Evaluation of Bluetooth
communication: Simulation and
experiments

Technical report 02/03, Department of Computer Science, University of Copenhagen

by Martin Leopold

Department of Computer Science, University of Copenhagen
Spring 2002

Contents
1 Introduction

2 Bluetooth

2.1 Bluetooth Layers
2.2 Inquiry and paging e e e
2.3 Analysis of inquiry duration L L Lo

3 Bluez stack
3.1 Development using Bluez

4 Bluetooth Devices

4.1 BrainBoxes
4.2 Bluefrog Development Kit L o oL
4.3 SUmmaryo .o i e e e

5 Simulations

5.1 Network Simulator and Bluehoc
5.2 Bluehocproblems L
5.3 Inquiry. L
5.4 Throughput

5.4.1 Variable distance e
5.5 Conclusion e e e

6 Experiments

6.1 Labsetup e
6.2 Inquiry. e
6.2.1 Variable distance e
6.2.2 1mfixeddistanceo
6.2.3 Conclusion
6.3 Throughput
6.3.1 1mfixeddistance e
6.3.2 Variable distance 0-20m L
6.3.3 Conclusion

7 Conclusions

Appendix
References
A Bluehoc notes
B Rajeev Gupta on the free space model of Bluehoc

C Rajeev Gupta on error rate of ID packets

(%) =W N =

(=)

ENEEN IEN)

© oo

Nel

10
12

12
12
13
13
14
16
17
19
19
20

21

23

23

24

33

34

o Q@ 42 # O

bt-host.cc.patch
ingparmas.bluez-libs-2.0-pre7.patch
ingparmas.bluez-utils-2.0-pre7.patch
ingNoResponses.bluez-2.0-pre6.patch

bluez-utils-2.0-pre9.bidirectional.patch

ii

35

36

37

39

40

Abstract

In this report we review some of the key aspects in Bluetooth point to point connections
by simulation and by experiments to help evaluate the usefulness of Bluetooth in sensor
network applications. We present a model of the Bluetooth device discovery (inquiry)
and show the correctness by experimentation. We show how Bluetooth communication
and device discovery degrades with distance. We show that Bluetooth features are fairly
robust within the ranges of the devices. We present our experiences working with the
Bluehoc simulator and Bluetooth Bluez host stack.

1 Introduction

Bluetooth is a promising technology for short range wireless communication. It was first
conceived by Ericsson in 1994 as a cable replacement technology; it has now become a
candidate of choice for communication layer of sensor networks and smart tag devices.
The report was done as a part of the Manatee [MT] project in the Distlab research
group at DIKU! and financed by apparater.dk [AP]. The Manatee project focuses on the
use of smart tags in the context of monitoring applications.
This report has 3 major goals:

e To gather expertise using Bluetooth simulation tools and actual devices for the
Manatee project.

e To evaluate the usefulness of the Bluehoc simulator for further use.

e To gather measurements of some Bluetooth characteristics: Throughput and dura-
tion of inquiry in point to point connection.

We make the following contributions:

e We describe a model of the inquiry procedure. This model allows us to predict and
explain the performance of inquiry operations.

e We produce an evaluation of the Bluehoc simulator.
e We present experimental results using two Bluetooth devices.

The report is structured in the following way: in section 2 we discuss and introduce the
Bluetooth technology. In section 3 we take a look at Bluez (the Bluetooth stack included
in the current Linux kernel series). In section 4 we look at a few available Bluetooth
products and summarize their features and in section 6 we execute a set of experiments
using these devices. In section 5 we look at the Bluehoc network simulator and in section
5.2 simulate a set of experiments.

2 Bluetooth

Bluetooth operates in the 2.4GHz royalty free ISM band. Because it is free the ISM band
is polluted by all kinds of “noise”. This requires Bluetooth to be very robust. As a result
Bluetooth uses a Frequency Hopping Spread Spectrum (FHSS) scheme by dividing the
ISM band into 79 logical channels®. Bluetooth defines a slot as a 625 us interval in which
a node either sends or receives data. After each slot the frequency of the communicating
devices is changed according to a frequency hopping sequence. The sequences are unique
for each device and are designed not to show repetitive patterns over short periods of
time. Each device is assigned a 48 bit address known as the Bluetooth device address

'Department of Computer Science, University of Copenhagen
2For Europe, Japan and the US, 23 for France

(BD_ADDR) resembling the IEEE 802 MAC address the hopping sequences are derived
from this address. The current position in the hopping sequence is denoted as the phase.

Changing the frequency takes time—the channel synthesizer requires a certain interval
to settle at the new frequency. This means that some fraction of time is wasted changing
frequency, for this reason multi slot packages of 3 and 5 slots are defined to better utilize
the bandwidth (while increasing the likelihood of error). The packets come in two flavors:
with forward error correction (FEC) named DM (Data Medium rate) packet and without
FEC named DH (Data High rate).

The Bluetooth specification[BT02] defines 3 power classes based on the transmission
power of the radio: 100 mW (class 1), 2.5 mW (class 2), 1 mW (class 3) reaching respec-
tively approximately 100 m, 20 m and 10 m. Currently the most common devices are
power class 2 or 3.

The building block of a Bluetooth network is a piconet. A piconet is a collection of
up to 8 devices. One device is denoted as master and the other as slaves. The slaves are
following the same hopping sequence of the master. The master has network management
responsibilities: channel bandwidth allocation, allowing slaves to enter power save mode,
etc. Each slave is given an active 3 bit Active Member Address (AM_ADDR). There
is no slave to slave communication. All messages are exchanged between master and a
slave. Furthermore, a slave is only allowed to transmit to the master once the master has
contacted it, i.e. the slots alternate between master send and send slave send. If a node
is participating in more than one piconet it has to timeshare its radio for the hopping
sequence of these two piconet—this is called a scatternet.

2.1 Bluetooth Layers

The lower layers of the Bluetooth stack is divided into the layers: Base Band (BB) and
Link manager (LM). They are interfaced through the Host Control Interface (HCI).

The BB layer manages the medium access—the slot timing and allocation, synchro-
nization of local and remote clocks, channel coding (whitening, FEC, etc.) and hop
sequence selection. The baseband also manages the state machine required for the lower
level signaling and responses such as connection establishment (paging) and device discov-
ery (inquiry)—these functions are sometimes denoted the link controller [BRAY01][65].

The LM layer has two purposes: first, it translates the commands received from the
upper layer (HCI) to the BB layer. Second, it manages the connections: attaching a
node to a piconet, connection negotiation and link shutdown all goes on in the LM layer.
[BRAY01][101].

The HCI layer provides standard interface between the lower timing sensitive layers
and the higher computation intensive layers. Splitting the responsibilities in two makes
good sense since the host (a pc, telephone, pda, etc.) has the processing power to handle
the higher layers while it would be very time consuming for it to handle the ps timing of
the lower layers. Providing a standard interface makes it easy to mix and match devices
and host stacks from different vendors easy. The specification provides 3 transport layers
for the HCI interface: RS232, USB, UART. The UART interface is distinguished from
RS232 in that it leaves error controls to the UART controller. Most consumer devices
allow access to devices through the standard HCI interface and provides a set of vendor
specific commands. As a consequence the tuning parameters are rather limited. We can
only tune the devices through the set of HCI commands.

The upper layers of the Bluetooth stack (the host part or host stack) include the layers
Logical Link Control Protocol (12cap) and Service Discovery Protocol (SDP).

L2cap provides data link layer functions, taking data from the applications and trans-
ports it over the lower layers either as connection oriented or as connection less. It handles
packet segmentation and reassembly (SAR), Quality of Service (QoS) and it provides a

protocol multiplexing feature allowing a single ACL link to be used for several 12cap
connections.

RFCOMM emulates all features of an RS-232 serial port over a Bluetooth link.

SDP is implemented to support the ad-hoc nature of Bluetooth networking. It allows
a Bluetooth to discover which capabilities devices in the vicinity have—say a printer,
modem or a telephone.

2.2 Inquiry and paging

The heart of Bluetooth is the mechanisms that makes it possible for two devices hopping on
different frequencies to discover each other (inquiry) and to establish connection (paging)
[BT02][p.105ff]. The techniques used for inquiry and paging are very similar. Here we
only describe the mandatory inquiry procedure (details have been left out for the sake of
brevity).

In order for two devices to discover each other, they must be in two complementary
states inquiry and inquiry scan at the same time. The inquiring device continuously
sends out “is anybody out there” messages hoping that these messages (known as ID
packets) will collide with a device performing an inquiry scan. To conserve power a device
wanting to be discovered usually enters inquiry scan periodically with period Tspq_scan and
only for a short time known as the inquiry window T’y _jng_scan. During this period, the
device listens for inquiry messages. Since the devices are hopping on different frequencies
the inquiry procedure must maximize the chance of two devices “catching” each other.
To do this the inquiring device follows a fast half-slot timing, sending messages on two
frequencies in one slot and listening on those frequencies on the following two half-slot
while the device in inquiry scan changes it phase very slowly—once every 2048 slots
(1.28 s). The half-slot hopping is possible because the ID packets are small enough to
allow the channel synthesizer to change frequency twice within one slot.

Ting_scan is specified bye the Core Specification to be at most 2.56 s (4096 slots)
[BT02][106] and by the “General Access Profile” to be “more than once in 2.56 s”
[BTP02][32]. The vendors we have seen interpret this as Ting_scan = 2048 slots (1.28 s),
which we will use in the following. Ty, _ing_scan specified by the Core Specification as “long
enough to for 16 frequencies” [BT02][106], which because of the half-slot timing means 16
slots.

The inquiring device sends out a short packet (ID) and the inquiry scanning device
responds with a frequency hop synchronization (FHS) packet containing among other
things information about the devices hopping sequence and the device clock timing. In
order to minimize collisions from responding devices, a device receiving an ID packet
in inquiry scan will return to its previous state for a random number of slots (RAND)
between 0 and 1023 slots before reentering inquiry scan. Upon the next received ID packet
it will reply with an FHS packet. After the FHS packet has been returned, the inquiry
scanning device will move its phase one forward and reenter inquiry scan again, meaning
that it is likely to hear the next ID packet from the inquiring device, and the procedure
with random back off starts over.

During inquiry the two devices follow a dedicated 32 frequency inquiry hop sequence.
The inquiring device splits the sequence in two 16 slot (10 ms) parts: the A train and the
B train. A single train must be repeated at least Nipguiry = 256 times before a new train
is tried, so one try of a train is thus T4, = 4096 slots (2.56 s) long. The specification
recommends a total inquiry period of 10.24 s to collect all responses, but inquiry can be
aborted prior to this if say enough responses has been collected. The inquiring devices
uses its own clock to determine the phase in the sequence and is thus random compared
to any other device.

Train A Train A Train B

L]
T =—-o
L
I

1 1 |
I I 1
Tianscan RAND Ttrain T ing_scan RAND

Case 1 Case 2

Figure 1 — Inquiry with no errors. Since the inquirer splits the sequence in two, there are
two possibilities of how long it is going to take to discover a device—even in an error free
environment. In the magnification r denotes receiving and s denotes sending.

Train A/B Train A/B
[T T T TIT] [T T T TIT]
[HEEEEEEEREE [EEEEEEEEREE
\ | C \ | Vv
"Tiscn RAND ' RAND <Tinq s Tingscan RAND
Case 3/4 Case 5/6

Figure 2 — Case 3/4 - the reply FHS packet is lost requiring an additional random backoff.
Case 5/6 - The inquiry ID packet is lost requiring Ting_scan more to discover the device.

2.3 Analysis of inquiry duration

The specification[BT02] does not present an analysis of the expected time of inquiry.
Here we present an analysis, of the inquiry strategy described in the previous section, by
presenting a set of cases each being a building block of the expected duration. This leads
to a set of overlapping intervals (in table 1) in which we expect inquiry times to show
up. We do not analyze the actual shape of actual graph. This would require a statistical
analysis and it would require us to know whether RAND is uniformly distributed.

When the inquiring device starts sending ID packets on its A part of the 32 inquiry
frequencies the remote device may be listening in either the A part or the B part: these
are cases 1, 2 in figure 1.

The most probable error is that the reply FHS packet is lost. This is a much larger
packet than the ID, so transferring an FHS packet is more error prone than transferring
an ID packet. Losing an FHS packet can happen both when the inquiry scanning device
is found in the A train or the B train: this gives us case 3 and 4 - figure 2.

The ID packet may be lost. If the inquiry scanning device wakes up during the first
half of the train (length 2048) with time to spare for the random backoff it will get a
second chance after Tjng_scan = 2048. Furthermore if it is in the A train it will get more

Train X TranY Train X

[\ [A

— v 1 HA

[Ttrai n Ttra' n ‘ Ti ng_scan RAND
Case 7/8

Figure 3 — Case 7/8 - The first train is missed, the inquiry scanning devices have to wait
until the next attempt of the same train to get a new chance. The figure shows the random
backoff period overlapping with o train switch.

Case Best case Worst case no. slots
1 0 Ting_scan + RAND 0-3071
2 Tirain Tirain + Ting_scan + RAND 4096-7167
3 0 Ting_scan +2- RAND 0-4094
4 Tirain Tirain + Ting_scan +2 - RAND | 4100-8190
5 Ting_scan Tirain 2048-4096
6 Tirain + Ting_scan 2 Thrain 6144-8192
7 2 Tyrain 2 Tyrain + Ting_scan + RAND | 8192-11263
8 3 Tirain 3+ Tirain + Tingscan + RAND | 12288-15359

Table 1 — Analysis of the intervals in which the devices are expected to be discovered in each
case - not counting the slots used by the package exchange.

chances if 2 train switches are performed: corresponding to cases 5 and 6 - figure 2.

There are up to two chances to discover a device during a single train since Tyqin =
2 - Ting_scan- 1f both fail, the next chance of discovering a device is during the next try
of the same train. This might happen if the first attempt fails and the random backoff
period of the second attempt overlaps with a train switch. If this happens for a device on
the B train at least 2 repetitions of each train must be tried to give the missed device a
second chance: this is cases 7 and 8 - figure 3.

The attempt in case 7 and 8 is prone to the same errors as cases 1-6, this means that
we expect the pattern shown by cases 1-6 to repeat at intervals of length T},.qip

Depending on how we assign likelihood to each of these events we can predict how
long the inquiry is going to take. The shape of the graph to be predicted will be based on
a statistical analysis of how the probabilities of each even occurring will interact. Figure
4 illustrates where the concentration of device discoveries will be located. It is our guess
that the vast majority of device discoveries will be found within case 1 and 2. Therefor we
expect the average device discovery time to be slightly larger than % <625 us =224 s
increased only by measurements in cases 3-7.

3 Bluez stack

The Bluez stack[BZ] is included in the Linux kernel 2.4 series. It contains an implemen-
tation of the upper layers of Bluetooth and provides a standard socket interface for the
programmers. It has a preliminary SDP implementation and a port of the Axis SDP
server is available. It is designed from the ground up to support multiple devices. It con-

T
No errors
Lost FHS -------
ID Packet lost --------
First train missed

3 : b
1 4
e %
1 i
: ? ; 1
0 i i L Il I : I I
0 2000 4000 6000 8000 10000 12000 14000 16000
slot
Figure 4 — [llustration of the intervals in which device discovery is expected to happen.

The figure illustrates the overlap of intervals an the repetitive pattern. The height is chosen
arbitrarily, and the shape of the boxes are not representative of the shape of how the actual
measurements will look.

sists of a set of kernel modules and a userspace daemon; also included is a set of userspace
programs and helpful utilities. Our experience is that this stack is more mature than the
Axis OpenBT stack[AXIS].

3.1 Development using Bluez

The development of Bluez seems to be striding forward at a steady pace and the mailing
lists regarding Bluez are quite active. The community surrounding Bluez has been very
helpful in the development of this report with explanations and feedback.

The documentation is still limited, but good FAQs (Frequently Asked Questions) are
available to get you started. Most tools resemble standard UN*X tools (hciconfig looks
a lot like ifconfig) making it easy if you have some UN*X experience already. The most
helpful documentation has been the example programs, but in general the APT is sound
and makes good sense.

4 Bluetooth Devices

In the early stages of this project we looked into a large number of Bluetooth devices,
and decided to try out 2 of them. In this section we will describe those 2 devices from
a functional point of view. We will focus on the relevant parameters for point to point
connections.

Most consumer devices are produced partly or entirely by another company than the
one selling it (often known as OEM?). Therefore the experiences gained here are likely to
be applicable to other devices.

At this stage, the analysis of the devices is not deep. We simply connected devices
and observe if the Bluez stack could register the device and perform simple tasks such as

30riginal Equipment Manufacturer

inquiry and as well as a throughput test.

4.1 Brain Boxes

We have used Brain Boxes BL-500 PCMCIA cards. These cards contain the Cambridge
(CSR) single chip Bluetooth solution BlueCore02. They have a built in antenna not visible
from the outside. The PCMCIA form factor allows the cards to be concealed almost
entirely inside the PC—only sticking out a few centimeters (presumably for the antenna).
At the time of writing, the cards are only capable of point to point communication, but
according to Brain Boxes support firmware upgrades are under development for point to
multi point communication.

The CSR chips were one of the first Bluetooth producers on the market, and is used
in many currently available Bluetooth add ons including: Brain Boxes USB/PCMCIA,
3Com USB/PCMCIA, Xircom Creditcard/RealPort2.

The cards contain an 16C950 UART with a maximum speed of 921600 bps. The Linux
Kernel does not currently (version 2.4.17) support this speed. In order to run the serial
port at full speed the kernel has to be patched. Also the setserial tool needs to be patched
in order to obtain full speed. More than one patch is available, we decided to use the one
Jean Tourrilhes from HP has written. He has a website explaining the details.

http://www.hpl.hp.com/personal/Jean_Tourrilhes/bt/Brainboxes.html

With this patch the Bluez stack initializes and recognizes the cards, the throughput
seems to work with this card.

4.2 Bluefrog Development Kit

This is a Silicon Wave based kit using Reselec rbm3rc modules. It is based on the Silicon
Waves SiW 1501 radio modem and SiW 1601 or SiW 1602 Link Controller and the Base-
band controller is implemented using a Hitachi H8S5-2238 micro controller. The device is
power class 2 featuring point to point connections.

Our devices are as far as we can tell based on the module rbm3rc-u. The devices are
located in an external box 15 cm by 10 cm with a few status diodes. They are connected
to the PC via RS-232 or USB. The development kits have external antenna about 5 cm
high. The device has the MTU of the ACL packets set to 60 bytes, while this is not an
error it is certainly inefficient. Each ACL packet contain a 4 B header meaning that close
to 7% of ACL communication will be headers. Compared to the 128 B MTU of the Brain
Boxes card (see table 4.3) this seems peculiar.

The devices register without problems with Bluez and the connection test were suc-
cessful.

4.3 Summary

The device features are summarized as:

Device Interface class | Mode | ACL MTU
Bluefrog RS-232/USB 2 p2p 60
Brain Boxes BL-500 PCMCIA 2 p2p 128
We use hciconfig -a to obtain the following versions:
Device HCI Ver | HCI Rev | LMP Ver | LMP Subver
Bluefrog 0x1 0x0 0x1 0x0
Brain Boxes BL-500 Ox1 0x73 0x1 0x73

5 Simulations

In order to evaluate the usefulness of the Bluehoc simulator in terms of stability and
configuration. We designed and executed a set of experiments.

5.1 Network Simulator and Bluehoc

We will be using NS-2b8a[NS2] with the Bluehoc 3.0 extension made by Apurva Kumar
and Rajeev Gupta of IBM India|[BHSITE]. Bluehoc extends the NS functionality with
an implementation of the Bluetooth including the Baseband layer and the Link Manager.
Bluehoc is implemented as a set of NS patches and C++ classes extending the NS hier-
archy. Meaning that the TCP, and traffic generators implementation provided by NS are
available over the Bluehoc Bluetooth simulation.

At the time of writing IBM has 4 releases of extensions for NS-2:

Bluehoc 1.0 - a piconet simulator for NS-2.1b6

e Bluehoc 2.0 - a piconet simulator for NS-2.1b7a
Bluehoc 3.0 - a piconet, simulator for NS-2.1b8a

Bluescat 0.6 - a preliminary release of Bluehoc with scatternet support. The NS
version is unclear.

Bluehoc uses a free space model described in [KGO01] based on (see appendix B):
1. Physical layer properties like modulation, FEC/CRC used etc.

2. Channel properties affecting interference.

3. Spatial properties like distance between interferer and receiver, topology etc.

This free space model is used to calculate static probabilities of packet loss for each
packet type. For ID packets (issued in inquiry) the likelihood of packet loss is assumed
to be 0. Rajeev Gupta of IBM confirmed [RG02] that this was done on purpose since the
size of the ID packet is so small (see appendix C). Within a 20 m range (maximum of
Bluehoc), this should be a reasonable assumption. Or tests with actual devices confirmed
this assumption.

Prior to starting a connection Bluehoc calculates and requests QoS parameters based
on the parameters given by the user. All parameters for the QoS request are read from
the tcl script and entered into a global array appFlowSpec in the function findAppNames
from the file bt-host.cc. For each connection appFlowSpec describes the QoS fields from
the Specification [BT02][299], the MTU for connection establishment and additionally
input_qlen, and loss_sensitivity. These parameters seem to be passed on to the NS traffic
generator overwriting default values.

The MTU and loss_sensitivity parameters are used to select packet type. Based on
loss_sensitivity Bluehoc either selects DH (0) or DM (1) packets. With the packet type
and the rate Bluehoc tries to schedule the packet a priori, if a schedule is not possible the
connection is rejected.

From the traces it seems that Bluehoc chooses an upper bound on 12cap packet as 1000
bytes (as no 12cap packets larger than this is sent), which differs from the default of 672
bytes [BT02][298]. Specifying packet sizes larger than 1000 bytes results in transmission
of several 1000 bytes sized packets.

Default values for Tj,q_scan = 8192 and Ty,_ing_scan = 36 are set in the file globals.h. We
change these values to match the values of the devices: Ting_scan = 4096, Ty _ing_scan = 16.

The output from Bluehoc is called BT traces, these files contain 12cap signaling and
reports the delay of each successful 12cap transmission. The successful packet delivery is
printed with the packet size and the in-air transmission time. With these numbers we can
calculate the throughput for each 12cap packet.

5.2 Bluehoc problems

Working with Bluehoc was not easy. During our tests, we encountered many problems and
glitches. The documentation is very limited and much of is outdated—the most recent
information is a FAQ [BHFAQ)], and the mailing list available from the Bluehoc web site
[BHSITE]. While the list has been very help full, the community surrounding Bluehoc
does not seem to be very large. Some of the problems we faced are listed here, more
details can be found in our notes regarding the use of Bluehoc (see appendix A):

e The installation procedures are misleading. In the documentation two procedures
are listed, one doesn’t work - the procedure named “IF YOU DO NOT HAVE NS
INSTALLED”.

e The output of Bluehoc is intermixed with output from NS making automated data
processing fail since the format is corrupted.

e The documentation on how to configure the application is limited to say the least.
The best way to figure out how to configure the system seems to be the code, but
this being a fairly complex program, the code of the NS/Bluehoc system is very
large and navigating through it takes time. In the following we will refer to the code
when needed as it is our only source of information.

e The output from Bluehoc during connection establishment is undocumented. Our
interpretation is included in the notes on Bluehoc (see appendix A).

e The parameters used for connection negotiation overwrite the parameters for the
traffic generator, making it impossible to specify one set of parameters for the traffic
generator and one for the connection negotiation.

5.3 Inquiry

During inquiry procedure Bluehoc only treats the FHS packet as error prone, while the ID
packet has perfect reception. This means that the simulations should show a sensitiveness
to the distance. We define the inquiry to be the interval from the inquiring device starts
to the time when the inquiring device receives the FHS packet from the discovered device.
The devices are set to start inquiry and inquiry scan at time ¢ = 0, so the duration of the
inquiry can be read from the simulated time. We create a set of tcl script files with two
nodes with increasing distance from 0 m to 18 m in 1 m steps (all distances above 18 m
seem to fail producing invalid output). Bluehoc crashes with a segmentation fault during
the transmission part of the connection, that is after inquiry for distances above 14 m.
Since this simulation is only concerned with inquiry this not a problem

Since the random back off timer changes the duration of the inquiry, we run each
experiment 2500 times.

This gives two results

e for 0 m to 15 m the FHS packet is received after 1.38 s for all 2500 runs.
e 16 m to 18 all 2500 runs receives the FHS packet after 1.53 s

The difference is expected to reflect whether the first FHS reply is lost and reply is
sent.

All runs of the inquiry procedure came out with exactly the same result which suggests
that the back off scheme is broken. This seems fairly odd since it is implemented and
relies on the randomizing features of NS. Since NS was restarted on each run it is possible
that the randomizer uses a fixed seed instead of a random number for example system
clock—this could be done to give reproducible results.

Slots | Data Medium rate (DM) | Data high rate (DH)
1 134 B (21 B) 198 £5 (31 B)
3 399 kB (125 B) 598 kB (187 B)
5 492 £B (2000 B) 740 2 (2000 B)

Table 2 - Mazimum rate accepted by Bluehoc, [2cap packet size in parenthesis. The size is
found by simply increasing it until Bluehoc rejects the connection.

5.4 Throughput

For the throughput simulations we want to saturate the available bandwidth and measure
how many packets get through. This would have been done easily with an application
sending as packet as fast as the link can consume them with no retransmission and sink
at the other end. Unfortunately such a traffic generator is not provided with NS/Bluehoc.
Instead we choose the constant bit rate generator—CBR. The most convenient way to
measure the bandwidth with this generator would have been to oversaturate the link and
measure how much gets through at the baseband level ignoring what goes on at the higher
protocol levels. The parameters of the NS CBR traffic generator is packetSize and rate.
Unfortunately Bluehoc rejects oversaturated scenarios as impossible.

We only set the traffic generator of one of the nodes (the master) leaving the other
unset, this should make the unset node act only as a sink. The specification dictates that
if no data is available to send a NULL packet is to be sent [BT02][p. 79], thus we setup an
asymmetric connection with data packet (DM/DH) in one direction and NULL packets
in the other.

5.4.1 Variable distance

The simulation is carried out by creating a set of tcl scripts for each packet length. Within
each set, the files only differ in the distance between devices increasing 1 m at a time.
The simulation time is set to 100 s.

By default Bluehoc does not support passing parameters for the CBR traffic generator.
Therefore we patch bi-host.cc to set the parameters read from the tcl script files (see
appendix D). There is no clean way of setting the loss_sensitivity parameter, so we set it
in bt-host.cc, recompile NS and run the test.

Table 2 shows the maximum rates that Bluehoc accepted along with the packet sizes
used.

The average throughput for each packet transfered is calculated from the output, and
plotted as a function of distance (see figure 5). Each measurement (not shown in the
figure) varies wildly, the distance from the maximum to the minimum increases from
about % of the average at 0 m to several factors at 10 m (see table 3).

The Bluehoc simulator crashes with a segmentation fault in most cases with distances
above 12 m. The graphs in this section indicate that very few simulations survived beyond
12 m.

The throughput graphs all seem to start decline suddenly at 5 m for DH packet and
at 6 m for DM packets. The suddenness of the change looks suspicious and might suggest
that the free space model gives too little penalty to distances less than 5 m and 6 m
respectively.

The medium rate connections show significantly less impact as a result of increased
distance than the high rate connections. Equally the single slot connections show more
noise robustness than the multi slot connections.

The average simulated throughput in table 3 is approximately one half of the theo-
retical maximum. In the next section we’ll see how the numbers compare to real mea-

10

50

1 T
'averages.DH1.data’
'averages.DH3.data’ -------
‘averages.DH5.data’ -------- i

45

40

35

30

20 |

througput (kB/s)
N
ol
!

10

0 L L)) ‘ ‘
0 2 4 6 8 10 12 1

distance (m)

50

’averagés.DMl.daté‘
‘averages.DM3.data’ -------
‘averages.DM5.data’ -------- B

45
40
35

30

25

througput (kB/s)

20 S |

15 |

10 \\\\:”

0 : . L L L 1 1 1
0 2 4 6 8 10 12 14 16 18

distance (m)

Figure 5 — Simulated throughput as a function of distance. At the top data high rate
connections at the bottom data medium rate.

11

Packet 0 m (kTB) 10 m (kTB) Theoretical (kTB)
type | Min/Avg/Max | Min/Avg/Max BaseBand
DH1 7.00/ 7.99/ 9.81 2.97/ 5.83/ 9.72 21.60
DML | 4.74/ 5.62/ 6.64 | 3.37/ 5.11/ 6.64 13.60
DH3 26.76/29.14/32.66 | 9.90/20.15/32.66 73.20
DM3 17.88/18.82/21.82 | 5.09/14.00/21.82 48.40
DH5 35.02/46.21/67.93 | 11.34/22.38/67.93 90.49
DMb5 | 24.23/32.01/47.35 | 12.97/19.74/46.01 99.73

Table 3 —

Min, max and average simulated throughput at 0 m and at 10 m. The slight

overhead of the [2cap connection is disregarded. Theoretical maximum bandwidth for asym-
metric connections at the baseband level [BT02][65] is listed for comparison . Maz/min values
illustrate the large span of the measurements.

surements, but our first impression is that the baseband model fails to produce realistic
measurements.

The fluctuations of each measurements are very likely due to the packet nature of the
transmission: either the packet gets through with no errors showing high bandwidth or
the packet has to be retransmitted showing low bandwidth.

5.5 Conclusion

The duration of the inquiry falls within the range of possible durations from the model
in section 2.3. However, since there is no variation in the measurements it is hard to say
whether this confirms the model or not.

In conclusion we should say we find that Bluehoc integrates very poorly with the NS
framework, making it troublesome to access the features of NS without changing Bluehoc.
The graphical configuration utility lacks the ability to create more elaborate scenarios,
and cannot load a previously stored scenario. A little less than half of our throughput
simulations and many inquiry simulations crashes Bluehoc. The documentation of the
simulator is very limited. All in all the Bluehoc simulator does not seem to be ready for
widespread use and requires more work to function correctly.

6 Experiments

The purpose of our experiments is twofold: first we want to collect experimental data
about actual Bluetooth devices, second we want to collect expertise for further work in
the Manatee project. The experiments test throughput and inquiry using point to point
connections in two cases:

e Fixed 1 m distance.

e Variable distance.

Our intuitive expectation is that the duration of inquiry will increase and throughput
will decrease with distance, as errors become more likely.

6.1 Lab setup

For the throughput measurements we use the [2test application of the Bluez package.
This application uses the Bluez socket interface to open a connection oriented 12cap data
connection—the receiver binds a socket and the sender opens a connection. The sender

12

repeatedly sends packages with a fixed content and a sequence number. The receiver
collects the packages, checks the content and the sequence number. Since the sender
transmits the packets as fast as the Bluetooth device can transmit them this program can
be used to measure the throughput.

The experiments are conducted in a usual office environment. To measure performance
during real life usage no special care is taken to shield the experiments from noise in the
area. The office has an 802.11b WLAN that we cannot not shut down during the tests,
it is unknown what the activity on this WLAN is during the tests, though since the tests
are carried out during the evenings, our feeling is that the activity is low or non existent.
We did however make sure that no 802.11b units were active in the same office (radius
5 m). The tests are carried out in a remote office about 50 m from the 802.11b access
point with several walls and offices in between.

The distance measurements are approximate. Some devices have external antennas,
some are built in and not obvious to locate. We measure from antenna to antenna or from
the middle of the device to the middle, so the best accuracy is within a few centimeters.

For the experiments we use 2 laptops:

e HP Omnibook 500, F2168W, 750 Mhz PIII, with an Intel 82371AB PIIX4 USB
controller and a TI PCI1410 Cardbus controller.

e Toshiba Satellite 320CDS, PII 233 Mhz, with an NEC USB controller and an Toshiba
CardBus controller.

On both machines we run Debian Linux with kernel version 2.4.17. For the Brain
Boxes cards Jean Tourrilhes’s patch is applied (see section 4.1). The inquiry experiments
is carried out using bluez-2.0-pre6. Unfortunately this release contains an error for setting
up asymmetric connections, so the throughput test are carried out using bluez-utils-2.0-
pre9 and bluez-kernel-2.1.

The experiments are carried out using a set of perl scripts issuing the Bluez utility
commands. And data extraction from the output files is also done with perl scripts.

6.2 Inquiry

To time the duration of inquiry we make sure that only one Bluetooth device is within
range and start inquiry waiting for exactly one device. We do this by we modify the
heitool command from the Bluez suite to include an option for specifying a maximum
number of inquiry replies (see appendix G) and use the Unix time command to measure
the duration of the inquiry. To break the correlation between consecutive measurements
we wait a random amount of time between each measurement. The inquiry timeout is
set to the Bluez default—10 (in 1.28 s units) giving timeout of 12.8 s, and time measures
exit after 12.822 s.

In order to read the default vendors inquiry parameters we add reading and writing
this as an option to hciconfig (see appendix E and F). With this we read out the inquiry
parameters of our devices.

Device Inquiry window Inquiry interval
Bluefrog 18 slots (11.25 ms) | 2048 slots (1280.00 ms)
Brain Boxes | 18 slots (11.25 ms) | 2048 slots (1280.00 ms)

Both the patches have later been included in the distribution of Bluez (Bluez utils
version 2.0-pre8 and above).

6.2.1 Variable distance

The wait interval between each measurement used in this experiment is a multiple of the
train period: 2.5 s. To separate the devices enough with no obstacles i between, the

13

bf2bf

45 . 200
'plotfile.bf2bf.data’ + —_
4
35 150, -
3 ’ *
+ R |
* -
P + + t » c
é P . + 51007 E
P b gt o
M % H
15 i : i % 1%
! I HEH i 50 1
! i i o E
#;i i : %%i 54 ;% $I° i
ostisiti bisiieiiinasiiintiagi sl 2]
E NS X H MBS S +*+§ $i¢i i 1§ + 0 =
obet + + w4 T 3 R + F + N 0 1 2 3 2 5
0 5 10 15 20 25 30 35 40
distance (m) S

Figure 6 — Device discovery time as a function of distance using Bluefrog.

bb2bb
: " plotfile bbzbb.data’ + 100
12 +
o ¥ y ¥ ¥ .
8 b by + -
& =]
é) + E + R 8
’ M S S R S
: ’ : i E
P H E H E H I i s 3
* H ! ¥ : % E H :
AN N O A S B A B O B R
i : : : ;
2
AEREEE I EREEEEE
0 2 4 6 8 10 12 14 6 " %
distance (m) s

Figure 7 — Device discovery time as a function of distance using Brain Bozes.

experiments are carried out in an office hallway during late office hours with few people
around and none in the hallway. We run the experiment 50 times at distances increasing
from 0 m in 1 m steps.

The result is plotted as a function of distance and the distribution in time using the
Bluefrog and Brain Boxes devices respectively in figure 6 and 7.

6.2.2 1 m fixed distance

For this experiment we wish to duplicate the conditions of the experiment carried out by
Oliver Kasten and March Langheinrich[KLO1]. Their setup was similar to ours: using two
preseries Ericsson ROK 100 007 development kits one meter apart they did 1500 inquiries
and measured the duration. Their results are:

e The average inquiry time is 2221 ms

e After 1910 ms, 4728 ms and 5449 ms, the target unit had been found in 50, 95, and
99 percent of all tests respectively.

In order to replicate the environment of the experiments just described we increase
the random wait interval to match the one used in [KLO1]: 12.8 s. Also after each inquiry

14

bb2bb bb2bf

200 - i 2000]
150 -] 150F |l]
= =
3 3 I
© 100 B © 100 .
50] 50 -]
|
0 Lea | | 0 | e
8 10 12 14 0 2 4 6 8
time (s) time (s)
bf2bf bf2bb
200} —] 200 | 1
150]] 150]
= i =
> >
(@] — (@] q
S 100} || 1 © 100} 1
50|] 50| 1
o p— 0 | 1 1 | aonllle L
00 05 10 15 20 25 0O 2 4 6 8 10 12 14
time (s) time (s)

Figure 8 — Fized 1 m distance. Distribution of discovery times for the two devices Bluefrog
(bf) and Brain Bozes (bb). 12.8 s is the inquiry timeout.

15

100

// plotfile.acc.bb2bb.data

80

[

40

Accumulative count (pct)

20

0 2000 4000 6000 8000 10000 12000
time (ms)

Figure 9 — Accumulative device discovery times using Brain Boxes devices. There was a
single measurement that timed out. This was rejected.

we reset the devices using hciconfig and unload the drivers to make sure that any on
device clock timing cache will be cleared. One difference between the experiment carried
out by Oliver Kasten and March Langheinrich and ours is that while we stop the inquiry
experiment as soon as the first reply is received they continue the full inquiry period even
though the reply is received before. We repeat the experiment 2500 times.

The experiment is setup using all combinations of the Bluefrog and Brain Boxes de-
vices. The distribution of discovery times of the results are plotted (see figure 8).

To compare with the experiments described we also plot the accumulative count as
a function of time for the Brain Boxes to Brain Boxes experiment (see figure 9). The
average device discovery for this experiment is time is 2.33 s. After 2772 ms, 4184 ms,
6311 ms the target unit had been found 50, 95, and 99 percent for all tests respectively.

6.2.3 Conclusion

Based on the Brain Boxes to Brain Boxes experiments (fig 8 top left) we draw the following
conclusions:

e The device discoveries are centered in intervals of the train length (see figure 8). It
seems equally probable to find a device in either the first or the second train (see
figure 9). This experiment confirms the prediction of the model from section 2.3,
and also our intuitive feeling that in practice few errors occur during inquiry.

e Looking closely at the first two chunks in the Brain Boxes to Brain Boxes experiment
(top left figure 8) it is possible to make out that each peak has two distinct tops.
Looking at inquiry as a function of distance using the Brain Boxes cards (figure 7)
we see this two-peak pattern much more distinctly: as distance increases, errors are
likely, and as a result more retries are used. The position of the retries (the second
top) is predicted by our model.

e The average found (2.33 s) is very close to the ideal (2.23 s) as predicted by our
model.

e In contradiction to our intuitive expectation the inquiry procedure does not seem
to be sensitive to distance. The variable distance experiment shows (figure 6, 7)
that good property is due to the error recovery mechanisms giving a device a second
chance of being discovered within the duration of a train.

These results lead us to conclude that the model described in section 2.3 is correct.

16

Our experiments seem to confirm the findings by Oliver Kasten and March Langheinrich.
The distribution patterns are very different, ours showing distinct peaks while theirs show
a much more flat distribution. Even so the averages and accumulative counts seem to agree
fairly well.

Based on the experiments with the Bluefrog kit we conclude:

e The Bluefrog to Bluefrog experiment (fig 8 bottom left) shows that the Bluefrog kit
does not use the procedure described in the specification. The experiment shows
that the method chosen is very fast using only Bluefrog devices. It seems that the
Bluefrog kit does not split the inquiry frequencies in two trains since all devices are
found within one train period.

e From the Brain Boxes to Brain Boxes experiments it seems safe to assume that
the Brain Boxes cards follow procedure from the specification. The Brain Boxes to
Bluefrog experiment (fig 8 top right) shows that the Bluefrog device is discovered in
first train or in the repetition of this train, never in the second train.

— Since the A train of the Brain Boxes card is chosen arbitrarily with respect
to the Bluefrog kit this suggests the Bluefrog device is able to listen at two
frequencies separated by 16 frequencies. This would mean that no matter how
the train is split at least one of the frequencies would be right

— This would give the Bluefrog devices missed during the A train a second chance
during the B train since it would always listen to a frequency in both the A
and the B train. No devices are found during the B train, so this cannot be the
case.

It is possible that the inquiry scanning Bluefrog devices chooses its phase in the
inquiry sequence based on previous inquiries. Between each measurement inquiring
device is (software) reset and long random wait interval is introduced—the random
wait interval should make any caching at the inquiry scanning end invalid. In order to
shed more light on the matter it would be necessary to conduct a further experiment
reseting the inquiry scanning device on each run.

Unloading the drivers and resetting the devices should clear all caches at the in-
quiring end—starting each inquiry from scratch having no idea on which frequency
to start sending ID packets. As the Bluefrog to Bluefrog experiment is carried out
exactly like the Brain Boxes to Brain Boxes experiment. It does not seem probable
that the inquiring devices has a cache not being cleared.

e The Bluefrog to Brain Boxes experiment (fig 8 bottom right) shows that the method
chosen to send inquiries cannot be the one we described either. A large part of the
inquiries simply time out. The graphs show two distinct peaks suggesting that two
trains are chosen. It is tempting to guess that the gap between the peaks (about
2.5 s long) stems from a train run that is always wrong. An other interpretation
could be that a non standard train length is used. Yet another possibility is that
the device uses only a limited amount of frequencies even though it reports to use
the full frequency set (US, Japan, Europe).

6.3 Throughput

The throughput measurements are carried out using the [2test program of the Bluez
package. This program sends known content from one end to the other and inserts a
sequence number in each packet sent. At the other end the content as well as the sequence
number is checked to see if transmission was without errors. The throughput is calculated

17

as an average over several 12cap packets, by recording the time just before receiving the
first packet and just after receiving the last. Here we choose to calculate throughput every
time 20 kB has been transfered.

At the baseband level the tunable parameter are the packet size (1, 3, 5) and the data
encoding (medium/high rate). At the 12cap level the tunable parameters are the size of
the 12cap packets. To minimize the overhead this could be chosen very high, say 10 kB,
but devices tend to do cross layer optimizations assembling several lower layer packets
on the device before handing an 12cap packet up through HCI. The devices have limited
memory and tend to be optimized toward small packet sizes (the default is 672 kB), here
we choose a conservative 2 kB for the 12cap packet size. The channel retransmissions
is set to infinite retransmissions or “reliable channel” by setting the flush timeout to
65535. The socket opened is of type SOCK_SEQ_PACKET ensuring a reliable connection
oriented connection.

The packet type is chosen with “hcitool ptype” which set the default packet type,
however if no data is available the Link Manager sends a NULL packet [BT02][p. 79].
This means that in order to control which packets flow in both directions we have to send
in both directions. The [2test program of Bluez-2.0-pre9 does not support bidirectional
communication, so we implement this functionality as the options “-x” and “-y” in lack
of better names, see appendix H.

For both fixed distance and variable distance we run the [2test program for approx-
imately 2 minutes at each experiment. This is hand-timed using a wrist watch, so the
duration may be longer, but no less. During the tests the system stop transmitting fre-
quently after approximately 2 minutes. Unloading the drivers removing the cards and
starting over allowed the experiment to continue. The tests are carried out by setting the
default packet type manually on both nodes using hciconfig and starting [2test.

Even with the 12cap layer set to infinite retransmissions and a reliable socket the
connections showed packet loss as missed sequence numbers with multi slot packets using
the Brain Boxes cards. A discussion with Maksim Krasnyanskiy (one of the main authors
of Bluez) on the Bluez mailing list did not shed any light on the matter other than either
the hardware or the software has a bug. The best guess we can make is the serial driver
patch.

The Bluetooth drivers for the Brain Boxes cards is somewhat troublesome requiring
kernel patches and the hciattach command. The stability of this setup seems to be
questionable, and during our tests crashes and lockups were frequent. Most notably
during the bidirectional tests one end of the socket just stopped sending at some point
for no apparent reason, while receiving continued with no problems. This is seen by the
link manager which starts to send NULL packets as return in effect allocating more slots
to the opponent. This showed quite clearly as sudden increase in bandwidth at one end,
when this occurred the experiment were aborted and the obviously wrong measurements
discarded.

Some part of the Linux/Bluez/Bluefrog seems to have problems with multi slot packet
sizes, a discussion with Maksim Krasnyanskiy on the Bluez mailing list did not provide a
solution in time, and the experiments using these devices were dropped.

Progress seems to be on the way on all fronts, but at the time of writing none of the
issues have been solved.

The tunable parameters for the fixed distance case is the packet type and the slot
length. We will setup both symmetric and asymmetric connections. The asymmetric
connections consists of a multi slot packet and its single slot counterpart DM3 one way
DM1 the other for one experiment, DH3 one way DH1 the other for the next, etc.

The experiment is carried out by setting one node to listen for a connection and one
to connect using the our newly added “-x/-y” options of [2test. The incoming MTU is set
with “-I” as 2 kB, and the 12cap sending packet length is set with “-b” as 2 kB.

We plot the throughput as a function of the slot length for data high rate and medium

18

Data medium rate forward Data high rate forward
90 90

’bb2bb.DM.forward.asym.data’ ’bb2bb.DH.forward.asym.data’
80 | 'bb2bb.DM.forward.sym.data’ -------- 80 | ’bb2bb.DH.forward.sym.data’ -------—-
'theo.DM.forward.asym’ --------- 'theo.DH.forward.asym’ ---------
'theo.DM.sym’ 'theo.DH.sym’
70 70
—~ 60 ~ 60
@ - Q
a 3
< 50 < 50
5 5
aQ aQ
= =
o e 2 40
< I
£ | e £
= 30 = 30
20 20 F
10 - 10
0 0
1 3 5 1 3 5
No. slots No. slots
Data medium rate reverse Data high rate reverse
90 90
'bb2bb.DM.reverse.asym.data’ 'bb2bb.DH.reverse.asym.data’
80 | 'bb2bb.DM.reverse.sym.data’ ------- 80 | 'bb2bb.DH.reverse.sym.data’ -------—
‘theo.DM.reverse.asym’ - ‘theo.DH.reverse.asym’ -
'theo.DM.sym’ 'theo.DH.sym’
70 70
—~ 60 — 60
K3 2
<)
< 50 < 50
=] 5
a a
S 40 S 40
<] =}
£ £
= 30 = 30
20 I s — 20
10 10 e — - s
0 0
1 3 5 1 3 5
No. slots No. slots

Figure 10 — Throughput measurements at 1 m fized distance as a function of slot length. The
left side shows data medium rate experiments, the right side data high rate experiments. The
figures on the top row show the forward direction of the measurements, while the figures on
the bottom show the reverse direction. A point in the top row matches the same experiment in
the bottom row in the opposite direction, e.g., the top left point (5,41) is the forward direction
and the bottom left point (5,18) is the reverse direction of the experiment: medium rate, 5 slot
packets in both directions.

rate connections in both directions as well as the theoretical maximum bandwidth at the
Baseband level in figure 10.

6.3.1 1m fixed distance

The figures show the experiments where the master is using the highest slot length. We
conducted experiments where the slave was using the highest slot lengths these experi-
ments show significantly lower bandwidth is given to the slave when it is using a high slot
length as opposed to the master. For some reason the master (which is control of the slot
allocation) does not assign the same slot allocation if the slave wishes to use the highest
slot length.

6.3.2 Variable distance 0-20m

For the sake of time we only conduct this experiment using two packet types: the most
robust (DM1) and the most error sensitive (DH5) with transmission in one direction only.
With these two packet types we expect DM1 to show more robustness than DH5. The
experiments are carried out in the same hallway as the inquiry experiments.

19

60

'bbzbb.DMl.fo}\Nard.avg.data'
"bb2bb.DH5.forward.avg.data” -------

50 [

40

30

throughput (kB/s)

20

10

0 5 10 15 20
distance (m)

Figure 11 — Average measured bandwidth as a function of distance. The solid line shows a
symmetric DM1 connection, while the dashed lines shows a symmetric DH5 connection.

The experiments are carried out by selecting one node as receiver and one as sender
with the [2test “-r” and “-s” options. On the receiver the incoming MTU is set with “-I”
to 2 kB and the amount of data to receive before calculating throughput is set with “-b”
to 20 kB. On the sender the sending packet size is set to 2 kB with “-b” (notice that the
meaning of -b is different for sender and receiver).

We plot the measured throughput as a function of distance in figure 11.

6.3.3 Conclusion

In the fixed distance case the maximum bandwidth exceeds the maximal theoretical band-
width at several point suggesting that out measuring method is inaccurate.

e The large variation of the throughput as the distance increases can suggest several
things:

— The experiments were run not run long enough. It is possible that the variations
would have been less dramatic if the experiments were allowed to run longer.
This was rather troublesome as the system had problems running longer than
2 minutes.

— The noise in the area was much larger than anticipated which can make the
measurements fluctuate wildly.

— We are not too confident in the stability of the serial driver for the Bluez cards.
It is possible that the serial driver has some blame.

e For the data high rate connection all the measurements below 5 m lie above ap-
proximately 20 % and all the measurements above 5 m seem to be below. For the
medium rate connections it is not possible to see such a distinction. We can thus
with some certainty say that we have shown that the high rate connections are less
robust than medium rate.

Because of the large variation of the measured throughput it is hard to do a quan-
titative comparison with the simulations. Even, so we are going to make the following

20

observations:

e The simulation of the DH5 connection experiment seem to have a maximum at about
47 %, while the DH5 experiments have maximum at about 53 % compared to the
theoretical maximum at 90.4 £

e The degradation of the average of the measurements with distance of throughput
for the DH5 experiments seems much more rapid than the simulations.

e The simulation of the DM1 connection is below 6 % while the experiment varies
between 12 % and 4 % compared to the theoretical maximum at 13.60 %.

e The downhill trend of the of the simulations cannot be confirmed by the experiments
above 5 m. In the experiments it becomes more unpredictable what the bandwidth
will be as the distance increases.

It is hard to make any solid conclusions about the free space model and Bluetooth
implementation of Bluehoc based on theses observations. Both the simulation and the
experiments show large fluctuations, even so the average in the simulations show a down-
hill trend more clearly than the experiments. This could suggest that the model imposes
less noise than what is present in our environment. It seems peculiar that the simulations
show somewhat slower throughput than both the experiments and theory for both high
rate and medium rate connection. This suggests that either the setup is wrong or the
simulator has problems nearing peak bandwidth.

As a remark about Bluez we would like to say that we found Bluez very pleasant to
work with. The Bluez stack provides a very convenient programming environment. It is
well structured and provides a good API for writing applications. The utilities were easily
expanded to fit our needs and could serve as good examples. The community surrounding
Bluez, has been very helpful and development seems to stride forward at a steady pace.

7 Conclusions

This project had several purposes. One was to collect experiences working with Bluetooth
and Linux for the Manatee project. We chose the Bluez stack as it is included in the Linux
kernel. During this project is has become apparent, that while the Bluetooth support is
well underway and has good and solid design there are still some glitches to be worked
on—at least with the hardware we used.

e The Bluefrog devices failed to run the throughput tests.

o Crashes were frequent during the throughput tests with the Brain Boxes devices.

e We extended the Bluez utilities with useful features

We evaluated the Bluehoc simulator. While the infrastructure for the simulator seems
to be sensible it still has major issues. We experienced traffic generators not supported,
many segmentation faults and problems passing parameters for the traffic generators.
However one of the major hurdles for using Bluehoc was the lack of documentation.

e The comparison between the inquiry simulations and the experiments was inconclu-
sive. While the only simulated result obtained was within the acceptable range, this
does not by any means show that the inquiry simulation is working as we expect it
to.

e The maximum throughput of the simulation and the experiments did not show a
large resemblance. The DM1 experiment showed almost twice higher throughput as

21

the simulation. The DH5 experiment show significantly higher throughput over the
simulation. This seems odd and suggests that either the setup is wrong or the BB
simulation model is flawed.

e The degradation of throughput with distance of the simulation and experiments did
not show the same characteristics. The DM1 experiment did not degrade but instead
varies wildly as distance increases. The DH5 experiment showed much more rapid
drop off than the simulation. We conclude that the free space model of Bluehoc
does not match our conditions very well.

We measured some key features of Bluetooth showing inquiry procedure as well as the
single slot medium rate connection to be distance robust. In the smart tag context these
results are important lessons using Bluetooth.

e We proposed a model of the inquiry procedure. This model allowed us to predict
and explain the performance of the inquiry procedure. We validated our model with
experiments.

e We saw that the inquiry time of the two devices had very different inquiry charac-
teristics. Based on the measurements presented here we cannot say whether this is
a general pattern, but our guess is that this is not the case and most devices will
follow the specification.

e We showed good agreement with the experiment conducted in [KLO1].

22

References

[KGO1] Arpurva Kumar, Rajeev Gupta: Capacity Evaluation of Frequency Hopping Based
Ad-hoc Systems, Sigmetrics, 2001.

[BRAYO01] Jennifer Bray, Charles F Struman: Bluetooth Connect Without Cables, Pren-
tice Hall, 2001

[RG02] Rajeev Gupta http://www-124.ibm.com/pipermail/bluehoc-discussion/2002-
February/000373.html

[KLO1] Oliver Kasten, Marc Langheinrich: “First Ezperiences with Bluetooth in the
Smart-Its Distributed Sensor Network“, proc. PACT 2001.

[BHFAQ] Abhinandan Sharma, Kaushik Raghunath, Kavitha Sub-
ramanian: Bluehoc And Bluescat Frequently Asked Questions
http://www.cse.iith.ernet.in:8000/proxy /everest/ abhish/faq.htm

[BHSITE] Apurva Kumar, Rajeev Gupta (IBM India): Bluehoc simulator http://www-
124.ibm.com/developerworks/projects/bluehoc

[BT02] Bluetooth SIG: Specification of the Bluetooth System, Core, version 1.1, 2002
http://www.bluetooth.org/docs/Bluetooth_-V11_Core_22Feb01.pdf

[BTP02] Bluetooth SIG: Specification of the Bluetooth System, Profiles, version 1.1, 2002
http://www.bluetooth.org/docs/Bluetooth V11 _Profiles_22Feb01.pdf

MT] DIKU: Manatee project http://www.distlab.dk/manatee/goal.htm
AP] Apparater.dk http://www.apparater.dk

AXIS] Axis: OpenBT http://developer.axis.com/software/bluetooth/

NS2] Informationan Sciences Institute, University of Southern California: The Network
simulator - NS-2 http://www.isi.edu/nsnam/ns/

[
[
[BZ] Maksim Krasnyanskiy and others: Bluez http://bluez.sourceforge.net/
[
[

23

Appendix A - Bluehoc notes

This appendix present our notes on working with the Bluehoc simulaor.

| nstallation (Bluehoc 3.0 NS 2.1b8)

Get the ns-allinone-2.1b8a.tar.gz archive from[ISl} Get Bluehoc from the[Bluehoc project sitd, Bluehoc 3.0
is at the time of writing only available from CV S under the name bluehoc2.0.

We have had the most success using gcc 2.95.2, using gcc 2.96 did not seem successfull.

First run the installation of NS then install Bluehoc. The procedure is described as:

Usethefirst method called "IF YOU ALREADY HAVE NSINSTALLED", the other won't work! The
patches are different and doesn’t acomplish the same.

24

http://www.isi.edu/nsnam/ns/ns-build.html
http://oss.software.ibm.com/developerworks/projects/bluehoc/

Command

emacs -nw
SetUpEnvironment

cd $NS_ HOME & & tar zxfv
ns-alinone-2.1b8atar.gz

cd
ns-allinone-2.1b8a/ns-2.1b8a

Jinstall

tar -zxvf bluehoc3.0.tar.gz

cp bluehoc/src/*.cc
bluehoc/src/*.h .

cp bluehoc/tcl/ns-btnode.tcl
tcl/lib/

patch -pl-b <
bluehoc/patches/bt_patch

emacs Makefile

touch *.cc & & make -j4

mkdir run

cp bluehoc/tcl/* .tcl
bluehoc/examples/* .tcl run/

cd run;../nssimXY Z.tcl

Explenation

Create a script setting up NS HOME and PATH as descibed in the README file.
Include ns-allinone-2.1b8a/otcl-1.0a7 and ns-allinone-2.1b8a/lib in
LD_LIBRARY_PATH (at DIKU be carefull what else you havein
LD_LIBRARY_PATH - including wrong things might make the install fail with
obscure errormessages). Finaly set

TCL_LIBRARY=$NS HOME/ns-alinone-2.1b8a/tcl8.3.2/library.

Untar the archive

Build NS without bluehoc
Untar, copy or get the directory bluehoc containing the bluehoc installation files.

If installing Bluescat replace the files from this distribution with those included in
Bluescat.

Apply the patches

Y ou need to manually add the BLUEHOC C++ files for compilationin OBJ_CC: Add
the following lineto OBJ_CC line:

baseband. o bt-classify.o bt-drr.o bt-host.o bt-lc.o | 2cap.o Ibf.o I np.o\

and add ns-btnode.tcl inthe NS_TCL_LIB macros of the Makefile. Add the following
linetoNS TCL_LIB:

tcl/lib/ns-btnode.tcl \
Remake the executable

Running simulations

Make a spare directory

Run your simulations

25

Tunable parameters

Bluehoc 3.0 has the following parameters for tuning the node configuration

1. Sim(Transport): A list of transport layers to be simulated for each link. Options include (se[Bluhoc]
[manual] for more info): UDP, TCP/Tahoe, TCP/NewReno, TCP/Sack1, TCP/Vegas

2. Sim(Application): A list of applications for each link.
Apparently support for setting options for traffic generatorsis fairly limited. In the findAppNamesin
the file bt-host.cc apparently only checks for packetSize for TrafficExponential. It looks to me like no
other options are read.
Options are set by including aline like the following in the .tcl simulation script.
Application/Traffic/Exponential set packetSize 5000;
Traffic generators from NS include NS traffic generators including (from the NS manual):
Rate is specified in kBps.
Defaults are located in ns-default.tcl

26

http://www.isi.edu/nsnam/ns/doc/node324.html
http://www.isi.edu/nsnam/ns/doc/node324.html
http://www.isi.edu/nsnam/ns/doc/node418.html

O N A ®

Name
FTP
Telnet

Traffic/Exponential

Traffic/Pareto

Traffic/CBR

Traffic/Trace

Parameters

packetSize |, burst_time
idle_time_, rate , shape_

packetSize |, burst_time
idle_time , rate , shape

packetSize rate ,random

filename _

Sim(NumbDevices): No. devices
Sim(xpos), Sim(ypos): List of device positions
IngTimeout: The period that the master will perform inquery

NumResponses: The number of ing respones that the master will accept

The estimates on the likelyhod of packetlossi located in the file distfer.h

To get an nonzerro error estimate on ID packages insert anew row in distfer.h and comment out the
following line (no. 888) in baseband.cc:
fer = (bt->type== BT_ID) ? 0.0 : fer;

27

Explenation
FTP application
Telnet application

ON/OFF bursty traffic eg. voice.
Generates traffic according to an
Exponential On/Off distribution. Packets
are sent at afixed rate during on periods,
and no packets are sent during off
periods. Both on and off periods are taken
from an exponential distribution. Packets
are constant size.

Same as above, but the on and off periods
are taken from a pareto distribution.
These sources can be used to generate
aggregate traffic that exhibits long range
dependency.

|[Apparently not supported!/Constant bit
rate. generates traffic according to a
deterministic rate. Packets are constant
size. Optionally, some randomizing dither
can be enabled on the interpacket
departureintervals.

Generates traffic from atrace. generates
traffic according to atrace file. Each
record in the trace file consists of 2 32-bit
fields. Thefirst contains thetimein
microseconds until the next packet is
generated. The second contains the length
in bytes of the next packet.

http://www-124.ibm.com/pipermail/bluehoc-discussion/2001-October/000181.html

QOS negociation

Prior to connecting Bluehoc negociates QOS parameters. Thisis done by mapQoS in bt-drr.cc. The QoSis
setup based on the appFlowSpec parameters in bt-host.cc. The negociated parameters are sent to the
scheduler, and if imposible parameters are requested the negociation fails - meaning that these parameters
cannot be used to over saturate alink.

1. If loss _sensitivity is set it asks for FER encoding el. DM packets otherwise DH packets.
2. The packet type is selected on basis of the MTU and whether DM og DH has been selected. The
numbers specify maximum MTU for this packet size.

DH DM
343 and above 228 and above slotlength 5

187 125 dotlength 3
31 21 slotlength 1
rejected.

3. token_rateisused to set the poling interval: pi = packetL ength* 8/(token_rate* 1000* 625* 1e-6));

Limitations
At this point the following limitations have been found

1. Bluhoc only supports simplex transmissions from Master to slave. The link hasinformation on settin
up communication the other way. [CTick herd

2. Tuning parameters like the following are missing: Support for setting up multisiot packet

communication, automatic or explicit controll of how the master allocates slots for each slave, tuning

the inq scan states.

Bluescat 0.6 has no NAM support

The drawings of NAM trace apparently has little to do with the positions of the nodes.

5. The Maximum dist. is set to 20m, to raise it further you would have to recalculate the error table in
distfer.h

> w

Nam traces

A simple setup of two nodes doing first inquiry, then pageing and then connection with FTP traffic looks
something like thisin nam. I’ ve written my best guess on what the state changes are:

28

http://www.cse.iitb.ernet.in:8000/proxy/everest/~abhish/faq.htm

clock Slave Master

0 ST I Standby/Inquery
4.96 PS PageScan

ST Standby
5.15 IS InqueryScan

ST Standbty
5.63 IR InqueryResponse
5.64 IS P InqueryScan/Paging
5.13 ST Standby
626 PS PageScan
6.26 SR MR SlaveResponse/M asterResponse
6.27 C C Connected/Connected

Output format

Connection establishment

If | setup a simple connection with only 2 nodes and an FTP-app the output |ooks something like:

29

appname[0] = Application/FTP
CLKN:

INQ MSG ****-->] 16472 ' clock: 5.147767e+00
INQ_MSG AFTER BO *-->1 %oﬁgl: clock: 5.637767e+00
FHS_PKT 1-->0 %0*22': clock: 5.638710e+00
PAGE_MSG ****-->1 %'O*ég': clock: 6.267767e+00
PAGE_ACK 1->0 (2%022': clock: 6.268397e+00
MASTER FROZEN %o}ég:

FHS PKT 0-->1 %‘0@': clock: 6.269330e+00
FHS_ACK 1-->0 %0221 clock: 6.269642e+00
POLL_ACK 1-->0 CLK: 20067 clock: 6.2712056+00

AM_ADDR: LMP_ACCEPTED AM_ADDR: 1 ACCEPTED

LMP_HOST_CONNECT_REQ 1 PDU: LMP_HOST_CONNECTION_REQ

AM_ADDR: LMP_ACCEPTED AM_ADDR: 1 ACCEPTED

LMP_QOS REQ 1 PDU: LMP_QOS_REQ

RECV ,

L2CAP_CONNECT_REQ CH: 0

RECV .

L2CAP_CONNECT RSP CH: 0

L2CA_DATA_WRITE SIZE: 40 CID: 2 DEST_IP 1 clock 6.274955

From reading baseband.cc | come up with the following:
| NQ_MSG *rkkk__S

I's printed as soon as the slave sees ID packages (that is when the master is transmitting and the dlaveisin
INQ_SCAN state) just before starting random back off for reply.

30

INQ_MSG AFTER BO *-->
I's printed when the second 1D message after the back off isreceived, the daveisin ICQ_RESP state.

FHS PKT %d-->
FHS packet received at the master with clock and address information

So at the FHS _PKT timetheing isover. The question is when did the master start sending ID packets?
The Bluehoc manual hints that it does that right away meaning clock=0. So for this scenario it took
5.638710s for the master to discover the slave.

Asfar as| cantell the master instantly switches to paging. The connection can be said to started once
booth ends are in the CONNECTED state. This has happened in the dlot after the ID package sent as ACK
for the FHS (I’ m guessing FHS_ACK). The master is required to send an Poll packet at the next dlot..
Whether thisis part of the connection establishment or the actual connection is a matter of definition. For
my purposes the minimal timing difference is not important. So for this example it took an additional
6.271205s-5.638710s=0.632495s.

Connected transmission

The BT traces contain information about 12cap signaling and for each sent packet the BT traces contain
lines like (see|Bluehoc tutorial)):

BD_ADDR 1 DELAY 4.375000e-03 SIZE 40 clock 6.279330e+00

Thislineis printed each time L2CAP has a complete packet to send to the upper layer. And thus indicates
asuccessfull 12cap transmission.

The 4.375000e-03 indicates the time elapsed from L2CA_dataWrite method has released the packet to the
L2CA_dataRead receivesit. SIZE isthe size in bytes.

Bugs

1. The CVSversion of Bluehoc 3.0 islocated in the project dir Bluehoc 2.0 wich can be confusing.
2. The Payload array in globals.h seemsto contain wrong values. Instead of payload lengthsit contains
entire packet length+2. Whether the Bluehoc compensates for this some otherplace is hard to say.

3. | create asimple scene of 2 nodes, set up an ftp connection between them, and select the graphs and
BT trace output. Which fails with the error at the bottom.

If 1 look at the BT trace output file | find this odd looking line: BD_ADDR 1 DELAY 2.981250e-01
SISimulation over

To mee it seems that since both bt-host.cc write to stdout, the prints somehow get mixed up.

| did aquick hack by letting bt-host.cc write to afile of it's own and bluehoc.tcl read thisfile to get
the"DELAY ..." lines. This seemsto work and | get my graphs, but a more elegant solution would be
appriciated (the BT-trace file could be opened somewhere else and all the output now going to stdout

31

http://www-124.ibm.com/bluehoc/tutorial/docpage3.html

could be written to thisfile).
An other solution is to remove the printouts from the bottom of run.tcl.

e247net mentioned that increasing the simulation works aswell. If thisistrue | asumeit is because
the "Simulation over" isdelayed or by accident put on aline where it doesn’t interfere. syntax error in
expression "2.3604e+05+over"

while executing

"expr $thr($addr)+$bytesrecv"”

(procedure "plotXgraph” line 25)

invoked from within

"plotXgraph $delayop 3 15 7 5e-3 100 $fileid "
(procedure "dump-config" line 74)

invoked from within

"dump-config"

(procedure "save-file" line 9)

invoked from within

"save-file"

invoked from within

" #menubar #menubar#mFile invoke active'
("uplevel" body line 1)

invoked from within

"uplevel #0 [list $w invoke active]”

(procedure "tkMenulnvoke" line 29)

invoked from within

"tkMenulnvoke .#menubar. #menubar#mkFile 1"
(command bound to event)

32

Appendix B
[Bluehoc-discussion] Re: Inquiry has perfect reception
regar dless of distance! ?

Rajeev Gupta grajeev@in.ibm.com
Thu, 28 Feb 2002 16:17:22 +0530

® Previous message: [Bluehoc-discussion] Re: Inquiry has perfect reception regardless of distance!?
® Next message: [Bluehoc-discussion] sm007.tcl problems
® Messages sorted by: [date] [thread] [subject] [author]

Hi,

You can see our paper published in Signetrics’ 2001 titled "Capacity
eval uation of frequency hoppi ng based ad- hoc systens", where we have
described our sinulation nodel and paraneters of interest. Frane error rate
is function of:

1. Physical |ayer properties |like nodulation, FEC/ CRC used etc.

2. Channel properties affecting interference.

3. Spatial properties |like distance between interferer and receiver,
topol ogy etc.

These are used to cal cul ate BER with/w thout FEC

BER is used to cal cul ate FER dependi ng on frame-size as
FER=1- (1- BER)*(no. of bits)

Hope this will satisfy your queries.

Thanks and regards.

-Raj eev CGupta

Research Staff Menber

I BM | ndi a Research Lab

Block 1, Indian Institute of Technol ogy
Hauz Khas, New Del hi, INDI A 110016

Emai |l : grajeev@n.i bmcom

Phone: 91-11-686-1100

Fax: 91-11-686- 1555

® Previous message: [Bluehoc-discussion] Re: Inquiry has perfect reception regardless of distance! ?
® Next message: [Bluehoc-discussion] sim007.tcl problems
® Messagessorted by: [date] [thread] [subject] [author]

33

Appendix C
[Bluehoc-discussion] Inquiry has perfect reception
regar dless of distance! ?

Rajeev Gupta grajeev@in.ibm.com
Thu, 28 Feb 2002 09:44:52 +0530

® Previous message: [Bluehoc-discussion] Apurva and Rajeev still working on Bluehoc?
® Next message: [Bluehoc-discussion] Re: Inquiry has perfect reception regardless of distance!?
® Messages sorted by: [date] [thread] [subject] [author]

Hi,
FER(Frane error rate) for |ID packet was assunmed to be O because of its very
sam | size.

Thanks and regards.

-Raj eev CGupta

Research Staff Menber

I BM I ndi a Research Lab

Block 1, Indian Institute of Technol ogy
Hauz Khas, New Del hi, INDI A 110016

Emai |l : grajeev@n.ibmcom

Phone: 91-11-686-1100

Fax: 91-11-686- 1555

® Previous message: [Bluehoc-discussion] Apurvaand Rajeev still working on Bluehoc?
o Next message: [Bluehoc-discussion] Re: Inquiry has perfect reception regardless of distance! ?
® Messagessorted by: [date] [thread] [subject] [author]

34

MMYMCETIUIA LJ MU od IUQL.bb.'JClLL:I 1 raytc vJ

——— bluehoc/src/bt-host.cc Fri Mar 22 15:31:40 2002
+++ bt—-host.cc Tue Mar 26 16:03:43 2002
@@ -402,6 +402,34 @@
tcl.evalf("%s info class", trafgen_[i]->name());
appNames_]Ji] = tcl.result();
const char* p = appNames_[i].c_str();

if (strcemp(p,"Application/Traffic/CBR")==0) {
tcl.evalf("%s set packetSize ", trafgen_[i]->name());
int mtu = atoi(tcl.result());
appFlowSpec_[i]->mtu = mtu;

tcl.evalf("%s set rate_", trafgen_[i]->name());
int rate = atoi(tcl.result());
appFlowSpec_[i]->token_rate = rate;

appFlowSpec_[i]->loss_sensitivity = 0;

appFlowSpec_[i]->token_bucket = 0; //No token bucket
appFlowSpec_[i]->input_glen = 30;
appFlowSpec_[i]->peak_bw = 1e8;
appFlowSpec_Ji]->latency = 100;

cout << "Parameters: MTU " << appFlowSpec_[i]->mtu
<< ", token_rate " << appFlowSpec_][i]->token_rate
<< " loss_sensitivity " << appFlowSpec_[i]->loss_sensiti

3
<

<< ", token_bucket " << appFlowSpec_[i]->token_bucket
<< " input_glen " << appFlowSpec_[i]->input_glen

<< ", peak_bw " << appFlowSpec_[i]->peak_bw

<<", peak_bw " << appFlowSpec_[i]->peak_bw

<< " latency " << appFlowSpec_[i]->latency

<< endl;

}

if (strcmp(p,"Application/Traffic/Exponential”)==0) {
tcl.evalf("%s set packetSize ", trafgen_[i]->name());
int mtu = atoi(tcl.result());

++++++++<S+++ A+

Wednesday April 03, 2002

MMYNMCETIUIA L n IqIJ(J.IIIIO.UIUCL nvo . ..vJv 'JICI .'J(J.LL:I 1 raytc 9v

Binary files bluez-libs—2.0—pre7.clean/conftest and bluez-libs—2.0—pre7/conftest

differ

diff —ru bluez-libs—2.0—pre7.clean/include/hci.h bluez-libs-2.0-pre7/include/hci

.h

——— bluez-libs-2.0—pre7.clean/include/hci.h Fri Mar 8 22:10:07 2002
+++ bluez-libs-2.0—pre7/include/hci.h Tue Mar 19 11:28:27 2002

@@ -206,6 +206,23 @@

/* Host Controller and Baseband */

#define OGF_HOST_CTL 0x03

#define OCF_RESET 0x0003
+#define OCF_READ_INQ_ACTIVITY 0x001D
+

+typedef struct {

+ uint8_t status;

+ uintl6 t interval;

+ uintl6_t window;
+} _ attribute_ ((packed)) read_ing_activity rp;
+

+#define READ_INQ_ACTIVITY_RP_SIZE 5

+

+#define OCF_WRITE_INQ_ACTIVITY 0x001E
+typedef struct {

+ uintl6 _t interval;

+ uintl6 t window;

+} _ attribute__ ((packed)) write_ing_activity cp;

+#define WRITE_INQ_ACTIVITY_CP_SIZE 3

+

#define OCF_READ_AUTH_ENABLE 0x001F

#define OCF_WRITE_AUTH_ENABLE 0x0020
#define AUTH_DISABLED 0x00

Wednesday April 03, 2002

Printed by Martin L

struct hci_request rq;
ints;
if ((s = hci_open_dev(hdev)) < 0) {
printf("Can’t open device hci%d. %s(%d)\n", hdev, strerror(errno

errno);
exit(1);
}
memset(&rq, 0, sizeof(rq));
if (opt) {

uint16_t window, interval;
if (sscanf(opt,"%4u/%4u”, &window, &interval)==2) {
write_ing_activity _cp cp;

rq.ogf = OGF_HOST_CTL;

rg.ocf = OCF_WRITE_INQ_ACTIVITY;
rg.cparam = &cp;

rg.clen = WRITE_INQ_ACTIVITY_CP_SIZE;

cp.window = ___cpu_to_lel6(window);
cp.interval = __cpu_to_lel6(interval);

if (window<0x12 || window>0x1000)
printf("Warning: inquiry window out of range\n");

if (interval<Ox12 || interval>0x1000)
printf("Warning: inquiry interval out of range!\n");

if (hci_send_req(s, &rq, 1000) < 0) {
printf("Can’t set inquiry parameters name on hci%d. %s(%d)\n",
hdev, strerror(errno), errno);
exit(1);

}else {
printf("Unkown argument for command, remeber: one integer/one intege
NO SPACES and one \"\"\n");

}else {
uint16_t window, interval;
read_ing_activity_rp rp;

rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_INQ_ACTIVITY;

R R T e e I g A

Appedix F ingparms.bluez-utils—2.0—pre7.patch Appendix F ingparms.bluez-utils—2.0—pre7.patch Pag
diff —ru bluez-utils—2.0-pre7.clean/tools/hciconfig.c bluez-utils—-2.0—pre7/tools + rg.rparam = &rp;
/hciconfig.c + rg.rlen = READ_INQ_ACTIVITY_RP_SIZE;
——— bluez-utils—2.0-pre7.clean/tools/hciconfig.c Fri Mar 8 22:12:35 2002 +
+++ bluez-utils—2.0-pre7/tools/hciconfig.c Tue Mar 19 12:12:09 2002 + if (hci_send_req(s, &rq, 1000) < 0) {
@@ —-38,6 +38,7 @@ + printf("Can’t read inquiry parameters on hci%d. %s(%d)\n",
#include <sysl/ioctl.h> + hdev, strerror(errno), errno);
#include <sys/socket.h> + exit(1);
#include <asm/types.h> +
+#include <asm/byteorder.h> + if (rp.status) {
+ printf("Read inquiry parameters on hci%d returned status %d\n", hdev
#include <bluetooth.h> , rp.status);
#include <hci.h> + exit(1);
@@ -377,6 +378,70 @@ +
ver.manufacturer); + print_dev_hdr(&di);
} +
+ window = __le16_to_cpu(rp.window);
+void cmd_ing_parms(int ctl, int hdev, char *opt) + interval = __le16_to_cpu(rp.interval);
+ printf("\tinquiry interval: %u slots (%.2f ms), window: %u slots (%.2f

ms)\n", interval, interval*0.625, window, window*0.625);
+
+}
+
void print_dev_hdr(struct hci_dev_info *di)

static int hdr = -1,
@@ -445,6 +510,7 @@

{"Ip", cmd_lp, "[policy]", "Get/Set default link policy" },

{"name", cmd_name, "[name]’, "Get/Setlocal name"},
"class", cmd_class, "[class]", "Get/Set class of device" },

{ _
+ { "ingparms",cmd_ing_parms, "[int/win]","Get/Set device inquiry window a
nd iterval" },

{ "version", cmd_version, 0, "Display version information" },

{ "features", cmd_features, 0,"Display device features" },

{ NULL, NULL, 0}

Wednesday April 03, 2002

../patches/ingparms.bluez-utils—2.0—pre7.patch

+#include <ctype.h>

+

extern int optind,opterr,optopt;
extern char *optarg;

static int ctl;

+/* Global option vars.. Should probably be named something more hinting in that
regard... */

+int num_rsp = 0, flags=0, length=10;

+

static int for_each_dev(int flag, int(*func)(int d, long arg), long arg)

struct hci_dev_list_req *dl;
@@ -173,22 +179,13 @@
static void cmd_ing(int dev_id, char **opt, int nopt)

inquiry_info *info;
- inti, num_rsp = 0, length, flags;

} command[] = {
{"dev", cmd_dev, 0, "Display local devices" },
- {"ing", cmd_ing, "[lenght] [flush]", "Inquire remote devices" },
+ {"ing", emd_ing, "--length, -l ing timeout Inquire remote devices\n
—-resps, —T stop after n responses\n ——flush, —f flush
known device cache", " "},
{"con", cmd_con, 0, "Display active connections" },
{"cc", cmd_cc, "<bdaddr> [pkt type] [role]", "Create connection to
remote device" },
{"dc", cmd_dc,
{ NULL, NULL, O}

"<bdaddr>", "Disconnect from remote device" },
h

+struct option option_desc|[] = {

+ inti;
bdaddr_t bdaddr;
if (dev_id < 0)
dev_id = get_route(NULL);
- if (nopt >=1)
- length = atoi(opt[0]);
- else
- length = 10; /* 10 seconds */
- flags = 0;
- if (nopt >=2)
- flags |= Istrncasecmp("f", opt[1], 1) ? IREQ_CACHE_FLUSH :
- printf("Inquiring ...\n");
+ printf("Inquiring on device %i...\n", dev_id);
info = hci_inquiry(dev_id, length, &um_rsp, NULL, flags);
if (linfo)
@@ -304,13 +301,21 @@
char *doc;

Appendix G ingNoRespones.blues—-2.0—pre6.patch Appendix G ingNoRespones.blues—-2.0—pre6.patch
——-../..Ipis/bluez—2.0—pre6/tools/hcitool.c Wed Feb 20 19:07:17 2002 + {"", 1,0,
+++ hcitool.c Thu Feb 28 23:21:45 2002 + {"length", 1, 0, 'I'},
@@ -43,11 +43,17 @@ + {"resps", 1,0, T},

#include <hci.h> + {"flush", 0, 0, 'f'},

#include <hci_lib.h> + {"help", 0, 0, 'h’}

+}

+#include <getopt.h> +

static void usage(void)

inti;
@@ -327,21 +332,55 @@
int main(int argc, char *argvf[], char *env[])

int opt, i, dev_id = -1;
char *dev;

int opt, i=0, dev_id = -1,
char *dev, *endptr;

+ + 11—~

while ((opt=getopt(argc, argv, "i:h")) != EOF) {
switch(opt) {

case i":
dev = strdup(optarg);
dev_id = atoi(dev + 3);
break;

case 'h"

default:
usage();
exit(0);

}
while ((opt=getopt_long(argc, argv, "i:r:l:fh",option_desc, &i))>0) {
switch(opt) {
case 'i"
if (!(strncmp("hci", optarg, 3)) && strlen(optarg)>=4
&& isdigit(optarg[3])) {
dev = strdup(optarg);
dev_id = (int) strtol(dev + 3, &endptr,10);
if (endptr==NULL || *endptr==""|| *endptr =="\0) {
break;
}

printf("Wrong argument for option —i\n");

usage();

exit(1);

case I"

length = (int) strtol(optarg, &endptr,10);

if (endptr'=NULL && *endptr!="" && *endptr!="0") {
printf("Wrong argument for option —I\n");
usage();
exit(1);

0;

break;
case 'r’
num_rsp = (int) strtol(optarg, &endptr, 10);
if (endptr!l=NULL && *endptr!="" && *endptr!="\0") {
printf("Wrong argument for option —r\n");
usage();
exit(1);

break;
case 'f:

+++++++++++++++++++++++++++++++ 0000 0T

Wednesday April 03, 2002

../patches/ingNoRespones.blues-2.0—pre6.patch

Printed by Martin L

Appendix G

ingNoRespones.blues—2.0—pre6.patch

Page 39

B T T T S

flags |= IREQ_CACHE_FLUSH;

break;
case "’
printf("Argument missing\n");
usage();
exit(0);
case '?"
printf("Unknown syntax\n");
usage();
exit(0);
case 'h”:
default:
usage();
exit(0);

}
}
if (argc — optind < 1) {

Wednesday April 03, 2002

../patches/ingNoRespones.blues-2.0—-pre6.patch

Printed by Martin L

Printed by Martin L

Appendix H bluez-utils—2.0—pre9.bidirectional.patch

Appendix H bluez-utils—2.0—pre9.bidirectional.patch Pag

——- bluez-utils—2.0-pre9.org/tools/|2test.c Wed Mar 27 06:30:35 2002
+++ bluez-utils-2.0—pre9/tools/I2test.c Sun May 26 23:52:43 2002

@@ -54,7 +54,9 @@

DUMP,

CONNECT,

CRECV,

LSEND

LSEND,

BILISTEN,

BICONNECT

—t o+

)

unsigned char *buf;
@@ -74,6 +76,13 @@
int auth = 0;

int encrypt = 0;

+
+uint32_t verify_data(unsigned char *buf, int r, uint32_t seq);
+void bi_send_recv(int s);

+

+unsigned char *bi_recv_buf;

+int bi_recv_count=10000;

+

float tv2fl(struct timeval tv)

return (float)tv.tv_sec + (float)(tv.tv_usec/1000000.0);
@@ —-246,9 +255,7 @@
gettimeofday(&tv_beg,NULL);

total = 0;

while (total < data_size) {
uint32_t sq;
uintlé_tl;

inti,r;
intr;

+ 11

if ((r = recv(s, buf, data_size, 0)) <= 0) {
if (r <0)
@@ -257,26 +264,7 @@
return;

}

/* Check sequence */
sq = btohl(*(uint32_t *)buf);
if (seq !=sq)
syslog(LOG_INFO, "seq missmatch: %d —> %d", seq,

%]

q);
seq = sq;

seq++;

/* Check length */
| = btohs(*(uint16_t *)(buf+4));
if (r1=1){
syslog(LOG_INFO, "size missmatch: %d —> %d", r,

=

continue;

}
[* Verify data */
for (i=6; i <r; i++) {
if (bufli] I= Ox7f)

- syslog(LOG_INFO, "data missmatch: byte %
d 0x%2.2x", i, buf[i]);

+ seq = verify_data(buf, r, seq);
total +=r;
}
@@ -311,6 +299,101 @@
}
}

+void bi_connect_mode(char* svr) {
+ ints;

+ if((s = do_connect(svr)) <0)

+ exit(1);

+ bi_send_recv(s);

+}

+
+void bi_send_recv(int s) {

+ inti, r;

long total;

uint32_t recv_seq, send_seq;

struct timeval tv_beg, tv_end, tv_diff;
fd_set rset, wset;

/* Incoming packets are limited by the —I option */
if (I(bi_recv_buf = malloc(imtu))) {

perror("Can't allocate data buffer");

exit(1);

for(i=6; i < imtu; i++) buf[i]=0x7f;

send_seq = 0;

recv_seq = 0;

total = O;

FD_ZERO(&rset);

FD_ZERO(&wset);

gettimeofday(&tv_beg,NULL);

while(1) {

FD_SET(s, &rset);

FD_SET(s, &wset);

if (select(s+1, &rset, &wset, NULL, NULL)<0){
syslog(LOG_ERR, "Select failed. %s(%d)", strerror(errno), errno);
exit(-1);

if(FD_ISSET(s, &wset)) {
*(uint32_t *)buf = htobl(send_seqg++);
*(uint16_t *)(buf+4) = htobs(data_size);

if(send(s, buf, data_size, 0) <=0)
syslog(LOG_ERR, "Send failed. %s(%d)", strerror(errno), errno);
exit(1);

if(FD_ISSET(s, &rset)) {
if ((r = recv(s, bi_recv_buf, imtu, 0)) < 0) {
if (r<0)
syslog(LOG_ERR, "Read failed. %s(%d)", strerror(errno), errno);
return;

R T I T T T T T T T T T T T T S S S R T St St S S S SR S
—

recv_seq = verify_data(bi_recv_buf, r, recv_seq);

Thursday May 30, 2002

bluez-utils—2.0—pre9.bidirectional.patch

Printed by Martin L

May 30, 02 18:54 bluez-utils-2.0-pre9.bidirectional.patch Appendix H bluez-utils-2.0-pre9.bidirectional.patch Pag
total +=r; - while ((opt=getopt(argc,argv,"rdscuwmnb:P:l:0:S:MAE")) != EOF) {
+ while ((opt=getopt(argc,argv,"rdscuwmnxyxb:P:1:0:S:MAE")) != EOF) {
if(total >= bi_recv_count) { switch(opt) {
gettimeofday(&tv_end,NULL); case'r:
timersub(&tv_end,&tv_beg,&tv_diff); mode = RECV;

syslog(LOG_INFO,"Received %ld bytes in %.2f sec, %.2f kB/s", total,
tv2fl(tv_diff), (float)(total / tv2fl(tv_diff)) / 1024.0);

tv_beg=tv_end;

total=0;

-

uint32_t verify_data(unsigned char* buf, int r, uint32_t seq){
uint32_t sq;
uintl6_tl;
inti;

s = btohl(*(uint32_t *)buf);

if (seq !=sq) {
printf("seq missmatch: %d —> %d", seq, sq);
syslog(LOG_INFO, "seq missmatch: %d —> %d", seq, sq);
seq = sq;

seq++;

/* Check length */

| = btohs(*(uint16_t *)(buf+4));

if(ri=1){
syslog(LOG_INFO, "size missmatch: %d —> %d", r, I);
goto done;

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ [* Check sequence */
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ [* Verify data */

+ for (i=6; i <r; i++)
+ if (buffi] != 0x7f)
+ syslog(LOG_INFO, "data missmatch: byte %d 0x%2.2x", i, buffi]);
+

+ return seq;
+}

+
void reconnect_mode(char *svr)

while(1){
@@ -361,7 +4449 @@
"\t-u connect and receive\n"
"\t-n connect and be silent\n"
"\t-c connect, disconnect, connect, ...\n"
"\t-m multiple connects\n");
"\t-m multiple connects\n"
"\t-x biderectional send/recv — listen\n"
"\t-y biderectional send/recv — connect\n");

+ 4+

printf("Options:\n"
"\t{-b bytes] [-S bdaddr] [-P psm]\n"
@@ -381,7 +466,7 @@

mode = RECV; need_addr = 0;

@@ -424,6 +509,15 @@
data_size = atoi(optarg);

break;

+ case 'X’:
+ mode=BILISTEN;
+ break;
+
+ case'’y’:
+ mode=BICONNECT;
+ need_addr = 1;
+ break;
+

case’'S"

baswap(&bdaddr, strtoba(optarg));
break;
@@ -476,6 +570,14 @@
openlog("l2test”, LOG_PERROR | LOG_PID, LOG_LOCALDO);

switch(mode ¥
case BILISTEN:
do_listen(bi_send_recv);
break;

case BICONNECT:
bi_connect_mode(argv[optind]);
break;

+ o+t

case RECV:
do_listen(recv_mode);
break;

Thursday May 30, 2002

bluez-utils—2.0—pre9.bidirectional.patch

	Appendix A - Bluehoc notes
	Installation †Bluehoc 3.0 NS 2.1b8‡
	Tunable parameters
	QOS negociation
	Limitations
	Nam traces
	Output format
	Connection establishment
	Connected transmission

	Bugs
	Appendix B [Bluehoc-discussion] Re: Inquiry has perfect reception regardless of distance!?
	Appendix C [Bluehoc-discussion] Inquiry has perfect reception regardless of distance!?

