele-
vant sharing among the actual argument types at the call sites.

Nevertheless other type-based analyses that are based on annotating
an already-existing type assignment of the program1 are liable to related
problems. The general problem is how to find a representation with “less
enough” sharing for a type-based analysis to be maximally precise. We feel
that this problem recurs often enough that it ought to be investigated in a
more general context than a specific analysis, but we are not sure what a
suitable formal generalisation would be.

12.1.9 The list problem

Figure 12.1 shows the Prolog code for a simple expression evaluator. The
clause of ]`� W�Xqe`¸ that implements a X$]`b expression adds an element to the
environment in which

ê É$�:Â is evaluated. After
ê É$�:Â has been evaluated, the

new element is clearly not necessary anymore.
The list problem, which occurs in our region inference algorithm as well

in that of the ML Kit, is that the extra element does not get deallocated im-
mediately. Rather, all elements ever added to any environment get allocated
in the same region which is deallocated only in the outermost ]$� W�X&³:W$b ]�e$Â .

The cause of the problem is that region-annotated type systems such as
TRP or the Tofte–Talpin system think of the type of

ê ^,� as “a list of pairs that

1Such as, for example, the binding-time analysis of Makholm [1999].
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X,Y�Y�c�³�� ��£���R`�¯£��e�~¡©S�ë$U��e�~¡±�
X,Y�Y�c�³�� ��£���R'ëÐS���U��e��¡ n�p�X�Y�Y�c�³,�t��£����t�e�~¡¢�
]$� W�X �'�:W$\©��£�¡ � ê ^,�t���~¡ n�p�X�Y�Y�c�³��t��£t� ê ^,�t���~¡¢�
]$� W�X �G�~X&³~�� ê É$�¶µ¶� ê É$�:Â:¡� ê ^,�t�e�=¡

n�p¨]`� W�X � ê É$�¶µ¶� ê ^,�t�e�¶µ$¡�
]`� W�X � ê É$�:Â � ê ^,�t�e�:Â:¡�� �����=µ ð�� Ât�

]$� W�X ��X�]`b���£�� ê É$�¶µ¶� ê É$�:Â:¡ � ê ^,�t�\�~¡
n�p¨]`� W�X � ê É$�¶µ¶� ê ^,�t�e�¶µ$¡�

]`� W�X � ê É$�:Â � R`��£��e�¶µ$¡©S ê ^��,U��e�~¡ �
]$� W�X&³:W$b ]±� ê É�� �e�~¡¹n�p¨]`�:W�X � ê É�� ��R�U����~¡¢�

Figure 12.1: A simple expression evaluator

are allocated in Í ” for some Í , which means that all of the pairs have to be
in the same region. The type systems does not support such a notion as “a
list of pairs allocated in various regions”.

Originally we intended that this report would describe an advanced re-
gion type system “TRP-2” which would solve the list problem. It was not
included in the report due to time constraints, but we still think the basic
idea is sound. TRP-2 was to be a combination of TRP and TP, such that a
TRP-2 type would have the shape “ ÍCl?3 l

m
”. A subtyping rule similar to the

one we describe in Section 7.4 would be used for TRP-2 types, but it would
also allow the region annotations in a type to change, guided by a global
partial order on region register names. The relation “ Í y�� Í + ” would intu-
itively mean, “whenever the regions Í y and Í + both exist, Í + is going to exist
at least as long as Í y ”. Then the type system could express such a type as “a
list of pairs each of which will exist at least as long as Í does”. The ]`� W�Xqe`¸
rule for X$]`b could let Í in this type be a local region where it allocated its
extra element.

We think it would be interesting to see this idea developed in practise.
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Appendix A

Some mathematical digressions

In this appendix we present some mathematical arguments used to argue for
the the soundness of the design of P when unification is allowed to produce
infinite (or regular, or circular, according to one’s favourite nomenclature)
terms.

A.1 Infinite terms

We assume the notion of terms built with a certain selection of function and
constant symbols (and possible variable symbols) is known.

The most popular way to represent terms in the computer is as trees:
each subterm is represented by a piece of memory containing a symbolic
representation of a function symbol and pointers to the representations of
its subterms. This idea is also well known.

Now, if one of the pointers are redirected to point to a node that repre-
sents a superterm of the original subterm, a circular term has been created.
Such a structure does not correspond to a “term” according to the mathe-
matical meaning of that word, but it is natural to view it intuitively as a
representation of an infinitely deep term tree.

We now present our own little theory of machine representations of cer-
tain infinite terms. The end product is isomorphic to what various people
have been calling regular trees, but the details have been chosen to support
the rigorous proofs later in this appendix.

The central concepts of this section are those of a termlike algebra and
of the graph algebra.

A.1.1 Signatures and algebras

For the sake of generality we parameterise the theory on a (many-sorted) al-
gebraic signature. What this means is probably known to most readers, but
to set notation straight we summarise the main definitions and properties
here. Most of the definitions are from Mitchell [1996, Chapter 3], but many
textbooks on programming language semantics contain similar material.
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Definition A.1 A signature � k ���q*L � consists of a set � whose elements are
called sorts, and a a collection L of pairs ���`q � y l�lml � � e � � with # Í c

, � y qrl�lmlq � �$q � ù� , and no function symbol � occurring in two distinct pairs.

In the sequel a fixed but arbitrary signature �®k����¡ �q*L.  � is assumed given
except where something else is explicitly stated.

We shall sometimes assume that � is single-sorted (i.e., that �¢  is a one-
element set) when it is notationally convenient and the generalisation to
many-sorted signatures is obvious.

Definition A.2 £¡¤¶M=L�  e ��  is the function defined by£¡¤����`q � y l�lml � � e � � k �
Definition A.3 A � -algebra ¥ consists of an ��  -indexed family of sets

´§¦
called carriers, and an interpretation map assigning a function

�b¨ M ´ ¦ T Û XAXAX Û ´ ¦V© e ´ ¦
to each function symbol ��M � y l�lml � � e � ù L.  . (When # k c

,
´ª¦ T Û XAXAX Û ´ª¦«© is

taken to be some canonical one-element set).

Definition A.4 A homomorphism ¬ from � -algebra ¥ to � -algebra  is a��  -indexed family of functions ¬ ¦ M ´®¦ e ? ¦ such that¬ ¦ ���b¨T��¯ y qrl�lmlqF¯.� � k���°Q�&¬ ¦ T ��¯ y�� qrl�lmlq6¬ ¦V© ��¯.� ���
for every function symbol �¤M � y l�l�l � � e � .
Definition A.5 An isomorphism is a homomorphism ¬ where the functions ¬ ¦
are all bijections. Clearly, the inverse of a isomorphism is also an isomorphism.
When an isomorphism from ¥ to  exists, ¥ and  are called isomorphic.

Definition A.6 A � -algebra ¥ is initial if for every � -algebra  there is exactly
one homomorphism from ¥ to  .

Theorem A.7 Any two initial algebras are isomorphic.

Definition A.8 The term algebra Term ��� � is the algebra where the Term ��� � ¦
are sets of strings of function symbols defined by

� For each ���`q � y lml�l � � e � � ù L.  , whenever ± � ù Term ��� � ¦ w for 1/�  �F# ,
�6± y lml�l ±)� is in Term ��� � ¦ .
� Nothing else is in Term ��� � ¦ .

and the interpretation functions are the obvious ones.

The properties of the term algebra are assumed to be known, most im-
portantly:
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Theorem A.9 The term algebra is an initial algebra.

Theorem A.10 (structural induction principle) If a subset1 ? of the term
algebra ¥ k Term ��� � meets the condition that for each function symbol � M� y lml�l � � e � ,

�
º  "�$# MQ¯ � ù ? ¦ w � W � ¨ ��¯ y qrlml�lqF¯.� � ù ? ¦

then ? ¦ k ´ ¦
for all � .

Lemma A.11 If the structural induction principle holds for a � -algebra ¥ ,
then any homomorphism ¥ � e ¥ is surjective.

Proof. Let ? in the structural induction be the image of ¥ �
in ¥ . À

A.1.2 Grammars as signatures

We often notate an algebraic signature as a context-free grammar. Then,
each sort of the signature corresponds to a non-terminal of the grammar,
and each function symbol corresponds to a production rule. For example,
the grammar

h
stmt ijM/MOk h

var i nG» h
expr i s h stmt i�ò h stmt is �&[ h

expr i±b�÷:]�^ h
stmt i�]�X,�`] h

stmt ih
expr ijMOM/k Z�Y	^~� h

expr i h expr i s ^��$Xs Z`W$\ h
expr i s Z�a�\ h

expr is h
var ih

var ijM/MOk É s ^ s ¾ s l�lml
corresponds to the signature

��� k ���&b$V�b¶q�]$É$��\¶q¯� W$\ � qL k �r�'1�q¯� W$\ ]$É$��\ e �&b$V�b � q��m4=q��	b$V�b �&b$V�b e �&b$V�b � q
��2�q�]�É$��\ô�&b$V�bÊ�	b$V�b e �	b$V�b � q
�{5¶q�]�É$��\ ]$É$��\ e ]$É$��\ � q��7e=q e ]$É$� \ � q
�o@�q�]�É$��\ e ]$É���\ � q�� t q�]$É���\ e ]$É$� \ � q
�&s�q¯�:W$\ e ]$É$� \ � q
�&p�q e � W$\ ��� q��'1 c q e �:W$\ ��� q��'1�1�q e � W$\ �B� l�lml �

Observe that the terminal symbols of the grammar do not show up in the
signature; in this context they only serve to suggest a convenient alternative
notation for applications of function interpretations.

The intuitive idea behind this way of notating signatures is that parse
trees for the grammar correspond exactly to elements of the term algebra.
If the grammar is unambiguous (which the above example is not), there is
a natural correspondence between the term algebra and the set of words in
the language defined by the grammar.

1formally, a ²J³ -indexed family of subsets of the term algebra’s carriers
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A.1.3 Termlike algebras

We aim at exhibiting a construction for an algebra of cyclic terms with the
given signature � . Now we define an important property that we want it to
have in common with the term algebra.

Definition A.12 A � -algebra ¥ is termlike if every function interpretation
� ¨ is injective and each element ¯ of any carrier

´´¦
is in the image of the

interpretation of exactly one function.

In other words, each element of a termlike algebra ¥ can be written as
� ¨ ��¯ y qrlml�l�qF¯Ê� � in exactly one way. This means that one can define proper-
ties on ¥ by pattern matching and prove facts about ¥ ’s elements by case
analysis, just as for the term algebra.

It is immediately clear that the term algebra is termlike.
What one can’t do with termlike algebras in general is induction. On the

contrary, we have

Theorem A.13 If the structural induction principle holds for a termlike alge-
bra ¥ , then ¥ is isomorphic to the term algebra.

Proof. We show that the unique homomorphism ¬ ¨ from the term algebra
to ¥ (recall that the term algebra is initial) is bijective hence an isomor-
phism. ¬ ¨ is surjective because of Lemma A.11 and injective because of the
following lemma. À
Lemma A.14 Let ¥ be any termlike algebra. The unique homomorphism from
the term algebra to ¥ is injective.

Proof. Call the term algebra  and the homomorphism from  to ¥µ¬ . We
prove

º � ù �� �q ü q ü � ù ? ¦ M¶¬ ¦ � ü � k?¬ ¦ � ü � � W ü k ü �
by structural induction on

ü
.

Because the term algebra  is termlike, there is a �ªM � y l�lml � � e � and someü �
s such that

ü k�� ° � ü y qrl�l�l�q ü � � . Then¬ ¦ � ü � k?¬ ¦ ��D°t� ü y qrl�lmlq ü � � k��b¨��&¬ ¦ T � ü y�� qrl�l�l�q6¬ ¦«© � ü � ��� l
Similarly

ü � k�� � ° � ü �y qrlml�lq ü ���× � and¬ ¦ � ü � k�� � ¨ �&¬ ¦ T � ü �y � qrl�l�l�q6¬ ¦ © × � ü ��	× �B�
Now, because ¥ is termlike, � must be identical to � � (hence #¿k # � and� � k � �� ) and ¬ ¦ w � ü � � k?¬ ¦ w � ü �� � for 1��! %� # .
The induction hypothesis now gives us

ü � k ü ��
, and then

ü k���°Q� ü y qrl�l�l�q ü � � k�� � ° � ü �y qrl�lmlq ü �� × � k ü �
as required. À
Corollary A.15 Every termlike algebra has an initial algebra as subalgebra.

158



A.1.4 Recursive function definitions over termlike alge-
bras

Let � ì be the signature

�H�V· � qÄ�r��^��$Xfq e · � q ��Z�Y&^��:qb·¸· e · � � �
(which describes atomless Lisp-like data), and consider the following recur-
sive definition of the length of a list:

length ��^��$X � k c
length ��Z�Y	^~�~�ÄÆ y q&Æ + ��� k 1�. length �ÄÆ + �

This defines a nice total function Term ��� ì � e K . Which hopes can we
have of making this kind of definition work for other termlike algebras than
Term ��� � ? To answer this, we must first state what we mean by “this kind of
definition”. The general form we’re concerned about is¹ ��� y ��¯ y qrl�lmlqF¯.� T ��� k º y � ¹ ��¯ y)� qrl�l�l�q ¹ ��¯.� T ���

...¹ ��� | ��¯ y qrl�lmlqF¯.� n ��� k º | � ¹ ��¯ y)� qrlml�lq ¹ �e¯Ê� n ���
where � y qrl�l�l�qB� | are the function symbols of � and º � are functions that are
specified as part of the recursive definition. In the concrete example above,
we have º ì � � k c

and º y ��LfqT» � k¼»¦.�1 .
We can make

¹
’s codomain

þ
into a � -algebra Á by setting � |�½ k¾º | .

Clearly, the º | functions can be immediately recovered from the algebra:� -algebra and recursive definition are equivalent concepts.
When we view the recursive definition this way, it simply states that

¹
must be a homomorphism into Á . Now we can easily argue that a recursive
definition always defines a unique, total function

¹ M Term ��� � e Á , no
matter what kind of internal structure Á has in addition to the º � functions.
Because Term ��� � is an initial algebra,

¹
is simply the unique homomorphism

from Term ��� � to Á .

We now want to extend the definition so we can get a homomorphism
¹

from an arbitrary termlike algebra ¥ to Á . We rephrase the problem in fixed-
point terms:

¹
is a homomorphism iff it is a fixed point of the functional ¿ :¿ � ¹ � k?>À¯l case ¯ of

0
� � ��¯ y qrl�lmlqF¯.� � �e � � ½ � ¹ ��¯ y)� qrl�l�l�q ¹ ��¯.� ��� 2 �

(the case analysis here is acceptable exactly because ¥ is termlike). ¿ does
not in general have a fixed point, but there are some common cases where
we can find one:

� If we can order Á as a Scott domain so that the º � functions are contin-
uous, then these properties carry over to the function space ¥ e Á and
the ¿ functional, respectively. We can then use the fixed point theorem
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to find a minimal fixed point for ¿ which is a natural candidate to use
for

¹
.

Note that the “trivial” application of this idea does not work well.
Formally we might take any odd algebra Á , add an artificial bottom
element to make it a flat domain Á L , and extend the � ½ functions toÁ L in the canonical strict way. However,

¹
will end up being non- *

exactly on the elements of the initial algebra (which is embedded in¥ by Corollary A.15), so it does not gain anything we did not have in
advance.

A more interesting example is the list-length definition above. We
can take

þ k�K Â·��� � which with the usual ordering is a Scott domain.
If we define � .¬1TkÁ� , the function º + ��LqT» � k¼» .º1 becomes (Scott)
continuous. The least fixed point we get then assigns the correct length
to finite lists—even if the list elements are infinite—and makes the
length of infinite lists be � .

� If we can order Á as a complete lattice so that the º � functions are
order-preserving, then these properties carry over to the function space¥ e Á and the ¿ functional, respectively. We can then use Tarski’s
fixed point theorem2 to find either a minimal or a maximal fixed point.
Those two are not in general identical, so it is important that the defi-
nition states which of them is meant.

A.1.5 Construction of the graph algebra

Let a signature � be given. We now construct the graph algebra for � ,
which directly models the use of circular data structures to represent certain
infinite terms.

Definition A.16 A � -graph is a triple ÂNk �&ÃQq(Ä7q�Å � where

� Ã is a finite set of vertices. Formally we may require that Ã ¸ K so that
the class of all � -graphs is a set.
� ÄÝM<Ã e L.  is any map from vertices to function symbols.
� Å®M<Ã e K finû e Ã is the edge map

such that for each Æ ù Ã with Ä �;Æ � k��ªM � y lml�l � � e � , Å �XÆ � �¨ � is defined precisely
for 1��! "�$# and £�¤QÄ �XÅª�;Æ � �¨ ��� k � � .

Intuitively, the nodes in a � -graph model records in a store and the edges
model pointers stored in the records.

Definition A.17 A pointed � -graph is a pair Ç k«�;ÂTqVÆ ì � such that Æ ì ù ÃÉÈ .
We call the set of all pointed � -graphs Ê .

A pointed � -graph models a pointer into some given store.

2Theorem 4.11 of Davey and Priestley [1990]
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The elements of the graph algebra will be pointed � -graphs. Or rather,
they will be equivalence classes of pointed � -graphs, as we want graphs such
as

� y
y + � y

y +
� ì � ì � ì

to represent “the same” term. Therefore, we need to define a suitable equiv-
alence relation on Ê . That is done by the following series of definitions.

Definition A.18 For any ÇÀk �;ÂTqVÆ ì � ù Ê , define

case ��Ç � k ÄËÈ �;Æ ì �
sub

� �&Ç � k �;ÂTq«Å¡È¶�;Æ ì � �¨ ���
Intuitively, case ��Ç � tells us the topmost function symbol in Ç , and sub

� �&Ç �
extracts the pointers that represent the subterms.

Definition A.19 A relation Ì ¸ Ê½Û#Ê is called valid3 if for any �&Ç y q6Ç + � ù Ì
it holds that

� case ��Ç y)� k case �&Ç + �
� � sub

� �&Ç y�� q sub
� ��Ç + ��� ù Ì for all relevant  .

Lemma A.20 Any (finite or infinite) union of valid relations is valid.

Proof. Let bÃMjþ��&Ê ÛÍÊ � e þ���Ê ÛÍÊ � be the map defined byb �VÌ � k!�r��ÇQq6Ç � � s case �&Ç � k case �&Ç � � q º  tM�� sub
� �&Ç � q sub

� ��Ç � ��� ù Ì �
It is easy to see that a relation Ì is valid precisely if Ì ¸ b �VÌ � .

Now, given any family �«Ì � � � of relations with Ì � ¸ b �«Ì � � , we show thatÍ � Ì � ¸ b �RÍ � Ì � � . Let �&Ç q6Ç � � be an element of Í � Ì � ; then there is an  such
that

��ÇQq6Ç � � ù Ì � ¸ b �VÌ � �V¸ b �Rt � Ì � �
where the last inclusion follows because b clearly preserves set inclusion. À
Theorem A.21 (definition of ¼k ) There is a unique largest valid relation ¼k ;
it is the union of all valid relations in Ê .

3The word is from Paterson and Wegman [1978] which uses “valid” for a similar but not
completely equivalent class of relations.
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Proof. The union of all valid relations is itself valid by Lemma A.20; it is
obviously the largest valid relation.4 À

The intuition behind this definition of ¼k is that ¼k only considers two
pointed � -graphs different if it would be invalid to identify them. Formally,
this style of definition is known as a co-inductive definition.

Now we show a range of nice properties of ¼k . We shall make extensive
use of the co-induction principle: To prove that Ç ¼k Ç � it suffices to exhibit
a valid relation Ì such that Ç�ÌÎÇ � . The validity of this is obvious from the
definition.

Theorem A.22 ¼k is an equivalence relation.

Proof. We must show that ¼k is

Reflexive: The identity relation �r��ÇQq6Ç � s Ç ù Ê � is valid.

Symmetric: The definition of “valid” is symmetric, therefore the opposite of
the valid relation ¼k is itself valid and thus contained in ¼k .

Transitive: We show that the the relation ¼k + defined byÇ y ¼k + Ç -ÐÏ W @QÇ + M
Ç y ¼k Ç + ¼k Ç - l
is valid. Given any Ç y q6Ç + q6Ç - with Ç y ¼k Ç + ¼k Ç - we have case ��Ç y�� k
case ��Ç + � k case �&Ç - � and for any  : sub

� �&Ç y)� ¼k sub
� �&Ç + � ¼k sub

� �&Ç - �
hence sub

� �&Ç y�� ¼k + sub
� ��Ç - � . À

Lemma A.23 If for some Ç y q6Ç + ù Ê it holds that case �&Ç y)� k case ��Ç + � and
sub

� ��Ç y�� ¼k sub
� �&Ç + � for the relevant  s, then Ç y ¼k Ç + .

Proof. � ¼k � Âz�r��Ç y q6Ç + � � is a valid relation. À
Lemma A.24 If vertices are added to a pointed � -graph without changing the
existing ones, then ¼k identifies the original and the result. More precisely: if
for Ç y k§�;Â y qVÆ ì � k �B�&Ã y qFÄ y q«Å y)� qVÆ ì � and Ç + k �;Â + qVÆ ì � k ���&Ã + qFÄ + q«Å + � qVÆ ì � it
holds that

� Ã y§¸ Ã +
� Ä y kÑÄ + �JÒ T
� Å y kÓÅ + �JÒ T

then Ç y ¼k Ç +
Proof. �����;Â y qVÆ � q��;Â + qVÆ ��� s Æ ù Ã y � is a valid relation. À

4We could also get this result by applying Tarski’s fixed point theorem to the Ô in the
proof of Lemma A.20, but we’ll also need the lemma in subsequent proofs.
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Lemma A.25 If the vertices in a pointed � -graph are systematically renamed,
then ¼k identifies the original and the result. More precisely: Let Ç k �;ÂTqVÆ ì � k
�B�&Ã q(Ä7q«Å � q«Æ ì � be given, and let » be any injective function with domain Ã . LetÂ � k�� »�&Ã � qDÄÍÕõ» É~y q6>JÆ �  �lè»�XÅª�¯» É~y �;Æ � ��� �¨ ���B� l
Then Â � is a � -graph, and �;Â � qA»�;Æ ì ��� ¼k Ç .

Proof. The first claim (that Â � is a � -graph) is immediate from the definition.
To see that �;Â � qA»�;Æ ì �B� ¼k Ç , observe that �����;Â � qA»�;Æ �B� q��;ÂTqVÆ ��� s Æ ù Ã � is a valid
relation. À
Theorem A.26 For any �ªM � y lml�l � � e � and any Ç y qrl�l�l�q6Ç � with £¡¤ case ��Ç � � k � �
there is a Ç ù Ê such that

� case ��Ç � k��
� For 1��! "�$# : sub

� ��Ç � ¼k Ç �
Proof. The intuitive idea is to take place the graphs Ç y through Ç � along
each other (after renaming vertices so they are disjoint) and add a single
vertex labelled � :

�

Ç y ÇË�l¢llll¢l

Let Ç � k ����Ã � qFÄ � q«Å � � qVÆ � � . Because of Lemma A.25, we can assume with-
out loss of generality that the Ã � s are disjoint. Select a Æ ì �ù Í � Ã � . Then,ÂNk��H��Æ ì � Â Í � Ã � q��Æ ì �e �ªM � y lml�l � � e � � Â¦Í � Ä � q��Æ ì q{ V�e Æ �©s 1��! %�$# � Â¦Í � Å � �
is well-defined because the functions we take the unions of are disjoint. Â is
also clearly a � -graph.

Now let Çºk«�;ÂTqVÆ ì � . It is clear that case �&Ç � k � , and for each  we have
sub

� ��Ç � k �;ÂTqVÆ � � ¼k �;Â � qVÆ � � because of Lemma A.24. À
Theorem A.27 Ç k �;ÂTqVÆ ì � ¼k Ç � k �;Â � qVÆ �ì � if and only if there is a valid
relation Ì ¸ �r�;ÂTqVÆ � s Æ ù ÃËÈ � Û ���;Â � qVÆ � s Æ ù ÃÉÈ × �
such that �&Ç q6Ç � � ù Ì .
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Proof. “If”: trivial. “Only if”: Assume Ç ¼k Ç � Let Ì ì k����&Ç q6Ç � � � and defineÌ | G y k���� sub
� �&Ç y)� q sub

� �&Ç + ��� s �&Ç y q6Ç + � ù Ì | �
Set Ì¾k Í |ÖÌ | . We claim that Ì is valid.

By an easy induction on Ì we have Ì |�¸ � ¼k � . Now take any �&Ç y q6Ç + � in
any Ì | . Because Ç y ¼k Ç + we immediately have case �&Ç y)� k case �&Ç + � . We
also, by definition have � sub

� �&Ç y)� q sub
� �&Ç + ��� ù Ì | G y�¸ Ì , so Ì is indeed valid.À

Corollary A.28 ¼k is decidable.

This follows directly from Theorem A.27, since there are only finitely many
candidates for Ì and it is easy to check whether a candidate is indeed valid.
The proof of the theorem also suggests an \Ê�mÌ + � algorithm: construct Ì by
the indicated procedure; the relation holds iff case ��Ç y�� k case �&Ç + � for all
�&Ç y q6Ç + � ù Ì .

Definition A.29 Ç²k��TÇ � ù Ê s Ç ¼k Ç � �
Definition A.30 ÊÝk�� Ç s Ç ù Ê �
Definition A.31 The graph algebra × �Ø� � is the � -algebra defined by

�ÁÙ ¦ k�� Ç s £¡¤ case �&Ç � k � �
� For each � ù L�  , �(Ú�� Ç y qrlml�lq Ç^� � is the Ç for which

case �&Ç � k�� S º  tM sub
� ��Ç � ¼k Ç �

Such a Ç exists by Theorem A.26; it is unique (up to ¼k ) by Lemma A.23.
By the definition of ¼k , if Ç has the requested property, then so has anyÇ � ù Ç .

Theorem A.32 The graph algebra × is termlike.

Proof. According to Definition A.12 we must prove that

1. each function interpretation �GÚ is injective: Assume that

� Ú � Ç y qrlml�l�q ÇË� � k�� Ú � Ç �y qrlml�l�q Ç �� � k Ç�l
Then Ç � ¼k sub

� �&Ç � ¼k Ç �� , hence Ç � k Ç �� .
2. each Ç ù × is in the image of at most one function interpretation: AssumeÇºk � y Ú �'lml�l � k � + Ú �Gl�l�l � . Then Ç contains a Ç y with case �&Ç y)� k � y and aÇ + with case �&Ç + � k�� + . Because Ç y ¼k Ç + , it must be that � y k�� + .
3. each Ç ù × is in the image of at least one function interpretation: Let

case ��Ç � k�� . Then Ç¿k��FÚ:� sub y �&Ç � qrl�lmlq sub�:�&Ç �B� À
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Theorem A.33 The initial subalgebra of the graph algebra (cf. Corol-
lary A.15) consists of those elements that have a representative �XÂ�qVÆ ì � where Â
is acyclic.

Proof. From the construction in the proof of Theorem A.26 it is clear that
the set of elements with an acyclic representative are indeed a subalgebra.
To show that this subalgebra is initial, we apply Theorem A.13.

The structural induction principle is valid for the set of acyclic Â s because
it can be reduced to “long” mathematical induction on the length of the
longest possible path from the root of each graph. (This does not work for
arbitrary Â s, because when the graph is cyclic there may be arbitrarily long
paths from the root node). À
A.2 Proof of Theorem 3.3

We’re now in a position to prove Theorem 3.3 (on page 35). To do this we’ll
have to exhibit a notion of variables and terms, as well as a concrete 8 
 
�� �
function.

We choose to use finite subsets of
h
Addr i as variable names:R k u � ¸ h

Addr i xx #
�ÓÛ � z

This choice may seem arbitrary, but it happens to simplify some of the proofs
about unification.

Intuitively, a term is something made up from the grammar

ø MOMOk ��� ø y qrl�l�l�q ø Ø Ù(Ø �s �
s *

where
�

is a variable name and * is the “meaning” of a dangling pointer. To
make this intuition formal and applicable to cyclic data structures we view
the grammar as specifying a signature �ÝÜ :

� There is a single sort
h ø i .� For each functor name � there is a function symbol

�ªM h ø i¶lml�l h ø iÞ ß(à áØ Ù(Ø
e h ø i

� For each variable name
� ù R there is a function symbol

� M e h ø i .
� There is one additional function symbol *ÃM e h ø i .

Then, a “term” is an element of the graph algebra × ����Ü � .
Now, a store is almost a �ÉÜ -graph – we just have to replace every ���$�%�&�'�

with an appropriately chosen variable name and prune away the instantiated
variables:
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Definition A.34 Let 8 be a store. âª� 8 � is the �ÝÜ -graph ��ÃQqFÄ7q�Å � where

� Ã�k�� 6 ù Dom 8 s 8 � 6 � �ù h
Addr i � �)�Ä* �� Ä ��* � kÌ*

� Ä � 6 � k case 8 � 6 � of
¥ ��� 6 y qrl�lmlq 6 � � �e ����$�%�&�'� �e � 6 � ù Dom 8 s IMJ � 6 � � k 6 �

� Åª� 6 � �¨ � k IMJ�� 6 � � if 8 � 6 � k���� 6 y qrl�l�l�q 6 Ø Ù(Ø �
Now we can define the meaning of an address 6 in the store 8 :

Definition A.35 Assume that 8 has no local cycles. Then8 
 
 6 � �k �Vâª� 8 � qáIÄJ:� 6 ��� l
Theorem 3.3 now follows directly from the various definitions.
Observe that if 8 has no cycles, local or otherwise, then Theorem A.33

tells us that 8 
 
 6 � � is a conventional finite term for each 6 .
We also note

Lemma A.36 If 8 
 
 6 � � ù R , then8 
 
 6 � �k u 6 � xx 8 
 
 6 � � � k 8 
 
 6 � � z
which is an easy consequence of Definition A.34.

A.3 Proof of Theorem 3.11

We now prove the two parts of Theorem 3.11, which relates the unification
algorithm defined in Definitions 3.9ff (on page 42) to the “most general
unifier” concept defined in Section 3.6.1 (on page 41).

Throughout the subsection we let 8 ì , 6 ì and 6 ì'ì be given and study the
process of unifying 6 ì and 6 ì'ì in 8 ì .
Lemma A.37 For any � 8 q�Á � such that � 8 ì qÄ��� 6 ì q 6 ì'ì � � � À d � � 8 q�Á � it holds that8 ¶ 8 ì and Dom 8 k Dom 8 ì .
Proof. By induction of the number of À d steps in � 8 ì qÄ��� 6 ì q 6 ì'ì � � � À d � � 8 q�Á � .

The base case is trivial ( 8 ì ¶ 8 ì ).
The induction steps corresponding to À d rules (a), (b), and (c) are also

trivial: these rules do not change 8 .
For À d rule (d) we see immediately that 8 � 6 y �e 6 + � ¶ 8 . The conclusion

then follows from the fact that ¶ is transitive. À
Lemma A.38 For any � 8 q�Á � such that � 8 ì qÄ��� 6 ì q 6 ì'ì � � � À d � � 8 q�Á � it holds that
� 6 ì q 6 ì'ì � ù Á .

Proof. Trivial. À
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Lemma A.39 For any � 8 q�Á � such that � 8 ì qÄ�r� 6 ì q 6 ì'ì � � � À d � � 8 q�Á � , any unifier8`¿ of 6 ì and 6 ì'ì in 8 ì , and any 6 y q 6 + ù h
Addr i , it holds that0 8 � 6 y�� k 6 4Ðã � 6 y q 6 + � ù Á 2 UXW 8`¿ 
 
 6 y � � k 8`¿ 
 
 6 + � �Bl

Proof. By induction of the number of À d steps in � 8 ì qÄ��� 6 ì q 6 ì'ì � � � À d � � 8 q�Á � .
The base case is trivial. There is an induction step for each of the À d rules.

a. Trivial.

b. Because 8^¿ ¶ 8 ì and 8 ¶ 8 ì with Dom 8 k Dom 8 ì , we know that8`¿ � 6 � � k 8 ì � 6 � � k 8 � 6 � � k��,� 6 � y qrl�l�l�q 6 � Ø Ù(Ø �
for � k�1�q�4 . This means that, by Theorem 3.3,

��� 8`¿ 
 
 6 y'y � ��qrlml�lq 8`¿ 
 
 6 y Ø Ù(Ø � � � k 8`¿ 
 
 6 y � � k 8`¿ 
 
 6 + � �k���� 8`¿ 
 
 6 + y � ��qrlml�l�q 8`¿ 
 
 6 + Ø Ù(Ø � � �
hence (because × ���ÉÜ � is termlike) 8^¿ 
 
 6 y � � �¢k 8`¿ 
 
 6 + � � � .

c. By applying the induction hypothesis twice,8`¿ 
 
 8 � 6 y�� � � k 8`¿ 
 
 6 y � �k 8`¿ 
 
 6 + � �
d. Trivial: � 6 y q 6 + � is already in Á . À

Theorem A.40 (soundness) If our unification algorithm produces a unifier8`¿ of 6 ì and 6 ì'ì , then 8^¿ is a most general unifier.

This is a special case of the following induction lemma:

Lemma A.41 For any � 8 q�Á � such that � 8 ì qÄ�r� 6 ì q 6 ì'ì � � � À d � � 8 q�Á � and any uni-
fier 8`¿ of 6 ì and 6 ì�ì in 8 ì it holds that 8^¿ is less general than 8 , that is, there
is a 8 � such that 8^¿ ¼ 8 � and 8 � ¶ 8 .

Proof. By induction of the number of À d steps in � 8 ì qÄ��� 6 ì q 6 ì'ì � � � À d � � 8 q�Á � .
The base case is immediate: 8 k 8 ì , Á k ��� 6 y q 6 + � � , and the required

properties follow directly from the definition of the involved concepts.
The induction cases corresponding to À d rules (a) through (c) are also

trivial: these rules do not change the store. Thus, assume that � 8 q�Á � À d
� 8 � q�Á � by rule (d), and that the statement of the lemma holds for � 8 q�Á � .

We need to find 8 �� such that 8^¿ ¼ 8 �� and 8 �� ¶ 8 � . The induction hypoth-
esis gives us a 8 � such that 8^¿ ¼ 8 � and 8 � ¶ 8 . Because ¼ is an equivalence
relation we can forget about 8T¿ and simply seek a 8 �� ¶ 8 � such that 8 �� ¼ 8 � .8`¿ ¼ 8 � ¼ 8 ��ä8 ì À d � 8ä 8 �À d��å Teæç å % �
We know that there is � 6 y q 6 + � ù Á such that
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d1. 8 � 6 y�� k ���$�%�&�'�
d2. 8 � 6 + � �ù h

Addr i
d3. 6 y �k 6 +
d4. 8 � k 8 � 6 y �e 6 + �

5. (from Lemma A.39) 8 � 
 
 6 y � �k 8 � 
 
 6 + � �
Now one of the following cases applies:

� 8 � � 6 y)� k ���$�%�&�'� .
Set 8 �� k 8 � � 6 y �e 6 + q 6 + �e ���$�%�&�'� � .
Because 8 � 
 
 6 y � �ôk 8 � 
 
 6 + � � it must hold that IKJ�è�� 6 + � k 6 y , hence8 � � 6 + � ù h

Addr i . Therefore, 8 � 6 + � must be ���$�%�&�'� , so 8 � � 6 + � k ���$�%�&�'� .
Thus 8 �� ¶ 8 � as required.

Additionally, if we define »� 6 � k§� if 6 k 6 y then 6 + else 6 � , thenIMJ ×è � 6 � k[»�ÓIMJ�è`� 6 ��� , so we can see that 8 �� ¼ 8 � by invoking Lemma A.25
with this » .

� 8 � � 6 y)� �k ���$�%�&�'� and IKJ è � 6 y)� k IMJ è � 6 + � .
If 8 � � 6 y �e 6 + � has no local cycles, then use that as 8 �� . Other-

wise, 6 + must be part of the local cycle, hence 8 � � 6 + � ù h
Addr i hence8 � 6 + � k 8 � � 6 + � k ���$�"�&��� and we can use 8 � � 6 y �e 6 + q 6 + �e I{J�è�� 6 + � � as8 �� . In either case we get IKJ�èÞk®IMJ ×è and âª� 8 � � kéâª� 8 �� � , so clearly 8 � ¼8 �� .� 8 � � 6 y)� �k ���$�%�&�'� and IKJ è � 6 y)� �k IMJ è � 6 + � .

Set 8 �� k 8 � � 6 y �e 6 + � . This does not introduce any local cycles,
and clearly 8 �� ¶ 8 � . The trouble is to show that 8 �� ¼ 8 � .By some unfolding of definitions, it suffices to show that the rela-
tion Ì¾k u �«âª� 8 � � qáIÄJ è � 6 ��� Ì �«âª� 8 �� � qáIÄJ ×è � 6 ��� xx 6 ù h

Addr i z
is a subset of a valid relation. We takeÌ � k u �«âª� 8 � � qáIÄJ è � 6 � ��� Ì � �Vâª� 8 �� � qáIÄJ ×è � 6 � � ��� xx 8 � 
 
 6 � � �k 8 � 
 
 6 � � � � z
as that valid relation. Clearly Ì � Ç¾Ì , but we must show that Ì � is
valid.

That is, for any 6 � , 6 � � with 8 � 
 
 6 � � �¾k 8 � 
 
 6 � � � � , the conditions in
Definition A.19 should hold for

�Vâª� 8 � � qáI{J è � 6 � ��� Ì � �«âª� 8 �� � qáIÓJ ×è � 6 � � ��� l
If IMJ ×è � 6 � � � k2IÄJ è � 6 � � , then that follows easily because 8 �� �-IMJ ×è � 6 � � ��� k8 � �ÓIMJ è � 6 � � ��� .So, assume that IKJ ×è � 6 � � � �k IMJ è � 6 � � . That can only happen ifIMJ ×è � 6 � � � k IÄJ ×è � 6 + � and IMJ è � 6 � � � k I{J è � 6 y)� . We then have8 � 
 
 6 � � �k 8 � 
 
 6 � � � �k 8 � 
 
 6 y � � k 8 � 
 
 6 + � �
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and therefore,

�Vâª� 8 � � qáI{J�è�� 6 � �B� Ì � �Vâª� 8 �� � qáIÓJ ×è � 6 + ���
is true and has the same validness condition than � 6 � q 6 � � � . The valid-
ness condition now reduces to the previous case because I	J è � 6 + � kIMJ ×è � 6 + � .

This completes the proof of Theorem A.40 À
Theorem A.42 (completeness) If there is any unifier 8 ¿ of 6 ì and 6 ì'ì , then
our unification algorithm can find a unifier.

Proof. Assume 8^¿ exists, and select a 8 from � 8 s @TÁºM�� 8 ì qÄ�r� 6 ì q 6 ì'ì � � � À d �� 8 q�Á � � that minimises # � 6 s 8 � 6 � k ���$�"�&��� � . We claim that the 8 thus selected
unifies 6 ì and 6 ì'ì in 8 ì .

Let Á � be maximal among the Á s such that � 8 ì qÄ��� 6 ì q 6 ì'ì � � � À d � � 8 q�Á � . This
is always possible because the cardinality of any such Á is bounded by � # 8 � + .

I claim thatÌ¾k u �«âª� 8 � qáIÓJ:� 6 y)��� Ì �«âª� 8 � qáIÓJ:� 6 + ��� xx � 6 y q 6 + � ù Á � z
is valid, hence 8 unifies 6 ì and 6 ì'ì .

We show that the validness condition is satisfied for any � 6 y q 6 + � ù Á � .
Because Á � is maximal we have �ÓIKJ�� 6 y�� qáIÄJ � 6 + ��� ù Á � . Therefore, without loss
of generality we can assume that 8 � 6 � � �ù h

Addr i for   k 1�q�4 .
We now divide into two cases:

� At least one of 8 � 6 y)� and 8 � 6 + � is ���$�"�&��� . In that case it must be that6 y k 6 + , because otherwise À d rule (d) would allow to construct a store
with fewer ���$�"�&��� s than 8 , contradicting the choice of 8 .

It is then trivial that the validness condition is satisfied: thenÄëê 
èJ�� � 6 y)� is a nullary function symbol in �ÝÜ .
� Both of 8 � 6 y)� and 8 � 6 + � are number or structure. In that case, 8 ¶8 ìÖì 8`¿ means that 8^¿ � 6 � � k 8 
 6 � � for   k�1�q�4 .

Because 8^¿ 
 
 6 y � �ªk 8`¿ 
 
 6 + � � by Lemma A.39, 8 � 6 y�� and 8 � 6 + � must
be the same number or structures with the same functor. That is the
first part of the validness condition.

The second part of the validness condition now follows from À d rule
(b).

This completes the proof of the Theorem A.42. À
Corollary A.43 (a classic result) If there is any unifier 8 ¿ of 6 ì and 6 ì'ì in8 ì , then there is a most general unifier 8 MGU which can be produced by our
unification algorithm.

Proof. This follows immediately from Theorems A.40 and A.42. À
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Corollary A.44 (a less classic result) Any most general unifier 8 ¿ of 6 ì and6 ì'ì in 8 ì has the property that Dom 8T¿ k Dom 8 ì .
That means that no store-based unification algorithm that computes most
general unifiers needs to do any (non-temporary) memory allocation.
Proof. Let an arbitrary most general unifier 8�¿ be given. By Theorem A.42,
our unification algorithm can find a unifier 8 � . Because 8^¿ is a most general
unifier, there must be a 8 �¿ such that 8 �¿ ¼ 8 � and 8 �¿ ¶ 8`¿ . We now have

Dom 8 ì k Dom 8 � k Dom 8 �¿ Ç Dom 8 � Ç Dom 8 ì
where the first equality is due to Lemma A.37 and the rest follow from the
definitions of ¼ , ¶ and unifiers. À
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