
Proceedings

Foundations of Computer Security
Affiliated with LICS’02

FLoC’02

Copenhagen, Denmark
July 25–26, 2002

Edited by
Iliano Cervesato

With support from

Office of Naval Research
International Field Office

Table of Contents

Preface . iii

Workshop Committees . v

Foundations of Security

On the Decidability of Cryptographic Protocols with Open-ended Data Structures 3

Ralf Küsters

Game Strategies In Network Security . 13

Kong-Wei Lye and Jeannette M. Wing

Modular Information Flow Analysis for Process Calculi . 23

Sylvain Conchon

Logical Approaches

A Trustworthy Proof Checker . 37

Andrew W. Appel, Neophytos Michael, Aaron Stump, and Roberto Virga

Finding Counterexamples to Inductive Conjectures ... 49

Graham Steel, Alan Bundy, and Ewen Denney

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning 59

Alessandro Armando and Luca Compagna

Invited Talk

Defining security is difficult and error prone . 71

Dieter Gollmann

i

ii TABLE OF CONTENTS

Verification of Security Protocols

Identifying Potential Type Confusion in Authenticated Messages . 75

Catherine Meadows

Proving Cryptographic Protocols Safe From Guessing Attacks . 85

Ernie Cohen

Programming Language Security

More Enforceable Security Policies . 95

Lujo Bauer, Jarred Ligatti and David Walker

A Component Security Infrastructure . 105

Yu David Liu and Scott F. Smith

Static Use-Based Object Confinement . 117

Christian Skalka and Scott F. Smith

Panel

The Future of Protocol Verification . 129

Serge Auxetier, Iliano Cervesato and Heiko Mantel (moderators)

Author Index . 130

Preface

Computer security is an established field of Computer Science of both theoretical and practical sig-
nificance. In recent years, there has been increasing interest in logic-based foundations for various
methods in computer security, including the formal specification, analysis and design of crypto-
graphic protocols and their applications, the formal definition of various aspects of security such as
access control mechanisms, mobile code security and denial-of-service attacks, and the modeling
of information flow and its application to confidentiality policies, system composition, and covert
channel analysis.

This workshop continues a tradition, initiated with the Workshops on Formal Methods and
Security Protocols — FMSP — in 1998 and 1999 and then the Workshop on Formal Methods and
Computer Security — FMCS — in 2000, of bringing together formal methods and the security
community. The aim of this particular workshop is to provide a forum for continued activity in this
area, to bring computer security researchers in contact with the FLoC community, and to give FLoC
attendees an opportunity to talk to experts in computer security.

Given the affinity of themes, FCS was synchronized with the FLoC’02 Verification Workshop
(VERIFY). Sessions with a likely overlap in audience were held jointly. Moreover, authors who
thought their paper to be of interest for both FCS and VERIFY could indicate that it be considered
a joint submission, and it was reviewed by members of both program committees.

FCS received 22 submissions, 10 of which were joint with VERIFY. The review phase selected
11 of them for presentation; 5 of these were joint with VERIFY. This unexpected number of papers
lead to extending FCS by one day.

Many people have been involved in the organization of the workshop. John Mitchell, assisted
by the Organizing Committee, is to be thanked for bringing FCS into existence as part of FLoC.
The Program Committee did an outstanding job selecting the papers to be presented, in particular
given the short review time. We are very grateful to the VERIFY chairs, Heiko Mantel and Serge
Autexier, for sharing the organizational load and for the numerous discussions. Sebastian Skalberg,
Henning Makholm and Klaus Ebbe Grue, our interface to FLoC, turned a potential bureaucratic
nightmare into a smooth ride. Finally we are grateful to the authors, the panelists and the attendees
who make this workshop an enjoyable and fruitful event.

Iliano Cervesato

FCS’02 Program Chair

iii

iv PREFACE

Workshop Committees

Program Committee

Iliano Cervesato (chair), ITT Industries, USA
Véronique Cortier, ENS Cachan, France
Grit Denker, SRI International, USA
Carl Gunter, University of Pennsylvania, USA
Alan Jeffrey, DePaul University, USA
Somesh Jha, University of Wisconsin — Madison, USA
Trevor Jim, AT&T Labs, USA
Heiko Mantel, DFKI Saarbrücken, Germany
Catherine Meadows, Naval Research Laboratory, USA
Flemming Nielson, Technical University of Denmark
Birgit Pfitzmann, IBM Zürich, Switzerland
David Sands, Chalmers University of Technology, Sweden
Stephen Weeks, InterTrust, USA

Organizing Committee

Martín Abadi, University of California — Santa Cruz, USA
Hubert Comon, ENS Cachan, France
Joseph Halpern, Cornell University, USA
Gavin Lowe, Oxford University, UK
Jonathan K. Millen, SRI International, USA
Michael Mislove, Tulane University, USA
John Mitchell (chair), Stanford University, USA
Bill Roscoe, Oxford University, UK
Peter Ryan, University of Newcastle upon Tyne, UK
Steve Schneider, Royal Holloway University of London, UK
Vitaly Shmatikov, SRI International, USA
Paul Syverson, Naval Research Laboratory, USA
Michael Waidner, IBM Zürich, Switzerland
Rebecca Wright, AT&T Labs, USA

v

vi WORKSHOP COMMITTEES

Session I

Foundations of Security

1

On the Decidability of Cryptographic Protocols with
Open-ended Data Structures

Ralf Küsters
Institut für Informatik und Praktische Mathematik
Christian-Albrechts-Universität zu Kiel, Germany

kuesters@ti.informatik.uni-kiel.de

Abstract

Formal analysis of cryptographic protocols has mainly
concentrated on protocols with closed-ended data struc-
tures, where closed-ended data structure means that the
messages exchanged between principals have fixed and fi-
nite format. However, in many protocols the data struc-
tures used are open-ended, i.e., messages have an un-
bounded number of data fields. Formal analysis of pro-
tocols with open-ended data structures is one of the chal-
lenges pointed out by Meadows. This work studies de-
cidability issues for such protocols. We propose a proto-
col model in which principals are described by transduc-
ers, i.e., finite automata with output, and show that in this
model security is decidable and PSPACE-hard in presence
of the standard Dolev-Yao intruder.

1 Introduction

Formal methods are very successful in analyzing the se-
curity of cryptographic protocols. Using these methods,
many flaws have been found in published protocols. By
now, a large variety of different methods and tools for
cryptographic protocol analysis is available (see [17] for
an overview). In particular, for different interesting classes
of protocols and intruders, security has been shown to be
decidable, usually based on the Dolev-Yao model [7] (see
the paragraph on related work).

Previous work has mostly concentrated on protocols
with closed-ended data structures, where messages ex-
changed between principals have fixed and finite format.
In what follows, we will refer to these protocols as closed-
ended protocols. In many protocols, however, the data
structures are open-ended: the exchanged messages may
have an unbounded number of data fields that must be pro-
cessed by a principal in one receive-send action, where
receive-send action means that a principal receives a mes-
sage and reacts, after some internal computation, by send-
ing a message. One can, for example, think of a message
that consists of an a priori unbounded sequence of requests
and a server who needs to process such a message in one

receive-send action; see Section 2 for concrete examples.

This paper addresses open-ended protocols, and thus,
deals with one of the challenges pointed out by Meadows
[17]. The goal is to devise a protocol model rich enough
to capture a large class of open-ended protocols such that
security is decidable; the long-term goal is to develop tools
for automatic verification of open-ended protocols.

Open-ended protocols make it necessary to model prin-
cipals who can perform in one receive-send action an un-
bounded number of internal actions; only then can they
handle open-ended data structures. Therefore, the first
problem is to find a good computational model for receive-
send actions. It turns out that one cannot simply ex-
tend the existing models. More specifically, Rusinowitch
and Turuani [21] describe receive-send actions by single
rewrite rules and show security to be NP-complete. In this
model, principals have unbounded memory. Furthermore,
the terms in the rewrite rules may be non-linear, i.e., multi-
ple occurrence of one variable is allowed, and thus, a prin-
cipal can compare messages of arbitrary size for equality.
To handle open-ended protocols, we generalize the model
by Rusinowitch and Turuani in a canonical way and show
that if receive-send actions are described by sets of rewrite
rules, security is undecidable, even with i) finite memory
and non-linear terms, or ii) unbounded memory and linear
terms. Consequently, we need a computational model in
which principals have finite memory and cannot compare
messages of arbitrary size for equality.

For this reason, we propose to use transducers, i.e., fi-
nite automata with output, as the computational model for
receive-send actions, since transducers satisfy the above
restrictions — they have finite memory and cannot com-
pare messages of arbitrary size for equality —, and still
can deal with open-ended data structures. In Section 5.1
our so-called transducer-based model is discussed in de-
tail. The main technical result of this paper is that
in the transducer-based model, security is decidable and
PSPACE-hard under the following assumptions: the num-
ber of sessions is bounded, i.e., a protocol is analyzed
assuming a fixed number of interleaved protocol runs;
nonces and complex keys are not allowed. We, however,

3

4 RALF KÜSTERS

put no restrictions on the Dolev-Yao intruder; in particu-
lar, the message size is unbounded. These are standard as-
sumptions also made in most decidable models for closed-
ended protocols [21, 2, 13].1 Just as in these works, the
security property we study in the present paper is secrecy.

The results indicate that from a computational point of
view, the analysis of open-ended protocols is harder than
for closed-ended protocols, for which security is “only”
NP-complete [21]. The additional complexity comes from
the fact that now we have, beside the Dolev-Yao intruder,
another source of infinite behavior: the unbounded num-
ber of internal actions (i.e., paths in the transducers of un-
bounded length). This makes it necessary to devise new
proof techniques to show decidability. Roughly speaking,
using that transducers only have finite memory we will use
a pumping argument showing that the length of paths in
the transducers can be bounded in the size of the problem
instance.

Related work. All decidability and undecidability re-
sults obtained so far only apply to closed-ended proto-
cols. Decidability depends on the following parameters:
bounded or unbounded number of sessions, bounded or
unbounded message size, absence or presence of pairing,
nonces, and/or complex keys.

Usually, if one allows an unbounded number of ses-
sions, security is undecidable [1, 8, 2, 9]. There are
only a few exceptions: For instance, if the message
size is bounded and nonces are disallowed, security is
EXPTIME-complete [8]; if pairing is disallowed, security
is in P [6, 2]. The situation is much better if one puts a
bound on the number of sessions; from results shown by
Lowe [15] and Stoller [23] it follows that, under certain
conditions, one can assume such bounds without loss of
generality. With a bounded number of sessions and with-
out nonces, security is decidable even if pairing is allowed
and the message size is unbounded [21, 2, 13]. In fact, in
this setting, security is NP-complete, with [21] or without
[2] complex keys. We make exactly the same assumptions
in our models, where we use atomic keys.

To the best of our knowledge, the only contributions on
formal analysis of open-ended protocols are the follow-
ing: The recursive authentication protocol [5] has been an-
alyzed by Paulson [19], using the Isabelle theorem prover,
as well as by Bryans and Schneider [4], using the PVS the-
orem prover; the A-GDH.2 protocol [3] has been analyzed
by Meadows [16] with the NRL Analyzer, and manually
by Pereira and Quisquater [20], based on a model simi-
lar to the strand spaces model. As mentioned, decidability
issues have not been studied so far.

Structure of the paper. In Section 2, we give exam-
ples of open-ended protocols. We then define a generic

1In [21, 13], however, complex keys are allowed.

model for describing open-ended protocols (Section 3). In
this model, receive-send actions can be arbitrary computa-
tions. In Section 4, we consider the instances of the generic
model in which receive-send actions are specified by sets
of rewrite rules, and show the mentioned undecidability
result. The transducer-based model, the instance of the
generic protocol model in which receive-send actions are
given by transducers, is introduced in Section 5. This sec-
tion also contains the mentioned discussion. In Section 6
the actual decidability and complexity results are stated.
Finally, we conclude in Section 7.

Due to space limitations, in this paper we have largely
omitted technical details and rather focused on the intro-
duction and the discussion of our models. We only provide
the proof ideas of our results. The full proofs can be found
in the technical report [14]. It also contains a description
of the recursive authentication protocol (see Section 2) in
our transducer-based model.

2 Examples of Open-ended Proto-
cols

An example of an open-ended protocol is the IKE Proto-
col [12], in which a principal needs to pick a security as-
sociation (SA), the collection of algorithms and other in-
formations used for encryption and authentication, among
an a priori unbounded list of SAs. Such a list is an open-
ended data structure, since it has an unbounded number
of data fields to be examined by a principal. An attack
on IKE, found by Zhou [24] and independently Ferguson
and Schneier [10], shows that when modeling open-ended
protocols, the open-ended data structures must be taken
into account, since otherwise some attacks might not be
found. In other words, as also pointed out by Meadows
[17], open-endedness is security relevant.

Other typical open-ended protocols are group proto-
cols, for example, the recursive authentication protocol
(RA protocol) [5] and the A-GDH.2 protocol [3], which
is part of the CLIQUES project [22]. In the RA protocol, a
key distribution server receives an a priori unbounded se-
quence of request messages (containing pairs of principals
who want to share session keys) and must generate a cor-
responding sequence of certificates (containing the session
keys). These sequences are open-ended data structures: In
one receive-send action the server needs to process an un-
bounded number of data fields, namely the sequence of
pairs of principals. Group protocols often allow an un-
bounded number of receive-send actions in one protocol
run. In our models, we will, however, always assume a
fixed bound on the number of receive-send actions, since
otherwise, just as in the case of an unbounded number of
sessions, security, in general, leads to undecidability. Nev-
ertheless, even with such a fixed bound it is still necessary

ON THE DECIDABILITY OF CRYPTOGRAPHIC PROTOCOLS WITH OPEN-ENDED DATA STRUCTURES 5

to model open-ended data structures. In the RA protocol, a
bound on the number of receive-send actions would imply
that the sequence of requests generated by the principals
is bounded. Nevertheless, the intruder can generate arbi-
trarily long request messages. Thus, the data structures are
still open-ended, and the server should be modeled in such
a way that, as in the actual protocol, he can process open-
ended data structures.

In [14], we provide a formal description of the RA pro-
tocol in our transducer-based model.

3 A Generic Protocol Model

Our generic protocol model and the underlying assump-
tions basically coincide with the ones proposed by Rusi-
nowitch et al. [21] and Amadio et al. [2] for closed-ended
protocols. However, the important difference is that in the
generic model, receive-send actions are, roughly speaking,
binary relations over the message space, and thus can be
interpreted as arbitrary computations. In the models of
Rusinowitch et al. and Amadio et al. , receive-send actions
are described by single rewrite rules or processes without
loops, respectively.

Thus, the generic protocol model is a very general
framework for open-ended protocols. In fact, it is much
too general to study decidability issues. Therefore, in sub-
sequent sections we will consider different instances of
this model.

The main features of the generic protocol model can be
summarizes as follows:

� a generic protocol is described by a finite set of prin-
cipals;

� the internal state space of a principal may be infinite
(which, for example, enables a principal to store arbi-
trarily long messages);

� every principal is described by a finite sequence of
receive-send actions;

� receive-send actions are arbitrary computations.

We make the following assumptions:

� the intruder is the standard Dolev-Yao intruder; in
particular, we do not put restrictions on the size of
messages;

� principals and the intruder cannot generate new
nonces, i.e., the nonces used in the analysis are only
those already contained in the protocol description;

� keys are atomic;

� the number of sessions is bounded. More precisely,
the sessions considered in the analysis are only those
encoded in the protocol description itself.

These are standard assumptions also made in decidable
models for closed-ended protocols. They coincide with
the ones in [2], and except for complex keys, with those in
[21, 13].

Let us now give a formal definition of the generic pro-
tocol model.

3.1 Messages

The definition of messages is rather standard. Let
�

denote a finite set of atomic messages, containing keys,
names of principals, etc. as well as the special atomic mes-
sage �������	��
 . The set of messages (over

�
) is the least set�

that satisfies the following properties:

� �� �
;

� if ��������� � , then ������� � ;

� if ��� � and ��� � , then enc ��������� � ;

� if ��� � , then hash ����� � � .

As usual, concatenation is an associative operation, i.e.,�!�����	�"��� ��#��������$��� �%� . Note that we only allow for
atomic keys, i.e., in a message enc ���'&(� , � is always an
atomic message.

Let) denote the empty message and
��*�+ # �-,/.)�0

the set of messages containing) . Note that) is not allowed
inside encryptions or hashes, that is, enc ���1�32� �4*

and
hash �5�62� �7*

.
Later, we will consider terms, i.e., messages with vari-

ables. Let 8 + # .:9<; �:=>=>=:� 9<?�@�A 0 be a set of variables.
Then a term B (over 8) is a message over the atomic mes-
sages

� , 8 , where variables are not allowed as keys, i.e.,
terms of the form enc C��'&(� for some variable

9
are forbid-

den. A substitution D is a mapping from 8 into
��*

. If B is
a term, then DE�!B�� denotes the message obtained from B by
replacing every variable

9
in B by DE� 9 � .

The depth FG�GH:
JIK�!B�� of a term B is the maximum number
of nested encryptions and hashes in B , i.e.,

� FG�GH:
JI��%)G� + #ML , FG�GH:
JIK���K� + #NL for every �O� � , 8 ,

� FG�GH:
JI��!B"B'�%� + #QPSR:T . FU�<H�
JIV��B��J�WFG�GH:
JIK�!B'�%�X0 ,
� FG�GH:
JI�� enc ����B���� + #NFU�<H�
JIV��B��ZYN[,
� FG�GH:
JI�� hash �!B��\� + #MFU�<H�
JI���B��ZYM[.

3.2 The Intruder Model

We use the standard Dolev-Yao intruder model [7]. That is,
an intruder has complete control over the network and can
derive new messages from his current knowledge by com-
posing, decomposing, encrypting, decrypting, and hashing
messages. As usual in the Dolev-Yao model, we make the
perfect cryptography assumption. We do not impose any
restrictions on the size of messages.

6 RALF KÜSTERS

The (possibly infinite) set of messages F � � � the intruder
can derive from

� �7*
is the smallest set satisfying the

following conditions:

� � F � � � ;
� if � ��� � F � � � , then � � F � � � and ����� F � � �

(decomposition);

� if enc � ����� � F � � � and ��� F � � � , then � � F � � �
(decryption);

� if � � F � � � and ��� � F � � � , then ����� � F � � �
(composition);

� if � � F � � � , � 2#) , and � � ��� F � � � , then
enc ������� � F � � � (encryption);

� if � � F � � � and � 2#�) , then hash �!� � � F � � �
(hashing).

3.3 Protocols

Protocols are described by sets of principals and every
principal is defined by a sequence of receive-send actions,
which, in a protocol run, are performed one after the other.
Since we are interested in attacks, the definition of a proto-
col also contains the initial intruder knowledge. Formally,
principals and protocols are defined as follows.

Definition 1 A generic principal � is a tuple ��� ��� ��	'��
 �
where

� � is the (possibly infinite) set of states of � ;

� � is the set of initial states of � ;

� 	 is the number of receive-send actions to be per-
formed by � ;

�
 is a mapping assigning to every ��� . L �:=>=>=J��	� [G0
a receive-send action
 ����� ��� � * � � * ��� .

A generic protocol � is a tuple ���E� . ���"0���� ? � � � where

� � is the number of principals;

� . � � 0 ��� ? is a family of � generic principals, and

� � � *
is the initial intruder knowledge.

Note that receive-send actions are arbitrary relations. In-
tuitively, they take an input message (2. component)
and nondeterministically, depending on the current state
(1. component), return an output message (3. component)
plus a new state (4. component). Later, when we consider
instances of the generic protocol model, one receive-send
action of a principal will consist of an unbounded number
of internal actions. By allowing receive-send actions to
be nondeterministic and principals to have a set of initial
states, instead of a single initial state, one can model more

flexible principals: for instance, those that nondeterminis-
tically choose one principal, who they want to talk to, or
one SA from the list of SAs in the IKE Protocol.

We also remark that a protocol � is not parametrized by
� . In particular, when we say that � is secure, we mean
that � is secure given the � principals as defined in the pro-
tocol. We do not mean that � is secure for every number
� of principals.

3.4 Attacks on Protocols

In an attack on a protocol, the receive-send actions of the
principals are interleaved in some way and the intruder,
who has complete control over the communication, tries
to produce inputs for the principals such that from the cor-
responding outputs and his initial knowledge he can derive
the secret message �������	��
 . Formally, an attack is defined
as follows.

Definition 2 Let � # ���E� . � � 0 ��� ? � � � be a generic pro-
tocol with � � # ��� � ��� � ��	 � ��
 � � , for ����� . An attack on �
is a tuple consisting of the following components:

� a total ordering � on the set
. ���X� ���"!#�$�%�E� �&�'	 � 0

such that ���X� ���(�Q���X� �V�	� implies �)�*�V� (the execution
order of the receive-send actions);2

� a mapping + assigning to every ���X� ��� , �,�-� , �.�%	�� ,
a tuple

+6���X� ��� # ��/10� ���20� ��� � 0 � ��/10�3
A

� �
with

– /10� ��/10�3
A

� �4�5� (the state of �$� before/after per-
forming
6�\�7���); and

– �80� �\��� 0 � � �4*
(the input message received and

output message sent by
 � �����);
such that

� /
;
� �9� � for every �:��� ;

� �20� � F � � ,N. � � 0�;� ; ! ��� � �<� � �=� ���X� ���X0�� for every
���>� , �8��	?� ;

� ��/10� ���20� ����� 0 � ��/10�3
A

� � �.
6�\����� for every ���@� , �8�>	�� .
An attack is called successful if �\�:�<� �>
 ��F � �3, . � � 0 � !��A�
�E� �8��	 � 0 � .
The decision problem we are interested in is the following:

ATTACK: Given a protocol � , decide whether there exists
a successful attack on � .

2Although, we assume a linear ordering on the receive-send actions
performed by a principal, we could as well allow partial orderings (as in
[21]) without any impact on the decidability and complexity results.

ON THE DECIDABILITY OF CRYPTOGRAPHIC PROTOCOLS WITH OPEN-ENDED DATA STRUCTURES 7

A protocol guarantees secrecy if there does not exist a suc-
cessful attack. In this case, we say that the protocol is
secure.

Whether ATTACK is decidable or not heavily depends on
what kinds of receive-send actions a principal is allowed
to perform. In the subsequent sections, we look at differ-
ent instances of generic protocols, i.e., different computa-
tional models for receive-send actions, and study the prob-
lem ATTACK for the classes of protocols thus obtained.

4 Undecidability Results

We extend the model proposed by Rusinowitch and Tu-
ruani [21] in a straightforward way such that open-ended
protocols can be handled, and show that this extension
leads to undecidability of security.

The model by Rusinowitch and Turuani can be consid-
ered as the instance of the generic protocol model in which
receive-send actions are described by single rewrite rules
of the form B�� B�� , where B and B�� are terms.3 The in-
ternal state of a principal is given implicitly by the values
assigned to the variables occurring in the rewrite rules –
different rules may share variables. In particular, a prin-
cipal has unbounded memory to store information for use
in subsequent receive-send actions. Roughly speaking, a
message � is transformed by a receive-send action of the
form B�� B'� into the message DE�!B��%� , where D is a substitu-
tion satisfying � # DE��B�� . In [21], it is shown that in this
setting, ATTACK is NP-complete.

Of course, in this model open-ended data structures can-
not be handled since the left hand-side B of a rewrite rule
has a fixed and finite format, and thus, one can only pro-
cess messages with a fixed number of data fields.

A natural extension of this model, which allows to deal
with open-ended data structures, is to describe receive-
send actions by sets of rewrite rules, which can nondeter-
ministically be applied to the input message, where, as in
the model of Rusinowitch and Turuani, rewriting means
top-level rewriting: If the rule B�� B�� is applied to the in-
put message � yielding DE��B��%� as output, another rule (non-
deterministically chosen from the set of rules) may be ap-
plied to DE��B'�%� . To the resulting output yet another rule may
be applied and so on, until no rule is or can be applied
anymore. The applications of the rules are the internal
actions of principals. The instance of the generic proto-
col model in which receive-send actions are described by
sets of rewrite rules as described above is called rule-based
protocol model. In [14], we give a formal definition of this
model. In this model, we distinguish between input, out-
put, and process rules, and also put further restrictions on
the rewrite rules such that they can be applied only a finite
(but a priori unbounded) number of times.

3Since Rusinowitch and Turuani allow complex keys, the terms are
more general than the ones we use here. However, we will only consider
terms as defined in Section 3.1.

Theorem 3 For rule-based protocols, ATTACK is unde-
cidable.

By reduction from Post’s Correspondence Problem (PCP),
this theorem is easy to show. It holds true, even for pro-
tocols consisting of only one principal, which may only
perform one receive-send action. In other words, the un-
decidability comes from the internal actions alone.

However, the reduction does not work if only linear
terms are allowed in rewrite rules. In linear terms, every
variable occurs at most once, and therefore, one cannot
compare submessages of arbitrary size for equality. Nev-
ertheless, if principals can store one message and compare
it with a submessage of the message being processed, we
still have undecidability. Such protocols are called linear-
term one-memory protocols; see [14] for the formal defi-
nition and the proof of undecidability, which is again by a
rather straightforward reduction from PCP.

Theorem 4 For linear-term one-memory protocols, AT-
TACK is undecidable.

5 The Transducer-based Protocol
Model

The previous section indicates that, informally speaking,
when principals can process open-ended data structures
and, in addition, can

1. compare submessages of arbitrary size (which is pos-
sible if terms are not linear), or

2. store one message and compare it with a submessage
of the message being processed,

then security is undecidable. To obtain decidability, we
need a device with only finite memory, and which does not
allow to compare messages of arbitrary size. This moti-
vates to use transducers to describe receive-send actions.
In what follows, we define the corresponding instance of
the generic protocol model. In Section 5.1, we will dis-
cuss capabilities and restrictions of our transducer-based
model.

If
�

is a finite alphabet,
���

will denote the set of finite
words over

�
, including the empty word) .

Definition 5 A transducer � is a tuple ��� � � ���6��� �
	 ��� �
where

� � is the finite set of states of � ;

� �
is the finite input alphabet;

� � is the finite output alphabet;

� � � is the set of initial states of � ;

� 	
 � � �� ��� � �.� is the finite set of transitions

of � ; and

8 RALF KÜSTERS

� � � is the set of final states of � .

A path � (of length �) in � from � to / is of the form
/ ; � 9 ; ��� ; � / A � 9 A ��� A � /��E=>=:=Z� 9 ?�@ A ��� ?K@�A � / ? with / ; #�� ,
/ ? #�/ , and ��/ � � 9 � ��� � ��/ � 3

A � � 	 for every � � � ;
� is called strict if �	� L , and

9 ;
and

9 ?�@�A
are non-

empty words. The word
9 ; =>=>= 9 ?�@�A is the input label and

� ; =:=>=
� ?�@ A is the output label of � . A path of lengthL has input and output label) . We write � � 9 ���S� / � �
(� � 9 ���S� / ��� �) if there exists a (strict) path from � to /
in � with input label

9
and output label � .

If ��� � , then ���� ���S� + # . ���Z� 9 ��� ��/<� !�� �� ��/ �
� ��� � 9 ���S� / � � 0 � � �� � � � �&� . The output of �
on input

9 � ��
is defined by ��� 9 � + # . � ! there exists

� �9� and / � � with ���Z� 9 ��� ��/<��������� ��� �X0 .
If 	

 � � � � , .)�0�� � � � , .)�0�� � � , � is called
transducer with letter transitions in contrast to transducers
with word transitions. The following remark shows that it
suffices to consider transducers with letter transitions.

Remark 6 Let � # ��� � � ���6��� �
	O��� � be a transducer.
Then there exists a transducer � � # ��� �1� � �
�6��� ��	 �1��� �
with letter transitions such that � � � , and � �1�� ���6� #
���� ���6� for every ��� � .

In order to specify the receive-send actions of a principal,
we consider special transducers, so-called message trans-
ducers, which satisfy certain properties. Message trans-
ducers interpret messages as words over the finite alphabet���

, consisting of the atomic messages as well as the let-
ters “enc ��� ”, “hash � ”, and “)”, that is,

��� + # � ,3.
enc �K�:!���� � 0 ,3. hash �'� �J0U=

Messages considered as words over
���

have always a bal-
anced number of opening parentheses, i.e., “enc � � ” and
“hash � ”, and closing parentheses, i.e., “)”.

A message transducer reads a message (interpreted as a
word) from left to right, thereby producing some output.
If messages are considered as finite trees (where leaves
are labeled with atomic messages and internal nodes are
labeled with the encryption or hash symbol), a message
transducer traverses such a tree from top to bottom and
from left to right.

Definition 7 A message transducer � (over
�

) is a tu-
ple � � � � � ��� ��	 ��� � such that � � � � � � � � ��� ��	 ��� � is a
transducer with letter transitions, and

1. for every � � � *
, ����� � � *

; and

2. for all � ��/ �&� , � � � , and ��� ��� , if � ��� ��� � / ���
� , then � � �7*

.

The first property is a condition on the “external behavior”
of a message transducer: Whenever a message transducer
gets a message as input, then the corresponding outputs are
also messages (rather than arbitrary words). Note that in an

attack, the input to a message transducer is always a mes-
sage. The second property imposes some restriction on the
“internal behavior” of a message transducer. Both proper-
ties do not seem to be too restrictive. They should be satis-
fied for most protocols; at least they are for the transducers
in the model of the recursive authentication protocol (as
described in [14]).

An open issue is whether the properties on the internal
and external behavior are decidable, i.e., given a transducer
over

� �
does it satisfy 1. and 2. of Definition 7. The main

problem is the quantification over messages, i.e., over a
context-free rather than a regular set. Nevertheless, in the
model of the recursive authentication protocol it is easy to
see that the transducers constructed satisfy the properties.

For ��� � , we define ��� ��E���S� + # �O�� ���S� � ��� ��4* � ��� � � � . By the definition of message transducers,
���S��� ��� � ���%� �4* � �4* � � � if � is the set of initial
states and � is the set of final states of � . Thus, message
transducers specify receive-send actions of principals (in
the sense of Definition 1) in a natural way.

In order to define one principal (i.e., the whole sequence
of receive-send actions a principal performs) by a single
transducer, we consider so-called extended message trans-
ducers: � # ��� � � � �
	 �:��� ; �:=>=>=:��� ? ��� is an extended mes-
sage-transducer if � ��!#" ��!�$&% + # ��� � ��� ��� 0 ��	 ��� 0�3

A � is a
message transducer for all �2�>� . Given such an extended
message transducer, it defines the principal ��� ��� ; ���E��
 �
with
 ���V� #'���)(!#* (!�$+% ��� 0 ��� 0�3

A � for �@��� . In this set-
ting, an internal action of a principal corresponds to apply-
ing one transition in the extended message transducer.

Definition 8 A transducer-based protocol � is a generic
protocol where the principals are defined by extended mes-
sage transducers.

5.1 Discussion of the Transducer-based Pro-
tocol Model

In this section, we aim at clarifying capabilities and lim-
itations of the transducer-based protocol model. To this
end, we compare this model with the models usually used
for closed-ended protocols. To make the discussion more
concrete, we concentrate on the model proposed by Rusi-
nowitch and Turuani (see Section 4), which, among the
decidable models used for closed-ended protocols, is very
powerful. In what follows, we refer to their model as the
rewriting model. As pointed out in Section 3, the main dif-
ference between the two models is the way receive-send
actions are described. In the rewriting model receive-send
actions are described by single rewrite rules and in the
transducer-based model by message transducers.

Let us start to explain the capabilities of message trans-
ducers compared to rewrite rules.

Open-ended data structures. As mentioned in Sec-
tion 4, with a single rewrite rule one cannot process an

ON THE DECIDABILITY OF CRYPTOGRAPHIC PROTOCOLS WITH OPEN-ENDED DATA STRUCTURES 9

unbounded number of data fields. This is, however, possi-
ble with transducers.

For example, considering the IKE protocol (see Sec-
tion 2), it is easy to specify a transducer which i) reads a
list of SAs, each given as a sequence of atomic messages,
ii) picks one SA, and iii) returns it. With a single rewrite
rule, one could not parse the whole list of SAs.

The transducer-based model of the recursive authenti-
cation protocol (described in [14]) shows that transducers
can also handle more involved open-ended data structures:
The server in this protocol generates a sequence of certifi-
cates (containing session keys) from a request message of
the form hash ��� ; hash ��� A &:&>& hash ��� ? ��&>&>&X� , where
the � � ’s are sequences of atomic messages and the nesting
depth of the hashes is a priori unbounded (see [14] for the
exact definition of the messages.)

Of course, a transducer cannot match opening and clos-
ing parenthesis, if they are nested arbitrarily deep, since
messages are interpreted as words. However, often this is
not necessary: In the IKE protocol, the list of SAs is a mes-
sage without any nesting. In the recursive authentication
protocol, the structure of request messages is very sim-
ple, and can be parsed by a transducer. Note that a trans-
ducer does not need to check whether the number of clos-
ing parenthesis in the request message matches the number
of hashes because all words sent to a message transducer
(by the intruder) are messages, and thus, well-formed.

Simulating rewrite rules. Transducers can simulate cer-
tain receive-send actions described by single rewrite rules.
Consider for example the rule enc �K��� � � hash � � � � ,
where � is a variable and

�
an atomic message: First, the

transducer would read “enc ��� ” and output “hash � � ”, and
then read, letter by letter, the rest of the input message, i.e.,
“ � � ” – more precisely, the message substituted for � – and
simultaneously write it into the output.

Let us now turn to the limitations of the transducer-based
model compared to the rewriting model. The main limita-
tions are the following:

1. Finite memory: In the rewriting model, principals can
store messages of arbitrary size to use them in subse-
quent receive-send actions. This is not possible with
transducers, since they only have finite memory.

2. Comparing messages: In the rewriting model, prin-
cipals can check whether submessages of the input
message coincide. For example, if BS# hash � � � � � ,
with

�
an atomic message and � a variable, a prin-

cipal can check whether plain text and hash match.
Transducers cannot do this.

3. Copying messages: In the rewriting model, principals
can copy messages of arbitrary size. For example, in
the rule enc �K��� � � hash � � � � � , the message � is

copied. Again, a transducer would need to store � in
some way, which is not possible because of the finite
memory. As illustrate above, a transducer could how-
ever simulate a rule such as enc �K��� � � hash � � � � .

4. Linear terms: A transducer cannot simulate all
rewrite rules with linear left and right hand-side.
Consider for example the rule enc �K����� � � �
hash ����� � � , where � and � are variables, and � is
an atomic message. Since in the output, the order of
� and � is switched, a transducer would have to store
the messages substituted for � and � . However, this
requires unbounded memory.

The undecidability results presented in Section 4 indicate
that, if open-ended data structures are involved, the restric-
tions 1. and 2. seem to be unavoidable. The question is
whether this is also the case for the remaining two restric-
tions. We will comment on this below.

First, let us point out some work-arounds. In 1., it
often (at least under reasonable assumptions) suffices to
store atomic messages such as principal names, keys, and
nonces. Thus, one does not always need unbounded mem-
ory. One example is the recursive authentication protocol.
In 4., it might be possible to modify the linear terms such
that they can be parsed by a message transducer, and such
that the security of the protocol is not affected. In the ex-
ample, if one changes the order of � and � in the output,
the rewrite rule can easily be simulated by a transducer.
Finally, a work-around for the restrictions 2. to 4., is to put
a bound on the size of messages that can be substituted for
the variables. This approach is usually pursued in protocol
analysis based on finite-state model checking (e.g., [18]),
where, however, transducers have the additional advantage
of being able to process open-ended data structures. For
messages of bounded size, all transformations performed
by rewrite rules can also be carried out by message trans-
ducers. Moreover, in this setting message transducers can
handle type flaws.

Of course, it is desirable to avoid such work-arounds if
possible to make the analysis of a protocol more precise
and reliable. One approach, which might lift some of the
restrictions (e.g., 3. and 4.), is to consider tree transducers
instead of word transducers to describe receive-send ac-
tions. It seems, however, necessary to devise new kinds of
tree transducers or extend existing once, for example tree
transducers with look-ahead, that are especially tailored
to modeling receive-send actions. A second approach is
to combine different computational models for receive-
send actions. For instance, a hybrid model in which some
receive-actions are described by rewrite rules and others
by transducers might still be decidable.

6 The Main Result

The main technical result of this paper is the following:

10 RALF KÜSTERS

Theorem 9 For transducer-based protocols, ATTACK is
decidable and PSPACE-hard.

In what follows, we sketch the proof idea of the theorem.
See [14] for the detailed proof.

The hardness result is easy to show. It is by reduction
from the finite automata intersection problem, which has
been shown to be PSPACE-complete by Kozen [11].

The decidability result is much more involved, because
we have two sources of infinite behavior in the model.
First, the intruder can perform an unbounded number of
steps to derive a new message, and second, to perform
one receive-send action, a principal can carry out an un-
bounded number of internal actions. Note that because
transducers may have) -transitions, i.e., not in every tran-
sition a letter is read from the input, the number of transi-
tions taken in one receive-send action is not even bounded
in the size of the input message or the problem instance.

While the former source of infinity was already present
in the (decidable) models for closed-ended protocols [21,
2, 13], the latter is new. To prove Theorem 9, one there-
fore not only needs to show that the number of actions per-
formed by the intruder can be bounded, but also the num-
ber of internal actions of principals. In fact, it suffices to
establish the latter, since if we can bound the number of in-
ternal actions, a principal only reads messages of bounded
length and therefore the intruder only needs to produce
messages of size bounded by this length. To bound the
number of internal actions, we apply a pumping argument
showing that long paths in a message transducer can be
truncated. This argument uses that principals (the extended
message transducers describing them) have finite memory.

More formally, we will show that the following problem
is decidable. This immediately implies Theorem 9.

PATHPROBLEM. Given a finite set
� �7*

and��� L message transducers � ; �>=:=>=:� � � @ A with � �3#� �5��� � � � . / �� 0V��	 �\� . /��� 0�� for ��� �
, decide whether there

exist messages �����\� �� � � *
, ��� �

, such that

1. � � ��F � � ,3. ���; �>=>=:=������ � @�A 0 � for every ��� �
,

2. / �� �!� � ������ � /��� ��� � for every �A� �
, and

3. �\�:���	��
�� F � � , . ���; �>=>=:=>�\��� � @ A 0�� .
We write an instance of the PATHPROBLEM as� � ��� ; �>=>=:=>��� � @�A � and a solution of such an instance as a
tuple �!� ; �����; �>=:=>=:��� � @�A ����� � @�A � of messages. The size
of instances is defined as the size of the representation for�

and � ; �:=>=>=>��� � @ A .
Using a pumping argument, we show that in order to

find the messages ��� , ���� , for every � � �
, it suffices to

consider paths from / �� to /��� in � � bounded in length by
the size of the problem instance – the argument will also
show that the bounds can be computed effectively. Thus,
a decision procedure can enumerate all paths of length re-
stricted by the (computed) bound and check whether their

labels satisfy the conditions. (Note that for every message� and finite set
� � �4*

, ��� F � � �%� can be decided.) In
particular, as a “by-product” our decision procedure will
yield an actual attack (if any).

The pumping argument. First, we define a solvability
preserving (quasi-)ordering on messages, which allows to
replace single messages in the intruder knowledge by new
ones such that if in the original problem a successful attack
exists, then also in the modified problem. This reduces
the pumping argument to the following problem: Truncate
paths in message transducers in such a way that the out-
put of the original path is equivalent (w.r.t. the solvability
preserving ordering) to the output of the truncated path.
It remains to find criteria for truncating paths in this way.
To this end, we introduce another quasi-ordering, the so-
called path truncation ordering, which indicates at which
positions a path can be truncated. To really obtain a bound
on the length of paths, it then remains to show that the
equivalence relation corresponding to the path truncation
ordering has finite index – more accurately, an index that
can be bounded in the size of the problem instance. With
this, and the fact that message transducers have only fi-
nite memory, the length of paths can be restricted. Finally,
to show the bound on the index, one needs to establish a
bound on the depth of messages (i.e., the depth of nested
encryptions and hashes) in successful attacks. Again, we
make use of the fact that message transducers have only
finite memory.

In what follows, the argument is described in more de-
tail. Due to lack of space, the formal definitions of the
orderings as well as the proofs of their properties are omit-
ted. They can be found in the technical report.

Preserving the solvability of instances of the path prob-
lem. For every ��� �

, we define a quasi-ordering4 on
messages � � (the so-called solvability preserving order-
ing) which depends on the transducers ���\�>=>=:=>� � � @ A and
has the following property, which we call (*): For every
solvable instance � � ��� � �:=>=>=:� � � @�A � of the path problem,
every � � �

, and � � �7*
with ��� � � , the instance��� �	� . � 0 � ,3. � 0V��� � �>=:=>=�� � � @ A � is solvable as well.

Assume that a path / �� �!� � ����� � � /��� � � � is replaced
by a shorter path such that the corresponding input and
output labels of the shorter path, say �9� and � �� , satisfy�9� �MF � �Q, . ���; �>=:=>=:����� � @ A 0 � and ���� � � 3

A � �� . Then,
after � � has returned � �� on input �9� , the resulting in-
truder knowledge is

� , . � �; �:=>=>=:����� � @ A � � �� 0 instead of� ,N. ���; �:=>=:=������ � @ A �\��� � 0 . Using (*), we conclude that
there still exists a solution for the rest of the instance, i.e.,
for � � ,3. ���; �>=>=:=>�\��� � @�A � � �� 0V��� � 3

A �:=>=:=>� � � @�A � .
Consequently, it remains to find criteria for truncating

long paths such that

4a reflexive and transitive ordering

ON THE DECIDABILITY OF CRYPTOGRAPHIC PROTOCOLS WITH OPEN-ENDED DATA STRUCTURES 11

1. � � ��F � �M,3. ���; �>=:=>=:����� � @ A 0 � and

2. ���� � � 3
A � �� .

Truncating paths such that Condition 1. is satisfied is rather
easy. The involved part is Condition 2. To this end, we
introduce the path truncation ordering.

Truncating paths. We extend � � to a quasi-ordering
��� � (the path truncation ordering) on so-called left half-
messages. Left half-messages are prefixes of messages
(considered as words over

� �
). In particular, left half-

messages may lack some closing parentheses. The “ 	 ” in
��� � is the number of missing parentheses (the level of left
half-messages); ��� � only relates left half-messages of level
	 . Analogously, right half-messages are suffixes of mes-
sages. Thus, they may have too many closing parentheses;
the number of additional parentheses determines the level
of right half-messages. The equivalence relation ��� � on left
half-messages corresponding to ��� � has the following prop-
erty, which we call (**): For all left half-messages
 ��
E� of
level 	 and right half-messages � of level 	 ,
���� �
 � implies

	�
���
 ��� . (Note that
�� and
 ��� are messages.)

Now, consider two positions � � � in the path � #��/ �� ���9���\� �� ��/ �� �6� � � such that
� ,
�� are the output la-
bels up to these positions, and � , � � are the output labels
beginning at these positions, i.e., � �� #
 � #
 � � � .
Clearly,
 ,
 � are left half-messages and � , � � are right
half-messages. Assume that
 ,
 � have the same level 	
(in particular, � , � � have level) and
 ��� �
 � . Then,
by (**) it follows ���� #
 � � � � �
 � � # + � �� , where � ��
is the output label of the path obtained by cutting out the
subpath in � between � and � .5 Thus, � � � provides us with
the desired criterion for “safely” (in the sense of Condition
2.) truncating paths. In order to conclude that the length of
paths can be bounded in the size of the problem instance, it
remains to show that 	 and the index of ��� � (i.e., the number
of equivalence classes modulo ��� � on left half-messages of
level) can be bounded in the size of the problem instance.
To this end, the following is shown.

Bounding the depth of messages. We first show
(***): If ��� ; �����; �:=>=:=>��� � @ A �\��� � @ A � is a solution of� � ��� ; �:=>=>=:��� � @�A � , then, for every � , their also exists a
solution if the depth of � � is bounded in the size of the
problem instance.

We then show how the depth of the output message � ��
can be bounded: Let � be a path in � � from / �� to /��� or a
strict path in � � , and � be a position in � such that
 is
the input label of � up to position � and � is the output
label of � up to � . Then, the level of � can be bounded
by a polynomial in the level of
� and the number of states

5One little technical problem is that ������� does not need to be a mes-
sage since it may contain a word of the form enc ����� , which is not a
message. However, if one considers three positions �� "!� "# , then one
can show that either � � � � or � � �%$ is a message.

of � � . As a corollary, one obtains that the depth of output
messages can be bounded in the depth of input messages,
and using (***), that both the depth of input and output
messages can be bounded in the size of the problem in-
stance.

With this, one can show that the index of ��� � is bounded.
Moreover, the 	 in 2. (the level of the half-messages
& ,

'� , �(, �)�) is bounded in the size of the problem instance.
Therefore, ��� � can serve as the desired criterion for trun-
cating paths.

7 Conclusion

We have introduced a generic protocol model for analyzing
the security of open-ended protocols, i.e., protocols with
open-ended data structures, and investigated the decidabil-
ity of different instances of this model. In one instance,
receive-send actions are modeled by sets of rewrite rules.
We have shown that in this instance, security is undecid-
able. This result indicated that to obtain decidability, prin-
cipals should only have finite memory and should not be
able to compare messages of arbitrary size. This motivated
our transducer-based model, which complies to these re-
strictions, but still captures certain open-ended protocols.
We have shown that in this model security is decidable and
PSPACE-hard; it remains to establish a tight complexity
bound. These results have been shown for the shared key
setting and secrecy properties. We conjecture that they
carry over rather easily to public key encryption and au-
thentication.

As pointed out in Section 5.1, a promising future di-
rection is to combine the transducer-based model with the
models for closed-ended protocols and to devise tree trans-
ducers suitable for describing receive-send actions. We
will also try to incorporate complex keys, since they are
used in many protocols. We believe that the proof tech-
niques devised in this paper will help to show decidability
also in the more powerful models. Finally, encouraged by
the work that has been done for closed-ended protocols,
the long-term goal of the work started here is to develop
tools for automatic verification of open-ended protocols,
if possible by integrating the new algorithms into existing
tools.

Acknowledgement I would like to thank Thomas Wilke
and the anonymous referees for useful comments and
suggestions for improving the presentation of this paper.
Thanks also to Catherine Meadows for pointing me to the
paper by Pereira and Quisquater.

Bibliography

[1] R.M. Amadio and W. Charatonik. On name gen-
eration and set-based analysis in Dolev-Yao model.

12 RALF KÜSTERS

Technical Report RR-4379, INRIA, 2002.

[2] R.M. Amadio, D. Lugiez, and V. Vanackère. On the
symbolic reduction of processes with cryptographic
functions. Technical Report RR-4147, INRIA, 2001.

[3] G. Ateniese, M. Steiner, and G. Tsudik. Authen-
ticated group key agreement and friends. In Pro-
ceedings of the 5th ACM Conference on Computer
and Communication Secruity (CCS’98), pages 17–
26, San Francisco, CA, 1998. ACM Press.

[4] J. Bryans and S.A. Schneider. CSP, PVS, and a Re-
cursive Authentication Protocol. In DIMACS Work-
shop on Formal Verification of Security Protocols,
1997.

[5] J.A. Bull and D.J. Otway. The authentica-
tion protocol. Technical Report DRA/CIS3/PROJ/
CORBA/SC/1/CSM/436-04/03, Defence Research
Agency, Malvern, UK, 1997.

[6] D. Dolev, S. Even, and R.M. Karp. On the Security
of Ping-Pong Protocols. Information and Control,
55:57–68, 1982.

[7] D. Dolev and A.C. Yao. On the Security of Public-
Key Protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

[8] N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Sce-
drov. Undecidability of bounded security protocols.
In Workshop on Formal Methods and Security Proto-
cols (FMSP’99), 1999.

[9] S. Even and O. Goldreich. On the Security of Multi-
Party Ping-Pong Protocols. In IEEE Symposium on
Foundations of Computer Science (FOCS’83), pages
34–39, 1983.

[10] N. Ferguson and B. Schneier. A Cryptographic Eval-
uation of IPsec. Technical report, 2000. Available
from http://www.counterpane.com/ipsec.pdf.

[11] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 1979.

[12] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE), November 1998. RFC 2409.

[13] A. Huima. Efficient infinite-state analysis of secu-
rity protocols. In Workshop on Formal Methods and
Security Protocols (FMSP’99), 1999.

[14] R. Küsters. On the Decidability of Crypto-
graphic Protocols with Open-ended Data Struc-
tures. Technical Report 0204, Institut für Informatik
und Praktische Mathematik, CAU Kiel, Germany,
2002. Available from http://www.informatik.uni-
kiel.de/reports/2002/0204.html.

[15] G. Lowe. Towards a Completeness Result for Model
Checking of Security Protocols. Journal of Computer
Security, 7(2–3):89–146, 1999.

[16] C. Meadows. Extending formal cryptographic proto-
col analysis techniques for group protocols and low-
level cryptographic primitives. In P. Degano, editor,
Proceedings of the First Workshop on Issues in the
Theory of Security (WITS’00), pages 87–92, 2000.

[17] C. Meadows. Open issues in formal methods for
cryptographic protocol analysis. In Proceedings of
DISCEX 2000, pages 237–250. IEEE Computer So-
ciety Press, 2000.

[18] J. Mitchell, M. Mitchell, and U. Stern. Automated
Analysis of Cryptographic Protocols using Murphi.
In Proceedings of the 1997 IEEE Symposium on Se-
curity and Privacy, pages 141–151. IEEE Computer
Society Press, 1997.

[19] L.C. Pauslon. Mechanized Proofs for a Recursive
Authentication Protocol. In 10th IEEE Computer Se-
curity Foundations Workshop (CSFW-10), pages 84–
95, 1997.

[20] O. Pereira and J.-J. Quisquater. A Security Analysis
of the Cliques Protocols Suites. In Proceedings of the
14th IEEE Computer Security Foundations Workshop
(CSFW-14), pages 73–81, 2001.

[21] M. Rusinowitch and M. Turuani. Protocol Insecurity
with Finite Number of Sessions is NP-complete. In
14th IEEE Computer Security Foundations Workshop
(CSFW-14), pages 174–190, 2001.

[22] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES:
A new approach to key agreement. In IEEE Inter-
national Conference on Distributed Computing Sys-
tems, pages 380–387. IEEE Computer Society Press,
1998.

[23] S. D. Stoller. A bound on attacks on authentication
protocols. In Proceedings of the 2nd IFIP Interna-
tional Conference on Theoretical Computer Science.
Kluwer, 2002. To appear.

[24] J. Zhou. Fixing a security flaw in IKE protocols.
Electronic Letter, 35(13):1072–1073, 1999.

Game Strategies In Network Security

Kong-Wei Lye Jeannette M. Wing
Department of Electrical and Computer Engineering Computer Science Department

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA

kwlye@cmu.edu wing@cs.cmu.edu

Abstract

This paper presents a game-theoretic method for analyzing
the security of computer networks. We view the interac-
tions between an attacker and the administrator as a two-
player stochastic game and construct a model for the game.
Using a non-linear program, we compute Nash equilibria
or best-response strategies for the players (attacker and ad-
ministrator). We then explain why the strategies are realis-
tic and how administrators can use these results to enhance
the security of their network.

Keywords: Stochastic Games, Non-linear Programming,
Network Security.

1 Introduction

Government agencies, schools, retailers, banks, and a
growing number of goods and service providers today
all use the Internet as their integral way of conducting
daily business. Individuals, good or bad, can also easily
connect to the internet. Due to the ubiquity of the Internet,
computer security has now become more important than
ever to organizations such as governments, banks, and
businesses. Security specialists have long been interested
in knowing what an intruder can do to a computer network,
and what can be done to prevent or counteract attacks. In
this paper, we describe how game theory can be used to
find strategies for both an attacker and the administrator.
We illustrate our approach in an example (Figure 1) of a
local network connected to the Internet and consider the
interactions between them as a general-sum stochastic
game. In Section 2, we introduce the formal model for
stochastic games and relate the elements of this model to
those in our network example. In Section 3, we explain the
concept of a Nash equilibrium for stochastic games and
explain what it means to the attacker and administrator.
Then, in Section 4, we describe three possible attack
scenarios for our network example. In these scenarios, an
attacker on the Internet attempts to deface the homepage
on the public web server on the network, launch an
internal denial-of-service (DOS) attack, and capture some

important data from a workstation on the network. We
compute Nash equilibria (best responses) for the attacker
and administrator using a non-linear program and explain
one of the solutions found for our example in Section 5.
We discuss the implications of our approach in Section 6
and compare our work with previous work in the literature
in Section 7. Finally, we summarize our results and point
to future directions in Section 8.

Public
web server

Private
file server

Private
workstation

Border routerAttacker

Firewall

Internet

Figure 1: A Network Example

2 Networks as Stochastic Games

In this section, we first introduce the formal model of a
stochastic game. We then use this model for our net-
work attack example and explain how the state set, actions
sets, cost/reward functions, and transition probabilities can
be defined or derived. Formally, a two-player stochas-
tic game is a tuple �� � �

A
� � � ��� ���

A
��� � � � � where #.���A �>&>&:&�� ��� 0 is the state set and � � # .
 � A �>&:&>&���
 ��	� 0 ,� # [G��
 , � � # ! � � ! , is the action set of player

�
. The ac-

tion set for player
�

at state � is a subset of � � , i.e., � ��

� � and
�
��� A � ���� # � � . � + � �

A
� � � � ��� L �>[��

is the state transition function. � � + � �
A

� � � ��� ,� # [G��
 is the reward function 1 of player
�

. L � � � [is
a discount factor for discounting future rewards, i.e., at the
current state, a state transition has a reward worth its full

1We use the term “reward” in general here; in later sections, positive
values are rewards and negative values are costs.

13

14 KONG-WEI LYE AND JEANNETTE M. WING

value, but the reward for the transition from the next state
is worth � times its value at the current state.

The game is played as follows: at a discrete time instantB , the game is in state ���6�� . Player 1 chooses an action�
A
� from �

A
and player 2 chooses an action � �� from � � .

Player 1 then receives a reward �
A
� # �

A
� ���J�W�

A
� �\� �� � and

player 2 receives a reward � �� # � � � ���X�\�
A
� �W� �� � . The game

then moves to a new state ��� 3
A

with conditional probability
Prob � � � 3

A ! � � �\�
A
� �W� �� � equal to ��� � � �\�

A
� �\� �� ��� � 3

A � .
In our example, we let the attacker be player 1 and the

administrator be player 2. We provide two views of the
game: the attacker’s view (Figure 3) and the administra-
tor’s view (Figure 4). We describe these figures in detail
later in Section 4.

2.1 Network state

In general, the state of the network can contain various
kinds of features such as type of hardware, software, con-
nectivity, user privileges, etc. Using more features in the
state allows us to represent the network better, but often
makes the analysis more complex and difficult. We view
the network example as a graph (Figure 2). A node in the
graph is a physical entity such as a workstation or router.
We model the external world as a single computer (node
E) and represent the web server, file server, and worksta-
tion by nodes W, F, and N, respectively. An edge in the
graph represents a direct communication path (physical or
virtual). For example, the external computer (node E) has
direct access to only the public web server (node W).

E W

F N

lEW

lWF

lFN

lNW

Figure 2: Network State

Instantiating our game model, we let a superstate �
������� � � �

� ��B � � be the state of the network. ��� ,
� � , and � � are the node states for the web server, file
server, and workstation respectively, and B is the traf-
fic state for the whole network. Each node

�
(where� � .	� ��
 ������ 0) has a node state ��� # �-���\� ��� � to

represent information about hardware and software config-
urations. � .	� ��� ���E���Z���U� 9 0 is a list of software appli-
cations running on the node and

�
, � , � , and � denote ftpd,

httpd, nfsd, and some user process respectively. For mali-
cious codes, � and

9
represent sniffer programs and viruses

respectively. ��� .�� ���0 is a variable used to represent the
state of the user accounts.

�
means no user account has

been compromised and � means at least one user account
has been compromised. We use the variable �3� . ��� �W0 to
represent the state of the data on the node. � and � mean
the data has and has not been corrupted or stolen respec-
tively. For example, if ��� # � � � ���Z��� �J����� � � , then the
web server is running ftpd and httpd, a sniffer program has
been implanted, and a user account has been compromised
but no data has yet been corrupted or stolen.

The traffic information for the whole network is cap-
tured in the traffic state B # � . 	 ��� 0�� where

�
and �

are nodes and 	 ��� � . L �
A
� � �� �:[<0 indicates the load car-

ried on this link. A value of 1 indicates maximum capac-
ity. For example, in a 10Base-T connection, the valuesL ,
A
� , �� , and 1 represent 0Mbps, 3.3Mbps, 6.7Mbps, and

10Mbps respectively. In our example, the traffic state isB�# �-	�� � ��	 � � ��	 �
� ��	 � � � . We let B # �

A
� �
A
� �
A
� �
A
� �

for normal traffic conditions.
The potential state space for our network example is

very large but we shall discuss how to handle this prob-
lem in Section 6. The full state space in our example has a
size of ! � � ! �4! � � ! � ! � � ! � ! B !U# ����� �
 �
G� � �! �"$#
4 billion states but there are only 18 states (15 in Figure 3
and 3 others in Figure 4) relevant to our illustration here.
In these figures, each state is represented using a box with
a symbolic state name and the values of the state variables.
For convenience, we shall mostly refer to the states using
their symbolic state names.

2.2 Actions

An action pair (one from the attacker and one from the
administrator) causes the system to move from one state
to another in a probabilistic manner. A single action for
the attacker can be any part of his attack strategy, such
as flooding a server with SYN packets or downloading
the password file. When a player does nothing, we
denote this inaction as % . The action set for the attacker
�'& �����)(�+*-, consists of all the actions he can take in all
the states, �$& �����+(�+*-, # .

Attack_httpd, Attack_ftpd,
Continue_hacking, Deface_website_leave, Install_sniffer,
Run_DOS_virus, Crack_file_server_root_password,
Crack_workstation_root_password, Capture_data, Shut-
down_network, %Z0 , where % denotes inaction. His
actions in each state is a subset of �.& �����+(�+*-, . For
example, in the state Normal_operation (see Fig-
ure 3, topmost state), the attacker has an action set
�'& �����)(�+*-,/10�243'5�6

_
0�798�2:5+;:<=0	> # .

Attack_httpd, Attack_ftpd,
%Z0 . Actions for the administrator are mainly pre-
ventive or restorative measures. In our example, the
administrator has an action set �.&�?�@ � ? � �A�B,X���DC4, # .
Remove_compromised_account_restart_httpd,
Restore_website_remove_compromised_account,
Remove_virus_compromised_account,
Install_sniffer_detector, Remove_sniffer_detector,
Remove_compromised_account_restart_ftpd,

GAME STRATEGIES IN NETWORK SECURITY 15

Remove_compromised_account_sniffer, %Z0 . In state
Ftpd_attacked (see Figure 4), the administrator has an
action set � &�?�@ � ? �A�B,W� �DC4,� ;-7��

_
5); ;-5�����8�� # .

install_sniffer_detector,
%Z0 .

A node with a compromised account may or may not
be observable by the administrator. When it is not observ-
able, we model the situation as the administrator having an
empty action set in the state. We assume that the admin-
istrator does not know whether there is an attacker or not.
Also, the attacker may have several objectives and strate-
gies that the administrator does not know. Furthermore,
not all of the attacker’s actions can be observed.

2.3 State transition probabilities

In our example, we assign state transition probabilities
based on intuition. In real life, case studies, statistics, sim-
ulations, and knowledge engineering can provide the re-
quired probabilities. In Figures 3 and 4, state transitions
are represented by arrows. Each arrow is labeled with an
action, a transition probability, and a cost/reward. In the
formal game model, a state transition probability is a func-
tion of both players’ actions. Such probabilities are used
in the non-linear program (Section 3) for computing a so-
lution to the game. However, in order to separate the game
into two views, we show the transitions as simply due to
a single player’s actions. For example, with the second
dashed arrow from the top in Figure 3, we show the de-
rived probability Prob(

	�
���
_ ��������� ! 	�
��� _ �
�
 ������� ,

Continue_attacking) = 0.5 as due to only the attacker’s
action Continue_attacking. When the network is in state
Normal_operation and neither the attacker nor adminis-
trator takes any action, it will tend to stay in the same
state. We model this situation as having a near-identity
stochastic matrix, i.e., we let Prob �������! "��# _� � �$�%�
�& ��',!
Normal_operation, % , %)=1- (for some small (=� L =*) .
Then Prob � �#! Normal_operation, % , %)= +�S@�A for all � 2#
�����! "��# _ � � �$�%�
�& ��' where � is the number of states.
There are also state transitions that are infeasible. For ex-
ample, it may not be possible for the network to move from
a normal operation state to a completely shutdown state
without going through some intermediate states. Infeasi-
ble state transitions are assigned transition probabilities of
0.

2.4 Costs and rewards

There are costs (negative values) and rewards (positive val-
ues) associated with the actions of the administrator and
attacker. The attacker’s actions have mostly rewards and
such rewards are in terms of the amount of damage he does
to the network. Some costs, however, are difficult to quan-
tify. For example, the loss of marketing strategy informa-
tion to a competitor can cause large monetary losses. A
defaced corporate website may cause the company to lose

its reputation and its customers to lose confidence. Mead-
ows’s work on cost-based analysis of DOS discusses how
costs can be assigned to an attacker’s actions using cate-
gories such as cheap, medium, expensive, and very expen-
sive [Mea01].

In our model, we restrict ourselves to the amount of re-
covery effort (time) required by the administrator. The re-
ward for an attacker’s action is mostly defined in terms
of the amount of effort the administrator has to make to
bring the network from one state to another. For exam-
ple, when a particular service crashes, it may take the
administrator 10 or 15 minutes of time to determine the
cause and restart the service 2. In Figure 4, it costs the
administrator 10 minutes to remove a compromised user
account and to restart the httpd (from state Httpd_hacked
to state Normal_operation). For the attacker, this amount
of time would be his reward. To reflect the severity of the
loss of the important financial data in our network exam-
ple, we assign a very high reward for the attacker’s action
that leads to the state where he gains this data. For ex-
ample, from state Workstation_hacked to state Worksta-
tion_data_stolen_1 in Figure 3, the reward is 999. There
are also some transitions in which the cost to the admin-
istrator is not the same magnitude as the reward to the at-
tacker. It is such transitions that make the game a general-
sum game instead of a zero-sum game.

3 Nash Equilibrium

We now return to the formal model for stochastic games.
Let �

?
. � � �

?
!-,

?
� � A � � # [G��� � � LK0 be the

set of probability vectors of length � . � � + � �
� �

is a stationary strategy for player
�

. � � � ��� is the vec-
tor � � � � �U��
 A � &:&>& � � � �G��
 � � � �/. where � � � �U��
 � is the
probability that player

�
should use to take action
 in state

� . A stationary strategy � � is a strategy which is indepen-
dent of time and history. A mixed or randomized stationary
strategy is one where � � � �G��
 � � L10 � �� and 0�
 � � �
and a pure strategy is one where � � � �U��
 � � #7[for some

 � � � � .

The objective of each player is to maximize some
expected return. Let � � be the state at time B and
� �� be the reward received by player

�
at time B .

We define an expected return to be the column vec-
tor

9 �2 % " 243 # � 9 �2 % " 243 � � A � &>&>& 9 �2 % " 243 � � � � �5. where9 �2 % " 2 3 � � � # � 2 % " 243 . ,
�? � ; � � �

?
� �� 3
? ! � � # �<0 . The ex-

pectation operator
� 2 % " 2 3 . & 0 is used to mean that player

�

plays � � , i.e., player
�

chooses an action using the prob-
ability distribution � � � ��� 3

? � at ��� 3
?

and receives an im-
mediate reward � �� 3

? # �
A
� ��� 3

? �6. � � � ��� 3
? � � � � ��� 3

? � for
� � L . � � � � � # � � � � �U�\�

A
�\� � � � � %87 & % " � 3 7 & 3 3,

� # [U��
 is

2These numbers were given by the department’s network manager.
3We use 9 : �<;>=/?��5@<ACB�D8E FGB%H to refer to an I J4I<KLI M�I matrix with elements: �<;>=C?%� .

16 KONG-WEI LYE AND JEANNETTE M. WING

player k’s reward matrix in state � .
For an infinite-horizon game, we let � #�� and use a

discount factor � ��[to discount future rewards.
9 � � � �

is then the expected total discounted rewards that player
�

will receive when starting at state � . For a finite-horizon
game, L � � ��� and �/# [. 9 � is also called the value
vector of player

�
.

A Nash equilibrium in stationary strategies ���
A
� ��� �� � is

one which satisfies
9 A ���

A
� ��� �� � � 9

A
���
A
��� �� � 0 �

A
� � � %

and
9 � ���

A
� ��� �� � � 9 � ���

A
� ��� � �10 � � � �

� 3
component-

wise. Here,
9 � ���

A
��� � � is the value vector of the game for

player
�

when both players play their stationary strategies
�
A

and � � respectively and
�

is used to mean the left-
hand-side vector is component-wise, greater than or equal
to the right-hand-side vector. At this equilibrium, there is
no mutual incentive for either one of the players to deviate
from their equilibrium strategies �

A
� and � �� . A deviation

will mean that one or both of them will have lower ex-
pected returns, i.e.,

9 A ���
A
��� � � and/or

9 � ���
A
��� � � . A pair

of Nash equilibrium strategies is also known as best re-
sponses, i.e., if player 1 plays �

A
� , player 2’s best response

is � �� and vice versa.
In our network example, �

A
and � � corresponds to

the attacker’s and administrator’s strategies respectively.9 A ���
A
��� � � corresponds to the expected return for the at-

tacker and
9 � ���

A
��� � � corresponds to the expected return

for the administrator when they use the strategies �
A

and
� � . In a Nash equilibrium, when the attacker and adminis-
trator use their best-response strategies �

A
� and � �� respec-

tively, neither will gain a higher expected return if the other
continues using his Nash strategy.

Every general-sum discounted stochastic game has at
least one Nash equilibrium in stationary mixed strategies
(see [FV96]) (not necessarily unique) and finding these
equilibria is non-trivial. In our network example, find-
ing multiple Nash equilibria means finding multiple pairs
of Nash strategies. In each pair, a strategy for one player
is a best-response to the strategy for the other player and
vice versa. A non-linear program found in [FV96] can be
used to find the equilibrium strategies for both players in
a general-sum stochastic game. We shall refer to this non-
linear program as NLP-1 and use it to find Nash equilibria
for our network example later in Section 5.

4 Attack and Response Scenarios

In this section, we describe three different attack and re-
sponse scenarios. We show in Figure 3, the viewpoint of
the attacker, how he sees the state of the network change
as a result of his actions. The viewpoint of the admin-
istrator is shown in Figure 4. In both figures, a state is
represented using a box containing the symbolic name and
the values of the state variables for that state. Each transi-
tion is labeled with an action, the probability of the tran-

sition, and the gain or cost in minutes of restorative effort
incurred on the administrator. The three scenarios are in-
dicated using bold, dotted, and dashed arrows in Figure 3.
Due to space constraints, not all state transitions for every
action are shown. From one state to the next, state variable
changes are highlighted using boldface.

Scenario 1: A common target for use as a launching
base in an attack is the public web server. The web server
typically runs an httpd and an ftpd and a common tech-
nique for the attacker to gain a root shell is buffer over-
flow. Once the attacker gets a root shell, he can deface
the website and leave. This scenario is shown by the state
transitions indicated by bold arrows in Figure 3.

From state Normal_operation, the attacker takes action
Attack_httpd. With a probability of 1.0 and a reward of 10,
he moves the system to state Httpd_attacked. This state
indicates increased traffic between the external computer
and the web server as a result of his attack action. Taking
action Continue_attacking, he has a 0.5 probability of suc-
cess of gaining a user or root access through bringing down
the httpd, and the system moves to state Httpd_hacked.
Once he has root access in the web server, he can deface
the website, restart the httpd and leaves, moving the net-
work to state Website_defaced.

Scenario 2: The other thing that the attacker can do after
he has hacked into the web server is to launch a DOS attack
from inside the network. This is shown by the state transi-
tions drawn using dotted arrows (starts from the middle of
Figure 3), with each state having more internal traffic than
the previous.

From state Webserver_sniffer, the attacker takes ac-
tion Run_DOS_virus. With probability 1 and a reward of
30, the network moves into state Webserver_DOS_1. In
this state, the traffic load on all internal links has increased
from

A
� to �� . From this state, the network degrades to state

Webserver_DOS_2 with probability 0.8 even when the at-
tacker does nothing. The traffic load is now at full capacity
of 1 in all the links. We assume that there is a 0.2 proba-
bility that the administrator notices this and takes action
to recover the system. In the very last state, the network
grinds to a halt and nothing productive can take place.

Scenario 3: Once the attacker has hacked into the web
server, he can install a sniffer and a backdoor program. The
sniffer will sniff out passwords from the users in the work-
station when they access the file server or web server. Us-
ing the backdoor program, the attacker then comes back to
collect his password list from the sniffer program, cracks
the root password, logs on to the workstation, and searches
the local hard disk. This scenario is shown by the state
transitions indicated by dashed arrows in Figure 3.

From state Normal_operation, the attacker takes action
Attack_ftpd. With a probability of 1.0 and a reward of 10,
he uses the buffer overflow or a similar attack technique
and moves the system to state Ftpd_attacked. There is in-
creased traffic between the external computer and the web

GAME STRATEGIES IN NETWORK SECURITY 17

Continue_
attacking,
0.5, 0

Attack_ftpd, 1.0, 10
Attack_httpd, 1.0, 10

Deface_website_
leave, 1, 99

Install_sniffer,
0.5, 10

Continue_
attacking,
0.5, 0

Continue_attacking, 0.5, 0

Normal_operation
<<(f,h),u,i>,<(f,n),u,i>,<(p),u,i>,
<1/3,1/3,1/3,1/3>>

Httpd_attacked
< <(f,h),u,i>, <(f,n),u,i>, <(p),u,i>,
<2/3, 1/3, 1/3, 1/3> >

Ftpd_attacked
< <(f,h),u,i>, <(f,n),u,i>, <(p),u,i>,
<2/3, 2/3, 1/3, 1/3> >

Ftpd_hacked
<<(h),c,i>,<(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Website_defaced
< <(f,h),c,c>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Install_sniffer,
0.5, 10

Webserver_sniffer_detector
< <(f,h,s,d),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Install_sniffer,
0.5, 10 Install_sniffer,

0.5, 10
φ, 0.9, 0

Run_DOS_virus, 1,
30

φ, 0.8, 30

φ, 0.8, 30

Crack_file_server_root
password, 0.9, 50

Crack_workstation_root_
password, 0.9, 50

Capture_data,
1, 999

Shutdown_network,
1, 60

Capture_data,
1, 999

Webserver_DOS_1
< <(f,h,s,v),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 2/3, 2/3, 2/3> >

Webserver_DOS_2
< <(f,h,s,v),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1, 1, 1> >

Network_shut_down
< <(s,v),c,i>, <(),u,i>, <(),u,i>,
<0, 0, 0, 0> >

Shutdown_network, 1, 60

Workstation_hacked
< <(f,h,s),c,i>, <(f,n),u,i>, <(p),c,i>,
<1/3, 1/3, 1/3, 1/3> >

Continue_attacking, 0.5, 0

Webserver_sniffer
< <(f,h,s),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Fileserver_hacked
< <(f,h,s),c,i>, <(f,n),c,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Httpd_hacked
< <(f),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Fileserver_data_stolen_1
< <(f,h,s),c,i>, <(f,n),c,c>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Workstation_data_stolen_1
< <(f,h,s),c,i>, <(f,n),u,i>, <(p),c,c>,
<1/3, 1/3, 1/3, 1/3> >

Figure 3: Attacker’s view of the game

18 KONG-WEI LYE AND JEANNETTE M. WING

server as well as between the web server and the file server
in this state, both loads going from

A
� to �� . If he contin-

ues to attack the ftpd, he has a 0.5 probability of success
of gaining a user or root access through bringing down the
ftpd, and the system moves to state Ftpd_hacked. From
here, he can install a sniffer program and with probability
0.5 and a reward of 10, move the system to state Web-
server_sniffer. In this state, he has also restarted the ftpd
to avoid causing suspicion from normal users and the ad-
ministrator. The attacker then collects the password list
and cracks the root password on the workstation. We as-
sume he has a 0.9 chance of success and when he succeeds,
he gains a reward of 50 and moves the network to state
Workstation_hacked. To cause more damage to the net-
work, he can even shut it down using the privileges of root
user in this workstation.

We now turn our attention to the administrator’s view
(see Figure 4). The administrator in our example does
mainly restorative work and his actions can be restarting
the ftpd, removing a virus, etc. He also takes preventive
measures and such actions can be installing a sniffer detec-
tor, re-configuring a firewall, deactivating a user account,
and so on. In the first attack scenario in which the attacker
defaces the website, the administrator can only take the
action Restore_website_remove_compromised_account to
bring the network from state Website_defaced to Nor-
mal_operation. In the second attack scenario, the states
Webserver_DOS_1 and Webserver_DOS_2 (indicated
by double boxes) show the network suffering from the ef-
fects of the internal DOS attack. All the administrator can
do is take the action Remove_virus_compromised_account
to bring the network back to Normal_operation. In the
third attack scenario, there is nothing he can do to restore
the network back to its original operating state. Important
data has been stolen and no action allows him to undo this
situation. The network can only move from state Worksta-
tion_data_stolen_1 to Workstation_data_stolen_2 (in-
dicated by dotted box on bottom right in Figure 4).

The state Ftpd_attacked (dashed box) is an interesting
state because here, the attacker and administrator can en-
gage in real-time game play. In this state, when the ad-
ministrator notices an unusual increase in traffic between
the external network and the web server and also between
the web server and the file server, he may suspect an at-
tack is going on and take action Install_sniffer_detector.
Taking this action, however, incurs a cost of 10. If the
attacker is still attacking, the system moves into state
Ftpd_attacked_detector. If he has already hacked into
the web server, then the system moves to state Web-
server_sniffer_detector. Detecting the sniffer program,
the administrator can now remove the affected user ac-
count and the sniffer program to prevent the attacker from
further attack actions.

5 Results

We implemented NLP-1 (non-linear program mentioned in
Section 3) in MATLAB, a mathematical computation soft-
ware package by The MathWorks, Inc. To run NLP-1, the
cost/reward and state transition functions defined in Sec-
tion 2 are required. In the formal game model, the state
of the game evolves only at discrete time instants. In our
example, we imagine that the players take actions only at
discrete time instants. The game model also requires ac-
tions to be taken simultaneously by both players. There
are some states in which a player has only one or two non-
trivial actions and for consistency and easier computation
using NLP-1, we add an inaction % to the action set for the
state so that the action sets are all of the same cardinality.
Overall, our game model has 18 states and 3 actions per
state.

We ran NLP-1 on a computer equipped with a 600Mhz
Pentium-III and 128Mb of RAM. The result of one run of
NLP-1 is a Nash equilibrium. It consists of a pair of strate-
gies (��& �����+(�+*:,� and � &�?�@ � ? � �A�B,X���DC4,�) and a pair of value
vectors (

9 & �����+(�+*-,� and
9 &�?�@ � ? � �A�B,X���DC4,�) for the attacker and

administrator. The strategy for a player consists of a prob-
ability distribution over the action set for each state and the
value vector consists of a state value for each state. We ran
NLP-1 on 12 different sets of initial conditions and found
3 different Nash equilibria. Each run took 30 to 45 min-
utes. Due to space constraints, however, we shall discuss
only one, shown in Table 1.

We explain the strategies for some of the more interest-
ing states here. For example, in the state Httpd_hacked
() ��� row in Table 1), the attacker has action set.������	��
��

_ �����������
_ � ������� ����� ����� ��� _ � � � ��� � � % 0 . His strategy

for this state says that he should use Deface_website_leave
with probability 0.33 and Install_sniffer with probabil-
ity 0.10. Ignoring the last action % , and after normal-
izing, these probabilities become 0.77 and 0.23 respec-
tively for Deface_website_leave and Install_sniffer. Even
though installing a sniffer may allow him to crack a root
password and eventually capture the data he wants, there
is also the possibility that the system administrator de-
tects his presence and takes preventive measures. He
is thus able to do more damage (probabilistically speak-
ing) if he simple defaces the website and leaves. In this
same state, the administrator can either take action Re-
move_compromised_account_restart_httpd or action In-
stall_sniffer_detector. His strategy says that he should
take the former with probability 0.67 and the latter with
probability 0.19. Ignoring the third action % and after
normalizing, these probabilities become 0.78 and 0.22 re-
spectively. This tells him that he should immediately
remove the compromised account and restart the httpd
rather than continue to “play” with the attacker. It is not
shown here in our model but installing the sniffer detec-
tor could be a step towards apprehending the attacker,

GAME STRATEGIES IN NETWORK SECURITY 19

Restore_website_remove_
compromised_account, 1, -99

Normal_operation
< <(f,h),u,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Ftpd_attacked
< <(f,h),u,i>, <(f,n),u,i>, <(p),u,i>,
<2/3, 2/3, 1/3, 1/3> >

Ftpd_hacked
< <(h),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Webserver_sniffer_detector
< <(f,h,s,d),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Install_sniffer
_detector,
0.5, -10

Remove_compromised_
account_restart_httpd, 1, -10

Remove_virus_and_
compromised_account, 1, -30

Remove_sniffer_
compromised_account, 1, -20

Remove_compromised_
account_restart_ftpd, 1, -10

Ftpd_attacked_detector
< <(f,h,d),u,i>, <(f,n),u,i>, <(p),u,i>,
<2/3, 2/3, 1/3, 1/3> >

Install_sniffer_
detector, 0.5, -10

Remove_sniffer_
detector, 0.5, -10

Remove_sniffer_
detector, 0.5, -10

Workstation_data_stolen_1
< <(f,h,s),c,i>, <(f,n),u,i>, <(p),c,c>,
<1/3, 1/3, 1/3, 1/3> >

Workstation_data_stolen_2
< <(f,h),c,i>, <(f,n),u,i>, <(p),c,c>,
<1/3, 1/3, 1/3, 1/3> >

Fileserver_data_stolen_2
< <(f,h),c,i>, <(f,n),c,c>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Remove_sniffer_
compromised_account, 1, -20

Remove_sniffer_
compromised_account, 1, -20

Webserver_DOS_2
< <(f,h,s,v),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1, 1, 1> >

Fileserver_data_stolen_1
< <(f,h,s),c,i>, <(f,n),c,c>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Webserver_DOS_1
< <(f,h,s,v),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 2/3, 2/3, 2/3> >

Remove_virus_and_
compromised_account, 1, -60

Remove_virus_and_
compromised_account, 1, -90

Website_defaced
< <(f,h),c,c>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Network_shut_down
< <(s,v),c,i>, <(),u,i>, <(),u,i>,
<0, 0, 0, 0> >

Httpd_hacked
< <(f),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Install_sniffer
_detector,
0.5, -10

Figure 4: Administrator’s view of the game

which means greater reward for the administrator. In the
state Webserver_sniffer (����� row in Table 1), the attacker
should take the actions Crack_file_server_root_password
and Crack_workstation_root_password with equal proba-
bility (0.5) because either action will let him do the same
amount of damage eventually. Finally, in the state Web-
server_DOS_1 (������� row in Table 1), the system adminis-
trator should remove the DoS virus and compromised ac-
count, this being his only action in this state (the other two
being).

In Table 1, we note that the value vector for the admin-
istrator is not exactly the negative of that for the attacker,
that is, in our example, not all state transitions have costs
whose corresponding rewards are of the same magnitude.
In a zero-sum game, the value vector for one player is the

negative of the other’s. In this table, the negative state val-
ues for the administrator correspond to his expected costs
or expected amount of recovery time (in minutes) required
to bring the network back to normal operation. Positive
state values for the attacker correspond to his expected re-
ward or the expected amount of damage he causes to the
administrator (again, in minutes of recovery time). Both
the attacker and administrator would want to maximize the
state values for all the states.

In state Fileserver_hacked (��
���� row in Table 1), the
attacker has gained access into the file server and has full
control over the data in it. In state Workstation_hacked
(�� ��� row in Table 1), the attacker has gained root access
to the workstation. These two states have the same value
of 1065.5, the highest among all states, because these are

20 KONG-WEI LYE AND JEANNETTE M. WING

Strategies State Values
State Attacker Administrator Attacker Administrator

1 Normal_operation [1.00 0.00 0.00] [0.33 0.33 0.33] 210.2 -206.8
2 Httpd_attacked [1.00 0.00 0.00] [0.33 0.33 0.33] 202.2 -191.1
3 Ftpd_attacked [0.65 0.00 0.35] [1.00 0.00 0.00] 176.9 -189.3
4 Ftpd_attacked_detector [0.40 0.12 0.48] [0.93 0.07 0.00] 165.8 -173.8
5 Httpd_hacked [0.33 0.10 0.57] [0.67 0.19 0.14] 197.4 -206.4
6 Ftpd_hacked [0.12 0.00 0.88] [0.96 0.00 0.04] 204.8 -203.5
7 Website_defaced [0.33 0.33 0.33] [0.33 0.33 0.33] 80.4 -80.0
8 Webserver_sniffer [0.00 0.50 0.50] [0.33 0.33 0.34] 716.3 -715.1
9 Webserver_sniffer_detector [0.34 0.33 0.33] [1.00 0.00 0.00] 148.2 -185.4
10 Webserver_DOS_1 [0.33 0.33 0.33] [1.00 0.00 0.00] 106.7 -106.1
11 Webserver_DOS_2 [0.34 0.33 0.33] [1.00 0.00 0.00] 96.5 -96.0
12 Network_shut_down [0.33 0.33 0.33] [0.33 0.33 0.33] 80.4 -80.0
13 Fileserver_hacked [1.00 0.00 0.00] [0.35 0.34 0.31] 1065.5 -1049.2
14 Fileserver_data_stolen_1 [1.00 0.00 0.00] [1.00 0.00 0.00] 94.4 -74.0
15 Workstation_hacked [1.00 0.00 0.00] [0.31 0.32 0.37] 1065.5 -1049.2
16 Workstation_data_stolen_1 [1.00 0.00 0.00] [1.00 0.00 0.00] 94.4 -74.0
17 Fileserver_data_stolen_2 [0.33 0.33 0.33] [0.33 0.33 0.33] 80.4 -80.0
18 Workstation_data_stolen_2 [0.33 0.33 0.33] [0.33 0.33 0.33] 80.4 -80.0

Table 1: Nash equilibrium strategies and state values for attacker and administrator

the two states that will lead him to the greatest damage
to the network. When at these states, the attacker is just
one state away from capturing the desired data from either
the file server or the workstation. For the administrator,
these two states have the most negative values (-1049.2),
meaning most damage can be done to his network when it
is in either of these states.

In state Webserver_sniffer (� ��� row in Table 1), the at-
tacker has a state value of 716.3, which is relatively high
compared to those for other states. This is the state in
which he has gained access to the public web server and
installed a sniffer, i.e., a state that will potentially lead him
to stealing the data that he wants. At this state, the value
is -715.1 for the administrator. This is the second least
desirable state for him.

6 Discussion

We could have modeled the interaction between the at-
tacker and administrator as a purely competitive (zero-
sum) stochastic game, in which case we would always find
only a single unique Nash equilibrium. Modeling it as a
general-sum stochastic game however, allows us to find
potentially, multiple Nash equilibria. A Nash equilibrium
gives the administrator an idea of the attacker’s strategy
and a plan for what to do in each state in the event of an
attack. Finding more Nash equilibria thus allows him to
know more about the attacker’s best attack strategies. By
using a stochastic game model, we are also able to capture
the probabilistic nature of the state transitions of a network

in real life. Solutions for stochastic models are however,
hard to compute.

A disadvantage of our model is that the full state space
can be extremely large. We are interested, however, in
only a small subset of states that are in attack scenarios.
One way of generating these states is the attack scenario
generation method developed by Sheyner et al. [SJW02].
The set of scenario states can then be augmented with state
transition probabilities and costs/rewards as functions of
both players’ actions so that our game-theoretic analysis
can be applied. Another difficulty in our analysis is in
building the game model. In reality, it may be difficult to
quantify the costs/rewards for some actions and transition
probabilities may not be easily available.

We note that the administrator’s view of the game in our
example is simplistic and uninteresting. This is because he
only needs to act when he suspects the network is under
attack. It is reasonable to assume the attacker and admin-
istrator both know what the other can each do. Such com-
mon knowledge affects their decisions on what action to
take in each state and thus justifies a game formulation of
the problem.

Finally, why not put in place all security measures? In
practice, trade-offs have to be made between security and
usability and a network may have to remain in operation
despite known vulnerabilities (e.g., [Cru00]). Knowing
that a network system is not perfectly secure, our game
theoretic formulation of the security problem allows the
administrator to discover the potential attack strategies of
an attacker as well as best defense strategies against them.

GAME STRATEGIES IN NETWORK SECURITY 21

7 Related Work

The use of game theory in modeling attackers and defend-
ers has also appeared in several other areas of research. For
example, in military and information warfare, the enemy
is modeled as an attacker and has actions and strategies
to disrupt the defense networks. Browne describes how
static games can be used to analyze attacks involving com-
plicated and heterogeneous military networks [Bro00]. In
his example, a defense team has to defend a network of
three hosts against an attacking team’s worms. A defend-
ing team member can choose either to run a worm detector
or not. Depending on the combined attack and defense ac-
tions, each outcome has different costs. This problem is
similar to ours if we were to view the actions of each team
member as separate actions of a single player. The inter-
actions between the two teams, however, are dynamic, and
can be better represented using a stochastic model like we
did here. In his Master’s thesis, Burke studies the use of
repeated games with incomplete information to model at-
tackers and defenders in information warfare [Bur99]. As
in our work, the objective is to predict enemy strategies
and find defenses against them using a game model. Us-
ing static game models, however, requires the problem to
be abstracted to a very high level and only simple analyses
are possible. Our use of a stochastic model in this paper
allows us to capture the probabilistic nature of state transi-
tions in real life.

In the study of network reliability, Bell considers a zero-
sum game in which the router has to find a least-cost path
and a network tester seeks to maximize this cost by fail-
ing a link [Bel01]. The problem is similar to ours in that
two players are in some form of control over the network
and that they have opposite objectives. Finding the least-
cost path in their problem is analogous to finding a best
defense strategy in ours. Hespanha and Bohacek discuss
routing games in which an adversary tries to intersect data
packets in a computer network [HB01]. The designer of
the network has to find routing policies that avoid links
that are under the attacker’s surveillance. Finding their op-
timal routing policy is similar to finding the least-cost path
in Bell’s work [Bel01] and the best defense strategy in our
problem in that at every state, each player has to make a
decision on what action to take. Again, their game model
a zero-sum game. In comparison, our work uses a more
general (general-sum) game model which allows us to find
more Nash equilibria.

McInerney et al. use a simple one-player game in their
FRIARS cyber-defense decision system capable of reacting
autonomously to automated system attacks [MSAH01].
Their problem is similar to ours in having cyberspace at-
tackers and defenders. Instead of finding complete strate-
gies, their single-player game model is used to predict the
opponent’s next move one at a time. Their model is closer
to being just a Markov decision problem because it is a

single-player game. Ours, in contrast, exploits fully what
a game (two-player) model can allow us to find, namely,
equilibrium strategies for both players.

Finally, Syverson talks about “good” nodes fighting
“evil” nodes in a network and suggests using stochastic
games for reasoning and analysis [Syv97]. In this paper,
we have precisely formalized this idea and given a concrete
example in detail. In summary, our work and example is
different from previous work in that we employ a general-
sum stochastic game model. This model allows us to per-
form a richer analysis for more complicated problems and
also allows us to find multiple Nash equilibria (sets of best
responses) instead of a single equilibrium.

8 Conclusions and Future Work

We have shown how the network security problem can be
modeled as a general-sum stochastic game between the at-
tacker and the administrator. Using the non-linear program
NLP-1, we computed multiple Nash equilibria, each de-
noting best strategies (best responses) for both players. For
one Nash equilibrium, we explained why these strategies
make sense and are useful for the administrator. Discus-
sions with one of our university’s network managers re-
vealed that these results are indeed useful. With proper
modeling, the game-theoretic analysis we presented here
can also be applied to other general heterogeneous net-
works.

In the future, we wish to develop a systematic method
for decomposing large models into smaller manageable
components such that strategies can be found individu-
ally for them using conventional Markov decision process
(MDP) and game-theoretic solution methods such as dy-
namic programming, policy iteration, and value iteration.
For example, nearly-isolated clusters of states can be re-
garded as subgames and states in which only one player
has meaningful actions can be regarded as an MDP. The
overall best-response for each player is then composed
from the strategies for the components. We believe the
computation time can be significantly reduced by using
such a decomposition method. We also intend to use the
method by Sheyner et al. [SJW02] for attack scenario gen-
eration to generate states so that we can experiment with
network examples that are larger and more complicated.
In our example, we manually enumerated the states for
the attack scenario. The method in [SJW02] allows us to
automatically generate the complete set of attack scenario
states and thus allows us to perform a more complete anal-
ysis.

Acknowledgement

The first author is supported by the Singapore Institute
of Manufacturing Technology (SIMTech) and the second

22 KONG-WEI LYE AND JEANNETTE M. WING

author, in part by the Army Research Office (ARO) under
contract no. DAAD19-01-1-0485. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
SIMTech, the DOD, ARO, or the U.S. Government.

Bibliography

[Bel01] M.G.H. Bell. The measurement of reliabil-
ity in stochastic transport networks. Proceed-
ings, 2001 IEEE Intelligent Transportation
Systems, pages 1183–1188, 2001.

[Bro00] R. Browne. C4I defensive infrastructure
for survivability against multi-mode attacks.
In Proceedings, 21st Century Military Com-
munications. Architectures and Technologies
for Information Superiority, volume 1, pages
417–424, 2000.

[Bur99] David Burke. Towards a game theory model
of information warfare. Master’s thesis, Grad-
uate School of Engineering and Management,
Airforce Institute of Technology, Air Univer-
sity, 1999.

[Cru00] Jeff Crume. Inside Internet Security. Addison
Wesley, 2000.

[FV96] Jerzy Filar and Koos Vrieze. Competitive
Markov Decision Processes. Springer-Verlag,
New York, 1996.

[HB01] J.P Hespanha and S. Bohacek. Prelimi-
nary results in routing games. In Proceed-
ings, 2001 American Control Conference,
volume 3, pages 1904–1909, 2001.

[Mea01] C. Meadows. A cost-based framework for
analysis of denial of service in networks.
Journal of Computer Security, 9(1–2):143–
164, 2001.

[MSAH01] J. McInerney, S. Stubberud, S. Anwar, and
S. Hamilton. Friars: a feedback control sys-
tem for information assurance using a markov
decision process. In Proceedings, IEEE 35th
Annual 2001 International Carnahan Confer-
ence on Security Technology, pages 223–228,
2001.

[SJW02] O. Sheyner, S. Jha, and J. Wing. Automated
generation and analysis of attack graphs. In
Proceedings of the IEEE Symposium on Se-
curity and Privacy, Oakland, CA, 2002.

[Syv97] Paul F. Syverson. A different look at se-
cure distributed computation. In Proceedings,
10th Computer Security Foundations Work-
shop, pages 109–115, 1997.

Modular Information Flow Analysis for Process Calculi

Sylvain Conchon
OGI School of Science & Engineering
Oregon Health & Science university

Beaverton, OR 97006 — USA
Sylvain.Conchon@cse.ogi.edu

Abstract

We present a framework to extend, in a modular way, the
type systems of process calculi with information-flow an-
notations that ensure a noninterference property based on
weak barbed bisimulation. Our method of adding security
annotations readily supports modern typing features, such
as polymorphism and type reconstruction, together with a
noninterference proof. Furthermore, the new systems thus
obtained can detect, for instance, information flow caused
by contentions on distributed resources, which are not de-
tected in a satisfactory way by using testing equivalences.

1 Introduction

Information flow analysis is used to guarantee secrecy and
integrity properties of information. Traditionally this in-
formation is assigned a security level and the goal of the
analysis is to prove that information at a given level never
interferes with information at a lower level. Described in
terms of noninterference [13], this turns out to be a de-
pendency analysis [2] ensuring that low level outputs of a
program do not depend on its high level information.

Much work in the security literature addresses this prob-
lem. Logical approaches have been used in [4, 5], while
control flow analysis has been used in [6]. Recently, sev-
eral studies have reformulated the problem as a typing
problem, and a number of type systems have been devel-
oped to ensure secure information flow for imperative, se-
quential languages [28], functional ones [21, 14, 23, 24],
imperative concurrent ones [19, 27, 7, 26], and process cal-
culi [1, 16, 17, 22].

In type-based analysis, security classes are formalized
as types and new type systems, combining information-
flow-specific and standard type-theoretic aspects, are de-
signed to guarantee the noninterference property. In the
setting of process calculi, the noninterference result is
expressed as a soundness result based on observational
equivalence, which guarantees that a well-typed process
� � � � , containing high level information � , does not leak
� if � � � � is indistinguishable from any well-typed pro-

cess � � �Q� � :
if ��� � � � � and ��� � � � � � then � � � � #-� � � � �

Different choices of equivalences may be used to state this
noninterference result, and thus allow us to observe more
or less the information flow from high level to low level. In
this paper, we concentrate on bisimulation because testing
equivalences are inadequate to observe information flow
caused by contentions on distributed resources as shown
in section 3.

Designing and proving information flow-aware type
systems is non-trivial if we consider type systems provid-
ing complex features such as polymorphism and type re-
construction. To date, systems found in the type-based se-
curity literature are derived from existing one or built from
scratch. Therefore, in order to reduce the proof effort in-
volved in their design, only simple standard type-theoretic
systems are usually defined, i.e monomorphic type sys-
tems, without type reconstruction or recursive types etc...
(to our knowledge, only the type system of Pottier and Si-
monet [24] for the information flow analysis of core-ML
is equipped with complex features.)

However, the drawback of these “monolithic” ap-
proaches [15] is that they suffer from modularity, since any
modification of the standard part of the system requires the
correctness of the whole system to be proved again. In
this paper, we present a modular way to extend arbitrarily
rich type systems for process calculi with security anno-
tations and show their correctness, including noninterfer-
ence, with a minimal proof effort. This framework allows
us to design and prove a family of information flow-aware
type system that provide complex features.

We formalize our work within the Join-Calculus [11],
a named-passing process calculus related to the asyn-
chronous � -calculus. We choose the Join-Calculus to for-
malize our framework because it enjoys a Hindley/Milner
typing discipline with a family of rich polymorphic
constraint-based type systems with type reconstruction
[12, 8], which allows us to show how our method of adding
security annotations readily supports modern typing fea-
tures. However, because of its simplicity, we believe that
our approach is applicable to other process calculi.

23

24 SYLVAIN CONCHON

This work extends our previous work for the Lambda-
Calculus [23]. However, in a distributed setting, the pres-
ence of concurrency and nondeterminism creates new in-
formation flows – disguised as control flows – which are
more difficult to detect than those of a simple sequential
programming language. We have to take into account, for
instance, the non-termination of processes and the con-
tentions on distributed resources as shown in the next sec-
tion.

Our modular approach is based on a labelled mechanism
which is used to track information dependencies through-
out computations. This framework consists in two steps.
First, we present an enriched Join-Calculus for which mes-
sages are labelled with a security level, and whose seman-
tics propagates those security annotations dynamically. In
that setting, the goal of the analysis is to prove that mes-
sages labelled with high-level security annotations never
interferes with low-level ones. A public process is thus
a process that sends only messages annotated with low-
level security labels. We verify that the semantics propa-
gates labels in a meaningful way by showing that it enjoys
a noninterference property which guarantees that, if a la-
belled process � �H + � � , containing high-level security
information � –annotated with a label H – is public then,
the unlabelled process � � � � is indistinguishable, by us-
ing a weak barbed bisimulation (defined later), from any
unlabelled process � � � � � , provided that the labelled pro-
cess � �H + �Q� � is also public. The second step of our
framework consists to approximate the propagation of la-
bels statically by extending, in a systematic way, any type
system of the Join-Calculus with security annotations. By
defining a translation from the labelled Join-Calculus to
the Join-Calculus, we show how to use existing type sys-
tems to analyze labelled processes, and how the soundness
and noninterference proofs of the new system may rely
upon, rather than duplicate, the correctness proofs of the
original one.

The remainder of the paper is organized as follows. In
the next section recall the syntax of the Join-Calculus and
give its semantics using a standard reduction framework
with evaluation contexts. In section 3, we compare the
power of weak barbed bisimulation and may-testing equiv-
alence to detect information flow on distributed systems.
We present our approach in section 4 which is based on
a labelled Join-Calculus whose syntax and semantics are
formally defined in section 5. We show in section 6 that
the semantics of this calculus yields a noninterference re-
sult based on bisimulation equivalence. Then, we show
in section 7 how to translate our labelled calculus into the
standard Join-Calculus, so as to use its type systems to an-
alyze the flow of information of labelled processes (sec-
tion 8). In section 9, we show how to define a more direct
type system for the labelled Join-Calculus. We conclude
in section 10.

2 The Join-Calculus

Let
�

be a countable set of names (also called chan-
nels) ranged over

� � 9 ��� ��� �>=:=>= . We write �
�

for a tuple� � A �:=>=:=>� � ? � and
��

for a set
.�� A �>=>=:=�� � ? 0 , where � � L .

The syntax of the Join-Calculus is defined by the following
grammar:

� + + # L !6��� !�� �4! ��� �9�� ! def � in �
�

+ + # �	� � !
������
�

+ + # ���
�� � ! ���4!��Z�

A process � can be either the inert process L , a parallel
composition of processes � !(� , an asynchronous mes-
sage

���
�
9��

which sends a tuple of names �
9

on a channel
�

,
or a local channel definition which belongs to a process � ,
written def � in � . A definition � defines the recep-
tive behavior of new channels. It is composed of several
reaction rules ��� � that produce the process � whenever
messages match the pattern � . In its simplest form, a join-
pattern

���
�� � waits for the reception of �� on channel

�
.

More generally join-patterns of the form � !�� express
synchronization between co-defined channels.

We require all defined names in a join pattern to be pair-
wise different. The scoping rules of the calculus obey stan-
dard lexical bindings of functional languages. The only
binder is the join-pattern which binds its formal parame-
ters in the corresponding guarded process. New channels
defined in def � in � are bound in the main process �
and recursively in every guarded process inside the defini-
tion � . The defined names dn ���Z� (resp. dn ��� �) of a join-
pattern � (resp. of a definition �) are the channels defined
by it. In a process def � in � , the defined names of �
are bound within � and � . In the following, we assume
that the set of free names and defined names of a process
are always disjoint.

We define the operational semantics of the Join-
Calculus using a standard reduction semantics with eval-
uation contexts (following [18] and [20]): evaluation con-
texts and definition contexts are defined by the following
grammar:

� +$+ # ���2! ��� ! � �4! � � ! � � ! def � in
�

� +$+ # ���2!
���� � ! � ����

We define a structural precongruence � over processes
which satisfies the following axioms:

� ! � �'��!�� � ! ��� ! � � � ��� ! � � ! �
The reduction relation � is defined as the least precongru-
ence which satisfies the following axioms:

� def � in � � ! � � def � in ��� ! � �
def

� ���	� � � in � ��� D � � def
� ����� � � in � � � D �

MODULAR INFORMATION FLOW ANALYSIS FOR PROCESS CALCULI 25

where D ranges over renamings from
�

into
�

. The first
rule needs the side condition dn ��� � � fn ��� � #�� to avoid
clashes between names. In the second rule, the names
which appear in the join-pattern � are supposed to be not
bound by the environment

�
. These definitions differ from

the standard definitions by restricting the structural rela-
tion to an associative and commutative relation, turning
the scope extrusion law into an irreversible reduction rule
and removing garbage collector rules which are not nec-
essary to compute. Our operational semantics is also dis-
tinguished by the use of evaluation contexts to determine
which messages can be “consumed” and replaced by the
guarded process of a join-pattern isolated by a definition
context. These modifications simplify the presentation of
the semantics by removing the heating and cooling rules
of definitions in the chemical style . In the following, we
will write � for the relation � � , � ��� .

We define a basic notion of observation which detects
the ability of a process to interact with its environment. In
the Join-Calculus, the only way for a process to commu-
nicate is to emit a message on one of its free names. We
thus define the strong predicate ��� which detects whether
a process emits on some free name

�
:

������	�
�#�� � ���9 =��Q# � � ��� �9�� � with
� � fn ��� �

Then, we define the may predicate which detects whether a
process may satisfy the basic observation predicate possi-
bly after performing a sequence of internal reductions. We
write ��� � if there exists a process � � such that ��� � �
and � ��� � . From this predicate, we define the may-testing
equivalence � , which tests the may predicate under all
possible evaluation contexts:

���'� 	�
�# 0 � ���5� � � � = � � � ��� � iff
� � � ��� �

This equivalence can also be refined by observing the inter-
nal choices of processes. We first define the weak barbed

bisimulation (WB-bisimulation) �# as the largest relation

such that � �#'� implies:

1. ��� � if and only if ��� � .
2. If � � � � then � � � � ��� � � and � � �#'� �
3. If � � � � then � � �1�6��� � � and � � �#%� �

Then, we define the weak barbed congruence # , which
extends the previous relation with a congruence property.

� #%��	�
�# 0 � ��� � � � � = � � � � �# � � � �

3 WB-Bisimulation vs. May-Testing

We motivate the use of a WB-bisimulation to state our non-
interference results with an example inspired by the class

of attacks presented in [9] (see [10] for a classification of
noninterference properties based on trace-based and bisim-
ulation semantics).

This example describes an attack that compromises the
privacy of a user’s activities on the Web, by allowing any
malicious Web site to determine the Web-browsing his-
tory of its visitor. This attack exploits the fact that Web
browsers do not necessarily send HTTP requests to get
pages that have been already visited by the user. We
show through this example that these information leaks
can only be observed in a satisfactory way by using a WB-
bisimulation. Contrary to the may-testing, this equivalence
allows us to observe the potential absence of HTTP re-
quests.

Let us first review how Web caching works. Because
the access of Web documents often takes a long time,
Web browsers save copies of pages requested by the user,
to reduce the response time of future accesses to those
pages. However, browsers cannot save all the web pages
requested by the user. The management of a cache consists
in determining when a page should be cached and when it
should be deleted. From a user point of view, it is difficult
to anticipate the behavior of a browser when requesting a
Web document. The browser may send an HTTP request
to get a page even if it has been visited recently. We for-
malize the nondeterministic behavior of Web caching by
the following Join-Calculus program:

�����! �" B �	� ��	 � � � B"B � �	� ��	 �
�� �" B �	� ��	 � ! �>� ��� " �	� ��	���� � �" � � � � �"

This program defines two communication channels
 �" B

and ���9�)� " . The user sends messages on channel
 �" B to

get pages whose addresses are given as argument. Mes-
sages sent on channel ���9�)� " represent the cache entries
which are composed of pairs of addresses and Web doc-
uments. The first definition

 �" B �	� ��	 � � � B"B � � � ��	 �
waits for user messages and, upon receipt, sends HTTP
requests to get the expected pages. The second defini-
tion

 �" B �	� ��	 � ! �>� ��� " �	� ��	���� � �" � � � � �" synchronizes
messages sent on

 �" B and ���9�)� " whenever an entry in the
cache matches a requested page, and returns the page to
the user without requiring another Web access. These def-
initions are nondeterministic, so the browser may still send
an HTTP request for a page that is saved in the cache.

We now present the attack we mentioned above. First
of all, we assume that Internet communications are not se-
cure. That is, any attacker is able to observe the HTTP
requests sent by a browser.

Suppose that Alice visits Bob’s Web site. Bob wants to
find out whether his visitor has been to Charlie’s Web site
previously. For that, he writes an applet and embeds it in
his home page. When Alice receives Bob’s page, the ap-
plet is automatically downloaded and run on her browser.
The applet tries to download Charlie’s home page, and Bob
observes whether the browser sends an HTTP request to
get the page. If no request is sent, Bob concludes that Al-

26 SYLVAIN CONCHON

ice has been to Charlie’s site; if an HTTP message is sent,
he learns nothing. We formalize Bob’s attack by the pro-
gram:

������� �	�
������
C � C.html � ������������� � �!"�$#�%'& �)(�*!+!-,��'#�%'& �.'/ � �!"�'#0%�& �21 �3�
�3��4��#0%�& � ,�� � ��(,�� � 5�6 �	�
����4�

C � C.html � 1 � �!"� C �

which describes the applet running on Alice’s Web
browser with Charlie’s home page in the cache. We sup-
pose that Alice has visited Charlie’s site recently. The mes-
sage sent on channel �>� ��� " corresponds to the cache entry
which contains a copy of Charlie’s home page (C.html).
The message

 �" B � C � encodes the request of the applet.
The browser thus has the possibility to send a message on
channel � B"B � to get a fresh copy of the Charlie’s home page
or to return directly the page stored in the cache.

We can detect that the applet may obtain information
stored in Alice’s Web cache by the observation that the be-
havior of the program 7 �98 � ���9�)� " � C � C.html � � changes
when the cache entry containing the home page of Charlie
is replaced by, for instance, Denis’s home page (D.html).
In that case, the browser has no choice but to send an HTTP
message to get the requested page.

The difference in behavior between these two programs
can be made precisely by using an appropriate equiva-
lence. First, we suppose that messages sent on channel
� B"B � are the only interactions observable by the environ-
ment, that is we only have the strong observation predicate
� http. Furthermore, we assume that the cache entries are
the only secret information stored in the program.

When comparing these two programs with the may-
testing equivalence, it turns out that they are indistinguish-
able since this equivalence does not allow us to observe
the absence of HTTP requests: it only detects a successful
interaction between a program and its environment. Thus,
we have:

�:���;� �3�
���04�
C � C.html �<��= �:����� �3�
������ D � D.html �<�

On the contrary, when using the WB-bisimulation, we can
observe the internal choice of the browser not to send an
HTTP message. Thus, we obtain:

�:���;� �3�
���04�
C � C.html �<�?> @A ������� �	�
������ D � D.html �<�

This result shows that messages sent on channel � B"B � may
depend on high security level cache entries, and thus that
the program 7 ��8 � ���9�)� " � C �3B6==� B"�9	 � � is not a low secu-
rity level program.

From a certain point of view, relying our noninterfer-
ence on a bisimulation allows a particular kind of timing
leak to be detected. However, this phenomenon is really
limited, and our framework will does not detect such leak
in general.

4 Our approach

In order to assert that a program � does not leak its secret
information, we develop a dependency analysis that deter-
mines which messages of � contribute to its output. We
prove the dependency analysis correct by showing that it
yields a noninterference result based on WB-bisimulation.

Our approach is based on an analysis that tracks depen-
dencies dynamically in the course of computation. For
that, we extend the syntax of the Join-Calculus with la-
belled messages, and we equip its semantics with a mech-
anism to propagate labels. For instance, in our previous ex-
ample, we would label the message sent on channel ���9�)� "
with a high-level security annotation H, so as to determine
its effects on the program’s outputs.

�����C� D!"�$#�%'& �E(�*!+!-,F�'#�%'& �.'/ � �!"�'#0%�& �21 �3�
�3��4��#0%�& � ,�� � ��(,�� � 5�6
H G �	�H�3��4� C � C.html �I1 � �!�� C �

The basic idea to handle labels consists in propagating
the labels of messages that match a definition � , to the
process triggered by � . Unfortunately, this simple seman-
tics would only lead to a noninterference result based on
a may-testing equivalence which does not allow us to de-
termine that the program 7 �98 �H + ���9�)� " � C � C.html � �
leaks its secret information. Indeed, this extended reduc-
tion rule does not allow us to propagate the label H of the
cache entry to the message sent on channel � B"B � . Such a
propagation would reveal the dependency of the � B"B � chan-
nel upon ���9�)� " .

Thus, in order to show the correctness of the depen-
dency analysis with respect to a WB-bisimulation, we
must also propagate the labels of messages that match a
definition which is in contention with � , so as to track the
dependencies due to the nondeterministic choices of a pro-
gram.

Our solution to propagate these labels breaks the reduc-
tion rule of the Join-Calculus into two parts. The first part
sets the labels of messages matching a definition up to the
same label. In our example, the label H of the cache’s en-
try can be propagated to the message on channel

 �" B so as
to obtain a request H

+ �" B � C � which carries a high level
security annotation. Thus, we have the following reduction
where, by lack of space, we omit the contents of messages:

����� � �! 1 �3�
�3�� (KJLJ5�6
H G �3�
���0 1 � D!NMO

���'�P� �! 1 �3�
���� (KJQJ5�6
H G �	�H�3�� 1 H G � D!

The second rule performs the synchronization part of
the reduction. It consumes messages carrying the same
label, and propagates it to the process triggered by the def-
inition. Therefore, in our example the browser can now
synchronize the high-level request H

+ �" B � C � with the
cache’s entry H

+ �>� ��� " � C � C.html � and return the page
H:C.html. Furthermore, it can also send an HTTP re-
quest H

+ � B"B � � C � annotated with a label H showing its
dependencies on the secret cache entry. Thus, we have:

MODULAR INFORMATION FLOW ANALYSIS FOR PROCESS CALCULI 27

���'�P� �! (JLJ.$/ � �! 1 �3�
�3�� (KJLJ5�6
H G �3�
���� 1 H G � �!

�
O

�9��� JLJ 5�6 H G C.html
�9��� JLJ 5�6 H G �*!<! ,

Unfortunately, these rules do not track dependencies
along all the executions of a program. In our example,
the browser has the possibility of answering the applet’s
request

 �" B � C � by sending directly an unlabelled HTTP
message � B"B � � C � . That is,

�����C� �! (KJLJ5�6
H G �	�H�3�� 1 � �! O

�����C� �! (JQJ5�6
H G �	�H�3�� 1 �*!<! ,

Nevertheless, it is sufficient to assert, for instance, that the
program 7 ��8 � ���9�)� " � C � C.html � � runs at a high secu-
rity clearance. Furthermore, we can prove that this ex-
tended semantics enjoys the noninterference result based
on WB-bisimulation.

5 A labelled Join-Calculus

In this section we define formally our Join-Calculus with
labelled messages. Labels, ranged over by small Greek
letters
 � � �:=>=>= , are supposed to be taken from an upper
semi-lattice ���S� � ��� ��� � , and are used to indicate the se-
curity level of messages. The syntax of the labelled Join-
Calculus is defined as follows:

� +$+ # =:=>=*!(
 + ���
�
9�� !3=:=>=

(in the following, we will write �� 7 � ��� � � for the parallel

composition of the processes � �)
For simplicity, the syntax of our labelled calculus does

not include labelled processes but only messages. Intu-
itively, a labelled process
 + � is a process which inter-
acts with its environment at a security clearance
 . That
is, all barbs of the process have a security annotation of at
least
 . To recover the construction
 + � , we arrange that
every message of � is annotated by a label greater than
or equal to
 . Formally, we define a function
 � � that
performs the propagation of a label
 on a process � :

�
	�� � � �	���� 1���� � ���
	�� � 1 ���
	 ���
�	���� G #:���� ��� � ����� � ��G #:���� � �	 #����� � � � G #:���� �

�
	�� def ! in � � � def ! in �
	��

This definition restricts the propagation of
 to messages
which are not guarded by join-patterns. In the following,
we will say that a process � runs at a security clearance
 ,
if all its active messages, that is those not guarded by join-
patterns, are annotated with a label greater than or equal to

 . The evaluation and definition contexts of the labelled
calculus are those defined for the Join-Calculus, as well as
the structural relation � . Its operational semantics is now
composed of two reductions � and "� to manage security
annotations. The relation � is defined as the least precon-
gruence which satisfy the following two axioms:

� def � in � � ! � � def � in ��� ! � �
def

� ����� � � in � �
 � � D � �
def

� ���	� � � in � �
 � � D �
which expect the same side conditions than those of sec-
tion 2. The relation "� is defined by the following axiom:
����� � ���	� � �#%$ � � �� 7 � ��
 � + � � � �9 � � � � "�

����� � ����� � �#&$ � � �� 7 � ��

+ � � � �9 � � � �

where the join-pattern � has the form �� 7 � �
� � � �� � � � and the

names
� � are not bound by

�
. Furthermore, the label
 is

equal to �� 7 �
6� and there exists a substitution D such that

0 � �9� � DE� �� � � #��
9 � .

The basic reduction step � extends the reduction of
the Join-Calculus so as to propagate labels throughout the
computation. The guarded process � of a join-pattern � is
substituted for a parallel composition of messages,
 � � D ,
that matches � and for which each message carries the
same label
 . The actual names are then substituted for
the formal parameters, and the label
 is propagated on
� , so as to guarantee that any observation of � will carry
a label, at least, greater than or equal to
 . This records
the fact that all these barbs depend on the messages that
have been used to trigger the process � . This propagation
mechanism explains the restriction, in the function
 � � ,
to broadcast the label
 only to messages of � which are
not guarded by join-patterns. Since a reduction step propa-
gates the labels of messages consumed by a join-pattern to
its guarded process, every message produced by a reduc-
tion will necessarily be annotated with a label greater than
or equal to
 . Furthermore, following the semantics of the
Join-Calculus, scope extrusion is turned into a reduction
rule, thus making it irreversible.

The second reduction rule "� sets the labels of messages
which match a join-pattern, up to the same level. Accord-
ing to the basic reduction step, the reduction of a parallel
composition of messages �� 7 � ��
 � +$� � � �9 � � � requires the

labels
 � to be equal. The reduction "� is thus used to pro-
mote the labels
 � to the least upper bound �'� � 7 ��
 � � . In
the following, we will use the notations � for � � , � � �
and (for � � , � , "� ��� .

For technical reasons, we define an auxiliary structural
precongruence on processes, noted) , which equips the
labelled Join-Calculus with garbage collection rules that
allow the removal of inert processes and local definitions
whose channels are not referenced. In the following, we
will say that a process � is gc-equivalent to a process � if
�*)%� . This relation will be used to state our noninterfer-
ence result. It satisfies the following axioms:

� 1 �,+-� � 1 �.+-�
def ! in �.+-� if dn � !/��0 fn ��� � �-1

Finally, we extend the observation predicates of the Join-
Calculus to deal with labels. The basic observation pred-

28 SYLVAIN CONCHON

icate is improved so as to detect the security level of the
strong barbs of a process:

������� � 	
�# �Q#�� � ���9 = � �
 + ���
�
9�� � with

� � fn ��� �
We extend the weak barb predicate accordingly.

6 Noninterference up to WB-Bisimulation

We prove in this section that the semantics of the la-
belled Join-Calculus yields a noninterference result based
on WB-bisimulation. For simplicity, we assume a fixed
security lattice � consisting of the set

.
L � H 0 , for “low”

and “high” security information, and ordered by L � H.
However, all the results in this paper would carry through
for a richer lattice.

Definition 1 A process � is a public process if all its weak
barbs are annotated with the label L.

Let
� = � be a homomorphism which takes as argument a

process � , and returns a process where every message car-
rying a label H has been replaced by the inert process L ,
and strip ��� � be the process obtained by removing every
label in the process � . The following result shows that our
labelled Join-Calculus enjoys a noninterference property
based on WB-bisimulation, which guarantees that a public
process doesn’t leak its high security level information.

Theorem 1 (Dynamic Noninterference) If � and � are
two public processes such that

� ���) � ��� , then

strip ��� � �# strip ��� � .
Proof. The core of the proof consists to prove that the re-
lation . ��� �
	���� � ����) � ���� L ��� �� L � � �X0
with � # strip ��� � and 	 # strip ��� � , is a barbed bisimu-
lation (we use the notation L ��� � to state that a process �
is public). For that, we show that the following diagrams
commute.

� strip � %���� � � � � ��� � � � � % � strip
��� � 	

� � strip � %���� � � � � � ��� � � � � % � � strip
��� � 	 �

� strip � % ��� �

��

L ��� � � � ��� � � � � %
_

��

L ��� � strip
��� � 	

L ��� A � � � ��� � � � � %

��

L ��� A �

��

strip
��� � 	

��

� � strip � %���� � � � � � ��� � � � � % � � strip
��� � 	��

Then, � � � implies that there exists a process � � such that
� ��� � and � � � � . Following the previous diagrams, we
deduce that there exists a process � � and a label
 such
that � � # strip ��� � � and � � ����� � . Furthermore, since � �
is a public process, we have
 # L and there exists a
process 	�� such that 	 ��	�� and 	���# strip � � �	� and� � ���) � � ��� and low � � �	� . So, since � � � L � � , there exists
an environment

� � � such that � � # � �L + ���
�
9�� � and

we can show that
� � ���) � � ��� implies that there exists

a environment
� � � � such that � � # � � �L +1���

�
9�� � and� � fn � � � � . Therefore, we have � � � L � � that is 	 � ��� and

	�� � . The result follows be the symmetry of the relation.

This theorem guarantees that if two public labelled
processes � and � differ only on high level informa-
tion (i.e. if

� ���.) � ���) then, the unlabelled processes
strip ��� � and strip � � � cannot be distinguished by using a
WB-bisimulation. It is important to note that the well-
foundedness of our propagation rules is implied by the

fact that the equivalence strip ��� � �# strip ��� � only relies
on standard Join-Calculus processes.

Now, in order to ensure secure information flow stati-
cally rather than dynamically, we define a decidable type
system for the labelled Join-Calculus that approximates its
semantics. However, instead of building our system from
scratch – or by modifying an existing type system – we
define an encoding from our labelled calculus to the unla-
belled one, so as to use standard type systems of the Join-
Calculus to analyze the processes produced by the transla-
tion. Then, by composing this translation with an existing
type system – which may provide for instance polymor-
phism and type reconstruction – we can define a variety
of information flow aware type systems whose soundness
and noninterference properties rely only on the soundness
proof of the original system, and are thus proved almost
for free.

7 Translation

Our target calculus is the Join-Calculus with a set of names
supplemented with label constants that represent security
labels, taken from the security lattice � , and a primitive,�

, used to concatenate labels:

� � 9 + + # � !,
 ! ���S9 ��
 � � �
In the following, we write @� 7 �

� � for the concatenation of

the names
� � . We extend the operational semantics of the

Join-Calculus with a delta rule which states that
�

returns
the least upper bound of its arguments:

 � � �
 � � 0�
 � �/� �
The translation function from the labelled Join-Calculus to
the Join-Calculus is defined by the rules in figure 1.

MODULAR INFORMATION FLOW ANALYSIS FOR PROCESS CALCULI 29

� L�� #ML �
 + ���
�
9�� ��# ���
 � �9��� � ! ��� # � ���$! � ��� �

�
A
�� � � ��# �

�
A � �� � � � ��

def � in ��� # def
�
��� in � ���

�
�� 7 � �

� � � �� � � � � ���/#
	���
��

�� 7 � �
� � � pc � � �� � � � � �� 7 ��� � ��� @��� (pc � � �� �����

�� �� 7 � �
� � � pc � �� � � � � pc � � ���

for fresh names pc � pc A �:=>=>=:� pc ? .

Figure 1: Translation from the labelled Join-Calculus to the Join-Calculus

The basic idea of the encoding is to use the polyadic-
ity of the target calculus to map every labelled message

 + ��� �9�� to the unlabelled one

���
 ���9 � , whose first com-
ponent is the security level of the labelled message. Fol-
lowing this basic idea, every join-pattern �� 7 � �

� � � �� � � � �(�
is mapped to a pair of join-patterns which define the same
channels with an extra argument representing the security
level of messages sent on

� � . The first join-pattern is used
to promote the security levels pc � of each message sent
on channel

� � to the concatenation of all security levels.
The second join-pattern propagates explicitly the security
level argument pc into

� ��� , so that every message of
� ���

has its first argument concatenated with pc. The messages
sent on channels

� � must match the same security level pc
since, according to the basic reduction step of the labelled
Join-Calculus, the messages consumed by a join-pattern
must all carry the same label. The propagation function
used in the translation is similar to the function defined
in section 5: it propagates pc to messages which are not
guarded by join-patterns and which carry at least one ar-
gument:

pc �SL # L pc � ���
 ���9
� # ���
pc

�
 � �9 �
pc � ��� ! � � # � pc �$� � !K� pc ��� �

pc � � def � in � � # def � in pc �$�
The rest of the rules define the translation function as a
homomorphism on processes. We prove the correctness of
our encoding by showing that the process

� ��� mimics the
reduction steps of the process � .

Lemma 1 (Simulation) If �*(� � then
� ��� � � � ��� .

8 Typing the Labelled Join-Calculus

By composing our encoding with a standard type system of
the Join-Calculus, we can define a type system for our la-
belled calculus such that a “labelled” process is well-typed
if and only if its translation is well-typed. That is,

� � � holds if and only if ���
� ���

where typing judgments of the form � � � states that a
process � is well-typed under the assumption � , which is
a set of bindings of the form

� + B (where B belongs to a
set of type �). In practice, we can pick any type system of
the Join-Calculus that guaranteeing the following require-
ments:

1. (Compositionality) If ��� � � � � then ��� � .

2. (Subject Reduction) If � � � and � � � then � �
� .

3. (Labels) Every label is a type: � � . If
 � �Q� �
and ���2
 + � then
 � � .

4. (Messages) If the assumption on the type of a name�
is � � � � # � �B � (which means that

�
is a channel

expecting a tuple of arguments of type �B) then, the
typing judgment � �

���
�
9
�

holds if and only if � �
�
9�+ �B holds.

Then, it is easy to show that the new type system thus ob-
tained enjoys the following soundness result, whose proof
only relies on the simulation property and the axioms given
above.

Theorem 2 If ��� � and �*(� then ��� � .

Proof. By definition, � �*� may be read � �
� ��� . Fur-

thermore, according to the simulation property, � (�
implies

� ��� � � ��� . Thus, because we suppose that the
source type system enjoys a subject reduction property
(axiom 2), we have ���

� ��� that is ���.� .

We now show that the new type system enjoys a non-
interference property, called static noninterference, whose
proof relies on the dynamic noninterference theorem and
the soundness proof above. A environment � is public
when �3# � � � + � L � �B � � � � 7 � .
Theorem 3 (Static Noninterference) If � and � are two
processes such that

� ���) � � � then, if there exists a pub-
lic environment � such that � �*� and � �4� hold then,

we have strip ��� � �# strip � � � .

30 SYLVAIN CONCHON

Proof. We just have to show that � and � are both pub-
lic. Assume that � � ��� � (the case for � is similar) then,
there exists a context

�
such that �*(� �
 + ���

�
9�� � and�

is not bound in
�

. According to theorem 2, � � � �
 +
���

�
9�� � holds, which may be read ���

� � �
 + ���
�
9�� � � , that

is � �
� � � � ���
 ���9
� � . Then, by compositionality (axiom

1), we have ���
���
 ���9
� . According to our hypothesis on

� and to axioms 3 and 4, it follows that
/# L. So, � is a
public process and the result follows by theorem 1.

This noninterference property states that typing judg-
ments of the new system provide a correct approximation
of the semantics of the labelled Join-Calculus. Again, we
assume a simple dichotomy between low and high security
levels, reducing the security lattice � to the set

.
L � H 0 .

Recovering a noninterference result for an arbitrary secu-
rity lattice can be done very easily. Furthermore, the in-
teresting aspect of our noninterference proof is that it only
relies on the noninterference property proved in section 6
and on the soundness proof of the original system. The
modularity of the proof allows us to modify the standard
part of the type system without having to prove its nonin-
terference property again. Actually, this is the main advan-
tage of our propagation rules: we prove a dynamic nonin-
terference result once and we obtain a set of static nonin-
terference results for a variety of type systems.

As a corollary, we can easily prove a noninterference
result based on the weak barbed congruence, provided we

admit only well-typed contexts. This congruence, noted
�
#

is defined such that �
�
#'� implies that for all context

� ���
and typing environment � , if � � � � � � and � � � � � �
then strip � � � � �!� �# strip � � � � �!� .
Corollary 1 Let � and � be two processes such that� ���) � ��� , then if there exists a public environment �
such that ��� � and ��� � hold then, �

�
#%� .

Proof. Let
� � � a evaluation context and 	 a typing en-

vironment such that 	 � � � strip ��� � �5�
	 � � � strip � � � � .
From

� � � , we may obtain a labelled context
�

L � � with
every message annotated with the labelled L. We can then
easily show that the environment 	 can be extended in a
public environment 	 L (construct from 	 and �) such that
	 L �

�
L � � � � � L � � � .Then, since strip � � L ���!� # � � � , the

result follows by applying the theorem 3.

9 A concrete example

The new type systems defined by this approach are as ex-
pressive as the original ones. We may obtain for instance,
almost for free, a noninterference proof for a family of rich
constraint-based type system – with type reconstruction –
by using the generic framework JOIN � � � presented in [8].

We illustrate our approach with a basic polymorphic
type system with subtyping called B ���S� defined in [8].

The results shown, however, do not rely on any specific
properties of B ���S� , i.e. any type systems that satisfies the
property defined in the previous section could be used.

B ���S� is a ground type system: it does not have a notion
of type variable. Instead, it has monotypes, denoted by B ,
taken to be elements of some set � , and polytypes, denoted
by � , merely defined as certain subsets of � .

The set � is a parameter of the type system, and can
be instantiated by any set equipped with a partial order �
and a total function, denoted

� & � , from � � into � , such that� �B � � � �B'� � holds if and only if �B'��� �B . Furthermore, we will
let denote the set of all polytypes.

Monotype environments, denoted by � , are sets of bind-
ings of the form

� + B , while polytype environments, de-
noted by � or � , associates names with polytypes. Given
two monotype environments � and � � , we define � Y�� �
as the monotype environment which maps every

� � �
to ����� � � , if it is defined, and to �6� � � otherwise. When
� � � � #����1� � � for all names

�
that � and � � both define

then, � Y���� is written �	�
��� . Finally, we define the Carte-
sian product � � of a polytype environment � # � � � +
� � � � 7 � , as the set of tuples

. � � � + B � � � 7 � !�0 �E��� �ZB � � � � 0 .
We now define a type system for the labelled Join-

Calculus as an instance of B ���6� with a set � of monotypes
inductively generated by:

� � and �B � � implies
� �B � � �

and partially ordered by � :

 � � implies
�� � and �B�� �B � implies
� �B � � � � �B �

This instance, called B ����� , is defined by the rules de-
fined in figure 2. We distinguish three kinds of typing
judgments:

� � � � + B states that the name
�

has type B under as-
sumptions � .

� � � � +$+ � (resp. �
+$+ �) states that the definition �

gives rise to the environment fragment � (resp. �)
under assumptions � .

� � � � states that the process � is well-typed under
assumptions � .

Furthermore, every typing environment � of B ����� ’s judg-
ments contains an initial set of bindings ��
 +
 � � 7� which
state that every label constant is also a type.

The most interesting aspect of the system B ��� � is its
extensional view of polymorphism: a polytype � is by def-
inition equivalent to the set of its monotype instances. The
rule INST performs instantiation by allowing a polytype �
to be specialized to any monotype B�� � , while the rule
GEN performs generalization by allowing the judgment
� � �

+ + � � � + � � � � 7 � to be formed if the judgments � �
�
+$+ � � � + B � � � 7 � hold for all � � � + B � � � 7 � �.� � � � + � � � � 7 � .

MODULAR INFORMATION FLOW ANALYSIS FOR PROCESS CALCULI 31

INST
� � � � # � B � �

���
� + B

SUB-NAME
���

� + B � B � � B
���

� + B
AT
���

� +
 ���
9�+ �

���
���S9�+ ��
 � � �

GEN
0 � �.� � ��� �

+ + �
��� �

+$+ �
OR
��� �

AS+$+ � A ��� � � +$+ � �
��� �

A
�� � � + + � A � � �

SUB-DEF
��� �

+ + � ��� � �
��� �

+ + � �
JOIN

��Y 	 �2� 	 ��� � � # �B �
��� �� 7 � �

� � � �� � � � � � + + � � � + � �B � � � � 7 �

NULL

��� L
PAR
��� � ���.�
��� � ! �

MSG
���

� + � �B � ��� �
9�+ �B

���
���

�
9��

DEF
�OY � � � + + � �OY � �2�

��� def � in �

Figure 2: The system B ��� �

Typing rules for processes, except rule DEF, are similar
to those found in common typed process calculi. The rule
DEF and those for typing definitions, are inspired by the
typing rules of ML extended with polymorphic recursion
and subtyping. The system is showed in [8] to enjoy the
following soundness result.

Theorem 4 (Subject Red.) If � � � and � � � � then
��� � � .

Since B � � � respects all the axioms listed in section 8, it
could be used to define an “indirect” type system for the
labelled Join-Calculus that enjoys the properties defined in
section 8.

However, we can give a more direct description of this
type system by systematically composing the translation
function defined in section 7 with the B ��� � ’s rules. We
obtain the rules of figure 3 which are very similar to those
of B ����� . The main difference rests on the typing judg-
ments for processes which now have the form � � pc � ,
where pc is a security level used to enforce the security
level of � . Intuitively, such a judgment may be read:

“ � is well typed under
�

and it will only emit messages
annotated with a security label of at least pc”

Furthermore, channel types of the form
�
pc � �B � have been

replaced with
� �B � pc, so as to insist on the fact that we are

dealing with types carrying security annotations.
The main use of the security level pc is in the rules D-

MSG, D-JOIN and D-SUB-PC. The D-MSG enforces the
security clearance of a process. It requires the channels’
security level to match the level pc attained by the pro-
cess. Furthermore, it restricts the security level of its mes-
sages to be at most pc, so as to prevent direct flows of
information. The D-JOIN requires the channel names of
a definition to have the same security level. This reflects

the reduction rule of the labelled Join-Calculus which al-
lows only to reduce messages carrying the same label. The
process � triggered by the definition is thus typed at a se-
curity level pc so as to reflect the propagation of labels
carrying by messages which match a definition. Finally,
the D-SUB-PC is used to increase the security level of a
process.

These rules seem quite intuitive and it would have been
easy to come up directly without using our framework.
However, the main advantage of our approach rests on the
systematic way of deducing a security aware type system
from a standard one. Contrary to other approaches, our
typing rules described formal semantic properties of pro-
grams, leaving no doubt that our design decisions are nat-
ural.

10 Conclusion and related work

As illustrated by Sabelfeld and Sands [25, 26], the defini-
tion of a semantic-based model of information-flow pro-
vides a fair degree of modularity which facilitates the cor-
rectness proofs of security type systems. We have shown
in this paper how to extend, in a modular way and with
a minimal proof effort, standard type systems of the Join-
Calculus to ensure secure information flow. The main ad-
vantage of our approach rests on a labelled mechanism that
track dependencies throughout computations. By translat-
ing the semantics of this mechanism to the semantics of the
Join-Calculus, we may extend standard type systems to en-
sure information flow of labelled processes. Furthermore,
the new systems obtained are as expressive as the original
ones. We may prove, for instance, a noninterference proof
– relying on WB-bisimulation – for rich polymorphic type
systems almost for free.

32 SYLVAIN CONCHON

D-INST
� � � � # � B � �

���
�3+ B

D-SUB-NAME
���

� + B � B � � B
���

� + B
D-GEN
0 �M�9� � ��� �

+ + �
��� �

+ + �
D-OR
��� �

AS+ + � A ��� � � + + � �
��� �

A
���� � +$+ � A ��� �

D-SUB-DEF
��� �

+ + � ��� � �
��� �

+$+ � �
D-JOIN

�OY � � � + � �B � � pc � � 7 � Y 	 � pc � 	���� � � # �B �
�OYN� � � + � �B � � pc � � 7 � � �� 7 � �

� � � �� � � � � � +$+ � � � + � �B � � pc � � 7 �

D-NULL

��� pc L
D-PAR
��� pc � � � pc �

��� pc � ! �

D-MSG
���

� + � �B � pc ��� �
9�+ �B
�� pc

��� pc
 + ���
�
9��

D-SUB-PC
��� pc � pc � � pc

��� pc ; �
D-DEF
�OY � ��� + + � �OY � � pc �

��� pc def � in �

Figure 3: A direct type system derived from B � � �

The question of information flow analysis in the set-
ting of process calculi has been studied previously in
[10, 1, 16, 17, 22]. The last four papers investigate the
use of type systems to ensure the noninterference prop-
erty. Hennessy and Riely [16] study an asynchronous � -
calculus extended with security annotations on processes
and channels, and prove a noninterference property based
on may-testing equivalence. The may-testing semantics is,
in our eyes, too coarse since it does not allow one to de-
tect, for instance, the information flow of the browser pro-
gram described in section 3. Pottier shows in [22] how
to reduce the problem of proving noninterference in the � -
calculus to the subject-reduction proof of a type system for
an extension of this calculus, named the

� � � -calculus. This
calculus describes the independent execution of a pair of
processes (which shared some sub-processes), and allows
to prove a noninterference based on WB-bisimulation.
Honda et al. propose in [17] an advanced type system
with linearity and affinity informations used to relax the
restrictions on information flow when linear channels are
involved in communications. The perspective of extend-
ing our framework with linearity information is an inter-
esting issue. Abadi studies in [1], a monomorphic type
system which ensures secrecy properties for cryptographic
protocols described in a variant of the � -calculus, called
the spi-calculus. The main interest of this system relies
on the typing rules for encryption/decryption primitives of
the spi-calculus, that treats encryption as a form of safe de-
classification. Following this work, it would be interesting
to extend our approach to the SJoin-Calculus [3] an ex-
tension of the Join-Calculus with constructs for public-key

encryption proposed by the same author.

Acknowledgements

We would like to thank François Pottier, Alan Schmitt and
Daniel de Rauglaudre for stimulating and insightful dis-
cussions, James Leifer and Jean-Jacques Lévy for their
help to make the paper clearer, and the anonymous referees
for numerous suggestions for improvements.

Bibliography

[1] M. Abadi. Secrecy by typing in security protocols. In
14th Symposium on Theoretical Aspects of Computer
Science (STACS’97), Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1997.

[2] M. Abadi, A. Banerjee, N. Heintze, and J.G. Riecke.
A core calculus of dependency. In Conference
Record of the 26th ACM Symposium on Principles of
Programming Languages, pages 147–160, San Anto-
nio, Texas, January 1999.

[3] M. Abadi, C. Fournet, and G. Gonthier. Secure im-
plementation of channel abstractions. In Thirteenth
Annual Symposium on Logic in Computer Science
(LICS) (Indiana). IEEE, Computer Society Press,
July 1998.

[4] G.R. Andrews and R.P. Reitman. An axiomatic ap-
proach to information flow in programs. ACM Trans-

MODULAR INFORMATION FLOW ANALYSIS FOR PROCESS CALCULI 33

actions on Programming Languages and Systems,
2(1):56–76, January 1980.

[5] J-P. Banâtre, C. Bryce, and D. Le Métayer. Compile-
time detection of information flow in sequential pro-
grams. In Proceedings of the 3rd European Sympo-
sium on Research in Computer Security, volume 875
of Lecture Notes in Computer Science, pages 55–74,
1994.

[6] C. Bodei, P. Degano, F. Nielson, and H. R. Niel-
son. Static analysis of processes for no read-up and
no write-down. Lecture Notes in Computer Science,
1578:120–134, 1999.

[7] G. Boudol and I. Castellani. Noninterference for con-
current programs. In The 28th International Collo-
quium on Automata, Languages and Programming
(ICALP) Crete, Greece, July 8-12, 2001, July 2001.

[8] S. Conchon and F. Pottier. JOIN(X): Constraint-
based type inference for the join-calculus. In David
Sands, editor, Proceedings of the 10th European
Symposium on Programming (ESOP’01), volume
2028 of Lecture Notes in Computer Science, pages
221–236. Springer Verlag, April 2001.

[9] E.W. Felten and M.A. Schneider. Timing attacks on
Web privacy. In Sushil Jajodia, editor, 7th ACM Con-
ference on Computer and Communications Security,
pages 25–32, Athens, Greece, November 2000. ACM
Press.

[10] R. Focardi and R. Gorrieri. A classification of secu-
rity properties for process algebras. Journal of Com-
puter Security, 3(1):5–33, 1995.

[11] C. Fournet and G. Gonthier. The reflexive chemical
abstract machine and the join-calculus. In Proceed-
ings of the 23rd ACM Symposium on Principles of
Programming Languages, pages 372–385, 1996.

[12] C. Fournet, L. Maranget, C. Laneve, and D. Rémy.
Implicit typing à la ML for the join-calculus. In
8th International Conference on Concurrency The-
ory (CONCUR’97), volume 1243 of Lecture Notes in
Computer Science, pages 196–212, Warsaw, Poland,
1997. Springer.

[13] J. Goguen and J. Meseguer. Security policies and
security models. In Proceedings of the 1982 IEEE
Symposium on Security and Privacy, pages 11–20,
April 1982.

[14] N. Heintze and J.G. Riecke. The SLam calculus:
Programming with secrecy and integrity. In Confer-
ence Record of the 25th ACM Symposium on Prin-
ciples of Programming Languages, pages 365–377,
San Diego, California, January 1998.

[15] F. Henglein and D. Sands. A semantic model of bind-
ing times for safe partial evaluation. In S. D. Swier-
stra and M. Hermenegildo, editors, Programming
Languages: Implementations, Logics and Programs
(PLILP’95), volume 982, pages 299–320. Springer-
Verlag, 1995.

[16] M. Hennessy and J. Riely. Information flow vs. re-
source access in the asynchronous pi-calculus. In
Proceedings of the 27th International Colloquium
on Automata, Languages and Programming, Lecture
Notes in Computer Science. Springer-Verlag, July
2000.

[17] K. Honda and N. Yoshida. A uniform type struc-
ture for secure information flow. In Proceedings of
29th ACM Symposium on Principles of Programming
Languages, ACM Press, Portland, Oregon, January
2002.

[18] J-J. Lévy. Some results on the join-calculus. In
Martín Abadi and Takayasu Ito, editors, Third Inter-
national Symposium on Theoretical Aspects of Com-
puter Software (Proceedings of TACS ’97, Sendai,
Japan), volume 1281 of LNCS. Springer, 1997.

[19] A.C. Myers. JFlow: practical mostly-static informa-
tion flow control. In Proceedings of the 26th ACM
SIGPLAN-SIGACT on Principles of Programming
Languages, pages 228–241, San Antonio, Texas, Jan-
uary 1999. ACM Press.

[20] M. Odersky, C. Zenger, M. Zenger, and G. Chen. A
functional view of join. Technical Report ACRC-99-
016, University of South Australia, 1999.

[21] P. Ørbæk and J. Palsberg. Trust in the � -calculus.
Journal of Functional Programming, 7(4), 1997.

[22] F. Pottier. A simple view of type-secure informa-
tion flow in the � -calculus. In Proceedings of the
15th IEEE Computer Security Foundations Work-
shop, Cape Breton, Nova Scotia, June 2002.

[23] F. Pottier and S. Conchon. Information flow in-
ference for free. In Proceedings of the the Fifth
ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’00), pages 46–57, Mon-
tréal, Canada, September 2000.

[24] F. Pottier and V. Simonet. Information flow infer-
ence for ML. In Proceedings of the 29th ACM Sym-
posium on Principles of Programming Languages
(POPL’02), pages 319–330, Portland, Oregon, Jan-
uary 2002.

[25] A. Sabelfeld and D. Sands. A per model of secure in-
formation flow in sequential programs. In Program-
ming Languages and Systems, 8th European Sympo-
sium on Programming, ESOP’99, volume 1575 of

34 SYLVAIN CONCHON

Lecture Notes in Computer Science, pages 40–58.
Springer-Verlag, 1999.

[26] A. Sabelfeld and D. Sands. Probabilistic noninter-
ference for multi-threaded programs. In Proceed-
ings of the 13th IEEE Computer Security Founda-
tions Workshop, pages 200–214, Cambridge, Eng-
land, July 2000. IEEE Computer Society Press.

[27] G. Smith and D. Volpano. Secure information flow
in a multi-threaded imperative language. In The
25thACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, San Diego, Cali-
fornia, pages 355–364, New York, NY, 1998.

[28] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security, 4(3):1–21, 1996.

Session II

Logical Approaches

(joint with VERIFY)

35

A Trustworthy Proof Checker

Andrew W. Appel � Neophytos Michael �
Department of Computer Science Department of Computer Science

Princeton University Princeton University
appel@cs.princeton.edu nmichael@cs.princeton.edu

Aaron Stump
�

Roberto Virga �

Computer Science Department Department of Computer Science
Stanford University Princeton University
stump@stanford.edu rvirga@cs.princeton.edu

Abstract

Proof-Carrying Code (PCC) and other applications in
computer security require machine-checkable proofs of
properties of machine-language programs. The main ad-
vantage of the PCC approach is that the amount of code
that must be explicitly trusted is very small: it consists
of the logic in which predicates and proofs are expressed,
the safety predicate, and the proof checker. We have built
a minimal-TCB checker, and we explain its design princi-
ples, and the representation issues of the logic, safety pred-
icate, and safety proofs. We show that the trusted code in
such a system can indeed be very small. In our current
system the TCB is less than 2,700 lines of code (an order
of magnitude smaller even than other PCC systems) which
adds to our confidence of its correctness.

1 Introduction

Machine-verified proofs have applications in computer
security, program verification, and the formalization of
mathematics. We are particularly interested in security
applications such as proof-carrying code, in which an
untrusted program provider must send a proof that the
machine-language program is safe to execute; or proof-
carrying authorization, in which an untrusted client must
send a proof that some desired server operation conforms
to an authorization policy. The recipient doesn’t trust the
proof provider, so the recipient’s proof checker is an es-
sential component of the trusted computing base: a bug in
the proof checker can be a security hole in the larger sys-
tem. Therefore, the checker must be trustworthy: it must
be small, simple, readable, and based on well-understood

�
This research was supported in part by DARPA award F30602-99-1-

0519.�
his research was supported by DARPA/Air Force contract F33615-

00-C-1693 and NSF contract CCR-9806889.

engineering and mathematical principles.

In contrast, theorem provers are often large and ugly, as
required by the incompleteness results of Gödel and Tur-
ing: no prover of bounded size is sufficiently general, but
one can always hack more features into the prover until it
proves the desired class of theorems. It is difficult to fully
trust such software, so some proving systems use technical
means to ensure that buggy provers cannot produce invalid
proofs: the abstract data type theorem of LCF [14], or the
proof-witness objects of Coq [8] or Twelf [20]. With these
means, only a small part of a large system must be exam-
ined and trusted.

How large is the proof checker that must be examined
and trusted? To answer this question we have tried the ex-
periment of constructing and measuring the smallest pos-
sible useful proof checker for some real application. Our
checker receives, checks the safety of, and executes, proof-
carrying code: machine code for the Sparc with an accom-
panying proof of safety. The proof is in higher-order logic
represented in LF notation.

This checker would also be directly useful for proof-
carrying authorization [3, 9], that is, checking proofs of au-
thentication and permission according to some distributed
policy.

A useful measure of the effort required to examine, un-
derstand, and trust a program is its size in (non-blank, non-
comment) lines of source code. Although there may be
much variation in effort and complexity per line of code,
a crude quantitative measure is better than none. It is also
necessary to count, or otherwise account for, any compiler,
libraries, or supporting software used to execute the pro-
gram. We address this issue explicitly by avoiding the use
of libraries and by making the checker small enough so
that it can be examined in machine language.

The trusted computing base (TCB) of a proof-carrying
code system consists of all code that must be explicitly
trusted as correct by the user of the system. In our case

37

38 ANDREW W. APPEL, NEOPHYTOS MICHAEL, AARON STUMP, AND ROBERTO VIRGA

the TCB consists of two pieces: first, the specification
of the safety predicate in higher-order logic, and second,
the proof checker, a small C program that checks proofs,
loads, and executes safe programs.

In his investigation of Java-enabled browsers [11], Ed
Felten found that the first-generation implementations av-
eraged one security-relevant bug per 3,000 lines of source
code [13]. These browsers, as mobile-code host platforms
that depend on static checking for security, exemplify the
kind of application for which proof-carrying code is well
suited. Wang and Appel [7] measured the TCBs of vari-
ous Java Virtual Machines at between 50,000 and 200,000
lines of code. The SpecialJ JVM [10] uses proof-carrying
code to reduce the TCB to 36,000 lines.

In this work, we show how to reduce the size of the
TCB to under 2,700 lines, and by basing those lines on
a well understood logical framework, we have produced a
checker which is small enough so that it can be manually
verified; and as such it can be relied upon to accept only
valid proofs. Since this small checker “knows” only about
machine instructions, and nothing about the programming
language being compiled and its type system, the seman-
tic techniques for generating the proofs that the TCB will
check can be involved and complex [2], but the checker
doesn’t.

2 The LF logical framework

For a proof checker to be simple and correct, it is helpful
to use a well designed and well understood representation
for logics, theorems, and proofs. We use the LF logical
framework.

LF [15] provides a means for defining and presenting
logics. The framework is general enough to represent a
great number of logics of interest in mathematics and com-
puter science (for instance: first-order, higher-order, intu-
itionistic, classical, modal, temporal, relevant and linear
logics, and others). The framework is based on a general
treatment of syntax, rules, and proofs by means of a typed
first-order � -calculus with dependent types. The LF type
system has three levels of terms: objects, types, and kinds.
Types classify objects and kinds classify families of types.
The formal notion of definitional equality is taken to be
��� -conversion.

A logical system is presented by a signature, which as-
signs types and kinds to a finite set of constants that rep-
resent its syntax, its judgments, and its rule schemes. The
LF type system ensures that object-logic terms are well
formed. At the proof level, the system is based on the
judgments-as-types principle: judgments are represented
as types, and proofs are represented as terms whose type is
the representation of the theorem they prove. Thus, there
is a correspondence between type-checked terms and theo-
rems of the object logic. In this way proof checking of the
object logic is reduced to type checking of the LF terms.

For developing our proofs, we use Twelf [20], an im-
plementation of LF by Frank Pfenning and his students.
Twelf is a sophisticated system with many useful fea-
tures: in addition to an LF type checker, it contains a type-
reconstruction algorithm that permits users to omit many
explicit parameters, a proof-search algorithm, constraint
regimes (e.g., linear programming over the exact rational
numbers), mode analysis of parameters, a meta-theorem
prover, a pretty-printer, a module system, a configuration
system, an interactive Emacs mode, and more. We have
found many of these features useful in proof development,
but Twelf is certainly not a minimal proof checker. How-
ever, since Twelf does construct explicit proof objects in-
ternally, we can extract these objects to send to our mini-
mal checker.

In LF one declares the operators, axioms, and inference
rules of an object logic as constructors. For example, we
can declare a fragment of first-order logic with the type
form for formulas and a dependent type constructor pf
for proofs, so that for any formula A, the type pf(A) con-
tains values that are proofs of A. Then, we can declare
an “implies” constructor imp (infix, so it appears between
its arguments), so that if A and B are formulas then so is
A imp B. Finally, we can define introduction and elimi-
nation rules for imp.

form : type.
pf : form -> type.
imp : form -> form -> form. %in-
fix right 10 imp.
imp_i: (pf A -> pf B) -> pf (A imp B).
imp_e: pf (A imp B) -> pf A -> pf B.

All the above are defined as constructors. In general, con-
structors have the form � ��� � +��

and declare that � ��� �
is

a value of type
�

.
It is easy to declare inconsistent object-logic construc-

tors. For example, invalid: pf A is a constructor that
acts as a proof of any formula, so using it we could easily
prove the false proposition:

logic_inconsistent : pf (false) = invalid.

So the object logic should be designed carefully and must
be trusted.

Once the object logic is defined, theorems can be
proved. We can prove for instance that implication is tran-
sitive:

imp_trans:
pf (A imp B) -> pf (B imp C) -

> pf (A imp C) =
[p1: pf (A imp B)][p2: pf (B imp C)]
imp_i [p3: pf A] imp_e p2 (imp_e p1 p3).

In general, definitions (including predicates and the-
orems) have the form � ��� � +�� # ���
	

, which
means that � ��� �

is now to stand for the value
���
	

whose type is
�

. In this example, the
���
	

is a func-
tion with formal parameters p1 and p2, and with body
imp_i [p3] imp_e p2 (imp_e p1 p3).

A TRUSTWORTHY PROOF CHECKER 39

Definitions need not be trusted, because the type-
checker can verify whether

��� 	
does have type

�
. In gen-

eral, if a proof checker is to check the proof � of theo-
rem � in a logic � , then the constructors (operators and
axioms) of � must be given to the checker in a trusted
way (i.e., the adversary must not be free to install incon-
sistent axioms). The statement of � must also be trusted
(i.e., the adversary must not be free to substitute an irrel-
evant or vacuous theorem). The adversary provides only
the proof � , and then the checker does the proof checking
(i.e., it type-checks in the LF type system the definitionB + �M#%� , for some arbitrary name B).

3 Application: Proof-carrying code

Our checker is intended to serve a purpose: to check safety
theorems about machine-language programs. It is impor-
tant to include application-specific portions of the checker
in our measurements to ensure that we have adequately ad-
dressed all issues relating to interfacing to the real world.

The most important real-world-interface issue is, “is the
proved theorem meaningful?” An accurate checker does
no good if it checks the wrong theorem. As we will ex-
plain, the specification of the safety theorem is larger than
all the other components of our checker combined!

Given a machine-language program � , that is, a se-
quence of integers that code for machine instructions (on
the Sparc, in our case), the theorem is, “when run on the
Sparc, � never executes an illegal instruction, nor reads or
writes from memory outside a given range of addresses.”
To formalize this theorem it is necessary to formalize a
description of instruction execution on the Sparc proces-
sor. We do this in higher-order logic augmented with arith-
metic.

In our model [16], a machine state (�����) comprises a
register bank (�), and a memory (�), each of which is a
function from integers (register numbers and addresses) to
integers (contents). Every register of the instruction-set ar-
chitecture (ISA) must be assigned a number in the register
bank: the general registers, the floating-point registers, the
condition codes, and the program counter. Where the ISA
does not specify a number (such as for the PC) or when the
numbers for two registers conflict (such as for the floating
point and integer registers) we use an arbitrary unused in-
dex.

A single step of the machine is the execution of one in-
struction. We can specify instruction execution by giving
a step relation �B����� ��"� �B�<� ����� � that maps the prior state�B���\��� to the next state �D��� �\���	� that holds after the execu-
tion of the machine instruction.

For example, to describe the “add” instruction � A �
��� Y � � we might start by writing,

�B���\��� "� �B��� �����%� � � � ��[�� # ���
G�ZY �K�D�V�
��50 �/2# [U=4���5��� � # �K��� ��� ��� #M�

In fact, we can parameterize the above on the three
registers involved and define � ��� ���X�<�G� � � as the following
predicate on four arguments �B���\� �� � ��� � � :
� ��� ���W�<�U� � � �

� �������4��� �����1= ���"���"� # �K�7��� Y �K� � �
 �50 �/2# �X=4��� ��� � # �K��� ��� ��� #M�

Similarly, for the “load” instruction � � � � � � 0 Y ��� we
define its semantics to be the predicate:

��� � � ���X�<�G���>� �
� �������4��� �����1= ���"���"� #M���D�K�7��� Y �>�

 �50 �/2# �X=4��� ��� � # �K��� ��� ��� #M�
To enforce memory safety policies, we will modify the
definition of

��� � � ���X� �U���>� to require that the loaded address
is legal [2], but we omit those details here.

But we must also take into account instruction fetch and
decode. Suppose, for example, that the “add” instruction
is encoded as a 32-bit word, containing a 6-bit field with
opcode 3 denoting add, a 5-bit field denoting the destina-
tion register � , and 5-bit fields denoting the source registers
�G� � :

3 � � 0
�

26 21 16 5 0
The “load” instruction might be encoded as:

12 � � �
26 21 16 0

Then we can say that some number � decodes to an
instruction

� � ��� � iff,

�
	���
�
	 ��� � � � ��� � � �� �#�X�<�G� � =L �@���
�� L �*�)�
�� L � � �
��
� # � &�
 ��� Y*� &
 �

A
Y � &

A � Y � &�

;
� � ��� � #�� ��� ���X� �U� � �\�� � �#�X�<�G����=L �@���
�� L �*�)�
�� L � ���

A �

� # [
S&
 ��� Y=�Z&
 �
A
Y � &

A � Y � &

;
� � ��� � # ��� � � ���W�<�U��>�\�� =>=:=

with the ellipsis denoting the many other instructions of
the machine, which must also be specified in this formula.

We have shown [16] how to scale this idea up to the
instruction set of a real machine. Real machines have
large but semi-regular instruction sets; instead of a single
global disjunction, the decode relation can be factored into
operands, addressing modes, and so on. Real machines
don’t use integer arithmetic, they use modular arithmetic,
which can itself be specified in our higher-order logic.
Some real machines have multiple program counters (e.g.,
Sparc) or variable-length instructions (e.g., Pentium), and
these can also be accommodated.

40 ANDREW W. APPEL, NEOPHYTOS MICHAEL, AARON STUMP, AND ROBERTO VIRGA

Our description of the decode relation is heavily fac-
tored by higher-order predicates (this would not be possi-
ble without higher-order logic). We have specified the exe-
cution behavior of a large subset of the Sparc architecture,
and we have built a prototype proof-generating compiler
that targets that subset. For proof-carrying code, it is suf-
ficient to specify a subset of the machine architecture; any
unspecified instruction will be treated by the safety policy
as illegal. While this may be inconvenient for compilers
that want to generate that instruction, it does ensure that
safety cannot be compromised.

4 Specifying safety

Our step relation �B����� ��"� �B�<� �����	� is deliberately partial;
some states have no successor state. In these states the pro-
gram counter �K� PC � points to an illegal instruction. Using
this partial step relation, we can define safety. A safe pro-
gram is one that will never execute an illegal instruction;
that is, a given state is safe if, for any state reachable in
the Kleene closure of the step relation, there is a successor
state:

safe-state �D����� � � 0 ���1������= �D����� ��"� � �D��� ����� � �
�9��� �5����� ��= �D� �5�\���	��" � �D� � �5����� � �

A program is just a sequence of integers (each repre-
senting a machine instruction); we say that a program � is
loaded at a location 	 in memory � if

��� � �
	�� ���Z�\� ��	1� � 0 � � �
��� ��� �J= �/��� Y@	1�E#�� ���'�
Finally (assuming that programs are written in position-
independent code), a program is safe if, no matter where
we load it in memory, we get a safe state:

� � � 	 � � � � 0 ������� �"=��� � ��	�� � � ����� ��� �K� PC � # � � safe-state �D����� �
Let ; be a “cons” operator for sequences of integers

(easily definable in HOL); then for some program 8420;

2837; 2938; 2384; nil the safety theorem is simply:

safe (8420; 2837; 2938; 2384; nil)

and, given a proof � , the LF definition that must be type-
checked is:

t: pf(safe(8420; 2837; 2938; 2384; nil)) = � .

Though we wrote in section 2 that definitions need not
be trusted because they can be type-checked, this is not
strictly true. Any definition used in the statement of the
theorem must be trusted, because the wrong definition will
lead to the proof of the wrong theorem. Thus, all the def-
initions leading up to the definition of safe (including
add, load, safe-state, step, etc.) must be part of the
trusted checker. Since we have approximately 1,600 lines

of such definitions, and they are a component of our “min-
imal” checker, one of the most important issues we faced
is the representation of these definitions; we discuss this in
Section 7.

On the other hand, a large proof will contain hundreds
of internal definitions. These are predicates and internal
lemmas of the proof (not of the statement of the theorem),
and are at the discretion of the proof provider. Since each
is type checked by the checker before it is used in further
definitions and proofs, they don’t need to be trusted.

In the table below we show the various pieces needed for
the specification of the safety theorem in our logic. Every
piece in this table is part of the TCB. The first two lines
show the size of the logical and arithmetic connectives (in
which theorems are specified) as well as the size of the
logical and arithmetic axioms (using which theorems are
proved). The Sparc specification has two components, a
“syntactic” part (the decode relation) and a semantic part
(the definitions of add, load, etc.); these are shown in the
next two lines. The size of the safety predicate is shown
last.

Safety Specification Lines Definitions
Logic 135 61
Arithmetic 160 94
Machine Syntax 460 334
Machine Semantics 1,005 692
Safety Predicate 105 25

Total 1,865 1,206

From this point on we will refer to everything in the table
as the safety specification or simply the specification.

5 Eliminating redundancy

Typically an LF signature will contain much redundant in-
formation. Consider for example the rule for imp intro-
duction presented previously; in fully explicit form, their
representation in LF is as follows:

imp_i : {A : form}{B : form}
(pf A -> pf B) -> pf (A imp B).

The fact that both A and B are formulas can be easily in-
ferred by the fact they are given as arguments to the con-
structor imp, which has been previously declared as an op-
erator over formulas.

On the one hand, eliminating redundancy from the rep-
resentation of proofs benefits both proof size and type-
checking time. On the other hand, it requires performing
term reconstruction, and thus it may dramatically increase
the complexity of type checking, driving us away from our
goal of building a minimal checker.

Twelf deals with redundancy by allowing the user to
declare some parameters as implicit. More precisely, all
variables which are not quantified in the declaration are

A TRUSTWORTHY PROOF CHECKER 41

automatically assumed implicit. Whenever an operator is
used, Twelf’s term reconstruction will try to determine the
correct substitution for all its implicit arguments. For ex-
ample, in type-checking the lemma

imp_refl: pf (A imp A) = imp_i ([p : pf A] p).

Twelf will automatically reconstruct the two implicit argu-
ments of imp_i to be both equal to A.

While Twelf’s notion of implicit arguments is effective
in eliminating most of the redundancy, type reconstruc-
tion adds considerable complexity to the system. Another
drawback of Twelf’s type reconstruction is its reliance on
higher-order unification, which is undecidable. Because of
this, type checking of some valid proofs may fail.

Since full type reconstruction is too complex to use in a
trusted checker, one might think of sending fully explicit
LF proof terms; but a fully explicit proof in Twelf syntax
can be exponentially larger than its implicit representation.
To avoid these problems, Necula’s ����� [18] uses partial
type reconstruction and a simple algorithm to determine
which of the arguments can be made implicit. Implicit
arguments are omitted in the representation, and replaced
by placeholders. Oracle-based checking [19] reduces the
proof size even further by allowing the erasure of subterms
whose reconstruction is not uniquely determined. Specifi-
cally, in cases when the reconstruction of a subterm is not
unique, but there is a finite (and usually small) list of can-
didates, it stores an oracle for the right candidate number
instead of storing the entire subterm.

These techniques use clever syntactic representations of
proofs that minimize proof size; checking these represen-
tations is not as complex as full Twelf-style type recon-
struction, but is still more complex than is appropriate for
a minimal proof checker. We are willing to tolerate some-
what larger proofs in exchange for a really simple checking
algorithm. Instead of using a syntactic representation of
proofs, we avoid the need for the checker to parse proofs
by using a data-structure reprentation. However, we still
need to avoid exponential blowups, so we reduce redun-
dancy by structure sharing. Therefore, we represent and
transmit proofs as LF terms in the form of directed acyclic
graphs (DAGs), with structure sharing of common subex-
pressions to avoid exponential blowup.

A node in the DAG can be one of ten possible types:
one for kinds, five for ordinary LF terms, and four for
arithmetic expressions. Each node may store up to three
integers, arg1, arg2, and type. This last one, if present,
will always point to the sub-DAG representing the type of
the expression.

arg1 arg2 type
n U U U kind
c U U M constant
v M M M variable
a M M O application
p M M O product
l M M O abstraction
M U O number
+ M M O addition proof object
* M M O mult proof object
/ M M O div proof object

M = mandatory, O = optional, U = unused

The content of arg1 and arg2 is used in different ways
for different node types. For all nodes representing arith-
metic expressions (‘#’, ‘+’, ‘*’, and ‘/’), they contain in-
teger values. For products and abstractions (‘p’ and ‘l’),
arg1 points to the bound variable, and arg2 to the term
where the binding takes place. For variable nodes (‘v’),
they are used to make sure that the variable always oc-
curs within the scope of a quantifier. For application nodes
(‘a’), they point to the function and its argument, respec-
tively. Finally, constant declaration nodes (‘c’), and kind
declaration nodes (‘n’) use neither.

For a concrete example, consider the LF signature:

form : type.
pf : form -> type.
imp : form -> form -> form.

We present below the DAG representation of this signa-
ture. We “flattened” the DAG into a numbered list, and,
for clarity, we also added a comment on the right showing
the corresponding LF term.

1| n 0 0 0 ; type Kind
2| c 0 0 1 ; form: type
3| v 0 0 2 ; x: form
4| p 3 1 0 ; {x: form} type
5| c 0 0 4 ; pf: {x: form} type
6| v 0 0 2 ; y: form
7| p 6 2 0 ; {y: form} form
8| v 0 0 2 ; x: form
9| p 8 7 0 ; {x: form}{y: form} form
10| c 0 0 9 ; imp: {x: form}{y: form} form

6 Dealing with arithmetic

Since our proofs reason about encodings of machine in-
structions (opcode calculations) and integer values manip-
ulated by programs, the problem of representing arithmetic
within our system is a critical one. A purely logical rep-
resentation based on 0, successor and predecessor is not
suitable to us, since it would cause proof size to explode.

The latest releases of Twelf offer extensions that deal na-
tively with infinite-precision integers and rationals. While
these extensions are very powerful and convenient to use,
they offer far more than we need, and because of their
generality they have a very complex implementation (the

42 ANDREW W. APPEL, NEOPHYTOS MICHAEL, AARON STUMP, AND ROBERTO VIRGA

rational extension alone is 1,950 lines of Standard ML).
What we would like for our checker is an extension built
in the same spirit as those, but much simpler and lighter.

We require two properties from such an extension:

1. LF terms for all the numbers we use; moreover, the
size of the LF term for � should be constant and in-
dependent of � .

2. Proof objects for single-operation arithmetic facts
such as “ [�L Y
 #7[
 ”; again, we require that such
proof objects have constant size.

Our arithmetic extensions to the checker are the smallest
and simplest ones to satisfy (1) and (2) above. We add
the word32 type to the TCB, (representing integers in the
range [L ��
 � � []) as well as the following axioms:

+ : word32 -> word32 -> word32 -> type.
* : word32 -> word32 -> word32 -> type.
/ : word32 -> word32 -> word32 -> type.

We also modify the checker to accept arithmetic terms
such as:

456+25 : + 456 25 481.
32*4 : * 32 4 128.

This extension does not modify in any way the standard
LF type checking: we could have obtained the same result
(although much more inefficiently) if we added all these
constants to the trusted LF signature by hand. However,
granting them special treatment allowed us to save literally
millions of lines in the axioms in exchange for an extra 55
lines in the checker.

To embed and use these new constants in our object
logic, we also declare:

c: word32 -> tm num.

eval_plus: + A B C ->
pf (eq (plus (c A) (c B)) (c C)).

eval_times: * A B C ->
pf (eq (times (c A) (c B)) (c C)).

eval_div: / M N Q ->
pf ((geq (c M) (times (c N) (c Q))) and

(not (geq (c M) (times (c N)
(plus one (c Q)))))).

This embedding from word32 to numbers in our object
logic is not surjective. Numbers in our object logic are still
unbounded; word32merely provides us with handy names
for the ones used most often.

With this “glue” to connect object logic to meta logic,
numbers and proofs of elementary arithmetic properties,
are just terms of size two.

7 Representing axioms and trusted
definitions

Since we can represent axioms, theorems, and proofs as
DAGs, it might seem that we need neither a parser nor
a pretty-printer in our minimal checker. In principle, we
could provide our checker with an initial trusted DAG rep-
resenting the axioms and the theorem to be proved, and
then it could receive and check an untrusted DAG repre-
senting the proof. The trusted DAG could be represented
in the C language as an initialized array of graph nodes.

This might work if we had a very small number of ax-
ioms and trusted definitions, and if the statement of the
theorem to be proved were very small. We would have to
read and trust the initialized-array statements in C, and un-
derstand their correspondence to the axioms (etc.) as we
would write them in LF notation. For a sufficiently small
DAG, this might be simpler than reading and trusting a
parser for LF notation.

However, even a small set of operators and axioms (es-
pecially once the axioms of arithmetic are included) re-
quires hundreds of graph nodes. In addition, as explained
in section 4, our trusted definitions include the machine-
instruction step relation of the Sparc processor. These
1,865 lines of Twelf expand to 22,270 DAG nodes. Clearly
it is impossible for a human to directly read and trust a
graph that large.

Therefore, we require a parser or pretty-printer in the
minimal checker; we choose to use a parser. Our C pro-
gram will parse the 1,865 lines of axioms and trusted def-
initions, translating the LF notation into DAG nodes. The
axioms and definitions are also part of the C program:
they are a constant string to which the parser is applied
on startup.

This parser is 428 lines of C code; adding these lines to
the minimal checker means our minimal checker can use
1,865 lines of LF instead of 22,270 lines of graph-node ini-
tializers, clearly a good tradeoff. Our parser accepts valid
LF expressions, written in the same syntax used by Twelf.
For more details see the full version of the paper [6].

7.1 Encoding higher-order logic in LF

Our encoding of higher-order logic in LF follows that of
Harper et al. [15] and is shown in figure 1. The construc-
tors generate the syntax of the object logic and the axioms
generate its proofs. A meta-logical type is type and an
object-logic type is tp. Object-logic types are constructed
from form (the type of formulas), num (the type of inte-
gers), and the arrow constructor. The LF term tm maps
an object type to a meta type, so an object-level term of
type T has type (tm T) in the meta logic.

Abstraction in the object logic is expressed by the lam

term. The term (lam [x] (F x)) is the object-logic
function that maps x to (F x). Application for such

A TRUSTWORTHY PROOF CHECKER 43

Logic Constructors

tp : type.
tm : tp -> type.
form : tp.
arrow : tp -> tp -> tp.
pf : tm form -> type.
lam : (tm T1 -> tm T2) -> tm (T1 arrow T2).
@ : tm (T1 arrow T2) -> tm T1 -> tm T2.
forall : (tm T -> tm form) -> tm form.
imp : tm form -> tm form -> tm form.

Logic Axioms

beta_e : pf (P ((lam F) @ X)) -> pf (P (F X)).
beta_i : pf (P (F X)) -> pf (P (lam F) @ X).
imp_i : (pf A -> pf B) -> pf (A imp B).
imp_e : pf (A imp B) -> pf A -> pf B.
forall_i : ({X : tm T} pf (A X)) -> pf (forall A).
forall_e : pf (forall A) -> {X : tm T} pf (A X).

Figure 1: Higher-Order Logic in Twelf

lambda terms is expressed via the @ operator. The quan-
tifier forall is defined to take as input a meta-level
(LF) function of type (tm T -> tm form) and produce
a tm form. The use of the LF functions here makes it easy
to perform substitution when a proof of forall needs to
be discharged, since equality in LF is just ��� -conversion.

Notice that most of the standard logical connectives are
absent from figure 1. This is because we can produce them
as definitions from the constructors we already have. For
instance, conjunction can be defined as follows:

and = [A][B] forall [C] (A imp B imp C) imp C.

It is easy to see that the above formula is equivalent to the
standard definition of and. We can likewise define intro-
duction and elimination rules for all such logic construc-
tors. These rules are proven as lemmas and need not be
trusted. Object-level equality1 is also easy to define:

eq : tm T -> tm T -> tm form =
[A][B] forall [P] P @ B imp P @ A.

This states that objects A and B are considered equal iff any
predicate P that holds on B also holds on A.

Terms of type pf A are terms representing proofs of ob-
ject formula A. Such terms are constructed using the ax-
ioms of figure 1. Axioms beta_i and beta_e are used to
prove � -equivalence in the object logic, imp_i and imp_e
transform a meta-level proof function to the object level

1The equality predicate eq is polymorphic in T. Objects A and B have object
type T and so they could be nums, forms or even object level functions (arrow
types). The object type T is implicit in the sense that when we use the eq predicate
we do not have to specify it; Twelf can automatically infer it. So internally, the
meta-level type of eq is not what we have specified above but the following:

{T : tp} tm T -> tm T -> tm form.
We will have more to say about this in section 7.2.

and vice-versa, and finally, forall_i and forall_e in-
troduce and eliminate the universal quantifier.

7.2 “Polymorphic” programming in Twelf

ML-style implicit polymorphism allows one to write a
function usable at many different argument types, and ML-
style type inference does this with a low syntactic over-
head. We are writing proofs, not programs, but we would
still like to have polymorphic predicates and polymorphic
lemmas. LF is not polymorphic in the ML sense, but
Harper et al. [15] show how to use LF’s dependent type
system to get the effect and (most of) the convenience of
implicit parametric polymorphism with an encoding trick,
which we will illustrate with an example.

Suppose we wish to write the lemma congr that would
allow us to substitute equals for equals:

congr : {H : type -> tm form}
pf (eq X Z) -> pf (H Z) -> pf (H X) = ...

The lemma states that for any predicate H, if H holds on
Z and Z # X then H also holds on X. Unfortunately this
is ill-typed in LF since LF does not allow polymorphism.
Fortunately though, there is way to get polymorphism at
the object level. We rewrite congr as:

congr : {H : tm T -> tm form}
pf (eq X Z) -> pf (H Z) -> pf (H X) = ...

and this is now acceptable to Twelf. Function H now
judges objects of meta-type (tm T) for any object-level
type T, and so congr is now “polymorphic” in T. We
can apply it on any object-level type, such as num, form,
num arrow form, etc. This solution is general enough to

44 ANDREW W. APPEL, NEOPHYTOS MICHAEL, AARON STUMP, AND ROBERTO VIRGA

allow us to express any polymorphic term or lemma with
ease. Axioms forall_i and forall_e in figure 1 are
likewise polymorphic in T.

7.3 How to write explicit Twelf

In the definition of lemma congr above, we have
left out many explicit parameters since Twelf’s type-
reconstruction algorithm can infer them. The explicit ver-
sion of the LF term congr is:

congr : {T : tp}{X : tm T}{Z : tm T}
{H : tm T -> tm form}

pf (_eq T X Z) -> pf (H Z) -> pf (H X) = ...

(here we also make use of the explicit version of the
equality predicate _eq). Type reconstruction in Twelf is
extremely useful, especially in a large system like ours,
where literally hundreds of definitions and lemmas have to
be stated and proved.

Our safety specification was originally written to take
advantage of Twelf’s ability to infer missing arguments.
Before proof checking can begin, this specification needs
to be fed to our proof checker. In choosing then what
would be in our TCB we had to decide between the fol-
lowing alternatives:

1. Keep the implicitly-typed specification in the TCB
and run it through Twelf to produce an explicit ver-
sion (with no missing arguments or types). This ex-
plicit version would be fed to our proof checker. This
approach allows the specification to remain in the im-
plicit style. Also our proof checker would remain
simple (with no type reconstruction/inference capa-
bilities) but unfortunately we now have to add to the
TCB Twelf’s type-reconstruction and unification al-
gorithms, which are about 5,000 lines of ML code.

2. Run the implicitly typed specification through Twelf
to get an explicit version. Now instead of trusting the
implicit specification and Twelf’s type-reconstruction
algorithms, we keep them out of the TCB and pro-
ceed to manually verify the explicit version. This ap-
proach also keeps the checker simple. Unfortunately
the explicit specification produced by Twelf explodes
in size from 1,700 to 11,000 lines, and thus the code
that needs to be verified is huge. The TCB would
grow by a lot.

3. Rewrite the trusted definitions in an explicit style.
Now we do not need type reconstruction in the TCB
(the problem of choice 1), and if the rewrite from the
implicit to the explicit style can avoid the size explo-
sion (the problem of choice 2), then we have achieved
the best of both worlds.

Only choice 3 was consistent with our goal of a small
TCB so we rewrote the trusted definitions in an explicit

style while managing to avoid the size explosion. The new
safety specification is only 1,865 lines of explicitly-typed
Twelf. It contains no terms with implicit arguments and so
we do not need a type-reconstruction/type-inference algo-
rithm in the proof checker. The rewrite solves the problem
while maintaining the succinctness and brevity of the orig-
inal TCB, the penalty of the explicit style being an increase
in size of 124 lines. The remainder of this section explains
the problem in detail and the method we used to bypass it.

To see why there is such an enormous difference in
size (1,700 lines vs 11,000) between the implicit specifi-
cation and its explicit representation generated by Twelf’s
type-reconstruction algorithm, consider the following ex-
ample. Let F be a two-argument object-level predicate
F : tm (num arrow num arrow form) (typical case
when describing unary operators in an instruction set).
When such a predicate is applied, as in (F @ X @ Y),
Twelf has to infer the implicit arguments to the two in-
stances of operator @. The explicit representation of the
application then becomes:

@ num form (@ num (num arrow form) F X) Y

It is easy to see how the explicit representation explodes
in size for terms of higher order. Since the use of higher-
order terms was essential in achieving maximal factoring
in the machine descriptions [16], the size of the explicit
representation quickly becomes unmanageable.

Here is another more concrete example from the
decode relation of section 3. This one shows how the ab-
straction operator lam suffers from the same problem. The
predicate below (given in implicit form) is used in specify-
ing the syntax of all Sparc instructions of two arguments.

fld2 = lam6 [f0][f1][p_pi][icons][ins][w]
p_pi @ w and
exists2 [g0][g1] (f0 @ g0 && f1 @ g1) @ w and

eq ins (icons @ g0 @ g1).

Predicates f0 and f1 specify the input and the output reg-
isters, p_pi decides the instruction opcode, icons is the
instruction constructor, ins is the instruction we are de-
coding, and w is the machine-code word. In explicit form
this turns into what we see on the left-hand side of figure 2
– an explicitly typed definition 16 lines long.

The way around this problem is the following: We avoid
using object-logic predicates whenever possible. This way
we need not specify the types on which object-logic ap-
plication and abstraction are used. For example, the fld2
predicate above now becomes what we see on the right-
hand side of figure 2. This new predicate has shrunk in
size by more than half.

Sometimes moving predicates to the meta-logic is not
possible. For instance, we represent instructions as pred-
icates from machine states to machine states (see sec-
tion 3). Such predicates must be in the object logic
since we need to be able to use them in quantifiers
(exists [ins : tm instr] ...). Thus, we face the

A TRUSTWORTHY PROOF CHECKER 45

Object Logic Abstraction/Application

fld2 = [T1:tp][T2:tp][T3:tp][T4:tp]
lam6 (arrow T1 (arrow T2 form))

(arrow T3 (arrow T2 form))
(arrow T2 form)
(arrow T1 (arrow T3 T4))
T4 T2 form

[f0][f1][p_pi][icons][ins][w]
(@ T2 form p_pi w) and
(exists2 T1 T3 [g0:tm T1] [g1:tm T3]

(@ T2 form
(&& T2 (@ T1 (arrow T2 form) f0 g0)

(@ T3 (arrow T2 form) f1 g1)) w) and
(eq T4 ins (@ T3 T4 (@ T1 (arrow T3 T4)

icons g0) g1))).

Meta Logic Abstraction/Application

fld2 = [T1:tp][T2:tp][T3:tp][T4:tp]
[f0][f1][p_pi][icons][ins][w]
(p_pi w) and
(exists2 [g0:tm T1][g1:tm T3]
(f0 g0 && f1 g1) w) and
(eq ins (icons g0 g1)).

Figure 2: Abstraction & Application in the Object versus Meta Logic.

problem of having to supply all the implicit types when
defining and applying such predicates. But since these
types are always fixed we can factor the partial applica-
tions and avoid the repetition. For example, when defining
some Sparc machine instruction as in:

i_anyInstr = lam2 [rs : tnum][rd : tnum]
lam4 registers memory registers memory form
[r : tregs][m : tmem][r’ : tregs][m’ : tmem]
...

we define the predicate instr_lam as:

instr_lam = lam4 registers memory
registers memory form.

and then use it in defining each of the 250 or so Sparc
instructions as below:

i_anyInstr = [rs : tnum][rd : tnum]
instr_lam [r : tregs][m : tmem]

[r’ : tregs][m’ : tmem] ...

This technique turns out to be very effective because our
machine syntax and semantics specifications were highly
factored to begin with [16].

So by moving to the meta logic and by clever factor-
ing we have moved the TCB from implicit to explicit style
with only a minor increase in size. Now we don’t have to
trust a complicated type-reconstruction/type-inference al-
gorithm. What we feed to our proof checker is precisely
the set of axioms we explicitly trust.

7.4 The implicit layer

When we are building proofs, we still wish to use the im-
plicit style because of its brevity and convenience. For this
reason we have built an implicit layer on top of our explicit
TCB. This allows us to write proofs and definitions in the
implicit style and LF’s ��� -conversion takes care of estab-
lishing meta-level term equality. For instance, consider the
object-logic application operator _@ given below:

_@: {T1 : tp}{T2 : tp} tm (T1 arrow T2) ->
tm T1 -> tm T2.

In the implicit layer we now define a corresponding appli-
cation operator @ in terms of _@ as follows:

@: tm (T1 arrow T2) -> tm T1 -> tm T2 =
_@ T1 T2.

In this term the type variables T1 and T2 are implicit and
need not be specified when @ is used. Because @ is a defini-
tion used only in proofs (not in the statement of the safety
predicate), it does not have to trusted.

8 The proof checker

The total number of lines of code that form our checker is
2,668. Of these, 1,865 are used to represent the LF sig-
nature containing the core axioms and definition, which is
stored as a static constant string. The remaining 803 lines
of C source code, can be broken down as follows:

Component Lines
Error messaging 14
Input/Output 29
Parser 428
DAG creation and manipulation 111
Type checking and term equality 167
Main program 54

Total 803

We make no use of libraries in any of the components
above. Libraries often have bugs, and by avoiding their
use we eliminate the possibility that some adversary may
exploit one of these bugs to disable or subvert proof check-
ing. However, we do make use of two POSIX calls: read,
to read the program and proof, and _exit, to quit if the
proof is invalid. This seems to be the minimum possible
use of external libraries.

46 ANDREW W. APPEL, NEOPHYTOS MICHAEL, AARON STUMP, AND ROBERTO VIRGA

8.1 Trusting the C compiler

We hasten to point out that these 803 lines of C need to
be compiled by a C compiler, and so it would appear that
this compiler would need to be included in our TCB. The C
compiler could have bugs that may potentially be exploited
by an adversary to circumvent proof checking. More dan-
gerously perhaps, the C compiler could have been written
by the adversary so while compiling our checker, it could
insert a Thompson-style [22] Trojan horse into the exe-
cutable of the checker.

All proof verification systems suffer from this problem.
One solution (as suggested by Pollack [21]) is that of in-
dependent checking: write the proof checker in a widely
used programming language and then use different com-
pilers of that language to compile the checker. Then, run
all your checkers on the proof in question. This is similar
to the way mathematical proofs are “verified” as such by
mathematicians today.

The small size of our checker suggests another solution.
Given enough time one may read the output of the C com-
piler (assembly language or machine code) and verify that
this output faithfully implements the C program given to
the compiler. Such an examination would be tedious but
it is not out of the question for a C program the size of
our checker (3900 Sparc instructions, as compiled), and
it could be carried out if such a high level of assurance
was necessary. Such an investigation would certainly un-
cover Thompson-style Trojan horses inserted by a mali-
cious compiler. This approach would not be feasible for
the JVMs mentioned in the introduction; they are simply
too big.

8.2 Proof-checking measurements

In order to test the proof checker, and measure its perfor-
mance, we wrote a small Standard ML program that con-
verts Twelf internal data structures into DAG format, and
dumps the output of this conversion to a file, ready for con-
sumption by the checker.

We performed our measurements on a sample proof of
nontrivial size, that proves a substantial lemma that will
be used in proofs of real Sparc programs. (We have not
yet built a full lemma base and prover that would allow us
to test full safety proofs.) In its original formulation, our
sample proof is 6,367 lines of Twelf, and makes extensive
use of implicit arguments. Converted to its fully explicit
form, its size expands to 49,809 lines. Its DAG represen-
tation consists of 177,425 nodes.

Checking the sample proof consists of the four steps:
parsing the TCB, loading the proof from disk, checking
the DAG for well-formedness, and type-checking the proof
itself. The first three steps take less than a second to com-
plete, while the last step takes 79.94 seconds.

The measurements above were made on a 1 GHz Pen-
tium III PC with 256MB of memory. During type check-

ing of this proof the number of temporary nodes generated
is 1,115,768. Most of the time during type-checking is
spent in performing substitutions. All the lemmas and def-
initions we use in our proofs are closed expressions, and
therefore they do not need to be traversed when substitut-
ing for a variable. We are currently working on an opti-
mization that will allow our checker to keep track of closed
subexpressions and to avoid their traversal during substitu-
tion. We believe this optimization can be achieved without
a significant increase in the size of the checker, and it will
allow us to drastically reduce type-checking time.

9 Future work

The DAG representation of proofs is quite large, and we
would like to do better. One approach would be to com-
press the DAGs in some way; another approach is to use
a compressed form of the LF syntactic notation. However,
we believe that the most promising approach is neither of
these.

Our proofs of program safety are structured as follows:
first we prove (by hand, and check by machine) many
structural lemmas about machine instructions and seman-
tics of types [4, 5, 1]. Then we use these lemmas to prove
(by hand, as derived lemmas) the rules of a low-level typed
assembly language (TAL). Our TAL has several important
properties:

1. Each TAL operator corresponds to exactly 0 or 1 ma-
chine instructions (0-instruction operators are coer-
cions that serve as hints to the TAL typechecker and
do nothing at runtime).

2. The TAL rules prescribe Sparc instruction encodings
as well as the more conventional [17] register names,
types, and so on.

3. The TAL typing rules are syntax-directed, so type-
checking a TAL expression is decidable by a simple
tree-walk without backtracking.

4. The TAL rules can be expressed as a set of Horn
clauses.

Although we use higher-order logic to state and prove
lemmas leading up to the proofs of the TAL typing rules,
and we use higher-order logic in the proofs of the TAL
rules, we take care to make all the statements of the TAL
rules first-order Horn clauses. Consider a clause such as:
head :- goal1 , goal2 , goal3. In LF (using our
object logic) we could express this as a lemma:

n : pf (goal3) -> pf (goal2) ->
pf (goal1) -> pf (head) = proof.

Inside proof there may be higher-order abstract syntax,
quantification, and so on, but the goals are all Prolog-
style. The name n identifies the clause.

A TRUSTWORTHY PROOF CHECKER 47

Our compiler produces Sparc machine code using a se-
ries of typed intermediate languages, the last of which is
our TAL. Our prover constructs the safety proof for the
Sparc program by “executing” the TAL Horn clauses as
a logic program, using the TAL expression as input data.
The proof is then a tree of clause names, corresponding to
the TAL typing derivation.

We can make a checker that takes smaller proofs by just
implementing a simple Prolog interpreter (without back-
tracking, since TAL is syntax-directed). But then we
would need to trust the Prolog interpreter and the Prolog
program itself (all the TAL rules). This is similar to what
Necula [18] and Morrisett et al. [17] do. The problem
is that in a full-scale system, the TAL comprises about a
thousand fairly complex rules. Necula and Morrisett have
given informal (i.e., mathematical) proofs of the sound-
ness of their type systems for prototype languages, but no
machine-checked proof, and no proof of a full-scale sys-
tem.

The solution, we believe, is to use the technology we
have described in this paper to check the derivations of
the TAL rules from the logic axioms and the Sparc spec-
ification. Then, we can add a simple (non-backtracking)
Prolog interpreter to our minimal checker, which will no
longer be minimal: we estimate that this interpreter will
add 200–300 lines of C code.

The proof producer (adversary) will first send to our
checker, as a DAG, the definitions of Horn clauses for
the TAL rules, which will be LF-typechecked. Then, the
“proofs” sent for machine-language programs will be in
the form of TAL expressions, which are much smaller than
the proof DAGs we measured in section 8.

A further useful extension would be to implement
oracle-based checking [19]. In this scheme, a stream
of “oracle bits” guides the application of a set of Horn
clauses, so that it would not be necessary to send the TAL
expression – it would be re-derived by consulting the or-
acle. This would probably give the most concise safety
proofs for machine-language programs, and the implemen-
tation of the oracle-stream decoder would not be too large.
Again, in this solution the Horn clauses are first checked
(using a proof DAG), and then they can be used for check-
ing many successive TAL programs.

Although this approach seems very specific to our appli-
cation in proof-carrying code, it probably applies in other
domains as well. Our semantic approach to distributed au-
thentication frameworks [3] takes the form of axioms in
higher-order logic, which are then used to prove (as de-
rived lemmas) first-order protocol-specific rules. While in
that work we did not structure those rules as Horn clauses,
more recent work in distributed authentication [12] does
express security policies as sets of Horn clauses. By com-
bining the approaches, we could have our checker first ver-
ify the soundness of a set of rules (using a DAG of higher-
order logic) and then interpret these rules as a Prolog pro-

gram.

10 Conclusion

Proof-carrying code has a number of technical advantages
over other approaches to the security problem of mobile
code. We feel that the most important of these is the fact
that the trusted code of such a system can be made small.
We have quantified this and have shown that in fact the
trusted code can be made orders of magnitude smaller than
in competing systems (JVMs). We have also analyzed
the representation issues of the logical specification and
shown how they relate to the size of the safety predicate
and the proof checker. In our system the trusted code itself
is based on a well understood and analyzed logical frame-
work, which adds to our confidence of its correctness.

Bibliography

[1] Amal J. Ahmed, Andrew W. Appel, and Roberto
Virga. A stratified semantics of general references
embeddable in higher-order logic. In In Proceed-
ings of the 17th Annual IEEE Symposium on Logic
in Computer Science (LICS 2002), July 2002.

[2] Andrew W. Appel. Foundational proof-carrying
code. In Symposium on Logic in Computer Science
(LICS ’01), pages 247–258. IEEE, 2001.

[3] Andrew W. Appel and Edward W. Felten. Proof-
carrying authentication. In 6th ACM Conference
on Computer and Communications Security. ACM
Press, November 1999.

[4] Andrew W. Appel and Amy P. Felty. A seman-
tic model of types and machine instructions for
proof-carrying code. In POPL ’00: The 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 243–253, New York,
January 2000. ACM Press.

[5] Andrew W. Appel and David McAllester. An in-
dexed model of recursive types for foundational
proof-carrying code. ACM Trans. on Programming
Languages and Systems, pages 657–683, September
2001.

[6] Andrew W. Appel, Neophytos G. Michael, Aaron
Stump, and Roberto Virga. A Trustworthy Proof
Checker. Technical Report CS-TR-648-02, Prince-
ton University, April 2002.

[7] Andrew W. Appel and Daniel C. Wang. JVM TCB:
Measurements of the trusted computing base of Java
virtual machines. Technical Report CS-TR-647-02,
Princeton University, April 2002.

48 ANDREW W. APPEL, NEOPHYTOS MICHAEL, AARON STUMP, AND ROBERTO VIRGA

[8] Bruno Barras, Samuel Boutin, Cristina Cornes,
Judicaël Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Filliâtre, Ed-
uardo Giménez, Hugo Herbelin, Gérard Huet, Henri
Laulhère, César Muñoz, Chetan Murthy, Cather-
ine Parent-Vigouroux, Patrick Loiseleur, Christine
Paulin-Mohring, Amokrane Saïbi, and Benjamin
Werner. The Coq Proof Assistant reference manual.
Technical report, INRIA, 1998.

[9] Lujo Bauer, Michael A. Schneider, and Edward W.
Felten. A general and flexible access-control system
for the web. In Proceedings of USENIX Security, Au-
gust 2002.

[10] Christopher Colby, Peter Lee, George C. Necula,
Fred Blau, Ken Cline, and Mark Plesko. A certify-
ing compiler for Java. In Proceedings of the 2000
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’00), New
York, June 2000. ACM Press.

[11] Drew Dean, Edward W. Felten, Dan S. Wallach, and
Dirk Balfanz. Java security: Web browers and be-
yond. In Dorothy E. Denning and Peter J. Denning,
editors, Internet Beseiged: Countering Cyberspace
Scofflaws. ACM Press (New York, New York), Octo-
ber 1997.

[12] John DeTreville. Binder, a logic-based security lan-
guage. In Proceedings of 2002 IEEE Symposium on
Security and Privacy, page (to appear), May 2002.

[13] Edward W. Felten. Personal communication, April
2002.

[14] M. J. Gordon, A. J. Milner, and C. P. Wadsworth.
Edinburgh LCF: A Mechanised Logic of Computa-
tion, volume 78 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, New York, 1979.

[15] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. Journal of the ACM,
40(1):143–184, January 1993.

[16] Neophytos G. Michael and Andrew W. Appel. Ma-
chine instruction syntax and semantics in higher-
order logic. In 17th International Conference on Au-
tomated Deduction, pages 7–24, Berlin, June 2000.
Springer-Verlag. LNAI 1831.

[17] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly lan-
guage. In POPL ’98: 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 85–97, New York, January 1998.
ACM Press.

[18] George Necula. Proof-carrying code. In 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 106–119, New York,
January 1997. ACM Press.

[19] George C. Necula and S. P. Rahul. Oracle-based
checking of untrusted software. In POPL 2001: The
28th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 142–154.
ACM Press, January 2001.

[20] Frank Pfenning and Carsten Schürmann. System de-
scription: Twelf — a meta-logical framework for
deductive systems. In The 16th International Con-
ference on Automated Deduction, Berlin, July 1999.
Springer-Verlag.

[21] Robert Pollack. How to believe a machine-checked
proof. In Sambin and Smith, editors, Twenty Five
Years of Constructive Type Theory. Oxford Univer-
sity Press, 1996.

[22] Ken Thompson. Reflections on trusting trust. Com-
munications of the ACM, 27(8):761–763, 1984.

Finding Counterexamples to Inductive Conjectures and
Discovering Security Protocol Attacks

Graham Steel, Alan Bundy, Ewen Denney
Division of Informatics
University of Edinburgh

{grahams, bundy, ewd}@dai.ed.ac.uk

Abstract

We present an implementation of a method for finding
counterexamples to universally quantified conjectures in
first-order logic. Our method uses the proof by consis-
tency strategy to guide a search for a counterexample and
a standard first-order theorem prover to perform a concur-
rent check for inconsistency. We explain briefly the theory
behind the method, describe our implementation, and eval-
uate results achieved on a variety of incorrect conjectures
from various sources.

Some work in progress is also presented: we are apply-
ing the method to the verification of cryptographic security
protocols. In this context, a counterexample to a security
property can indicate an attack on the protocol, and our
method extracts the trace of messages exchanged in order
to effect this attack. This application demonstrates the ad-
vantages of the method, in that quite complex side condi-
tions decide whether a particular sequence of messages is
possible. Using a theorem prover provides a natural way
of dealing with this. Some early results are presented and
we discuss future work.

1 Introduction

Inductive theorem provers are frequently employed in the
verification of programs, algorithms and protocols. How-
ever, programs and algorithms often contain bugs, and pro-
tocols may be flawed, causing the proof attempt to fail. It
can be hard to interpret a failed proof attempt: it may be
that some additional lemmas need to be proved or a gener-
alisation made. In this situation, a tool which can not only
detect an incorrect conjecture, but also supply a counterex-
ample in order to allow the user to identify the bug or flaw,
is potentially very valuable. The problem of cryptographic
security protocol verification is a specific area in which in-
correct conjectures are of great consequence. If a security
conjecture turns out to be false, this can indicate an attack
on the protocol. A counterexample can help the user to see
how the protocol can be attacked. Incorrect conjectures
also arise in automatic inductive theorem provers where

generalisations are speculated by the system. Often we en-
counter the problem of over-generalisation: the speculated
formula is not a theorem. A method for detecting these
over-generalisations is required.

Proof by consistency is a technique for automating in-
ductive proofs in first-order logic. Originally developed
to prove correct theorems, this technique has the prop-
erty of being refutation complete, i.e. it is able to refute
in finite time conjectures which are inconsistent with the
set of hypotheses. When originally proposed, this tech-
nique was of limited applicability. Recently, Comon and
Nieuwenhuis have drawn together and extended previous
research to show how it may be more generally applied,
[10]. They describe an experimental implementation of
the inductive completion part of the system. However, the
check for refutation or consistency was not implemented.
This check is necessary in order to ensure a theorem is
correct, and to automatically refute an incorrect conjec-
ture. We have implemented a novel system integrating
Comon and Nieuwenhuis’ experimental prover with a con-
current check for inconsistency. By carrying out the check
in parallel, we are able to refute incorrect conjectures in
cases where the inductive completion process fails to ter-
minate. The parallel processes communicate via sockets
using Linda, [8].

The ability of the technique to prove complex induc-
tive theorems is as yet unproven. That does not concern
us here – we are concerned to show that it provides an
efficient and effective method for refuting incorrect con-
jectures. However, the ability to prove at least many small
theorems helps alleviate a problem reported in Protzen’s
work on disproving conjectures, [22] – that the system ter-
minates only at its depth limit in the case of a small unsat-
isfiable formula, leaving the user or proving system none
the wiser.

We have some early results from our work in progress,
which is to apply the technique to the aforementioned
problem of cryptographic security protocol verification.
These protocols often have subtle flaws in them that are
not detected for years after they have been proposed. By
devising a first-order version of Paulson’s inductive for-

49

50 GRAHAM STEEL, ALAN BUNDY, AND EWEN DENNEY

malism for the protocol verification problem, [21], and ap-
plying our refutation system, we can not only detect flaws
but also automatically generate the sequence of messages
needed to expose these flaws. By using an inductive model
with arbitrary numbers of agents and runs rather than the
finite models used in most model-checking methods, we
have the potential to synthesise parallel session and replay
attacks where a single principal may be required to play
multiple roles in the exchange.

In the rest of the paper, we first review the litera-
ture related to the refutation of incorrect conjectures and
proof by consistency, then we briefly examine the Comon-
Nieuwenhuis method. We describe the operation of the
system, relating it to the theory, and present and evaluate
the results obtained so far. The system has been tested
on a number of examples from various sources including
Protzen’s work [22], Reif et al.’s, [24], and some of our
own. Our work in progress on the application of the system
to the cryptographic protocol problem is then presented.
Finally, we describe some possible further work and draw
some conclusions.

2 Literature Review

2.1 Refuting Incorrect Conjectures

At the CADE-15 workshop on proof by mathematical in-
duction, it was agreed that the community should address
the issue of dealing with non-theorems as well as theo-
rems1. However, relatively little work on the problem has
since appeared. In the early nineties Protzen presented a
sound and complete calculus for the refutation of faulty
conjectures in theories with free constructors and complete
recursive definitions, [22]. The search for the counterex-
ample is guided by the recursive definitions of the function
symbols in the conjecture. A depth limit ensures termina-
tion when no counterexample can be found.

More recently, Reif et al., [25], have implemented a
method for counterexample construction that is integrated
with the interactive theorem prover KIV, [23]. Their
method incrementally instantiates a formula with construc-
tor terms and evaluates the formulae produced using the
simplifier rules made available to the system during proof
attempts. A heuristic strategy guides the search through
the resulting subgoals for one that can be reduced to

�	� � � � .
If such a subgoal is not found, the search terminates when
all variables of generated sorts have been instantiated to
constructor terms. In this case the user is left with a model
condition, which must be used to decide whether the in-
stantiation found is a valid counterexample.

Ahrendt has proposed a refutation method using model
construction techniques, [1]. This is restricted to free

1The minutes of the discussion are available from
http://www.cee.hw.ac.uk/~air/cade15/
cade-15-mind-ws-session-3.html.

datatypes, and involves the construction of a set of suit-
able clauses to send to a model generation prover. As first
reported, the approach was not able in general to find a
refutation in finite time, but new work aims to address this
problem, [2].

2.2 Proof by Consistency

Proof by consistency is a technique for automating induc-
tive proof. It has also been called inductionless induction,
and implicit induction, as the actual induction rule used
is described implicitly inside a proof of the conjecture’s
consistency with the set of hypotheses. Recent versions
of the technique have been shown to be refutation com-
plete, i.e. are guaranteed to detect non-theorems in finite
time.2 The proof by consistency technique was developed
to solve problems in equational theories, involving a set of
equations defining the initial model3,

�
. The first version

of the technique was proposed by Musser, [20], for equa-
tional theories with a completely defined equality predi-
cate, This requirement placed a strong restriction on the
applicability of the method. The completion process used
to deduce consistency was the Knuth-Bendix algorithm,
[17].

Huet and Hullot [14] extended the method to theories
with free constructors, and Jouannaud and Kounalis, [15],
extended it further, requiring that

�
should be a convergent

rewrite system. Bachmair, [4], proposed the first refuta-
tionally complete deduction system for the problem, using
a linear strategy for inductive completion. This is a re-
striction of the Knuth-Bendix algorithm which entails only
examining overlaps between axioms and conjectures. The
key advantage of the restricted completion procedure was
its ability to cope with unoriented equations. The refuta-
tional completeness of the procedure was a direct result of
this.

The technique has been extended to the non-equational
case. Ganzinger and Stuber, [12], proposed a method
for proving consistency for a set of first-order clauses
with equality using a refutation complete linear system.
Kounalis and Rusinowitch, [18], proposed an extension to
conditional theories, laying the foundations for the method
implemented in the SPIKE theorem, [6]. Ideas from the
proof by consistency technique have been used in other in-
duction methods, such as cover set induction, [13], and test
set induction, [5].

2.3 Cryptographic Security Protocols

Cryptographic protocols are used in distributed systems
to allow agents to communicate securely. Assumed to be

2Such a technique must necessarily be incomplete with respect to
proving theorems correct, by Gödel’s incompleteness theorem.

3The initial or standard model is the minimal Herbrand model. This
is unique in the case of a purely equational specification.

FINDING COUNTEREXAMPLES TO INDUCTIVE CONJECTURES ... 51

present in the system is a spy, who can see all the traffic in
the network and may send malicious messages in order to
try and impersonate users and gain access to secrets. Clark
and Jacob’s survey, [9], and Anderson and Needham’s ar-
ticle, [3], are good introductions to the field.

Although security protocols are usually quite short, typ-
ically 2–5 messages, they often have subtle flaws in them
that may not be discovered for many years. Researchers
have applied various formal methods techniques to the
problem, to try to find attacks on faulty protocols, and to
prove correct protocols secure. These approaches include
belief logics such as the so-called BAN logic, [7], state-
machines, [11, 16], model-checking, [19], and inductive
theorem proving, [21]. Each approach has its advantages
and disadvantages. For example, the BAN logic is attrac-
tively simple, and has found some protocol flaws, but has
missed others. The model checking approach can find
flaws very quickly, but can only be applied to finite (and
typically very small) instances of the protocol. This means
that if no attack is found, there may still be an attack upon
a larger instance. Modern state machine approaches can
also find and exhibit attacks quickly, but require the user to
choose and prove lemmas in order to reduce the problem
to a tractable finite search space. The inductive method
deals directly with the infinite state problem, and assumes
an arbitrary number of protocol participants, but proofs are
tricky and require days or weeks of expert effort. If a proof
breaks down, there are no automated facilities for the de-
tection of an attack.

3 The Comon-Nieuwenhuis Method

Comon and Nieuwenhuis, [10], have shown that the pre-
vious techniques for proof by consistency can be gener-
alised to the production of a first-order axiomatisation �
of the minimal Herbrand model such that � , � , B is
consistent if and only if B is an inductive consequence
of E. With � satisfying the properties they define as an
I-Axiomatisation, inductive proofs can be reduced to first-
order consistency problems and so can be solved by any
saturation based theorem prover. We give a very brief sum-
mary of their results here. Suppose � is, in the case of
Horn or equational theories, the unique minimal Herbrand
model, or in the case of non-Horn theories, the so-called
perfect model with respect to a total ordering on terms,

� 4:

Definition 1 A set of first-order formulae � is an I-
Axiomatisation of � if

1. � is a set of purely universally quantified formulae

2. � is the only Herbrand model of
� , � up to isomor-

phism.

4Saturation style theorem proving always requires that we have such
an ordering available.

An I-Axiomatisation is normal if � ! # �32# B for all pairs
of distinct normal terms � and B

The I-Axiomatisation approach produces a clean separa-
tion between the parts of the system concerned with induc-
tive completion and inconsistency detection. Completion
is carried out by a saturation based theorem prover, with
inference steps restricted to those produced by conjecture
superposition, a restriction of the standard superposition
rule. Only overlaps between conjecture clauses and ax-
ioms are considered. Each non-redundant clause derived
is checked for consistency against the I-Axiomatisation. If
the theorem prover terminates with saturation, the set of
formulae produced comprise a fair induction derivation.
The key result of the theory is this:

Theorem 1 Let � be a normal I-Axiomatisation, and
B ; �3B A �>=>=:= be a fair induction derivation. Then �2! # B ; iff
� ,3. � 0 is consistent for all clauses � in � B � .
This theorem is proved in [10]. Comon and Nieuwenhuis
have shown that this conception of proof by consistency
generalises and extends earlier approaches. An equality
predicate as defined by Musser, a set of free constructors
as proposed by Huet and Hullot or a ground reducibility
predicate as defined by Jouannaud and Kounalis could all
be used to form a suitable I-Axiomatisation. The tech-
nique is also extended beyond ground convergent spec-
ifications (equivalent to saturated specifications for first-
order clauses) as required in [15, 4, 12]. Previous methods,
e.g. [6], have relaxed this condition by using conditional
equations. However a ground convergent rewrite system
was still required for deducing inconsistency. Using the
I-Axiomatisation method, conjectures can be proved or
refuted in (possibly non-free) constructor theories which
cannot be specified by a convergent rewrite system.

Whether these extensions to the theory allow larger the-
orems to be proved remains to be seen, and is not of in-
terest to us here. We are interested in how the wider ap-
plicability of the method can allow us to investigate the
ability of the proof by consistency technique to root out a
counterexample to realistic incorrect conjectures.

4 Implementation

Figure 1 illustrates the operation of our system. The in-
put is an inductive problem in Saturate format and a
normal I-Axiomatisation (see Definition 1, above). The
version of Saturate customised by Nieuwenhuis for
implicit induction (the right hand box in the diagram)
gets the problem file only, and proceeds to pursue induc-
tive completion, i.e. to derive a fair induction derivation.
Every non-redundant clause generated is passed via the
server to the refutation control program (the leftmost box).
For every new clause received, this program generates a

52 GRAHAM STEEL, ALAN BUNDY, AND EWEN DENNEY

linda server

standard
saturate

refutation control
client saturate

(possibly several)

Problem file

I−Axiomatisation file Problem file

I−Axiomatisation file

File for each
spawned
saturate

clauses
all generated

Inputs:

inductive completion

Figure 1: System operation

problem file containing the I-Axiomatisation and the new
clause, and spawns a standard version of Saturate to
check the consistency of the file. Crucially, these spawned
Saturates are not given the original axioms – only the
I-Axioms are required, by Theorem 1. This means that al-
most all of the search for an inconsistency is done by the
prover designed for inductive problems and the spawned
Saturates are just used to check for inconsistencies be-
tween the new clauses and the I-Axiomatisation. This
should lead to a false conjecture being refuted after fewer
inference steps have been attempted than if the conjecture
had been given to a standard first-order prover together
with all the axioms and I-Axioms. We evaluate this in the
next section.

If, at any time, a refutation is found by a spawned
prover, the proof is written to a file and the completion pro-
cess and all the other spawned Saturate processes are
killed. If completion is reached by the induction prover,
this is communicated to the refutation control program,
which will then wait for the results from the spawned pro-
cesses. If they all terminate with saturation, then there are
no inconsistencies, and so the theorem has been proved (by
Theorem 1).

There are several advantages to the parallel architecture
we have employed. One is that it allows us to refute in-
correct conjectures even if the inductive completion pro-
cess does not terminate. This would also be possible by
modifying the main induction Saturate to check each
clause in tern, but this would result in a rather messy and

unwieldy program. Another advantage is that we are able
to easily devote a machine solely to inductive completion
in the case of harder problems. It is also very convenient
when testing a new model to be able to just look at the de-
duction process before adding the consistency check later
on, and we preserve the attractive separation in the theory
between the deduction and the consistency checking pro-
cesses.

A disadvantage of our implementation is that launching
a new Saturate process to check each clause against
the I-Axiomatisation generates some overheads in terms
of disk access etc. In our next implementation, when a
spawned prover reaches saturation (i.e. no inconsisten-
cies), it will clear its database and ask the refutation con-
trol client for another clause to check, using the existing
sockets mechanism. This will cut down the amount of
memory and disk access required. A further way to re-
duce the consistency checking burden is to take advantage
of knowledge about the structure of the I-Axiomatisation
for simple cases. For example, in the case of a free con-
structor specification, the I-Axiomatisation will consist of
clauses specifying the inequality of non-identical construc-
tor terms. Since it will include no rules referring to defined
symbols, it is sufficient to limit the consistency check to
generated clauses containing only constructors and vari-
ables.

FINDING COUNTEREXAMPLES TO INDUCTIVE CONJECTURES ... 53

Table 1: Sample of results. In the third column, the first number shows the number of clauses derived by the inductive
completion prover, and the number in brackets indicates the number of clauses derived by the parallel checker to spot
the inconsistency. The fourth column shows the number of clauses derived by an unmodified first-order prover when
given the conjecture, axioms and I-Axioms all together.

Problem
Counterexample

found

No. of clauses
derived to

find refutation

No. of clauses
derived by a

standard prover
0 � � � =���� �V�D�3� Y � # �V��LV��� �7# L � � #NL 2(+0) 2� 2# � � 2#NL � 2#NL
� � � � � � 2#MLU� �� � 2# L � # LU�

� # �V��LV�J�
� # �V� �V� � �\� 4 (+3) 6

��	 	 � � ��� � # ��	 	 ��� � � � � # L ��� # �V� � � � �5Y [G[� stuck in loop�	����� ��	 A �� 	 � # ��	 ��	 A � �
 ����� ��	 � � �%�
 � � �� �
 ��	 � � �
�� � � �� �
 ��	 A �
 	 � 2# � � � � �
� ���	� ��
 ����� ��	 A ��� ����� ����	 � ���
� �	����� ��	 � �

	 A # � �V� � � �5�
	 � # � �V� � ���\L �
	 � # � L ���U� � � ! � � 55(+1) 76

All graphs are acyclic � " �1� �\�K� � 99 123
All loopless graphs are acyclic � " � �U�1�K�J�\�K��� " ��� ���V�1���\� � 178 2577

�� � � � � �E#NL � # �V�1LU� 17(+2) 29
Impossibility property
for Neuman-Stubblefield
key exchange protocol

� � � ��[���� � � �
G���� � �D�V�J� � � �B �� � 866 (+0) 1733

Authenticity property for
simple protocol from [9]

see section 6 730(+1) 3148

5 Evaluation of Results

Table 1 shows a sample of results achieved so far. The
first three examples are from Protzen’s work, [22], the next
two from Reif et al.’s, [25], and the last three are from
our work. The
�� example is included because previous
methods of proof by consistency could not refute this con-
jecture. Comon and Nieuwenhuis showed how it could
be tackled, [10], and here we confirm that their method
works. The last two conjectures are about properties of
security protocols. The ‘impossibility property’ states that
no trace reaches the end of a protocol. Its refutation com-
prises the proof of a possibility property, which is the first
thing proved about a newly modelled protocol in Paulson’s
method, [21]. The last result is the refutation of an authen-
ticity property, indicating an attack on the protocol. This
protocol is a simple example included in Clark’s survey,
[9], for didactic purposes, but requires that one principal
play both roles in a protocol run. More details are given in
section 6.

Our results on Reif et al.’s examples do not require the
user to verify a model condition, as the system described
in their work does. Interestingly, the formula remaining
as a model condition in their runs is often the same as
the formula which gives rise to the inconsistency when
checked against the I-Axiomatisation in our runs. This

is because the KIV system stops when it derives a term
containing just constructors and variables. In such a case,
our I-Axiomatisation would consist of formulae designed
to check validity of these terms. This suggests a way to
automate the model condition check in the KIV system.

On comparing the number of clauses derived by our sys-
tem and the number of clauses required by a standard first-
order prover (SPASS), we can see that the proof by consis-
tency strategy does indeed cut down on the number of in-
ferences required. This is more evident in the larger exam-
ples. Also, the linear strategy allows us to cope with com-
mutativity conjectures, like the third example, which cause
a standard prover to go into a loop. We might ask: what
elements of the proof by consistency technique are allow-
ing us to make this saving in required inferences? One is
the refutation completeness result for the linear strategy, so
we know we need only consider overlaps between conjec-
tures and axioms. Additionally, separating the I-Axioms
from the theory axioms reduces the number of overlaps be-
tween conjectures and axioms to be considered each time.
We also use the results about inductively complete posi-
tions for theories with free constructors, [10]. This applies
to all the examples except those in graph theory, where we
used Reif’s formalism and hence did not have free con-
structors. This is the probable reason why, on these two
examples, our system did not make as large a saving in

54 GRAHAM STEEL, ALAN BUNDY, AND EWEN DENNEY

derived clauses.
The restriction to overlaps between conjectures and ax-

ioms is similar in nature to the so-called set of support
strategy, using the conjecture as the initial supporting set.
The restriction in our method is tighter, since we don’t con-
sider overlaps between formulae in the set of support. Us-
ing the set of support strategy with the standard prover on
the examples in Table 1, refutations are found after de-
riving fewer clause than required by the standard strategy.
However, performance is still not as good as for our sys-
tem, particularly in the free constructor cases. The set of
support also doesn’t fix the problem of divergence on un-
oriented conjectures, like the commutativity example.

The efficiency of the method in terms of clauses derived
compared to a standard prover looks good. However, ac-
tual time taken by our system is much longer than that
for the standard SPASS. This is because the Saturate
prover is rather old, and was not designed to be a serious
tool for large scale proving. In particular, it does not utilise
any term indexing techniques, and so redundancy checks
are extremely slow. As an example, the impossibility prop-
erty took about 50 minutes to refute in Saturate, but
about 40 seconds in SPASS, even though more than twice
as many clauses had to be derived. We used Saturate in
our first system as Nieuwenhuis had already implemented
the proof by consistency strategy in the prover. A re-
implementation of the whole system using SPASS should
give us even faster refutations, and is one of our next tasks.

Finally, we also tested the system on a number of small
inductive theorems. Being able to prove small theorems al-
lows us to attack a problem highlighted in Protzen’s work:
that if an candidate generalisation (say) is given to the
counterexample finder and it returns a result saying that
the depth limit was reached before a counterexample was
found, the system is none the wiser as to whether the gen-
eralisation is worth pursuing. If we are able to prove at
least small examples to be theorems, this will help allevi-
ate the problem. Our results were generally good: 7 out
of 8 examples we tried were proved, but one was missed.
Comon intends to investigate the ability of the technique
to prove more and larger theorems in future.

More details of the results including some sample runs
and details of the small theorems proved can be found at
http://www.dai.ed.ac.uk/~grahams/linda.

6 Application to Cryptographic Se-
curity Protocols

We now describe some work in progress on applying our
technique to the cryptographic security protocol problem.
As we saw in section 2.3, one of the main thrusts of re-
search has been to apply formal methods to the problem.
Researchers have applied techniques from model check-
ing, theorem proving and modal logics amongst others.

Much attention is paid to the modelling of the abilities
of the spy in these models. However, an additional con-
sideration is the abilities of the participants. Techniques
assuming a finite model, with typically two agents playing
distinct roles, often rule out the possibility of discovering a
certain kind of parallel session attack, in which one partic-
ipant plays both roles in the protocol. The use of an induc-
tive model allows us to discover these kind of attacks. An
inductive model also allows us to consider protocols with
more than two participants, e.g. conference-key protocols.

Paulson’s inductive approach has used been used to ver-
ify properties of several protocols, [21]. Protocols are for-
malised in typed higher-order logic as the set of all pos-
sible traces, a trace being a list of events like ‘ � sends
message

�
to � ’. This formalism is mechanised in the Is-

abelle/HOL interactive theorem prover. Properties of the
security protocol can be proved by induction on traces.
The model assumes an arbitrary number of agents, and any
agent may take part in any number of concurrent protocol
runs playing any role. Using this method, Paulson discov-
ered a flaw in the simplified Otway-Rees shared key pro-
tocol, [7], giving rise to a parallel session attack where a
single participant plays both protocol roles. However, as
Paulson observed, a failed proof state can be difficult to
interpret in these circumstances. Even an expert user will
be unsure as to whether it is the proof attempt or the con-
jecture which is at fault. By applying our counterexample
finder to these problems, we can automatically detect and
present attacks when they exist.

Paulson’s formalism is in higher-order logic. However,
no ‘fundamentally’ higher-order concepts are used – in
particular there is no unification of higher-order objects.
Objects have types, and sets and lists are used. All this
can be modelled in first-order logic. The security protocol
problem has been modelled in first-order logic before, e.g.
by Weidenbach, [26]. This model assumed a two agent
model with just one available nonce5 and key, and so could
not detect the kind of parallel session attacks described.
Our model allows an arbitrary number of agents to partici-
pate, playing either role, and using an arbitrary number of
fresh nonces and keys.

6.1 Our Protocol Model

Our models aims to be as close as possible to a first-order
version of Paulson’s formalism. As in Paulson’s model,
agents, nonces and messages are free data types. This al-
lows us to define a two-valued function

���
which will tell

us whether two pure constructor terms are equal or not.
Since the rules defining

���
are exhaustive, they also have

the effect of suggesting instantiations where certain condi-
tions must be met, e.g. if we require the identities of two
agents to be distinct. The model is kept Horn by defin-
ing two-valued functions for checking the side conditions

5A nonce is a unique identifying number.

FINDING COUNTEREXAMPLES TO INDUCTIVE CONJECTURES ... 55

for a message to be sent, e.g. we define conditions for� � � ��� � � � ��� � # ����� �
and

� � � ��� � � � ��� � # �	� � � � us-
ing our

���
function. This cuts down the branching rate of

the search.
The intruder’s knowledge is specified in terms of sets.

Given a trace of messages exchanged,
���

, we define� � � � � � ��� � to be the least set including
���

closed un-
der projection and decryption by known keys. This is ac-
complished by using exactly the same rules as the Paul-
son model, [21, p. 12]. Then, we can define the messages
the intruder may send, given a trace

���
, as being mem-

bers of the set
��� � �
 � � � � � � � ��� �\� , where

��� � �
Z� � � is the
least set including agent names closed under pairing and
encryption by known keys. Again this set is defined in our
model with the same axioms that Paulson uses.

A trace of messages is modelled as a list. For a specific
protocol, we generally require one axiom for each protocol
message. These axioms take the form of rules with the in-
formal interpretation, ‘if

���
is a trace containing message

� addressed to agent
� �

, then the trace may be extended
by

� �
responding with message � Y [’. Once again, this is

very similar to the Paulson model.
An example illustrates some of these ideas. In Figure 2

we demonstrate the formalism of a very simple protocol
included in Clark and Jacob’s survey to demonstrate paral-
lel session attacks, [9]. Although simple, the attack on the
protocol does require principal � to play the role of both
initiator and responder. It assumes that � and � already
share a secure key,

�
&	� . � & denotes a nonce generated

by � .
In a symmetric key protocol, principals should respond

to
� " � � � � � � and

� " ��� �O� �S� , as they are in reality the
same. At the moment we model this with two possible
rules for message 2, but it should be straightforward to ex-
tend the model to give a cleaner treatment of symmetric
keys as sets of agents. Notice we allow a principal to re-
spond many times to the same message, as Paulson’s for-
malism does.

The second box, Figure 3, shows how the refutation of a
conjectured security property leads to the discovery of the
known attack. At the moment, choosing which conjectures
to attempt to prove is tricky. A little thought is required in
order to ensure that only a genuine attack can refute the
conjecture. More details of our model for the problem,
including the specification of intruder knowledge, can be
found at http://www.dai.ed.ac.uk/~grahams/
linda.

This application highlights a strength of our refutation
system: in order to produce a backwards style proof, as
Paulson’s system does, we must apply rules with side con-
ditions referring as yet uninstantiated variables. For ex-
ample, a rule might be applied with the informal interpre-
tation, ‘if the spy can extract

�
from the trace of mes-

sages sent up to this point, then he can break the secu-
rity conjecture’. At the time the rule is applied,

�
will be

uninstantiated. Further rules instantiate parts of the trace,
and side conditions are either satisfied and eliminated, or
found to be unsatisfiable, causing the clauses containing
the condition to be pruned off as redundant. The side con-
ditions influence the path taken through the search space,
as smaller formulae are preferred by the default heuristic
in the prover. This means that some traces a naïve coun-
terexample search might find are not so attractive to our
system, e.g. a trace which starts with several principals
sending message 1 to other principals. This will not be
pursued at first, as all the unsatisfied side conditions will
make this formula larger than others.

7 Further Work

Our first priority is to re-implement the system using
SPASS, and then to carry out further experiments with
larger false conjectures and more complex security pro-
tocols. This will allow us to evaluate the technique more
thoroughly. A first goal is to rediscover the parallel session
attack discovered by Paulson. The system should also be
able to discover more standard attacks, and the Clark sur-
vey, [9], provides a good set of examples for testing. We
will then try the system on other protocols and look for
some new attacks. A key advantage of our security model
is that it allows attacks involving arbitrary numbers of par-
ticipants. This should allow us to investigate the security
of protocols involving many participants in a single run,
e.g. conference key protocols.

In future, we also intend to implement more sophisti-
cated heuristics to improve the search performance, util-
ising domain knowledge about the security protocol prob-
lem. Heuristics could include eager checks for unsatisfi-
able side conditions. Formulae containing these conditions
could be discarded as redundant. Another idea is to vary
the weight ascribed to variables and function symbols, so
as to make the system inclined to check formulae with pre-
dominantly ground variables before trying ones with many
uninstantiated variables. This should make paths to attacks
more attractive to the search mechanism, but some careful
experimentation is required to confirm this.

The Comon-Nieuwenhuis technique has some remain-
ing restrictions on applicability, in particular the need for
reductive definitions, a more relaxed notion of reducibility
than is required for ground convergent rewrite systems. It
is quite a natural requirement that recursive function def-
initions should be reducing in some sense. For example,
the model of the security protocol problem is reductive
in the sense required by Comon and Nieuwenhuis. Even
so, it should be possible to extend the technique for non-
theorem detection in the case of non-reductive definitions,
at the price of losing any reasonable chance of proving a
theorem, but maintaining the search guidance given by the
proof by consistency technique. This would involve al-
lowing inferences by standard superposition if conjecture

56 GRAHAM STEEL, ALAN BUNDY, AND EWEN DENNEY

The Clark-Jacob protocol demonstrating parallel session attacks. At the end of a run, � should now be assured
of � ’s presence, and has accepted nonce � & to identify authenticated messages.

1. � � � +K. ! � & 0! �����
2. � � � +K. ! � & YN[<0 ! �����

Formula for modelling message 1 of the protocol. Informally: if XT is a trace, XA and XB agents, and XNA

a number not appearing as a nonce in a previous run, then the trace may be extended by XA initiating a run,
sending message 1 of the protocol to XB.

�/� ��� � # � ��� � � � � � � ��� � # � ��� � � � � � � �	� � # ����� � � � � ��� � � ��
	� � # ����� �
 � � � ��� � � � � � � � � ��� � � �
	� � � � �
�� � ��
	� �J� � ����� ��� � # �	� � � � ��/� � � � � � � �	� � �	� � � �
	� � � � �
�� � ��
�� �J�� � � � ��� � ��� �����1! ��� �!� # � ��� �

Formulae for message 2. Two formulae are used to make the response to the shared key symmetric (see text).
Informally: if XT is a trace containing message 1 of the protocol addressed to agent XB, encrypted under a
key he shares with agent XA, then the trace may be extended by agent XB responding with message 2.

� �
� ���	� � � � � � � � � �	� � � �
 � � � � �
�� � ��
�� ���� � � � ��� � ��� �\����� ��� � # � ��� � �/� ��� � # � ��� � ��/� � �	� � � � ��� � ��� � � �
 � � �V� � � �
�� � ��
�� �\�J��� � � � ��� � ��� ���\� ! ��� �!� # � ��� � =
� �
� ���	� � � � � � � � � �	� � � �
 � � � � �
�� � ��
�� ���� � � � ��� � ��� �\����� ��� � # � ��� � �/� ��� � # � ��� � ��/� � �	� � � � ��� � ��� � � �
 � � �V� � � �
�� � ��
�� �\�J��� � � � ��� � �	� ���\� ! ��� �!� # � ��� � =

Figure 2: The modelling of the Clark-Jacob protocol

The parallel session attack suggested by Clark and Jacob [9]. At the end of the attack, � believes � is
operational. � may be absent or may no longer exist:

1. � � B �
+K. !	� & 0! �����

2. B � � � +K. !	� & 0! � ���
3. � � B �

+K. ! �V�D� & �X0! � ���
4. B � � � +K. ! �V�D� & �X0! � ���

Below is the incorrect security conjecture, the refutation of which gives rise to the attack above. Informally
this says, ‘for all valid traces � , if � starts a run with � using nonce � & , and receives the reply �V�D� & � from
principal

�
, and no other principal has sent a reply, then the reply must have come from agent � .’

� " ��� " �K� � " ��B�� �	� � �	� � � �
 � � � � �
�� � ��
�� �J� � �J� ��� � # ����� �
 ��� # � � " ��B�� � � ��� � � �
	� � �U� � � �
�� � ��
	� �\�J� � � ! � �
 � " ��� " �K� � " ��B��D� � �	� � � �
 � � �V� � � �
�� � ��
�� ����� � ��� � � # �	� � � �
 �/� ��� � # � ��� � � ��� � � � �	� � # ����� �

The final line of output from the system, giving the attack.

c(sent(spy,a,encr(s(nonce(0)),key(a,s(a)))),
c(sent(a,s(a),encr(s(nonce(0)),key(a,s(a)))),
c(sent(spy,a,encr(nonce(0),key(a,s(a)))),
c(sent(a,s(a),encr(nonce(0),key(a,s(a)))),nil))))

Figure 3: The attack and its discovery

FINDING COUNTEREXAMPLES TO INDUCTIVE CONJECTURES ... 57

superposition is not applicable.

8 Conclusions

In this paper we have presented a working implementation
of a novel method for investigating an inductive conjec-
ture, with a view to proving it correct or refuting it as false.
We are primarily concerned with the ability of the system
to refute false conjectures, and have shown results from
testing on a variety of examples. These have shown that
our parallel inductive completion and consistency check-
ing system requires considerably fewer clauses to be de-
rived than a standard first-order prover does when tackling
the whole problem at once. The application of the tech-
nique to producing attacks on faulty cryptographic secu-
rity protocols looks promising, and the system has already
synthesised an attack of a type many finite security models
will not detect. We intend to produce a faster implemen-
tation using the SPASS theorem prover, and then to pursue
this application further.

Bibliography

[1] W. Ahrendt. A basis for model computation in free
data types. In CADE-17, Workshop on Model Com-
putation - Principles, Algorithmns, Applications,
2000.

[2] W. Ahrendt. Deductive search for errors in free
data type specifications using model generation. In
CADE-18, 2002.

[3] R. Anderson and R. Needham. Computer Science To-
day: Recent Trends and Developments, volume 1000
of LNCS, chapter Programming Satan’s Computer,
pages 426–440. Springer, 1995.

[4] L. Bachmair. Canonical Equational Proofs.
Birkhauser, 1991.

[5] A. Bouhoula, E. Kounalis, and M. Rusinowitch.
Automated mathematical induction. Rapport de
Recherche 1663, INRIA, April 1992.

[6] A. Bouhoula and M. Rusinowitch. Implicit induction
in conditional theories. Journal of Automated Rea-
soning, 14(2):189–235, 1995.

[7] M. Burrows, M. Abadi, and R. Needham. A logic
of authentication. ACM Transactions on Computer
Systems, 8(1):18–36, February 1990.

[8] N. Carreiro and D. Gelernter. Linda in context. Com-
munications of the ACM, 32(4):444–458, 1989.

[9] J. Clark and J. Jacob. A survey of authenti-
cation protocol literature: Version 1.0. Avail-
able via http://www.cs.york.ac.uk/jac/
papers/drareview.ps.gz, 1997.

[10] H. Comon and R. Nieuwenhuis. Induction = I-
Axiomatization + First-Order Consistency. Informa-
tion and Computation, 159(1-2):151–186, May/June
2000.

[11] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions in Information Theory,
2(29):198–208, March 1983.

[12] H. Ganzinger and J. Stuber. Informatik — Festschrift
zum 60. Geburtstag von Günter Hotz, chapter Induc-
tive theorem proving by consistency for first-order
clauses, pages 441–462. Teubner Verlag, 1992.

[13] M. S. Krishnamoorthy H. Zhang, D. Kapur. A mech-
anizable induction principle for equational specifica-
tions. In E. L. Lusk and R. A. Overbeek, editors,
Proceedings 9th International Conference on Auto-
mated Deduction, Argonne, Illinois, USA, May 23-
26, 1988, volume 310 of Lecture Notes in Computer
Science, pages 162–181. Springer, 1988.

[14] G. Huet and J. Hullot. Proofs by induction in equa-
tional theories with constructors. Journal of the As-
sociation for Computing Machinery, 25(2), 1982.

[15] J.-P. Jouannaud and E. Kounalis. Proof by induction
in equational theories without constructors. Informa-
tion and Computation, 82(1), 1989.

[16] R. Kemmerer, C. Meadows, and J. Millen. Three sys-
tems for cryptographic protocol analysis. Journal of
Cryptology, 7:79–130, 1994.

[17] D. Knuth and P. Bendix. Simple word problems in
universal algebra. In J. Leech, editor, Computational
problems in abstract algebra, pages 263–297. Perga-
mon Press, 1970.

[18] E. Kounalis and M. Rusinowitch. A mechanization
of inductive reasoning. In AAAI Press and MIT
Press, editors, Proceedings of the American Associ-
ation for Artificial Intelligence Conference, Boston,
pages 240–245, July 1990.

[19] G. Lowe. Breaking and fixing the Needham
Schroeder public-key protocol using FDR. In Pro-
ceedings of TACAS, volume 1055, pages 147–166.
Springer Verlag, 1996.

[20] D. Musser. On proving inductive properties of ab-
stract data types. In Proceedings 7th ACM Symp. on
Principles of Programming Languages, pages 154–
162. ACM, 1980.

58 GRAHAM STEEL, ALAN BUNDY, AND EWEN DENNEY

[21] L.C. Paulson. The Inductive Approach to Verifying
Cryptographic Protocols. Journal of Computer Secu-
rity, 6:85–128, 1998.

[22] M. Protzen. Disproving conjectures. In D. Ka-
pur, editor, 11th Conference on Automated Deduc-
tion, pages 340–354, Saratoga Springs, NY, USA,
June 1992. Published as Springer Lecture Notes in
Artificial Intelligence, No 607.

[23] W. Reif. The KIV Approach to Software Verifica-
tion. In M. Broy and S. Jähnichen, editors, KORSO:
Methods, Languages and Tools for the Construction
of Correct Software, volume 1009. Springer Verlag,
1995.

[24] W. Reif, G. Schellhorn, and A. Thums. Fehlersuche
in formalen Spezifikationen. Technical Report 2000-
06, Fakultät fur Informatik, Universität Ulm, Ger-
many, May 2000. (In German).

[25] W. Reif, G. Schellhorn, and A. Thums. Flaw de-
tection in formal specifications. In IJCAR’01, pages
642–657, 2001.

[26] C. Weidenbach. Towards an automatic analysis of se-
curity protocols in first-order logic. In H. Ganzinger,
editor, Automated Deduction – CADE-16, 16th In-
ternational Conference on Automated Deduction,
LNAI 1632, pages 314–328, Trento, Italy, July 1999.
Springer-Verlag.

Automatic SAT-Compilation of Protocol Insecurity Problems via
Reduction to Planning

�

Alessandro Armando Luca Compagna
DIST — Università degli Studi di Genova

Viale Causa 13 – 16145 Genova, Italy
{armando,compa}@dist.unige.it

Abstract

We provide a fully automatic translation from security pro-
tocol specifications into propositional logic which can be
effectively used to find attacks to protocols. Our approach
results from the combination of a reduction of protocol in-
security problems to planning problems and well-known
SAT-reduction techniques developed for planning. We also
propose and discuss a set of transformations on protocol
insecurity problems whose application has a dramatic ef-
fect on the size of the propositional encoding obtained with
our SAT-compilation technique. We describe a model-
checker for security protocols based on our ideas and show
that attacks to a set of well-known authentication protocols
are quickly found by state-of-the-art SAT solvers.

Keywords: Foundation of verification; Confidentiality
and authentication; Intrusion detection.

1 Introduction

Even under the assumption of perfect cryptography, the de-
sign of security protocols is notoriously error-prone. As a
consequence, a variety of different protocol analysis tech-
niques has been put forward [3, 4, 8, 10, 12, 16, 19, 22, 23].
In this paper we address the problem of translating proto-
col insecurity problems into propositional logic in a fully
automatic way with the ultimate goal to build an auto-
matic model-checker for security protocols based on state-
of-the-art SAT solvers. Our approach combines a reduc-
tion of protocol insecurity problems to planning problems1

with well-known SAT-reduction techniques developed for
planning. At the core of our technique is a set of transfor-
mations whose application to the input protocol insecurity
problem has a dramatic effect on the size of the propo-
sitional formulae obtained. We present a model-checker

�
This work has been supported by the Information Society Technolo-

gies Programme, FET Open Assessment Project “AVISS” (Automated
Verification of Infinite State Systems), IST-2000-26410.

1The idea of regarding security protocol analysis as a planning prob-
lem is not new. To our knowledge it is also been proposed in [1].

for security protocols based on our ideas and show that—
using our tool—attacks to a set of well-known authenti-
cation protocols are quickly found by state-of-the-art SAT
solvers.

2 Security Protocols and Protocol
Insecurity Problems

In this paper we concentrate our attention on error detec-
tion of authentication protocols (see [7] for a survey). As
a simple example consider the following one-way authen-
tication protocol:

� � � � � � +K. � �<0 �����
��� � � � � +K.	� ��� � �X0 �����

where � � is a nonce2 generated by Alice,
� ��� is a sym-

metric key,
�

is a function known to Alice and Bob, and. � 0 � denotes the result of encrypting text � with key
�

.
Successful execution of the protocol should convince Alice
that she has been talking with Bob, since only Bob could
have formed the appropriate response to the message is-
sued in � � � . In fact, Ivory can deceit Alice into believing
that she is talking with Bob whereas she is talking with her.
This is achieved by executing concurrently two sessions of
the protocol and using messages from one session to form
messages in the other as illustrated by the following proto-
col trace:

� � = � � � � � � � � +K. � � 0 ���	�
�
� = � ��� � � � � � +K. � � 0 � �	�
�
� =���� � � � � � � +K. � �D� � �J0 � �	�
� � =������ � � � � � +K. � �D� � �J0 ���	�

Alice starts the protocol with message � � = � � . Ivory in-
tercepts the message and (pretending to be Bob) starts
a second session with Alice by replaying the received
message—cf. step �
� = � � . Alice replies to this message

2Nonces are numbers generated by principals that are intended to be
used only once.

59

60 ALESSANDRO ARMANDO AND LUCA COMPAGNA

with message �
� =���� . But this is exactly the message Alice
is waiting to receive in the first protocol session. This al-
lows Ivory to finish the first session by using it—cf. � � = � � .
At the end of the above steps Alice believes she has been
talking with Bob, but this is obviously not the case.

A problem with the above rule-based notation to specify
security protocols is that it leaves implicit many important
details such as the shared information and how the princi-
pals should react to messages of an unexpected form. This
kind of description is therefore usually supplemented with
explanations in natural language which in our case explain
that � � is a nonce generated by Alice, that

�
is a function

known to the honest participants, and that
� � � is a shared

key.
To cope with the above difficulties and pave the way to

the formal analysis of security protocols a set of models
and specification formalisms as well as translators from
high-level languages (similar to the one we used above to
introduce our example) into these formalisms have been
put forward. For instance, Casper [18] compiles high-
level specifications into CSP, whereas CAPSL [5] and the
AVISS tool [2] compile high-level specifications into for-
malisms based on multiset rewriting inspired by [6].

2.1 The Model

We model the concurrent execution of a protocol by means
of a state transition system. Following [16], we represent
states by sets of atomic formulae called facts and transi-
tions by means of rewrite rules over sets of facts. For
the simple protocol above, facts are built out of a first-
order sorted signature with sorts user, number, key,
func, text (super-sort of all the previous sorts), int,
session, nonceid, and list_of text. The con-
stants L , [, and
 (of sort int) denote protocols steps,[and
 (of sort session) denote session instances,� and � (of sort user) denote honest participants,

� � �
(of sort key) denotes a symmetric key and � � (of sort
nonceid) is a nonce identifier. The function symbol.

_ 0 _
+
text � key � text denotes the encryption func-

tion,
� +

number � func denotes the function known
to the honest participants, ��� + nonceid � session �
number, and � + session � session are nonce and
session constructors respectively. The predicate symbols
are � of arity text, fresh of arity number, � of arity
int � user � user � text, and � of arity int � user �
user � list_of text � list_of text � session:

� �J��B�� means that the intruder knows B .
� �������
 ���Z� means that � has not been used yet.

� �/�7�U���G�����B�� means that principal � has (supposedly)3

sent message B to principal � at protocol step � .

3As we will see, since the intruder may fake other principals’ identity,
the message might have been sent by the intruder.

� � ���U���U�4���W� � � � � ��:� represents the state of execution of
principal � at step � of session � ; in particular it means
that � knows the terms stored in the lists � � (acquired
knowledge) and � � (initial knowledge) at step � of ses-
sion � , and—if � 2# L —also that a message from � to
� is awaited for step � to be executed.

Initial States. The initial state of the system is:4

� �1L �\� �W� � � � ��� � � � � � � � �5�:[� � � �'[U�\� � � � � � ��� � �\� � � � ��� �>[�
(1)

� � �1L � ��� � � � � ��� � �\� � � � � �5��
 � � � ��[G�� �\� �����5� � � �� � � � ���5��
 �
(2)

� ��� �	�
Z�����<��� � �:[��� � ��� �	�
 �����<��� � ���V��[���\� (3)
� ��� �	�
Z�����<��� � ��
 ��� � ��� �	�
 �����<��� � ���V�
 ���\� (4)
� �J���K� � �J� ��� (5)

Facts (1) represent the initial state of principals � and �
(as initiator and responder, resp.) in session [. Dually,
facts (2) represent the initial state of principals � and �
(as responder and initiator, resp.) in session
 . Facts (3)
and (4) state the initial freshness of the nonces. Facts (5)
represent the information initially known by the intruder.

Rewrite rules over sets of facts are used to specify the
transition system evolves.

Protocol Rules. The following rewrite rule models the
activity of sending the first message:

� ��L � � � � � � � ��� � � �O� � ����� �3B � � ��� �	�
 �����<��� � ��B ���
������� % � & " � " 	�" ����� �# � �/�'[U� � � ��� . ���<��� � �3B �X0 ����� �

� � �
 � ��� � � � ���<��� � �3B � � ��� � � ��� � � � �5��B � (6)

Notice that nonce ���<��� � �3B � is added to the acquired
knowledge of � for subsequent use. The receipt of the
message and the reply of the responder is modeled by:

����[G� � � �O� . ���G����� �3B [�X0 � ���X�
� � ��[G� � � �O��� � ��� ��� � � � � � �5��B � ���
��� 3 � & " � " 	 " 	

A " ���	� " �� �
�
�/�
 � �O� � � .	� �����<����� �3B [���J0 � �	� �

� � �'[G� � � �������5� � �O� � � � � � � ���V�<B �\� (7)

The final step of the protocol is modeled by:

���
K� �O� � � .	� �����<����� ��B [����J0 ���	� �
� � �
K� �O� � ��� ���<����� �3B [� � ��� � � ��� � � � �5��B �

��������� � & " � " 	�" 	
A " ����� " ��� �1 ��

� � ��L � � � � �����5� � � � �O� � � ��� ���V�<B �\� (8)

4To improve readability we use the “ � ” operator as set constructor. For
instance, we write “ ��� !�� # ” to denote the set � ��= !4= #�� .

AUTOMATIC SAT-COMPILATION OF PROTOCOL INSECURITY PROBLEMS VIA REDUCTION TO PLANNING 61

Intruder Rules. There are also rules specifying the be-
havior of the intruder. In particular the intruder is based on
the model of Dolev and Yao [11]. For instance, the follow-
ing rule models the ability of the intruder of diverting the
information exchanged by the honest participants:

�/��� � ��� ���S� � ��� ����� ��� " � " �&" 	 � � �J�� � � �J� � � � �J���S� (9)

The ability of encrypting and decrypting messages is mod-
eled by:

�X���S� � �J� � � ��
����� � � � � " 	 �� � �J���S� � �J� � � � �J� . � 0 � �
(10)

�J� . � 0 � � � �J� � � � ������� � � � � " 	 � � �J� � � � �J���S� (11)

Finally, the intruder can send arbitrary messages possibly
faking somebody else’s identity in doing so:

�J���S� � �J�� � � �J� � � ����� � % � � " �&" 	 �� � �J���6� � �J�� � � �X� � �
� ����[G� ��� ���6� (12)

�J���S� � �J�� � � �J� � � ����� � 3 � � " �&" 	 �� � �J���6� � �J�� � � �X� � �
� ���
K� ��� ���6� (13)

Bad States. A security protocol is intended to enjoy a a
specific security property. In our example this property is
the ability of authenticating Bob to Alice. A security prop-
erty can be specified by providing a set of “bad” states, i.e.
states whose reachability implies a violation of the prop-
erty. For instance, it is easy to see that any state containing
both � ��L �\� �\� � � � ��� � �� � � � ��� ���V�'[��� (i.e. Alice has finished
the first run of session 1) and � �'[U�\� � � � � � ��� � �\� � � ��� � �>[�
(i.e. Bob is still at the beginning of session 1) witnesses
a violation of the expected authentication property of our
simple protocol and therefore it should be considered as a
bad state.

2.2 Protocol Insecurity Problems

The above concepts can be recast into the concept of pro-
tocol insecurity problem. A protocol insecurity problem
is a tuple � # ��� � � � � ��� � � � where

�
is a set of atomic

formulae of a sorted first-order language called facts, �
is a set of function symbols called rule labels, and

�
is

a set of rewrite rules of the form �
�
� � , where � and

� are finite subsets of
�

such that the variables occurring
in � occur also in � , and � is an expression of the form
	�� �� � where 	 � � and �� is the vector of variables obtained
by ordering lexicographically the variables occurring in � .

Let be a state and ��� �
� � ��� �

, if D is a substitu-
tion such that � D , then one possible next state of is

E� # �� � � D � , � D and we indicate this with
���
 � � . We

assume the rewrite rules are deterministic i.e. if
���
 � E�

and
���
 � � � , then � �' � � . The components � and �

of a protocol insecurity problem are the initial state and a
sets of states whose elements represent the bad states of the
protocol respectively. A solution to a protocol insecurity
problem � (i.e. an attack to the protocol) is a sequence of

states A �:=>=:=�� ? such that �
� � � �
� � 3

A
for �E# [U�>=:=>=����

and � � A , and there exists �� � � such that �� ? .

3 Automatic SAT-Compilation of
Protocol Insecurity Problems

Our proposed reduction of protocol insecurity problems to
propositional logic is carried out in two steps. Protocol
insecurity problems are first translated into planning prob-
lems which are in turn encoded into propositional formu-
lae.

A planning problem is a tuple � # � � �����"! � �U��� �"# � ,
where

�
and � are disjoint sets of variable-free atomic for-

mulae of a sorted first-order language called fluents and ac-
tions respectively; ! � � is a set of expressions of the form

op � �'��BJ��� � " � �'� � � � " 	1�
where �'�JB � � and � � " , �'� � , and � " 	 are finite sets of
fluents such that �$� � �

� " 	 #%$; � and # are boolean
combinations of fluents representing the initial state and
the final states respectively. A state is represented by a
set of fluents. An action is applicable in a state iff the
action preconditions occur in and the application of the
action leads to a new state obtained from by removing
the fluents in � " 	 and adding those in �'� � . A solution
to a planning problem � is a sequence of actions whose
execution leads from the initial state to a final state and the
precondition of each action appears in the state to which it
applies.

3.1 Encoding Planning Problems into SAT

Let � # �&� ��� �"! � �G��� �"# � be a planning problem with
finite

�
and � and let � be a positive integer, then it is

possible to build a set of propositional formulae '
?
(such

that any model of '
?
(corresponds to a partial-order plan

of length � which can be linearized into a solution of � .
The encoding of a planning problem into a set of SAT for-
mulae can be done in a variety of ways (see [17, 13] for a
survey). The basic idea is to add an additional time-index
to the actions and fluents to indicate the state at which the
action begins or the fluent holds. Fluents are thus indexed
by L through � and actions by L through �"�[. If � is a flu-
ent or an action and � is an index in the appropriate range,
then � + � is the corresponding time-indexed propositional
variable.

The set of formulae '
?
(is the smallest set (intended con-

junctively) such that:

62 ALESSANDRO ARMANDO AND LUCA COMPAGNA

� Initial State Axioms: L + � � '
?
(;

� Goal State Axioms: � + # � '
?
(;

� Universal Axioms: for each op ��
 � Pre � Add � Del � �
! � � and � #NL �>=:=>=����9 [:

��� +
 ��� . � + �9!�� � Pre 0 � � '
?
(

��� +
 � � . ����YM[� + ��!�� � Add 0 � � '
?
(

��� +
 � � . ����� YM[� + �9!�� � Del 0 � � '
?
(

� Explanatory Frame Axioms: for all fluents
�

and
�E#NL �>=:=>=���� [:
��� + � ������YM[� + � � ���

. � +
4! op ��
 � Pre � Add � Del � � ! � �G� � � Del 0 � '
?
(

� �6� + � �����YM[� + � � � �
. � +
4! op ��
 � Pre � Add � Del � � ! � �G� � � Add 0 � '

?
(

� Conflict Exclusion Axioms: for � # L �:=>=>=>� �. [:
����� +
 A � +
 ��� � '

?
(

for all
 A 2#%
 � such that op ��
 A � Pre
A � Add

A � Del
A ���

! � � , op ��
)�U� Pre �G� Add �U� Del � �/� ! � � , and Pre
A �

Del � 2# $ or Pre � �
Del

A 2# $.

It is immediate to see that the number of literals in '
?
(is

in ! ���A! � !KY'�A! �2! � . Moreover the number of Universal
Axioms is in ! ��� � ; ! �2! � where � ; is the maximal num-
ber of fluents mentioned in an operator (usually a small
number); the number of Explanatory Frame Axioms is in
! ���A! � ! � ; finally, the number of Conflict Exclusion Ax-
ioms is in ! ���A! �2! � � .
3.2 Protocol Insecurity Problems as Plan-

ning Problems

Given a protocol insecurity problem � # ��� � � � � ��� � � � ,
it is possible to build a planning problem ��� #�&� � ��� � � ! � � � ��� � � # � � such that each solution to � �
can be translated back to a solution to � :

� � is the set
of facts

�
; � � and ! � � � are the smallest sets such that

�>D � � � and � � ���>D ��� D ��� D � � D ��� D � � D � � ! � � for

all ��� �
� � � � �

and all ground substitutions D ; fi-
nally � � # � .	� ! � � ��0 � . � � ! � � � � � 2� ��0 and
#	� #�
 �� 7 � � .	� ! � � �� 0 . For instance, the actions
associated to (6) are of the form:

� � � �:B " � A � � � ����B6� � � �X���
� � ��L � � � � � � � ��� � � ��� � � � �5��B �J��������
 �����<��� � �3B ��� �5�
� ����[G� � � �O� . ���<�<B �J0 ���	�W���
� �
K� ��� � ��� ���<��� � ��B � � ��� � � ��� � � � �5��B � � �
� � ��L � � � � � � � ��� � � ��� � � � �5��B �J��������
 �����<��� � �3B ��� �%�

The reduction of protocol insecurity problems to plan-
ning problems paves the way to an automatic SAT-
compilation of protocol insecurity problems. However a
direct application of the approach (namely the reduction of
a protocol insecurity problem � to a planning problem ���
followed by a SAT-compilation of � �) is not immediately
applicable. We therefore devised a set of optimizations
and constraints whose combined effects often succeed in
drastically reducing the size of the SAT instances.

3.3 Optimizations

Language specialization. We recall that for the reduc-
tion to propositional logic described in Section 3.1 to be
applicable the set of fluents and actions must be finite. Un-
fortunately, the protocol insecurity problems introduced in
Section 2 have an infinite number of facts and rule in-
stances, and therefore the corresponding planning prob-
lems have an infinite number of fluents and actions. How-
ever the language can be restricted to a finite one since the
set of states reachable in � steps is obviously finite (as long
as the initial states comprise a finite number of facts). To
determine a finite language capable to express the reach-
able states, it suffices to carry out a static analysis of the
protocol insecurity problem.

To illustrate, let us consider again the simple
protocol insecurity problem presented above and let
� # � , then � int � # . L �:[G��
�0 , � user � #. � ���0 , � iuser � # . � � � � intruder 0 , � key � #. � � �:0 , � nonceid � # . � � 0 , � session � #
 �
?�� � � 3

A � �
� � ; � � ��[� � ?�� � � 3

A � �
��� ; � � �
 � , where

�
is the number

of protocol steps in a session run (in this case
� #
),5

� number �4# ���<� nonceid � session � , � func �7#

?�@�A
� � ; � � � number � , � text � #�� iuser � , � key � ,

� number � , � func � ,3. func 0 key.6

Moreover, we can safely replace
list_of text with � text � text � text � .
The set of facts is then equal to �J� text � ,
��� �	�
Z� number � , ��� int � iuser � iuser � text � ,
� � int � iuser � user � list_of text � list_of
text � session � which consists of [�L

A � facts. This
language is finite, but definitely too big for the practical
applicability of the SAT encoding.

A closer look to the protocol reveals that the above
language still contains many spurious facts. In par-
ticular the ����=>=:= � , � �'=>=:= � , and �J��& � can be specialized
(e.g. by using specialized sorts to restrict the message
terms to those messages which are allowed by the proto-
col). By analyzing carefully the facts of the form �/�'=:=>=(�
and � ��=>=>= � occurring in the protocol rules of our exam-

5The bound on the number of steps implies a bound on the maximum
number of possible session repetitions.

6If ���8=�������=���� and ��� are sorts and � is a function symbol of ar-
ity ���8=�������=����! "� � , then #�� A # is the set of terms of sort � A and� �$�%�8=������ =�� � � denotes �&� �('��G=������ =)' � ��I�' A+* #�� A #�=>;-,/.8=������ = : � .

AUTOMATIC SAT-COMPILATION OF PROTOCOL INSECURITY PROBLEMS VIA REDUCTION TO PLANNING 63

ple we can restrict the sort func in such a way that
� func � # .	� � number �X0 and replace list_of text
with � iuser � iuser � key� , � number � . Thanks to this
optimization, the number of facts drops to [
 ��
GL .

An other important language optimization borrowed
from [15] splits message terms containing pairs of mes-
sages such as �����U���U�4��� � � � A ��� � � � � (where

�
_ � _ �

is the pairing operator) into two message terms�����U���U�4���\� � A �:[�� and �/�7�U���G������ � �<��
G� . (Due to the
simplicity of the shown protocol, splitting messages has
no impact on its language size.)

Fluent splitting. The second family of optimizations
is based on the observation that in � �7�U���U�4���W� � � � � ���>� ,
the union of the first three arguments with the sixth
form a key (in the data base theory sense) for the rela-
tion. This allows us to modify the language by replacing
� �7�U���G����\� � ��� � ��>� with the conjunction of two new pred-
icates, namely � ���G���U�4���\� � ���>� and

� � ��� �7�U���U�4����� � ��>� .
Similar considerations (based on the observation that
the initial knowledge of a principal � does not depend
on the protocol step � nor on principal �) allow us to
simplify

� � � � �7�U���U���� � � ��:� to
� � � � �B����� � ��>� . Another

effective improvement stems from the observation that� � and � � are lists. By using the set of new facts
 �����G���U�4���\� � A �:[G���>�J�:=>=>=>� �����U���U�4���W� � � ��	'��:� in place of
 �����G���U�4����� � � A �>=:=>=��W� � � � ��:� the number of � terms drops
from ! ��! � ��� � ! ��� to ! ��	�! � ��� � ! � .7 In the usual simple ex-
ample the application of fluent splitting reduces the num-
ber of facts to [G��� � � .

Exploiting static fluents. The previous optimization en-
ables a new one. Since the initial knowledge of the honest
principal does not change as the protocol execution makes
progress, facts of the form

� � � � �B����� � ��>� occurring in the
initial state are preserved in all the reachable states and
those not occurring in the initial state will not be intro-
duced. In the corresponding planning problem, this means
that all the atoms � + � � � � �B����� � ��>� can be replaced by� � � � �B����� � ��>� for � # L �:=>=:=�� ��M[thereby reducing the
number of propositional letters in the encoding. Moreover,
since the initial state is unique, this transformation enables
an off-line partial instantiation of the actions and therefore
a simplification of the propositional formula.

Reducing the number of Conflict Exclusion Axioms.
A critical issue in the propositional encoding technique de-
scribed in Section 3.1 is the quadratic growth of the num-
ber of Conflict Exclusion Axioms in the number of actions.
This fact often confines the applicability of the method to
problems with a small number of actions. A way to lessen
this difficulty is to reduce the number of conflicting ax-
ioms by considering the intruder knowledge as monotonic.

7If � is a sort, then I � I is the cardinality of #�� # .

Let
�

be a fact, and � be states, then we say that
�

is
monotonic iff for all if

� � and >� � , then
� � � .

Since a monotonic fluent never appears in the delete list of
some action, then it cannot be a cause of a conflict. The
idea here is to transform the rules so to make the facts of
the form �X��& � monotonic. The transformation on the rules
is very simple as it amounts to adding the monotonic facts
occurring in the left hand side of the rule to its right hand
side. A consequence is that a monotonic fact simplifies
the Explanatory Frame Axioms relative to it. The nice ef-
fect of this transformation is that the number of Conflict
Exclusion Axioms generated by the associated planning
problems drops dramatically.

Impersonate. The observation that most of the messages
generated by the intruder by means of (12) and (13) are
rejected by the receiver as non-expected or ill-formed sug-
gests to restrict these rules so that the intruder sends only
messages matching the patterns expected by the receiver.
For each protocol rule of the form:

=>=:='�/�7�U���U�4���\B�� � � �7�U���U�4���W� � � � � ���>� � =:=>= ���
��� � ��� � � � � =>=:=
we use a new rule of the form:

=>=:= � � ���U���U�4���W� � � � � ��:� � �J� � � � �X�D�<� � �J�!B � � � =:=>=
��� ����� ����
 � �
� � ��� � � �� � =:=>= � �����G���U�4����B � � � � �7�U���U����\� � � � � ���>�

� �J� ��� � �J�B�<� � �J��B � � � =>=:=
This rule states that if agent � is waiting for a message B
from � and the intruder knows a term B\� matching B , then
the intruder can impersonate � and send B\� . This optimiza-
tion (borrowed from [16]) often reduces the number of rule
instances in a dramatic way. In our example, this optimiza-
tion step allows us to trade all the 1152 instances of (12)
and (13) with 120 new rules.

It is easy to see that this transformation is correct as it
preserves the existing attacks and does not introduce new
ones.

Step compression. A very effective optimization, called
step compression has been proposed in [9]. It consists of
the idea of merging intruder with protocol rules. In partic-
ular, an impersonate rule:

� ���X��� A ��� � ��� � ��� " ��� � � � �J���
A � � �J��� � � � �J��� � �

��� ����� ����
 � ��� � � � � � �
< � �����W��� A ��� � ��� � �

� � ���X��� A ��� � ��� � ��� " ��� � � � �J���
A � � �J��� � � � �J��� � � (14)

a generic protocol step rule:

� ���X��� A ��� �G��� � ��� " ��� � � � �/���X���
A ��� �G������� � ����� � � � � � � �

� �7�U��� A ��� �<���	�<��� " ��� � � � ����� YN[G��� �����
A ����
:� (15)

64 ALESSANDRO ARMANDO AND LUCA COMPAGNA

and a divert rule:

������Y [U��� A ��� � ��� � � � ��� ����� � $&% � � � � �� � �J��� A � � �J��� � � � �J��� � �
(16)

can be replaced by the following rule:

� ���X��� A ��� �U��� � ��� " ��� � �'D � �J��� A �'D � �J��� �:��D � �J��� � �'D
���
��� _ � � � � � ��� � � � �
� � �7�U��� A ��� �<�����<��� " ��� � �'D � �J��� A �

D � �J��� �:��D � �J��� � ��D
where D # D A�� D � with D A #� � � . � ���X��� A ��� �U��� � ��� " ��� � � # � ���W��� A ��� �<��� � ��� " ��� � ����/���X��� A ��� �G��� � � # �/���X��� A ��� �G�������X0 � and D � #� � � . ����� YN[G��� �<��� A ���	
�� # �/��� YN[G��� A ��� �<��� � �J0 � .

The rationale of this optimization is that we can safely
restrict our attention to computation paths where (14),
(15), and (16) are executed in this sequence without any
interleaved action in between.

By applying this optimization we reduce both the num-
ber of facts (note that the facts of the form �/�'=>=:= � are no
longer needed) and the number of rules as well as the num-
ber of steps necessary to find the attacks. For instance, by
using this optimization the partial-order plan correspond-
ing to the attack to the Needham-Schroeder Public Key
(NSPK) protocol [21] has length 7 whereas if this opti-
mization is disabled the length is 10, the numbers of facts
decreases from 820 to 505, and the number of rules from
604 to 313.

3.4 Bounds and Constraints

In some cases in order to get encodings of reasonable size,
we must supplement the above attack-preserving optimiza-
tions with the following bounding techniques and con-
straints. Even if by applying them we may loose some
attacks, in our experience (cf. Section 4) this rarely occurs
in practice.

Bounding the number of session runs. Let � and
�

be
the bounds in the number of operation applications and in
the number of protocol steps characterizing a protocol ses-
sion respectively. Then the maximum number of times a
session can be repeated is

� � � � � Y [�� � . Our experience
indicates that attacks usually require a number of session
repetitions that is less than

� � � � � Y [�� � . As a matter of
fact two session repetitions are sufficient to find attacks
to all the protocols we have analyzed so far. By using
this optimization we can reduce the cardinality of the sort
session (in the case of the NSPK protocol, we reduce
it by a factor 1.5) and therefore the number of facts that
depend on it.

Multiplicity of fresh terms. The number of fresh terms
needed to find an attack is usually less than the number
of fresh terms available. As a consequence, a lot of fresh
terms allowed by the language associated with the proto-
col are not used, and many facts depending on them are
allowed, but also not used. Often, one single fresh term
for each fresh term identifier is sufficient for finding the
attack. For instance the simple example shown above has
the only fresh term identifier � � and to use the only nonce
���<��� � �:[� is enough to detect the attack. Therefore, the ba-
sic idea of this constraint is to restrict the number of fresh
terms available, thereby reducing the size of the language.
For example, application of this constraint to the analysis
of the NSPK protocol protocol preserves the detection of
the attack and reduces the numbers of facts and rules from
313 to 87 and from 604 to 54 respectively. Notice that for
some protocols such as the Andrew protocol [7] the multi-
plicity of fresh terms is necessary to detect the attack.

Constraining the rule variables. This constraint is best
illustrated by considering the Kao-Chow protocol (see e.g.
[7]):

�'[� � � + � � �O�� �
�
U� � � + . � � ����� � � � � � 0 � �#� � . � � ���� � � � � � 0 � ���
�D�V� � � � +K. � � �O�� � � � � � 0 � �#� � . � � 0 � � � �� �
�B �� � � � +K. � � 0 � � �
During the step (2) sends � a pair of messages of which
only the second component is accessible to � . Since �
does not know

� ��� , then � cannot check that the oc-
currence of � in the first component is equal to that in-
side the second. As a matter of fact, we might have dif-
ferent terms at those positions. The constraint amounts
to imposing that the occurrences of � (as well as of
� , � � , and

� � �) in the first and in the second part of
the message must coincide. Thus, messages of the form. � �� � ���<��� � ���V�'[�\�X0 � � �U� . � � � �����<��� �����V�'[�\�X0 � ��� would be
ruled out by the constraint. The application of this con-
straint allows us to get a feasible encoding of the Kao-
Chow protocols in reasonable time. For instance, with
this constraint disabled the encoding of the Kao Chow Re-
peated Authentication 1 requires more than 1 hour, other-
wise it requires 16.34 seconds.

4 Implementation and Computer
Experiments

We have implemented the above ideas in SATMC, a
SAT-based Model-Checker for security protocol analysis.
Given a protocol insecurity problem � , a bound on the
length of partial-order plan � , and a set of parameters spec-
ifying which bounds and constraints must be enabled (cf.

AUTOMATIC SAT-COMPILATION OF PROTOCOL INSECURITY PROBLEMS VIA REDUCTION TO PLANNING 65

Section 3.4), SATMC first applies the optimizing transfor-
mations previously described to � and obtains a new proto-
col insecurity problem � � , then � � is translated into a corre-
sponding planning problem ��� ; which is in turn compiled
into SAT using the methodology outlined in Section 3.1.
The propositional formula is then fed to a state-of-the-art
SAT solver (currently Chaff [20], SIM [14], and SATO
[24] are supported) and any model found by the solver is
translated back into an attack which is reported to the user.

SATMC is one of the back-ends of the AVISS tool [2].
Using this tool, the user can specify a protocol and the
security properties to be checked using a high-level spec-
ification language and the tool translates the specification
in an Intermediate Format (IF) based on multiset rewriting.
The notion of protocol insecurity problem given in this pa-
per is inspired by the Intermediate Format. Some of the
features supported by the IF (e.g. public and private keys,
compound keys as well as other security properties such
as authentication and secrecy) have been neglected in this
paper for the lack of space. However, they are supported
by SATMC.

We have run our tool against a selection of problems
drawn from [7]. The results of our experiments are re-
ported in Table 1 and they are obtained by applying all the
previously described optimizations, by setting �/# [:L , by
imposing two session runs for session, by allowing mul-
tiple fresh terms, and by constraining the rule variables.
For each protocol we give the kind of the attack found
(Attack), the number of propositional variables (Atoms)
and clauses (Clauses), and the time spent to generate the
SAT formula (EncT) as well as the time spent by Chaff
to solve the corresponding SAT instance (SolveT). The la-
bel MO indicates a failure to analyze the protocol due to
memory-out.8 It is important to point out that for the ex-
periments we found it convenient to disable the generation
of Conflict Exclusion Axioms during the generation of the
propositional encoding. Of course, by doing this, we are
no longer guaranteed that the solutions found are lineariz-
able and hence executable. SATMC therefore checks any
partial order plan found for executability. Whenever a con-
flict is detected, a set of clauses excluding these conflicts
are added to the propositional formula and the resulting
formula is fed back to the SAT-solver. This procedure
is repeated until an executable plan is found or no other
models are found by the SAT solver. This heuristics re-
duces the size of the propositional encoding (it does not
create the Conflicts Exclusion Axioms) and it can also re-
duce the computation time whenever the time required to
perform the executability checks is less than the time re-
quired for generating the Conflict Exclusion Axioms. The
experiments show that the SAT solving activity is carried
out very quickly and that the overall time is dominated by

8Times have been obtained on a PC with a 1.4 GHz Processor and
512 MB of RAM. Due to a limitation of SICStus Prolog the SAT-based
model-checker is bound to use 128 MB during the encoding generation.

the SAT encoding.

5 Conclusions and Perspectives

We have proposed an approach to the translation of pro-
tocol insecurity problems into propositional logic based
on the combination of a reduction to planning and well-
known SAT-reduction techniques developed for planning.
Moreover, we have introduced a set of optimizing trans-
formations whose application to the input protocol insecu-
rity problem drastically reduces the size of the correspond-
ing propositional encoding. We have presented SATMC, a
model-checker based on our ideas, and shown that attacks
to a set of well-known authentication protocols are quickly
found by state-of-the-art SAT solvers.

Since the time spent by SAT solver is largely dominated
by the time needed to generate the propositional encoding,
in the future we plan to keep working on ways to reduce
the latter. A promising approach amounts to treating prop-
erties of cryptographic operations as invariants. Currently
these properties are modeled as rewrite rules (cf. rule (10)
in Section 2.1) and this has a bad impact on the size of
the final encoding. A more natural way to deal with these
properties amounts to building them into the encoding but
this requires, among other things, a modification of the ex-
planatory frame axioms and hence more work (both theo-
retical and implementational) is needed to exploit this very
promising transformation.

Moreover, we would like to experiment SATMC against
security problems with partially defined initial states.
Problems of this kind occur when the initial knowledge of
the principal in not completely defined or when the ses-
sion instances are partially defined. We conjecture that
neither the size of the SAT encoding nor the time spent
by the SAT solver to check the SAT instances will be sig-
nificantly affected by this generalization. But this requires
some changes in the current implementation of SATMC
and a thorough experimental analysis.

Bibliography

[1] Luigia Carlucci Aiello and Fabio Massacci. Verify-
ing security protocols as planning in logic program-
ming. ACM Transactions on Computational Logic,
2(4):542–580, October 2001.

[2] A. Armando, D. Basin, M. Bouallagui, Y. Cheva-
lier, L. Compagna, S. Moedersheim, M. Rusinow-
itch, M. Turuani, L. Viganò, and L. Vigneron. The
AVISS Security Protocols Analysis Tool. In 14th In-
ternational Conference on Computer-Aided Verifica-
tion (CAV’02). 2002.

[3] David Basin and Grit Denker. Maude versus haskell:
an experimental comparison in security protocol

66 ALESSANDRO ARMANDO AND LUCA COMPAGNA

Table 1: Performance of SATMC

Protocol Attack Atoms Clauses EncT SolveT

ISO symmetric key 1-pass unilateral authentication Replay 679 2,073 0.18 0.00
ISO symmetric key 2-pass mutual authentication Replay 1,970 7,382 0.43 0.01
Andrew Secure RPC Protocol Replay 161,615 2,506,889 80.57 2.65
ISO CCF 1-pass unilateral authentication Replay 649 2,033 0.17 0.00
ISO CCF 2-pass mutual authentication Replay 2,211 10,595 0.46 0.00
Needham-Schroeder Conventional Key Replay STS 126,505 370,449 29.25 0.39
Woo-Lam � Parallel-session 7,988 56,744 3.31 0.04
Woo-Lam Mutual Authentication Parallel-session 771,934 4,133,390 1,024.00 7.95
Needham-Schroeder Signature protocol MM 17,867 59,911 3.77 0.05
Neuman Stubblebine repeated part Replay STS 39,579 312,107 15.17 0.21
Kehne Langendorfer Schoenwalder (repeated part) Parallel-session - - MO -
Kao Chow Repeated Authentication, 1 Replay STS 50,703 185,317 16.34 0.17
Kao Chow Repeated Authentication, 2 Replay STS 586,033 1,999,959 339.70 2.11
Kao Chow Repeated Authentication, 3 Replay STS 1,100,428 6,367,574 1,288.00 MO

ISO public key 1-pass unilateral authentication Replay 1,161 3,835 0.32 0.00
ISO public key 2-pass mutual authentication Replay 4,165 23,883 1.18 0.01
Needham-Schroeder Public Key MM 9,318 47,474 1.77 0.05
Needham-Schroeder Public Key with key server MM 11,339 67,056 4.29 0.04
SPLICE/AS Authentication Protocol Replay 15,622 69,226 5.48 0.05
Encrypted Key Exchange Parallel-session 121,868 1,500,317 75.39 1.78
Davis Swick Private Key Certificates, protocol 1 Replay 8,036 25,372 1.37 0.02
Davis Swick Private Key Certificates, protocol 2 Replay 12,123 47,149 2.68 0.03
Davis Swick Private Key Certificates, protocol 3 Replay 10,606 27,680 1.50 0.02
Davis Swick Private Key Certificates, protocol 4 Replay 27,757 96,482 8.18 0.13

Legenda: MM: Man-in-the-middle attack Replay STS: Replay attack based on a Short-Term Secret
MO: Memory Out

AUTOMATIC SAT-COMPILATION OF PROTOCOL INSECURITY PROBLEMS VIA REDUCTION TO PLANNING 67

analysis. In Kokichi Futatsugi, editor, Electronic
Notes in Theoretical Computer Science, volume 36.
Elsevier Science Publishers, 2001.

[4] D. Bolignano. Towards the formal verification of
electronic commerce protocols. In Proceedings of
the IEEE Computer Security Foundations Workshop,
pages 133–146. 1997.

[5] Common Authentication Protocol Specification Lan-
guage. URL http://www.csl.sri.com/
~millen/capsl/.

[6] Cervesato, Durgin, Mitchell, Lincoln, and Scedrov.
Relating strands and multiset rewriting for secu-
rity protocol analysis. In PCSFW: Proceedings of
The 13th Computer Security Foundations Workshop.
IEEE Computer Society Press, 2000.

[7] John Clark and Jeremy Jacob. A Survey of
Authentication Protocol Literature: Version 1.0,
17. Nov. 1997. URL http://www.cs.york.
ac.uk/~jac/papers/drareview.ps.gz.

[8] Ernie Cohen. TAPS: A first-order verifier for crypto-
graphic protocols. In Proceedings of The 13th Com-
puter Security Foundations Workshop. IEEE Com-
puter Society Press, 2000.

[9] Sebastian Moedersheim David Basin and Luca Vi-
ganò. An on-the-fly model-checker for security pro-
tocol analysis. forthcoming, 2002.

[10] Grit Denker, Jonathan Millen, and Harald Rueß. The
CAPSL Integrated Protocol Environment. Technical
Report SRI-CSL-2000-02, SRI International, Menlo
Park, CA, October 2000. Available at http://
www.csl.sri.com/~millen/capsl/.

[11] Danny Dolev and Andrew Yao. On the security of
public-key protocols. IEEE Transactions on Infor-
mation Theory, 2(29), 1983.

[12] B. Donovan, P. Norris, and G. Lowe. Analyzing a
library of security protocols using Casper and FDR.
In Proceedings of the Workshop on Formal Methods
and Security Protocols. 1999.

[13] Michael D. Ernst, Todd D. Millstein, and Daniel S.
Weld. Automatic SAT-compilation of planning prob-
lems. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI-
97), pages 1169–1177. Morgan Kaufmann Publish-
ers, San Francisco, 1997.

[14] Enrico Giunchiglia, Marco Maratea, Armando Tac-
chella, and Davide Zambonin. Evaluating search
heuristics and optimization techniques in propo-
sitional satisfiability. In Rajeev Goré, Aleander

Leitsch, and Tobias Nipkow, editors, Proceedings of
IJCAR’2001, LNAI 2083, pages 347–363. Springer-
Verlag, Heidelberg, 2001.

[15] Mei Lin Hui and Gavin Lowe. Fault-preserving sim-
plifying transformations for security protocols. Jour-
nal of Computer Security, 9(1/2):3–46, 2001.

[16] Florent Jacquemard, Michael Rusinowitch, and Lau-
rent Vigneron. Compiling and Verifying Security
Protocols. In M. Parigot and A. Voronkov, editors,
Proceedings of LPAR 2000, LNCS 1955, pages 131–
160. Springer-Verlag, Heidelberg, 2000.

[17] Henry Kautz, David McAllester, and Bart Selman.
Encoding plans in propositional logic. In Luigia Car-
lucci Aiello, Jon Doyle, and Stuart Shapiro, editors,
KR’96: Principles of Knowledge Representation and
Reasoning, pages 374–384. Morgan Kaufmann, San
Francisco, California, 1996.

[18] Gawin Lowe. Casper: a compiler for the analysis
of security protocols. Journal of Computer Security,
6(1):53–84, 1998. See also http://www.mcs.
le.ac.uk/~gl7/Security/Casper/.

[19] Catherine Meadows. The NRL protocol analyzer:
An overview. Journal of Logic Programming,
26(2):113–131, 1996. See also http://chacs.
nrl.navy.mil/projects/crypto.html.

[20] Matthew W. Moskewicz, Conor F. Madigan, Ying
Zhao, Lintao Zhang, and Sharad Malik. Chaff: En-
gineering an Efficient SAT Solver. In Proceedings of
the 38th Design Automation Conference (DAC’01).
2001.

[21] R. M. (Roger Michael) Needham and Michael D.
Schroeder. Using encryption for authentication in
large networks of computers. Technical Report CSL-
78-4, Xerox Palo Alto Research Center, Palo Alto,
CA, USA, 1978. Reprinted June 1982.

[22] L.C. Paulson. The inductive approach to verifying
cryptographic protocols. Journal of Computer Secu-
rity, 6(1):85–128, 1998.

[23] D. Song. Athena: A new efficient automatic checker
for security protocol analysis. In Proceedings of the
12th IEEE Computer Security Foundations Workshop
(CSFW ’99), pages 192–202. IEEE Computer Soci-
ety Press, 1999.

[24] H. Zhang. SATO: An efficient propositional prover.
In William McCune, editor, Proceedings of CADE
14, LNAI 1249, pages 272–275. Springer-Verlag,
Heidelberg, 1997.

68 ALESSANDRO ARMANDO AND LUCA COMPAGNA

Session III

Invited Talk

(joint with VERIFY)

69

Defining security is difficult and error prone

Dieter Gollmann
Microsoft Research

Cambridge, UK
diego@microsoft.com

Abstract

It is often claimed that the design of security protocols is difficult and error prone, and that surprising flaws are detected
even after years of public scrutiny. A much quoted example is the Needham-Schroeder public key protocol published in
1978, where an attack was found as late as 1995. In consequence, it is concluded that the analysis of such protocols is
too complex for analysis by hand and that the discipline (and tool support) of formal verification will have considerable
impact on the design of security protocols.

The formal analysis that found the attack against the Needham-Schroeder public key protocol used correspondence
properties to formally capture authentication. Tracing the history of correspondence to its origin one finds that this
property was explicitly introduced to deal with the authentication of protocol runs and not with the authentication of a
corresponding principal. Hence, one could argue that the attack formally violates an irrelevant property, and it is only
by informal analysis that we can conclude that under certain circumstances (which are at odds with those assumed in
the original paper) the original protocol goals are also violated. Incidentally, the attack is fairly simple and ’obvious’
once one allows for ’dishonest’ principals.

A second example are two logics proposed for SDSI name resolution. One of the logics allows derivations that have
no correspondence in SDSI name resolution. This logic has a rule for keys ‘speaking for’ the same principal. The other
logic is precise in the sense that the results of the name resolution algorithm exactly correspond to the derivations in the
logic. This logic is key centric and does not relate keys issued to the same principal. Given that ‘SDSI’s groups provide
simple, clear terminology for defining access control lists and security policies’ it could be argued that the imprecise
logic is actually better suited for the intended application of SDSI.

Finally, some recent work on protocol design for mobile communications will be sketched where a good part of
the effort was devoted to deciding on the goals that actually should be achieved and on the assumptions about the
environment the protocol was designed to run in.

As a common theme, our examples will stress that it is by no means straightforward to pick and formalize a security
property, and that on occasion adopting ‘standard’ properties may mislead the verifier. Many security problems arise
when a mechanism suited to one application is then re-deployed in a new environment, where either assumptions crucial
for the original security argument no longer hold or where new security goals should be achieved. Thus, defining
security is difficult and error prone and, unfortunately, verification of security protocols cannot simply proceed by
picking from a menu of established properties and applying the latest tool but has to take care to justify the selection of
security goals.

It is often claimed that the design of security protocols is difficult and error prone, with formal verification suggested
as the recommended remedy. Verification requires a formal statement of the desired security properties and, maybe sur-
prisingly, many protocols are broken simply by varying the assumptions on goals and intended environment. To defend
my claim that defining security is difficult and error prone (and the really interesting challenge in formal verification) I
will discuss some old and new examples of security protocols and their formal analysis.

71

72 CHAPTER 7. DEFINING SECURITY IS DIFFICULT AND ERROR PRONE

Session IV

Verification of Security Protocols

(joint with VERIFY)

73

Identifying Potential Type Confusion in Authenticated Messages

Catherine Meadows
Code 5543

Naval Research Laboratory
Washington, DC 20375, USA
meadows@itd.nrl.navy.mil

Abstract

A type confusion attack is one in which a principal accepts
data of one type as data of another. Although it has been
shown by Heather et al. that there are simple formatting
conventions that will guarantee that protocols are free from
simple type confusions in which fields of one type are sub-
stituted for fields of another, it is not clear how well they
defend against more complex attacks, or against attacks
arising from interaction with protocols that are formatted
according to different conventions. In this paper we show
how type confusion attacks can arise in realistic situations
even when the types are explicitly defined in at least some
of the messages, using examples from our recent analysis
of the Group Domain of Interpretation Protocol. We then
develop a formal model of types that can capture potential
ambiguity of type notation, and outline a procedure for de-
termining whether or not the types of two messages can be
confused. We also discuss some open issues.

1 Introduction

Type confusion attacks arise when it is possible to confuse
a message containing data of one type with a message con-
taining data of another. The most simple type confusion
attacks are ones in which fields of one type are confused
with fields of another type, such as is described in [7], but
it is also possible to imagine attacks in which fields of one
type are confused with a concatenation of fields of another
type, as is described by Snekkenes in [8], or even attacks in
which pieces of fields of one type are confused with pieces
of fields of other types.

Simple type confusion attacks, in which a field of one
type is confused with a field of another type, are easy to
prevent by including type labels (tags) for all data and au-
thenticating labels as well as data. This has been shown
by Heather et al. [4], in which it is proved that, assuming
a Dolev-Yao-type model of a cryptographic protocol and
intruder, it is possible to prevent such simple type con-
fusion attacks by the use of this technique. However, it
is not been shown that this technique will work for more

complex type confusion attacks, in which tags may be con-
fused with data, and terms or pieces of terms of one type
may be confused with concatenations of terms of several
other types.1 More importantly, though, although a tag-
ging technique may work within a single protocol in which
the technique is followed for all authenticated messages, it
does not prevent type confusion of a protocol that uses the
technique with a protocol that does not use the technique,
but that does use the same authentication keys. Since it
is not uncommon for master keys (especially public keys)
to be used with more than one protocol, it may be nec-
essary to develop other means for determining whether or
not type confusion is possible. In this paper we explore
these issues further, and describe a procedure for detect-
ing the possibility of the more complex varieties of type
confusion.

The remainder of this paper is organized as follows. In
order to motivate our work, in Section Two, we give a brief
account of a complex type confusion flaw that was recently
found during an analysis of the Group Domain of Authen-
tication Protocol, a secure multicast protocol being devel-
oped by the Internet Engineering Task Force. In Section
Three we give a formal model for the use of types in pro-
tocols that takes into account possible type ambiguity. In
Section Four we describe various techniques for construct-
ing the artifacts that will be used in our procedure. In Sec-
tion Five we give a procedure for determining whether it is
possible to confuse the type of two messages. In Section
Six we illustrate our procedure by showing how it could be
applied to a simplified version of GDOI. In Section Seven
we conclude the paper and give suggestions for further re-
search.

2 The GDOI Attack

In this section we describe a type flaw attack that was
found on an early version of the GDOI protocol.

The Group Domain of Interpretation protocol (GDOI)

1We believe that it could, however, if the type tags were augmented
with tags giving the length of the tagged field, as is done in many imple-
mentations of cryptographic protocols.

75

76 CATHERINE MEADOWS

[2], is a group key distribution protocol that is undergo-
ing the IETF standardization process. It is built on top
of the ISAKMP [6] and IKE [3] protocols for key man-
agement, which imposes some constraints on the way in
which it is formatted. GDOI consists of two parts. In the
first part, called the Groupkey Pull Protocol, a principal
joins the group and gets a group key-encryption-key from
the Group Controller/Key Distributor (GCKS) in a hand-
shake protocol protected by a pairwise key that was origi-
nally exchanged using IKE. In the second part, called the
Groupkey Push Message, the GCKS sends out new traffic
encryption keys protected by the GCKS’s digital signature
and the key encryption key.

Both pieces of the protocol can make use of digital sig-
natures. The Groupkey Pull Protocol offers the option
of including a Proof-of-Possession field, in which either
or both parties can prove possession of a public key by
signing the concatenation of a nonce NA generated by the
group member and a nonce NB generated by the GCKS.
This can be used to show linkage with a certificate con-
taining the public key, and hence the possession of any
identity or privileges stored in that certificate.

As for the Groupkey Push Message, it is first signed by
the GCKS’s private key, and then encrypted with the key
encryption key. The signed information includes a header
HDR, (which is sent in the clear), and contains, besides the
header, the following information:

1. a sequence number SEQ (to guard against replay at-
tacks);

2. a security association SA;

3. a Key Download payload KD, and;

4. an optional certificate, CERT.

According to the conventions of ISAKMP, HDR must
begin with a random or pseudo-random number. In pair-
wise protocols, this is jointly generated by both parties, but
in GDOI, since the message must go from one to many,
this is not practical. Thus, the number is generated by the
GCKS. Similarly, it is likely that the Key Download mes-
sage will end in a random number: a key. Thus, it is rea-
sonable to assume that the signed part of a Groupkey Push
Message both begins and ends in a random number.

We found two type confusion attacks. In both, we as-
sume that the same private key is used by the GCKS to
sign POPs and Groupkey Push Messages. In the first of
these, we assume a dishonest group member who wants to
pass off a signed POP from the GCKS as a Groupkey Push
Message. To do this, we assume that she creates a fake
plaintext Groupkey Push Message GPM, which is missing
only the last (random) part of the Key Download Payload.
She then initiates an instance of the Groupkey Pull Proto-
col with the GCKS, but in place of her nonce, she sends
GPM. The GCKS responds by appending its nonce NB

and signing it, to create a signed (GPM,NB). If NB is of
the right size, this will look like a signed Groupkey Push
Message. The group member can then encrypt it with the
key encryption key (which she will know, being a group
member) and send it out to the entire group.

The second attack requires a few more assumptions. We
assume that there is a group member A who can also act
as a GCKS, and that the pairwise key between A and an-
other GCKS, B, is stolen, but that B’s private key is still se-
cure. Suppose that A, acting as a group member, initiates a
Groupkey Pull Protocol with B. Since their pairwise key is
stolen, it is possible for an intruder I to insert a fake nonce
for B’s nonce NB. The nonce he inserts is a fake Groupkey
Push Message GPM’ that it is complete except for a prefix
of the header consisting of all or part of the random number
beginning the header. A then signs (NA,GPM’), which, if
NA is of the right length, will look like the signed part of
a Groupkey Push Message. The intruder can then find out
the key encryption key from the completed Groupkey Pull
Protocol and use it to encrypt the resulting (NA,GPM’) to
create a convincing fake Groupkey Push Message.

Fortunately, the fix was simple. Although GDOI was
constrained by the formatting required by ISAKMP, this
was not the case for the information that was signed within
GDOI. Thus, the protocol was modified so that, when-
ever a message was signed within GDOI, information was
prepended saying what the purpose was (e.g. a member’s
POP, or a Groupkey Push Message). This eliminated the
type confusion attacks.

There are several things to note here. The first is that
existing protocol analysis tools are not very good at find-
ing these types of attacks. Most assume that some sort of
strong typing is already implemented. Even when this is
not the case, the ability to handle the various combinations
that arise is somewhat limited. For example, we found the
second, less feasible, attack automatically with the NRL
Protocol Analyzer, but the tool could not have found the
first attack, since the ability to model it requires the abil-
ity to model the associativity of concatenation, which the
NRL Protocol Analyzer lacks. Moreover, type confusion
attacks do not require a perfect matching between fields of
different types. For example, in order for the second attack
to succeed, it is not necessary for NA to be the same size
as the random number beginning the header, only that it be
no longer than that number. Again, this is something that
is not within the capacity of most crypto protocol analy-
sis tools. Finally, most crypto protocol analysis tools are
not equipped for probabilistic analysis, so they would not
be able to find cases in which, although type confusion
would not be possible every time, it would occur with a
high enough probability to be a concern.

The other thing to note is that, as we said before, even
though it is possible to construct techniques that can be
used to guarantee that protocols will not interact insecurely
with other protocols that are formatted using the same

IDENTIFYING POTENTIAL TYPE CONFUSION IN AUTHENTICATED MESSAGES 77

technique, it does not mean that they will not interact in-
securely with protocols that were formatted using differ-
ent techniques, especially if, in the case of GDOI’s use
of ISAKMP, the protocol wound up being used differently
than it was originally intended (for one-to-many instead
of pairwise communication). Indeed, this is the result one
would expect given previous results on protocol interaction
[5, 1]. Since it is to be expected that different protocols
will often use the same keys, it seems prudent to inves-
tigate to what extent an authenticated message from one
protocol could be confused with an authenticated message
from another, and to what extent this could be exploited by
a hostile intruder. The rest of this paper will be devoted to
the discussion of a procedure for doing so.

3 The Model

In this section we will describe the model that underlies
our procedure. It is motivated by the fact that different
principals may have different capacities for checking types
of messages and fields in messages. Some information,
like the length of the field, may be checkable by anybody.
Other information, like whether or not a field is a random
number generated by a principal, or a secret key belonging
to a principal, will only be checkable by the principal who
generated the random number in the first case, and by the
possessor(s) of the secret key in the second place. In order
to do this, we need to develop a theory of types that take
differing capacities for checking types into account.

We assume an environment consisting of principals who
possess information and can check properties of data based
on that information. Some information is public and is
shared by all principals. Other information may belong to
only one or a few principals.

Definition 3.1 A field is a sequence of bits. We let � denote
the empty field. If � and � are two fields, we let �6!�! � denote
the concatenation of � and � . If

�� and
�� are two lists of

fields, then we let � � � " ��� � �� � �� � denote the list obtained by
appending

�� to
�� .

Definition 3.2 A type is a set of fields, which may or may
not have a probability distribution attached. If � is a prin-
cipal, then a type local to P is a type such that membership
in that type is checkable by P. A public type is one whose
membership is checkable by all principals. If # is a group
of principals, then a type private to G is a type such that
membership in that type is checkable by the members of #
and only the members of # .

Examples of a public type would be all strings of length
256, the string “key,” or well-formed IP addresses. Exam-
ples of private types would be a random nonce generated
by a principal (private to that principal) a principal’s pri-
vate signature key (private to that principal), and a secret

key shared by Alice and Bob (private to Alice and Bob,
and perhaps the server that generated the key, if one ex-
ists). Note that a private type is not necessarily secret; all
that is required is that only members of the group to whom
the type is private have a guaranteed means of checking
whether or not a field belongs to that type. As in the case
of the random number generated by a principal, other prin-
cipals may have been told that a field belongs to the type,
but they do not have a reliable means of verifying this.

The decision as to whether or not a type is private or
public may also depend upon the protocol in which it is
used and the properties that are being proved about the pro-
tocol. For example, to verify the security of a protocol that
uses public keys to distribute master keys, we may want to
assume that a principal’s public key is a public type, while
if the purpose of the protocol is to validate a principal’s
public key, we may want to assume that the type is pri-
vate to that principal and some certification authority. If
the purpose of the protocol is to distribute the public key
to the principal, we may want to assume that the type is
private to the certification authority alone.

Our use of public and local types is motivated as fol-
lows. Suppose that an intruder wants to fool Bob into ac-
cepting an authenticated message � from a principal Al-
ice as an authenticated message � from Alice. Since �
is generated by Alice, it will consist of types local to her.
Thus, for example, if � is supposed to contain a field gen-
erated by Alice it will be a field generated by her, but if it
is supposed to contain a field generated by another party,
Alice may only be able to check the publically available
information such as the formatting of that field before de-
ciding to include it in the message. Likewise, if Bob is
verifying a message purporting to be � , he will only be
able to check for the types local to himself. Thus, our goal
is to be able to check whether or not a message built from
types local to Alice can be confused with another message
built from types local to Bob, and from there, to determine
if an intruder is able to take advantage of this to fool Bob
into producing a message that can masquerade as one from
Alice.

We do not attempt to give a complete model of an in-
truder in this paper, but we do need to have at at least
some idea of what types mean from the point of view of
the intruder to help us in computing the probability of an
intruder’s producing type confusion attacks. In particular,
we want to determine the probability that the intruder can
produce (or force the protocol to produce) a field of one
type that also belongs to another type. Essentially, there
are two questions of interest to an intruder: given a type,
can it control what field of that type is sent in a message,
and given a type, will any arbitrary member of that type be
accepted by a principal, or will a member be accepted only
with a certain probability.

Definition 3.3 We say that a type is under the control of
the intruder if there is no probability distribution associ-

78 CATHERINE MEADOWS

ated with it. We say that a type is probabilistic if there a
a probability distribution associated with it. We say that a
probabilistic type local to a principal � is under the con-
trol of � if the probability of � accepting a field as a mem-
ber of

�
is given by the probability distribution associated

with
�

.

The idea behind probabilistic types and types under con-
trol of the intruder is that the intruder can choose what
member of a type can be used in a message if it is under
its control, but for probabilistic types the field used will be
chosen according to the probability distribution associated
with the type. On the other hand, if a type is not under the
control of a principal � , then � will accept any member of
that type, while if the type is under the control of � , she
will only accept an element as being a member of that type
according to the probability associated with that type.

An example of a type under the control of an intruder
would be a nonce generated by the intruder, perhaps while
impersonating someone else. An example of a probabilis-
tic type that is not under the control of � would be a nonce
generated by another principal � and sent to � in a mes-
sage. An example of a probabilistic type that is also under
the control of � would be a nonce generated by � and sent
by � in a message, or received by � in some later message.

Definition 3.4 Let
�

and � be two types. We say that��� � holds if an intruder can force a protocol to produce
an element � of

�
that is also an element of � .

Of course, we are actually interested in the probabil-
ity that

��� � holds. Although the means for calculating
� � ��� � � may vary, we note that the following holds if
there are no other constraints on

�
and � :

1. If
�

and � are both under the control of the intruder,
then � � ��� � � is 1 if

� � �72# % and is zero other-
wise;

2. If
�

is under the control of the intruder, and � is a
type under the control of � , and the intruder knows
the value of the member of � before choosing the
member of

�
, then � �D� � � � # � ���� � � � � � ,

where �� is the random variable associated with
�

;

3. If
�

a type under the control of � , and � is a type
local to � but not under the control of � , then � � ���
� � #-� ���� � � � � � ;

4. If
�

is under the control of � and � is under the con-
trol of some other (non-intruder) � , then � �D� � � � #
� ���� #��� � where �� is the random variable associated
with

�
, and �� is the random variable associated with

� .

Now that we have a notion of type for fields, we extend
it to a notion of type for messages.

Definition 3.5 A message is a concatenation of one or
more fields.

Definition 3.6 A message type is a function
�

from lists
of fields to types, such that:

1. The empty list is in 	 � � � � � ;
2.

� � A �>= =$= ��� � � � 	 ��� � � � if and only if� � A �>= =$= ��� � @�A � � 	 � � � � � and � � �� � � � A �:=$= =$����� @ A � � ;
3. If

� � A �>= = =$����� � �
	 ��� � � � , and � � # � , then� � � � A �:=$= =$����� � � # .
�'0 , and ;

4. For any infinite sequence # � = = =$�������:=$= = � such that
all prefixes of are in � � �/� � � , there exists an �
such that, for all � ��� , � � # � .

The second part of the definition shows how, once the
first

� [fields of a message are known, then
�

can be
used to predict the type of the

�
’th field. The third and

fourth parts describe the use of the empty list � in indi-
cating message termination. The third part says that, if the
message terminates, then it can’t start up again. The fourth
part says that all messages must be finite. Note, however,
that it does not require that messages be of bounded length.
Thus, for example, it would be possible to specify, say, a
message type that consists of an unbounded list of keys.

The idea behind this definition is that the type of the
n’th field of a message may depend on information that
has gone before, but exactly where this information goes
may depend upon the exact encoding system used. For ex-
ample, in the tagging system in [4], the type is given by
a tag that precedes the field. In many implementations,
the tag will consist of two terms, one giving the general
type (e.g. “nonce”), and the other giving the length of the
field. Other implementations may use this same two-part
tag, but it may not appear right before the field; for ex-
ample in ISAKMP, and hence in GDOI, the tag refers, not
to the field immediately following it, but the field imme-
diately after that. However, no matter how tagging is im-
plemented, we believe that it is safe to assume that any
information about the type of a field will come somewhere
before the field, since otherwise it might require knowl-
edge about the field that only the tag can supply (such as
where the field ends) in order to find the tag.

Definition 3.7 The support of a message type
�

is the
set of all messages of the form � A !�! = = = !�! � ? such that� � A �:=$= = ��� ? � ��	 � � � � � .

For an example of a message type, we consider a mes-
sage of the form� � ����� " � ����� A ��� ! �EB � A � � � ����� " � ����� �<��� ! �EB � �
where � ! �EB � A is a random number of length � A gen-
erated by the creator of the message, � A is a 16-bit integer,
and � ! �EB � � is a random number of length � � , where

IDENTIFYING POTENTIAL TYPE CONFUSION IN AUTHENTICATED MESSAGES 79

both � ! �EB � � and � � are generated by the intended re-
ceiver, and � � is another 16-bit integer. From the point of
view of the generator of the message, the message type is
as follows:

1.
� � � � � # � � ����� " � � .

2.
� � � � � ����� " � � � � # . � ! 	 " � B4� � � � # [��K0 . Since � A
is generated by the sender, it is a type under the con-
trol of the sender consisting of the set of 16-bit inte-
gers, with a certain probability attached.

3.
� � � � � ����� " � �1�� A � � # . � ! 	 " � B4� � � � # � A 0 .
Again, this is a private type consisting of the set of
fields of length � A . In this case, we can choose the
probability distribution to be the uniform one.

4.
� � � � � ����� " � �1�� A �� ! �)B �SA � � # . � � ����� " � �%0 .

5.
� � � � � ����� " � �1�� A �� ! �)B �SA � � � ����� " � � � � #. � ! 	 " � B4� � � � # [�� 0 . Since the sender did
not actually generate � � , all he can do is check
that it is of the proper length, 16. Thus, this type
is not under the control of the sender. If � � was
not authenticated, then it is under the control of the
intruder.

6.
� � � � � ����� " � �1�� A �� ! �)B �SA � � � ����� " � �!��� � � � #. � ! 	 " � B4� �D� � # � � 0 . Again, this value is not under
the control of the sender, all the principal can do is
check that what purports to be a nonce is indeed of
the appropriate length.

7.
� � � � � ����� " � �1�� A �� ! �)B � A � � � ����� " � �!��� �G�
� ! �EB � A � � � # .

�'0 . This last tells us that the mes-
sage ends here.

From the point of view of the receiver of the message,
the message type will be somewhat different. The last two
fields, � � and � ! �EB � � will be types under the control
of the receiver, while � A and � ! �EB �6A will be types not
under its control, and perhaps under the control of the in-
truder, whose only checkable property is their length. This
motivates the following definition:

Definition 3.8 A message type local to a principal � is a
message type

�
whose range is made up of types local to

� .

We are now in a position to define type confusion.

Definition 3.9 Let
�

and
�

be two message types. We
say that a pair of sequences

� � A �:=$= =$��� ? � � � � ��� � � and� � A �>= =$= ��� ? � � � � ��� � � is a type confusion between
�

and�
if:

1. � � � � � � A �>= = =$��� ? � � ;
2. � � � � � � A �>= = =$��� @ � � , and;

3. � A !7! =$= =?!7! � ? # � A !�! = = = !�! � @ .

The first two conditions say that the sequences describe
complete messages. That last conditions says that the mes-
sages, considered as bit-strings, are identical.

Definition 3.10 Let
�

and
�

be two message types. We
say that

� � �
holds if an intruder is able to force a pro-

tocol to produce an
�� in � � �/� � � such that there exists

��
in � � ��� � � such that � ��Z� �� � is a type confusion..

Again, what we are interested in is computing, or at least
estimating, � � � � � � . This will be done in Section 5.

4 Constructing and Rearranging
Message Types

In order to perform our comparison procedure, we will
need the ability to build up and tear down message types,
and create new message types out of old. In this section
we describe the various ways that we can do this.

We begin by defining functions that are restrictions of
message types (in particular to prefixes and postfixes of
tuples).

Definition 4.1 An n-postfix message type is a function
�

from tuples of length � or greater to types such that:

1. For all
� �NL , � � A �:=$= =$��� ? 3 �

� � 	 ��� � � � if and only
if � ? 3 � �

� � � � A �:=$= = ��� ? 3 �
@�A � � ;

2. If
� � A �:=$= = ��� ? 3 �

� � 	 � � � � � , and � ? 3 � # � , then� � � � A �>= =$= ��� ? 3 � 3
A � � # .

�"0 , and ;

3. For any infinite sequence # � =$= = �����W�>= =$= � such that
all prefixes of of length � and greater are in
� � �/� � � , there exists an � such that, for all � �M� ,
� � # � .

We note that the restriction of a message type
�

to se-
quences of length n or greater is an n-postfix message type,
and that a message type is a 0-postfix message type.

Definition 4.2 An n-prefix message type is a function
�

from tuples of length less than � to types such that:

1.
�

is defined over the empty list;

2. For all
� �'� ,

� � A �:=$= = ����� � � 	 � � � � � if and only if
��� � � � � � A �>= =$= ��� � @�A � � , and;

3. If
� �>�. [, and

� � A �>= = =$��� � � � 	 � � � � � , and � � #
� , then

� � � � A �>= =$= ��� � 3
A � � # .

�'0 .
We note that the restriction of a message type to se-

quences of length less than � is an � -prefix message type.

80 CATHERINE MEADOWS

Definition 4.3 We say that a message type or n-prefix mes-
sage type

�
is t-bounded if

� ��� � # � for all tuples � of
length t or greater.

In particular, a message type that is both t-bounded and
t-postfix will be a trivial message type.

Definition 4.4 Let
�

be an n-postfix message type. Let�
be a set of m-tuples in the pre-image of

�
, where m�

n. Then
� � �

is defined to be the restriction of R to
the set of all

� � A �>= = =$��� @ �>= =$= ��� ,
�

in � � �/� � � such that� � A �>= =$= ��� @ � � �
.

Definition 4.5 Let
�

be an n-prefix message type. Let
�

be a set of n-1 tuples. Then
� � �

is defined to be the re-
striction of

�
to the set of all tuples

�� such that
�� � �

, or�� # � � A �>= =$= � � � such that there exists
� � � 3

A �>= =$= ��� ?�@�A � such
that

� � A �>= =$= � � ��� � 3
A �>= =$= ��� ?�@�A � � �

.

Definition 4.6 Let
�

be an n-postfix message type. Then
 � 	�� B�� � � is the function whose domain is the set of all� � A �>= =$= ��� ? ��� A ��� � ��� ? 3 � �:=$= = ��� @

�
of length n+1 or greater

such that
� � A �>= =$= ��� ? ��� A !�! � � ��� ? 3 � �:=$= = ��� @

� � � � ��� � �
and such that

a. For the tuples of length i � n +1,
 � 	�� B�� � ��� � � A �>= =$= ��� ? ��� A ��� � ��� ? 3 � �>= =$= �

�
@
� � #� � � � A �:=$= = ��� ? ��� A !�! � � ��� ? 3 � �>= = =$��� @

� � , and;

b. For tuples of length n +1 ,
 � 	�� B�� � ��� � � A �:=$= = ��� ? 3

A � � # .
� ! � � A �:=$= = ��� ? 3

A !�! � � �
� � ��� � � .

Definition 4.7 Let
�

be an n-prefix message type. Let �
be a function from a set of n-tuples to types such that there
is at least one tuple

� � � 3
A =$= = ��� ? � in the domain of � such

that
� � � 3

A =$= =$��� ?�@ A � is in the domain of
�

. Then
��� � , the

extension of
�

by � , is the function whose domain is

a. For i � n, the set of all
� � A =$= =$= ��� � � such that� � A =$= = =$��� � � � � � ��� � � , and such that there ex-

ists
� � � 3

A = = =$��� ? � such that
� � A =$= = =$��� � ��� � 3

A =$= = ��� ? � �
� � ��� � � ;

b For i = n, the set of all
� � A = =$= =$��� ?�@ A ��� ? � such that� � A =$= = =$��� ?�@ A � � � � ��� � � and

� � A = =$= = ��� ?K@�A ��� ? � �
� � ��� � � ;

and whose restriction to tuples of length less than n is
�

,
and whose restriction to n-tuples is � .

Proposition 4.1 If
�

is an n-postfix message type, then� � �
is an m-postfix message type for any set of m-tuples�

, and � 	�� B�� � � is an (n+1)-postfix message type. If
�

is t-bounded, then so is
� � �

, while � 	�� B�� � � is (t+1)-
bounded. Moreover, if S is an n-prefix message type, then
so is

� � � for any set of n-1 tuples � , and
� � � is an (n+1)-

prefix message type for any function � from n-tuples to
types such at for at least one element

� � � 3
A =$= =$��� ? � in the

domain of � ,
� � � 3

A =$= = ��� ?K@�A � is in the domain of
�

.

We close with one final definition.

Definition 4.8 Let � be a function from k-tuples of fields
to types. We define � � " � � � to be the function from k-tuples
of fields to types defined by � � " � � ����� � is the set of all
prefixes of all elements of � ��� � .

5 The Zipper: A Procedure for
Comparing Message Types

We now can define our procedure for determining whether
or not type confusion is possible between two message
types

�
and

�
, that is, whether it is possible for a ver-

ifier to mistake a message of type
�

generated by some
principal for a message of type

�
generated by that same

principal , where
�

is a message type local to the gener-
ator, and

�
is a message type local to the verifier. But, in

order for this to occur, the probability of
� � �

must be
nontrivial. For example, consider a case in which

�
is a

type local to and under the control of Alice consisting of
a random variable 64 bits long, and

�
consists of another

random 64-bit variable local to and under the control of
Bob. It is possible that

��� �
holds, but the probability

that this is so is only [�
 � " . On the other hand, if
�

is
under the control of the intruder, then the probability that
their support is non-empty is one. Thus, we need to choose
a threshold probability, such that we consider a type con-
fusion whose probability falls below the threshold to be of
negligible consequence.

Once we have chosen a threshold probability, our strat-
egy will be to construct a “zipper”between the two mes-
sage types to determine their common support. We will
begin by finding the first type of

�
and the first type of

�
,

and look for their intersection. Once we have done this,
for each element in the common support, we will look for
the intersection of the next two possible types of

�
and�

, respectively, and so on. Our search will be compli-
cated, however, by the fact that the matchup may not be
between types, but between pieces of types. Thus, for ex-
ample, elements of the first type of

�
may be identical to

the prefixes of elements of the first type of
�

, while the re-
mainders of these elements may be identical to elements of
the second type of

�
, and so forth. So we will need to take

into account three cases: the first, where two types have a
nonempty intersection, the second, where a type from

�

(or a set of remainders of types from
�

) has a nonempty
intersection with a set of prefixes from the second type of�

, and the third, where a type from
�

(or a set of remain-
ders of types from

�
) has a nonempty intersection with a

set of prefixes from the second type of
�

. All of these will
impose a constraint on the relative lengths of the elements
of the types from

�
and

�
, which need to be taken into

account, since some conditions on lengths may be more
likely to be satisfied than others.

IDENTIFYING POTENTIAL TYPE CONFUSION IN AUTHENTICATED MESSAGES 81

Our plan is to construct our zipper by use of a tree in
which each node has up to three possible child nodes, cor-
responding to the three possibilities given above. Let

�

and
�

be two message types, and let � be a number be-
tween 1 and 0, such that we are attempting to determine
whether the probability of constructing a type confusion
between

�
and

�
is greater than � . We define a ter-

tiary tree of sept-tuples as follows. The first entry of each
sept-tuple is a set � of triples

� �Z� �� � �� � , where � is a bit-
string and

���# � � A �>= = =$��� ? � and
��O# �

�
A �>= =$= ��� @

�
such that

� [!�! = =$=?!�! � ? # �
A !7! =$= =?!7! � @ # � . We will call � the support of

the node. The second and third entries are � and � postfix
message types, respectively. The fourth and fifth are mes-
sage types or prefix message types. The sixth is a probabil-
ity / . The seventh is a set of constraints on lengths of types.
The root of the tree is of the form

� % � � � � � � � � � � �:[G� � � ,
where � is the set of length constraints introduced by

�

and
�

.
Given a node,

� �����3��� ��� � � ��/��3B � , we construct up to
three child nodes as follows:

1. The first node corresponds to the case in which a term
from H can be confused with a term from I. Let � be
the set of all

� �Z� �� � �� � ��� such that � ��� � �� � � � � ��K�S2#
% � & / � � . Then, if � is non-empty, we construct a
child node as follows:

a. The first element of the new tuple is the set
�S� of all

� � � � ��K�!� ��V� � such that there exists� �Z� ���� �� � � � such that � � # � !7! � A , where
� A ��� ? � �� � , ��K� # ��� � " ��� � �� � � � A � � , and

��V� #� � � " ��� � �� � � � A � � ;
Note that, by definition � A is an element of � � ��V�
as well as � � �� � .

b. The second element is the (n+1)-
postfix message type � �
 � , where

 � # . ����<! � � �5� ������ ��V� � � � �!0 ;

c. The third element is the (m+1)-postfix message
type � �
 � , where
 � # . ��V��! � � �5� ����1� ��V� � �
�S�!0 ;

d. The fourth element is ��� � � ? � � 8 � , where8 � # . ���! � � � ���� �� � � � 0 ;
e. The fifth element is � � � � @ �

� 8 � , where 8 �N#. �� ! � � � ���� �� � � � 0 ;
f. The sixth element is ���+� � . � ��� ? � �� � �

� @ � ��U�62# % ! � � �U= BJ=	��� � ���� ��U� � �S�X0�� &1/ , and;

g. The seventh element is B , . � A 0 , where � A is the
constraint

��	
	����� ��� ? � # ��	�	����� � � ? � .
We call this first node the node generated by the con-
straint

��	�	����� ��� ? � # ��	
	����� � � @ � .
2. The second node corresponds to the case in which a

type from � can be confused wit prefix of a type from
� .

Let � be the set of all
� �Z� �� � �� � such that � ��� ? � �� � �

� � " � � @ ��� ��V����& / � � . Then, if � is non-empty, we
construct a child node as follows:

a. The first element of the new tuple is the set
� � of all

� � �5� ��K�1� ��V� � such that there exists� �Z� ���� �� � � � such that � � # �6!�! � A , where
� A ��� ? � �� � , ��K� #4� � � " ��� � �� = � � A � � , and

��V� #� � � " ��� � �� � � � A � � ;
Note that, in this case � A is an element of
� � " � � @ ��� ��V�\� as well.

b. The second element is the (n+1)-
postfix message type � �
 � , where

 �/# . ��K� ! � � � � ��K��� ��V� � � � �!0 ;

c. The third element is the m-postfix message type
 � 	�� B�� � � �
 � , where
 � # . �� � ! � � � � �� � � �� � � �
� ��0 ;

d. The fourth element is ��� � � ? � � 8 � , where8 � # . �� ! � �Z� ���� �� � � � 0 ;
e. The fifth element is � � � � � " � � @ �\�

� 8 � , where8 � # . �� ! � � � ���� �� � � � 0 ;
f. The sixth element of the tuple is���+� � . � ��� ? � �� � � � � " � � @ �>� ��V� !
�&� �U= BJ=	��� � ���� ��V��� �S���J0 � &1/ , and;

g. The seventh element is B , . � A 0 , where � A is the
constraint

��	
	����� ��� ? �,� ��	�	����� � � @ � .
We call this node the node generated by the constraint��	
	����� ��� ? � � ��	�	����� � � @ � .

3. The third node corresponds to the case in which a pre-
fix of a type from � can be confused with a type from
� .

Let � be the set of all
� � � �� � �� � in � such that

� ��� � " ��� ? �>� �� � � � � ��V�\� & / � � . Then, if � is
nonempty, we construct a child node as follows:

a. The first element of the new tuple is the set
� � of all

� � �5� ��K�1� ��V� � such that there exists� �Z� ���� �� � � � such that � � # �6!�! � A , where
� A �@� � " ��� ? ��� �� � , ��K� # � � � " ��� � �� � � � A � � , and��V� # ��� � " ��� � ��K� � � A � ;
Note that, in this case � A is an element � @ � ��V� as
well.

b. The second element is the n-postfix mes-
sage type � 	�� B������ �
 � , where
 � #. ����<! � � �5� ����1� ��V� � � � �!0 ;

c. The third element is the (m+1)-postfix message
type � �
 � , where
 � # . ��V��! � � �1� ��K��� ��U� � �
� ��0 ;

d. The fourth element is ��� � � � " ��� ? �\��� � 8 � ,
where 8 �/# . �� ! � �Z� �� � �� � � � 0 ;

e. The fifth element is � � � � @ �
� 8 � , where 8 � #. �� ! � �Z� ���� �� � � � 0 ;

82 CATHERINE MEADOWS

f. The sixth element is ���+� � . � ��� � " ��� ? ��� �� � �
� @ � ������ ! �&� �U= BJ=	��� � ���� ���� � �S�X0�� & / , and;

g. The seventh element is B , . � A 0 , where � A is the
constraint

��	�	����� ��� ? � � ��	�	����� � � @ � .
We call this node the node generated by the constraint��	�	����� ��� ? � � ��	
	����� � � @ � .

The idea behind the nodes in the tree is as follows. The
first entry in the sept-tuple corresponds to the part of the
zipper that we have found so far. The second and third
corresponds to the portions of

�
and

�
that are still to be

compared. The fourth and fifth correspond to the portions
of
�

and
�

that we have compared so far. The sixth entry
gives an upper bound on the probability that this portion
of the zipper can be constructed by an attacker. The sev-
enth entry gives the constraints on lengths of fields that are
satisfied by this portion of the zipper.

Definition 5.1 We say that a zipper succeeds if it contains
a node

� � � � � � � � ��� � � ��/���B � .
Theorem 5.1 The zipper terminates for bounded message
types, and, whether or not it terminates, it succeeds if there
are any type confusions of probability greater than � . For
bounded message types, the complexity is exponential in
the number of message fields.

6 An Example: An Analysis of
GDOI

In this section we give a partial analysis of the signed mes-
sages of a simplified version of the GDOI protocol.

There are actually three such messages. They are: the
POP signed by the group member, the POP signed by the
GCKS, and the Groupkey Push Message signed by the
GCKS. We will show how the POP signed by the GCKS
can be confused with the Groupkey Push Message.

The POP is of the form � ! �EB � & ��� ! �EB � � where
� ! �)B � & is a random number generated by a group
member, and � ! �EB � � is a random number generated
by the GCKS. The lengths of � ! �EB � & and � ! �EB � �
are not constrained by the protocol. Since we are inter-
ested in the types local to the GCKS, we have � ! �EB � &
the type consisting of all numbers, and � ! �EB � � the
type local to the GCKS consisting of the the single nonce
generated by the GCKS.

We can thus define the POP as a message type local to
the GCKS as follows:

1.
� � � � � # � ! �EB � & where � ! �EB � & is the type
under the control of the intruder consisting of all
numbers, and;

2.
� � � � A � � # � ! �EB � � where � ! �EB � � is a type
under control of the GCKS.

We next give a simplified (for the purpose of exposition)
Groupkey Push Message. We describe a version that con-
sists only of the Header and the Key Download Payload:
� ! �EB ��� � �
� � � � � # �

_ � � � # ��� � ��� � �� � � � � # ��� � � ��� � � � � � � � � �
The � ! �EB � � at the beginning of the header is

of fixed length (16 bytes). The one-byte kd field
gives the type of the first payload, while the 4-byte
� � � # �

_ � � � # ��� gives the length of the message
in bytes. The one-byte sig field gives the type of the next
payload (in this case the signature, which is not part of the
signed message), while the 2-byte

� � � � � # ��� gives
the length of the key download payload. We divide the key
download data into two parts, a header which gives infor-
mation about the keys, and the key data, which is random
and controlled by the GCKS. (This last is greatly simpli-
fied from the actual GDOI specification).

We can thus define the Groupkey Push Message as the
following message type local to the intended receiver:

1.
� � � � � # � ! �EB ��� where � ! �EB ��� is the type
consisting of all 16-byte numbers;

2.
� � � � A � � # . �
� 0 ;

3.
� � � � A ��� � � �7# � � � # �

_ � � � # ��� , where
� � � # �

_ � � � # ��� is the type consisting of
all 4-byte numbers;

4.
� � � � A ��� � ��� � � � # . ��� � 0 ;

5.
� � � � A ��� � ��� � ��� "

� � # � � � � � # ��� , where� � � � � # ��� is the type consisting of all 2-byte
numbers;

6.
� � � � A ��� � ��� � ��� " ��� �

� � # � ��� � � � � � , where
the type

� ��� � � � � � consists of all possi-
ble

� � headers whose length is less than � � ��	�	����� ��� A !7! � � !�! � � !�! � " !�! � � � and the value of � � .
7.

� � � � A ��� � ��� � ��� " ��� � ��� �
� � # � � � , where� � � is the set of all numbers whose length is less

than � � ��	�	����� ��� A !7! � � !�! � � !�! � " !�! � � !�! � � � and equal
to � � ��	
	����� ��� � � . Note that the second constraint
makes the first redundant.

All of the above types are local to the receiver, but under
the control of the sender.

We begin by creating the first three child nodes.
All three cases length(� A) = length(� A), length(� A) �
length(� A), and length(� A) � length(� A), are non-trivial,
since � A � � ! �)B � � is an arbitrary 16-byte number,
and � A � � ! �EB � & is a completely arbitrary number.
Hence the probability of � ! �EB � &

� � ! �EB � � is one
in all cases. But let’s look at the children of these nodes.
For the node corresponding to length(� A) = length(� A),
we need to compare � � and � � . The term � � is the pay-
load identifier corresponding to “kd”. It is one byte long.

IDENTIFYING POTENTIAL TYPE CONFUSION IN AUTHENTICATED MESSAGES 83

The term � � is the random nonce � ! �)B � � generated
by the GCKS. Since � � is the last field in the POP, there
is only one possibility; that is, length(� �) � length(� �).
But this would require a member of � � " ��� ! �EB � � �
to be equal to “kd”. Since � ! �EB � � is local to
the GCKS and under its control, the chance of this is[�

 . If this is not too small to worry about, we con-
struct the child of this node. Again, there will be only
one, and it will correspond to length(� �) � length(� �) -
length(� �). In this case, � � is the apparently arbitrary
number � � � # �

_ � � � # ��� . But there is a nontriv-
ial relationship between � � � # �

_ � � � # ��� and
� ! �EB � � , in that � � � # �

_ � � � # ��� must de-
scribe a length equal to � Y � , where � is the length of
the part of � ! �EB � � remaining after the point at which
� � � # �

_ � � � # ��� appears in it, and � describes
the length of the signature payload. Since both of these
lengths are outside of the intruder’s control, the probabil-
ity that the first part of � ! �EB � � will have exactly this
value is [�

A � . We are now up to a probability of [�
 � " .
When we go to the next child node, again the only possi-

bility is length(� ") � length(� �) - length(� �) - length(� �),
and the comparison in this case is with the 1-byte repre-
sentation of “sig”. The probability of type confusion now
becomes [�
 � � . If this is still a concern, we can continue
in this fashion, comparing pieces of � ! �)B � � with the
components of the Groupkey Push Message until the risk
has been reduced to an acceptable level. A similar line of
reasoning works for the case length(� A) � length(� A).

We now look at the case length(� A) � length(� A), and
show how it can be used to construct the attack we men-
tioned at the beginning of this paper. We concentrate on
the child node generated by the constraint length(� A) -
length(� A) � length(� �). Since � A � � ! �EB � & is an
arbitrary number, the probability that � � can be taken for a
piece of � A , given the length constraint, is one. We con-
tinue in this fashion, until we come to the node gener-
ated by the constraint length(� �) � length(� A) - , �� � A � � .
The remaining field of the Groupkey Pull Message, � � �� � � is an arbitrary number, so the chance that the re-
maining field of the POP, � � together with what remains
of � A , can be mistaken for � � , is one, since the concatena-
tion of the remains of � A with � � , by definition, will be a
member of the abitrary set

� � � .

7 Conclusion and Discussion

We have developed a procedure for determining whether
or not type confusions are possible in signed messages in
a cryptographic protocol. Our approach has certain advan-
tages over previous applications of formal methods to type
confusion; we can take into account the possibility that an
attacker could cause pieces of message fields to be con-
fused with each other, as well as entire fields. It also takes
into account the probability of an attack succeeding. Thus,

for example, it would catch message type attacks in which
typing tags, although present, are so short that it is possible
to generate them randomly with a non-trivial probability.

Our greater generality comes at a cost, however. Our
procedure is not guaranteed to terminate for unbounded
message types, and even for bounded types it is exponen-
tial in the number of message fields. Thus, it would have
not have terminated for the actual, unsimplified, GDOI
protocol, which allows an arbitrary number of keys in the
Key Download payload, although it still would have found
the type confusion attacks that we described at the begin-
ning of this paper.

Also, we have left open the problem of how the prob-
abilities are actually computed, although in many cases,
such as that of determining whether or not a random
number can be mistaken for a formatted field, this is
fairly straightforward. In other cases, as in the compari-
son between � ! �EB � � and � � � # �

_ � � � # ���
from above, things may be more tricky. This is be-
cause, even though the type of a field is a function of
the fields that come before it in a message, the values
of the fields that come after it may also act as a con-
straint, as the length of the part of the message appear-
ing after � � � # �

_ � � � # ��� does on the value of
� � � # �

_ � � � # ��� .

Other subtleties may arise from the fact that other
information that may or may not be available to
the intruder may affect the probability of type con-
fusion. For example, in the comparison between
� � � # �

_ � � � # ��� and � ! �EB � � , the intruder
has to generate � ! �EB � & before it sees � ! �EB � � . If
it could generate � ! �EB � & after it saw � ! �)B � � , this
would give it some more control over the placement of
� � � # �

_ � � � # ��� with respectt to � ! �EB � � .
This would increase the likelyhood that it would be able
to force � � � # �

_ � � � # ��� to have the appropri-
ate value.

But, although we will need to deal with special cases
like these, we believe that, in practice, the number of dif-
ferent types of such special cases will be small, and thus
we believe that it should be possible to narrow the prob-
lem down so that a more efficient and easily automatable
approach becomes possible. In particular, a study of the
most popular approaches to formatting cryptographic pro-
tocols should yield some insights here.

8 Acknowledgements

We are greatful to MSec and SMuG Working Groups, and
in particular to the authors for the GDOI protocol, for
many helpful discussions on this topic. This work was sup-
ported by ONR.

84 CATHERINE MEADOWS

Bibliography

[1] J. Alves-Foss. Provably insecure mutual authentica-
tion protocols: The two party symmetric encryption
case. In Proc. 22nd National Information Systems Se-
curity Conference., Arlington, VA, 1999.

[2] Mark Baugher, Thomas Hardjono, Hugh Harney,
and Brian Weis. The Group Domain of Interpreta-
tion. Internet Draft draft-ietf-msec-gdoi-04.txt, In-
ternet Engineering Task Force, February 26 2002.
available at http://www.ietf.org/internet-drafts/draft-
ietf-msec-gdoi-04.txt.

[3] D. Harkins and D. Carrel. The Internet Key
Exchange (IKE). RFC 2409, Internet Engineer-
ing Task FOrce, November 1998. available at
http://ietf.org/rfc/rfc2409.txt.

[4] James Heather, Gavin Lowe, and Steve Schneider.
How to prevent type flaw attacks on security proto-
cols. In Proceedings of 13th IEEE Computer Security
Foundations Workshop, pages 255–268. IEEE Com-
puter Society Press, June 2000. A revised version is to
appear in the Journal of Computer Security.

[5] John Kelsey and Bruce Schneier. Chosen interactions
and the chosen protocol attack. In Security Protocols,
5th International Workshop April 1997 Proceedings,
pages 91–104. Springer-Verlag, 1998.

[6] D. Maughan, M. Schertler, M. Schneider, and
J. Turner. Internet Security Association and Key
Management Protocol (ISAKMP). Request for Com-
ments 2408, Network Working Group, November
1998. Available at http://ietf.org/rfc/rfc2408.txt.

[7] Catherine Meadows. Analyzing the Needham-
Schroeder public key protocol: A comparison of
two approaches. In Proceedings of ESORICS ’96.
Springer-Verlag, 1996.

[8] Einar Snekkenes. Roles in cryptographic protocols.
In Proceedings of the 1992 IEEE Computer Secu-
rity Symposium on Research in Security and Privacy,
pages 105–119. IEEE Computer Society Press, May
4-6 1992.

Proving Cryptographic Protocols Safe From Guessing Attacks

Ernie Cohen

Microsoft Research, Cambridge UK
ernie.cohen@acm.org

Abstract

We extend the first-order protocol verification method of
[1] to prove crypto protocols secure against an active ad-
versary who can also engage in idealized offline guessing
attacks. The enabling trick is to automatically construct
a first-order structure that bounds the deduction steps that
can appear in a guessing attack, and to use this structure to
prove that such attacks preserve the secrecy invariant. We
have implemented the method as an extension to the proto-
col verifier TAPS, producing the first mechanical proofs of
security against guessing attacks in an unbounded model.

1 Introduction

Many systems implement security through a combina-
tion of strong secrets (e.g., randomly generated keys and
nonces) and weak secrets (e.g. passwords and PINs). For
example, many web servers authenticate users by sending
passwords across SSL channels. Although most formal
protocol analysis methods treat strong and weak secrets
identically, it is well known that special precautions have
to be taken to protect weak secrets from offline guessing
attacks.

For example, consider the following simple protocol,
designed to deliver an authenticated message � from a user
� to a server :

� � +$.
 � ��� 0 � � & �
(Here

� � �S� is a symmetric key shared between � and ,
and

 �
is a freshly generated random nonce.) If

� � �S� is
generated from a weak secret, an adversary might try to
attack this protocol as follows:

� If � can be tricked into sending a � that is in an eas-
ily recognized sparse set (e.g., an English text, or a
previously published message), the adversary can try
to guess � ’s key. He can then confirm his guess by
decrypting the message and checking that the second
component is in the sparse set.

� If � can be tricked into sending the same � twice
(using different nonces), or if another user � can be

tricked into sending the same � , the adversary can
try to guess a key for each message. He can then con-
firm his guess by decrypting the messages with the
guessed keys, and checking that their second compo-
nents are equal.

In these attacks, the adversary starts with messages he has
seen and computes new messages with a sequence of steps
(guessing, decryption, and projection in these examples).
Successful attack is indicated by the discovery of an un-
likely coincidence — a message (� in the examples above)
that either has an unlikely property (as in the first example)
or is generated in two essentially different ways (as in sec-
ond example). Such a message is called a verifier for the
attack; intuitively, a verifier confirms the likely correctness
of the guesses on which its value depends.

This approach to modelling guessing attacks as a search
for coincidence was proposed by Gong et. al. [2], who
considered only the first kind of verifier. Lowe [3] pro-
posed a model that includes both kinds of verifiers 1. He
also observed that to avoid false attacks, one should ig-
nore verifiers produced by steps that simply reverse other
derivation steps. For example, if an adversary guesses a
symmetric key, it’s not a coincidence that encrypting and
then decrypting a message with this key yields the original
message (it’s an algebraic identity); in Lowe’s formulation,
such a coincidence is ignored because the decryption step
“undoes” the preceding encryption step.

Lowe also described an extension to Casper/FDR that
searches for such attacks by looking for a trace consist-
ing of an ordinary protocol execution (with an active ad-
versary), followed by a sequence of steps (dependent on a
guess) that leads to a verifier. However, he did not address
the problem of proving protocols safe from such attacks.

In this paper we extend the first-order verification
method of [1] to prove protocols secure in the presence of
an active attacker that can also engage in these kinds of of-
fline guessing attacks. We have also extended our verifier,
TAPS, to construct these proofs automatically; we believe
them to be the first mechanical proofs of security against a
guessing attacker in an unbounded model.

1Lowe also considered the possibility of using a guess as a verifier;
we handle this case by generating guesses with explicit attacker steps.

85

86 ERNIE COHEN

1.1 Roadmap

Our protocol model and verification method are fully de-
scribed in [1]; in this paper, we provide only those details
needed to understand the handling of guessing attacks.

We model protocols as transition systems. The state of
the system is given by the set of events that have taken
place (e.g., which protocol steps have been executed by
which principals with which message values). We model
communication by keeping track of which messages have
been published (i.e., sent in the clear); a message is sent by
publishing it, and received by checking that it’s been pub-
lished. The adversary is modelled by actions that combine
published messages with the usual operations ((un)pairing,
(en/de)cryption, etc.) and publish the result.

Similarly, a guessing attacker uses published messages
to construct a guessing attack (essentially, a sequence of
steps where each step contributes to a coincidence) and
publishes any messages that appear in the attack (in partic-
ular, any guesses). We describe these attacks formally in
section 2. Our model differs from Lowe’s in minor ways
(it’s a little more general, and we don’t allow the attack
to contain redundant steps); however, we prove in the ap-
pendix that for a guesser with standard attacker capabil-
ities, and with a minor fix to his model, the models are
essentially equivalent.

To verify a protocol, we try to generate an appropri-
ate set of first-order invariants, and prove safety properties
from the invariants by first-order reasoning. Most of these
invariants are invariant by construction; the sole exception
is the secrecy invariant (described in section 4), which de-
scribes conditions necessary for the publication of a mes-
sage. [1] describes how TAPS constructs and checks these
invariants; in this paper, we are concerned only with how
to prove that guessing attacks maintain the secrecy invari-
ant.

In section 3, we show how to prove a bound on the in-
formation an adversary learns from a guessing attack by
constructing a set of steps called a saturation; the main
theorem says that if a set of messages has a saturation that
has no verifiers, then a guessing attack starting with infor-
mation from that set cannot yield information outside that
set. In section 5, we show how to automatically gener-
ate first-order saturations suitable to show preservation of
TAPS secrecy invariants. TAPS uses a resolution theorem
prover to check that the saturation it constructs really does
define a saturation, and to check that this saturation has no
verifiers.

2 Guessing Attacks

In this section, we describe guessing attacks abstractly.
We also define a standard model, where the attacker has
the usual Dolev-Yao adversary capabilities (along with the
ability to guess and recognize).

We assume an underlying set of messages; variables� ��� ��� � � �
 �
, and � range over messages, and � over

arbitrary sets of messages. In the standard model, the mes-
sage space comes equipped with the following functions
(each injective2, with disjoint ranges):

� � � a trivial message. � ��� 0 the ordered pair formed from
�

and �� � encryption of
�

under the key �
Following Lowe, we define a guessing attacker by the

steps that he can use to construct an attack; variables start-
ing with � denote steps, variables starting with denote
sets of steps or finite sequences of steps without repeti-
tion (treating such sequences as totally ordered sets). We
assume that each step has a finite sequence of message in-
puts and a single message output; intuitively, a step models
an operation available to the adversary that, produces the
output from the inputs. An input/output of a set of steps is
an input/output of any of its members. We say � is inside
� iff the inputs and output of � are all in � , and is outside
� otherwise. is inside � iff all its steps are inside � .

In the standard model, a step is given by a vector of
length three, the first and third elements giving its inputs
and output, respectively. Steps are of the following forms,
where � , � ����� ��� � � , and

 ��
 � � � � � are protocol-dependent
predicates described below:

� � � � � � �"� � � � �� � � ��� � ��� ��� �U� . � �� 0 �� � � ��� � � " ����� � � �� �". � �� 0 � ����� ��� � �� �". � �� 0 � ���+������� �� � � � ��� � �� " ��� � � , where � �D� ���S�� � � � � " � �U� � � where � �	��� ��� � � � � �� � � � ��)� " � � � � � � � where

 ��
 � � � � � � � �

The first five steps model the adversary’s ability to produce
the empty message, to pair, encrypt and project. The sixth
step models his ability to decrypt; � � � �� � means that
messages encrypted under

�
can be decrypted using � 3.

The seventh step models the adversary’s ability to guess;
we think of the adversary as having a long list of likely
secrets, and � �	��� � � � � � � � just means that

�
is in the list.

The last step models the adversary’s ability to recognize
members of particular sparse sets (such as English texts);

 ��
 � ��� � � � � � means

�
passes the recognition test4.

2As usual, we cheat in assuming pairing to be injective; to avoid a
guesser being able to recognize pairs, pairing is normally implemented
as concatenation, which is not generally injective. One way to improve
the treatment would be to make message lengths explicit.

3For example, the axiom ���������	� ��
����� ��� =�� ����� ,�� �
defines ��� as a recognizer for symmetric keys.

4Because of the way we define attacks, ���������! #"�$ � has to be defined
with some care. For example, defining ���%������ #"�$ � to be all messages of
the form ���1=�� � would allow construction of a verifier for any guess.
However, we can use ���%�����! #"�$ � to recognize asymmetric key pairs,
which were treated by Lowe as a special case.

PROVING CRYPTOGRAPHIC PROTOCOLS SAFE FROM GUESSING ATTACKS 87

Let undoes be a binary relation on steps, such that if
�U[undoes �
 , then the output of �U[is an input of �
 and
the output of �
 is an input of �G[5. Intuitively, declaring
that �U[undoes �
 says that performing �U[provides no new
“information” if we’ve already performed �
 6. Typically,
data constructors and their corresponding destructors are
defined to undo each other.

In the standard model, we define that step �U[undoes
step �
 iff there are

� ��� ��� such that one of the following
cases holds:

1.
�U[# � � � ��� � �� ��� �U� . � �� 0 �
�
 # � �". � ���0 � ����� ��� � �

2.
�U[# � � � ��� � �� ��� �U� . � �� 0 �
�
 # � �". � ���0 � ���+� ���� �

3.
�U[# � � � ��� � � " ����� � � �
�
 # � � � � ��� � �� " ��� � �

4. any of the previous cases with �U[and �
 reversed

A sequence of steps is a pre-attack on � if (1) every
input to every step of is either in � or the output of an
earlier step of , and (2) no step of undoes an earlier
step of . An � -verifier of a set of steps is the output of
a step of that is in � or the output of another step of .
A pre-attack on � , , is an attack on � iff the output of
every step of is either an � -verifier of or the input of
a later step of . Intuitively, an attack on � represents an
adversary execution, starting from � , such that every step
generates new information, and every step contributes to a
coincidence (i.e., a path to a verifier). Note that attacks are
monotonic: if � � � , an attack on � is also an attack
on �Q� . An attack on � is effective iff it contains a step
outside � . Note also that removing a step inside � from
an (effective) attack on � leaves an (effective) attack on
� .

A guessing attacker is one who, in addition to any other
capabilities, can publish any messages that appear as in-
puts outputs in an attack on the set of published messages7.

example: We illustrate with some examples taken from
[3]. In each case, we assume

is guessable.

5The peculiar requirement on undoing has no real intuitive signifi-
cance, but is chosen to make the proof of the saturation theorem work.
The requirement that the output of � . is an input of ��� is not strictly nec-
essary, but it makes the proof of completeness part of the theorem easier.

6One of the weaknesses of our model (and Lowe’s) is that the ����������	
relation does not distinguish between it’s inputs. For example, encryption
with a public key followed by decryption with a private key does not re-
veal any new information about the plaintext, but does reveal information
about the keys (namely, that they form a key pair). This is why asymmet-
ric key pairs have to be handled with
����
�� steps.

7Because the set of published messages is generally not closed under
adversary actions, an attack might publish new messages even without
using guesses. However, such any message published through such an
attack could equally be published through ordinary adversary actions.

� If
 �� ��� , then

� � � � � " � �U� � � � � � � � " ����� � �
is an attack on �

� If
 �� ��� and

is a symmetric key, then

� � � � � " � �G� � � � � � � � �� " ��� �
is an attack on �

� If � # $ and

is a symmetric key, then

� � � � � " � �U� � � � � � � � " ����� � � � � � � � � ��� " ��� �
is not an attack, or even a pre-attack, on � , because
the last step undoes the second step.

� If
.:9 � 9 0 � � � , where

is a symmetric key,

� � � � � " � �U� � � � �'.:9 � 9 0 � � � �� " ��� .�9 � 9 0 � �� �'.:9 � 9 0 � ����� ��� 9 � � � �".�9 � 9 0 � ���+����� 9 �
is an attack on � .

If � in the last example is the set of published mes-
sages, the attack has the effect of publishing the messages � .:9 � 9 0 � � .:9 � 9 0 , and

9
.

end of example

3 Saturation

How can we prove that there are no effective attacks on
a set of messages � ? One way is to collect together all
messages that might be part of an effective attack on � ,
and show that this set has no verifiers. However, this set
is inductively defined and therefore hard to reason about
automatically. We would rather work with a first-order ap-
proximation to this set (called a saturation below); this ap-
proximation might have additional steps (e.g., a set of steps
forming a loop, or steps with an infinite chain of predeces-
sors); nevertheless, as long as it has no verifiers, it will suit
our purposes.

However, there is a catch; to avoid false attacks, we
don’t want to add a step to the set if it undoes a step al-
ready in the set. Thus, adding extra steps to the set might
cause us to not include other steps that should be in the set
(and might be part of an effective guessing attack). Fortu-
nately, it turns out that this can happen only if the set has a
verifier.

Formally, a set of steps saturates � iff every step
outside � whose inputs are all in � , � � B � � B �V�� � is either
in or undoes some step in . The following theorem
says that we can prove � free from effective attacks by
constructing a saturation of � without an � -verifier, and
that this method is complete:

88 ERNIE COHEN

Theorem 1 There is an effective attack on � iff every sat-
uration of � has an � -verifier.

To prove the forward implication, let � be an effective at-
tack on � , and let saturate � ; we show that has an
� -verifier. Since � is effective, assume wlog that � has
no steps inside � . If �

 , the � -verifier for � is also
an � -verifier for . Otherwise, let � be the first step of �
not in ; all inputs of � are in outputs of previous steps of
� (which are also steps of) or in � . Since saturates
� and � 2�� , � undoes some step � �� ; by the condition
on undoing, the output � of � is an input of � . Moreover,
because � is a pre-attack, � is either in � or the output
of an earlier step � [of � (hence � [���) that � does not
undo (and hence, since � undoes � , � [2# �). In either case,
� is an � -verifier for .

To prove the converse, let be the set of all steps of
all pre-attacks on � whose steps are outside � ; we show
that (1) saturates � and (2) if has a verifier, there
is an effective attack on � . To show (1), let � be a step
outside � whose inputs are all in , � and does not
undo a step of ; we have to show that � � . Since each
input of � that is not in � is the output of a step of a pre-
attack on � , concatenate these pre-attacks together (since
� has only finitely many inputs) and repeatedly delete steps
that undo earlier steps (by the condition on the

� ��� � " �
relation, such deletions do not change the set of messages
that appear in the sequence); the result is a pre-attack on
� . Since � does not undo any step of , it does not undo
any steps of this sequence, so adding it to the end gives
a pre-attack on � ; thus �3� . To show (2), suppose
has an � -verifier � ; then there are steps �U[G���
�� such
that � is the output of �U[and �
 and either � � � or
�U[2# �
 . By the definition of , �U[and �
 are elements of
pre-attacks � and � with steps outside � , and � is an � -
verifier for � , � . Thus, � � � is a pre-attack on � with a
verifier; by repeatedly removing from this pre-attack steps
that produce outputs that are neither � -verifiers nor inputs
to later steps, we are eventually left with an effective attack
on � .

4 The secrecy invariant

In our verification method (for nonguessing attackers), the
secrecy invariant has the form

� � �<� � � � � � � � �
where � � ��� � � is a state predicate that means

�
has been

published and � � is the strongest predicate8 satisfying the

8Because ��� does not occur in the definition of ������� � , we could
instead define ��� as an ordinary disjunction, but it’s more convenient
to work with sets of formulas than big disjunctions. The same remarks
apply to the predicates � ��� 	 	� #"�$ ��=����%������ #"�$ ��=

�=���
�
�= ��� , and
	��
 ���
below.

following formulas:

	 ��� � � � � � � � � � � �� � � � � ���
� � ��� � � � � ����� � � � � � . � ��� 0 �
� � ��� � � � � ����� � � � � � � � �

The computation of an appropriate definition of the pred-
icate

	 ��� � �
and the proof obligations needed to show the

invariance of the secrecy invariant are fully described in
[1]; for our purposes, the relevant properties of

	 ��� � �
are

	 ��� � � � . � ��� 0 � � 	 ��� � � � � � 	 ��� � � �D� �
	 ��� � � � � � � � � ��� � � 	 ��� � � � � �

where � � � � ��� � � � + � � � �� � � � �<�D� �\� . Intuitively,
� � � � � means that the adversary possesses a key to decrypt
messages encrypted under

�
.

example (continued): Consider the protocol described in
the introduction. To simplify the example, we assume that� � �S� is unpublished, for all � , and that

 �
and � are

freshly generated every time the protocol is run. For this
protocol, TAPS defines

	 ��� � �
to be the strongest predicate

satisfying

� L � � �
 � ���S� � 	 ��� � � � .
 � ��� 0 � � & � � (1)

where � L � � �
 � ���6� is a state predicate that records that �
has executed the first step of the protocol with nonce

 �
and message � . (Note that if some keys could be pub-
lished, the definition would include additional primality
cases for

.
 � ��� 0V�
 �
, and � .)

end of example

To prove that the secrecy invariant is preserved by
guessing steps, we want to prove that any value published
by a guessing attack is � � when the attacker publishes it.
Inductively, we can assume that the secrecy invariant holds
when a guessing attack is launched, so we can assume that
every published message is � � . Because attacks are mono-
tonic in the starting set of messages, it suffices to show that
there are no effective attacks on the set of � � messages; by
the saturation theorem, we can do this by constructing a
saturation without verifiers for the set of � � messages.

5 Generating a Saturation

We define our saturation as follows; in each case, we elim-
inate steps inside � � to keep the saturation as small as pos-
sible. We say a message is available if it is � � or is the
output of a step of the saturation. We call ��� � , �+� � , and � " �
steps destructor steps, and the remaining steps constructor
steps. The main input of a destructor step is the encrypted
message in the case of a � " � step and the sole input in the
case of a ��� � or �+� � step. A constructor step outside � � is

PROVING CRYPTOGRAPHIC PROTOCOLS SAFE FROM GUESSING ATTACKS 89

in the saturation iff its inputs are available and it does not
undo a destructor step of the saturation. A destructor step
outside � � is in the saturation if it is a core step (defined
below); we define the core so that it includes any destruc-
tor step outside � � whose inputs are available and whose
main input is either � ��� � " , the output of a guessing step,
or the output of a core step.

To see that this definition is consistent, note that if we
take the same definition but include in the core all con-
structor steps outside � � whose inputs are available (i.e.
ignoring whether they undo destructor steps), the condi-
tions on the saturation and availability form a Horn theory,
and so have a strongest solution. Removing from the satu-
ration those constructor steps that undo core steps doesn’t
change the definition of availability or the core (since the
main input to every core step is either � ��� � " or the output
of a core step).

To show that this definition yields a saturation of � � ,
we have to show that any step outside � � whose inputs are
available is either in the saturation or undoes a step of the
saturation. This is immediate for constructor steps and for
destructor steps whose main input is � � � � " , a guess, or the
output of a core step. A destructor step whose main input is
the output of a constructor step in the saturation (other than
a
 � " � �) undoes the constructor step (because encryption

and pairing are injective with disjoint ranges). Finally, for
a destructor step whose main input is � � but not � ��� � " , the
main input must be a pair or encryption whose arguments
are published (and hence � � by the secrecy invariant), so
such a destructor step is inside � � .

Finally, we need to define the core. Let ��� � � � �
mean that

�'. � � ��� 0U��� " ��� � � is a core step for some
� 9, let ���+�<� . � ��� 0 � mean that

� �'. � ��� 0 � ���� ��� � � and� �'. � ��� 0 � ��+� ���� � are core steps10, and let �+�<� � � (“
�

is
a core candidate”) mean that

�
is either prime, a guess,

or the output of a core step. For the remainder of the
description, we assume that guessability and primality
are given as the strongest predicates satisfying a finite
set of equations of the forms � � 	 ��� � � ��� � and � �
 � �	��� ��� � � ��� � . Let

�
be the set of formulas � � �+�G��� � ,

where ��� 	 ��� � � ��� � is a formula defining
	 ��� � �

or
� � � ����� ��� � � ��� � is a formula defining � �	��� ��� � � . These
formulas guarantee that �+� includes all prime messages and
all guessable messages.

example (continued): For our example, we assume that
all keys are guessable, so

is defined as the strongest pred-

icate satisfying

 � ����� ��� � � � � � �S�\� (2)

9We don’t need to keep track of what decryption key was used (when
creating the saturation), because the ��� � � � relation for decryptions is
independent of decryption key. However, when we check for verifiers, we
have to make sure that at most one decryption key is available for each of
these encryptions.

10For the saturation defined here, each of these steps are in the core iff

�
 �����1=�� � �

Since
	 ��� � �

and � ����� ��� � � are defined by formulas (1)
and (2) respectively,

�
initially contains the formulas

� L � � �
 � ���S� � �+�<� .
 � ��� 0 � � & � � (3)

�+�<� � � �6��� (4)

end of example

To make sure that
�

defines a suitable core (as defined
above), we expand

�
to additionally satisfy the formulas

��� � � � � � �+�<� � � (5)

���+�<� . � ��� 0 � � �+�<� � � (6)

���+�<� . � ��� 0 � � �+�<�D� � (7)

�+�G� . � �� 0�� ���<� . � ��� 0 � � ���)�<� . � �� 0�� (8)

�+�<� � � � � " � � � � � ��� � � � � (9)

where

� " � � � � � � � �
+ � ��� ��� �� � 9 � � 	���� �
�� � � � � � � � � � � � ��� � � � � � � � ���\�

���<� . � �� 0�� � � � � � . � ��� 0 �
(5)-(7) say that �+� includes all outputs of core steps; (8)
says that a ��� � or �)��� step is in the core if it is outside � �
and its input is in �)� ; and (9) says that a decryption step
is in the core if it is outside � � and a decryption key is
available. To construct the formulas for ��� , ���+� , and �+�
meeting these conditions, we repeatedly add formulas to�

as follows:

� If ��� � �)�<����� ��� � �
, add to

�
the formulas

� � " ������� � ��� �������
� � " ������� � �+�<��� �

example (continued): Applying this rule to the for-
mula (3), we add to

�
the formulas

� L � � �
 � ���S� � " � .
 � ��� 0 � � & � � � ��� � .
 � ��� 0 � � & � �
� L � � �
 � ���S� � " � .
 � ��� 0 � � & � � � �+�<� .
 � ��� 0 �
Since

� � �6� is a symmetric key, � � � � �6�J�X8 � sim-
plifies to 8 # � � �6� , and both � 9 � � 	\� � � �S��� and
� " � .
 � ��� 0 � � & � � simplify to

� ��� �
, so we can simplify

these formulas to

� L � � �
 � ���6� � ��� � .
 � ��� 0 � � & � � (10)

� L � � �
 � ���6� � �+�<� .
 � ��� 0�� (11)

end of example

90 ERNIE COHEN

� If ��� � �+�G� . � ��� 0���� � �
, add to

�
the formulas

� ���<� . � ��� 0 � � ���)�<� . � ��� 0��
� ���<� . � ��� 0 � � �+�<��� �
� ���<� . � ��� 0 � � �+�<��� �

example (continued): Applying this rule to (11), and
using the fact that with the given secrecy invariant,
� L � � �
 � ���S� � � � � � .
 � ��� 0 � , yields the formulas

� L � � �
 � ���6� � ���+�<� .
 � ��� 0�� (12)

� L � � �
 � ���6� � �+�<�
 � � (13)

� L � � �
 � ���6� � �+�<���S� (14)

end of example

� If ��� � �+�<��� �\� � �
, where � is a variable symbol or

an application of a function other than � ��� � or
" ��� ,

add to
�

the formula

� � � �	� " ! � ��� �
where � �	� " ! �

is the strongest predicate such that

� �	� " ! � � � � � � ���<� � � � ���+�<� � ���
�� � " � � � � ��� � � �\�

Intuitively, � �	� " ! � � � � means that we believe that
we don’t need to generate any more core cases to han-
dle

�
, because we think that � implies that if

�
is the

main input of a destructor step, then it is already han-
dled by one of the other cases in

�
. (Typically, it is

because we think that the authentication properties of
the protocol guarantee that

�
will not be an encryp-

tion or pair11.) This bold assumption is just a good
heuristic12; if it turns out to be wrong, TAPS is un-
able to prove the resulting proof obligation, and the
whole protocol proof fails (i.e., the assumption does
compromise soundness).

example (continued): Applying this rule to
(13),(14), and (4) yields the obligations

� L � � �
 � ���S� � � �	� " ! � �
 � � (15)

� L � � �
 � ���S� � � �	� " ! � ���S� (16)

� �	� " ! � � � � �6��� (17)

end of example

11Unfortunately, a proof that shows this interplay between authentica-
tion reasoning a safety from guessing would be too large to present here;
analogous proofs that show the synergy between authentication and se-
crecy reasoning are given in [1].

12Like all such choices in TAPS, the user can override this choice with
hints about how to construct the saturation.

After this process reaches a fixed point13, we define ���
to be the strongest predicate satisfying the formulas of

�
of the form � � ��� ��� � , and similarly for ���+� and �)� .
example (continued): The formulas of

�
generate the

definitions

��� � .
 � ��� 0 � � & � � � � L � � �
 � ���S�
���)�<� .
 � ��� 0�� � � L � � �
 � ���S�

end of example

These definitions guarantee that the core satisfies (5)-
(7); to show that it satisfies (8)-(9), we also need to prove
explicitly the remaining formulas from

�
of the form

� � � �	� " ! � � � � . TAPS delegates these proofs to a res-
olution prover; if these proofs succeed, we have success-
fully defined the core, and hence, the saturation14.

example (continued): The remaining obligations are
(15)-(16) and (17). (15)-(16) follow trivially from the fact
that � L � � �
 � ���S� implies that � ,

 �
, and � are all atoms;

(17) depends on a suitable axiom defining the keying func-
tion

�
(e.g., that

� � �6� is an atom, or is an encryption under
a hash function).
end of example

Finally, we have to prove that the saturation has no ver-
ifiers. Because of the way in which our saturation is con-
structed, we can eliminate most of the cases as follows.
The output of a � ��� � step cannot be the output of any other
step of the saturation —

� it can’t be the output of a core step (because the core
would include the ��� � and �+� � steps generated from
the output, which would be undone by the � ��� � step);

� it can’t be the output of another � ��� � step (because
pairing is injective) or an

" ��� step (since � ��� � and" ��� have disjoint ranges);

� it can’t be � � , because both of its inputs would also
be published (by the definition of � �), hence � � , and
so the step would be inside � � (hence out of the satu-
ration).

Similarly, the output of an
" ��� step cannot be the output of

another
" ��� step (because

" ��� is injective).
Thus, we can prove the saturation has no verifiers by

showing that each of the remaining cases is impossible:

13The process reaches a fixed point by induction on the size of the term
on the right of the implication; it does not require an induction principle
on messages.

14In fact, the way the TAPS secrecy invariant is constructed, these
proofs are probably not necessary. But they also present no problems
if TAPS can prove the secrecy invariant (we have never seen one fail), so
we have left them in for the sake of safety.

PROVING CRYPTOGRAPHIC PROTOCOLS SAFE FROM GUESSING ATTACKS 91

� an
" ��� step whose output

9
is � ��� � " or the output

of a core step, such that no decryption key for
9

is
available (This case is trivial for symmetric encryp-
tions, since the key (and hence also a decryption key)
is available.)

� two distinct core steps with the same output

� a core step whose output is � � or guessable

� a saturation step whose output is checkable

These cases are relatively easy to check, because they in-
volve messages of known structure and pedigree.

example (continued): To prove that this saturation has no
verifiers, we have to check the following cases:

� the output of a
" ��� step that is � ���5� " or the output of

a core step, without an available decryption key: this
case goes away because the only such encryptions are
symmetric.

� a core step that produces an � � value; this case checks
because the secrecy invariant guarantees that neither
 �

nor � is � � .

� a core step that produces a guessable value; this de-
pends on an additional assumptions about

�
(e.g.,� � �S� is an atom, but not a value generated for

 �

or � 15).

� two distinct core steps that produce the same value.
A � " � step cannot collide with a ��� � or �+��� step - the
former produces � ��� � terms, while the latter produce
atoms. Two core � " � steps cannot collide because
 �

is freshly chosen and thus uniquely determines �
and � (and thus, by the injectivity properties of � ��� � ,.
 � ��� 0 uniquely determines both

.
 � ��� 0 � � & � and� � �S� ; because
� � �S� is symmetric, it also uniquely de-

termines the decryption key). Two �>� � (respectively,
�+� �) steps cannot collide because

 �
(respectively,

�) is freshly chosen, and hence functionally deter-
mines

.
 � ��� 0 . Finally, a ��� � and a �+� � step cannot
collide because the same value is not chosen as both
an

 �
value and an � value. Note that these cases

would fail if the same value could be used for

 �

and
� , or if an

 �
or � value could be reused.

� a saturation step whose output is checkable; in this
example, this is trivial, since no messages are re-
garded as checkable. Were we not able to prove di-
rectly that � is uncheckable, the proof would fail.

end of example

15In practice, we avoid having to write silly axioms like this by gen-
erating keys like � ����� with protocol actions; nonce unicity lemmas [1]
then give us all these conditions for free.

In general, the total number of proof obligations grows
roughly as the square of the number of core cases, in
contrast to the ordinary protocol reasoning performed by
TAPS, where the number of obligations is roughly linear in
the number of prime cases. Moreover, many of the proofs
depend on authentication properties16 Thus, as expected,
the guessing part of the verification is typically much more
work than the proof of the secrecy invariant itself. For ex-
ample, for EKE, TAPS proves the secrecy invariant and
the authentication properties of the protocol in about half a
second, while checking for guessing attacks takes about 15
seconds17. However, the proofs are completely automatic.

While we have applied the guessing attack extension
to TAPS to verify a number of toy protocols (and a few
less trivial protocols, like EKE), a severe limitation is that
TAPS (like other existing unbounded crypto verifiers) can-
not handle Vernam encryption. The next major revision of
TAPS will remedy this situation, and allow us to more rea-
sonably judge the usefulness of our approach to guessing.

6 Acknowledgements

This work was done while visiting Microsoft Research,
Cambridge; we thank Roger Needham and Larry Paulson
for providing the opportunity. We also thank Gavin Lowe
for patiently fielding many stupid questions about guessing
attacks, and the referees for their insightful comments.

Bibliography

[1] E. Cohen, First-Order Verification of Cryptographic
Protocols. In JCS (to appear). A preliminary version
appears in CSFW (2000)

[2] L. Gong and T. Mark and A. Lomas and R. Needham
and J. Saltzer, Protecting Poorly Chosen Secrets from
Guessing Attacks. IEEE Journal on Selected Areas in
Communications, 11(5):648-656 (1993)

[3] G. Lowe, Analyzing Protocols Subject to Guessing
Attacks. In WITS (2002)

[4] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs,
T. Engel, E. Keen, C. Theobalt, and D. Topić, System
description: SPASS version 1.0.0. In CADE 15, pages
378–382 (1999).

16For example, if a protocol step publishes an encryption with a com-
ponent received in a message, and the message is decrypted in a guess-
ing attack, showing that the destructor step that extracts the component
doesn’t collide depends on knowing where the component came from.

17This is in part due to the immaturity of the implementation; it takes
some time to find the right blend of theorem proving and preprocessing
to optimize performance. For example, the current TAPS implementation
effectively forces the prover into splitting the proof into cases, since the
prover is otherwise reluctant to do resolutions that introduce big disjunc-
tions.

92 ERNIE COHEN

A Lowe’s Guessing Model

In this appendix, we describe Lowe’s model for guessing
attacks, and sketch a proof that for the standard model and
with a single guess, Lowe’s model and ours are essentially
equivalent.

Throughout this section, we work in the standard model.
Moreover, to match Lowe’s model, we define the check-
able messages to be all pairs of asymmetric keys, and de-
fine a single value

to be guessable. Let � be a fixed set

of messages. An execution is a finite sequence of distinct
steps such that every input to every step is either in � or
the output of an earlier step of 18. A message � is new
iff every execution from � that contains � as an input or
output also includes a guessing step; intuitively, new mes-
sages cannot be produced from � without the use of

.

A Lowe attack is an execution with steps �U[and �
 (not
necessarily distinct), each with output

9
, satisfying the fol-

lowing properties:

� �U[is either a guessing step or has an input that is new
(Lowe’s condition (3));

� either (1) �G[2# �
 , (2)
9

is in � , or (3)
9

is an asym-
metric key and

9 @�A
is in � or the output of a step of

the execution (Lowe’s condition (4))

� neither �U[nor �
 undoes any step of the execution
(Lowe’s condition (5))

Theorem 2 There is a Lowe attack on � iff there is an
attack on � that reveals

.

First, let be a Lowe attack with �U[, �
 , and
9

as in the
definition above; we show how to turn into an attack on
� that reveals

. Let ��� be a step other than �U[or �
 . If

the output of ��� is not an input of a later step, then deleting
��� from leaves a Lowe attack revealing. If ��� undoes an
earlier step of , then (in the standard model) the output
of ��� is an input of the earlier step, so again deleting ���
from leaves a Lowe attack revealing

. Repeating these

deletions until no more are possible leaves a Lowe attack
revealing

where no step undoes an earlier step, and where

the output of every step other than �U[and �
 is an input to
a later step.

If �U[2# �
 , or if �U[# �
 and the output of �U[is in � or
the output of another step of , then the outputs of �G[and
�
 are verifiers and is an attack. Otherwise, �U[# �
 , 9
is an asymmetric key, and

9 @�A
is in � or the output of a

step of . If
9

is an input to a step that follows �U[, then
again is an attack. If

.:9 � 9
@�A
0 is neither in � nor the

18Lowe actually did not have guessing steps, but instead simply al-
lowed � to appear as inputs to steps of � and as a verifier. However,
because guesses did not appear as explicit steps, he missed the following
case: suppose � is an asymmetric key and � is the set ����� ��� . Obviously
this should be considered to be vulnerable to a guessing attack. However,
there is no attack in Lowe’s original model, because any step producing
� or � � � would have to undo a previous step.

output of a step of # , then add to the end of the steps� ��9 � 9
@ A � �� ��� �U� .:9 � 9

@�A
0 � � � �".�9 � 9

@ A
0 � ���� " � � ��� � 	 � to

create an attack. Otherwise, let ��� # � �".�9 � 9
@�A
0 � ����� ��� 9 � .

If �U[# ��� , delete �G[from and add to the end of the
step

�".�9 � 9
@ A
0 � ���� " � � ��� � 	 � ; if �U[2# ��� , add ��� to the end

of . In either case, the resulting is an attack.
Conversely, let be an attack on � that reveals

. Note

that since is a pre-attack, no step of undoes a previous
step of ; since the undoing relation is symmetric in the
standard model, no step of undoes any other step of .
Since

is not derivable from � , it must be the output of a

guessing step of ; without loss of generality, assume it is
the output of the first step.

� If

is a verifier for , then since

is not in � , it must
also be the output of another step �G[of . Because
 is an attack, �U[does not undo any earlier step of .
Thus, the prefix of up to and including �U[is a Lowe
attack on � .

� If

is not a verifier for , then

must be an input to a
later step of . Because

is new, some step of has a

new input; since is finite, there is a step � of with
a new input such that no later step has a new input.
Thus, the output of � is either not new or is a verifier
of . If the output of � is not new and not a verifier
of , append to an execution without guessing or
checking steps that outputs the output of � , deleting
any added steps that undo steps of . This produces
an attack with a step whose output is a verifier for
and has an input that is new. If � is not a checking
step, then is a Lowe attack. If � is a checking step,
then one input to � is an asymmetric key

�
that is new,

such that
� @�A

is either in � or the output a step that
precedes � . Since

�
is new, it must be the output of

a step �
 of that is either a guessing step or has a
new input; in either case, is a Lowe attack, with �

in the role of �U[.

Session V

Programming Language Security

93

More Enforceable Security Policies

Lujo Bauer, Jarred Ligatti and David Walker
Department of Computer Science

Princeton University
Princeton, NJ 08544

{lbauer|jligatti|dpw}@cs.princeton.edu

Abstract

We analyze the space of security policies that can be en-
forced by monitoring programs at runtime. Our program
monitors are automata that examine the sequence of pro-
gram actions and transform the sequence when it deviates
from the specified policy. The simplest such automaton
truncates the action sequence by terminating a program.
Such automata are commonly known as security automata,
and they enforce Schneider’s EM class of security policies.
We define automata with more powerful transformational
abilities, including the ability to insert a sequence of ac-
tions into the event stream and to suppress actions in the
event stream without terminating the program. We give a
set-theoretic characterization of the policies these new au-
tomata are able to enforce and show that they are a superset
of the EM policies.

1 Introduction

When designing a secure, extensible system such as an op-
erating system that allows applications to download code
into the kernel or a database that allows users to submit
their own optimized queries, we must ask two important
questions.

1. What sorts of security policies can and should we de-
mand of our system?

2. What mechanisms should we implement to enforce
these policies?

Neither of these questions can be answered effectively
without understanding the space of enforceable security
policies and the power of various enforcement mecha-
nisms.

Recently, Schneider [Sch00] attacked this question by
defining EM, a subset of safety properties [Lam85, AS87]
that has a general-purpose enforcement mechanism - a se-
curity automaton that interposes itself between the pro-
gram and the machine on which the program runs. It ex-
amines the sequence of security-relevant program actions

one at a time and if the automaton recognizes an action
that will violate its policy, it terminates the program. The
mechanism is very general since decisions about whether
or not to terminate the program can depend upon the entire
history of the program execution. However, since the au-
tomaton is only able to recognize bad sequences of actions
and then terminate the program, it can only enforce safety
properties.

In this paper, we re-examine the question of which se-
curity policies can be enforced at runtime by monitoring
program actions. Following Schneider, we use automata
theory as the basis for our analysis of enforceable security
policies. However, we take the novel approach that these
automata are transformers on the program action stream,
rather than simple recognizers. This viewpoint leads us
to define two new enforcement mechanisms: an insertion
automaton that is able to insert a sequence of actions into
the program action stream, and a suppression automaton
that suppresses certain program actions rather than termi-
nating the program outright. When joined, the insertion
automaton and suppression automaton become an edit au-
tomaton. We characterize the class of security policies that
can be enforced by each sort of automata and provide ex-
amples of important security policies that lie in the new
classes and outside the class EM.

Schneider is cognizant that the power of his automata
is limited by the fact that they can only terminate pro-
grams and may not modify them. However, to the best
of our knowledge, neither he nor anyone else has formally
investigated the power of a broader class of runtime en-
forcement mechanisms that explicitly manipulate the pro-
gram action stream. Erlingsson and Schneider [UES99]
have implemented inline reference monitors, which allow
arbitrary code to be executed in response to a violation
of the security policy, and have demonstrated their effec-
tiveness on a range of security policies of different lev-
els of abstraction from the Software Fault Isolation pol-
icy for the Pentium IA32 architecture to the Java stack
inspection policy for Sun’s JVM [UES00]. Evans and
Twyman [ET99] have implemented a very general en-
forcement mechanism for Java that allows system design-
ers to write arbitrary code to enforce security policies.

95

96 LUJO BAUER, JARRED LIGATTI AND DAVID WALKER

Such mechanisms may be more powerful than those that
we propose here; these mechanisms, however, have no
formal semantics, and there has been no analysis of the
classes of policies that they enforce. Other researchers
have investigated optimization techniques for security au-
tomata [CF00, Thi01], certification of programs instru-
mented with security checks [Wal00] and the use of run-
time monitoring and checking in distributed [SS98] and
real-time systems [KVBA 3 99].

Overview The remainder of the paper begins with a re-
view of Alpern and Schneider’s framework for understand-
ing the behavior of software systems [AS87, Sch00] (Sec-
tion 2) and an explanation of the EM class of security poli-
cies and security automata (Section 2.3). In Section 3 we
describe our new enforcement mechanisms – insertion au-
tomata, suppression automata and edit automata. For each
mechanism, we analyze the class of security policies that
the mechanism is able to enforce and provide practical ex-
amples of policies that fall in that class. In Section 4 we
discuss some unanswered questions and our continuing re-
search. Section 5 concludes the paper with a taxonomy of
security policies.

2 Security Policies and Enforcement
Mechanisms

In this section, we explain our model of software sys-
tems and how they execute, which is based on the work
of Alpern and Schneider [AS87, Sch00]. We define what
it means to be a security policy and give definitions for
safety, liveness and EM policies. We give a new presenta-
tion of Schneider’s security automata and their semantics
that emphasizes our view of these machines as sequence
transformers rather than property recognizers. Finally, we
provide definitions of what it means for an automaton to
enforce a property precisely and conservatively, and also
what it means for one automaton to be a more effective
enforcer than another automaton for a particular property.

2.1 Systems, Executions and Policies

We specify software systems at a high level of abstraction.
A system

� # � � � � � is specified via a set of program
actions � (also referred to as events or program opera-
tions) and a set of possible executions

�
. An execution D

is simply a finite sequence of actions � A �W�&�<�>=:=>=��W� ? . Pre-
vious authors have considered infinite executions as well
as finite ones. We restrict ourselves to finite, but arbitrar-
ily long executions to simplify our analysis. We use the
metavariables D and

�
to range over finite sequences.

The symbol & denotes the empty sequence. We use the
notation D � � � to denote the � ��� action in the sequence (be-
ginning the count at 0). The notation D � = = � � denotes the

subsequence of D involving the actions D � L � through D � � � ,
and D � � Y [G= = � denotes the subsequence of D involving all
other actions. We use the notation

� �WD to denote the con-
catenation of two sequences. When

�
is a prefix of D we

write
��� D .

In this work, it will be important to distinguish between
uniform systems and nonuniform systems. � � � � � is a uni-
form system if

� # � � where � � is the set of all finite
sequences of symbols from � . Conversely, � ��� � � is a
nonuniform system if

��� � � . Uniform systems arise
naturally when a program is completely unconstrained; un-
constrained programs may execute operations in any or-
der. However, an effective security system will often com-
bine static program analysis and preprocessing with run-
time security monitoring. Such is the case in Java vir-
tual machines, for example, which combine type checking
with stack inspection. Program analysis and preprocess-
ing can give rise to nonuniform systems. In this paper, we
are not concerned with how nonuniform systems may be
generated, be it by model checking programs, control or
dataflow analysis, program instrumentation, type check-
ing, or proof-carrying code; we care only that they exist.

A security policy is a predicate � on sets of executions.
A set of executions

�
satisfies a policy � if and only if

� � � � . Most common extensional program properties fall
under this definition of security policy, including the fol-
lowing.

� Access Control policies specify that no execution may
operate on certain resources such as files or sockets,
or invoke certain system operations.

� Availability policies specify that if a program acquires
a resource during an execution, then it must release
that resource at some (arbitrary) later point in the ex-
ecution.

� Bounded Availability policies specify that if a pro-
gram acquires a resource during an execution, then
it must release that resource by some fixed point later
in the execution. For example, the resource must be
released in at most ten steps or after some system in-
variant holds. We call the condition that demands re-
lease of the resource the bound for the policy.

� An Information Flow policy concerning inputs � A and
outputs � � might specify that if � �/# � � � A � in one
execution (for some function

�
) then there must exist

another execution in which � � 2# � � � A � .
2.2 Security Properties

Alpern and Schneider [AS87] distinguish between proper-
ties and more general policies as follows. A security policy
� is deemed to be a (computable) property when the pol-
icy has the following form.

� � � � # 0 D � � = �� �1D � (PROPERTY)

MORE ENFORCEABLE SECURITY POLICIES 97

where �� is a computable predicate on � � .
Hence, a property is defined exclusively in terms of in-

dividual executions. A property may not specify a rela-
tionship between possible executions of the program. In-
formation flow, for example, which can only be specified
as a condition on a set of possible executions of a program,
is not a property. The other example policies provided in
the previous section are all security properties.

We implicitly assume that the empty sequence is con-
tained in any property. For all the properties we are in-
terested in it will always be okay not to run the program
in question. From a technical perspective, this decision
allows us to avoid repeatedly considering the empty se-
quence as a special case in future definitions of enforceable
properties.

Given some set of actions � , a predicate �� over � �
induces the security property � � � � # 0�D � � = �� ��D � .
We often use the symbol �� interchangeably as a predi-
cate over execution sequences and as the induced property.
Normally, the context will make clear which meaning we
intend.

Safety Properties The safety properties are properties
that specify that “nothing bad happens.” We can make this
definition precise as follows. �� is a safety property if and
only if for all D � � ,

� ����1D � � 0�D � � � =	��D � D � � � �� �1D � �\� (SAFETY)

Informally, this definition states that once a bad action
has taken place (thereby excluding the execution from the
property) there is no extension of that execution that can
remedy the situation. For example, access-control policies
are safety properties since once the restricted resource has
been accessed the policy is broken. There is no way to
“un-access” the resource and fix the situation afterward.

Liveness Properties A liveness property, in contrast to
a safety property, is a property in which nothing excep-
tionally bad can happen in any finite amount of time. Any
finite sequence of actions can always be extended so that it
lies within the property. Formally, �� is a liveness property
if and only if,

0 D � � = �KD � � � =	��D � D � �� ��D � ��� (LIVENESS)

Availability is a liveness property. If the program has ac-
quired a resource, we can always extend its execution so
that it releases the resource in the next step.

Other Properties Surprisingly, Alpern and Schnei-
der [AS87] show that any property can be decomposed
into the conjunction of a safety property and a liveness
property. Bounded availability is a property that combines
safety and liveness. For example, suppose our bounded-
availability policy states that every resource that is ac-
quired must be released and must be released at most ten

steps after it is acquired. This property contains an ele-
ment of safety because there is a bad thing that may occur
(e.g., taking 11 steps without releasing the resource). It is
not purely a safety property because there are sequences
that are not in the property (e.g., we have taken eight steps
without releasing the resource) that may be extended to
sequences that are in the property (e.g., we release the re-
source on the ninth step).

2.3 EM

Recently, Schneider [Sch00] defined a new class of secu-
rity properties called EM. Informally, EM is the class of
properties that can be enforced by a monitor that runs in
parallel with a target program. Whenever the target pro-
gram wishes to execute a security-relevant operation, the
monitor first checks its policy to determine whether or not
that operation is allowed. If the operation is allowed, the
target program continues operation, and the monitor does
not change the program’s behavior in any way. If the op-
eration is not allowed, the monitor terminates execution of
the program. Schneider showed that every EM property
satisfies (SAFETY) and hence EM is a subset of the safety
properties. In addition, Schneider considered monitors for
infinite sequences and he showed that such monitors can
only enforce policies that obey the following continuity
property.

0 D3� � =�� �� ��D � � �#�X= � �� �1D � = = � �!� (CONTINUITY)

Continuity states that any (infinite) execution that is not in
the EM policy must have some finite prefix that is also not
in the policy.

Security Automata Any EM policy can be enforced by
a security automaton � , which is a deterministic finite or
infinite state machine � � ��/ ; ���<� that is specified with re-
spect to some system � � � � � . � specifies the possible au-
tomaton states and / ; is the initial state. The partial func-
tion � + � � � � � specifies the transition function for the
automaton.

Our presentation of the operational semantics of se-
curity automata deviates from the presentation given by
Alpern and Schneider because we view these machines as
sequence transformers rather than simple sequence recog-
nizers. We specify the execution of a security automaton
� on a sequence of program actions D using a labeled op-
erational semantics.

The basic single-step judgment has the form��D ��/<��� � & ��D��5��/��	� where D and / denote the input
program action sequence and current automaton state;D�� and /�� denote the action sequence and state after the
automaton processes a single input symbol; and

�
denotes

the sequence of actions that the automaton allows to occur
(either the first action in the input sequence or, in the case
that this action is “bad,” no actions at all). We may also

98 LUJO BAUER, JARRED LIGATTI AND DAVID WALKER

refer to the sequence
�

as the observable actions or the
automaton output. The input sequence D is not considered
observable to the outside world.

��D ��/<� � � & �1D��1��/�� �
�1D ��/<� � � & ��D � ��/ � � (A-STEP)

if D # � �\D �
and �K�1� ��/<� #-/<�

��D ��/<� � � & �'& ��/<� (A-STOP)

otherwise

We extend the single-step semantics to a multi-step seman-
tics through the following rules.

��D ��/<� �# � & �1D��1��/�� �
�1D ��/<� �# � & ��D ��/<� (A-REFLEX)

�1D ��/<� � % � & ��D�� �5��/�� � � ��D�� �5��/�� � � � 3# � & ��D��5��/��%��1D ��/<� � % � � 3# � & ��D��5��/��	�
(A-TRANS)

Limitations Erlingsson and Schneider [UES99, UES00]
demonstrate that security automata can enforce important
access-control policies including software fault isolation
and Java stack inspection. However, they cannot enforce
any of our other example policies (availability, bounded
availability or information flow). Schneider [Sch00] also
points out that security automata cannot enforce safety
properties on systems in which the automaton cannot ex-
ert sufficient controls over the system. For example, if one
of the actions in the system is the passage of time, an au-
tomaton might not be able to enforce the property because
it cannot terminate an action sequence effectively — an
automaton cannot stop the passage of real time.

2.4 Enforceable Properties

To be able to discuss different sorts of enforcement au-
tomata formally and to analyze how they enforce different
properties, we need a formal definition of what it means
for an automaton to enforce a property.

We say that an automaton � precisely enforces a prop-
erty �� on the system � � � � � if and only if 0 D � � ,

1. If �� ��D � then 0��X= �1D ��/ ; � ��� � � ���# � & ��D � ��YN[G= = � ��/��	� and,

2. If �1D ��/ ; � � ;# � & �'& ��/��	� then �� �1D��	�

Informally, if the sequence belongs to the property �� then
the automaton should not modify it. In this case, we say
the automaton accepts the sequence. If the input sequence
is not in the property, then the automaton may (and in fact
must) edit the sequence so that the output sequence satis-
fies the property.

Some properties are extremely difficult to enforce pre-
cisely, so, in practice, we often enforce a stronger prop-
erty that implies the weaker property in which we are in-
terested. For example, information flow is impossible to
enforce precisely using run-time monitoring as it is not
even a proper property. Instead of enforcing information
flow, an automaton might enforce a simpler policy such
as access control. Assuming access control implies the
proper information-flow policy, we say that this automaton
conservatively enforces the information-flow policy. For-
mally, an automaton conservatively enforces a property ��
if condition 2 from above holds. Condition 1 need not hold
for an automaton to conservatively enforce a property. In
other words, an automaton that conservatively enforces a
property may occasionally edit an action sequence that ac-
tually obeys the policy, even though such editing is unnec-
essary (and potentially disruptive to the benign program’s
execution). Of course, any such edits should result in an
action sequence that continues to obeys the policy. Hence-
forth, when we use the term enforces without qualification
(precisely, conservatively) we mean enforces precisely.

We say that automaton � A enforces a property �� more
precisely or more effectively than another automaton � �
when either

1. � A accepts more sequences than � � , or

2. The two automata accept the same sequences, but the
average edit distance1 between inputs and outputs for
� A is less than that for � � .

3 Beyond EM

Given our novel view of security automata as sequence
transformers, it is a short step to define new sorts of au-
tomata that have greater transformational capabilities. In
this section, we describe insertion automata, suppression
automata and their conjunction, edit automata. In each
case, we characterize the properties they can enforce pre-
cisely.

3.1 Insertion Automata

An insertion automaton � is a finite or infinite state ma-
chine � � ��/ ; � ��� ��� that is defined with respect to some sys-
tem of executions

� # � � � � � . � is the set of all possible

1The edit distance between two sequences is the minimum number of
insertions, deletions or substitutions that must be applied to either of the
sequences to make them equal [Gus97].

MORE ENFORCEABLE SECURITY POLICIES 99

machine states and / ; is a distinguished starting state for
the machine. The partial function � + � � � � � speci-
fies the transition function as before. The new element is
a partial function � that specifies the insertion of a number
of actions into the program’s action sequence. We call this
the insertion function and it has type � �=� � �� �=� .
In order to maintain the determinacy of the automaton, we
require that the domain of the insertion function is disjoint
from the domain of the transition function.

We specify the execution of an insertion automaton as
before. The single-step relation is defined below.

�1D ��/<� � ��� ��D � ��/ � � (I-STEP)

if D #N� �\D��
and �K��� ��/<� #-/��

�1D ��/<� � � � �1D ��/ � � (I-INS)

if D #N� �\D��
and � �1� ��/<� # � ��/��

��D ��/<� � � � �'& ��/<� (I-STOP)

otherwise

We can extend this single-step semantics to a multi-step
semantics as before.

Enforceable Properties We will examine the power
of insertion automata both on uniform systems and on
nonuniform systems.

Theorem 3 (Uniform I-Enforcement) If
�

is a uniform
system and insertion automaton � precisely enforces �� on�

then �� obeys (SAFETY).

Proof: Proofs of the theorems in this work are contained
in our Technical Report [BLW02]; we omit them here due
to space constraints. �

If we consider nonuniform systems then the insertion
automaton can enforce non-safety properties. For exam-
ple, consider a carefully chosen nonuniform system

� � ,
where the last action of every sequence is the special ��
�� H
symbol, and ��
�� H appears nowhere else in

� � . By the def-
inition of safety, we would like to enforce a property ��
such that � �� � � � but �� � � �\D � . Consider processing the fi-
nal symbol of

�
. Assuming that the sequence

�
does not

end in �'
�� H (and that � �� � � ����
�� H<�), our insertion automa-
ton has a safe course of action. After seeing

�
, our automa-

ton waits for the next symbol (which must exist, since we
asserted the last symbol of

�
is not �'
�� H). If the next sym-

bol is �'
�� H , it inserts D and stops, thereby enforcing the
policy. On the other hand, if the program itself continues
to produce D , the automaton need do nothing.

It is normally a simple matter to instrument programs
so that they conform to the nonuniform system discussed
above. The instrumentation process would insert a �'
�� H
event before the program exits. Moreover, to avoid the
scenario in which a non-terminating program sits in a tight
loop and never commits any further security-relevant ac-
tions, we could ensure that after some time period, the au-
tomaton receives a timeout signal which also acts as a �'
�� H
event.

Bounded-availability properties, which are not EM
properties, have the same form as the policy considered
above, and as a result, an insertion automaton can enforce
many bounded-availability properties on non-uniform sys-
tems. In general, the automaton monitors the program as it
acquires and releases resources. Upon detecting the bound,
the automaton inserts actions that release the resources in
question. It also releases the resources in question if it de-
tects termination via a �'
�� H event or timeout.

We characterize the properties that can be enforced by
an insertion automaton as follows.

Theorem 4 (Nonuniform I-Enforcement) A property ��
on the system

� # � � � � � can be enforced by some inser-
tion automaton if and only if there exists a function ��� such
that for all executions D � � � , if � �� ��D � then

1. 0 D���� � = D � D�� � � �� �1D��%� , or

2. D 2� � and �� �1D � ��� �1D ���
Limitations Like the security automaton, the insertion
automaton is limited by the fact that it may not be able to
be able to exert sufficient controls over a system. More
precisely, it may not be possible for the automaton to
synthesize certain events and inject them into the action
stream. For example, an automaton may not have access
to a principal’s private key. As a result, the automaton may
have difficulty enforcing a fair exchange policy that re-
quires two computational agents to exchange cryptograph-
ically signed documents. Upon receiving a signed docu-
ment from one agent, the insertion automaton may not be
able to force the other agent to sign the second document
and it cannot forge the private key to perform the necessary
cryptographic operations itself.

3.2 Suppression Automata

A suppression automaton is a state machine � � ��/ ; ������� �
that is defined with respect to some system of executions� # � ��� � � . As before, � is the set of all possible machine
states, / ; is a distinguished starting state for the machine
and the partial function � specifies the transition function.
The partial function �

+ � � � � . �XY 0 has the same do-
main as � and indicates whether or not the action in ques-
tion is to be suppressed () or emitted (Y).

100 LUJO BAUER, JARRED LIGATTI AND DAVID WALKER

��D ��/<� � � � ��D � ��/ � � (S-STEPA)

if D # � �\D��
and �K�1� ��/<� #-/<�
and � �1� ��/<� # Y

��D ��/<� � � � ��D � ��/ � � (S-STEPS)

if D # � �\D��
and �K�1� ��/<� #-/<�
and � �1� ��/<� #

�1D ��/<� � � � ��&$��/<� (S-STOP)

otherwise

We extend the single-step relation to a multi-step rela-
tion using the reflexivity and transitivity rules from above.

Enforceable Properties In a uniform system, suppres-
sion automata can only enforce safety properties.

Theorem 5 (Uniform S-Enforcement) If
�

is a uniform
system and suppression automaton precisely enforces ��
on

�
then �� obeys (SAFETY).

In a nonuniform system, suppression automata can once
again enforce non-EM properties. For example, consider
the following system

�
.

� # . R�� �����\�G�>� ���(0� # . R�� �>� ��� �R�� �����\� ���	��� �R�� �����\� ��� ��� ���	���(0
The symbols R�� ��� ���U���	��� denote acquisition, use and re-

lease of a resource. The set of executions includes zero,
one, or two uses of the resource. Such a scenario might
arise were we to publish a policy that programs can use the
resource at most two times. After publishing such a pol-
icy, we might find a bug in our implementation that makes
it impossible for us to handle the load we were predict-
ing. Naturally we would want to tighten the security pol-
icy as soon as possible, but we might not be able to change
the policy we have published. Fortunately, we can use a
suppression automaton to suppress extra uses and dynami-
cally change the policy from a two-use policy to a one-use
policy. Notice that an ordinary security automaton is not
sufficient to make this change because it can only termi-
nate execution.2 After terminating a two-use application,

2Premature termination of these executions takes us outside the sys-
tem � since the 	�
� symbol would be missing from the end of the se-
quence. To model the operation of a security automaton in such a situa-
tion we would need to separate the set of possible input sequences from
the set of possible output sequences. For the sake of simplicity, we have
not done so in this paper.

it would be unable to insert the release necessary to satisfy
the policy.

We can also compare the power of suppression automata
with insertion automata. A suppression automaton can-
not enforce the bounded-availability policy described in
the previous section because it cannot insert release events
that are necessary if the program halts prematurely. That
is, although the suppression automaton could suppress all
non-release actions upon reaching the bound (waiting for
the release action to appear), the program may halt with-
out releasing, leaving the resource unreleased. Note also
that the suppression automaton cannot simply suppress re-
source acquisitions and uses because this would modify
sequences that actually do satisfy the policy, contrary to
the definition of precise enforcement. Hence, insertion au-
tomata can enforce some properties that suppression au-
tomata cannot.

For any suppression automaton, we can construct an in-
sertion automaton that enforces the same property. The
construction proceeds as follows. While the suppression
automaton acts as a simple security automaton, the inser-
tion automaton can clearly simulate it. When the suppres-
sion automaton decides to suppress an action � , it does so
because there exists some extension D of the input already
processed (

�
) such that �� � � �\D � but � ���� � �W� �\D � . Hence,

when the suppression automaton suppresses � (giving up
on precisely enforcing any sequence with D �W� as a prefix),
the insertion automaton merely inserts D and terminates
(also giving up on precise enforcement of sequences withD �\� as a prefix). Of course, in practice, if D is uncom-
putable or only intractably computable from

�
, suppres-

sion automata are useful.
There are also many scenarios in which suppression au-

tomata are more precise enforcers than insertion automata.
In particular, in situations such as the one described above
in which we publish one policy but later need to restrict
it due to changing system requirements or policy bugs,
we can use suppression automata to suppress resource re-
quests that are no longer allowed. Each suppression re-
sults in a new program action stream with an edit distance
increased by 1, whereas the insertion automaton may pro-
duce an output with an arbitrary edit distance from the in-
put.

Before we can characterize the properties that can be
enforced by a suppression automaton, we must generalize
our suppression functions so they act over sequences of
symbols. Given a set of actions � , a computable function
� � + � � � � � is a suppression function if it satisfies the
following conditions.

1. � � �'&(� #Q&
2. � ����D �W��� # � �V��D � �W� , or

� ����D �W��� # � �V��D �
A suppression automaton can enforce the following prop-
erties.

MORE ENFORCEABLE SECURITY POLICIES 101

Theorem 6 (Nonuniform S-Enforcement) A property ��
on the system

� # � ��� � � is enforceable by a suppression
automaton if and only if there exists a suppression function
� � such that for all sequences D���� � ,
� if �� �1D � then � ����D � # D , and

� if � �� �1D � then

1. 0�D���� � = D � D�� � � �� �1D��	� , or

2. D 2� � and 0 D � � � = D � D � � �� � � � ��D � ���
Limitations Similarly to its relatives, a suppression au-
tomaton is limited by the fact that some events may not
be suppressible. For example, the program may have a di-
rect connection to some output device and the automaton
may be unable to interpose itself between the device and
the program. It might also be the case that the program
is unable to continue proper execution if an action is sup-
pressed. For instance, the action in question might be an
input operation.

3.3 Edit Automata

We form an edit automaton
�

by combining the inser-
tion automaton with the suppression automaton. Our
machine is now described by a 5-tuple with the form��� ��/ ; � ��� � � � � . The operational semantics are derived
from the composition of the operational rules from the two
previous automata.

��D ��/<� � � � �1D � ��/ � � (E-STEPA)

if D #N� �\D��
and �K��� ��/<� #-/ �
and � ��� ��/<� # Y

��D ��/<� � � � �1D � ��/ � � (E-STEPS)

if D #N� �\D��
and �K��� ��/<� #-/��
and � ��� ��/<� #

�1D ��/<� � � � �1D ��/ � � (E-INS)

if D #N� �\D��
and � �1� ��/<� # � ��/��

��D ��/<� � � � �'& ��/<� (E-STOP)

otherwise

We again extend this single-step semantics to a multi-
step semantics with the rules for reflexivity and transitivity.

Enforceable Properties As with insertion and suppres-
sion automata, edit automata are only capable of enforcing
safety properties in uniform systems.

Theorem 7 (Uniform E-Enforcement) If
�

is a uniform
system and edit automaton

�
precisely enforces �� on

�
then �� obeys (SAFETY).

The following theorem provides the formal basis for the
intuition given above that insertion automata are strictly
more powerful than suppression automata. Because inser-
tion automata enforce a superset of properties enforceable
by suppression automata, edit automata (which are a com-
position of insertion and suppression automata) precisely
enforce exactly those properties that are precisely enforce-
able by insertion automata.

Theorem 8 (Nonuniform E-Enforcement) A property ��
on the system

� # � � � � � can be enforced by some edit
automaton if and only if there exists a function � � such
that for all executions D � � � , if � �� ��D � then

1. 0 D���� � = D � D�� � � �� �1D��%� , or

2. D 2� � and �� �1D � ��� �1D ���
Although edit automata are no more powerful precise

enforcers than insertion automata, we can very effectively
enforce a wide variety of security policies conservatively
with edit automata. We describe a particularly important
application, the implementation of transactions policies, in
the following section.

3.4 An Example: Transactions

To demonstrate the power of our edit automata, we show
how to implement the monitoring of transactions. The de-
sired properties of atomic transactions [EN94], commonly
referred to as the ACID properties, are atomicity (either the
entire transaction is executed or no part of it is executed),
consistency preservation (upon completion of the transac-
tion the system must be in a consistent state), isolation (the
effects of a transaction should not be visible to other con-
currently executing transactions until the first transaction
is committed), and durability or permanence (the effects
of a committed transaction cannot be undone by a future
failed transaction).

The first property, atomicity, can be modeled using an
edit automaton by suppressing input actions from the start
of the transaction. If the transaction completes success-
fully, the entire sequence of actions is emitted atomically
to the output stream; otherwise it is discarded. Consistency
preservation can be enforced by simply verifying that the
sequence to be emitted leaves the system in a consistent
state. The durability or permanence of a committed trans-
action is ensured by the fact that committing a transaction
is modeled by outputting the corresponding sequence of

102 LUJO BAUER, JARRED LIGATTI AND DAVID WALKER

actions to the output stream. Once an action has been writ-
ten to the output stream it can no longer be touched by the
automaton; furthermore, failed transactions output noth-
ing. We only model the actions of a single agent in this
example and therefore ignore issues of isolation.

���������
n)

a≠
���������

_) ∧
a≠pay(_)

a

-n

+n

pay(n)�����	�
�
n) ; pay(n)

���������
n) ; pay(n)

pay(n)

�����	�
�
n)

¬pay(n)

warning

a≠
���������

_) ∧
a≠pay(_)

a

� �����	�
�
k) ∧ k≠n) ∨ pay(_)

Figure 1: An edit automaton to enforce the market policy
conservatively.

To make our example more concrete, we will model a
simple market system with two main actions,
�R��J�G���Z� andH�R� ���Z� , which represent acquisition of � apples and the
corresponding payment. We let a range over other actions
that might occur in the system (such as window-shop or
browse). Our policy is that every time an agent takes �
apples it must pay for those apples. Payments may come
before acquisition or vice versa. The automaton conser-
vatively enforces atomicity of this transaction by emitting
�R��J�G���Z� ��H�R� ���Z� only when the transaction completes. If
payment is made first, the automaton allows clients to per-
form other actions such as browse before paying (the pay-
take transaction appears atomically after all such interme-
diary actions). On the other hand, if apples are taken and
not paid for immediately, we issue a warning and abort
the transaction. Consistency is ensured by remembering
the number of apples taken or the size of the prepayment
in the state of the machine. Once acquisition and payment
occur, the sale is final and there are no refunds (durability).

Figure 1 displays the edit automaton that conservatively
enforces our market policy. The nodes in the picture repre-
sent the automaton states and the arcs represent the transi-
tions. When a predicate above an arc is true, the transition
will be taken. The sequence below an arc represents the
actions that are emitted. Hence, an arc with no symbols
below it is a suppression transition. An arc with multiple
symbols below it is an insertion transition.

4 Future Work

We are considering a number of directions for future re-
search.

����������� �	������� � ��� � �

����������� �	���!�"�#�!���$�%� � �

 saf
�%�	�

�!�"���!� liveness ���&�#�!�

EMEM�!�"������!� ���

editing���&�#�!�

saf
�%�	�

-liven
� ���'�!�"�����

(�)!* +,* -#.�/!0"1#/!(�0$+%* (�2435* -#26(�0 +,* 1#-�/!0"1�/!(0
ties

su
/�/!0"(�2�26* 1�-

/!0"1#/!2

EMEMEM/!0"1�/!2/!0 1�/!2

Figure 2: A taxonomy of precisely enforceable security
policies.

Composing Schneider’s security automata is straight-
forward [Sch00], but this is not the case for our edit au-
tomata. Since edit automata are sequence transformers, we
can easily define the composition of two automata

� A
and� � to be the result of running

� A
on the input sequence

and then running
� � on the output of

� A
. Such a defini-

tion, however, does not always give us the conjunction of
the properties enforced by

� A
and

� � . For example,
� �

might insert a sequence of actions that violates
� A

. When
two automata operate on disjoint sets of actions, we can
run one automaton after another without fear that they will
interfere with one other. However, this is not generally the
case. We are considering static analysis of automaton def-
initions to determine when they can be safely composed.

Our definitions of precise and conservative enforcement
provide interesting bounds on the strictness with which
properties can be enforced. Although precise enforcement
of a property is most desirable because benign executions
are guaranteed not to be disrupted by edits, disallowing
even provably benign modifications restricts many useful
transformations (for example, the enforcement of the mar-

MORE ENFORCEABLE SECURITY POLICIES 103

ket policy from Section 3.4). Conservative enforcement,
on the other hand, allows the most freedom in how a prop-
erty is enforced because every property can be conserva-
tively enforced by an automaton that simply halts on all
inputs (by our assumption that �� �'&(�). We are working
on defining what it means to effectively enforce a prop-
erty. This definition may place requirements on exactly
what portions of input sequences must be examined, but
will be less restrictive than precise enforcement and less
general than conservative enforcement. Under such a def-
inition, we hope to provide formal proof for our intuition
that suppression automata effectively enforce some prop-
erties not effectively enforceable with insertion automata
and vice versa, and that edit automata effectively enforce
more properties than either insertion or suppression au-
tomata alone.

We found that edit automata could enforce a variety of
non-EM properties on nonuniform systems, but could en-
force no more properties on uniform systems than ordinary
security automata. This indicates that it is essential to com-
bine static program analysis and instrumentation with our
new enforcement mechanisms if we wish to enforce the
rich variety of properties described in this paper. We are
very interested in exploring the synergy between these two
techniques.

In practice, benign applications must be able to react
to the actions of edit automata. When a program event is
suppressed or inserted, the automaton must have a mecha-
nism for signaling the program so that it may recover from
the anomaly and continue its job (whenever possible). It
seems likely that the automaton could signal an applica-
tion with a security exception which the application can
then catch, but we need experience programming in this
new model.

We are curious as to whether or not we can further clas-
sify the space of security policies that can be enforced at
runtime by constraining the resources available either to
the running program or the run-time monitor. For exam-
ple, are there practical properties that can be enforced by
polynomial-time monitors but not linear-time monitors?
What if we limit of the program’s access to random bits
and therefore its ability to use strong cryptography?

We are eager to begin an implementation of a realistic
policy language for Java based on the ideas described in
this paper, but we have not done so yet.

5 Conclusions

In this paper we have defined two new classes of security
policies that can be enforced by monitoring programs at
runtime. These new classes were discovered by consider-
ing the effect of standard editing operations on a stream
of program actions. Figure 2 summarizes the relationship
between the taxonomy of security policies discovered by

Alpern and Schneider [AS87, Sch00] and our new editing
properties.

Acknowledgment

The authors are grateful to Fred Schneider for making
helpful comments and suggestions on an earlier version of
this work.

Bibliography

[AS87] Bowen Alpern and Fred Schneider. Recog-
nizing safety and liveness. Distributed Com-
puting, 2:117–126, 1987.

[BLW02] Lujo Bauer, Jarred Ligatti, and David
Walker. More enforceable security poli-
cies. Technical Report TR-649-02, Prince-
ton University, June 2002.

[CF00] Thomas Colcombet and Pascal Fradet. En-
forcing trace properties by program transfor-
mation. In Twenty-Seventh ACM Symposium
on Principles of Programming Languages,
pages 54–66, Boston, January 2000. ACM
Press.

[EN94] Ramez Elmasri and Shamkant B. Navathe.
Fundamentals of database systems. The
Benjamin/Cummings Publishing Company,
Inc., 1994.

[ET99] David Evans and Andrew Twyman. Flexible
policy-directed code safety. In IEEE Secu-
rity and Privacy, Oakland, CA, May 1999.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees,
and Sequences. Cambridge University
Press, 1997.

[KVBA 3 99] Moonjoo Kim, Mahesh Viswanathan,
Hanene Ben-Abdallah, Sampath Kannan,
Insup Lee, and Oleg Sokolsky. Formally
specified monitoring of temporal properties.
In European Conference on Real-time
Systems, York, UK, June 1999.

[Lam85] Leslie Lamport. Logical foundation. Lec-
ture Notes in Computer Science, 190:119–
130, 1985.

[Sch00] Fred B. Schneider. Enforceable security
policies. ACM Transactions on Information
and Systems Security, 3(1):30–50, February
2000.

104 LUJO BAUER, JARRED LIGATTI AND DAVID WALKER

[SS98] Anders Sandholm and Michael
Schwartzbach. Distributed safety con-
trollers for web services. In Fundamental
Approaches to Software Engineering, vol-
ume 1382 of Lecture Notes in Computer
Science, pages 270–284. Springer-Verlag,
1998.

[Thi01] Peter Thiemann. Enforcing security prop-
erties by type specialization. In European
Symposium on Programming, Genova, Italy,
April 2001.

[UES99] Úlfar Erlingsson and Fred B. Schneider.
SASI enforcement of security policies: A
retrospective. In Proceedings of the New
Security Paradigms Workshop, pages 87–95,
Caledon Hills, Canada, September 1999.

[UES00] Úlfar Erlingsson and Fred B. Schneider.
IRM enforcement of Java stack inspection.
In IEEE Symposium on Security and Pri-
vacy, pages 246–255, Oakland, California,
May 2000.

[Wal00] David Walker. A type system for expres-
sive security policies. In Twenty-Seventh
ACM Symposium on Principles of Program-
ming Languages, pages 254–267, Boston,
January 2000.

A Component Security Infrastructure

Yu David Liu and Scott F. Smith
Department of Computer Science

The Johns Hopkins University
{yliu, scott}@cs.jhu.edu

Abstract

This paper defines a security infrastructure for access con-
trol at the component level of programming language de-
sign. Distributed components are an ideal place to define
and enforce significant security policies, because compo-
nents are large entities that often define the political bound-
aries of computation. Also, rather than building a security
infrastructure from scratch, we build on a standard one, the
SDSI/SPKI security architecture [EFL 3 99].

1 Introduction

Today, the most widely used security libraries are lower-
level network protocols, such as SSL, or Kerberos. Appli-
cations then need to build their own security policies based
on SSL or Kerberos. What this ends up doing in practice
is making the policy narrow and inflexible, limiting the de-
sign space of the implementation and thus the final feature
set implemented for users. A component-level policy us-
ing a security infrastructure, on the other hand, can both
(1) abstract away from keys and encryption to concepts of
principal, certificate, and authorization; and, (2) abstract
away from packets and sockets to service invocations on
distributed components. This is the appropriate level of
abstraction for most application-level programming, and
creation of such an architecture is our goal.

It is well known that components [Szy98] are useful
units upon which to place security policies. But, while
there has been quite a bit of recent research integrating se-
curity into programming languages, little of this has been
at the component level. Industry has been making progress
securing components. The CORBA Security Specification
[OMG02] layers existing security concepts and protocols
on top of CORBA. It is designed for interoperability be-
tween components using different existing protocols such
as Kerberos, SSL, etc, and not using a higher-level secu-
rity architecture. Microsoft’s DCOM uses a very simple
ACL-based security layer.

In this paper we define a new component-layer security
model built on top of the SDSI/SPKI security infrastruc-
ture [RL96, EFL 3 99, CEE 3 01]. By building on top of an

existing security infrastructure we achieve two important
gains: open standards developed by cryptographers are
more likely to be correct than a new architecture made by
us; and, a component security model built on SDSI/SPKI
will allow the component security policies to involve other
non-component SDSI/SPKI principals. We have chosen
SDSI/SPKI in particular because it is the simplest general
infrastructure which has been proposed as an Internet stan-
dard. Other architectures which could also be used to se-
cure components include the PolicyMaker/KeyNote trust
management systems [BFK99], and the Query Certificate
Manager (QCM) extension [GJ00]. The most widely used
PKI today, X.509 [HFPS99], is too hierarchical to secure
the peer-to-peer interactions that characterize components.

Although we have found no direct precedent for our ap-
proach, there is a significant body of related work. PLAN
is a language for active networks which effectively uses
the PolicyMaker/KeyNote security infrastructure [HK99];
PLAN is not component-based. Several projects have gen-
eralized the Java Applet model to support mobile untrusted
code [GMPS97, BV01, HCC 3 98]. These projects focus
on mobile code, however, and not on securing distributed
component connections; and, they do not use existing se-
curity infrastructures.

Components we informally characterize a software
component. Our characterization here differs somewhat
from the standard one [Szy98] in that we focus on the be-
havior of distributed components at run-time since that is
what is relevant to dynamic access control.

1. Components are named, addressable entities, running
at a particular location (take this to be a machine and
a process on that machine);

2. Components have services which can be invoked;

3. Components may be distributed, i.e. services can be
invoked across the network;

The above properties hold of the most widespread com-
ponent systems today, namely CORBA, DCOM, and Jav-
aBeans.

105

106 YU DAVID LIU AND SCOTT F. SMITH

1.1 Fundamental Principles of Component
Security

We now define some principles we believe should be at
the core of secure component architectures. We implement
these principles in our model.

Principle 9 Each Component should be a principal in
the security infrastructure, with its own public/private key
pair.

This is the most fundamental principle. It allows access
control decisions to be made directly between components,
not via proxies such as users, etc (but, users and organiza-
tions should also be involved in access control policies).

Principle 10 As with other principals, components are
known to outsiders by their public key.

Public keys also serve as universal component names,
since all components should have unique public keys.

Principle 11 Components each have their own secured
namespace for addressing other components (and other
principals).

By localizing namespaces to the component level, a more
peer-to-peer, robust architecture is obtained. Components
may also serve public names to outsiders.

Principle 12 Components may be private—if they are not
registered in nameservers, then since their public keys are
not guessable, they are hidden from outsiders.

This principle introduces a capability-like layer in the
architecture: a completely invisible component is a se-
cured component. Capabilities are also being used in
other programming-language-based security models [Mil,
vDABW96].

1.2 The Cell Component Architecture

We are developing a security architecture for a particular
distributed component language, Cells [RS02]. A brief
definition of cells is as follows.

Cells are deployable containers of objects and
code. They expose typed linking interfaces (con-
nectors) that may import (plugin) and export
(plugout) classes and operations. Via these inter-
faces, cells may be dynamically linked and un-
linked, locally or across the network. Standard
client-server style interfaces (services) are also
provided for local or remote invocations. Cells
may be dynamically loaded, unloaded, copied,
and moved.

So, cells have run-time services like DCOM and
CORBA components, but they also have connectors that

Chatter Chatter

send

receive
send

receive
C

ta
h

C

t
a

h

connector

plugin

plugout

Figure 1: Two Chatter cells communicating over the net-
work via Chat connector

allow for persistent connections. Persistent connections
can be made across the Internet. This is particularly good
for security because a connection is secured at set-up, not
upon every transaction. This is analogous to SSH: once
a secure session is in place, it can stay up for hours or
days and perform many transactions without additional au-
thorization checks. See Figure 1 for an example of two
Chatter cells which are connected across the Internet
via a persistent Chat connection. They can communicate
by the send and receive operations.

There is a president cell in charge of cells at each loca-
tion. The president can veto any access request and revoke
any live connection at its location.

In this paper, we are not going to focus much on the cell-
specific aspects, so the paper can be viewed as a proposal
for a general component security architecture. The one
exception is we do assume that each location has a single
president cell which is in charge of all cells at that location,
and even this assumption is not critical.

We use a simple, denotational model of cells here,
which suffices for definition of the security model. We
are currently implementing JCells, a modification of
Java which incorporates the cell component architecture
[Lu02].

1.3 The SDSI/SPKI Infrastructure

We very briefly review the SDSI/SPKI architecture, and
give an overview of how we use it as a basis for the cell
security architecture.

SDSI/SPKI is a peer-to-peer (P2P) architecture, a more
flexible format than the centralized X.509 PKI [HFPS99].
Each SDSI/SPKI principal has a public/private key pair,
and optional additional information such as its location and
servers from which its certificate may be retrieved. Certifi-
cates are information signed by principals; forms of certifi-
cate include principals (giving the public key and optional
information), group membership certificates (certifying a
principal is a member of a certain group), and autho-
rization certificates authorizing access. Name servers are

A COMPONENT SECURITY INFRASTRUCTURE 107

secure servers which map names (strings) to certificates.
There is no a priori centralized structure to names—each
server can have an arbitrary mapping. An extended name
is a name which is a chain of name lookups; for instance
asking one name server for “Joe’s Sally” means to look
up “Joe” on that name server, and then asking Joe’s name
server to look up “Sally”. Access control decisions can be
based either on direct lookup in an ACL, or via presen-
tation of authorization certificates. In access control deci-
sions using certificates, these certificates may be optionally
delegated and revoked. See [RL96, EFL 3 99, CEE 3 01] for
details.

We use SDSI/SPKI both for access control, and for
a name service which allows cells to learn about each
other securely. As mentioned above, each cell is regis-
tered as a SDSI/SPKI principal, and can issue certificates
which fit the SDSI/SPKI format. Each cell can also serve
SDSI/SPKI names. We currently don’t generate certifi-
cates using the precise S-expression syntax of SDSI/SPKI,
but the syntax is not an important issue (and, an XML
format is probably preferred in any case). We incor-
porate SDSI/SPKI extended names, authorization certifi-
cates, delegation, and revocation models.

2 Cells

In this section we give a denotational model of cells and
cell references (local or remote references to cells). Each
cell has a public/private key and is thus a SDSI/SPKI prin-
cipal. The public key not only serves for security, it serves
to identify cells as no two cells should share a public key.

2.1 The Cell Virtual Machine (CVM)

The Cell Virtual Machine (CVM) is where cells run, in
analogy to Java’s JVM. The CVM is responsible for tasks
including cell loading, unloading, serializing, deserializing
and execution. Each CVM is represented by a particular
cell, called its president. The president is a cell with extra
service interfaces and connectors to implement the CVM’s
responsibilities. By reifying the CVM as a president cell,
our architecture can be homogeneously composed of cells.
It implicitly means CVM’s are principals (identified by
their president cells), which allows for CVM-wide secu-
rity policies. In composing security policies, the president
cell serves as a more abstract notion of location than the
network-protocol-dependent locations used in existing se-
curity architectures such as Java’s. This separation of low-
level network protocols from the security architecture is
particularly well-suited to mobile devices: even if network
locations change from time to time, security policies can
stay the same.

For the purposes of defining the security architecture,
a simple denotational model of cells suffices: we ignore
most of the run-time internals such as objects, classes and

serialization, and focus on the access control policies for
cells. We will define cells

 ��� and cell references

 � �

��� . First we define the public and private keys of a cell.

2.2 Cell Identifiers CID and Locations LOC

All cells are uniquely identified by their cell identifier,
CID.

Definition 1 A cell identifier � � � �����	� is the public key
associated with a cell. A corresponding secret key � � �

@�A
(�����
�

@ A
) is also held by each cell.

The CID is globally unique since it must serve as the iden-
tity of cells. All messages sent by a cell are signed by its
� � �

@�A
, and thus which will be verifiable given the CID.

When a cell is first loaded, its CID and � � �
@�A

are au-
tomatically generated. Over the lifecycle of a cell, these
values will not change regardless of any future unloading,
loading, running, or migrating the cell may undergo. Since
the CID is thus long-lived, it is sensible to make access
control decisions based directly on cell identity.

Each loaded cell is running within a particular CVM.
CVM’s are located at network locations LOC which can
be taken to be IP addresses.

2.3 Cell Denotations

We now define the denotation of a cell—each cell

is a
structured collection of data including keys, certificates,
etc. We don’t define explicitly how cells evolve over time
since that is not needed for the core security model defini-
tion.

Definition 2 A cell c ��� is defined as a tuple

c # �� ��� �	���� ������� � �	� � �
�� � � ��� ��� �
where� � # � � � � ��� � �

@�A �
are the cell’s public and private

keys.
� � �	���� ������� ������� ��!��"� is the set of certificates

held by the cell for purposes of access and delegation.
����� ��!��"� is defined in Section 5.2 below.

� �	� � �#!��$� is the security policy table, defined in
Section 5 below.

�
�� � �&%�'�� is the naming lookup table, defined in
Section 4 below.

� ��� ���
is the code body and internal state of the cell,

including class definitions, service interfaces, con-
nectors, and its objects. We treat this as abstract in
this presentation.

A cell environment

�� � ��� � ����%)(�� is a snap-

shot of the state of all active cells in the universe:
����%)(�� # . �

� B finite and for any � A ���#� �
� , their keys differ 0 .

108 YU DAVID LIU AND SCOTT F. SMITH

2.4 Cell References

Cells hold cell references,

 �

, to other cells they wish to
interact with. Structurally, a cell reference corresponds
to a SDSI/SPKI principal certificate, including the cell’s
CID and possible location information. This alignment
of SDSI/SPKI principal certificates with cell references
is an important and fundamental aspect of our use of the
SDSI/SPKI architecture. In an implementation, cell refer-
ences will likely also contain cached information for fast
direct access to cells, but we ignore that aspect here.

Definition 3 A cell reference

	� � ��� is defined as a tu-

ple
	� # � � � � (-* � � ��� �
� ��C �A� � � � � �	C��A� �

where � � � (-* � � is the � � � of the referenced cell; � � � �	C��-�
is the � � � of the CVM president cell where the referenced
cell is located;

� � � �	C �A� is the physical location of the
CVM where the referenced cell is located. If

 �
refers to a

CVM president cell, � � � (-* � � # � � � ��C �A� .
All interactions with cells by outsiders are through cell ref-
erences; the information in

	�
can serve as a universal re-

source locator for cells since it includes the physical loca-
tion and CVM in which the cell is running.

Definition 4
����� � � ����� is defined as follows: If
�� � ��� � ����%)(�� and

 � � ��� ,
����� � � ����� �D� " � 9 BJ��+���

returns the cell

which

	�

refers to.

3 An Example

In this section we informally introduce our security archi-
tecture with an example modeled on a B2B (Business-to-
Business) system such as a bookstore that trades online
with multiple business partners.

In our example, there is a “Chief Trader” business that
communicates with its trading partners Business A, Busi-
ness B, and Business M, all of which are encapsulated as
cells. Also, Business A has a partner Business K which is
not a partner of the Chief Trader. Fig. 2 shows the layout
of the cells and the CVM president cells that hold them.
CID’s are large numbers and for conciseness here we ab-
breviate them as e.g. 4. . . 9, hiding the middle digits. The
source code for the Chief Trader has the following JCells
code, which is more or less straightforward.

cell ChiefTrader {
service IQuery {

double getQuote(int No, String cate);
List search(String condition);

}
connector ITrade {

plugouts{
boolean makeTrans(TradeInfo ti);

}
plugins{
EndorseClass getEndorse();

}
}

/* ... cell body here ... */
}

Name CID CVM LOC
PtnrB 3. . . 1 8. . . 1 bbb.biz
CVM1 7. . . 5 7. . . 5 aaa.biz

Table 1a

Name Extended Name
PtnrA [CVM1,A]

Table 1b

Name Group Members

PtnrGrp
{CR(CID=3. . . 1, CVM=8. . . 1, LOC=bbb.biz),
PtnrA,
[CVM1,M]}

Table 1c

Table 1: Naming Lookup Table for Chief Trader Cell

Name CID CVM LOC
PtnrK 4. . . 1 9. . . 7 kkk.biz
ChiefTrader 1. . . 3 6. . . 5 chieftrader.biz

Table 2: Naming Lookup Table for Business A Cell

The major functionalities of Chief Trader are shown
above. In service interface IQuery, getQuote
takes the merchandise number and the category (pro-
motion/adult’s/children’s book) and returns the quote;
search accepts an SQL statement and returns all mer-
chandise satisfying the SQL query. The Chief Trader cell
also has an ITrade connector, which fulfills transactions
with its business partners. Inside it, getEndorse is a
plugin operation that needs to be implemented by the in-
voking cell, which endorses transactions to ensure non-
repudiation.

Our infrastructure has the following features.

Non-Universal Names Cells can be universally identi-
fied by their CID’s. However, other forms of name are
necessary to facilitate name sharing, including sharing by
linked name spaces, described below. Instead of assuming
the existence of global name servers, each cell contains a
lightweight Naming Lookup Table (NLT), interpreting lo-
cal names it cares about, and only those it cares about; ex-
ample NLT’s are given in Tables 1, 2, and 3. An NLT entry
maps a local name into one of three forms of value:a cell
reference, extended name, or group. So, an NLT is three
sub-tables for each sort; the three sub-tables for the Chief
Trader are given in Figures 1a, 1b, and 1c, respectively.
In Figure 1a, a local name is mapped to a cell reference
 � # � � � � (-* � � ��� � � �	C��A�X� � � � �	C��-� � : the cell with CID
3...1 running on a CVM on bbb.biz with president
cell CID 8...1 is named PtnrB in the Chief Trader’s
namespace. In Figure 1b, a map from local names to ex-
tended names is defined, serving as an abbreviation. In
Figure 1c a group PtnrGrp is defined. We now describe
the meaning of these extended name and group name en-
tries.

Extended Names Although names are local, names-
paces of multiple cells can be linked together as a pow-

A COMPONENT SECURITY INFRASTRUCTURE 109

CVM 0
cid : 6..5

Location: chieftrader.biz

CVM 1
cid : 7..5

Location: aaa.biz

CVM 2
cid : 8..1

Location: bbb.biz

CVM 3
cid : 9..7

Location: kkk.biz

Chief Trader Cell
cid : 1..3

Business A Cell
cid : 1..9

Business M Cell
cid : 8..3

Business B Cell
cid : 3..1

Business K Cell
cid : 4..1Legend:

A B :A is situated on B

Figure 2: Example: A B2B System Across the Internet

Name CID CVM LOC
A 1. . . 9 thiscid localhost
M 8 . . . 3 thiscid localhost
Chief 1. . . 3 6. . . 5 chieftrader.biz

Table 3: Naming Lookup Table for CVM 1 President Cell

erful scheme to refer to other cells across cell boundaries;
we just ran into an example, [CVM1, A] in Table 1c. This
refers to a cell named A in the namespace of the cell named
CVM1, from the perspective of the namespace of the Chief
Trader cell itself. Extended names make it possible for a
cell to interact with other cells whose CID and location in-
formation is not directly known: the Chief Trader cell does
not directly keep track of the CID and location of Business
A, but still has a name for it as PtnrA and the two can
communicate. Extended names also help keep the size of
naming information on any individual cell small.

Cell Groups Our system supports the definition of
cell groups. The ability to define groups greatly eases
the feasibility of defining security policies: policies
can be group-based and need not be updated for ev-
ery single cell. Table 1c defines a group PtnrGrp
with three members. Group members can be di-
rect cell references (CR(CID=3...1, CVM=8...1,
LOC=bbb.biz)), local names (PtnrA), extended
names ([CVM1,M]), or other sub-groups. This flexibility
allows appropriate groups to be easily defined.

Access Control The security policy defines how re-
sources should be protected. The units of cell protec-
tion include services, connectors and operations. Each
cell contains a security policy table which specifies the
precise access control policy. Table 4 gives the Chief
Trader’s security policy table. Here, operation search

of its IQuery service can be invoked by any member in
group PtnrGrp; the second entry in the table indicates
that PtnrA can invoke any operation of its IQuery ser-
vice; the third entry indicates PtnrA can also connect to
its ITrade connector.

Hooks Security decisions can also be made contingent
on the parameters passed in to an operation. This mech-
anism is called a hook, and provides access control at a
finer level of granularity. The fourth entry of Table 4 has
a hook h1 attached, which declares that the getQuote
operation of IQuery service in the Chief Trader cell can
be invoked by PtnrB only if the second parameter pro-
vided is equal to promotion, meaning only promotion
merchandise can be quoted by PtnrB.

Delegation Delegation solves the problem of how two
cells unaware of each other can interact effectively. For in-
stance, Business K is not a partner of the Chief Trader, but
since it is a partner of Business A (a partner of the Chief
Trader), it is reasonable for Business K to conduct busi-
ness with the Chief Trader. According to Table 4, Busi-
ness A (named PtnrA in the name space of the Chief
Trader cell) can have access to the IQuery interface of
the Chief Trader, but business K can not. However, the
Chief Trader has left the delegation bit (Delbit) of that
entry to 1, which means any partner with this access right
can delegate it to others. Table 5 shows Business A’s se-
curity policy table; it defines a delegation policy whereby
it grants PtnrK a certificate for the IQuery service of
the Chief Trader cell. Thus cell K can invoke the IQuery
service using this delegation certificate, even though the
Chief Trader cell does not directly know Business K.

110 YU DAVID LIU AND SCOTT F. SMITH

Subject Resource Accessright Hook Delbit
PtnrGrp � thiscell, IQuery.search � invoke NULL 0
PtnrA � thiscell, IQuery � invoke NULL 1
PtnrA � thiscell, ITrade � connect NULL 0
PtnrB � thiscell, IQuery.getQuote � invoke h1 ��� 0

��� h1(arg1, arg2) = {arg2 � “promotion”}

Table 4: Security Policy Table for Chief Trader

Subject Resource Accessright Hook Delbit
PtnrK � ChiefTrader, IQuery � invoke NULL 0

Table 5: Security Policy Table for Business A

4 Name Services

Name services are needed to find cells for which a cell
reference

	�
is lacking. The example of Section 3 gave

several examples of name service in action.

4.1 Names and Groups

The Cell naming scheme uses the decentralized extended
naming scheme of SPKI/SDSI [CEE 3 01]. In contrast with
global naming schemes such as DNS and X.509 where
global name servers are assumed, decentralized naming
more reflects the nature of the Internet, for which Cells are
designed. Each and every cell can serve as an independent,
light-weight SDSI/SPKI naming server, so name service is
pervasively distributed.

The set of local names are strings � � % . Local
names map to cell references, cell extended names, and
cell groups.

The extended name mechanism, illustrated in the exam-
ple, enables a cell to refer to other cells through a chain of
cross-cell name lookups.

Definition 5 An extended name � ��� � ��� %��
	�� � is a se-
quence of local names � � A � �+�<�>=:=>=:� �+��� .
Each � � 3

A
is a local name defined in the name space of the

cell � � .
SDSI/SPKI groups are represented as a name binding

which maps the name of the group to the set of group mem-
bers. Group members are themselves local names, which
can in turn be mapped to cells or sub-groups. The owner
of the group is the cell holding the local name.

Definition 6 The set of groups is defined as #
� !
 � � �� � , %���	�� � .
4.2 The Naming Lookup Table and Naming

Interface

Local name bindings are stored in a naming lookup table,
NLT. Every cell (including presidents) holds such a table,
defining how local names relevant to it are mapped to cells
and groups.

Definition 7 Given a space (# � � , , % ��	�� of val-
ues,

1. each naming lookup entry

 ��� � %�'�� is a tuple
 ��� # � � � ��� for ��� % and
9 � (;

2. a naming lookup table

 � � � %�'�� is a set of

naming lookup entries:

 � �

%�'�� such that for� ��� � � � � � � ��� � � � � �
�� � , � A 2# � � .
An example illuminating this definition can be found in
Table 1 of Section 3. � � � _ � ����� � �
�� � � � � is a partial
function which looks up the value of � in table NLT, and
is undefined for names � with no mapping.

In the JCells language, the naming lookup table is main-
tained by an interface INaming present on all cells, which
contains the operations for both looking up and modifying
name lookup table information. Data in the naming lookup
table can only be located or modified via INaming. The
most important operation in INaming is lookup, which
we now specify. Group membership is another important
operation which we leave out of this short version.

4.3 Name Lookup

The lookup � cenvt � � ��� � � cr ��� � � operation, defined in Fig.
3, looks up an extended name � ����� , starting from the nam-
ing lookup table of the current cell which has reference
 � ��� � , and returns the final cell reference that � ��� � refers
to. Since arbitrary cell name servers could be involved in
extended name lookup, the operation is parameterized by
the global cell environment cenvt. A simple local name is
a special case of an extended name with LENGTH(� �����) =
1.

The first case in lookup1 is when the name is not an
extended name: the value

�
in the

 � �
is directly re-

turned. The second case is for an extended name, and the
next element of the extended name must be looked up us-
ing cell

�
’s nameserver. The last case is where the value is

an extended name itself.
The above algorithm does not define how the com-

putation is distributed; to be clear, given an invocation
lookup on a cell, the only parts involving distributed in-
teraction are

����� �"� ����� and � � � _ � ����� � , which in

A COMPONENT SECURITY INFRASTRUCTURE 111

lookup1(cenvt, ������� , cr, pathset) =
let [� � ���	�'��JLJQJL�
���] = � ���� ,�� � _ � _ �������K� _ � = REF2CELL(cenvt, cr),������� � �����

� � � � �
in

if
������� ��� � ��� pathset then raise error;

let pathset = pathset ��� ������� ��� � � � in! �#"%$ � _ &('��*) $ � �+�,�K��� � � in
case ! �.-0/ and � $ � " �21 � �3�4�� � �65 : !
case ! �.-0/ and � $ � " �21 � �3�4�� �87 5 : lookup1(cenvt, [� � �DJQJLJL�
� �], v, pathset)
case ! �:9%;=<?> : let @�A � � lookup1 � @CB�� !
D � ! � cr � pathset � in

lookup1 � @CB�� !
D � � �	�'�DJ�J�J������ ���E@�A � � pathset �
otherwise: raise error

lookup(cenvt, ������� , cr) = lookup1(cenvt, ���4�� , cr, F)

Figure 3: Definition of lookup

combination locate another cell, look up a name from it
and immediately return the value, be it a cell reference or
extended name, to the initial invoker; all recursive calls to
lookup1 are local.

Compared with SDSI/SPKI [CEE 3 01], our algorithm
is more general since it allows arbitary expansion of local
names (the third case in the algorithm). For example, “Sal-
lie’s Joe’s Pete” could in the process of resolution return an
extended name for “Joe” on Sally as “Sam’s Joe”, which
then must be resolved before “Pete” can be looked up on
it; [CEE 3 01] will not resolve such names. However, this
more general form is expressive enough that cyclic names
are possible (e.g. “Sallie’s Joe” maps to the extended name
“Sallie’s Joe’s Fred”) and a simple cycle detection algo-
rithm must be used to avoid infinite computation. The cy-
cle detection algorithm used in Fig. 3 is as follows. The
lookup function maintains a set pathset of each recur-
sive lookup name this initial request induces; if the same
naming lookup entry is requested twice, a cycle is flagged
and the algorithm aborted. A cycle can only be induced
in the third case (local name expansion), where the algo-
rithm divides the lookup process into two subtrees. Since
there are only finitely many expansion entries possible, the
algorithm always terminates.

5 Access Control

Access control decisions in the cell security architecture
are based on the SDSI/SPKI model, specialized to the par-
ticular resources provided by cells. Each cell has associ-
ated with it a security policy table, which declares what
subjects have access to what resources of the cell. This
is an “object-based” use of SDSI/SPKI—every cell is re-
sponsible for controlling access to its resources.

Definition 8 1. The set of subjects !�# % � � 	 , . ALL 0 :
Subjects are extended names for cells or groups, or
ALL which denotes any subject.

2. The set of resources � # �HG �CI � , where

� G # %���	�� , .
thiscell 0 is the set of re-

source owners, with thiscell denoting the
cell holding the security policy itself.

� I # !���(, � % � ,JG � is the set of protec-
tion units, which can be a cell service interface,
connector, or operation, respectively.

A partial order � � is defined on protection units:
� A � �� � if and only if

� A
is subsumed by

� � ; details are omitted
from this short version.

Access rights are K # .
invoke � connect 0 , where if

u � ��% � , a will be connect, and if u � !���(,LG � , a
will be invoke.

Definition 9 A security policy entry
� 	 � � !�� � is a tuple� 	 � # ��� � � � � ��
 � � � , meaning access right

�
to resource�

can be granted to subject
�
, if it passes the security hook

 . This access right can be further delegated if
�

is set to
1. Specifically, we require

� � � ! ,
� ��� ,

� �MK .

�
��ON is an optional security hook, a predicate which
may perform arbitrary checking before access rights
are granted (details are in Section 5.1 below). It is
(unless

� # ��� � � � , � # thiscell and
� � G � .

The set of security hooks that is associated with oper-
ation

��	 � G � is denoted N � � .

� � � � # . L �:[<0 is the delegation bit as per the
SDSI/SPKI architecture. It defines how the access
rights can be further delegated, detailed in Section
5.2 below.

The Security policy table is then a set of security poli-
cies held by a cell:

� � � � !���� # � !
 � � � ! � �Z� .

112 YU DAVID LIU AND SCOTT F. SMITH

5.1 Security Hooks

The access control model above restricts access rights to
cell connectors and service interfaces based on request-
ing principals. However, more expressiveness is needed
in some situations. One obvious example is local name
entries: How can one protect a single local name entry,
i.e., one particular invocation of lookup? Currently, we
have a naming interface defined (see Section 4.2), but
completely protecting operation lookup is too coarse-
grained. For these cases we need a parameterized secu-
rity policy, in which the policy is based on the particular
arguments passed to an operation such as lookup. Se-
curity hooks are designed to fill this need. Hooks can be
implemented in practice either as JCells code or written
in some simple specification language; here we abstractly
view them as predicates. The set of security hooks N ���
contains verifying predicates that are being checked when
the associated operation

��	
is triggered.

Definition 10 Given security policy entry
� 	 � #� � � ��� � � 	 � � � ��
 � � � � � , a hook
 � � �MN ��� is a predicate

 � � � � A � � �<�:=$= = � @ �
where

��A � � � �>= =$= � @ are operation
� 	

parameters, and each� � � (K ' , for (K ' an abstract set of values which in-
cludes cell references

 �
along with integers and strings.

Access control security hooks are checked right before in-
vocation of the associated operation, and the invocation
can happen only if the security hook returns true.

5.2 Delegation

We use the SPKI/SDSI delegation model to support dele-
gation in cell access control. A subject wishing access to
a cell’s resource can present a collection of certificates au-
thorizing access to that cell. And, revocation certificates
can nullify authorization certificates.

Definition 11 An authorization certificate
� � �
 � �

K8I � N�� is a signed tuple

� � �
 � # � � � � �U��� � � � ��� � � � � � � � � � �
where � � � � is the � � � of certificate issuer cell; � � � � is
the � � � of the cell being delegated; � � � � is the � � � of
resource owner cell;

�
is the resource unit;

�
is the access

right to be delegated; d is the delegation bit: if 1, the cell
specified by � � � � can further delegate the authorization
to other cells.

Definition 12 A revocation certificate
� �	� � � ����� (G �

is a signed tuple

� � � � � # � � � � �G��� � � � ��� � � ��� � � ���

In this definition, � � � � is the � � � of revocation certifi-
cate issuer cell; � � � � is the cell which earlier received
an authorization certificate from the issuer cell but whose
certificate is now going to be revoked; � � � � is the � � �
of resource owner cell;

�
is the resource unit; and,

�
is the

access right to be revoked. The set of certificates is defined
as ����� ��!��"� # � !
 � � �HK I � N�� , ��� (G � � .

Support for delegation is reflected in the definition of a
security policy entry,

� � �
: a delegation bit

�
is included.

This bit is set to permit the authorized requester cell to
further delegate the access rights to other cells. Cells can
define delegation security policies by composing security
policy entries for resources they do not own. This kind
of entry takes the form

��� � ��� � � � � � � NULL � � � , with
� 2#

thiscell. This denotes that an
� � �
 � granting access�

to
�

of
�

can be issued if the requester is
�
. Notice

security hooks are meaningless in this case.
The delegation proceeds as follows: suppose that on the

resource cell side there is a security policy entry
� 	 � #��� � � thiscell � � � � � ��
 � 1 � ; cell

�
will be granted an� � �
 � if it requests access

�
to unit

�
on the resource cell.

Cells holding
� � �
 � can define their own security poli-

cies on how to further delegate the access rights to a third
party, issuing another

� � �
 � , together with the certificate
passed from its own delegating source. This propagation
can iterate. Cells automatically accumulate “their” pile of
authorization certificates from such requests, in their own
� �	���� ������� . When finally access to the resource is at-
tempted, the requestor presents a chain of

� � �
 � which
the resource cell will check to determine if the access right
should be granted. Existence of a certificate chain is de-
fined by predicate

� � � � � � _ � � � � � ��� �
 , see Fig. 4.
In the definition, operator COUNTERPART maps autho-
rization certificates to their corresponding revocation cer-
tificate, and vice-versa. B � in Figure 4 checks revocation
certificates: if some cell revokes the AuthC it issued ear-
lier, it sends a corresponding RevoC to the resource owner.
When any cell makes a request to the resource and presents
a series of AuthC, the resource holder will also check if any
RevoC matches the AuthC.

5.3 isPermitted: The Access Control De-
cision

Each cell in JCells has a built-in security interface
ISecurity, which contains a series of security-sensitive
operations. The most important is isPermitted (see
Fig. 5), which checks if access right a ,�*�� ��� K � to re-
source unit u ,�*�� �'� I � can be granted to subject cr ,�*�� �'�
� � � . If u ,�*�� � G � , a list of arguments are provided
by arglist ,�*�� ��� K � �'�� ! ��� for possible checking by a
hook. A set of authorization certificates CertSet ,�*��<�'�
����� ��!��"�6� may also be provided. The cell performing
the check is cr (�� ���'� ��� � . The environment for all active
cells is cenvt �'������%)(�� � .

A COMPONENT SECURITY INFRASTRUCTURE 113

EXISTS_CERTCHAIN � cenvt � cr �����
� cr ���	��� u ���	�9� a �
���'� CertSet �
��� � =
let � CID ������� t � � t ��� = cr ���� in
let � CID �
����� t � � t ��� = cr �
��� in
let
�
t � � CertSTORE ���� � t � � t �'� t ��� = REF2CELL(cenvt, cr ����) in
case B � and B � and B �KG � CID � % � u � % � a �
��� �
otherwise �

where
B � =

�
Auth � ��JLJLJ Auth � � CertSet �
��� with

Auth � � � CID ����
� CID � % � � CID �����
� u � % �	� a �
���'� 5 �
Auth � � � CID � % � CID � 3 � � CID ����
� u � 3 �	� a �
����� 5 �

...

Auth � � � CID ��� � %'� CID �
��� � � CID ���� � u � � �	� a �
��� � d � � d ��� � � 5 �%�
B � =u � ����� u � � � %'JLJQJ ��� u � %
B � = � �
#0! � ��� Auth � ��JLJLJQ� Auth � ��� COUNTERPART � auth ���� CertSTORE ����

Figure 4: Definition of EXISTS_CERTCHAIN

isPermitted � cenvt � cr �
���'� u �
����� a �
���9� arglist �
��� � CertSet �
���'� cr �����&� �
let � CID �
��� � t � � t � � = cr �
��� in
let
�
t � � t �$� SPT �����
� t � � t � � = REF2CELL(cenvt, cr ����) in
(
� �

s � � o � u �	� a � h � d � � SPT �����HJ B � and B � and B � and B �)
or

let t = EXISTS_CERTCHAIN � cenvt � cr �����
� cr ���	� � u ���	� � a �
��� � CertSet �
��� � in
let
�
CID �
���'� u �
���'� a �
����� � ! for

! >� � in
(
� �

s � � o � u �	� a � h � d � � SPT �����
J B � and B � and B � and B �)
where

B � � � a � a �
��� �
B � � � o � thiscell � and � u ���	� ��� u �
B � =

case
��� "�� �)"! � cenvt � s � : isMember � cenvt � cr �
��� � s � cr ����� �

case
����� $ ��� � cenvt � s � :
let
�
CID �$� CID �$# ��%'& � LOC �$# ��%'& � � lookup � cenvt � s � cr �����%� in � CID � � CID �
��� �

B � � h � arglist �
��� � where u �
��� �)(+*

Figure 5: Definition of isPermitted

isPermitted grants access either if there is a di-
rect entry in the security policy table granting access, or
if proper authorization certificates are presented. The first
or case checks if there is directly an entry in the security
policy table granting access. If authorization certificates
are provided together with the request (second or case),
permission will be granted if these certificates form a valid
delegation chain, and the first certificate of the chain can
be verified to be in the security policy table. B

A
matches

the access right; B � matches the resource; B � matches the
subjects, which is complicated by the case a subject is a
group; and B " checks the security hook if any.

6 Conclusions

In this paper we have shown how the SDSI/SPKI infras-
tructure can be elegantly grafted onto a component ar-

chitecture to give a general component security architec-
ture. Particularly satisfying is how components can serve
as principals, and how SDSI/SPKI naming gives a se-
cure component naming system. We believe this infras-
tructure represents a good compromise between simplicity
and expressivity. Very simple architectures which have no
explicit access control or naming structures built-in lack
the ability to express policies directly and so applications
would need to create their own policies. More complex
architectures such as trust management systems [BFK99]
are difficult for everyday programmers to understand and
thus may lead to more security holes.

Beyond our idea to use SDSI/SPKI for a peer-to-peer
component security infrastructure, this paper makes sev-
eral other contributions. We define four principles of com-
ponent security, including the principle that components
themselves should be principals. An implementation as-
pect developed here is the cell reference: the public key

114 YU DAVID LIU AND SCOTT F. SMITH

plus location information is the necessary and sufficient
data to interact with a cell. This notion combines pro-
gramming language implementation needs with security
needs: the cell needs to be accessed, and information sup-
posedly from it needs to be authenticated. Modelling each
CVM with a president cell simplifies the definition of per-
site security policies. It also separates low-level location
information from security polices, a structure well-suited
to mobile devices. We define a name lookup algorithm
which is more complete than the one given in [CEE 3 01]—
extended names can themselves contain extended names,
and all names can thus be treated uniformly in our architec-
ture. Our architecture for name service is more pervasive
than the distributed architecture proposed in SDSI/SPKI—
every cell has its own local names and can automatically
serve names to others. So while we don’t claim any par-
ticularly deep results in this paper, we believe the proposal
represents a simple, elegant approach that will work well
in practice.

Many features are left out of this brief description.
SDSI/SPKI principals that are not cells should be able
to interoperate with cell principals. Several features of
SDSI/SPKI and of cells are not modeled. We have not
given many details on how data sent across the network is
signed and encrypted.

The case of migrating cells is difficult and largely
skipped in the paper; currently cells migrate with their
private key, and a malicious host can co-opt such a cell.
There should never simultaneously be two cells with the
same CID, but since the system is open and distributed it
could arise in practice. By making CID’s significantly long
and being careful in random number generation, the odds
of accidentally generating the same CID approach zero;
more problematic is when a CID is explicitly reused, ei-
ther by accident or through malicious intent. In this case a
protocol is needed to recognize and resolve this conflict, a
subject of future work.

Bibliography

[BFK99] Matt Blaze, Joan Feigenbaum, and Ange-
los D. Keromytis. KeyNote: Trust man-
agement for public-key infrastructures. In
Security Protocols—6th International Work-
shop, volume 1550 of Lecture Notes in
Computer Science, pages 59–66. Springer-
Verlag, 1999.

[BV01] Ciaran Bryce and Jan Vitek. The JavaSeal
mobile agent kernel. Autonomous Agents
and Multi-Agent Systems, 4:359–384, 2001.

[CEE 3 01] Dwaine Clarke, Jean-Emile Elien, Carl Elli-
son, Matt Fredette, Alexander Morcos, and
Ronald L. Rivest. Certificate chain discov-

ery in SPKI/SDSI. Journal of Computer Se-
curity, pages 285–322, 2001.

[EFL 3 99] Carl M. Ellison, Bill Frantz, Butler Lamp-
son, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. SPKI certificate theory. In-
ternet Engineering Task Force RFC2693,
September 1999. ftp://ftp.isi.
edu/in-notes/rfc2693.txt.

[GJ00] Carl A. Gunter and Trevor Jim. Policy-
directed certificate retrieval. Software
- Practice and Experience, 30(15):1609–
1640, 2000.

[GMPS97] L. Gong, M. Mueller, H. Prafullchandra,
and R. Schemers. Going beyond the sand-
box: An overview of the new security ar-
chitecture in the Java Development Kit 1.2.
In USENIX Symposium on Internet Tech-
nologies and Systems, pages 103–112, Mon-
terey, CA, December 1997.

[HCC 3 98] C. Hawblitzel, C.-C. Chang, G. Czajkowski,
D. Hu, and T. von Eicken. Implement-
ing multiple protection domains in Java.
In 1998 USENIX Annual Technical Confer-
ence, pages 259–270, New Orleans, LA,
1998.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo.
RFC 2459: Internet X.509 public key infras-
tructure certificate and CRL profile, January
1999. ftp://ftp.internic.net/
rfc/rfc2459.txt.

[HK99] Michael Hicks and Angelos D. Keromytis.
A Secure PLAN. In Proceedings of the First
International Working Conference on Active
Networks (IWAN ’99), volume 1653, pages
307–314. Springer-Verlag, 1999.

[Lu02] Xiaoqi Lu. Report on the cell prototype
project. (Internal Report), March 2002.

[Mil] Mark Miller. The E programming language.
http://www.erights.org.

[OMG02] OMG. Corba security service specification,
v1.8. Technical report, Object Management
Group, March 2002. http://www.
omg.org/technology/documents/
formal/security_service.htm.

[RL96] Ronald L. Rivest and Butler Lampson.
SDSI – A simple distributed security infras-
tructure, 1996. http://theory.lcs.
mit.edu/~cis/sdsi.html.

A COMPONENT SECURITY INFRASTRUCTURE 115

[RS02] Ran Rinat and Scott Smith. Modular in-
ternet programming with cells. In ECOOP
2002, Lecture Notes in Computer Science.
Springer Verlag, 2002. http://www.cs.
jhu.edu/hog/cells.

[Szy98] Clemens Szyperski. Component Soft-
ware: Beyond Object-Oriented Program-
ming. ACM Press and Addison-Wesley,
New York, NY, 1998.

[vDABW96] L. van Doorn, M. Abadi, M. Burrows, and
E. Wobber. Secure network objects. In IEEE
Symposium on Security and Privacy, May
1996.

116 YU DAVID LIU AND SCOTT F. SMITH

Static Use-Based Object Confinement

Christian Skalka Scott F. Smith
The Johns Hopkins University The Johns Hopkins University

ces@cs.jhu.edu scott@cs.jhu.edu

Abstract

The confinement of object references is a significant se-
curity concern for modern programming languages. We
define a language that serves as a uniform model for a va-
riety of confined object reference systems. A use-based
approach to confinement is adopted, which we argue is
more expressive than previous communication-based ap-
proaches. We then develop a readable, expressive type
system for static analysis of the language, along with a
type safety result demonstrating that run-time checks can
be eliminated. The language and type system thus serve as
a reliable, declarative and efficient foundation for secure
capability-based programming and object confinement.

1 Introduction

The confinement of object references is a significant secu-
rity concern in languages such as Java. Aliasing and other
features of OO languages can make this a difficult task; re-
cent work [21, 4] has focused on the development of type
systems for enforcing various containment policies in the
presence of these features. In this extended abstract, we
describe a new language and type system for the imple-
mentation of object confinement mechanisms that is more
general than previous systems, and which is based on a
different notion of security enforcement.

Object confimement is closely related to capability-
based security, utilized in several operating systems such
as EROS [16], and also in programming language (PL) ar-
chitectures such as J-Kernel [6], E [5], and Secure Network
Objects [20]. A capability can be defined as a reference to
a data segment, along with a set of access rights to the seg-
ment [8]. An important property of capabilities is that they
are unforgeable: it cannot be faked or reconstructed from
partial information. In Java, object references are likewise
unforgeable, a property enforced by the type sytem; thus,
Java can also be considered a statically enforced capability
system.

So-called pure capability systems rely on their high
level design for safety, without any additional system-level
mechanisms for enforcing security. Other systems harden
the pure model by layering other mechanisms over pure
capabilities, to provide stronger system-level enforcement

of security; the private and protected modifiers in
Java are an example of this. Types improve the hard-
ening mechanisms of capability systems, by providing a
declarative statement of security policies, as well as im-
proving run-time efficiency through static, rather than dy-
namic, enforcement of security. Our language model and
static type analysis focuses on capability hardening, with
enough generality to be applicable to a variety of systems,
and serves as a foundation for studying object protection
in OO lanaguages.

2 Overview of the ����� system

In this section, we informally describe some of the ideas
and features of our language, called � � � , and show how
they improve upon previous systems. As will be demon-
strated in Sect. 5, � � � is sufficient to implement various
OO language features, e.g. classes with methods and in-
stance variables, but with stricter and more reliable secu-
rity.

Use vs. communication-based security

Our approach to object confinement is related to previous
work on containment mechanisms [2, 4, 21], but has a dif-
ferent basis. Specifically, these containment mechanisms
rely on a communication-based approach to security; some
form of barriers between objects, or domain boundaries,
are specified, and security is concerned with communica-
tion of objects (or object references) across those bound-
aries. In our use-based approach, we also specify domain
boundaries, but security is concerned with how objects are
used within these boundaries. Practically speaking, this
means that security checks on an object are performed
when it is used (selected), rather than communicated.

The main advantage of the use-based approach is that
security specifications may be more fine-grained; in a com-
munication based approach we are restricted to a whole-
object “what-goes-where” security model, while with a
use-based approach we may be more precise in specify-
ing what methods of an object may be used within various
domains. Our use-based security model also allows “tun-
neling” of objects, supporting the multitude of protocols
which rely on an intermediary that is not fully trusted.

117

118 CHRISTIAN SKALKA AND SCOTT F. SMITH

� ���Z���U� set � get � � � � �
 � � identifiers

	 � � �
 locations
� � � � � �

domains
� � � �
 ��� interfaces
� + + # �9�\��� � # " �

; ����� ?
method lists

� � + + # � � � &)�-! 	 core objects

� + + # � �6& � !98 ��� �
	�� �<� object definitions9 + + # � !� values" + + # 9 ! " = �/� " �,! "�� ��� � �1� ! ��	� ��# 9 � 	 " ! ref " expressions� + + # � � ! � = ��� " � ! 9 = �/� � � ! � � �D� � �5�$! ref � !98 ��� ��	W� � � evaluation contexts

Figure 1: Grammar for � � �

Casting and weakening

Our language features a casting mechanism, that allows re-
moval of access rights from particular views of an object,
resulting in a greater attenuation of security when neces-
sary. This casting discipline is statically enforced. It also
features weak capabilities, a sort of deep-casting mech-
anism inspired by the same-named mechanism in EROS
[16]. A weakened capability there is read-only, and any
capabilities read from a weakened capability are automat-
ically weakened. In our higher-level system, capabilities
are objects, and any method access rights may be weak-
ened.

Static protection domains

The � � � language is an object-based calculus, where ob-
ject methods are defined by lists of method definitions in
the usual manner. For example, substituting the notation=:=>= for syntactic details, the definition of a file object with
read and write methods would appear as follows:

� read �1� # =>=:=>� write ��� � # =>=:= � &U=>=:=<&G=:=>=
Additionally, every object definition statically asserts
membership in a specific protection domain � , so that ex-
panding on the above we could have:

� read �5� # =:=>=>� write ��� � # =:=>= � &�� &U=>=:=
While the system requires that all objects are annotated
with a domain, the meaning of these domains is flexible,
and open to interpretation. Our system, considered in a
pure form, is a core analysis that may be specialized for
particular applications. For example, domains may be as
interpreted as code owners, or they may be interpreted as
denoting regions of static scope—e.g. package or object
scope.

Along with domain labels, the language provides a
method for specifying a security policy, dictating how do-
mains may interact, via user interface definitions � . Each
object is annotated with a user interface, so that letting �

be an appropriately defined user interface and again ex-
panding on the above, we could have:

� read �5� # =:=>=>� write ��� � # =:=>= � &�� & �
We describe user interfaces more precisely below, and il-
lustrate and discuss relevant examples in Sect. 5.

Object interfaces

Other secure capability-based language systems have been
developed [5, 6, 20] that include notions of access-rights
interfaces, in the form of object types. Our system pro-
vides a more fine-grained mechanism: for any given ob-
ject, its user-interface definition � may be defined so that
different domains are given more or less restrictive views
of the same object, and these views are statically enforced.
Note that the use-based, rather than communication-based,
approach to security is an advantage here, since the latter
allows us to more precisely modulate how an object may
be used by different domains, via object method interfaces.

For example, imagining that the file objects defined
above should be read-write within their local domain, but
read only outside of it, an appropriate definition of � for
these objects would be as follows:

��� . �
"� .
read � write 0V��� "� .

read 0U0
The distinguished domain label � matches any domain, al-
lowing default interface mappings and a degree of “open-
endedness” in program design.

The user interface is a mapping from domains to access
rights—that is, to sets of methods in the associated object
that each domain is authorized to use. This looks some-
thing like an ACL-based security model; however, ACLs
are defined to map principals to privileges. Domains, on
the other hand, are fixed boundaries in the code which may
have nothing to do with principals, The practical useful-
ness of a mechanism with this sort of flexibility has been
described in [3], in application to mobile programs.

STATIC USE-BASED OBJECT CONFINEMENT 119

� �:��� � � &)� � & � �J= � � � 9 �J�WD � � � �:� " � � � � � � &)� � & � � � � ���%��� 9 � � �5�WD � send �
where � # �!� 0 ��� � #

"
0
; � 0 �

?
�J� L �>� �>�E� �.� � � �D���

and � � # . �V� "� . � A �:=>=:=���� ? 0G0
� �:��� �6& � � � �D�V� � �5�J�WD � � ���D� �6& � � �V��"� �5�J�WD �

 � �D�V�	� � cast �
� �	8 ��� � 	 �)�<� � �D�V�"� �1�	�J�WD � � �	8 ��� � 	 �)� � ���U� � �1� �\�J�\D � castweak �
� � 8 �$����	W�)�<�J= �/� 9 �J�\D � � � � 8 �$��� 	\� " �J�\D � � weaken �

if � 2� � and � ����= ��� 9 ���\D � �V�5� " �\D��
� � ref 9 �WD � � ��	 & � �\D � 	 "� 9 	 2� dom ��D � � newcell �

� ����	 & � ��= set � 9 �J�\D � � � 9 �\D � 	 "� 9
if set � � �D��� � set �

� �:��	 & � �J= get �5�J�\D � � �\DE��	1���\D if get � � �D��� � get �
� � ��	� � # 9 � 	 " �WD � � � " � 9 � � � �\D � let �

� � � � " �5�WD � �U�5� � � " � � �\D�� if � � " �WD � �U�5� " ���\D�� � context �

Figure 2: Operational semantics for � � �

3 The language ����� : syntax and se-
mantics

We now formally define the syntax and operational se-
mantics of � � � , an object-based language with state and
capability-based security features. The grammar for � � �
is defined in Fig. 1. It includes a countably infinite set of
identifiers

�
which we refer to as protection domains. The

definition also includes the notation � � ��� � # " �
; ����� ?

as
an abbreviation for � A ��� � # " A �:=>=>=:��� ? ��� � # " ? ; hence-
forth we will use this same vector abbreviation method for
all language forms. Read-write cells are defined as prim-
itives, with a cell constructor ref 9 that generates a read-
write cell containing

9
, with user interface � . The object

weakening mechanism 8 �$���
	W�)�<� described in the previ-
ous section is also provided, as is a casting mechanism
� � �D� � �5� , which updates the interface � associated with �
to map � to � . The operational semantics will ensure that
only downcasts are allowed.

We require that for any � and � , the method names � �D���
are a subset of the method names in the associated object.
Note that object method definitions may contain the distin-
guished identifier � which denotes self, and which is bound
by the scope of the object; objects always have full ac-
cess to themselves via � . We require that self never appear
“bare”—that is, the variable � must always appear in the
context of a method selection �G= ��� " � . This restriction en-
sures that � cannot escape its own scope, unintentially pro-
viding a “back-door” to the object. Rights amplification
via � is still possible, but this is a feature of capability-
based security, not a flaw of the model.

The small-step operational semantics for � � � is defined
in Fig. 2 as the relation � on configurations � � " �\D , where
stores D are partial mapping from locations 	 to values

9
.

The reflexive, transitive closure of � is denoted � � . If

� A � " � � � � �V��� " �1�\D�� with � A the top-level domain for all
all programs, then if

" � is a value we say
"

evaluates to" � , and if
" � is not a value and �V�5� " �1�\D�� cannot be reduced,

then
"

is said to go wrong. If � � dom � � � , the notation� � � "� 9
denotes the function which maps � to

9
and

otherwise is equivalent to
�

. If �Q2� dom � � � , � � � "� 9
denotes the function which extends

�
, mapping � to

9
. All

interfaces � are quasi-constant, that is, constant except on
a known finite set � (since they’re statically user-defined
with default values), and we write � � � "� � to denote� � which has default value � , written � � ��� � , and where� �5�D��� # � �D��� for all ��� � .

In the send rule, full access to self is ensured via the ob-
ject that is substituted for � ; note that this is the selected
object � , updated with an interface � � that confers full ac-
cess rights on the domain of � . The syntactic restriction
that � never appear bare ensures that this strengthened ob-
ject never escapes its own scope.

Of particular note in the semantics is the myriad of run-
time security checks associated with various language fea-
tures; our static analysis will make these uneccessary, by
compile-time enforcement of security.

4 Types for � � � : the transforma-
tional approach

To obtain a sound type system for the � � � language, we
use the transformational approach; we define a semantics-
preserving transformation of � � � into a target language,
that comes pre-equipped with a sound let-polymorphic
type system. This technique has several advantages: since
the transformation is computable and easy to prove cor-
rect, a sound indirect type system for � � � can be obtained
as the composition of the transformation and type judge-

120 CHRISTIAN SKALKA AND SCOTT F. SMITH

�. � A "� �
A �:&>&>&Z�� ? "� �

? � � "� �'0 # . � 0 . �O# �'0 . � A # �
A 0 =>=>= . � ? # �

? 0� ��� ? # �� � � ? # ��� . 0 �� � � � ��� � # " �
; � � � ? � &��V� & � � ? # ��	 ��� # fix �U= � = . obj # . � � # � �Z= � " � � ? ;

; � � � ? 0U�
ifc # . �V� # . � A �>=:=>=>�\� ? 0U0U�
strong # �� 0 � 	.

obj # � ��� . 0��J= obj � ifc # �� � strong # �� 0� " A = �/� " � � � ? # ��	 � A # � " A � ? � 	� A = strong � � ��D� A = ifc = � � � A = ifc = ��� � � ���	 � � # �D� A = obj = � ��� � " � � ? � � 	��	 � # � A = strong � � = strong � 	.
obj # � � = obj � ifc # � � = ifc � strong # � 0� "�� ���U�5� . � A �>=:=>=>�\� ? 0�� � ? # ��	 � # � " � ? � 	��= ifc = �U� � � A �:=>=:= ��<= ifc = �V� � � ? ���	 � # �D�<= ifc � . �U� # . � A �:=>=:=���� ? 0G0 � 	.
obj # �<= obj � ifc # �X� strong # ��= strong 0� 8 ��� �
	\� " � � ? # ��	 � # � " � ? � 	.
obj # �<= obj � ifc # ��= ifc � strong # ��= strong � �'0�

ref " � ? # ��	 � # ref
� " � ? � 	��	 � # .

get # � � =�� � � set # � � = � + # � 0 � 	.
obj #���� ifc # �� � strong # �� 0� ��	 � # " A � 	 " � � ? # ��	� ��# � " A � ? � 	 � " � � ?

Figure 3: The � � � -to- � � �
term transformation

ments in the target language, eliminating the overhead of
a type soundess proof entirely. The technique also eases
development of a direct � � � type system— that is, where
� � � expressions are treated directly, rather than through
transformation. This is because safety in a direct system
can be demonstrated via a simple proof of correspondance
between the direct and indirect type systems, rather than
through the usual (and complicated) route of subject re-
duction. This technique has been used to good effect in
previous static treatments of languages supporting stack-
inspection security [12], information flow security [11],
and elsewhere [15].

While we focus on the logical type system in this pre-
sentation, we will briefly describe how the transforma-
tional approach has benefits for type inference, allowing an
algorithm to be developed using existing, efficient meth-
ods.

4.1 The �	�
� -to- ���� transformation

The target language of the transformation is � � �
[18, 19],

a calculus of extensible records based on Rémy’s Pro-

jective ML [13], and equipped with references, sets and
set operations. The language � � �

allows definition of
records with default values

.:9 0 , where for every label �
we have

.:9 0U= � # 9
. Records � may be modified with

the syntax � . � # 9 0 , such that �B� . � # 9 0��J= � # 9
and�B� . � # 9 0��J= �V� # ��= ��� for all other ��� .

The language also allows definition of finite sets � of
atomic identifiers � chosen from a countably infinite set � � ,
and cosets

�
� . This latter feature presents some practical

implementation issues, but in this presentation we take it at
mathematical face value— that is, as the countably infinite
set � � � . The language also contains set operations � ,

�
,

 and � , which are membership check, union, intersection
and difference operations, respectively.

The � � � -to- � � �
term transformation is given in Fig. 3.

For brevity in the transformation we define the following
syntactic sugar:

. � A # " A �>=:=>=:��� ? # " ? 0
�

. � 0 . � A # " A 0 &>&:& . � ? # " ? 0

STATIC USE-BASED OBJECT CONFINEMENT 121

� +$+ #
 � � �>=>=:= ! � � � ! . � 0 !�� + � � � ! � � ! � � � � ! � ! � ! � ref ! � types
� +$+ # Y�!# constructors

Figure 4: � � �
type grammar

 ��� �

 + �

��+
Type

�
ref

+
Type

� � � � + Type
� � � � + Type

��+
Row ��� Set �. � 0 + Type

� +
Set � �

+
Set � � + Con

��+
Con � 2� � � � + Set ����� ���� � � � � � � + Set �

��+
Type

� ��+ Row &

��+
Type � 2� � � � + Row &	��� �
��1� +�� � � � � + Row &

Figure 5: Kinding rules for � � �
types

fix �G= � = " � fix �G= � �Z= " � not free in
"

" A � " � � ��	 � # " A � 	 " � � not free in
" �

The translation is effected by transforming � � � objects
into rows with obj fields containing method transforma-
tions, ifc fields containing interface transformations, and
strong fields containing sets denoting methods on which
the object is not weak. Interface definitions � are encoded
as records �� with fields indexed by domain names; ele-
vated rows are used to ensure that interface checks are total
in the image of the transformation.

Of technical interest is the use of lambda abstractions
with recursive binding mechanisms in � � �

— of the form
fix � = � �Z= " , where � binds to fix � = � �Z= " in

"
— to encode

the self variable � in the transformation. Also of techni-
cal note is the manner in which weakenings are encoded.
In a � � � weakened object 8 ��� ��	W�)�<� , the set � denotes the
methods which are inaccessible via weakening. In the en-
coding these sets are turned “inside out”, with the strong
field in objects denoting the fields which are accessible.
We define the translation in this manner to allow a simple,
uniform treatment of set subtyping in � � � ; the following
section elaborates on this.

The correctness of the transformation is established by
the simple proof of the following theorem:

Theorem 4.1 (Transformation correctness) If
"

evalu-
ates to

9
then

� " � ? % evaluates to
� 9 � ? % . If

"
diverges then

so does
� " � ? % . If

"
goes wrong then

� " � ? % goes wrong.

4.2 Types for � � �
A sound polymorphic type system for � � �

is obtained in
a straightforward manner as an instantiation of �� � � �
[9, 17], a constraint-based polymorphic type framework.
Type judgements in ��� � � � are of the form B6� � � " + D ,
where B is a type constraint set, � is a typing environment,
and D is a polymorphic type scheme. The instantiation
consists of a type language including row types [13] and

a specialized language of set types, defined in Fig. 4. To
ensure that only meaningful types can be built, we immedi-
ately equip this type language with kinding rules, defined
in Fig. 5, and hereafter consider only well-kinded types.
Note in particular that these kinding rules disallow dupli-
cation of record field and set element labels.

Set types behave in a manner similar to row types, but
have a succinct form more appropriate for application to
sets. In fact, set types have a direct interpretation as a par-
ticular form of row types [19], which is omitted here for
brevity. The field constructors Y and denote whether
a set element is present or absent, respectively. The set
types � and � behave similarly to the uniform row con-
structor � � ; the type � (resp. �) specifies that all other
elements not explicitly mentioned in the set type are ab-
sent (resp. present). For example, the set

. � A � ���<0 has type. � A Y ����:Y � � 0 , while
. � A � ��� 0 has type

. � A ����� ��� 0 .
The use of element and set variables � and � allows for
fine-grained polymorphism over set types.

Syntactic type safety for � � �
is easily established in the

�� � � � framework [17]. By virtue of this property and
Theorem 4.1, a sound, indirect static analysis for � � � is
immediately obtained by composition of the � � � –to– � � �
transformation and � � �

type judgments:

Theorem 4.2 (Indirect type safety) If
"

is a closed � � �
expression and B6� � � � " � ? % + D is valid, then

"
does not

go wrong.

While this indirect type system is a sound static analy-
sis for � � � , it is desirable to define a direct static analysis
for � � � . The term transformation required for the indi-
rect analysis is an unwanted complication for compilation,
the indirect type system is not a clear declaration of pro-
gram properties for the programmer, and type error report-
ing would be extremely troublesome. Thus, we define a
direct type system for � � � , the development of which sig-
nificantly benefits from the transformational approach. In

122 CHRISTIAN SKALKA AND SCOTT F. SMITH

��+ + #%
 � � �>=:=>=�! . � 0 ! � � � �
�

! � +�� � � � � ! � + � � � ! ��� � !!(

Figure 6: Direct � � � type grammar

 � � �

 + � (+ Meth

� � Set
� � Ifc � � 2� � ��+

Set
�
���@ ���� ��+ Set

�
� A +

Set � ��2� � ��+
Ifc � ���? �� +K. ��A 0 � � � + Ifc �

��A +
Type

� � + Type � 2� � ��+
Meth

�
���@ �� +�� A � � ��� ��+ Meth

�
� AS+

Meth � � � + Ifc � � � + Set �
� ��A � � � 3 �� �

� �
+
Type

Figure 7: Direct � � � type kinding rules

particular, type safety for the direct system may be demon-
strated by a simple appeal to safety in the indirect system,
rather than ab initio.

The direct type language for � � � is defined in Fig. 6.
We again ensure the construction of only meaningful types
via kinding rules, defined in Fig. 7, hereafter considering
only well-kinded � � � types. The most novel feature of
the � � � type language is the form of object types � � � � � % �� � 3 � ,where

� � is the type of any weakening set imposed on the
object, and

� A
is the type of its interface. Types of sets

are essentially the sets themselves, modulo polymorphic
features; we abbreviate a type of the form

� � (or
� � (as

�
.

The close correlation between the direct and indirect
type system begins with the type language: types for � � �
have a straightforward interpretation as � � �

types, defined
in Fig. 8. This interpretation is extended to constraints and
typing environments in the obvious manner. In this inter-
pretation, we turn weakening sets “inside-out”, in keeping
with the manner in which weakening sets are turned inside-
out in the � � � -to- � � �

term transformation. The benefit
of this approach is with regard to subtyping: weakening
sets can be safely strengthened, and user interfaces safely
weakened, in a uniform manner via subtyping coercions.

The direct type judgement system for � � � , the rules for
which are derived from � � �

type judgements for trans-
formed terms, is defined in Fig. 9. Note that subtyping in
the direct type system is defined in terms of the type inter-
pretation, where B A � B � means that every solution of B A
is also a solution of B � . The following definition simplifies
the statement of the SEND rule:

Definition 4.1 B � � 2� ���
holds iff �HB�� 2�

� % =	��� � � � 3 ��������%	� 3 � holds, where %/2� fv �<B6� � � � .
The easily proven, tight correlation between the indirect
and direct � � � type systems is clearly demonstrated via
the following lemma:

Lemma 4.1 � �3B6� � � " + � is valid iff �*B
�J��� ��� � � " � ? +� � � is.

And in fact, along with Theorem 4.1, this correlation is
sufficient to establish direct type safety for � � � :

Theorem 4.3 (Direct type safety) If
"

is a closed � � � ex-
pression and � �3B6� � � " + � is valid, then

"
does not go

wrong.

This result demonstrates the advantages of the transfor-
mational method, which has allowed us to define a direct,
expressive static analysis for � � � with a minimum of proof
effort.

An important consequence of this result is the implica-
tion that certain optimizations may be effected in the � � �
operational semantics, as a result of the type analysis. In
particular, since the result shows that any well-typed pro-
gram will be operationally safe, or secure, the various run-
time security checks— i.e. those associated with the send,
cast, weaken, set and get rules— may be eliminated en-
tirely.

Type inference

The transformational method allows a similarly simpli-
fied approach to the development of type inference. The
�� � � � framework comes equipped with a type infer-
ence algorithm modulo a constraint normalization proce-
dure (constraint normalization is the same as constraint
satisfaction, e.g. unification is a normalization procedure
for equality constraints). Furthermore, efficient constraint
normalization procedures have been previously developed
for row types [10, 14], and even though set types are novel,
their interpretation as row types [19] allows a uniform im-
plementation. This yields a type inference algorithm for
� � �

in the ��� � � � framework. An indirect inference anal-
ysis for � � � may then be immediately obtained as the com-
position of the � � � -to- � � �

transformation and � � �
type

inference.
Furthermore, a direct type inference algorithm can be

derived from the indirect algorithm, just as direct type
judgements can be derived from indirect judgements. Only

STATIC USE-BASED OBJECT CONFINEMENT 123

� � � A � � � 3 �� �
� � � # .

obj
+K. � ��A �J0 � ifc

+K. � � � �J0 � strong
+K. � � � � @ 0 � � . � 0U0

��� + � A � � � � � � # � + � � A � � � � � � � � � �
� � +K. � A 0 � � � � # � + . � � A � 3 0 � �

� � �
�4(� # � . � 0

� � ����� ��� 3 ��� � �
@ # �

�<� � � � 3 # � Y ��� � � 3�4(� 3 # �
����� � � @ # � ��� � � @
�4(� @ # �

Figure 8: The � � � -to- � � �
type transformation

the syntactic cases need be adopted, since efficient con-
straint normalization procedures for row types may be re-
used in this context— recall that the direct � � � type lan-
guage has a simple interpretation in the � � �

type language.

5 Using � � �

By choosing different naming schemes, a variety of secu-
rity paradigms can be effectively and reliably expressed
in � � � . One such scheme enforces a strengthened mean-
ing of the private and protected modifiers in class
definitions, a focus of other communication-based capa-
bility type analyses [4, 21]. As demonstrated in [21], a
private field can leak by being returned by reference
from a public method. Here we show how this problem
can be addressed in a use-based model. Assume the fol-
lowing Java-like pseudocode package � , containing class
definitions � A , � � , and possibly others, where ��� specifies a
method � that leaks a private instance variable:

package � begin

class � A .
public

+
� ��� � # �

private
+

 ��� � # �
protected

+
� ��� � # �0

class � � .
public

+
����� � # �� # new � A

private
+

� # new � A
protected

+
� # new � A0

&>&>&

end

We can implement this definition as follows. Interpreting
domains as class names in � � � , let � denote the set of all
class names � A �>=:=>=:�� ? in package � , and let � "� � be
syntactic sugar for � A "� �

A �:=>=:=>�� ? "� �
?

. Then, the ap-
propriate interface for objects in the encoding of class � A

is as follows:

� A � . � "� .	� ����0V��� "� . � 0G0
(Recall that all objects automatically have full access to
themselves, so full access for � A need not be explicitly
stated). The class � A can then be encoded as an object
factory, an object with only one publicly available method
that returns new objects in the class, and some arbitrary
label � :

� A � � � ��� � # �Z� ��� � # �Z� � ��� � # � � &�� A & � A
� � ����� % � � 	 	�� ��� � # � A � &)� & . � "� . 	�	�� 0U0

To encode � � , we again begin with the obvious interface
definition for objects in the encoding of class ��� :

� � � . � "� . ���\� ���0U��� "� . ���\� 0G0
However, we must now encode instance variables, in ad-
dition to methods. In general, this is accomplished by en-
coding instance variables � containing objects as methods� �5� that return references to objects. Then, any selection
of � is encoded as � �5�J= get �1� , and any update with

9
is en-

coded � �1��= set � 9 � . By properly constraining the interfaces
on these references, a “Java-level” of modifier enforce-
ment can be achieved; but casting the interfaces of stored
objects extends the security, by making objects unusable
outside the intended domain. Let

" � � . � A �>=:=>=:�� ? 0U� �5� be
sugar for

" � �D� A � �5� � &:&>& � ��� ? � �5� . Using
� � ��� � % , we may

create a public version of an object equivalent to � A ,
without any additional constraints on its confinement, as
follows:

� � � � � ��� (
% = 	�	�� �1�
Letting � � # �* . � � 0 , we may create a version of an
object equivalent to � that is private with respect to the
encoding of class � � , using casts as follows:

� � � � � � ��� (% = 	�		� �1�\� � ��� � � � � � � � � � �

124 CHRISTIAN SKALKA AND SCOTT F. SMITH

Default
�
. � "� �'0 + ��� + �5�

Interface
� � +��

� � � � "� �
+ �D� + � � � �

Var
� ��� � #MD �*B � � �<D �

� ��B6� ��� � + D
Sub
� �3B6� � � " +�� �HB�� � � � � ��� � � �

� �3B6� � � " + � �
Let
� ��B6� ��� 9�+ D � ��B6�:� � ��� + D � � " +��

� ��B6� � � ��	 ��# 9 � 	 " +��
0 Intro
� �3B � � ��� " + � �
 �

fv �<B6� � � # �
� ��B � �
 = � � ��� " + 0 �
 � � �5= �

0 Elim
� �3B6� ��� " + 0 �
 � � �5= � � �HB�� � � � �� � �
 � � �

� �3B6� ��� " + � �� � �
 � � �
Ref

� ��B6� � � " + � � � + �
� �3B6� � � ref " + � set

+�� � � � get
+ � � � � � ���� + �

Obj

� � +�� � � # � � + . �.�
; � � � ? 0 �D� � �3B6� � ��� + � 0 ���

+ � �9� +�� � � � ��
; � � � ? � � � ;� �� + � �

"
0
+�� �0 �

; � 0 �
?

� �3B6� � � � �9����� � # " �
; � � � ? � &�� � & � + � �9� +�� � � � ��

; � � � ? � � ��� �� + �
Send
� �3B6� ��� " A + � � +�� � � � � �� � � �

� � A � ��? � �@ " � 3 � � � � �
� � � �

� �3B6� � � " � +�� � B � � 2� � �
� �3B6� ��� " A = �/� " ��� + � � �� � � �

Cast
� �3B6� ��� " + � � � �? ; � �4@ ����� ��� � �

� % � � � 3 �
� �

� # . �9�
; ����� ? 0

� �3B6� � � " � �D� � � �5� + � � � ��? ; � 	 � � 3 �
� �

Weak
� ��B6� ��� " + � � ��@ � ��� ��� � " � ; � � # . � �

; � � � ? 0
� ��B6� ��� 8 ��� � 	 � " � +�� ����4@ � ��� ��� � " � ; �

Figure 9: Direct type system for � � �

STATIC USE-BASED OBJECT CONFINEMENT 125

We may create a version of an object equivalent to � that
is protectedwith respect to the encoding of package � ,
as follows:

� (� � � � ��� (% = 	�		� �1�\� � ��� � � �
Let � � be defined as follows:

� � � ��	� ��� # ref �
����

� set " get � � �<� � 	��	� � � # ref � (% �� � set " get � � � � � 	��	� ��(�# ref � (% �� � set " get �#" � �� � set " get � � � (� 	
�>�/��� � # �G= ���5�J= get �1���� ��� � # ���K�
����� ��# � �:�
�<��� � # ��(� &)�#� & � �

Then
� � ��� � 3 is encoded, similarly to

� � ��� � % , as:
� � ��� � 3 � � 	�		� ��� � #�� ��� &�� & . � "� . 	 	�� 0U0

Given this encoding, if an object stored in � is leaked by
a non-local use of � , it is unuseable. This is the case be-
cause, even though a non-local use of � will return � , in
the encoding this return value explicitly states it cannot be
used outside the confines of � � ; as a result of the definition
of � A and casting, the avatar � � of � in the encoding has an
interface equivalent to:

. �#�,"� . � ��� 0U��� � "� � ��� "� � 0
While the communication-based approach accom-

plishes a similar strengthening of modifier security, the
benefits of greater flexibility may be enjoyed via the use-
based approach. For example, a protected reference
can be safely passed outside of a package and then back
in, as long as a use of it is not attempted outside the pack-
age. Also for example are the fine-grained interface spec-
ifications allowed by this approach, enabling greater mod-
ifier expressivity— e.g. publicly read-only but privately
read/write instance variables.

6 Conclusion

As shown in [1], object confinement is an essential as-
pect of securing OO programming languages. Related
work on this topic includes the confinement types of [21],
which have been implemented as an extension to Java [3].
The mechanism is simple: classes marked confined must
not have references escape their defining package. Most
closely related are the ownership types of [4]. In fact, this
system can be embedded in ours, albeit with a different
basis for enforcement: as discussed in Sect. 2, these previ-
ous type approaches treat a communication-based mecha-
nism, whereas ours is use-based. One of the main points of
our paper is the importance of studying the use-based ap-
proach as an alternative to the communication-based ap-
proach. Furthermore, our type system is polymorphic,

with inference methods readily available due to its basis
in row types.

Topics for future work include an extension of the lan-
guage to capture inheritance, an important OO feature that
presents challenges for type analysis. Also, we hope to
study capability revocation.

In summary, contributions of this work include a fo-
cus on the more expressive use-based security model, the
first type-based characterization of weak capabilities, and
a general mechanism for fine-grained, use-based security
specifications that includes flexible domain naming, pre-
cise object interface definitions, and domain-specific inter-
face casting. Furthermore, we have defined a static analy-
sis that enforces the security model, with features includ-
ing flexibility due to polymorphism and subtyping, declar-
ative benefits due to readability, and ease of proof due to
the use of transformational techniques.

Bibliography

[1] Anindya Banerjee and David Naumann. Representa-
tion independence, confinement and access control.
In Conference Record of POPL02: The 29TH ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 166–177, Portland, OR,
January 2002.

[2] Borris Bokowski and Jan Vitek. Confined types. In
Proceedings of the 14th Annual ACM SIGPLAN Con-
ference on ObjectOriented Programming Systems,
Languages, and Applications (OOPSLA), November
1999.

[3] Ciaran Bryce and Jan Vitek. The JavaSeal mobile
agent kernel. In First International Symposium on
Agent Systems and Applications (ASA’99)/Third In-
ternational Symposium on Mobile Agents (MA’99),
Palm Springs, CA, USA, 1999.

[4] David Clarke, James Noble, and John Potter. Sim-
ple ownership types for object containment. In
ECOOP’01 — Object-Oriented Programming, 15th
European Conference, Lecture Notes in Computer
Science, Berlin, Heidelberg, New York, 2001.
Springer.

[5] Mark Miller et. al. The E programming language.
URL: http://www.erights.org.

[6] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu,
and T. von Eicken. Implementing multiple protection
domains in Java. In 1998 USENIX Annual Technical
Conference, pages 259–270, New Orleans, LA, 1998.

[7] C. Hawblitzel and T. von Eicken. Type system sup-
port for dynamic revocation, 1999. In ACM SIG-
PLAN Workshop on Compiler Support for System
Software, May 1999.

126 CHRISTIAN SKALKA AND SCOTT F. SMITH

[8] Richard Y. Kain and Carl E. Landwehr. On ac-
cess checking in capability-based systems. IEEE
Transactions on Software Engineering, 13(2):202–
207, February 1987.

[9] Martin Odersky, Martin Sulzmann, and Martin Wehr.
Type inference with constrained types. Theory and
Practice of Object Systems, 5(1):35–55, 1999.

[10] François Pottier. A versatile constraint-based type
inference system. Nordic Journal of Computing,
7(4):312–347, November 2000.

[11] François Pottier and Sylvain Conchon. Information
flow inference for free. In Proceedings of the the
Fifth ACM SIGPLAN International Conference on
Functional Programming (ICFP’00), pages 46–57,
September 2000.

[12] François Pottier, Christian Skalka, and Scott Smith.
A systematic approach to static access control. In
David Sands, editor, Proceedings of the 10th Euro-
pean Symposium on Programming (ESOP’01), vol-
ume 2028 of Lecture Notes in Computer Science,
pages 30–45. Springer Verlag, April 2001.

[13] Didier Rémy. Projective ML. In 1992 ACM Con-
ference on Lisp and Functional Programming, pages
66–75, New-York, 1992. ACM Press.

[14] Didier Rémy. Syntactic theories and the algebra of
record terms. Research Report 1869, INRIA, 1993.

[15] Didier Rémy. Typing record concatenation for free.
In Carl A. Gunter and John C. Mitchell, editors, The-
oretical Aspects Of Object-Oriented Programming.
Types, Semantics and Language Design. MIT Press,
1993.

[16] Jonathan Shapiro and Samuel Weber. Verifying the
EROS confinement mechanism. In 21st IEEE Com-
puter Society Symposium on Research in Security
and Privacy, 2000.

[17] Christian Skalka. Syntactic type soundness for
HM � � � . Technical report, The Johns Hopkins Uni-
versity, 2001.

[18] Christian Skalka. Types for Programming Language-
Based Security. PhD thesis, The Johns Hopkins Uni-
versity, 2002.

[19] Christian Skalka and Scott Smith. Set types and ap-
plications. In Workshop on Types in Programming
(TIP02), 2002. To appear.

[20] L. van Doorn, M. Abadi, M. Burrows, and E. Wob-
ber. Secure network objects. In IEEE Symposium on
Security and Privacy, May 1996.

[21] Jan Vitek and Boris Bokowski. Confined types
in java. Software—Practice and Experience,
31(6):507–532, May 2001.

Session VI

Panel

(joint with VERIFY)

127

The Future of Protocol Verification

Moderators

Serge Autexier
DFKI GmbH
Saarbrüken — Germany
autexier@dfki.de

Iliano Cervesato
ITT Industries, Inc.
Alexandria, VA — USA
iliano@itd.nrl.navy.mil

Heiko Mantel
DFKI GmbH
Saarbrüken — Germany
mantel@dfki.de

Panelists

Ernie Cohen
Microsoft Research, Cambridge – UK

Alan Jeffrey
DePaul University, Chicago, IL — USA

Fabio Martinelli
CNR — Italy

Fabio Massacci
University of Trento — Italy

Catherine Meadows
Naval Research Laboratory, Washington, DC — USA

David Basin
Albert-Ludwigs-Universität, Freiburg — Germany

Abstract

This panel is aimed at assessing the state of the art and exploring trends and emerging issues in computer security in
general and protocol verification in particular. It brings together experts from both the security community and the
verification area. Some of questions over which they will be invited to discuss their views, and maybe even to answer,
include:

� What is already solved?

� What still needs improvement?

� What are the challenging open problems?

� What is the role of automated theorem proving in protocol verification?

� What else is there in computer security besides protocol verification?

A format for this panel has been chosen as to achieve an interesting, vibrant, and productive discussion.

129

Author Index

A
Appel, Andrew W. 37
Armando, Alessandro . 59

B
Bauer, Lujo . 95
Bundy, Alan . 49

C
Cohen, Ernie . 85
Compagna, Luca . 59
Conchon, Sylvain . 23

D
Denney, Ewen . 49

K
Küsters, Ralf . 3

L
Ligatti, Jarred. .95
Liu, Yu David . 105
Lye, Kong-Wei . 13

M
Meadows, Catherine . 75
Michael, Neophytos . 37

S
Skalka, Christian . 118
Smith, Scott F. 105, 118
Steel, Graham . 49
Stump, Aaron . 37

V
Virga, Roberto . 37

W
Walker, David . 95
Wing, Jeannette M. .13

130

