
Fast Neighborhood Search for the Nesting Problem1

Benny Kjær Nielsen and Allan Odgaard

{benny, duff}@diku.dk

February 14, 2003

1Technical Report no. 03/02, DIKU, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.

Contents

1 Introduction 5

2 The Nesting Problem 7
2.1 Problem definitions . 7

2.2 Geometric aspects . 10
2.3 Existing solution methods . 13

2.4 Legal placement methods . 15
2.5 Relaxed placement methods . 17
2.6 Commercial solvers . 18

2.7 3D nesting . 19

3 Solution Methods 23

3.1 Local search . 24
3.2 Guided Local Search . 26
3.3 Initial solution . 28

3.4 Packing strategies . 28

4 Fast Neighborhood Search 31

4.1 Background . 31
4.2 A special formula for intersection area . 32

4.2.1 Vector fields . 32

4.2.2 Segment and vector field regions . 33
4.2.3 Signed boundaries and shapes . 35
4.2.4 The Intersection Theorem . 37

4.2.5 A simple example . 40
4.3 Transformation algorithms . 42

4.4 Translation of polygons . 46
4.5 Rotation of polygons . 48

5 Miscellaneous Constraints 53
5.1 Overview . 53
5.2 Quality areas . 56

5.3 Margins between polygons . 57
5.3.1 A straightforward solution . 57
5.3.2 Rounding the corners . 59

5.3.3 Self intersections . 59
5.4 Minimizing cutting path length . 61

3

6 3D Nesting 63
6.1 A generalization . 63
6.2 The straightforward approach . 63
6.3 Reducing the number of breakpoints . 67

7 Implementation Issues 73
7.1 General information . 73
7.2 Input description . 73
7.3 Slab counting . 73
7.4 Incorporating penalties in translation . 77
7.5 Handling non-rectangular material . 78
7.6 Approximating stencils . 80
7.7 Center of a polygon . 82

8 Computational Experiments 85
8.1 2D experiments . 85

8.1.1 Strategy . 85
8.1.2 Data instances . 85
8.1.3 Lambda . 87
8.1.4 Approximations . 87
8.1.5 Strip length strategy . 88
8.1.6 Quality requirements . 92
8.1.7 Comparisons with published results . 92
8.1.8 Comparisons with a commercial solver 94

8.2 3D experiments . 95
8.2.1 Data instances . 95
8.2.2 Statistics . 95
8.2.3 Benchmarks . 98

9 Conclusions 101

A Placements 107

4

Chapter 1

Introduction

The main subject of this thesis is the so-called nesting problem, which (in short) is the problem
of packing arbitrary two-dimensional shapes within the boundaries of some container. The
objective can vary e.g. minimizing the size of a rectangular container or maximizing the number
of shapes in the container, but the core problem is to pack the shapes tightly without any
overlap. An example of a tight packing is shown in Figure 1.1.

A substantial amount of literature has been written about this problem, where most of it has
been written within the past decade. A survey of the existing literature is given in Chapter 2
along a detailed description of different problem types and various geometric approaches to
these problems. At the end of the chapter a three-dimensional variant of the problem is
described and the more limited amount of literature in this area is also discussed.

The rest of the thesis is focused on solving the nesting problem with a meta heuristic
method called Guided Local Search (GLS). It is a continuation of the work presented in a
written report (in Danish) by Jens Egeblad and ourselves [28], which again is a continuation
of the work presented in an article by Færø et al. [32]. Throughout this thesis we will often
refer to the work done by Jens Egeblad and ourselves (Egeblad et al. [28]).

Chapter 3 presents GLS and some other issues regarding the basics of our solution method.
Most importantly the neighborhood for the local search is presented — it is a fast search of
this neighborhood which is the major strength of our approach to the nesting problem.

Færø et al. successfully applied the GLS meta heuristic to the rectangular bin packing
problem in both two and three dimensions. The speed of their approach was especially due to
a simple and very fast translation algorithm which could find the optimal (minimum overlap)
axis-aligned placement of a given box. Egeblad et al. [28] realized that a similar algorithm was
possible for translating arbitrary polygons. However, they did not prove the correctness of the
algorithm.

A major part of this thesis (Chapter 4) is dedicated to such a proof. The proof is stated
in general terms and translation and polygons are introduced at a very late stage. By doing
this it is simultaneously shown that the algorithm could be useful for other transformations
or other shapes. At the end of the chapter some additional work is done to adapt the general
scheme to an algorithm for rotation of polygons.

Although not explicitly proven it is easy to see that the fast translation and rotation
algorithms are also possible for three dimensions. A description of how to do this in practice
for translation is given separately in Chapter 6.

The two-dimensional nesting problem appears in a range of different industries and quite

5

Introduction

Figure 1.1: A tight packing using 86.5% of the available area (generated by 2DNest developed
for this thesis).

often it is not stated in its pure form, but includes a series of extra constraints. Chapter 5
discusses how a wide range of such constraints can be handled by our solution method quite
easily. A subset of these constraints are also handled by our implementation which is described
in more detail in Chapter 7. This chapter also includes a description of our 3D nesting im-
plementation. Experiments with the implementations are described in Chapter 8 and most
of these are focused on the optimization of various parameters influencing the efficiency of
the implementation. The best parameters are then used to perform a series of benchmarks to
evaluate the performance in relation to existing published results.

The quality of solutions for two-dimensional nesting are in general better than those re-
ported by Egeblad et al. which again is not matched by any benchmarks in the academic
literature and the amount of supported constraints in our implementation also exceeds most
of what we have seen in competing methods. Comparisons are also done with a commercial
solver which is considerably faster than ours, but we are close in quality. Only few results
exist for three-dimensional nesting which can be used for comparisons and it was no problem
to outperform the results found in the literature.

It should be noted that parts of Chapter 4 are inspired by a draft proof by Jens Egeblad
for the special case of translation of polygons. This especially concerns the formulation of
Theorem 2 and the formulation and proof of Theorem 3. His work has been a great help.

6

Chapter 2

The Nesting Problem

2.1 Problem definitions

The term nesting has been used to describe a wide variety of two-dimensional cutting and
packing problems. They all involve a non-overlapping placement of a set of irregular two-
dimensional shapes within some region of two-dimensional space, but the objective can vary.
Most problems can be categorized as follows (also see the illustration in Figure 2.1):

• Decision problem. Decide whether a set of shapes fit within a given region.

• Knapsack problem. Given a set of shapes and a region, find a placement of a subset of
shapes that maximizes the utilization (area covered) of the region.

• Bin packing problem. Given a set of shapes and a set of regions, minimize the number
of regions needed to place all shapes.

• Strip packing problem. Given a set of shapes and a width W , minimize the length of a
rectangular region with width W such that all shapes are contained in the region.

An interesting problem type, which is not included in the above list, is a variant of the strip
packing problem that deals with repeated patterns i.e. the packing layout is going to be reused
on some material repeatedly in 1 or 2 directions. With one direction of repetition this problem
can be interpreted as a nesting problem on the outside of a cylinder, where the objective is
to minimize the radius. We will get back to this variation in Chapter 5. We will denote this
problem the repeated pattern problem.

As noted the region used for strip packing is rectangular and a typical example would be
a cloth-strip in the textile industry. All other regions can have any shape. It could be animal
hides in the leather industry, rectangular plates in the metal industry or tree boards in the
furniture industry.

Note that all of the problems have one-dimensional counterparts, but the one-dimensional
decision and strip packing problems are trivial to solve.

In this thesis the focus is on the decision problem, but this is not a major limitation.
Heuristic solution methods for bin/knapsack/strip packing can easily be devised when given
a (heuristic) solution method for the decision problem, e.g. by fixing the strip length or the
number of bins and then solve the decision problem and if it is a success then the strip can be
shortened or the number of bins decreased and vice versa if it fails. When to do what is not

7

2.1. Problem definitions The Nesting Problem

a b

Figure 2.1: a) Most variants of the nesting problem is the problem of packing shapes within
some region(s) without overlap (decision, knapsack and bin packing). b) The strip packing
variant asks for a minimization of the length of a rectangular region.

a trivial problem and we will briefly get back to this in Section 3.4. It is important to note
that the various packing problems can also be solved in more direct ways, which could be more
efficient. Nevertheless, our focus is mainly on the decision problem.

In industrial settings a multitude of additional constraints are very often necessary, e.g. the
shapes or regions can have different quality zones or even holes (animal hides). Historically,
the clothing industry has had special attention. But even though this industry introduces a
multitude of possible extra constraints to the problem, these constraints are often not included
in the published solution methods. An exception is Lengauer et al. [35, 37] who describe and
handle a long range of the possible additional constraints posed in the leather and the textile
industry. But most of the existing literature does not handle any additional constraints. We
will not consider them any further in this chapter and instead a more detailed discussion of
various constraints (in relation to our solution method) is postponed to Chapter 5.

As indicated above the nesting problem occurs in a number of industries and it seems to
have gotten just as many names. In the clothing industry it is usually called marker making,
while the metal industry prefers to call it blank nesting or simply nesting. There is no consensus
in the existing literature either. Some call the shapes irregular, others call them non-convex.
In a theoretical context the problem is most often called the two-dimensional irregular cutting
stock problem. This is quite verbose and therefore it is quite natural that shorter variants have
been preferred such as polygon placement, polygon containment and (irregular) nesting. These
names also indicate that the irregular shapes are almost always restricted to being polygons.
A quick look at the reference list in this thesis emphasizes the diversity in the naming of this
problem.

8

The Nesting Problem 2.1. Problem definitions

In relation to Dyckhoff’s [25] typology we are dealing with problems of types 2/V/OID/M
— many small differently shaped figures packed in one or several identical/different large
shape(s) in 2 dimensions.

Our general choice of wording follows below. None of the words imply any restrictions on
the shapes involved.

• Nesting. A short name for the problem, which is often used in the existing literature.

• Stencil1. A domain specific name for the pieces/shapes/polygons to be packed.

• Material. A general word for the packing region which can be used to describe garments,
metal plates, wood, glass and more.

• Placement. The positioning of a set of stencils on the material. A legal placement is a
placement without any overlapping stencils and all stencils placed within the limits of
the material.

Not surprisingly, the nesting problem is NP-hard. Most existing articles state this fact,
but only few have a reference. Some refer to Fowler et al. [31] who specify a very constrained
variant, BOX-PACK, as the following problem: Determine whether a given set of identical
boxes (integer squares) can be placed (without rotation) at integer coordinates inside a region
in the plane (not necessarily connected) without overlapping. They prove that BOX-PACK
is NP-complete by making a polynomial-time reduction of 3-SAT which is the problem of
determining whether a Boolean formula in conjunctive normal form with 3 literals per clause
is satisfiable.

Note that the region defined in the BOX-PACK problem is not required to be connected.
This means that the region could be a set of regions thus the problem also covers the bin
packing problem. Also note that the 1-dimensional variant of BOX-PACK is a trivial problem
to solve. This is not true for less constrained variants of the nesting problem.

The majority of articles related to nesting only handle rectangular materials and this is
a constraint which is not included in the BOX-PACK problem. If it was then the problem
(packing identical squares in a rectangle) would no longer be NP-hard. It would have a trivial
solution. Some authors seem to have missed this point (e.g. [35, 36]).

To remedy this situation we define a new problem, BOX-PACK-2: Determine whether
a given set of integer rectangles (not necessarily identical) can be placed (without rotation)
inside a rectangular region without overlapping. Inspired by the proof in [49]:

Theorem 1. BOX-PACK-2 is NP-complete.

Proof. We are going to make a polynomial-time reduction of 1-dimensional bin packing [33].
The bin packing problem can be stated as follows: Given a finite set of integers X, a

bin capacity B and an integer K, determine whether we can partition X into disjoint sets
X1, ..., XK such that the sum of integers in each Xi is less than or equal to B.

Now replace each integer x ∈ X with a rectangle of height 1 and width x and use a given
algorithm to solve BOX-PACK-2 to place these rectangles in a rectangle of width B and height

1Stencil, n. [Probably from OF. estincelle spangle, spark, F. [’e]tincelle spark, L. scintilla. See Scintillate,
and cf. Tinsel.] A thin plate of metal, leather, or other material, used in painting, marking, etc. The pattern is
cut out of the plate, which is then laid flat on the surface to be marked, and the color brushed over it. Called
also stencil plate. Source: Webster’s Revised Unabridged Dictionary, 1996, 1998 MICRA, Inc.

9

2.2. Geometric aspects The Nesting Problem

a b

Figure 2.2: The degree of overlap can be measured in various ways. Here are two examples:
a) The precise area of the overlap. b) The horizontal intersection depth.

K. By post processing this solution (e.g. sliding the rectangles down and to the left) we will
get a solution to the bin packing problem by using the width of the rectangles in each row as
the integers in each bin.

Clearly, BOX-PACK-2 is also in NP and thereby NP-complete.

2.2 Geometric aspects

Before we proceed with a description and discussion of some of the existing solution methods,
we will describe some of the different approaches to the geometric aspects of the nesting
problem. In this section only polygons are considered since most solution methods can only
handle these.

The basic requirement is to produce solutions with no overlap between polygons. This
means that either the polygons must be placed without creating overlap or it should be possible
to detect and eventually remove any overlap occurring in the solution process.

If overlap is allowed as part of the solution process then there is a lot of diversity in the
geometric approaches to the problem. Given two polygons P and Q, one or more of the
following problems need to be handled.

• Do P and Q intersect?

• If P and Q intersect, how much do they intersect?

• If P and Q do not intersect, how far are they apart?

The question of the size of an overlap is handled in very different ways. The most natural
way is to measure the exact area of the overlap (see Figure 2.2a). This can be an expensive
calculation and thus quite a few alternatives have been tried. Oliveira and Ferreira [50] used
the area of the smallest rectangle containing the intersection, but this has probably not saved
much time since the hard part is to find the intersection points and not to do the calculation
of the area. It has also been suggested to use the intersection depth (see Figure 2.2b), which
makes sense since the depth of the intersection also expresses how much one of the polygons
must be moved to avoid the overlap. Dobkin et al. [21] describe an algorithm to get the
minimum intersection depth i.e. they also find the direction that results in the smallest possible
intersection depth. Unfortunately they require one of the polygons to be convex.

The distance between two polygons, which are not intersecting, can be useful if they are
to be moved closer together. But most algorithms are more focused on the relations between
polygons and empty areas. Dickinson and Knopf [19] introduce a moment based metric for
both 2D and 3D. This metric is based on evaluating the compactness of the remaining free

10

The Nesting Problem 2.2. Geometric aspects

Reference point

Q

P

Figure 2.3: Example of the No-Fit-Polygon (thick border) of stencil P in relation to stencil Q.
The reference point of P is not allowed inside the NFP if overlap is to be avoided.

space in an unfinished placement. They use this to implement a sequential packing algorithm
in 3D [18].

Some theoretical work has also been done by Stoyan et al. [54] on defining a so-called
Φ-function. Such a function can differentiate between three states of polygon interference;
intersection, disjunction and touching. But again, they only handle convex polygons.

Solution methods which do not involve any overlapping polygons at any time in the solution
process almost always use the concept of the No-Fit-Polygon (NFP). It is often claimed to have
been introduced by Art [4], which is not entirely correct. The NFP is a polygon which describes
the legal/illegal placements of one polygon in relation to another polygon. Art introduced and
used the envelope, which is a polygon that describes the legal/illegal placements of a polygon
in relation to the packing done so far. The calculations are basically the same and they are
strongly connected with the so-called Minkowski sum.

Given two polygons P and Q the construction of the NFP of P in relation to Q can be
found in the following way: Choose a reference point for P . Slide P around Q as close as
possible without intersecting. The trace of the reference point is the contour of the NFP.
An example can be seen in Figure 2.3. To determine whether P and Q intersect it is only
necessary to determine whether the reference point of P is inside or outside their NFP. But
the real benefit of the NFP is when the polygons are to be placed closely together. This can be
done by placing the reference point of P at one of the edges of the NFP. If P and Q have s and
t edges, respectively, then the number of edges in their NFP will be in the order of O(s2t2) [5].

The NFP has one major weakness. It has to be calculated for all pairs of polygons. If
the polygons are not allowed to be rotated this is not a big problem since it can be done in a
preprocessing step in a reasonable time given that the number n of differently shaped polygons
is not too large (requiring n2 NFPs). But if a set of rotation angles and/or flipping are allowed
then even more NFPs have to be calculated e.g. 4 rotation angles and flipping would require
the calculation of (4 · 2 · n)2 NFPs. It is still a quadratic expression, but even a small number
of polygons would require a large number of NFPs e.g. 4 polygons would require 1024 NFPs.
If free rotation was needed then an approximate solution method using a large number of
rotation angles would not be a viable approach. Nevertheless NFPs are still a powerful tool
for restricted problems.

11

2.2. Geometric aspects The Nesting Problem

Figure 2.4: The raster model requires all stencils to be defined by a set of grid squares. The
drawing above is an example of a polygon and its equivalent in a raster model.

A fundamentally different solution to the geometric problems is what some authors call the
raster model [45, 50, 35]. This is a discrete model of the polygons (which then do not have
to be polygons), created by introducing a grid of some size to represent the material i.e. each
polygon covers some set of raster squares. The polygons can then be represented by matrices.
An example of a polygon and its raster model equivalent is given in Figure 2.4.

Translations in the raster model are very simple while rotations are quite difficult. An
overlap calculation takes at least linear time in the number of raster lines involved and this
also clearly shows the weakness of this approach. A low granularity of the raster model provides
fast calculations at the expense of little precision. A high granularity will result in very slow
calculations. Comparisons with the polygonal model was done by Heckmann and Lengauer [35]
and they concluded that the polygonal model was the better choice for their purposes.

With the exception of the calculation of the intersection area of overlapping polygons,
none of the methods described above handle rotation efficiently. This is also reflected in the
published articles which rarely handle more than steps of 180◦ or 90◦ rotation. Free rotation
is usually handled in a brute-force discrete manner i.e. by calculating overlap for a large set of
rotation angles and then select a minimum.

A more sophisticated approach for rotation has been published by Milenkovic [47]. He
uses mathematical programming in a branch-and-bound context to solve very small rotational
containment problems to near-optimality2. Very small is in the order of 2-3 polygons. Li and
Milenkovic [43] have used mathematical programming to make precise local adjustments of a
solution, so-called compaction and separation. This could be useful in combination with other
nesting techniques.

2Given a set of polygons and a container, find rotations and translations that place the polygons in the
container without any overlaps.

12

The Nesting Problem 2.3. Existing solution methods

2.3 Existing solution methods

There exists a substantial amount of literature about two-dimensional cutting and packing
problems, but most of it is focused on the rectangular variant. A recent survey has been
written by Lodi et al. [44] about these restricted problems and this includes references to other
surveys. In the following we are going to focus on articles about irregular nesting problems.

Most articles about the nesting problem has been written within the past decade. The
reason for this is unlikely to be a lack of interest since the industrial uses are numerous as
indicated in the section above. It is more likely that the necessary computing power for the
needed amount of geometric computations simply was not available until the beginning of
the 90’s. Far more work has been done on the geometrically much easier problem of packing
rectangles (or 3D boxes).

The strip packing problem is the problem most often handled. In the following it is implic-
itly assumed that the articles handle this problem, but most of the methods described could
easily be adapted to some of the other problem types. When other problems than strip packing
are handled it will be explicitly noted.

Lower bounds have not received much attention either3 — with the exception of recent
work by Heckmann and Lengauer [36]. Unfortunately their method is not applicable for more
than about 12 stencils. By selecting a subset of stencils it can also produce lower bounds for
larger sets of stencils, but the quality of the bound will not be good unless there is only a small
number of large stencils in the original set.

Milenkovic [48] describes an algorithm which can solve the densest translation lattice pack-
ing for a very small number of stencils — not more than 4. This is the problem which we have
denoted the repeated pattern problem (in two dimensions).

Most articles are focused on heuristic methods. Basically, they can be divided into two
groups. Those only considering legal placements in the solution process and those allowing
overlap to occur during the solution process.

Several surveys have been written. Dowsland and Dowsland [22] focus explicitly on irregular
nesting problems, while other surveys [26, 38] focus on a wider range of cutting and packing
problems. The latter of these is strictly focused on the use of meta-heuristic methods. A
detailed discussion of meta-heuristic algorithms applied to irregular nesting problems can be
found in the introductory sections of Bennell and Dowsland [6]. Finally, a very extensive list of
references can be found in Heistermann and Lengauer [37], although most of them are about
very restricted problems — e.g. rectangular shapes.

In the following paragraphs, we will discuss some of the heuristic methods described in the
existing literature. This is far from a complete survey of applied methods, but it does include
most of the interesting (published) methods.

The methods can be divided into two basically different groups.

• Legal placement methods

These methods never violate the overlap constraint. An immediate consequence is that
placement of a stencil must always be done in an empty part of the material.

Some of the earliest algorithms doing this only place each stencil once. According to some
measures describing the stencils and the placement done so far, the next best stencil is

3A very simple lower bound can be based on the total area of all stencils, but it will usually be far from the
optimal solution.

13

2.3. Existing solution methods The Nesting Problem

chosen and placed. This is a fast method, but the quality of the solution is limited since
no backtracking is done.

Most methods for strip packing follow the basic steps below:

1. Determine a sequence of stencils. This can be done randomly or by sorting the
stencils according to some measure e.g. the area or the degree of convexity.

2. Place the stencils with some first/best fit algorithm. Typically a stencil is placed
at the contour of the stencils already placed (using an NFP). Some algorithms also
allow hole-filling i.e. placing a stencil in an empty area between already placed
stencils.

3. Evaluate the length of the solution. Exit with this solution or change the sequence
of stencils e.g. randomly or by using some meta-heuristic method and repeat step 2.

Unfortunately the second step is very expensive and these algorithms can easily end up
spending time on making almost identical placements.

Legal placement methods not doing a sequential placement do exist. These methods
typically construct a legal initial solution and then introduce some set of moves (e.g.
swapping two stencils) that can be controlled by a meta heuristic method to e.g. minimize
the length of a strip. Examples are Burke and Kendall [12, 10, 11] (simulated annealing,
ant algorithms and evolutionary algorithms) and Blazewicz et al. [8] (Tabu Search). The
latter is also interesting because it allows a set of rotation angles.

• Relaxed placement methods

The obvious alternative is to allow overlaps to occur as part of the solution process. The
objective is then to minimize the amount of overlap. A legal placement has been found
when the overlap reaches 0.

In this context it is very easy to construct an initial placement. It can simply be a
random placement of all of the stencils, although it might be better to start with a
better placement than that.

Searching for a minimum overlap can be done by iteratively improving the placement
i.e. decrease the total overlap. This is typically done by moving/rotating stencils. The
neighborhood of solutions can be defined in various ways, but all existing solution meth-
ods have restricted the translational moves to some set of horizontal and vertical trans-
lations.

Clearly the relaxed placement methods has to handle a larger search space than the legal
placement methods, but it is also clear that the search space of the relaxed methods do not
exclude any optimal solutions. This is not true for most of the legal placement methods and it
is also one of their weaknesses. On the other hand they can often produce a good legal solution
very quickly.

Both legal and relaxed placement methods sometimes try to pair stencils that fit well
together (using their NFP). They do this by minimizing the waste according to some measure
e.g. the area of any holes produced in the pairing. So far the results of this approach have
not been convincing, but it could probably be used to speed up calculations for other solution
methods provided that stencils are paired and divided dynamically when needed.

14

The Nesting Problem 2.4. Legal placement methods

2.4 Legal placement methods

The first legal placement method we describe is also the oldest reference we have been able
to find which handles nesting of irregular shapes. It is described by R. C. Art [4] in 1966.
His motivation is a shortage of qualified human marker makers in the textile industry and
he describes the manual solution techniques which are either done with full-sized cardboard
stencils or with plastic miniatures 1/5 in size. He also notes that approximations of the stencils
only need to be within the precision performed by the seamstresses.

Art introduces and argues for the following ideas; disregard small stencils since they will
probably fit in the holes of the nesting solution of the large stencils (he would do this manu-
ally), use the convex counterparts of all stencils to speed up execution time, use the envelope
(described earlier) to place stencils, do bottom-left packing, use meta-stencils (combinations
of stencils) and split them up when necessary. He used all but the last idea and implemented
the algorithm on an IBM 7094 Data Processing System. This machine was running at a whop-
ping 0.5 MHz and the average execution time for packing 15 stencils was about 1 minute. He
concludes that the results are not competitive with human marker makers, but this is also still
a challenge more than 30 years later.

Art also mentions the advantages of free rotation both in sheet metal work and marker
making (small adjusting rotations), but notes that his algorithm cannot handle this and that
it is a “problem of a higher order”.

10 years later Adamowicz and Albano [1] presents an algorithm that can also handle ro-
tation. Their algorithm works in two stages. In the first stage the stencils are rotated and
clustered (using NFPs) to obtain a set of bounding box rectangles with as little waste as possi-
ble and in the second stage these rectangles are packed using a specialized packing algorithm.
The idea of clustering resembles Arts suggestion of meta-stencils, but Adamowicz and Albano
are the first to describe an algorithm which utilizes this idea. Note that the same approach
has been used by a commercial solver by Boeing (see Section 2.6). Albano [2] continued the
work in an article about a computer aided layout system which uses the above algorithm as
an initial solution and then allows an operator to interactively manipulate the solution using
a set of commands.

A few years later Albano and Sappupo [3] abandons the idea of using rectangular packing
algorithms. They present a new algorithm which resembles Arts algorithm, but they add the
ability to backtrack and the ability to handle non-convex polygons (using NFPs). They only
allow a set of rotation angles and the examples only allow 180◦ rotation. The idea of clustering
stencils is also abandoned.

Blazewicz et al. [8] (1993) describe one of the few legal placement methods which includes
the use of a meta heuristic method. After an initial placement has been found the algorithm
moves, rotates and swaps stencils to find better placements. This work is further refined by
Blazewicz and Walkowiak [9].

A specialized algorithm for the leather manufacturing industry is described by Heistermann
and Lengauer [37]. This is the only published work allowing irregular material (animal hides)
and quality zones. The latter is a subdivision of material and/or stencils into areas of quality
and quality requirements. The method used is a fast heuristic greedy algorithm which tries to
find the best fit at a subpart of the contour i.e. no backtracking is done. To speed up calculations
approximations of the stencils are created and the stencils are grouped into topology classes
determined by the behavior of their inner angles. It is also attempted to place hard-to-place
parts first. The algorithm has been in industrial use since 1992 and the implementation

15

2.4. Legal placement methods The Nesting Problem

constitutes 115000 lines of code (see Section 2.6).
In 1998 Dowsland et al. [23] introduce a new idea, jostling for position. They use a standard

bottom left placement algorithm with hole filling for their first placement. Then they sort the
stencils in decreasing order using their right-most x-coordinates in the placement. A new
placement is then made using a right-sided variant of the placement algorithm. This process is
repeated for a fixed number of iterations (this is the jostling). In addition to NFPs, all polygons
are split into x-convex subparts to speed up calculations. Any horizontal line through an x-
convex polygon crosses at most two edges. Dowsland et al. emphasize that their algorithm is
intended for situations where computation time is strictly limited, but exceeds the time needed
for a single pass placement. A test instance with 43 stencils takes around 30 seconds for 19
jostles on a Pentium 166 MHz.

Time is not the main consideration in an algorithm described by Oliveira et al. [51] (2000).
Their placement algorithm TOPOS (a Portuguese acronym) is actually 126 different algo-
rithms. The basic algorithm is a leftmost placement without hole filling. The sequence of
stencils is either based on some initial sorting scheme (length, area, convexity, ...) or is deter-
mined iteratively by which stencil would result in the best partial solution in the placement
according to some measure of best fit. Five test instances are used in the experiments on a
Pentium Pro 200 MHz. Only the best results are presented, but average execution times are
also given. The test instance from the jostle algorithm is also tested (it was actually created
by Oliveira et al.). The length is about 4% worse and it has taken 34.6 seconds to find. But
this is not quite true since this is only the time used by 1 out of 126 algorithms. Using the
average execution times the real amount of time used is more like 45 minutes. Even though
Oliveira et al. has done a lot of work to be able to evaluate the efficiency of different strategies,
the small amount of test instances limit the conclusions to be made. In their own words: “the
geometric properties of the pieces to place [...] have a crucial influence on the results obtained
by different variants of the algorithm”.

Recently Gomes and Oliveira [34] continued their work. Now the focus is on changing the
order in the sequence of stencils used for the placement algorithm. The placement algorithm
is a greedy bottom-left heuristic with hole filling. The sequence of stencils is changed by
2-exchanges i.e. by swapping two stencils in the sequence used for the placement algorithm.
Different neighborhoods are defined that limit the number of possible 2-exchanges and different
search strategies are also defined (first better, best and random better). They are all local search
variants and include no hill climbing. Again all combinations are attempted on 5 test instances
and they obtain most of the best published solutions, but the computation times are now even
worse than before. The above mentioned data instance takes more than 10 minutes for the best
solution produced (Pentium III 450 MHz). Other instances take hours for the best solution
and days if all search variants (63) are included in the computation time.

The above article is one of the few addressing the problem of limited freedom of rotation
when using NFPs, but they simply claim: “Fortunately, in real cases the admissible orientations
are limited to a few possibilities due to technological constraints (drawing patterns, material
resistance, etc.)”. This is obviously not true for a lot of real world problems e.g. in metal sheet
cutting (although rotation can be limited in this industry as well). Even the textile industry
allows a small (but continuous) amount of rotation as already noted by Art back in 1966.

In the same journal issue a much faster algorithm is presented by Dowsland et al. [24]. This
is also a bottom-left placement heuristic with hole filling using NFPs. Experiments are done
on a 200 MHz Pentium and solutions are on average found in about 1 minute depending on
various criteria. The quality of the solutions can be quite good, but they cannot compete with

16

The Nesting Problem 2.5. Relaxed placement methods

the best results of the method applied by Gomes and Oliveira. The speed of their algorithm
makes it very interesting for the purpose of generating a good initial solution for some of the
relaxed placement methods — including the solution method presented in this thesis.

2.5 Relaxed placement methods

Methods allowing overlap as part of the solution process have a much shorter history than the
legal placement methods, but they do make up for this in numbers. During the 90’s quite a
few meta heuristic methods have been applied to the nesting problem, but it has not been
a continuous development — even test instances are rarely reused. This means that a lot of
different ideas have been tried, but very few of them have been compared.

The most popular meta heuristic method applied to the nesting problem is the same as in
most areas of optimization, Simulated Annealing (SA). One of the first articles on the subject
by Lutfiyya et al. [45] (1992) is mainly focused on describing and fine tuning the SA techniques.
Among other things their cost function maximizes edgewise adjacency between polygons, which
is an interesting approach. It also minimizes the distance to the origin to keep the stencils
closely together. Overlap is determined by using a raster model and to remedy the inherent
problems of this approach they suggest for future research to increase the granularity as part
of the annealing process. The neighborhood is searched by randomly displacing a polygon,
interchanging two polygons or rotating a polygon (within a limited set of rotation angles).

In the same year Jain et al. [40] also use SA, but their approach is quite different since it is
focused on a special problem variation briefly mentioned in the beginning of this chapter as the
repeated pattern problem. They only nest a few polygons, three or fewer, and the nesting is
supposed to be repeated on a continuous strip with fixed width. Changing the repeat distance
is part of the neighborhood which also includes translation and rotation. Jain et al. refers to
blank nesting in the metal industry as the origin of the problem, but it is also relevant for
other industries, e.g. the textile industry [48].

The raster model technique returns in Oliveira et al. [50]. They present two variations of
SA, one using a raster model and one using the polygons as given. Both with neighborhoods
which only allow translation. In the polygonal variant they claim that the rectangular enclosure
of the intersection of two polygons can be “fairly fast” computed, but they do not describe
how. It cannot be much faster than calculating the exact overlap since the hard part is to find
the intersection — not to calculate its area.

A much more ambitious application of SA is described by Heckmann and Lengauer [35].
They focus on the textile manufacturing industry, but their method can clearly handle problems
from other industries too. The neighborhood consists of translation, rotation and exchange. A
wide range of constraints are described and handled and the implementation has clearly been
fine-tuned e.g. by using approximated polygons in the early stages to save computation time.
The annealing is used in 4 different stages. The first stage is a rough placement, the second
stage eliminates overlaps, the third stage is a fine placement with approximated stencils and
the last stage is a fine placement with the original stencils. This algorithm has evolved into
a commercial nesting library (see Section 2.6). Some experiments has also been done with
other meta heuristic methods and Threshold Accepting is concluded to be faster, but it does
not increase the yield. Whether it decreases the yield is not stated.

In the same year Theodoracatos and Grimsley [55] published their attempt at applying
SA to the nesting problem. They try to pack both circles and polygons (separately). The

17

2.6. Commercial solvers The Nesting Problem

number of polygons is very limited though, and they have some unsupported claims about
their geometric methods. E.g. they claim that the fastest point inclusion test is obtained by
testing against all the triangles in a triangulation of the polygons and intersection area is
calculated by calculating intersection areas of all pairs of triangles.

Jakobs [41] tried to apply a genetic algorithm, but just like Adamowicz and Albano he
actually packs bounding rectangles and then compact the solution in a post-processing step.
No comparisons with existing methods are done, but his method is most likely not competitive.

Bennell and Dowsland [6] has a much more interesting approach using a tabu search variant
called Tabu Thresholding (TT). This is one of the few nesting algorithms which uses intersection
depth to measure overlap. They only use horizontal intersection depth and this introduces some
problems since it does not always reflect the true overlap in an appropriate way. This is partly
fixed by punishing moves that involve large stencils. Rotation is not allowed.

A couple of years later Bennell and Dowsland [7] continue their work. Now they try to
combine their TT solution method and the ideas for compaction and separation by Li and
Milenkovic [43] briefly described in Section 2.2. Their hybrid algorithm changes between
two modes, using the TT algorithm to find locally optimal solutions and using the LP-based
compaction routines to legalize these solutions if possible. They also use NFPs in new ways to
speed up various calculations.

As mentioned in the introduction, unpublished work was done by Egeblad et al. [28] in
2001. This was a result of an 8 week project and it was the first attempt of applying Guided
Local Search (GLS) to the nesting problem — based on a successful use of GLS by Færø et al.
for the rectangular packing problem in two and three dimensions. A very fast neighborhood
search for translation was presented and the results were very promising (better than those
published at the time).

2.6 Commercial solvers

The commercial interest in the nesting problem is probably even greater than the academical
interest. Their motivation is naturally that large sums can be saved if a bit of computing
time can spare the use of expensive materials. A quick search of the Internet revealed the
commercial applications presented in Table 2.1.

Although quite a few of the solvers are available as demo programs, it is very difficult to
obtain information about the solution methods applied. Exceptions are the two first solvers in
the list. 2NA is developed by Boeing and they describe their solution method on a homepage.
It is based on combining stencils to form larger stencils with little waste. These are packed
using methods applied to rectangular packing problems. It is fast, but it is probably not among
the best regarding solution quality.

AutoNester is based on the work done by Heistermann and Lengauer [37] and Heckmann
and Lengauer [35]. It is actually two different libraries called AutoNester-T (textile) and
AutoNester-L (leather) using two very different solution methods. We believe the nesting
algorithm in AutoNester-T using SA to be one of the best algorithms in use both regarding
speed and quality (also see Section 8.1.8 for benchmarks).

18

The Nesting Problem 2.7. 3D nesting

Package name Homepage

2NA http://www.boeing.com/phantom/2NA/

AutoNester http://www.gmd.de/SCAI/opt/products/index.html

NESTER http://www.nestersoftware.com/

Nestlib http://www.geometricsoftware.com/geometry_ct_nestlib.htm

OPTIMIZER http://www.samtecsoft.com/anymain.htm

MOST 2D http://www.most2d.com/main.htm

PLUS2D http://www.nirvanatec.com/nesting_software.html

Pronest/Turbonest http://www.mtc-limited.com/products.html

radpunch http://www.radan.com/radpunch.htm

SigmaNEST http://www.sigmanest.com/

SS-Nest/QuickNest http://www.striker-systems.com/ssnest/proddesc.htm

Table 2.1: A list of commercial nesting solvers found on the Internet. Most of them are
intended for metal blank nesting.

2.7 3D nesting

The nesting problem can be generalized to three dimensions, but the literature and commercial
interest for this problem is not overwhelming. The exception is the simpler problem of packing
boxes in a container. There are several reasons for this lack of interest. First of all, the problem
is even harder than the two dimensional variant which is hard enough as it is. Secondly, the
problem seems to have fewer practical applications.

Recently, new technologies have emerged which could benefit from solutions to a 3D gen-
eralization of the nesting problem. This is especially due to the concept of rapid prototyping
which is an expression used about physical prototypes of 3D computer models needed in the
early design/test phases of new products (anything from kitchen utensils to toys). It is also
called 3D free-form cutting and packing.

A survey of various rapid prototyping technologies is given by Yan and Gu [58]. One of
these technologies, selective laser sintering process, is depicted in Figure 2.5. The idea is to
build up the object(s) by adding one very thin layer at the time. This is done by rolling out
a thin layer of powder and then sinter (heat) the areas/lines which should be solid by the
use of a laser. The unsintered powder supports the objects build and therefore no pillars or
bridges have to be made to account for gravitational effects. This procedure can be quite slow
(hours) and since the time required for the laser is significantly less than the time required for
preparing a layer of powder, it will be an advantage to pack as many objects as possible into
one run.

A few attempts have been done to solve the 3D nesting problem and a short survey has
been made by Osogami [52]. Most of the limited number of articles mentioned in this survey
are also briefly described in the following paragraphs.

Ikonen et al. [39] (1997) is responsible for one of the earliest approaches to the nesting
problem. They chose to use a genetic algorithm and although the title refers to “non-convex
objects” then the actual implementation only handle solid blocks (or bounding boxes for more
complex objects), but they claim the results to be promising. The examples are quite small
and no benchmarks or data are available. They do handle rotation, but it is limited to 24

19

2.7. 3D nesting The Nesting Problem

Scanning mirror
Laser

Levelling roller

Powder cartridge
Powder

Figure 2.5: An example of a typical machine for rapid prototyping. The powder is added one
layer at the time and the laser is used to sinter what should be solidified to produce the objects
wanted.

orientations (45 degree increments). In their conclusions they state that it should be considered
to use a hill-climbing method to get the genetic algorithm out of local minima.

The approach by Cagan et al. [13] is more convincing. They opt for simulated annealing
as their meta heuristic approach and they allow both translation and rotation. They also
handle various optimization objectives e.g. taking routing lengths into account. Intersection is
allowed as part of the solution process and the calculation of intersection volumes is done by
using octree decompositions which closely relates a hierarchical raster model for 2D nesting.
The decompositions are done at different levels of resolution to speed up calculations. Each
level uses 8 squares per square in the previous level. This means that level n uses 8n−1 squares.
The level of precision follows the temperature in the annealing (low temperature requires high
precision since only small moves are done). The experiments focused on packing are done with
a container of fixed size and a number of objects, and the solutions involve overlap which is
given in percent. They pack cubes and cog wheels clearly showing that the algorithm works
as intended.

The SA approach was an example of a relaxed placement method applied to 3D nesting.
Dickinson and Knopf [18, 17] use a legal placement method in their algorithm and as most 2D
algorithms in this category it is a sequential placement algorithm. No backtracking is done and
the sequence is determined by a measure of best fit. This measure is also usable for 2D nesting
and was mentioned at the end of Section 2.2. It is a metric which evaluates the compactness
of the remaining free space in an unfinished placement. The best free space is in the form of a
sphere (a circle in 2D). Each stencil is packed at a local minimum with respect to this metric.
How this minimum is found is not described in detail, but in later work [19] SA is used for this

20

The Nesting Problem 2.7. 3D nesting

purpose. There are no restrictions on translation and rotation.
Other 2D calculation methods can also be generalized. This includes intersection depth [21]

and NFPs. A list of results regarding the latter (also known as Minkowski sums) is presented
by Asano et al. [5] (2002). These results (including intersection depth) only involve convex
polyhedra.

Dickinson and Knopf [20] have also done a series of experiments with real world problems.
This includes objects with an average of 17907 faces each. To be able to handle problems
of this size they also introduce an approximation method which is described below. It is our
impression that the solution method described by Dickinson and Knopf is the current state-
of-the-art in published 3D nesting methods, but it also seems that currently a human would
be more efficient at packing complicated 3D objects.

Obviously there is a lot of work to be done in the area of 3D nesting. One important area
is approximations of objects. 3D objects are often very detailed with thousands of faces. Very
few algorithms can handle this without somehow simplifying the objects. Cohen et al. [14]
describe so-called simplification envelopes for this purpose and they seem to be doing really
well. In one of their examples they reduce 165,936 triangles to 412 while keeping the object
very close to the original. The approximation method used by Dickinson and Knopf [20] is
more straightforward. Intuitively, plane grids are moved towards the object from each of the
6 axis-aligned directions (left, right, forwards, backwards, up, down). Whenever a grid square
hits the object it stops. The precision of this approximation then depends on the size of the
grid squares.

Another problem with 3D nesting is the fact that not all legal solutions (regarding intersec-
tion) are useful in practice. E.g. consider an object having an interior closed hole (like inside
a ball). There is no point in packing anything inside this hole because it will not be possible
to get it out. A simple solution is to ignore these holes, but the problem can be more subtle
since unclosed holes or cavities in objects can be interlocked with other objects. Avoiding this
when packing is a difficult constraint.

Most of this thesis is not directly referring to 3D nesting, but most of the solution methods
applied to the nesting problem is also applicable in 3D. This includes the fast neighborhood
search in Chapter 4. As a “proof of concept” Chapter 6 is dedicated to a description of the
necessary steps to generalize the 2D nesting heuristic. An implementation has also been created
(the title page is an image of a placement found by this implementation).

21

2.7. 3D nesting The Nesting Problem

22

Chapter 3

Solution Methods

The survey of existing articles presented a wide range of solution methods applied to the
nesting problem. Our solution method is in the category of relaxed placement methods i.e. we
allow overlap as part of the solution process. The choice of meta heuristic, Guided Local Search
(GLS), is based on previous work with promising results. Færø et al. [32] applied GLS to the
rectangular 2D and 3D packing problems and their work was adapted to the nesting problem
by Egeblad et al. [28].

In the following sections we are going to describe the basic concepts of a heuristic approach
for solving different variants of the nesting problem. The solution process can be split into 4
different heuristics.

• Initial placement
For some problems and/or problem instances it is necessary to have an initial solution
e.g. to get a small initial strip length for the strip packing problem. In general, a good
initial solution might help save computation time, but this can be a difficult trade off. It
has to be faster than the main solution method itself (GLS).

• Local search
By specifying a neighborhood of a given placement we can iteratively search the neigh-
borhood to improve the placement (minimizing total overlap). The search strategy can
vary, but there is no hill-climbing abilities in this heuristic.

• Guided Local Search
Since a local search can quickly end up in local minima it is important to be able to
manipulate it to leave local minima and then search other parts of the solution space.
This is the purpose of GLS.

• Problem-specific heuristic
Depending on the problem type solved, e.g. knapsack or strip packing, some kind of
heuristic is needed to control the set of elements in the knapsack or the length of the
strip.

Note that the problem-specific heuristic could be included in the GLS, but we have chosen
to keep them apart to make the solution scheme more flexible. Other approaches could be more
efficient. The GLS is focused on solving the decision problem i.e. can a given set of stencils fit
inside a given piece of material.

23

3.1. Local search Solution Methods

Before describing the GLS we will discuss the neighborhood and the basic local search
scheme. Short discussions of initial placements and problem-specific heuristics are postponed
to the end of this chapter.

3.1 Local search

Assume we are given a set of n stencils S = {S1, . . . , Sn} and a region of space M which
corresponds to the material on which to pack them. Although we are trying to solve a deci-
sion problem we are going to solve it as a minimization problem. Given a space of possible
placements P we define the objective function,

g(p) =

n
∑

i=1

i−1
∑

j=1

overlapij(p), p ∈ P,

where overlapij(p) is some measure of the overlap between stencils Si and Sj in the placement
p. In other words the cost of a given placement is determined exclusively by the overlapping
stencils. As long as all overlaps add some positive value then we know that a legal placement
has been found when the cost g(p) is 0 i.e. we are going to solve the optimization problem,

min g(p), p ∈ P.

Let us now define a placement a bit more formally. A given stencil S always has a position
(sx, sy). Depending on the problem solved it can also be described by a degree of rotation
sθ and a state of flipping, sf ∈ {false, true}, i.e. a placement of a stencil can be described
by a tuple (sx, sy, sθ, sf) ∈ R × R × [0◦, 360◦[×{false, true}. Examples of various placements
can be seen in Figure 3.1. The figure includes examples of flipping which we define to be the
reflection of S about a line going through the center of its bounding box. This line can follow
the rotation of the stencil to ensure that the order of rotation and flipping does not matter.

Flipping is possible in many nesting problems since the front and the back of the material
is often the same (e.g. metal plates). The garments used in the textile industry are not the
same on the front and the back, but sometimes flipping is still allowed. This can happen if
the mirrored stencils are also needed to produce the clothes. In practice, the garment is then
folded to produce both the stencils and the mirrored stencils while only having to cut once.
This is illustrated in Figure 3.2. Clearly, only half of the stencils need to be involved in the
nesting problem and individual stencils can be flipped without changing the end result.

Next, we are going to define the neighborhood of a given solution. The neighborhood is a
finite set of moves which changes the current placement by changing the placement of one or
more stencils. A local search scheme uses these moves to iteratively improve the placement.
The size of the neighborhood of a given placement is an important consideration when designing
a local search scheme. A local search in a large neighborhood will be slow, but it will be
expected to find better solutions than a search in a small neighborhood. In our context it
is natural to let the neighborhood include displacement, rotation and flipping of individual
stencils. One could also consider stencil exchanges. Arbitrary displacements constitutes a
very large neighborhood, which would take a long time to search exhaustively. Since any
displacement can be expressed as a pair of horizontal and vertical translations then it is a good
compromise to include these limited moves in the neighborhood.

24

Solution Methods 3.1. Local search

(0, 0, 0o, false) (15, 0, 45o, false)

(0,−12, 0o, true) (15,−12, 45o, true)

Figure 3.1: Examples of different placements of a polygon. In the upper left corner the polygon
is at its origin, (sx, sy, sθ, sf) = (0, 0, 0◦, false).

Figure 3.2: In the textile industry both the stencils and their mirrored counterparts are some-
times needed. This is often handled by folding the material and then only cut once to get both
sets of parts. With respect to the nesting problem it means that only one set is involved in
the nesting, where flipping of individual parts is then allowed.

25

3.2. Guided Local Search Solution Methods

We have not yet determined the domains of stencil positioning and rotation. Existing
solution methods most often have a discrete set of legal positions/rotations to limit the size of
the search space. Some even alter these sets as part of the solution process to obtain higher
precision (making smaller intervals for a fixed number of positions/rotation angles).

Now, in a given placement the neighborhood of a stencil S will include the following moves
(assume the current state of the stencil is (sx, sy, sθ, sf)).

• Horizontal translation.
A new placement (x, sy, sθ, sf), where x ∈]−∞,∞[.

• Vertical translation.
A new placement (sx, y, sθ, sf), where y ∈]−∞,∞[.

• Rotation.
A new placement (sx, sy, θ, sf), where θ ∈ [0◦, 360◦[.

• Flipping.
A new placement with S flipped.

To obtain a legal placement S must also be within the bounds of the material M , but this
is not necessarily a requirement during the solution process.

We can now define a neighborhood function, N : P → 2P , which given a placement returns
all of the above moves for all stencils (the moves cannot be combined). Using this definition a
placement p is a local minimum if

∀x ∈ N(p) : g(p) <= g(x),

i.e. there is no move in the neighborhood of the current placement which can improve it.

Obviously, this neighborhood is infinite in size, but we will see later (Chapter 4) that
there exists translation/rotation algorithms for polygons which are polynomial in time with
respect to the number of edges involved. For translation the algorithm is guaranteed to find
the position with the smallest overlap with other stencils.

As already noted a local search scheme uses the neighborhood of the current placement to
iteratively improve it. The local search can be done with a variety of strategies. These include
a greedy strategy choosing the best move in the entire neighborhood or a first improvement
strategy which simply processes the neighborhood in some order following any improving moves
found. Either way when no more improving moves are found the local search is in a local
minimum.

3.2 Guided Local Search

The meta heuristic method GLS uses local search as a subroutine, but the local search is very
often changed to what is known as a Fast Local Search (FLS). This name simply means that
only a subset of the neighborhood is actually searched. We will get back to how this can be
done for the nesting problem.

GLS was introduced by Voudouris and Tsang [56] and has been used successfully on a wide
range of optimization problems including constraint satisfaction and the traveling salesman
problem. It resembles Tabu Search (TS) since it includes a “memory” of past solution states,

26

Solution Methods 3.2. Guided Local Search

but this works in a less explicit way than TS. Instead of forbidding certain moves as done in
TS (most often the reverse of recent moves) to get out of local minima, GLS punishes the bad
characteristics of unwanted placements to avoid them in the future.

The characteristics of solutions are called features and in our setting we need to find the
features that describe the good and bad properties of a given placement. A natural choice is
to have a feature for each pair of polygons that expresses whether they overlap,

Iij(p) =

{

0 if overlapij(p) = 0,
1 otherwise,

i, j ∈ {1, . . . , n}, p ∈ P.

GLS uses the set of features to express an augmented objective function,

h(p) = g(p) + λ ·
n

∑

i=1

i−1
∑

j=1

pijIij(p),

where pij (initially 0) is the penalty count for an overlap between stencils Si and Sj. In GLS
this function replaces the objective function used in the local search.

GLS also specifies a function used for deciding which feature(s) to penalize in an illegal
placement,

µij(p) = Iij(p) ·
cij(p)

1 + pij
,

where the cost function cij(p) is some measure of the overlap between stencils Si and Sj. The
feature(s) with the largest value(s) of µ are the ones that should be penalized by incrementing
their pij value. To ensure diversity in the features penalized, the above function also takes
into account how many times a feature has already been penalized and this lowers its chance
of being penalized again.

It is left to us to specify the cost function and the number of features to penalize. A natural
choice for the cost function would be some measure of the area of the overlap. This could be
the exact area, a rectangular approximation or other variants.

A simplified example of how GLS works is given in Algorithm 1.
Algorithm 1 could use a normal local search method, but the efficiency of GLS can be greatly

improved by using fast local search (FLS). To do this we need to divide the neighborhood into
a set of sub-neighborhoods, which can either be active or inactive indicating whether the local
search should include them in the search. In our context the natural choice is to let the moves
related to each stencil be a sub-neighborhood resulting in n sub-neighborhoods. It is the
responsibility of the GLS algorithm to activate neighborhoods and it is the responsibility of
the FLS to inactivate neighborhoods when they have been exhausted. Furthermore the fast
local search can also activate neighborhoods depending on the strategy used.

A logical activation strategy for the GLS is to always activate the neighborhoods of stencils
involved in the new penalty increments. Possible FLS strategies include the following:

• Fast FLS.
Deactivate a sub-neighborhood when it has been searched and has not revealed any
possible improvements.

• Reactivating FLS.
The same as above, but whenever a stencil is moved, activate all polygons which overlaps
the stencil before and/or after the move.

27

3.3. Initial solution Solution Methods

Algorithm 1 Guided Local Search

Input: Stencils S1, ..., Sn.
Generate initial placement p.
for all Si, Sj , i > j do

Set pij = 0.
end for
while p contains overlap do

Set p = LocalSearch(p).
for all Si, Sj , i > j do

Compute µij(p).
end for
for all Si, Sj , i > j such that µij(p) is maximum do

Set pij = pij + 1.
end for

end while
Return p.

3.3 Initial solution

As noted earlier our focus is mainly on the decision problem, but most realistic problems are
strip packing, bin packing or knapsack problems. A good initial solution can help the solution
process, but experiments presented by Egeblad et al. [28] indicated that it is not essential for
the solution quality. They found that a random initial placement with overlap worked just as
well as more ambitious legal placement strategies for the strip packing problem. Nevertheless,
a fast heuristic in the initial stages can be an advantage concerning computation time e.g. to
shorten the initial length in strip packing.

We are not going to describe specialized initial solution heuristics for the various problem
types. To get an initial number of bins and an initial strip-length one can simply adopt the
approach by Egeblad et al. which is a bounding-box first-fit heuristic (see Figure 3.3). This
heuristic sorts all stencils according to height and then places them sequentially which means
that the largest stencils are gathered in one end of the strip or in the same bin. To avoid
that this initial solution affects the GLS in an unfortunate way it could be wise to discard the
solution and instead make a random placement only using the strip length or number of bins
provided by the initial solution.

3.4 Packing strategies

The various problem types also require different packing strategies and the following is a very
short discussion of how this can be done for each problem type. The main purpose of this
discussion is to show that all of the problems can be solved with the use of a solver to the
decision problem. No claims are made about the efficiency of these methods.

• Bin packing problem. This is straightforward. The initial solution provided a number
of bins for which there exists a solution. Simply remove one bin and solve this prob-
lem as a decision problem. If a solution is found then another bin is removed, and so
forth. Note that for a fixed number of bins the bin packing problem can be solved as a

28

Solution Methods 3.4. Packing strategies

Figure 3.3: An example of a simple bounding box first fit placement.

decision problem, but it requires the shape of the material to be disconnected in a way
such that translations can move stencils between bins. This is probably an inefficient
approach and it would be better to keep the bins separately and instead introduce an
extra neighborhood move to move stencils between bins.

Another aspect of bin packing is that it is more likely to be possible to find an optimal
solution. When a legal placement is found and a bin is removed then it should be verified
that the area of the stencils can fit inside the remaining bins. If not, an optimal solution
has already been found. This can also be calculated as an initial lower bound.

• Strip packing problem. The strip packing problem (and the repeated pattern variant)
is a bit more difficult to handle. Whenever a legal placement has been found the strip
needs to be shortened. Two questions arises. How much shorter? What if a solution is
not found (within some limit of work done)? Two examples of strategies could be.

– Brute force strategy. Whenever a legal placement is found make the strip k% shorter,
where k could be about 1 or less depending on the desired precision.

– Adaptive strategy. Given a step value x whenever a legal placement is found make
the strip x shorter. If a new legal placement has not been found within e.g. n2

iterations of GLS, increase the length with x/2 and set x = x/2. If a solution is
found very quickly one could also consider to increase the step value.

• Knapsack problem. Like the bin packing problem the knapsack problem isNP-hard even
when reduced to 1 dimension. Algorithm 2 is a simple strategy for finding placements
for the knapsack problem using the decision problem. It is recursive and needs two
arguments, a current placement (initially empty) and an offset in the list of stencils
(initially 1).

29

3.4. Packing strategies Solution Methods

Algorithm 2 Knapsack algorithm

Knapsack(P , i)
for j=i to n do

Add Sj to the placement.
if A legal placement with Sj can be found within some time limit then

Remember the placement if it is the best found so far.
Knapsack(P , j + 1)

end if
Remove Sj from the placement.

end for

30

Chapter 4

Fast Neighborhood Search

4.1 Background

In the neighborhood for our local search we have both translation and rotation, but we have
not specified how these searches can be done. Basically, there are two ways to do it. The
straightforward way is to simply use an overlap algorithm to calculate the overlap at some
predefined set of translation distances or rotation angles, e.g. {0, 1, 2, . . . , 359}, and then choose
the one resulting in the smallest overlap. There is one major problem with this approach.
Overlap calculations are expensive and therefore one would like to do as few as possible, but
precision requires a large predefined set. In the SA algorithm by Heckmann and Lengauer [35]
this dilemma is solved by having a constant number of possible moves. The maximum possible
distance moved is then decreased with time (and the set scaled accordingly) thereby keeping
a constant computational overhead without sacrificing precision entirely.

An alternative is to find a precise minimum analytically. This might seem very difficult at
first, but it turns out to be possible to do quite efficiently and it is the subject of this entire
chapter.

Færø et al. [32] presented a fast horizontal/vertical translation method for boxes in the
rectangular packing problem. The objective was to find the horizontal or vertical position of
a given box that minimized its overlap with other boxes. They showed that it was sufficient
to calculate the overlap at a linear number of breakpoints to achieve such a minimum.

Egeblad et al. [28] extended the methods used on the rectangular packing problem to make
an efficient translation algorithm for the nesting problem. However, they did not prove the
correctness of this algorithm.

In this chapter we will not only prove the correctness of the translation algorithm, but we
will also generalize the basic principles of the algorithm. This will reveal a similar algorithm
for rotation and it will also be an inspiration for three dimensional algorithms (see Chapter 6).

Although the practical results in this chapter concerns the translation and rotation of
polygons, the theoretical results in the following section is of a more general nature. This is
done partly because the results could be useful in other scenarios (e.g. the problem of packing
circles) and partly because the theory would not be much simpler if restricted to rotation and
translation of polygons.

31

4.2. A special formula for intersection area Fast Neighborhood Search

Boundary point

Interior point

Exterior point

Figure 4.1: The above gray area is an example of a set of points in the plane. Examples of
interior and boundary points are marked and the entire boundary is clearly marked as three
closed curves.

4.2 A special formula for intersection area

At the end of this section a proof is given for a theorem that can be used to calculate intersection
areas. The theorem is stated in a very general setting making it useful for the specification of
some transformation algorithms in later sections (especially related to translation and rotation).
To obtain this level of generality the following subsections are mostly dedicated to the precise
definition of various key concepts.

4.2.1 Vector fields

First we have to recap some basic calculus regarding sets of points in the plane.

Definition 1. Given a point p0 and a radius r > 0, we define a disc of radius r as the set of
points with distance less than r from p0 and we denote it Nr(p0). More precisely,

Nr(p0) = {p ∈ R
2 : ||p− p0|| < r}.

Given a set of points S in the plane, we say that

• p0 is a boundary point if for any r > 0, Nr(p0) contains at least one point in S and at
least one point outside S. The set of all boundary points is called the boundary of S.

• S is closed if the entire boundary of S belongs to S.

• an exterior point is a point not in S. The set of all such points is the exterior of S.

• an interior point is a point in S which is not a boundary point. The set of all such
points is the interior of S.

The practical results in this chapter involves translation and rotation, but at this point we
introduce a more general concept useful for a wide range of transformation methods.

32

Fast Neighborhood Search 4.2. A special formula for intersection area

Definition 2. Given two continuous functions F1(x, y) and F2(x, y), a (planar) vector field
is defined by

F(x, y) = F1(x, y)i + F2(x, y)j,

where i and j are basis vectors.

A field line for a point p is defined to be the path given by following the vector field forwards
from p. Since the vector field specifies both direction and velocity then this field line can be
described by a parametric curve rp(t). We will say that the point pt = (xt, yt) = rp(t) is the
location of p at time t along its field line, in particular p = p0 = (x0, y0) = rp(0).

If the field line is a closed path (∃t′ > 0 : pt′ = p0) then we define the field line to end
at the end of the first round i.e. t is limited to [0, t′] where t′ is the smallest value for which
pt′ = p0.

Note that a field line cannot cross itself since that would require the existence of a point
where the vector field points in two different directions. The same argument shows that two
different field lines cannot cross each other, but they can end at the same point.

Some examples of vector fields and field lines can be seen in Figure 4.2. In practice we are
only going to use the straight and rotational vector fields, but the other vector fields help to
emphasize the generality of the following results.

4.2.2 Segment and vector field regions

The next definition might seem a bit strange, but it provides us with a link between curve
segments and areas which depends on the involved vector field.

Definition 3. Given two curve segments a, b and a vector field, the segment region R(a, b)
is defined as follows: All points p for which there exists a unique point pa on a, a unique point
pb on b and time values t′, t′′ such that

• 0 < t′ < t′′,

• rpa
(t′) = p

• and rpa
(t′′) = pb.

Less formally, there must exist a unique field line from a to b which goes through p.

Note that R(a, b) is not the same as R(b, a). In many vector fields at least one of these
two regions will be empty unless a and b are crossing. Furthermore, if no field lines cross both
curve segments then the set will definitely be empty. The uniqueness of the field line ensures
that it also makes sense to move backwards on a field line in a segment region.

An advanced example of a segment region is given in Figure 4.3. Later we will see how
these segment regions can be used to find intersection areas. At this point more definitions are
needed.

Arbitrary vector fields are a bit too general for our uses. The purpose of the next definition
is to enable us to focus on useful subparts of vector fields.

Definition 4. A vector field region is defined by two straight line segments c1 and c2 to
be the segment region R(c1, c2), where c1 and c2 are the shortest lines possible to create this
region. Denote these lines the first cut line and the second cut line.

33

4.2. A special formula for intersection area Fast Neighborhood Search

a b

c d

Figure 4.2: Vector field examples. The gray lines in the top row are examples of field lines. a)
A very simple horizontal vector field, F(x, y) = (1, 0). b) A rotational vector field, F(x, y) =
(−y, x). c) d) Advanced examples.

34

Fast Neighborhood Search 4.2. A special formula for intersection area

a
b

Figure 4.3: An advanced example of a segment region R(a, b). One of the points in the region
is shown with its corresponding field line segment from a to b (the dashed curve segment).
Note that R(b, a) is an empty region (assuming no field lines are closed paths).

Although it is essentially the same as the segment regions, it is more appropriate to differ-
entiate between the two concepts. The limitation of using straight lines is not necessary, but
we have no use of a more general definition. Note that a vector field region is a bounded area.

Whenever a set of points S is said to be in (or inside) a vector field region then it simply
means that S ⊆ R(c1, c2). Examples of the most important vector field regions are given in
Figure 4.4.

4.2.3 Signed boundaries and shapes

Next we need some definitions to be able to describe the kind of shapes and vector fields we
are going to handle.

Definition 5. Given a vector field, a set of points S and a boundary point p of S let r(t)
be the field line through p such that r(0) is on the first cutline. Let tp be the value for which
r(tp) = p. Now, p is said to be positive if for any disc Nr(p), r > 0 there exists t′, t′′ such that
t′ < tp < t′′, r(t′) is an exterior point of S and r(t′′) is an interior point. A boundary point is
said to be negative if t′′ < tp < t′.

A boundary segment of S is said to be positive/negative if all points on the segment are
positive/negative. A boundary segment is said to be neutral if some field line is overlapping
the entire segment.

In other words a positive boundary point is crossed by a field line that goes from the outside
of the shape to the inside and vice versa for negative boundary points. Using Definition 5 we
can now give a precise description of shapes.

35

4.2. A special formula for intersection area Fast Neighborhood Search

a b

Figure 4.4: Examples of vector field regions. a) A horizontal vector field region with two finite
cut lines. b) A rotational vector field region, where the two cut lines are identical.

Definition 6. A shape S in a vector field is a set of points which adhere the following
conditions: For the boundary B of S there must exist a division into a finite set of boundary
segments b1, ..., bn, where

• each boundary segment can be categorized as being positive, negative or neutral,

• for any i, j ∈ {1, . . . , n}, i 6= j : bi ∩ bj = ∅ (no points are shared between segments)

• and b1 ∪ . . . ∪ bn = B (the segments cover the entire boundary).

Furthermore, all boundary points must be in contact with the interior i.e. for any p0 ∈ S and
r > 0, Nr(p0) contains at least one point which is in S, and which is not a boundary point.

An example of a shape is given in Figure 4.5. A shape does not have to be connected or
without holes and it cannot contain isolated line segments or points. Note that any singular
point in a boundary can be categorized as a neutral boundary segment, but a shape cannot
have an infinite number of them since the total number of boundary segments is required to
be finite.

Figure 4.5 includes an example of a field line. The following lemma concerns the behavior
of such field lines.

Lemma 1. Suppose S is a shape in a vector field region. For any field line in the region (from
first to second cutline), which does not include any neutral boundary points from the shape, the
following will be true:

• If the field line crosses the shape then it will happen in an alternating fashion, regarding
positive and negative boundary segments, starting with a positive boundary segment and
ending with a negative boundary segment. Whether the field line is inside the shape
alternates in the same way starting outside the shape.

• The field line will cross an even number of boundary segments.

• If a point p ∈ S is on the field line then moving forwards from p the field line will cross
one more negative boundary segment than positive boundary segments. Moving backwards

36

Fast Neighborhood Search 4.2. A special formula for intersection area

Figure 4.5: The above set of points constitutes a shape in a horizontal vector field. The
bold boundary segments are positive boundary segments and the other boundary segments are
negative with the exception of the endpoints which are neutral. The dashed line is an example
of a field line. Note how it crosses the boundaries of the shape.

from p the field line will cross one more positive boundary segment than negative boundary
segments.

• If a point p /∈ S is on the field line then moving forwards or backwards from p the field
line will cross an equal number of positive and negative boundary segments.

Proof. We are only proving the first statement since the others follow easily.

Initially (at the first cut line) the field line is outside S. From the definition of positive and
negative boundary segments it is easy to see that when moving forwards on the field line the
first boundary segment must be positive. It also follows from the definitions that the field line
then continues inside S and the next boundary segment must then be negative. This continues
in an alternating fashion ending with a negative boundary segment — otherwise S would not
be within the vector field region.

4.2.4 The Intersection Theorem

Now, we are getting closer to the main theorem. The next definition specifies a relation between
a point and a segment region which simply states whether the point is inside or outside the
region.

Definition 7. Given boundary segments a and b and a point p in a vector field region, we
define the containment function as

C(a, b, p) =

{

1 if p ∈ R(a, b),

0 if p /∈ R(a, b).

This can be generalized to sets of boundary segments A and B:

C(A,B, p) =
∑

a∈A, b∈B

C(a, b, p).

37

4.2. A special formula for intersection area Fast Neighborhood Search

Using the containment function and the following explicit division of boundary segments
in positive and negative sets, we are now ready to present an essential theorem.

Definition 8. Given a shape S, we denote a finite set of boundary segments (as required by
the definition of a shape) Sb. We also denote the sets of positive and negative segments as
S+

b = {b ∈ Sb | b is positive}, S−

b = {b ∈ Sb | b is negative}.

Theorem 2 (Containment Theorem). Suppose we are given a pair of shapes S and T and
a point p in a vector field region, and that the field line of the point p does not contain any
neutral boundary points from the shapes, then the following is true:

p ∈ S ∩ T ⇒ w(p) = 1

p /∈ S ∩ T ⇒ w(p) = 0,

where

w(p) = C(T +
b , S−

b , p) + C(T−

b , S+
b , p)−C(T +

b , S+
b , p)−C(T−

b , S−

b , p) (4.1)

Proof. In the following, whenever the terms forwards and backwards are used it means to start
at p and then move forwards and backwards on the field line which goes through p.

From the definition of segment regions, it easily follows that the only pairs of boundary
segments affecting w(p) are those which intersect the field line going through p. Furthermore,
the sum above is only affected by boundary segments from T found when moving backwards
and boundary segments from S found when moving forwards.

Assume that s positive boundary segments from S are crossed when moving forwards and
t negative boundary segments from T are crossed when moving backwards. Now, by using
Lemma 1 we can quite easily do the proof by simply counting.

First, assume that p ∈ S∩T . By definition p ∈ S and p ∈ T . It then follows from Lemma 1
that s + 1 negative and t + 1 positive boundary segments are crossed when moving forwards
and backwards, respectively. Inserting this in equation 4.1 and doing the math reveals

w(p) = (t + 1)(s + 1) + ts− (t + 1)s− t(s + 1)

= ts + t + s + 1 + ts− ts− s− ts− t

= 1.

Now assume that p /∈ P ∩Q. There are three special cases, which can all be handled in a
very similar way. In short,

p /∈ S ∧ p /∈ T : ts + ts− ts− ts = 0,
p ∈ S ∧ p /∈ T : t(s + 1)− ts + ts− t(s + 1) = 0,
p /∈ S ∧ p ∈ T : (t + 1)s− ts + (t + 1)s− ts = 0.

Definition 9. Given boundary segments a and b, let the area of a region R(a, b) be defined as
A(a, b). We extend this definition to two sets of boundary segments A and B as follows:

A(A,B) =
∑

a∈A, b∈B

A(a, b)

38

Fast Neighborhood Search 4.2. A special formula for intersection area

Standard calculus gives us that since R(a, b) is a bounded area then we have,

A(a, b) =

∫ ∫

R(a,b)
1dA =

∫ ∫

p∈R2

C(a, b, p))dA.

We can now easily state and proof the main theorem.

Theorem 3 (Intersection Theorem). In a vector field region the intersection area α of two
shapes S and T can be calculated as:

α = A(T +
b , S−

b) + A(T−

b , S+
b)−A(T +

b , S+
b)−A(T−

b , S−

b)

Proof. Disregarding a finite number of field lines, we know that w(p) = 1 if p ∈ S ∩ T and
w(p) = 0 otherwise. The finite number of field lines do not contribute with any area, so α can
be calculated as:

α =

∫ ∫

p∈R2

w(p)dA.

Using equation 4.1 and the fact that the integral of a sum is the same as the sum of integrals,

∫ ∫

R2

w(p)dA =

∫ ∫

p∈R2

C(T+
b , S−

b , p)dA +

∫ ∫

p∈R2

C(T−

b , S+
b , p)dA

−

∫ ∫

p∈R2

C(T+
b , S+

b , p)dA−

∫ ∫

p∈R2

C(T−

b , S−

b , p)dA

Let us only consider
∫ ∫

p∈R2 C(T+
b , S−

b , p)dA which can be rewritten,

∫ ∫

p∈R2

C(T+
b , S−

b , p)dA =

∫ ∫

p∈R2

∑

a∈T+

b
, b∈S−

b

C(a, b, p)

=
∑

a∈T+

b
, b∈S−

b

∫ ∫

p∈R2

C(a, b, p)

=
∑

a∈T+

b
, b∈S−

b

A(a, b)

= A(T+
b , S−

b).

Rewriting the other three integrals we achieve the desired result.

The Intersection Theorem gives us a special way of calculating intersection areas, which we
are going to see an example of in the next section. Note that it can also be used to calculate
the area of a single shape S by letting the “shape” T be a half space placed appropriately such
that S is entirely inside T . This brings the Intersection Theorem very close to known formulas
for area computations.

39

4.2. A special formula for intersection area Fast Neighborhood Search

a

b

a

g

h

b

b

a

g

g′

h

c

b

a

Figure 4.6: The area A(a, b) can be in three different states. a) An empty region. b) A

triangular area, A(a, b) = hg
2 . c) A trapezoidal area, A(a, b) = h(g+g′)

2 .

4.2.5 A simple example

It is time to make some practical use of the theoretical results. We are going to take a closer
look at the horizontal vector field and to simplify calculations we are going to limit the shapes
to be polygons (holes are allowed). An edge excluding endpoints from a polygon is always a
strictly positive, negative or neutral boundary segment no matter where it is placed in the
horizontal vector field and it is therefore natural to let the set of edges be the set of boundary
segments (endpoints are neutral boundary segments). Note that this is most often not a
minimal set.

The basic calculation needed to use Theorem 3 is the area between two line segments.
Formally, we are given two line segments a and b and we are interested in finding A(a, b)
i.e. the area of the region between a and b. The first observation to make is that if the vertical
extents of the two line segments do not overlap then the region is always empty. If the vertical
extents do overlap then the region can be in three basically different states. The two lines can
intersect, a can be to the left of b or a can be to the right of b. Examples of all of these three
cases are given in Figure 4.6.

Finding A(a, b) is easy when a is to the right of b since this makes the region empty. The
other areas are not much harder. Intersecting segments reveal a triangular area and when a is
to the left of b a trapezoidal area needs to be found.

We can now give an example of how to use Theorem 3. In Figure 4.7 all regions involved
in the calculation of the intersection of two polygons is given. The example uses polygons
and a simple horizontal vector field, but other shapes could easily be allowed as long as one is
able to calculate the area of the regions. The same goes for the vector field.

Also note that if an edge from S does not have anything from T on its left side then it is
not involved in any regions used for the intersection calculation. This can hardly be a surprise,
but it is exactly this asymmetry of the Intersection Theorem which will be utilized in the next
section.

40

Fast Neighborhood Search 4.2. A special formula for intersection area

T

S

R(T+

b
, S−

b
)

T

S

R(T−

b
, S+

b
)

T

S

R(T+

b
, S+

b
)

T

S

R(T−

b
, S−

b
)

Figure 4.7: The above regions can be used to find the area of the intersection of the two
polygons S and T . The bold edges are the edges involved in the specified sets. The shaded
areas in the top row contribute positively and the shaded areas in the bottom row contribute
negatively. Area = A(T +

b , S−

b) + A(T−

b , S+
b)−A(T +

b , S+
b)−A(T−

b , S−

b).

41

4.3. Transformation algorithms Fast Neighborhood Search

4.3 Transformation algorithms

For some vector fields the calculation of intersection areas as given by the Intersection Theorem
has a much more interesting property. To see this we first need yet another definition and a
small lemma.

Definition 10. Given a shape S in a vector field region and a time value t we define the
transformation S(t) to be the shape obtained by moving all points of S along their corresponding
field lines with the given time value.

This is not as cryptic as it might seem. In the horizontal vector field this is a simple
horizontal translation and in the rotational vector field this is a rotation of S around the
center of the vector field. Now we need a simple but essential lemma about the behavior of
boundary segments under a transformation.

Lemma 2. A boundary segment b in a shape S will not change type (positive, negative or
neutral) when S is transformed by some value t.

Proof. This follows directly from the definition of the sign of boundary points (Definition 5).
Assume that b is a positive boundary segment and let p0 be a point on b. We then know that
for an arbitrarily small disc Nr(p0) there exists at least one exterior point p′0 and at least one
interior point p′′0 in the disc such that both points are on the field line and p′0 is before p′′0.

When S is transformed the point p0 will be moved to pt. To show that pt is still a pos-
itive boundary point we need to show that an arbitrarily small disc Nr(pt) contains at least
one exterior point and at least one interior point such that both points are on the field line
and the exterior point comes before the interior point. This is clearly obtained by using the
transformation of the points from a disc sufficiently small at p0 i.e. p′t and p′′t

The immediate consequence of this lemma is that the sets S+
b and S−

b are unchanged when
S is transformed. This means that when calculating intersection areas between a shape T and
S(t) for any value t then it is the same pairs of boundary segments that are involved in the
calculation. This is an advantage if one wants to find intersection areas for a set of values of t.

Unfortunately there is a problem with transformations of S in most vector fields. The form
and the size of the shape is not preserved i.e. the distance between any pair of points in the
shape is not the same before and after a transformation. In the following we are going to focus
on vector fields that do preserve the shape.

Definition 11. A shape-preserving vector field is a vector field in which any transformation
preserves the distance between any two points.

Within the above type of vector fields, we can make a simple algorithm for two shapes S
and T which finds a good transformation of S with respect to having small overlap with T
(Algorithm 3).

A small example of this algorithm is given in Figure 4.8. The example shows two triangles
S and T in a horizontal vector field. There are 8 breakpoints and the algorithm transforms
S to each of these breakpoints to calculate the overlap with T . It turns out that a placement
with no overlap can be found.

If we assume that it takes linear time to find the boundary segments and that it takes
constant time to find the area of a region between two boundary segments then the running
time of Algorithm 3 is as follows. Let n and m be the number of boundary segments in S and T ,

42

Fast Neighborhood Search 4.3. Transformation algorithms

Algorithm 3 Simple breakpoint method

Transform S such that S(0) is before T regarding field lines.
Find sets of boundary segments Sb and Tb.
Initialize an empty set of breakpoints B.
for all a ∈ Sb do

for all b ∈ Tb do
if R(a, b) is non-empty then

Find timing value t where a and b starts intersecting.
Find timing value t′ where a and b stops intersecting.
Save the timing values t and t′ as breakpoints in B.

end if
end for

end for
Initialize the smallest overlap found, min = ∞.
for all t ∈ B do

if S(t) is within the vector field region then
Set tmp = area of S(t) ∩ T (using the Intersection Theorem).
if tmp < min then

Set min = tmp.
end if

end if
end for
Return min.

S T

a

ST

b

Figure 4.8: A small example of how the horizontal placement of S is found in relation to T
within the boundaries of a vector field region (the box) using Algorithm 3. The algorithm
will find 8 breakpoints (the lengths of the double arrows). Translating S according to each of
these breakpoints reveals a non-overlapping solution within the boundaries of the box (the last
breakpoint).

43

4.3. Transformation algorithms Fast Neighborhood Search

Figure 4.9: The horizontal position of the triangle above does not correspond to any break-
point. The area of overlap is clearly increased if the triangle is shifted left or right. Therefore
Algorithm 3 cannot find the optimal horizontal translation of the triangle (which is to leave it
where it is).

respectively, then there are O(nm) checks for breakpoints which produce at most k = O(nm)
breakpoints. For each of these breakpoints the calculation of overlap can be done in O(k) time
(only the segment pairs which also cause breakpoints need to be considered to contribute to
the overlap). This reveals a total running time of O(nm + k2) or O(n2m2) in the worst case.

Finding the overlap at a single breakpoint is worst case O(nm) which is also a lower limit
for the worst case of the problem of finding the intersection area of two polygons.

The algorithm does not necessarily find the best placement of S since this is sometimes
between two breakpoints. An example of such a situation is given in Figure 4.9. But the
algorithm still has a very nice property as the following lemma shows.

Lemma 3. Suppose we are given a vector field region in which two shapes S and T are placed.
If there exists a transformation of S, where S does not overlap T then either Algorithm 3 will
find it or it is located where S touches a limit of the vector field region.

Proof. Assume we are given a placement of S which does not overlap with T and which does
not correspond to a breakpoint as found in Algorithm 3. Then it is clearly possible to either
move S until it touches T , which corresponds to a breakpoint, or until it touches a limit of the
vector field region. In both cases no overlap is involved and the algorithm would have tried
the placement as one of the breakpoints. This contradicts the initial assumption.

The running time of Algorithm 3 is quite good when compared to a standard overlap
algorithm which could also be used at each breakpoint. An efficient implementation might run
run in O((n + m) log(n + m)) on an average basis (worst case is still O(nm)) resulting in a
running time of O(k(n+m) log(n+m)) if k breakpoints are found. Assuming k is in the order
of O(n + m) this is a running time of O((n2 + m2) log(n + m)). Algorithm 3 can handle it in
O(n2 + m2).

But in some cases we can make an even smarter algorithm. It depends on whether we
can express how the area of a given segment region grows with respect to the transformation
time t. In a horizontal vector field this reveals an algorithm which is faster than Algorithm 3
and which is guaranteed to find a minimum (Section 4.4). First we are going to present the
algorithm in a more general setting as seen in Algorithm 4.

44

Fast Neighborhood Search 4.3. Transformation algorithms

Algorithm 4 Iterative breakpoint method

Transform S such that S(0) is before T regarding field lines.
Find sets of boundary segments Sb and Tb.
Initialize an empty set of breakpoints B.
for all a ∈ Sb do

for all b ∈ Tb do
if R(a, b) is non-empty then

Find timing value t where a and b starts intersecting.
Find timing value t′ where a and b stops intersecting.
Mark the breakpoints as primary and secondary breakpoints respectively.
Save the timing values t and t′ as breakpoints in B.

end if
end for

end for
Sort the breakpoints in B in ascending order.
Initialize the smallest overlap found, min = ∞.
Initialize an intersection area function, Int(x) = 0.
for all t ∈ B do

if t is a primary breakpoint then
A new segment region is “growing”. Find a function A(x) which reflects this.

else if t is a secondary breakpoint then
An existing segment region is “changing”. Find a function A(x) which reflects this.

end if
Set Int(x) = Int(x) + A(x).
Set tmp = the minimum of Int(x) in [t, t′], where t′ is the next breakpoint.
(disregarding special cases e.g. to ensure that S is inside the vector field region)
if tmp < min then

Set min = tmp.
end if

end for
Return min.

45

4.4. Translation of polygons Fast Neighborhood Search

There are three major stages in this algorithm: Collecting breakpoints, sorting breakpoints
and iterating breakpoints. In the first stage the breakpoints are explicitly marked as either
primary or secondary. This can be useful information in the third stage, where the essence
of this algorithm lies. Unlike Algorithm 3 the breakpoints are sorted in the second stage. By
doing this the third stage becomes surprisingly easy. It turns out that we no longer need to
use the Intersection Theorem repeatedly. This is due to the fact that the involved pairs of
boundary segments at time t1 is a subset of the involved pairs of boundary segments at time
t2 if t2 > t1.

Note that for some boundary segments it might be convenient/necessary to introduce extra
breakpoints between the primary and secondary breakpoints to be able to make more changes
to the area function. But in the following we are going to assume that two are enough.

Algorithm 4 finds the transformation of S that results in the smallest possible intersection
area with T . The efficiency of the algorithm depends on how well segment region functions
can be added and how easy it is to find the minimum of the resulting function within a given
interval. Detailed examples are presented in the following sections.

Now there is one final general observation to do.

Lemma 4. There exists only two classes of two-dimensional shape-preserving vector fields
(and regions): Rotational and translational vector fields.

Proof. This follows directly from a known fact in Euclidean geometry, in which there only
exists three kinds of shape-preserving transformations: Rotation, translation and reflection.
We have already seen the vector fields related to rotation and translation. It is not possible
to construct a vector field which matches reflection. This is intuitively clear since reflection
requires one to lift the shape and turn it around which clearly requires the freedom of three
dimensions to maintain the shape in the process.

It is not unlikely that non-shape-preserving vector fields could be useful, but they are not
considered any further in this thesis.

4.4 Translation of polygons

We have already seen how to calculate the intersection area of two polygons in a horizontal
vector field. The only thing left to be able to use Algorithm 3 is to find the breakpoints
and this is a simple matter. Therefore we already have an algorithm which is able to find
non-overlapping solutions to the translation of a given polygon (if they exist).

To be able to use Algorithm 4 we need to do some additional calculations. Finding the
breakpoints is no different than before and sorting them is no problem. The new part is that
we need to find functions that tell us how the area of a region changes with translation. In
Figure 4.10 the various stages of a segment region are illustrated. It also shows the placement of
the segments at the primary and secondary breakpoints as they are described in the algorithm.
Between the primary and the secondary breakpoint the segment region is a triangular area
(Figure 4.10b). After the secondary breakpoint it changes to a trapezoidal area. We have seen
these areas earlier, but this time we need to describe the areas with respect to the time of the
translation.

The area of the trapezoid is very easy to describe. It is simply the area of the triangle in
Figure 4.10c plus a simple linear expression based on the height of the trapezoid. Using the

46

Fast Neighborhood Search 4.4. Translation of polygons

a

b

a

t′

h′

b

b

a

c

h

c

b

a

t′′

h

d

b

a

Figure 4.10: a) The segment region is empty until the primary breakpoint. b) The area
is growing quadratically between the breakpoints. c) At the secondary breakpoint the area
growth changes... d) to grow linearly.

variables shown in the figure,

As(t
′′) = ht′′ +

hc

2
,

where As is the area of the segment region after the secondary breakpoint.
The triangle is a bit harder. The important observation is that the height h ′ of a triangle

must be h
c
t′. Then it easily follows that

Ap(t
′) =

h′t′

2
=

h

2c
(t′)2,

where Ap is the area of the segment region between the primary and the secondary breakpoint.
Now the above functions depend on translation values t′ and t′′ which are conveniently

zero at the primary and secondary breakpoints respectively. To add such functions we need
to formulate them using the same translation offset value t. If we let tp, ts be the translation
distances to the involved primary and secondary breakpoints (the breakpoint time values in
the algorithm) then we can do this by simply letting t′ = t − tp and t′′ = t − ts in the above
formulas. This reveals the following two formulas for triangles and trapezoids respectively,

Ap(t) =
h

2c
(t− tp)

2 =
h

2c
(t2 − 2tpt + t2p) =

h

2c
t2 −

htp
c

t +
ht2p
2c

,

As(t) = h(t− ts) +
hc

2
= ht− hts +

hc

2
.

These functions can be added such that the result is never worse than a quadratic function for
which we can easily find a minimum.

Now, imagine we are translating a polygon P over a polygon Q to find an optimal placement
(minimum overlap). Finding the breakpoints is easy and can be done with a few comparisons
and calculations for each pair of edges (one from P and one from Q). Assume there is n
edges in P and m edges in Q. Finding the breakpoints then takes time O(nm). In the worst
case breakpoints are produces by all pairs of edges giving us k = O(nm) breakpoints. Sorting
the breakpoints takes time O(k log k). Constant work is done at each breakpoint (adding a
function and finding a minimum) and therefore the total running time will be O(nm+k log k).

47

4.5. Rotation of polygons Fast Neighborhood Search

c

No rotation

c

An optimal rotation

Figure 4.11: A simple example of a rotation yielding a placement with no overlap.

Although the above calculations are based on a horizontal translation, an algorithm for
vertical translation easily follows. Using appropriate area calculations it is possible to do the
translation in any direction. More generally it is only the area calculations that is the reason
to restrict the shapes to be polygons. Algorithms could easily be made to translate other
shapes e.g. circles, but it might not be possible to add the area functions in an efficient way
thereby complicating the calculation of overlap at a breakpoint and especially the search for a
minimum. This problem is also one of the main concerns in the following section.

4.5 Rotation of polygons

We have efficiently solved the problem of finding an optimal translation of a polygon. A very
similar problem is to find the optimal rotation of a polygon i.e. how much is a polygon to be
rotated to get the smallest possible overlap with all of the other polygons. A simple example
is given in Figure 4.11.

This problem corresponds to the rotational vector field and is basically no different than
translation apart from the area calculations. Unfortunately there are a couple of extra issues
which need to be handled.

First of all the edges of a polygon cannot be directly adopted as boundary segments since
some edges can have both positive and negative parts. These edges are quite easy to identify
and they can always be split into two parts. This is illustrated in Figure 4.12. Note that
neutral boundary segments are always singular points since a straight line can never overlap a
field line.

Another problem is that the cut line(s) can rarely be placed without cutting some polygons
(especially the one to be rotated). These shapes will then violate the condition of all shapes
being inside the vector field region. It turns out that this problem is not easily handled. In
the following, we simply assume that the cut line is placed as was shown earlier in Figure 4.4b
and that no shapes crosses this line. In practice a simple solution is to cut all polygons into
two parts at the cut line, but obviously this is not very efficient.

Polygons are normally given in Cartesian coordinates, but in the following context it will
be much easier to work with polar coordinates. The center for these coordinates are natu-

48

Fast Neighborhood Search 4.5. Rotation of polygons

Figure 4.12: If an edge passes the center of rotation perpendicularly then it must be split into
two parts. This is to ensure that all edges are positive, negative or neutral. The bold lines
above are the positive boundary segments and the dashed lines show where it is necessary to
split lines.

49

4.5. Rotation of polygons Fast Neighborhood Search

a
b

a
b

ab a

b

Figure 4.13: A segment region goes through 3 stages. 1. No overlap. 2. An almost triangular
area (see the formula in the text). 3. A concentric trapezoid.

rally placed at the center of the rotation i.e. the center of the polygon to be rotated. These
coordinates can be precalculated for the polygon to be rotated, but unfortunately they need
to be calculated for all other involved polygons. Given Cartesian coordinates (x, y) the polar
coordinates (r, θ) are given by,

r =
√

x2 + y2, tan θ =
y

x
.

Just like translation a segment region R(a, b) between two boundary segments, a and b,
goes through three different stages. These stages are illustrated in Figure 4.13 and 4.14.
These figures also show that there are two basic variations of the area between two segments
depending on how the segments meet.

An implementation of the simple breakpoint algorithm (Algorithm 3) is now straightfor-
ward. Finding the breakpoints is a question of calculating intersections between circles and
segments and area calculations does not involve much more than an intersection calculation
between boundary segments.

Now the big question is whether or not we can make an iterative algorithm as we could for
the translational problem. To do this we first need to find functions expressing the area of the
segment regions.

Area calculation is almost the same for the two basic variations. In both cases we need
to calculate the area of a circle segment1 and a triangle. This is illustrated in Figure 4.15
and 4.16. In the following we refer to the variables used in these illustrations. The easy part
to calculate is the area of the circle segment, which is simply

As(θ) =
1

2
r2(θ − sin θ).

1Given two points on a circle the circle segment is the area between the circle arc and the chord between the
two points.

50

Fast Neighborhood Search 4.5. Rotation of polygons

a

b

ab

ab a

b

Figure 4.14: The area between line segments have two basic variations. In the above example
the line segments meet first closest to the center. In Figure 4.13 it was the opposite. Note that
the areas which need to be calculated have different shapes.

θ

α
α′

γ
γ′

r
r

p

q

Figure 4.15: Variation 1 of the area between intersecting boundary segments.

51

4.5. Rotation of polygons Fast Neighborhood Search

θ

α α′

γ γ′

rr

p

q

Figure 4.16: Variation 2 of the area between intersecting boundary segments.

The pq-triangles in the figures are a bit more difficult. Let x = π−θ
2 which is the angle at

the dashed corners on the figures.
Now we need γ and γ ′ shown on the figures and they can be calculated in the following

way for both variations,
γ = |x− α|,
γ′ = |x− α′|,

Using the variables above and the sine relations the following expressions can be deduced,

p = 2r sin
θ

2
,

q = p
sin γ′

sin(γ + γ′)
,

At(θ) = pq sin γ.

Now the area between boundary segments for variation 1 is At(θ)+As(θ) and for variation 2
it is almost the same, At(θ)−As(θ). When the segments no longer intersect then a constant can
be calculated e.g. by using the above formulas and then a linear expression must be added. If
θ is the rotation since the second breakpoint and r1 and r2 are the radii to the two breakpoints
(r2 < r1) then it can be expressed as

A(θ) =
1

2
(r2

1 − r2
2)θ.

The functions needed to describe these areas vary a lot in complexity and this affects the
running time of a rotational variant of Algorithm 4. The functions are not easily added with
the exception of the linear expressions and finding the minimum between two breakpoints is
far from trivial. We are not going to pursue this subject any further in this thesis.

52

Chapter 5

Miscellaneous Constraints

5.1 Overview

Until now we have shown how to handle a quite general nesting problem allowing free trans-
lation, rotation and flipping. As mentioned in Chapter 2 there can be a multitude of extra
constraints for an industrial nesting problem depending on the industry in question. We be-
lieve that our solution method can handle many of these constraints without a lot of hassle.
To substantiate this claim this chapter will present and discuss various constraints. For most
of them this includes a description of how to incorporate them to be handled by our solution
method. Some of them will also be part of our implementation.

Note that the majority of solution methods in the existing literature can only handle few
of the following constraints. And more importantly, it is most often very unclear how they can
be adapted to allow more constraints. This is especially true for the legal placement methods.

Also note that not all of the following are constraints in a strict sense. Some are better
described as variants of the nesting problem which require special handling.

• Stencil shapes.
The shapes of the stencils are never a problem. Any shape can be approximated with
a polygon which we are able to handle. It can also have holes since this is clearly no
problem for the translation and rotation algorithms.

Note that it could be advantageous to preprocess holes in polygons filling them as densely
as possible. This could be stated as a knapsack problem and would afterwards make the
remaining problem easier.

• Fixed positions.
Sometimes it is convenient to fix the position of a stencil. This is no problem for GLS
since the offsets of the stencil can be set to the desired position and then never changed
again while still including the stencils in any overlap calculations with other stencils.

• Material shape.
In some cases the material needs to have an irregular shape. Combining the two first
constraints this turns out to be an easy problem. Simply make a stencil corresponding
to a hole and fix its position.

• Correspondence between stencils.
In the textile industry the garment could have some kind of pattern. To allow this

53

5.1. Overview Miscellaneous Constraints

a b

Figure 5.1: Examples of patterns and stencils requiring special attention due to pattern re-
quirements. a) The two shapes can be freely translated vertically, but horizontally they have
to follow each other if their patterns are supposed to be the same. b) If the shape needs to
have the pattern in a certain way then it can only be translated to positions where the pattern
is repeated.

pattern to continue across a seam it might be necessary to fix two or more stencils to
always being moved the same amount horizontally and/or vertically. It might even be
necessary to rotate them by the same amount. An example is given in Figure 5.1a.

For our solution method this is simply a question of involving more stencils in the trans-
lation/rotation algorithms.

• Pattern symmetries.
In some cases, the placement options of stencils might be limited to some fixed set. The
reason could (again) be patterns in a garment and the desire to get specific pattern
symmetries or pattern continuations at seams.

It is no problem for our translation algorithm to handle this. Just avoid finding the true
minimum and instead find the minimum among the legal set of translations. This can
e.g. be done by introducing special breakpoints corresponding to the distances for which
overlap calculations must be done. Intervals could also be handled if necessary.

• Limited rotation angles.
Some nesting problems might only allow a fixed set of rotation angles. This is most often
the case in the textile industry since most kinds of fabric have a grain. Though often
some level of “fine tuning” is allowed i.e. a rotation within e.g. [−3◦, 3◦].

No matter what sets or intervals of rotation angles are allowed it is no problem to handle
in the rotation algorithm.

• Quality areas.
In some cases, material and stencils can be divided into regions of different quality and
quality requirements (respectively) with the purpose that a legal placement adheres all
quality requirements. An example and a surprisingly easy way to handle this can be
found below in Section 5.2.

• Margins between polygons.
Some cutting technologies require a certain distance between all stencils. This seems to
be a quite easy constraint since polygons can simply be enlarged by half the required

54

Miscellaneous Constraints 5.1. Overview

distance, but it turns out that there is a few pitfalls. This is described and handled in
Section 5.3.

• Folding.
Now, imagine a sheet of fabric which is folded once. Some symmetric stencils can be
placed at the folding such that only half of it is visible on the upper side i.e. only half
of it is involved in the nesting given that it is placed somewhere along the folding. In
some cases this might allow better solutions to be found. It is also possible to allow
non-symmetric stencils to be placed at the folding, but it will invalidate other areas of
the fabric and it will complicate the cutting process.

Our algorithm easily allows a stencil to only being allowed to be moved along the folding,
but the difficulty lies in deciding when it is profitable to do so. We are not going to handle
this constraint.

• Stencil variants.
In the textile industry some stencils can be allowed to be divided into two (or more)
parts since they can be stitched together at a later stage. Naturally they fit very well
together so it might not be an advantage to split them since it also makes the problem
harder (more stencils).

This is also very close to the concept of meta stencils suggested by various authors [4, 1]
i.e. the pairing of stencils to reduce the complexity of the problem. Dynamic pairing
and splitting of stencils is probably an improvement to most solution methods, but the
strategies for finding good pairings are not trivial. We are not going to discuss it any
further in this thesis.

The final couple of items in this list is not really constraints. They are variations of the
nesting problem, which are both interesting and very relevant in some industrial settings.

• Repeated pattern nesting.
This variant of strip packing was mentioned in Chapter 2. We are now ready to discuss
it in more detail in relation to our solution methods. Repeated pattern nesting allows
stencils to wrap around the edges of the material. The reasoning for allowing this is
that sometimes one needs to nest a few stencils which is then going to be cut repeatedly
from a long strip of material. An example is given in Figure 5.2. Note that the height
is fixed in the example. One could also allow the pattern to repeat both vertically and
horizontally.

It is surprisingly “easy” to alter our solution method to allow repeated patterns. Trans-
lation becomes similar to rotation in the general case since rotation already works with a
repeated pattern. If the material is wrapped around a cylinder this becomes even more
evident. Minor issues must also be handled e.g. to handle rotation, but there are no
serious problems with the repeated pattern variation of strip packing. Not even if one
wants to do it both horizontally and vertically.

• Minimizing cutting path length. When an efficient nesting has been found and it is ready
for use, another interesting problem turns up. The stencils now need to be cut out of the
material, which can happen in different ways depending on the material and the cutting
technology. Metal can in some cases be punched out of the material, but often some kind

55

5.2. Quality areas Miscellaneous Constraints

Pattern width

Figure 5.2: An example of repeated pattern nesting in 1 dimension. The pattern width is to
be minimized, but unlike strip packing the stencils can wrap around the vertical limits.

of laser, water or plasma cutter is used. Other technologies apply in the textile industry,
but most often there is a need for a cutting path. To save time it is important that the
cutting path is as short as possible.

The length of the cutting path depends on the placement found in the nesting process.
One of the original goals of this thesis was to examine whether the minimization of
the cutting path length could be integrated with the nesting algorithm. This goal was
discarded in favor of 3D nesting, but in Section 5.4 we describe an algorithm to simply
find the shortest cutting path for a given placement.

5.2 Quality areas

The leather nesting industry poses one of the most interesting constraints. Imagine that we
are going to make a leather sofa and that we are given an animal hide so that we can cut out
the needed parts. The animal hide is of varying quality and we need to make sure that the
good areas of the hide are used in the most demanding areas of the sofa.

Now assume that the animal hide can be divided into a number of areas which correspond
to different quality levels Q1, ..., Qn. Assume that Q1 is the best quality. If we divide the
stencils into areas of minimum required quality levels then we can formulate the problem we
need to solve: Pack the stencils within the material (the animal hide) so that no stencils overlap
and so that the quality requirement Qi of any part of any stencil is the same or worse than the
quality of the material Qj i.e. i ≥ j. An example of a piece of material with different levels of
quality is given in Figure 5.3.

Although this seems like a complicated problem, it can actually be solved with the help of
the constraints already described by doing the following.

• Divide each stencil into a set of stencils corresponding to each quality area. Fix the
interrelationship of these stencils i.e. when one is moved/rotated then the others follow
(they should have a common center for rotation).

• Add a stencil with fixed position corresponding to each quality area of the material.

• Alter the transformation algorithms to only include segment pairs which violate the
quality requirements.

56

Miscellaneous Constraints 5.3. Margins between polygons

Q1

Q2

Q3

Q4

Figure 5.3: A piece of material, e.g. an animal hide, can have areas with different levels of
quality. The stencils to be placed can have different quality requirements — even a single
stencil can be divided into areas with specific quality requirements.

5.3 Margins between polygons

Some cutting technologies require a certain distance between the stencils as illustrated in
Figure 5.4a. In the following we will assert that the required distance between any pair of
polygons is the same. This assertion is essential for all results in this section.

5.3.1 A straightforward solution

The obvious way to get around this requirement is to enlarge all stencils by adding a margin
which has half the width of the required distance. This is e.g. suggested by Heckmann and
Lengauer [35] in an article focused on the textile industry, but they do not specify how to do
this in practice. They simply state that one should calculate an enclosure where all edges have
a distance of at least half of the required distance from the edges of the original stencil.

Their illustration of such an enclosure seems to indicate that they do this as illustrated in
Figure 5.4a. Each edge in the original stencil is translated half the required distance between
stencils and these edges are then stretched/shortened to make the enclosure. It is quite easy
to calculate the corner points of this enclosure, but it is also obvious that this enclosure is
not a perfect approach. This is emphasized in Figure 5.4b where two stencils are forced to be
farther apart than necessary. The angle α determines how much farther. This is illustrated in
Figure 5.5a where the distance x can be expressed as:

x = M

sin(α

2)
, 0 < α ≤ π

x = M

sin(α−π

2)
, π ≤ α < 2π

57

5.3. Margins between polygons Miscellaneous Constraints

α

a b

Figure 5.4: a) A simple enlargement of two polygons can guarantee some required minimal
distance between them. b) A simple enlargement can force polygons to be farther apart than
necessary

α
α

2

x

M
α

a b

Figure 5.5: a) The distance x should be close to the distance M , but this is clearly not the
case. b) The problem can be solved by rounding the corners

58

Miscellaneous Constraints 5.3. Margins between polygons

The value M is the width of the added margin to the stencil and optimally x should have
the same value. Unfortunately x → ∞ when α → 0. The same is true for α → 2π, but this
is not the only problem with the latter formula since it is actually not correct. When α > π
(concave corners) the length of the neighboring edges also need to be taken into account. At
this point it only causes the enlargement to be bigger than necessary (not always), but later
it even causes too small enlargements. We will deal with it then and show a different way of
handling the concave corners.

5.3.2 Rounding the corners

In the following we are focusing on the case of α < π. An optimal enclosure, i.e. an enclosure
that does not remove any configurations from the set of legal solutions, must have rounded cor-
ners as illustrated in Figure 5.5b. The rounding of a corner is simply a circular arc with radius
M . Unfortunately we only allow polygons and therefore we need to make some approximation.
We have three objectives for this approximation.

• It must contain the optimal enclosure.

• It should be as small as possible.

• It should introduce as few new vertices as possible.

In other words, we need to maximize the effect of using extra vertices. If we only use 1
vertex at a given corner then its optimal position will be as already shown in Figure 5.5a. The
angle at this new corner is identical to the angle α in the original stencil. When using more
than 1 vertex then we would like the new angles to be as large as possible. It turns out that
this can be done quite easily as illustrated in Figure 5.6.

The span of the round corner is α′ = π−α and given V extra vertices we get x = α′

V
. Now

due to the right angles it can easily be shown that all the new angles are π− x = π− α′

V
. The

distance from the original corner point to each of the new corner points are the same and using
sine relations this can be expressed as M

sin(π−x

2
)
.

5.3.3 Self intersections

The above approach works fine when observing a single corner point, but problems arise when
we look at the entire polygon. The first problem is quite obvious. Some polygons when enlarged
will self intersect. This is a problem which can basically be solved in two ways. Either the self
intersections are removed or else they are ignored. If they are ignored then all other algorithms
will be required to work correctly with self intersecting polygons.

The second problem is a bit more subtle. When enlarging a polygon the rounded corner
of a convex corner can interfere with a concave corner in such a way that the polygon is not
only self intersecting — it also no longer contains the optimal enclosure. An example can be
seen in Figure 5.7a. The problem is caused by the assumption that all of a rounded corner is
part of an optimal enclosure. The easiest way to avoid this problem is to add two vertices for
each concave corner as illustrated on Figure 5.7b. They are placed with a distance of M in
perpendicular directions to the two neighboring edges.

Now an algorithm can round the convex corners freely, place two points for each concave
corner and finally remove the self intersections. Note that this algorithm is stated without
proof of correctness.

59

5.3. Margins between polygons Miscellaneous Constraints

x

α

x

α

x

α

x

α

Figure 5.6: Examples of approximated rounded corners using 2, 3, 4 and 8 extra vertices. The
dashed circular arc is the optimal enclosure.

60

Miscellaneous Constraints 5.4. Minimizing cutting path length

a b

Figure 5.7: a) A naive rounding of corners can cause the resulting polygon to be illegal in the
sense that the margin is no longer guaranteed. b) A subtle fix to this problem is the addition
of two points for each concave corner (and a removal of the self intersection.

5.4 Minimizing cutting path length

When given a legal placement the problem of finding a short or even the shortest cutting path
is a natural next step. In the following we will shortly describe how hard this problem is and
how it can be solved.

Clearly all line segments in a given placement p must be cut. Now let Gp be the graph
containing all of the lines which need to be cut as edges and all endpoints of lines as nodes.
Edge weights are the Euclidean distances. Some line segments can overlap and thereby only
need to be cut once. Assume that these have been combined in Gp such that all edges are
unique. An example of this simple transformation is given in Figure 5.8a and b. Note that in
practice precision problems can make it difficult to find overlapping lines.

Now, assume that this graph is connected which it certainly will be if it is a good solution
to a nesting problem. A shortest cutting path might involve lines not present in this graph,
but first we assume that the problem we need to solve is to find a path in this graph which
visits all edges at least once. We would also like the path to end where it started although this
might not be important in some cases. This problem is known as the Chinese postman problem
(CPP) and it can be solved in polynomial time as shown by Edmonds and Johnson [27]. If
all nodes have even degrees then it is even easier. This is one of the oldest problems in graph
theory: Finding an Euler tour [30, 27], which is a very simple problem and a solution will only
visit each edge exactly once. Therefore nothing would be gained by introducing new edges.

Most often all nodes do not have even degrees which means that a shorter path might
be found by introducing new edges in the graph corresponding to moving the cutting head
without cutting.

If we assume the graph is connected then the extra edges can be reduced to the edges that
remains to make Gp a full graph. Any other edges would have to at least have one end on an
existing edge creating a node of degree 3. The degree of any node must be even in a solution
and therefore yet another edge must be connected to this node. Two non-cutting edges are
now connected to this node which means that they could just as well be connected directly
leaving the edge as it was.

61

5.4. Minimizing cutting path length Miscellaneous Constraints

a b c d

Figure 5.8: Various steps in the process of finding a shortest cutting path. a) A given nesting
solution. b) A graph corresponding to the edges which need to be cut. c) The odd nodes of
the graph with all vertices connected. The thick lines show a minimal 1-matching. d) The
edges from the 1-matching is added to the original graph revealing a graph with even nodes
only. A solution is now easily found.

The problem we end up with is a full graph where a cyclic path has to be found which
must include a connected subset of the graph. This problem is a restricted version of the rural
(Chinese) postman problem (RPP) and this is in general an NP-hard problem [42], but if the
subgraph Gp is connected then the problem essentially reduces to CPP [29] i.e. it can be solved
in polynomial time using almost the same algorithm as for CPP [27] (actually the algorithm
is even simpler because we are using a full graph with Euclidean distances). Four steps are
necessary:

1. Generate a new full graph Godd with the odd nodes from Gp (Figure 5.8c).

2. Find a minimum 1-matching of Godd (a 1-matching is a subset of edges of Godd such that
each node is connected to exactly one of these edges).

3. Add the edges from the 1-matching to the original graph Gp to make a new graph G′
p

(Figure 5.8d).

4. Find an Euler tour in G′
p.

The hardest step is the second step, but according to Cook and Rohe [15] a 100000 node
geometric instance can be solved in about 3 minutes on a 200 MHz Pentium-Pro.

The following observations have also been made regarding the cutting path. If a placement
consists of highly irregular shapes which rarely share edges then the graph will have very few
odd nodes making the problem very easy. If the graph is disconnected (e.g. because of some
margin requirements for the solution) then not only is the problem NP-hard, the additional
edges are not necessarily between nodes either. Finally, in practice it might take time to switch
the cutting machine on and off making it more expensive to add non-cutting lines. It might
also take extra time to turn at corners.

62

Chapter 6

3D Nesting

6.1 A generalization

As noted earlier our fast translation/rotation methods are not restricted to two dimensions.
In this Chapter we will describe this in more detail, but we will not generalize the proofs from
Chapter 4.

Shapes in three dimensions can be defined just like we did for shapes in two dimensions
i.e. a 3D-shape is a volume in R

3 with all boundary points in contact with the interior. It
does not have to be a connected volume and it can contain holes (see a selection of objects in
Figure 8.7). Boundary segments are replaced by boundary surfaces, segment regions (areas)
are replaced by surface regions (volumes) and so forth. It is straightforward to design 3D-
algorithms to translate in the x, y or z direction and to rotate around two axes which would be
enough to generalize the two-dimensional neighborhood. The only problem is the calculation
of the volumes between surface regions.

To keep things simple we are going to focus on translation and we are only going to handle
polyhedra. These polyhedra must have convex faces (there is no problem in theory, but it will
simplify an implementation). The boundary surfaces of a polyhedron is simply the faces of the
polyhedron. Whether a boundary surface is positive or negative can be determined from the
normal of the face. This naturally requires that the faces are all defined in the same direction
related to the interior of the polyhedra.

Our only real problem is to calculate the region volume R(f, g) between two faces f and g
when given a translation direction. This is the subject of the following two sections. The first
section presents a simple approach (in theory) to the problem and in the second section this
approach is refined to be more efficient.

6.2 The straightforward approach

Assume that translation is done along the direction of the x-axis. An illustration of a region
volume is given in Figure 6.1. Note that the volume will not change if we simplify the faces
to simply being the end faces of the region volume. This can easily be done by projecting the
faces onto the yz-plane, find the intersection polygon and then project this back onto the faces.
We can even take this one step further by triangulating the intersection polygon. This way
we have reduced the problem to the calculation of the region volume between two triangles in
3D-space, and we know that the three pairs of endpoints will meet under translation. Sorted

63

6.2. The straightforward approach 3D Nesting

Translation direction

Figure 6.1: An illustration of the region volume between two faces. The faces are not necessarily
parallel, but the sides of the region volume are parallel with the translation direction. The
region volume would be more complicated if the two faces were crossing.

according to when they meet we will denote these the first, second and third breakpoint.

An illustration of the translation of two such triangles is given in Figure 6.2. Such a
translation will almost always go through the following 4 phases.

1. No volume (Figure 6.2a).

2. After the first breakpoint the volume becomes a growing tetrahedron (Figure 6.2b).

3. The second breakpoint stops the tetrahedron (Figure 6.2c). The growing volume is now
a bit harder to describe (Figure 6.2d). We will take care of it in a moment.

4. After the third breakpoint the volume is growing linearly. It can be calculated as a
constant plus the area of the projected triangle multiplied with the translation distance
since the corner points met.

We have ignored the special cases of pairs of corner points meeting at the same time. If the
faces are parallel then we can simply skip to phase 4 and use a zero constant. If the two last
pairs of corner points meet at the same time then we can simply skip phase 3. The question
is, what to do if the first two pairs of corner points meet at the same time? The answer is to
skip phase 1 and the reasoning is quite simple.

Figure 6.2c illustrates that it is possible to cut a triangle into two parts which are easier
to handle than the original triangle. The upper triangle is still a growing tetrahedron, but the
lower triangle is a bit different. It is a tetrahedron growing from an edge instead of a corner
and it can be calculated as a constant minus the area of a shrinking tetrahedron.

The basic function needed is therefore the volume V (x) of a growing tetrahedron (a shrink-
ing tetrahedron then follows easily). This can be done in several different ways, but one of

64

3D Nesting 6.2. The straightforward approach

f
g

a

f
g

b

f

g

c

f

g

d
x

y

z

Figure 6.2: The x-translation of a triangle f through another triangle g, where the triangles
have the same projection onto the yz-plane. The region volume R(f, g) changes shape each
time two corner points meet.

65

6.2. The straightforward approach 3D Nesting

a = (x, 0, 0)

xc
xb

Figure 6.3: The volume of the above tetrahedron can be calculated from the three vectors a,
b and c. In our case b and c are linearly dependent on x which is the length of a (and the
translation distance since the tetrahedron started growing).

them is especially suited for our purpose. The following general formula can be used if given
three vectors a,b, c from one of the vertices of the tetrahedron,

V =
1

3!
|a · (b× c)|.

In our case one of the vectors is parallel to the x-axis corresponding to the translation direction.
An example of three vectors is given in Figure 6.3.

Now, since all angles in the tetrahedron are constant when translating, then the length of
all the vectors must be proportional. This is indicated in the drawing where x is the amount
of translation. The vectors b and c do not change direction under translation, but are simply
scaled by the value x. Using the formula above, we can derive the following formula for the
change of volume when translating:

V (x) =
1

3!
|a · (xb× xc)|

=
1

3!

∣

∣

∣

∣

∣

∣

x3

1
0
0

 ·

bx

by

bz

×

cx

cy

cz

∣

∣

∣

∣

∣

∣

=
1

6

∣

∣(bycz − bzcy)x
3
∣

∣ .

This function is not quite useful yet since it is based on the assumption that the translation
is 0 when x = 0. We need to allow a translation offset t by replacing x with x− t.

V (x) =
1

6

∣

∣(bycz − bzcy)(x
3 − 3tx2 + 3t2x− t3)

∣

∣ .

Now it is a simple matter to use Algorithm 4 in Chapter 4 for translating 3D objects.

66

3D Nesting 6.3. Reducing the number of breakpoints

Now let us take a quick look at the running time. The volume function is a cubic equation
for which addition and finding minimum are constant time operations. Assume we are given
two polyhedra with n and m faces respectively (with a limited number of vertices each), then
the running time of a 3D variant of Algorithm 4 would be O(nm + k log k) given that k
intersecting pairs of faces are found. This is no different than the 2D variant for polygons.
Naturally, the constants involved are quite a bit larger. Reducing the size of the constants
considerably is the subject of the next section.

6.3 Reducing the number of breakpoints

The reader should now be convinced that translation in three dimensions will work, and so
we go on to describe an alternative approach for the actual implementation — this method is
without a triangulation step and thus will often result in fewer breakpoints. The faces are still
required to be convex.

We first provide a view of how it works and afterwards we will derive the third degree
polynomial for a growing pentahedron, as this turns out to be required in addition to the
growing tetrahedron.

As with the previous method we only look at two faces, the face which is being translated,
denoted “the moving face”, and a face which our moving face will gradually pass through,
denoted “the static face”.

We start by finding the two end faces of the region volume as previously illustrated in
Figure 6.1. As described earlier this can easily be done by projecting the faces onto the plane
perpendicular to the translation axis, finding the intersection polygon, and then project this
back onto the faces.

We define the 2D intersection polygon to be P . Furthermore we call the 3D projection of
this polygon onto the moving face MP and onto the static face for SP .

The breakpoints can be found as the distance between equal (on the two axes not being the
axis of translation) points in MP and SP . We denote these b0, b1, . . . , bn enumerated according
to their relative distance, i.e. b0 is the first breakpoint and bn is the last.

Since both MP and SP are end faces of the region volume then we can settle by looking at
the intersection process of these two polygons (rather than the actual faces intersecting).

Two non-parallel planes will intersect each other in one unique line, see Figure 6.4. On the
two planes we have placed MP and SP to show that the same is true for these two (convex)
polygons, as long as we are in the interval where the two polygons are passing each other
(t ∈ [b0, bn]).

If MP and SP are parallel then the interval of passing is zero (b0 = bn), and we simply skip
the following and jump directly to the linearly growing volume.

As we move MP along the translation axis, the line of intersection will also move (its length
as a piecewise linear function). To simplify things we will start by looking at a polygon in
2D corresponding to the projection of MP (or SP) along the translation axis. At time b0 this
polygon is a single point (the point in P from which b0 was calculated), see Figure 6.5a, at
time bn the polygon is P (Figure 6.5c) and at time bi the polygon is given by all points in P
for which the derived bj is less than bi (Figure 6.5b).

We focus on this line of intersection (which we refer to as L) and note that it will go from
breakpoint to breakpoint in ascending order, until it has left the polygon entirely. Remember
that the polygon is convex i.e. L can intersect at most 2 breakpoints at the same time.

67

6.3. Reducing the number of breakpoints 3D Nesting

Figure 6.4: Just like two non-parallel planes have a single unique line in common so will two
crossing faces have a unique line segment in common.

b0

b1

b2

b3

b4

a

b0

b1

b2

b3

b4

b

b0

b1

b2

b3

b4

c

Figure 6.5: This is a 2D illustration of the process of two faces (with identical 2D projections)
passing each other. The dashed line is the line of intersection from Figure 6.4. a) The first
breakpoint when the two faces meet for the first time. b) At b2 the projected polygon is
given by all previous breakpoints and the intersection line. c) At b4 the two faces have passed
through each other entirely.

68

3D Nesting 6.3. Reducing the number of breakpoints

b0

b1

vl vr

a

vl

vr

b

b0

b1

Figure 6.6: Two situations need to be handled at the initial breakpoint. a) The intersection
line meets a single breakpoint b0 and “grows” a triangle. b) The intersection line meets two
breakpoints simultaneously and “grows” a quadrilateral.

b0

b1

vl

vr

v

Figure 6.7: At each breakpoint after the initial breakpoint(s) the shape changes. This can be
handled subtracting a new growing area (dark area) from the existing growing area (light and
dark area).

Initially one of two situations can arise. Either we have a unique first breakpoint, or we have
two. What happens in both situations is that the edges moving away from the breakpoint(s)
(oriented toward the direction of L) will start to build P . The two situations are illustrated
in Figure 6.6 — we denote these two edges (vectors) vl and vr.

Since P is convex then we know that all points passed by L would be contained in the
triangle or quadrilateral spawned above (if vl and vr were scaled to intersect L).

While vl and vr follows the exterior of P then we can easily calculate the correct area of the
polygon we are building, and even create a closed formula expressing this area as a function of
x. But at the next breakpoint this property no longer holds. What happens is that the edge in
P which follows vl (on the illustration, the following would also work if it had been vr) stops,
and is replaced by a new one which we denote v. If we continue to grow vl then the area will
be too large, and exactly how much is given by the triangle spawned by vl and v (starting
at the new breakpoint). To compensate we simply express this area as another function of x
and subtract it from the first one (when we encounter this breakpoint). An illustration of this
negation of area can be seen on Figure 6.7.

We iteratively repeat the previous step with v substituted for vl (or vr) until we reach bn,
at which point we have covered the entire polygon.

The jump back to 3D can be done by realizing that what we express here is really just slices

69

6.3. Reducing the number of breakpoints 3D Nesting

x x

v0

v1

p0 p1

d0

d1

Figure 6.8: It is necessary to also be able to calculate the volume of a growing pentahedron
as the one above. Note that x is a vector parallel to the x-axis. Its length is the translation
distance.

added to the volume. By adding a vector parallel to the translation axis to each breakpoint
(which also grows as a function of x), then instead of letting the triangle express the area for
a given slice, then the tetrahedron will express the volume at that time.

We have already shown that the volume of a tetrahedron can be expressed as a third degree
polynomial, but in the situation where we have two initial breakpoints with same offset, then
we spawn a quadrilateral, and if we add vectors to the two breakpoints then we have 9 vectors,
6 vertices and 5 faces. This forms a pentahedron and knowing the rate of growth for the vectors
we can arrive at a third degree polynomial.

First we remember that the area of a quadrilateral can be found as

A =
1

2
n · |d0 × d1| ,

where n is the normal and d0,d1 are the two diagonals in the quadrilateral.
What we have is the two starting points of the pentahedron (p0, p1) and four vectors

(v0,v1 and two times x) starting at these points (two from each). The two points are static
and the four vectors are all growing relatively to x. The x vector is parallel to the translation
direction. If we set x = (1, 0, 0) then the two diagonals of the quadrilateral in the “back” of
the pentahedron can be expressed with the translation distance x (see Figure 6.8)

a = p0 + xv0, b = p0 + xv1

c = p1 + xx, d = p1 + xx

d0 = a− c, d1 = b− d

= (p0 + xv0)− (p1 + xx), = (p0 + xv1)− (p1 + xx)

= p0 − p1 + x(v0 − x), = p0 − p1 + x(v1 − x)

= k0 + x(k1), = k0 + x(k2).

So we get,

A(x) =
1

2
n · |(k0 + x(k1))× (k0 + x(k2))|

70

3D Nesting 6.3. Reducing the number of breakpoints

Now A(x) is not entirely what we need, because x is not necessarily the height of the
volume. The height h of the volume is linearly dependent on x and can easily be found i.e. we
know h = sx for some constant s. Using this constant the following formula can be derived
for the volume of the pentahedron,

V (x) = s

∫ x

0

1

2
n · |(k0 + x(k1))× (k0 + x(k2))| .

Finally there’s just the question of what to do in the final breakpoint. Here the faces have
fully passed each other, and thus the region volume will continue to grow following this formula
V (t2) − V (t1) = A(P)(t2 − t1) — what we do is simply to replace the previous formula with
the one just given.

71

6.3. Reducing the number of breakpoints 3D Nesting

72

Chapter 7

Implementation Issues

7.1 General information

The implementation consists of two programs with the imaginative titles 2DNest and 3DNest

— both around 3000 lines of code written in C++ making use of the standard template
library (STL). They are for the most parts platform neutral, but for visualization we have
used OpenGL and GLUT for 3DNest and the native GUI of Mac OS X for 2DNest, but
they can both be used without their graphical interfaces. 2DNest is also able to output the
solutions in postscript instead of on-screen.

The following sections describe various aspects of the implementations, starting with a short
description of the available parameters for 2DNest. After that Sections 7.3 and 7.4 cover some
key aspects of the implementation of GLS and the neighborhood search. Section 7.5 describes
how to handle irregular materials and finally Section 7.6 describes a speed improving method
attempted in the implementation. Section 7.7 is just a short note on how to best find the
center of rotation for a polygon.

7.2 Input description

We have used XML as the input file format for 2DNest to specify a problem instance. This
was chosen to provide flexibility throughout the life-time of the project and it has proven to be
able to handle all of the changing requirements of our implementation. We have created tags
in this format to represent arrays, associative arrays, floats, integers and strings. This allows
us e.g. to have a polygon defined as an associative array with a key for the vertices (stored in
an array) and other keys for other properties of the polygon. An example of an input file is
given in Figure 7.1.

3DNest uses a de-facto input format from the rapid prototyping industry. The format
is called STL which is an acronym for stereolithography. This is one of the earliest rapid
prototyping techniques. The format is very simple and only contains a list of triangles and a
face normal for each of them (one object per file).

7.3 Slab counting

In the penalty step of GLS we need to calculate a utility function for each pair of polygons,
which is basically a scaling of the intersection area of the two polygons in question. This would

73

7.3. Slab counting Implementation Issues

<dict>

<key>Height</key>

<float>30</float>

<key>Width</key>

<float>30</float>

<key>Polygons</key>

<array>

<dict>

<key>Label</key>

<string>Triangles</string>

<key>Vertices</key>

<array>

<float>0.0</float> <float>0.0</float>

<float>5.0</float> <float>0.0</float>

<float>2.5</float> <float>2.5</float>

</array>

<key>RequiredQuality</key>

<integer>1</integer>

<key>Quantity</key>

<float>40</float>

</dict>

<dict>

<key>Label</key>

<string>Frame</string>

<key>OffsetX</key>

<float>5</float>

<key>OffsetY</key>

<float>5</float>

<key>FixedPosition</key>

<integer>1</integer>

<key>QualityLevel</key>

<integer>2</integer>

<key>Vertices</key>

<array>

<float> 0.0</float> <float> 0.0</float>

<float>20.0</float> <float> 0.0</float>

<float>20.0</float> <float>20.0</float>

<float> 0.0</float> <float>20.0</float>

</array>

</dict>

</array>

</dict>

Figure 7.1: An example of an input file for 2DNest.

74

Implementation Issues 7.3. Slab counting

amount to calling our intersection area function n2 times. Not only is calculating the area of
intersection for two polygons expensive, but it is also highly redundant, because most polygons
should not overlap at all (remember that the penalty step is applied after running FLS). This
is why it would be desirable to have knowledge about exactly which pairs overlap, and it is
the topic of this section.

To keep things simple, the focus in this section will be on translation, but the discussion
(and the algorithm) is also relevant for rotation.

There is at least two ways this knowledge can be stored/represented. Either as an n × n
matrix of boolean variables (indexes into the matrix would be the two polygons) or as a set
containing only the pairs that overlaps. The latter method will (except for worst-case scenario)
be faster to traverse/exhaust in the penalty step, since the working set is assumed only to
contain a few polygons. But the former has the clear advantage of allowing overlap-state
changes in constant time, which is assumed to be the dominating operation for this cache.

When we step through the breakpoints as described in Algorithm 4 then we maintain a
function that expresses the overlap of the translated polygon with all other polygons (for a
given position). This function is the sum of several functions, each provided by one of the
polygons being passed, and each function being the expression for the overlap of a single edge
from that polygon.

Since the sum of all functions provided by one polygon evaluates to the overlap with only
that polygon, we can keep this sum of functions separately for each polygon. Each time a new
contribution is added, then we check if the function changes from or to zero, which should only
happen when we enter or leave a polygon entirely.

This can be done without affecting the overall time-complexity of stepping through the
breakpoints, since at each breakpoint it is only necessary to update one function (plus the sum
of all functions) which can be done in constant time.

This approach will require that we introduce an epsilon, since the precision provided by
floating points is not sufficient, and this may also open up the door to illegal solutions (although
only with very small overlaps).

Alternatively we can look at the individual edges. We know if we sweep a line across a
polygon then all positive edges will be “canceled” by negative edges. This follows from the
alternating property in lemma 1 and it implies that it might be possible simply to count
positive and negative edges as a part of Algorithm 4 and thereby be able to determine whether
two polygons overlap. Unfortunately there is no 1:1 mapping of these edges, but if we focus
on the sum of heights of the positive edges and the sum of heights of negative edges, then we
can see that these must also be equal. More precisely, if we encounter a positive edge with a
height of a, then we must also encounter negative edges that together span the same height.
Should we meet further positive edges, before the first one is canceled, then these also need to
be canceled.

A simple example of using the above property is shown in Figure 7.2. Only positive edges
meeting negative edges and vice versa is counted in the example. This is sufficient to determine
overlap. Note, that we do not give any formal proof of this algorithm.

This is better than having to test the intersection function for a zero result, but since edge
heights are represented in floating points then we may still have a precision problem, which is
why we wish to map the heights of edges to integers.

Given n edges we have 2n vertices (not necessarily unique) and thus there can be at most
2n different vertical positions, yi, for these vertices. If we enumerate them in ascending order
with respect to yi, then we have our mapping. The height can now be obtained using the

75

7.3. Slab counting Implementation Issues

a

b

c d

e

f

g

a b

c d

a

b

c d

e

f

g h+

1

a

b

cd

e

f

g h+

1

h−2

a

b

cd

e

f

g h+

1

h−2

h−3

h−4

Figure 7.2: A simple example of using the height of slabs to determine overlap. a) Two polygons
are given. Positive edges are bolded. b) The first breakpoint is when the negative edge a starts
crossing the positive edge g. The height of their overlap is h+

1 c) The second relevant breakpoint
is when the positive edge c stops crossing edge d. The height of their overlap is h−2 . d) The
last relevant breakpoints is when the positive edges b and c stops crossing edge e. The heights
of their overlaps are h−3 and h−4 . It is easy to see that h+

1 − (h−2 + h−3 + h−4) = 0, which means
that there is no longer any overlap.

76

Implementation Issues 7.4. Incorporating penalties in translation

mapped coordinates, and these heights will always be integers.
Since we split the plane into slabs (of different heights) then we refer to the height of an

edge, in the mapped slab-coordinates, as slab count, since it is in fact just the number of slabs
that the edge spans.

Algorithm 5 shows how to calculate the slab counts with respect to horizontal translation.
Calculating the slab counts for vertical translation is only a matter of using horizontal positions
instead of vertical positions.

Algorithm 5 Slab counting

Input: An array of breakpoints, Breakpoints, each having MinY,MaxY values
corresponding to the vertical extent of overlap of the involved lines.
Initialize a sorted set, Y Positions. Initially empty.
for i = 1 to Breakpoints.size do

Y Positions.add(Breakpoints[i].MinY).
Y Positions.add(Breakpoints[i].MaxY).

end for
Initialize an empty mapping set, Y ToSlab.
for i = 1 to Y Positions.size do

Y ToSlab[Y Positions[i]] = i.
end for
for i = 1 to Breakpoints.size do

minY = Breakpoints[i].MinY .
maxY = Breakpoints[i].MaxY .
Breakpoints[i].SlabCount = Y ToSlab[maxY]− Y ToSlab[minY].

end for

The algorithm has 3 loops running O(k) iterations each (k being the number of break-
points). If we assume that the mapping Y ToSlab uses perfect hashing then access to members
is constant and thus the two latter loops run in O(k) time. The first loop needs to update
a sorted set which would normally be O(log k) for each update (e.g. using red-black or AVL
trees) — this makes the entire loop run in O(k log k) and thus it is the dominating factor of
this algorithm.

Since the breakpoints have already gone through a sorting-process then this extra step do
not worsen the overall time complexity. Also note that there will be a lot of duplicate positions
so the expected running time of the above is probably closer to linear.

7.4 Incorporating penalties in translation

According to the description of how we have modified our objective function (see 3.2) then our
translation algorithm needs to be modified to take penalties into consideration when reporting
the optimal placement of a stencil. This is almost trivial since there is at least one breakpoint
each time the overlap between two stencils change. Furthermore, there is at most one change
in the slab-count at each breakpoint, so when changing the slab-count for a polygon, we check
to see if it changes from zero to non-zero or the opposite, and if so, add/subtract the penalty
to a variable expressing the accumulated penalties, which is then added to the price.

A non-trivial part of this scheme appears when we have several breakpoints (from different
polygons) with the same offset. A possible situation is illustrated in Figure 7.3. Here we

77

7.5. Handling non-rectangular material Implementation Issues

Q P
R

Figure 7.3: Polygon P is under translation and is now exactly between Q and R in a non-overlap
situation. A series of breakpoints occur at the same time.

translate P and on the illustration the polygon is exactly between Q and R. There are several
breakpoints with the same offset, some for the edges in Q and others for the edges in R. If we
handle these breakpoints in a random order then a situation may arise where we first process
those from R, which denote a beginning of an overlap, and thus an increase in penalty, and
then those from Q, which subtract the penalty representing an overlap with Q. So at no time
do we have a penalty of zero.

In the illustrated situation we can use the slab-count as a secondary sort criterion, but it
will not solve all situations. Instead we use the polygon index as a secondary sort criterion
and when we process breakpoints we loop over all those with the same offset (taking chunks
of those from the same polygon at a time). We accumulate the slab-count for each and if it
is negative we subtract it and adjust penalty accordingly. If it is positive then we store it for
later processing. When we have gone through them all then we look at the price and update
our minimum if it is smaller. Then we go on to adding all of the earlier stored slab-counts,
which represent the polygons we have entered at this offset.

7.5 Handling non-rectangular material

It happens that we wish to solve the nesting problem for a material that is not restricted to
being a rectangle. Since we support holes in our stencils and also fixed positions then this case
can simply be handled by creating the exterior of our material as a hole in a stencil which we
give a fixed position such that it overlaps the entire material. An example of this can be seen
in Figure 7.4.

This technique can also be used in three dimensions, but in the experiments we use a dataset
which must be packed in a cylinder and here it would take quite a lot of faces to make a good
approximation. Since each added face will add to the running time of our implementation
then we have chosen a different approach. Our translation algorithm already accepts a legal
starting and ending point for the stencil (in this case polyhedron) to be translated, and will
only place it between these two points. So if we know the first and last points which are inside

78

Implementation Issues 7.5. Handling non-rectangular material

Figure 7.4: An example of nesting inside an irregular material. It should be noted that this
is not a difficult nesting problem — it was found within 10 seconds using the implemented
nesting solver.

79

7.6. Approximating stencils Implementation Issues

Figure 7.5: Keeping polyhedra within the boundaries of a cylinder can as a rough approxima-
tion be reduced to the problem of keeping a bounding box inside a circle.

the material, then we can make use of the above feature.

Assume that the height of the cylinder is along the z-axis. If we imagine we are translating
on the x-axis then given the y position of our polyhedron we can find the first and last x
position within the material by solving x2 = r2 − y2 for each point in the polyhedron. In
our implementation we have chosen an even simpler solution. The bounding box of polygons
provides us with a rough approximation which will do for the data instances that we need to
pack — an illustration of the approach can be seen in Figure 7.5.

7.6 Approximating stencils

The speed of algorithms working with polygons almost always depend on the number of ver-
tices. It has been suggested [37] to make both exterior and interior approximations of polygons
to help speed up any work done with the polygons. An exterior approximation is a polygon
which contains the original polygon. This is very useful for the polygons to be packed since
any legal placement with the approximated polygons will also be a legal placement with the
original polygons. Interior approximations are useful for simplifying the polygon(s) describing
the material. In the following we will focus on exterior approximations which in most cases
are the most important since the material is very often rectangular. Note that if the material
is interpreted as an infinite polygon with one or more holes then we can also use the exterior
approximation algorithm for the material.

If the area of the original polygon is A and the area of the exterior approximation is Ae

then we can measure the waste of an approximation as Ae−A
Ae

. Now we can state the problem
of finding a good exterior approximation of an arbitrary shape, not necessarily a polygon, in
two different ways:

Problem 1: Using a fixed number of vertices, find an exterior approximation which wastes
as little material as possible.

Problem 2: Given a maximum percentage of waste, find an exterior approximation using
as few vertices as possible.

80

Implementation Issues 7.6. Approximating stencils

The nesting problem is about maximizing the use of material and therefore it is important
to limit the amount of wasted material in the exterior approximations. In this regard, the
second problem is a bit more adaptive than the first problem since some shapes will need more
vertices in their approximations than others to keep the same level of waste. One could also
imagine a combination of the two problems e.g. using a maximum waste per vertex.

It should be noted though that an optimal solution to the second problem is not necessarily
the best possible approximation to use in the nesting problem. It does not guarantee that the
shape of the exterior approximation is close to the original polygon. Thin “spikes” could be
introduced in an approximation which would not waste much space, but they would make the
nesting problem much harder.

Nevertheless we will focus on the second problem, but we will not find an optimal solution.
We do not know the complexity of any of the stated problems, but we will present a heuristic
solution method which satisfies our needs for exterior approximations. The heuristic only
works for polygons.

The heuristic is greedy and it is based on a heuristic described by Heistermann and
Lengauer [37]. First we need to define the concept of border triangles. These come in two
types and two very simple examples are given in Figure 7.6a and 7.6b. The vertices of a
polygon can be divided into two different groups depending on the angle they make with their
neighboring vertices. An angle below 180 degrees indicates a concave vertex and an angle
above 180◦ indicates a convex vertex.

Using these we can find two different types of border triangles. Concave border triangles
are found by simply taking all concave vertices and use their neighboring vertices to make
triangles. Convex border triangles are a bit more subtle. These require two neighboring convex
vertices and the third point of the triangle is found by extending the edges as shown in 7.6b
(it is not possible if the combined left turn of the points exceed 180◦).

Now we can describe a very simple heuristic for approximating a polygon within a fixed per-
centage of waste. Note that Heistermann and Lengauer [37] only use concave border triangles
in their approximation heuristic.

1. Find the border triangle of the current polygon with the smallest area.

2. If the waste of the polygon including this area is larger than the allowed amount of waste
then stop the process.

3. Otherwise, change the polygon to include the found area. For concave border triangles
this is done by removing a vertex from the polygon. For convex border triangles this
means to remove two vertices and adding a new one. In both cases the resulting polygon
has one vertex less.

4. Remove any self intersections caused by changing the polygon.

5. Now go back to step 1.

With the exception of the removal of self intersections the above algorithm is quite simple.
As noted earlier though we have to look out for any spikes i.e. thin convex border triangles
with a small area. An extreme example is given in Figure 7.6c. We need to have another
criterion for choosing the “smallest” border triangle. In Figure 7.6d there is a less extreme
example of convex border triangle. It is tempting to simply require that the angle α should
be greater than some fixed value, but this does not really reflect what we want. It is a bit

81

7.7. Center of a polygon Implementation Issues

a

b d

α

β γ

c

Figure 7.6: a) Three points making a right turn (counter clockwise) represent a concavity which
can be removed by removing the middle point. b) Four points making two left turns (counter
clockwise) which do not exceed 180◦ represent a convexity which can removed by adding a
new point at the intersection of lines from the first and the last edge (and removing the two
obsolete points). c) An example of a convexity with a triangle of little area but significant
topological influence. It should be avoided to include such triangles in an approximation. d)
A less extreme example of a triangle related to a convexity. It is not easy to determine which
triangles to include.

too restrictive. A better alternative is to require that α is greater than at least one of the two
other angles β or γ.

Now, let us take a look at the algorithm in action. In Figure 7.7 a highly irregular polygon
is reduced to a simple quadrilateral. It is also shown that the result is not optimal regarding
minimum waste using 4 vertices. Also note that if only concave border triangles had been
removed then the resulting polygon would have had 6 vertices.

Now by varying the maximum percentage of wasted material the heuristic can provide us
with different levels of approximated polygons. These can be used in other algorithms to speed
up calculations when the original polygons are not strictly necessary.

In the above algorithm the waste is computed in relation to the polygon itself. This means
that a border triangle of the same size on a small and on a large polygon will be evaluated
differently. By considering all polygons at once when making the approximation this can be
avoided and a better approximation might be found i.e. fewer vertices within the same bound.
This is examined as a part of our experiments (Section 8.1.4).

7.7 Center of a polygon

For each polygon we need to determine a center of rotation. Intuitively, a really good choice
would be the center of the smallest enclosing circle (SEC) of all the vertices of the polygon.
This will ensure that the focus is on improving the solution by rotating the polygon and not
by translating it (we have the translation part of the neighborhood for that purpose).

Finding the SEC (also known as the minimal enclosing circle or minimum spanning circle)
can (a bit surprising) be done in linear time [46]. Formally the problem is: Given a set of
points on the plane, find the smallest circle which encloses all of them.

82

Implementation Issues 7.7. Center of a polygon

a b

c d

e f

Figure 7.7: a) A highly irregular polygon with 11 vertices. b) The set of all border triangles
which it is possible to remove. 2 convex and 5 concave border triangles. c-e) The triangle
of smallest area is iteratively removed. The list of border triangles is updated at each step.
f) Continuing as long as possible results in a polygon with just 4 vertices and naturally no
concavities. The dashed line indicates a quadrilateral with smaller area not found by the
algorithm.

83

7.7. Center of a polygon Implementation Issues

The O(n) algorithm is quite complicated, but luckily, we can find the SECs in a preprocess-
ing step i.e. we do not need the algorithm to be linear in time. We can choose to implement
a simple algorithm by Skyum [53] running in time O(n log n) or an even simpler algorithm by
Welzl [57, 16] that runs in expected linear time. We have chosen the latter algorithm.

Note that when choosing the center of the enclosing circle as the center of rotation then
the enclosing circle can also be used as a bounding circle. It will then be very simple to skip
all polygons too far away to ever overlap the polygon to be rotated.

84

Chapter 8

Computational Experiments

8.1 2D experiments

8.1.1 Strategy

The following experiments should be viewed as complimentary to those which Egeblad et
al. [28] conducted for their implementation, Jab. Although no source is shared between the
implementations the solution methods are very similar and so some choices have been based
on the experience gained from earlier experiments.

After a presentation of the data instances in the following section we will discuss and
experiment with the lambda value, approximation schemes and strip length strategy. An
example with quality requirements is also given and finally some benchmark comparisons are
done with published results and with a commercial solver.

8.1.2 Data instances

The amount of publically available data instances is limited. Table 8.1 presents some statistics
about the instances which we will use for our experiments and benchmarks. They vary between
43 and 99 stencils per set and the average number of vertices per stencil is between 6 and 9
with the exception of Swim which has 20 vertices per stencil. All of the sets can be seen in
Figure 8.1 where it is also indicated that they all contain subsets of identical stencils. Note
that we do not utilize this property in any way and therefore it does not make the problems
easier for us.

Name Stencils Vertices (avg.) Area (avg.) Area (total) Strip width

Artificial 99 7.19 9.6 947 27
Shapes0 43 9.09 37.1 1596 40
Shapes2 28 6.29 11.7 328 15
Shirts 99 6.05 22.1 2183 40
Swim 48 20.00 530078.4 25443764 5600
Trousers 64 6.06 269.0 17216 79

Table 8.1: Testdata

85

8.1. 2D experiments Computational Experiments

x 15
x 15

x 15
x 15

x 15
x 8 x 8

x 8

Artificial (Bennell and Dowsland) — 99 stencils

x 15 x 9 x 12 x 7

Shapes0 (Oliveira and Ferreira) — 43 stencils

x 4 x 4 x 4 x 4 x 4
x 4

x 4

Shapes2 (Blazewicz et al.) — 28 stencils

x 8 x 8 x 8 x 15

x 15
x 15
x 15
x 15

Shirts (Dowsland et al.) — 99 stencils

x 8

x 8 x 1

x 1

x 1 x 1 x 8 x 8

x 1 x 1 x 1 x 1 x 2

x 2 x 8 x 8 x 4

Trousers (Oliveira and Ferreira) — 64 stencils

x 3

x 6

x 6

x 6
x 6

x 3x 3

x 6 x 6

x 3

Swim (Oliveira and Ferreira) — 48 stencils

Figure 8.1: The data instances we use for most of our experiments and benchmarks.

86

Computational Experiments 8.1. 2D experiments

65 %

70 %

75 %

80 %

85 %

90 %

0.5 1 1.5 2 2.5 3 3.5 4 4.5

U
ti
li
za

ti
o
n

Lambda

Artificial
Shapes0
Shapes2

Shirts
Swim

Trousers

Figure 8.2: Solution quality for different values of lambda after 5 minutes.

8.1.3 Lambda

Experiments regarding the value of lambda and FLS strategy were conducted by Egeblad et
al. We are only going to repeat the lambda experiment to make sure that this value is set
appropriately. We know from their experiments that this value should be in the range of
1%-4% of the area of the largest stencil and we have tried values in this interval for all data
instances. The results can be seen in Figure 8.2 and they are quite inconclusive. We settle for
a value of 3%.

8.1.4 Approximations

From our previous work with GLS we have already experienced that Swim is a time-consuming
dataset to pack, and for this reason we have implemented an approximation strategy to reduce
the number of vertices in the stencils which in this case must be polygons. The first experiment
we have done shows the number of vertices left in the dataset as a function of the maximum
allowed waste and can be seen in Figure 8.3. To get an idea of how the dataset is affected
we also present an example of exactly how Swim gets affected by an approximation allowing a
waste of 5%, this can be seen in Figure 8.4.

To see if approximated vertices actually make a difference in the time used to find good
solutions we have tried to solve Swim both with and without approximated vertices for an
allowed waste of 2.5%, 4.0% and 5.0%. We have done this for all combinations of parameters
taken by our approximation scheme, see Section 7.6 for details, and the results can be seen in
Table 8.2.

The conclusion must be that approximation is an advantage for the Swim dataset. Exactly
how much waste one should allow, and which approximation scheme should be used, are still
open questions. Since a waste percentage of 2.5 has the best average in solution quality we
have chosen to use this value, and furthermore to only use the concave approximation scheme
and look at all stencils since that worked best for this percentage.

87

8.1. 2D experiments Computational Experiments

40

60

80

100

120

140

160

180

200

220

0 % 5 % 10 % 15 % 20 % 25 %

N
u
m

b
er

o
f
ve

rt
ic

es

Waste

Concave
Concave Convex
Concave Global

Concave Convex Global

Figure 8.3: The number of vertices left in the Swim instance when different levels of waste are
allowed.

Waste 0.0% 2.5% 4.0% 5.0%

Concave 66.7% 67.4% 66.6% 64.1%
Concave Convex 66.7% 67.7% 63.0% 64.2%
Concave Global 66.7% 67.9% 65.4% 67.1%
Concave Convex Global 66.7% 67.9% 65.4% 63.0%

Table 8.2: The utilization after one hour for different approximation parameters and waste
thresholds.

Another way we have tried to speed up our implementation is by reducing each translation
to a subset of the material (relative to the position of each stencil). This is given as a percentage
of the materials size. Since we have already established that Swim benefits from approximated
vertices we will try this bounded translation both with and without approximated stencils, to
see if a) bounded translation can compete with approximated vertices and b) to see if bounded
translation can further improve approximated vertices. Our findings can be seen in Figure 8.5
and our conclusion is that, at least for Swim, bounded translation is not an advantage. We
have skipped this idea for our further experiments.

8.1.5 Strip length strategy

As described earlier we can solve the strip-length problem as a decision problem where we
decrement the size of our material after each successful placement. The size of our decrementing
step is subject for the following experiment. The first thing we notice is that our datasets vary
significantly in size and thus a decrement step given in units make little sense. Instead we define
it as a percentage of the initial length — we have chosen 1% because smaller improvements are
probably of little interest (at least in the beginning). We could set it higher, but given enough
time, our implementation should be able to reach the same solutions as can be found using a
higher initial stepping factor.

At some point we may have shrinked the length so much that 1% of the initial length is too

88

Computational Experiments 8.1. 2D experiments

Original stencils (219 vertices).

Each stencil reduced with concave triangles (129 vertices).

Each stencil reduced with concave and convex triangles (92 vertices).

Global approach looking at triangles in all stencils simultaneously (86 vertices).

Figure 8.4: The Swim data instance with various approximation schemes applied which all
keep the total waste below 5%.

89

8.1. 2D experiments Computational Experiments

45 %

50 %

55 %

60 %

65 %

70 %

75 %

0 50 100 150 200 250 300 350 400 450

U
ti
li
za

ti
o
n

Seconds

15
30
60

100

45 %

50 %

55 %

60 %

65 %

70 %

75 %

0 50 100 150 200 250 300 350 400 450

U
ti
li
za

ti
o
n

Seconds

15
30
60

100

Figure 8.5: Experiments with bounded translation of stencils. The curves represent 15%, 30%,
60% and 100% translation relative to the maximum translation distance. Swim was used in
both of the above experiements, but the latter also used approximated stencils.

90

Computational Experiments 8.1. 2D experiments

much of a step to find the next legal placement — for this reason we should introduce a way
to adapt our decremented size when such situations arise (and a way to find these situations).
Though if we continue to make our decrementing step smaller then we may eventually end up
with an infinitely small step.

All this has resulted in the following 3 experiments.

• Always decrement by 1%, which we refer to as “fixed”.

• Decrement by 1% until 4n2 iterations have been executed without finding a legal place-
ment. Make the decrement step 70% smaller and backtrack to last legal solution, which
we refer to as “adaptive”.

• Same as above but using a lower limit of 0.1% of the length as a minimum for the
decrement step, referred to as “adaptive w/ LB”.

The results can be seen in Table 8.3 where each strategy has been tried for all instances and
the utilization obtained after one hours run is reported. A fourth strategy is also presented
which is not directly related to the stepping strategy. Here we test a simple rounding strategy
where we try to reduce the number of decimals, and thus the possible positions of stencils, by
rounding the result from our translation to integer coordinates. It is presented in this table
simply to make comparisons easier.

It is clear from this experiment that the adaptive approach with a lower bound is the
best choice for stepping strategy. Interestingly the rounding-strategy seemed to pay off on the
artificial datasets (with rotation), but did not improve anything for the examples from the
textile industry (on the contrary), the reason for this is most likely that the artificial datasets
have been defined by humans and so have integer sizes.

Strategy Fixed Adaptive Adaptive w/ LB Rounded

No rotation

Artificial 69.9% 59.3% 70.8% 70.6%
Shapes0 65.0% 64.9% 66.2% 66.4%
Shapes2 78.9% 77.5% 80.8% 80.2%
Shirts 84.6% 84.3% 84.3% 84.3%
Swim 69.4% 69.7% 70.8% 70.2%
Trousers 85.4% 85.8% 85.6% 85.7%

180◦ rotation

Artificial 73.8% 73.8% 74.4% 74.5%
Shapes0 72.3% 71.4% 72.5% 72.5%
Shapes2 80.1% 78.4% 81.1% 81.6%
Shirts 85.6% 86.4% 86.5% 86.2%
Swim 71.5% 72.9% 73.5% 72.9%
Trousers 88.8% 89.5% 89.8% 89.2%

Table 8.3: The utilization for 3 different stepping-strategies and an attempt of a rounding-
strategy.

91

8.1. 2D experiments Computational Experiments

Figure 8.6: The large boxes require quality Q2, the triangles require quality Q1 and the rest
require quality Q0. The striped pattern is of quality Q2 and the squared pattern is of quality
Q1. This legal placement was found within a few seconds by 2DNest.

8.1.6 Quality requirements

2DNest supports quality levels and requirements. As an example of this ability we created
a simple (but ugly) animal hide data instance (guess an animal) with a few fixed areas with
quality levels and a lot of small stencils with various quality requirements. This is illustrated
in Figure 8.6.

8.1.7 Comparisons with published results

The data instances we are using have also frequently been used in existing literature. Some
of the best results are gathered in Table 8.4 where they can be compared with results from
2DNest. The computation times vary a lot, from minutes to hours, so the results should be
interpreted with care. Furthermore, the very small number of instances makes it difficult to
make any certain conclusions.

Nevertheless, Table 8.4 shows that we are doing quite well when it comes to solution quality.
We believe that 2DNest has not been optimized to its full potential and that improvements
in solution strategies are still possible. Images of our placements for all 6 data instances can
be found in Appendix A (with 180◦ rotation).

It should be stated that the results reported for Jab are produced much faster than for
2DNest and it is our general impression that our old implementation was faster than 2DNest

92

Computational Experiments 8.1. 2D experiments

Name 2DNest Jab Topos Jostling 2-exchange Hybrid.

No rotation

Artificial 70.8% - - - - (78.38%)1

Shapes0 66.2% 65.4% 59.8% 63.3% 61.4% 62.81%
Shapes2 80.8% 77.1% - - - 76.58%
Shirts 84.3% 84.4% - - - 81.18%
Swim 68.3% 65.8% - - -
Trousers 85.6% 84.4% - - -

180◦ rotation

Artificial 74.4% - - - - -
Shapes0 72.5% 72.5% 65.4% 63.3% 67.6% -
Shapes2 81.1% 77.1% 74.7% - 79.1% -
Shirts 86.5% 85.7% 81.3% 83.1% 85.5% -
Swim 71.0% 67.2% - - - -
Trousers 89.8% 88.5% 82.8% - 88.6% -

Table 8.4: 2DNest (1 hour) is here compared with Jab by Egeblad et al. [28] (10 minutes),
Topos by Oliveira et al. [51], Jostling for position by Dowsland et al. [23], 2-exchange by
Gomes and Oliveira [34] and a hybridized tabu search with optimization techniques by Bennell
and Dowsland [7]

— especially in the early steps. Although we have not pinpointed the exact problem then we
present here some plausible explanations.

• The use of double precision arithmetic is on average slower, however, it also introduces
situations where stencils are repeatedly moved only small fractions of units, each provid-
ing a very small improvement, and each opening up for another potential improvement
on another translation axis — we did in fact experience such situations, but have tried
to remedy them by setting an upper limit on the amount of allowed movements with the
same stencil and as can be seen from Table 8.3 then we have also tried a limited rounding
strategy. A better solution would be desirable.

• By using the described slab-counting we require that the solution is analytical legal,
where our previous implementation allowed a very small overlap per stencil. This results
in extra time spent each time a new legal solution has to be found.

• Our previous implementation used a better strategy to find an initial solution saving
time in the initial stage.

• Our current implementation is created with flexibility and adaptability in mind, which
cover using third party libraries like STL for data structures which although priced for
its efficiency cannot compete with rolling your own solution.

1We were surprised by the result for Artificial and tried to examine it a bit closer. Correspondence with the
authors did not clarify the issue, but their solution method might be especially suited for this instance. Note
that our result is close to the result of the commercial solver presented in section 8.1.8.

93

8.1. 2D experiments Computational Experiments

8.1.8 Comparisons with a commercial solver

We have also obtained access to a commercial solver, AutoNester-T, which has been under de-
velopment for about a decade. The results of this solver is very impressive especially regarding
speed. The following is a citation from the homepage of AutoNester-T:

“AutoNester-T combines many of the latest optimization techniques in order to
achieve the best results in a very short time. We use local search algorithms based
on new variants of Simulated Annealing, multiply iterated greedy strategies, paired
with efficient heuristics, pattern-recognition techniques, and fast Minkowski sum
calculators. In the local search algorithms, we use fully dynamic statistical cooling
schedules and dynamic parameter choice.

For the calculation of optimality proofs and efficiency guarantees on markers
we use a combination of branch-and-bound algorithms and linear programming.”

It must be emphasized that AutoNester-T is optimized for marker making and therefore
the results of the artificial data instances (Artificial, Shapes0 and Shapes2) are not as good as
for the others (Shirts, Swim, Trousers). The results of AutoNester-T at various time points and
our results after an hour is given in Table 8.5. AutoNester-T was run on a 600 MHz processor.
The 2DNest results were obtained on a 1.4GHz processor. Note that AutoNester-T quickly
finds very good solutions, but it seems that it does often not find better solutions when given
more time. We know from experience with 2DNest that it often continues to find better
solutions when given more time.

Test instance 2DNest 0.2 min. 1 min. 10 min.

No rotation

Artificial 70.8% 69.3% 70.1% 70.7%
Shapes0 66.2% 61.4% 62.7% 64.4%
Shapes2 80.8% 77.6% 78.8% 80.2%
Shirts 84.3% 82.2% 83.6% 84.4% (2.2 min.)
Swim 68.3% 69.4% 70.6% 71.4%
Trousers 85.6% 83.8% 84.3% 84.5%

180◦ rotation

Artificial 74.4% 74.1% 75.9% 76.7% (2.8 min.)
Shapes0 72.5% 68.8% 71.3% 71.3% (0.5 min.)
Shapes2 81.1% 79.6% 81.1% 81.8% (2.9 min.)
Shirts 86.5% 85.5% 86.8% 87.4% (1.8 min.)
Swim 71.0% 74.4% 75.6% 75.6% (0.8 min.)
Trousers 89.8% 89.3% 89.8% 90.6%

Table 8.5: These are results from the commercial solver AutoNester-T (version 3.5 [build
3087]). Note how fast the solutions are generated. The results reported for 2DNest are with
a 1 hour time limit.

1http://www.gmd.de/SCAI/optimierung/products/autonester-t/index.html

94

Computational Experiments 8.2. 3D experiments

8.2 3D experiments

8.2.1 Data instances

The amount of publically available data instances for the two-dimensional nesting problem is
limited and it does not get better by adding a dimension to the problem. It is quite easy
to obtain 3D objects from other areas of research, but these will typically have more than
10000 faces each and would therefore require to be approximated as a first step. We have not
implemented an approximation algorithm for 3D objects and therefore this is not an option.

In the literature only one set of simple data instances has been used. They were originally
created by Ilkka Ikonen and later used by Dickinson and Knopf [18] to compare their solution
method with Ikonen et al. [39]. There are eight objects available in the set and they are
presented in Table 8.6. Some of them have holes, but they are generally quite simple. They
can all be drawn in two dimensions and then just extended in the third dimension. They have
no relation to real-world data instances. See them in Figure 8.7.

Name # Faces Volume Bounding box

Block1 12 4.00 1.00 × 2.00 × 2.00
Part2 24 2.88 1.43 × 1.70 × 2.50
Part3 28 0.30 1.42 × 0.62 × 1.00
Part4 52 2.22 1.63 × 2.00 × 2.00
Part5 20 0.16 2.81 × 0.56 × 0.20
Part6 20 0.24 0.45 × 0.51 × 2.50
Stick2 12 0.18 2.00 × 0.30 × 0.30
Thin 48 1.25 1.00 × 3.00 × 3.50

Table 8.6: The Ikonen data set.

In the existing literature the above data set has been used with a cylindrical volume (which
is often the case for rapid prototyping machines). We have chosen to follow this approach since
it will make it easier to compare results. This introduces the problem of keeping the object
within the limits of a cylinder. We handle this in a simple way using the bounding box of the
objects. This means that a small part of the real solution space is not available (which is a
handicap), but this simplification has no or only a minor effect on each of the objects in the
above table.

8.2.2 Statistics

The number of intersection calculations needed to find a solution was used by Dickinson and
Knopf [18] to compare their solution method with the one by Ikonen et al. [39]. Unfortunately
we are not able to do the same since we do not make intersection calculations in the same way.
Execution times can be compared and we will do so in a benchmark at the end of this chapter.

In the following we will try to gather some statistics about the average behavior of our
solution method. A simple knapsack scheme has been implemented to pack as much as possible
within a cylinder of height 5.5 and radius 3.5. Within 2 minutes 54 objects have been packed
(the 8 Ikonen objects are simply repeatedly added one by one) and they fill 34% of the volume
of the cylinder. About 3500 translations were done per minute. The packing can be seen from
four different angles in Figure 8.8.

95

8.2. 3D experiments Computational Experiments

Part2 Part3 Part4

Part5 Part6 stick2

block1 thin

Figure 8.7: The Ikonen data set.

96

Computational Experiments 8.2. 3D experiments

Figure 8.8: Various aspects of a solution produced by a simple knapsack scheme.

97

8.2. 3D experiments Computational Experiments

8.2.3 Benchmarks

We have already presented the only available set of data instances for which there exists com-
parable results 8.2.1. Two test cases are created by Dickinson and Knopf for their experiments.

• Case 1
Pack 10 objects into a cylinder of radius 3.4 and height 3.0. The 10 objects are chosen
as follows: 3 times Part2, 1 Part4 and 2 times Part3, Part5 and Part6. Total number of
faces is 260 and 11.3% of the total volume is filled.

• Case 2
Pack 15 objects into a cylinder of radius 3.5 and height 5.5. The 15 objects are chosen
as in case 1, but with 5 more Part2. Total number of faces is 380 and 12.6% of the total
volume is filled

Dickinson and Knopf report execution times for both their own solution method (serial
packing) and the one by Ikonen et al. (genetic algorithm). They ran the benchmarks on a 200
MHz AMD K6 processor. The results are presented in Table 8.7 in which results from our
algorithm is included. Our benchmarks were run on a 733MHz G4.

A random initial placement might be a problem since it could quite likely contain almost
no overlap. Then it would not say much about our algorithm — especially the GLS part. To
make the two cases a bit harder we doubled the number of objects. The results can be seen
in Table 8.7 where it is compared with the results of Ikonen et al. and Dickinson and Knopf.
Even considering the difference in processor speeds there is no doubt that our method is the
fastest. The placements can be seen in Figure 8.9.

Test Ikonen et al. Dickinson and Knopf 3DNest

Case 1 22.13 min. 45.55 sec. 3.2 sec. (162 translations)
Case 2 26.00 min. 81.65 sec. 8.1 sec. (379 translations)

Table 8.7: Execution times for 3 different heuristic approaches. Note that the number of
objects are doubled for 3DNest.

98

Computational Experiments 8.2. 3D experiments

Case 1 Case 2

Figure 8.9: The above illustrations contain twice as many objects as originally intended in
Ikonens Case 1 and 2. They took only few seconds to find.

99

8.2. 3D experiments Computational Experiments

100

Chapter 9

Conclusions

The nesting problem has been described in most of its variations. Various geometric approaches
to the problem has been described and a survey has been given of the existing literature
concerning the nesting problem in two and three dimensions.

The major theoretical contributions of this thesis in relation to previous work is the fol-
lowing. A proof of correctness of the translation algorithm presented by Egeblad et al. [28], a
generalization of the algorithm which among other things provides an algorithm for rotation
and an easy generalization to three-dimensional nesting.

Furthermore, a comprehensive implementation of a two-dimensional nesting solver has
been created and it can handle a wide range of problem variations with various constraints.
It performs very well compared with other solution methods even though it has not been
optimized to its full potential. A three-dimensional nesting solver has also been implemented
proving in practice that a fast translation method is also possible in this case. The results are
promising although only limited comparisons have been possible.

Subjects for future work include three-dimensional rotation and additional experiments to
optimize the solution strategies for various problem types.

Acknowledgements

The authors would like to thank the following people. Jens Egeblad for his participation in
the project on which this thesis is based, Ralf Heckmann for allowing us to access SCAIs
commercial nesting program, Julia Bennell for providing 2D data instances and for mailing
hard-to-obtain articles, and finally, John Dickinson for providing the 3D data instances.

101

Conclusions

102

Bibliography

[1] M. Adamowicz and A. Albano. Nesting two-dimensional shapes in rectangular modules.
Computer Aided Design, 1:27–33, 1976.

[2] A. Albano. A method to improve two-dimensional layout. Computer Aided Design,
9(1):48–52, 1977.

[3] A. Albano and G. Sappupo. Optimal allocation of two-dimensional irregular shapes using
heuristic search methods. IEEE Transactions on Systems, Man and Cybernetics, 5:242–
248, 1980.

[4] R. C. Art, Jr. An approach to the two dimensional, irregular cutting stock problem.
Technical Report 36.Y08, IBM Cambridge Scientific Center, September 1966.

[5] T. Asano, A. Hernández-Barrera, and S. C. Nandy. Translating a convex polyhedron over
monotone polyhedra. Computational Geometry, 23:257–269, 2002.

[6] J. A. Bennell and K. A. Dowsland. A tabu thresholding implementation for the irregular
stock cutting problem. International Journal of Production Research, 37:4259–4275, 1999.

[7] J. A. Bennell and K. A. Dowsland. Hybridising tabu search with optimisation techniques
for irregular stock cutting. Management Science, 47(8):1160–1172, 2001.

[8] J. Blazewicz, P. Hawryluk, and R. Walkowiak. Using a tabu search approach for solving
the two-dimensional irregular cutting problem. Annals of Operations Research, 41:313–
325, 1993.

[9] J. Blazewicz and R. Walkowiak. A local search approach for two-dimensional irregular
cutting. OR Spektrum, 17:93–98, 1995.

[10] E. K. Burke and G. Kendall. Applying ant algorithms and the no fit polygon to the nesting
problem. In Proceedings of the 12th Australian Joint Conference on Artificial Intelligence
(AI’99), volume 1747, pages 454–464. Springer Lecture Notes in Artificial Intelligence,
1999.

[11] E. K. Burke and G. Kendall. Applying evolutionary algorithms and the no fit polygon
to the nesting problem. In Proceedings of the 1999 International Conference on Artificial
Intelligence (IC-AI’99), volume 1, pages 51–57. CSREA Press, 1999.

[12] E. K. Burke and G. Kendall. Applying simulated annealing and the no fit polygon to the
nesting problem. In Proceedings of the World Manufacturing Congres, pages 70–76. ICSC
Academic Press, 1999.

103

Bibliography

[13] J. Cagan, D. Degentesh, and S. Yin. A simulated annealing-based algorithm using hierar-
chical models for general three-dimensional component layout. Computer Aided Design,
30(10):781–790, 1998.

[14] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks,
and W. Wright. Simplification envelopes. Computer Graphics, 30(Annual Conference
Series):119–128, 1996.

[15] W. Cook and A. Rohe. Computing minimum-weight perfect matchings. INFORMS Jour-
nal on Computing, 11:138–148, 1999.

[16] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry,
Algorithms and Applications. Springer-Verlag, 1997.

[17] J. K. Dickinson and G. K. Knopf. Generating 3d packing arrangements for layered man-
ufacturing. In International Conference on Agile, Intelligent, and Computer-Integrated
Manufacturing, Troy, New York, 1998. Rensselaer Polytechnic Institute.

[18] J. K. Dickinson and G. K. Knopf. Serial packing of arbitrary 3d objects for optimizing
layered manufacturing. In Intelligent Robots and Computer Vision XVII, volume 3522,
pages 130–138, 1998.

[19] J. K. Dickinson and G. K. Knopf. A moment based metric for 2-D and 3-D packing.
European Journal of Operational Research, 122(1):133–144, 2000.

[20] J. K. Dickinson and G. K. Knopf. Packing subsets of 3d parts for layered manufacturing.
International Journal of Smart Engineering System Design, 4(3):147–161, 2002.

[21] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing the intersection-depth
of polyhedra. Algorithmica, 9:518–533, 1993.

[22] K. A. Dowsland and W. B. Dowsland. Solution approaches to irregular nesting problems.
European Journal of Operational Research, 84:506–521, 1995.

[23] K. A. Dowsland, W. B. Dowsland, and J. A. Bennell. Jostling for position: Local im-
provement for irregular cutting patterns. Journal of the Operational Research Society,
49:647–658, 1998.

[24] K. A. Dowsland, S. Vaid, and W. B. Dowsland. An algorithm for polygon placement using
a bottom-left strategy. European Journal of Operational Research, 141:371–381, 2002.

[25] H. Dyckhoff. A typology of cutting and packing problems. European Journal of Opera-
tional Research, 44:145–159, 1990.

[26] H. Dyckhoff, G. Scheithauer, and J. Terno. Cutting and packing: An annotated bibliog-
raphy. In M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated Bibliographies
in Combinatorial Optimizations, pages 393–412. John Wiley & Sons, 1996.

[27] J. Edmonds and E. L. Johnson. Matching, Euler tours and the Chinese postman. Math-
ematical Programming, 5:88–124, 1973.

[28] J. Egeblad, B. K. Nielsen, and A. Odgaard. Metaheuristikken Guided Local Search anvendt
p̊a pakning af irregulære polygoner, 2001.

104

Bibliography

[29] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part II: The Rural
Postman Problem. Operations Research, 43:399–414, 1995.

[30] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae
Petropolitanae, 8:128–140, 1736.

[31] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the
plane are np-complete. Information Processing Letters, 12(3):133–137, 1981.

[32] O. Færø, D. Pisinger, and M. Zachariasen. Guided local search for the three-dimensional
bin packing problem. To appear in INFORMS Journal on Computing, (2002).

[33] M. Garey and D. Johnson. Computers and intractability. A Guide to the theory of NP-
completeness. W. H. Freeman and Company, New York, 1979.

[34] A. M. Gomes and J. F. Oliveira. A 2-exchange heuristic for nesting problems. European
Journal of Operational Research, 141:359–370, 2002.

[35] R. Heckmann and T. Lengauer. A simulated annealing approach to the nesting problem
in the textile manufacturing industry. Annals of Operations Research, 57:103–133, 1995.

[36] R. Heckmann and T. Lengauer. Computing closely matching upper and lower bounds on
textile nesting problems. European Journal of Operational Research, 108:473–489, 1998.

[37] J. Heistermann and T. Lengauer. The nesting problem in the leather manufacturing
industry. Annals of Operations Research, 57:147–173, 1995.

[38] E. Hopper and B. C. H. Turton. A review of the application of meta-heuristic algorithms
to 2D strip packing problems. Artificial Intelligence Review, 16:257–300, 2001.

[39] I. Ikonen, W. E. Biles, A. Kumar, J. C. Wissel, and R. K. Ragade. A genetic algorithm for
packing three-dimensional non-convex objects having cavities and holes. In Proceedings of
the 7th International Conference on Genetic Algortithms, pages 591–598, East Lansing,
Michigan, 1997. Morgan Kaufmann Publishers.

[40] P. Jain, P. Fenyes, and R. Richter. Optimal blank nesting using simulated annealing.
Journal of mechanical design, 114:160–165, 1992.

[41] S. Jakobs. On genetic algorithms for the packing of polygons. European Journal of
Operational Research, 88:165–181, 1996.

[42] J. K. Lenstra and A. H. G. Rinnooy Kan. On general routing problems. Networks,
6:273–280, 1965.

[43] Z. Li and V. Milenkovic. Compaction and separation algorithms for non-convex polygons
and their applications. European Journal of Operational Research, 84:539–561, 1995.

[44] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A survey.
European Journal of Operational Research, 141:241–252, 2002.

[45] H. Lutfiyya, B. McMillin, P. Poshyanonda, and C. Dagli. Composite stock cutting through
simulated annealing. Journal of Mathematical and Computer Modelling, 16(2):57–74,
1992.

105

Bibliography

[46] N. Megiddo. Linear-time algorithms for linear programming in R
3 and related problems.

SIAM Journal on Computing, 12(4):759–776, 1983.

[47] V. J. Milenkovic. Rotational polygon containment and minimum enclosure using only
robust 2D constructions. Computational Geometry, 13:3–19, 1999.

[48] V. J. Milenkovic. Densest translational lattice packing of non-convex polygons. Compu-
tational Geometry, 22:205–222, 2002.

[49] V. J. Milenkovic, K. M. Daniels, and Z. Li. Automatic marker making. In Proceedings
of the Third Canadian Conference on Computational Geometry, pages 243–246. Shermer,
Ed., Simon Fraser University, Vancouver, B.C., 1991.

[50] J. F. Oliveira and J. S. Ferreira. Algorithms for nesting problems. Applied Simulated
Annealing, pages 255–273, 1993.

[51] J. F. Oliveira, A. M. Gomes, and J. S. Ferreira. TOPOS - a new constructive algorithm
for nesting problems. OR Spektrum, 22:263–284, 2000.

[52] T. Osogami. Approaches to 3D free-form cutting and packing problems and their appli-
cations: A survey. Technical Report RT0287, IBM Research, Tokyo Research Laboratory,
1998.

[53] S. Skyum. A simple algorithm for computing the smallest enclosing circle. Information
Processing Letters, 37(3):121–125, 1991.

[54] Y. Stoyan, M. Gil, T. Romanova, J. Terno, and G. Scheithauer. Construction of a Φ-
function for two convex polytopes, 2000.

[55] V. E. Theodoracatos and J. L. Grimsley. The optimal packing of arbitrarily-shaped poly-
gons using simulated annealing and polynomial-time cooling schedules. Computer methods
in applied mechanics and engineering, 125:53–70, 1995.

[56] Chris Voudouris and Edward Tsang. Guided local search and its application to the trav-
eling salesman problem. European Journal of Operational Research, 113:469–499, 1999.

[57] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer (Ed.), New Results
and New Trends in Computer Science, LNCS 555, pages 359–370. Springer-Verlag, 1991.

[58] X. Yan and P. Gu. A review of rapid prototyping technologies and systems. Computer
Aided Design, 28(4):307–318, 1996.

106

Appendix A

Placements

Artificial

Shapes0

107

Placements

Shapes2

Shirts

108

Placements

Swim

Trousers

109

