Technical Report DIKU-TR-02/04
Department of Computer Science
University of Copenhagen
Universitetsparken 1
DK-2100 KBH O
DENMARK

July 2002

An Introduction to Appoximating Heterogeneous Bounding Volume
Hierarchies

Kenny Erleben

Abstract: Approximating heterogeneous bounding volume hierarchies are a data structure, which we
believe could be used for efficient and robust collision detection in the context of simulation, animation,
virtual reality and robotics. This paper will introduce the concepts and ideas behind this data structure.

1 INTRODUCTION 1

1 Introduction

Collision detection is of major importance in simulation, animation, virtual reality and robotics. It is
used as a tool, for avoiding interpenetrations.

Simulation, animation, virtual reality and robotics all share some common trademarks. They are
all trying to figure out how a configuration of both moving and non-moving objects behave (or should
behave) in the near future. In order to do so they are all heavily dependent on collision detection to
detect penetration, areas of touching contact and distance computations.

Since we are working with objects that are moving in time, collision detection is no longer just a single
query, but a repeated sequence of multiple queries.

Applications in simulation, animation, virtual reality and robotics are often interactive, which means
they often are extremely dependent on achieving real time performance. The size and complexity of a
configuration and its objects can easily increase dramatically, making collision detection a bottleneck in
real time applications.

The fastest methods used today require objects to be based on hierarchies of convex polyhedra.
Eventhough most configurations today have adjusted themself to this concept it does not hide the fact
that this inhibits the modelling freedom.

The methods that exist today, which are applicable to general shaped objects, are slow compared to
the methods based on hierarchies of convex polyhedra. Making it difficult to achieve real-time performance
on even small sized configurations.

e Multiple Repeated Queries
e Real-Time Performance
e General Shaped Objects

It would be nice to have competitive real-time methods applicable to general shaped objects. Our
main contribution in this paper is the introduction of the concepts and ideas of a data structure, which
we call approximating heterogeneous bounding volume hierarchies. We believe this data structure could
be a competitive alternative, which solves all these problems.

2 Overview of Collision Detection Algorithms

For the past 20 years or so collision detection has evolved itself tremendeously, from the early simple
problems of deciding if two simple geometries intersects or not until todays wide spectrum of methods
and algorithms.

The algorithms naturally divides into three groups of algorithms: Spatial data structures, feature
based algorithms and simplex based algorithms. Spatial data structures can easily be divided into two
separate subgroups of algorithms one group based on subdivision and another based on bounding volume
hierarchies. Figure 1 illustrates these groups.

The table below shows how some of the most commonly known algorithms in use today fit into the
algorithm groups.

Spatial Bounding Volume Feature Simplex
Subdivisions Hierachies Based Based
BSP trees Sphere trees Lin-Canny GJK
octrees AABB trees V-Clip Enhanced GJK
k-d trees OBB trees Baraff’s algorithm | Rabbitz’s algorithm
grids k-DOP trees

Algorithms within each of these groups typical share some constraint on the shape of the objects,
which they can handle. Let us shortly review some of these.

Feature and simplex based algorithms typical exploit convexity of the objects, which is very limiting
in an enviroment of arbitary shaped objects. In most cases this drawback can be helped by allowing an

2 OVERVIEW OF COLLISION DETECTION ALGORITHMS 2

Collision Detection Algorithms

Spatial Data Structures Feature Based Simplex Based

Spatial Subdivisions Bounding Volume Hierachies

Figure 1: Overview of the groups of collision detection algorithms.

object to be representated as a hierarchy of convex sub-objects. It does however not solve the problem,
just imagine how one would de-compose the surface of a torus or bowl into convex pieces (see [38] for an
example).

An example of a feature based algorithm which does not suffer from this deficiency is the algorithm
proposed by Moore and Wilhelms (see [5]). The algorithm is essential based on Cyrus-Beck clipping
(see [1]) and testing points against planes, speeded up with several heuristics and good old fashion data
structures. In simple words this algorithm is essential a clipping algorithm for polygon based objects,
cable of determining the actual intersection of two objects (self intersection can also be handled), in the
context of simulation and animation it is however to slow compared to other algorithms that exploit
coherence. Another drawback is that the algorithm does not provide much information if objects are
separated.

Feature and simplex based algorithms do however have some advances, which are particular nice in
the context of simulation, animation, virtual reality and robotics (we decribe more about it in the next
section). Often one can get more information from these algorithms than a simple yes or no answer to
the question of whatever two objects collide with each other.

For instance all the feature based algorithms we have listed represent objects as convex polyhedra. All
the algorithms are cable of returning the closest features of two separated objects. From this information
one can easily compute the closest points between two objects, the closest distance and in case of near
touching contact the features defines a valid contact point which can be used for contact determination.

The simplex based algorithms have allmost the same capabilities as the feature based algorithms.
They however tend to be better at handling interpenetration of objects. For instance GJK and enhanced
GJK (see [28] and [35]) can give a good measure of the penetration depth, whereas an algorithm like
Lin-Can (see [8, 9, 10]) enters an infinite loop when interpeneration happens. V-Clip (see [7]) is far better
than Lin-Can, it can handle interpenetration by detecting the penetrating features of the objects. V-Clip
can however not give a good measure of the penetration depth like GJK.

The spatial data structures have one great advantage over feature based and simplex based algorithms
they can represent arbitary shaped objects. In other words we are no longer restricted to convex shaped
objects. Spatial data structures usually work on objects composed of polygon soups, but it need not be
S0.

There are basically two kinds of spatial data structure: Spatial subdivision data struture and bounding
volume hierarchies. Spatial subdivision data strutures are a recursive partitioning of the embedded space,
whereas bounding volume hierarchies are based on a recursive partitioning of the primitives of an object.

Spatial subdivision data strutures usually result in larger hierachical data structures than bounding
volume hierachies also the way they partition space tend not to tightly cover the objects shape, which
make them less suitable for determining contact status between objects.

3 THE PROBLEMS OF COLLISION DETECTION 3

3 The Problems of Collision Detection

Up until now we have described the collision detection in a very general way. One could be mislead to
think that the goal of collision detection is to determine whaterver two objects collide or not. There is
however much more involved in collision detection especially in the context of simulation, animation,
virtual reality and robotics. We ourselves have a firm background in dynamic simulation of rigid bodies
(see [2, 3, 4]), from this we have recognized that there are much more to collision detection than that.
Basically there are four main problems ®.

The pair-processing algorithm problem This problem is the clasical problem, which started it all,
how do we determine if two objects intersect each other or not in a robust and efficient manner? Qur
overview in the last section focussed on different families of algorithms, which solve this problem.

The all-pairs weakness problem One does not usually only have two objects. Instead one have hun-
dres or even thousands of objects. This problem is concerned with how one avoid testing every pair
of objects against each other, since such a trivial approach would be far to expensive in terms of
computation time.

The fixed-timestep weakness problem This problem is very specific to simulation and animation.
Running with a fixed timestep makes it possible to miss penetrations and forces one to perform
collision detection at each timestep. Introducing adaptive stepsize control can help avoid these
disadvantages.

The proxmity query problem In applications such as dynamic simulation it is often not enough to
know whatever two objects intersect or not. One often needs to know the closest distance and/or
penetration depth, or the parts of the objects surfaces, which are in close contact. All this infor-
mation are needed in order to figure out how physical bodies interact with each other during a
simulation.

It is very common that a collision detection engine are divided into two seperate parts. The part of a
collision detection engine, which runs the pair-processing algorithm is called the narrow phase (see [22]).
The all-pairs weakness problem is usually handled in the other part, which is called the broad phase (see
[22]).

The proxmity query problem can be handled either simultaneously with the narrow phase collision
detection or as a post processing step. Algorithms, which solve the fixed-timestep weakness problem,
usually use the output from some proxmity query inorder to adaptively change the size of the timestep.
These algorithms could be part of the broad phase.

Not many collision detection libraries, which exist today, are concerned with all four problems. They
tend to focus on the all-pairs weakness and the pair-processing algorithm. A few have recoginized the
fixed-timestep weakness and even less are concerned about the proxmity-query problem.

Approximating heterogeneous bounding volume hierarchies are only concerned with the pair-processing
algorithm problem and the proxmity query problem.

4 Approximating Heterogeneous Bounding Volume Hierachies

Let us try to take a look at an example in order to really understand what an approximating heteroge-
neous bounding volume hierarchy is. We will start out by showing how an approximating heterogeneous
bounding volume hierarchy looks like.

Below you can see a tie interceptor polygon soup with little more than 80.000 faces. At the left and
right colums you can see two different views of the same tie interceptor in the midle colum we have shown
a structural view of the bounding volume hierarchy as we construct it.

!Hubbard [22, 23, 24, 25] named and identified the first three problems.

4 APPROXIMATING HETEROGENEOUS BVHS 4

First we find the bounding volumes at the highest level of detail. Since humans are extremely good
at recognizing patterens and shapes they can almost immediately with the naked eye see what kind of
simple geometry that approximates a more complex shape. In our little example we will use a “human
computer” together with our common sense and good intuition in order to find the bounding volumes.
Note the color correspondence between the bounding volumes and the nodes in the structural view.

We have used four different kinds of bounding volumes, oriented bounding boxes, oriented cylinders,
spheres and prism. Now we will approximate the wings with lower detail bounding volumes. Note that
the higher level detail bounding volumes becomes the children of the new lower detail bounding volumes.

{}. {I} o0 0000000 OO {:} .&

Now we repeat the last step, but this time for the hull of the tie interceptor.

dos ébv 00 sEEL ce ébv éob

Once again we find even lower detailed bounding volumes for the wings.

4 APPROXIMATING HETEROGENEOUS BVHS 5

ﬁ mm%&h“

Finally we find a single bounding volume for the entire tie interceptor. This completes our boundig
volume hierarchy.

Hm-

From the example it is quite obvious that our approximating heterogeneous bounding volume hierarchy
would be more than accurate in a wide range of applications. Especially in game applications, animations,
virtual reality world and motion planning. It is very common to attribute each leaf bounding volume with
the faces they enclose.

4.1 The Construction Algorithm

The construction algorithm we used in our example belongs to a group called bottom-up methods.
From the example it should be pretty obvious why they are called so. There exist two other groups of
construction algorithms these are called top-down and incremental methods.

Using a “human computer” approach as we did is very time consuming and extremely error prone
due to human errors. It took us several hours just to get the little example right. It would be nice if a
computer could construct the bounding volume hierarchy automatically. Unfortunately this is not easy.
The majority of construction algorithms today uses top-down methods, which recursively partition the
object into separate sets based on variance and not the actual shape of the objects.

As our example illustrates we believe that a bottom-up method would be the best way to construct
the kind of bounding volume hierarchy we want. Those bottom-up methods we know of, only considers
one kind of bounding volume, which result in homogeneous bounding volume hierarchies. Considering
several different kind of bounding volumes (heterogeneous) therefore introduces several other problems
than just those of homegeneous bounding volume hierarchies.

In our opinion constructing a bounding volume hierarchy in the way we want to, leaves us with several
problems.

Shape decomposition How should we decompose the shape of an object into subsets?

Bounding volume fitting How do we find the best way to fit a given kind of bounding volume to some
subset of the shape of the object?

Redundancies If we have chosen to apply a fully conservative coveraging strategy®to the shape of an
object then it is very likely that redundant bounding volumes could exist. How do we eliminate
such redundancies?

2This basical means that at any level in the hierarchy the entire shape is covered by the bounding volumes belonging to
that level. The opposite is called sample-based coverage.

4 APPROXIMATING HETEROGENEOUS BVHS 6

Bounding volume selection What kind of bounding volume should we select for a subset of the shape
of the object?

Approximation control How should we control the approximation? Both outer and inner approxima-
tions could be mixed as in our example.

The three first problems are general problems, which also applies to homogeneous bounding volume
hierarchies. The last two problems are specific to heterogeneous and approximating bounding volume
hierarchies respectively.

4.2 The Queries Algorithms

As described previously we are interested in three different kinds of queries, these are:
e Penetration detection
¢ Contact determination

e Separation distance

The algorithms for performing these kinds of queries and other queries (for instance span distance)
have not changed much, since hierarchical bounding volume hierarchies began their evolution.

All these algorithms are basically nothing more than a simple traversal of a hierarchical data structure,
which in most cases is a tree structure as in our example. Below we have listed such an algorithm.

0: Q: Queue

1: algorithm simple-traversal(A:BVH,B:BVH)
2: let a be root of A

3: let b be root of B

4. push (a,b) onto Q

5: while Q not empty

6 pop (a,b) from Q

7: update position and orientation of a and/or b
8: if a and b do not overlap then

9: continue with next loop

10: if a and b both leaves then

11: treat collision between a and b
12: pick either a and/or b

13: if a was picked then

14: for all children c of a do

15: push (c,b) onto Q

16: if b was picked then

17: for all children c of b do

18: push (a,c) onto Q

This algorithm can be used for penetration detection by reporting a penetration in line 11. In our
case with heterogeneous bounding volumes the only difficulties we have are to determine a fast, efficient
and robust way to update and detect overlap between all the kinds of bounding volumes (line 7 and 8 in
the pseudocode).

4 APPROXIMATING HETEROGENEOUS BVHS 7

Coordinate system update How to update the different kinds of bounding volumes according to the
current position and orientation of the objects.

Overlap detection How to detect overlaps between the different kinds of bounding volumes in a fast,
efficient and robust way.

When the test in line 8 succedes this is sometimes called culling or pruning, because the entire sub
hierarchies, which are below the two bounding volumes, are totally disregarded in the rest of the traversal.

The pseudocode in lines 12-18 covers what is usually called the traversal rule or the descent rule. This
part of the algorithm determines how we walk through the bounding volume hierarchies when we perform
our queries. There exist several different variations and heuristics for these traversal rules.

Traditionally the same algorithm can be modified to collect exact information about the overlapping
parts of the shapes of the objects. The small modification happens again in line 11. This time we simply
test the attributed faces of the bounding volumes for overlap, and report those, which overlap.

We can however not use this kind of approach for contact determination, because we want to detect
near touching contact between shapes. That is those parts of the shapes where the separation distance is
below some predefined threshold value. In other words we want to be capable of detecting contact points
before penetration occurs. The reason for this desire is due to our background in dynamic simulation. In
most simulator paradigms penetrations of objects are totally forbidden3.

Another problem with the traditional approach for contact determination is redundant contact points.
Imagine that a leaf bounding volume b from one hierarchy overlaps two leaf bounding volumes a; and as
from another hierarchy. If for instance a; and as share some common edge then redundant contact points
will be computed along this edge. Our experience indicate that the less number of faces a leaf bounding
volume encloses the greater the chance for more redundant contact points. Removing redundant contact
points can be extremely computational expensive for large polygon models.

Eventhough our approximating bounding volume hierarchy is cabable of attributing the leaf bounding
volumes with faces, which makes it possible to perform exact contact determination it is not what we
always want. First of all a leaf bounding volume could enclose several thousands of faces, making it
a computational difficult problem to compute contact points between the faces of two leaf bounding
volumes. Second of all we would like to exploit the approximation idea, which means that the contact
determination should be done between the geometries of the approximating bounding volumes and not
the underlining geometry they approximate.

Let us summarize the contact determination problems.

Near touching contact Performing contact determination before penetration happens.
Exact determination Detecting contact points between the real shapes of the objects.

Approximate determination Detecting contact points between the approximating bounding volumes.

Having dicussed the two first kind of queries let us now turn our attention toward the last kind of query,
the separation distance. The simple traversal pseudocode query can easily be changed to accomodate this
kind of query. The idea is to keep track of the currently best known estimate and then prune away those
subparts of the hierarchies, which have a higher separation distance than the estimate.

3Penalty methods are the only exception.

4 APPROXIMATING HETEROGENEOUS BVHS 8

0: Q: Queue

1: algorithm distance-traversal(A:BVH,B:BVH)
2 estimate = infinity

3: let a be root of A

4: let b be root of B

5: push (a,b) onto Q

6 while Q not empty

7 pop (a,b) from Q

8: update position and orientation of a and/or b

9: if distance between a and b greater than estimate then
10: continue with next loop

11: estimate = distance between a and b

12: if a and b both leaves then

13: compute closest distance between attributed faces
14: assign computed distance to estimate

15: pick either a and/or b

16: if a was picked then

17: for all children c of a do

18: push (c,b) onto Q

19: if b was picked then

20: for all children c of b do

21: push (a,c) onto Q

22: return estimate

Again we have the same problems with exact and approximate computation as we did with contact
determination. Note that the approximation can be achieved simply be omitting lines 12-14.

Distance Computation How to compute the distance between different kinds of bounding volumes.
Exact computation Computing the separation distance between the real shapes of the objects.

Approximate computation Computing the separation distance between the approximating bounding
volumes.

Note that if an approximate computation is chosen then the computed estimate would proberly be a
very tight lower bound to the true value. It is even possible to derive an upper bound for the distance if
one knows how well the leaf bounding volumes approximate the true shape of the objects (see [43]).

4.3 Comparison with Traditional Hierarchies

Let us try to compare our approximating heterogeneous bounding volume hierarchy with a traditional
hierarchy. By traditional we mean a homogeneous boundig volume hierarchy constructed by a binary
partitioning top-down method. Such a traditional hierarchy would be a binary tree. The leaf bounding
volumes would enclose exactly one face.

Since the tie interceptor have little more than 80.000 faces a traditional hierarchy would contain
280.000 — 1 = 159999 ~ 160000 nodes. Our approximating bounding volume hierarchy contain only 31

5 PREVIOUS WORK 9

nodes. One immediate benefit is an extremely huge memory saving. Another indirect benefit from the
smaller size is a huge performance improvement.

Note that our approach of finding bounding volumes are different from the traditional methods in
the way that traditional methods converges towards the shape of the objects, approximating bounding
volumes converges towards the volume (solid based) of the objects.

Previous work with bounding volume hierarchies has shown that tighter fitting bounding volumes
and minimizing interpenetration of bounding volumes at the same level of detail greatly improve on the
ability to prune away huge subparts of the hierarchies thereby improving the overall performance.

If we take a look at our tie interceptor example we notice that the bounding volumes we use are very
tight fitting and interpenetration of the bounding volumes are definitely at a minimum at the highest
level of detail it is allmost totally eliminated. We therefore speculate that approximating heterogeneous
bounding volume hierarchies have an improved pruning ability over traditional hierachies. This will also
contribute to a performance improvement.

As a final point our requirements and ideas for contact determination are not accomodated by the
traditional hierarchies. Figuring out a way to perform contact determination as we have described would
prove itself extremely useful especially for simulation purposes.

We will end this subsection, by listing the benefits we believe approximating heteregeneous bounding
volume hierarchies possess.

e Memory savings
e Improved prunning capabillities
e Improved performance

e New approach for contact determination with bounding volume hierarchies.

5 Previous Work

Bounding volume hierarchies have been around for a long period of time. Consequently there is a huge
wealth of literature about boudning volume hierarchies. Most of the literature addresses homogeneous
bounding volume hierarchies and top-down construction methods. A great variarty of different kinds of
bounding volumes have been tried out. Hubbard [22, 23, 24, 25], Palmer [48] and Palmer and Grimsdale
[47] have used spheres, whereas van den Bergen [27] have worked with axed aligned bounding volumes
(AABBs). Klosowski, Held, Mitchell, Sowizral and Zikan [40] and Zachman [32] have done a lot of work
with discrete orientation polytypes (k-DOPs), Gottschalk, Lin and Manocha [13] and Gottshcalk [14, 15,
16] have used oriented bounding boxes (OBBs). Krishnan, Pattekar, Lin and Manocha [11] looked at a
higher order bounding volume, which they called spherical shells. Larsen, Lin, Manocha and Gottshcalk
[45] tried out swept sphere volumes (SSVs), which are an unification of several different kinds of shapes.

All this work have resulted in valuable knowledge about the different kinds of choices of bounding
volumes. It have been discovered that there is a tradeoff between the complexity of the geometry of a
bounding volume and the speed of its overlap test and the number of overlap tests in a query. This
tradeoff is perhaps best illustrated by a figure.

5 PREVIOUS WORK 10

Faster overlap tests

Spheres AABBs OBBs Convex Hulls

Fewer overlap tests

There have not been written much about approximating bounding volume hierarchies, Hubbard’s
work [25] are to our knowledge the latest contribution to this subject.

There have been written even less about heterogeneous bounding volume hierarchies to our knowledge
SSVs [45] are the most recent work in this area.

The general belief is however that heterogeneous bounding volumes does not change the fundamental
algorithms but merely introduces a raft of other problems. We have ourself argumented for this viewpoint
in this paper.

It is also believed that heterogeneous boundning volumes could provide better and more tightly fitting
bounding volumes resulting in higher convergence towards the true shape volume of the objects. This
could mean an increase in the prunning capabilities and a corresponding increase in performance.

Most of the work with bounding volume hierarchies has addressed objects that are representated
by polygonal models many people have stated that they believe OBBs (and other retangular volumes)
provides the best convergence for this kind of shape, and many experiments also indicate this?[13, 32, 45,
16].

In our opinion one of the most amazing thing about bounding volume hierachies is that the underly-
ing query algorithms for penetration detection, separation distance and contact determination have not
changed much. In its basic form these algorithms are nothing more than simple traversals. Instead most
of the recent work with bounding volume hierarchies have taken the following directions.

New volumes Trying out new kinds of bounding volumes.
Faster tests Finding faster and better overlap test methods.

Fitting methods Figuring out better methods for fitting a bounding volume to a subset of an objects
underlying geometry.

Volume Comparisions Comparing homogeneous bounding volume hierarchies of different bounding
volume types with each other.

There have also been a lot of attemps to try out different methods and heuristics, which could improve
on the performance of these traversal algorithms.

Depth control In time critical applications it can sometimes be beneficial to set a limit on the depth
a traversal is allowed to proceed in a bounding volume hierarchy. Thereby trading accuracy for
performance [22].

Layered bounding volumes Having recoginized the tradoffs between the complexity of the geometry
of the bounding volumes and their overlap test speed. Simpler geometries are tried out first in order
to get a quick rejection test. Spheres are most commonly used [17, 28, 16].

4Note the difference retangular volumes are believed to converge best towards the shape, whereas heterogeneous volumes
are believed to converge best towards solids.

6 CONCLUSION 11

Caching bounding volumes Caching bounding volumes from previous invokations creates withness
that can exploit spatial and temporal coherence [17, 28, 16].

Shared bounding volumes This changes a hierarchy from a tree into a DAG (see [25]).

Eventhough there exist several ways for constructing boundig volume hierarchies. There have been a
tendency to use top-down methods. Many people believe that bottom-up methods would be superior to
top-down methods in the sense that smaller and tighter bounding volume hierarchies can be constructed.
To our knowledge the work of Hubbard [25] and Palmer [47, 47] are the latest on bottom-up construction
methods. Palmer uses a method based on octrees, whereas Hubbard uses a method based on the medial
axe surfaces. Hubbard have shown that his method is better than the one Palmer uses. Hubbards method
is however not very fast nor very easy to implement.

There are a substantial amount of literature about contact determination, but in our opinion it seems
to focus on different kinds of problems. Like generating all possible contact formations between polygon
models, handling uncertainties in relative position of objects or planing of contact transitions. When
we described contact determination we especially had rigid body simulation in mind. Most literature
about collision detection does not treat the specific needs of this area, but merely limit itself to only
be concerned about overlapping faces. The work of Bouma and Vanecek [46] does however address this
specific topic. To our knowledge there does not exist any literature on how to compute contact points
based on bounding volume hierarchies in the way we want them. We are aware of attempts to apply
hysterese 5to the traditional hierarchies when determining contact points, but it limits simulators to be
based on backtracking control algorithms and it is believed to be extremely computational expensive.

5.1 Our Preliminary Thesis

It is our belief that approximating heterogeneous bounding volume hierarchies would be superior com-
pared to traditional hierarchies in terms of size, pruning ability and performance.

We believe our ideas and concepts for extending approximating heterogeneous bounding volume hi-
erarchies with contact determination would result in a performance improvement over traditional hierar-
chies. The work would definitely be valuable to the graphics community, because it will solve a practical
unpleasent problem.

There have not been much attention towards bottom-up construction methods of hierarchies, and
since it is general believed that hierarchies constructed in this way are smaller and/or tighter fitting and
therefore superior in terms of prunning capability and convergence, it is perhaps about time to find a
more simple and effective solution for a bottom-up method, which could initiate further work in this area
and perhaps even make bottom-up methods a practical alternative to the top-down methods used today.

The ideas of using approximating bounding volumes for time critical collision detection was pioneered
by Hubbard. Our ideas in this area is merely an extension of Hubbards work, they are however original
and any results would be valuable to the graphics community both in terms of usage and future work.

6 Conclusion

We have shown how collision detection algorithms are classified into groups and thereby we have shown
how approximating heterogeneous bounding volume hierarchies are related to other kinds of collision
detection algorithms.

We have explained the ideas and concepts behind approximating heterogeneous bounding volume
hierarchies. Hopefully giving the reader a good intuition of what we mean by the phrase approximating
heterogeneous bounding volume hierarchy.

We have described some of the obvious problems that need to be solved. Some of these problems are
not specific for approximating heterogeneous bounding volume hierarchies, but are general to bounding
volume hierarchies.

5The basic theory of hysterese also known as contact tracking is described in [6].

REFERENCES 12

We have discussed what others have done and thereby explained why approximating heterogeneous
bounding volume hierarchies are original in themselves.

Especially we have explained why we believe approximating heterogeneous bounding volume hierar-
chies would prove themself useful, by comparing them to traditional hierarchies.

References

(1]

2]

(3]

4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

James D. Foley, Andries van Dam, Steven K. Feiner and John F. Hughes: Computer Graphics: Principles and Pratice,
2nd ed. in C, Addison-Wesley, 1996.

Kenny Erleben: Et studie af fysisk baseret simulation af stive legemer, Skriftlig projekt, Datalogisk Institut Kgben-
shavns Universitet. April 2000 (nr. 99-12-12).

Kenny Erleben: Et studie af grovkornet kollisionsbestemmelse, Skriftlig projekt, Datalogisk Institut Kgbenshavns
Universitet. Juli 2000 (nr. 00-08-1).

Kenny Erleben: En introducerende lerebog i dynamisk simulation af stive legemer, Speciale, Datalogisk Institut Kgben-
shavns Universitet. Maj 2001 (nr. 00-09-1).

M. Moore and J. Wilhelms, Collision Detection and Response for Computer Animation, Computer Graphics (proc.
SIGGRAPH), vol. 22, pp 289-298, 1988.

Brian Mirtich: Rigid Body Contact: Collision Detection to Force Computation, MERL, Technical Report, TR-98-01,
March 1998.

Brian Mirtich: V-Clip: Fast and Robust Polyhedral Collision Detection, ACM Transactions on Graphics. Vol. 17. No.
3. July 1998. Pages 177-208.

J. D. Cohen, M. K. Ponamgi, D. Manocha and M. C. Lin: Interactive and Ezact Collision Detection for Large-Scaled
Enviroments, Technical report TR94-005, Department of Computer Science, University of N. Carolina, Chapel Hill.
http://www.cs.unc.edu/ dm/collision.html.

D. Manocha and M. C. Lin: Efficient Contanct Determination Between Geometric Models, International Journal of
Computational Geometry and Applications, 1995. http://www.cs.unc.edu/ dm/collision.html.

M. K. Ponamgi, D. Manocha and M. C. Lin: Incremental algorithms for collision detectin between solid models, IEEE
Transactions on Visualization and Computer Graphics , 1997. http://www.cs.unc.edu/ dm/collision.html.

S. Krishnan, A. Pattekar, M. Lin and D. Manocha.: Spherical shell: A higher order bounding volume for fast prozimity
queries, In Proc. of Third International Workshop on Algorithmic Foundations of Robotics, pages 122-136, 1998.

M. Lin and S. Gottschalk: Collision Detection between Geometric Models: A Survey, Appeared in the Proceedings of
IMA Conference on Mathematics of Surfaces 1998. http://www.cs.unc.edu/ dm/collision.html

S. Gottschalk, M. C. Lin and D. Manocha: OBB-Tree: A Hierarchical Structure for Rapid Interference Detection,
Technical report TR96-013, Department of Computer Science, University of N. Carolina, Chapel Hill. Proc. of ACM
Siggraph’96. 1996. http://www.cs.unc.edu/ geom/OBB/OBBT.html

S. Gottschalk: Seperating azis theorem, Technical Report TR96-024, Department of Computer Science, UNC Chapel
Hill, 1996 ftp://cs.unc.edu/pub/users/Gottsch.

S. Gottschalk: Good-Fit Box for 8D Triangles in O(n lg(n)) Time, erratta for [14].
http://www.cs.unc.edu/ geom/OBB/OBBT .html.

S. Gottschalk: Collision Queries using Oriented Bounding Bozes, Ph.d. thesis, Department of Computer Science,
UNC Chapel Hill, 2000. http://www.cs.unc.edu/ stefan/.

David Eberly: Dynamic Collision Detection using Oriented Bounding Bozes, Magic Software, Inc. http://www.magic-
software.com.

David Eberly: Intersection of Objects with Linear and Angular Velocities using Oriented Bounding Bozes, Magic
Software, Inc. http://www.magic-software.com.

David Eberly: Centers of Simplez, Magic Software, Inc. http://www.magic-software.com.
David Eberly: Least Squares Fitting of Data, Magic Software, Inc. http://www.magic-software.com.

David Eberly: Intersection of Cylinders, Magic Software, Inc. http://www.magic-software.com

REFERENCES 13

[22]

23]

[24]

25]

[26]

(27]

28]

[29]

[30]

[31]

[32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

P. M. Hubbard: Interactive Collision Detection, Proceedings of the IEEE Symposium on Research Frontiers in Virtual
Reality, October 25-26, 1993, pp. 24-31. http://siesta.cs.wustl.edu/ pmh/research.html.

P. M. Hubbard: Collision Detection for Interactive Graphics Applications, IEEE Transactions on Visualization and
Computer Graphics , 1(3), September 1995, pp. 218-230. http://siesta.cs.wustl.edu/ pmh/research.html.

P. M. Hubbard: Real-Time Collision Detection and Time-Critical Computing, Proceedings of the
First ACM Workshop on Simulation and Interaction in Virtual Environments, July 1995, pp. 92-96.
http://siesta.cs.wustl.edu/ pmh/research.html.

P. M. Hubbard: Approxzimating Polyhedra with Spheres for Time-Critical Collision Detection, ACM Transactions on
Graphics , 15(3), July 1996, pp. 179-210. http://siesta.cs.wustl.edu/ pmh//research.html.

S. Suri, P. M. Hubbard and J. F. Hughes: Analyzing Bounding Bozes for Object Intersection,
http://siesta.cs.wustl.edu/ pmh/research.html.

Gino van den Bergen: Efficient Collision Detection of Complex Deformable Models using AABB Trees, Department
of Mathematics and Computer Science Eindhoven University of Technology, 1998. http://www.win.tue.nl/ gino/solid.

Gino van den Bergen: A Fast and Robust GJK Implementation for Collision Detection of Convex Objects, Department
of Mathematics and Computer Science Eindhoven University of Technology, 1999. http://www.win.tue.nl/ gino/solid.

Gabriel Zachman: Ezact and Fast Collision Detection, Diploma thesis Technical University Darmstadt, Dept. of
Computer Science, 1994. http://www.igd.fhg.de/ zach.

Gabriel Zachman: The BozTree: Ezact and Fast Collision Detection of Arbitrary Polyhedra, SIVE95 (First Workshop
on Simulation and Interaction in Virtual Environments), University of Iowa, July 1995. http://www.igd.thg.de/ zach.

Gabriel Zachman: Real-time and Ezact Collision Detection for Interactive Virtual Prototyping, Proc. of the 1997
ASME Design Engineering Technical Conferences, September 14-17, 1997, Sacramento, California. Paper # CIE-4306.
http://www.igd.fhg.de/ zach.

Gabriel Zachman: Rapid Collision Detection by Dynamically Aligned DOP-Trees, Proc. of IEEE Virtual Reality
Annual International Symposium; VRAIS *98. Atlanta, Georgia; March 1998. http://www.igd.fhg.de/ zach.

C. Qin, S. Cameron and A. Mclean: Towards Efficient Motion Planning for Manipulators with Complex Geometry,
ISATP’95, August 1995. ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Stephen.Cameron.

S. Cameron and R. K. Culley: Determining the Minimum Translational Distance between
Two Conver Polyhedra, IEEE Conf. Robotics and Automation, San Francisco, April 1986.
ftp://ftp.comlab.ox.ac.uk /pub/Documents/techpapers/Stephen.Cameron.

S. Cameron: Enhancing GJK: Computing Minimum and Penetration Distances between Convexr Polyhedra, Int Conf
Robotics and Automation, April 1997. ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Stephen.Cameron.

S. A. Ehmann and M. C. Lin: Accelerated Prozimity Queries Between Conver Polyhedra By Multi-
Level Voronoi Marching, In Proc. International Conf. on Intelligent Robots and Systems, 2000.
http://www.cs.unc.edu/ geom/SWIFT/

S. A. Ehmann and M. C. Lin: SWIFT: Accelerated Prorimity Queries Between Convex Polyhedra By Multi-Level
Voronoi Marching, Technical Report, Computer Science Department, University of North Carolina at Chapel Hill,
2000. http://www.cs.unc.edu/ geom/SWIFT/

S. A. Ehmann and M. C. Lin: Accurate and Fast Prozimity Queries Between Polyhedra Using Convexr Surface De-
composition, EUROGRAPHICS 2001, volume 20 (2001), Number 3. http://www.cs.unc.edu/ geom/SWIFT++/

James Thomas Klosowski: Efficient Collision Detection for Interactive 8D Graphics and Virtual Environments,
Ph.D. Dissertation, State University of New York at Stony Brook, May 1998. http://www.ams.sunysb.edu/ jk-
losow /publications

J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral and K. Zikan: Efficient Collision Detection Using Bounding
Volume Hierarchies of k-DOPs, IEEE Transactions on Visualization and Computer Graphics, March 1998, Volume 4,
Number 1. http://www.ams.sunysb.edu/ jklosow/publications

Thomas MOller: A Fast Triangle-Triangle Intersection Test,

E. Welzl: Smallest enclosing disks (Balls and ellipsoids, New Results and New Trends in Computer Science. Lecture
Notes in Computer Science, vol 555, pages 359-370. Springer-Verlag, 1991.

David E. Johnson and Elaine Cohen: A Framework For Efficient Minimum Distance Computations, Proc. IEEE Intl.
Conf. Robotics & Automation, Leuven, Belgium, May 16-21, 1998, pp. 3678-3684

REFERENCES 14

[44]

[45]

[46]

[47]

48]

Tim Culver, John Keyser, and Dinesh Manocha: Accurate Computation of the Medial Axzis of a Polyhedron,
In Proc. of ACM Solid Modeling, 1999. UNC Chapel Hill Computer Science Technical Report TR98-034, 1998
http://www.cs.unc.edu/ geom/MAT

Eric Larsen, Stefan Gottschalk, Ming C. Lin, Dinesh Manocha: Fast Prozimity Queries with Swept Sphere Vol-
umes, Technical report TR99-018, Department of Computer Science, University of N. Carolina, Chapel Hill. 1999.
http://www.cs.unc.edu/ geom/SSV

William J. Bouma and George Vanecek Jr.: Modelling Contacts in a Physical Based Simulation, Proc. Solid Modeling,
409-419, 1993, 1, 3.

I.J.Palmer and R.L.Grimsdale: Collision detection for animation using sphere-trees, Computer Graphics Forum, 14(2),
1995, pp105-116.

I.J.Palmer: Collision detection for animation: the use of the sphere-tree data structure, presented at The Second
Departmental Workshop on Computing Research, University of Bradford, June 1995.

