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Abstract

We give a fundamental result on the location of Steiner points for
Steiner minimum trees in uniform orientation metrics. As a corollary
we obtain a linear time algorithm for constructing a Steiner minimum
tree for a given full topology when the number of uniform orientations
isA=3m, m>1.
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1 Introduction

The Steiner tree problem asks for a shortest possible network interconnecting
a given set of points. Unlike the minimum spanning tree problem, three or
more edges of Steiner minimum trees (SMTs) can meet anywhere and not
only at the given points. These additional junctions are usually referred to
as Steiner points.

There are two very important variants of the geometric Steiner tree prob-
lem in the plane: Euclidean and rectilinear. The Fuclidean Steiner tree
problem is one of the oldest optimization problems dating back to Fermat.
In this variant, distances are measured by the standard Ls-metric. In the
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rectilinear version, the edges of the SMT are allowed to have horizontal and
vertical directions only. This variant has important practical applications
in VLSI design. We consider a generalization of the rectilinear Steiner tree
problem where the edges are permitted to have any fixed number A of ori-
entations. More specifically, given A, the orientations are represented by the
lines making iw angles with the z-axis, where w = w/\ and i = 1,2,..., \.
Clearly, the rectilinear Steiner tree problem is a special case of the Steiner
tree problem with uniform orientations where A = 2. In the last few years
there has been an increasing interest in the Steiner tree problem with uniform
orientations due to potential applications in VLSI design. Some very impor-
tant structural properties of SMTs with uniform orientations, also referred
to as A-SMTs, were proved by Brazil et al. [1, 2].

Suppose that apart from the coordinates of the points that are to be
interconnected, we are also told how to interconnect given points and Steiner
points (their locations are unknown). We say that the topology of the tree
is given. More specifically, we consider full topologies in which all terminals
are leaves and all Steiner points have degree 3. It was shown by Brazil et
al. [2] that for A = 3m, m > 1, there exists a A-SMT that is a union of trees,
each having a full topology (these subtrees are also called full Steiner trees).
Clearly, each full Steiner tree is a relatively minimal tree for its full topology,
i.e., a minimum-length tree having this topology.

In this paper we mainly address the following problem for A = 3m. Given
a full topology, construct a relatively minimal A-tree having this topology or
decide that no such tree exists. The main result of this paper is that a
relatively minimal A-tree exists if and only if a relatively minimal tree for the
orientation-unrestricted Euclidean case exists. We prove that the locations of
Steiner points in the Euclidean Steiner tree provide possible optimal locations
of Steiner points in the A-tree. Due to the result of Hwang [3], the existence
and construction of the Euclidean relatively minimal tree for a given full
topology can be performed in linear time. Consequently, the existence and
construction of a relatively minimal A-tree for a given full topology and A =
3m can also be performed in linear time.

Another result is that for A # 3m, the locations of Steiner points for a
given topology with uniform orientations never coincides with the locations
of the Euclidean Steiner points.

We expect that the result obtained in this paper can be incorporated into
new algorithms for the Steiner tree problem with uniform orientations so
that a substantial speedup for A = 3m can be obtained. In fact, preliminary
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Figure 1: Two edges uv and uw incident to the same node u. The corre-
sponding Euclidean edges are drawn as dashed line segments.

results indicate that our prototype implementation of an exact algorithm for
the problem is much slower for A = 3m than for other values of \.

2 Basic definitions and results

A X-edge is a shortest connection between two points v and v in which all
line segments have legal directions; w.l.0.g. at most two line segments. Either
one line segment in a legal direction or two line segments up and pv in legal
directions; in the latter case the edge is non-straight (Figure 1). Similarly,
an Euclidean edge is a line segment between two points, not necessarily in a
legal direction.

Consider two A-edges meeting at a common node u. If both edges are non-
straight they can make three different angles at u, depending on how they are
drawn. If 7" and ¢7"@* denote the minimum and maximum angle that can
appear, the angle ¢ between the Euclidean edges is clearly ¢Pi" < ¢ < @nax
(Figure 1).

The main results in this paper will be obtained from the following known
result on A-SMT angles:

Theorem 1. [2] Let A = 3m+1i, where i € {0,1,2}. Let kw (k is a positive
integer) be the angle between two neighbouring A-edges meeting at a Steiner
point in a A-SMT. Then,

ke {2m—1,2m,2m+1} ifi=0,
k€ {2m,2m + 1} ifi=1,
ke{2m+1,2m+ 2} if i =2.
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Informally, the minimum angle is the largest multiple of w that is strictly
less than 27 /3; similarly, the maximum angle is the smallest multiple of w
that is strictly larger than 27 /3. For neighbouring edges meeting at terminals
the lower bound still holds.

Lemma 1. [2/ For A = 3m, let u be a node in a \-SMT having two incident
edges making an angle of (2m — 1)w with each other. Consider any of the
two rays from u that makes angles (m — 1)w and mw with the edges incident
at u. Then we may insert a Steiner point s on the ray, sufficiently close!

to u, without changing the length of the \-SMT (Figure 2a).

This lemma implies that a Steiner point having two incident edges making
an angle of (2m — 1)w with each other can be moved — without changing
the length of the tree — along a direction that approximately is a bisector
of this (minimum) angle. For edges meeting at a terminal this means that a
Steiner point can be created along the same direction. Brazil et al. [2] used
this so-called variational argument to prove that for A = 3m there does exist
a A-SMT in which all angles make at least 27 /3 with each other (as in the
Euclidean Steiner tree problem).

Consider two edges of a A-SMT making an angle (2m — 1)w. The A-
bisector wedge is defined as the area given by the two rays making (m — 1)w
and mw with the two edges (Figure 2a). We can now prove the following
straightforward generalization of Lemma 1.

Lemma 2. For A\ = 3m, let u be a node in a \-SMT having two incident
edges making angle (2m—1)w with each other. Then a Steiner point s may be
inserted at any point in the \-bisector wedge, sufficiently close to u, without

changing the length of the A\-SMT.

Proof. A Steiner point s in the A-bisector wedge can be reached by performing
a sequence of two Steiner point insertions along the rays defining the wedge
(Figure 2b). First the Steiner point s’ is inserted. The incident edges can
always be made to make an angle of (2m — 1)w with each other — in fact
to be parallel with the original edges incident at u. Then Steiner point s is
inserted along the second ray. O

!The distance that the Steiner point can be moved is always positive, but it depends
on the length of the two incident line segments (up and ug in Figure 2a.)
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Figure 2: Inserting a Steiner point. a) Steiner point s is inserted on a ray
making angles (m—1)w and mw with the edges incident at u. b) Steiner point
s is inserted at a point in the A-bisector wedge by a sequence of two Steiner
point insertions of the former type. Note how one of the edges incident at s
is flipped in order to obtain a (2m — 1)w angle.



3 Steiner points for A = 3m

Let F) be a relatively minimal A-tree for a given full topology; we assume
that the full topology is non-degenerate, i.e., none of its relatively minimal
trees has zero-length edges. Therefore, no Steiner point will overlap with a
terminal or another Steiner point in such a tree. Let F' be the Euclidean
tree having the same topology and the same location for all terminals and
Steiner points as F), the so-called “underlying” Euclidean tree; all A\-edges
have been straightened out in this Euclidean tree.

Lemma 3. The Steiner points for F\ (A = 3m) can be located such that F,
the underlying Fuclidean tree, has minimum length.

Proof. Assume that F' is not minimal. Then there must exist a Steiner point
u such that at least one pair of the incident (Euclidean) edges makes angle
¢ < 2m/3 with each other. It is well-known [4] that the Euclidean tree can
be shortened by inserting a Steiner point s along the bisector of this angle
(Figure 3a).

Since (2m — 1)w < ¢ < 27/3 = 2mw, the incident A-edges must make
(2m — 1)w with each other. We will now show that the (Euclidean) Steiner
point s is in fact in the A-bisector wedge.

Let o and (8 be the residual angles as shown in Figure 3b, such that
¢»=(2m— 1w+ a+ F, where 0 < a < w, 0 < 3 < w. The bisector angle is
¢/2=(m—1/2)w+a/2+3/2. We have mw+a > mw—w/2+5/2+a > ¢/2
and mw+ 3 > mw—w/2+a/2+ > ¢/2. Thus s is in the A-bisector wedge.
Lemma 2 shows that inserting s into the A-tree will not change its length
(assuming that s is sufficiently close to u). We have constructed a new A-tree
having the same length as F) but for which the underlying Euclidean tree
has strictly smaller length, a contradiction to the minimality of F'. O

It follows that the Steiner points in a A-tree having a given non-degenerate
full topology can be assumed to be identical to the Euclidean Steiner points
for the same topology. Therefore, we may use Hwang’s linear time algo-
rithm [3] to compute the Steiner points; the terminals and Steiner points are
then connected using A-edges.

Theorem 2. A \-SMT for a non-degenerate full topology can be constructed
in linear time for A = 3m.
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Figure 3: Inserting an Euclidean Steiner point. a) Steiner point s can be
inserted in order to shorten the Euclidean tree when ¢ < 27/3. b) Steiner
point u can be moved to point s without changing the length of the A-tree.
(The Euclidean tree is drawn with dashed line segments.)



Figure 4: Lemma 4, proof illustration. The solid lines are the legal orienta-
tions from s which are closest to the direct Euclidean connections to the two
points v and w. The two points v and w must be connected to s using either
of these legal orientations to obtain an optimal solution.

4 Steiner points for A # 3m

For A # 3m the Euclidean Steiner points are never optimal for a A-SMT in
the following sense:

Lemma 4. Let s be a Steiner point in a \-SMT, where X # 3m. Let the
neighbours of s in the tree be v, w and x. Then s cannot be located at the
Euclidean Steiner point for v, w and x, i.e., such that the Fuclidean edges
make 27 /3 with each other.

Proof. Assume that the Steiner point s in the A-SMT is located in the corre-
sponding Euclidean Steiner point, such that the Euclidean edges make 27/3
with each other. There are at least two non-straight incident edges in the A-
tree since otherwise there would be an angle of 27/3 between the two straight
edges and this is not possible when A # 3m. The general situation is depicted
in Figure 4. It does not matter to the following arguments whether the third
edge is non-straight or not.

Now consider the angles in Figure 4. Obviously a; +as = w and 31+ (s =



w and the combined sum is simply
C¥1+a2+ﬂ1+52:2w:(a1+51)+(0~’2+ﬂ2)- (1)

The sum «; + (1 cannot be larger than w since that would make the angle
71 = 27/3 — (a1 + (1) too small according to Theorem 1. Equality would
make 27/3 a possible angle, but this contradicts A # 3m. Consequently,
a1 + 1 < w. Similarly it can be shown that as + 2 < w using Theorem 1
on the angle v5. Now we have that (a; + 31) + (a2 + B2) < 2w which clearly
contradicts (1). Therefore s cannot be a Steiner point in the A-SMT.

]
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