On Implicit Euler and Related Methods for
High-Order High-Index DAEs"

J. Sand

Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen, Denmark.
E-mail: datjs@diku.dk

Abstract

The Implicit Euler method is seldom used to solve differential-algebraic equations
(DAESs) of differential index r > 3, since the method in general fails to converge in
the first r — 2 steps after a change of stepsize. However, if the differential equation
is of order d = r — 1 > 1, an alternative variable-step version of the Euler method
can be shown uniformly convergent. For d = r — 1, this variable-step method is
equivalent to the Implicit Euler except for the first r — 2 steps after a change of
stepsize. Generalization to DAEs with differential equations of order d > r—1 > 1,
and to variable-order formulas is discussed.

Key words: Linear multistep method, Backward Differentiation Formula,
differential-algebraic equation, differential index, initial value problem, divided
difference.

1 Introduction

According to ([3], p.46), those systems of differential-algebraic equations (DAEs)
which arise most commonly in applications are the index one systems, the
semi-explicit index two systems and the index three systems in Hessenberg
form. However, systems of arbitrarily high index may occur naturally in math-
ematical models ([3], p.150), and thus methods for such systems are of interest.
In this paper we consider DAEs of order d > r — 1 > 1, where r is the (diffe-
rential) index.

Several codes for DAEs (e.g. DASSL([8]), LSODI([7]) and SPRINT([2])) have
been based on the Backward Differentiation Formulas (BDFs), of which the
first order formula (Implicit Euler) plays a central role - at least in the begin-
ning of the integration. However, it has been known for a long time (cf. e.g.

*Tech. Rep. 01/03, Dept. of Computer Sci., Univ. of Copenhagen, 2001.

This report is an extended version of a paper appearing in APNUM.

[5,6,4]) that Implicit Euler in general fails to converge in the first r — 2 steps
after a change of stepsize, where the initial point may be regarded as one of
the positions, where the stepsize is changed (from 0 to a positive value). In [1]
an algorithm for correcting the numerical values after stepchanges was derived
for r = 3. However, the algorithm assumes the DAE to depend linearly on the
algebraic variables, and consecutive stepchanges seem to worsen the corrected
values. In this paper we will derive an alternative variable-step version of the
Implicit Euler method applicable to d’th order DAEs of index r € [2,d + 1],
and for (d,r) = (2,3) we may compare the errors produced by this method to
those of Implicit Euler with/without correction, listed in Table 8.3 of [1]:
Table 1

Comparison with results listed in Table 8.3 of [1].

Step | Stepsize | Value of | Absolute error of approximation
no. | x10® | alg. var. | (Euler) (Corrected) (Alt. Euler)
1| 1.000 | —4.0080 | 2.0080 0.0044 0.0080
2| 1.000 | —4.0160 | 0.0080 0.0080 0.0120
3| 0.200 | —4.0176 | 8.0303 0.0391 0.0057
4 0.040 —4.0179 | 8.0348 0.2121 0.0012
51 0.008 | —4.0180 | 8.0357 1.0725 0.0003
6| 0.008 | —4.0181 | 0.0001 0.0001 0.0001
71 0.016 | —4.0182 | 1.0047 0.0001 0.0002
8 | 0.032 | —4.0185 | 1.0048 0.0002 0.0004
9| 0.064 | —4.0190 | 1.0052 0.0003 0.0007
10 | 0.064 | —4.0195 | 0.0006 0.0006 0.0008

Consider the initial value problem

y(d) :f(t7 y7 y” " y(d_1)7 A)? y(J)(tO) = /r’J’ j = 07 17 "7d - 17 (1)
0=g(ty, 9,y "), re2,d+1], (2)

Most often, high-order ordinary differential equations (ODEs) are solved by
transforming the equation to a system of first-order ODEs, and then by apply-
ing some of the many methods for first-order ODEs, e.g. the Implicit Euler. It
thus seems natural to consider the following 'Implicit Euler method’ for pro-
ducing the approximations (Yo, An) to the values (y(t,), A(t,)), n =1,2,3, ..,
of the DAE-solution:

(yj,n - yj,nfl)/(tn - tnfl) = Yj+1,n» .7 = Oa 1a X d— 2a
(ydfl,n - ydfl,nfl)/(tn - tnfl) = f(tna Yons Y1,y - Yd—1,n, /\n)a (3)
0= g(tn: Yo, Yin, -+ yd+1—r,n)7

where y;0 =n; for j =0,1,..,d — 1.

However, methods for systems of first-order ODEs are designed to estimate
each component of the solution with the same order of accuracy, and for low

order methods (such as Implicit Euler) the accuracy of the y(t,)-estimate is

in general too low for producing reasonable estimates of the deriwatives of y
and thus of .

Another approach is to exchange the ’equation order reduction’ and the dis-
cretization. If we thus discretize the DAE (1),(2) by using divided differences,
and then write the discretized equations as a system of equations, we obtain
for the approximations (y;., An) = (J!y[tn, tn=1, --» tn—j], A(tn))

(Wi = Yjm-1)/((tn = ta-1-3)/(G + 1)) = Yj41n, §=0,1,.,d =2,
(yd—l,n - yd—l,n—l)/((tn - tn—d)/d) = f(t'm yO,n; yl,n: () yd—l,n7 /\n)v (4)
0= g(tna Yons Yin, -+ yd+1—r,n)7

where y; 0 = n; for 5 =0,1,..,d—1, and ¢, is interpreted as t, for m negative.

We notice that (4) only differs from (3) in d—1 steps after a change of stepsize,
and for r = d+ 1 > 3 this corresponds to the case, where (3) fails to converge.
Hence, one might expect (4) to remedy this lack of convergence. However,
as seen in Example 1 below, (4) must be modified for r € [2,d], since the
accuracy of the y(t,)-estimate may then be affected by the lower accuracy of
the estimates of the derivatives via the algebraic condition.

Example 1 Consider the following DAE of order d = 3 and index r =3 :
Y@ () = (), y©(0) =y (0) = y(0) =1,
0 = aexp(t) + by (t) — (a+b)yM(t), lal+][b] >0,

for which the solution is y(t) = A(t) = exp(t). Applying method (4), the
approximations in the first grid point t; = h will satisfy the equations

1
6(y0,1 —1-— h — 5’12)/}13 =)\1

0=aexp(h) +byo1 — (a+b)(yop1 —1)/h

Hence,
3\ = 3lexp[h,0,0,0] if a+b=0
71301+ 0(1) otherwise,
and we have no (uniform) convergence for a + b # 0.

On the other hand, if y(l)(h) in the constraint is approximated by using the
third-order BDF' formula

y(l)(tn) ~ y[tna tnfl] + (tn - tnfl){y[tna tnfla tan] + (tn - tn72)y[tna tnfla L) tn73]},

Yo,n will for n > 3 become a BDF 3-solution of the ODE

(a+b)y'(t) = by(t) + aexp(?),

and for constant stepsize h, A, will for n > 6 become a BDF 3-solution of

(a+b)N(t) = bA(t) + a(3!) exp[t,t — h,t — 2h,t — 3h].

Hence, we obtain convergence for fixed stepsize, provided the starting values
y;o are chosen O(h*™7)-accurate, as this implies O(h)-accuracy of Az, A4 and
As.

For variable stepsize, however, third order accuracy of yo,, does not necessarily
imply first order accuracy of A,, and one might think of using the BDF4-
formula in the constraint, assuming that an O(H)-accurate estimate of the
initial value \(0) is known, as well as O(H*7)-estimates of y¥)(0), where H
15 a finite upper bound of the stepsizes. We will, however, leave this possibility
for further research. |

Example 1 indicates that method (4) should be modified for € [2,d] in the
following way:

(Wi = Yjn—1)/((tn = tn—1-5)/(G + 1)) = Yjr1m, F=0,1,..,d =2,
(yd—l,n - yd—l,n—l)/((tﬂ - tn—d)/d) = f(tm Yo, Yin, s Yd—1,n,)‘n)a (5)
0= g(tn: yO,nap%(tn)a) szd_H_T) (tn))a

where y; 0 =n; for j =0,1,..,d -1, t,, is interpreted as ¢, for m negative, and
Pn is an interpolation polynomial, which - in case the BDFd-formula is used
for estimating y'(t,) - reads

d—11i-1 t— tn—j d—1 t— tn—'
Z H <7> yi,n + H (TJ) f(tna yO,n, yl,na .y ydfl,na)\n)

In Section 2 we list the assumptions on the DAE (1), (2), ensuring a unique
local DAE-solution, and show that for fixed n > 1 (5) has a unique solution
within a neighbourhood of the DAE-solution provided the previous numerical
values (y;n—i, An—i), ¢ > 1, are sufficiently accurate, satisfying the algebraic
condition to a certain accuracy, and the stepsizes are sufficiently small with
bounded ratios. In Section 3 we restrict ourselves to the case d =r—1>1
and show that for sufficiently accurate starting values and small stepsizes with
bounded ratios, the numerical values will remain accurate, since the method
(5) is then (uniformly) convergent. In Section 4 we outline how method (5) may
be generalized to variable-step variable-order methods based on the BDFs. As

an example, a method based on the first- and second-order BDFs is derived
and tested on a problem with (d,) = (2, 3). In Section 5 a much more simple
variable-step variable-order method is seen to give results similar to those in
Section 4.

2 Existence and Uniqueness of Solutions to (1),(2) and (5)

Let ¢, i =0,1,..,7 — 1, be formally defined as
]] d (%) g
9Oty (1), ' (1), -,y @) = <@> g(t,y(0),4'(1), ..,y ().
The assumptions on the DAE (1),(2) can then be written as follows.
ASSUMPTIONS.

(1) f and gV are C'-functions with bounded and Lipschitz-continuous par-
tial derivatives on open sets Qq, Qa, containing vo = (to, Mo, --, Ma—1, No)
and (to, Moy --sNa—1, f(v0)), respectively, where N\ is the unique value of
Ato) (cf- (3) below).

(2) The initial values n, ..,ng_1 are consistent with the equations
0 = g% (to, Moy s Mag1—rta), G=0,1,..,7—2.
(3) There exists a unique solution A(ty) = Ay to the equation
0= g" "V (to, M0, - a1, f(tos Nos - N1, Ato))),

or a solution A(tg) = Ao is given as initial value.
(4) The matriz

%@9‘ Dt 2 (0), s 2L, (1), £ (1 5 (0), L (0, A1)

is reqular with bounded inverse for all v(t) = (t, yi! (t), .., y([illl(t), A(t)) €
U, (6967 (1), g1 (1), F(0(1))) € o :

Since the low derivatives y®(t), i = 0,1,..,d — 1, may be formally expressed
in terms of 3@ (¢):

t—to +/ dll (d)()d (6)
H—] d—]_—l s)as,

the assumptions above are easily seen to ensure a unique local solution to the
DAE by considering the following iteration for £ = 0,1, ...

y?(t) = 0,
uD W=), yh(®), (), Ae(t))

d - —
0= %g(r Y (ta Yk+1 (t)a -0 yls;(j_ll) (t) yl(c—}?l(t))a)‘k (tO) — AO-

where y)(t) denotes (6) with y{? substituted for y¥, m =k, k + 1.

As concerns the solution of (5), we note that

pn(t) _p (t) + @n— 1()d'(pn - pn—l)[tn; -y tn—d]; (7)

Since ¢,_1(t) = 0 for t = t,_1,tn_9, .., tn_a, we thus have a discrete analogue
to (6):

_nlk

d—1—ii+j—1
(55

i"Poltn, -- Z H

= =1

+ H (o1 k) A'pultns s to—d], (8)

) (t4+ 9)Pn-1ltn-1, - th—1-i—5]

and we try to find a solution of (5) by simple functional iteration:

pn,O(t) = DPn— l(t)
d!pn,k+1[tna -y tn—d] = f(tnapn,k[tn]a -y (d - 1)'pn k[tna .- n d—|—1])\ k) (9)

Ozg(tnapn,k+l(tn)a apnd;c:l-lr ())/q d+1 T (n)a k - O: 15

where ps)k +1(t) denotes the i’th derivative of (7) with pp xi1(tn, .., tn—q] sub-
stituted for p,[t,, .., tn_q|, and the i’th order divided difference is found from
the d’th order through (8).

Lemma 2 Assume that the unique solution of (1),(2), ensured by our
ASSUMPTIONS, ezists for t € [ty,t, 1 + H]|, where H < 0o is an upper bound
of the stepsizes t; — t;_1, © > 1, and that the DAE-solution remains within
Q4, Q.

If for j=0,1,..,d—1, m=1,2,...n—

Y

1

(i) yjo=yY (to) + O(H)(ty — o),

(i) Yjm =y (tm) + O(H), Am = Atm) + O(H),

(1) 9(tms P () > D7) () /@1 () = O(H),
(iv) (tmy1r — tm)/(tm — tm—1) € [,] for 0 <y <T < 0.

then the iteration (9) converges for sufficiently small H to the solution of (5)
satisfying A\, = Ap_1 + O(H).

PROOF. First we prove that for sufficiently small H, a unique A, o = A1 +
O(H) exists, and that ||(pn,1 — Pn—1)[tn, --, ta—d]|| is O(H). Then we show, by
induction in £ > 1, the existence of a unique A,y satisfying ||[Ayx — An -1l =
O(H)”(pn,k - pn,k—l)[tm "7tn—d]||7 and that ”(pn,k-l-l - pn,k)[t’m "’tn—d]” =
O(H)||(Png — Prjg—1)[tns --» tn—d)||- Hence, for sufficiently small H, the Cauchy
sequence (A, g, Pn g+1[tn, --» tn—d))x Will converge to a fixpoint (A, pp[tn, - th—a])
of (9), since f and g are continuous. That (9) has no other fixpoints with
An = An—1 + O(H) follows from the boundedness of (g™~ /0A)~! and the
partial derivatives of f, which is valid for sufficiently small H.

Let k& > 0 and p,x be given with ||(pnx — Pr—1)[tn, .-, tn—a]|| being O(H). In
order to find A, = A1 + O(H), we use the iterative scheme

. . oG, -1 . _
)\ga—;ﬂ—l] = /\g;]k - l# (A[n(),]k)] Gn,k(/\'rL“Z,]lc): J = 07]-7 e /\'E?,]k: = >‘n—17 (10)
where

Ge(N) = g(tn, (D1 (t) + 41 (t) A fe W) ES™) /65577 (20),

and Af, x(A) denotes

f(tn: (S!pn,k[tna tey tnfs])?;(l)a)‘) - f(tnflﬁ (5!pnfl[tnfla LR} tnflfs])g;éa /\nfl)-

Since pyp (t) is defined in (7) with py, k[tn, .., tn—a] substituted for p,[t,, .., tn—dl,
we find, for s =0,1,..,d — 1, that p,[tn, ., tn—s] — Pn-1[tn-1,--, tn—1-s] equals

(tn = tn-1-5)Pn—1ltn, - ta—1— s]+Hl tn — ta1_i))O(H) = O(H). (11)

=1

Hence,

0Gp k A\ _d+177 qy(zz)l(t)

an (Ang) = > WMi,n—l(tn):

i=0 dp—1

where

99 s _nOf -
Mg 1(tn) = 5= (tns (024 (1) + O(H))EG)2 (b (Yo 1 + O(H))Z5, An 1),
y oA
and
(#) .
n=1(tn) (tn = tn—1=i) -~ (tn — t—a)d!/(d — 0)! :
< —OH) i=0,1,..,d—r

q7(1d,+117r) (tn) - (tn - tn—2—d+r) tee (tn - tn—d) (d +1-— 7')' ()

Due to (ii) in the lemma, and ASSUMPTION 4, we may thus assume that

where M is a constant independent of k. Hence, if Gn,k()\gg]k) = O(H) it will
follow from the scheme (10) that)\E,]k = A1 + O(H).

< M, (12)

-1

G V) = 1 (tn) /a4 ™" (tn) + O(H),

where

gnfl(t) = g(tapnfl(t)a . 7p(nd+11 g (t)),

and for n > r + 1 we obtain from (ii), (iii) and (7) withn=n —1

Gt (tni) = 9(tn—is Pri(tn—i) -, D5 (tns)) + OH) S ¢ (1)

s=2
=OH) ¢t), i=1,2,.,r.
Thus (iv) implies that the C"-function g,_;(¢) satisfies
Gn1(t)/qd+1 g (tn) =
r 1—1 T
S L~ tn o)gn 1ltn 15 rtn il + O(IL (b — tn- o)) | /@\51 7 (80) = O(H).
1=1 s=1 s=1

Due to (i), the result above is also valid for n € [1, 7], but we leave this as an

exercise for the reader. Having proved that AE},C = A1+ O(H), we may now
conclude the existence of A\, = A\,_; + O(H) by showing that the iterative

scheme (10) is strongly contractive. The uniqueness of A, x for small H follows
from (12).

Subtracting the equation in (10) from the one with j = j — 1, we have, by
induction in j > 1, that

- : - 8G,, - .
IR = Nl <M1 GO = G W) = [T (An_g] O =231

<OHEM)|NF, =271,

since G, is a C'-function, and)\n k))\U & stays within a certain neighbour-
hood of \,_;.

Returning to the outer iteration (9), we note that, for & = 0, the uniform
Lipschitz continuity of the C*'-function f implies that || (pn,1—Pn-1)[tn, - tn—d]ll
is O(H). If H is sufficiently small, we may thus find a unique A, = A\,—1 +
O(H), satisfying G, 1(A) = 0. Subtracting G, (A, ,0) from G, 1(\,,1) we obtain

0=[g(tn, (Pio (1)) ") = (tn, (P2 (t)ES /a7 (1)

d+1—r (%) 1

qp—1(tn dg s s .

={ 3l [00 (o) - ok >de}-
1=0 n—1 nJ)

{f(tm (S!pn,l[tna LR tn—s])(si;éa /\n,l) - f(tm (S!pn,O[tna ty tn—s])?;(l)a)‘n,O)}
1
dg s s .
= {O(H) + O/ W(t'm (095 + (1= 0)pS) (1) 25)d@} :

{O(H)”(pn,l - pn,O)[tna s tndl||+
1 of
oA

(n (S!pn,l[tna tey tn—s])g;é; 9)\71,1 + (1 - Q)An,o)de()\n,l -)\n,O)} .

Using AsSUMPTION 4 and the fact that g is a C'-function, we thus have

”)‘n,l -)‘n,OH = O(H)”(pn,l - pn,O)[tnatnfla --atnfd]”- (13)

From (9) and (8) with subscript n replaced by n,1 and 7,0, it thus follows
from the Lipschitz-continuity of f that

||(pn,2 - pn,l)[tna tn—la -y tn—d]” = O(H)”(pn,l - pn,O)[tna tn—la Ty tn—d]”- (14)

Hence, we may find a unique A\, o = A,—1 + O(H) satisfying Gp2(An2) = 0,
and since (13),(14) can be generalized to all consecutive iterates, the lemma
follows by induction. O

3 Uniform Convergence of Method (5) in case r =d +1

Since the purpose of this section is to prove condition (ii) of Lemma 2 for all
m > 1 (provided the solution remains within 1, 5), we may as well use a
formulation similar to Lemma 2.

Theorem 3 Consider the case 1 = d + 1. Assume that the unique solution
of (1),(2), ensured by our ASSUMPTIONS, ezists for t € [to,ty_1 + H], where
H < oo s an upper bound of the stepsizes t; — t;_1, © > 1, and that the
DAE-solution remains within 1, Q. If

(1) Yjo = y(])(to) + O(H)(tl - to)d_j fOTj = 0, 1, oy d— 1,
(i) (tpe1 —tn)/(tn —tn1) € [v,T] for 0<y<T'<oo, n=1,2,.., N —1.

then, for sufficiently small H, (5) has a unique solution satisfying A, = A(t,)+
O(H) for all t,, n=1,2,..,N, and
||y],n -]'y[tn, tnfla i) tnf]]” =

OH)(H +t, —to)* 1+ K(H +t, — to) exp((K + O(H))(t, — to))],

for j=0,1,..,d—1. The constant K =d+ Ly(1+ ML,(1+ Ly)) depends on
the bounds L¢, Ly of the partial derivatives of f and g9 and on the bound M
of [0gD JON(t)]™! on Q, Qs (cf. the ASSUMPTIONS).

The error bounds of y;n,7 = 0,1,..,d — 1, are also valid if the algebraic con-
straint is replaced by

9(tn; yon) = O(H) [(tn — ta—y)- (15)

Jj=1

PROOF. The theorem is clearly valid for n = 0. Assume that it holds for
n < n — 1. Then according to Lemma 2 a unique \, = \(t,) + O(H) exists.
Defining the errors

€in =]'y[tn: tnfl, "atnfj] — Yjin, .7 = Oa la oy d— 1:

we obtain from (5) the inequalities

tn — tp_1_4)
”eJan” S ||ej7'fl—1|| + (T]-]> ||ej+1,n|)] = 05]-: i) d - 2a (16)
- tn—d

tn -
leasall leasnmill+ (=) Idiyltns s tnd] = F(tas (i) M)l (17)

d—1

Slea-saall+ () (O + Ly (X el + IAG) = Aal)

Hence, since (1 — z) ! = exp(z + O(z?)) for all small z > 0, we obtain by
summation

d—1
Y llegall < (18)
j=0

< Znem -+ (2= () + @+ L) Y el

J=0

exp ((d + Ly +O(H)) (%))

+ Lyl Atn) = Aall) <

(Z Jesall + (=3 (O(H) + LA (k) - A"“)) |

For sufficiently small H we may thus assume that the bounds Ly, L, and M
are applicable on the line from the DAE-solution to the numerical solution at
t,,. We shall make use of this and prove that

[A() = Anll < O(H) + MLy(1 + Ly + O(H)) E_:O l€jnll- (19)

It will then follow from the first inequality of (18) that

z||e]n||<z||em i+ (=) o) + () + o zneg,nn

<exp (K +0(m) (=== (go e all + (%"“’) o(H)
<exp((K + O(H))(tn — t0))(H + t, — to) O(H).
Inserting this bound in (19) and (17) we obtain

lea—1nll <

lea-sanmtll + (P0) QUL+ K (H + b — to) exp((K + O(H))(tn =)] <

lea-soll + 3 (=P=2) O(H)L + K (H + ta = to) exp(+ O(H)) 1 = t0)] <

10

< O(H)(H + t, — to)[1 + K(H + t,, — to) exp((K + O(H))(t, — to))]-

For j = d - 2,d — 3,..,0, we obtain the error bound of y;, by a similar
substitution into (16) of the error bound of y;.1,, and the theorem will thus
follow from (19).

In order to prove (19) we consider the function

gn(t) = g(t, pu(?)),
where p, is the polynomial defined in connection with (5). From (7) we know
that p,(tn—;) = pn—j(tn—;) for j = 0,1,..,d. Since the ratio between consecu-

tive stepsizes are bounded, it thus follows from (15) (and (i) in case n < d)
that

gn[tna tnfla) tnfd] - O(H)

Since g, is a C4*1-function there exists a % € [t,_4, t,] such that

gDt palts), .. PP (1)) = O(H).

Let r;, denote the polynomials

i—1

Tim = [[(t —taj)/il, i=0,1,..,d.
7=0
We may then write
(6 =1(6) + OH) = T e -

_T((i,n(t;)[f(n (7Yt s o g]);’l é,/\(n)) = f(tns (Yn) =05 An)]

=y(t) + O(H) — e + O(H leemllJrIIA() Anll))

for s =0,1,..,d — 1, whereas p{® (t*) is

n

y O (t) + O(H) = [f (tus (119[tns - tag)j=0) A(ta)) = f (tns (Y1n) §=05 An)]-

Using the boundedness of [0g(® /OA(t)] ™! and the partial derivatives of f and
gD on the line from the DAE-solution to the numerical solution at t,, (19)
and thus the theorem follows by induction in n. O

11

4 Generalization to Variable-Step Variable-Order BDF's

It is outside the scope of this paper to extend the convergence result of Section
3 to a variable-step variable-order method. However, in this section we will
present such a method (based on the BDFs) and show that this method at
least improves the results of the first- and second-order BDFs (with/without
corrections) listed in [1], and that the second-order formula seems to have
global error O(H?) even for variable stepsizes.

When applying the BDF method of order k (i.e. BDFk) for estimation of
yY*t(t,) (y being the solution of (1),(2)), one would like the result to be
exact, if y is a polynomial of degree at most k£ + 7. For j = 0 this is achieved
by using the ordinary BDFk:

k i—l
Z —lnem yo[tnatn 15y 12 —] = UYin-

=1 m:l

However, for polynomials y of degree larger than &, the differentiation formula
is not exact, and the BDFk has to be modified in order to produce exact values
of yU+Y(t,) for polynomials y of degree k+j, j =1,2,..,d — 1 :

k .
> az’,:l]y]’[tn: tnet1y o tnei] = Yjsin, (20)
-1

[J+]

where the coefficients «;,, -~ are to satisfy

(s+j)!
(s —1)!

5 for yo(t) =517, s=1,2,..,k.(21)

k
Z azjr_LH Yj tna tn—b . tn—z’] =

In particular, if y; n, ¥jn—1, .-, Yjn—r all have been produced by such a modified

BDFk or by formulas of at least this order of accuracy, the coefficients a/[] +1]

may easily be obtained from the ordinary BDFk-coefficients:

2—1

a[ﬁ—l] H (tn - tnfM)ﬂ 1= la 25 -k — 1’ (22)

i,n
m=1

and for y,(t) = tF:

aEg"gl] = {E];L fz i Zl:[—tnm y][t --atn—i]} /yj[tn, atn—k](23)

i=1 m=1

12

Otherwise, the solution of (21) may require somewhat more work, and it may
not even exist for all combinations of stepsizes. However, since the formulas
are to be examined for yo(t) = t**9, s = 1,2,..,k, j = 1,..,d — 1, this work
may be of value in the derivation of the (k + d — 1)’st degree polynomial p,
needed in the algebraic constraint if r € [2,d] (cf. (5)). p, should satisfy

pn(tn_z) = yo,n_i, Z = 0, 1, ey]C —_ 1, and

koo
Zaz[fvjl]yj[tn,tn—h o tne1] = Yjrim for yo(t) =pa(t), j=0,1,.,d-1.
i=1

Example 4 We would like to solve the problem introduced in [1] by means
of the variable-step variable-order formula (20), with k equal to 1 and 2. The
problem, which was solved by merely first-order formulas in Table 1 is of index
r = 3, and it describes the position of a particle on a circular track. It reads

() =2(2) () G o= (20 San),

0=x>+1y* -1,

and the solution is (x(t),y(t), A(t)) = (sin(t?), cos(t?), —4t?). The ASSUMP-
TIONS in Section 2 are satisfied, and the parasitic numerical solution that we
find in each step is easily removed, since the point yo, s almost opposite to
the O(H)-solution on the unit circle.

In the following we will use the notation BDF(2,1), BDF (1,1) for BDF'1-
formulas modified for estimation of 4 (t,), whereas BDF (3,1,2), BDF(1,2,2),
BDF (2,2,2), BDF(1,1,2), BDF (2,1,2) are used for modified BDF2-formulas.
The interpretation is the following:

BDF (2,1): This BDF1-formula expects y; ,—1 to be exact for yo(t) = t?, and
it 1s used for changing from BDF2 to BDF'1, as well as for taking the very
first step.

BDF (1,1): Used for proceeding a BDF 1-solution.

BDF (3,1,2): This BDF2-formula expects yin—2 to be ezact for yo(t) = ¢,
and y1,—1 to be produced by BDF(2,1). The formula may be used in the
second step only.

BDF (k, 2,kn 1,2), ky 2,kn 1 € {1,2}: The BDF2-formula to be used when
Y1n—2 and Yy ,—1 were produced by our modified BDF'k,_o- and BDFk,,_ -
formulas, respectively.

We note that for BDF (k,_1,1), yo(t) = t* will imply y1,—1 = tu—1 + tu_o if
kn—1 =1, and otherwise 2t,,_,. Since Yy, = t, + 1,1, we obtain the following

13

BDF(1,1):
For yo(t) = t* we have yi[tn,tn 1] = (tn — tn2)/(tn — tn_1), and it follows
from (23) with k = 1,j = 1 that y?(t,) is to be estimated by

f(tn: Yo,ns Yi,n;s)‘n) =Yo,n = Q(tn - tnfl)/(tn - tn*2)y1[tn’ tnfl]
_ Yin — Yin-1

C (tn —tno)/2°

BDF(2,1):

For yo(t) = t? we have yi[tn, tn_1] = 1, and we obtain from (23) with k =

1,5 =1 that y®(t,) is to be estimated by

f(t'n: Yo,ny Y1,n;s /\n) =Yon = 2y1 [tn: tn—l]
_ Yin — Yina
(tn — tn_l)/Q

Similarly, we note that for BDF (ky_2, kn-1,2), yo(t) = t* will imply y1,,o =
3ti72 Zf kan = 3; Yin—2 = 27%72 + tan(tnf3 + tn74) - tn73tn74 Zf kan = 27
and otherwise t2_, + t, ot, 3 +t2 5. Hence,

BDF(2,2,2):
For yo(t) = t* we obtain

yl[tn: tn—l] = [Q(tn + tn—l + tn—2)(tn - tn—l) + (tn - tn—3)(tn—1 - tn—2)]/(tn - tn—l)a

and Y1 [tn: tn—la tn—?] =

(tn B tn73)(2tn - tnfl - tan)/(tn B tnfl) B (tnfl - tnf4) (tnf2 - tn73)/(tnfl B tn72)
(tn - tn—2) .

From (22),(23) with k = 2,7 = 1 it thus follows that y? (t,) is to be estimated
by
2]

e}
F(tns Yo, Yims An) = Yiltn, tn1] + ¢(y1 [tns tn1] — Y1 [tn—1, tn_2]),
(tn - tn—2)

where a[QQ’]n/(tn —tp_o) 1S

(tnfl - tn72)[2(3tn - tnfl - tn72 - tnf?»)(tn - tnfl) - (2tn - tnfl - tn72)(tn - tn73)]

(2tn - tn—l - tn—2) (tn - tn—3)(tn—1 - tn—2) - (tn - tn—l)(tn—l - tn—4)(tn—2 - tn—3) .

14

If there has been no stepchanges since t,_4, we thus obtain the usual BDF2.
Howewver, for certain unfortunate combinations of stepsizes this formula does
not exist!

BDF (1,1,2):

From (21) with k = 2,j = 1 we obtain two equations for a[f,]n and a[;,]n, which
can be simplified by definition of By = 0[22,]71/((7571 — tno)(tn_1 — tho)) and
B = (P + (tn 1 = tn 2)02)/(tn — tn1). We find that

Un — tno1 — tn_s —(tn—1—tn—3) B\ _ (2
(2tn - tnfl - tan)(tn + tnfl + tan) _(tnfl - tn73)(tn + tnfl + tn72) 2 th ’
Hence, y(t,) is to be estimated by

F(tns Yo Yins An) = (Wi — Yin-1) — Bo(Yin—1 — Y1,n—2),

where
2(2tn - tn—l - tn—2) 2(3tn B tn—l B tn—2 B tn—3)
ﬂ? =) ﬁl = .
(tn—l - tn—3)(tn - tn—3) (Qtn - tn—l - tn—Z) (tn - tn—?’)
BDF(1,2,2):

As in the case of BDF(1,1,2), we solve the equations (21) and obtain the
formula

f(tn, Yo,nyr Y1,ns)\n) =5 (y1,n - yl,n—l) - ﬁs(yl,n—l - y1,n_2),

where [y is the same as for BDF (1,1,2), and

_ 2(81(ty —tn1) — 1)
2p_1 —tp—o —tn_3

Bs

BDF (3,1,2):
From (21) with k = 2,j = 1 we obtain two equations whose solution gives the
formula

t, — th
f(tna Yo,nyr Y1,ns)\n) = nTnle [tna tn—l] + a[22,]ny1 [tna tn—la tn—Q]’
—012,”/4

where a[QQ,]n =2(2t, — ty—1 — tp_2) .

BDF (2,1,2):
Since BDF (3,1,2) is used as starting method, in case second order is needed

15

in the second step, the formula BDF(2,1,2) will probably be used very little.
For the sake of completeness, we will, however, find it from the equations (21)
and discover that it does not even exist for constant stepsize!

f(tna Yo,n> Yi,ns)‘n) = ﬂ4(y1,n - yl,nfl) - ﬂ5(y1,n71 - yl,nﬂ),
where

By — 2(2ty, —ty1 —ty 2)

(tn — tn—3)(tno1 — tnog2) — (tn_1 — tn—a)(tn—2 — tn_3)’
_ Bs(tpoy —tho) +2
C 2Up—tn—tp o

B

Since we solve a problem with r = d + 1, we need not insert the derivatives
of a polynomial p,(t) in the algebraic constraint. However, in case the reader
would like to test the methods on a problem with (d,r) = (2,2), we note that

1
pn(t) = yO,n + (t - tn)[yl,n + i(t - tn—l)f(tm yO,m yl,n;)\n)]

for BDF(1,1), BDF(2,1) and

pn(t) =Yo,n + (t - tn) {yo[tn: tnfl] + (t - tnfl) {pn[tna) tan] + %(t - tn72)'

f(tna yO,na yl,na)\n) - 2pn[tn, i) tan] _ yl,n - yO[tna tnfl]
[tn, s tn2]
Ztn — tnfl — tnfz ’ nlins -+ tn—-2 tn _ tnfl ’

for BDF(i,§,2), 4,j = 1,2.

We compare our results to those listed in Table 8.2 of [1]:

Table 2
Comparison with results in Table 8.2 of [1]. The results are errors in the estimated
algebraic variable A, and second-order formulas are used except for the first step.

Absolute errors for stepsize 0.005 Absolute errors for stepsize 0.01
t, | (BDF1&2) (Corrected) (20),k <2 |(BDF1&2) (Corrected) (20),k <2

1.005 | 2.0400 0.0403 0.0402
1.010 | 4.0190 0.0190 0.0010 2.0810 0.0812 0.0809
1.015| 1.0120 0.0119 0.0010
1.020 | 0.0012 0.0012 0.0009 4.0350 0.0360 0.0041
1.030 | 0.0013 0.0013 0.0009 1.0280 0.0280 0.0041
1.040 | 0.0013 0.0013 0.0009 0.0052 0.0052 0.0038
1.050 | 0.0014 0.0014 0.0010 0.0054 0.0054 0.0038

16

In order to estimate the global errors of the second-order formulas for variable
stepsizes, we first took 10 steps of the sizes shown in Table 1. Then we used
the pseudo-random number generator rand() of of MAPLE to generate step-
sizes approzr. 10 times smaller than those of Table 1, dividing each stepsize
by rand(5..15)-integers until a t-value in Table 1 was reached, and thus a new
stepsize was to be divided by rand()-integers.

As seen below, the second-order formula BDF(2,2,2) (started by BDF(2,1),
BDF (3,1,2) and BDF (1,2,2)) seems to have global error O(H?).

Table 3
Results for variable-step second-order formulas, started by a first-order step.
Step | Ay, Absolute error of A, Step Absolute error of A,
no. | x10%® | (BDF1&2) (20),k <2 no. | (20),k <2, for hy,/rand()
1| 1.000 2.0080 8.0-1073 12 2.5-1077
2 | 1.000 4.0040 4.0-107° 22 2.8-1077
3 | 0.200 0.3202 3.1-107° 31 3.0-1077
4 | 0.040 0.0083 1.6-107° 38 3.0-1077
5 | 0.008 0.0008 2.5-107° 43 3.0-10°7
6 | 0.008 0.0009 2.7-107° 52 3.0-1077
71 0.016 0.0001 2.7-10°° 62 3.0-10°7
8 | 0.032 0.0001 2.7-107° 71 3.0-1077
9 | 0.064 0.0002 2.7-107° 83 3.0-1077
10 | 0.064 0.0001 2.7-107° 93 3.0-1077
Step | hy Y10 — 4 (tn)ll2 Step Y10 — 4 (ta)ll2
no. | x10% | (BDF1&2) (20),k <2 no. | (20),k < 2, for h, /rand()
1[1.000| 20-1003% 22-.107°3 12 7.8.1078
211000 | 1.1-10° 6.3-107° 22 6.5-1078
310200 | 1.1-107° 6.5-1076 31 7.5-1078
410040 | 1.1-10°° 6.6-10°6 38 7.6-10°8
5,.,8 | - 1.1-107° 6.7-1076 | 43,..,71 7.6-1078
910064| 1.1-10° 6.6-10° 83 7.6-10°8
10 | 0.064 | 1.1-10~° 6.6-1076 93 7.6-1078
Step | by lyo,n — y(tn)ll2 Step lyo,n — y(tn)ll2
no. | x10® | (BDF1&2) (20),k <2 no. | (20),k < 2, for h, /rand()
111000 1.0-10% 27-10° 12 7.6-10 1
211000 | 1.3-107% 8.6-107° 22 1.4-10710
310200]| 1.3-100% 9.9.107° 31 1.6-10710
4,..,6 | --- 1.3-107% 1.0-107% | 38,..,52 1.6-10710
710016 | 1.3-10% 1.0-10°8 62 1.6-10710
810032]| 13-10% 1.1-107% 71 1.6-10710
910064| 13-10% 1.1.10°8 83 1.7-10710
10 | 0.064 | 1.3-10¢ 1.1.10°8 93 1.7-10°10

17

In order to check the robustness of the variable-order variable-stepsize method,
the computations above were repeated with somewhat arbitrary order changes
at the 10 basic t-values. We note that the global error now seems to be O(H),
since the first-order formula is used rather often (in approrimately 40% of the

steps).

Table 4
Results for variable-step variable-order methods.
Order || Step | hy Absolute error of A\, Step | Absolute error of A,
no. | x10® | (BDF1&2) (20),k <2 | mo. | (20),k <2, hy,/rand()
1 1| 1.000 2.0080 0.008009 12 0.001592
2 2 | 1.000 4.0040 0.000040 22 0.000004
1 3 1 0.200 1.9963 0.038403 31 0.000233
1 4 | 0.040 8.0348 0.001142 38 0.000061
2 5 | 0.008 10.3796 0.000020 43 0.000004
1 6 | 0.008 2.0091 0.000108 52 0.000014
2 7 10.016 3.0134 0.000020 62 0.000004
2 8 | 0.032 0.6698 0.000020 71 0.000004
2 9 | 0.064 0.0002 0.000020 83 0.000004
2 10 | 0.064 0.0001 0.000020 93 0.000004
Order || Step | hy 1,0 — ¥ (ta)ll2 Step 1,0 — ¥ (En)]]2
no. | x10® | (BDF1&2) (20),k <2 | no. | (20),k <2, h,/rand()
1 1]1.000 | 20x 1073 2.2x1073 12 3.2 x 1074
2 211.000 | 1.1 x10° 63x10°6 22 8.7x 1077
1 310200 | 40x107* 45x10~* 31 3.2 x 1070
1 410.040 | 7.8 x107% 9.2x107° 38 1.3 x 1075
2 510.008 | 1.1 x10™® 5.0 x 1076 43 8.9 x 107
1 6| 0008 | 1.7x107° 2.1 x10°5 52 2.8 x 1076
2 710.016 | 1.1 x107® 5.0 x 1076 62 9.0 x 1077
2 810.032 | 1.1 x1075 5.0x1076 71 9.0 x 107
2 910.064 | 1.1 x10° 5.0x10°6 83 8.9 x 1077
2 10 | 0.064 | 1.1 x 10~® 5.0 x 106 93 8.9 x 10~7
Order || Step | hy l0,n — y(tn)ll2 Step lo,n — y(tn)ll2
no. | x10® | (BDF1&2) (20),k <2 | no. | (20),k <2, h,/rand()
1 1]11.000] 1.0x10°% 27x10°? 12 4.6 x 1010
2 211.000 | 1.3x107% 8.6 x107° 22 1.3 x 1079
1 310200 | 1.4x10% 95x10°° 31 1.4 x 1079
1 410.040 | 1.4x107% 9.7 x107° 38 1.4 x 107°
2 510.008 | 1.4x10% 9.8x107° 43 1.4 x 1079
1 6]0.008 | 1.4x10% 9.8x107° 52 1.5 x 1079
2 710.016 | 1.4x107% 9.9x107° 62 1.5 x 1079
2 810032 | 1.4x10% 1.0x10°8 71 1.5 x 1079
2 910.064 | 1.4x10% 1.0x10"8 83 1.6 x 1079
2 10 | 0.064 | 1.4x10°% 1.1x10°8 93 1.6 x 1079

18

5 Generalization to Another Variable-Step Variable-Order Method

Due to the popularity of the BDFs, readers may find the previous section
interesting, although formulas based on the BDF's may not be the best choice
for high-order DAEs. If we follow the approach leading to (5) (postponing the
‘equation order reduction’), we find the following variable-step variable-order
method for (1),(2) in case r = d + 1:

(d)
pnd 1+kn(tn) f(ny Yo,ny, P kn(tn)apg,l-}—kn(tn)’ ’pidd 1)2+kn(t) /\n),
s i
pns - Ht_tnjyotn’tn 1"'t—] S:kna:d_1+kn
1=0 7=0

Method (24) is much easier implemented for d = 2, k, < 2, than the family
of BDF-formulas derived in Example 4, and it turns out that the results in
Tables 3 and 4 are very similar to the results produced by (24) applied to the
same test problem. Hence, we will not list the results corresponding to Tables
3,4, but instead show the similarity of the local errors of the second-order
formulas (24) and (20) (k, = 2), with ezact initial step. These results indicate
that Theorem 3 may be generalized to cover some of the higher-order formulas
(24), and we hope to show this in the near future. As regards zero-stability
for fixed stepsize, we may note that the formulas with &, < 5 are zero-stable
for all d = r —1 > 1, whereas the formula with k, = 6 is ’only’ stable for
4>d=r—1>1.

Table 5
Comparison of local errors of the second-order formulas (20) and (24).

Step | hg Absolute error of)\, Abs. error of)\, for h, := 10 x h,,

no. | x10% | (20),k, =2 (24), k, =2 | (20),k, =2 (24),k, = 2
1| 1.000 0 0 0 0
211.000 | 27x107% 27x1076 | 2.6 x10~* 2.6 x 10~*
310200 1.0x10% 27x10% | 2.8x10°° 2.6 x 10~*
410040 | 1.0x107® 3.1x10% | 1.1 x10°3 7.9 x 107°
510008 | 40x1077 80x107% | 1.1 x10™* 8.8 x 107°
60008 | 84x10% 84x10% | 8.8x107° 8.8 x 10°°
710016 | 85x107® 84x107% | 8.8 x107° 8.8 x 1075
810032 | 82x10% 83x108% | 87x10°° 8.8 x 10°°
910064 | 76x107% 7.7x107% | 8.7x107° 8.8 x 107°
10 | 0.064 | 72x10% 7.1x107% | 8.6x107° 8.7x107°

19

Table 5 (continued)

Step hn ”yO,n - y(tn)HQ ||y0,n - y(tn)“Q for hn =10 x hn

no. | x10% | (20),k, =2 (24),k, =2 | (20),k, =2 (24),k, =2
1| 1.000 0 0 0 0
211000 13x107" 13x107*"| 1.3x 1077 1.3 x 1077
310200 |1.7x107" 1.7x107'"| 1.7 x 1077 1.7 x 1077
410040 [1.8 x 107" 1.8 x 107t | 1.8 x 1077 1.8 x 1077
510008 |1.8x10"" 1.8x 107" | 1.8 x 1077 1.8 x 1077
60008 |1.8x107"" 1.8x10°" | 1.9 x 1077 1.9 x 1077
710016 |1.8x107" 1.8x 107" | 1.9 x 1077 1.9 x 1077
810032 |19x107" 19x107" | 2.0x 1077 2.0x 1077
910064 |20x107" 21x107 M| 2.1x1077 21x10°7

10 [0.064 | 2.2 x 107" 22x 107" | 2.2 x 1077 22x10°7

References

[1] C. AREVALO AND P. LOTSTEDT, Improving the accuracy of BDF methods for
index 3 differential-algebraic equations, BIT 35 (1995), pp. 297-308.

[2] M. Berzins, P.M. DEw AND R.M. FURZELAND, Developing PDE software

using the method of lines and differential algebraic integrators, Appl. Numer.
Math. 5 (1989), pp.375-397.

[3] K.E. BRENAN, S.L. CAMPBELL AND L.R. PETZOLD, Numerical Solution of

Initial-Value Problems in Differential-Algebraic Equations, Classics in Applied
Mathematics, Vol.14, STAM, 1996.

[4] K.E. BRENAN AND B.E. ENGQUIST, Backward differentiation approzimations
of nonlinear differential/algebraic systems, Math. Comp. 51 (1988), pp. 659
676.

[5] C.W. GEAR, H.H. Hsu AND L.R. PETZOLD, Differential-algebraic equations
revisited, in Proc. ODE Meeting, Oberwolfach, Germany, 1981.

[6) C.W. GEAR AND L.R. PETZOLD, Singular implicit ordinary differential
equations and constraints, Report No. UIUCDCS-R-82-1110, Dept. of
Computer Sci., Univ. of Illinois at Urbana-Champaign, 1982.

[7] A.C. HINDMARSH, LSODE and LSODI, two new initial value ordinary
differential equation solvers, ACM-SIGNUM Newsletters 15 (1980), pp. 10-11.

[8] L.R. PETZOLD, A description of DASSL: A differential/algebraic system solver,
in Scientific Computing, R.S. Stepleman et al, eds., North-Holland, Amsterdam,
1983, pp. 65-68.

20

