
Canonical Forms and Algorithms for Steiner
Trees in Uniform Orientation Metrics

�

M. Brazil
�

D.A. Thomas
�

J.F. Weng
�

M. Zachariasen
�

December 13, 2002

Abstract

We present some fundamental structural properties for minimum length
networks (known as Steiner minimum trees) interconnecting a given set of
points in an environment in which edge segments are restricted to � uni-
formly oriented directions. We show that the edge segments of any full
component of such a tree contain a total of at most 4 directions if � is not a
multiple of � , or 6 directions if � is a multiple of � . This result allows us to
develop useful canonical forms for these full components.

The structural properties of these Steiner minimum trees are then used to
resolve an important open problem in the area: does there exist a polynomial-
time algorithm for constructing a Steiner minimum tree, if the topology of
the tree is known? We obtain a simple linear time algorithm for construct-
ing a Steiner minimum tree for any given set of points and a given Steiner
topology.

�
Partially supported by grants from the Australia Research Council and from the Danish Nat-

ural Science Research Council.�
ARC Special Research Centre for Ultra-Broadband Information Networks, Department of

Electrical and Electronic Engineering, The University of Melbourne, Victoria 3010, Australia�
Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Den-

mark

1



1 Introduction

Interconnects in VLSI design have traditionally used Manhattan (or rectilinear)
routing, in which two perpendicular wiring directions are allowed. Due to techno-
logical advances, there is now an increasing interest in the use of diagonal inter-
connects (see, e.g., www.Xinitiative.org). Both traditional Manhattan rout-
ing and the addition of diagonal routing are examples of so-called � -geometry, in
which a fixed set of ����� uniformly oriented directions are allowed.

In VLSI routing, one of the principal objectives is to minimize the total length
of an interconnection, that is, to compute a � -geometry Steiner minimum tree (or
� -SMT). This is in general an NP-hard problem. However, the problem becomes
significantly simpler if the topology of the tree is known. For the Euclidean case
( ����� ), the well-known Hwang-Melzak algorithm [5] solves this problem in
linear time. For the rectilinear case ( ���	� ), a theorem of Hwang [4] again solves
this problem in linear time, by showing that there exists a Steiner minimum tree
in which the full components take on restricted canonical forms.

In [2] an open question was asked as to whether, for each fixed �
��� , there
exists a polynomial-time algorithm for finding a � -SMT for any given set of �
terminals and given full Steiner topology (in which all terminals have degree 1
and all Steiner points degree 3). Such an algorithm would immediately generalise
to any � -SMT, by decomposing it into its full components. The existence of such
an algorithm was recently proved by Xue and Thulasiraman in [11], by showing
that the problem can be transformed to a linear programming problem whose size
is bounded by a polynomial in � and � . It should be noted, however, that the
complexity of this algorithm will generally have very high degree, and, indeed,
although the algorithm is polynomial in the total input size, it has not been shown
to be polynomial in � and � . In another recent result Nielsen et al. [7] obtained a
linear time algorithm for constructing a � -SMT for a given full Steiner topology
when � is a multiple of  . However, they also showed that their methods cannot
be extended to other values of � .

In this paper we fully answer the above question by presenting a linear time al-
gorithm for constructing a � -SMT for any given set of terminals and given Steiner
topology. In developing this algorithm, we also establish canonical forms for the
full components of � -SMTs which give a useful insight into the geometry of these
trees, and have already resulted in a substantial speed-up in an exact algorithm for
constructing � -SMTs [8].

The organisation of this paper is as follows. In Section 2, we fix our nota-
tion, give definitions and state some known results which will be used later. In

2



Section 3, we investigate properties of edge directions, showing that the edge seg-
ments of any full component of a � -SMT contain a total of at most 4 directions
if � is not a multiple of  , or 6 directions if � is a multiple of  . In Section 4,
we define a � -shift, a mechanism which allows us to change the directions of two
edges in a full � -SMT while leaving the directions of all other edges fixed. Using
this concept, we then establish our canonical forms and a simple quadratic time
algorithm for constructing a � -SMT for a given full Steiner topology, in Section 5.
Then, in Section 6, we show that by careful refinement of the algorithm we can
reduce the running time to linear time.

2 Background and Preliminaries

Let � � � be a given positive integer. Given � orientations ������� ���
	 ��	������	 ��� in
the Euclidean plane, where �	����� � is a unit angle, we represent these orienta-
tions by the angles with the � -axis of corresponding straight lines. A line or line
segment with one of these orientations is said to be in a legal direction. Objects
composed of line segments in legal directions are said to belong to a � -geometry.

A Minkowski plane (or normed plane) is a two-dimensional real normed space
������	���� �!� with unit ball "$#&%'�(#'�*)+�
, . (For more background on Minkowski
planes, see [9].) The � -geometry is an example of a Minkowski plane where the
unit ball is a regular � � -gon. Hence, the distance function in � -geometry is a
norm.

In this paper we study properties of minimum length networks in � -geometry
interconnecting a given set of points, also referred to as terminals. We only con-
sider the problem for -.) �0/ � as strong results for the cases where � ��� , 
or � are already known [1, 4, 5, 6].

Since any minimum length network clearly is a tree, we will only discuss
networks in � -geometry that are trees. We define a � -tree to be a tree network in
� -geometry interconnecting a given set of terminals. A � -tree can contain nodes
of degree  or more that are not terminals. These nodes are referred to as Steiner
points. A � -tree is said to be full if all terminals have degree � . Clearly any � -tree
can be decomposed into a union of full subtrees meeting only at terminals. This
decomposition allows us to limit our attention to full � -trees in this paper.

We next define a Steiner � -tree to be a � -tree that cannot be shortened by
the perturbation of a single Steiner point. For the purposes of this paper we will
assume that all Steiner points in a full Steiner � -tree have degree  . Degree -
Steiner points can occur in some � -SMTs, but in such cases there always exists a

3



� -SMT where every degree - Steiner point is adjacent to four terminals. (Degree
- Steiner points only occur in the cases where ��� - or

�
. The proof of the above

statement for � � - is given in [1]; the proof for � � � is similar.)
Edges in a Steiner � -tree are assumed to be geodesics (in � -geometry) between

their endpoints. We refer to such an edge as a straight edge if it is a single straight
line segment (in a legal direction), or else as a bent edge if it consists of two or
more straight line components. It has been shown in [10] that bent edges are
composed of line segments in exactly two legal directions differing by an angle of
� . Furthermore, although there are infinitely many ways of embedding a bent edge��� in the Euclidean plane, there are only two embeddings composed of exactly two
straight line segments, as shown in Figure 1(a). Each of these contains two edges
of the parallelogram �������	� � where the interior angles at �
� and � � are ��� � . The
straight line components in such an embedding are referred to as half-edges and
the points ��� and � � as corner points.



�
���

���
����� 

�
���

���
���	�

Figure 1: Embeddings of a bent edge in the Euclidean plane.

A bent edge can also be embedded so that the two line segments incident with
the endpoints are parallel, as shown in Figure 1(b). This embedding will prove
useful later in this paper.

An important property of a Steiner � -tree is that there are strong restrictions on
the possible angles at Steiner points, as indicated in the following result from [2].

Proposition 2.1 For a given � , let � be a Steiner � -tree. Then, the only possible
angles at any Steiner point of � are:

(1) � ����� � � � , � ��� � ��� � � ��� �� or � �	� � � � � if ��� �� ;
(2) � ��� � � or � �	� � � � � if ��� 	�!� � ; and
(3) � ���"� � � � or � �	� � �
� � if ������!� � .

Note that the angles in Proposition 2.1 are precisely those that differ by no
more than � from � � �  .

4



A Steiner � -tree � is said to be locally minimal if there is no perturbation of
its Steiner points which reduces the length of � . Unlike the Euclidean case, this
is a strictly stronger condition than simply saying that � is a Steiner � -tree, as it
includes the simultaneous perturbation of a number of Steiner points at once (see
[2] for examples proving that this is a stronger condition). We will usually refer
to a locally minimal Steiner � -tree with a given topology � as a � -SMT for � .
However, if we refer to a � -tree � as a � -SMT without reference to its topology
then we mean that � is a globally minimum Steiner � -tree for its terminal set.

Let � be a path between two nodes in a full Steiner � -tree � . It is useful to
define the angle sequence of � , denoted � ��� � , to be the sequence of angles en-
countered on the right at Steiner points while traversing � . For example, suppose
� � � �� ��� � � � ��� ���

� , where � � , � � , ��� are Steiner points. Let � �
� be the edge

incident to � � not lying on � . Then if � �
� is on the left of � , � � contributes a

single angle, �	� � � � �
� , to � ��� � . If � �
� is on the right of � , � � contributes the two

angles ��� � � �
� and � � � � �
� to � ��� � . If � contains bent edges, then for each bent

edge we can choose any fixed embedding which minimises the length between
endpoints when computing � ��� � . However, if a bent edge is an interior edge of
� it is convenient to choose an embedding of the type shown in Figure 1(b); this
will be our convention throughout this paper.

We will make extensive use of the following theorem.

Theorem 2.2 [3] For a given � , let � be a full � -Steiner tree. Then � is locally
minimal if and only if for every subpath � of � the following condition is satisfied:



�

�����������
��� � � � �


) � � (1)

Theorem 2.2 has important implications for the possible structures of a � -
SMT. It should be noted that the theorem is a generalisation of the conditions on
angles at a Steiner point. In particular, if we restrict ourselves to subpaths which
contain no internal edges, we immediately obtain Proposition 2.1 as a corollary.

3 Edge Directions

In this section we look at some corollaries of Theorem 2.2, and in particular some
important basic structural properties of a full � -SMT that are implied by the theo-
rem.

5



3.1 Colouring and Orienting Edges

Let � be a full � -SMT. We begin by describing a method of colouring and orient-
ing the edges of � .

For the colouring of edges, we define an equivalence relation on the edges
of � . Two edges are said to be equivalent if the angle sequence of the path �
connecting them in � has cardinality �� for some natural number � . Clearly this
relation is transitive and reflexive. To see that it is symmetric, note that if � has �
internal vertices then card � � ��� � � � card � � � �	� � � �	�� , hence card ��� � �	� � � �
 ��� ���� . Thus, the equivalence relation is well defined. If � contains at least one
Steiner point, then there are exactly three equivalence classes of edges. We will
colour each edge of � red, green or blue depending on which equivalence class it
belongs to.

An orientation of the edges of � can be defined as follows. Let � be a fixed
vertex of � . Assign a parity (either “odd” or “even”) to every vertex of � based
on whether the path in � from � to that vertex contains an odd or even number of
edges. Since � is a tree, this assignment of parity is well defined, and each edge
of � is incident with one odd vertex and one even vertex of � . We can now think
of each edge of � as being a directed edge pointing in the direction of the incident
odd vertex, as illustrated in Figure 2.

A half-edge is assumed to inherit the colour and orientation of the edge to
which it belongs.

Figure 2: A coloured and oriented Steiner tree. The different types of dashed
edges represent the three different colours, and the arrows indicate the orientation
of each edge.

6



3.2 Feasible Edge Directions

We now show that there are strong restrictions on the possible directions of edges
in a full � -SMT.

Lemma 3.1 Given any two edges or half-edges in a full � -SMT � , coloured and
oriented as above, the smaller angle � between them is either � or � if they are
the same colour, or else satisfies � � � � ��� �� ) � .

Proof. This is a straightforward corollary of Theorem 2.2. Let � be the path
between the two edges (including the edges themselves). We first observe that
the change in direction between the first and last edge of � equals the sum of the
angles in � ��� � . This observation is obvious if � contains no internal edges, and
is easily proved by induction (on the number of edges in � ) for longer paths. By
the definition of � ��� � , this observation is still true if some internal edges of � are
bent edges.

Now, if the two edges are in the same equivalence class, then card ��� ��� � �
is a multiple of  , and hence � ����������� ��� � and � ����������� ��� � � � � �� differ by a
multiple of � � . Thus the result follows by Theorem 2.2. Similarly, if the edges
are in different equivalence classes � � � � ��� �� ) � .

We will refer to the possible directions for oriented straight edges and half
edges in a full � -SMT � as feasible directions.

Now suppose, in a given full � -SMT � , edges or half-edges of some colour,
say red, occur in two different directions. Without loss of generality (by rotating
if necessary) we can assume the directions of the red edges are � and � .

If ���� �� it immediately follows from Lemma 3.1 that the direction of each
blue and green edge is fixed. If � � �� then there are exactly two possible
directions for each green and blue edge. These observations are summarised in
the following corollary.

Corollary 3.2 Let � be a full � -SMT. If ���� �� then edges in � use at most 4
different directions. If ��� �� then edges in � use at most 6 different directions.

Furthermore, up to rotation by multiples of � , the set of feasible directions in
� is as listed in the table in Figure 3.

A set of feasible directions for a given � will be referred to as a direction set.
The direction sets for ��� � , � and 	 are illustrated in Figure 4.

It will be useful to introduce two categories for edges in feasible directions,
namely, primary and secondary.

7



� feasible directions

	� � 	 � 	 �	� � 	 � ���"� � � � 	 -
� � 	���-
�"� � � �
�� � � � 	 � 	 � ���"� � � � 	 ��-
�!� � � �
�� � � � 	 � 	 � ���"� � � � 	 ��-
�!� �� �

Figure 3: Feasible directions (up to rotation by a multiple of � ) for edges in a full
� -SMT.

������� ���������
	 ����������

Figure 4: Feasible directions for edges in a full � -SMT, illustrated for � �	� .

Let � be a straight edge or half-edge in a full � -SMT � , oriented in direction� � . Then � is said to be primary if � � � � � � is not a feasible direction for � .
Similarly, � is said to be secondary if � � � � � � is not a feasible direction for � .
If � �� �� then it is possible for an edge to be both primary and secondary. We
say that � is exclusively primary (or exclusively secondary) if it is primary, but not
secondary (or, respectively, secondary, but not primary). For example, for the sets
of feasible directions in the table above, if � �	�� then an edge with direction � ,
�	� � or -
� � is exclusively primary, whereas an edge with one of the remaining
three directions is exclusively secondary. On the other hand, if � � 	� � � then
a primary edge can have direction � , � �	� � � � � or ��-
�"� � � � , but only an edge
of direction � is exclusively primary. Note that every component of a bent edge
must be either exclusively primary or exclusively secondary.

8



3.3 Convexity

Let � � � be the total edge length of a � -tree � whose topology corresponds (pos-
sibly in a degenerate way) to a fixed full Steiner topology. Since the distance
function in � -geometry is a norm, it follows that � � � , treated as a function of the
positions of the Steiner points of � , is a convex function. Note, however, that this
convexity is not strict (since the boundary of the unit ball contains non-trivial line
segments [9]).

The above convexity property immediately implies the following theorem.

Theorem 3.3 For a given set of terminals, a locally minimal Steiner � -tree � is
minimum with respect to its Steiner topology. In particular, if � has the same
topology as a � -SMT, then � is itself a � -SMT.

Theorem 3.3 cannot reduce the maximum running time of the algorithms in
this paper (in Sections 5 and 6) but it can help reduce the average running time,
since it means that an algorithm for constructing � can stop as soon as it constructs
a locally minimal Steiner tree with the correct topology.

We also briefly note the following result, which says that for a given full
Steiner topology the choice of feasible directions for a � -SMT is unique. The
result is straightforward to prove; so we simply give a sketch of the proof below.

Theorem 3.4 If � �� � , then the edges of all full � -SMTs for a given set of termi-
nals and given full Steiner topology use a unique set of feasible directions.

Proof. (Sketch) Here we give an outline of the proof for the case where � is not
a multiple of  . If � is a multiple of  then a similar argument applies, except for
� � � , where two sets of feasible directions are possible in some cases.

Let � and ��� be full � -SMTs for a given set of terminals and a given full
Steiner topology � . Assume, contrary to the statement of the theorem, that � and
��� have different sets of feasible directions. Let " ��� , be the Steiner points of �
and " ���� , the corresponding Steiner points of ��� . Now suppose, over a given time
interval, we move each Steiner point ��� at constant velocity from ��� to � �� along
the line segment between the two points. This gives us a continuum of � -trees
between � and � � , each of which must be a � -SMT for � , by the convexity of the
length function. There exists a tree � � in this continuum representing a point at
which the set of feasible directions changes. It follows that � � either uses at least
	

directions, contradicting Corollary 3.2, or exactly  directions. But in the latter
case, all perturbations of Steiner points in � � are strictly length-increasing, by [3],
again giving a contradiction.

9



4 Length Preserving Shifts

We begin this section by defining the key concept of a ‘shift’ in � -geometry. The
idea of a shift was first introduced in [2].

We define a shift of a straight edge ��� to be a move of � to a new point � � �� �
and a simultaneous move of � to a new point � � �� � such that � � � � � ��� . Similarly,
a shift of a bent edge ��� is defined to be a move of � to � � and a simultaneous move
of � to � � such that � � � � is either a bent edge with half-edges in the same directions
as those in � � or a straight edge whose direction is the same as that of one of the
half-edges of ��� . The concept of a shift can be generalised to a path � in a full
Steiner � -tree � as follows. A shift of � � � � � � � � ��

� is a perturbation of � that
moves the internal Steiner points ��� of � to ���� (and fixes all other nodes of � ) such
that the following conditions are satisfied (see also Figure 5):

(1) each internal Steiner point ��� of � moves along the line through ��� contain-
ing the straight edge or half-edge of � incident to ��� not lying on � ; and

(2) the shift of � induces a shift on each internal edge of � .
It is important to note that the effect of a shift is that it does not change the

direction of any straight edge of � except possibly the first and last edges of � .
An example of a shift is given in Figure 5.



��� � �

��� ���

�
��� � � ��

� �� � ��

Figure 5: A shift of a path � in � .

Given a subpath of a full locally minimal Steiner � -tree � , we define a shift
on that subpath to be a � -shift if the shift does not increase the length of � .

Theorem 4.1 Given an exclusively primary edge or half-edge � � and an exclu-
sively secondary edge or half-edge � � in a full � -SMT, there exists a � -shift on the
path between � � and � � .

10



���
� �

���

� �

Figure 6: The base case for the inductive proof of Theorem 4.1. For a given set
of feasible directions there are two possibilities for � , as shown. In each case it is
clear, by inspection, that the indicated shift is a � -shift.

Proof. The proof is by induction on the number of internal edges of the subpath
� between � � and � � . If � contains at most one internal edge then the theorem
can be confirmed either by direct computation or using the results of [3]. This is
illustrated for ��� - in Figure 6.

Now suppose � contains at least two internal edges. This means that � con-
tains a Steiner point � which is not incident with either � � or � � . Some edge or
half edge � incident with � is either exclusively primary or exclusively secondary
(by Corollary 3.2). Suppose � is exclusively secondary. Then, by the inductive
assumption, there exists a � -shift on the path between � � and � . Applying a small
� -shift effectively transfers an arbitrarily small exclusively primary component to
� (see Figure 5). More specifically, it reduces the length of the exclusively primary
edge or half-edge � � , and adds an exclusively primary component to � . Again ap-
plying the inductive assumption, there exists a � -shift on the path between the
primary component of � and the edge � � . Because the primary component of �
can be assumed to be arbitrarily small, it follows that this second shift can transfer
the entire primary component of � to � � . Hence, together these two shifts give a
� -shift on the path between � � and � � .

The following two corollaries follow immediately from Theorem 4.1.

Corollary 4.2 Given any two edges in a full � -SMT with angle � between them,
there exists a � -shift on the path between the two edges.

A stronger corollary holds if ���	�� .

11



Corollary 4.3 Let � � �� , � � � . Given any two edges in a full � -SMT such
that the angle between them is not a multiple of � ���  , there exists a � -shift on the
path between the two edges.

We can use the concept of a � -shift to resolve the question of precisely when
degree - Steiner points can occur if �	� - or

�
. Some properties of degree -

Steiner points were established in [1] and [2], but the following theorem is a
stronger result. Note that a full � -SMT is said to be fulsome if every � -SMT
on the same set of terminals is full. Also, a full Steiner tree is said to be a cross if
it contains no bent edges and exactly one Steiner point, and that Steiner point has
degree - and all incident angles equal to ����- .

Theorem 4.4 Let ��� - or
�
. Suppose � is a a full and fulsome � -SMT containing

a Steiner point of degree - . Then � is a cross.

Proof. Consider first the case where � � - . Let � be the Steiner point of degree
- , and, in clockwise order, let � � , � � , � � , ��� be the four vertices adjacent to � . Sup-
pose, contrary to the statement of the theorem, that at least one of these vertices,
say � � , is a Steiner point. We observe some basic properties of � (the first two of
which are from [2]):

� Each edge ��� � is a straight edge.

� If ��� is a Steiner point, then the angle between � ��� and each of the other
edges incident with � � is �� ��- .

� Vertices � � and ��� must be terminals. This follows from the fact that the
shift in Figure 7(a) reduces the length of � .

� Let � � ( � � � 	�� �!	 - ) be the subtrees resulting from decomposing � into
four subtrees meeting at � , where each � � is the subtree containing � � . Then,
for each � , the edges in � � use at most three directions. To see why this is
the case, note that if any � � contained four directions, then, by Theorem 4.1,
there would exist a � -shift between two edges in � � . This � -shift could create
a bent edge, contradicting Lemma 4.6 of [1].

Let ��� and ��� be the two vertices other than � adjacent to � � . To obtain a contra-
diction to � � being a Steiner point, consider the shift shown in Figure 7(b), which
moves � � to � �� and splits � into two degree  points � � � and � � � . It is clear, by

12



�

� �

� � �

� �

� �

� �

� �

��� ���

�

� ��

� ��
� � �

���	�

Figure 7: Proof of Theorem 4.4. The shift in (a) reduces the length of the tree,
while the shift in (b) is a � -shift.

inspection, that this is a � -shift. We can continue to perform this shift without
changing the length of � until one (or more) of the following occurs:

(1) � � � coincides with ��� ;
(2) � � � coincides with � � ;
(3) � � � coincides with � � ;
(4) � � � ��� or ��� � � � is a straight edge.
If (1) occurs we have a contradiction to � being fulsome. Similarly, if (2)

occurs and � � is a terminal, or (3) occurs and � � is a terminal, � cannot be fulsome.
If (3) occurs and ��� is a Steiner point, then, since � � contains only three edge
directions, one of the angles at � � is now ��� - , contradicting minimality. If (4)
occurs, then by sliding � �� ��� � across to the right we obtain, by symmetry, the same
contradiction as for cases (1) or (3). Finally, if (2) occurs and � � is a Steiner point
then (assuming (4) does not occur) � now contains a degree - Steiner point and
a bent edge, again contradicting Lemma 4.6 of [1]. This completes the proof for
� � - .

If � � � a similar argument applies. Crucially, we can once again decompose
� into four subtrees meeting at � such that each subtree uses at most three direc-
tions (either the three primary directions or the three secondary directions). By
applying the � -shift in Figure 8, we can again obtain a contradiction to � being
either fulsome or minimal.

13



� �

� �

� �

� �

� � � �

�

Figure 8: Proof of Theorem 4.4. A � -shift at a degree - Steiner point for � � � .

5 Canonical Forms and Quadratic Time Algorithm

Our aim in this section is to show how to use Theorem 4.1 to develop a simple
quadratic time algorithm for finding a � -SMT for a given set of terminals and a
given full Steiner topology. The result is based on defining suitable classes of
canonical forms for full components. We will further discuss some of the types of
canonical forms that are possible later in this section.

5.1 Construction of Locally Minimal Steiner
�

-trees

The following lemma establishes conditions under which we can uniquely con-
struct a Steiner point adjacent to two given points in constant time. The operation
of constructing such a Steiner point and effectively replacing the two given points
by this Steiner point, will be referred to, throughout the remainder of this paper,
as the merging operation.

Lemma 5.1 Let � be a full � -SMT with topology � , and let � be a Steiner point
in � . Assume that the locations in � of two of the neighbours of � , � and � , are
known; furthermore, assume that each edge ��� 	 � � and � � 	 � � is straight and has
been labeled primary or secondary. Finally, assume that we know the direction
set of edges. If Steiner point � exists in � , then its location is unique; also, the
colours of the edges ��� 	 � � and � � 	 � � — and hence also the colour of the third
edge incident with � — are unique. The existence and the location of � can be
determined in constant time.

Proof. For the given direction set, we first make the following observations,

14



�

�

� �

�

� � �

�

�

� �

�

���	�

Figure 9: Proof of Lemma 5.1.

which follow immediately from Corollary 3.2, and our assumption that � �  :
� The smaller angle between any two directed straight edges of different

colours is at least ��� � , and equality can only occur if one of the edges is
exclusively primary and the other exclusively secondary;

� Furthermore, the smaller angle between any two directed straight edges is
strictly less than � .

Now suppose, contrary to the statement of the lemma, that it is possible to
construct two distinct Steiner points � and ��� adjacent to both � and � . We consider
a couple of different cases. First, assume that the interiors of the edges ��� 	 � � ,
� ��	 � � , ��� 	 ��� � and � � 	 ��� � are all disjoint. Since ��� 	 � � and � � 	 ��� � are either both
primary or both secondary it follows from the previous observation that the sum
of interior angles in the quadrilateral � � � � � is strictly greater than � � , which gives
a contradiction. Similarly, if the interiors of two of the edges, say ��� 	 � � and � � 	 � � � ,
intersect at a single point (as in Figure 9(a)), then the sum of the angles at � , � � , �
and � is again greater than � � , but must be less than the sum of interior angles in
the quadrilateral � � ��� � , giving another contradiction.

The only remaining possibility is that � and ��� are both collinear with exactly
one of the points � and � , say � (as in Figure 9(b)). Since � � 	 � � and � � 	 � � � are
either both primary or both secondary, it follows that the two edges have different
colours, while the edge ��� 	 � � � must have the third colour. Hence the sum of the
angles between � � 	 � � and � � 	 ��� � and between � ��� 	 � � and ����� 	 ��� must be strictly
greater than � , giving a contradiction.

We conclude that at most one Steiner point can be constructed.
Finally, note that this construction can be done in constant time, since the

direction set is known.

15



Lemma 5.2 Let a set of � terminals � and a full Steiner topology � for that set
of terminals be given. Suppose, that we are given a direction set, and that each
edge in � has been labelled primary or secondary, apart from one possibly bent
edge, known as the transition edge. Then, in � � � � time, we can either construct
a full � -SMT for � with the given labelling, direction set and topology, or show
that no such tree exists.

Proof. We root � at the transition edge and iteratively apply the merging op-
eration to leaf nodes sharing a parent until the locations of the endpoints of the
transition edge have been constructed. Since the primary/secondary labelling of
every edge except the transition edge is known, every merging operation has a
unique solution and can be performed in constant time by Lemma 5.1.

The next theorem is the main result for this section. Recall that a full � -SMT
is said to be fulsome if every � -SMT on the same set of terminals is full.

Theorem 5.3 Let a set of � terminals � and a full Steiner topology � for that set
of terminals be given. Suppose there exists a full and fulsome � -SMT for � with
topology � . Then such a tree can be found in � � � � � � time.

Proof. We give a constructive proof. The complexity will follow easily from the
construction.

Let � be a full � -SMT for � with topology � . Since � is full, � contains
� � �  edges. Assign the natural numbers � to � � �  to the edges of � . This
assignment can be done in any manner, based on the graph-structure of � , and
will determine the pattern of canonical forms for full components. We can use the
edge numbers of � to also number the corresponding edges of � , or any � -SMT
for � with topology � .

We next show that we can iteratively apply Theorem 4.1 to transform � to
another full � -SMT for � with the same topology, which we call � � , and which
has the property that every edge of ��� can be correctly labelled primary and sec-
ondary (using the above definition) so that no primary edge has a higher number
than any secondary edge. Suppose, on the contrary, there is an exclusively sec-
ondary edge or half-edge � � whose label is strictly less than that of an exclusively
primary edge or half-edge � � . Then, by Theorem 4.1, there exists a � -shift on
the path between these two edges. We can continue to perform this shift without
changing the length of � until one of the following occurs:

(1) Two Steiner points coincide;
(2) A Steiner point coincides with a terminal;

16



(3) � � has no exclusively secondary component; or
(4) � � has no exclusively primary component.
Now note that if (1) occurs, we necessarily have a contradiction to the mini-

mality of � , unless � � - or
�

in which case, by Theorem 4.4, we have a contra-
diction to � being either fulsome or minimal (or � is a cross). If (2) occurs we
have a contradiction to the fact that � is fulsome. So eventually either (3) or (4)
must occur, which reduces the number of primary/secondary edge pairs where the
primary edge has a higher number than the secondary edge. Hence, by iterative
application of � -shifts, we can construct a tree � � , with the same length as � , such
that no primary edge of ��� has a higher number than any secondary edge.

Note that the above argument means we can also assume that � � has at most
one bent edge. In particular, this means that there exists a natural number � (with
� ) � ) � ���  ) such that edge � is either primary or bent, all edges numbered
less than � are primary, and all edges numbered greater than � are secondary. The
edge � will be referred to as the transition edge.

Hence, given an edge numbering scheme for � , we can construct � � as fol-
lows:

1. Choose a direction set of edges for the tree.

2. Choose a natural number � (with ��) � ) � � �  ) to represent the edge
number of the transition edge.

3. Use the algorithm described in the proof of Lemma 5.2 to attempt to con-
struct ��� , where edge � is assumed to be either primary or bent, all edges
numbered less than � are assumed to be primary, and all edges numbered
greater than � are assumed to be secondary. By Lemma 5.2, this can be
done in time � � � � .

4. Repeat steps 2 and 3 for all possible choices of � . There are � � �  such
choices.

5. Repeat steps 1 to 4 for all possible choices of direction sets of edges. There
are � such choices.

The above algorithm clearly runs in � � � � �(� time, concluding the proof.

5.2 Canonical Forms

The construction in the proof of Theorem 5.3, is important, not only because it
allows us to find an efficient algorithm for constructing a � -SMT � (for a given full

17



Steiner topology), but also because it establishes useful canonical forms for full
� -SMTs. These canonical forms are based on arbitrarily ordering the edges in the
associated topology graph � and then demanding all primary edges come before
secondary edges under this ordering. In Section 6 we will show that by rooting
� and choosing a depth-first ordering of edges in this rooted tree it is possible
to refine the above algorithm to obtain a linear time solution. First, however, we
briefly discuss the general significance and properties of these canonical forms.

An important property of the canonical form is that the chosen numbering
scheme cannot rely on the geometric embedding of � but only on its topology � .
Furthermore, the transition edge can occur anywhere within � , depending on the
positions of the terminals. The canonical form will depend on the ordering of the
edges of � , i.e., on how the natural numbers ( � to � � �  ) are assigned to edges.
Two examples of ordering that result in nice canonical forms are the following:

� Breadth-first ordering. In this ordering, � is rooted at a terminal, and the
tree is then traversed in a breadth-first fashion. An edge is assigned the next
available natural number when it is traversed. Hence, no secondary edge
will be closer to the root than any primary edge.

� Depth-first ordering. In this ordering, � is rooted at a terminal, and the
tree is then traversed in a depth-first fashion. An edge is assigned the next
available natural number when it is traversed.

A full � -SMT � constructed using either breadth-first or depth-first orderings
has the following important property: if we divide � into two subtrees by delet-
ing the transition edge, then one of these subtrees contains only secondary edges
(namely the subtree not containing the root). Furthermore, the path from the root
to the transition edge contains primary edges only. Finally, in the subtree con-
taining the root, any path from a terminal to the transition edge may change the
category of its edges from secondary to primary (at most once), but never from
primary to secondary. Some stronger structural properties of the canonical forms
based on the depth-first ordering will be discussed in Section 6.4.

The significance of these observations is that, given an appropriate canonical
form, a strong restriction on the structure of full � -SMTs can be assumed. This
property was recently incorporated into the first exact algorithm for the Steiner
tree problem in uniform orientation metrics [8]. In this algorithm the possible full
Steiner trees (or FSTs) of a � -SMT are built up by constructing “half FSTs” with
straight edges, which are either merged together at a Steiner point to form a larger

18



half-FST, or at a corner point to form an FST. The numbering scheme — and thus
the canonical form — that was chosen in the exact algorithm was the following:

1. Every FST was rooted at its lowest index terminal (as given by the input
to the algorithm) and the edges were numbered according to a depth-first
traversal from this root.

2. The children of a node were visited in the order given by their geometric
location such that the leftmost child was visited before the rightmost child.

Note that in this case a numbering scheme that depended on the geometric em-
bedding was possible since subtrees with known embedding were combined into
larger subtrees; this again made it possible to assume that the transition edge oc-
curred “outside” half-FSTs (see [8] for details).

This canonical form had a significant impact on the running time of the exact
algorithm. For � �		� a speed-up of several orders of magnitude was obtained.

6 Linear Time Algorithm

In this section we use the results of the previous section to develop a linear time
algorithm for constructing a � -SMT for a given full Steiner topology. The given
full Steiner topology is assumed to be a rooted tree � with node set � , where

� ��� . The tree � is rooted at a terminal ��� � and all other terminals are
leaves in � . All internal nodes (Steiner points) have degree 3. For each internal
node � � � , the children of � are denoted by L � ��� and R � ��� ; the child of the root
node � is denoted by L � � � . For each node � �� � the parent of � is denoted by P � ��� .

In the algorithm we will initially label all edges in � as being secondary.
Instead of storing the primary/secondary labelling with the edges, it turns out to
be convenient to store this information with the nodes. We let PS � ��� indicate the
primary/secondary labelling of the node � ; it will later become clear how this node
information is used to label the edges.

We will use rays to represent subtrees of the � -SMT that is to be constructed.
A ray is an oriented halfline with a source (point in the plane) and a direction.
There is one ray 	
� ��� for each node in � and initially all rays are undefined. The
source of a node ray will correspond to the current geometric location of the node
while the direction will correspond to one of the three directions in the direction
set having the labeling given by PS � ��� . Informally, when a � -SMT for � has been

19



constructed, all node rays will point towards the transition edge (or bent edge) in
the tree.

The linear time algorithm consists of two depth-first traversals of � . Both
traversals use an operation that merges two rays into one; this operation is de-
scribed next.

6.1 Merging Rays

The basic constant time operation that we will use is denoted MERGERAYS ��� 	�� � .
This operation assumes that � and � are neighbours to a common Steiner point � ,
and that the primary/secondary labels of the edges ��� 	 � � and ����	 ��� are given by
PS � � � and PS ��� � , respectively, and that both edges are to become straight edges.
We distinguish between two cases:

Both � and � are terminals By the proof of Lemma 5.1 the location of Steiner
point � is unique and it can be constructed in constant time (if it exists). If
the Steiner point � exists, the result of MERGERAYS ��� 	�� � is the ray having
its source in � , and direction of the unique third edge out of � with pri-
mary/secondary label PS � ��� — otherwise the result of MERGERAYS ��� 	�� �
is undefined.

Either � or � (or both) are Steiner points First assume that � is a terminal (the
case where � is a terminal is similar). If 	
��� � is undefined, the result of
MERGERAYS ��� 	�� � is undefined. Otherwise, again if Steiner point � exists,
the result of MERGERAYS ��� 	�� � is the ray having its source in � , and direc-
tion of the unique third edge out of � with primary/secondary label PS � ���
— otherwise the result of MERGERAYS ��� 	�� � is undefined. If both � and �
are Steiner points the resulting ray has its source at the intersection between
	
� � � and 	
��� � ; if 	
� � � or 	
����� are undefined or they do not intersect, the
result of MERGERAYS ��� 	�� � is undefined.

6.2 First Traversal of
�

In the following we let �	� denote some constructed subtree of � rooted at � . A
primary (or secondary) subtree �	� is defined to be a tree that contains primary
(respectively, secondary) edges only. When constructing a primary (respectively,
secondary) subtree �	� , 	
� ��� has its source located at the constructed root of �
� and
the direction of 	
� ��� corresponds to that of the primary (respectively, secondary)
edge from � to its parent, that is, it will be directed towards the root of � .

20



In the first traversal of � we attempt to construct secondary subtrees for each
node � �� � ; we assume that PS � ��� = secondary for all nodes � �� � . This is done
bottom-up by applying the recursive algorithm in Figure 10 to the edge � � 	 L � � ��� .
If a secondary subtree rooted at � cannot be constructed, 	
� ��� is undefined when
the traversal finishes.

TRAVERSE( � , � )
1 if (second traversal) then TRYBENTEDGE( � , � )
2 if ( � is a Steiner point) then
3 TRAVERSE( � , L � ��� )
4 TRAVERSE( � , R � ��� )
5 	
� ��� � MERGERAYS � L � ��� 	 R � �����

Figure 10: Traversal of full Steiner topology � .

6.3 Second Traversal of
�

In the second traversal of � (again by the algorithm shown in Figure 10), the
secondary subtrees constructed in the first traversal are merged with primary sub-
trees. More specifically, we try to construct all possible trees having the canonical
form which comes from the edge ordering given by the traversal: there exists a
bent edge ��� 	 ��� such that all edges visited before � � 	 ��� are primary edges while
all edges visited after � � 	 ��� are secondary edges.

The TRYBENTEDGE( � 	 � ) procedure (Figure 11) processes each edge � � 	 ���
in the order given by the traversal. In line 1 the label of node � is changed to
primary (the node � is still labelled secondary at this point). If � � � then we let
	
� � � have the same colour as 	
� ��� (line 3), such that 	
� � � and 	
� ��� (if defined)
will correspond to two half edges of a bent edge. If the rays intersect (lines 9–10),
a candidate tree has been constructed.

If � is a Steiner point, its geometric location is first found by merging the rays
of its neighbours other than � (lines 5–6). Then the intersection between 	
� � �
and 	
� ��� is computed as before (lines 9–10). A special case occurs when � is a
terminal (lines 7–8): In this case we let 	
� ��� have the same colour as 	
� � � , similar
to the ��� � case. Finally, the label of node � is changed to primary in line 11.

The length of the constructed tree can be computed in constant time if the
length of each subtree is maintained during the execution of the algorithm. This

21



TRYBENTEDGE( � , � )
1 PS � � � = primary
2 if ( ��� � ) then
3 Let 	
� � � be the ray with source at � having the same colour as 	
� ���
4 else
5 Let ��� P � � � and � be the two other neighbours of Steiner point �

6 	
� � � = MERGERAYS(x,y)
7 if ( � is a terminal) then
8 Let 	
� ��� be the ray with source at � having the same colour as 	
� � �
9 if ( 	
� � � and 	
� ��� have the same colour and intersect each other) then

10 Intersection point � is corner point in constructed tree
11 PS � ��� = primary

Figure 11: Trying ��� 	 ��� as a bent edge.

is most easily achieved by letting the merge operation compute the sum of the
lengths stored in the merged nodes and adding this to the distances from their root
nodes to the new intersection point.

For a given direction set, the algorithm clearly runs in � � � � time: Two traver-
sals of � are performed and the processing of each edge takes constant time. By
iterating over all direction sets, a � -SMT for � (if it exists) will be constructed in

� � � � � time.

6.4 Correctness of Linear Time Algorithm

In the following we assume that a � -SMT � � for � exists and that it uses the
current edge direction set. Furthermore, we assume that for the chosen canoni-
cal form (edge ordering), the bent edge is ��� 	 ��� with corner point � (which may
coincide with � or � if � � contains no bent edge). We will now prove that the
algorithm does construct � � .

In the following discussion, we say that a ray overlaps with a line segment if
the ray is contained in the line representing the extension of that line segment.

Consider the path � in � � from the root � to the corner point � . Let ��� �� 	 � � 	� �� 	 ����� � � � 	 ��� ��� be the nodes on this path. For each � � � 	� �� 	 � , let � �
denote the node adjacent to ��� but not on � , and let � � denote the largest subtree

22



� � ���

� � � �
� � ���

� �
���

� � � �

� �
� �

� �
� �

� �
� � � �

Figure 12: Canonical form used by linear time algorithm.

of � � rooted at ��� and not containing any edges of � . (Figure 12).

Lemma 6.1 When the algorithm processes edge � ��	 � � in the second traversal,
for each � � �
	���!	 � , we have that

i) edge ����� � � 	 ��� � is a primary edge, and � � is either a primary or secondary
subtree,

ii) the location of the source of ray 	
� � � � is identical to the location of � � in � � ,
and 	
� � � � overlaps with the edge � � � 	 ����� in � � ,

iii) the location of the source of ray 	
� ��� � � � is identical to the location of ��� � �
in � � , and 	
� ��� � � � overlaps with the edge ����� � � 	 ����� in � � .

Proof. Property i) follows from the depth-first ordering of the traversal, while
property ii) follows from the definition of the merge ray operation and from the
fact that the secondary (respectively, primary) subtrees are constructed bottom-up
in the first (respectively, second) traversal of � .

When the edge � ��� � � 	 ����� is processed by the algorithm, all the subtrees � � 	��� 	�� � � �
have been constructed and remain the same until edge � � 	 ��� is processed. This
follows from the depth-first order of the traversal.

The edges from the root to � ��	 � � are visited in the order they appear on the
path. Assume that nodes � � 	���!	 ��� � � already have been correctly constructed
when edge ����� � � 	 ����� is processed. (This is certainly true for � � � .) Lines 5-6 in
TRYBENTEDGE( ��� � � , ��� ) merge the rays out of ��� � � and � � � � . Since both nodes
have the correct location and rays overlapping with the edges adjacent to � � � � ,

23



the resulting ray 	
� ��� � � � will be located at the correct position and overlaps with
����� � � 	 ����� in � � .

Theorem 6.2 When the algorithm processes edge � ��	 � � in the second traversal,
the � -SMT � � is correctly constructed.

Proof. When � ��	 � � is processed it follows from Lemma 6.1 that 	
� � � becomes
correctly constructed and overlaps with the half edge from � to the corner point
of the bent edge. Furthermore, the subtree � � is a secondary subtree and 	
� ���
has been correctly constructed in the first traversal. The theorem follows since
TRYBENTEDGE( � , � ) in lines 9-10 computes the intersection between the rays
	
� � � and 	
� ��� .

6.5 Implementation

The linear time algorithm is fairly simple to implement. In our implementation a
ray 	
� ��� for a node � was represented by the x- and y-coordinates of the source and
a number between � and � � � � , corresponding to the � � different legal directions
extending from the source.

All numerical computations can be performed in the ray merging operation.
In particular, only the ray merge operation depends on the data types used for
representing coordinates. The remaining code can be written more or less exactly
as presented in Figure 10 and 11.

Our experiments with the algorithm show that it is very fast and that the con-
stants involved are small. However, a simple exact algorithm that enumerates
all subsets and all full Steiner topologies can only solve problems with less than
10 terminals, in a reasonable amount of time. This is due to the large number
of possible subsets and large number of different full Steiner topologies for each
subset (e.g., for a subset with 8 terminals there are 10395 different full Steiner
topologies).

7 Concluding Remarks

In this paper we presented a powerful canonical form for uniformly-oriented Steiner
trees in the plane, and gave a linear time algorithm for constructing a � -SMT for
a given full Steiner topology. The canonical forms have already proved to be very
useful in the implementation of an exact algorithm for the problem [8], resulting

24



in substantial speed-up and making it feasible to solve large-scale problems to op-
timality. We also believe that the canonical forms and the linear time algorithm
will turn out to be very useful in the design of fast heuristics for the problem.

Acknowledgments

The authors would like to thank Benny K. Nielsen and Pawel Winter for many fruitful
discussions.

References

[1] M. Brazil, Steiner minimum trees in uniform orientation metrics, in Steiner Trees
in Industry (X. Cheng and D.-Z. Du, eds.), Kluwer Academic Publishers, Boston,
2001, pp. 1-27.

[2] M. Brazil, D. A. Thomas, and J. F. Weng, Minimum networks in uniform orientation
metrics, SIAM J. Comput., 30(2000), 1579-1593.

[3] M. Brazil, D. A. Thomas, and J. F. Weng, Locally minimal uniformly-oriented
Steiner trees, preprint.

[4] F. K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM J. Appl.
Math., 30(1976), 104-114.

[5] F. K. Hwang, A linear time algorithm for full Steiner trees. Oper. Res. Lett. 4(1986),
235-237.

[6] Y. Y. Li, S. K. Cheung, K. S. Leung, and C. K. Wong, Steiner tree constructions
in � � -metric. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal
Processing, 45(1998), 563-574.

[7] B. K. Nielsen, P. Winter, and M. Zachariasen, On the location of Steiner points in
uniformly-oriented Steiner trees. Inform. Process. Lett., 83(2002), 237-241.

[8] B. K. Nielsen, P. Winter, and M. Zachariasen, An exact algorithm for the uniformly-
oriented Steiner tree problem, LNCS 2461, Proceedings of the 10th European Sym-
posium on Algorithms, (2002), 760-772.

[9] A. C. Thompson, Minkowski Geometry: Encyclopedia of Mathematics and its Ap-
plications, 63, Cambridge University Press, Cambridge, 1996.

25



[10] P. Widmayer, Y. F. Wu, and C. K. Wong, On some distance problems in fixed orien-
tations. SIAM J. Comput., 16(1987), 728-746.

[11] G. Xue and K. Thulasiraman, Computing the shortest network under a fixed topol-
ogy, IEEE Trans. Computers, 51(2002), 1117-1120.

26


