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Fixed point formulae and solitaire games

Dietmar Berwanger and Erich Gradel
Mathematische Grundlagen der Informatik
RWTH Aachen

Abstract

The model checking games associated with fixed point logics are parity games, and it
is currently not known whether the strategy problem for parity games can be solved in
polynomial time. We study Solitaire-LFP, a fragment of least fixed point logic, whose model
checking games are nested soltaire games. This means that on each strongly connected
component of the game, only one player can make non-trivial moves. Winning sets of nested
solitaire games can be efficiently computed.

The model checking problem for Solitaire-LFP is PSPACE-complete in general and PTIME-
complete for formulae of bounded width. On finite structures (but not on infinite ones),
Solitaire-LFP is equivalent to transitive closure logic.

1 Introduction

Fixed point logics play an important role in many areas of logic. LFP, the extension of first-
order logic by least and greatest fixed points is of fundamental importance in finite model
theory, descriptive complexity, and databases. The modal p-calculus L, is a similar extension of
propositional modal logic. It relates to LFP in much the same way as multi-modal logic relates
to first-order logic. This logic has also been extensively studied for a number of reasons. In
terms of expressive power, it subsumes a variety of logics used in verification, in particular LTL,
CTL, CTL*, PDL, and also many logics used in other areas of computer science, for instance
game logic and description logics. Both LFP and L, have a rich theory, and are well-behaved
in model-theoretic and also, to a large extent, in algorithmic terms.

Nevertheless there are still important open problems concerning their complexity. The most
prominent one is whether the model checking problem for the modal p-calculus, or, more gen-
erally, for LFP-formulae of bounded width can be solved in polynomial time. This problem
is equivalent to an algorithmic problem in the theory of infinite games, namely the question
whether winning sets in parity games can be computed in polynomial time. Parity games are
two-person games on finite or infinite game graphs which admit infinite plays and where each
position is assigned a natural number, called its priority. The winner of an infinite play is deter-
mined according to whether the least priority seen infinitely often during the play is even or odd.
Parity games arise as the natural model checking games for fixed point logics. Priorities of game
positions correspond to the alternation level of fixed point formulae. It is open whether winning
sets and winning strategies for parity games can be computed in polynomial time. The best
algorithms known today are polynomial in the size of the game, but exponential with respect to
the number of priorities.



In this paper we have a closer look at a class of parity games that can be solved efficiently,
and at the fixed point formulae that are associated with them. Nested solitaire games are parity
games, where on each strongly connected component, only one player can make non-trivial
choices. As we will show, the winning sets of a nested solitaire game can be computed in time
that is linear in the product of the number of priorities with the size of the game graph.

We define Solitaire-LFP, a fragment of least fixed point logic, whose model checking games
are nested solitaire games, and we analyse the algorithmic properties and the expressive power
of this fragment. A corresponding fragment in the modal u-calculus has already been studied
in [6], and has been shown to be equivalent to the logic ECTL*. For Solitaire-LFP, it turns
out that the model checking problem is PSPACE-complete in the general case (for formulae of
unbounded width) and PTIME-complete for formulae of bounded width. Further we prove that
on finite structures, Solitaire-LFP is equivalent to transitive closure logic (TC). To establish
this result we exploit the solitaire-structure of the model checking game and the fact that TC-
formulae are equivalent to stratified linear Datalog programs. We construct for every formula
in Solitaire-LFP a stratified linear Datalog program which defines the winning positions in the
associated model checking game.

A further consequence of this proof is that every formula in Solitaire-LFP of width k& (of
arbitrary alternation level) is equivalent, on finite structures, to an alternation-free fixed-point
formula of width at most 2k.

2 Least fixed point logic

Least fixed point logic, denoted LFP, extends first order logic by least and greatest fixed points
of definable relational operators. Every formula v(R, ), where R is a relation symbol and @ is a
tuple of variables of the same length as the arity of R, defines, on any structure 2 of appropriate
vocabulary, an update operator F : P(A¥) — P(AF) given by F: R+ {a: (A, R) E ¥(R,a)}.
If R occurs only positively in 4, this operator is monotone and has a least fized point, that can
also be constructed inductively, in stages X° := (), X+ := F(X?) for successor ordinals «,
and X* :=J acx X @ for limit ordinals A. By monotoncity of F', the sequence of stages increases
until it reaches the least fixed point. The greatest fized point is constructed in a dual way.

Formally, LFP is defined by adding to the syntax of first order logic the following fized point
formation rule: If (R, z) is a formula with a relational variable R occurring only positively
and a tuple of first-order variables @, and if ¢ is a tuple of terms (such that the lengths of & and
t match the arity of R), then

[Ifp Rz .v|(t) and [gfp Rz .|(t)

are also formulae, binding the variables R and @.

The semantics of least fixed point formulae in a structure 2, providing interpretations for all
free variables in the formula, is the following: 2 |= [Ifp Rz .4](¢) if t* is contained in the least
fixed point of the update operator defined by v on 2. Similarly for greatest fixed points.

Note that in formulae [Ifp Rz .1](t) one might permit that ¢ may have other free variables
besides @, which are called parameters. However, every LFP-formula can easily be transformed
into an equivalent one without parameters, at the expense of increasing the arity of fixed point
variables. In this paper, we only consider fixed point formulae without parameters.



The duality between least and greatest fixed point implies that for any formula %

8fp Rz . 4](t) = —[Ifp Rz . ~[R/~R]](¢).

Using this duality together with de Morgan’s laws, every LFP-formulae can be brought into
negation normal form, where negation applies to atoms only.

The model checking problem for a logic £ is to establish for a given formula ¢ € £ and an
appropriate finite structure 2, whether 2[ |= 1. The complexity of model checking problems can
be measured in different ways. In general, both the structure and the formula (more precisely,
their representations) are considered as inputs and we speak about the combined complezity of L.
But in many instances it makes sense to fix either the formula or the structure and measure the
complexity in terms of the other input, thus obtaining the notions of expression complezity and
data complexity. We say that the data complexity of L is complete for a complexity class C if
the model checking problem is in C for every fixed formula ¢ € L, and if it is C-hard for some
fixed formula ¢ € £ (and similarly for the expression complexity).

For general LFP-formulae the model checking complexity is well-known [10, 17].

Theorem 2.1. The combined and expression complezxity of LFP is EXPTIME-complete, and the
data complezity is PTIME-complete.

Note that these complexity bounds take into account only the length of the input formula. It
turns out that the critical parameter responsible for the EXPTIME-completeness is actually the
width of a formula, i.e., the maximal number of free variables in its subformulae. Fortunately,
in many applications we only need formula of small width. In particular the modal u-calculus
can be translated to LFP-formulae of width two. For LFP-formulae of bounded width, better
complexity bounds apply.

Proposition 2.2. The model checking problem for LEP-formulae of bounded width (and for the
modal p-calculus) is contained in NP N co-NP and PTIME-hard.

It is open whether this problem can be solved in polynomial time. Positive results have
been obtained for fragments of LFP. One such partial result involves the alternation depth, i.e.,
the number of genuine alternations between least and greatest fixed points in a formula. For
LFP-formulae of bounded width and bounded alternation depth the model checking problem
can be solved in polynomial time.

The fragments of bounded alternation depth in LFP induce a strict semantical hierarchy
[3, 15]. On finite structures, this remains true for the modal u-calculus (since it has the finite
model property) but not for LFP. Every LEP-formula is equivalent, over finite structures, to an
alternation free one, indeed to a formula with a single application of an lfp-operator to a first-
order formula [10]. However, this result does not help to improve the model checking complexity,
since the proof collapses d nested fixed points to one of width dk, and the complexity of LFP is
exponential in the formula width.

Transitive closure logic. A semantic fragment of LFP that is well-behaved in terms of
complexity is transitive closure logic, TC, which extends first order logic by a constructor for
forming the transitive closure of definable relations. Syntactically, if ¢(x,y) is a formula in
variables @, y, and s, t are terms, the tuples @, vy, s, and £ being all of the same length, then

[ty v(z,y)l(s, 1)



is a also a TC-formula. Its meaning can be expressed in terms of LFP as
fp Tzy . o(x,y) V Iz(Tzz A (2, 9)](s,t).

Observe that any TC-formula translates into an alternation free LFP-formula of the same
width. The model checking complexity of TC is well-understood [9, 11, 17].

Proposition 2.3. The model checking problem for TC is PSPACE-complete in the general
case and PTIME-complete for formulae of bounded width. The data complexity is NLOGSPACE-
complete.

For future use in Section 5, we mention that transitive closure logic can be naturally char-
acterised in terms of the database query language Datalog.

We recall that a Datalog rule is an expression of the form H < Bji,..., B, where H, the
head of the rule, is an atomic formula Ru; ---us, and Bi,...,B,, the body of the rule, is a
collection of literals (i.e., atoms or negated atoms). The relation symbol R is called the head
predicate of the rule. A basic Datalog-program II is a finite collection of rules such that none
of its head predicates occurs negated in the body of any rule. Given a relational structure 2
over the vocabulary of the input predicates, the program computes, via the usual fixed point
semantics, an interpretation for the head predicates.

A stratified Datalog program is a sequence II = (Ily,...,IL.) of basic Datalog programs,
called the strata of II, such that each of the head predicates of II is a head predicate in precisely
one stratum II; and is used as an body predicate only in higher strata II; for j > 7. In particular,
this means that

1) if a head predicate of stratum II; occurs positively in the body of a rule of stratum II;,
J
then j <4, and

(it) if a head predicate of stratum II; occurs negatively in the body a rule of stratum II;, then
Jj <.

The semantics of a stratified program is defined stratum per stratum. The body predicates
of a stratum II; are either head predicates in the entire program II or are head predicates of a
lower stratum. Hence, once the lower strata are evaluated, we can compute the interpretation
of the head predicates of II; as in the case of basic Datalog. For details, please consult [1].

A stratified Datalog program is linear if in the body of each rule there is at most one
occurrence of a head predicate of the same stratum (but there may be arbitrary many occurrences
of head predicates from lower strata). Linear programs suffice to define transitive closures, so
it follows by a straightforward induction that TC C Linear Stratified Datalog. The converse is
also true (see [4, 7]).

Proposition 2.4. Linear Stratified Datalog is equivalent to TC.

3 Model checking games

Model checking problems, for almost any logic, can be formulated as the problem of computing
winning positions in the appropriate evaluation games. For fixed point logics like LFP or L,
the evaluation games are parity games. A parity game is given by a transition system G =



(V, Vo, E,Q), where V is a set of positions with a designated subset Vp, E C V xV is a transition
relation, and Q2 : V' — N assigns to every position a priority. The number of priorities in the
range of Q is called the indez of G. A play of G is a path vg,v1,... formed by the two players
starting from a given position vy. If the current position v belongs to Vj, Player 0 chooses a
move (v,w) € FE and the play proceeds from w. Otherwise, her opponent, Player 1, chooses the
move. When no moves are available, the player in turn loses. In case this never happens the
play goes on infinitely and the winner is established by looking at the sequence Q(vg), Q(v1), ...
If the least priority appearing infinitely often in this sequence is even, Player 0 wins the play,
otherwise Player 1 wins.

Let V4 := V' \ V, be the set of positions where Player 1 moves. A positional strategy for
Player i in G is a function f : V; — V which indicates a choice (v, f(v)) € E for every position
v € V;. (It is called positional, because it does not depend on the history of the play, but only
on the current position.) A strategy f for Player 7 is a winning strategy if he wins every play
in which he moves according to f. The Forgetful Determinacy Theorem for parity games [5]
states that these games are always determined (i.e., from each position one of the players has a
winning strategy) and in fact, positional strategies always suffice.

Theorem 3.1 (Forgetful Determinacy). In any parity game the set of positions can be
partitioned into two sets Wy and W1 such that Player 0 has a positional winning strategy on Wy
and Player 1 has a positional winning strategy on Wj.

We call Wy and W, the winning sets of Player 0 and, respectively, Player 1 and the pair
(Wo, W1) the winning partition or solution of G. Since positional strategies are small objects and
since it can be checked efficiently whether a strategy is winning, the question whether a given
position is winning for Player 0 can be decided in NP N co-NP. In fact, it is known [12] that
the problem is in UP N co-UP. The best known deterministic algorithms to compute winning
partitions of parity games have running times that are polynomial with respect to the size of
the game graph, but exponential with respect to the index of the game [13].

Theorem 3.2. The winning partition of a parity game G = (V,Vy, E,Q) of index d can be
computed in space O(d - |E|) and time

oa191- (7))

Consider a structure 2l and a LFP-sentence ¥ which we may assume to be in negation normal
form, without parameters, and well-named, in the sense that every fixed point variable is bound
only once.

The model checking game G(.A, ) is a parity game whose positions are formulae ¢(a) such
that ¢(x) is a subformula of 4, and a is a tuple of elements of 2, interpreting the free variables
of ¢. The initial position is 1.

Player 0 (Verifier) moves at positions associated to disjunctions and to formulae starting with
an existential quantifier. From a position ¢ V ¥ she moves to either ¢ or ¥ and from a position
Jy ¢(a,y) Verifier can move to any position ¢(a,b) for b € 2. In addition, Verifier is supposed
to move at atomic false positions, i.e., at positions ¢ of form a = @', a # d/, Ra, or —Ra (where
R is not a fixed point variable) such that 2 = . However, positions associated with literals do
not have successors, so Verifier loses at atomic false positions. Dually, Player 1 (Falsifier) moves
at conjunctions and universal quantifications, and loses at atomic true positions. In addition,



there are positions associated with fixed point formulae and with fixed points atoms. At these
positions there is a unique move (by Falsifier, say) to the formula defining the fixed point. For a
more formal definition, recall that as 1 is well-named, for any fixed point variable T in 1) there
is a unique subformula [fp Tz . ¢(T', z)](a). From position [fp Tz . ¢(T, z)](a) Falsifier moves to
¢(T,a), and from Tb she moves to ¢(T,b).

The priority labelling assigns even priorities to gfp-atoms and odd priorities to lfp-atoms.
Further, if T, T" are fixed point variables of different kind with 7" depending on T' (which means
that T occurs free in the formula defining 7”), then T-atoms get lower priority than 7”-atoms.
All remaining positions, not associated with fixed point variables, receive highest priority. As
a result, the number of priorities in the model checking games corresponds to the alternation
depth of the fixed point formula. For more details and explanations, and for the proof that the
construction is correct, see e.g. [8, 16].

Proposition 3.3. Let ¢ be an LFP-sentence and 2 a relational structure. A |= 1 if and only
if Player 0 has a winning strategy for the parity game G(2, ).

For sentences 1 of width k, the game G(2,) can be constructed in linear time with regard
to its size O(JA|* - 9). According to Theorem 3.2, we obtain the following complexity bounds
for model checking LFP via the associated parity game.

Theorem 3.4. For a finite structure 2 and an LFP-sentence ¥ of width k and alternation depth
d, the model checking problem can be solved in space O(d - |A¥ - |¢|) and time

ol (@) )

Note that if both the alternation depth and the width of the formulae are bounded, the algo-
rithm runs in polynomial time. As mentioned above, the model checking problem is EXPTIME-
complete for formulae of unbounded width, even if there is only one application of an LFP-
operator. The important unresolved case concerns LFP-formulae with bounded width, but
unbounded alternation depth. This includes the p-calculus, since every formula of L, can be
translated into an equivalent LEP-formula of width two. In fact the following three problems are
algorithmically equivalent, in the sense that if one of them admits a polynomial-time algorithm,
then all of them do.

(1) Computing winning sets in parity games.
(2) The model checking problem for LFP-formulae of width at most &, for any k£ > 2.

(3) The model checking problem for the modal p-calculus.

4 Solitaire games

The so far unresolved question whether fixed point logics admit efficient model checking al-
gorithms, and the correspondence between parity games and fixed point logics suggests that
one may identify algorithmically simple fragments of fixed point logics by studying games of
restricted shape that can be solved efficiently. A promising example for the effectivity of this
direction is the correspondence between alternation-free formulae and dull games. To define
these games we call a cycle in a game graph even (or odd) if the least priority occurring on it
is so.



Definition 4.1. A parity game is dull if even and odd cycles are disjoint. A game is called weak
if priorities cannot decrease along transitions.

Weak games and dull games are closely related notions. Observe that every weak game is
also dull. Conversely, any dull game can be transformed in linear time into an equivalent weak
game, by changing only the priorities, not the game graph. Kupferman, Vardi, and Wolper [14]
established (using different terminology) that dull games can be solved in linear time and that
they emerge as model checking games for alternation free L,-formulae. Actually, dull games
correspond in general to the alternation free fragment of LFP (see [2]). As a consequence, the
problem of checking a model 2 against an alternation free LFP-formula 1 of width k can be
solved in time O(|¢| - |A|¥). If ¢ is a formula of the modal u-calculus or guarded fixed point
logic, the complexity is O(|v] - [|2]]).

Instead of restricting reachable priorities, we can take a different approach to render games
easy, namely by restricting the interaction between the players. The simplest case is given by
solitaire games.

Definition 4.2. A parity game is called solitaire if all nontrivial moves are performed by the
same player.

In a soltaire game where only Player 0 makes nontrivial moves, his winning set consists of
those positions from which a terminal position in V; or an even cycle is reachable. Consequently,
each strongly connected component of a solitaire game is completely included in the winning set
of one of the players.

The positions from which terminal positions in V; are reachable, can be computed in linear
time using depth-first search. Hence, we may restrict our attention to games G without terminal
positions. To establish the components from which an even cycle is reachable in such a game
we distinguish two cases.

In the simplest setting, when only priorities 0 and 1 occur in G, the winning set of Player 0 is
the set of nodes from which a nontrivial strongly connected component containing at least one
position of priority 0 is reachable. By partitioning the game graph into its strongly connected
components the solution of G can be computed in linear time.

Games of higher index can be solved by reduction to several instances of games of the above
kind. For every even priority ¢ occurring in the game G, let G; be the restriction of G to positions
of priority j > 4 where the priority ¢ is replaced by 0 and all positions of priority j > 4 receive
priority 1. Note that, if Player 0 wins from a position v in some game G;, he also wins from v in
the original game G. Conversely, Player 1 wins in G only if he can reach a winning position v in
some G;. Hence, we can solve G by first computing the winning positions of Player 0 for each G;.
The winning set of Player 0 in G comprises all strongly connected components from which one
of these winning positions is reachable.

To summarise, our method involves two reachability tests, one at the beginning, to handle
terminal positions, and one at the end; between these, for every even priority, the solution of
a solitaire game with only two priorities is computed. Each of these steps requires only linear
time with respect to the size of the game graph.

Theorem 4.3. The solution of a solitaire game G = (V,Vy, E,Q) of indezx d can be computed
in time O(d- (|V| +|E|)).

A significant feature of parity games in general is that their main complexity resides in
strongly connected components. Indeed, as pointed out in [2], the partial solutions of subgames



induced in a game by strongly connected components can be propagated to obtain the global
solution with only linear overhead.

Definition 4.4. A parity game is called nested solitaire if each strongly connected component
induces a solitaire game.

Observe that in a nested solitaire game both players may perform nontrivial moves.

To solve a nested solitaire game G we can proceed as follows. First, we decompose the game
graph into its strongly connected components. Note that in any terminal component C, that
is, a strongly connected component with no outgoing edges, a position is winning in G iff it is
also winning in the subgame induced by C. As a solitaire game, this subgame can be solved
efficiently, providing a partial solution for the winning sets Wy and Wy in G.

Next, we extend the obtained partial solution by assigning to Wy the positions v € V with
some successor already in Wy, and v € V; with all successors already in Wy; the partial solution
for W propagates dually. Let G’ be the subgame induced by the positions that remained
unassigned after the propagation process. In case there are no such positions, we are done.
Otherwise, we reiterate the procedure for G’, which is again a nested solitaire game.

Since the overhead caused by partitioning the game into its strongly connected components
and by the propagation of solutions is only linear, nested solitaire games are as easy to solve as
non-nested ones.

Theorem 4.5. A nested solitaire game G = (V,Vy, E,Q) of index d can be solved in time
o(d- (V| +|E)).

Notice that any positional strategy can be presented as a solitaire game. In the automata-
theoretic view a solitaire game corresponds to a deterministic parity tree automaton whose
emptiness problem is linear time reducible to the nonemptiness problem of a one-letter nonde-
terministic parity word automaton.

5 Solitaire formulae in least fixed point logic

Given that nested solitaire games can be treated efficiently, the question arises whether these
games correspond to a natural fragment of fixed point logic. Note that in a model checking game,
Player 0 makes choices at positions corresponding to disjunctions or existential quantifications,
whereas Player 1 makes nontrivial choices at conjunctions and universal quantifications. Hence
we obtain solitaire model checking games for formulae where either A and V (or, equivalently,
V and J) do not appear, and negations are only applied to atomic formulae. However, these
formulae are of very limited expressive power.

In order to understand which formulae lead to nested solitaire games, observe that all cycles
in model checking games arise by regeneration of fixed point variables. Thus, to guarantee that
a nontrivial move ¢ — ¢’ leaves the current strongly connected component, we have to ensure
that ¢ and ¢’ do not depend on a common fixed point variable. But according to the rules of
the game, whenever a fixed point variable is free in ¢’ it will also be free in ¢. In contrast, if ¢’
has no free fixed point variables then the position ¢ will not be reachable from ¢'.

Recall that a LFP-formula is called closed if it does not contain free fixed point variables.

Definition 5.1. The solitaire fragment of LFP, denoted Solitaire-LLFP, consists of those formu-
lae where negation and universal quantification apply to closed formulae only, and conjunctions
to pairs of formulae of which at least one is closed.



Note that the above definition is not closed under transformation of formulae into negation
normal form. However, when speaking of a solitaire formula ¢ we will tacitly assume that 1)
is the presentation in negation normal form of a formula complying with the above definition.
Under this proviso, a straightforword induction over closed subformulae shows that Solitaire-LFP
corresponds indeed to nested solitaire games.

Proposition 5.2. The model checking games associated with formulae in Solitaire-LFP are
nested solitaire games.

We remark that the solitaire fragment of L, has been studied under the name Ly in [6].

5.1 Complexity

As the model checking games of Solitaire-LFP are nested solitaire, we obtain the following
deterministic complexity bound as a direct consequence of Theorem 4.5.

Proposition 5.3. The model checking problem for a structure 2 and a solitaire LFP-sentence
¥ of width k and alternation depth d can be solved in time O (d - |¢| - |A|¥).

In terms of major complexity classes, the following results can be established.

Theorem 5.4. The model checking problem for Solitaire-LFP is PSPACE-complete with respect
to expression and combined complezity and NLOGSPACE-complete with respect to data complezity.

Proof. The lower bounds follow by the efficient translation of TC into Solitaire-LFP. For the
upper bounds, we present a recursive nondeterministic procedure Eval(2, 1) which, given a
structure 2, and a closed (instantiated) Solitaire-LFP-formula 1, decides whether 2 |= 1. For
convenience, let us assume that in a conjunction the first formula is always closed. Further, let
G(¢) denote the set of gfp-variables in .

function Eval(2(, )
guess a formula witness € {Ra: R € G(¢)} U {Ll}
seen_witness := false

repeat
if ¢ is an atom then
return A = ¢

if ¢y = =9 then
return -Eval(2,49) (* 9 is a closed formula *)
if ’lﬁ =1 V2 then
guess i€ {1,2}; ¥ :=;
if ¢y =9 A ¢ then
if “Eval(2,9) then return false else 9 :=¢
if ¥ = Jzp then
guess b€ A; 1 := [z — b
if ¥ = Vzp then
T := true
forall b € A do r :=r AEval(, o[z — b])
return r



if ¢ = [fpTx.¢|(c) then
P :=¢(c)
if 9 = T'a (a fixed point atom) then
if (—seen_witness A T'a = witness) then seen_witness := true
if (seen_witness A T'a = witness) then return true (* even cycle detected *)
if (seen_witness A T' does not depend on witness) then return false
9 := pr(e) (where @r is the formula defining T')

Up to the handling of fixed points, this algorithm is a variant of a common method for first
order evaluation. The correctness is proved by induction; the only interesting cases are fixed
point variables.

We can argue in terms of the model checking game. Assume that Verifier has a strategy to
prove 2 |= 9. Then, at the starting position of the game G(%, ), he can ensure that the play
either reaches an even cycle, or it descends into another component. The latter case is covered
by the induction hypothesis. For the former, let Ra be a position of lowest priority on the cycle.
Guessing this position as a witness at the first step of the algorithm will lead to acceptance (even
cycle detected). For the other direction, if 2 [~ 1), every cycle containing a (cheating) witness
Ra also containes positions of lower priority, i.e., associated to variables that do not depend on
R. Thus, R cannot be regenerated whithout regenerating one of these first, at which point the
procedure rejects.

Now, let us consider the space requirement. During the evaluation of a formula v of width
k, the recursion depth is bounded by |¢| and at each level a pointer to 1 together with an
assignment consisting of & pointers to elements of A is stored. Hence, the algorithm requires
space O(|y] - klog|A|). O

5.2 Expressive power

Observe that the translation from transitive closure logic into LFP given in Section 2 involves
only solitaire formulae. Consequently, Solitaire-LFP subsumes TC.

Lemma 5.5. TC C Solitaire-LFP.

It follows from well-known results that the converse is not true in general. A simple example
is the solitaire formula [gfp Tz . Jy(EzyATy)|(z) expressing that there is an infinite path from z.
It is known that this query is not even expressible in the infinitary logic Lo, (otherwise, well-
founded linear orders were axiomatizable in Ly,,). Even restricted to countable structures this
query is not expressible in TC. However, on finite structures the converse does hold.

Theorem 5.6. On finite structures, Solitaire-LFP = TC.

To prove this, we exploit the solitaire-structure of the model checking game and the fact
that TC-formulae are equivalent to stratified linear Datalog programs. For every formula in
1 € Solitaire-LFP we construct a stratified linear Datalog program II,;, which defines the winning
positions in the associated model checking game.

More precisely, the construction proceeds by induction along the following lines:

(a) For every subformula ¢(x), we introduce a head predicate W,,. On any finite structure
2, the program evaluates the atom Wy (a) to true if, and only if, Verifier has a winning strategy
from position ¢(a).

10



(b) Further, the program contains auxiliary head predicates R,r, for each gfp-formula
[gfp Tx.Y](x) in ¥ and every subformula ¢ depending on 7. On any finite 2, the program
evaluates R,r(a,b) to true if, and only if, in the game G(,1) Verifier has a strategy from
position ¢(a) to either win the game without seeing position ¢(a) again, or to reach the posi-
tion ¥(b) without passing through any position of priority less than Q(7). Note that Ryr(a, a)
implies that Verifier has a strategy to reach a cycle of minimal priority Q(7") (or, to win by other
means).

We remark that the following construction is standard up to the treatment of the gfp-
formulae via the reachability predicates R,r.

(1) If (=) is a literal (—) Pz, the program II, consists of the single rule

Wo(z)  ¢(z)

(2) For ¢ = —, I, is obtained by adding to IIy a new stratum with the rule
Wo(x) =Wy ().
(Note that this is well-defined since 1 does not contain free fixed-point variables.)
(3) For ¢ =n V¥, the program II, consists of II,, UIIy together with the rules
Wy(x) « Wy(z); Wo(x) «— Wy(x)
and, if applicable,
Ryr(@,y) < Wy(z); Rer(z,y) < Ryr(z,y);  Rer(z,y) < Ror(z, y).
(4) For ¢ =n A9, we can assume that ¥ does not contain free fixed point variables. Now II,, is
IT, UIly augmented with the rules
Wy(x) — Wy(x) A Wy(x)
and, if applicable,
Ryr +— Wy(x); Ryr(z,y) < Ryr(z,y) A Wy(x).

Note that Wy does not depend on W, so the program is indeed linear.
(6) For ¢ = Jzn(=x, 2), we obtain IT, by adding to II, the rules

Wy(z) < Wy(x,2); Ryr(e,y) « Ryr(zz,y)
for appropriate gfp-variables T'.

(6) For ¢ = Vzn(x, z), the subformula 1 does not contain free fixed point variables. We construct
II, by adding to II, the rules

Ly(x) « ~Wy(x,2); Wy(x) « —Ly(x).

11



(7) For ¢ = [Iifp Tx.¥](x), we construct II, by adding to IIy the rules
Wy (2)  Wy(z); T(z) < Wy(z)
and for, all gfp-variables 7" that depend on 7' (and, hence, have priority Q(7") > Q(T)),

Ryr(z,y) < Ry (x,y); Rrr(z,y) < Ror(x,y)

(8) Finally, for ¢ = [gfp Tz .9]|(x), we construct II, by adding to IIy the rules
Wy(z) < Wy(x); Wy(z) < Ryr(z,x)
and, for all gfp-variables 7' that depend on T', including T itself, (hence, Q(T") > Q(T)),

RTT(CU, .CU); chT’ (CU, y) «— R’ﬂT’ (.’IJ, y); RTT’ ($, y) « R??T’ (wa y)

It is readily seen that the solitaire structure of 1) implies that Il is indeed a linear stratified
program. It remains to prove the following.

Lemma 5.7. For every solitaire formulae 1(x) and every finite structure 2 we have that 2 =
¥(a) iff 1L, evaluates on A the atom Wy(a) to true.

Proof. We show that the truth values for W,(a) and R,r(a,b) defined by II,, on 2 indeed have
the game theoretic meaning described by items (a) and (b) above.

A winning play for Verifier in G(v,2() from a position ¢(a) must either lead in finitely many
steps to a literal (=) Pb that is true in 2, or it must lead to a gfp-atom 7'b from which it cycles
without hitting any priority smaller than p(7'). It is not difficult to see that the rules of II,
ensure a strategy for precisely this.

The rules for cases (1) to (6) reduce the winning conditions W, and the reachability condi-
tions R,r in the obvious way to the immediate subformulae of ¢ (i.e. to the positions after the
next move).

For ¢ = [Ifp Tz, .,d](x) the rules do the same, and in addition, they take into account the
moves from T'a back to 9(a). To win from T'a, Verifier must win from ¥(a). If T' is regenerated
infinitely often the play is lost (unless a gfp-variable of smaller priority is also regenerated
infinitely often).

This leaves the case of formulae p(x) = [gfpTx.d](x). Besides reducing the winning
condition W, and the reachability conditions R, 7+ to Wy and Ryrv, respectively, the rules of II,
take care of the back-moves from T'a to ¥(a), and, most importantly, the possibility to win by
forcing an appropriate cycle. By the rule W,(z) < Ryr(x,z) it follows that W, (b) is evaluated
to true if Verifier can force a cycle that contains ¥(b) and on which no priority is smaller than
Q(T). Together with the other rules this further implies that Verifier also wins from positions
where she can force a play that eventually hits such a cycle. O

This completes the proof of Theorem 5.6.
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Finite Presentations of Infinite Structures:
Automata and Interpretations

Achim Blumensath* Erich Gradel*

Abstract

We study definability problems and algorithmic issues for infinite structures that are
finitely presented. In particular we focus on structures presented by automata or by model-
theoretic interpretations.

1 Computational Model Theory

The relationship between logical definability and computational complexity is an important issue
in a number of different fields including finite model theory, databases, knowledge representation,
and computer-aided verification. So far most of the research has been devoted to finite structures
where the relationship between definability and complexity is by now fairly well understood
(see e.g. [14, 26]) and has many applications in particular to database theory [1]. However, in
many cases the limitation to finite structures is too restrictive. Therefore in most of the fields
mentioned above, there have been considerable efforts to extend the methodology from finite
structures to suitable classes of infinite ones. In particular, this is the case for databases and
computer-aided verification where infinite structures (like constraint databases or systems with
infinite state spaces) are of increasing importance.

Computational model theory extends the research programme, the general approach and the
methods of finite model theory to interesting domains of infinite structures. From a general
theoretical point of view, one may ask what domains of infinite structures are suitable for
such an extension. More specifically, what conditions must be satisfied by a domain D of not
necessarily finite structures such that the approach and methods of finite model theory make
sense. There are two obvious and fundamental conditions:

Finite representations. Every structure 2 € D should be representable in a finite way (e.g. by
a binary string, by an algorithm, by a collection of automata, by an axiomatisation in
some logic, by an interpretation ... ).

Effective semantics. For the relevant logics to be considered (e.g. first-order logic), the model
checking problem on D should be decidable. That is, given a sentence 1 € L and a
representation of a structure 2 € D, it should be decidable whether 2 = 1.

These are just minimal requirements, that may need to be refined according to the context
and the questions to be considered. We may for instance also require:

*Aachen University of Technology, Mathematical Foundations of Computer Science, D-52065 Aachen,
{blume,graedel } @informatik.rwth-aachen.de, www-mgi.informatik.rwth-aachen.de



Closure. For every structure 2 € D and every formula v(Z), also (2, 4%), the expansion of
with the relation defined by v, belongs to D.

Effective query evaluation. Suppose that we have fixed a way of representing structures. Given a
representation of 20 € D and a formula (Z) we should be able to compute a representation
of 9® (or of the expanded structure (2, 4*)).

Note that contrary to the case of finite structures, query evaluation does not necessarily reduce
to model checking. Further, instead of just effectiveness of these tasks, it may be required that
they can be performed within some complexity bounds.

After giving a brief survey on different classes of finitely presented structures in the next
section, we will focus on domains where structures are presented by two closely related methods,
namely by finite automata or by model-theoretic interpretations. While automatic groups have
been studied rather intensively in computational group theory (see [15, 17]) a general notion
of automatic structures has only been defined in [28], and their theory has been developed
in [5, 7]. These structures will be defined in Section 3. Informally, a relational structure
A = (A, Ry,...,Ry) is automatic if its universe and its relations can be recognised by finite
automata reading their inputs synchronously. We believe that automatic structures are very
promising for the approach of computational model theory. Not only do automatic structures
admit finite presentations, there also are numerous interesting examples and a large body of
methods that has been developed in five decades of automata theory. Further, automatic
structures admit effective evaluation of all first-order queries and possess many other pleasant
algorithmic properties.

Automatic structures can also be defined via interpretations. As we show in Section 4
a structure is automatic if, and only if, it is first-order interpretable in an appropriate expansion
of Presburger arithmetic or, equivalently, in the infinite binary tree with prefix order and equal
length predicate. Similar results hold for w-automatic structures and appropriate expansions of
the real ordered group.

Such results suggest a very general way for obtaining other interesting classes of infinite
structures suitable for the approach of computational model theory: Fix a structure 2 (or a class
of such structures) with ‘nice’ algorithmic and/or model-theoretic properties, and consider the
class of all structures that are interpretable in 2, for instance via first-order or monadic second-
order logic. Obviously each structure in this class is finitely presentable (by an interpretation).
Further, since many ‘nice’ properties are preserved under interpretations, every structure in the
class inherits them from 2(. In particular, every class of queries that is effective on 2 and closed
under first-order operations is effective on the interpretation-closure of 2I.

In Section 5 we turn to decidability and complexity issues. It is shown that the model
checking problem for FO(3¥), first-order logic extended by the quantifier “there are infinitely
many”, is decidable for automatic and w-automatic structures, and the complexity for various
fragments of first-order logic is investigated. On the other hand, we prove that several properties
not expressible in FO, such as isomorphism of automatic structures, are undecidable.

In the final section, Feferman-Vaught like products are introduced, and it is shown that
every domain which can be characterised via interpretations of a certain kind is closed under
such products.



2 Finitely presentable structures

We briefly survey some domains of infinite, but finitely presentable structures which may be
relevant for computational model theory.

Recursive structures are countable structures whose functions and relations are computable
and therefore finitely presentable. They have been studied quite intensively in model theory
since the 1960s (see e.g. [2, 16]). Although recursive model theory is very different from finite
model theory, there have been some papers studying classical issues of finite model theory on
recursive structures and recursive databases [21, 24, 25, 35]. However, for most applications, the
domain of recursive structures is far too large. In general, only quantifier-free formulae admit
effective evaluation algorithms.

Constraint databases are a modern database model admitting infinite relations that are
finitely presented by quantifier-free formulae (constraints) over some fixed background structure.
For example, to store geometrical data, it is useful to have not just a finite set as the universe
of the database, but to include all real numbers ‘in the background’. Also the presence of
interpreted functions, like addition and multiplication, is desirable. The constraint database
framework introduced by Kanellakis, Kuper and Revesz [27] meets both requirements. Formally,
a constraint database consists of a contezt structure 2, like (R, <,+,-), and a set {¢1,...,om}
of quantifier-free formulae defining the database relations. Constraint databases are treated in
detail in [29].

Metafinite structures are two-sorted structures consisting of a finite structure 2, a back-
ground structure R (which is usually infinite, but fixed) and a class of weight functions from
the finite part to the infinite one. Simple examples are finite graphs whose edges are weighted
by real numbers. For any fixed infinite structure R, the metafinite structures with background
R are finitely presentable and admit effective evaluation of logics that make use of arithmetic
operations on R, but do not admit full quantification over its elements. Metafinite model the-
ory has been developed in [20] and has been put to use for studying issues in database theory,
optimisation and descriptive complexity. In particular metafinite structures have provided the
basis for logical characterisations of complexity classes over the real numbers [22].

Automatic structures are structures whose functions and relations are represented by finite
automata. Informally, a relational structure 2 = (A, Ry,...,R,,) is automatic if we can find
a regular language Ls C X* (which provides names for the elements of ) and a function
v: Ls — A mapping every word w € L to the element of 2 that it represents. The function v
must be surjective (every element of 2 must be named) but need not be injective (elements can
have more than one name). In addition it must be recognisable by finite automata (reading their
input words synchronously) whether two words in Ls name the same elements, and, for each
relation R; of 2, whether a given tuple of words in Ly names a tuple in R;. Automatic structures
provide many examples of high relevance for computer science. There are also interesting
connections to computational group theory, where automatic groups have already been studied
quite intensively [15, 17]. The general notion of structures presentable by automata has been
proposed in [28] and their theory has been developed in [5, 7].



The notion of an automatic structure can be modified and generalised in many directions. By
using automata over infinite words, we obtain the notion of w-automatic structures (which,
contrary to automatic structures, may have uncountable cardinality). Contrary to the class of
recursive structures, automatic and w-automatic structures admit effective (in fact, automatic)
evaluation of all first-order queries.

Theorem 2.1. The model checking problem for, FO(3Y), first-order logic extended by the quan-
tifier “there are infinitely many”, is decidable on the domain of w-automatic structures.

Tree-automatic structures, which are defined by automata on finite or infinite trees, are
further natural generalisations of automatic structures. They also admit effective evaluation of
first-order formulae. The theory of tree-automatic structures has been developed in [5]. On the
other side, first-order logic is not effective on another popular extension of automatic graphs,
the so-called rational graphs [31], which are defined by asynchronous multihead automata.

Tree-interpretable structures are structures that are interpretable in the infinite binary
tree 72 = ({0,1}*, 09, 01) via a one-dimensional monadic second-order interpretation (see Sec-
tion 4 for details on interpretations). By Rabin’s Theorem, monadic second-order logic (MSO)
can be effectively evaluated on 72, and since MSO is closed under one-dimensional interpre-
tations, the same holds for all tree-interpretable structures. Tree-interpretable structures gen-
eralise various notions of infinite graphs that have been studied in logic, automata theory and
verification. Examples are the context-free graphs [32, 33], which are the configuration graphs
of pushdown automata, the HR-equational and VR-equational graphs [11], which are de-
fined via graph grammars, and the prefix-recognisable graphs [10] which can for instance
be defined as graphs of form (V, (E,)qc4) where V is a regular language and each edge relation
E, is a finite union of sets X(Y x Z) := {(zy,z2) | z € Z, y € Y, z € Z }, for regular languages
X, Y, Z. It has been established in a series of papers that some of these classes coincide with
the tree-interpretable graphs (see [3, 6, 10]).

Theorem 2.2. For any graph G = (V, (Eqy)aca) the following are equivalent :

(i) G is tree-interpretable.
(i

) G is VR-equational.
(iii) G is prefiz-recognisable.
)

(iv) G is the restriction to a regular set of the configuration graph of a pushdown automaton
with e-transitions.

On the other hand the classes of context-free graphs and of HR-equational graphs are strictly
contained in the class of tree-interpretable graphs.

The question arises whether there are even more powerful domains than the tree-interpret-
able structures on which monadic-second order logic is effective. An interesting way to obtain
such domains are tree constructions that associate with any structure a kind of tree unrav-
elling. A simple variant is the unfolding of a labelled graph G from a given node v to the
tree T(G,v). Courcelle and Walukiewicz [12, 13] show that the MSO-theory of 7(G,v) can
be effectively computed from the MSO-theory of (G,v). A more general operation, applicable
to relational structures of any kind, has been invented by Muchnik. Given a relational struc-
ture A = (A, Ry,...,Ry), let its iteration 2A* = (A*, R}, ..., R},, son, clone) be the structure



with universe A, relations R} = { (wa,...,wa,) | w € A%, (a1,...,a,;) € R; }, the successor
relation son = { (w,wa) | w € A*,a € A} and the predicate clone consisting of all elements
of form waa. It is not difficult to see that unfoldings of graphs are first-order interpretable in
their iterations. Muchnik’s Theorem states that the monadic theory of 20* is decidable if the
monadic theory of 2 is so (for proofs, see [4, 37]). Define the domain of tree-constructible
structures to be be the closure of the domain of finite structures under (one-dimensional) MSO-
interpretations and iterations. By Muchnik’s Theorem, and since effective MSO model checking
is preserved under interpretations, the tree constructible structures are finitely presentable and
admit effective evaluation of MSO-formulae. By results of Courcelle [12] every algebraic tree is
tree-constructible. Since not all algebraic trees are tree-interpretable it follows that the domain
of tree-constructible structures forms a proper extension of the tree-interpretable ones.

Ground tree rewriting graphs are defined by tree rewriting [30]. Vertices are represented
by finite trees and edges are generated by ground rewriting rules. In this way one can obtain
graphs that are not tree-interpretable (for instance the infinite two-dimensional grid), but for
which, in addition to the first-order theory, also the reachability problem remains decidable.
While universal reachability and universal recurrence (and hence general MSO formulae) are
undecidable on ground tree rewriting graphs, Loding exhibits a fragment of CTL (permitting
EF and EGF-operations, but not EG, EFG or until operations) that can be effectively evaluated
on this class.

3 Automatic structures and automatic groups

As usual in logic, we consider structures A = (A, Ry, Ro, ..., f1, f2,...) where A is a non-empty
set, called the universe of 2, where each R; C A" is a relation on A, and every f; : A% — Ais
a function on A. The names of the relations and functions of 2, together with their arities, form
the vocabulary of 2. We consider constants as functions of arity 0. A relational structure is a
structure without functions. We can associate with every structure 2 its relational variant which
is obtained by replacing each function f : A> — A by its graph Gy := { (a,b) € A1 | f(@) =b}.

For a structure 2 and a formula ¢(z), let p* := {a | 2 |= ¢(a) } be the relation (or query)
defined by ¢ on 2.

We assume that the reader is familiar with the basic notions of automata theory and regular
languages. One slightly nonstandard aspect is that, in order to present a structure by a list of
finite automata, we need a notion of regularity not just for languages L C X* but also k-ary
relations of words, for £ > 1. Instead of introducing synchronous multihead automata that
take tuples w = (wy,...,wy) of words as inputs and work synchronously on all ¥ components
of w, we reduce the case of higher arities to the unary one by encoding tuples w € (X*)* by a
single word w; ® - - - ® wy, over the alphabet (X U {0})¥, called the convolution of wy,...,w.
Here O is a padding symbol not belonging to Y. It is appended to some of the words w; to
make sure that all components have the same length. More formally, for ws,...,w, € X*, with
w; = wy -+ - wig; and £ = max {|wi|,..., |wg|},

w Q- @ wy ::[ 11] [ ;l] € ((EU{D})k)*

' 1]
Wi Wi



where w;; = wj; for j < |w;| and wj; = O otherwise. Now, a relation R C (Z9)F is called
regular, if {w; ® --- @ wi | (w1,...,w,) € R} is a regular language. In the sequel we do not

distinguish between a relation on words and its encoding as a language.

Definition 3.1. A relational structure 2 is automatic if there exist a regular language Ly C X*
and a surjective function v : Ly — A such that the relation

L. :={(w,w') € Ly x Ls | vw =vw'} C X* x X*
and, for all predicates R C A" of 2, the relations
Ly := {’u_) € (L(g)r | (z/wl,. .. ,z/wr) € R} - (Z*)r

are regular. An arbitrary (not necessarily relational) structure is automatic if and only if its
relational variant is.

We write AutStr[r] for the class of all automatic structures of vocabulary 7. Each struc-
ture 2 € AutStr[r] can be represented, up to isomorphism, by a list 0 = (Ms, M., (MRg)Rres)
of finite automata that recognise Lg, L., and Lg for all relations R of 2. When speaking of
an automatic presentation of 2 we either mean the function v : Ly — A or such a list 9. An
automatic presentation 0 is called deterministic if all its automata are, and it is called injective
if L, = { (u,u) | u € Ls } (which implies that v : Ly — A is injective).

Ezamples. (1) All finite structures are automatic.

(2) Important examples of automatic structures are Presburger arithmetic (N, +) and its expansions
N, := (N, +, |p) by the relation

z|py :iff zis a power of p dividing y.

Using p-ary encodings (starting with the least significant digit) it is not difficult to construct automata
recognising equality, addition and |,.

(3) Natural candidates for automatic structures are those consisting of words. (But note that free
monoids with at least two generators do not have automatic presentations.) Fix some alphabet X and
consider the structure Tree(X) := (X*, (04)acs, <, €l) where

oo(z) := za, z <y :iff Jz(zz =y), and el(z,y) :iff || = |y|-
Obviously, this structure is automatic as well.
The following two observations are simple, but useful.

(1) Every automatic structure admits an automatic presentation with alphabet {0,1} [5].

(2) Every automatic structure admits an injective automatic presentation [28].
Automatic Groups. The class of automatic structures that have been studied most inten-
sively are automatic groups. Let (G,-) be a group and S = {s1,...,sn} C G a set of semigroup
generators of G. This means that each g € G' can be written as a product s;;-- - s;, of elements
of S and hence the canonical homomorphism v : §* — G is surjective. The Cayley graph
I'(G,S) of G with respect to S is the graph (G, S1,...,Sy) whose vertices are the group ele-

ments and where S; is the set of pairs (g, h) such that gs; = h. By definition (G, ) is automatic
if there is a finite set S of semigroup generators and a regular language Ls C S* such that the



restriction of v to Ly is surjective and provides an automatic presentation of I'(G, S). (In other
words, the inverse image of equality,

L. = {(w,w') € Ls x Ls | vw = v },

and v~1(S;), for i = 1,...,m, are regular).

Note that it is not the group structure (G,-) itself that is automatic in the sense of Defi-
nition 3.1, but the Cayley graph. There are many natural examples of automatic groups (see
[15, 17]). The importance of this notion in computational group theory comes from the fact that
an automatic presentation of a group yields (efficient) algorithmic solutions for computational
problems that are undecidable in the general case.

w-automatic structures. The notion of an automatic structure can be modified and gener-
alised in a number of different directions (see [5, 28]). In particular, we obtain the interesting
class w-AutStr of w-automatic structures. The definition is analogous to the one for automatic
structures except that the elements of an w-automatic structure are named by infinite words
from some regular w-language and the relations of the structure are recognisable by Buchi
automata.

Ezamples. (1) All automatic structures are w-automatic.

(2) The real numbers with addition, (R, +), and indeed the expanded structure R, := (R, +, <, |p,1)
are w-automatic, where

z|py :iff In,k€Z:x=p" and y = kz.

(3) The tree automatic structures Tree(X') extend in a natural way to the (uncountable) w-automatic
structures Tree” (X)) := (X<, (04)aco, =,el).

4 Characterising automatic structures via interpretations

Interpretations constitute an important tool in mathematical logic. They are used to define a
copy of a structure inside another one, and thus permit to transfer definability, decidability, and
complexity results among theories.

Definition 4.1. Let L be a logic, and let % = (A4, Ry, ..., R;) and B be relational structures.
A (k-dimensional) L-interpretation of 2 in 9B is a sequence

T =1{(6(z), e(z,9), ORo(T1,---+Tr)s--s PRy (T1,---,Ts))

of L-formulae of the vocabulary of 8 (where each tuple z, y, Z; consists of k£ variables), such
that

A2 T(B) = (0%, ¢Ry---, 0R,)/E

To make this expression well-defined we require that €% is a congruence relation on the structure
((5%, go?éo, ey (p%n). We denote the fact that Z is an L-interpretation of 2 in B by Z : 2 <7, B.
IfA <z, B and B <p, A we say A and B are mutually L-interpretable.

The epimorphism (6%, @3 ,..., ¢p ) — 2 is called coordinate map and is also denoted
by Z. If it is the identity function, i.e., 2 = Z(*B), we say that 2 is L-definable in %B.



Ezamples. (1) Recall that we write a |, b to denote that a is a power of p dividing b. Let V, : N - N
be the function that maps each number to the largest power of p dividing it. It is very easy to see that
the structures (N, +, |,) and (N, +,V,) are mutually first-order interpretable. Indeed we can define the
statement = Vp(y) in (N,+, |,) by the formula z |, y AVz(z |, ¥y = 2 |p ). In the other direction,
Vp(z) = 2 A3z(x + 2 = V,(y)) is a definition of z |, y.

(2) For every p € N we write Tree(p) for the tree structure Tree({0,...,p — 1}). The structures 91,
and Tree(p) are mutually interpretable, for each p > 2 (see [5, 19]).

If 7 : A <po B then every first-order formula ¢ over the vocabulary of 2 can be translated to
a formula ¢ over the vocabulary of 8 by replacing every relation symbol R by its definition ¢g,
by relativising every quantifier to J, and by replacing equalities by e.

Lemma 4.2 (Interpretation Lemma). If Z : A <po B then
A= p(Zk) iff BEH(D) for all ¢ € FO and b C B.

This lemma, states the most important property of interpretations. For any logic L, a notion
of interpretation is considered suitable if a similar statement holds. Note that in the case of
MSO, arbitrary k-dimensional MSO-interpretations are to strong since they translate sets to
relations of arity k. On the other hand, the Interpretation Lemma does hold for one-dimensional
MSO-interpretations.

Interpretations provide a general and powerful method to obtain classes of finitely presented
structures with a set of desired properties. One fixes some structure 8 having these properties
and chooses a kind of interpretation that preserves them. Then one considers the class of all
structures which can be interpreted in %B. Each structure 2 of this class can be represented by
an interpretation Z : 2 <po B which is a finite object, and model checking and query evaluation
for such structures can be reduced to the corresponding problem for B. If 7 : A <o B then
Lemma 4.2 implies that

et ={alAE @} ={Z0)|B 0}

Hence, the desired representation of % can be constructed by extending the interpretation Z
to <I, (PI> : (Qla ()OQL) SFO B.
Automatic structures are closed under first-order interpretations.

Proposition 4.3. If A <po B and B is (w-)automatic, then so is A.

Proof. Since B is automatic there are regular languages Ls for the universe, L. for equality, and
Ly for each relation R of 8. By the closure of regular languages under boolean operations and
projections it follows that, for each first-order formula ¢, the language encoding the relation ¢®
is also regular. O

Corollary 4.4. The classes of automatic, resp. w-automatic, structures are closed under (i) ex-
tensions by definable relations, (ii) factorisations by definable congruences, (iii) substructures
with definable universe, and (iv) finite powers.

As stated above the class of automatic structures can be characterised via first-order inter-
pretations.

Theorem 4.5. For every structure A, the following are equivalent:



(i) A is automatic.
(ii) A <po N, for some (and hence all) p > 2.
(iii) A <po Tree(p) for some (and hence all) p > 2.

Proof. The facts that (ii) and (iii) are equivalent and that they imply (i) follow immediately
from the mutual interpretability of 9, and Tree(p), from the fact that these structures are
automatic, and from the closure of automatic structures under interpretation.

It remains to show that every automatic structure is interpretable in 9, (or Tree(p)). Sup-
pose that 0 is an automatic presentation of 2 with alphabet [p] := {0,...,p — 1} for some
p > 2 (without loss of generality, we could take p = 2). For every word w € [p]*, let val(w)
be the natural number whose p-ary encoding is w, i.e., val(w) := ZKM w;p*. By a classical
result, sometimes called the Biichi-Bruyére Theorem, a relation R C N¥ is first-order definable
in (N,+,V,) if and only if

{ (val Y(z1),...,val Y(z1)) | (z1,...,21) € R}

is regular. (See [9] for a proof of this fact and for more information on the relationship between
automata and definability in expansions of Presburger arithmetic.) The formulae that define
in this sense the regular language and the regular relations in an automatic presentation of 2
provide an interpretation of 2 in (N, +, V). Hence also 2 <pgo N,. O

For automatic groups we are not free to change the coordinate map. Indeed, the definition
of an automatic group requires that the function v : Ly — G is the restriction of the canonical
homomorphism from S$* to G. Hence the arguments used above give us a characterisation of
automatic groups in terms of definability rather than interpretability.

Theorem 4.6. (G,-) is an automatic group if and only if there exists a finite set S C G of
semigroup generators such that I'(G, S) is FO-definable in Tree(S).

By definition, if G is an automatic group, then for some set S of semigroup generators, the
Cayley graph I'(G, S) is an automatic structure. Contrary to a claim in [28] the converse does
not hold. A counterexample, which has been pointed out by Senizergues, is the Heisenberg
group $) which is the group of affine transformations of Z3 generated by the maps

a:(z,y,z) = (x+1,y,z+y),
B:(z,y,2) = (z,y +1,2),
v (®,y,2) = (2,y,2 +1).

Using this matrix representation of 9, it is not difficult to construct a (3-dimensional) interpre-
tation of I'($, S) in (N, +), which implies that I'($), S) € AutStr. However, in [15] it is shown
that $) is not automatic.

Proposition 4.7. There exist groups G with a set of semigroup generators S such that the
Cayley graph I'(G,S) is an automatic structure without G being an automatic group.

We now turn to w-automatic structures. To provide a similar characterisation we can use an
equivalent of the Biichi-Bruyere Theorem for encodings of w-regular relations. One such result
has been obtained by Boigelot, Rassart and Wolper [8]. Using natural translations between w-
words over [p] and real numbers, they prove that a relation over [p]“ can be recognised by a Biichi



automaton if an only if its translation is first-order definable in the structure (R, +, <,Z, X))
where X, C R? is a relation that explicitly represents the translation between [p]¥ and R.
X,(z,vy, z) holds iff there exists a representation of z by a word in [p]* such that the digit at the
position specified by ¥y is z. A somewhat unsatisfactory aspect of this result is the assumption
that the encoding relation X, must be given as a basic relation of the structure. It would be
preferable if more natural expansions of the additive real group (R, +) could be used instead.

We show here that this is indeed possible if, as in the case of 9, we use a restricted variant
of the divisibility relation. Recall that the structures R, and Tree”(p) (introduced at the end
of Section 3) are w-automatic. As a first step we show that the behaviour of Biichi automata
recognising regular relations over [p]* can be simulated by first-order formulae in Tree”(p).
Secondly we show that Tree”(p) and R, are mutually interpretable. As a result we obtain the
following model-theoretic characterisation of w-automatic structures.

Theorem 4.8. For every structure 2, the following are equivalent :

(i) A is w-automatic.
(ii) A <po R, for some (and hence all) p > 2.
(iii) A <po Tree“(p) for some (and hence all) p > 2.

Proof. In order to construct interpretations of Tree”(p) in R, and vice versa we define formulae
which allow to access the digits of, respectively, some number in 9}, and some word in Tree”(p).
In the later case we set

digy,(2,y) := Fz(el(z,y) Aoz < )

which states that the digit of z at position |y| is k. For 9, the situation is more complicated
as some real numbers admit two encodings. The following formula describes that there is one
encoding of z such that the digit at position y is k. (This corresponds to the predicate X of [8].)

digy(z,y) :==3FsFHt(|z| =s+k-y+t Ap-ylps NO<s AN0<t<y)

For R, <ro Tree”(p) we represent each number as a pair of words. The first one is finite
and encodes the integer part, the other one is infinite and contains the fractional part. In the
other direction we map finite words a; -- - a, € [p]* to the interval [2, 3] via

T
p T4 Z ap t+2€ (2, 3].
i=1

Infinite words ajas - -- € [p]* are mapped to two intervals [—1,0] and [0, 1] via
+) ap i €[-1,1].
1

This is necessary because some words, e.g., 0(p — 1)* and 10, would be mapped to the same
number otherwise. Now the desired interpretations can be constructed easily using the formulae
dig;, defined above.

It remains to prove that if R C ([p]*)" is w-regular then it is definable in Tree®(p). Let
M =(Q,[p]", A, qo, F) be a Biichi-automaton for R. W.l.o.g. assume @ = [p|™ for some m and
go = (0,...,0). We prove the claim by constructing a formula ¥3,(z) € FO stating that there is
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a successful run of M on z; ® - -- ® z,,. The run is encoded by a tuple (q1,...,qmn) € ([p]“)™ of
w-words such that the symbols of ¢4, ..., g, at some position equal k1, ..., k,, iff the automaton
is in state (ki,..., k) when scanning the input symbol at that position. 9,,(Z) has the form

Jq1 - - - Igm[ADM(G, 7) A START(q, 7) A RUN(g, 7) A ACC(q, 7)]

where the admissibility condition ADM(Z, q) states that all components of Z and § are infinite,
START(Z,q) says that the first state is 0, ACC(Z,q) that some final state appears infinitely
often, and RUN(Z, §) ensures that all transitions are correct.

Define the following auxiliary formulae. To access the digits of a tuple of words at some

position we define Sym,(Z, z) := A, dig,, (%, z), and to characterise the w-words of [p]~* we set

Inf(z) :=Vy(lz Ry >z =1y).

ADM and START are defined as

m n
ADM(3,7) = /\ Inf(g) A \ Inf(zy),
i=1 i=1
RUN states that at every position a valid transition is used
RUN(q,z) :=Vz \/ (Symg(g,2) A Symgy(, 2) A Symy (g, 502)),
(k,a,k")eA
and ACC says that there is one final state which appears infinitely often in §

ACC(q,z) := \/ V232 (|| > |2| A Symy(g, 7).
keF

5 Model-checking and query-evaluation

In this section we study decidability and complexity issues for automatic structures. Two
fundamental algorithmic problems are:

Model-checking. Given a (presentation of a) structure 2, a formula ¢(Z), and a tuple of param-
eters a in 2, decide whether 2 = ¢(a).

Query-evaluation. Given a presentation of a structure 2 and some formula ¢(z), compute a
presentation of (2, ). That is, given automata for the relations of 2, construct an
automaton that recognises <p2[.

We first observe that all first-order queries on (w-)automatic structures are effectively com-
putable since the construction in Proposition 4.3 is effective. In fact, this is the case not only for
first-order logic but also for formulae containing the quantifier 3“ meaning “there are infinitely
many”. To prove this result for the case w-automatic structures we require some preparations.

Lemma 5.1. Let R C X% ® I'Y be reqular. There is a reqular relation R' C R such that such
that
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(i) if (z,y) € R then there is some y' such that (z,y’) € R', and
(ii) for all = there is at most one y with (z,y) € R'.

Proof. W.l.o.g. assume that R # . First we introduce some notation. By v[i, k) we denote
the factor v;...vg_1 of v = vovy ... € X¥. Similarly, v[i,w) is equal to vjviy; ..., and v[i] :=
v[i, i+ 1).

Let A = (Q,X x I', A, qo, F') be a Biichi-automaton recognising R. Fix an ordering C of @
such that all final states are less than non-final ones. For a run p € Q% define

Inf(p) := {q € Q | there are infinitely many 7 such that g[i] = ¢},
1(0) := minInf(p).

Let fi(o) be the greatest number such that gk, f;(g)) contains exactly i times the state p(p)
where k is the least position such that all states appearing only finitely often are contained in
0[0,k).

Denote the lexicographically least run of 2 on z ® y by g(z,y). Fix z € X* and set
u(y) := ule(z,y)), fily) := fi(e(z,y)). We define an order on I' by

y <y iff uly) <upl),
) =

or u(y) = p(y') and there is some n such that
faly) < fo(y) and fi(y) = fiy') for all i <n,
or p(y) = p(y'), fi(y) = fi(y') for all i, and

y is lexicographically less than or equal to /.
It should be obvious that the relation < is regular. Finally, R’ is defined by
R':= {(x,y) € R | there is no y' < y such that (z,y') € R}.

Clearly, R’ is regular, contained in R and satisfies (ii). Hence, it remains to prove (i). We
directly construct the minimal element of V := {y | (z,y) € R} as follows. Let Y_; C V be the
subset of those y with minimal y(y). We define a sequence of sets Y_1 DYy DY; D --- by

Yi:={y €Y1 | fily) < fily) for ally’ € ¥i, }.
Let y; be the lexicographically least element of Y;. Hence, yy > y1 > - --. Define g by
gln] = Timy gy [n).

We claim that ¢ is the minimal element of V.
(a) § exists. Set f, = limg fr(yx) = fn(yn). The pointwise limit of y; exists since
Yn+1[0, fn) = yn[0, fr) for all n. For, otherwise, there is some k < f, such that

yn-l—l[O, k) = yn[oa k) and yn-l—l[k] # yn[k]

Since Yn, Ynt1 € Yy, it follows that y,[k] < yp41[k]. On the other hand, y' := y,[0, fn)Yn+1[fn,w)
is in V and thus in Y;,11, as o(z, yn) [fn] = 0(@, Ynt1)[fn]- Thus, yni1[k] < y'[k] = yn[k] by choice
of y,41. Contradiction.
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(b) § € V. An accepting run of 2 on z ® y is given by ¢ where
é[fnfla fn) = Q(iU, y’n)[fnfla fn)

since 9[fn] = pu(yo) € F for all n.

(c) 9 is minimal. Suppose y' < y for some 3’ € V. Then u(y') < u(9) and, by induction
on n, one can show that y' € Y,, since f,(y') < f.(9). Thus by construction pu(y') = p(g) and
fa(y") = fr(9)- Suppose 3y’ < y. Then y' must be lexicographically less than § and there exists
some k such that y'[0, k) = §[0,k) and y'[k] < y[k]. Choose n such that f,_1 <k < f,. Then
yn < 3 by construction. But y,[0, f,) = 9[0, f») and hence y,[0,k) = y'[0,k) which implies
that y'[k] > yn[k] = §[k]. Contradiction. O

Proposition 5.2. Every (w-)automatic structure has an injective presentation.

Proof. For automatic structures this result is due to Khoussainov and Nerode [28].
Let v : D — A be a presentation of an w-automatic structure 2. By the preceding lemma
applied to the kernel of v there is a function e such that

1 —_ W
)
(i) vz =vex for all z € X%, and
(ii) vo = vy implies ex = ey.

Thus we obtain a regular subset D' C D containing exactly one representation for each element
of A by defining D' :={z €D |ex ==z} O

We say that a logic L effectively collapses to Ly C L on a structure 2 if, given a formula
©(%) € L, one can compute a formula ¢y(Z) € Lo such that ¢ = p%.

Proposition 5.3. (1) FO(3¥) effectively collapses to FO on Tree(p).
(2) FO(3¥) effectively collapses to FO on Tree®(p).

Proof. (1) In case of automatic structures the quantifier 3¥ can be handled using a pumping
argument. Consider for simplicity the formula 3“zv(z,y). By induction the formula v is
equivalent to some first-order formula and, hence, there is some automaton recognising the
relation defined by . There are infinitely many x satisfying 1) iff for any m there are infinitely
many elements  whose encoding is at least m symbols longer than that of y. If we take m
to be the number of states of the automaton for % then, by the Pumping Lemma, the last
condition is equivalent to the existence of at least one such z. Thus F¥z¢(z,y) = Jz(¢Y(z,y) A
“z is long enough”) for which we can obviously construct an automaton.

(2) For w-automatic structures the proof is more involved.

Let M be a deterministic Muller automaton with s states recognising the language L(M) C
IrY*@X“ ForwelY“let V(w)={veXY|w®veLlM)}

Let v, w € X* and define v =* w iff v[n,w) = w[n,w) for some n. Let [v], := {v' € V(w) |
v’ =* v} be the ~*-class of v in V(w).

Claim. V(w) is infinite if and only if there is some v € X* such that [v], € V(w)/~* is infinite.

Proof. (<) is trivial and (=) is proved by showing that V/~* contains at most s finite ~*-
classes.

Assume there are words vy,...,vs; € V(w) belonging to different finite ~*-classes. Denote
the run (sequence of states) of M on w ® v; by ;. Define I;; := { k < w | g;[k] = ¢;[k] }. Since
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there are only s states, for each ¥ < w there have to be indices ¢, j such that k£ € I;;, i.e.,
U; ;fij = w. Thus, at least one I;; is infinite. For each [v;]. there is a position n; such that
v[ni,w) = v'[n;,w) for all v,v" € [v;].. Let m be the maximum of ny,...,ns. Fix i, such that
I;; is infinite. Since v; #&* v; there is a position m' > m such that v;[m,m’) # v;[m,m’). Choose
some m" € I;; with m"” > m'. Let u := v;[0,m)vj[m, m")v;jm",w). Then, w ® v; € L(M) iff
w ® u € L(M) which implies that u € [v;]x. But u[m,w) # v;[m,w) in contradiction to the
choice of m. O

To finish the proof let p(Z) := I¥yy(Z,y) and A be w-automatic. One can express that [v].
is finite by

finite(z,v) := InVo'[(z,v") Av ~* v' — equal(v,v’, n)],
where
equal(v,v',n) :=n = 10 A v[i,w) = v'[i,w).
Clearly, ~* and equal can be recognised by w-automata. By the claim above,
o(z) = Jv(Y(z,v) A ~finite(z, v)).
Hence, we can construct an automaton recognising <. U

Corollary 5.4. The FO(3¥)-theory of any (w)-automatic structure is decidable.

Proof. Note that FO(3¥) is closed under injective interpretations, that is, if Z : 2 <po Tree(p)
is an injective interpretation, then 24 |= o(Z(w)) iff Tree(p) |= ¢* (w) for every p € FO(3¥). O

As an immediate consequence we conclude that full arithmetic (N, +,-) is neither auto-
matic, nor w-automatic. For most of the common extensions of first-order logic used in finite
model theory, such as transitive closure logics, fixed point logics, monadic second-order logic,
or first-order logic with counting, the model-checking problem on automatic structures becomes
undecidable.

Complexity. The complexity of model-checking can be measured in three different ways.
First, one can fix the formula and ask how the complexity depends on the input structure. This
measure is called structure complezxity. The expression complexity on the other hand is defined
relative to a fixed structure in terms of the formula. Finally, one can look at the combined
complexity where both parts may vary.

Of course, the complexity of these problems may very much depend on how automatic
structures are presented. Since the decision methods for 91, and Tree(p) are automaton based, a
presentation d consisting of a list of automata, is more suitable for practical purposes than using
an interpretation. Here, we focus on presentations by deterministic automata because these
admit boolean operations to be performed in polynomial time, whereas for nondeterministic
automata, complementation may cause an exponential blow-up.

In the following we always assume that the vocabulary of the given automatic structures and
the alphabet of the automata we deal with are fixed. Furthermore the vocabulary is assumed
to be relational when not stated otherwise.
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Structure-Complexity — Expression-Complexity

Model-Checking

Yo LOGSPACE-complete ALOGTIME-complete
Yo + fun NLOGSPACE PTIME-complete
31 NPTIME-complete PsPACE-complete

Query-Evaluation
Yo LOGSPACE PSPACE
¥ PSPACE EXPSPACE

While we have seen above that query-evaluation and model-checking for first-order formulae
are effective on AutStr, the complexity of these problems is non-elementary, i.e., it exceeds any
fixed number of iterations of the exponential function. This follows immediately from the fact
the the complexity of Th(9,) is non-elementary (see [19]).

Proposition 5.5. There exist automatic structures such that the expression complexity of the
model-checking problem is non-elementary.

It turns out that model-checking and query-evaluation for quantifier-free and existential
formulae are still — to some extent — tractable. The table above summarises the complexity
results obtained in [5, 7]. As usual, ¥y and ¥; denote, respectively the class of quantifier-free
and the class of existential first-order formulae.

For most questions we can restrict attention to relational vocabularies and replace functions
by their graphs at the expense of introducing additional quantifiers. When studying quantifier-
free formulae we will not want do to this and hence need to consider the case of quantifier-free
formulae with function symbols separately. This class is denoted ¥ + fun.

Undecidability. In the remainder of this section we present some undecidability results.

Lemma 5.6. Fvery configuration graph of a Turing maching is automatic.

Proof. We encode a configuration with state ¢, tape contents w, and head position p by the
word woqw; where w = wow; and |wy| = p. At every transition woqu tp, wiq'w}, only the
symbols around the state are changed. This can be checked by an automaton. U

An immediate consequence is:
Proposition 5.7. REACHABILITY is undecidable for automatic structures.
The proofs below are based on the following normal form for Turing machines:

Lemma 5.8. For any deterministic 1-tape Turing machine M one can effectively construct a
deterministic 2-tape Turing machine M' such that the configuration graph of M' consists of a
disjoint union of

(a) a countably infinite number of infinite acyclic paths with a first but without last element;
(b) for each word x € L(M), one path starting at an initial configuration and ending in a

loop.
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Proof. We slightly modify the construction of a reversible Turing machine. While simulating M
on its first tape the machine M’ appends to the second tape the transitions performed at each
step. That way it is ensured that each configuration of M’ has a unique predecessor. Further,
we define M’ such that, if M terminates without accepting, then M’ enters an infinite loop
while moving its head to the right. Thus, if z ¢ L(M) then the run of M’ on input = consists
of an infinite path of type (a).

The construction as presented so far does not suffice since there exist configurations that
cannot be reached from an initial configuration. We have to ensure that every path containing
such a configuration is of type (a). Clearly, every such path must have a first element since the
contents of the second tape never decreases. To ensure that the path does not end we modify M’
such that, if M accepts, then M’ restarts the simulation of M with the initial configuration
but without erasing the contents of the second tape. Instead, at every step M’ checks that the
symbol it normally would write to this tape is already present. That way, if the path starts at
an unreachable configuration, a discrepancy is detected and M’ can enter an infinite loop as
above.

Finally, note that with this modification the run of M’ on inputs z with x € L(M) is of
type (b). O

Theorem 5.9. It is undecidable whether two automatic structures are isomorphic.

Proof. Let M be a deterministic 1-tape Turing machine. We construct a Turing machine M’
as in the preceding lemma. The configuration graph G of M’ is automatic. Let H be the
graph consisting of Ry copies of (w,suc). Then, G = H iff L(M) = (. The latter question is
undecidable. O

Theorem 5.10. It is undecidable whether an automatic graph is connected.

Proof. We modify the proof above. Again construct the Turing machine M’ with configuration
graph G. This time, we modify M’ such that it enters a distinguished configuration ¢g if an
error is detected in the second phase. Let T be the set of configurations with two predecessors.
We add edges from c to ¢q for every ¢ € T'. Since T is FO-definable it follows that the resulting
graph G’ is still automatic. Furthermore, G’ is connected iff every run of M reaches an accepting
configuration, i.e., iff L(M) = X*. O

6 Composition of structures

The composition method developed by Feferman and Vaught, and by Shelah considers com-
positions (products and sums) of structures according to some index structure and allows one
to compute — depending on the type of composition — the first-order or monadic second-order
theory of the whole structure from the respective theories of its components and the monadic
theory of the index structure.

The characterisation given in the previous section can be used to prove closure of automatic
structures under such compositions of finitely many structures (see [18, 34, 23, 36]). A gener-
alised product — as it is defined below — is a generalisation of a direct product, a disjoint union,
and an ordered sum. We will prove that given a finite sequence (2;); of structures which belong
to some class K containing a complete structure, all their generalised products are members
of K as well.
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The definition of such a product is a bit technical. Its relations are defined in terms of the
types of the components of its elements. The atomic n-type atpy(a) of a tuple (ay,...,an_1)
in a structure 2 is the conjunction of all atomic and negated atomic formulae ¢(Z) such that
©(a) holds in .

Let us first look at how a direct product and an ordered sum can be defined using types.

Ezample. (1) Let 2 := Ao x Ay where ; = (4;, R;), for i € {0,1}, and R is a binary relation. The
universe of 2 is Ag x A;. Some pair (a,b) belongs to R iff (ag,by) € Ro and (a1,b1) € R;y. This is
equivalent to the condition that the atomic types of agby and of a;b; both include the formula Rxox;.
(2) Let A := 2o +2A; where A; = (A;, <;), for i € {0,1}, and <o, <3 are partial orders. The universe
of Ais Ag U A1 = A x {0} U {0} x A1, and we have
a<biffa= (ao,O), b= (bo,O) and ag <g bo,
ora = (0,a1), b= (0,b1) and a1 <y by,
or a = (ao,O), b= (O,bl)

Again, the condition a; <; b; can be expressed using types.

Definition 6.1. Let 7 = {Ry,..., Ry} be a finite relational vocabulary, r; the arity of R;, and

7 := max{rg,...,rs}. Let (U;);cr be a sequence of T-structures, and J be an arbitrary relational
o-structure with universe I.
Fix for each k < # an enumeration {t§,... ’tlri(k)} of the atomic k-types and set

O ::o’L-J{DO,...,Dk_1}U{Tlm | mSk,l Sn(m) }

The oy-expansion J(b) of J belonging to a sequence b € ([];c;(4s W{0}))F is given by

D?(T)) = {Z el ‘ (by)i # 0}7
(1)@ = {i € I'| atpg((bjo)i- - (bj,_,)i) = " and
{71 @) # 0} ={dos--rdm1} }-

For D C B’ and B; € FOloy,;], C == (3,D,Bo,---,Ps) defines the generalised product
C(mi)iEI = (A7R07 s ,RS) of (Qli)iel where

A= [T xa ({0}, 4),
deD i€l
Ri:={bec A" | 3(b) = B },
and xp(ag,a1) := ap.

Ezxample. (continued)
(1) For the direct product of 2o x A; we would set J := (I) with I = {0,1}, D := {(1,1)}, and

B=\ TP0A\ T,
leL leL
where L is the set of atomic types containing the formula Rzoz;.
(2) In this case we would set J := (I) with I = {0,1}, D := {(1,0),(0,1)}, and
8= (DOO ADOA\/ T,ZO) v (D01 ADIA\/ Tfl) V (Do0 A D1 1),
leL leL

where L is the set of atomic types containing the formula zy < ;.
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Theorem 6.2. Let 7 be a finite relational vocabulary, and K a class of T-structures containing
all finite T-structures and a structure € which is complete for K with regard to many-dimensional
FO-interpretations.

Let 3 be a finite relational o-structure, let (U;)i;cr be a sequence of structures in K, and
C = (3,D,p) a generalised product. Then C(;)icr € K, and an interpretation C(A;)ser <ro €
can be constructed effectively from the interpretations A; <po € and J <po €.

Proof. Let 7 = {Ry,...,Rs}. W.lLo.g. assume that I = {0,...,|I| — 1} and that € contains
constants 0 and 1. We have to construct an interpretation of 2 := C(2;);cs in €. Let r; be the
arity of R;. Consider n;-dimensional interpretations

It = (W', 64(3"), €' (Z", ), b (o - o s Ty 1)y O (Tl oo, TE, 1))
of 2; in €. We represent an element a of 2 by a tuple of (|I| +ng + --- + n;_1) elements
7:=(d,2°...,711)

where d € D determines which components are empty and Z* encodes the i*® component of a.
The desired interpretation is constructed as follows.

T :=(h,6(2),e(Z,7), 0(Z0, - - -+ Trg—1)s - -+ Ps(ZT0, - -, Tr,—1))

where
h(d, 3, @77 o= (x40 (0, h0(3°)),- -, Xy, (O, RIT1H@ETITY))),
6(d, 2%, 3l ) = \/ (d=en N\ o'(3)),

ceD 1: ;=1
and

e(dz’..., a1 e g . g ) =d=en \ (di=1- €@ 7).
i<|I|
In order to define ¢; we consider an interpretation Z' of J in €. Since J is finite such an
interpretation exists. Let o := ﬂ]-II be the formula defining R;. Note that 8; contains additional
relations D; and T;™ which are not in 0. Thus «; is a sentence over the vocabulary 7 extended
by the symbols D; and T;™ for appropriate [ and m. We have to be replace them in order to
obtain a definition of ¢;. Let Zo,...,Z,;,—1 be the parameters of ¢; where

_ T _|1]-1
xkz(dk,wg,...,a;'k| )

for k < rj. D; and T;™ can be defined by
Dyi:=(d)i=1 and  Ti:= ()" (a,...,55,_)-

Note that those definitions are only valid because 7 ranges over a finite set. ¢; can now be
defined as «; with D; and T}™ replaced by the above definitions.
Obviously, all steps in the construction above are effective. O

Corollary 6.3. Both, AutStr and w-AutStr are effectively closed under finitary generalised
products.

18



As promised we immediately obtain closure under several types of compositions.

Corollary 6.4. Let 2,...,%A,—1 € AutStr. Then there exists automatic presentations of

(i) the direct product ], ., i,

(ii) the disjoint union |, ,2;, and

(iii) the w-fold disjoint union w - Ay of Ap.

Corollary 6.5. Let ,...,,_1 € AutStr be ordered structures. There exists automatic pre-
sentations of

(i) the ordered sum )

icn i and

(ii) the w-fold ordered sum ), Ao of AUo.
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Abstract. Very efficient solvers for Integer Programming exist, when
the constraints and the objective function are linear. In this paper we
tackle a fundamental question: what is the expressive power of Integer
Linear Programming? We are able to prove that ILP, more precisely
Binary LP, expresses the complexity class NP. As a consequence, in
principle all specifications of combinatorial problems in NP formulated
in constraint languages can be translated as BLP models.

1 Introduction

Both mathematical (in particular integer) programming (IP) and constraint pro-
gramming (CP) languages are widely used for the specification of combinatorial
problems. Apart from that, there are various differences between the two ap-
proaches. As highlighted in [8], CP languages are typically easier to use because
they have a richer syntax for representing constraints. On the other hand, IP
solvers like CPLEX [5] have advanced techniques such as cut generation and
presolve reductions that improve their performance. In general, IP and CP tech-
nologies are complementary, and it is difficult to say which one is better. There
are considerable research efforts in taking “the best of both worlds” (cf., e.g.,
[10]), and in particular in finding suitable translations in IP of specifications
formulated in CP [9].

In [9] the main effort is in trying to translate CP specifications into linear
constraints, because this allows to use a solver for Integer Linear Programming
(ILP) for solving a CP problem without having to give a linear formulation,
which is sometimes far from natural. In fact ILP (and in general mized IP)
solvers maintain a relazed solution of the linear relazation of the problem, and
generate cutting planes to strengthen the relaxation. Moreover, non-linear IP
solvers are relatively rare: for example, ILOG’s CPLEX solver [5] handles only
linear integer constraints (plus non-linear, non-integer constraints).

* Extended version of a paper appeared in the Proceedings of the Seventh International
Conference on Principles and Practice of Constraint Programming (CP ’01), Lecture
Notes in Computer Science, volume 2239, pages 570-574, Springer, 2001.



For such an approach to be effective, we have to be sure that imposing
the syntactic constraint of linearity does not rule out the possibility of solving
problems of interest.

In this paper we tackle a fundamental question: what is the ezpressive power
of Integer Linear Programming, i.e., which problems can be expressed with lin-
ear models? We are able to prove that ILP expresses the complexity class NP,
i.e., that for each problem % in NP there is an ILP model 7 such that, for all in-
stances, 1 and 7 are equivalent. As a consequence, in principle all specifications
of combinatorial problems in NP formulated in constraint programming can be
translated as ILP models. Actually, we need only integer variables taking values
in {0, 1}, hence the result holds for Binary Linear Programming (BLP).

Expressive power must not be confused with computational complexity. The
latter refers to the difficulty to solve an instance of a problem, while the former
refers to the capability of a language to describe problems, i.e., functions. In fact,
the expressive power of a language is not necessarily the same as its complexity:
for examples of languages with this property, cf., e.g., [1]. Separating data from
problem description, called model in the terminology of operations research, is a
fundamental idea in database theory, and is enforced also by mathematical pro-
gramming modeling languages such as AMPL [3] and OPL [10]. Using database
terminology, it is obvious that the data complexity of BLP, i.e., the complexity
wrt the size of data and disregarding the model, is NP-hard: as an example, an
instance of the SAT problem can be translated (cf. e.g., [6]) into a set of linear
constraints over binary variables. On the other hand, to the best of our knowl-
edge, the question of whether all problems in NP can be stated as BLP models
has not been addressed so far.

The paper is organized as follows. In Section 2 we recall the basic notions
on logical specification of problems and integer programming. In Section 3 we
provide the main result, i.e., that BLP expresses the complexity class NP. Con-
clusions, related and future work are discussed in Section 4.

2 Preliminaries

2.1 Logical specification of problems

We refer to the data of a problem, i.e., the representation of an instance, with
the term database. All constants appearing in a database are uninterpreted, i.e.,
they don’t have a specific meaning.

In the following, o denotes a fixed set of relational symbols not including
equality “=" and Si,...,S) denote variables ranging over relational symbols
distinct from those in ¢ U {=}. By Fagin’s theorem [2] any collection D of finite
databases over o recognizable in NP time is defined by an existential second-
order (ESO) formula of the kind:

(ESI,"'aSh) ¢a (1)

where Sy,..., S} are relational variables of various arities and ¢ is a function-
free first-order formula containing occurrences of relational symbols from o U



{S1,...,8,} U {=}. The symbol “=" is always interpreted in the obvious way,
i.e., as “identity”.

A database D is in D if and only if there is a list of relations Xy,..., X}
(matching the list of relational variables Sy, ..., S;) which, along with D, satisfies
formula (1), i.e., such that (D, X4,...,X}) | ¢. The tuples of Xy, ..., X, must
take elements from the Herbrand universe of D, i.e., the set of constant symbols
occurring in it.

Ezample 1 ([7]). In the propositional satisfiability problem the input is a set V
of propositional variables, a set C' of names of propositional clauses, and two sets
N, P of pairs {c,v) (c € C,v € V) encoding the clauses, i.e., N(c,v) [P(c,v)]
holds iff v occurs negatively [positively] in clause c¢. The question is whether
there is an assignment S of truth values to variables in V' such that each clause
in C is satisfied. The question can be specified as an ESO formula as follows:

(35) (v2)@) [8(z) > V(&) A )
[V (@) = (Ple.y) A S@) Y (V(@.9) A S))]

2.2 Integer linear programming

An ILP problem is a set of integer variables z1,...,z, and a set of linear con-
straints over such variables. Linearity of constraints means that they must have
one of the following forms:

c1 Ty 4+ -F+ch-Tp=0>
1T+ -Fcn Ty >b

where ¢;,...,c,,b are variable-free expressions. Linearity enforces the search
space to be a convex polyhedron, thus allowing specific algorithms to be imple-
mented.

Typically, an ILP problem has also a linear objective function to be maxi-
mized or minimized. In what follows we will ignore objective functions, because
we are dealing with decision problems. Moreover, since we really need only vari-
ables taking values in {0, 1}, we will deal just with Binary Linear Programming.

In mathematical programming, data and the so-called model (which is a
description of the problem and is not to be confused with the notion of model in
logic) are separated. Modeling languages such as AMPL allow very convenient
ways to express models and data.

Ezample 2. In the “one-in-three” NP-complete decision problem (cf. [4, Problem
LO4]) the input is a set U and a collection T' of triplets of elements of U, and
the question is whether there is a selection A of elements of U such that each
triplet has exactly one selected item. A BLP model for the problem is as follows:

variables: A € {0,1}/V/ (one for each element of the set U).
constraints: for each (z,y,2) € T, A(z) + A(y) + A(z) =1



In the popular mathematical programming modeling language AMPL [3], the
model is as follows!:

set U; set T within {U,U,U}; # declarations for the input
var A {U} binary; # variables
s.t. Sat {(x,y,z) in T}: A[x] + A[y] + A[z] = 1; # constraints

AMPL allows also to specify instances, typically in a separate file. An example
for U and T (five elements and three triplets, respectively) is the following:

set U :
set T

abcde;
(a,b,c) (c,d,e) (a,c,d);

The above example shows that, for some NP-complete problems, it is quite
easy to write a linear model using only binary variables. In the next section we
prove that BLP models exist for all problems in NP, although writing them is
not always so simple.

3 The expressive power of binary linear programming

3.1 Normalization of ESO formulae

As explained in [7], instead of the general formula (1), we can restrict our atten-
tion to second-order formulae in the following form:

(381,-..,8n) (VX)(3TY) $(X,Y), 3)

where X and Y are lists of first-order variables and (X,Y) is a quantifier-
free first-order formula involving relational symbols which belong to the set o U
{S1,...,8,}U{=}. Since ¥(X,Y) can be put in Disjunctive Normal Form, i.e.,
disjunctions of conjunctions, in what follows we refer to the following form:

(EISla sy Sh)(vx)(EIY)(el (XaY) VeV ok(an))’ (4)

where 61,...,0; are conjunctions of literals, and each conjunction 6; contains
the occurrence of some variables among X,Y.

A conjunction 6;(X,Y) (1 <7 < k) of the kind occurring in formula (4) will
be denoted as a;(X,Y) A §;(X,Y), where §;(X,Y) is a conjunction of literals
whose relational symbol are in {Si,...,Ss}, while ;(X,Y) is a conjunction of
literals whose relational symbols are not from that set.

The first step of a method that transforms a formula of the kind (4) into a
BLP model is the introduction of a modified ESO formula:

(Elsl""asha Dl,-"aDk)
(VX)(AY) (au(X,Y) A D1 (X, Y)) V-V (ax(X, Y) A Di(X,Y)) A
(vxa Y) D, (X’Y) = 51 (XaY) A (5)
e A
(VX,Y) Dp(X,Y) = 6,(X,Y)

! In the third line, Sat is just a name for the constraint.



in which there are k new relational symbols D1, ..., Dy which are existentially
quantified. Each symbol D;(X,Y) (1 < i < k) is defined as the conjunction
0;(X,Y). The advantage of formula (5) over formula (4) is that —as we show
in what follows— the former generates linear constraints, while the latter gener-
ates non-linear constraints. The following lemma clarifies that the satisfiability
problems for the two formulae are equivalent.

Lemma 1. Given a database D, formula (4) is satisfiable if and only if formula
(5) is satisfiable.

Proof (only if part.) We assume that formula (4) is satisfiable for a given database
D. Let Xy,..., %, be a generic list of relations such that

(D, 5,..., Z4) E (VX)EY) (01X, Y) V- V (X, Y)). (6)

We build an assignment Ay, ..., Ay to the relational variables D1,..., Dy as
follows. For each tuple X,Y and for each 7 (1 < i < k), 4;(X,Y) is true if and
only if (¥1,...,X%) F 6;(X,Y). As a consequence, it holds that:

(D, 21,...,Eh,A]_,...,Ak) |= (VX,Y)Dl(X,Y) = 51(X,Y) A
A
(VX,Y)Dy(X,Y) =6,(X,Y)

Because of (6), it also holds that:

(Dy Shyees Sy A,y A) E (WX)(3Y) (a (X, Y) A Dy (X,Y))
VIRV
(ar(X,Y) A Dp(X,Y)),

which concludes the proof.
Proof (if part.) We assume that formula (5) is satisfiable for a given database
D. Let Xy,..., X, A1,..., Ay be a generic list of relations such that

(D, X1,..., Xn,Ar,..., Ag) E (VX)(TY) (1 (X,Y) A D1(X,Y))
(ar(X, Yv) /\ ']_\)/k(X,Y)) A
(VX,Y) Di(X,Y)=6(X,Y) A
(VX,Y) Dg(X, Y)E 0 (X,Y) "
Because of the definition of formula (5), it follows that
(D, %1,...,25) E (VX)AY)(01(X,Y) V- VO(X,Y)),

which concludes the proof. O

As shown by the above construction, each solution for the formula (4) is pre-
served after the transformation.



Ezample 1 (cont.) The ESO formula for satisfiability in the form (4) is:

(3S) (Vz)(Fy) V(z) V [P(z,y) A=S(x) AS(y)] V )
[N(z,y) A—S(z) A=S(y)]

For obtaining the form (5) we need two more relational variables D; and D3 of
arity 2, as follows:

(38, D4, D5)
(V2)(Fy) V(2) v [P(,y) ADi(z,y)] V [N(@y) ADa(@,y)] A (a) g,
(Ve y) Di(z,y) = -5(z) A S(y) A (D)
(Ve y) Da(z,y) = ~5(z) A-S(y) (0)

3.2 Translation of ESO formulae in BLP models

The second step is to prove that every ESO formula of the form (5) can be trans-
lated into an equivalent BLP model. Since such formulae contain quantifications
of several kinds and various propositional connectives, we have to take into ac-
count several aspects. The most important thing we have to remember is that,
in linear constraints, products of variables are not allowed. Instead, products of
variables and non-variables are allowed. In what follows, we use the terminology
of [3]. The translation rules are, intuitively, the following:

— Unquantified relational symbols, i.e., those in the database, correspond to
sets, i.e., collections of uninterpreted symbols.

— Existentially quantified relational symbols, i.e., those representing the search
space in which solutions are to be found, correspond to collection of binary
variables.

— Positive literals, such as P(z,y) and S(y) in formula (8), can be directly
mapped into binary terms.

— As for quantifier-free formulae, the general idea is to translate disjunctions
(V) into sums, conjunctions (A) into products, and negations (—) into differ-
ence from 1.

— First-order existential quantification can be modeled taking into account
that the existential quantifier is an iterated disjunction. As a consequence, we
obviously translate it into a sum over all elements of the Cartesian product of
the Herbrand universe, provided that terms not depending on the quantified
variable are taken out of the sum.

— First-order universal quantification can be easily modeled declaring con-
straints for each element of the Cartesian product of the Herbrand universe,
with the appropriate arity.

— Finally, a constraint is true iff the corresponding integer expression is as-
signed a value greater than or equal to 1.

In the following, we formalize the transformation. First of all, we need some
further notation; referring to formula (5):



— each conjunction a;(X,Y) is expanded as
al(X,Y) A--- Adki(X,Y);
— each conjunction §;(X,Y) is expanded as
(X, Y)A---AdM(X,Y).
We now introduce integer terms corresponding to the above literals:

— for each i (1 <7< k) and each j (1 <j <), literal af (X,Y) corresponds
to integer term b{ (X,Y), defined as:
e a!(X,Y), if the literal is positive, or
o 1— ag (X,Y), if the literal is negative;
— for each 7 (1 <4 < k) and each j (1 < j <m;), literal d{ (X,Y) corresponds
to integer term cZ (X,Y), defined as:
. d{ (X,Y), if the literal is positive, or
e 1—d/(X,Y), if the literal is negative.

Without loss of generality, we assume that in formula (4) the conjuncts 6;’s
are sorted in such a way that conjuncts in which Y does not occur have lower
index. In other words, there is an index r (0 < r < k) such that for each
1 (1 <3 <7r)Y does not occur in 6;, and for each j (r+1 < j < k)Y occurs in
0;. Referring to formula (7) of Example 1, r = 1.

We are now ready to show the translation of an ESO formula into a BLP
model. Given a formula of the form (5), we define the following model:

variables:
— denoting with a; (1 <17 < h) the arity of S;:

Sy e {0,1} VI .8, e {0,1} VI 9)
— denoting with b; (1 <14 < k) the arity of D;:
Dy € {0,1}VI" ... D) € {0,1}IVI"* (10)

constraints:
— for each X,

bH(X) x --- x blll(X) X Di(X) +---+
bL(X) x -++ x b (X) x D,.(X)+

Db (XY) x - x B (X, Y) x Dpa (X, Y) + -+ +
Y

bL(X,Y) x --- x bl (X,Y) x D(X,Y)

v
—

—~~
—
—

—



— for each X and Y,
Ci(an) 2 Dl(an)

CTI(XaY) Z Dl(an)

Di(X,Y) > (X, YY)+ -+ (X, Y)+1—my

: (12)
c(X,Y) > Dip(X,Y)

(X, Y)
Dk(X’Y)

(X, Y) 4+ + (X, Y) + 1 — my,

We note that all variables in (9-10) are binary, and that all constraints in (11-
12) are linear (products in (11) are between non-variables). As a consequence,
(9-12) defines a BLP model. The following theorem shows that the satisfiability
problems for the formula (5) and for the above BLP model are equivalent.

Theorem 1. Given a database D, formula (5) is satisfiable if and only if BLP
model (9-12) is satisfiable.

Proof (only if part.) We assume that formula (5) is satisfiable for a given database
D, i.e., there is a list L of relations corresponding to S1,...,Sh, D1, ..., Dy that,
along with D, satisfies the formula obtained eliminating second-order quantifiers
from formula (5).

We define an assignment to binary variables in (9-10) in the obvious way, i.e.,
for each X, Y, i (1<i<h)and j(1<j<k), Si(X,Y) [D;(X,Y)] is assigned
to 1 iff the corresponding logical term is assigned to true, and to 0 otherwise.

We prove that the above assignment satisfies all constraints in (11). By the
above assumption, we know that for each tuple X there is a tuple Y and an
index j (1 < j < k) such that ;(X,Y) A D;(X,Y) is assigned to true by L, D.
There are two cases:

— 1 <j <r:then b3(X) x -+ x b (X) x D;(X) evaluates to 1;
—r+1<j<k:then b}(X,Y) x --- x b (X,Y) x D;(X,Y) evaluates to 1.

In both cases, the left hand side of each constraint in (11) is greater than or
equal to 1.

We now prove that the above assignment satisfies also all constraints in (12).
By the above assumption, we know that for each X, Y and i (1 < i < k),
Di(X,Y) =d}(X,Y)A--- Ad]"(X,Y) is assigned to true by L, D. There are
two cases:

— D;(X,Y) is assigned to true: then each dg (X,Y) (1 <j < my) is true as
well;

— Di(X,Y) is assigned to false: then at least one d}(X,Y) (1 < j < my) is
false as well.



In both cases constraints (12) are satisfied, and the proof is concluded.

Proof (if part.) We assume that the BLP model (9-12) is satisfiable for a given
database D, i.e., there is an assignment A to variables in (9-10) such that con-
straints in (11-12) are satisfied.

We define an interpretation of relations in (5) in the obvious way, i.e., for each
X,Y,i(1<i<h)and j (1 <j<k),Si(X,Y) [D;(X,Y)] is interpreted as
true iff the corresponding binary variable is assigned to 1, and to false otherwise.

Since all constraints in (11) are satisfied, there must be at least one product
in the left hand side of (11) which is assigned to 1 by D, A. This implies that the
sub-formula (VX)(3Y) (a1 (X, Y)AD1(X,Y)) V- V(ap(X,Y) ADy(X,Y)) of
(5) is satisfied by the interpretation.

Analogously, since all constraints in (12) are satisfied, for each X, Y and
i (1 <i<k) the formula D;(X,Y) = d}(X,Y) A---Ad]"(X,Y) must be true,
and the proof is concluded. O

As shown by the above construction, each solution for the formula (5) is pre-
served after the transformation.

Ezample 1 (cont.) The translation in a BLP model of formula (8) using the
AMPL syntax is the following:

set V; names of propositional variables
set C; names of propositional clauses
set U

set N within {C,V};
set P within {C,V};

#
#
:= V union C; # Herbrand universe
# negative occurrences of variables in clauses
#

positive occurrences of variables in clauses

=*

var S {U} binary; satisfying assignment
var D1 {U,U} binary; # auxiliary guessed relation
var D2 {U,U} binary; # auxiliary guessed relation

s.t. A {x in U}: # translation of constraint (8a)
(if x in V then 1) +
sum {y in U} ((D1i[x,y] * if (x,y) in P then 1) +
(D2[x,y] * if (x,y) in N then 1)) >= 1;

s.t. D1_1 {x in U, y in U}: # translation of constraint (8b)

1 - S[x] >= Di[x,y]; # Di[x,y] IMPLIES !S[x]
s.t. D1_2 {x in U, y in U}:
S[yl >= Dilx,yl; # Di[x,y] IMPLIES S[y]

s.t. D1_3 {x in U, y in U}:
S[x] + 1 - S[yl + Dilx,y] >= 1; # !'S[x]&&S[y] IMPLIES Di[x,y]

s.t. D2_1 {x in U, y in U}: # translation of constraint (8c)

1 - S[x] >= D2[x,y]; # D2[x,y] IMPLIES !S[x]
s.t. D2_2 {x in U, y in U}:
1 - Syl »>= D2[x,y]; # D2[x,y] IMPLIES !S[y]

s.t. D2_.3 {x in U, y in U}:
S[x] + S[yl + D2[x,y] >= 1; # !S[x]&&!'S[y] IMPLIES D2[x,y]



Database literals such as V (z) and non-database ones such as S(z) have different
translations: the former must be translated as if x in V then 1, while the
latter is translated as S[x]. Apart from such minor syntactic peculiarities of
AMPL, formula (8) is translated in a modular way.

We note that all constraints are linear, since there are no products among
variables, i.e., terms originating from the translation of existentially quantified
relations. The reason of introducing normal form (5) is that the same translation
applied to formulae of the form (4) may introduce non-linear constraints. As an
example, the same translation applied to the second disjunct of non-normalized
formula (7) would yield the integer expression:

(if (x,y) in P then 1) * (1 - S[x]) * S[yl

which is clearly non-linear. For the same reason, an equivalence such as (8b)
which involves non-database literals, is split into several implications, all of them
admitting a linear translation.

4 Conclusions and future work

The transformation exhibited in Section 3 shows that the language of BLP mod-
els is a notational variant of ESO. This implies that it is in principle possible to
model all problems in the complexity class NP by means of BLP. It is important
to remark that the translation from ESO to BLP is done at the intensional level,
i.e., not considering data, but just problem specifications.

Practical considerations about the best way to perform the translation de-
serve further research. In particular, it would be interesting to know whether
new existentially quantified relational symbols introduced by the transforma-
tion of Section 3.1 (which may lead to an inefficient BLP model) can be avoided.
Moreover, it would be interesting to study the expressive power of richer CP
languages such as OPL [10], which allow integer variables and a richer syntax
for expressing constraints.
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Abstract

We prove that the inference problem of propositional circumscription for affine formulas is
coNP-complete, settling this way an open question in the complexity analysis of this problem.
We also show that the considered problem becomes polynomial-time decidable if only a single
literal has to be inferred from an affine formula. Our intractability result has also a relation to
other complexity results in coding theory.

1 Introduction and Summary of Results

Circumscription, introduced by McCarthy [McC80], is a well-developed formalism of common-sense
reasoning and extensively studied by the artificial intelligence community. The key idea behind
circumscription is that one is interested in the minimal models of formulas, since they are the
ones that have as few “exceptions” as possible and, therefore, embody common sense. Moreover,
propositional circumscription inference has been shown by Gelfond et al. [GPP89] to coincide with
reasoning under the extended closed world assumption, which is one of the main formalisms for
reasoning with incomplete information. In the context of Boolean logic, circumscription amounts
to the study of models of Boolean formulas that are minimal with respect to the pointwise partial
order on models.

Several algorithmic problems have been studied in connection with propositional circumscrip-
tion: among them the model checking and the inference problems. Given a propositional formula ¢
and a truth assignment s, the model checking problem asks whether s is a minimal model of ¢.
Given two propositional formulas ¢ and 1, the inference problem asks whether 1) is true in every
minimal model of . Cadoli proved in [Cad92] the model checking problem to be coNP-complete,
whereas Kirousis and Kolaitis settled in [KKO0la] the question of the dichotomy theorem for this
problem. The inference problem was proved II;P-complete by Eiter and Gottlob in [EG93]. Cadoli
and Lenzerini proved in [CL94] that the inference problem becomes coNP-complete if ¢ is a Krom
or a dual Horn formula. The complexity of the inference problem for affine formulas remained open
for ten years. It was known that the problem is in coNP, but there was no proved lower bound.

Beyond the already mentioned applications, minimal models of affine formulas are at the heart
of several intriguing computational problems. The complexity of enumerating minimal models of
affine formulas was left open by Kavvadias et al. [KSS00]. Together with the hypergraph transver-
sal [EG95] problem, they represent the last subcases of minimal model enumeration whose precise
complexity is unknown. Another important application constitutes the domain of secret sharing



schemes [Sha79], complexity issues in coding theory [BMvT78, Bar98], and minimum distance
decoding [AB98].

In fact, this paper is a partial result of our effort to find an output-polynomial algorithm for enu-
merating the minimal models of affine formulas. Following the result of Berlekamp et al. [BMvT78],
it is clear that we cannot develop an output-polynomial algorithm for this enumeration problem by
producing consecutive minimal models of the affine system with increasing Hamming weight, unless
P = NP. Another natural approach consists of producing partial assignments to the variables that
are extended to minimal models afterwards. However, as our result indicates, this new approach
does not lead to an output-polynomial algorithm either, unless the same collapse occurs.

In this paper, we settle the complexity of the inference problem for the propositional circum-
scription of affine formulas, proving that the problem is coNP-complete. First, we prove a new
criterion for determining minimal models of affine formulas in polynomial time. This new criterion
is then extensively used in the coNP-hardness proof for the inference problem of affine formulas.
Finally, we prove that the restriction of the affine inference problem with 1/ being a single literal is
decidable in polynomial time.

2 Preliminaries

Let s = (s1,...,8p) and s’ = (s),...,s]) be two Boolean vectors from {0,1}". We write s < s’ to
denote that s # s’ and s; < s} holds for every i < n. Let ¢(z1,...,2,) be a Boolean formula having
Zi,...,Zy as its variables and let s € {0,1}" be a truth assignment. We say that s is a minimal

model of ¢ if s is a satisfying truth assignment of ¢ and there is no satisfying truth assignment s’
of ¢ that satisfies the relation s < s’. This relation is called the pointwise partial order on models.

Let ¢(z1,...,2,) be a propositional formula in conjunctive normal form. We say that ¢(z) is
Horn if ¢ has at most one positive literal per clause, dual Horn if ¢ has at most one negative literal
per clause, Krom if ¢ has at most two literals per clause, and affine if ¢ is a conjunction of clauses
of the type 21 ®--- @z, =0o0rz1 & - -z, = 1, where @ is the exclusive-or logical connective,
what is equivalent to an affine system of equations S: Az = b over Zo.

Let ¢ and v be two propositional formulas in conjunctive normal form. We say that v follows
from ¢ in propositional circumscription, denoted by ¢ Fmin %, if 9 is true in every minimal model
of . Since 1 is a conjunction c; A --- A ¢ of clauses ¢;, then ¢ Fmin ¥ if and only if ¢ F=min ¢
for each i. Hence we can restrict ourselves to consider only a single clause instead of a formula 1
at the right-hand side of the propositional inference problem ¢ =pin c. We can further restrict the
clause ¢ to one containing only negative literals ¢ = —u; V - -+ V —uy,, as it was showed in [KKO01b].

If £ and y are two vectors, we denote by z = zy the vector obtained by concatenation of x
and y. Let S: Az = b be a k x n affine system of equations over Zo. Without loss of generality, we
assume that the system S is in standard form, i.e., that the matrix A has the form (I B), where I
is the k x k identity matrix and B is an arbitrary k£ x (n — k) matrix of full column rank. For
convenience, we denote by x the variables from z associated with I and by y the ones associated
with B. Hence, we consider affine systems of the form S: (I B)(zy) = b.

If A is a k X n matrix, we denote by A(%, j) the element of A positioned at row ¢ and column j.
The vector forming the row i of the matrix A is denoted by A(%, —), whereas the column vector j
of A is denoted by A(—,7). Let I C {1,...,k} and J C {1,...,n} be two index sets. Then A(I,—)
denotes the submatrix of A restricted to the rows I. Similarly, A(—, J) is then the submatrix of A
restricted to the columns J, whereas A(I,J) stands for the submatrix of A restricted to the rows I
and columns J. There are also two matrices with a special notation: the k x k identity matrix I
and the k£ x n all-zero matrix Oy.



For a k x n affine system S: Az = b over Zo, an index set J = {j1,...,im} C {1,...,n} of
cardinality |J| = m, and a Boolean vector v = (v1,...,v,,) of length m, we denote by S[J/v] the
new system S’: A’z' = b’ formed by replacing each variable z;, by the value v;. We also denote
by one(v) = {i | v; = 1} and zero(v) = {i | v; = 0} the positions in the vector v assigned to the
values 1 and 0, respectively. The Hamming weight weight(v) of a vector v is equal to the cardinality
of the set one(v), i.e., weight(v) = |one(v)|.

Suppose that s is a variable assignment for the variables y, i.e., for each y; € y there exists
a value s(y;) € Zo. The vector s is a partial assignment for variables z = zy. An extension of
the vector s is a variable assignment s for each variable from z, i.e., for each z; € z there exists
a value 5(z;) € Zg, such that s(y;) = S(y;) for each y;. If the affine system S: (I B)(zy) = b is
in the standard form and s is a variable assignment for the variables y then the extension 35 to a
solution of the system S is unique. In fact, if the variables y in the system S: (I B)(zy) = b have
been assigned, then the values for the variables = are already determined. In connection with the
previous notions we define the following two index sets

eq(s) = {i | (Bs); = b;} and neq(s) = {i | (Bs); # bi},

where b = (by,...,b;) and (Bs); means the i-th position of the vector obtained after multiplication
of the matrix B by the vector s. The set eq(s) (resp. neg(s)) is the subset of row indices 7 for
which the unique extension 5 satisfies the equality 5(z;) = 0 (resp. §(z;) = 1). It is clear that
eq(s) Nneq(s) = 0 and eq(s) U neg(s) ={1,...,k} hold for each s.

3 A New Criterion For Affine Minimality

There exists a straightforward method to determine in polynomial time whether a solution s is
minimal for an affine system S over Z,. We propose here an alternative method especially well-
suited to decide whether an extension § is a minimal solution of S.

Proposition 3.1 Let S: (I B)(xy) = b be an affine k x n system over Zy and let s be a Boolean
vector of length n — k. The extension 5 is a minimal solution of S if and only if B(eq(s), one(s))
is a matriz of column rank weight(s), i.e., all its columns are linearly independent.

Proof: Suppose that § is minimal and the matrix B(eg(s), one(s)) has the column rank smaller
than weight(s). This means that the columns of B(eq(s), one(s)) are linearly dependent, therefore
there exists a subset J C one(s), such that } . ; B(eq(s),j) = 0 holds. Let ¢ be a Boolean vector
satisfying the condition one(t) = one(s) \ J. The columns of the matrix B(eg(s), one(s)) can be
partitioned into two sets: those in J and those in one(t). Knowing that the columns in J add up
to the zero vector 0, we derive the following equality.

S Blea(s)i)= Y. Blea(s),j) + 3. Blea(s),5) = 3. Blea(s), )

jE€one(s) j€one(t) jeJ jEone(t)

The vector ¢ is smaller than s in the pointwise order. We will show that also the extensions s
and t satisfy the relation ¢ < 5. For each row i € eq(s), the coefficients B(7,j) sum up to the value
bi, ie., that }°ic ne(s) B(6:3) = X jconery B(1,5) = bi. Recall that each variable in the vector z
occurs in the system S exactly once, because of the associated identity matrix I;. Since already
the assignments s and ¢ to the variables y sum up to the value b;, this determines the value of the
variable z; in the extensions s and ¢ to be §(x;) = t(z;) = 0 for each row i € eq(s). In the same
spirit, the assignment s to the variables y sums up to the value 1 — b; for each row i € neq(s),



what determines the value of the variable z; in the extension s to be s(z;) = 1. Therefore we have
t(z;) < 3(z;) = 1 for each row i € neg(s). This shows that ¢ is a solution of S smaller than 3, what
contradicts our assumption that s is minimal.

Conversely, suppose that the matrix B(eg(s), one(s)) has the column rank weight(s) but § is
not minimal. The latter condition implies that there exists a variable assignment ¢, such that the
extension ¢ is a solution of S satisfying the relation ¢ < 3. Let J = one(3) \ one(t) be the set
of positions on which the extensions 5 and ¢ differ. Both extensions 5 and ¢ are solutions of S,
therefore we have (I B)s + (I B)t = 3 ,c;(I B)(—,j) = 0. The index set J can be partitioned
into two disjoint sets Ji containing the positions smaller or equal to k, that are associated with the
identity matrix I, and the set Jo containing the positions greater than k, that are associated with
the matrix B. Hence the inclusion Jy C one(s) holds. The columns of the identity matrix I are
linearly independent, therefore the set Jo must be nonempty in order to get the above sum equal
to 0. The partition of J implies the equality Yojen I(=3) + e, B(—:d) = 0. The restriction
of this equality to the rows in eq(s) yields >, ; I(eq(s),j) + > ;e s, Bleg(s), j) = 0. The vector 3
is a solution of S and for each row i € eq(s) we have 5(z;) = 0, since already the values s(y;) with
j € Jo sum up to b;. This implies together with the previous equation that ¢ ¢ Ji, since ¢ < k
holds, and for all indices j € J; the column I(eq(s), j) is the all-zero vector. This yields the equality
djen I(eq(s),5) = 0, what implies the final equality > jes, Bleq(s), ) = 0. Recalling that J, is
a subset of the columns one(s), this contradicts the fact that the matrix B(eq(s), one(s)) has the
column rank equal to weight(s). O

4 Extension and Inference Problems

In this paper we will be interested in the complexity of the inference problem of propositional
circumscription with affine formulas. Since affine propositional formulas are equivalent to affine
systems S: Az = b over Zs, this problem can be formulated as follows.

Problem: AFFINF

Input: An affine system S: Az = b over Z, with a Boolean k x n matrix A, a Boolean vector b
of length k, a variable vector z = (z1,...,2,), and a negative clause ¢ = —uy V - -+ V =, where
u; € z holds for each 1.

Question: Does S |=min ¢ hold?

Another interesting problem, closely related to the previous one, is the problem of extending a
Boolean vector to a minimal solution of an affine system.

Problem: MINEXT

Input: An affine system S: Az = b over Zs with a Boolean k x n matrix A, a Boolean vector b of
length k, a variable vector z = (z1,...,2,), and a partial assignment s for the variables y, where
z = zy.

Question: Can s be extended to a vector s, such that s is a minimal solution of the system S?

In fact, the minimal extension problem appears naturally within algorithms enumerating minimal
solutions. For any given class of propositional formulas, when the corresponding minimal exten-
sion problem is polynomial-time decidable, then there exists an algorithm that enumerates each
consecutive pair of minimal solutions with polynomial delay.

To derive the lower bound of the complexity of the latter problem, we need to consider the
following well-known NP-complete problem.



Problem: POSITIVE 1-IN-3 SAT

Input: A propositional formula ¢ in conjunctive normal form with three positive literals per clause.
Question: Is there a truth assignment to the variable of ¢, such that exactly one literal is assigned
to true and the two others are assigned to false in every clause?

Theorem 4.1 MINEXT 4s NP-complete. The problem remains NP-complete even if the partial
assignment s contains no 0.

Proof: Membership of MINEXT in NP is obvious. For the lower bound, we construct a polynomial
reduction from the problem POSITIVE 1-IN-3 SAT.

Let ¢(z1,...,z,) be a propositional formula in conjunctive normal form ¢; A --- A ¢, with
the clauses ¢; = z} V 2? V 3. We construct an affine system S: (I B)(zzy) = b, where I is the
(4m+n) x (dm+n) identity matrix, z, z, and y are variable vectors of respective lengths 4m+mn, n,
and 3m, and B is a special (4m +n) X (3m + n) matrix encoding the formula . We also construct
a partial assignment s and show that the formula ¢ has a model satisfying exactly one variable per
clause if and only if s can be extended to a minimal solution of S.

The matrix B is composed from six blocks as follows

B} B}
B, B3
By B}

The matrix By of size m xn is the clause-variable incidence matrix of the formula ¢, i.e., B (i,) = 1
holds if and only if z; € ¢;. The matrix B? of size m x 3m is the identity matrix I,, with each
column tripled, i.e., it verifies the conditions B?(i,3(i — 1) +1) = B?(i,3(i — 1) +2) = B?(4,3i) = 1
for all i+ and B?(i,j) = 0 otherwise. The matrix Bl of size 3m x n encodes the polynomials
T} + 32, 22 + z, and z¥ + z} over Zy for each clause ¢; = z} V 22 V 3. This encoding is done
for each i = 1,...,m in three consecutive rows. Hence, we have Bi(3i,i1) = Bi(3i,i3) = 1,
B3(3i + 1,i2) = B3(3i + 1,i3) = 1, and B(3i + 2,43) = Bj(3i + 2,41) = 1, where i; is the
position of the variable xf in the vector £ = (z1,...,7,). Otherwise we have B3 (3i + ¢,j) = 0 for
q=0,1,2 and j # i1,42,%3. In another words, the rows B3 (3i,—), Bi(3i +1,—), and B (3i +2,—)
are the incidence vectors of the polynomials le + :1:12, :vf + :1:?, and :vf + :1:}, respectively. The
matrix B% of size 3m x 3m is the identity matrix I3,,. The matrix B% of size n x n is the identity
matrix I,,, whereas the matrix B2 of size n X 3m is the all-zero matrix O3™. Note that due to the
blocks BZ and Bé, that are identity matrices, as well as the block B§ that is an all-zero maftrix,
the matrix B has the column rank n 4+ 3m. Denote by B; the submatrix of B restricted to the
first m rows, i.e., By = B({1,...,m},—). Analogously, we define B, = B({m+1,...,4m}, —) and
Bz = B({4m +1,...,4m + n},—). In the same spirit, we denote by B! = B(—,{1,...,n}) and
B? = B(—,{n+1,...,n + 3m}) the left and the right part of the columns, respectively, of the
matrix B.

The vector b of length 4m + n in the system S is a concatenation of three vectors by, bs, and bs,
where b; is the all-zero vector of length m, by is the all-zero vector of length 3m, and bs is the
all-one vector of length m. The parts b; of the vector b correspond to the row blocks B; of the
matrix B for 1 = 1,2, 3. Figure 1 describes the constructed matrix B and vector b.

Finally, we set the vector s of size 3m to be equal to one in each coordinate, i.e., s(y;) = 1 for
each i =1,...,3m. The Hamming weight of s is equal to weight(s) = 3m.

Let v be a model of the formula ¢ that satisfies exactly one literal per clause. We will prove
that when we append the all-one vector s to v, forming the vector ¢ = vs, then the extension ¢ is a
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Figure 1: Matrix B and the associated vector b

minimal solution of S. Let us study the set eg(t). Since every clause ¢; = z}Vz2Vz3 of ¢ is satisfied,

the sum of literal values is equal to v(z}) + v(z?) + v(z?) = 1. Moreover, for each j = 1,...,m
we have s(z;) = 1, therefore all m rows of B; belong to eq(t). Exactly two of the polynomials
T} + 22, 22 + 73, and 73 + z} are evaluated to 1 for each clause ¢; and for each j = 1,...,3m we

have s(z;) = 1, what implies that exactly 2m rows from Bj belong to the set eq(t). The row i
of By and the rows 3(: — 1) + 1, 3(: — 1) + 2, and 37 of By correspond to the clause ¢;. Form
the corresponding row index set I(i) = {i, m +3(i — 1)+ 1, m + 3(i — 1) + 2, m + 3i} for a
given i. Consider the restriction of the block B? to the rows I(i). This restriction B?(I(i), —) will
have plenty of all-zero columns. Keep only the columns containing at least one value 1. These
columns will be 3(i — 1) + 1, 3(: — 1) + 2, and 3i. Form the corresponding column index set
J@)={n+3E—-1)+1, n+3(6—1)+2, n+3i} for a given i. The restriction of B to the rows
I(i) and columns J(7) is the matrix

B(I(2), J()) =

S O = =
_ O

0

Note that the first row of B*(i) and exactly two out of the three last rows of B*(i) are also
represented in the set eq(t). If we delete one of the last three rows of B*(7), the resulting square
matrix will remain non-singular. Note that the column index sets J(i) are pairwise disjoint and
that their union equals the index set J* = {n +1,...,n + 3m}. Since B(—,J*) = B? holds, we
easily see that the restriction B?({1,...,4m}, —) is equal, modulo a suitable row permutation, to
the block matrix

B*(1) O O
Bi,, = o . O
O O B*(m)
The restriction B?(eg(t), —) deletes from B, one of the last three rows of each block corresponding

to B*(i). The matrix B , is non-singular, what implies that the restriction B?(eq(t), —) is also non-
singular, since B*(i) with one row deleted remains non-singular. Finally, the block Bs contributes



weight(v) rows to eq(t). Hence, the set eq(t) contains 3m + weight(v) row indices and the equality
weight(t) = 3m + weight(v) holds. This means that B(eq(t), one(t)) is a square matrix. Note that
B(eq(t), one(t)) is the concatenation of the matrices B(eq(t), one(v)) and B(eq(t), one(s)), since
t = vs. Because s is the all-one vector, the matrix B(eq(t), one(s)) is equal to B%(eq(t),—). Notice
that B(eq(t) N {4m + 1,...,4m + n}, one(v)) (i.e. the restriction of B'(eq(t), one(v)) to rows of
B1) is once more an identity matrix, what makes the block B(eq(t), one(v)) = B(eq(t), one(v))
non-singular. Finally, the block B? is an all-zero matrix, therefore the concatenation of matrices
B(eq(t), one(v))B(eq(t), one(s)) = B(eq(t), one(t)) is non-singular, what means that its columns
are linearly independent. According to Proposition 3.1, the extension ¢ is a minimal solution of S,
hence s can be extended to a minimal solution of the system S.

Conversely, suppose that s can be extended to a minimal solution of S. Then there exists a
partial assignment v to the variables z, forming with s the concatenation ¢ = vs, such that ¢ is
minimal and weight(t) = 3m + weight(v) holds. Note that independently from the choice of the
values v(z}), v(z?), and v(z3), at most two of the polynomials ! + z?, and z7 + z3, and 23 + z}
evaluate to 1. Hence, at most 2m rows of Bs are evaluated to 0 by the assignment ¢.

Let us analyze the row indices of B that belong to eg(t). The block By contributes always at
most 2m elements and the block Bs contributes exactly weight(v) elements to eg(t). Suppose that
not all indices of By belong to eg(t). In this case, the block B; contributes at most m — 1 elements
to eg(t). This implies that the cardinality of the set eq(¢) is smaller or equal than 3m — 1+ weight (v)
and B(eq(t), one(t)) is a (3m — 1 + weight(v)) x (3m + weight(v)) matrix. In this case the column
rank of the matrix B(eq(t), one(t)) is smaller than 3m + weight(v), i.e., the columns are linearly
dependent. Following Proposition 3.1, the extension ¢ cannot be minimal. Hence, all m row indices
of By must belong to eq(t).

Since all m rows of By belong to eq(t) and s(y;) = 1 holds for each j, the structure of B,
encoding the clauses ¢; = xll \Y zf \% xf of ¢, implies that the equality

t(z7) + t(z}) +t(af) = v(ai) +v(af) +v(a]) =1

holds over Z, for each i. There are two cases to analyze: (1) either v(z}) = v(z?) = v(z3) = 1 or (2)
exactly one of the values v(z}), v(2?), v(x?) is equal to 1 and the two others are equal to 0. Suppose
that there exists an ¢ such that Case 1 is satisfied. Then the maximal number of row indices in
eq(t) contributed by B is 2(m — 1). This is because the equalities v(z}) + v(z?) = v(z?) + v(z3) =
v(z3)+v(z}) = 0 hold over Zs. The cardinality of eq(t) is then bounded by 3m — 2+ weight (v), what
implies once more that the columns of B(eq(t), one(t)) are linearly dependent and this leads to the
same contradiction, implying that the extension ¢ is not minimal, as in the previous paragraph.

Case 2 presents a valid 1-in-3 assignment for the formula ¢. i

The previous theorem allows us to prove the complexity of the inference problem for affine
formulas.

Theorem 4.2 The problem AFFINF is coNP-complete.

Proof: The problem AFFINF is the dual of the problem MINEXT. Note that, given a formula ¢
and a clause ¢ = —uy V -+ V —wy, the condition ¢ FEmin —u1 V -+ V —uy holds if and only if there

is no minimal model m of ¢ that satisfies m(u1) = --- = m(ug) = 1. The latter is true if and only
if the partial assignment s with s(u;) = --- = s(ug) = 1 cannot be extended to a minimal model
of ¢, or equivalently, to a minimal solution of the affine system S corresponding to ¢. O



5 Decompositions and Polynomial-time Decidable Cases

Eiter and Gottlob proved in [EG93] that the inference problem ¢ =pi, ¢ for propositional cir-
cumscription remains IIsP-complete even if the clause c¢ consists of a single negative literal —u.
However, it is not guaranteed that the complexity remains the same for one-literal clauses ¢ for the
usual subclasses of propositional formulas. Concerning the considered inference problem, Cadoli
and Lenzerini proved in [CL94] that for dual Horn formulas it remains coNP-complete but for Krom
formulas it becomes polynomial-time decidable for a clause ¢ consisting of a single negative literal.
It is a natural question to ask what happens in the case of affine formulas in the presence of a
single literal. In the rest of the section we will focus on the restrictions AFFINF; and MINEXT; of
the respective problems AFFINF and MINEXT to a single negative literal clause ¢ = —u.

To be able to investigate the complexity of MINEXT; and AFFINF;, we need to define a neigh-
borhood and a congruence closure on the columns.

Definition 5.1 Let B be a k x n matrix over Z9 and let 5 € {1,...,n} be a column index. The
p-neighborhood N, (j) of the column j in B, for p =0,1,...,n, is defined inductively by

No(3) = {3},
Np1() = {m | (V9llg <p) = (m & Ny(5))] A
(30 F)[(£ € Np(4)) A (B(i,£) = B(i,m) = 1)]}.

The connected component CC(j) of the column j in B is the union of the p-neighborhoods for
all p, i.e., CC(5) = Up—g Np(J)-

Speaking in terms of hypergraphs and matroids, where B is interpreted as the vertex-hyperedge
incidence matrix, the p-neighborhood N, (j) is the set of vertices reachable from the vertex j by a
path of length p. The vertex £ belongs to Np(j) if and only if the shortest path from j to £ in B
has the length p. The connected component C'C(j) is the set of all reachable vertices from j.

Example 5.2 Consider the following following affine system S: (I B)(zy) = b, where I, B and b
are represented by the successive blocks of the following matrix.

(I|B|b) =

coocoo~
co o oRo
coo oo
co~ooco
o~ ocococo
_—o o oo o
OOHHHO
coo o~
o o]~ o]
o[=]e o o]
—— o oo o
—— o oo o

Take 7 = 7 and compute the p-neighborhood from vertex 7 in the matrix B for each p = 0,1,...,6.
We obtain N0(7) = {7}, N1(7) = {8,9}, N2(7) = {10}, N3(7) = {11}, and N4(7) = N5(7) =
Ng(7) = 0. The connected component of the vertex 7 is CC(7) = {7,8,9,10,11}.

When computing the connected component for all columns of a given matrix B, we may get
two or more disjoint sets of vertices. In this case we say that the matrix B is decomposable.
The following lemma shows that we can compute the problems MINEXT and AFFINF by connected
components without increasing the complexity.



Lemma 5.3 Let S: (I B)(zy) = b be an affine system over Zs. Suppose that the matriz B can be
decomposed, up to a permutation of rows and columns, into the components

By O
O By

where By is a k1 X n1 matriz and By is a ko X no matriz. Let by and by be two vectors of respective

size n1 and ng, such that b = biby. Then the set of minimal solutions of S is equal, up to a

permutation, to the Cartesian product My X Mo of the sets of minimal solutions My and My of
1.1

the systems S1: (I By)(z'y') = b1 and So: (I Bs)(z"y") = by, respectively, where z = z'z" and

y=y'y".

Proof: Straightforward, since the set of solutions Sol(S) of the system S is equal up to permutation
to the Cartesian product Sol(S1) x Sol(S2) of the solution sets Sol(S1) and Sol(S2), respectively,
as it is known from linear algebra, and the inclusion M; x My C Sol(S1) x Sol(S2) holds. O

The proof of the following theorem shows that finding a minimal extension § of a Boolean
vector s with weight(s) = 1 can be done by finding a shortest path in a connected component of
the matrix B from a given column to an inhomogeneous equation in the system S.

Theorem 5.4 The problems MINEXT, and AFFINF; are decidable in polynomial time.

Proof: Suppose without loss of generality that S is a kxn system of the form S: (I B)(zy) = b and
that the variable assigned by s is y1. This can be achieved through a suitable permutation of rows
and columns. We also suppose that the matrix B is indecomposable. Otherwise, we could apply the
method described in this proof to one of the subsystems S or Sy separately, following Lemma, 5.3.
Since B is indecomposable, the connected component of the first column is CC(1) = {1,...,n},
i.e., there are no unreachable columns. The following condition can be established for extensions
of weight 1 vectors to minimal solutions.

There exists a minimal solution s with s(y;) = 1 if and only if b # 0.

If b = 0 then the system S is homogeneous and the all-zero assignment for zy is the unique
minimal solution of S, what contradicts the existence of a minimal solution s with s(y;) = 1.

Conversely, suppose that b # 0. We construct a partial assignment s for the variables y with
s(y1) = 1, such that 5 is minimal. We must find the first inhomogeneous equation reachable from y;.
Since b # 0, there exists a shortest path with p + 1 indices jo = 1, 71, ..., Jp, such that (1) for
all g, if ¢ < p then j, € N4(1); (2) for all ¢ < p, for each row i the value B(i, j;) = 1 implies b; = 0,
i.e., every variable y;, for ¢ < p occurs in homogeneous equations only; (3) there exists a row i,
such that B(i, j,) = b; = 1, i.e., the variable y;, occurs in an inhomogeneous equation. Define the
partial assignment s for the variables y by s(y;,) = 1 for each ¢ < p and set s(y;) = 0 otherwise.
We prove that s is a minimal solution of S.

For each g < p there exists a row iy, such that B(iq,jq) = B(ig,jq+1) = 1 holds. In other words,
there exists an equation containing both variables y;, and y;,,,. Denote by ind the set of these
rows 4. Following from definition of the connected component, for each row ¢ € ind there exists a
q < p, such that B(i, j;) = B(%,j4+1) = 1 holds and for all ¢/, such that ¢’ # ¢ and ¢’ # ¢+ 1, we
have B(i, jq) = 0. There exists a row iy, such that B(ip,jp) = b;, = 1 holds and for each ¢ < p we
have B(ip, j;) = 0. In other words, the row index 7, points to an inhomogeneous equation reachable
from y; in p steps.

Let us examine the value of the variables = in the extension s. Following from the above facts,
it is clear that for each row i € ind we have 3(z;) = 0. This follows from the fact that p is minimal



and that for each row ¢ € ind there are exactly two columns j, and j,41 that verify the condition
B(i, jq) = B(i,jq+1) = 1. Moreover, we have 5(z;,) = 0 also for the row 4,. This follows from the
fact that B(ip, jp) = b, = 1.

Suppose now that 5 is not minimal. Then there exists a vector £ such that ¢ is pointwise smaller
than s, therefore also ¢ must be pointwise smaller that s. This means that there exists a variable
from y that is evaluated to 1 by s and to 0 by ¢. By induction on g we prove that #(y;,) = 0
holds for all ¢ < p. Let ¢ be such that s(y;,) = 1 and ¢(y;,) = 0. Then for each row i € ind we
have ¢(z;) < 5(x;) = 0. Hence we have t(y;,) = 0 and 5(z;,) = 0. This forces ¢(z;,) = 0, what
implies #(y;,,,) = 0. Therefore we have ¢(y;,) = 0. Since b;, = 1 holds, this implies the relation
1 = t(=z;,) > 5(z;,) = 0 that contradicts the fact that ¢ is smaller than 5. Therefore the extension §
must be minimal.

The connected component of a column can be computed in polynomial times, therefore both
problems MINEXT; and AFFINF; are polynomial-time decidable. O

Example 5.5 (Example 5.2 continued) Start with the column j; = 7 and compute a shortest
path reaching an inhomogeneous equation. There is a shortest path from the column 7 with the
indices jo = 7, j1 = 9, j2 = 10, reaching the inhomogeneous row 5. The corresponding rows
in ind are ip = 4, iy = 1, and i = 5. The path B(4,7) — B(4,9) — B(1,9) — B(1,10) —
B(5,10) is indicated in the matrix by boxed values. Hence, we computed the partial assignment
s = (1,0,1,1,0) for the variables y and the extension § = (0,1,0,0,0,1,1,0,1,1,0) is a minimal
solution of the system S.

6 Conclusion

formula ¢ clause ¢ literal ¢

CNF [IsP-complete  [EG93] [IoP-complete  [EG93]

Horn in P in P

dual Horn | coNP-complete [CL94] coNP-complete [CL94]

Krom coNP-complete [CL94] in P [CL94]

affine coNP-complete [Theorem 4.2] | in P [Theorem 5.4]

Figure 2: Complexity of the inference problem of propositional circumscription

We proved that the inference problem of propositional circumscription for affine formulas is coNP-
complete. It also shows that reasoning under the extended closed world assumption is intractable
for affine formulas. In fact, the exact complexity of affine inference was implicitly an open problem
since the beginning of the 1990s when several researchers started to investigate the propositional
circumscription from algorithmic point of view. We also proved that the inference problem for
affine formulas becomes polynomial-time decidable when only a single literal has to be inferred.
The complexity classification of the inference problem of propositional circumscription for the usual
classes of formulas is presented in Figure 2. Note that several complexity results mentioned in the
survey [Bar98] can be obtained by a reduction from our intractability result.
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Abstract

Over the past decade, automated model building has evolved as an important subdiscipline of
automated deduction. A crucial issue for constructing models on the computer is the selection
of an appropriate formalism for representing models. In particular, (efficient) algorithms for
evaluating clauses in a model thus constructed are required. Moreover, also the so-called model
equivalence problem has received great interest.

In this survey, we recall three formalisms for representing models, namely atomic represen-
tations of Herbrand models ([9]), constrained atoms ([3, 4]), and ground atoms with ground
equations ([10]). Specifically, we shall recall recent results on algorithms and complexity of the
aforementioned decision problems for these model representations.

1 Introduction

Models play an important role in automated theorem proving. Their applicability is basically
twofold:

e First, rather than just proving that some input formula is not a theorem, it would be desirable
for a theorem prover to provide some insight as to why a given formula is not a theorem. To
this end, the theorem prover tries to construct a countermodel rather than just giving the
answer “NO”.

e The second application of models arises from the idea of guiding the proof search by providing
some additional knowledge on the domain from which the input formula is taken. This
knowledge can be represented in the form of a model, which may then be used e.g. in semantic
resolution.

Consequently, over the past few years, automated model building has evolved as an important
discipline within the field of automated deduction (cf. e.g. [4], [31], [29, 16], [5], [34], [2], ]9, 10],
24, 25), [1]).

In order to actually deal with models on a computer, we need an appropriate formalism for
representing models. On the one hand, this formalism should provide “reasonable” expressive
power (e.g., it should be possible to represent also infinite models). On the other hand, such a
formalism should admit efficient algorithms for the following two decision problems:

e The CLAUSE EVALUATION problem: Given a representation M of a model and a clause C,
does C evaluate to “true” in this model?



e The MODEL EQUIVALENCE problem: Given two representations M and N of models, do M
and N represent the same model?

The importance of the first decision problem is obvious. Suppose that we want to use a model as
an input to an automated theorem prover based on semantic resolution. Then an efficient CLAUSE
EVALUATION algorithm is clearly indispensable. The significance of the second problem comes from
the fact that formalisms presented in the model building literature for representing models usually
allow for many different ways of representing the same model. However, when we actually want to
compute the truth value of arbitrary clauses in such a model, then the efficiency of this computation
depends to a large extend on the specific representation rather than just the model thus represented.
It is therefore important to look for transformations of the model representation constructed in the
first step into an equivalent one with “better” computational properties. But then we have to make
sure, of course, that the model representation resulting from such a transformation is equivalent to
the original one.

In this survey, we recall three such formalisms for representing models, namely atomic repre-
sentations of Herbrand models (in Section 3), constrained atoms (in Section 4), and ground atoms
with ground equations (in Section 5). Specifically, we shall recall recent results on algorithms and
complexity of the aforementioned decision problems for these model representations. Moreover, in
Section 2, we recall some basic notions and in Section 6, we give a conclusion.

2 Preliminaries

The reader is assumed to be familiar with the basic concepts of computational logic. In this section
we only recall the most important concepts for our further discussion. Let ¥ denote a finite set
of predicate symbols and function symbols, each with some arity & > 0. The set H of all ground
terms over Y is called the Herbrand universe over %. The set HB of all ground atoms over some
signature 3 is called the Herbrand base. In the sequel, we usually consider the signature X as
arbitrary but fixed when talking about some Herbrand universe H or a Herbrand base HB. We
call H non-trivial, if it contains at least 2 elements.

A literal is either an atom A or a negated atom —A. Clauses are written as C = Ly V...V Ly,
where the L;’s are literals. Recall that clauses are basically a short-hand notation for closed first-
order formulae where all variables are universally quantified. A Herbrand interpretation of a clause
(or a set of clauses) is an interpretation which interprets all ground terms “by themselves”, so to
speak. Hence, a Herbrand interpretation is given by the interpretation of the predicate symbols
only. In particular, such an interpretation is uniquely determined by a subset of the Herbrand base,
namely by those ground atoms over the given signature 3 which evaluate to “true”.

In general, a model is an interpretation which validates a certain formula (or, analogously,
a clause set) As long as one is concerned with the actual model construction, it is clear which
formula is validated by the interpretation thus constructed. However, when one starts to work
with such an interpretation in a different context (e.g. as input to a theorem prover based on
semantic resolution), the connection between the interpretation and the formula which is validated
by this interpretation is no longer obvious. In fact, it is a bit inaccurate to talk about “models”
rather than “interpretations”, when it is not clear, which formula is actually validated by a given
interpretation. However, this kind of inaccuracy is very common in the model building literature.
We shall, therefore, also refer to “interpretations” as “models” without having a particular formula
in mind which is validated by such an interpretation.



3 Atomic Representations of Herbrand Models

In [9], Atomic Representations of Herbrand Models (= ARMs, for short) were introduced as finite
sets A = {44,...,A,} of atoms, s.t. a ground atom evaluates to “true” in the Herbrand model
represented by A, iff it is a ground instance of some atom A4; € A.

Example 3.1 Let A= {P(f(z),a), P(a,a),Q(z,x),Q(a, f(z))} bean ARM and let the signature
¥ ={P,Q,a,b, f}. Then the clause C1 = P(z,a) V =Q(z, f(a)) evaluates to “true” in the model
defined by A. In order to see this, we have to verify, that all H-ground instances of C; evaluate to
“true”: To this end, we distinguish three kinds of possible values that the variable x can take and
show that in each case at least one literal in C; evaluates to “true”:

e For z = a the literal P(a,a) evaluates to “true”.

e Now let £ = b. Then Q(b, f(a)) is not an instance of any atom in A. Hence, Q(b, f(a))
evaluates to “false” and, thus, =Q(b, f(a)) evaluates to “true”.

e Finally, let z be a term with leading symbol f, i.e., z = f(¢) for some term ¢ € H. Then
P(f(t),a) is an instance of P(f(z),a) € A and, therefore, P(f(t¢),a) evaluates to “true”.

On the other hand, the clause Cy = P(z,y) V —=Q(a,y) evaluates to “false”. This can be seen by
showing that there exists at least one H-ground instance of C that evaluates to “false”. In fact,
P(a, f(a)) V =Q(a, f(a)) is such a ground instance. It is easy to verify that both literals evaluate
to “false”. O

The key to the decision problems is yet another problem, which was called the ATomic H-
SUBSUMPTION problem in [9], i.e.: Given an atom set A = {A4;,...,A4,} and an atom B over some
Herbrand universe H, is every H-ground instance of B an instance of some atom A; € A? If this
is the case, then we write A <,y B. In [9], the MODEL EQUIVALENCE problem and the CLAUSE
EVALUATION problem are reduced to the (ATOMIC) H-SUBSUMPTION problem as follows:

Lemma 3.2 Let A = {A;,...,An} and B = {By,...,Bn} be ARMs w.r.t. some Herbrand uni-
verse H. Then A and B are equivalent, iff {A1,...,An} <su Bj for every j € {1,...,m} and
{B1,...,Bn} <sg A; for every i € {1,...,n}.

In order to reduce also the CLAUSE EVALUATION problem to the H-SUBSUMPTION problem, we
first have to recall that H-subsumption is not necessarily restricted to atoms, i.e.: For a clause
set C and a clause D, we say that C H-subsumes D (written as C <,y D), iff every H-ground
instance of D is subsumed by some clause C € C. More generally, if D is a clause set, we say that
C H-subsumes D (written as C <,y D), iff C <,z D holds for every clause D € D. Then we have:

Lemma 3.3 Let A = {A1,...,Ap} be an ARM w.r.t. some Herbrand universe H and let C =
LiV...VL;V-M{V...V—-M, be a clause over H. Then we distinguish two cases:

e Case 1: m =0, i.e.: C is a positive clause. Then C evaluates to “true” & A <;g C.

e Case 2: m > 0, i.e.: C contains at least one negative literal. Now let p,(A U {C}) denote
the set of all hyperresolvents that are derivable from AU{C}. Then C evaluates to “true” <
A <su pr(AU{C}).



Equivalent problems to the H-SUBSUMPTION problem have been studied in many areas of com-
puter science, such as in machine learning (cf. [21]) in logic programming (cf. [12], [20]), in
functional programming (cf. [20]), etc. Consequently, many different approaches for deciding the
H-SUBSUMPTION problem (or equivalent problems) have been presented in the literature. We only
recall the algorithm from [9] here, which is based on the following property: If C and D are sets of
clauses, s.t. the minimum depth of variable occurrences in D is greater than the depth of C, then
H-subsumption and ordinary subsumption coincide. Hence, the H-SUBSUMPTION problem A <,y C
for an atom set A and a clause C can be decided as follows: First, C is transformed into an equiv-
alent clause set C' by partial saturation, s.t. the minimum depth of variable occurrences in C' is
greater than the depth of A. Then an ordinary subsumption test A <; C’ is applied to every clause
C'ec'.

As to the complexity of the decision problems studied here, it is convenient to consider also
the TOTAL COVER problem, which is defined as follows: Given an atom set A = {P(t1),..., P(t,)}
over some Herbrand universe H, is every H-ground atom P() an instance of some P(f;) € A?

It is easy to show the following relations between these problems (cf. [13, 14]): The TOTAL COVER
problem can be reduced to the MODEL EQUIVALENCE problem, which in turn can be reduced to the
MODEL EQUIVALENCE. Finally, MODEL EQUIVALENCE can be reduced to the CLAUSE EVALUATION
problem. All these reductions are possible in polynomial time. In other words, TOTAL COVER is
the “easiest” and CLAUSE EVALUATION is the “hardest” of these four problem.

The inherent complexity of the TOTAL COVER problem (or equivalent problems) has been inves-
tigated by several authors independently, who proved its coNP-completeness (cf. [18], [19], [17]).
Together with the coNP-membership of clause evaluation (cf. [13, 14]), we get the following result:

Theorem 3.4 The following decision problems are coNP-complete over any non-trivial Herbrand
universe: TOTAL COVER, MODEL EQUIVALENCE, ATOMIC H-SUBSUMPTION, and CLAUSE EVALUA-
TION.

4 Constrained Atoms

ARMs have a somehow restricted expressive power. In particular, they are not closed under com-
plement, i.e.: Let A = {41,...,A,} be a set of atoms. Then, in general, the set of ground atoms
that are not instances of the atoms A; € A cannot be expressed in terms of an ARM itself. In
[3, 4], the expressive power of ordinary clauses is increased by adding equational constraints. A
constrained clause (= c-clause, for short) over some Herbrand universe H is a construct of the form
[c : P], where c is a clause and P is an equational formula over H. An H-ground clause co is an
instance of [c: P], iff o is a solution of P. Standard clauses can be considered as a special case of
constrained clauses with the trivially true constraint T.

Example 4.1 Let A = {P(z,z)} be an ARM. It can be shown (see [21]), that the complement of
A does not have a representation by an ARM. In contrast, such a representation is easy by using
equational constraints, namely: A’ = {[P(u,v) : u # v]}. Note that P(z,z) can also be considered
as a constrained atom, namely [P(z,z) : T]. O

Actually, in [3, 4], models are defined in a slightly different way. Rather than just specifying the
set of ground atoms that evaluate to “true” (and requiring that all other ground atoms evaluate to
“false”), Caferra et al. introduced so-called partial interpretations definable by equational formulae
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(= peg-interpretations, for short). Such a peg-interpretation is given through a finite set £ =
{[lx : Pi],---,[ln,Pn]} of constrained literals (the [;’s are either atoms or negated atoms). A
ground atom A evaluates to “true” in the interpretation defined by L, iff A is an instance of some
(positive) c-literal in £. On the other hand, A evaluates to “false”, if = A is an instance of some
(negative) c-literal in £. Otherwise, the truth value of A is undefined. Of course, one has to make
sure, that there exists no atom A, s.t. both A and —A are instances of elements in L.

The definition of the truth value of a negated ground atom —A is obvious, i.e.: =4 is “true”,
iff A is “false”. Likewise, —A is “false”, iff A is “true”’. Finally, = A is “undefined”, iff A is
“undefined”. The truth value of arbitrary c-clauses in a peg-interpretation is defined as follows:
Let C = M V...V My denote a ground clause. Then the truth value I(C) in the peg-interpretation
I represented by L is defined as follows:

“true” if J4: I(M;) = “true”
I(C) =< “false” if Vi: I(M;) = “false”
“undefined” otherwise

Now let [c : Q] be an arbitrary c-clause. Then the truth value I([c : Q]) is defined as follows:

“true” if V H-ground instances co of [c: Q]: I(co) = “true”
I([c: Q]) =< “false” if 3 H-ground instance co of [c¢: Q]: I(co) = “false”
“undefined” otherwise

Example 4.2 Let the peg-interpretation I be given through the set £ = {[P(z, f(y)) : = #
yl, ["P(z,y) : = # a A (V2)y # f(2)]} of c-literals and let the signature ¥ = {P,a,b, f}. It is
easy to check that {[P(z, f(y)) : ¢ # y] and [-P(z,y) : z # a A (Vz)y # f(2)] have no H-ground
instances in common. Hence, the peg-interpretation I is well-defined.

Now consider the clause C = P(z,z)V —P(a, f(z)) or, equivalently, the c-clause C' = [P(z,z)V
—P(a, f(z)) : T]. Then these clauses evaluate to “false” in I, since the H-ground instance P(b,b) vV
—P(a, f(b)) does. Indeed, P(b,b) evaluates to “false”, since =P (b,b) is an instance [~ P(x,y) : © #
a A (Vz)y # f(z)]. Likewise, the second literal —=P(a, f(b)) evaluates to “false”, since P(a, f(b)) is
an instance of [P(z, f(y)) : = # y]- O

The above condition for an arbitrary c-clause to evaluate to “true” can be expressed as the
validity of an equational formula in the following way (cf. [2]):

Definition 4.3 Let the peg-interpretation I over H be given through the set L = {[L1(51) :
Pils..., [Ln(3y) : Pul} of c-literals and let C = [My(£1) V ...V My (&) : Q] be a c-clause over
H, where the L;’s and M;’s denote literal symbols (i.e., either unnegated or negated predicate sym-
bols). Moreover, let §; = Var([Li(5;) : P;]) and suppose that i, ..., §n, Var(C) are pairwise
disjoint. Then the equational formula Fi(C) is defined as follows:

FiC)=Qn \/ Gi)PiAs =1j]

Mj =L;
Then the following condition holds:

Lemma 4.4 Let I, L, C, and F;(C) be defined as above. Moreover, let Co be an arbitrary H-
ground instance of C. Then the following equivalence holds:

Co evaluates to “true” in I < o is a solution of Fr(C)



But then the condition that C' evaluates to “true” in I is clearly equivalent to the condition that
Fi(C) and Q are equivalent. This is the case, iff the equational formula F;(C) + Q is valid.
Likewise, the MODEL EQUIVALENCE problem can of course be reduced to the validity problem of
equational formulae. This can be easily seen by first reducing the MODEL EQUIVALENCE problem to
the CLAUSE EVALUATION problem and then applying the problem reduction via the formula F;(C):

Lemma 4.5 Let the peg-interpretations I and J over H be given through the sets of c-literals
L=A{[L1(51) : Pi],---,[Li(5) : P]} and M = {[Mi(£1) : Qi],---, [Myn(B)m) : Qm]}, respectively.

Then the peg-interpretations I and J are equivalent, iff every c-literal [L;(5;) : P;] € L is “true”
in J and every c-literal [M;(%;) : Q;] € M is “true” in I.

Equational formulae have been studied by various authors (cf. [23], [18], [22], [8], [7], [32], [33],
[26]). Several decision methods for the validity problem of equational formulae have been proposed.
Unfortunately, they all have a very high computational complexity. But this cannot be helped by
the following result from [32]:

Theorem 4.6 The validity problem of equational formulae over an infinite Herbrand universe (i.e.,
where the signature contains at least one proper function symbol) is non-elementary recursive.

Of course, we cannot expect to do better for the CLAUSE EVALUATION problem and the MODEL
EQUIVALENCE problem of peg-interpretations. We thus have

Corollary 4.7 The CLAUSE EVALUATION problem and the MODEL EQUIVALENCE problem of peg-
interpretations over an infinite Herbrand universe is non-elementary recursive.

Actually, in case of a finite Herbrand universe, the validity problem of equational formulae is
“only” PSPACE-complete (cf. [18]). But of course, in the area of automated model building, the
infinite case is far more relevant.

5 Ground Atoms with Ground Equations

The representation of Herbrand models via ground atoms with ground equations (= GAE-models)
was introduced in [10]. A GAE-model M is given through a finite set A = {4,,..., Ay} of ground
atoms and a finite set & = {s1 = t1,...,8, = t,} of ground equations over the signature ¥. A
ground atom B over Y evaluates to “true” in such a model M, iff B is equal to some atom A; € A
in the equational theory defined by £.

Example 5.1 Let C = {P(z) V P(f(x)),~P(z) V -P(f(z))} be a clause set over the signature
Y ={P, f,a}. Then M = (A,&) with A= {P(a)} and £ = {a = f(f(a))} is a model of the clause
set C. Note that the set of ground atoms that are “true” in M is {P(a), P(f%(a)), P(f*(a)),-..}.
Another model of C is M' = (A, &) with A" = {P(f(a))} and &' = {a = f(f(a))} = E. The
set of ground atoms that evaluate to “true” in M’ is {P(f(a)), P(f3(a)), P(f%(a)),...}. O

Note that the models of the clause set C in the above example can neither be represented
by atomic representations nor by constrained atoms. On the other hand, the simple ARM A =
{P(z,z)} from Example 4.1 cannot be expressed in terms of a GAE-model. This is due to the fact
that GAE-models cannot handle “non-linearities” (i.e., multiply occurring variables).



Algorithms both for the CLAUSE EVALUATION problem and the MODEL EQUIVALENCE problem
are based on the computation of a canonical ground term rewrite system (= GTRS) equivalent
to the ground equations in £. It is well-known that this can be achieved quite efficiently, namely
in polynomial time (w.r.t. the size of the ground equation system). The earlier completion algo-
rithms for that purpose are in essence congruence closure based methods (cf. e.g. [11]) where the
original signature is extended by fresh constants in order to name certain congruence classes. Yet,
direct polynomial completion without extending signatures is also possible via a more sophisticated
approach as demonstrated in [27] (cf. also [30]).

In [10], the following CLAUSE EVALUATION algorithm for GAE-models is proposed: First, note
that the evaluation of ground atoms is done via a canonical GTRS, i.e.: Let a GAE-model M be
given through a set of ground atoms A and a set of ground equations £. Moreover, let R be a
canonical GTRS equivalent to £ and let A denote the set of normal forms of A w.r.t. R. Then a
ground atom B evaluates to “true” in M, iff NFz(B) € .Zl\, where NF g denotes the normal form
w.r.t. R. The evaluation of ground clauses B1 V...V By V = Bg1 V...V =B is then also obvious.

Now let U denote the set of all terms and subterms occurring in A and £. Moreover, let U
denote the set of normal forms w.r.t. R of the terms in /. The evaluation of a non-ground clause
C' is based on the following observations:

1. Any subterm u occurring in B may be replaced by its normal form NF'%(u) without affecting
the truth value of B. Hence, suppose that all terms of H can be normalized into U. Then
it is not necessary to check all possible ground instances C¥ of C, that are obtained by
substituting all possible terms in H for the variables in C. Instead, it suffices to consider
those ground clauses C¥, where the range rg(1) is restricted to the finite set u.

2. Suppose that some subterm u occurring in B does not normalize into U. In this case, the
normal form NFg(B) will definitely lie outside A. In other words, normalization of any
subterm in B into the set I is a necessary condition for B to have the truth value “true”. So
let ¢ be an arbitrary term in H with NFr(t) ¢ U. Then we may in fact substitute ¢ for any
subterm v in B with NF(u) ¢ U without changing the truth value of B (which is “false”).
But then, it is again not necessary to check all possible ground instances C¥ of C, that are
obtained by substituting all possible terms in H for the variables in C. Instead, it suffices to
consider those ground instances C'¢ of C with rg(9) CU U {t}.

Thus, the CLAUSE EVALUATION procedure in [10] for an arbitrary clause C in a GAE-model M
consists of two steps:

First, we have to check, whether the whole Herbrand universe H normalizes into U or not. This is
done by the following criterion: There exists a ground term ¢ over X with NF' r(t) € U, iff there
exists a term of the form t' = f(¢1,...,t) with f € Zand Vi € {1,...,k}, t; € U, s.t. NFr(t') € U.
The correctness of this equivalence can be easily shown by structural induction.

Depending on the outcome of this procedure, we have to distinguish two cases:
e Case I: If Vt € H, NF(t) € u holds, then the truth value of C' can be determined via the

following equivalence: C' evaluates to “true” in M, iff every ground instance C'¥ does, where
9 is an arbitrary ground substitution with range rg(J) C U.



e Case 2. If 3t € H, s.t. NFr(t) ¢ u holds, then the truth value of C' can be determined via
another equivalence, namely: C' evaluates to “true” in M, iff every ground instance C'9 does,
where 9 is an arbitrary ground substitution with range rg(¥) CU U {t}.

The correctness of this algorithm follows easily by the above considerations. Of course, in the worst
case, we have to check for exponentially many ground instances C1 of C whether they evaluate to
“true”. In fact, this cannot be helped by the following complexity result from [15]:

Theorem 5.2 The CLAUSE EVALUATION problem of GAE-models over any non-trivial Herbrand
universe is coNP-complete.

In contrast, the MODEL EQUIVALENCE problem of GAE-models can be decided in polynomial
time. In [15], an efficient algorithm for this problem is presented. However, below, we sketch a
different approach, namely via finite tree automata (FTA, for short): Let M; and My be two
input GAE-models over some Herbrand universe H. Of course, we can check the equivalence of
M and Ms separately for each predicate symbol of the signature . Hence, we may assume
w.lo.g. that ¥ contains exactly one predicate symbol P (with arity £ > 1). In [24, 25], it is shown
how a GAE-model M; can be transformed into an equivalent term grammar G;, which can then
be further transformed into an equivalent FTA A;, i.e., P(ty,...,1;) evaluates to “true” in M; <
P(t1,...,t) is recognized by the FTA A;. Let M; be given in the form (P,A,S), where P is a
canonical GTRS, A denotes the normal forms (w.r.t. P) of all ground atoms that are “true” in My
and S denotes the set of normal forms of all subterms occurring in P and A. Then our FTA A, is
given through the following quadruple (X, Q,Qy,0):

The signature of H is also taken as the signature of the FTA (recall that we are assuming that P
is the only predicate symbol in ). Q = {¢s|s € §} U {gp}, i.e., Q contains a state g, for every
normal form s € S plus an additional state gp which will ultimately correspond to the atoms that
are “true” in M;. Moreover, we set Q; = {gp}. Finally, the transition rules ¢ are defined as
follows:

o Rules depending on the structure of the s; € S: For every constant a € §, d contains a

transition rule a — ¢,. For every functional term s € § with s = f(s1,...,84), 0 contains a
transition rule f(gs,,---, gs,) —> gs- Note that S is closed w.r.t. subterms. Hence, we indeed

have s; € S for every .

o Rules depending on P: For every rewrite rule b — a in P, § contains a transition rule b — ¢,.
For every rewrite rule f(s1,...,8q) — s in P (with @ > 0), ¢ contains a transition rule

F@sis---14s0) = Gs-

o Rules depending on the atoms in A: For every atom P(s1,...,s;) € .Z, d contains a transition
rule P(gs,,---,4s,) = qp-

Now suppose that we have transformed both GAE-models M; and M, into equivalent FTAs A,
and Ay. Then we have, in fact, reduced the MODEL EQUIVALENCE problem of GAE-models into
the equivalence problem of FTA’s. The latter problem can be decided by well-known methods (cf.
[6], [28]). We thus have:

Theorem 5.3 The MODEL EQUIVALENCE problem of GAE-models over any non-trivial Herbrand
universe can be decided in polynomial time.



6 Conclusion

In this survey, we have recalled some algorithms and complexity results related to three model
representation formalisms, namely: atomic representations of Herbrand models, constrained atoms,
and ground atoms with ground equations. However, many more formalisms for representing models
can be found in the literature like (various forms of) term schematizations, (linear) atoms with
positional constraints, term grammars and finite tree automata, tree automata with brotherhood
constraints, etc. A good overview with a detailed comparison of the expressive power of these
formalisms is given in (cf. [24, 25]).

Efficient CLAUSE EVALUATION and MODEL EQUIVALENCE algorithms are an important issue,
if one wants to work with models after they have been constructed. Nevertheless, in the model
building community, no particular emphasis is usually put on such algorithms. Hence, a thor-
ough complexity analysis and the search for reasonably efficient algorithms also for other model
representation formalisms is an interesting task for future work in this area.
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Abstract. We show that stratified context matching (SCM) is NP-
complete, but that linear context matching (LCM) and stratified si-
multaneous monadic context matching (SSMCM) are in P. SSMCM is
equivalent to stratified simultaneous word matching (SSWM).

1 Introduction

Context matching extends first-order matching by the availability of context
variables which may be instantiated by a context, that is a term with a hole.
Standard first-order matching allows only (term) variables, variables that may
be instantiated by a first-order term. While these are restricted to the leaves of a
term, context variables can occur as monadic operators anywhere inside a term.
Context matching allows much more freedom in the selection of subterms, which
may be of use for example for querying data that is available in the form of a
large term, like XML documents. For example, we may wish to select the titles
of all subsections in a certain section of an XML document. We can express this
by the linear context matching problem

X (section("Symbolic Data",Y (subsection(y,z)))) = s

where X and Y are context variables and y and z are first-order variables. Here
each subsection of the section with title "Symbolic Data" will result in one
solution of the matching problem with y bound to its title and z to its contents.
More general queries to databases may be expressed as nonlinear but stratified
context matching problems. For example, we might have a database db in a more
flexible XML-like format like

.(book(.(author(ay), .(title(t1 ), nil))),
.(book(.(author(ay ), .(title(t2), nil))),
.(book(.(author(as), .(title(t3),nil))), nil))),

where . is a binary list constructor to encode variable arity. We can pick out
the titles of the books of author a; with a query X (book(Y (author(a1))))) =



db A\ X (book(Z (title(x))))) = db by looking at the substitution for z. This query
is stratified, because the two occurrences of X have the same prefix of context
variables above them, which is empty here.

These two examples show that context matching can be used similarly to
XPath [4] matching which is used in the XSLT transformation language [3] for
XML documents, which was our initial motivation to start studying context
matching. In the context of XML processing there are other proposed formalism
such as regular expression matching [13] that directly take into account the
variable arity of XML by allowing regular expressions over arguments. In our
context this could be simulated by using argument lists plus regular restrictions
on the contexts that can be instantiated for a context variable. This would allow
to both separate the list used for emulating variable arity from other function
symbols and for enforcing the regular expression types. Technically such regular
restrictions could be expressed by Comon’s membership constraints [5,6]. We
believe that the complexity results of this paper remain valid under the addition
of such a restriction, however we choose not to discuss it in detail to keep the
presentation simple.

Another application area for matching techniques is term rewriting [1]. In
standard term rewriting the rules are implicitly extended by allowing an ar-
bitrary context above the matching position, and preserving this context over
a rewrite step. In many situations more control is needed over the positions
where rules are applied, which motivates for example strategies [2]. With con-
text matching we can achieve improved control in a more declarative way by
making the context explicit in the rules. A standard rewrite rule [ = r would
then become a transition rule X (I) = X (r) that is applicable only at the root,
and for finer control additional restrictions can be imposed on X, such as a sort
discipline [5] or we may consider conditional rules whose conditions refer to X.
Since stratified context unification is decidable, Knuth-Bendix like completion
on rules with stratified contexts may be feasible, provided rules can be restricted
in such a way that stratification is preserved and suitable termination orderings
can be found. Logical calculi with context variables treated similar to a builtin
theory [22,23] would also be an interesting application. Together with the reg-
ular restrictions mentioned above this could be used for relations that unlike
equality are sensitive to contexts, for example order relations for which certain
monotonicity laws hold.

In this paper we try to establish a boundary between problems in P and
NP-complete problems. To this end we consider the following problems:

Linear context matching (LCM): Variables may occur only once.

Stratified context matching (SCM): For each variable the paths from the
root to its occurrences have the same sequence of context variables (its vari-
able prefiz).

Simultaneous stratified monadic context matching (SSMCM): A strat-
ified conjunction of equations that contains only monadic function symbols.
This is equivalent to stratified word matching (SWM).



We show that LCM and SSMCM are in P, while SCM is NP-complete. It is easily
seen that context matching is in NP, hence its restriction SCM is in NP, too, and
we need only prove NP-hardness. In the technical report [21] we discuss a few
more simple restrictions of context matching and give a transformation rule base
algorithm for solving context matching problems, together with a discussion how
to improve its performance for easy cases.

General context matching was previously known to be NP-complete [19].
Context matching is a restricted form of linear higher-order matching, which
was shown to be in NP and hence NP-complete by de Groote [9]. Here linear
means that only solutions where all functions are linear, i.e. contain each of
their bound variable exactly once, are considered. A context may be viewed as a
linear second-order function with one argument, where the binder is left implicit
and the hole is the single occurrence of the bound variable. An algorithm for
general second-order matching is given by Huet and Lang [14]. Curien, Qian
and Shi [8] give an algorithm for second-order matching that improves efficiency
for the case of right-hand sides with many bound variables and few constants.
Second-order and third order matching are NP-complete [7], while fourth-order
matching is decidable but NEXPTIME-hard [24]. For orders above four it is
still open whether higher-order matching is decidable [10]. Recently Loader has
shown that higher-order beta-matching is undecidable, but this doesn’t imply
anything about decidability of the beta-eta case [16].

Hirata, Yamada and Harao [12] have studied the complexity landscape of the
second-order matching problem with respect to several restrictions, i.e. number
of second-order variables, number of occurrences of variables, ground, function-
free, but not stratification.

Our interest for the stratified fragment has been motivated by the results
on the decidability of stratified context unification [19,18,17]. Other fragments
where unification is decidable are the varity 2 fragment [15]! and the two-context-
variable fragment [20], whose corresponding matching problems we consider
in [21].

2 Preliminaries

We assume a fixed infinite set X of (individual) variables, a fixed infinite set C
of context variables, and a fixed set X' of function symbols of fixed arity. We
will use z,y, z for individual variables, X,Y, Z for context variables, a, b, ¢,d for
constants and f, g, h for other function symbols.

Context terms are constructed from the variables and function symbols in the
usual way, where context variables are considered as monadic function symbols.

A context is a term with a single occurrence of the special operator o, the
hole. To emphasize that a term C is a context we write C[o] or just C[]. A context
C[] may be applied to a term ¢, written C[t], and the result is the term consisting
of C with o replaced by t. We specify the position of a subterm by C[t/p].

! Note that the proof of decidability for the stratified case is flawed in this paper.



A substitution is a mapping from individual variables to terms and from con-
text variables to contexts, such that almost all individual variables are mapped
to themselves, and almost all context variables are mapped to themselves applied
to the hole. Substitutions are extended to terms as follows:

flt1, .. tn)o = f(tio, ..., tho)
zo = o(x)
(X(t))o = o(X)fto].

3 Problem definition

We first briefly discuss different forms of equations and show that they are
equivalent.

For instance, we may consider equations between (context) terms or between
contexts themselves, where the holes must match. To get from a term equation
to a context equation we may use a binary function symbol to put the hole into
a side branch, i.e. reduce s =~ t to h(o,s) ~ h(o,t). In the other direction we
may replace the hole by a special constant that doesn’t occur elsewhere. This
assumes that such a binary function symbol or constant exists.

We also consider multi-contexts, which are terms with an arbitrary number
of occurrences of the hole. We write multi-contexts as C[o, ..., o]. Such a multi-
context may be viewed as a second order lambda term Az; ... A\x,.Clz1,. .., 2y)
where the bound variables x4, . .., z,, occur each exactly once and in left-to-right
order. So f[o,o] corresponds to AzAy f(z,y) but not to AzAy f(y,z). We may
replace a subset of holes by terms by writing for instance CJ..., s1,...,S2,...]
where the dots stand for holes. Where we need to be more precise we indicate
the number of holes by a subscript, i.e. C[.. .;,s,...;]. Note that we do not allow
variables that stand for multi-contexts.

If we have an equation between multi-contexts, e.g. C[f(s1[q], s2[n])] =~
Clg(t1[o], t2[o])], then the first (resp. second) hole on the left-hand side must
match the first (resp. second) hole on the right-hand side, which forces a match
between the function symbols f and g at the longest common prefixes of the
positions of the holes. Thus either f # g and there is no solution, or we can split
this equation into the equations s[] = t[], s1[] = t1[] and sa[] = t2[], reducing the
multi-context equation to a conjunction of context equations. This elimination
of multi-contexts can be done in linear space and time.

If at least one symbol of arity at least two is available, then a conjunction
of equations can be coded as a single equation. For example, if a symbol h with
arity 2 is available, we may replace

s1RtiI N ... NSy R,

by

h( . .h(Sl,Sg) ce ,Sn) ~ h( . .h(tl,tQ) ce. ,tn).
By these equivalences we can define a context equation as any equation between
context terms, contexts or multi-contexts, and a contexrt matching problem P



as either a single context equation or a conjunction of context equations such
that all right-hand sides of equations are ground (we will be more precise when
the function symbols assumed above are not available). A substitution o is a
solution of a context equation s & t if so = to. A solution of P is a substitution
that solves all equations in P.

A context matching problem is called linear if each variable occurs at most
once and monadic if all function symbols occurring in it have an arity of at most
one.

The wariable prefix of an occurrence in a term is the sequence of context
variables on the path from the root down to and including that occurrence. A
context matching problem is called stratified if for each individual or context
variable all occurrences of that variable in the problem have the same variable
prefix. For example, the problem

X(f(Y(g(a,2)),Y (9(x, Z(2))))) = f(g(a,b),b)

is stratified, X having the prefix X, Y the prefix XY, z the prefix XYz, Z the
prefix XY Z and z the prefix XY Zz.

X(Y(0) ~ f(9(e)) A Z(X(0)) ~ h(f())

is not stratified, because X occurs with the variable prefixes X and ZX.

4 Linear Context Matching is in P

We can solve linear context matching problems by dynamic programming. We
build a table which for every pair (s,t) of a subterm s of the left-hand side and
a subterm ¢ of the right hand side of the problem records whether s matches ¢.
The table is built recursively from the bottom up:

— If s is an individual variable then the answer is yes.

—Ifs=f(s1,...,8m) and t = g(t1,...,t,) then the answer is yes if and only
if f =g and s; matches ¢; for 1 <i <m =n.

— If s = X(s') then the answer is yes if and only if s’ matches some subterm
of t.

Let n be the size of the problem. We have O(n?) table entries of constant size,
and to compute each entry we need at most O(n) steps. Hence the algorithm
uses O(n?) time and O(n?) space, and linear context matching is in P.

5 Stratified Context Matching is NP-complete

To show NP-hardness we reduce 3SAT to SCM. Let ¢1,...,c, be the clauses
and zy,...,%, the propositional variables in an instance of 3SAT. We encode
this as an instance of SCM with m + 1 equations

soRtg Nsi=t1 N ... N sy, ity



where sg = tp is a dummy equation and s; = t; corresponds to clause c¢;. The
dummy equation restricts matchings so that they correspond to boolean valua-
tions, and equation ¢ matches with such a valuation if and only if the valuation
satisfies clause i. Each equation consists of n + 1 layers, n layers for the vari-
ables and one at the bottom with constants that encodes whether clauses are
satisfied. Each layer is either an active layer that switches between subterms in
the right-hand side or a passive layer that doesn’t. In equation i layer j is active
when variable j occurs in clause 7, otherwise it is passive. The dummy equation
consists only of passive layers. The dummy equation assures that each layer al-
lows only two different matches for two context variables on top of each other,
which represent the truth values. In the case of an active layer these matches
select different subterms on the right-hand side for matching in lower layers,
which allows to test for satisfiability. In the bottom layer we need to distinguish
the choices made in the layers above, in order to determine whether the clause is
satisfied or not. We record the truth values of literals in a string containing * in
the j-th position when there is no literal containing x;, 0 when there is a literal
containing x; that is false under the chosen assignment, and 1 when there is a
literal containing x; that is true under the chosen assignment. For the dummy
equation we construct a satisfiable bottom layer, while for the other equations we
chose a satisfiable bottom layer for a certain subterm only when the string lead-
ing to that subterm contains at least one 1, meaning that the clause is satisfied
in this branch.
To formalize this we recursively define

5 — F(X;i(g(g(wij, Y (si541)),9i5))) if z; occurs in ¢;, and

Y (X;(Yj(s6,441))) otherwise.
(9(g(g(e;tisa0), 9(

tia = f(9(9(g(c, tia1), 9(
(g(

tiax, C)) otherwise.

tia1,)),c)) if 2; occurs positively in ¢;,
tia0,)),c)) if 2; occurs negatively in ¢;, and

where 0 <4 <mand 1 < j =len(a) +1 < n. For ¢ = 0 we always choose the
(passive) otherwise-case. For the leaves we use s;,+1 = a and

a if i =0 or « contains at least one 1
ti,a = .
b otherwise.

Finally the stratified context matching problem P is
801 R toe N --- N Sm1 R tme-

It remains to show that P has a solution if and only if the original instance of
3SAT is solvable.

First we show that s; ; can only match ¢; , for 1 <4 < m and some o with
j =len(a) + 1. This holds because there are the same number of fs in the left-
and in the right-hand side of the dummy equation, hence none can be matched



by a context variable and the layers are separated. Furthermore, the main paths
must proceed into the nontrivial subterms, as f doesn’t match the constant c.
Let us now consider a single layer in the dummy equation. There are two possible
matches in layer j:

Xj=o Y; = g(e,0) M
X; = g(o,0) Y;=o (2)

These are the only matches for a passive layer. Now let us look what happens
in a positive active layer: In case (1) the next lower layer s; ;i1 is matched
against ¢; o1, while in case (2) it is matched against ¢; o0. For a negative active
layer it is vice-versa. Hence a match of the form (1) corresponds to assigning true
to the logical variable z;, and a match of the form (2) corresponds to assigning
false to x;. This in mind we see that at the leaves o reflects the truth values of
the literals in the clause. If these make the clause true, we have put the solvable
matching problem a = a at the leaf, otherwise the unsolvable a =~ b. Hence each
match corresponds to a satisfying truth assignment and vice-versa.

If we look at the size of P we see that each right-hand side of an equation
branches at most at three points, since each clause contains at most three dis-
tinct variables. This gives a factor of 22 = 8 but doesn’t lead to exponential
growth. The depth is proportional to the number of variables, and the number
of equations to the number of clauses, hence the size of the context matching
problem is linear in the size of the 3SAT instance.

We conclude that 3SAT can be reduced to SCM, and obtain:

Theorem 1 SCM is NP-complete.

6 Simultaneous stratified monadic context matching is
in P

In this case conjunctions cannot be coded in a single equation, hence we make
explicit that we allow them by defining a simultaneous context matching prob-
lem P as a conjunction of equations whose right-hand sides are ground terms.
We will show that simultaneous stratified monadic context matching (SSMCM)
isin P.

We may easily eliminate as unsolvable any problem containing an equation
that has two distinct constants at the bottom of its left- and right-hand side,
and assume from now on that all equations are context equations and have a
hole at the bottom. In particular we replace an individual variable at the bottom
of a left-hand side by a context variable applied to a hole. With these remarks
it becomes obvious that SSMCM is equivalent to simultaneous stratified word
matching, where the context variables become ordinary variables, the hole at the
bottom is omitted, and where the prefix of a variable consists of all variables to
its left. To simplify the notation we will consider terms as words in the rest of
this section. We write ¢ for the empty word.



The crucial property that leads to a polynomial algorithm in this case is that
there are no branchings in the terms. For any equation w1 X ... w, X, =~ w we
know that a solution o must satisfy |(X;...X,)o| = |w| — |wy ... wy|, hence
we call |w| — |wy .. .wy,| the substitution length of this equation. Equations with
negative substitution length and conjunctions containing two equations with the
same context variables but different substitution lengths are inconsistent.

We give a transformation algorithm to solve SSMCM. At each step of the
transformation algorithm the problem P is a conjunction of disjunctions of con-
junctions of match equations. More precisely, it has the form P;, A ... A P;,
where {s1,...,sp} is the set of all variable prefixes for rightmost variables in P,
and P;, is a disjunction of conjunctions of equations whose rightmost variable
on the left-hand side has the prefix s;. The number of prefixes is bounded by
the number of prefixes in the initial problem, which in turn is bounded by the
number of variables and hence the size of the problem. For each prefix s we
require that P, has the form P,o V ... V P, where P;; is a possibly empty
conjunction of equations whose substitution length is i. Since the initial prob-
lem is a conjunction that is consistent with respect to substitution length, the
disjunction for a given variable prefix contains a single nonempty conjunction
for this substitution length. For the bound k we can use the largest substitution
length in the initial problem, which is bounded by the size of the problem.

The transformation algorithm consists of simplification rules that are applied
eagerly anywhere inside the problem, and the Variable Elimination rule that is
applied to a full disjunction and only when no other rule is applicable. The rules
are iterated until one of the solved forms T or L is obtained. The simplification
rules are the rules for idempotency and the laws of true and false together with
the following rules:

Delete ext— T

if t = g; otherwise fail.

Bottom Decompose sfatg—o st
if f = g; otherwise fail,
where f and g are function symbols.

Substitution Length Clash 1 s~t— L

if the substitution length of s & ¢ is negative.

Substitution Length Clash 2 s; ~t; A so ity — L

if s; and s2 have the same rightmost variable but s; = t; and s, = ty differ
in substitution length.

We say a problem is simplified if these rules have been applied exhaustively.



Variable Elimination eliminates a rightmost context variable X by generating
a disjunction of k + 1 conjunctions from each original conjunction, where each
conjunction corresponds to a possible length of the word substituted for X.

Variable Elimination P,oV ...V Py — \/ \/ P, {ts;/ X}
0<i<k 0<j<k
if X is a variable with maximal variable prefix s, k is the maximal substi-

tution length in P;, and ¢, ; is a suffix of length j in some right-hand side
of P;.

Note that X having the maximal variable prefix s implies that X is the rightmost
variable in the left-hand sides of equations in the disjunction P V ... V Py}
and that X occurs nowhere else in the problem. Note also that we do not keep
the bindings of the variables, as in general this results in an exponential number
of solutions.

We observe that for an equation transformed by Bottom Decompose each side
of the result is a prefix of the corresponding side of the original equation, and
that the other simplification rules do not generate new equations. For Variable
Elimination this is not true for the left-hand sides, as a word is substituted for
the variable. However, simplification by Bottom Decompose removes this word,
so Variable Elimination followed by eager simplification also preserves this prefix
property, and hence it is preserved by the algorithm in general.

An equation in a simplified problem is completely determined by the initial
equation it is derived from, its variable prefix and its substitution length. The
last variable in the variable prefix determines the end of the left-hand side, and
given the left-hand side the substitution length determines the length of the
right-hand side. Since variable prefix and substitution length are fixed for each
inner conjunction P, ;, it contains at most one equation derived from each initial
equation. The top-level conjunction partitions the equations with respect to the
variable prefix of their rightmost variable, hence the descendants of an original
equation are grouped inside one disjunction, and since any inner conjunction can
contain at most one of them, each original equation can lead to only k£ equations
in an intermediate problem. This implies that the size of intermediate simplified
problems is O(n?). Since the temporary blowup in Variable Elimination is also
of size O(n?) all intermediate problems have size O(n?).

Theorem 2 This algorithm decides solvability of SSMCM.

Proof: By inspection we see that the rules preserve solvability. Any equation
without a variable at the end of its left-hand side can be simplified either by
Delete or Substitution Length Clash 1 if one side is empty, or by Bottom De-
compose otherwise. To a simplified problem Variable Elimination is applicable.
In particular, choosing k£ as the maximal substitution length of P, ensures that
a sufficiently long right-hand side exists. Hence a rule applies to any problem
that is not in solved form. For termination we use as measure the lexicographic
combination of the number of variables and the size of the problem.



There are O(n) variables and each variable is removed in O(n?) steps, hence the
derivation has at most length O(n?). We obtain the following theorem:

Theorem 3 SSMCM is solvable in time O(n®) and space O(n?).

7 Conclusion and Further Work

A borderline case that is a strengthening of stratification remains open: Consider
all the variable prefixes of variables in the problem, ordered by the prefix order-
ing. For a general stratified context matching problem the Hasse diagram for
the prefix ordering forms a tree. It is open whether stratified context matching
problems with a linear prefix ordering are in P or NP-complete. In other words,
this restricted linearly stratified case is defined by the property that there are no
two different variables immediately below a context variable (ignoring function
symbols).

Parallelism constraints [11] are equivalent in power to context unification but
perform better on certain linguistic problems. It could be interesting to consider
a matching variant of this problem where the tree is given.
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Abstract.. This paper determines the complexity of a congraint model-based proof
of the envelope of a tendency in the dynamics of a Multi-Agent-based smulation
modd. The proof is performed via a constraint model-based exploration of
simulation trgjectories using forward inference, by means of which a whole
fragment of the smulation model theory is investigated. Such exploration alows for
all smulation trgjectories defined by a range of the modd’ s parameters and a range
of the agents choices. The paper verifies that the search is PSPACE-complete for an
infinite number of iterations, and suggests that the search is 2; P-complete for a
finite number of iterations.

1 Introduction

There is aneed for studying and proving (emergent) tendencies in the simulation of social
systems (including simulation of organizations). This need has been especialy remarkable
in those works related with elaborating or testing theories [1, 2, 4]. Such a need has not
been sdtisfied by traditional approaches for exploring the dynamics of simulaions
models, such as Scenario Anaysis and the Monte Carlo method. Neither of these
agpproaches performs exhaustive explorations of smulation trajectories in subspaces of the
simulation theory. The explored trgjectories are chosen, in the first case, by a domain
expert, and in the second case, randomly. Owing to these facts, those approaches cannot
be used for proving tendencies in the dynamics of a simulation modd - the dlowed
conclusions are vaid either according to the expertise of adomain expert or statistically.

As an alternative to these traditiona methods, in previous papers [6-8] a hierarchy of
computational architectures for searching for and proving tendencies in a Multi Agent
System (MAS)-based simulation model is proposed. The first architecture, that a the
higher level, consists of the MAS-based model where tendencies will be searched for by
the modeller. After a tendency is found, at a second architectura level, a congtraint logic



model® proof of the envelope of the simulation trgjectory is proposed. In those papers, a
computational technique for doing this proof efficiently is implemented and illustrate by
using an example. And, at a third architectura level, a more genera proof of the envelope
of the tendency would be implemented by exploring a wider fragment of the smulation
theory by using a syntactic driven search. As explained better in [8], this research
contributesin bringing closer the simulation and the logic programming communities.

This paper examines the computationa complexity of the procedure implemented in
the second architectural level. First, in the second section, the idea of envelope is
reviewed. Afterwards, in the third section, the logic-based exploration of simulation
trgectories implemented for proving the envelope of tendencies in smulation models is
described. Then, in the fourth section, the computational complexity of such exploration is
established. And findly, in the fifth section, some conclusions are presented.

2 Enveloping Tendenciesin a Simulation M odel

It does not seem convenient to use aways the strong concept of envelope managed in
mathematics. Apart from precision on the managed concepts, the idea of making the
output comprehensible for a modeller is aso important. An envelope will be chosen
considering the trade-off between practica usefulness for a modeler and precision (by
precision we mean how close the concept is to the ideal mathematica notion of a tangent
curve/surface).

Consider the case of enveloping a single smulation output, Y. Each trgectory will
generate a sequence of real values over time, Y. Calling y;; the output value at time instant
i for trgectory j, an envelope might consist of two sequences of values over time: Eypper
and Ejquer, Which in some sense cover all trgectories. The value of E g &t time instant i
must be greater than or equal to y;; for al j, and Ejqer at time instant i must be lower than
or equa to y; for al j. That is, the envelope would be given by two sequences of values
over time, where for each time instant al vaues generated by the simulation trgjectories
are enclosed by the two vaues given by these two vaue sets. Putting this in other words,
a each time ingtant, t, the smallest interva covering dl points generated by the explored
trgjectories is included in the interval given by the two sequences Eypper 8Nd Ejoner fOr
instant t.

Alternatively, first an approximating function, f, for the output value set Y that each
trgjectory generates might be elaborated; then, the instances of these functions (one
function for each trgjectory) might be enveloped.

Among the procedures of interest for enveloping tendencies in simulation studies might
be the followings:

» Enveloping certain properties of the observed tendency rather than the tendency
itself. The results might permit one to relate the simulation results to theory
developments and to elaborate conclusions with respect to the theory underlying
the simulation model.

» Producing a mathematical description of some coarse borders of the space where
the tendencies have been observed. This is useful if it is difficult to describe the
subspace of the tendencies directly. Then, coarse borders are chosen as a first

1 The term ‘logicd modd’ means modd in the logical sense, which is different to the idea of model
in modeling or in smulation. In this paper, alogica mode corregponds to asimulation trajectory.



approximation to the envelope and, afterwards, these enclosing borders are
expressed mathematicaly.

» Using extreme cases of representative or typical instances of a tendency. It is
assumed that the observed tendencies in the simulation can be grouped
qualitatively as similar or close enough (in accordance with some criteria) to a
finite (small) number of typical tendencies.

» Specifying a range of parameters and choices. This is the description used in the
exploration implemented in previous papers [6-8].

3 Proving Tendencies Via a M odel-based Exploration of Simulation
Trajectoriesin aMAS-based Simulation M odel

3.1 Logical Modd-Congrained Exploration of Simulation Trajectories

A simulaion - either an event-driven, or a finite differences, or a MAS-based - can be
seen as a partia logicd model. Usually, in a trgectory only a partid set of dl the facts of
the logica mode corresponding to the trgectory are explicitly generated. This partial set
consists of those facts that are relevant, either because they are required for the modeller
as outputs or because they are necessary to generate the smulation transition states. The
remaining facts are left as unknown.

There are different methods to specify a theory in a language. One commonly
employed in logic is by using a set of formulas of the language which become the axioms
of the theory. In a declarative program a smulation mode is specified via a set of rules
and the underlying logic of the program. Potential trajectories are defined via non-
deterministic factors of the simulation, e.g., parameters and choices.

The idea in the referenced previous studies was to analyse the emergence of tendencies
in a simulation by exploring a subspace of the space of trajectories. That was done viaa
logical model-based constraint search, where the constraints standed for the selected
parameters and choices. The exploration alows a modeller to explore that fragment of the
smulation theory content over a range of parameters and choices (see Figure 1).
Consequently, the resulting conclusions and proofs will be valid over that fragment of the
theory and, under appropriate judtifications, they can be extragpolated to the whole
simulation theory.

Whole smulation content - all
trgjectories are included

Whole Theory
Congrained subspace
of trajectories: Allowsto A Fragment of thetheory
° investigate I }»
®

Figure 1. Theory given by simulation trajectories



3.2 Logical Modd Exploration for Proving the Necessity of a Tendency

The idea is to generdise about tendencies going from the observation of individua
trgjectories to observation of a group of trgjectories generated for certain parameters and
choices. In particular, it is intended to know if a certain tendency is necessary or
contingent in the explored trgectories. We understand a smulation trgjectory as a logical
model embedded in a simulation program (a ‘possible world’ in semantic terms) and
involving trgjectories of entities (e.g., agents) insgde the smulation and, hence, different
from trgjectories of these entities. It is a cross-product of al settings of the structure of the
simulation model and all processes (eg., agents choices) into one path through a high-
dimensional space (see Figure 2).

The character of the search is predominantly logicad model, congraint, forward-
chaining, and clausd ordered. A logica model is generated for each combination of
parameters and choices. Each combination of parameters provides a different structure of
the smulation modd (see Figure 3). ‘Paths representing trgectories are generated for
each structure. Then, while the simulation is going on, choices produce branch points
where dternative settings for each choice turn out into a different smulation trgjectory.

The box contains the

simulation theorv
Time

________________ )
Ag.l
Ag.2 k- --------- -
/ AN >
/ ! ! \Time direction Sim. trgjectory
e break point at time
Simulation t2 (due to agent 2
Agent 1 choice Agent 2 choice trgjectories choice)
point at timetl point at time t2
[ Causes

Sim. trgjectory
P Dbresk point a
Causss ftimetl(dueto
agent 1
choice)

Figure 2. Representation of a simulation theory in terms of the simulation trgjectories, and
of these in terms of agents choices (for a single parameter-setting and assuming there are
two agents)



This exhaustive constraint-based search over a range of possible trgectories makes it
possible to establish the necessty of postulated emergent tendencies. Following a
procedure similar to that used in theorem-proving [3,10], a subset of the possible
smulation parameterisations and agent choices is specified, the target emergent
tendencies are prearranged in the form of negative constraints, and an automatic search
over the possible trgjectories is performed.

Tendencies are shown to be necessary, with respect to the range of parameterisaions
and non-deterministic choices, by firg finding a possible trgjectory without the negative
constraint to show the rules are consistent and then showing that dl possible trgjectories
violate the negation of the hypothetical tendency when this is added as a further
constraint. This is equivaent to showing that al possble tendencies obey the postive
form of the constraint, i.e., that the positive formistrue for al tendencies.
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dructure. Branches ae

dueto agents' choices
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Figure 3. A model constraint-based exploration of the dynamics of asimulation model



4 Complexity of the Proof

The aim of this section is to demonstrate that the exploration of trgjectories proposed in
the previous section applied over an infinite (theoreticaly) number of iterations is
PSPACE-complete. To make clearer the exposition, this aim is called the target
problem. Asisusua for this sort of verification, two steps are followed:

First, it will be proved that the target problem is in PSPACE by expressing it as a
binary tree of depth n. According to Papadimitriou [5] this is sufficient (see examples in
[5], pp. 455-462).

Second, it will be proved that the problem is dso PSPACE-complete by trandlating
another PSPACE-complete problem into the target problem. For this comparison, one of
the problems Woolridge presents in [9] has been chosen, concretely that of agent-
task-maintenance.

For the first part of the proof it must be possible to construct in polynomial
space the game three, which is possible if the target problem is expressed in the
form of a Boolean quantified expression (see examples 19.1 and 19.2 in [5]), as
follows:

O%1 [T %3 [7%3 [T %a [Xs ... Qn %a (F) (1)
where F is the formula to be evaluated over the variables x; .. X, and Q, is the last
quantifier, which will be /7in case of nimpair or /7 in case of n even.

The impair variables correspond to the environment’s action. The deterministic part in
the gtate transition of the simulation will be caled environment’s actions. In the target
example, it corresponds to dl those changes not associated with agents' choices.
Consequently, there is only one aternaive action for the impair variables. The even
variables correspond to the agents' choices (which are going to be called agents' actions).
In the particular case of the example presented in [6], there are eight aternative agents’
choices. So far, a state trangition in a smulation has been divided into two parts. that
deterministic part associated with the existential variables and that non-determinigtic part
associaed with the quantified variables. A whole simulation path (or simulation
trgjectory) is represented by a concatenation of branches, where each branch corresponds
to an assignment of values to avariable x;.

Findly, F will be the question: whether the searched tendency has occurred in a
simulation trgjectory, where that trgjectory is associated with an assignment of values for
the variables, x;. The whole expression (1) is true if for al possible assignments of vaues
to the variables the tendency is true (remember tha there is only one choice for the
existentia variables). As each particular assgnment of vaues to the whole set of
quantified variables corresponds to a simulaion trgectory, the proof is successful if this
expression is vaid for all possible vaues the quantified variables can take! (e.g., for al
possible agents’ choices).

To check if the proof is successful, a boolean circuit, where and OR gate stands for the
[Jquantifier and an AND gate stands for the/7 quantifier, is written (see Figure 4).
A ledf in this circuit is evaluated to true if the tendency is found in the corresponding
smulation path and to false otherwise. The whole circuit will be true if and only if the
tendency appears in al smulation paths. Hence, the proof is successful if and only if the
circuit istrue (e.g., the tendency isfound in all paths).

These two expressions found of the problem (that is, the Boolean circuit shown in
figure 4 and the expression of equation (1)) are sufficient to prove tha the target problem
is PSPACE. The next task isto prove that the problem is PSPACE-complete.
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Figure 4. Boolean circuit for the target problem

Comparing with Woolridge [9], an algorithm to check the proof might be written. This
will bring the example close to the one he uses when considering maintenance tasks.
Assuming a Turing machine M is called recursively a each branch point (at agents
choices) and that this machine is kept in use while actions are determinigtic
(environment’ s action), the algorithm for M will be:

Algorithm 1.

1. If the tendency appears, then the branch is evaluated to true (success);

2. Ifthere are no allowable simulation actions, the branch is evaluated to false (fail);

3. Execute the deterministic aspects of the state transition (environment action), then for each

agent’s choice recursively call M;

4. If all recursive calls in 3, are successful (i.e., evaluated to frue), then Mis true (success).

To prove that the target problem is PSPACE-complete, consider the maintenance
problem in [9]. There, agents are chosen non-determinigtically to act against the
environment. Agent's actions are deterministic, while environment’s actions are non-
deterministic. The idea is to check if there is any choice of agents actions that is



successful in bringing the environment into one in a set of staes whatever the
environment chooses. It is like a game where agents play against the environment.
Woolridge proves that the agent-maintenance problem is in NPSPACE using the
following algorithm:

Algorithm 2:

1. if r[the run until a branch point] ends with state O G [the set of goals], then M accepts;

2. if there are no allowable actions given r, then Mrejects;

3. non-deterministically choose an action a from Ac (possible agents’ actions, there is one per
agent) and then for each e O T (set of possible environment's states) recursively call M with
therunr - a [&;

4. if all of these accept, then M accepts, otherwise M rejects.

In Woolridg€e' s problem, rather than searching for a tendency, the idea is to bring the
simulation into one among a set of environment states. If the environment is brought into
one of these states, it is said that the selected agents have been successful in their game
against the environment. In Woolridge's example, the agents actions are deterministic;
e.g., they have only one choice, but different agents can be sdected. Selection of agents
corresponds to the OR nodes in the circuit shown in the Figure 4, each branch
corresponding to the choice of a different agent. On the other hand, the environment has
non-deterministic actions, and, correspondingly, their choices are associated with the AND
gatesin the circuit.

A difference between algorithm 1 and Woolridge' s agorithm (e.g., algorithm 2) is that
in the latter, a step 3, M is called for each possible environment’s dtate after an agents’
choice is sdlected non-deterministically, while in the former M is called, in step 3, for
each agent’s choice dfter the (deterministic) environment action is performed. So, the
deterministic action of the environment in step 3 in the former agorithm corresponds to
the non-determinigtic choice of agents in the latter. Consequently, though the translation
of Woolridge's problem into the target problem seems straightforward, there is ill a
small difficulty: his case study is non-deterministic (owing to the non-deterministic choice
of agentsin step 3 in algorithm 2), while the target problem is deterministic. Woolridge' s
origina problem isNPSPACE.

To solve the difficulty, consider the deterministic version of Woolridge's problem.
Think about checking the successfulness of agents' actions in his problem once an agent
has been chosen in advance a each branch point. This is a deterministic problem. It isin
PSPACE but still as hard as Woolridge's origina one as NPSPACE = PSPACE ([5], p.
150). Woolridge s dgorithm for this deterministic version of the agent-maintenance task
problem becomes:

Algorithm 3:

1. if r[the run until a branch point] ends with state O G [the set of goals], then M accepts;

2. if there are no allowable actions given r, then M rejects;

3. deterministically use the action « given in advance from Ac (possible agents’ actions, there is
one per agent) and then, for each e O T (set of possible sates of the environment),
recursively call M with the run r - a /&;

4. if all of these accept, then M accepts, otherwise M rejects.

The trandlation of the determinist version of Woolridge's problem into the target
problem is straightforward from algorithms 1 and 3. The deterministic action of the
environment a step 3 of algorithm 1 corresponds in Woolridge s agorithm (algorithm 3)
to the deterministic action of an agent already chosen. The recursive cals of M made for
agents’ choices in algorithm 1 correspond in algorithm 3 to the recursive cals of M for



the environment’s choices. With regard to the circuit shown in Figure 4, agents choices
in Woolridge's problem (now deterministic) are placed at the OR gates and environment
(non-deterministic) choices in Wooldridge's problem are placed at the AND nodes.
Therefore, the deterministic version of Woolridge's maintenance problem has been
trandated into the target problem, and, consequently, the target problem is aso PSPACE-
complete.

It has been demonstrated that the target problem is PSPACE-complete for an infinite
number of iterations, i. Using the experience accumulated so far in this proof for i infinite
(particularly useful is the expression of the problem in the circuit given above), and
theorems 17.8 (especidly its corollary 2) and 17.10 in [5], it should be possible to prove
that the problem is 2; P-complete if the number of iterations, i, is finite.

5 Conclusion

This paper has verified that the complexity of a constraint modd based exploration of
simulation trgectories for proving the envelope of tendencies in the dynamics of a MAS-
based smulation moded is PSPACE-complete for an infinite number of iterations and has
suggested that it is 2'; P-complete for afinite number of iterations, i.

Proving the envelope of tendencies in simulation outputs is an dternative to traditional
methods used for examining simulation outputs. The former alows elaborating more
genera conclusions than the | atter.

As explained better in [8], congraint exploration of simulation trajectories brings closer
the simulation and the logic programming communities. This paper contributes in making
clearer a property of high interest to both of these communities, namely the computational
complexity of a constraint exploration of simulation trgectories
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