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Chapter 1

Introduction

This thesis is divided into three separate major parts: Part I is on natural
image statistics, and part II is on motion analysis. Each of the two parts
represents an independent track of research in which I have been involved.
The title of the thesis, Statistics of Natural Image Geometry, reflects the
topic of the first part, since it comprises the major part of my research. The
last part III is a summary of part I and II and a discussion of open problems.

In this introduction, I will put my research into a wider perspective. The
structure of the chapter reflects the overall division of the thesis. The first
section 1.1 discusses my research on natural image statistics and its possible
applications. The second section 1.2 discuss the research I have done on
motion analysis. The last section 1.3 describes the outline of the thesis.

1.1 Part I: Natural Image Statistics

1.1.1 Vision as Bayesian Inference

In computer vision and image analysis the task is to make inference from
images about physical scenes. We want to develop algorithms that maps
input, consisting of one or more images, into an output that is a description
of the physical world the image depicts. A description can for instance be
thought of as a parameterized model of the scene. Often such descriptions
take the form of a hierarchy of descriptions at an increasing level of abstrac-
tion, where each description has a meta-description. From this hierarchy of
descriptions, we want to deduce some information that lets us solve a cer-
tain task or problem. Examples of such problems could be that of making a
robotic car that is able to drive autonomously in heavy traffic or specifying
an algorithm that makes a preliminary medical diagnosis based on medical
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images with some modality, e.g. conventional x-ray or MR imaging.
This process of inference has been formalized by David Marr (Marr, 1982)

who suggested in his seminal book on visual perception that vision should
be thought of as an information processing task. He introduced three levels
at which vision must be understood:

Computational
Theory

←→ Representations
and Algorithms

←→ Hardware im-
plementation

The computational theory describes what is to be computed by the informa-
tion processing system. The computational theory is an abstract description
of the mapping between the input and whatever output we desire. The rep-
resentation and algorithm level is the realization of the computational theory.
We first have to choose representations for the input and output, and then
construct an algorithm that transforms the input into the output according
to the computational theory. The last level, hardware implementation, de-
scribes how to implement the representation and algorithm in hardware. In
the case of computer vision, the hardware can be either a general purpose
computer or a specialized machine.

If we build a vision system on a digital computer following these ideas,
it is clear that the input is one or more images. An image is an ordered
set of measurements. Often we represent images as arrays of numbers that
quantizes the measurements. When we use conventional imaging technology
such as optical cameras we measure, in a two dimensional array, the light
intensity incident on the camera image plane. Other modalities exist such as
laser range images and a myriad of medical image modalities, each measuring
different properties of the physical world.

It is not obvious what output representation to use. For computer vision
Marr suggested a hierarchy of output representations of increasing abstrac-
tion leading to a three dimensional description of the physical scene depicted
by the input image. The levels of the hierarchy leading up to this 3-D descrip-
tion consist at the lowest level of what he calls the primal sketch, which is a
representation of local geometric information about the two dimensional im-
age intensity function. At this level he operates with the concept of features
such as edges, blobs, and terminations. At the second level he introduces the
so-called 2 1

2
-D sketch, which represents orientation and depth of surfaces in

the image. At the top level he has the full 3-D description of the scene.
Various researchers in computer vision have build upon and extended

Marr’s ideas. An example is Lindeberg’s (1994b) scale-space primal sketch,
which is based on blob-like image structures. In this thesis I am mainly
going to discuss problems of low level vision, i.e. the problem of defining
and detecting features, where the idea of a primal sketch is fruitful. In fact,
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(a) (b) (c)

Figure 1.1: The Necker cube: An example of the human visual systems multiple hypo-
theses. Your vision system allows you to flick between the two different views, (b) and (c),
of the line drawing of a three dimensional cube (a). Try it out.

the work presented in this thesis can be seen as a first attempt at building
a probabilistic primal sketch. To make this statement clear I first have to
introduce the following concepts.

The human visual system can have several competing hypotheses about
a particular scene. Take for instance the examples in Fig. 1.1 and Fig. 1.2.
In my opinion, it seems reasonable that we must have a computational the-
ory that accounts for the concept of ambiguous and competing hypotheses.
Bayesian inference1 has been proposed as a general framework for a com-
putational theory of vision by, among others, Mumford (1996) and Nielsen
(1995). The Bayesian approach to inference allows us to handle problems
with ambiguous and competing hypotheses.

In Bayesian inference one expresses the ambiguity of scene interpreta-
tions by assigning probabilities to each hypothesis or description. Given an
image I we assign a conditional probability density p(D|I) to descriptions2

D. This conditional probability density is called the a posteriori (or pos-
terior) probability density. We can make inference about the image I by
for instance choosing the most probable description D of the image, i.e. the
description D that maximizes the a posteriori probability p(D|I) — the max-
imum a posteriori (MAP) description. There are also other possibilities such
as choosing the posterior mean description (see for instance Nielsen (1995)
for a discussion of selection criteria).

1See e.g. Jaynes (1996) or O’Hagan (1994) for a general discussion of Bayesian inference.
2For now, I will assume that both the space of descriptions and the space of images are

continuous.
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Figure 1.2: Another example of the human visual systems multiple hypotheses. Do you
see the old or the young woman?

Bayes theorem tells us that we can obtain the posterior distribution
p(D|I) by observing the following relation: The joint probability p(I,D) of
the image I and the description D can be written as p(I,D) = p(I|D)p(D)
and vice versa p(I,D) = p(D|I)p(I). Setting these two expressions equal to
each other and rearranging the terms we get Bayes theorem

p(D|I) =
p(I|D)p(D)

p(I)
.

The term p(I|D) is called the likelihood of the image I given the description
D and the term p(D) is known as the a priori (or prior) distribution of
descriptions. The denominator p(I) is the probability distribution of images,
sometimes called the evidence, and it acts as a normalization factor. This can
be expressed as marginalizing p(I,D) over D or in a loose sense as integrating
out D with respect to the measure dD over the space of descriptions,

p(I) =

∫

p(I|D)p(D) dD .

When the image I is given, the evidence p(I) is of course nothing but a
constant.

Determination of the likelihood p(I|D) is problem specific, and it is into
this term we introduce the constraints suitable for our particular problem.
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The literature is filled with examples of likelihood terms for specific applic-
ations (Nielsen, 1995; Yuille and Coughlan, 2000; Sidenbladh and Black,
2001). For instance, Torr (2002) applied the Bayesian approach to model
estimation and selection for epipolar geometry and Pece and Worrall (2002)
applied the Bayesian approach to tracking combined with empirically based
a priori knowledge of the image background statistics.

The prior distribution p(D) is a summary of all the knowledge we have a
priori about descriptions D. As we just saw, the distributions p(I) and p(D)
are related through the integral equation p(I) =

∫
p(I|D)p(D) dD. This

means that knowledge about p(I) in principle can give us knowledge about
p(D) and vice versa. That is, by studying the distribution of images p(I)
with our desired descriptions D in mind, we might get an idea of how to
choose the prior p(D) on descriptions. The prior p(D) can be viewed as a
model of the background clutter in images as it has been proposed by, among
others, Grenander and Srivastava (2001).

Jaynes (1968) has suggested a least committed approach for the construc-
tion of prior distributions through the maximum entropy principle3. Assume
that we have n constraints that we want to apply to the space of possible de-
scriptions, e.g. bounds on or expectation values of model parameters. Jaynes
argues that the least committed distribution incorporating our prior informa-
tion is constructed by choosing the probability distribution that fulfills the n
constraints and at the same time maximizes the entropy. Jaynes also argues
the importance of the prior to be invariant with respect to certain transform-
ations. For a prior of natural images the natural choices are at least scale
and translation invariance. One may also argue for the addition of rotational
invariance. If we follow Jaynes’ idea we should look for a priori constraints
on the space of descriptions and then use the maximum entropy principle to
get the prior distribution p(D).

In my research on natural image statistics I focus on finding suitable
a priori distributions for natural images. I propose to get this knowledge
through empirical studies of the distribution p(I) of natural images. It is
important to know what are probable events in the space of natural images,
since this can guide us in the choices of constraints to put on the a priori
distribution of descriptions p(D). When we know these constraints we can
construct p(D) by for instance following the procedure of Jaynes’ as discussed
above. To be more specific, I propose to study the local geometry of images
and develop a probability model of this geometry. The most probable local
geometric structures are likely candidates for important features or descrip-
tions D. This can be thought of as a probabilistic model of Marr’s primal

3see e.g. Jaynes (1957) for an introduction to this principle.
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sketch — a probabilistic primal sketch. We will return to this endeavor in
Sec. 1.1.4.

1.1.2 Natural Image Statistics: A Historical Overview

Researchers have approached the subject of statistics of natural images from
different perspectives. From a neurological and psychophysical point of view,
knowing the statistics of the world we perceive through our eyes might help
us understand the inner workings of the human visual system, especially
why the visual system has developed as it has (Barlow, 1961; Simoncelli and
Olshausen, 2001). From the point of view of a computer scientist, know-
ing the statistics of natural images might be useful in the development of
image analysis algorithms. Some examples of the use of natural image stat-
istics in image analysis and computer vision are tracking (Pece and Worrall,
2002; Sidenbladh and Black, 2001), segmentation (Malik et al., 2001), image
reconstruction (Nielsen and Lillholm, 2001; Lillholm et al., 2002), compres-
sion (Mallat, 1989; Buccigrossi and Simoncelli, 1999), contour completion
(Ren and Malik, 2002), and image enhancement (Simoncelli, 1999a).

It seems obvious that the statistics of different classes of images will vary,
or at least we cannot assume that it will not. It is therefore important to
define the class of images under investigation and be careful not to make
generalized statements about images of other classes from results on the
investigated class.

What is a natural image then? I define natural images as the class of
images of scenes that we might see on our every day walk through life. This
includes every thing from images of natural areas such as a forest or mountain
terrain to images of indoor scenes such as an office (see Fig. 1.3 for a couple
of examples). I define the class of natural images very broadly because I want
to be able to characterize the statistics of images in general, independent of
specific environments. By doing this we might not capture the statistical
variation in a specific set of images, e.g. images of cars, but we hopefully
capture the general variation of for instance the background in images of
cars.

Besides defining the class of images of interest, one also has the choice
between studying ensembles of images or a single image. Some of the results
reported below does not hold or varies if we study single images. In my
opinion, it is most interesting to study the statistics of ensembles of images,
since this would lead to a general understanding of the statistics of natural
images.

What follows is a short overview of various results from the research field
of natural image statistics that I find important. For an in-depth review of
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Figure 1.3: Examples of natural images.
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advances in natural image statistics the reader is encouraged to have a look
at Srivastava et al. (2003).

In the 1950’s studies of television signals (Kretzmer, 1952; Deriugin, 1956)
showed that the power spectrum of TV signals follows a power law S(ξ) =
A
|ξ|α , where |ξ| is the magnitude of the spatial frequency ξ, A is some constant,
and the exponent α is dependent on the class of images and varies around α =
2 for broad classes of images. A power spectrum of the form 1

|ξ|2 implies scale
invariance of the second order statistics of the signal, i.e. the signal energy
and covariance structure. This result of scale invariance was rediscovered by
Field (1987), this time on a small set of digital images of various natural
scenes. Ruderman and Bialek (1994) showed that on an ensemble of images
taken in a forest the power spectrum has an exponent around α = 2 −
η where η = 0.19, implying self similarity4 rather than scale invariance.
Mumford and Gidas (2001) note that α varies slightly for different classes of
images, which illustrates the importance of defining the class of images we
are interested in. For image ensembles with a large variation α ≈ 2 is a good
approximation. Other signs of scale invariant statistics of natural images
have been reported. For instance Zhu and Mumford (1997) showed that
the histogram of some filters applied to natural images are scale invariant.
Alvarez et al. (1999c; 1999b) have studied the scaling of object size in natural
images.

Another interesting property of natural images is the apparent non-Gauss-
ianity of both marginal and joint statistics. Field (1987) noticed this in his
power spectrum experiments. Mallat (1989) showed that wavelet coefficients
of natural images have a distribution which can be modeled by the so-called
generalized Laplacian distribution. Srivastava et al. (2002) have argued that
the so-called Bessel K forms are also a good model of wavelet coefficients and
filter responses in general. Both Simoncelli (1999b) and Huang and Mumford
(1999) have studied the non-Gaussian joint statistics of pairs and triplets of
wavelet coefficients.

If we take the Bayesian approach to vision as outlined in Sec. 1.1.1, we
have to clarify what we mean by a probability distribution p(I) on the space of
images. Srivastava et al. (2003) identify two views in natural image statistics
on the problem of defining probability models on images. The first one is to
define probability distributions on the whole space of images and assigning a
near zero probability to unlikely images. The space of images in this case can
for instance be R

N×M or a space of functions with some characteristics. The
space of functions of so-called bounded variation (BV) has been proposed
as a possible space of images, but Alvarez et al. (1999a) argue that only a

4See for instance Sec. 5.7 for a definition of self similarity.
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small subset of natural images may belong to the space of BV functions and
Gousseau and Morel (2001) argue that natural images can not in general be
BV functions. It has been argued by Florack (1997) and Mumford and Gidas
(2001) that images are not proper functions, but that they rather belong to
the space of Schwartz distributions5 also called generalized functions. The
second view on natural image statistics and probability models on images
is to study the manifold of natural images embedded in the full space of
images and to assign probability distributions to this manifold. One uses the
fact that the set of naturally occurring images is quite sparse in the space
of images. Here we have the problem of defining the image manifold, or
rather constraining what is a natural image and what is not. See discussion
of various approaches in Srivastava et al. (2003).

Markov random fields are a common technique for defining probability
distributions on images (see e.g. Winkler (1995)). But this method does in
general only allow for the modeling of short range dependencies and not long
range dependencies. This is the limitation of what has been called the causal
MRF models and to some extend their strength, since it is more tractable
to specify short range dependencies than long range. Unfortunately, long
range dependencies are abundant in natural images. Zhu et al. (1997) have
proposed a MRF based texture model which remedies this problem and is
able to model large scale patterns. A new approach by Wu et al. (2002) is
the so-called texture sketch, where a causal MRF model is used to model the
distribution of elements of a texture vocabulary inspired by Marr’s (Marr,
1982) primal sketch.

The Brownian image model is another example of a statistical model of
images and we will discuss this simple model further in Sec. 1.1.3.

The study of the probability distribution of images p(I) is also important
from an information theoretic point of view. Knowledge of p(I) might help
us develop efficient image representations and compression schemes. Sparse
coding (Olshausen and Field, 1996; Pece, 2002) and ICA (see e.g. (Hyvärinen,
1999)) are examples of methods that tries to take advantage of the structure
of the distribution p(I) of natural images.

A probability distribution on images also defines a metric on the space of
images. Lillholm et al. (2002) tries to characterize the amount of information
carried by features, based on various image norms that reflects simple models
of the probability distribution of images. Better knowledge of the probability
distribution of images would lead to a better understanding of the amount
of information carried by features.

5See Friedlander and Joshi (1998) for an introduction to the theory of Schwartz distri-
butions.
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I would like to point out that the work by Griffin et al. (2002) on 1D
profiles of natural images is related to my work discussed in Sec. 1.1.4 and
Chapters 3 and 4. Griffin et al. (2002) base their analysis on the concept
of metamerism and show empirically that the most likely explanation of
measurements of zeroth and first order derivatives of Gaussians along 1D
profiles in natural images corresponds to step edges. That is, this work
tries to characterize the variation of natural images found within the so-
called local spatial metamery classes, i.e. the class of all images that give the
same measurements with the chosen filter bank. My work can be seen as an
attempt to characterize the variation of measurements that define metamery
classes, contrary to characterizing the variation of images within a metamery
class.

1.1.3 The Brownian Image Model and Its Applications

The Brownian image model6 is an example of a probabilistic model on the
space of images and can be seen as a crude model of natural images.

The classical Brownian (or just the Brownian) image model is a scale
invariant Gaussian distributed stochastic field (or function) on the plane.
The fractal Brownian image model is a generalization of this stochastic field,
which is not in general scale invariant but self similar. Furthermore, the
fractal Brownian image does not have to be a Gaussian distributed stochastic
field, but can in general have other types of distributions.

In chapter 2, I use the fractal Brownian image model as a basis for a
method of selecting appropriate scales in feature detection. The scaling of
Gaussian scale-space derivatives of fractal Brownian images are analyzed.
On the basis of this analysis I propose an extension of Lindeberg’s (1998b)
method for scale normalization of differential invariants used in conjunction
with automatic scale selection. In this method I assume either constant
energy over scale or self similar energy scaling. This method also leads to a
scheme for estimation of the fractal dimension of images.

In Chapter 5, I will discuss both the Gaussian and Brownian image mod-
els in more details. The Brownian image model is a scale invariant Gaussian
stochastic model. Natural images have been shown to have a scale invari-
ant covariance structure through the 1/|ξ|α law, α ≈ 2, of their ensemble
power spectrum. The classical Brownian image also has a power spectrum
proportional to 1/|ξ|2. I will argue that the Brownian image model is the
least committed, scale invariant, statistical image model which describes the
second order statistics of natural images. The model is least committed in

6The two dimensional variant of what is known as the Brownian motion.
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the sense that it is Gaussian, hence it is the maximum entropy solution con-
strained only by the mean and covariance structure. I will discuss various
properties of the Brownian image model in relation to linear scale-space the-
ory, and show empirically that the second order statistics of natural images
mapped into k-jet space may, within some scale interval, be modeled by the
Brownian image model. This is consistent with the 1/|ξ|2 law. Furthermore,
the distribution of Brownian images mapped into k-jet space is Gaussian and
an analytical expression can be derived for the covariance matrix of Brownian
images in k-jet space, which is also a good approximation of the covariance
matrix of natural images in k-jet space. The consequence of these results is,
that we can use the Brownian image model as a least committed model of
the covariance structure of the distribution of natural images. This is inter-
esting for the study of the statistics of scale-space features, such as toppoints
(Johansen et al., 1986; Johansen, 1997), of natural images. These results
can also be seen as a partial justification of our use of the fractal Brownian
image model in Chapter 2.

1.1.4 Statistics of Local Image Structures

Recently, there has been a great deal of interest in modeling the non-Gaussian
structures of natural images. However, despite the many advances in the
direction of sparse coding and multi-resolution analysis, the full probabil-
ity distribution of local geometry has not yet been described. The work of
Chapters 3 and 4 can be seen as an attempt to get knowledge about both the
distribution of images p(I) and the distribution of descriptions p(D), both
introduced in Sec. 1.1.1. The level of description D, in which I am interested,
is David Marr’s primal sketch. That is, I operate with the concept of local
geometric primitives or features, which Marr proposed as the building blocks
of a visual system. Since they are building blocks, they should be part of our
prior knowledge of natural images, and we should know how often one sees
an edge, a blob, a corner, etc. This information should be used as our a priori
knowledge when we develop computer vision algorithms. If our models or
descriptions D of images have such geometric primitives as “parameters”, we
should know what constitutes likely “values” of these parameters. In both
chapters I focus on the geometry of edges and investigate how the local geo-
metry of natural images distribute with respect to edges. That is, I settle for
estimating the marginal distribution of edges instead of the full probability
distribution of images p(I).

The reason for focusing on edges is first of all that edges are important in
many applications. Second, experiments have shown (Reinagel and Zador,
1999) that in the human visual system, areas of high contrast or high gradi-
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ent, such as edges, are visited most often while gazing at an image. This
indicates to us that edges might carry a lot of important information about
an image.

There are other important perceptual cues besides image intensity geo-
metry, such as color and lighting effects like shadows, but I choose to dis-
regard these for now, keeping in mind that at a later stage they should be
included in the study of natural image statistics. It is interesting to notice
that Caselles et al. (2002) argue that there are no geometric information
hidden in the color channels of an image, which is not present in the corres-
ponding gray value image. They conclude that color is a semantic cue and
is not carrying any geometric information.

Chapter 3 is an exploration of the space of data points representing the
values of 3×3 pixel high-contrast patches from optical and 3D range images.
The results show that the distribution of data is extremely “sparse” with
the majority of the data points concentrated in clusters and non-linear low-
dimensional manifolds. Furthermore, a detailed study of probability densities
allows us to systematically distinguish between images of different modalit-
ies (optical versus range), which otherwise display similar marginal distribu-
tions. This work indicates the importance of studying the full probability
distribution of natural images, not just marginals, and the need to under-
stand the intrinsic dimensionality and nature of the data. I believe that
object-like structures in the world and the sensor properties of the probing
device generate observations that are concentrated along predictable shapes
in state space. This study of natural image statistics accounts for local geo-
metries (such as edges) in natural scenes, but does not impose such strong
assumptions on the data as independent components or sparse coding by
linear change of bases.

In Chapter 4, I investigate the statistics of local geometric structures
in natural optical images using the linear scale-space image representation.
Previous studies ((Lee et al., 2001; Lee et al., 2002) and Chapter 3) of high-
contrast 3× 3 natural image patches have shown that, in the state space of
these patches, we have a concentration of data points along a low-dimensional
non-linear manifold that corresponds to edge structures. In this chapter, the
analysis is extended to a filter-based multi-scale image representation, namely
the local 3-jet of linear scale-space representations. A new picture of natural
image statistics seems to emerge, where primitives (such as edges, blobs, and
bars) generate low-dimensional non-linear structures in the state space of
image data.
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1.2 Part II: Motion Analysis

The second part of the thesis focuses on motion analysis of non-rigid bodies
such as the motion of fluids. I have developed an algorithm for computation
of the optic flow field of video sequences of non-rigid motion.

Motion analysis is a large topic within the field of computer vision, since
knowledge of motion, as perceivable in image sequences, is necessary for
various tasks such as object tracking, time-to-contact, and structure from
motion. Motion analysis is conducted by associating a vector field of velocit-
ies to the image sequence, which describes the rate and direction of change
of the intensity values. We define the optic flow as the velocity field, which
describes the temporal changes of the intensity values of the sequence.

A large variety of methods for estimation of optic flow exists, far more
than can be listed here, so the following list of references only includes meth-
ods I find important: (Horn and Schunck, 1981; Arnspang, 1988; Otte and
Nagel, 1994; Lindeberg, 1995; Florack et al., 1998; Alvarez et al., 2000). See
also Barron et al. (1994) for a discussion and evaluation of various methods.

The usual assumptions made in optic flow algorithms of rigidity of the ob-
jects in the scene and of affine motion, do not hold in the case of fluid motion.
Fluid motion is a process consisting of local deformations and mixing and
can only in the simplest case be modeled as affine motion. I have developed
a method for the computation of optic flow which takes this non-rigidity and
non-affinity into account.

In Chapter 6, I will present a multi-scale method for computation of op-
tic flow fields. The optic flow field is extracted from normal flow, by fitting
the normal components of a local polynomial model of the optic flow to the
normal flow. This fitting is based on an analytically solvable optimization
problem, in which an integration scale-space over the normal flow field reg-
ularizes the solution. An automatic local scale selection mechanism is used
in order to adapt to the scale of local structure of the flow field. The per-
formance profile of the method is compared with that of existing optic flow
techniques and I show that the proposed method performs at least as well
as the leading algorithms on the benchmark image sequences proposed by
Barron et al. (1994). I also do a performance comparison on a synthetic fire
particle sequence and apply the proposed method to a real sequence of smoke
circulation in a pigsty. Both consist of highly complex non-rigid motion.

1.3 Outline of the Thesis

Some of the chapters of this thesis are reproductions of papers which have
already been published elsewhere. These papers are kept in their original
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form in order to reflect the evolution of thoughts and ideas of my research.
The exceptions are the contents of Chapter 2, based on the paper on scale
normalization of differential expressions (Pedersen and Nielsen, 2000), which
has been rewritten in order to improve the language, and Chapter 5 which
is unpublished work.

The order of chapters in each part of the thesis reflects the chronological
order of the papers associated with each chapter. This is done to make clear
the development of my research over time.

No attempt has been made to make the mathematical notation consistent
across chapters, but this will cause no confusion.

The contents of the chapters and relation to already published work are
as follows:

Part I:

• Chapter 2: This chapter is on scale normalization of differential ex-
pressions for scale selection. It is based on the journal paper (Pedersen
and Nielsen, 2000) which I wrote together with Mads Nielsen.

• Chapter 3: This chapter is on the statistics of high-contrast 3 × 3
patches of natural images. It is basically a reproduction of the journal
paper (Lee et al., 2002) written together with Ann Lee and David
Mumford. This journal paper is an extended version of the workshop
paper Lee et al. (2001), which has also been published as part of Lee
(2001).

• Chapter 4: This is on the statistics of natural images mapped into
3-jet space by linear scale-space derivatives. It is a reproduction of the
conference paper (Pedersen and Lee, 2002) which was written together
with Ann Lee.

• Chapter 5: This chapter includes various properties, thoughts and
ideas about Brownian functions as a model of natural images. A re-
vised version of this chapter will be submitted to the Scale-Space 2003
conference.

Part II:

• Chapter 6: This chapter presents my work on motion analysis. It is a
reproduction of the conference paper (Pedersen and Nielsen, 2001) and
was written together with Mads Nielsen.
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Part III:

• Chapter 7: This last chapter includes a summary of the research
presented in parts I and II and a discussion of future research directions.
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Part I

Natural Image Statistics and
Applications





Chapter 2

Scale Normalization of
Derivatives of Natural Images

2.1 Introduction

In this paper, we look at some scaling properties of images of natural scenes
and use these for scale normalization of image derivatives. Here we use the
term natural image to denote any image of a real world scene (see Fig. 2.3
for some examples of natural images).

We use the linear Gaussian scale-space theory (Iijima, 1962; Witkin,
1983; Koenderink, 1984) as the mathematical formalism of the concept of
scale. The Gaussian scale-space of an image is a continuous family of images
parameterized by the scale. We can compute the scale-space of an image by
convolution with the one parameter family of Gaussian functions in which the
standard deviation acts as the scale parameter. Under such assumptions as
causality, translation and scale invariance and a semi-group property (Weick-
ert et al., 1997) it can be shown that the linear Gaussian scale-space is the
least committed approach to the resampling of an image at a larger scale. By
using scale-space theory we bypass the problem of differentiability of digital
images, because differentiation of the image in scale-space may be obtained
by differentiation of the Gaussian prior to convolution.

By the computation of a possibly non-linear function of image deriv-
atives, sometimes called measures of feature strength, it is possible to de-
tect features in images by detecting extrema or zero crossings of the fea-
ture strength (Marr, 1982; Koenderink and van Doorn, 1987; Florack et al.,
1992; Lindeberg, 1994b). The core idea of scale-space feature detection is that
features exist on different scales and we should apply our feature detector
at the appropriate scale. In order to choose the optimal scale for a certain
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feature, we have to be able to compare image derivatives across scales, which
requires that these derivatives are scale normalized. The choice of scale nor-
malization is an open question. We can choose to make the derivatives dimen-
sionless with respect to scale, as Florack et al. (1994) have proposed, which
means that we should normalize the image derivatives by multiplying with
the scale σ, (∂/∂x)norm = σ∂/∂x. Lindeberg (1994a; 1996; 1998b; 1998a) has
proposed an automatic scale selection method that uses a novel approach to
scale normalization. His scale normalization is defined through a scaling
exponent γ, which depends on the feature we are interested in detecting.
Lindeberg determines this parameter on the basis of analysis of feature mod-
els.

In the literature one finds several investigations into the fractal nature
and statistics of natural images (Mandelbrot, 1982; Pentland, 1984; Field,
1987; G̊arding, 1987; Knill et al., 1990; Ruderman and Bialek, 1994). Field
(1987) has shown that natural images exhibit scale invariance and have a
so-called self similar1 power spectrum. Ruderman and Bialek (1994) has
shown that the self similar power spectrum varies among different classes
of images2. Mandelbrot (1982), Pentland (1984), G̊arding (1987) and Knill
et al. (1990) advocate that to some extend natural images are fractals and
should be modeled as such.

The graph of a function is said to be fractal if it has a so-called fractal
dimension (Hausdorff dimension3) that differ from the topological dimension
in a fractional manner. Furthermore, a fractal function is self similar. The
fractal dimension of an image intuitively describes the roughness of the image
intensity graph, and the fractal dimension of the intensity surface of 2D
images must a priori lie between 2 and 3.

Among others Pentland (1984) has proposed the fractal Brownian motion
(fBm) as a model for images of natural scenes. Pentland use this model to
generate synthetic fractal images of natural objects such as mountains and
clouds. The fBm model also captures the self similar properties of natural
images reported by Field (1987) and Ruderman and Bialek (1994). By using
fractal Brownian motion as an image model we have the freedom to model
images that exhibit a self similar power spectrum and have any fractal di-
mension. The classical Brownian motion is a special case of the fBm. The
fBm’s are in general continuous, but not differentiable. In the limit DH → 2,
the 2 dimensional fBm’s generically become smooth (C∞), whereas in the

1See Appendix 5.7 for a definition of statistical self-similarity.
2The studies by Ruderman and Bialek (1994) is based on a series of images taken in a

forest.
3We will use the Hausdorff dimension as the definition of the fractal dimension. See

for instance Ott (1993) for a mathematical definition of the Hausdorff dimension.
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limit DH → 3, the 2 dimensional fBm’s become spatially uncorrelated.
Our intuition4 is that the γ parameter in Lindeberg’s (1994a; 1996; 1998b;

1998a) scale normalization approach must reflect the local complexity of the
image, and may be modeled through the fractal dimension of the local image.
In this paper we conjecture a simple relation between the topological dimen-
sion of a feature and the fractal dimension of the local image for determining
the scale normalization. We will in this paper assume, that the fBm’s con-
stitute a reasonable model of images of natural scenes. Using this model
we establish a method of scale-space normalization of derivatives, changing
the analytical expression of Lindeberg’s γ-normalization. This expression in-
cludes the fractal dimension of the image in a neighborhood of the feature
we want to detect. Furthermore, we can use this normalization method for
estimation of the fractal dimension of images.

The estimation of the fractal dimension of regions of interest in images
has different interesting prospects. It has been proposed by various authors
(Fazzalari and Parkinson, 1996; Veenland et al., 1996) that the fractal di-
mension of x-ray images of trabecular bone can give an indication of the micro
structure of the bone and thereby the biomechanical strength of the bone.
This can be a helpful tool for the research of osteoporosis and other bone dis-
eases. Levy Vehel (1996) has among others proposed to use fractal measures
and especially multifractal measures for various image analysis tasks such as
segmentation and edge detection. Other uses of the fractal dimension could
be as a quality measure of surfaces produced in different kinds of industries,
e.g. metal plates, wood etc.

2.2 Fractal Brownian Motion and Natural Im-

ages

The fractal Brownian motion is a stochastic function. It was first studied
by Mandelbrot and van Ness (1968) who defined it in terms of stochastic
integrals. This definition is somewhat cumbersome and fortunately we can
also define fBm’s in terms of self similarity of the probability distribution
function of its increments. In the later form, it is straightforward to state
the fBm defined over a N dimensional space (Pentland, 1984). A stochastic
function fH(x) : R

N 7→ R is called a N dimensional fractal Brownian motion
(fBm) if for all positions x ∈ R

N and all displacements ∆x ∈ R
N

P

(
fH(x + ∆x)− fH(x)

‖∆x‖H < y

)

≡ F (y) ,

4Developed during discussions with Tony Lindeberg.
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where F (y) denotes the cumulative probability distribution function of the
increments and P (·) the probability. The scaling exponent H ∈]0; 1] de-
termines the fractal dimension of the fBm. The fBm turns into the classical
Brownian motion when H = 1/2 and the probability distribution F (y) of
the increments are Gaussian. The two dimensional classical Brownian mo-
tion is a scale invariant Gaussian stochastic process (see Chapter 5). The
distribution F (y) could in general be non-Gaussian. The definition of the
fBm implies that any straight line in the domain of the function fH(x) is a
one dimensional fBm with the same scaling exponent H.

The power spectrum of the N dimensional fBm fH(x) is proportional to

|f̃H(ω)|2 ∝ |ω|−α , (2.1)

where f̃H(ω) is the Fourier transform of the fBm, ω ∈ R
N is the spatial

frequency vector, and α = 2H+1, which is independent of the dimensionality
N (Mandelbrot and van Ness, 1968; Pentland, 1984; Voss, 1985). Pentland
(1984) and Voss (1985) note the relation, DH = N + (1 − H), between the
Hausdorff dimension5 DH of the graph of aN dimensional fBm fH(x) and the
scaling exponent H. The estimation of α by estimating the power spectrum
and using Eq. (2.1) is, together with the relation between DH and H, a well-
known method for estimation of the fractal dimension of images (Veenland
et al., 1996).

One can find experimental data to support the claim that we can use the
fractal Brownian motion to model certain aspects of natural images (Field,
1987; Knill et al., 1990; Mandelbrot, 1982; Ruderman and Bialek, 1994).
Field et al. (Field, 1987; Knill et al., 1990) have shown that natural im-
ages in general have a power spectrum proportional to |ω|−2, which implies
scale invariance of the power spectrum and autocorrelation function, i.e. the
second order spatial statistics. This behavior can be modeled by the clas-
sical Brownian motion H = 1/2. Ruderman and Bialek (1994) have shown
that the power spectrum varies among different types of images and is pro-
portional to |ω|−β where β varies around 2, which implies self similarity of
the second order spatial statistics. This behavior can be modeled by the
fractal Brownian motion where H ∈]0; 1]. It should be noted that the fractal
Brownian motion only models the correlation among pixels and does not cap-
ture the full complex dependencies among pixels that are common in natural
images. Nevertheless we believe it is a suitable image model for the purpose
of scale normalization since it captures relevant scaling properties of natural
images.

5The Hausdorff dimension of the graph of a function can intuitively be viewed as a
scaling exponent of the space filling of that function graph.
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Lindeberg (1994a; 1994b; 1998b) argues that if we assume that natural
images have a scale invariant power spectrum, as Field (1987) has proposed,
and that scale invariance implies that the power spectrum has equal energy
at all scale-invariant frequency intervals, we get that the power spectrum of
these images must be proportional to |ω|−N . If we use the fBm as a model
of natural images, we find that this only coincides with H = 1/2, which is
the case where the images can be modeled by the classical Brownian motion.
From this observation and the results of Ruderman and Bialek (1994) we can
deduce that natural images do not necessarily have equal energy at all scales,
but do exhibit a self similar energy scaling of the power spectrum, i.e. |ω|−α.
In this paper we want to normalize image derivatives such that they exhibit
equal energy at all scales.

2.3 Scaling of Derivatives of Fractal Images

In this section we will first give a short introduction to linear Gaussian scale-
space theory and scale normalized derivatives. Then we will state our exten-
sion of Lindeberg’s normalization method, which we base on the assumption
that natural images may be modeled by the fractal Brownian motion. Our
extension is parameterized by the fractal dimension.

2.3.1 Scale-Space and Normalization

The linear Gaussian scale-space representation was independently introduced
by Iijima (1962), Witkin (1983) and Koenderink (1984). The scale-space of
an image f(x) : R

N 7→ R can be defined as

L(x; t) =

∫

Ω

f(x′)G(x− x′; t) dx′ = f(x) ∗G(x; t) (2.2)

where t = σ2 is the scale parameter, the notation ∗ denotes convolution in
x over the image domain Ω ⊆ R

N , and G(x; t) : R
N × R 7→ R is the N

dimensional isotropic Gaussian aperture function

G(x; t) =
1

(2πσ2)N/2
exp

(

−‖x‖
2
2

2σ2

)

.

It can be shown that L(x; t) defined in Eq. (2.2) is the solution to the heat
diffusion equation (Koenderink, 1984).

The nth order partial derivative of a scale-space image with respect to
xi, the ith element of x, can be found by using the following commutation
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relationship

∂n

∂xn
i

(f(x) ∗G(x; t)) = (−1)n∂
nf(x)

∂xn
i

∗G(x; t) = f(x) ∗ ∂
nG(x; t)

∂xn
i

.

Hence we can compute image derivatives at the scale t by convolving the
image with derivatives of the scale-space aperture function. In this paper we
will in general use a simplified tensor notation when writing partial derivat-
ives, where

Li1···in(x; t) =
∂n

∂xi1 · · ·∂xin

L(x; t)

and each i1, . . . , in ∈ {1, . . . , N} are indices of the N components of the
vector x ∈ R

N . Later on we can choose a coordinate system, either global
or local, thereby fixing the meaning of the indices and allowing us to write
partial derivatives in this coordinate system. E.g. in the Cartesian coordinate
system we get Lxy = ∂2

∂x∂y
L. Furthermore, we use Einstein’s summation

convention in which we implicitly assume summation over repeated indices.
An example is

LijLik =

N∑

i=1

LijLik .

Scale normalization of image derivatives has been proposed by several au-
thors (Lindeberg, 1994a; Lindeberg, 1998b; Elder and Zucker, 1996; Florack
et al., 1994). The standard normalization of the nth scale-space derivative
based on dimensional analysis (Florack et al., 1994) is

Li1···in,norm(x; t) = tn/2Li1···in(x; t) ,

which for the first order derivatives is the same as (∂/∂x)norm = t1/2∂/∂x.
Lindeberg (1994a; 1996; 1998b; 1998a) proposes a feature dependent method
of scale normalization of image derivatives in connection with an automatic
scale selection scheme. He proposes that the nth order derivatives could be
normalized by

Li1···in,γn−norm = tγnLi1···in

where γn = nγ/2 and γ is a free normalization parameter. In conjunction
with feature detection Lindeberg has determined γ by an analysis of model
patterns reflecting the features under consideration. In this analysis the
parameter varies in the interval [ 1

2
; 1] (see table 2.1).
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2.3.2 Scale-Space Normalization Using the Fractal Di-

mension

We propose that the normalization parameter γn can be stated as a relation
of α for the image or feature (i.e. the scaling parameter H), the topological
dimension N of the image, and the order of differentiation n. This is based
on the assumption that images of natural scenes may be modeled by fBm’s
and that normalized derivatives must have equal energy at all scales.

We will investigate quadratic differential image invariants on the form

I(n)(x; t) = Li1···in(x; t) · Li1···in(x; t) . (2.3)

We say that this kind of invariants are of the nth order of differentiation.
In the following we examine the L1-norm of such invariants, ‖I (n)‖1, which
corresponds to looking at the L2-norm of image derivatives Li1···in . That is,
we examine scaling of the energy of image derivatives. Note furthermore
that the L1-norm of any other invariant quadratic in L(x; t) of total order of
derivation 2n is equivalent to ‖I (n)‖1 (see Nielsen et al. (1997)).

Theorem 2.1
If fH(x) : R

N 7→ R is a N dimensional fBm and L(x; t) : R
N × R 7→ R

is the scale-space of fH(x), then the nth order invariants I (n)(x; t) in this
scale-space can be normalized to equal energy on all scales by the following
relation

I(n)
norm(x; t) = tγnI(n)(x; t)

where γn = −α/2 + n +N/2, and α = 2H + 1.

Proof: The proof is inspired by a similar analysis of the power spectrum
of natural images by Lindeberg (1994a; 1994b; 1998b). We compute the
L1-norm of I (n)(x; t) which is equivalent to the total energy of the power
spectrum and use Parseval’s identity

‖I (n)‖1 =

∫

x∈�
N

|L2
i1···in(x; t)| dx

=

∫

ω∈ �
N

|G̃2
i1···in(ω; t)f̃ 2

H(ω)| dω

=

∫

ω∈ �
N

∣
∣
∣ın|ω|2ne−|ω|2tf̃ 2

H(ω)
∣
∣
∣ dω

=

∫

ω∈ �
N

e−|ω|2t|ω|−α+2n dω,
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where ı =
√
−1, and f̃α(ω) and G̃i1···in(ω; t) are the Fourier transform of the

image and the nth order derivative of the Gaussian, respectively. Using the
relation

∫ ∞

0

xme−ax2

dx =
Γ ((m+ 1)/2)

2a(m+1)/2

and introducing N dimensional spherical coordinates, we find

‖I (n)‖1 =

∫

ρ∈[0,∞[;ϕ1,...,ϕN−1∈[0,2π]

ρ−α+2n+N−1e−ρ2t · dρdϕ1 · · ·dϕN−1

= (2π)N−1 Γ(−α
2

+ n+ N
2
)

2t−
α
2
+n+ N

2

= K · tα
2
−n−N

2 = K · t−γn ,

where K is an arbitrary constant, and hereby we see that we must have
γn = −α/2 + n +N/2 in order to have equal energy at all scales. �

The normalization relation of Theorem 2.1 implies a special case for the
0’th order derivatives, meaning the case of the undifferentiated scale-space
image. According to Theorem 2.1 we should in this case scale normalize the
scale-space L(x; t) by an exponent γ0 = −α/2+N/2 introduced by the fractal
dimension of the original image. Normalization of the nth order derivatives
can then be seen as just the normalization based on dimensional analysis,
because γn = γ0 +n. We can get an intuitive explanation for this special case
of the 0th order derivatives if we think of the fBm as the fractional derivative
(or integral) of the classical Brownian motion (Mandelbrot and van Ness,
1968), i.e. γ0 is the normalization coming from the fractional derivative of the
classical Brownian motion. In the case of the classical Brownian motion (α =
2) and N = 2, we see that our scale normalization reduces to normalization
based on dimensional analysis γn = n.

In conjunction with feature detection, we must use the fractal dimension
of the image in a neighborhood of the feature of interest. This suggests
a simple relation between the topological dimension of the feature and a
suitable choice of fractal dimension. In Table 2.1 we have listed Lindeberg’s
(Lindeberg, 1996) suggested normalized measures of feature strength. For
each feature we have calculated the values of H and DH which correspond
to his suggested γ values. It is interesting to notice that corners and blobs
have a fractal dimension of 2.5 and edges and ridges only have a fractal
dimension of 2. The topological dimension of corners and blobs is 0, while
edges and ridges have a topological dimension of 1. Round a corner or a blob
we would expect the void hypothesis of H = 1

2
. This is not expected to be

true in a neighborhood of 1D features owned to the spatial extend and we
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Feature type Normalized feature strength γ H DH T

Edge tγ/2Lv 1/2 1 2 1

Ridge t2γ(Lpp − Lqq)
2 3/4 1 2 1

Corner t2γL2
vLuu 1 1/2 2.5 0

Blob tγ∇2L 1 1/2 2.5 0

Table 2.1: This table shows the γ-normalized measures of feature strength used by
Lindeberg for feature detection with automatic scale selection. We have calculated the
corresponding values of H and DH using our extension of γ. This table is a reproduction
of a table from (Lindeberg, 1996) extended with columns for H , DH and the topological
dimension T of the features. Note that a simple relation exists between the fractal dimen-
sion DH and the topological dimension T . The relation between γ and T is not as straight
forward.

see that Lindeberg’s choice of γ leads us to the hypothesis of H = 1 for both
1D features. Hence for 1D features the hypothesis is that the pixels of the
feature are highly correlated.

A benefit of the proposed normalization method is that the normaliza-
tion relation can be used for estimation of the fractal dimension of images.
This can be done by calculating the L1-norm of a collection of differential
invariants having the form given in Eq. (2.3) and then fit the graph of the
logarithm of the norm values to a straight line. The slope of this line is an
estimate of γn which then gives us an estimate of the fractal dimension DH

of the image intensity surface. We use this method in Sec. 2.4 to estimate
the fractal dimension of synthetic and real images. We will not conduct a
comparative study of this method and other methods for estimation of the
fractal dimension of images (see (Veenland et al., 1996) for a study of other
methods), but merely point out the existence of the method.

2.4 Experiments

We have conducted several experiments on synthetic and real 2D images in
order to study the normalization of natural images. We can, as stated earlier,
use the normalization method to find the fractal dimension of images by com-
puting unnormalized derivatives in the scale-space of the considered image.
We can estimate the value of γn and calculate the Hausdorff dimension DH

from these unnormalized scale-space derivatives. In the same manner one
can get estimates of the local fractal dimension at a point in the original
image. The fractal dimension of a point could be viewed as a contradiction
in terms, but it is never the less possible to give meaning to this concept
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α Estimated γn Correct γn Relative error

a) Values for a 2D image differentiated n = 1 times (LiLi)

1 1.51 1.50 0.6 %

2 1.03 1.00 3.0 %

2.5 0.81 0.75 8.0 %

3 0.61 0.50 22.0 %

b) Values for a 2D image differentiated n = 2 times (LijLij)

1 2.50 2.50 0.0 %

2 2.00 2.00 0.0 %

2.5 1.75 1.75 0.0 %

3 1.51 1.50 0.6 %

Table 2.2: These tables show estimated γn values for synthetic N=2 dimensional fBm
images with α = 1, 2, 2.5, 3. The top table a) shows γn values estimated by computing
LiLi (n = 1) together with the correct γn values and corresponding relative error. The
bottom table b) shows γn values estimated by computing LijLji (n = 2). The fBm images
and the corresponding graphs of the L1-norm of LiLi and LijLji are depicted in Fig. 2.1.
The γn values are estimated by sampling the scale-space of the two differential invariants
applied to the synthetic images at 10 different scales and computing the L1-norm of these
invariants. The value of γn is estimated as the slope of a line fitted to the log-log graph
of the L1-norm as a function of scale t.

due to the intrinsic property of scale-space: A point in scale-space corres-
pond to a neighborhood in the underlying image. It is the authors opinion
that in principle all theory of fractal measures may be reformulated in the
inherently well-posed framework of linear scale-space theory, thereby easing
operationalization of fractal measures.

In Table 2.2 we show some results for synthetic fBm images (see the im-
ages in Fig. 2.1). The fBm images used for these experiments were construc-
ted in the frequency domain and were given a power spectrum proportional
to |ω|2 and a random phase. We have calculated the L1-norm of different
images from two scale-space differential invariants LiLi and LijLji. On this
basis we have estimated the γn values for the fBm images and compared them
to the theoretical values from the continuous domain theory.

The method of estimating the fractal dimension that we propose is fairly
accurate on synthetic images of known fractal dimensions. From Table 2.2
we see that the inaccuracy of the γn estimate increases with α. The reason
for this inaccuracy is that when the α value is increased, the synthetic image
will have structure on an increasing scale and when the α value of the image
becomes large enough the outer scale of the large structures will exceed the
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Figure 2.1: In this figure we show images of fBm’s with different α = 1, 2, 2.5, 3 values
and the corresponding log-log graphs of the L1-norm of LiLi and LijLji, which we use
for estimation of the γn values in Table 2.2. Note that α = 2 corresponds to the classical
Brownian motion. The L1-norm graphs were produced by sampling the scale-space of the
two differential invariants at 10 different scales between t = 4 and t = 900 with exponential
growing increments. The synthetic images all have 256× 256 pixels.
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Figure 2.2: We have computed the scale-space differential invariants LiLi (solid line),
LijLji (dashed line) and LijkLkji (dotted line) of the tree image from Fig. 2.3. These
graphs show the L1-norm of I(n)tn+1 and (I(n))1/n of the three differential invariants.
The estimated slopes are for I (n)tn+1, γ0 = 1.19, 1.16, 1.17 (n = 1, 2, 3), and for (I (n))1/n,
γ0 = −0.81,−0.91,−0.93 (n = 1, 2, 3).

outer scale of the image thereby misleading our method. This can also be
seen on the graphs of Fig. 2.1 where the estimate of the L1-norm becomes
inaccurate at high scales, i.e. the graph bends downward, and this effect
increases with α. It can also be seen from Table 2.2 that when we increase
the order of differentiation we also increase the accuracy of the method. The
reason for this is that when we differentiate our image we enhance the fine
structure of the image by effectively looking at a scale interval, which has
been moved towards smaller scales. In real examples image noise from the
capture device will exhibit another structure than the random process of the
scene. In general this is more uncorrelated noise and a scale interval of smaller
scales will exhibit structure merely from the capture device. That is, we must
choose an appropriate scale if we wish to measure scale characteristics.

We expect a logarithmic relation between the scale and ‖I (n)‖1. From
Table 2.2 and Fig. 2.1 we can see that the method for normalization pro-
posed here is quite reasonable for synthetic images. In order to examine
our method on real images, we have calculated the L1-norm of invariants of
increasing order of differentiation of the tree image from Fig. 2.3. We have
normalized the computed invariants by I (n)tn+1, which corresponds to our
normalization method and (I (n))1/n, which corresponds to the standard nor-
malization method based on dimensional analysis, in order to examine the
scaling property of the image independently of the order of differentiation.
The slope of the logarithmic plot corresponds to γ0 and we would expect
that this slope should be approximately the same for all orders of differenti-
ation only for our normalization method I (n)tn+1. The results can be viewed
in Fig. 2.2. From this figure it can be concluded that our normalization
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Title Estimated γ2 H DH

Garden -1.90 0.60 2.40

X-rayed bone -1.62 0.88 2.12

Water Lilly -1.53 0.97 2.03

Sea weed -1.98 0.52 2.48

Grains of sand -2.09 0.41 2.59

Satellite clouds -1.89 0.61 2.39

Landscape -1.75 0.75 2.25

Tree -1.82 0.68 2.32

Table 2.3: This table shows the estimated γ2 values and the corresponding scaling
exponent H and Hausdorff dimension DH for the images in Fig. 2.3. For each image we
compute LijLji (n = 2) and estimate the γ2 values in the same fashion as in table 2.2.

method seems as a reasonable choice, but we can also see that the γ of the
standard normalization method for this image is fairly independent of the
order of differentiation. If the analyzed image has a power spectrum pro-
portional to |ω|−2, i.e. the power spectrum of the classical Brownian motion
(H = 1/2), our normalization procedure will reduce to the standard normal-
ization γn = n. This inconclusive experiment therefore calls for a thorough
evaluation of the scaling properties of a large ensemble of images of natural
scenes.

We have also tried to estimate the Hausdorff dimension of some 2 di-
mensional images of natural scenes. The results can be viewed in table 2.3.
The estimated values of H and DH indicates the same results as found by
Ruderman and Bialek (1994): The Hausdorff dimension of images of natural
scenes are not necessarily close to DH = 2.5. Unfortunately we have no way
of determining the error on the results in this table.

Strictly speaking, the x-rayed bone and satellite images in Fig. 2.3 do
not fit within our definition of natural images due to their modalities. We
include them to emphasize that the proposed method for normalization and
estimation of the fractal dimension is independent of the class of images
as long as the power spectrum of this class can be modeled by the fractal
Brownian motion model.

2.5 Conclusions

We have related Lindeberg’s (1994a; 1996; 1998b; 1998a) scale-space normal-
ization method to the notion of fractal dimension, assuming that images of
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Figure 2.3: Here we show examples of natural images. The first six images all have
256×256 pixels and the last two have 512×512 pixels. We name the images from the top
left corner going in the reading direction; Garden, X-rayed bone, Water Lilly, Sea weed,
Grains of sand, Satellite clouds, Landscape and Tree.
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natural scenes can be modeled by fractal Brownian motion. We propose that
feature strength measures are normalized using an expression involving the
fractal dimension of the local image.

We have found a normalization expression that has the Hausdorff dimen-
sion as a parameter. This expression reveals a possible relation between the
topological dimension of the feature of interest and the fractal dimension of
the local image around the feature (see Table 2.1). We conjecture (for future
experimental testing):

The topological dimension of the feature uniquely determines the
scale-space normalization parameter.

We propose a further investigation into the relationship between differ-
ent features and their Hausdorff dimension. It would be interesting to see
whether it is possible to generalize the results described in table 2.1 and
further establish a general relationship between the topological dimension
of features and the fractal dimension locally in the image. Furthermore, we
suggest a thorough investigation of the scaling properties of images of natural
scenes using a large ensemble of images. Finally, it could be interesting to do
a comparison of the performance of our normalization method and the one
Lindeberg originally proposed for his automatic scale selection method.

Acknowledgments

We would like to thank Professor Tony Lindeberg for inspiring us to do this
work. Furthermore, we thank Professor Peter Johansen for his comments on
some of the theory of this paper.



34 2. Scale Normalization of Derivatives



Chapter 3

The Nonlinear Statistics of
High-Contrast Patches in
Natural Images

3.1 Introduction

A number of recent attempts have been made to describe the non-Gaussian
statistics of natural images (Field, 1987; Ruderman and Bialek, 1994; Ols-
hausen and Field, 1996; Huang and Mumford, 1999; Simoncelli, 1999b; Gren-
ander and Srivastava, 2001). The interest for these studies in the computer
vision community has been motivated by the search for more realistic priors
for applications as diverse as object localization (Sullivan et al., 1999), seg-
mentation (Malik et al., 2001; Tu et al., 2001), image reconstruction (Nielsen
and Lillholm, 2001), denoising (Zhu and Mumford, 1998; Simoncelli, 1999a)
and compression (Buccigrossi and Simoncelli, 1999).

The research in natural image statistics can roughly be divided into two
related directions. Some studies involve analyzing 1D or 2D marginal statist-
ics with respect to some fixed linear basis. Grenander and Srivastava (2001),
for example, have shown that one can use a family of Bessel functions to
model the 1D marginals of band-pass filtered data from a variety of different
types of images. In Wegmann and Zetzsche (1990) and Simoncelli (1999b),
the authors use a wavelet basis to uncover complex dependencies between
pairs of wavelet coefficients at nearby spatial positions, orientations, and
scales. In the other direction, there are studies of image statistics which try
to find an “optimal” set of linear projections or basis functions in the state
space defined by the image data (8× 8 patches, for example, define a distri-
bution in R

64). The directions in state space are usually chosen according to
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some higher-order statistical measure reflecting the non-Gaussianity or multi-
modality of the projected data density; see e.g. projection pursuit (Huber,
1985; Friedman, 1987), sparse coding (Olshausen and Field, 1996) and ICA
(see Hyvärinen (1999) for a survey of ICA and related methods).

Despite the many advances in sparse coding and multi-resolution ana-
lysis, we are still short of a description of the full probability distribution
(as opposed to marginal distributions) of pixels in a neighborhood. Further-
more, so far, there have been few attempts to make the connection between
the object structure in the world and the probability distribution of natural
images precise.

In this paper, we analyze the state space of local patterns of pixel values.
More precisely, we examine the empirical probability distribution of 3 ×
3 patches of optical and range images. These two types of images reflect
different aspects of generators (or objects) in the world, as well as differences
in image sensor properties. After preprocessing (consisting of subtracting
the mean of each patch and whitening the data), the extracted 3× 3 image
patches define a distribution on a 7-dimensional sphere. We address the
following questions: “How is the data distributed in this state space?” and
“Are there any clear qualitative differences between the distributions of data
from images of different modalities, e.g. optical versus range images?”.

To develop statistically efficient image representations, it is important
to understand how natural data is distributed in higher-dimensional state
spaces. Without this knowledge of natural images we are not able to fully
exploit the sparseness of the state space of the data. From a sparse coding
point of view, high-density clusters and low-dimensional manifolds are espe-
cially interesting. These types of structures greatly reduce the dimensionality
of the problem.

In ICA and related methods, one assumes that a linear change of basis
(into independent components) that sparsifies the image data exists. We
believe that an analysis of the probability distribution of natural images
should be free from such strong assumptions as independent components,
or linear decompositions of an image into a few dominant basis images. In
reality, the most common rule for image formation is occlusion — which is
non-linear — and the state space of image patches is rather complex with
many more high-density directions than the dimension of the state space. The
complexity of the data can partially be seen in the Haar wavelet statistics
of natural images (Huang and Mumford, 1999; Huang et al., 2000). Take,
for example, the 3D joint distribution of horizontal, vertical, and diagonal
wavelet coefficients of natural images. Fig. 3.1 shows that the equi-probable
surface of this distribution has several “hot spots” with 6 vertices along the
axes y = z = 0, x = z = 0, x = y = 0 and x = ±y = ±z; and 8 local maxima
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Figure 3.1: An equi-probable surface of the joint distribution of horizontal, vertical, and
diagonal wavelet coefficients in optical images, viewed from three different angles.
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around the shoulders x = ±y = ±z. These cusps are even more striking for
range images (Fig. 3.2).

The observed cusps in Fig. 3.1 and Fig. 3.2 show very clearly frequently
occurring local geometric patterns in pixelated natural images. A simple
calculation 1 of the patterns corresponding to these cusps gives the following
2× 2 blocks and their rotations:

(
a a
b b

)

,

(
a b
b a

)

,

(
a b
b b

)

A similar analysis can be done empirically for Haar wavelet coefficients at
adjacent spatial locations in the same subband. Such a study of the 2D
joint histogram of these so called wavelet “brothers” will reveal frequent
occurrences in 2×4 patches of more complex local geometries best described
as blobs, T-junctions, edges and bars (Huang et al., 2000).

We believe that object-like structures in the world and the sensor proper-
ties of the probing device generate observations that are concentrated along
predictable shapes (manifolds or clusters) in state space. We want to get a
better understanding of how edges and other image “primitives” (see David
Marr’s primal sketch (Marr, 1982)) are represented geometrically in the state
space of image data. Furthermore, we want to study how empirical data
from natural images are distributed statistically with respect to the pre-
dicted clusters and manifolds. In other words, we are searching both for a
geometric and probabilistic model in state space of the basic primitives of
generic images.

In this study, we focus on high-contrast 2 data. It is commonly believed
that image regions with high contrast carry the most important content of
a scene. Reinagel and Zador (1999) have shown, for natural images with a
variety of cognitive content, that humans tend to focus their eye movements
around high-contrast regions — thus significantly biasing the effective input
that reaches the early stages of the visual system towards these types of image

1The joint distribution of the 3 Haar wavelet responses

cH =
1

2
(a00 + a01 − a10 − a11)

cV =
1

2
(a00 − a01 + a10 − a11)

cD =
1

2
(a00 − a01 − a10 + a11) (3.1)

is a sufficient statistic for 2× 2 blocks

(
a00 a01

a10 a11

)

modulo mean.

2We here choose the top 20 percent highest-contrast image patches. The qualitative
results of our study, however, seem very robust to the exact choice of the cut-off.
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Figure 3.2: An equi-probable surface of the joint distribution of horizontal, vertical, and
diagonal wavelet coefficients in range images, viewed from three different angles.
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regions. Furthermore, we tend to believe that high-contrast and low-contrast
regions follow qualitatively different distributions and should be modeled
separately. The equi-probable contours mentioned above (see Fig. 3.1 and
Fig. 3.2) are highly irregular and star-shaped in the regions far from the
origin of the plot. This clearly indicates the non-Gaussian statistics of high-
contrast data. The contours near the center part of the plot look different.
These contours are more ellipsoidal, which suggest that fluctuations around
low-contrast image regions may be Gaussian in nature.

This study deals with local patterns of pixel values, although it should
be noted that the more general results (regarding the intrinsic dimension
and shape of structures in state spaces) generalize to larger image patches
and collections of filter responses (see the discussion in Sec. 3.7). Deriving
pixel-level models — for example, through an iterative coarse-to-fine scheme
using 3 × 3 or 5 × 5 patch structures — is also interesting by itself. What
makes denoising and many computer vision applications difficult is that a
natural image often contains many irrelevant, often partially resolved, ob-
jects. This type of “noise” is highly non-Gaussian and sometimes referred to
as “clutter”. To develop better image enhancement algorithms that can deal
with structured noise, we need explicit models for the many regularities and
geometries seen in local pixel patterns.

This work has some similarities to work by Geman and Koloydenko
(1999). The latter study also concerns geometrical patterns of 3× 3 patches.
The authors quantize 3×3 blocks according to a modified order statistic and
define “equivalence classes” based on photometry, complexity and geometry
in image space. One of their goals is data classification for object recognition
applications.

The organization of the paper is as follows: In Sec. 3.2 we describe the two
data sets extracted from an optical image database by van Hateren and van
der Schaaf (1998), and a range image database by Huang et al. (2000). In
Sec. 3.3 we describe the preprocessing of the data sets. Our analysis is divided
into three parts: In Sec. 3.4 we study the distribution of our data with respect
to a Voronoi tessellation of the space of data points. This first part is a model-
free first exploration of the state space of contrast-normalized patches. We
proceed in Sec. 3.5 with a study of the probability density of high-contrast
optical image patches around a 2D manifold. The manifold represents the
loci in state space of blurred step edges of different orientations and positions.
Finally, in Sec. 3.6 we analyze the probability density of range data around
clusters corresponding to binary patches. The results are discussed in Sec.
3.7.
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3.2 Optical and Range Data Sets

We extract two data sets of high-contrast 3 × 3 patches from optical and
range images, respectively. These patches are then preprocessed as discussed
in Sec. 3.3.

• The optical data set contains about 4.2 · 106 high-contrast log-intensity
patches. These are extracted from van Hateren’s still image collec-
tion (van Hateren and van der Schaaf, 1998) of 4167 calibrated 1020×
1532 images; see Fig. 3.3 for samples. The pixel values in these images
are approximately linearly proportional to the scene luminance. From
each image in the database, we randomly select 5000 3 × 3 patches,
and keep the top 20 percent, i.e. 1000 patches, with the highest con-
trast in log-intensities (see Sec. 3.3 for a definition of contrast or the
“D-norm”).

• The range data set contains about 7.9 · 105 high-contrast log-range
patches. These are extracted from the Brown database 3 by Huang
and Lee (Huang et al., 2000) of around 200 444× 1440 range images
with mixed outdoor and indoor scenes; see Fig. 3.4 for samples. We
divide each image into disjoint 3 × 3 patches, and discard all patches
with out-of-range data. From the remaining patches in each image,
we randomly select 20000 patches and keep the top 20 percent with
highest contrast in log-range values.

The optical and range images have quite different sub-resolution proper-
ties. In optical images, the subpixel details are averaged by the point-spread
function of the camera. The pixel values in a range image, on the other
hand, usually correspond to the minimum of the sub-resolution details. The
field of view of the scanner is 80◦ vertically and 259◦ horizontally. The beam
divergence of the laser range finder is approximately 3 mrad. If the laser
footprint hits two targets with a range difference larger than 3 meters, the
returned value is the range to the nearest target. If the range difference is
less than 3 meters, the returned value is roughly a weighted average of both
ranges where the weight depends on the reflectivity of the two targets.

3.3 Preprocessing

We want to compare and group image patches based on their geometrical
structure. In a natural scene, the reflectance and the shape of a surface are

3Available at http://www.dam.brown.edu/ptg/brid/
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Figure 3.3: Samples from the van Hateren optical image database. The gray values code
for log-intensity values.

usually fixed quantities, while the absolute distance to, and the illumination
of, a point in a scene can vary widely. We thus work with the logarithm,
rather than the absolute values, of intensity 4 or range. Furthermore, before
analyzing the data, we subtract the mean and contrast-normalize each image
patch.

Let x = [x1, . . . , x9]
T = [I11, I21, I31, I12, . . . , I33]

T ∈ R
9 be a non-constant

vector with the log-values of the original patch. Subtracting the mean and
contrast normalizing lead to a new vector

y =
x− 1

9

∑9
i=1 xi

||x− 1
9

∑9
i=1 xi||D

. (3.2)

The contrast ||x||D, or “D-norm”, is here calculated by summing the differ-
ences between 4-connected neighbors (i ∼ j) in a 3×3 patch and then taking

4The logarithmic compression of intensities is consistent with the inverse relationship
between ambient illumination and human sensitivity. According to Weber’s law, the ratio
∆L/L of the just noticeable difference ∆L and the ambient luminance L, is constant for a
wide range of luminances. It is argued that the human visual system uses this adaptation
scheme to preserve the relative reflectances (brightness ordering) of an array of surfaces
in a scene.
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Figure 3.4: Samples from the Brown range image database by Huang and Lee. The gray
values code for log-range values.
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the square root, i.e.

||x||D =

√
∑

i∼j

(xi − xj)2. (3.3)

In matrix form, we have
||x||D =

√
xTDx, (3.4)

where

D =

















2 −1 0 −1 0 0 0 0 0
−1 3 −1 0 −1 0 0 0 0

0 −1 2 0 0 −1 0 0 0
−1 0 0 3 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 3 0 0 −1
0 0 0 −1 0 0 2 −1 0
0 0 0 0 −1 0 −1 3 −1
0 0 0 0 0 −1 0 −1 2

















. (3.5)

The preprocessed data points lie on a 7-dimensional ellipsoid S̃7 ⊂ R
9,

where

S̃7 = {y ∈ R
9 :

9∑

i=1

yi = 0 , yTDy = 1} . (3.6)

For convenience, we make a change of basis to a coordinate system where the
data points lie on a Euclidean sphere. In the case of scale-invariant images,
this is exactly equivalent to whitening the data 5. The 2-dimensional Discrete
Cosine Transform (DCT) basis of a 3×3 image patch diagonalizes the matrix
D. In vector form, we write the 8 non-constant DCT basis vectors as

e1 = 1√
6
[ 1, 0, −1, 1, 0, −1, 1, 0, −1]T

e2 = 1√
6
[ 1, 1, 1, 0, 0, 0, −1, −1, −1]T

e3 = 1√
54

[ 1, −2, 1, 1, −2, 1, 1, −2, 1]T

e4 = 1√
54

[ 1, 1, 1, −2, −2, −2, 1, 1, 1]T

e5 = 1√
8
[ 1, 0, −1, 0, 0, 0, −1, 0, 1]T

e6 = 1√
48

[ 1, 0, −1, −2, 0, 2, 1, 0, −1]T

e7 = 1√
48

[ 1, −2, 1, 0, 0, 0, −1, 2, −1]T

e8 = 1√
216

[ 1, −2, 1, −2, 4, −2, 1, −2, 1]T

(3.7)

where the normalization is chosen such that ||e1||D = . . . ||e8||D = 1.

5The “D-norm” ||I ||2D =
∑

i∼j(Ii − Ij)
2 is a finite version of the unique scale-invariant

norm
∫ ∫
||∇I ||2dxdy ∝

∫ ∫
(ξ2 + η2)||Î ||2dξdη on images I(x, y) (with Fourier transforms

Î(ξ, η)). See also Chapter 5.
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Let the DCT basis vectors above be the columns of a 9× 8-matrix A =
[e1, e2, . . . e8], and introduce a diagonal 8 × 8-matrix Λ with the diagonal
elements equal to 1/||e1||2, 1/||e2||2, . . ., 1/||e8||2. A change of basis taking
ei to be the unit vectors according to

v = ΛATy , (3.8)

or equivalently, y = Av, will then transform the ellipsoid S̃7 in Eq. (3.6) to
a 7-dimensional Euclidean sphere

S7 = {v ∈ R
8 :

8∑

i=1

vi = 0 , ‖|v|| = 1} . (3.9)

The 7-sphere S7 is the state space of our preprocessed data points.
We would like to be able to measure the distance between two 3×3 image

patches P1 and P2. Since the contrast-normalized data is on a sphere, we
simply calculate the angular distance between the corresponding two points
v1,v2 ∈ S7 ⊂ R

8 on the sphere. In other words, our distance measure is
given by

dist(P1, P2) = arccos(v1 · v2)

= arccos

(
By1 ·By2

||By1|| ||By2||

)

, (3.10)

where the matrix B = ΛAT , and the vectors y1,y2 ∈ R
9 represent the

centered 3× 3 image patches P1 and P2.

3.4 A First Exploration of the 7-Sphere

As a first exploration of our two data sets, we divide the 7-sphere S7 ⊂ R
8 into

Voronoi cells, and analyze how the data points are distributed with respect
to the tessellation. This is a model-free exploration of the state space, where
we derive non-parametric probability distributions.

Assume a discrete collection of sampling points P = {P1,P2, . . . ,PN} in
S7. A Voronoi cell Ωi around a sampling point Pi is defined as the set of all
points x ∈ S7 that are at least as close to Pi as to any other sampling point
Pj; that is,

Ωi = {x ∈ S7 | dist(x,Pi) ≤ dist(x,Pj) for any Pj ∈ P}, (3.11)

where dist(·, ·) is the angular distance, as defined in Eq. (3.10), between two
points on the sphere.
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The problem of choosing a dense set of sampling points on a sphere S7 ⊂
R

8 is analogous to the problem of packing spheres in R
8 itself. For a fixed

number of sampling points, we seek a set of points such that equal non-
overlapping spheres centered at the points cover the sphere “efficiently”, in
the sense that the space not covered by these spheres is minimal. This is a
non-trivial problem in the general n-dimensional case (see Conway and A.
Sloane (1988) for an in depth exposé of sphere packing in higher dimensions).
In the case of 8-dimensional lattices, however, an optimal solution given by
the so called E8 lattice exists. There are several possible coordinate systems
for E8. Using the “even” coordinate system, we obtain

E8 = {(x1, . . . , x8) | all xi ∈ Z or all xi ∈ Z + 1/2,
∑

xi ≡ 0 (mod 2)}.

Suppose that there are N points in the E8 lattice at a distance u from the
origin. Then these points, when rescaled by dividing them by u, form a dense
set of sampling points P = {P1,P2, . . . ,PN} of S7. The first spherical shell
with u =

√
2 and N = 240 is the unique solution to the “kissing number”

problem in R
8, where one wants to arrange the maximum number of non-

overlapping spheres of radius 1 so that they all touch the unit sphere. For
our Voronoi sampling, we have chosen to take the 4:th spherical shell of E8

with u =
√

8. After normalization, this gives us a total of 17520 Voronoi
cells on the 7-sphere with roughly the same size. The sampling points Pi are
given by the permutations and sign changes of the following five 8-vectors:

1. The 112 permutations and sign changes of [2, 2, 0, 0, 0, 0, 0, 0]T/
√

8.

2. The 8960 permutations and sign changes of [2, 1, 1, 1, 1, 0, 0, 0]T/
√

8.

3. The 256 permutations and sign changes of [1, 1, 1, 1, 1, 1, 1, 1]T/
√

8.

4. The 7168 permutations and sign changes with the constraint that the
number of minus signs is an odd number;
[

3
2
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

]T
/
√

8.

5. The 1024 permutations and sign changes with the constraint that the
number of minus signs is an even number;
[

5
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

]T
/
√

8 .

From a Monte Carlo simulation (with 5 million random points on the 7-
dimensional unit sphere), we get that the volumes of the 5 types of Voronoi
cells above are approximately 6.3 · 10−3, 1.8 · 10−3, 4.1 · 10−3, 1.8 · 10−3, and
1.8 · 10−3, respectively.
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We bin our high-contrast optical and range patches into the 17520 Voronoi
cells using the definition given in Eq. (3.11). We define the density of data
points in the Voronoi cell Ωi around sample point Pi as

ρ(Ωi) =
N(Ωi)/

∑

iN(Ωi)

vol(Ωi)/vol(S7)
, (3.12)

where N(Ωi) is the number of patches in the Voronoi cell Ωi, vol(Ωi) is the
volume of that cell, and vol(S7) =

∑

i vol(Ωi) = π4/3 is the total volume of
the 7-sphere.

In Fig. 3.5 and 3.6 we show the density ρ of the Voronoi cells for high-
contrast optical and range patches, together with the percentage of volume
occupied by the percentage of patches. We find that the distribution of data
on S7 is extremely “sparse”, with the majority of data points concentrated
in a few high-density regions on the sphere. For both the optical and range
data, half of the patches can be divided into an optimal set of Voronoi cells
that occupies less than 6% of the total volume of the 7-sphere.
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Figure 3.5: (Top) Density ρ(Ωi) of high-contrast optical patches in Voronoi cells that
are sorted according to decreasing density. (Bottom) Cumulative percentage of optical
patches in the Voronoi cells above versus the cumulative percentage of volume in S7 that
are occupied by these cells.
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Figure 3.6: (Top) Density ρ(Ωi) of high-contrast range patches in Voronoi cells that are
sorted according to decreasing density. (Bottom) Cumulative percentage of range patches
in the Voronoi cells above versus the cumulative percentage of volume in S7 that are
occupied by these cells.
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We can use the Kullback-Leibler distance or relative entropy to get an
information-theoretic measure of the deviation of the probability distribu-
tions of our data from a uniform distribution. Note that a Gaussian assump-
tion on natural images corresponds to a uniform distribution in state space
after whitening.

We estimate the probability density functions po(Ωi) and pr(Ωi) for optical
and range data, respectively, by calculating

p(Ωi) =
N(Ωi)
∑

iN(Ωi)
(3.13)

for i = 1, . . . , 17520. As before N(Ωi) is the number of optical or range data
points in Voronoi cell Ωi. The corresponding probability density function for
a uniform distribution is defined as

qu =
vol(Ωi)

vol(S7)
, (3.14)

where vol(Ωi) is the volume of Voronoi cell Ωi, and vol(S7) = π4/3 is the total
volume of the 7-sphere. The KL-distance between the empirical probability
density of the data and a uniform density on the 7-sphere is given by

D(p‖qu) =
∑

i

p(Ωi) log2

(
p(Ωi)

qu(Ωi)

)

. (3.15)

This gives us a measure of the number of excess bits we incur by coding the
data points distributed by po(Ωi) or pr(Ωi) with a code book based on the
uniform distribution qu(Ωi) (Cover and Thomas, 1991). For our two datasets,
we have that D(po‖qu) = 1.62 bits and D(pr‖qu) = 2.59 bits. These numbers
indicate that the distribution of optical or range data points in the state
space of the contrast-normalized data is highly non-uniform.

In Fig. 3.7 and Fig. 3.8, we display the first 25 sampling points Pi of
the Voronoi cells ordered after their densities ρ(Ωi) (defined according to
Eq. (3.12)) for optical and range data, respectively. The pixel patterns in
these two figures depend of course on the exact choice of sampling scheme,
and can look very different if one were to choose basis functions from a
different lattice. In Fig. 3.7 for optical patches, the centers of the Voronoi
cells with highest densities are close to blurred step edges (see Sec. 3.5.1). For
high-contrast range patches, the cells with highest densities resemble binary
patches (compare Fig. 3.8 with Fig. 3.18). Note in particular that some of
the first 25 Voronoi cells here are similar to binary symmetry classes 1’, 2’,
and 5’.
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Figure 3.7: The first 25 Voronoi patches ordered after their densities ρ(Ωi) in Eq. (3.12)
for optical images. For each Voronoi cell, we display the 3× 3 patch corresponding to the
sample point Pi. The cumulative sum of p(Ωi) (Eq. (3.13)) over the ordered patches is
shown as pcum.
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Figure 3.8: The first 25 Voronoi patches ordered after their densities ρ(Ωi) in Eq. (3.12)
for range images. For each Voronoi cell, we display the 3× 3 patch corresponding to the
sample point Pi. The cumulative sum of p(Ωi) (Eq. (3.13)) over the ordered patches is
shown as pcum.
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3.5 Optical Data: Probability Density Around

a 2D Manifold of Step Edges

The analysis of Voronoi cells on the 7-sphere indicates that blurred step
edges are common high-contrast patterns in optical patches. In Sec. 3.5.1,
we present an ideal model for edges in optical images that takes into ac-
count the averaging effects of the optics of the camera. The model predicts
a 2-dimensional continuous manifold in state space, parametrized by the ori-
entation α and position l of an edge. In Sections 3.5.2 and 3.5.3, we test the
model with optical data from natural images. Finally, in Sec. 3.5.4 we apply
this model to range data and discuss the differences in the results.

3.5.1 The Ideal Manifold of Edges

We represent the 3×3 image patch by a square SQ = {(x, y) : −3/2 ≤ x, y ≤
3/2}. The pixels in the patch are given by

Sij = {(x, y) : (j−3/2) ≤ x ≤ (j−1/2), (1/2− i) ≤ y ≤ (3/2− i)} , (3.16)

where i, j = 0, 1, 2.
The pixel value I(i, j) in an optical image is approximately an average of

the underlying scene φ(x, y) recorded at each pixel Sij, i.e. the pixel intensity

I(i, j) =

∫

Sij

φ(x, y)dxdy (3.17)

where φ(x, y) is the scene luminance. For an ideal step edge,

φα,l(x, y) =

{
a if − x sinα + y cosα > l
b if − x sinα + y cosα < l

(3.18)

where a > b. The parameter α ∈ [0, 2π) is the angle that the direction
perpendicular to the edge makes with the y-axis, and the parameter l ∈
(−3/2, 3/2) is the displacement of the edge from the origin (Fig. 3.9). Thus,
pixels in Iα,l(i, j) strictly above the edge have intensities a, pixels strictly
below the edge have intensities b, and pixels along the edge are a weighted
average of a and b. After subtracting the mean and contrast normalizing
each edge patch (see Sec. 3.3), we arrive at a set of points vα,l ∈ S7 ⊂
R

8. It can be shown that the loci of these points, with α ∈ [0, 2π) and
l ∈ (−3/2, 3/2), define a C1 2-dimensional manifold, M2, embedded in the
7-dimensional sphere.
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y

x

α
l

Figure 3.9: The parameter α ∈ [0, 2π) is the angle that the direction perpendicular to
the edge makes with the y-axis, and the parameter l ∈ (−3/2, 3/2) is the displacement of
the edge from the origin.

Because of the centering and the contrast normalization, some (α, l)-
values are degenerate, i.e. they lead to the same patch or point vα,l ∈ M2

after preprocessing. This situation occurs for patches with “glancing edges”.
Assume for example that the surface parameter l > 0. Then consider all
edges that connect the points (−1.5, y) and (x, 1.5) on the border of the
patch, where x ∈ (−1.5,∞) is fixed and y can take any value in the interval
[0.5, 1.5). Simple trigonometry shows that for a fixed value of x, this defines
a set of (α, l)-values that correspond to the same contrast-normalized vα,l-
patch. Rotations by π/2, reflections and contrast sign inversions (see the
16 symmetries in Eq. (3.28)) give the full family of equivalent edge patches.
Each line in Fig. 3.10 represents one set of equivalent (α, l)-values in this
family. There are two special cases of the example above with edges through
the points (−1.5, y) and (x, 1.5). One special case is when x ∈ (−1.5,−0.5]:
All edges with −1.5 < x ≤ −0.5 and 0.5 ≤ y < 1.5 lead to the same
contrast-normalized patch. The light shaded regions in Fig. 3.10 represent
these “corner patches” and their symmetries. Another special case is when
x→∞: This limit case and its symmetries “converge” to the set of equivalent
(α, l)-values where 0.5 ≤ l < 1.5 or −1.5 < l ≤ −0.5 and α = 0, π/2, π or
3π/2 (horizontal and vertical edges). Non-degenerate edge patches are given
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Figure 3.10: Because of the contrast normalization, some (α, l)-values are degenerate,
i.e. they correspond to the same point vα,l on the 7-dimensional unit sphere S7. Each
curve in the figure is an example of a set of (α, l)-values that lead to the same contrast-
normalized 3 × 3 patch. The light shaded region corresponds to degenerate values for
corner edges. The dark shaded region in the interior of the graph shows all (α, l)-values
that are well-defined, i.e. non-degenerate.

by 0 ≤ α ≤ π/4 and 0 ≤ l < (1.5 sinα + 0.5 cosα), and its 16 symmetries.
In the figure, these (α, l)-values are represented by the dark shaded region.

Fig. 3.11 shows a few examples of ideal edge patches that correspond to
different (α, l)-values between 0 ≤ α ≤ 180 degrees and 1.5 < l < −1.5. The
step edges are here chosen on a triangular grid with the spacing ∆α = 15
degrees and ∆l = 1/4 pixel units. Numbers between patches represent the
angular distances in degrees between nearest neighbors. Although we use an
even sampling of grid points in the (α, l)-coordinate system, the distances
between the nearest neighbors vary widely.

Fig. 3.12 shows the geometry of the surface M2 of step edges of different
orientations and positions more clearly. Here we estimate the surface metric
f(α, l) = dA

dα dl
numerically with a triangulated mesh that is much finer spaced

than in the example above: We first divide the surface into rectangular bins
with widths ∆α = π/48 (3.75 degrees) and ∆l = 1/16 pixels, hereafter
we discard all bins that are completely outside the interior region of the
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Figure 3.11: Examples of ideal step edges between 0 ≤ α ≤ 180 degrees (horizontal axis)
and 1.5 < l < −1.5 (vertical axis). The step edges are here chosen on a triangular grid
with sides ∆α = 15 degrees and ∆l = 1/4 pixel units. Numbers between patches represent
the angular distances in degrees between neighbors in the horizontal, vertical and (lower
left - upper right) diagonal directions in the (α, l)-grid.
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Figure 3.12: Contour plot of the metric f(α, l) = dA
dα dl for a surface of ideal step edges.

The rectangular bins in the figure have widths ∆α = π/48 (3.75 degrees) and ∆l = 1/16
pixels. For the calculation of the area A of a bin, we add up the areas of 4 or more spherical
triangles inside the bin (see text).

(α, l)-plot (see Fig. 3.10), that is, bins with degenerate points. Each of the
remaining bins is then split into 4 spherical triangles, where the vertices
represent blurred step edges in M2. The mesh is finally successively refined,
where needed, until the distance between any two vertices in a triangle is
less than 8 degrees. The final mesh contains 14376 spherical triangles. The
area of a rectangular bin in Fig. 3.12 corresponds to the sum of the areas of
spherical triangles 6 inside the bin.

3.5.2 Density of Optical Data as a Function of Distance
to the Ideal Edge Manifold

We now try to get a numerical estimate of the probability density of high-
contrast optical data around the surface of step edges. In the following

6The area of a spherical triangle with radius R is equal to A = R2ε, where ε = α +
β + γ − π is the so called spherical excess. The three angles α, β and γ can be directly
related to the lengths of the sides (great circular arcs) of the triangle (Bronshtein and
Semendyayev, 1998).
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experiment we use the “optical dataset” with Ntot = 4.2 · 106 high-contrast
patches described in Sec. 3.2. As above, we model the surface with a mesh
consisting of about 14000 spherical triangles, where the vertices of the tri-
angles are blurred step edges in M2.

For each optical data point xn (n = 1, 2, . . . , Ntot), we calculate the dis-
tances to the centers of the spherical triangles in the mesh. We assume that
the distance to the ideal edge manifold M2 is approximately the same as the
distance to the closest triangle center vαn,ln , i.e. we assume that

θ = dist(xn,M
2) ≈ min

vαn,ln

dist(xn,vαn,ln). (3.19)

The error is largest for very small θ, where we sometimes get an overestimate
of θ due to the finite grid spacing.

Fig. 3.13(a), top, shows a normalized histogram of the number of data
points as a function of the estimated distance θ. Let

N(θ) = #

{

n : θ − ∆θ

2
≤ dist(xn,M

2) < θ +
∆θ

2

}

, (3.20)

where ∆θ is the bin width of the histogram. Linear regression (Fig. 3.13(b),
top) gives that N(θ) ∝ θ1.4 for small θ.

For the density estimate, we also need to calculate the volume of the set

Bθ =

{

x ∈ S7 : θ − ∆θ

2
≤ dist(x,M2) < θ +

∆θ

2

}

. (3.21)

Fig. 3.13(a), bottom, and Fig. 3.13(b), bottom, show the results from a Monte
Carlo simulation with Vtot = 107 sample points, sn (n = 1, 2, . . . , Vtot), that
are uniformly randomly distributed on a 7-dimensional unit sphere. The
number of sample points in Bθ, i.e.

V (θ) = #

{

n : θ − ∆θ

2
≤ dist(sn,M

2) < θ +
∆θ

2

}

, (3.22)

is directly proportional to the volume of Bθ. As expected7, the number of
random points V increases approximately as V (θ) ∝ θ4 for small θ. The

7For a single point x0 ∈ S7, the volume

vol{x ∈ S7 : θ ≤ dist(x,x0) ≤ θ + dθ} = C6 (sin θ)6dθ ,

where C6 is the volume (surface area) of a 6-dimensional unit sphere. A 2-dimensional
surface in S7 (such as the manifold M2 ⊂ S7 or the envelop of overlapping spherical caps
around the centers of the triangles in the mesh) has 5 normal directions. Hence, for smaller
θ, where the sub-manifold or surface is locally linear, vol(Xθ) ∝ (sin θ)4 dθ.
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Figure 3.13: (a) Top: Normalized histogram of the number of optical high-contrast
patches, N , versus the distance, θ, to the surface. Bottom: Normalized histogram of the
number of random Monte Carlo samples, V , versus θ. (b) Top: Log-log plot of N versus
θ. Linear regression in the interval between 0.5 and 7 degrees gives N ∼ θ1.4 (solid line).
Bottom: Log-log plot of V versus θ. Linear regression in the interval between 5 and 15
degrees gives V ∼ θ4.0 (solid line). The circles represent extrapolated values of V for
θ ≤ 5 degrees. The total number of optical data points is Ntot ≈ 4 ·106. The total number
of random samples is Vtot = 107. The random samples are uniformly distributed on a
7-dimensional unit sphere, and give a Monte Carlo estimate of the volume of the space
occupied by the histogram bins.

curve for V (θ) has a maximum around θ = 43 degrees, after which it drops.
The drop may indicate folds in the surface where part of the 7-sphere are at
equal distance to different points of the surface. Furthermore, the plot shows
that all points in S7 are within approximately 60 degrees of the edge manifold
M2. If the surface was flat, we would expect the corresponding distance to
be 90 degrees (for the two antipodal points on the sphere).

Fig. 3.14 shows the density function

p(θ) =
N(θ)/Ntot

V (θ)/Vtot

. (3.23)

For θ . 10 degrees,

p(θ) ∼ θ−2.5 . (3.24)

This result strongly supports the idea that there exists a 2-dimensional man-
ifold in the 7-sphere where the data points are concentrated. In fact, we
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Figure 3.14: Log-log plot of the average density function p(θ) for optical data. For
θ . 10 degrees, p(θ) ∼ θ−2.5 (solid line). The circles represent the values of the ratio
N(θ)/Ntot

V (θ)/Vtot

for extrapolated values of V (θ) when θ is small (Fig. 3.13b, bottom).

here see evidence of an infinite probability density at the ideal edge manifold
(where θ = 0).

In Fig. 3.15 (Top) we have plotted the percentage of data points that are
within a certain distance θ of the surface. The curve shows that about 50%
of the data points are within a tubular neighborhood

Kθ = {x ∈ S7 : dist(x,M2) ≤ θ} (3.25)

of the surface with width θ = 26 degrees. This neighborhood corresponds to
only 9% of the total volume of S7 (Fig. 3.15, bottom).

3.5.3 Density of Optical Data as a Function of the Sur-

face Parameters

We next study how the high-contrast optical data are spread out along the
surface of step edges. For the position calculation, we only include data
points that are very close to the surface. For each data point xn in our data
set, we find the closest center point vαn,ln in the triangulated mesh. We
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Figure 3.15: (a) Percentage of optical data points that are within a tubular neighborhood
Kθ of the surface with width θ (“distance to surface”). (b) Same curve plotted versus the

ratio 100·vol(Kθ)
vol(S7) (“percentage of volume of S7”).
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Figure 3.16: (a) Two-dimensional contour plot and (b) three-dimensional mesh of the
density p(α, l) of high-contrast optical data along the surface of step edges. In the density
calculation, we only include data points that are, at a position (α, l) where f(α, l) > 0.5,
and in a tubular neighborhood of the surface with width θmax = 20 degrees. The bin
widths are ∆α = π/48 (3.75 degrees) and ∆l = 1/16 pixel units.

compute the 2D histogram

N(α, l) = # {n : dist(xn,vαn,ln)≤θmax,
αn∈

[
α−∆α

2
, α+ ∆α

2

)
, ln∈

[
l−∆l

2
, l+ ∆l

2

)}
,

(3.26)

where θmax = 20 degrees, and the bin widths ∆α = π/48 radians and ∆l =
1/16 pixels.

We define the density p(α, l) of data points along the surface as

p(α, l) =
N(α, l)/

∑

α,lN(α, l)

f(α, l)/
∑

α,l f(α, l)
, (3.27)

where the sum
∑

α,l N(α, l) ≈ 1.3 · 106, and f(α, l) is given in Sec. 3.5.1.

Fig. 3.16 shows the results for regions where f(α, l) > 0.5 (see Fig. 3.12
for the surface metric). Although the data points are spread out along the
whole surface, there is a clear concentration of data points around α = 0,
90, 180, and 270 degrees (vertical and horizontal edges) and the (α, l)-values
near the border of degenerate edges.
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Figure 3.17: Normalized histogram of N(θ) for range patches versus the distance θ to
the surface of ideal step edges. Dashed lines corresponds to binary symmetry classes 3′,
4′, 5′, 14′/18′, 25′, and 42′ (see Fig. 3.18).

3.5.4 Range Data Comparison: Probability Density as
a Function of the Distance to the Edge Manifold

A probability density estimate of high-contrast range data leads to very dif-
ferent results around the surface of blurred step edges.

In Fig. 3.17 we show a normalized histogram N(θ) of range patches
as a function of the distance θ to the surface; compare with Fig. 3.13(a),
(Top), for optical patches. The histogram for range data has sharp peaks
at θ ≈ 0, 11, 22, 24, . . . degrees. These peaks indicate the presence of high-
density clusters of data points in S7. A more detailed analysis shows that the
positions of the local maxima correspond closely to the distances between
binary patches and the edge manifold.

For 3 × 3 patches, there are 510 binary patches. These can be divided
into 50 equivalence classes with respect to the 16 elements in the product
group 8

G = {−1} × C4v , (3.28)

8The statistics of optical patches from natural images are, to a first approximation,
invariant under the operations in G (Geman and Koloydenko, 1999).
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Figure 3.18: The 50 symmetry classes of binary patches arranged according to increasing
θ-values, where θ is the angular distance to the closest point on the surface of ideal step
edges. The number below each displayed patch represents this distance. The number in
parenthesis left of each patch represents the number of binary patches in each equivalence
class.

where {−1} represents sign inversion, and the point group C4v (Schönflies
notation (Elliott and Dawber, 1979)) is generated by rotations through π/2
around the center pixel, and reflections across a plane containing the rotation
axis.

We denote the set of 510 binary patches in S7 ⊂ R
8 by

B = {b1,b2, . . . ,b510} (3.29)

and the set of 50 distinct equivalence classes of the binary patches with
respect to the symmetry group G by

E = {[b1′ ]G, [b2′ ]G . . . , [b50′ ]G} . (3.30)

We use primed indices to denote binary patches that are grouped into equival-
ence classes, and unprimed indices to denote the 510 original binary patches.

In Fig. 3.18, we have sorted the 50 symmetry equivalence classes according
to their distances to the surface of step edges. Note that the binary patches
in [b1′ ] and [b2′ ] are exactly on the surface. Patches in [b3′ ] are at the same
distance from the surface as the second local maximum at θ ≈ 11 (Fig. 3.17),



3.6 Range Data: Probability Density Around Binary Patches 63

patches in [b4′ ] and [b5′ ] correspond to the third and fourth local maxima
at θ ≈ 22 and θ ≈ 24, respectively. The peak at θ ≈ 45 may be due to,
for example, the symmetry classes [b14′ ] (blobs) and [b18′ ] (horizontal and
vertical bars). The peaks at θ ≈ 50 and θ ≈ 57 could be signs of patterns
similar to [b25′ ] (diagonal bars) and [b42′ ] (single dots), respectively. The
displacement of the first peak from 0 in Fig. 3.17 (compare [b1′ ] and [b2′ ])
may be due to the overestimate of the distance θ for points that are very
close to the surface.

3.6 Range Data: Probability Density Around

Binary Patches

In the previous section we saw that high-contrast range image patches are
concentrated in high-density clusters both on and around the surface of step
edges. Furthermore, these clusters appear to be centered around binary
patches. This motivates us to investigate the density of high-contrast range
patches around the 510 possible binary patches.

3.6.1 Density as a Function of Distance to Nearest
Binary Patch

We start our analysis by calculating the density of the Ntot = 7.9 · 105 high-
contrast range patches as a function of the angular distance to the nearest
binary patch:

For each high-contrast range patch we compute the angular distances to
each of the 510 binary patches in the set B = {b1,b2, . . . ,b510}, and find the
nearest binary patch bk ∈ B. Let

Nk(θ) = #

{

n : θ − ∆θ

2
≤ dist(xn,bk) < θ +

∆θ

2

}

, (3.31)

where k = 1, 2, . . . , 510, be the histogram of range patches xn (n = 1, 2, . . . ,
Ntot) that are closest to, and at a distance θ −∆θ/2 < φ ≤ θ + ∆θ/2 from,
the binary patch bk. The volume

V (θ) = vol{x ∈ S7 : θ − ∆θ

2
≤ dist(x,bk) < θ +

∆θ

2
} (3.32)

is given by

V (θ) =
16π3

15

∫ θ+∆θ/2

θ−∆θ/2

sin6(φ) dφ. (3.33)
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Figure 3.19: Log-log plot of the density p(θ) (Eq. (3.34)) of high-contrast range patches
with respect to θ, the distance to the nearest binary patch. Linear regression in the interval
0.6 and 10 degrees gives p(θ) ∼ θ−6.4 (see solid line).

We define the average density of high-contrast range patches as a function
of the angular distance θ to the nearest binary patch as

p(θ) =

∑510
k=1Nk(θ)/Ntot

510 · V (θ)/vol(S7)
, (3.34)

where vol(S7) = π4/3. In Fig. 3.19 we show a log-log plot of p(θ). The graph
is almost straight for more than a decade of distances, from 0.6 to 10 degrees.
Linear regression gives that

p(θ) ∼ θ−6.4. (3.35)

In Fig. 3.20 we show the cumulative percentage

Pcum(θ) =
∑

k, φ≤θ

Nk(φ)

Ntot

(3.36)

of the number of patches with respect to the distance θ to the nearest binary
patch, as well as the cumulative volume

Vcum(θ) =
∑

k, φ≤θ

V (φ)

vol(S7)
(3.37)
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Figure 3.20: (Top) The cumulative percentage Pcum(θ) of the number of patches N(θ)
with respect to the distance θ to the nearest binary patch. (Bottom) The cumulative
volume Vcum(θ) versus Pcum(θ).

versus Pcum(θ). We see that 80% of the high-contrast range patches are
within a spherical neighborhood of 30 degrees from one of the 510 binary
patches. The neighborhoods of these 80% patches occupy only 0.14% of the
total volume of S7.

These results show that 3 × 3 high-contrast range patches are densely
clustered around the 510 binary patches, and that the probability density is
infinite at the positions of these binary patches.

3.6.2 Distribution of Range Patches Across the 50 Bin-

ary Symmetry Classes

We end this paper by studying how the range patches are distributed among
the 50 symmetry classes for binary patches defined in Sec. 3.5.4. This will
give us an idea of the typical geometrical patterns for high-contrast range
patches in image space.

As before, we find the binary patches that are nearest to the data points
x1 . . .xNtot . We then group the data points together depending on which
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equivalence classes (with respect to the symmetry group G) the closest binary
patches belong to. We define the number of range patches in symmetry class
[bk′]G (as a function of the distance θ to the nearest binary patch) by

Nk′(θ) =
∑

j s.t. bj∈[bk′ ]G

Nj(θ) , (3.38)

where Nj is given in Eq. (3.31). Furthermore, the density of range patches
in the symmetry class [bk′]G is defined by

pk′(θ) =
Nk′(θ)/Ntot

size([bk′]G) · V (θ)/vol(S7)
, (3.39)

where V (θ) is given by Eq. (3.33), and size([bk′]G) is the number of equivalent
patches in the class [bk′ ]G.

Fig. 3.21 displays the 50 symmetry classes of binary patches ordered after
the percentage of range patches Pk′ =

∑

θ Nk′(θ)/Ntot in each class. For each
symmetry class [bk′]G, we show the binary patch bj ∈ [bk′]G that is most
common among the range patches. The figure also shows the cumulative
percentage Pk′,cum =

∑

j′≤k′ Pk′. From these numbers we conclude that most
high-contrast range patches cluster around binary patches that belong to
only a few of the 50 symmetry classes; in fact, 70% of the patches are closest
to the first 7 symmetry classes. The most common structures among high-
contrast patches are horizontal and vertical edges followed by slanted edges,
corner- and T-junction–like structures. The least probable structures are
checkerboard and cross patches. Fig. 3.21 agrees with our Voronoi results for
range patches (Fig. 3.8), as the patterns of the 25 most frequent Voronoi cells
resemble the patterns of the patches in the 5 most frequent binary symmetry
classes.

The graphs of the densities pk′(θ) (Eq. (3.39)) for the 50 symmetry classes
are similar in appearance to Fig. 3.19. In Fig. 3.22, we show the slopes ob-
tained by linear regression in a log-log plot of pk′(θ) ordered after decreasing
cumulative percentage Pk′,cum. The most frequent symmetry groups have
very steep density curves, and there is a gradual decrease in the slopes of
the curves for the less frequent symmetry classes. This is consistent with the
result that most patches are close to binary patches which belong to the 7
most frequent classes.

3.7 Summary and Conclusions

In this work, we have taken a somewhat different approach to natural image
statistics. Most of the work in image statistics focuses either on modeling
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Figure 3.21: The 50 symmetry classes of binary patches ordered after the percentage Pk′

of high-contrast range patches closest to one of the binary patches in the equivalence class
[bk′ ]G. The cumulative percentage Pk′ ,cum is also indicated. For each class, we display
the binary patch which is most common among the high-contrast range patches.
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Figure 3.22: Slopes in a log-log plot of the densities pk′(θ) for each of the 50 binary
symmetry classes [bk′ ]G ordered after decreasing cumulative percentage Pk′ ,cum.
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1D or 2D histograms of linear filter reactions or on finding a linear change of
basis that sparsifies the data. Few attempts have been made to understand
the full probability distribution of natural images and the intrinsic dimension
of the state space of generic image data. It seems that we cannot take full
advantage of the sparseness of the data state space without this knowledge
of natural images.

In this study, we have analyzed the local geometric patterns seen in gen-
eric images. We believe that simple geometric structures in the world and
the sensor properties of the probing device generate observations that are
concentrated along predictable shapes (manifolds or clusters) in state space.
The basic vocabulary of images (with edges, bars, blobs, terminations etc.)
seems to be the same — whether one studies all types of natural images as
here, or specific classes of images; e.g. medical images or images of just trees,
indoor scenes etc.

Optical and range images measure different aspects of generators (ob-
jects) in the world; scene luminance versus distances to the nearest objects
in a natural scene, respectively. Thus, there are bound to be differences in
the statistics of these two types of images. However, we believe that the
main qualitative differences between optical and range images are due to
differences in sub-resolution properties. It seems that basic primitives (such
as edges) in the world and morphological or ordering filters (such as median
and mean filters) lead to compact clusters in state space. On the other hand,
the same primitives and averaging filters lead to continuous submanifolds in
state space.

In this paper, we have analyzed the probability distribution of 3×3 high-
contrast patches from natural images of different modalities (optical versus
3D range images). In the preprocessing stage, we subtracted the mean and
contrast-normalized the log-values of each image patch. The state space of
the preprocessed image data (from optical or range images) is a 7-dimensional
unit sphere in R

8.
As a first exploration, we examined how the data distribute with respect

to an approximately uniform Voronoi tessellation of the 7-sphere. The ana-
lysis showed that both optical and range patches occupy a very small amount
of the total surface area (volume) of the state space: In both cases, half of
the data can be divided into a set of Voronoi cells with a total volume of less
than 6% of the volume of the 7-sphere. For optical patches, the centers of
the most densely populated Voronoi cells resemble blurred step edges. For
range patches, they resemble binary patterns.

A more detailed analysis showed clear differences in the probability distri-
butions of optical and range patches. The majority of high-contrast optical
patches are concentrated around a 2-dimensional C1 submanifold embedded
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in the 7-dimensional sphere. This surface is highly non-linear and corres-
ponds to ideal step edges blurred by the optics of the camera. A density
calculation showed that the probability density of optical patches is infinite
on this ideal surface. About 50% of the optical data points are within a
tubular neighborhood of the surface with a width that corresponds to only
9% of the total volume of the state space.

The majority of range patches, on the other hand, are concentrated in
compact clusters, rather than on a smooth manifold. The centers of these
clusters seem to correspond to binary patches, i.e. patches with only two
range values. A density calculation around the 510 possible binary patches
indicated an infinite probability density at these “hot spots” of the image
space. About 80% of the high-contrast patches are in a neighborhood of
these spots that correspond to only 0.14% of the total volume of the 7-
dimensional unit sphere. The most frequent binary patches are horizontal
edges followed by slanted edges and corner- and T-junction–like structures.

Although the analysis in the current paper only deals with 3× 3-patches,
we believe that the more general results apply to larger patches and even
general filter responses. The picture that seems to emerge is that basic image
primitives — such as edges, blobs, and bars — generate low-dimensional and
(in general) non-linear structures in the state space of image data. Therefore,
while the dimension of the state space, determined by the number of filters
or pixels in the analysis, is usually very large, the intrinsic dimension of the
manifolds generated by different primitives is fixed and determined by the
complexity of the primitives only. The edge manifold we found for optical
data is continuous and 2-dimensional. This is because an ideal edge can be
characterized by two parameters: the orientation α and the position l of the
edge. For optical data and bar structures which can be parameterized by 3
parameters (the orientation, position, and width of a bar), we would expect
a 3-dimensional submanifold in state space, regardless of the dimension of
the state space.

More generally, we believe that one can define a dictionary of prob-
ability models on representations of general primitives parameterized by
Φ = {φ1, φ2, . . .} for any set of filters f1, . . . , fN . In the N-dimensional
state space of the filter-based image representations, the image primitives
will define manifolds of the general form

M(Φ) = [f1(·) ∗ I(·; Φ), . . . , fN(·) ∗ I(·; Φ)]T ,

where ∗ denotes a convolution.
Our empirical results for the edge manifold and binary patches of op-

tical and range data, respectively, show that, when studying natural image
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statistics, important geometric and probabilistic structures emerge only after
abandoning assumptions such as independent components or sparse coding
by a linear change of basis. Furthermore, when looking at the full probab-
ility distribution of small patches, clear differences appear between different
types of image modalities (optical versus range) that otherwise have seem-
ingly similar statistics. Analyzing 3×3 patches could thus offer a systematic
and precise way of distinguishing and comparing image data. A complete de-
scription of the probability distribution of natural image patches, however,
also requires modeling low-contrast patches, and high-density regions that
lie outside the ideal manifold of step edges (for optical patches) and binary
clusters (for range patches). The Voronoi tessellation in Sec. 3.4 offers an
automatic way of characterizing the full state space of 3×3 pixel data, while
the “geometry-based” methods in Sec. 3.5 and Sec. 3.6 may lead to a better
understanding and parametric probability models of natural image data.
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Chapter 4

Toward a Full Probability
Model of Edges in Natural
Images

4.1 Introduction

The study of natural image statistics is an active research area and different
approaches have been taken in this field (Field, 1987; Huang et al., 2000;
Huang and Mumford, 1999; Lee et al., 2001; Lee et al., 2002; Ruderman and
Bialek, 1994; Simoncelli, 1999b; Wainwright and Simoncelli, 2000; Zetzsche
et al., 1993). It has previously been shown that natural image statistics
— such as the marginal distributions of image intensity I and the gradient
magnitude ‖∇I‖ — are highly non-Gaussian, and approximately invariant
to changes in scale (Field, 1987; Mallat, 1989; Ruderman and Bialek, 1994).
Roughly speaking, the research in natural image statistics can be divided into
two related directions: Researchers such as Zetzsche et al. (1993), Simoncelli
(1999b), and Huang et al. (2000; 1999) have looked at the 1D marginal and
2D joint statistics of filter responses for a fixed wavelet basis. They have, for
example, explored complex dependencies between pairs of wavelet coefficients
at nearby spatial positions, orientations and scales. Others have looked at the
state space of image data and tried to find a set of directions (or projections
of the data) that lead to an optimal image representation in some sense; see
e.g. sparse coding (Olshausen and Field, 1996) and ICA (Bell and Sejnowski,
1997; Hyvärinen, 1999).

In this paper, we take a different approach to natural image statistics.
We believe that in order to fully understand the statistics of natural images
one needs to explore the full probability distribution of the salient structures
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of local image patches. The analysis is free from such restrictive assumptions
as independent components, or even linear decompositions of an image into
basis images.

Our work is inspired by David Marr (Marr, 1982) who proposed that the
structure of images can be described by primitives such as edges, bars, blobs
and terminations — the so-called “primal sketch”. The basic questions we ask
are: What are the probability distributions of Marr’s primitives and how are
these primitives represented geometrically in the state space of image data?
Can we develop models that will tell us how likely we are to observe a local
geometric structure (such as an edge, ridge, blob, corner etc.) of a certain
spatial extension in an image? Not much work has been done in this direc-
tion to our knowledge. Such probability models would, however, be useful as
a priori knowledge in image processing and computer vision applications as
diverse as feature detection (Desolneux et al., 2001), segmentation (Malik
et al., 2001) and enhancement (Simoncelli, 1999a; Zhu and Mumford, 1998).
In particular, probability models on features could be used as prior distribu-
tions on features in image coding and reconstruction. Nielsen and Lillholm
(2001) have, for example, suggested that image reconstruction can be done by
solving a variational optimization problem constrained by localized feature
measurements and a prior distribution on features.

To study the distribution of local geometric image structures, one first
has to choose a representation that captures the image geometry in a neigh-
borhood of some fiducial point. We will use a representation based on a set
of local measurements of the luminance captured through a set of sensors —
a sensorium. The concept of a sensorium makes sense both from a biological
vision point of view (the receptive fields in the early visual system have been
compared to feature detectors (Koenderink and van Doorn, 1987)) and from
a mathematical point of view: Florack (1997) and Mumford and Gidas (2001)
have both argued that an image I is not a function or a point-wise estimate
I(x, y) but a Schwartz distribution that can only be probed by averaging (or
measuring),

∫ ∫
I(ξ, η)φj(x− ξ, y− η)dξdη, through smooth “test” functions

or sensors φj.
In our previous study (Chapter 3 and Lee et al. (2001; 2002)) of natural

image statistics, the sensorium was defined by the sensors in the CCD camera
used to collect the images. More specifically, we studied the joint statistics
of the pixel intensity values in high-contrast 3×3 natural image patches. We
found (for optical images) that the state space of the patch data is extremely
sparse, with most of the data concentrated around a continuous non-linear
manifold in state space. This manifold corresponds to edges of different
orientations α and positions l.

In this work, we investigate whether our previous results (such as the
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existence of an ideal edge manifold in state space and the concentration of
natural image data around this manifold) generalize to different scales and
more general image representations.

In the context of linear Gaussian scale-space theory (Koenderink, 1984),
Koenderink and van Doorn (Koenderink and van Doorn, 1987) proposed
the so-called local jet of an image as a biologically plausible representation
of local image geometry. In this setting, the sensorium consists of partial
derivatives of the Gaussian kernel function. Convolving an image with these
kernels is equivalent to measuring the partial derivatives of a coarse-grained
representation of the image — the so-called scale-space image. The jet space
captures the local geometry in a neighborhood of a point in the image, where
the size of the neighborhood is determined by the standard deviation or scale
of the Gaussian kernel.

In this work, we choose an image representation defined by Gaussian
scale-space image derivatives up to third order — the 3-jet. This sensorium
can distinguish between image structures such as edges, ridges, blobs and
corners (Koenderink and van Doorn, 1987), but is blind to structures that
require the descriptive power of image derivatives of order higher than 3.

We believe that such a representation of image data has certain advant-
ages compared to many other types of multi-scale representations. First of
all, the Gaussian scale-space representation gives us a sensible way of de-
fining image derivatives — the scale-space image derivatives. With these
derivatives, we can use the language of differential geometry to define and
interpret local features in images. The Gaussian kernel and its derivatives
are furthermore similar to the receptive fields found in the human visual
system (Koenderink, 1984; Koenderink and van Doorn, 1987). Both the hu-
man receptive fields and the Gaussian scale-space derivatives are tuned to
structures at different scales, orientations and spatial frequencies.

As in Lee et al. (2001; 2002), we focus our analysis on edge structures. We
first define a model of an ideal edge in scale-space, and show that the 3-jet
representations of edges define a 2-dimensional differentiable manifold in jet
space. We then study how empirical data, extracted from a large database of
natural images, are distributed in 3-jet space with respect to this manifold.
We find, in accordance with previous results in Lee et al. (2001; 2002), that
the natural image data are densely distributed around the edge manifold
with a probability density function of the form θ−γ , where θ is the distance
to the edge manifold and γ is close to 0.7. Furthermore, we show that the
results are approximately invariant to a change of scale.

This work is an attempt to develop a full probability model of edges in
natural images that is universal, i.e. independent of scale and image repres-
entation. In the future, we plan to extend the analysis to representations of
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other image primitives (such as bars, blobs, and T-junctions).
The organization of the paper is as follows: In Sec. 4.2 we provide the

necessary background on jet space and linear Gaussian scale-space theory.
We introduce the Gaussian edge model in Sec. 4.3, and in Sec. 4.4, we describe
our image data set, the whitening and contrast normalization of this data,
and the results of our analysis. Finally, we finish with concluding remarks
(Sec. 4.5).

4.2 Multi-scale Local Jet

Linear Gaussian scale-space was proposed among others by Koenderink (1984)
as a sound theoretical framework for doing multi-scale image analysis. The
Gaussian scale-space L : Ω 7→ R of an image I : Ω 7→ R (where Ω ⊆ R

2) can
be defined as the solution to the heat diffusion equation

∂L

∂t
=

1

2
∇2L (4.1)

under the constraint L(x, y; s = 0) = I(x, y). The scale s ≥ 0 is related to
t by t = s2. The Gaussian scale-space representation of an image is thus a
convolution

L(x, y; s) =

∫∫

Ω

I(ξ, η)φ(x− ξ, y − η; s) dξ dη (4.2)

with a Gaussian kernel function φ : R
2 7→ R where

φ(x, y; s) =
1

2πs2
e−

(x2+y2)

2s2 . (4.3)

We interpret the parameter s as the measurement scale of the scale-space
image L(x, y; s) as it corresponds to the width (or standard deviation) of the
“smoothing filter” φ(·).

An image is in general not a differentiable function, but in scale-space we
obtain a family of smoothed versions of the image which are C∞-differentiable.
We can compute partial derivatives ∂xn∂ym(≡ ∂n+m

∂xn∂ym ) of the scale-space rep-

resentation by convolving the image I(·) with partial derivatives of the Gaus-
sian kernel function φ(·; s), as

Lxnym(·; s) ≡ ∂xn∂ym(I ∗ φ) = I ∗ (∂xn∂ymφ) . (4.4)

Note that the scale-space derivatives Lxnym constitute a scale-space as they
also satisfy the heat diffusion equation Eq. (4.1).
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Various approaches exist for discretization of scale-space representations
(see e.g. Lindeberg (1994b)). Here we evaluate the convolution in Eq. (4.2)
by multiplying the discrete Fourier transform of the discrete image with a
discretized Fourier transform of the Gaussian derivatives ∂xn∂ymφ.

To be able to compare scale-space derivatives at different scales, it is
convenient to use dimensionless coordinates (the so-called natural coordin-
ates) and scale-normalized differential operators (Lindeberg, 1994b). In the
(x, y)-coordinate system the dimensionless coordinates are given by

(x′, y′) =
(x

s
,
y

s

)

(4.5)

and the scale-normalized partial derivatives are

Lx′ny′m(x, y; s) = ∂x′n∂y′mL(x, y; s) = sn+m∂xn∂ymL(x, y; s) . (4.6)

In the rest of this paper we will assume that all scale-space derivatives Lxnym

are scale normalized.
We can describe the local geometry of an image by the so-called local jet

(Florack et al., 1996; Koenderink and van Doorn, 1987). Since the scale-
space image L(x, y; s) is a smoothed, differentiable version of the image, we
can use a Taylor series to describe the geometry of the image intensity surface
around a point (x0, y0). For (x0, y0) = (0, 0), for example, we have

L(x, y; s) = L + Lxx + Lyy +
1

2
(Lxxx

2 + 2Lxyxy + Lyyy
2)

+
1

6
(Lxxxx

3 + 3Lxxyx
2y + 3Lxyyxy

2 + Lyyyy
3) + . . . (4.7)

where the scale-space derivatives L, Lx, Ly, . . . are evaluated at (x0, y0) =
(0, 0). Consider now the truncated Taylor expansion of degree k. The so-
called local k-jet (of L(x, y; s) at (x0, y0)) is an equivalence class of smooth
functions with respect to the map jkL : R

2 7→ Jk(R2 7→ R) ⊂ R
N , N =

(2 + k)!/(2k!), where

jkL(x, y; s) = (L(x, y; s), Lx(x, y; s), Ly(x, y; s), . . . , Lxnym(x, y; s))T (4.8)

and n +m = k. The space Jk(R2 7→ R) of all k-jets of functions R
2 7→ R is

sometimes called a k-jet space. Local images that belong to the same k-jet
(i.e. the same point in Jk(R2 7→ R)) “look” the same, up to order k, in the
sense that we can not distinguish between them by only looking at scale-
space derivatives up to order k. Koenderink and van Doorn (1996) named
this class a metamer inspired by the terminology of Schrödinger’s theory of
colorimetry.
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We limit our analysis to the partial derivatives parameterizing the 3-jet,
as the 3-jet captures the characteristics of common geometric structures such
as edges, ridges, blobs, and corners (Koenderink and van Doorn, 1987; Koen-
derink and van Doorn, 1996). In the following, we will study the statistics
of images mapped into 3-jet space by j̃3L : R

2 7→ J̃3(R2 7→ R), where

j̃3L(x, y; s) = (Lx, Ly, Lxx, Lxy, Lyy, Lxxx, Lxxy, Lxyy, Lyyy)
T (4.9)

and the measurement scale s > 0. The scale-space derivatives Lx, Ly, Lxx, . . .
are evaluated at (x, y; s), and are scale normalized according to Eq. (4.6), i.e.
Lxnym(x, y; s) = sn+m∂xn∂ymL(x, y; s). In the above 3-jet representation, we
have excluded the intensity L(x, y; s) of the blurred image, as we are only
interested in variations in the local image geometry. The tilde notation is to
indicate that J̃3(R2 7→ R) ⊂ J3(R2 7→ R).

4.3 The Edge Manifold

We will investigate a simple model of edges mapped into jet space. We
model edges by the scale-space of an ideal step edge (step edges blurred with
a Gaussian — a Gaussian edge). In this section, we show that the 3-jet
representations of blurred step edges of different orientations, positions and
scales trace out a differentiable 2D submanifold in the jet space J̃3.

For convenience, we define the edge model in the local orthonormal (u, v)-
coordinate system where the v-axis has the direction of the local gradient at
any point P0 and the u-axis is perpendicular, i.e. we define unit vectors

ev = (cosα, sinα)T =
1

√
L2

x + L2
y

(Lx, Ly)
T
∣
∣
∣
P0

(4.10)

and
eu = (sinα,− cosα)T . (4.11)

In this coordinate system, an ideal step edge (defined on R
2) has the form

f(u, v; l) =

{
1 if v ≥ l
0 if v < l

(4.12)

where l ∈ R is the displacement of the edge from the origin in the v-direction.
The scale-space representation of the ideal step edge is (according to Eq.
(4.2)) given by

G(u, v; l, s) = f(u, v; l) ∗ φ(u, v; s) =

∫ v

v′=−∞
ψ(v′; l, s) dv′ (4.13)



4.4 Statistics of Edge Structures 77

where ψ(v; l, s) = 1√
2πs2

e−
(v−l)2

2s2 is a one-dimensional Gaussian kernel centered

at l. The scale-normalized partial derivatives of the edge model G(u, v; l, s)
along the u and v-axes are

Gun(u, v; l, s) = 0

Gvn(u, v; l, s) = sn∂vn−1ψ(v; l, s)
(4.14)

for n ≥ 1.
We now map the edge model G(u, v;α, l, s) into the jet space J̃3 by com-

puting the nine components of the map j̃3G(0, 0;α, l, s) defined by Eq. (4.9).
Since

∂x = cosα ∂v + sinα ∂u

∂y = sinα ∂v − cosα ∂u ,
(4.15)

we get that

Gxm,yn(0, 0;α, l, s) = cosm α sinn αGvm+n(u, v; l, s)
∣
∣
∣
(u,v)=(0,0)

= sm+n cosm α sinn α ∂vm+n−1ψ(v; l, s)
∣
∣
∣
v=0

.
(4.16)

Denote the map that takes the edge model to the 3-jet space J̃3 by E :
[0, 2π)× R× R+\{0} 7→ J̃3, where

E(α, l, s) = (Gx(0, 0;α, l, s), Gy(0, 0;α, l, s), Gxx(0, 0;α, l, s),

Gxy(0, 0;α, l, s), Gyy(0, 0;α, l, s), Gxxx(0, 0;α, l, s),

Gxxy(0, 0;α, l, s), Gxyy(0, 0;α, l, s), Gyyy(0, 0;α, l, s))T . (4.17)

Although the edge map E is a function of three variables (the angle α,
the displacement l and the scale s), the loci of all points E(α, l, s) trace out a
2-dimensional C∞ differentiable manifold in R

9 that only depends on α and
the ratio l/s (see Appendix 4.6). Note that the edge manifold is periodic in
α for fixed l/s ratio.

4.4 Statistics of Edge Structures

4.4.1 The Empirical Data Set

In our experiments, we use the van Hateren and van der Schaaf (1998) still
image collection consisting of 4167 1020×1532 pixels gray-scale images1 (see

1We use the raw image set (.iml) where the intensity values have been linearized by
the camera’s lookup table.
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Figure 4.1: Sample images from the van Hateren still image collection. We show the
log-transformed intensity values, log(I(x, y) + 1).

Fig. 4.1 for samples from the database). Before doing any processing of the
images I(x, y) in the database, we compress the intensity range by taking
the logarithm log(I(x, y) + 1) of the intensity.

From each scale-space image L(i)(x, y; s) at a fixed scale s, where s =
1, 2, 4, 8, 16, 32 and i = 1, . . . , 4167, we extract a random set of 1000 spatial
coordinates X (i,s) ⊆ Ω (Ω ⊆ R

2 denotes the image domain). At these spatial
coordinates, we compute the 3-jet representation defined according to Eq.
(4.9). This gives us data sets

Js =
{

j̃3L(i)(x, y; s) ⊆ J̃3
∣
∣
∣ (x, y) ∈ X (i,s); i = 1, . . . , 4167

}

(4.18)

where s = 1, 2, 4, 8, 16, 32. Elements in each set Js are points in J̃3 that have
been sampled from different spatial positions and different images at fixed
scale s. The total number of data points2 in each set Js is |Js| ≈ 4.1 · 106.

4.4.2 Whitening and Contrast Normalization

The lighting conditions may vary across and between images. We are in-
terested in variations in the local geometry of the image and would like to
disregard variations caused by changing lighting.

Before contrast-normalizing we first whiten the data. This will lead to a
vector representation of the 3-jets where the elements are uncorrelated and
of the same order of magnitude.

2To prevent numerical problems during contrast normalization (see Sec. 4.4.2 and Eq.
(4.20)), we discard data points y with a norm ‖y‖ that is close to zero after whitening.
This corresponds to 1% of all data points.
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Assume that x ∈ Js where Js is our data set (Eq. (4.18)). The covariance
or correlation matrix C =< xxT > is scale invariant (see Chapter 5 for
details), so we can get a robust estimate of C from the joined data set
x ∈ ⋃s Js where s denotes the scale. The mean < x >= 0 due to the
convolution with zero mean scale-space filters.

The first step in the data preprocessing is to define transformed input
variables

y = Λ−1/2UT x , (4.19)

where U is a 9× 9-matrix with the normalized eigenvectors of C as columns,
and Λ is a diagonal 9× 9-matrix with the corresponding eigenvalues of C as
diagonal elements. The transformed data y is “white” in the sense that the
covariance matrix < yyT >= 1.

The second step is to contrast-normalize the data according to

p̂ =
y

‖y‖ (4.20)

so that scale-space images of similar geometric structure have the same rep-
resentation. The whitened and contrast-normalized data points p̂ all lie on
a 8-dimensional unit sphere

S8 ≡ {p̂| ‖p̂‖ = 1} ⊂ R
9 . (4.21)

The 8-sphere S8 is the state space of whitened and contrast-normalized 3-jet
representations. The whitened and contrast-normalized data set Js at a fixed
scale s is denoted by Ĵs ∈ S8.

Similarly, we define the map Ê : [0, 2π)×R 7→ S8 that takes the edge map
E(α, l, s) (Eq. (4.17)) to the state space of whitened and contrast normalized
3-jet representations by

Ê(α, l/s) =
Λ−1/2UT E(α, l/s, 1)

‖Λ−1/2UT E(α, l/s, 1)‖ . (4.22)

We measure the distance between two data points p̂0, p̂1 ∈ S8 on the
8-sphere by their angular separation, i.e.

dist(p̂0, p̂1) ≡ arccos(p̂T
0 p̂1) . (4.23)

4.4.3 Empirical Density Results

In Sec. 4.3, we described the theoretical manifold of edges in 3-jet space.
In this section, we verify that the empirical data from natural images (i.e.
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the whitened and contrast-normalized data in sets Ĵs from Sec. 4.4.2) are
really densely distributed around the manifold of edges. By putting parallel
bins around the manifold and computing histograms of the data, we can
get an estimate of the functional form of the probability density around the
manifold.

First we divide the whitened and contrast-normalized edge manifold
Ê(α, l/s) of Eq. (4.22) into a mesh of spherical triangles in the same fash-
ion as described in Chapter 3 and Lee et al. (2001). We sample the edge
manifold with parameters l ∈ [−4s, 4s] and α ∈ [0, 2π). We refine the mesh
of triangles until no vertices in a triangle are more than 11 degrees apart.
This gives us a triangulated mesh with a total of 22944 triangles. We use
the triangulated mesh of the manifold to estimate the distances between the
data points of Ĵs and the manifold of edges Ê(α, l/s) on the 8-sphere S8. The

distance dist(x, Ê(α, l/s)) between a data point x ∈ Ĵs and the edge manifold

Ê(α, l/s) is approximated by the distance to the center point of the closest
triangle in the mesh.

Fig. 4.2 (top) shows a normalized histogram of the number of whitened
and contrast-normalized data points p̂s

n ∈ Ĵs (n = 1, . . . , |Ĵs|) versus the

distance θ to the edge manifold Ê(α, l/s) ⊂ S8. Let

N(θ; s) = #

{

n

∣
∣
∣
∣
∣
θ − ∆θ

2
≤ dist(p̂s

n, Ê(α, l/s)) < θ +
∆θ

2

}

(4.24)

where ∆θ is the histogram bin width and dist(p̂s
n, Ê(α, l/s)) is the angular

distance (Eq. (4.23)) from the data point p̂s
n to the closest point on the

triangulated mesh of the edge manifold Ê(α, l/s).
To get an estimate of the probability density of points around the edge

manifold, we also need to calculate the volume of the bins [θ− ∆θ
2
, θ+ ∆θ

2
) in

the state space S8. We here estimate the bin volume by sampling Vtot = 107

uniformly randomly distributed points vn (n = 1, . . . , Vtot) on the 8-sphere.
The histogram

V (θ) = #

{

n

∣
∣
∣
∣
∣
θ − ∆θ

2
≤ dist(vn, Ê(α, l/s)) < θ +

∆θ

2

}

(4.25)

of the number of samples versus the distance θ to the surface of edges is a
Monte Carlo estimate of the volume of the histogram bins. Fig. 4.2 (bottom)
shows the normalized histogram V (θ)/Vtot.

We define the empirical density of data points around the edge manifold
as

ρ(θ; s) =
N(θ; s)/|Ĵs|
V (θ)/Vtot

. (4.26)
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Figure 4.2: (Top) The normalized histograms N(θ; s)/|Ĵs| of the data sets Ĵs (|Ĵs| ≈
4.1 · 106 points), where s = 1, 2, 4, 8, 16, 32 (see legend) and θ is the distance to the edge

manifold Ê(α, l/s) ⊂ S8. (Bottom) Normalized histogram V (θ)/Vtot, which corresponds
to the Monte Carlo estimated volume on S8 of the histogram bins of N(θ; s) (Vtot = 107

points).

Fig. 4.3 shows the calculated density for the data sets Ĵs, where s = 1, 2, 4, 8,
16, 32. These results indicate that the probability distribution of data points
in jet space has an infinite density at the manifold of blurred step edges
(where θ = 0). This is consistent with the results on high-contrast 3 × 3
pixel image patches in Lee et al. (2001). Furthermore, the density function
ρ(θ; s) is approximately scale invariant and seems to converge towards the
functional form ρ(θ; s) ∼ θ−0.7 as the scale s increases. The latter results are
consistent with many of the previous empirical findings on scale invariance
of natural image statistics; see e.g. Field (1987) and Ruderman and Bialek
(1994).

In Fig. 4.4 (top), we calculate the cumulative sum
∑

β≤θ N(β; s)/|Ĵs| (in
percent) of the number of data points as a function of the distance θ to the
manifold of edges. For all scales s, we get that 20% of all data points are
within 29 degrees of the manifold of edges, which corresponds to less than
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Figure 4.3: Density ρ(θ; s) versus the distance θ to the edge manifold Ê(α, l/s) ⊂ S8

for data points in Ĵs. Each graph represents the density ρ(θ; s) at a fixed scale s, where
s = 1, 2, 4, 8, 16, 32 (see legend). By linear regression for θ < 9 degrees we get that
ρfit(θ; s) ∼ θ−γs , where γs = 1.7, 1.0, 0.7, 0.7, 0.7, 1.1 (s = 1, 2, 4, 8, 16, 32).

12% of the total surface area of the 8-sphere S8 (see Fig. 4.4 (bottom)). In
other words, points in these subsets of Ĵs are densely clustered around the
low-dimensional manifold of edges.

To better illustrate the connection between the density function ρ(θ) and
the image space, we end this section by computing ρ(θ) for pixels in the
classical “Lena” image. Fig. 4.5 shows both scale-space images of Lena and
the corresponding log-densities log(ρ(θ)) for different scales s. In the density
calculation, we first map the pixels in the scale-space of Lena into the jet
space J̃3 given by Eq. (4.9) and then whiten and contrast normalize according
to Sec. 4.4.2. We subsequently compute the distance θ of these points to the
edge manifold Ê(α, l/s) ⊂ S8 and, finally, we look up the density values
by ρ(θ) = θ−0.7 corresponding to the computed θ-values. We choose the
exponent γ = 0.7 because it corresponds to the exponent for the apparent
stable range of scales s ∈ [4; 16] (see Fig. 4.3). The gray values in the second
and fourth columns of Fig. 4.5 code for the magnitude of log(ρ(θ)) for different



4.5 Conclusions 83

0 20 40 60 80 100
0

50

100

Pe
rc

en
ta

ge
 o

f 
da

ta
 p

ts

Percentage of volume of S8

0 10 20 30 40 50 60 70
0

50

100

Pe
rc

en
ta

ge
 o

f 
da

ta
 p

ts

Distance to surface θ [degrees]

 1
 2
 4
 8
16
32

Figure 4.4: (Top) Cumulative sum
∑

β≤θ N(β; s)/|Ĵs| (in percent) of the number of data

points in Ĵs as a function of the distance to the manifold of edges. (Bottom) Cumulative
volume versus cumulative number of data points for data sets Ĵs.

scales s ∈ [1; 16]. The first and third columns show the corresponding scale-
space images.

4.5 Conclusions

We have extended the results of Lee et al. (2001; 2002) and Chapter 3 from
a pixel-based image representation to the jet space representation of linear
Gaussian scale-space. The goal of this work is to investigate whether our pre-
vious findings on small image patches generalize to larger scales and general
filter-based image representations.

In this work, we analyze Gaussian scale-space derivatives computed at
randomly chosen points in (a large database of) natural images. At each
chosen location, we compute the 3-jet representation (a 9-dimensional vector
of up to 3rd order scale-space image derivatives) at different fixed scales.
After whitening and contrast-normalizing, the data is on the surface of a
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Figure 4.5: The first and third columns show scale-space images of “Lena” (226× 226
pixels) for exponentially increasing scales s ∈ [1; 16]. The second and fourth columns show
the corresponding log-densities log(ρ(θ)) in jet space (a bright pixel corresponds to a high
density). The densities ρ(θ) are estimated at each pixel by computing the distance θ to
the manifold of blurred step edges and looking up the density values by ρ(θ) = θ−0.7.

unit 8-sphere in R
9 centered at the origin.

Analysis shows that the probability distribution of empirical data has
an infinite density at a 2-dimensional C∞-differentiable manifold in the 8-
sphere (the state space of whitened and contrast-normalized 3-jet representa-
tions). This non-linear surface corresponds to the loci in jet space of Gaussian
blurred step edges of different orientations α, positions l and scales s. Our
results are approximately invariant to a change of scale. In fact, for increas-
ing scales s, the density around the manifold seems to converge towards the
functional form ρ(θ) ∼ θ−0.7, where θ is the distance to the edge manifold.
For all scales, we find that 20% of the randomly chosen image points have
a 3-jet representation that are within 29 degrees of the edge manifold. This
region around the manifold corresponds to less than 12% of the total surface
volume of the 8-sphere.

The results above are consistent with our earlier findings in Chapter 3



4.5 Conclusions 85

and Lee et al. (2001; 2002) for 3 × 3 natural image patches. In this work,
we have studied the manifold of Gaussian blurred step edges parametrized
by the orientation α and the scale-normalized position l′ = l/s. More gen-
erally, we believe that one can define a dictionary of probability models on
representations of general primitives (edges, bars, blobs, T-junctions) para-
metrized by Φ = {φ1, φ2, . . .} for any set of filters f1, . . . , fN in a sensorium.
In the N-dimensional state space of the filter-based image representations,
the image primitives will define manifolds of the general form

M(Φ) = [f1(·) ∗ I(·; Φ), . . . , fN(·) ∗ I(·; Φ)]T . (4.27)

The picture that seems to emerge is that natural images are extremely
sparse with most of the data in state space concentrated along these low-
dimensional structures that correspond to edges, blobs, bars etc. One has to
realize that these manifolds are in general highly non-linear — this makes our
approach fundamentally different from, for example, ICA and sparse coding
where one studies linear projections in state space. It should also be noted
that the dimension of the state space of the image data is determined by
the number of filters in the analysis (which is usually very large), while the
dimension of the manifolds of image primitives is fixed and determined by
the complexity of the primitives only. Because of the low dimensionality
of the primitive manifolds (2 for edges, 3 for bars, etc), a “probabilistic
primal sketch” of natural images may have important implications on the
information-theoretic bounds one can put on compression of these images.
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4.6 Appendix: The Edge Manifold

Theorem 4.1
The loci of all points E(α, l, s) (Eq. (4.17)) trace out a 2-dimensional C∞-

differentiable manifold in the jet space J̃3 ⊂ R
9. This manifold of edge

representations is parametrized by the angle α and the ratio l/s between the
displacement l and the scale s.

Proof. The edge map E (Eq. (4.17)) is infinitely differentiable, as

Gxm,yn(x, y;α, l, s) = sm+n cosm α sinn α ∂vm+n−1ψ(v; l, s) (4.28)

and the functions cosα, sinα and ψ(v; l, s) are C∞-differentiable with respect
to α, l and s (for s > 0).

Furthermore, if we introduce the dimensionless variables

u′ =
u

s
, v′ =

v

s
, l′ =

l

s
, s′ = 1 (4.29)

and assume scale-normalized derivatives as in Eq. (4.14), we get that

Gvn(u, v; l, s) = Gv′n(u′, v′; l′, s′) (4.30)

for n ≥ 1. Eq. (4.30) follows from the scaling properties of the Gaussian
function ψ(v; l, s): We have that

ψ(v′; l′, s′) = sψ(v; l, s) (4.31)

and (Arfken, 1985)

∂vkψ(v; l, s) =

( −1

s
√

2

)k

Hk

(
v − l
s
√

2

)

ψ(v; l, s) (4.32)

for k ≥ 0. Hence,

∂vkψ(v; l, s) =
1

sk

( −1

s′
√

2

)k

Hk

(
v′ − l′
s′
√

2

)
1

s
ψ(v′; l′, s′)

=
1

sk+1
∂v′kψ(v′; l′, s′) ,

(4.33)

which is equivalent to (Eq. (4.30))

sk+1 ∂vkψ(v; l, s)
︸ ︷︷ ︸

Gvn(u,v;l,s)

= s′
k+1

∂v′kψ(v′; l′, s′)
︸ ︷︷ ︸

Gv′n (u′,v′;l′,s′)

(4.34)

where n = k + 1 ≥ 1.
Although the edge map E in Eq. (4.17) is a function of three variables (the

angle α, the displacement l and the scale s), the loci of all points E(α, l, s)
trace out a 2-dimensional manifold (in the jet space) which only depends on
α and the dimensionless ratio l/s.



Chapter 5

Gaussian Image Models

5.1 Introduction and Notation

This chapter is a discussion of the Gaussian and Brownian image models, with
a focus on their properties in linear scale-space. The class of Gaussian image
models, to which the Brownian model belongs, are interesting because of their
fundamental character and simplicity. I will discuss the statistical properties
that these models have in common with natural images. Especially, I will
show through an empirical study that the Brownian image model captures
the second order statistics of natural images mapped into the so-called jet
space. A control experiment of the results of Chapter 4 will be carried out
on images generated from the Brownian image model, and the results will
be discussed in relation to the results on natural images. Let us begin by
defining the notation and terminology that are going to be used throughout
this chapter.

By a discrete 2-dimensional image I mean an array or matrix I ∈ R
N×M .

I only discuss gray value images in this chapter and I assume for simplicity
that images may take values in the full range of R, ignoring that in a digital
computer pixel values are represented by a discrete set of gray values and
color images by vectors of discretized color components. Instead of regarding
the space of images as the space of matrices R

N×M , an image I can also be
viewed as a vector in a finite dimensional Euclidean space I ∈ R

NM . A pixel
is denoted by Iα = Ii,j i, j ∈ Z indexed by α ∈ {1, . . . , NM}. One can view
discrete images as realizations of either a discrete stochastic field I ∈ R

N×M

or a stochastic vector I ∈ R
NM . I will use both viewpoints interchangeably

in this chapter and I want to define a probability model p(I) or p(I) on the
finite dimensional state space of images.

In the continuous setting, an image f(x) : R
2 → R can be viewed as a
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realization of a continuous stochastic function (or field) on the plane. In this
case I seek a probability model on an infinite dimensional vector space of
functions (see e.g. Lifshits (1995) or Huang and Yan (2000)).

If we just view images as arrays of numbers — as discrete images — or
maybe continuous functions on the plane, we disregard an important aspect
of images: The fact that an image is a set of measurements of the light that
goes through the camera optics and hits the image plane. Each number in
the image array quantifies the amount of light that hit the corresponding
spot on the photographic film, the rods and cones of your eye, or the CCD
chip in your digital camera. The light that hits this spot does not come
from a single point in the physical world, but is a weighted integral of light
originating ideally from every point in the physical world. The optics of the
camera (or eye) has a certain aperture or response function that dictates
the weighting of the light. Furthermore, many physical scenes that give
rise to the same set of measurements exist. This phenomenon has been
dubbed metamerism by Koenderink and van Doorn (1996). This metamerism
must be kept in mind when analyzing images. Therefore, an image should
not be considered as a function in the normal sense of the word, but as
an entity constructed through a set of response or test functions. Florack
(1997) and Mumford et al. (Mumford, 2001; Mumford and Gidas, 2001) have
argued independently for this view, and both propose that images should
not be considered as functions, but rather as generalized functions — the
so-called Schwartz distributions1 (see e.g. Friedlander and Joshi (1998) for
an introduction to the theory of Schwartz distributions).

A generalized function on a subset of the plane Ω ⊂ R
2 is a linear func-

tional that maps test functions φ(x) ∈ D(Ω) ⊂ C∞(Ω) onto R

F [φ] : D(Ω)→ R ,

where D(Ω) is a vector space of C∞ functions on Ω. Let the vector space
of generalized functions on Ω be denoted as D′(Ω) and notice that D(Ω) ⊂
D′(Ω). The test functions in D(Ω) are required to have compact support,
but if we substitute compact support with the requirement that φ(x) must
be rapidly decreasing2 we get the so-called tempered distributions. Let S(Ω)
denote the vector space of test functions φ(x) which are rapidly decreasing.
Linear functionals of elements from S(Ω) are called tempered generalized
functions and the set of tempered generalized functions is denoted as S′(Ω).
Notice that D(Ω) ⊂ S(Ω) and S′(Ω) ⊂ D′(Ω).

1To avoid confusion between probability distributions and Schwartz distributions I will
use the term generalized function for Schwartz distributions.

2That is, all derivatives must decrease faster than polynomials.
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I assume that naturally occurring images belong to the space of tempered
generalized functions S′(Ω), Ω ⊂ R

2. In the continuous setting I therefore
seek a probability distribution on S′(Ω).

If we consider locally L1-functions3 L1(R
2) on the plane f(x) : Ω → R,

Ω ⊆ R
2, we get an important example of tempered generalized functions by

〈f, φ〉 = F [φ] =

∫

Ω

f(x)φ(x) dx

where φ(x) ∈ S(Ω). Locally L1-functions are themselves examples of tempered
generalized functions f(x) ∈ S′(Ω). That is, we have L1(R

2) ⊂ S′(Ω) ⊂
D′(Ω).

Florack (1997) has pointed out the connection between linear scale-space
theory (Iijima, 1962; Witkin, 1983; Koenderink, 1984) and viewing images
as tempered distributions. In scale-space theory the test functions are the
Gaussian aperture function and its derivatives, which all decrease rapidly
and therefore belong to S(Ω). The linear scale-space aperture function is

ψ(x; s) ≡ 1

2πs2
exp

(

−(x2 + y2)

2s2

)

where x = (x, y)T and s ≥ 0 denotes the scale parameter, and its partial
derivatives are written as ∂xnymψ(x; s). The scale-space of an image f(x),
which is assumed to be a locally L1-function, is a tempered generalized func-
tion given by

L(x; s) = F [ψ(x; s)] ≡
∫

Ω

f(x′)ψ(x− x′; s) dx′ = f(x) ∗ ψ(x; s)

with L(x; s = 0) ≡ f(x). Instead of using the cumbersome notation F [ψ(x; s)]
to denote the scale-space of f(x) I use the, in the scale-space literature, more
common notation L(x; s), making the dependency on ψ(x; s) implicit.

By introducing generalized functions the concept of differentiation of oth-
erwise non-differentiable functions is made sensible (see e.g. Friedlander and
Joshi (1998)). In the analysis of stochastic functions the concept of general-
ized functions has been proposed for solving the problem of differentiability
of realizations of stochastic functions (see e.g. Mandelbrot and van Ness
(1968)). By using the linear scale-space representation we can define deriv-
atives of images f(x) by applying the differential operator ∂xnym to the test
function ψ(x; s)

Lxnym(x; s) = f(x) ∗ ∂xnymψ(x; s) .

3A function f(x) is a locally L1-function if
∫

K
|f | dx <∞ for all compact sets K ⊂ Ω.
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The scale-space partial derivative Lxnym(x; s) is a tempered generalized func-
tion belonging to S′(Ω).

Throughout this chapter I will discuss properties of the Gaussian and
Brownian image models both in the discrete and continuous setting. For an
in-depth exposé of Gaussian image models the interested reader is encouraged
to look at Mumford (2001) and for Gaussian stochastic functions in general
Lifshits (1995) provides insight.

5.2 The Gaussian Model

I start out by discussing the Gaussian image model in both the discrete and
continuous setting.

The Gaussian distribution p(I) on R
NM is defined such that all projec-

tions of vectors I ∈ R
NM onto arbitrary vectors y ∈ R

NM are 1-dimensional
Gaussian stochastic variables, i.e. have a Gaussian distribution on R. Fur-
thermore, a Gaussian distribution on R

NM is fully parameterized by its mean
vector m and covariance matrix C. The elements of the covariance matrix
are given by

Cαβ =

∫

�
NM

(Iα −mα)(Iβ −mβ) dp(I) (5.1)

and the mean vector is

m =

∫

�
NM

I dp(I) . (5.2)

Let us start by defining the discrete zero mean Gaussian image model
with independently identically distributed (i.i.d.) pixel intensity values, also
known as discrete white noise. The zero mean Gaussian density function for
pixel values Iα with variance σ2 is

p(Iα) =
1√

2πσ2
exp

(

− I2
α

2σ2

)

. (5.3)

The Gaussian probability density for discrete white noise images can be writ-
ten as the density of the stochastic vector I = (I1, . . . , INM)T ∈ R

NM

p(I) = p(I1, . . . , INM) =

NM∏

α=1

p(Iα) = (2πσ2)−
NM

2 exp

(

−
∑

α I
2
α

2σ2

)

. (5.4)

Discrete white noise is stationary which implies translational invariance. See
Fig. 5.1 for a realization of the zero mean i.i.d. Gaussian image model.
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Figure 5.1: (Left) A 100× 100 pixel sample from the zero mean i.i.d. Gaussian image
model (Eq. (5.4)). (Right) Sample from the general Gaussian image model (Eq. (5.5)).
The image on the right is a 100× 100 pixel sample from the zero mean general Gaussian
image model with a covariance matrix with eigenvalues (variances along the eigenvectors)
decreasing linearly from 10 to 1. The eigenvectors are generated by rotating the columns
of the identity matrix around 2500 randomly chosen axes by 45 degrees. Notice the
introduced correlation between the pixels.
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In general, the Gaussian distribution on the vector space I ∈ R
NM with

mean vector m ∈ R
NM and positive definite covariance matrix C ∈ R

NM×NM

can be written as

p(I) = (2π)−
NM

2 (detC)−1/2 exp

(

−1

2
(I−m)TC−1(I−m)

)

. (5.5)

In Fig. 5.1 (right) a sample from the general Gaussian image model is shown.
In order to define the continuous Gaussian image model one has to define

a Gaussian probability measure on an infinite dimensional vector space of
functions. The space of functions I am interested in is the space of tempered
generalized functions S′(R2). The Gaussian distribution on the function space
S′(R2) is defined in a similar fashion as in the finite dimensional case. All
the distributions of stochastic vectors (f1, . . . , fN) obtained by sampling a
stochastic function f(x) ∈ S′(R2) at different sets of x1, . . . ,xN ∈ R

2 are
called the finite distributions of the stochastic function f(x). A stochastic
function f(x) ∈ S′(R2) is said to be Gaussian if all its finite distributions are
Gaussian distributed stochastic vectors.

In general all linear functionals of a Gaussian distributed stochastic func-
tion are also Gaussian distributed. Specifically, generalized functions 〈f, φ〉 =
∫
f(x)φ(x) dx (for any test functions φ(x) ∈ S(R2)) of a Gaussian distributed

stochastic function f(x) are also Gaussian distributed stochastic functions.
Hence the scale-space and scale-space derivatives of a Gaussian stochastic
function are Gaussian distributed.

The mean function f̄ ∈ S′(R2) of a probability measure p on S′(R2) is
defined such that the expectation E[·] for all continuous linear functionals
h : S′(R2)→ R is

E[h] = h(f̄) .

The function C(x,y) is the covariance function of the probability measure p
on S′(R2), if for all continuous linear functionals h1, h2 given by

h1(f) =

∫

f(x)φ1(x) dx and h2(f) =

∫

f(x)φ2(x) dx ,

we have

E[(h1 − h1(f̄)) · (h2 − h2(f̄))] =

∫∫

φ1(x)φ2(y)C(x,y) dx dy . (5.6)

The continuous equivalent of the discrete i.i.d. Gaussian model is Gaus-
sian white noise. Gaussian white noise on S′(R2) is defined as a Gaussian
stochastic function ν ∈ S′(R2) with zero mean and covariance

E[〈ν, φ1〉〈ν, φ2〉] = σ2

∫

φ1(x)φ2(x) dx . (5.7)
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This is a generalization of the discrete i.i.d. Gaussian model, since if φ1 and
φ2 have disjoint support, we have E[〈ν, φ1〉〈ν, φ2〉] = 0 and any disjoint open
sets are independently distributed (Mumford, 2001). In linear scale-space
the Gaussian white noise W (x; s) = ν(x) ∗ ψ(x; s) has the covariance

E[W (x; s)W (y; s)] = σ2

∫

�
2

ψ(x′ − x; s)ψ(x′ − y; s) dx′

=
σ2

4π2s4

∫

�
2

exp

(

−(x′ − x)2

2s2

)

exp

(

−(x′ − y)2

2s2

)

dx′

=
σ2

4πs2
exp

(

−(x− y)2

4s2

)

.

Hence the covariance function of Gaussian white noise in scale-space W (x; s)
may be written as

CW (x,y; s) =
σ2

4πs2
exp

(

−(x− y)2

4s2

)

. (5.8)

Thus scale-space smoothing changes the covariance of white noise and in-
troduces spatial dependencies. Remember that by definition W (x; s = 0) =
ν(x) and for scale s = 0 the spatial covariance ofW (x; s) reduces to E[ν(x)ν(y)] =
σ2δ(x− y), where δ(·) is the Dirac delta function4.

The probability density of continuous Gaussian white noise is given by

p(〈ν, φ〉) =
1

Z
exp

(

− 1

2σ2

∫

〈ν(x), φ(x)〉2 dx
)

, (5.9)

where Z is a normalization factor that ensures
∫
p(〈ν, φ〉) dx = 1. We cannot

write the probability density for the Gaussian white noise image model in
scale-space, because the covariance function in Eq. (5.8) is not invertible.
But it is possible to write the characteristic function5 of the probability
distribution of continuous white noise in scale-space W (x; s),

E[eiW (x;s)] = exp

(

−1

2
〈CWW,W 〉

)

= exp

(

−1

2

∫∫

W (x; s)CW (x,y; s)W (y; s) dx dy

)

.

4The Dirac delta function δ(x) is a generalized function defined such that
∫

δ(x) dx = 1
and 〈δ(x), φ(x)〉 = φ(0).

5The characteristic function of a distribution is a complete description of the distribu-
tion.
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A Gaussian stochastic function f(x) is stationary if it has the same mean
value E[f(x)] = a, a ∈ R for all x ∈ R

2, and its covariance E[(f(x) −
E[f(x)])(f(y)−E[f(y)])] depends on one parameter only x−y for all x,y ∈
R

2, i.e. does not depend on position. The covariance function of Gaussian
white noise ν(x) may be written as C(x − y) = σ2δ(x − y), hence white
noise is stationary. The Gaussian white noise model in scale-space W (x; s)
defined by the covariance function of Eq. (5.8) is also a stationary stochastic
function.

Sample functions of Gaussian white noise ν(x) are not differentiable. The
power spectrum6 of a zero mean white noise image is flat, i.e. constant,

S(ξ) =

∫∫ ∞

−∞
C(x)e−iξ·x dx = σ2

∫∫ ∞

−∞
δ(x)e−iξ·x dx = σ2 .

This means that realizations of white noise have a uniform energy distri-
bution across all frequencies. This implies that such functions have infinite
frequencies, which in turn implies that realizations of the white noise im-
age model are not differentiable. Nevertheless, by introducing the concept
of generalized functions and linear scale-space we may define derivatives of
realizations of the Gaussian white noise image model in a sensible way.

In the continuous case I define the derivatives of a realization of white
noise by viewing the realization as a generalized function. By using the lin-
ear scale-space representation one can compute partial derivatives of ν(x)
by convolution with partial derivatives of the scale-space aperture function
φxnym(x; s). All linear functionals of Gaussian white noise ν(x) must be Gaus-
sian, hence all partial scale-space derivatives Wxnym(x; s) must be Gaussian
stochastic functions. This follows immediately from the definition of the
Gaussian distribution on the space of tempered generalized functions S′(R2).
I have computed partial scale-space derivatives of sample images of Gaus-
sian white noise and estimated the distribution of the derivatives (see Fig.
5.2). It can be seen that these scale-space derivatives are zero mean Gaussian
distributed.

In the discrete case, image derivatives may be approximated in terms of
differences among neighboring pixels Iα. The difference images DxI ≈ ∂

∂x
I

and DyI ≈ ∂
∂y
I also have zero mean Gaussian distributed pixels (see Fig.

5.3). This can easily be seen by the following argument. Define DxI by
forward differencing

(DxI)α ≡ Ii+1,j − Ii,j , (5.10)

6The power spectrum or power spectral density of a stationary stochastic function is
usually defined as the Fourier transform of the autocorrelation function. In the case of
zero mean stochastic functions the autocorrelation reduces to the spatial covariance.
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Figure 5.2: (Top left) Pixel histogram p(W ) of a white noise scale-space image at scale
s = 2. (Top right) Histogram of the gradient magnitude p(‖∇W‖), which is a close
approximation to the Rayleigh distribution. (Bottom) Histograms p(Wx) and p(Wy) of
partial derivatives in the x and y directions.

where α is the index of pixel (i, j). Since (DxI)α is a difference of Gaussian
stochastic variables it is also a Gaussian stochastic variable. The density p(Z)
of the sum Z = X+Y (difference Z = X−Y ) of two independent stochastic
variables X and Y is given by the convolution (correlation) between the
densities of the two variables, p(Z) = p(X) ∗ p(Y ). Hence we can derive the
expression for the density of (DxI)α as follows

p((DxI)α) =

∫ ∞

−∞
p(Iα)p((DxI)α + Iα) dIα

=
1√

4πσ2
exp

(

−(DxI)
2
α

4σ2

) (5.11)

and similarly for (DyI)α

p((DyI)α) =
1√

4πσ2
exp

(

−(DyI)
2
α

4σ2

)

. (5.12)

The Gaussian distributions of (DxI)α and (DyI)α are stationary. In gen-
eral, the increments (differences) in all directions (i.e. not just along the x
and y axes) of a Gaussian stochastic function are Gaussian distributed and
stationary. This can be formalized in the continuous setting as follows.

Any directional derivative ∂W (x; s)/∂m
∣
∣
P0

in the direction m, (‖m‖ =

1), at the point P0 is a Gaussian stochastic variable, since ∂W (x; s)/∂m
∣
∣
P0
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Figure 5.3: (Left) Pixel histogram p(Iα). (Center) Histogram p((DxI)α) of
pixel differences in the x direction. (Right) Histogram of the gradient magnitude
p(
√

(DxI)2α + (DyI)2α), which is a close approximation to the Rayleigh distribution.

is linear in the two Gaussian variables Wx(P0; s) and Wy(P0; s)

∂W (x; s)

∂m

∣
∣
∣
∣
∣
(x,y)=P0

= Wx(P0; s) cos(θ) +Wy(P0; s) sin(θ) (5.13)

where θ is the angle between the positive x-axis and the directional vector m.
The distribution of directional derivatives of a Gaussian function is Gaussian
and stationary. From Eq. (5.13) one can also conclude that Wx(P0; s) and
Wy(P0; s) are independently distributed, since when m is parallel to the x-
axis we have θ = 0 and ∂W (x; s)/∂m

∣
∣
P0

= Wx(P0; s), similarly for the y-axis

case. Furthermore, p(Wx) and p(Wy) are identically Gaussian distributed.
This implies that the joint distribution of (Wx,Wy), where Wx = Wx(P0; s)
and Wy = Wy(P0; s), is an isotropic Gaussian distribution p(Wx,Wy) with
density

p(Wx,Wy) =
1

2πσ2
exp

(

− 1

2σ2
(W 2

x +W 2
y )

)

. (5.14)

The gradient magnitude ‖∇W‖ of an image sampled from a Gaussian
stochastic function must be Rayleigh distributed. To see this, let us com-
pute the probability of the gradient magnitude ‖∇W‖ having a value in the
annulus in the (Wx,Wy)-plane given by the inner r1 and outer r2 radius. The
joint distribution of (Wx,Wy) at the point P0 is an isotropic Gaussian and
we can make a change of variables to polar coordinates (r = ‖∇W‖, θ) and
write

p(Wx,Wy) = p(r, θ) . (5.15)

The distribution p(Wx,Wy) is uniform along the θ axis since p(Wx,Wy) is

isotropic, and p(r, θ) = 1
2πσ2 exp

(
− r2

2σ2

)
is Gaussian. The probability of a
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value in the annulus is therefore

P (‖∇W‖ ∈ [r1; r2]) =

∫ r2

r1

∫ 2π

0

p(r, θ)r dθ dr =

∫ r2

r1

r

σ2
exp

(

− r2

2σ2

)

dr .

Thus the probability density of the gradient magnitude is

p(‖∇W‖) =
‖∇W‖
σ2

exp

(

−‖∇W‖
2

2σ2

)

, (5.16)

which is exactly the density function of the Rayleigh distribution. See Fig.
5.2 and Fig. 5.3 for experimental evidence.

From Eq. (5.10 – 5.12) it can be seen that differences introduce spatial
dependencies. In general, differentiation of stochastic functions introduces
spatial dependencies. For derivatives of continuous Gaussian white noise in
scale-space we may write the spatial covariance function as

E[Wxnym(x1; s)Wxnym(x2; s)]

= σ2

∫

�
2

∂xnymψ(x0; s)
∣
∣
∣
x0=x′−x1

∂xnymψ(x0; s)
∣
∣
∣
x0=x′−x2

dx′ .

It is also possible to say something about the dependency and correlation
between partial derivatives of different order. The distribution of Gaussian
white noise in k-jet space is Gaussian, since scale-space derivatives of Gaus-
sian white noise are also Gaussian distributed. The k-jet space is the space of
partial derivatives up to order k, i.e. (W (x; s), . . . ,Wxnym(x; s)) ∈ R

N where
n+m = k and N = (2+k)!/(2k!). The covariance matrix of Gaussian white
noise in jet space is (see derivation in appendix Sec. 5.6)

E[〈Wxn1ym1 (x; s),Wxn2ym2 (x; s)〉]

= (−1)
(n+m)

2
+n2+m2

σ2

πsn+m+2

n!m!

2n+m+2(n/2)!(m/2)!
(5.17)

whenever both n = n1 + n2 and m = m1 +m2 are even integers, otherwise

E[〈Wxn1ym1 (x; s),Wxn2ym2 (x; s)〉] = 0 .

We see that the derivatives Wxn1ym1 (x; s) and Wxn2ym2 (x; s) are correlated
whenever n and m are both even.

The Gaussian image model is not scale invariant. To see this, one can
compute block averages of a Gaussian image and plot the resulting pixel
histogram (see Fig. 5.4). One immediately sees that the variance of the
empirically estimated pixel distribution has changed under this operation of
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Figure 5.4: The Gaussian image model is not scale invariant. (Top row) A Gaussian
image and the same image down-sampled 50 % by block averaging. (Bottom row) Pixel
intensity histograms for the two images. The two histograms are Gaussian but clearly
have different variances.
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rescaling. We also see this lack of scale invariance from the fact that the
spatial covariance function CW (x,y; s), Eq. (5.8), of white noise in scale-
space W (x; s) is dependent on the scale s. Furthermore, in the covariance
matrix for k-jet space in Eq. (5.17) there is a scale dependency, 1/sn+m+2,
which we can not get rid of by standard scale normalization of derivatives,
i.e. by multiplying each derivative Wxnym with sn+m.

The Gaussian image model is a poor model of natural images, because
several of its properties differ from the empirical findings for natural im-
ages. First of all pixel intensity values of natural images are not Gaussian
(Field, 1987). Secondly, pixel differences and general filter responses are not
Gaussian distributed and in fact have a distribution that may be approxim-
ated by either the generalized Laplacian distribution (Mallat, 1989; Huang
and Mumford, 1999) or the so-called Bessel K forms proposed by Srivastava
et al. (2002). But most importantly, natural images exhibit scale invariance
of the covariance structure (Field, 1987; Ruderman and Bialek, 1994), which
is not the case for the Gaussian image model as we have just seen. I will now
discuss an extension of the Gaussian image model — the Brownian image
model — which has the property of scale invariance.

5.3 The Brownian Model

Brownian motion was first described by the botanist R. Brown in 1828 as the
random movement of pollen in water, i.e. a path in R

3. Around 1905–1908
Einstein (see e.g. Einstein (1956)) and Bachelier developed a mathemat-
ical theory of Brownian motion. In 1923, Wiener proposed a model of the
Brownian motion in the form of a stochastic function on R. Here we are
interested in the Brownian stochastic function on R

2 or the Brownian im-
age, which is sometimes called the Lévy Brownian function. The Brownian
image (Mandelbrot and van Ness, 1968; Pentland, 1984; Mumford, 2001)
is a stationary scale invariant Gaussian stochastic function. The fractional
Brownian image (Mandelbrot and van Ness, 1968; Pentland, 1984) is a gen-
eralization of this kind of stochastic function, which generally is not scale
invariant but exhibit the property of self similarity (see Appendix 5.7 for an
explanation of this concept).

The Brownian image may be defined in several ways (see e.g. (Mandelbrot
and van Ness, 1968; Pentland, 1984; Lifshits, 1995; Mumford, 2001)), but I
will only give the definition, as proposed by Pentland (1984), through the
more general fractional Brownian image. The image βH(x) : R

2 → R is a
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fractional Brownian image if for all x,∆x ∈ R
2

P

(
βH(x + ∆x)− βH(x)

‖∆x‖H < y

)

= F (y) (5.18)

where F (y) is the cumulative probability distribution function and the para-
meter 0 < H ≤ 1 controls the “roughness” of the image. The H parameter
is related to the fractal dimension D via D = 3−H (see e.g. Ott (1993) for
a definition of the fractal dimension).

If F (y) is the cumulative distribution function of a zero mean Gaussian
distribution and H = 1/2, then I call the image β(x) = β1/2(x) a Gaussian
Brownian image or simply a Brownian image. The Brownian image is a zero
mean Gaussian stochastic function on R

2.
The variance of the distribution of increments of a fractional Brownian

image is
E[(βH(x)− βH(y))2] = ‖x− y‖2H . (5.19)

The Brownian image model has stationary Gaussian distributed increments
or more general stationary Gaussian distributed directional derivatives. Ob-
viously, from Eq. (5.19) we have that the variance of the increments of the
Brownian image is

E[(β(x)− β(y))2] = ‖x− y‖ . (5.20)

Brownian motion on R has independent increments, but this does not gen-
eralize to higher dimensions (Lifshits, 1995).

The power spectrum of the fractional Brownian image is S(ξ) = σ2
0/‖ξ‖α

where α = 2H + 1. For Brownian images (H = 1/2) this reduces to
S(ξ) = σ2

0/‖ξ‖2, which means that the Brownian image has equal energy
at equal frequency octaves7. This property implies scale invariance of the
covariance structure of the Brownian image model. This in turn implies that
Brownian images have a scale invariant distribution since Brownian images
are Gaussian, thence are completely parameterized by its mean and covari-
ance. Field (1987) has shown that ensembles of natural images have the same
power spectrum thus giving evidence of scale invariance of the second order
statistics of natural images.

The Brownian image is a zero mean stochastic function and from Wiener-
Khinchin relations8 between the power spectrum and the autocorrelation

7An octave is an interval which is multiplied by some constant from the start to the
end of the interval, [ξ0; nξ0].

8The Wiener-Khinchin relations between the power spectrum S(ξ) and the autocor-
relation function E[f(x)f(x + y)] of a stationary stochastic function f(x) are S(ξ) =
∫∫

E[f(x)f(x + y)]e−iξ·y dy and E[f(x)f(x + y)] = 1
(2π)2

∫∫
S(ξ)eiξ·y dξ. For zero mean

stochastic functions the autocorrelation function reduces to the spatial covariance function.
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Figure 5.5: A sample from the Brownian image model (H = 1/2).

function we have that the power spectrum of a Brownian image is the Four-
ier transform of the spatial covariance function C(x,y). The inverse Fourier
transform of the power spectrum S(ξ) = σ2

0/‖ξ‖2 yields the spatial covari-
ance function C(x,y), which is obviously not proportional to the Dirac delta
function, which leads to the conclusion that Brownian images have spatial
dependencies, contrary to white noise. Furthermore, the covariance C(x,y)
does not dependent on position, only on the separation x − y and we can
conclude that the Brownian image model is also stationary.

A sample of the periodic Brownian image can be constructed by sampling
zero mean i.i.d. Gaussian distributed Fourier coefficients ξ in the frequency
domain with variance σ2

0/‖ξ‖2 and enforcing conjugate symmetry. The con-
stant σ2

0 can be thought of as a global variance offset. The Fourier trans-
formation of this image yields a periodic Brownian image. See Fig. 5.5 for a
sample of a Brownian image.

As for all Gaussian stochastic functions the Brownian image is fully de-
scribed by specifying its mean and covariance functions. By definition the
Brownian image has mean zero. The covariance function of the Brownian
image is defined in several ways in the literature (Lifshits, 1995; Mumford,
2001). Mumford (2001) argues that under the assumptions of stationarity
and scale invariance the spatial covariance function of the Brownian image
β(x) must be

C(x,y) = σ2
0 log

(
1

‖x− y‖

)

. (5.21)
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For Brownian images in scale-space, B(x; s) = β(x) ∗ ψ(x; s), we have the
spatial covariance

CB(x,y; s) = E[B(x; s)B(y; s)]

=

∫

�
2

ψ(x′ − x; s)ψ(x′ − y; s)C(x,y) dx′

= −σ2
0

∫

�
2

ψ(x′ − x; s)ψ(x′ − y; s) log (‖x− y‖) dx′ .

We can write the probability density function for the Brownian image
β(x) explicitly as

p(〈β, φ〉) =
1

Z
exp

(

− 1

2σ2
0

∫

Ω

‖〈β,∇φ〉‖2 dx
)

. (5.22)

It is easier to get an understanding of this probability density function in the
discrete case. For discrete images one could write the gradient magnitude in
terms of forward differences among neighboring pixels (4-connected neigh-
borhood). The discrete version of Eq. (5.22) therefore is

p(I) =
1

Z
exp

(

− 1

2σ2
0

N∑

i=1

M∑

j=1

(
(Ii+1,j − Ii,j)2 + (Ii,j+1 − Ii,j)2

)

)

. (5.23)

Now we see the connection between the probability density and the definition
of Brownian images in Eq. (5.18). That is, the increments of Brownian images
are Gaussian distributed.

The Brownian image inherits the properties of the zero mean Gaussian
stochastic function described in the previous section. The pixel statistics of
the discrete Brownian image is Gaussian with density given by Eq. (5.3) and
the same holds true for derivatives or pixel differences (see Eq. (5.11) and
Eq. (5.12)). Following a similar argument as for the Gaussian white noise
model we get that the gradient magnitude of the Brownian image is Rayleigh
distributed and given by Eq. (5.16). Empirical evidence of these facts are
shown in Fig. 5.6.

All partial derivatives of a Brownian image are Gaussian distributed,
hence the distribution of image points mapped into k-jet space is a zero
mean Gaussian. The covariance matrix for the zero mean Brownian image
in k-jet space can be calculated analytically (see appendix in Sec. 5.6 for the
derivation)

E [〈Bxn1ym1 (x; s), Bxn2ym2 (x; s)〉]

= (−1)
n+m

2
+n2+m2

σ2
0n!m!

2n+m+1πsn+m(n+m)(n/2)!(m/2)!
(5.24)
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Figure 5.6: (Top left) Pixel histogram p(B) of a Brownian scale-space image at scale
s = 2. (Top right) Histogram of the gradient magnitude p(‖∇B‖), which is a close
approximation to the Rayleigh distribution. (Bottom) Histograms p(Bx) and p(By) of
partial derivatives in the x and y directions.

whenever both n = n1 + n2 and m = m1 +m2 are even integers, otherwise

E [〈Bxn1ym1 (x; s), Bxn2ym2 (x; s)〉] = 0 .

As was the case for Gaussian white noise (Eq. (5.17)), we see that partial
derivatives of Brownian images are correlated whenever n and m are even
integers. If we use scale normalized derivatives based on dimensional analysis
(Florack et al., 1994) we get rid of the scale dependency, 1/sn+m.

Interestingly, it turns out that the covariance structure of Brownian im-
ages in k-jet space, within some scale interval, is a good model of the covari-
ance structure of natural images mapped into k-jet space. To be more pre-
cise, the eigenvalues of the covariance matrix of natural images and Brownian
images in k-jet space are equivalent up to a multiplicative constant within
a scale interval. Fig. 5.7 shows graphs of eigenvalues of estimated covari-
ance matrices in 3-jet space for four classes of images; Brownian images,
white noise, natural images9, and logarithm of power spectrum of natural
images. The jet space used here is J̃3(R2 7→ R) which was discussed in
Chapter 4 and defined by the map j̃3B(x; s) of Eq. (4.9), which basically
means that the zeroth order term of the corresponding Taylor expansion has

9All images from the van Hateren natural stimuli collection (van Hateren and van der
Schaaf, 1998).
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Figure 5.7: Eigenvalues across scale s of an empirically estimated covariance matrix
E [〈(sn1+m1Bxn1ym1 ), (sn2+m2Bxn2ym2 )〉] of images mapped into 3-jet space (n1 + m1 ≤
3, n2 + m2 ≤ 3 and omitting the zeroth order term) by scale-normalized scale-space
derivatives. The top row show eigenvalues for Brownian and white noise images in 3-jet
space. The bottom row shows eigenvalues for natural images and images of log-power
spectrum of natural images. The size of each data set is given by the number N in
parenthesis.

been thrown away. Data sets were produced by applying the scale normal-
ized map j̃3B(x; s) to images at different scales s. Each data set has zero
mean and the covariance matrices were estimated from these data sets. It
can be seen from Fig. 5.7 that not surprisingly Brownian images have con-
stant eigenvalues across scale. White noise has decreasing eigenvalues across
scale due to this image models lack of scale invariance. Natural images have
a plateau of constant eigenvalues in the scale interval between approximately
s = 4 and s = 32.

As a control experiment I have included images of logarithm of power
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Figure 5.8: (Left) Eigenvalues of natural images EN(s) at different scales s divided
by the theoretical eigenvalues of Brownian images ET , EN/ET . (Right) mean value,
mean(EN/ET ), and standard deviation (error bars) of the 9 eigenvalue factors at each
scale s.

spectra of natural images10. These images have a statistics that is very
different from both natural and Gaussian images and may therefore be used
to evaluate whether the results of constant eigenvalues for Brownian and
natural images are an artifact of the method. It can be seen from Fig.
5.7 that log-power spectrum images do not have constant eigenvalues across
scale.

Besides having constant eigenvalues in a scale interval, natural images
seem to have the same relative interrelation among the eigenvalues as Brown-
ian images. This can be seen from Fig. 5.8 (Left), which shows the graph
of the natural image eigenvalues divided by the corresponding theoretical
eigenvalues for Brownian images. Fig. 5.8 (Right) shows the mean value and
standard deviation of the constant factor between eigenvalues across scales.
We see that in the scale interval s = 4 to s = 32 the factor is nearly constant
across eigenvalues and scale.

There might be several reasons why we do not have true scale invariance,
i.e. invariance across all scales, for the eigenvalues of the covariance matrix of
natural images. An image obviously has an inner and outer scale, bounded by
the physical constraints of the camera. The lower bound is given by the pixel
size, but the actual inner scale might be larger than this lower bound since
the inner scale is equivalent to the size of the smallest discernable objects
in the image. Similarly, the outer scale is often smaller than the physical
size of the image and is given by the scale of the largest discernable objects.

10Again I use the van Hateren natural stimuli collection (van Hateren and van der
Schaaf, 1998).
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The actual inner and outer scales reflect the tendency of the photographer to
take pictures of discernable objects, hence introducing a bias in represented
object scales. In both Fig. 5.7 (Bottom left) and Fig. 5.8 we see that for
small scales (1/2 ≤ s < 4) the eigenvalues increase with scale. This might
be due to a lack of sufficient small scale structure in the van Hateren image
database. That is, s < 4 might be below the average inner scale of van
Hateren images. Similarly, at large scales (s > 32) the eigenvalues increase
again, which might be due to the scale being larger than the average outer
scale of van Hateren images.

The eigenvectors of the covariance matrix in k-jet space are the same
for all types of images and do not depend on the scale, since the covariance
matrix is build by inner products of partial derivatives of the Gaussian scale-
space aperture (see Fig. 5.9, Eq. (5.17), and Eq. (5.24)).

The connection between the covariance matrices for Brownian and nat-
ural images in jet space comes from the scale invariance property of the
second order statistics of both types of images. The Brownian image model
captures the second order statistics of natural images. That is, we can use
the Brownian image model as an analytical model of the covariance structure
of natural images.

5.4 The Edge Manifold and Brownian Images

Since the Brownian image is a scale invariant Gaussian model of images,
which produces a Gaussian distribution in jet space, we would expect that if
we do the experiments (with whitening) outlined in Chapter 4 and in Peder-
sen and Lee (2002) on Brownian images, we would see a uniform (and scale
invariant) distribution on the 8-sphere and around the manifold of edges.
And indeed, this is what we see in the results. The results included here
are based on Brownian data whitened by the theoretical covariance matrix
described in Appendix 5.6.

Fig. 5.10 shows a log-log plot of the density, Eq. (4.26), of Brownian
images in jet space as a function of distance to the manifold of edges. Fig.
5.11 (bottom) shows the cumulative volume versus the cumulative number
of data points. From these graphs it is clear that the Brownian image model
is uniformly distributed on the surface of the 8-sphere.

The density shown in Fig. 5.10 is nearly flat, but at approximately 60
degrees the density estimate suddenly goes up towards infinity. This beha-
vior is due to both the choice of histogram bin size and lack of sufficient
statistics in both the volume estimate and the dataset. Fig. 5.12 shows both
the normalized histogram of the dataset (top) and the bin volume estimate
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Brownian images White noise

Natural images Log−power spectrum images

Figure 5.9: Eigen-images of the empirical covariance matrices in 3-jet space of Fig. 5.7.
Each eigen-image is generated by drawing the Taylor series corresponding to the 3-jet
eigenvector within one scale unit.
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Figure 5.10: Log-log plot of the density as defined by equation Eq. (4.26) in Chapter 4.
Whitening based on theoretical covariance matrix.
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Figure 5.11: (Top) Cumulative sum
∑

β≤θ N(β; s)/|Ĵs| (in percent) of the number of

data points in Ĵs as a function of the distance to the manifold of edges. (Bottom) Cumu-
lative volume versus cumulative number of data points for data sets Ĵs.
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Figure 5.12: (Top) Histogram of the Brownian surface data set (6.1 · 106 data points)
with respect to distance to the edge manifold. (Bottom) Histogram of the Monte Carlo
estimate of the surface volume of the 8-sphere.

(bottom) used in the density estimate. It is clear that the volume estimate
decreases rapidly towards zero at 60 degrees, which implies that the bins are
small and a lot more samples are therefore needed to estimate the bin volume
by a Monte Carlo integration. I therefore suspect that the bin volume is un-
derestimated for bins after 60 degrees. This underestimated volume would of
course lead to a false increase in the density estimate. Evidence of this prob-
lem is also seen in the experiments on natural images in Chapter 4 especially
in Fig. 4.3.

5.5 Summary

In this chapter I have discussed which statistical properties of natural images
may be modeled by Gaussian image models, including both the Gaussian
white noise image model and the Gaussian Brownian image model.

The conclusion is that the Gaussian white noise model is a poor model
of the statistics of natural images. On the other hand the Brownian image
model is a model which captures the scale invariant covariance structure
of natural images. I have shown that the covariance structure of natural
images in k-jet space corresponds to that of Brownian images within a scale
interval. Therefore the Brownian image model could be thought of as a least
committed scale invariant model of the second order statistics of natural
images, in the sense that the Gaussian distribution is the maximum entropy
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solution given only constraints on the mean and covariance structure (see
Jaynes (1957; 1968) and Nielsen (1995)).

Since the Brownian image model gives a uniform distribution around the
edge manifold of Chapter 4 and Pedersen and Lee (2002), contrary to what
we see for natural images, one might conclude that natural images have more
complex dependencies among pixel values than Brownian images. That is,
the edge manifold model captures a variation in natural images which is
special for this class of images. This also highlights one of the weaknesses of
the Brownian image model with respect to being a model of natural images.
The Brownian image model does not capture the higher order statistics of
natural images.
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5.6 Appendix I: Analytical Expression for Co-

variance Matrix in Jet Space

Preliminaries

We will derive the expectation value E[·] of the inner product of two linear
functionals of a stationary stochastic function f , φ1 ∗f and φ2 ∗f , that is the
correlation between these two functionals. Let the inner product be defined
as

〈(φ1 ∗ f), (φ2 ∗ f)〉 ≡
∫∫

(φ1 ∗ f) · (φ2 ∗ f) dx dy

and its expectation value as

E[〈(φ1 ∗ f), (φ2 ∗ f)〉] = E

[∫∫

(φ1 ∗ f) · (φ2 ∗ f) dx dy

]

.

We can simplify this expectation value by going into Fourier space using
Plancherel’s theorem,

∫
�

d f(x)g(x)dx = 1
(2π)d

∫
�

d f̂(ξ)ĝ(ξ)dξ,

E

[∫∫

(φ1 ∗ f) · (φ2 ∗ f) dx dy

]

= E

[
1

(2π)2

∫∫

φ̂1φ̂2|f̂(ξ, η)|2 dξ dη
]

=
1

(2π)2

∫∫

φ̂1φ̂2E
[

|f̂(ξ, η)|2
]

dξ dη .

(5.25)

We will now look at the covariance of the stochastic function f(x, y) in
jet scale-space. Due to Eq. (5.25) the covariance matrix of a zero mean
stationary stochastic function f(x, y) mapped into jet space can be written
as

E [〈(∂xn1ym1ψ ∗ f), (∂xn2ym2ψ ∗ f)〉]

= E

[∫∫

(∂xn1ym1ψ ∗ f) · (∂xn2ym2ψ ∗ f) dx dy

]

=
1

(2π)2

∫∫

(iξ)n1(iη)m1(−iξ)n2(−iη)m2e−s2(ξ2+η2)E
[

|f̂(ξ, η)|2
]

dξ dη

=
1

(2π)2

∫∫

(−1)n2+m2in+mξnηme−s2(ξ2+η2)E
[

|f̂(ξ, η)|2
]

dξ dη (5.26)

where n = n1 + n2 and m = m1 +m2.
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Covariance Matrix of White Noise in Jet Space

Let the stochastic function ν(x, y) be a white noise image with variance σ2

and power spectrum E[|ν̂(ξ, η)|2] = σ2. The expectation value of Eq. (5.26)
is therefore,

E [〈(∂xn1ym1ψ ∗ ν), (∂xn2ym2ψ ∗ ν)〉]

=
σ2

(2π)2

∫∫

(−1)n2+m2in+mξnηme−s2(ξ2+η2) dξ dη

= (−1)n2+m2in+m σ2

(2π)2

∫ ∞

−∞
ξne−s2ξ2

dξ

∫ ∞

−∞
ηme−s2η2

dη .

If we now use that
∫ ∞

−∞
ξne−s2ξ2

dξ =

{
1

s1+n Γ
(

1+n
2

)
if n even

0 otherwise

and

Γ

(
1 + n

2

)

=
n!

2n(n/2)!

√
π

we get that

E [〈(∂xn1ym1ψ ∗ ν), (∂xn2ym2ψ ∗ ν)〉]

= (−1)
n+m

2
+n2+m2

σ2

πs2+n+m

n!m!

2n+m+2(n/2)!(m/2)!

whenever both n and m are even integers, otherwise

E [〈(∂xn1ym1ψ ∗ ν), (∂xn2ym2ψ ∗ ν)〉] = 0 .

Covariance Matrix of Brownian Images in Jet Space11

Let the stochastic function β(x, y) be a Brownian image, i.e. the power
spectrum of β(x, y) is E[|β̂(ξ, η)|2] = σ2

0/‖ξ‖2 where σ2
0 is a constant which

can be interpreted as a global variance offset. Hence the expectation value
of Eq. (5.26) can be written as

E [〈(∂xn1ym1ψ ∗ β), (∂xn2ym2ψ ∗ β)〉]

=
1

(2π)2

∫∫

(−1)n2+m2in+mξnηme−s2(ξ2+η2) σ2
0

ξ2 + η2
dξ dη .

11This derivation was developed in discussion with D. Mumford.
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If we introduce polar coordinates (‖ξ‖, θ) instead of (ξ, η) we get

σ2
0

(2π)2

∫∫
(−1)n2+m2in+m(‖ξ‖ cos θ)n(‖ξ‖ sin θ)m

‖ξ‖2 e−s2‖ξ‖2‖ξ‖ d‖ξ‖ dθ

= (−1)n2+m2in+m σ2
0

(2π)2

∫ ∞

0

‖ξ‖n+m−1e−s2‖ξ‖2

d‖ξ‖

·
∫ 2π

0

(cos θ)n(sin θ)m dθ.

Notice that
∫ 2π

0

(cos θ)n(sin θ)m dθ =

{

0, if n or m is odd
[(n−1)(n−3)···1]·[(m−1)(m−3)···1]

(n+m)(n+m−2)···2 2π

and
∫ ∞

0

rn+m−1e−s2r2

dr =

∫ ∞

0

1

s

(
t

s

)n+m−1

e−t2 dt

=
1

sn+m

∫ ∞

0

tn+m−1e−t2 dt

=
1

sn+m

∫ ∞

0

h
n+m−1

2 e−h 1

2h1/2
dh

=
1

2sn+m

∫ ∞

0

h
n+m

2
−1e−h dh

=
1

2sn+m
Γ

(
n+m

2

)

by substitution with t = sr followed by h = t2. Using Γ(n+ 1) = n! when n
is an integer, this can be written as

1

2sn+m
Γ

(
n +m

2

)

=
1

2sn+m

(
n +m

2
− 1

)(
n+m

2
− 2

)

· · · 1

=
1

2
n+m

2 sn+m
(n +m− 2) (n+m− 4) · · · 2.

We can now write the expectation value of interest as

E [〈(∂xn1ym1ψ ∗ β), (∂xn2ym2ψ ∗ β)〉] =

(−1)n2+m2in+m σ2
0

2πsn+m

[(n− 1)(n− 3) · · · 1] · [(m− 1)(m− 3) · · ·1]

2
n+m

2 (n+m)

= (−1)
n+m

2
+n2+m2

σ2
0

2πsn+m

n!m!

2n+m(n+m)(n/2)!(m/2)!
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whenever both n and m are even integers, otherwise

E [〈(∂xn1ym1ψ ∗ β), (∂xn2ym2ψ ∗ β)〉] = 0 .

If we use dimensionless scale-normalized derivatives (Florack et al., 1994)
we will get rid of the scale factor 1/sn+m.

As an example, let us write the covariance matrix of Brownian images
mapped into 3-jet space (n1 +m1 ≤ 3, n2 +m2 ≤ 3 and omitting the zeroth
order term) by scale-normalized scale-space derivatives,

E
[
〈(sn1+m1∂xn1ym1ψ ∗ β), (sn2+m2∂xn2ym2ψ ∗ β)〉

]
=

σ2
0

2π
·

















1/4 0 0 0 0 −3/16 0 −1/16 0
0 1/4 0 0 0 0 −1/16 0 −3/16
0 0 3/16 0 1/16 0 0 0 0
0 0 0 1/16 0 0 0 0 0
0 0 1/16 0 3/16 0 0 0 0

−3/16 0 0 0 0 5/16 0 1/16 0
0 −1/16 0 0 0 0 1/16 0 1/16

−1/16 0 0 0 0 1/16 0 1/16 0
0 −3/16 0 0 0 0 1/16 0 5/16

















.

5.7 Appendix II: Scale Invariance and Self

Similarity

Scale invariance is a special case of self similarity. A function is self similar
if an affine transformation exists, such that the function is invariant with
respect to that transformation. Let us state this more formally by writing a
definition of self similarity (Mallat, 1998):

Definition 5.1 (Self similarity of functions)
Let f be a continuous function with a compact support S ⊂ R. We say that
f is self similar if disjoint subsets S1, . . . , Sk exist such that the graph of f
restricted to each Si is an affine transformation of f . This means that a scale
λi, a translation ri, a weight pi and a constant ci exist such that

∀x ∈ Si , f(x) = ci + pif(λi(x− ri)) . (5.27)

A function f(x) is scale invariant if a rescaling with scale parameter λ
has no effect, that is f(x) = f(λx).
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5.7.1 Statistical Self Similarity

We can also define a statistical version of self similarity, where one requires
that the moments of a stochastic function f(x) or the probability distribution
of this function is self similar. The definition of statistical self similarity
is a weaker formulation than deterministic self similarity of definition 5.1.
Nevertheless, statistical self similarity is a much more useful concept in the
context of natural image statistics.

Definition 5.2 (Equality in law)
The notation {f(t)} 4

= {g(t)} means that the two stochastic functions f(t)
and g(t) have the same probability distribution function.

Equality in law is a weak definition of stationarity of the stochastic function.
I assume stationarity of the stochastic function and only define statistical
self similarity in terms of scaling transformations.

Definition 5.3 (Statistical self similarity)
The stochastic function f(t) is said to be self similar (SS) with scaling expo-
nent h if for any τ > 0 and t

{f(t)} 4
= {τ−hf(τt)} .
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Part II

Motion Analysis





Chapter 6

Optic Flow by Scale-Space
Integration of Normal Flow

6.1 Introduction

Motion analysis is a large topic within computer vision and image analysis,
because knowledge of motion, as perceivable in image sequences, is neces-
sary for various tasks such as object tracking, time-to-contact problems, and
structure from motion. Motion analysis is conducted by associating a vec-
tor field of velocities to the image sequence, which describes the rate and
direction of change of the intensity values. We define the optic flow as the
velocity field, which describes the temporal changes of the intensity values of
the sequence. Optic flow is not equivalent to a projection of the true physical
motion onto the image plane. There are several reasons for this, one being
the changing intensity values caused by reflections and varying lighting con-
ditions, but the main reason is the so-called aperture problem. That is, we can
only deduce the motion that results in a change in the intensity patterns of
the captured image sequence. The problem of determining the motion along
image isophotes (i.e. iso-intensity curves) is inherently ambiguous. By in-
troducing assumptions about the structure of the flow we can obtain various
types of realizations of optic flow. Usual assumptions used in other methods
are local or global rigidity of objects and affine motion. The only unbiased
local motion we can obtain is the motion orthogonal to the isophotes of the
image. This type of velocity field is usually called the normal flow.

A large variety of methods exist for estimation of optic flow (Alvarez
et al., 2000; Arnspang, 1988; Florack et al., 1998; Horn and Schunck, 1981;
Lindeberg, 1995; Otte and Nagel, 1994) (which is far from an exhaustive list).
See also Barron et al. (Barron et al., 1994) for a discussion and evaluation
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of various methods.

We wish to develop an algorithm, which can be used for doing motion ana-
lysis in experimental fluid dynamics (see Pedersen (2000)). For that reason
it is important that it is least committed, in order to reduce possible biases
in the approximated flow. Since normal flow is the only unbiased or least
committed realization of optic flow, we will use it as a basis for obtaining an
estimate of the full flow. We believe that a least committed estimate can be
obtained by locally modeling the full optic flow on top of the normal flow.
Ideally we seek to estimate the optic flow field which at each point has the
corresponding normal flow vector as its normal component1. This constraint
only fix one degree of freedom (d.o.f.), which means that an infinite number
of solutions exist. In order to circumvent this problem, we introduce a poly-
nomial model of the local optic flow. We use a linear Gaussian scale-space
to formalize the concept of locality or the integration scale of our model.
This integration scale-space regularizes the problem and lets us fix the miss-
ing tangential d.o.f. by estimating, in a least squares sense, the parameters
of our local model constrained by the normal flow found at the integration
scale or put in another way, in the region of model validity. The solution
to this constrained minimization problem can be stated in closed form and
it is expressed in terms of a Taylor expansion of the normalized structure
tensor. In order to take full advantage of this multi-scale approach we use
an automatic local scale selection mechanism, based on a method by Niessen
and Maas (1997), to select the scale of model validity.

In this paper we compute the normal flow by using the method proposed
by Florack et al. (1998). It is an incorporation of the so-called Optic
Flow Constraint Equation (OFCE), originally proposed by Horn and Schunck
(1981), into the linear Gaussian scale-space formalism. In this method the
normal flow is in general modeled by an M ’th order polynomial, but we
choose the, at first glance restrictive, zeroth order model. The zeroth order
model produce flow vectors which are normals to the isophotes, giving a
normal flow field in the usual sense. Higher order models give flow vectors
which are not necessarily normals to the isophotes. Other choices of normal
flow methods are possible in the setting of the method we describe in this
paper.

We believe that scale-space integration of normal flow and modeling
locally the optic flow in this scale-space is different from other methods.
The conscious inclusion of measurement scale lets us select the appropriate
neighborhood in which our local model is valid. Other authors (Arnspang,

1By normal component we mean the projection of the sought optic flow onto the dir-
ection orthogonal to the local isophote.



6.2 Spatiotemporal Gaussian Scale-Space 121

1988; Florack et al., 1998; Lindeberg, 1995; Otte and Nagel, 1994) have
introduced polynomial models of the flow structure directly into the OFCE,
contrary to modeling the optic flow on top of the normal flow as we pro-
pose. The use of an integration neighborhood for the approximation of optic
flow and in the related stereo matching problem has been used by several
authors (Alvarez et al., 2000; Florack et al., 1998; Kanade and Okutomi,
1994; Lindeberg, 1995; Otte and Nagel, 1994).

We evaluate the performance of our algorithm by using the methods pro-
posed by Barron et al. (1994) in their survey of performance of various optic
flow methods. Our performance results will be compared with the results for
other optic flow techniques applied among other on a synthetic fire sequence.
In order to show a possible application of our method, we also apply it on a
real sequence of smoke circulation in a pigsty.

The organization of this paper is the following: In Sec. 6.2 we describe
our scale-space representation as well as some notation. Sec. 6.3 is a brief
introduction to the theory of normal flow. The proposed method for com-
putation of optic flow is presented in Sec. 6.4 and finally, the performance of
the presented algorithm is discussed in Sec. 6.5.

6.2 Spatiotemporal Gaussian Scale-Space

Both Koenderink (1988) and Lindeberg (1997) have proposed causal tem-
poral scale-space representations. In this paper we choose simply to disreg-
ard temporal causality, since we are not interested in real-time applications.
It is our opinion that a generalization of our method to one of the above
mentioned causal temporal representations is feasible. We choose instead to
use the linear Gaussian scale-space representation, introduced among others
by Koenderink (1984).

The spatiotemporal scale-space representation L(x; σ, τ) : R
N+1 × R+ ×

R+ 7→ R of the spatiotemporal image f(x) : R
N+1 7→ R is defined by the

convolution of the image with the scale-space aperture function G(x; σ, τ) :
R

N+1 × R+ × R+ 7→ R,

L(x; σ, τ) = f(x) ∗G(x; σ, τ) . (6.1)

The aperture function is the spatiotemporal Gaussian

G(x; σ, τ) =
1√

2πτ 2(2πσ2)N/2
exp

(

−x
ixi

2σ2
− (xt)2

2τ 2

)

(6.2)

where σ and τ are called the spatiotemporal scale parameters. Throughout
this paper, we will use the index notation, where xi denotes the i’th spatial
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component of the vector x, and xt denotes the temporal component. When
we are talking about both spatial and temporal components we write the
component index with a Greek letter, e.g. xµ. We will also sometimes make
use of Einstein’s summation convention, i.e. repeated lower and upper indices
indicates summation xixi ≡

∑

i x
ixi.

6.3 Theory of Normal Flow

We assume that we are given a method for computing the normal flow of an
image sequence. The actual choice of method is arbitrary, but in this paper
we use the scale-space OFCE proposed by Florack et al. (1998) as a method
for computing normal flow. We will briefly outline this method in order to
establish some necessary notation.

Horn and Schunck (1981) propose an optic flow method based on the
local assumption that image intensities are preserved at points moving along
the flow. Furthermore, it is assumed that the temporal velocity component
is constant, vt(x) ≡ 1. This assumption expresses that the flow is every-
where non-vanishing and temporal causal. These assumptions lead to the
well-known optic flow constraint equation (OFCE). It is interesting to no-
tice that the later assumption breaks down generically in a countable set of
points (Nielsen and Olsen, 1998). However in this paper we assume that this
assumption is valid at every point in the image.

Florack et al. (1998) incorporate the ideas of Horn and Schunck into the
scale-space paradigm, by defining the optic flow constraint equation under
the spatiotemporal scale-space aperture. For a 2-dimensional image sequence
f(x), the OFCE can be written as the Lie derivative2 under the scale-space
aperture G(x; σ, τ) of the intensity function f(x) along the flow v(x). We
have

LvL(x; σ, τ) =

∫

x∈ �
3

(ft + vxfx + vyfy)Gdx ≡ 0 (6.3)

where fµ = ∂f/∂xµ.
Normal flow is defined by the so-called normal flow constraint. Florack et

al. define the normal flow constraint under the scale-space aperture function
as ∫

x∈ �
3

(vxfy − vyfx)Gdx ≡ 0 . (6.4)

Furthermore, Florack et al. introduce a polynomial model of the flow v
into Eq. (6.3) and Eq. (6.4), which lets them state the problem of normal flow

2The Lie derivative of a scalar function f(x) is the derivative of f(x) along the direction
of a specified vector field v, Lvf = fµvµ.
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estimation in terms of finding the solution to a system of linear equations.
Each term of these equations can be expressed as a linear combination of
scale-space image derivatives, due to the definition of Hermite polynomials
in terms of Gaussian derivatives. As mentioned, we will only use the zeroth
order model for approximation of normal flow, but we will use the M ’th order
polynomial model as our local model of the optic flow. We define the M ’th
order polynomial model vM(x) of the vector field v(x) at x = 0 as

vµ
M(x) =

M∑

l=0

1

l!
ṽµ

ρ1...ρl
xρ1 · · ·xρl . (6.5)

Here xρ, vµ denote the components of the spatiotemporal vectors x,v ∈ R
N+1

and ṽµ
ρ1...ρl

are the model coefficients approximating the partial derivatives of
v(x) at x = 0.

6.4 Least Committed Optic Flow

Ideally we want to obtain an optic flow field that has a normal component
which is equal to the normal flow. This is an ill-posed problem, since an
infinite number of solutions exist, due to our lack of knowledge about the
tangential component. We intend to regularize this problem by locally mod-
eling the tangential component of the optic flow field by a polynomial model,
under the constraint that the normal component of the model should be close
to the normal flow. We use a spatiotemporal integration scale-space to define
the scale of validity of our local model.

This constrained optimization problem can be formalized by a functional
E(v(x;$)) of the optic flow field v(x;$) at integration scale $. This func-
tional describes the degree of discrepancy between the normal flow field u(x)
and the normal component of the sought optic flow field v(x;$) under the
Gaussian integration aperture3 G(x;$). We define the discrepancy as the
least squares difference, thus we can write the functional as

E(v(x;$)) =

∫

x∈�
N+1

w(x)
∥
∥η(v · η)− u

∥
∥2
G(x;$) dx , (6.6)

where η(x) = u

‖u‖ is the normalized direction of the normal flow u(x). The

function w(x) is a measure of the uncertainty of the estimates of the un-
derlying normal flow and acts as a weight, which penalizes poorly estimated

3For the sake of simplicity we choose to use a scale-space representation with only one
integration scale parameter $. The spatiotemporal scale-space aperture function of Eq.
(6.2) can readily be interchanged with the aperture function G(x; $).
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normal flow vectors. In Sec. 6.5 we choose to use the numerical uncertainty
of the normal flow as the penalty function w(x), but other choices are of
course possible.

We introduce the M ’th order polynomial model vM , defined in Eq. (6.5),
into the functional E(v(x;$)). The model parameters ṽµ

ρ1...ρl
can be obtained

by minimizing the functional E(vM(x;$)), that is

v̂µ
ρ1...ρl

= arg min
ṽµ

ρ1...ρl

E(vM) , l = 0, . . . ,M . (6.7)

The integrand of the functional E(vM) is quadratic, which trivially means
that a global minimum exists and that this minimum v̂µ

ρ1...ρl
is the solution to

the system of differential equations given by ∂E/∂ṽµ
ρ1 ...ρl

= 0. We therefore
arrive at:

Result 6.1 (M ’th Order Optic Flow)
The M ’th order optic flow approximation vM(x;$) is given by Eq. (6.5),
where the model parameters ṽβ

ν1...νi
are obtained by solving the minimization

problem of Eq. (6.7). The solution is given by the following set of linear
equations

∂E

∂ṽµ
ρ1 ...ρl

=

M∑

i=0

1

i!
ṽβ

ν1...νi

∫

x∈�
N+1

w(x)ηµηβMν1...νiρ1...ρl
(x;$) dx

−
∫

x∈�
N+1

w(x)uµMρ1...ρl
(x;$) dx = 0 , (6.8)

where Mρ1...ρl
(x;$) = xρ1 · · ·xρlG(x, $) is the l’th order mixed Gaussian

monomials at integration scale $.

Proof: We seek the solution of

∂E

∂ṽµ
ρ1 ...ρl

= 0 . (6.9)

By using the chain rule ∂E/∂ṽµ
ρ1 ...ρl

=
∫
∂q/∂ṽµ

ρ1 ...ρl
∂F/∂q dx, where F (vM)

is the integrand of E(vM) and q = vM · η, we get

∂E

∂ṽµ
ρ1 ...ρl

=

∫

x∈ �
N+1

2w(x)

l!
·
(

η(α)2ηµηβ

(
M∑

i=0

1

i!
ṽβ

ν1...νi
xν1 · · ·xνi

)

− ηµ(η · u)

)

· xρ1 · · ·xρlG(x;$) dx = 0 . (6.10)
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Notice that η(α)2 = 1, ηµ(η · u) = uµ, and that the constant 2/l! can be
removed. If we introduce the notation Mρ1...ρl

(x;$) = xρ1 · · ·xρlG(x, $),
this system of linear equations can be written as

∂E

∂ṽµ
ρ1 ...ρl

=

M∑

i=0

1

i!
ṽβ

ν1...νi

∫

x∈ �
N+1

w(x)
(

ηµηβMν1...νiρ1...ρl
(x;$)

− uµMρ1...ρl
(x;$)

)

dx = 0 . (6.11)

�

We developed our method at the origin of the vector field v(x = 0), which
means that in general a translation to the point of interest should be intro-
duced, which in turn transforms the integrals of Result 6.1 into convolution
integrals.

The l’th order mixed Gaussian monomialsMρ1...ρl
(x;$) can be expressed

in terms of linear combinations of the partial derivatives of the Gaussian
by using the definition of Hermite polynomials and the separability of the
Gaussian (see e.g. Florack et al. (1998) or Pedersen (2000)). This lets us
interpret the two integrals of Result 6.1 as a set of scale-space derivatives of
the normal flow u and the matrix ηµηβ.

Since the normal flow is defined to be parallel to the gradient direction, the
matrix (wηµηβ) ∗G(x;$) of Result 6.1 can be interpreted as the normalized
spatiotemporal structure tensor (see e.g. Weickert (1998)). This gives another
possible interpretation of Result 6.1, namely that we are seeking the flow field
which, by the product with the normalized structure tensor, is equal to the
normal flow. The introduction of our flow model corresponds to a Taylor
expansion of the normalized structure tensor. We should mention that other
authors have used the structure tensor as the basis of methods for doing
motion analysis (Granlund and Knutsson, 1995).

The structure of image sequences exists on different scales and conse-
quently the optimal measurement scale will vary between different regions
in an image sequence. In conjunction with optic flow and the related stereo
vision problem different approaches to the problem of scale selection has been
taken; Kanade and Okutomi (1994), Weber and Malik (1995), G̊arding and
Lindeberg (1996), Niessen and Maas (1997), and Nielsen et al. (1999).

In this paper an automatic local scale selection method will be used sim-
ilar to the one proposed by Niessen and Maas (1997). They propose to use
the numerical stability as a criterion for scale selection. As a measure of
numerical stability they use the Frobenius norm ‖A−1‖2F of the system of
linear equations Av = b used in the method by Florack et al. (1998).
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The Frobenius norm of a matrix is the sum of the singular values of that
matrix. Since we use the Florack et al. multi-scale normal flow method, the
outcome of Result 6.1 is a spatiotemporal integration scale-space of the vec-
tor field vM(x; σ, τ,$). An automatic scale selection mechanism can there-
fore be stated as the selection of the spatiotemporal integration scale triplet
(σ, τ,$) at each point in space-time, for which ‖Ψ−1‖2F is minimal. Here
Ψµβ

ν1...νiρ1...ρl
(x; σ, τ,$) = (w(x)ηµηβ) ∗Mν1...νiρ1...ρl

represent the matrix part
of the system of linear equations described in Result 6.1.

In Result 6.1, we assume that the Gaussian derivatives are scale normal-
ized and furthermore we use natural coordinates, x

σ
. We prefer the standard

method of scale normalization which is based on dimensional analysis (Flor-
ack et al., 1994) and can be stated as

[
∂nL

∂xµn

]

norm

= σn ∂
nL

∂xµn . (6.12)

In the context of scale selection for feature detection Lindeberg (1998a) has
proposed a method in which the structure of the raw image controls the nor-
malization factor. Pedersen and Nielsen (2000) has augmented this method
by introducing the fractal dimension of the underlying image structure as a
control parameter of the normalization factor. In this paper, we have chosen
to use the standard normalization method instead of the more advanced
normalization procedures, but for future work, it could be interesting to ex-
amine the use of image structure as a control parameter for normalization of
derivatives in the context of multi-scale optic flow estimation.

The algorithm proposed in this paper is clearly a sequential process of the
computation of normal flow followed by the computation of the optic flow.
The computations of the different scale-space derivatives in the normal flow
and optic flow steps can readily be parallelized. The structure of the process
lets us implement the proposed algorithm in a highly modular fashion.

6.5 Discussion of Performance

We compute the zeroth and first order optic flow for different benchmark
image sequences and compare the results with the findings of other authors.
We use the angular error measure used by Barron et al. (1994) as well
as three of their synthetic benchmark image sequences with known ground
truth: The translating trees (TTS), diverging trees (DTS), and Yosemite
sequences. We also do a comparison on a synthetic fire particle sequence4

4Available through anonymous FTP at ftp://ftp.diku.dk/diku/users/kimstp/fire.tar.gz.
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Figure 6.1: The middle image from the synthetic fire particle sequence (left) and the
corresponding correct flow field (right). The sequence consists of 32 images of 256× 256
gray value pixels with velocities between 0 and 3.79 pixel per frame. We show every fourth
vector for the middle image scaled by a factor of 3.

(see Fig. 6.1). In order to show that our method can handle complex non-rigid
motion, we compute the optic flow of a real sequence of smoke circulation
in a pigsty (see Fig. 6.2). The angular error ε = arccos(v̂c · v̂e) is defined as
the angle between the estimated vector ve and the correct vector vc, where
v = (1, vx, vy) and v̂ = v/‖v‖.

In the following we use the abbreviations

Ψij
kl(x; σ, τ,$) = (w(x)ηi(x; σ, τ)ηj(x; σ, τ)) ∗Mkl(x;$)

Φi
kl(x; σ, τ,$) = (w(x)ui(x; σ, τ)) ∗Mkl(x;$) .

(6.13)

In order to keep the notation simple we assume that each partial derivative
of the Gaussians in Mkl(x;$) is scale normalized by Eq. (6.12). When
using scale normalization of the derivatives it is important to remember that
this effectively corresponds to changing the measurement units, hence the
computed flow vectors are expressed in units of the scale. As an uncertainty
measure of the normal flow, we use w(x) = 1/‖A−1‖2F , where the matrix A
is given by the linear equations Au = b defining the normal flow (Eq. (6.3)
and Eq. (6.4)).

We use the zeroth and first order spatial model for the optic flow even
though our method in general lets us use spatiotemporal models. This means,
that we purely base our approximation of optic flow on a spatial analysis of
the underlying spatiotemporal normal flow field. According to Result 6.1 the
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optic flow approximated by the zeroth order spatial model vi
0 = ṽi is given

by the solution to
Ψxxṽx + Ψxyṽy = Φx

Ψxyṽx + Ψyyṽy = Φy .
(6.14)

The optic flow modeled by the first order spatial model vi
1 = ṽi + ṽi

xx + ṽi
yy

is given by the solution to the system of linear equations given by the partial
derivatives of the functional E(v1) with respect to the six model parameters
ṽi

j = (ṽx, ṽy, ṽx
x, ṽ

y
x, ṽ

x
y , ṽ

y
y)

T ,

∂E
∂ṽx

j
= Ψxx

j ṽ
x + Ψxy

j ṽ
y + Ψxx

xj ṽ
x
x + Ψxy

xj ṽ
y
x + Ψxx

yj ṽ
x
y + Ψxy

yj ṽ
y
y − Φx

j = 0
∂E
∂ṽy

j

= Ψxy
j ṽ

x + Ψyy
j ṽ

y + Ψxy
xj ṽ

x
x + Ψyy

xj ṽ
y
x + Ψxy

yj ṽ
x
y + Ψyy

yj ṽ
y
y − Φy

j = 0 .

(6.15)
In order to solve these linear equations we have used the pseudo inverse of
the matrix Ψij

kl because it can be close to singular.
We have computed the optic flow for the four synthetic benchmark se-

quences using fixed scales and automatic scale selection (Table 6.1). We see,
that for some types of sequences the automatic scale selection improves the
results. This is not true for the fire sequence and zeroth order results for
the DTS sequence. This indicates that scale selection based on numerical
stability might not be the best solution in all situations. We believe that a
way to improve this would be to incorporate information of the structure of
the normal flow into the scale selection mechanism. Furthermore, for certain
fixed fine scales we find that the first order model does not produce bet-
ter results than the zeroth order model. The reason for this is that at fine
scales the accuracy of the higher order partial derivatives needed in the first
order model reduces. Note as well that the zeroth order optic flow model
does not handle the sequences consisting of non-translational motion well;
this concerns the DTS, Yosemite, and fire sequences. This is not surprising
considering that these sequences consist of a type of motion which is poorly
modeled by this type of model.

In Table 6.2 we show some of the results from Table 6.1 together with
the best results of other optic flow techniques. Unfortunately we could only
get results for the Yosemite sequence for the Alvarez et al. (2000) method.
We see that both the zeroth and first order scale selected optic flow models
perform as well as, and in some cases better than, other methods for most
benchmark sequences. For the diverging trees and Yosemite sequences the
results of the zeroth order optic flow are mediocre. The reason for this is, as
mentioned above, that the zeroth order model is a poor model of this type
of flow. We expect that the first order result for the Yosemite sequence is
mediocre, because of the apparent limitations of the scale selection method
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Parameters TTS DTS
Mean St. dev. Mean St. dev.

M=0, (1, 2, 2) 0.99 4.50 2.43 3.42
M=1, (1, 2, 2) 0.87 1.76 1.17 1.74
M=0, (2, 2, 4) 0.42 0.87 3.41 2.64
M=1, (2, 2, 4) 0.52 1.23 1.49 1.88
M=0, (4, 2, 8) 0.31 0.19 5.19 3.10
M=1, (4, 2, 8) 0.25 0.25 1.49 0.88
M=0, multi-scale 0.34 0.23 5.02 3.86
M=1, multi-scale 0.15 0.11 0.80 0.47

Parameters Yosemite Fire
Mean St. dev. Mean St. dev.

M=0, (1, 2, 2) 20.15 17.37 5.92 14.61
M=1, (1, 2, 2) 21.83 19.00 5.78 14.79
M=0, (2, 2, 4) 17.16 13.89 7.88 14.60
M=1, (2, 2, 4) 16.94 13.45 7.42 14.78
M=0, (4, 2, 8) 18.42 11.95 12.88 16.62
M=1, (4, 2, 8) 17.30 10.69 11.71 17.75
M=0, multi-scale 11.50 15.66 7.85 15.57
M=1, multi-scale 8.51 12.57 7.55 15.65

Table 6.1: Mean angular errors and corresponding standard deviations of approxim-
ated zeroth (M = 0) and first (M = 1) order optic flow based on zeroth order nor-
mal flow. The results have been computed at different sets of spatiotemporal and in-
tegration scales (σ, τ, $). The last two rows show results produced with the automatic
scale selection method discussed in Sec. 6.4. The scales were selected from the sets
σ ∈ {1.0, 1.414, 2.0, 2.828, 4.0, 5.656, 8.0}, τ ∈ {1.0, 2.0, 3.0}, $ ∈ {1.0, 2.0, 4.0, 8.0}.
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Techniques TTS DTS
Mean St. dev. Mean St. dev.

Horn & Schunck 2.02 2.27 2.55 3.67
Uras et al. 0.62 0.52 4.64 3.48
Nagel 2.44 3.06 2.94 3.23
Anandan 4.54 3.10 7.64 4.96
Singh (step 2) 1.25 3.29 8.60 5.60
Florack et al. 0.49 1.92 1.15 3.32
M=1, (1, 2, 2) 0.87 1.76 1.17 1.74
M=0, multi-scale 0.34 0.23 5.02 3.86
M=1, multi-scale 0.15 0.11 0.80 0.47

Techniques Yosemite Fire
Mean St. dev. Mean St. dev.

Horn & Schunck 9.78 16.19 9.08 18.97
Uras et al. 8.94 15.61 14.68 25.64
Nagel 10.22 16.51 10.84 21.75
Anandan 13.36 15.64 14.38 22.77
Singh (step 2) 10.44 13.94 9.94 19.71
Alvarez et al. 5.53 7.40 – –
M=1, (1, 2, 2) 21.83 19.00 5.78 14.79
M=0, multi-scale 11.50 15.66 7.85 15.57
M=1, multi-scale 8.51 12.57 7.55 15.65

Table 6.2: Mean angular errors and standard deviations for different optic flow techniques
obtained from Barron et al. (1994) (the best results for different methods), Alvarez et al.
(2000), and Florack et al. (1998) (first order multi-scale results). The last three rows are
results obtained with our method. The fire results for other methods were computed by
using the implementations by Barron et al. (1994).
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Figure 6.2: Smoke circulation in a pigsty. The sequence consists of 16 images of 256×256
gray value pixels. We only show a part of the middle image of the sequence with the
corresponding zeroth (left) and first (right) order scale selected optic flow. We plot every
fourth vector scaled by a factor of 5. In the top of the image there is a circular motion
from left to right and in the bottom there is a slow motion from right to left.

and our limiting choice of spatial models of the optic flow. Our method
delivers good results for the fire sequence, which shows that it works well on
sequences consisting of complex non-rigid motion.

In Fig. 6.2 we show the zeroth and first order optic flow for a real complex
sequence of smoke circulation in a pigsty5. Notice that our method captures
the circular motion in the sequence and that the produced flow fields follow
the structure of the smoke. It is clear that the zeroth order model breaks
down at several points contrary to the first order model which seems to do
a good job at almost all image points. We would expect that higher order
models would improve the results to some extend, but it is also well-known
that too complex models would lead to over-fitting to the data and it is
therefore important to choose the model order carefully.

6.6 Conclusions

In this paper we have presented an algorithm for estimation of optic flow
based on a polynomial model of the local flow and regularized by a Gaus-
sian integration scale-space. The method fits the normal component of the

5See http://www.diku.dk/users/kimstp/demos/ for more details.
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model to the underlying normal flow, which we presume is given, and the
tangential component is extracted by integration of the local structure of the
normal flow. In order to take full advantage of the multi-scale property of
the method, we have suggested the use of an automatic local scale selection
mechanism proposed by Niessen and Maas (1997). We have compared the
performance of the proposed method based on zeroth and first order models
with that of other optic flow methods, (Alvarez et al., 2000; Barron et al.,
1994; Florack et al., 1998). We thereby show that the method with these
models performs as well as, and in some cases outperforms, other optic flow
methods.

The optic flow method proposed in this paper is least committed in the
sense that we model the local variation of the optic flow by a polynomial
model for which the range of validity is determined by the choice of local
integration scale. This makes the proposed algorithm a useful tool in e.g.
experimental fluid dynamics (Pedersen, 2000), which we illustrated with an
analysis of a sequence of smoke circulation in a pigsty. We measured the
performance of our and other methods on a complex synthetic fire particle
sequence consisting of non-rigid motion, thereby showing that our method is
able to handle this type of motion better than other methods.

When using this, as well as other, methods it is important to choose the
model order carefully, because the actual number of d.o.f. will vary across
the image. In regions with non or little local flow structure we would expect
that a zeroth order flow would give us an accurate model, because of the
low number of d.o.f. Regions with a large amount of local flow structure
lead to a large number of d.o.f., hence higher order models are necessary.
We therefore believe that a local model order selection mechanism, like the
minimum description length principle, would be a valuable tool combined
with the optic flow method proposed in this paper.
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Chapter 7

Discussion of Results and Open
Problems

This chapter is a summary of the results presented in the thesis together
with a discussion of open problems and future research directions.

7.1 Natural Image Statistics

In Chapter 2 I developed a scale normalization procedure based on the as-
sumption that natural images can be modeled by the fractal Brownian image
model (called the fractal Brownian motion in Chapter 2). This scale normal-
ization procedure is an extension of the automatic scale selection method
introduced by Lindeberg (1998b). The choice of the fractal Brownian image
as a model of natural images is justified by the fact that the power spectrum
of this model, i.e. the scaling of the second order statistics, is similar to what
we find for different classes of natural images. Natural images have a power
spectrum proportional to 1/|ξ|α where the value of α varies around 2. This
variation can be modeled by the fractal Brownian image model. In Chapter 2
I have focused on the fractal nature of the fractal Brownian image, and only
discussed its statistical properties briefly.

The Brownian and Gaussian image models were discussed in Chapter 5
and various statistical properties and results were presented. The Brownian
image model is a scale invariant Gaussian stochastic field which seems to be a
good model of the scaling of the second order statistics of ensembles of natural
images. I showed empirically that the covariance structure of natural images
mapped into the so-called jet space can be approximated by the Brownian
image model. The fractal Brownian image model is a generalization of the
Brownian image model, which in general is not scale invariant but self similar.
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To sum up, the fractal Brownian image model captures the scaling of
the second order statistics of single natural images, and the Brownian image
model captures the scaling of the second order statistics of ensembles of
natural images.

Chapters 3 and 4 are two studies of the statistical variation of local image
geometry with a focus on edge-like structures. In Chapter 3 I studied high-
contrast 3× 3 pixel patches of both optical and 3D range images of natural
scenes. Both types of image modalities captures similar geometric informa-
tion about the scene. I investigated how the data of high-contrast patches
distribute in state space with respect to a model of edges. A blurred step
edge was used as the model, which trace out a continuous two dimensional
manifold in state space. The results show that optical patches concentrate
around the edge manifold in state space. In fact, the density with respect
to distance θ to the manifold is a power law of the form θ−2.5 with infin-
ite density at the manifold. 3D range patches have a completely different
distribution in state space. They concentrate around what can be charac-
terized as binary patches, again with a density following a power law. It is
not surprising that we get different results from different image modalities,
but the interesting thing about these results is that the differences between
the sub-resolution properties of optical and range images apparently mani-
fest themselves in the form of how data clusters in state space. I believe
that clusters of data correspond to interesting image primitives or features
and it is noteworthy that these primitives and the averaging effect of optical
cameras lead to continuous manifolds in state space. Similarly, the effect of
the 3D range finder can be seen as a morphological filter (such as a median
or mean filter) which maps primitives into compact clusters in state space.

In Chapter 4 I extended the results on optical images to filter responses.
I used linear scale-space theory and computed image derivatives in scale-
space and mapped the images into the so-called 3-jet space. An analytical
model of the scale-space of step edges was introduced, which generates a
two dimensional C∞ manifold in the 3-jet state space. The results confirm
the previous findings on 3× 3 high-contrast optical patches. Optical images
mapped into 3-jet space seem to cluster around the edge manifold in this
space. The density of data with respect to distance to the manifold follows
a power law proportional to θ−0.7 with infinite probability density at the
manifold. Besides showing that the 3 × 3 patch results generalize to filter
responses, the results also showed that the distribution is approximately scale
invariant. I believe that in general image primitives generates manifolds in
state space with a dimension that reflects the complexity of the primitives,
e.g. dimension 2 for edges and 3 for bars. Furthermore, these manifolds are
related to each other in a hierarchical form, e.g. the edge manifold is part of



7.1 Natural Image Statistics 137

the manifold of bars.

7.1.1 Open Problems

The results of Chapters 3 and 4 opens several new questions. My work can
be seen as pointing towards a way of discovering what are sensible image
primitives or features. These primitives could be defined as the local geo-
metric structures in images which we are most likely to see. These structures
will generate clusters or manifolds in state space, hence we can learn features
by learning models of the corresponding manifolds. That is, we can learn the
primitive features of Marr’s primal sketch. Unfortunately this is a difficult
learning problem.

Another approach, opposite to learning, is to specify models of features
of interest as was done in Chapters 3 and 4. A future study could be to work
out the distribution of both natural and Brownian images in jet space on
and around manifolds of interesting differential invariants, e.g. the manifold
of so-called toppoints (Johansen et al., 1986). The Brownian image model
provides us with a void model, which can be used to get an understanding of
the complexity of the distribution of natural images. Knowing the statistics
on or around the manifolds of features might lead us to an information the-
oretic measure of how much information is captured by these features. We
can use this as a quality measure of proposed features. This is probably the
most feasible approach to building a probabilistic primal sketch or at least a
primal sketch based on empirical findings.

In the analyses in Chapters 3 and 4 the spatial information is lost, which
means that we can not examine the dependency between the geometry at
different spatial locations. The local structure of images is often part of
large structures such as objects, hence there must be a high correlation of the
geometry between different points belonging to the same large scale structure.
In the analysis of Chapters 3 and 4, I have not touched upon the problem
of describing the long range dependencies in natural images. The obvious
question is therefore how do we extend the prior on natural images to capture
long range dependencies?

As an example of possible applications of the results presented in this
thesis, I would like to mention a novel image reconstruction method by
Nielsen and Lillholm (2001) and Lillholm et al. (2002). They have proposed
a variational approach to image reconstruction based on simple probabilistic
models of the statistics of natural images. It would be interesting to incor-
porate the results of this thesis into a prior distribution of natural images
which could be used in this image reconstruction method. The results on
edge statistics should be combined with the second order statistics of the
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Brownian image model. In order to construct the prior from this informa-
tion we might use the ideas of Jaynes (1968) as proposed in the introduction
(Chapter 1). That is, the empirical results should be stated as constraints
which the prior distribution must fulfill while having maximum entropy.

Although I believe the work on natural image statistics presented in this
thesis answers several important questions, it is clear from this discussion
that much more work is needed. First of all we are far from having a full
understanding of the statistical variation of images of natural scenes. In
the work presented in this thesis I have focused my investigations on the
statistical variation of local image geometry inspired by Marr’s (Marr, 1982)
idea of a primal sketch consisting of a set of primitive building blocks called
features. The next important step is to take advantage of this knowledge in
the solution of image analysis and computer vision problems. In Chapters 1
and 2 I discussed some examples of possible applications.

7.2 Motion Analysis

In Chapter 6 a multi-scale algorithm for the computation of optic flow was
presented. This method is based on fitting a local polynomial model of the
flow to the analyzed image sequence. The normal component of the model
flow is fitted to the normal flow of the sequence, and the tangential compon-
ent is extracted by integrating the flow structure in a neighborhood. The
involved local scale parameters are selected automatically based on a meas-
ure of numerical stability. The performance of the algorithm was evaluated
and it was found that its performance compares with that of other existing
methods. The method was originally developed for use in experimental fluid
dynamics and the performance evaluation shows promising results on image
sequences of non-rigid motion as found in smoke circulation.

7.2.1 Open Problems

There are at least two open problems with the optic flow method of Chapter 6.
The first problem is that the proposed automatic scale selection algorithm
leaves room for improvements. It would for instance be interesting to see
if Lindeberg’s (1998b) automatic scale selection scheme for image features
can be extended to image sequences. That is, one could make a similar
analysis of the scaling of optic flow as was done in Chapter 2 for differential
features in images. In my opinion a proper analysis would require empirical
knowledge of the scaling of image sequences of natural scenes. It is interesting
to note that Nielsen et al. (2002) have introduced Brownian warps as a least
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committed model of deformations of images, which leads to the question:
Does the Brownian warp provide a good model of motion in natural image
sequences and can we derive a scale normalization procedure that can be
used in conjunction with automatic scale selection for optic flow?

The answer to this question could bridge the two research tracks of this
thesis, namely the research on natural image statistics and on motion ana-
lysis. It seems necessary to open an investigation into the statistics of image
sequences of natural scenes in order to improve scale selection in the proposed
optic flow method.

The second problem with the proposed optic flow method is that of model
order selection. The structure of motion varies across the image sequence in
both space and time, leading to the conclusion that different orders of local
polynomial models are needed across the sequence. The question is how to
select proper model orders locally?

There are several approaches to model order selection for optic flow. One
might state the problem of model selection via the minimum description
length (MDL) principle (Rissanen, 1989), but there are other possibilities.
Nielsen and Olsen (1998; 2002) have shown how to divide the local optic
flow into flow equivalence classes. A flow equivalence class consists of local
flow fields that are equivalent with respect to some transformation or warp
of the vector field. It has been proposed (Nielsen and Olsen, 2002) that
the Brownian warp introduced by Nielsen et al. (2002) can be used as
an equivalence transformation. The Brownian warp may give us a least
committed metric for dividing the local optic flow into equivalence classes
of different complexity. We might assign a model order to local flow regions
based on which equivalence class it belongs to.

I am convinced that a better approach to scale selection and a solution
to the model selection problem would greatly improve the optic flow method
presented in Chapter 6. If a further study of this method should be done,
these are the two most important problems to be handled.
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Sammenfatning

Denne Ph.D. afhandling best̊ar af to dele, som hver især beskriver de to
linjer af forskning jeg har udført. Afhandlingens titel Statistics of Natural
Image Geometry afspejler min forskning ang̊aende statistikken af geometri i
naturlige billeder, som udgør hovedvægten af denne afhandling (Part I). Den
anden del af afhandlingen (Part II) omhandler analyse af videosekvenser med
henblik p̊a detektion og beregning af bevægelse.

Statistik af naturlige billeder

Der er blevet argumenteret for, af denne og andre forfattere (Mumford,
1996; Srivastava et al., 2003), at kendskab til statistikken af naturlige billeder
kan være nyttig ved udvikling af datamatsyn og billedanalysealgoritmer. Be-
tragter man datamatsyn og billedanalyseproblemer som statistisk inferens-
problemer kan man med fordel benytte den s̊akaldte Bayesianske inferens.
Her er det nødvendigt at tildele en sandsynlighedsfordeling til a priori viden
eller modelparametre. Der er i denne afhandling blevet argumenteret for at
s̊adanne sandsynlighedsfordelinger kan konstrueres ud fra empirisk viden om
statistikken af naturlige billeder. Fokus har specielt været p̊a den statistiske
variation af lokal geometri i billeder ud fra betragtningen, at lokal geometri
udgør lav-niveau primitiver/features i mange datamatsynsopgaver.

I afhandlingen er den statistiske variation i høj-kontrast 3×3 mikrobilleder
af naturlige billeder blevet studeret. Der blev anvendt billeder med to forskel-
lige modaliteter — billeder optaget med et konventionelt optisk kamera, samt
billeder optaget med en 3D-laserskanner. Bemærk at begge billedtyper inde-
holder information om den betragtede scenes geometri. Det blev analyseret
hvorledes disse mikrobilleder fordeler sig i tilstandsrummet med hensyn til
en model af kanter. Den benyttede model er en udglattet trinkant, som dan-
ner en to-dimensional manifold i tilstandsrummet. Empiriske studier viser
at naturlige optiske mikrobilleder fordeler sig tæt omkring kantmanifolden
i tilstandsrummet. Fordelingen af optiske mikrobilleder med hensyn til af-
stand θ til kantmanifolden er proportionel med θ−2.5. 3D-laser mikrobilleder
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har en markant anderledes fordeling. Denne type mikrobilleder ligger tæt
fordelt omkring punkter i tilstandsrummet, der kan betegnes som binære
mikrobilleder. Nogle af disse binære mikrobilleder ligger p̊a kantmanifolden,
mens andre ligger spredt i tilstandsrummet. Fordelingen af 3D-laser mikro-
billeder omkring binære mikrobilleder følger, ligesom optiske mikrobilleder,
en potenslov. Forskellen i de to billedtypers fordeling af lokal geometri skyld-
es forskellene i de to modaliteters subpixel-egenskaber: Det optiske kamera
kan sammenlignes med et udglattende filter og 3D-laserskanneren med et
morfologisk filter som gør den lokale struktur skarpere.

Studiet af høj-kontrast 3× 3 pixel mikrobilleder er blevet udvidet med et
studium af den statistiske variation af naturlige optiske billeder afbildet ind i
det s̊akaldte jet-rum. Akserne i jet-rummet best̊ar af de partielle billedafledte,
og i dette studium benyttedes afledte op til tredje orden, hvilket definere
3-jettet. Billedafledte defineredes i dette studium ved hjælp af lineær skala-
rumsteori. I denne teori introduceres en skala hvorp̊a billedafledte måles.
Et punkt i jet-rummet beskriver den lokale geometri i et punkt i billedet.
Igen fokuseres der p̊a analyse af kanter og en analytisk kantmodel introdu-
ceres. Modellen best̊ar af skalarummet af en trinkant og den udspænder
en to-dimensional C∞ manifold i jet-rummet. Dette studium viser at den
lokale geometri af naturlige billeder er tæt fordelt omkring kantmanifolden.
Fordelingen af lokal geometri med hensyn til afstand θ til kantmanifolden
er proportionel med θ−0.7, hvilket er i overenstemmelse med forsøgene med
høj-kontrast 3× 3 pixel optiske mikrobilleder. Ydermere er denne fordeling
skalainvariant.

Disse to studier antyder at de s̊akaldte features, dvs. kanter, blobs,
hjørner etc., danner klynger eller manifolder i tilstandsrummet uafhængigt
af billedrepræsentation, dvs. pixel-intensitetsværdier eller filtersvar. Dimen-
sionen af en feature-manifold afhænger ikke af billedrepræsentationen, men
bestemmes udelukkende af kompleksiteten af featuren eller antallet af fri-
hedsgrader den p̊agældende feature besidder, f.eks. er dimensionen af kant
manifolden 2 og dimensionen af manifolden for en isotrop blob 1. Det er
rimeligt at antage at feature-manifolder er indlejret i hinanden og er del af
et hierarki af manifolder, f.eks. er det oplagt at kantmanifolden er en del af
manifolden for hjørner. Man kan forestille sig muligheden for at lære features
ved at lære modeller for de tilhørende manifolder i tilstandsrummet.

Udover disse studier af lokal geometri, er der blevet arbejdet med en
matematisk model for billeder. Denne model kaldes den Brownske billedmodel
og er en stokastisk funktion p̊a planet. Den Brownske model har en række
attraktive egenskaber, blandt andet er den skalainvariant og har en Gaussisk
sandsynlighedsfordeling. Vigtigst er dog at denne model fanger anden ordens
statistikken af naturlige billeder. Empiriske studier viser nemlig at natur-
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lige billeder har en skalainvariant kovariansstruktur. Det er i denne afhand-
ling blevet vist empirisk at den Brownske billedmodel modellerer kovarians-
strukturen af naturlige billeder afbildet ind i jet-rummet. Ydermere er den
Brownske billedmodel og dens generalisering — den fraktale Brownske billed-
model — blevet anvendt som grundlag for en udledning af en metode til
skalanormalisering af billedafledte i skalarum. Denne skalanormalisering er
en udvidelse af en metode foresl̊aet af Lindeberg (1998b) i forbindelse med
en metode til automatisk skalaselektion i feature-detektorer.

Bevægelsesanalyse

I afhandlingens anden del udvikles en algoritme til analyse af bevægelse i
videosekvenser. I en bevægelsesanalyse ønsker man at beregne et vektor-
felt som beskriver størrelse og retning af ændringen af intensitetsværdier i
den analyserede videosekvens. Dette vektorfelt kaldes for det optiske flow-
felt. Bevægelsesanalyse er vigtigt for løsningen af en række problematikker
inden for datamatsyn. Fokus har i denne afhandling været p̊a udviklingen
af en metode til at beregne hastighedsvektorfelter med henblik p̊a analyse
af væskebevægelse. Her er det vigtigt ikke at lave forsimplende antagelser
s̊asom at den analyserede scene kun indeholder stive legemer og at bevægelsen
kan beskrives ved en affin transformation. Disse antagelser bryder generisk
sammen ved analyse af væskebevægelse.

I den udviklede metode antages det, at det s̊akaldte normal-flow er givet
p̊a forh̊and. Det optiske flow modelleres lokalt med en polynomisk model.
Denne models parametre estimeres ved at tilpasse modellens projektion ind
p̊a den lokale iso-intensitetskurvenormal til det underliggende normal-flow.
Modellens tangentielle komponent udledes ved en integration over et nabo-
omr̊ade. I metoden benyttes lineær skalarumsteori til at beregne afledte af
billeder og normal-flow, samt at definere integrationsomr̊adet. Modelpara-
metrene estimeres lokalt ved at finde løsningen til et lineært ligningssystem.
I metoden indg̊ar ogs̊a en teknik til automatisk selektion af de involverede
skalaparametre.

I afhandlingen sammenlignedes den her beskrevne algoritme til beregning
af optisk flow med andre kendte metoder. Denne sammenligning bestod
af en kvalitativ vurdering af de involverede metoders evne til at analysere
billedsekvenser med et kendt bevægelsesfelt. Sammenligningen viser at den
her foresl̊aede metode producerer hastighedsfelter som er lige s̊a gode, og
i visse tilfælde bedre, end de bedste af de andre metoder. Det blev ogs̊a
sandsynliggjort at den her foresl̊aede metode kan beregne bevægelsesfelter af
virkelige videosekvenser af væskebevægelse, som er en god approksimation
af det faktiske bevægelsesfelt.


