Domain-specific languages
In software development
and the relation to partial evaluation

Niels H. Christensen

Preface

The present document is the Ph.D. thesis of Niels H. Christensen. The thesis is
the main result of the author’s work on an industrial Ph.D. project, which has
been performed in collaboration between DIKU (Department of Computer Sci-
ence, University of Copenhagen), Danish IT company Visanti A/S and the Dan-
ish Academy of Technical Sciences (ATV). Professor Neil D. Jones has been the
academic supervisor, while Finn Normann Pedersen has been the industrial su-
pervisor. Professor Christian S. Jensen of Aalborg University has been ATV’s
representative on the project. The author has also written a companion industrial
report (erhvervsrapport) for the project. That report is confidential.

This thesis has been submitted to the University of Copenhagen on the 1st of
July 2003. One chapter is joint work with another author. As the rules of the
university demand, the submitted thesis was accompanied by a statement from
that author describing the distribution of responsibilities in the joint work.

Compared to most theses and papers written in LaTeX, this document is set
in an unusual font. The font was produced by using the psl at ex command and
setting font size to 12 pt. Hopefully, the reader will agree that what this font lacks
in “scientific look”, it makes up for in readability.

Contents

Introduction

1.1 What is a domain-specific language?
1.2 Disclaimer.
1.3 Motivation fortheproject
1.4 Howthe projectevolved
1.5 Overviewofthethesis
1.6 Acknowledgements L

Domain-specific language theory

Implementation of domain-specific languages
2.1 Expectations to DSL introduction
2.2 Bird’s eye view of DSL implementation
2.21 Anillustrationof thetask
2.2.2 Practical issues in DSL implementation
2.2.3 Themethodsinbrief
2.3 Domain-specific embedded langauges
2.4 Techniques for writing DSL compilers
2.5 Lightweight Languages as Software Engineering Tools
2.6 Extendible compilers and interpreters
2.7 Atool for writing DSL interpreters
2.8 Tools forwritingcompilers oL
2.9 Language Design and Implementation by Selection
2.10 Conclusion

A note on the evaluation of DSL creation

3.1 Introduction: the choice of DSL creation
3.2 Evaluationmethods
3.3 DSL expectationsrevisited
3.4 DIiSCUSSION e e

CONTENTS 3

3.5 Conclusion 44
Il Partial evaluation theory 45
4 Erlang semantics based on congruence 46
4.1 IntroductiontoErlang. oL 47
4.2 Firstversionofthesemantics 50
4.3 Getting synchronicityright 55
44 Functioncalls 58
45 Addinglists 62
46 Patternsandcase 62
4.7 Final notesonoursemantics 65
48 Relatedwork 69
49 Conclusion 71
5 Towards partial evaluation of Erlang 72
5.1 Asimple example of partial evaluation 72
5.2 The world’s simplest database application 73
5.3 Adding spice to the database client 75
54 Anexampleinterpreter 79
5.5 DIsCuSSION e e 79
5.6 Related work on partial evaluation 84
5.7 Conclusion 87

6 Offline Partial Evaluation can be as Accurate as Online Partial Eval-
uation 88
6.1 Introduction 88
6.1.1 Anecdotal Evidence 89
6.1.2 Contribution 90
6.1.3 Outline 91
6.2 A Flowchart Language with Procedures 91
6.21 Syntax 91
6.2.2 Semantics 93
6.3 Partial Evaluation, 95
6.3.1 Collecting Reachable Configurations 96
6.3.2 Block Specialization 97
6.4 Online CollectionPhase 98
6.5 Offline CollectionPhase 99
6.5.1 Maximally Polyvariant Binding-Time Analysis 101
6.6 Block Specialization 103

CONTENTS 4

6.7

6.8

6.9

6.10
6.11

6.6.1 Labelsin the Residual Program 103
6.6.2 Inference Rules for Code Generation 105
6.6.3 The Residual Program 105
Equivalence of the Two Partial Evaluators 106
6.7.1 Case: AssignmentBlock 107
6.72 Case:CallBlock 110
6.7.3 Case:ReturnBlock 110
Example: Achieving Constant Folding While Specializing an In-

terpreter 110
Extensions and Limitations 113
6.9.1 Offline Generalization 113
6.9.2 Online Generalization 113
Related Work 115
Conclusion 116
6.11.1 The Designer’sChoice 116
6.11.2 FutureWork 117

111 MORI: an application of domain-specific languages 118

7 The becoming of MORI/SQL 119
7.1 The product defining thedomain 120

7.2 The problem of customization 122
7.3 ADSL-basedsolution., 125
7.4 TheMORIlproject. 126
7.5 Post mortem of the MORI project 127

8 Design of the MORI tool 129
8.1 Thecontextof MORI 129
8.1.1 ILS:aninteractionlogserver. 130

8.1.2 QueryingthelILS 131

8.2 Example relations and a language for their specification 133
8.2.1 Alistof examplerelations 133

8.2.2 Choices regarding DSL contentand syntax 135

8.2.3 Thefinal syntax of MORI/SQL 136

8.3 Structure of the targetcode 138
8.4 Overall structure of the implementation 142
85 The XML parser 143

8.6

Conclusion 146

CONTENTS 5
9 A domain-specific relational algebra 149
9.1 Syntax 149
9.2 Parsing MORI/SQL to MORl algebra 151
9.3 Denotational semantics L 151
9.4 TYpeS 156
94.1 Queryequivalence 157

9.5 Optimization 157
9.5.1 Restriction propagation 158

9.5.2 GROUP-BY introduction. 161

9.6 Conclusion 168
10 Conclusion 170
10.1 Contributions 170
10.2 Futurework 171

1 - Introduction

Beware of the Turing tar-pit

in which everything is possible
but nothing of interest is easy.
Alan J. Perlis

This thesis is about domain-specific languages, a particular breed of programming
languages, each one tailored to solve problems of a specific kind.

My first domain-specific language was developed in 1989, I think. | was pro-
gramming Mallard BASIC on the Amstrad PCW 8256 as a hobby. Many of my
programs would print out a full page of text, either as introduction to the user when
the program was started or as explanatory text on demand. | liked working with
the formatting of these things, getting it exactly the way | wanted it. Of course,
getting it right by continously editing two dozen PRI NT statements and rerunning
the program is not very efficient, but | guess it was part of the fun — at least until |
came up with something even more fun!

At one point | wrote a program that would read in a text file and display it on
my black/green monitor, formatted with respect to certain codes that could be in-
serted into the text itself. Without knowing it, | was reinventing HTML without the
H — and probably doing a bad job at it, too. But my text displaying program was
being directed by the codes, so | count it as my first interpreter. And the language
it was interpreting was (very!) domain-specific: it was only useful for formatting
text on a monochrome screen (academically speaking, it solved problems in the
domain of text formatting). Little did I know that Jon Bentley had already written
his Little Languages piece in the Communications of the ACM ([Ben86]).

1.1 What is a domain-specific language?

I’ve met a number of different views as to what actually constitutes a domain-
specific language. Most will agree that it’s some sort of restricted programming
language, but that’s where the agreement ends. Some refuse to accept something
that is not Turing complete (i.e. a language that lets you compute anything that
any other language can, see [Tur36],[Jon97]) as a programming language. This
rules out my little language described above, HTML, core SQL and many others
as domain-specific languages.

Other people hesitate to call a programming language domain-specific if it is
Turing complete, as it can then arguably solve any problem, regardless of which

1. Introduction 7

problem domain you would say it belongs to. Is Fortran domain-specific? Sure,
it’s best for numerical computations but you can use it for programming anything
from databases to games. And is “numerical problems” something you would
accept as delimiting a problem domain?

Others seem to accept any programming language as domain-specific; some-
one told me C is domain-specific because it is very good for writing operating
systems and other “machine-near” programs.

This — rather metaphysical — definitional debate is not of interest to the present
author, and we shall not dwell on it. The focus of this thesis is on the situation
where a number of more or less well-understood problems (that are to be solved
by a computer) are given, and someone chooses to approach this task by inventing
a programming language that is somehow more handy for writing the appropriate
applications than the languages that already existed.

So instead of debating whether a programming language is domain-specific,
the thesis will focus on issues relating to the language-inventing approach and try
to make use of some of the wisdom and techniques that have been put forward
under the banner of domain-specific languages.

What’s in a word? The term “domain-specific language” is really an abbrievi-
ation of the even less elegant “domain-specific programming language”. I’'m
not sure who invented these names, but Bentley ([Ben86]) uses the less cumber-
some but also less informative “little language”. In this thesis, | will mainly use
“domain-specific language”, often abbrieviated to DSL.

1.2 Disclaimer

This thesis is not meant to be a scientific advertisement for domain-specific lan-
guages. Approaching a given task by inventing a programming language has
proved itself successful a number of times but it would be ridiculous to call it
a panacea. One characteristic of the approach that is often problematic, is that it
generally requires you to give a meta-solution to the given problems and many
more before you start programming for real.

In his short position paper Zeppelins and jet planes: a metaphor for mod-
ern software projects ([ArmO01]), Phillip Armour likens software projects with the
problem of military ground-to-air battle. The first attempts at fighting a war using
aviation were during the first World War, when Germany bombed London using
zeppelins. This spurred the need (on the British side) for shooting down these
zeppelins.

“To successfully bag a zeppelin,” Armour writes, “we would need to know, as
precisely as possible, the following information: for the airship — altitude, dis-

1. Introduction 8

tance down range, velocity, size; for the ground cannon, we’d need to know muz-
zle velocity, projectile air resistance, temperature/density, wind velocity, among
others”. Measuring all of these values, and combining them in a ballistic equation
to compute the values resulting in a hit is not easy. But — and this is the point —
once we know all of these values and fire our cannon appropriately, the zeppelin
is history.

That whole scenario, the meticulous measurements and the firing of a ballistic
missile, is of little use in modern warfare. The zeppelins have been replaced by su-
personic planes, and trying to shoot down one of these in the above manner would
be way too slow. What is even worse is that knowing the values listed by Armour
is of no use. Should we try to fire on the predicted future position of a fast-moving
jet fighter, the pilot would simply avoid our attack by maneuvering his plane in
another direction, spoiling our predictions. The plane moves unpredictably be-
cause of what we do. That’s why ground-to-air fight now involves high-speed,
target-seeking missiles.

Some software development projects are like shooting down zeppelins. The
task is predictable although the parameters are unknown. The project team can fig-
ure out the parameters using more or less well-known methods, and once they’re
all collected, finishing the job is routine.

But many projects (Armour says today’s projects) aren’t like that. The pre-
cise aim of a project is often not clear (“We need a Web GUI for our product!”),
and it may continue to move as we work (“But even more importantly, the Web
GUI should demonstrate features of our new product!”), and the aim may even be
influenced by the fact that the project has been started (“The guys heard that our
Web GUI is on the way, so they added functionality for online payment, which we
should support!”). That’s why, Armour argues, we need software development
methods less like ballistic artillery and more like target-seeking missiles.

Most methods for designing and implementing DSLs work like ballistic ar-
tillery, see for instance [CE00, MWW02, Thi98, Wei, SeaBP99, vDKV00]. Plan-
ning steps — i.e. the steps before any production starts — may include commonal-
ity analysis, domain analysis, domain engineering, feature modelling, and more
(see [CEOQQ] for very thorough descriptions of such analyses). In some sense (not
to be elaborated on here) solving problems through DSL creation may be the ulti-
mate “plan first, then execute” approach. And in Armour’s parallel, this may be a
major problem with employing DSLs in a given project if it turns out to be of jet
plane kind.

1. Introduction 9

1.3 Motivation for the project

The work behind this thesis has its roots in a previous research project called
PEKIS, which is a Danish acronym for Partial Evaluation in a Complex, Indus-
trial System. The PEKIS project was instigated by the current author and ran as a
collaboration between CIT (Danish Center of IT Research), DIKU (Dept. of Com-
puter Science, University of Copenhagen) and the Danish IT company MindPass.
We were a small group of DIKU students and MindPass employees who worked
on optimizing C code from MindPass’s system using the C-Mix partial evaluator
tool (JAnd94]). As it most oftens happens, some of our attempts worked out well,
others didn’t.

The most interesting experiment we did was also the last one, and of course
we ran out of time just when things were getting exciting. The experiment used
C-Mix to implement a domain-specific language, allowing us to generalize the
functionality of an existing subsystem rather than optimizing it. To the reader
unfamiliar with partial evaluation, the case that we worked with serves well to
illustrate the link between that technique and domain-specific languages.

The particular subsystem generated database queries to find data records that
approximated given input values. As a concrete example, imagine that each record
in a database table Shows represents the performance of a theatre play or a musical
on a Copenhagen scene. Among other attributes, each record would have a real
number attribute duration, telling how long time the given show takes. To keep
the example simple, we’ll assume that potential audience looking for a show to
watch would only care about the duration of the show. So you could specify to the
MindPass system that you want to see a show with a duration of about 2 hours. A
bit more or a bit less is OK, but the closer to two hours the better.

The system would translate this to a priority number which for a given duration
was e.g.

1— |2 — duration|

So a priority of 1 corresponds to a perfect match, a priority of % to a reasonable
match while a priority of O or below represents a really unattractive option. The
system would compute this priority for each record, and list the shows in order,
sorted by this number. But to increase performance, it would also restrict its search
to somewhat reasonable matching records, say ones where the priority is positive,
I.e. where 1 < duration < 3.

So all of this calls for three functions in the system:

e pri(optimalDur,actualDur), returning the priority 1 — |optimalDur — actualDur/|.

e lower(optimalDur), returning the lower duration bound for reasonably match-
ing records.

1. Introduction 10

e upper(optimalDur), returning the upper duration bound for reasonably match-
ing records.

But the function 1 — |optimalDur — actualDur| is rather arbitrary. In other situ-
ations (or for some users), we might need to scale the absolute difference term.
Or maybe a shorter duration than the optimal is far better than a longer duration.
Or perhaps priority should decrease quadratically with the difference (this is only
important when the duration priority is combined with other measures, of course).
So in a realistic system we could end up with many versions of each of the three
functions. This would be a mess, especially since lower and upper are tightly
coupled to their corresponding version of pri.

What we did was essentially to write a version of the system where the expres-
sion for computing priority was variable; it could be defined in a little expression
language. The new function for computing proirities would superficially look like
this:

float pri(Expression e, float optinmalDur,float actual Dur){
i f(isLookupOptimal(e))
return optimal Dur;
i f (i sLookupActual (e))
return actual Dur;
i f(isAbs(e)){
float x = eval (e.subExp);
return (x>0) ? x . -x;
b
i f(isMnus(e)){
float x = pri(e.leftSubExp, optimal Dur, actual Dur);
float y = pri(e. R ght SubExp, opti mal Dur, act ual Dur);
return (x-y);
/l...and many nore cases for e

}

The functions for lower and upper are more complex as they have to perform
symbolic constraint solving with constraints derived from an input Expr essi on
e. As can be seen, while the new versions are far more versatile than the original
versions, they are also far less efficient. The performance of the system will be
subject to interpretive overhead, interpreting our little expression language.

But of course we only allowed the introduction of the disease because we knew
we had the cure: partial evalution. A partial evaluator like C-Mix can read in a
function like the above along with an input value v, and it will output a specialized
version of the function that has one less parameter — the first parameter has been

1. Introduction 11

fixed to the value v. But — and this is the point — it may also have removed any
interpretive overhead associated with the fixed parameter!

More concretely, if we feed C-Mix with the function pri above and an input
value representing the expression 1 — |optimalDur — actualDur|, it will output
something similiar to this:

float pri(float optinalDur,float actual Dur){
float x1 = optimal Dur - actual Dur;
float x2 = (x1 >0) ? x1: -x1;
return 1 - x2;

}

So we get the original version, with original efficiency. But in the process, we
have made it possible to generate many different versions of the system, without
the mess of programmers having to rewrite tightly coupled functions, and without
interpretive overhead.

As mentioned, the results we got from our PEKIS experiments were quite
encouraging. This led MindPass and me to apply for an industrial Ph.D. stipend
to investigate further aspects of partial evaluation, and of using domain-specific
languages in an industrial setting.

1.4 How the project evolved

The Ph.D. project behind this thesis was initiated July 2000 and was sponsored by
a grant from the Danish Academy of Technical Sciences (ATV). The grant origi-
nated from the Danish Ministry of Commerce and paid tuition for the University
of Copenhagen, travel expenses and part of my wages from the industrial partner.

Although the example described above had inspired the application, MindPass
and | were interested in finding other modules in their software that could benefit
from the creation of a domain-specific language. We found two such modules, and
| started working with the first of these. Unfortunately, by the end of 2000 I had to
change my focus as the related activities in MindPass were downsized. The work
on the second module then developed through the spring of 2001, and progress
was very satisfactory. The first application project had been badly coordinated
with the MindPass engineers, but the new project had much better organizational
support. We had an interpreter for my language integrated with the rest of the
system by April 2001.

But in May 2001 my project came to a dead halt as MindPass declared bankruptcy,
leaving the author unemployed and the project discontinued. The only way to sal-
vage my Ph.D. project was to find a new industrial partner. During the summer |

1. Introduction 12

was in contact with the future founders of Visanti, a new Danish IT company. Our
discussions lent some hope to the possibility of continuing the project, but my sit-
uation made it hard to make any kind of progress. | decided to go through with my
planned visit at Oregon Graduate Institue, where Professor John Launchbury and
the PacSoft group earned my immense gratitude by hosting me for four months.
The change of environment allowed me to focus on the project work again, and
during my stay Visanti was founded, and | was employed in a position equivalent
to the one | had in MindPass. The thesis is almost entirely built on the work | have
done for Visanti.

1.5 Overview of the thesis

This thesis is divided into three parts and a conclusion. The first part is about
domain-specific languages, more specifically about developing software by de-
signing and implementing a new domain-specific language. The second part con-
cerns partial evaluation, which was my second major point of interest in this Ph.D.
work. The third and last part describes a concrete case where a domain-specific
language was invented to enhance a specific software development process. All
chapters assume some familiarity with programming and software development.

Part I: Domain-specific language theory The first part of the thesis consists of
two chapters. Both of these chapters relate to the situation where a software devel-
opment challenge is met by introducing a new domain-specific language. The first
section of Chapter 2 discusses why this approach may be a good idea (and why
it may not). The main part of the chapter is a survey of methods for implement-
ing such a language. Implementation of programming languages is notorically
hard and there are many suggested methods, of which I review a selected subset.
One of the methods elaborates on the connection between partial evaluation and
domain-specific languages that we described above. On top of the survey, the
reader is provided with some hints and warnings regarding each method’s practi-
cal applicability in a given situation.

Chapter 3 relates to a much later stage in a software development project: the
project evaluation. In the chapter, | argue that in a project where it was chosen to
introduce a new domain-specific language, that choice ought to be evaluated. The
chapter illustrates how other authors have described such evaluations in the liter-
ature. It also describes how the formulation of initial expectations regarding the
domain-specific language may and should effect the choice of evaluation method.

The two chapters are both addressed to the practitioner, e.g. a leader of a soft-
ware development project in which invention of a domain-specific language is
considered a possible choice of action. The chapters do not require that the reader

1. Introduction 13

has a background in any specific academic areas, but familiarity with Bratman
diagrams (also known as T-diagrams) makes Chapter 2 easier to read. | have writ-
ten the text in a more direct style than the rest of the thesis, and in Chapter 2 the
author steps forward in the singular “I”, rather than the plural form I chose for the
rest of the thesis.

Part | can be read independently of the following chapters. Chapters 2 and 3
can be read independently of each other, although Section 2.1 (on the blessings
and curses of domain-specific languages) provide useful background knowledge
for reading Chapter 3.

Part I1: Partial evaluation theory The second part of the thesis is divided into
three chapters. The first two of these (Chapter 4 and 5) both report on an effort
towards constructing a partial evaluator for the concurrent programming language
Erlang. The instigator of this work was John Launchbury, and while the work
ended up going in a somewhat different direction than what we talked about in
Portland, my basic understanding of the problems were developed in discussions
with John. The first chapter introduces the reader to the language and devises a
formal semantics for a subset of Erlang. Such a semantics is a big help when
discussing the many technical details of a language, as is necessary when defining
a partial evaluator. It is also an absolute prerequisite for proving a partial evaluator
correct, as has been done for a number of such systems.

Chapter 5 discusses partial evaluation of Erlang. | set out to write a complete
partial evaluator for a reasonable subset of the language, but this goal turned out
to be much too ambitious within the bounds of this project. The chapter demon-
strates a number of example Erlang programs that could be partially evaluated
with benefit. These examples motivate a reasonable modest definition of which
program transformations a partial evaluator should be able to do. Such a defini-
tion is not obvious for a concurrent language. The chapter also reviews papers on
partial evaluation of other concurrent languages and paradigms.

Chapter 6 is joint work with Robert Glick. The chapter has, in form of a
regular paper, been accepted for publication by the ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS). The chapter discusses certain dif-
ferences and lacks thereof between the two ways of performing partial evalution:
the online and the offline approach. We prove that — in contrast to a common belief
— for many languages, the two approaches achieve the same formal accuracy. This
results leads to a more sophisticated view on the differences between online and
offline partial evaluation.

A background in formal semantics, in particular sound knowledge of struc-
tured operational semantics, is a necessary prerequisite for reading all three chap-
ters in this part of the thesis. Furthermore, Chapter 6 can hardly be understood

1. Introduction 14

without a firm background in partial evaluation. Chapter 5 is better appreciated
with some understanding of partial evaluation too.

The second part of the thesis can be read independently of the two other parts.
The Erlang chapters are also independent of Chapter 6, but Chapter 5 depends
heavily on Chapter 4.

My partial evaluation theory is not applied in the last part of the thesis. This is
a consequence of circumstances. During the Ph.D. project, | worked with several
application ideas that involved partial evaluation, in particular of Erlang. But I had
to consider my duties towards Visanti: the application that | ended up spending
most of my time on, was the one that had the most promising potential for Visanti
as a business. Maximizing the benefit of my employer took priority to knitting the
different parts of this thesis more closely together.

Part I11: MORI - an application of domain-specific languages The final part
of the thesis presents a practical application of domain-specific languages that |
carried out for Visanti. The application concerns the integration of a Visanti soft-
ware product into any given network of servers and workstations that the customer
might have. | designed a language for specifying some very important aspects of
the product’s customization, and wrote a compiler for the language. Chapter 7
describes the case and the project in much more detail. Chapter 8 discusses the
design of the language and its compiler in more techincal terms. Finally, Chap-
ter 9 is devoted to specifically to the internal optimization phase of the compiler.
This particular detail deserves an entire chapter because of its relevance to the
semantics of database query languages. In the chapter, | formally prove the cor-
rectness of certain powerful optimizations that are relevant to the execution of
SQL database queries.

Part I11 of the thesis builds on the first part, and | recommend reading Chap-
ter 2 and 3 before Chapters 7 and 8. There is a linear progression in Part IlI:
Chapter 7 is a prerequisite for understanding Chapter 8, and both of these chapters
are prerequisites to Chapter 9. The latter also assumes that the reader understands
denotational semantics.

Conclusion The thesis ends with a conclusion in Chapter 10. The conclusion
sums up the contributions of this thesis and points to directions for future work.

1.6 Acknowledgements

Many people people have supported my work directly or indirectly during the last
three years. | would like to thank Neil Jones for all the things he has taught me
over the years, and for his support during that ghastly period when the project

1. Introduction 15

seemed all but doomed. Robert Gliick taught me pretty much everything | know
on partial evaluation, and | want to thank him for that, and for being an absolutely
splendid work companion. As | already mentioned, it’s hard to express my grat-
itude towards John Launchbury and everyone at OGI for taking so good care of
me, and for giving me many new perspectives on our favourite topics. Very spe-
cial thanks goes to Emir Pasalic, lavor Diatchki and Levent Erkdk for making my
stay in Portland so much more fun!

Coming back to Denmark, I must thank Visanti for their support, and all of my
colleagues for being great through good times and bad times. The flexibility of
the Danish Academy of Technical Sciences and Christian S. Jensen was essential
to the completion of this project.

I thank my friends in the TOPPS group for making the past many years in-
teresting and enjoyable. I must emphasize Jakob Grue Simonsen, who has been
my daily source of entertainment and good advice during the last, intense year.
Jakob was the prime proofreader on this thesis?, and | also thank Peter Lund and
Thomas Hildebrandt for helping me in that respect.

Last but not least, | thank all of my friends, my family and dear Line, for all
those joys you give me.

1But don’t blame him for my mistakes!

Part |

Domain-specific language theory

2 - Implementation of
domain-specific languages

[...] two things were immediately clear:

(a) whatever they were doing was
enormously complicated and expensive, and
(b) they knew exactly how to do it.

Austin Grossman*

The main part of this chapter surveys a number of methods for implementing
domain-specific languages. The aim is to give a practitioner an idea of the span of
ideas that have been put forward in the programming language community, and to
illuminate practical strengths and weaknesses of each method.

Before explaining how to implement a new DSL, Section 2.1 discusses the
associated question of why —and why not! This section explains in detail the most
important benefits and risks of introducing a new DSL. The rest of the chapter is
really addressed to the project team that has already decided to go forward with
the DSL approach but needs to find out how to progress. Section 2.2 gives the
larger perspective on this question, while the following sections review literature
on the different methods in more detail. Section 2.10 concludes.

2.1 Expectations to DSL introduction

In this section I will try to sum up the main kinds of benefits and risks that have
been expressed about the introduction of a new DSL. I’ll look at advantages and
disadvantages separately. The main source of the suggestions is the bibliography
by van Deursen, Klint and Visser ([vDKV00]).

Potential disadvantages Papers on DSLs of course report on projects where
the invention of a DSL seemed like a good idea. Thus, it is not surprising that
the authors anticipate fewer downsides than upsides regarding the introduction of
DSLs. Nonetheless, the below issues can be very serious.

e Complexity of language design and implementation. This is certainly the
main reason to avoid making a DSL. A DSL compiler/interpreter represents

IRecalling a visit to Universal Studios, and contrasting the movie business to the computer
game business. In [Gro03], Introduction.

2. Implementation of domain-specific languages 18

a meta-solution able to express every application you might want to write in
the specific domain, and as discussed in the introduction (Section 1.2) such
a meta-solution may be hard to find or even non-existent. A compiler or
interpreter must also handle language-related problems (e.g. parsing, type
checking etc.). This “extra layer” naturally means more work in design and
implementation to begin with, even though writing each application may be
easier afterwards. In many cases, the initial effort may not be worthwhile.

e Harder maintenance. Just as a compiler or interpreter may be harder to
write than a number of applications in the first place, programmers may
also find these types of programs more difficult to maintain. There may also
be maintenance advantages to implementing a DSL, though. I’ll discuss the
potential advantages below.

e Cost of education for DSL users. While a DSL are most often designed to
appeal to its intended users, there is always a learning effort associated with
using a new programming language.

¢ Slower applications. Although some DSL compilers incorporate clever op-
timizations that makes the object code outperform hand-written solutions,
things may also work out differently. Maybe the complexity of writing a
compiler is perceived to be too large and you settle for an interpreter thus
introducing an interpretive overhead. Or maybe a compiler is written but it
turns out to be too hard to write a good optimizer. In some situations such a
loss of efficiency is not acceptable.

Potential advantages Papers on DSL inventions tend to be written by researchers
in programming languages who are mostly proponents of DSLs to begin with. As
can be expected the literature points out many different potential benefits of DSL
creation.

e Productivity Increase. This is often the main driving factor behind DSL
introduction: the new language may allow programmers to develop their
applications faster. One specific aspect is increased reuse of code; the code
incorporated in the compiler/interpreter for the DSL will automatically be
reused every time a program is compiled/interpreted.

e Easier maintainence. Changing back-end architecture may be hard when
hundreds of applications have been written for the existing architecture.
But if the applications were written in a DSL, only the compiler/interpreter
needs to be modified to obtain a full conversion. Of course this is also means

2. Implementation of domain-specific languages 19

increased portability, because all applications may be moved to another plat-
form by just reimplementing the compiler/interpreter. Maintenance may
also be easier if the DSL has been designed to make programs largely self-
documenting.

¢ Expanding the group of potential programmers. By having a syntax that is
understandable to non-programmers, a DSL may allow domain experts to
program applications themselves. This may boost productivity directly by
removing the need for programming assistance to these experts. By remov-
ing the “middle man”, it also reduces the risk of the code not corresponding
to the intentions of the experts.

e Greater reliability in applications. A DSL compiler may effectively prevent
the construction of incorrect or unsafe object programs. A DSL may also
be designed to support the validation of desirable properties at the domain
level, which is usually a lot simpler than verifying code in a general-purpose
programming language.

e Faster applications. Some DSL compilers are highly optimizing, exploit-
ing the fact that many more oportunities for optimization may be found
in domain-specific code compared to code in a general-purpose language.
Applications generated by such compilers may outperform all hand-written
solutions in practice.

e Conservation and explicitation of domain knowledge. Some authors see
in a DSL a possiblity for “wrapping up” organizational knowledge about
a given domain, conserving it for future use when the experts may not be
in the organization anymore. This scenario seems questionable, though —
experience shows that all software must eventually (and sooner rather than
later) be modified or updated to maintain its usefulness. For a DSL this will
be hard without a domain expert at hand.

On the other hand, the wrapping up may itself be useful, not as conservation
of knowledge but as explicitation of it. A DSL may express in a clear way
the spectrum of domain problems the organization has readily coded solu-
tions for (has Oth order ignorance of, in the classification of [Arm00]). That
is, by looking at the language — whether through a syntax or through rep-
resentative DSL applications — one gets an overview of the organization’s
knowledge within the specific domain. This overview may form a valuable
basis for discussing development of the organizational knowledge.

Synthesis: dimensions of DSL impact If you look at the lists above, it should
be clear that some of the advantages and disadvantages really belong to the same

2. Implementation of domain-specific languages 20

L

Total SW cost 4

Conventional
methodology

DSL-based
methodology

Startup <~ - - m
costs

»
|

#Developed applications

Figure 2.1: The payoff of DSL methodology. This figure has been adapted
from [Hud98b].

dimension. To begin with, the main negative effect of complexity of language de-
sign and implementation is low total productivity. This is illustrated by Figure 2.1.
The figure shows the total cost of software production — the resources spent on de-
veloping a number of applications — as a function of the number of applications
in total. The idea is simple: the DSL-based methodology carries greater start-
up costs (due to the complexity of DSL design and implementation) but usually
allows applications to be developed more cheaply afterwards. So the total produc-
tivity is better with a DSL only if start-up costs, savings per application and the
number of applications needed are right.

This boils down to one productivity dimension, in which the introduction of
a DSL may prove to be an advantage or a disadvantage. It should also be clear
that maintenance and application efficiency form such dimensions. The rest of the
advantages/disadvantages listed above seem to be more one-sided.

The above reasoning yields the set of dimensions that is given in Figure 2.2.
In some dimensions (like productivity) DSL methodology can be a blessing or a
curse. In other dimensions you either expect DSL creation to be an advantage or
to be a disadvantage.

2. Implementation of domain-specific languages 21

Dimension Potential disadvantage | Potential advantage
Productivity

Maintenance

Application efficiency

User education

More potential programmers
Application reliability
Knowledge management

NN

A S

Figure 2.2: Dimensions of a DSL’s impact on application development.

2.2 Bird’s eye view of DSL implementation

“The arguments in favour of creating a DSL convince me,” says the project leader.
“We need a DSL. Our experts did a domain analysis, so now we have a general
idea of what should be in the language. How do we implement it, so that we can
execute our DSL applications?”

“You could write a library in the programming language that you ordinar-
ily use”, replies the author. “The concepts that your domain experts have listed
could become class definitions (or data types, if you’re into functional non-object-
oriented programming), and the operations could become methods.”

The project leader looks disappointed. “But the intention was that our domain
experts (who are not programmers) should be able to write the DSL applications.
They can’t use a C++ library,” he objects. “And | can’t see how we can have
verification and domain-specific optimizations on top of such a library.”

The author nods. “All right then, take this book ([ASU86]). It tells you all
you need to know about parsing, intermedate code and code generation. Many
compilers have been built using those techniques.”

Flipping through the pages, the project leader complains: “That’s a mighty
book, and it sounds like hard work. Maybe the benefits from implementing a
DSL that way will not outweigh the costs. Isn’t there an easier way that still goes
beyond writing a library?”

“Sure”, | reply, “I’ll give you a survey. But first we’ll take a step back and
analyze the situation a bit”.

2.2.1 An illustration of the task

Consider a given platform supporting the execution of a number of languages,
call them L,L1,L>,L3 and so on. You want to execute a program (actually many
programs) in your new DSL, call it S. In Bratman notation (see [Bra61, ES70])
the situaton can be illustrated like this:

2. Implementation of domain-specific languages 22

v W

ignoring that most of the Ls are likely interpreted or compiled. The task is to
connect the upper figure with one or more of the triangles in order to obtain an
execution of the DSL program.

2.2.2 Practical issues in DSL implementation

When choosing how to solve this task, one should be aware of the inherent prac-
tical consequences of each method. These will not always be apparent to non-
experts from reading just one paper. The potential issues that | would like to point
out are the following:

User-oriented issues Who are the intended users of the DSL, i.e. the application
programmers? Depending on their background and programming skills it
may be required that the DSL syntax fits certain limitations; caters to their
way of viewing things. Thus, if a method itself enforces limitations on DSL
syntax, it may not be a good choice.

Domain-oriented issues For some domains, certain very specific functionalitites
must be in the implementation language, for example a CORBA library or
floating number computations that follow IEEE specifications strictly. If a
method builds upon one specific implementation language (and in particular
if this language has a comparatively small user group and thus probably also
a small set of available libraries), it may not be be a good choice.

Integration Applications have to work in specific system contexts. If DSL ap-
plications must integrate smoothly in a large C++ project, they probably
should be implemented in C++. Also, if a DSL application must run on
your customer’s platform, you might not trust third-party software being
glued into it. And if the DSL applications must run on a very specific plat-
form, say, if they are embedded applications, the implementation languages
must be available on that platform.

2. Implementation of domain-specific languages 23

Team expertise Some methods require expertises outside the application domain
and popular programming languages. This may also be a challenge for a
given project team.

There are of course other many other issues I could have looked at. For instance,
certain projects may have very specific requirements to application efficiency,
portability, reliability or documentation. Some methods may not be suited to ful-
fill such requirements.

The issues that were listed above can be stated as questions to a given method
for implementing DSLs:

1. Does the method put limits to the syntax of the domain-specific language S?

2. Does the method limit the choice of implementation language(s) L, L1, ...,
and if so, which kinds of languages are you left free to choose between?

3. Does the method imply the need for using special tools before or during the
execution of DSL applications?

4. Does the method require special expertises of the DSL-implementing team?

The Bratman notation will be used in the following to help illustrate each method’s
relation to the first three questions.

2.2.3 The methods in brief

Embedded DSLs The first suggestion — implementing the DSL as a library —
accomplishes the implementation task by simply demanding that the target lan-
guage S can be embedded in an existing language L. Of course, this method puts
severe limits on the syntax of S: it must abide the syntax of L. Some papers
argue that this can be blessing in itself, and they also demonstrate that by choos-
ing L right, the solution is more flexible than you would expect. Note that the
“right” choice of L often means a programming language that is not among the
most widespread ones. Section 2.3 reviews papers on embedded DSLs. Some of
these papers also discuss implementation of DSL interpreters. This approach is
not often addressed directly in the literature, and there is no separate section about
interpreter techniques in this chapter.

DSL compiler writing techniques The second suggestion that the project leader
was given above, was to build a compiler, in Bratman’s notation:

2. Implementation of domain-specific languages 24

As mentioned, writing a compiler is not usually an easy task.? Several papers sug-
gest compiler implementation techniques relevant for DSL compilers. Some au-
thors advocate implementation methods that use facilities of particular languages
(choices of L). These methods expect S to be an extension of L, but leave the
choice of L, free.

As discussed in Chapter 1, partial evaluation can also be used for achieving
compilation. Writing a compiler using partial evaluation offers freedom in the
choice of S syntax, but puts some limits on the choice of L = L;: that language
must have an associated partial evaluator. Furthermore, the implementation team
must have some understanding of partial evaluation. A technique with similar
effect is the use of staged interpreters. This technique puts severe limits on the
choice of L.

The papers on compiler writing techniques are reviewed in Section 2.4.

Lightweight compiling One approach to compiler writing is a bit different from
the above. One paper suggest implementing a compiler in small steps, each of
which transforms the application a bit towards the final target language (see Sec-
tion 2.5):

SIS S11S1(S1 S2 Sh—1 L|L
Ly Lo Ln L

One of the motivations is that each step should be much easier to write than a
full-scale compiler. The paper suggests that the Ls be small languages rather than
general purpose programming languages, and that the syntax and features of S be
severely restricted. One should be aware of the risks associated with fragmenting
the DSL implementation into many code pieces, and with the dependency on many
implementation languages rather than just one.

2Which is one good reason most computer science students have to do it.

2. Implementation of domain-specific languages 25

Extendible language implementations Others again provide an interpreter or
a compiler specifically built for extension. This means the DSL developers will
not have to build one from scratch, and instead of having to know programming
language theory, they will only have to understand the interpreter or compiler they
are extending. Clearly, the choice of both source language S and implementation
language L will be limited to choices for which an extendible implementation
exists. The extension appoach is covered in Section 2.6.

DSL interpreter tools The remaining categories concern the use of tools to aid
DSL implementation. The difference between technique and tool is very blurry,
and | have somewhat arbitrarily put e.g. partial evaluation and extendible compil-
ers in the above technique sections.

The first category of tools provides the DSL implementor with a language
(i.e. another domain-specific language) A for writing interpreters in:

)

S
S S
AlA L1 |L1
L
L

Such tools provides the compiler from the language A to the final implementation
language L1. A paper describing this kind of tool is reviewed in Section 2.7. The
tool only supports one choice of L (= L1), but does not constrain the design of the
source language S. And of course, one will have to learn the A language to use the
tool.

DSL compiler tools A large number of people have developed tools for writing
DSL compilers. Most tools provide a language for writing compilers:

- > |>

2. Implementation of domain-specific languages 26

Here, the A-interpreter is part of the tool. These tools do not generally restrict the
choice of S and L1, but L is of course determined by the given tool. And again,
one will have to learn the A language to use the tool.

Several papers describing this kind of tools are reviewed in Section 2.8.

Two-step compiler writing One tool does not fall into the two categories above.
This tool lets you implement DSLs in two steps:

e First you specify a language A for writing compilers in. This is done by
writing a compiler from A to an executable language (L1) in the tool’s own
language B.

e Then you write a compiler for the DSL in your new compiler language A.

The complete situation looks like this:

- |

The languages S, L1 and Ly can be chosen at will, but L is fixed and B must be
learned. The choice of language A is very limited: programming in A is done
by choosing between a (potentially large) number of options through the tool’s
graphical user interface. The tool is described in Section 2.9.

2.3 Domain-specific embedded langauges

Although the idea of implementing a DSL by adding domain-specific features
to an existing programming language may seem like an immediate choice, and
indeed can be traced back to the “next 700” paper by Landin ([Lan66]), most
papers on this technique suggest its use as a counter-move to avoid problems with
other approaches.

2. Implementation of domain-specific languages 27

Lambda: the ultimate “little language” One such paper is [Shi96] by Olin
Shivers. The author lists a number of existing DSLs: Unix tools for scripting, pro-
gramming and more, and cites some of the advantages of DSLs that were dicussed
above. He then moves on to discuss disadvantages of DSLs, treating in particular
detail two issues (related to the User education dimension in Section 2.1):

e That many DSLs are badly designed — and all different! — when it comes
to features that aren’t domain-specific like lexical conventions and general
programming features (e.g. loops, conditionals, variables).

e That coordination between different little languages is usually very primi-
tive, e.g. applications can only interact through Unix pipes.

The suggested solution is to embed DSLs into “a powerful, syntactically exten-
sible programming language, such as Scheme”. This allows the DSL designer to
focus on domain-specific features alone, while lexical conventions and other more
general features come for free. It also means that the host language can be used to
glue applications together in a tight way.

Shivers provides two examples of languages embedded in Scheme: a language
for controlling Unix processes and directing their inputs and outputs, and a awk-
resembling language for writing programs that process text files based on pattern
matching. Both languages are implemented by writing appropriate Scheme li-
braries and macros.

The author concludes that benefits of the embedding approach to DSL imple-
mentation are that it is eaier than inventing whole new language (citing a much
smaller code base of the Scheme awk implementation than the original implemen-
tation), that the quality of the little language produced is greater (because it lends
well-designed features from the host language), and that languages compose bet-
ter (because complex data structured can be passed and shared). He notes that
the unusually sophisticated macro system of Scheme is a crucial mechanism for
properly embedding a DSL.

Other authors clearly disagree on this point. Hudak, in e.g. [Hud98b] and [Hud98a],
lists many illustrative examples of DSLs embedded in Haskell. Hudak demon-
strates how Haskell’s remarkably flexible syntax can be utilized to embed many
different DSLs in the language. He lists higher-order functions, lazy evaluation,
polymorphism and type classes as crucial for “pure embedding”. Hudak also
discusses how monads ([Wad95]) can be used to write interpreters for DSLSs in
Haskell, and he discusses how interpretative overhead may be removed through
partial evaluation (see next section).

Yet other languages have been proposed for DSL embeddings. In ([FGS97]),
Fromherz et al. argue that constraint programming is “an appropriate generic
framework for domain-specific languages”.

2. Implementation of domain-specific languages 28

2.4 Techniques for writing DSL compilers

Compiling Embedded Languages The embedding approach discussed above
can also be extended to be a compiler writing technique. This technique was
pioneered by Samuel Kamin in [Kam] and [Kam98]. An extension of his work is
presented by Elliott, Finne and de Moor in [EFdMO00].

The three authors present their implementation of the language Pan for de-
scribing image synthesis and manipulation. They first illustrate how one would
ordinarily embed Pan in Haskell, defining e.g.

type | mage = Point -> Col or
type Poi nt = (Fl oat, Fl oat)
type Col or = (Fl oat, Fl oat, Fl oat, Fl oat)

type Transform = Point -> Point

translate (dx, dy)
scal e (sx,sy)

| anbda(x,y) -> (x+dx, y+dy)
| anbda(x,y) -> (SX*x, sy*y)

where | anbda represents A abstraction.
This embedding is then changed into a compiler by replacing values (like floats
and float tuples) with program fragments. For example,

data FloatE = LitFl oat Float
| AddF FloatE FloatE | MulF FloatE FloatE |

Host language features such as tupling can still be used:

type | mageE = PointE -> ColorE
type PointE = (FloatE, Fl oat E)
type Col orE = (Fl oatE, Fl oat E, Fl oat E, Fl oat E)

type TransfornkE = PointE -> PointE

The authors show how these algebraic data types can be used for implementing
both optimizations and code generation.

As mentioned above, Kamin presented similar DSL compiler implementations
in [Kam] and [Kam98]. His compilers were embedded in ML and represented
program fragments as strings rather than algebraic data types. This representation
does not allow easy implementation of optimizations. A paper by Leijen and Mei-
jer ([LM99]) shows how the authors implemented an optimizing compiler from
a database query language into SQL by embedding it in Haskell. And in their
book [CE0Q], Czarnecki and Eisenecker demonstrate many techniques for writing
program generators, of which DSL compilers are a special case, in C++.

2. Implementation of domain-specific languages 29

Partial evaluation In the introduction (Section 1.3), I sketched an example of
using partial evaluation to remove the efficiency overhead of interpreting a DSL.
The effect of specializing a DSL interpreter to a given DSL program is equiva-
lent to compiling the program. Partial evaluation can even take this a step further
and rewrite a given DSL interpreter into a compiler. This is usually a help to
the compiler writer as interpreters are generally easier to write than compilers.
The techniques behind this are explained in detail by Jones, Gomard and Ses-
toft ([JGS93]).

A suggestion of how to apply partial evaluation in DSL development is given
by Consel and Marlet in [CM98]. The paper outlines a DSL development method
which is presented as a sequence of steps, but the authors stress that in practice
the process needs to be iterated. The steps are as follows:

1. Perform a thorough analysis of your requirements, the technical literature
and existing software base. Methods may include commonality analysis ([Wei])
and domain analysis ([CEQOQ]).

2. Refine the above analysis by formulating “major concepts” as types and
operations on these (in form of a semantics algebra), and by formulating a
syntax and informal semantics for your DSL.

3. Stage the informal semantics by figuring out what information will be avail-
able at compile-time (i.e. when the DSL program has been written but be-
fore it is running), and deciding which of the semantical operations can and
should be performed at compile-time rather than run-time.

4. Write a formal, denotational semantics for your DSL. In other words, write a
compositional mapping from DSL programs to compositions of operations
in the semantic algebra.

5. Reformulate the semantics to map to an abstract machine (see the paper for
details).

6. Implement the abstract machine and the semantics from the previous step.
These form an interpreter for the DSL.

7. Now apply partial evaluation to obtain compilation rather than interpreta-
tion, improving the efficiency of the implementation.

This rather long sequence of steps serves as a recipe for developing well-designed
DSL compilers. The paper elaborates on the benefits of approaching compiler
development through the above process.

2. Implementation of domain-specific languages 30

DSL Implementation Using Staging and Monads Sheard, Benaissa and Pasalic
describe a related approach to DSL compiler development in [SeaBP99]. A major
difference is that instead of partially evaluating an interpreter in a standard pro-
gramming language, the authors recommend writing the interpreter in a staged
language like MetaML ([TBS98]).

The paper focuses on the implementation phase and divides its suggested ap-
proach into three steps:

1. Write a basic, functional-style, compositional interpreter. To handle effects,
make it a monadic interpreter (see [Wad95] for an explanation of this pro-
gramming style).

2. Now rewrite the interpreter into a staged interpreter. This is essential and
needs some explanation. In a staged program, every expression (or com-
mand, if the language is imperative) has an associated stage which is a non-
negative integer. Running a staged program effectively decreases the stage
of expressions by one. Expressions of level zero are evaluated to ground
values, possibly containing “encoded” positive-level subexpressions. There
are of course dependencies: if the evaluation of an expression on stage n
depends on the value of another expression, this other expression must be
on a stage smaller than n. This is explained in e.g. [TBS98].

A staged interpreter typically has two stages: one for compile-time and one
for run-time. In a well-designed staged interpreter, any choice that depends
only on the source program text is encoded as an expression on the compile-
time stage. An expression whose evaluation depends on run-time input must
of course be on the run-time stage.

Running a staged MetaML interpreter on a DSL source program will yield
a compilation of that program into one-stage MetaML, i.e. into ML.

3. Add postprocessing of the code generated by the staged interpreter. This
may be optimization or code generation, if the final target language is not
ML.

The overall effect is very close to the one obtained by using partial evaluation to
develop a DSL compiler: you get the simplicity of writing an interpreter together
with the efficiency of compiled applications. With the staged approach the price
is that you must write the interpreter in a staged language (of which there are pre-
ciously few) and you have to separate compile-time and run-time stages manually.
With the partial evaluation approach, the choice of language is wider, as partial
evaluators have been developed for e.g. C, Java, ML, Scheme and Fortran. In prin-
ciple you do not need to separate the stages in your interpreter as this is done by

2. Implementation of domain-specific languages 31

the partial evaluator itself (often by a so-called binding-time analysis, see [JGS93]
and Chapter 6). In practice the process is interactive, as one must write the code
in a style that allows the partial evaluator to discover the right staging.

2.5 Lightweight Languages as Software Engineer-
ing Tools

A different approach is suggested by Spinellis and Gurprasad in [SG97a]. The
paper reviews a number of different software applications written by the authors.
The development of each application involved compilation of one or more lightweight
languages. A lightweight language refers to a domain-specific language with
quite simple syntax and semantics (this is of course a subjective concept).

The authors sum up their experiences from these projects in a list of imple-
mentation techniques — in the form of advices or suggestions — that they have
succesfully used on their lightweight languages. Two main pieces of advice are:
to use existing tools, and to use these in any combination you see fit. Tools are
typically interpreters, either of very simple macro languages (awk, cfront) or of
more powerful scripting languages (perl, ksh). Even lex and yacc can be con-
sidered interpreters of relatively small languages. The point is that a number of
small transformations implemented with these tools can accomplish compilation
of many useful, small languages.

Regarding the design of these small, lightweight DSLs, Spinellis and Gur-
prasad advocate that features from the “tool languages” (e.g. the ones named
above) and from the target language be used in your DSL whenever needed. For
example, if the target language is C you may allow programs in a lightweight DSL
to contain #l i ne declarations that are passed directly to the compiled code and
thus let the programmer find errors (generated by the C) more easily. Another
example is to allow perl code in a DSL that is processed by perl. The reflexive
function eval() in perl lets us implement that feature essentially for free.

The authors also suggest that one adapts DSL syntax and lexical matters to
the tools rather than the other way around. An example is choosing a line-based
syntax, which will allow many Unix tools like awk much easier to use in the
implementation.

The authors note some potential problems with using their approach. They
especially stress the fact that maintaining a system based on many languages can
be a serious problem for the system developers.

2. Implementation of domain-specific languages 32

2.6 Extendible compilers and interpreters

If writing a compiler or interpreter from scratch is too much of a mouthful, maybe
you can just extend an existing one? While rewriting other people’s code is usually
a risky approach to software development, some compilers and interpreters have
been built explicitly to support this kind of work. The Tcl interpreter (JOus94,
Ous98]) is a well-known example. Engler et al. ((EHK96]) wrote an extendible
ANSI C compiler, and so did Stichnoth and Gross ([SG97b]).

Jargons An even more ambitious effort is the Jargons project as described by
Nakatani and others in [NJ97] and [NAOPOO]. The goal of this project is not
only to support the implementaion of DSLs but also to integrate these seamlessly.
Jargons are in intention an XML ([HMO02]) for programming.

A jargon is a DSL which is based on one specific abstract syntax (called Wiz-
Talk) and which is interpreted by the InfoWiz generic interpreter. The syntax al-
lows the application programmer to build trees with a keyword in every node and
associated keywords, strings and such at leafs and internal nodes. A WizTalk doc-
ument (i.e. a program) may use several jargons at a time. Indeed, the authors
promote a style in which any feature that could be useful on its own is made into
a single jargon. They argue that the common syntax prevents the emergence of a
Tower of Babel.

To interpret a program, a domain-specific plug-in is loaded into the InfoWiz
interpreter for each jargon used. The interpreter coordinates namespaces between
the different jargons loaded and figures out for each keyword which plugged-in
function to call on the given node.

The interpreter is itself written in a language called Fit, but the authors note
that another “language with garbage collection, good facilities for text process-
ing, and a flexible function invocation environment could have been used in-
stead” ([NJ97],p. 62).

2.7 A tool for writing DSL interpreters

Integrating Domain Specific Language Design in the Software Life Cycle
Kutter, Schweizer and Thiele describe the Montages approach to DSL implemen-
tation in [KST98]. Their Gem-Mex system provides an integrated environment for
writing DSL interpreters, with a graphical editor, debugger and more.

A Montage is in essence a self-contained EBNF production with associated
semantics. The semantics is described using Gurevich’s Abstract State Machines
(ASM) —a semantic formalism in which a source program is mapped to an abstract

2. Implementation of domain-specific languages 33

imperative program performing updates on a state. The state of an ASM is a model
of a first-order logic with a finite number of predicates and function symbols.

The Mex (Montages executable generator) part of Gem-Mex is a program that
compiles a set of Montages into an interpreter of the language they describe. Both
Mex and the resulting interpreter are written in C. The system also produces doc-
umentation in LaTeX and HTML. The authors conclude that the modularity of
Montages along with the auto-generated documentation makes languages devel-
oped in Gem-Mex essentially self-documenting. They also point out advantages of
the modularity, extendibility and portability of the approach, and they argue that
the efficiency of interpreters generated by the system have been quite satisfactory
to their needs.

2.8 Tools for writing compilers

There are many tools in this category, including lex and yacc of course. I’ll fo-
cus on tools that are specifically made for writing DSL compilers. Some other
tools, like @sterbye’s Refill ([CAV02]), aim at providing extensions of existing
languages (like Java), and could thus be used for embedding a DSL in e.g. Java.

ASF+DSF van Deursen, Heering, Klint and others have worked with the combi-
nation of Algebraic Specification Formalism (ASF) and Syntax Definition Formal-
ism (see e.g. [DHK96, BDK*96]). This combination, and their Meta-Environment
tool supporting it, implements DSL compilers as transformations on abstract syn-
tax trees (ASTS).

The grammar of a language L to be implemented in ASF+DSF is defined by a
set of functions for constructing its ASTs. This definition is roughly equivalent to
writing an ordinary BNF grammar for L. You can also specify

e Transformations on the source language as functions from L-ASTs to L-
ASTs.

e Type checking as functions from L-ASTs to boolean values.

e Compilation to a target langauge L’ as functions mapping L-ASTs to L'-
ASTs.

A definition may also contain equalities on ASTs (to specify e.g. that ASTs for
sets {1,2,1} and {1, 2} should be considered the same).

The Meta-Environment executes ASF+DSF specifications. Given a specifica-
tion of a language L, the system will generate an L-parser, an L-rewriter (possibly
transforming L-ASTs to target language L’-ASTs) and a pretty-print generator

2. Implementation of domain-specific languages 34

that generates target code. The Meta-Environment also documents L in a LaTeX
document.

The CWI researchers have reported on several projects where the system has
been successfully used to introduce DSLs in an industrial context ((BDK*96]).

KHEPERA: A System for Rapid Implementation of Domain Specific Lan-
guages The paper [FNP97] by Faith, Nyland and Prins describes the Khep-
era system, a tool for writing DSL compilers, not unlike the ASF+DSF Meta-
Environment. Just like the latter, compilation is done in a number of small steps,
each one transforming an abstract syntax tree to another one. The transforma-
tions are written in a language specific to the Khepera tool. This language provide
many mechanisms including all kinds of tree traversal schemes and complex tree
matching.

On the grand scale the authors expose two Khepera features that distinguishes
it from ASF+DSF. First of all, the DSL creator writes the parser for his DSL in
Lex/Yacc rather than a proprietary format. Second, Khepera’s rewriting engine
that performs the tree transformations keeps track of all rewritings in order to
support very flexible debugging of DSL programs.

The metafront System: Extensible Parsing and Transformation Yet another
tool that can be used for DSL compilation is metafront, the ways of which are
explained by Brabrand, Schwartzbach and Vanggaard in [BSV03]. This system
is also akin to ASF+DSF, but it differs notably in the kind of transformations it
allows the programmer to specify. The authors stress that — unlike ASF+DSF —
the metafront system

e Is guaranteed to terminate with a well-defined result when transforming a
DSL program.

e Is both theoretically and practically very efficient.

Safety and efficiency are key points of metafront, and compared to ASF+DSF
they are obtained by restricting the allowed transformations (ASF+DSF transfor-
mations are Turing complete).

Definitions in metafront take the form of annotated EBNF rules. A rule de-
fines how a term matching the given production can be transformed into another
term. The system employs a very sophisticated scheme called specificity pars-
ing to determine which among a number of productions matching a given term
should be used during transformation. It also employs sophisticated static checks
to ensure that a language specification performs a well-defined and terminating
transformation.

2. Implementation of domain-specific languages 35

Specification base > ———® LalLa
* generates
Simple design decisions> —® | DSL construction kit

* generates

DSL compiler

Figure 2.3: Implementing a DSL with LaLa in two steps.

2.9 Language Design and Implementation by Selec-
tion

In the paper [PK97], Pfahler and Kastens describe the Lala (an abbrieviation of
“Language Laboratory”) system for designing and implementing DSLSs.

Implementing a language in the system is a two-step process called design
and implementation by selection. The process is illustrated in Figure 2.3. In the
first step, a specification base is given to the LalLa system which then generates a
specialized DSL construction kit. This kit is a graphical tool that lets the language
designer make a lot of simple decisions through appropriate clicking and filling
in forms in a nice graphical user interface. When all relevant design choices have
been made, the construction kit outputs a compiler for the specified DSL (making
use of the Eli compiler construction tool).

The specification base describes a “language class”. The authors mention hav-
ing written two of these: Microlmperative defining a set small Pascal-like imper-
ative languages, and RepGen defining report generator languages on literature
databases. The main component of these definitions is parametrized input to the
Eli compiler generator. The parameters correspond to the decisions made in the
DSL construction kit. For Microlmperative these parameters include:

e Whether semicolon is a separator or a terminator of statements.

2. Implementation of domain-specific languages 36

Whether scopes are Algol-like or C-like.

Whether comments are Pascal-like or C-like.

Whether variables must have explicit declarations.

If not, the implicitly assumed type (integer, real or boolean) of undeclared
variables.

As the two last items indicate, the parameters may have internal dependencies.
The construction Kit performs consistency checks on these dependencies and sig-
nals any inconsistencies to its user.

The philosophy behind the two-step process is to enable domain experts to
design DSLs. Once a reasonable specification base has been written, domain
experts (who may not be programmers) can click their way to a final language
design. Programming language experts can thus concentrate more on writing the
specification base and less on the domain-specific details.

2.10 Conclusion

The first section of this chapter listed the most important benefits and risks of
introducing a new DSL. The different aspects were collected into dimensions of a
DSLs impact on the work processes it fits into.

The benefits listed in Section 2.1 explained the why of DSL creation. The
main part of the chapter explained the how by providing a survey of the litterature
on methods for implementing DSLs. The survey covers more methods than any
other DSL implementation text the author is aware of. But the size of the relevant
body of literature prevents mentioning every paper and every tool. Instead, | have
aimed at presenting a representative selection, with a bias towards those methods
that seem to have received most attention.

One reason for making this survey was to dispell possible misconceptions.
Many papers on implemeting DSLs mention only one method. Thus, the project
leader who happens to read just one paper may be led to think — mistakingly
— that there is just “one true way”. Another motivation has been to illustrate
some of the practical strengths and weaknesses that seem inherent to some of the
methods. While much longer texts could be written on the subject, the present
chapter should be a useful guide in the hands of the DSL implementation teams it
was addressed to.

3 - A note on the evaluation of DSL
creation

The truth can’t hurt you

it’s just like the dark

It scares you witless

but in time you see things clear and stark
“I Want You”, Elvis Costello

This chapter is aimed at the reader who just finished a software development
project in which a new DSL was created. It is meant to be a brief discussion
about methods for evaluating whether inventing a DSL was worth the trouble.
We’ll argue that no matter what your technological goal was, you could always
achieve it without developing a DSL (Section 3.1). This observation implies that
approaching your goal through DSL invention is an actual choice and not just a
fiat. Drawing from DSL projects described in the literature (Section 3.2), we’ll
try to sum up which expectations authors have expressed regarding their DSLs
and how they’ve evaluated whether these expectations turned out to hold (Sec-
tion 3.3). The discussion in Section 3.4 points to strengths and weaknesses of
each evaluation method. Section 3.5 concludes.

3.1 Introduction: the choice of DSL creation

So you chose to design and implement a DSL. There was of course an alterna-
tive. No matter whether your DSL was implemented by means of an interpreter, a
compiler, as an extension of an existing language or by other means, each of your
DSL programs correponds somehow to a program in one or more languages that
existed prior to your DSL.

If the DSL was implemented by writing a compiler for it, it is obvious that
— from a technical viewpoint — all results could have been obtained without the
DSL. Each DSL application is compiled into another language; one that existed
prior to the DSL. So all application could (at least theoretically) have been written
in this other language to begin with.

If the DSL is interpreted the same reasoning applies. Each DSL application
corresponds to a specialization of the interpreter. This specialization is a program
in the same language, the interpreter is written in. Again, we might (theoretically)
have written this specialization ourselves, avoiding the creation of the DSL.

3. A note on the evaluation of DSL creation 38

So no matter the implementation style, we could have avoided code generation
(or interpretation) completely. Of course, this reasoning also applies to ordinary
programming languages: theoretically, all programs could be written in assembly
language. History has proven beyond doubt the value of high-level programming
languages over assembly, but the case may not be so obvious when comparing a
new DSL to an ordinary programming language.

There are also a number of alternative generative approaches to programming
(see [CEOQ] for a collection) but we will focus on the active choice of a DSL-
oriented solution over a nongenerative one.

Unless you just happen to have a fetish for writing grammars, parsers and
compilers, there should be some kind of rationale behind the choice. That is, when
you made the decision of developing a new DSL, you very likely had expectations
about the advantages and disadvantages of introducing a new language, and you
must have anticipated that the advantages outweighed the disadvantages.

With the delivery of your DSL and its accompanying tools, the question natu-
rally arises whether your expectations were right, and whether the choice of intro-
ducing the DSL was a good one. We should therefore look for evaluation methods
that address such questions. The following section should provide help in this
direction, as we sum up what other DSL inventors have done to evaluate their
projects.

3.2 Evaluation methods

In this section we review some of the most well-documented examples of eval-
uation of DSL impact. We have divided the papers into four groups, depending
on their general approach to the evaluation. We dub the four categories the ex-
perimental approach, the formal approach, the organizational! approach and the
engineering approach.

Put very briefly, the experimental approach is to perform an evaluation by
means of controlled, scientific experiments. The formal approach is to evaluate a
DSL and its tools by investigating formally defined properties of these. The orga-
nizational approach to evaluation is based on studies of the organizations that use
a given DSL and its tools. The engineering approach is to perform an evaluation
by means of demonstration, showing how certain applications can be engineered
using a DSL and its tools. The four approaches are presented in random order.

The experimental approach Sometimes it is possible to test scientifically whether
initial hypotheses about DSL impact can be proven correct. In a project by Kieburtz

LFor lack of a better word, really.

3. A note on the evaluation of DSL creation 39

et al. ((KMB*96]), a DSL called MTV-G was invented. A program in MTV-G
translates and validates an electronic message in a format that complies with the
format specified in the so-called C3I system. The pre-existing alternative was that
the programmers could modify a number of Ada program templates. The explicit
hypotheses were that in comparison to the template approach:

e MTV-G would match the existing system’s flexibility.
e MTV-G would increase the productivity of the programmers.
e There would be fewer defects in programs written with MTV-G.

e Programmers would perceive MTV-G as easier to use.

These hypotheses were meticulously investigated through experimentation. Pro-
grammers were placed in a controlled environment and developed applications
both with and without MTV-G. Much data was recorded and collected, including
e.g. the time spent on developing each application until it passed a reliability test.
After the experiments, the involved programmers were also interviewed. This data
was analyzed to see whether the four intended avantages were realized in practice.

The formal approach Some authors have pursued a more formal kind of test.
In contrast to the MTV-G project, the experiments in Réveillére et al ([RMO01]) did
not involve putting people in controlled environments and measuring their perfor-
mance. The authors avoid such installments by specifying their hypotheses in a
formal manner rather than in more broad terms like “programmer productivity”
and “ease of use”.

The domain-specific language Devil is used for specifying device drivers. The
specifications are compiled into low-level C, which is also the ordinary (pre-Devil)
programming language for these drivers. The objective is that drivers written in
Devil should be more robust than drivers written directly in C. A system is said to
be robust when programming errors are generally caught early in the development
process.

Réveillére and his colleagues choose to focus on the detection of typographical
errors and inattention errors. While typographical errors may be easily caught in
actual C code, detecting these errors in e.g. hexadecimal constants — of which
there may be many in device drivers — can be non-trivial.

The authors use a method called mutation analysis to estimate whether their
robustness goal was met by the Devil system. First they define an error model
which clarifies the meaning of “typographical errors” and “inattention errors”.
These definitions are then formulated as mutation rules that specify how one can
introduce one such error in a program by through rewriting (mutating) it automat-
ically. Rules are formulated for both C and Devil.

3. A note on the evaluation of DSL creation 40

The automatic transformations are then applied to a specific driver that comes
in both a C and a Devil version. This yields about 2000 mutants of each version,
25% of which are chosen at random. It can now be tested whether the static
checks in the Devil system generally catch the introduced errors earlier in the
development process than errors are caught in the traditional approach.

The organizational approach Few papers report on experiments or formal test-
ing. Refraining from such activities does not mean one has to base evaluations on
speculation alone. Some authors gather data in the way you often do in the so-
cial sciences: through observations on the use of the DSL after its launch. The
RISLA language is used by a Dutch bank for defining interest rate products. The
langauge was developed by researchers at CWI in Amsterdam. Reporting on the
RISLA project, van Deursen and Klint write:

At the positive side, the RISLA project has met its targets: the time
it costs to introduce a new product is down from an estimated three
months to two or three weeks. Moreover, financial engineers them-
selves can [...] compose new products. Last but not least, it has be-
come much easier to validate the correctness of the software realiza-
tion of the interest rate products.

Similar post factum observations have been used in papers by Mogensen (in [Mog02]
and [Mog03]).

Interviews could also form the basis of such empirical, but nonexperimental
evaluation. As mentioned above, interviews were performed in [KMB™96].

The engineering approach Other DSL inventors investigate the usefulness of
their DSL by demonstrating its use. A well-documented investigation of this sort
is the work on GAL by Thibault and others.

GAL is a language for specifying video adapter device drivers. The goal of
GAL “was to improve the development time of video device drivers” ([Thi98],
p. 12). This goal was found to be accomplished in [Thi98] and [TMC99]. The
evaluation took form of a reimplementation of a number of existing drivers. That
is, the researchers chose a number of examples and specified these in GAL. The
measure of success was the number of lines of code in the original C code vs. the
number of lines in the corresponding GAL specification, taking also into account
the number of lines in the GAL interpreter.

The same evaluation approach and measure of succes was used in [SG97a].

Another illustrative example of the engineering approach to evaluation was
performed in Orwant’s Ph.d. thesis (JOrw99], see also [Orw00]). His EGGG lan-
guage for specifying games was demonstrated to be quite flexible and open to

3. A note on the evaluation of DSL creation 41

programmer experimentation, when in a series of six easy steps the specification
of Tetris was morphed into a specification of Pong. Each of the five intermediate
specifications defined a perfectly good, playable game.

3.3 DSL expectations revisited

An evaluation should somehow analyse whether the initial expectations of your
DSL-based approach turned out to hold or not. Recall that we identified seven
dimensions of such expectations in Section 2.1:

Productivity

Maintenance

Application efficiency

User education

More potential programmers

Application reliability

Knowledge management

To be fair, an evaluation of a DSL-inventing project should be relative to explicit
hypotheses about the project’s impact; hypotheses that were formulated before or
in the early phases of the project. We expect the hypotheses to be related to the
dimensions listed above. But the dimensions say nothing about the object of study
in a given hypothesis: what the hypothesis expresses an expectation to. When we
review the examples in Section 3.2, we find three different such objects of study:

1. The DSL and its tools.

2. The software development process that the DSL and its tools are supposed
to fit into.

3. The organization whose processes the DSL and its tools are supposed to fit
into.

An example of a hypothesis that fits into the first category could be the expec-
tation that the Devil system is able to catch more typographical errors than the
alternative application development system. An example of the second kind of
hypothesis is the expectation that MTV-G would increase the productivity of typ-
ical programmers. The implied expectation of van Deursen and Klint that RISLA

3. A note on the evaluation of DSL creation 42

would substantially decrease the product release time is an example of a hypothe-
sis of the third category.

Clearly, the enumeration reflects a certain progression in the generality of the
object of study. But the borders between our categories are not clear cut. For
instance, it is not always clear whether the formulation “a programmer” refers to
any person equipped with the relevant skills or specifically to the people that end
up working with the DSL in the relevant organization.

The object of study of a hypothesis is more or less orthogonal to the dimen-
sions it is related to. The afore-mentioned expectation — that the Devil system
is able to catch more typographical errors than it alternative — could easily be
formulated with address to the more general objects of study. An alternative def-
inition of a typographical error could have been e.g. the recognizable typos that
a properly instructed programmer with at least six months experience in device
driver programming does make during an 8-hour work day. Had this definition
been used instead of the formal one, we would put the resulting hypothesis in the
second category. The hypothesis that e.g. “by using Devil, company X will need
to release 25% fewer patches to their device drivers over a 1-year period than they
have until now” would be of the third category.

Note that there is a certain sense of implication between the three hypotheses:
the verification of the original Devil hypothesis gives evidence to the plausability
of first alternative hypothesis. Likewise, an experiment supporting the first al-
ternative hypothesis would give evidence to the plausability of second alternative
hypothesis.

3.4 Discussion

There may be many reasons for choosing one object of study instead of the oth-
ers. One advantage of the formal definition of typographical errors in [RMO01] is
that it leads to a hypothesis that can be established with absolute certainty. An
even more interesting advantage is that the hypothesis can be verified with limited
resources. Unlike our alternative hypotheses, the original version can be verified
without involving test subjects and controlled test environments, and without ac-
cess to detailed — and sensitive — information on a given company’s operations.
An advantage of e.g. our second alternative hypothesis is of course that it relates
much more directly to the profit of company X.

In the following, we briefly cover the potentials and limitations of each of the
four approaches to evaluation of DSL inventing projects.

The experimental approach This mode of evaluation requires that the evalua-
tor has access to a realistic environment and the resources — usually in shape of

3. A note on the evaluation of DSL creation 43

time and people — for performing the experiments. This does not often seem to be
the case.

When the requirements are fulfilled, an experimental evaluation may yield
useful data not only about the DSL and its tools an sich, but also about the software
development processes that they support, as was demonstrated in [KMB™96].
Moreover, if the experiments meet scientific standards (as they did in [KMB™96]),
the confidence in their results should be very high.

A limitation to the approach is that we cannot really study organizations ex-
perimentally. Thus, if we are to perform an experimental evaluation, we must
restrict our focus to DSL, tools and processes.

The formal approach This mode of evaluation may demand hard work and
(sometimes) appropriate hardware and software for computer-supported verifica-
tion, but it can be applied no matter what the organizational context is. There is
no need for test subjects or sensitive information.

Development processes and organizations are arguably beyond the reach of
strictly formal evaluations. But when a formal hypothesis about a DSL and its
tools has been formulated, we may be able to establish its truth with extreme
certainty: formal proof.

The organizational approach This mode of evaluation is applicable if the new
DSL is used in an organization and the evaluator has some access to the records
of this organization.?

The main strength of this approach is of course that it allows the evaluator to
study the actual impact that a DSL had on an organization, not just its potential.

With the organizational approach, one must always assess the reliability of
the available reports as evidence. For instance, a statement that DSL applications
seem efficient may be doubtable if it is not backed by numbers. Even worse,
members of the given organzation may have their own reasons for supporting or
opposing the DSL, and may for that reason be questionable sources of informa-
tion.

The engineering approach As with the formal approach, this mode of evalua-
tion can be applied no matter what the organizational context is.

While a demonstration of the DSL and its tools does not give us facts regard-
ing its direct impact on an organization using them, we may see it as a “prototype

2An exception is [Mog02], where the DSL was made available on the Internet, which led to a
number of reactions from people that weren’t related in an organizational sense.

3. A note on the evaluation of DSL creation 44

Object of study: 1. DSL & tools | 2. Dev. process | 3. Organization
The experimental approach V V
The formal approach Vv
The organizational approach Vv Vv Vv
The engineering approach Vv /)

Figure 3.1: Applicability of the four approaches depending on the object of study.

Requirements Confidence

The experimental approach | Test subjects, test environment, people, time | High
The formal approach \ery high
The organizational approach | Access to organization records Medium
The engineering approach Medium

Figure 3.2: The left column indicates the contextual requirements to adopting
each approach. The right column indicates the degree of confidence in your con-
clusions, each approach is fit to establish.

experiment” giving some evidence regarding the way the tools affect a develop-
ment process. But clearly one must put less confidence in results obtained by the
engineering approach than in results from controlled, scientific experiements.

3.5 Conclusion

We began by arguing that deciding to invent a DSL is an active choice, and there-
fore one that should be subjected to direct evaluation once the DSL inventing
project has reached its final stages. We have reviewed a number of examples from
the literature where DSL inventing projects were evaluated. The examples were
classified into four categories based on how evaluation was carried out. We found
that each of these four approaches had limited applicability, depending on the in-
tended object of study, the context of the evaluation and how much confidence
one is looking for. These findings are summed up in Figures 3.1 and 3.2.

While we have argued in favour of these classifications, we are aware that
they leave much room for debate, and for more thorough literature studies. The
present survey is intended as a basis for discussions, as we believe that the subject
of evaluations needs to be treated in more depth in the DSL literature.

Part 11|

Partial evaluation theory

4 - Erlang semantics based on
congruence

In this chapter we’ll address the issue of a formal semantics for the concurrent pro-
gramming language Erlang. Other definitions for such a semantics exists, but we
found them insufficient for our ultimate purpose: to work with partial evaluation
of Erlang programs (see Chapter 5). We therefore develop a somewhat differently
styled semantics here.

The chapter develops the semantics in a number of steps to illustrate the de-
cisions leading to the final design. In each step the syntax and/or semantics is
extended somehow. On the way we also explore a couple of designs that don’t
work in order to illustrate the finer points of the Erlang definition. To avoid con-
fusion we’ll be quite verbose, stating the full set of rules each time. If the reader
is only concerned with the final result, we refer to Figures 4.19 and 4.20.

Overall semantical style The semantics we develop is a structured operational
semantics (SOS). Because of the nondeterminism and intended nontermination of
parallel programs, this style of semantics is usually more convenient than e.g. nat-
ural semantics or denotational semantics. Indeed, it is not immediately clear what
domain a denotational semantics should map to. The most obvious choice of do-
main is probably the set of expressions in the t-calculus ([Mil99]) or some other
existing calculus which models parallelism ([Fou98, CG00, GHS02]). Of course,
these are themselves associated with an operational semantics, so this would just
be a reduction of the problem —we would be compiling Erlang to a language with
a structured operational semantics. We will use methods from CCS ([Mil99]) and
T-calculus to attack the problem of capturing certain aspects of Erlang program
behaviour, in particular we shall use structural congruence to handle namespaces.
Still, we found it more instructive to give an operational semantics directly rather
than indirectly through compilation.

Overview of the chapter We begin by introducing the reader to Erlang. Fol-
lowing that, Section 4.2 restricts our attention to a small subset of the language
and provides all the basic definitions behind our semantics. This results in a se-
mantics where message transmission is not modelled in a precise way. Section 4.3
fixes this problem. The following sections add function calls, data structures and

4. Erlang semantics based on congruence 47

pattern matching to the syntax and semantics of the Erlang subset we consider. As
mentioned, the final syntax and semantics are given in Figures 4.19 and 4.20. Sec-
tion 4.7 comments on potential extensions of our semantics. Section 4.8 reviews
existing alternative definitions of Erlang semantics. We conclude in Section 4.9

4.1 Introduction to Erlang

Erlang! is a language for writing stable, efficient and massively concurrent dis-
tributed systems, originally developed at Ericsson for programming telephone
switches. Its history and main features are described in a very easily read pa-
per by its main developer Joe Armstrong ([Arm97]). Erlang is available in an
open-source format at www.erlang.org. The number of Erlang programmers has
been estimated at 10,000 and it is used by several telecom utilities producers. It is
a strict, higher-order functional language with a syntax inspired by Prolog.

Like most programming languages developed for a particular, practical pur-
pose, Erlang has many constructs, features and libraries. A large number are
described in the book [AVWW]. A substantial core part of Erlang, intended as a
standard intermediate language in Erlang compilers, is described informally but
meticulously in the Core Erlang Specification ([CGJT00]). Here we shall only
introduce a small subset of Erlang, the syntax of which is given in Figure 4.1.

The reader with knowledge of Erlang may notice that we’ve focussed mainly
on including the powerful primitives for spawning new processes, sending asyn-
chronous messages between processes and receiving these messages using deep
pattern matching.

Many of the language constructs are well-known from other functional lan-
guages and their semantics in Erlang is standard, but note that

e Curly brackets are used to construct (and destruct) tuples.
e The underscore pattern works as in Prolog: it matches any value.

e Comma denotes sequencing, so the meaning of X = E1, E> is to evaluate E;
to a value v, assign v to X and then evaluate E».

A value may be an atom (a lower-case term, e.g. ok), an integer, a tuple of values
or a list of values. Each process is identified by a unique process ID. Such a
process ID is also a value.

The really interesting productions are spawn, self, send (written E; ! E5) and
receive. We’ll describe how these work in the following paragraphs.

INamed after Danish mathematician Agner Krarup Erlang, 1878 - 1929.

4. Erlang semantics based on congruence 48

€ Program := Fundef*
Fundef = f(Xg,...,Xn) = EXp. ;n>0
E,E1,...,Ene Exp = X
| n|Ei+E | E1—E
| a
| X=E,Ez
| caseE of My;---;Mpend ;n>0
| f(Es,-..,En) ;n>0
| [Elﬂ"'aEn] !nZO
| [Ea| E]
| {Ei,...,En} ;n>0
| spawn(f,[Es,...,En]) ;n>0
| self()
| EilEp
| receive Mj;---;Mpend ;n>0
My,...,My € Match = P> E
P € Pattern = X
| a
| n
| [Po[P]
{P1,...,Pn} ;n>0
ne N
X, X1,...,Xp € Variables
f,ae Atoms

Figure 4.1: Syntax of an Erlang subset.

Spawn and self A spawn is like a function call, but instead of having the current
process execute the call, a new process is constructed. This child process will run
in parallel with the current, performing the function call. Spawn returns the pro-
cess ID of the new process. If the function call terminates, the process executing
it will end. If the function call returned a value, this value will be ignored.

We have simplified spawn a bit. In Erlang an extra parameter specifies the
module in which the specified function is placed. We’re not using modules in our
subset, so we removed that parameter.

4. Erlang semantics based on congruence 49

Messaging Processes can communicate through messages only. A message is
simply a value, and any value can be a message. Unlike other concurrent frame-
works, a message isn’t sent through a named channel, but directly to a named
process. Each process has its own inbox of messages, and any process can place
a message (value) v in the inbox of process p by evaluating the expression p ! v.
Here p is the process ID of the receiving process. The send operator is asyn-
chronous, so the sender process does not wait until the receiving process is ready
to read the message. Neither does it wait for the message to be placed in the receiv-
ing process’s inbox. The system does promise that all messages will eventually be
delivered, and the messages from process p to process p’ will be delivered in the
same order they were sent (JAVWW], p. 69).

The inbox is a queue of messages. It may contain messages from many other
processes (and from the inbox’s owner process itself). The order of the messages
reflects the order in which they have arrived. The inbox can only be accessed
through the receive expression. The programmer specifies a number of (deep)
patterns that can be matched to values in a natural way. Erlang tries to match the
first message in the inbox to each of the patterns in sequence. If all fail to match,
it proceeds to the next message and so on.

Receive is blocking — the process waits until a matching message has arrived,
if there was not one in its inbox. In Erlang, this behaviour can be avoided using
the after pattern, which specifies a maximum period for which the process may be
blocked. We have not included this feature in our subset, though.

Missing Features Some important featues of Erlang are not included in our
subset. These include:

e When guards (that add conditions on top of pattern matching),

e af ter pattern (which lets a program specify a maximal time to wait for a
message),

e exceptions,

e | i nks between processes (these links are used by the system to propagate a
kill signal between sibling processes),

e higher-order expressions, and

e modules and hot code replacement.

4. Erlang semantics based on congruence 50

Ee Exp = X=receive _, E
| X!Y,E
| X =spawn(f,[Xq,...,Xn]), E
| X=self(), E
| caseoof _.—E;_—FE
| X

ne N

f e Atoms

X,X1,...,Xn € Variables

Figure 4.2: The initial syntax we consider. The diamond denotes nondeterministic
choice.

4.2 First version of the semantics

We start with a small syntax which is not quite an Erlang subset but rather an
Erlang-like calculus, see Figure 4.2. The difference from real Erlang is the case-
expression. Instead of worrying about pattern matching at this point, we simply
make case a nondeterministic choice operator, denoted by the diamond and “don’t
care” patterns in the syntax. We’ll add real pattern matching later.

To keep things simple, we don’t model the binding of function names (f in the
syntax) to expressions. The semantics will expect an external system to handle
that aspect. At the end of the chapter (Section 4.7) we’ll discuss how this could
be incorporated in our final semantics.

The only values we can construct with the shown operators are process IDs,
so for now we’ll assume that all values are process IDs:

Values = ProclDs

The latter is an enumerable set of names analogous to the set of variable names is
in A-calculus. Elements of Values will be written

v,V',v1,Vo,... € Values
When it is important that the value is a process 1D, we’ll use the symbol p instead:
P,p’,P1,P2, ... € ProclDs

The distinction will become important later on when we extend the set of values.

4. Erlang semantics based on congruence 51

Ee Exp = X=receive _, E
| 61102 E
| X =spawn(f,[d1,...,0n]), E
| X=self(), E
| caseoof _—E;_—FE
| o

ne N

f € Atoms

0,01,...,0n € Variables U Values

Figure 4.3: The syntax extended to allow a substitution semantics. Values can
now be used in place of variable lookups.

We’ll need a further feature not present in real Erlang: explicit process IDs in
the code. In real Erlang, process IDs cannot be given as constants. But because
of certain features in Erlang (e.g. deep patterns containing bound variables) we
are aiming for a substitution semantics, rather than a semantics where a store of
variable’s values is used. For this reason we will need process IDs in the code
during evaluation. The extended syntax is shown in Figure 4.3.

It is an error to assign the same variable X twice in a sequence of expressions.
It is also an error to use the value of a variable that has not been assigned. Thus,
the semantics will only have rules to evaluate

X = [some right — hand side], E

if there are no variables (only values) on the right-hand side of the assignment.

Before we give the first version of the semantics we shall need a final syn-
tactic extension. It should not surprise the reader that we need to model sets
of processes with associated process IDs. The spawn operator is the means for
making new processes from existing, and it is exactly in the interaction between
parallel processes that the interesting behaviour of Erlang programs occurs.

It is in the modelling of parallel runnning processes that we choose to play
the game of CCS and r-calculus. Other definitions (see Section 4.8) of Erlang se-
mantics have modelled this aspect using a finite set of processes (where a process
is a triple composed of an expression, a process ID and a queue of messages). In
e.g. CCS, the processes are placed in the leaves of a binary tree. An internal node
in this tree is either

o the parallel composition operator, or

4. Erlang semantics based on congruence 52

Pe Proc = (p:E)
| PP
| newpP

Ee Exp = X=receive _, E
| 01! E
| X:Spawn(fa[éla-"aén])a E
| X=self(), E
| caseoof _—E;_—FE
| o

ne N

f € Atoms

0,01,...,0n € Variables U Values

Figure 4.4: Syntax for parallel process composition.

e a new-operator which binds the name of a commmunication channel.

Erlang does not have communication channels in the sense of CCS, but we shall
need the name-space handling for our process IDs. A significant difference be-
tween CCS and our semantics is that every expression has an associated process
ID. Our version of the tree model is defined by the syntax in Figure 4.4. The
process tree is itself viewed as process.

The real power of this tree model is that it comes with a notion of structural
congruence. In general terms this means that the tree of processes may be re-
ordered in any way, as long as name bindings are not captured or lost. In essence,
the set of trees modulo structural congruence defines a space in which expressions
reside. And in this space, a process is “next to” any other process when evaluation
needs it to be, and possible name-space clashes are handled implicitly. The effect
of this is an incredibly smooth integration between actions local to one process
and global behaviour.

The structural congruence (henceforth just congruence) rules for our system
are shown in Figure 4.5. The rules use two concepts that we have not formally
defined: a-equivalence of processes (denoted by =) and freeness of a process ID
in a process. Please note first of all that these concepts do not refer to the variables
(the Xs) in our expressions at all. The names we’re interested in handling on this
level are always process IDs.

4. Erlang semantics based on congruence 53

P=P P =pP PP=P
P=pP" P=P
P:u PI
P=P
P|P'=P'||P

P||(P"lIP") = (PI[P")||P"

p Zfn(P)
new p (P||P") = P|lnew p P’

new pp' P=new p'p P

Pllnewp (p:v)=P

Figure 4.5: The definition of structural congruence.

The set of free process IDs of a process tree is given by

fn({p:E)) = {p}Uprocids(E)

fn(P||P") = fn(P)ufn(P)

fnnewp P) = fn(P)\{p}
The function procids simply returns the set of all process IDs that occur as sub-
terms in the expression E it is applied to. An occurrence of a process ID p in a
process is bound when it is not free, i.e. when an ancestor node in the process tree
is of the form new p P. Two processes P and P’ are alpha-equivalent, P =4 P/,
when P’ can be obtained from P by renaming bound process IDs with fresh ones.

We shall sometimes use the term (new p1pz---pn P) to mean

New p1 NEW P2 ---New pp P

We also allow ambiguous sequences of parallel composition, e.g. P||P’||P” as this
operation is associative modulo congruence.

4. Erlang semantics based on congruence 54

React — Sync

(p: X =receive L,E)||(p":p!V,E') = (p:{v/X}E)|[{(p': E)

f(Xg,.--,%Xn) = Er p&fim((p:E)) P=(p :{vai/X1}---{vn/Xn}E¢) Spawn
(p: X =spawn(f,[vy,...,vn]),E) = new p’ ({p : {p'/X}E)|IP)

Self
(p: X =self(),E) = (p: {p/X}E)
ie{1,2}
(p:caseoof _—Eq; - —Ez) = (p:Ej) Case
P—P p
PP PP
P—P R
newp P — new p P’ e
= ! = A
PP P=P R=R Struct

P — P,

Figure 4.6: The first version of the semantics. In this version the interaction is
synchronous.

The last congruence rule may look odd. Its effect is simply to allow the re-
moval of any process that has ended, which in our case must mean it matches the
last production of the expression syntax (and that the variable in that production
has been substituted by a value). Note that we cannot remove a process if another
process still has a reference to it (i.e. its process ID), because the latter process
would have to appear under the binding of the former process’s ID, preventing the
application of the last congruence rule. Bad programming style may thus cause a
lot of finished processes to remain in the tree.

We are now ready to give the first version of our operational semantics. It is
shown in Figure 4.6. Note that the result of substituting a variable X with its value
v in an expression E is denoted {v/X }E.

The semantics is given in the form of a number of reaction rules. The first one
concerns the transmission of messages. It states that if two processes are next to

4. Erlang semantics based on congruence 55

each other in the process tree, if the first one is waiting for a message, and if the
second one has a message for it, the message is transmitted. This is synchronous
communication, but we’ll fix that in a short while.

Note how the three last rules make sure that the actual arrangement of pro-
cesses in the tree is not important — if one process is waiting for a message and
another has one to send, they can react. This was the effect we described above.

The Spawn rule shows how a new process is generated. The = operator queries
the environment for the definition of function f. This is where our semantics
implicitly depends on a mapping of function names to expressions. Note that the
process ID of the new process can be chosen locally in the subtree containing only
its parent process. The congruence relation will sort out any name clashes. We
assume (as is reasonable) that function definitions do not contain explicit values,
in particular process IDs.

The self() and case rules should contain no surprises.

4.3 Getting synchronicity right

As mentioned, the semantics is synchronous, which is not what Erlang imple-
ments. One way of making it asynchronous is to follow in the footsteps of asyn-
chronous calculus. In that system, messages can flow around in the process tree
along with the processes. This allows the sending process to “let go” of its mes-
sage at any time, basically spawning it as a sibling process that will go looking for
its receiver.

So let us for a moment assume that we add the following production for non-
terminal P:

P = [pV]

We could then split the React-rule into two rules to achieve asynchronous com-
munication, see Figure 4.7.

There is a problem with this approach, however. Messages from one given
process to another may switch order while flowing from sender to receiver, so for
example:

new p1P2P3P4 ({P1: P2 ! P3,P2 ! Pa,E1)||(p2: X = receive _,Ey))
_)*

new P1p2p3Pa ((P1 : Ea)[|[P2pa]ll(p2 : {Pa/X}E2))

which is not how Erlang works. Message order is kept between two given pro-
cesses. We are therefore forced to introduce a different mechanism to model the
flow of messages. This mechanism is the Erlang inbox, see Figure 4.8. There is
one inbox for each process p, named inboxp ().

4. Erlang semantics based on congruence 56

— React — ASyncl
P pV,E) = (0 E)PY v

(o X =receive LEN[V] » (p: (y/XJE) oot fevne?

f(X1,---,%Xn) = Er p' &fin((p:E)) P={(p" :{vi/Xa}---{vn/Xn}E¢)
(p: X =spawn(f,[vi,...,vn]),E) = new p’ ({p : {p'/X}E)|IP)

Spawn

Self
(p: X =self(),E) — (p: {p/X}E)
ie{1,2}
(p:caseoof _—Ey; _—Ep) — (p:Ej) Case
P—P p
PHPI—)P”HPI ar
P—P R
newp P — new p P’ e
= p! =P!
PioPe Pi=P P=P giyer

P — P,

Figure 4.7: Semantics in the style of asynchronus T-calculus. The syntax for a
process here includes a construct for messages in transfer.

Pe Proc = (p:E)

| PP

| newpP

| inboxp (V- Vn)
ne N

Figure 4.8: The syntax extended with Erlang’s inboxes.

4. Erlang semantics based on congruence 57

An inbox can keep any number of messages to one given process and it keeps
track of the order in which they arrived. This mechanism is applied in the seman-
tics in Figure 4.9.

(0" p TV, E)[[inboxp (V1 ---Vn) — (p' : E)[linbox (V1 - - -VnV) React —Inbox1

React — Inbox2

(p : X =receive _,E)[[inboxp(vy---vn) = (p : {v1i/X}E)|[inboxy(v2---Vn)

f(X1,-.-,X%n) 2 gy pPrEfm({(p:E)) P=(p :{vi/Xa}---{va/Xn}Es) Spawn
(p: X =spawn(f,[vy,...,vn]),E) = new p’ ({p : {p'/X}E)||P|linboxy())

Self
(p: X =self(),E) — (p: {p/X}E)
ie{1,2}
(p:caseoof - — Ejq; - — Ep) = (p:Ei) Case
P—P p
PP =P
P—P R
newp P — newp P’ es
= ! = !
PP P=P R=R Struct

P; — P,

Figure 4.9: An asynchronous semantics where messages cannot switch order.

A sender process now transmits its message through the receiver’s inbox. Mes-
sages cannot switch order on the way. Of course, we need to spawn an inbox with
each new process as illustrated in the Spawn rule. We should also eliminate the
inbox of any process removed by the congruence relation. The last rule of con-
gruence should now read as follows:

P

Pl[new p ({p : v)|linboxp (v1---Vn))

4. Erlang semantics based on congruence 58

Pe Proc = (p:E)
| PIP
| newpP
| inboxp(V1---Vn)
| etherp(vy---Vp)
ne N

Figure 4.10: The syntax extended with a process-specific “ether channel”.

There is still a problem, although it is much more subtle than the last one.
The problem is that unlike real Erlang, we cannot reach a state where A has sent
a message to B (and moved on) but the message is not in B’s inbox to inspect; it
is still flowing in the “ether” towards B’s inbox. This will be an issue when we
introduce a more powerful receive operator.

We choose a solution that fits the same picture as the introduction of inboxes:
we add an “ether channel” for each process, see Figure 4.10.

The ether will receive messages for its owner, then pass them along (in order!)
to the inbox. While the messages are in the ether, they cannot be inspected. The
semantics is given in Figure 4.11.

We have extended the Spawn rule to spawn both an ether and an inbox with
each new process, and we also need to update the last rule of the congruence
definition to

Pllnew p ({p : v)|linboxy (v1---Vvn)|letherp (v} - Vi) =P

The reader may have realized that we could get rid of the inbox-construct
now we have the ether. This could be achieved by instead moving the queue of
messages in the inbox inside the (p : E) pair (making it a triple). We choose to
keep the current form because it is more modular; rules that don’t concern the
inbox (e.g. Case) can and do ignore it.

4.4 Function calls

With messages working as intended, we’re ready to move towards a more com-
plete functional language with more powerful operators (and without nondeter-

4. Erlang semantics based on congruence 59

Reactl

(P :pv,E)|letherg(ve---vn) — (o' : E)||etherp(vi---vnv)

ether (v~ vn) [[INBOX (V] Vi) = ethery (va- V) [nboxg (V, - Vivg) | eoct?
(p: X =receive _,E)||inboxp (v1---Vn) = (p : {v1/X}E)||inboxy (V2 - - - V) React3 — Any
A
f(Xg,-.-, %) =E¢ p' &Mm((p:E)) P={(p":{ve/Xa} - {Vn/Xn}Es) Spawn

(p : X =spawn(f,[vi,...,vn]),E) = new p' ({p : {p'/X}E)||P|linbox () |lethery())

Self
(p: X =self(),E) — (p: {p/X}E)
ie{1,2}
(p:caseoof _—Eq; -— Ep) = (p:Ej) Case
P— P P
PHPI—)P””PI ar
PP Res
new p P — new p P’

= ! = !

PLoPs PL=P P=P Struct

P — P,

Figure 4.11: An asynchronous semantics where messages can be “in the ether”.

ministic choice). The first step is function calls with the syntax given in Fig-

ure 4.12.
There are several ways to go about adding calls to the semantics. But we

should beware that one of the standard approaches is not an option in this case.
We might think to implement function calls using the transitive extension of the
evaluation relation, as in

F(Xeyeo s Xn) 2Ef (p: {va/Xa}--- {Vn/Xn}E) =% (0 : V)
(p: X ="f(vy,...,vn),E) = (p: {V//X}E)

4. Erlang semantics based on congruence 60

Ee Exp = X=receive _, E
| 61102 E
| X =spawn(f,[d1,...,0n]), E
| X=self(), E
| caseoof _—E;_—FE
| o
| X =f(dq,...,0n),E
ne N
f € Atoms

0,01,...,0n € Variables U Values

Figure 4.12: Expression syntax with function calls.

Pe Proc = (p:E)

| PP

| newpP

| inboxp(vi---Vp)

| etherp(vy---vn)

| stackp((X1,E1) -+ (Xn, En))
ne N

Figure 4.13: Process syntax with call stacks external to processes.

This does not work in a parallel language like Erlang, because the premise expects
the function body to be evaluable on its own, without other processes that might
interact with it.

A completely valid option — and the one taken by other semantics definitions
for Erlang (see Section 4.8) — is to replace the expression part of the (p : E) pair
by a call stack, thus keeping the stack explicit in the process.

We choose to go in another direction. Appreciating the modularity we ob-
tained by keeping the inbox external to the (p : E) pair, we use the same method
for hiding the call stack from rules that it does not concern. The resulting syntax is
shown in Figure 4.13. We use variable L to range over lists of variable/expression
pairs.

4. Erlang semantics based on congruence 61

Reactl

(P :p!v,E)||etherp(vi---vn) = (p' : E)||etherp(vy---vnv)

React2

etherp (vV1---vn)||inboxp (V] - - - Vi) — etherp (va- - - vp)|[inboxg (V4 - - - vipv1)

(p : X =receive _,E}||inboxy (v1---Vn) = (p : {v1/X}E)||inboxp (V2 - - - Vn)

f(X1,.. X)) SEr P EM((p:E) P=(p": {va/Xa} - {vn/Xn}Er)
(p : X =spawn(f,[v1,...,vq]),E) = new p’ ({p : {p'/X}E)||P||inboxy ()]ether ()||stacky ())

ie{l,2}
(p:caseoof _— E;1; - — E2) = (p:Ej) Case
(X Xo) S E = {11/ X} (v X a

(p: X = f(va,...,vn),E)||stacky (L) = (p : E')||stacky ((X,E) L)

(p V) Stacky (K E) 1) = (p (v/XE)[Stackp(L) v

P— P P
PP =P P
/
P—P Res

newp P — newp P’

P—P, P,=P, P,=P,

St| uct
/ /

React3 — Any

Spawn

Figure 4.14: The semantics with function call and return.

Given this choice, the call semantics is easy to define (see Figure 4.14). Note
that expressions that are evaluated down to a value are now important and may
not be removed by process congruence, because they represent return values. The
exception is when the call stack is empty:

P || new p ({p : v)||linboxp(v1---vn)|letherp (V] ---vp,)|Istacky()) = P

4. Erlang semantics based on congruence 62

Ee Exp = X=receive _, E
| 61102 E
| X =spawn(f,[d1,...,0n]), E
| X=self(), E
| caseoof _—E;_—FE
| o
| X =f(dq,...,0n),E
| X=[,E
| X=[015],E

ne N

f € Atoms

0,01,...,0n € Variables U Values

Figure 4.15: Expression syntax with list constructors added.

4.5 Adding lists

The next step is enriching the value domain so that we can get closer to real
programming. We’ll extend the current value domain with lists. Extending with
tuples and integers would be done in an equivalent manner, but we leave those to
the reader.

In Erlang, the list constructors are syntactically written as [] and [E |E’]. We
shall need a notation for referring to list values that preferably differs from Erlang
syntax. We choose to let our list value constructors have Lisp-like syntax, so
that the value associated with the expression [] is denoted by nil and the value
associated with the expression [E | E’] is denoted cons v v/, when v and V' are the
values of E and E’ respectively. Thus we define the set of values recursively by

V € Values = ProcIDsuU {nil} U{cons v1 vz | v1,Vv2 € Values}

We say that a value v is atomic and write atom(v) if and only if v € ProcIDsU{nil}.

To be able to construct lists we add two productions for expressions, see Fig-
ure 4.15. The semantics of the constructors is simple as can be, and we have added
the rules to the system in Figure 4.16.

4.6 Patterns and case

Having a more interesting set of values, we’re ready to define a more expressive
version of receive. The Erlang receive can do three jobs in one operation:

4. Erlang semantics based on congruence 63

(0 p TV,E)ethery (vi-—ve) = (0 E)etherpva-—vpy) | <eoct!

React2

etherp (vV1---vn)||inboxp (V] - - - Vi) — etherp (va- - - vp)|[inboxg (V4 - - - vipv1)

(p : X =receive _,E}||inboxy (v1---Vn) = (p : {v1/X}E)||inboxp (V2 - - - Vn)

f(X1,.. X)) SEr P EM((p:E) P=(p": {va/Xa} - {vn/Xn}Er)
(p : X =spawn(f,[v1,...,vq]),E) = new p’ ({p : {p'/X}E)||P||inboxy ()]ether ()||stacky ())

ie{l,2}
(p:caseoof _— E;1; - — E2) = (p:Ej) Case
(X Xo) S E = {11/ X} (v X a

(p: X = f(va,...,vn),E)||stacky (L) = (p : E')||stacky ((X,E) L)

(p V) Stacky (K E) 1) = (p (v/XE)[Stackp(L) v

Nil

(p: X =[,E) = (p: {nil/X}E)

Cons

(p: X =[vi|v2],E) = (p: {cons vy vo/X}E)

P—P Par
P[P = P"[[P’ .
P—P

newp P — newp P’ Res

Pj_—)Pz PlEpi PzEPé

StIuCt
/ /

React3 — Any

Spawn

Figure 4.16: List constructor semantics added. Note that nil and cons operate in
the value domain — not in Erlang itself.

4. Erlang semantics based on congruence

64

ne N

Ee Exp

M € Match

f e Atoms
0,01,...,0n € Variables U Values

X =receive M, E

01!d, E
X = spawn(f,[d1,...,0n]), E
X =self(), E

caseoof _.—E; _ > E’
o

X = f(81,...,0n),E

X =,E

X = [81]82],E

Figure 4.17: Syntax with deep patterns in the receive-operator.

e Specify what kind of message should be taken from the inbox,

e destruct lists and other structures, and

e branch control depending on the structure of the picked message.

We’ll extend case to be able to handle the two latter tasks and focus solely on
the first feature. We shall need a syntax for patterns to match the inbox messages

against, see Figure 4.17.

For each pattern we need to know which messages (values) match it. This is
specified by the function matches(-) : Match — P (Values), given by

matches(_)
matches(v)
matches([])
matches([M1|Mz])
matches(My;---; Mp)

{cons v1 v, | v1 € matches(M1) Avz € matches(My)}
matches(M1) U - - -Umatches(Mp)

There is no rule for matches(X). Such a pattern would represent a destructor and
we will not allow that in the receive. This represents a slight simplification, as we

4. Erlang semantics based on congruence 65

cannot pick e.g. the first message that is a 2-tuple with identical elements. We can
now put the third reaction rule on its final form, see Figure 4.18.

The final step in defining our Erlang semantics regards case, implementing
both branching and destruction (of lists). We give separate productions for these
two uses of case in order to make the semantics simpler. The final syntax of our
Erlang subset is given in Figure 4.19.

The semantics for the branching case is uncomplicated. The deconstruction of
lists needs to assign two variables, so note that none of those may be previously
defined. The final semantics is given in Figure 4.20.

4.7 Final notes on our semantics

We’ll end by making a few observations that may be useful if you would like to
use or extend the system.

Initial state We have not discussed what the initial state of a program’s execu-
tion is. There are a number of reasonable choices for this; we simply choose to
define

InitialState(p,E) = (p: E)||stacky()||inboxy()||ethery()

So the initial state is defined relative to a process ID p and an initial expression
E. The program itself, i.e. the set I' of function definitions, is implicit. When the
relevant I is not clear from the context, we will make it explicit as a subscript to
the semantical relation —, so that

P—>r P/

means “P reacts to P’ when I is the set of function definitions”.

Ending match lists with “end” In real Erlang, both receive and case must end
with the keyword end. We have saved a bit of space by skipping this syntactical
detail.

Evaluation order The subset of Erlang we have described only allow expres-
sions that are linear in their structure, in the sense that a composite expression
like

X = f(E1,E2),E

4. Erlang semantics based on congruence 66

Reactl

(p":pv,E)|letherp(vi---vn) = (o' : E)||etherp(vi---VnVv)

React2

etherp (V1 -+ - Vn)||inboxy (V] - - - Vi) — etherp (V2 - - vp)|[inboxg (V4 - - - vipv1)

k = min{i | vi € matches(M)}
(p : X = receive M, E)||inboxp (V1---Vn) = (P : {vi/X}E)||inboXp (V1 - - - Vik1Vict1- - - Vi)

React3

f(X1,...,Xn) 2 Etr p'éfm({(p:E)) P={(p :{vi/X1}---{vn/Xn}Es) Spawn
(p: X =spawn(f,[vi,...,vq]),E) = new p’ ({p : {p'/X}E)|P[linboxy ()||ethery ()||stacky ())

Self

(p: X =self(),E) = (p: {p/X}E)

ie{1,2}

(p:caseoof . —Eg; -—Ex) — (p:Ej) Case

F(Xeyeo Xn) 2Ef E' = {va/Xa} -+ {Vn/Xn}Es Call
(p: X = f(va,...,vn),E)||stacky (L) = {p : E’)||stacky ((X,E) L)

Return

(p:v)lIstacky ((X,E) L) — (p : {v/X}E)||stacky (L)

Nil

(p:X=[,E) = (p: {nil/X}E)

(p: X =[vi|v2],E) = (p: {cons vy vo/X}E) Cons

P— P P
PP =P P
/
P—P Res

newp P — newp P’

P—P, Pi=P, P,=P,

St| uct
/ /

Figure 4.18: Semantics implementing pattern matching.

4. Erlang semantics based on congruence

67

P& Proc

Ee Exp

M &€ Match

ne N
f € Atoms

0,01,...,0n € Variables U Values

{p:E)

PP

new p P

inboxp (V1 -+ Vn)
etherp(vy---vn)

stackp ((X1,E1) -+ (Xn, En))

X =receive M, E

61 ! 62, E
X = spawn(f,[d1,...,6n]), E
X =self(), E

casedof ¥ - E; _—> E’
case o of [X|X'] = E; - —FE’

Figure 4.19: The final syntax of our Erlang subset. In the last step we added a

proper case-operator.

must be written e.g.

X1 = Ey,

X2 = Ep,

X= f(xlaXZ)a
E

This form fixes evaluation order. In Erlang, composite expressions like the first
form is allowed and evaluation order is not specified.

4. Erlang semantics based on congruence 68

Reactl

(p":pv,E)|letherp(vi---vn) = (P’ : E)||etherp (v1---VnV)

React2

etherp (v1---vn)|linbox (V] - - - vi,) — etherp (va- - - vn)[[inboXp (V] - - - V1)

k =min{i | vi € matches(M)}

{p : X = receive M, E)||inboxp (V1 ---Vn) = (p : {Vk/X }E}||inboXp (V1 - - Vk—1Vit1 - Vn) React3
F(Xe,o s X) 2Bt P @€f(PIE)) P =(p": {vi/X1}--- {Vn/Xn}E) oo
{p: X =spawn(f, [v1,...,vn]),E) — new p" ({p : {p'/X }E)||P[[inboxy () |ethery () |stacky ()
(p: X =self(),E) = (p: {p/X}E) Self
(i=1Av=V)V(i=2AV#V) Test

(p:casevof vV.— Eq; - — Ep) — (p: Ei)

(v=rcons vy Vo AE = {v1/X}{va/X'}E1) V (atom(v) AE = Ep)

(p:casevof [X|X| = E1;, - > Ez) = (p:E) Destruct
F(X1,-,Xn) S Er E' = {va/Xa} - {Vn/Xn}Er Call
(p: X = f(v1,...,vn),E)||stacky (L) = (p : E’)||stacky ((X,E) L)
Return

(p:v)lIstacky ((X,E) L) — (p : {v/X}E)]|stacky (L)

Nil

(p:X=[L,E) = (p: {nil/X}E)

(p: X =1[vi|v2],E) = (p: {cons vy vo/X}E) Cons

P—P” Par
P||P" — P"||P’
/
P—P Res

newp P — newp P’

PP—+P, Pi=P, P,=P,

St| uct
/ /

Figure 4.20: Final version of the Erlang semantics.

4. Erlang semantics based on congruence 69

Function declarations and hot code swapping As mentioned, the function
definitions are external to our system. If this is not satisfactory, one could use
the same mechanism that was used with the inbox and the call stack: let the func-
tion definitions float in the tree of processes, and change e.g. the call rule to

E’ = {vi/X1}---{Vn/Xn}E¢

(p: X = f(vl,...,vn),E)||stackp(L)||deff(xlr_vxn)Ef — (p : E")||stacky ((X,E) L)||deff(xl’_u’xn)Ef

Of course, the function defintions should then be incorporated into the inital state.
This would also allow you to support hot code swapping, €.g.

def £ (x,.... xa)Es ||defg(xl,...,xm)Eg||<p -load(f,g),E) — def f(xl,...,xm)Eg||defg(xl,...,xm)Eg||(P “E)

Observations Finally, many process calculi (including Te-calculus, [Mil99]) have
a semantics where observations of communication are more explicit. We believe
that our semantics might also benefit from such a formulation.

4.8 Related work

In this section we summarize the two alternative formal definitions of Erlang se-
mantics known to us. We also very briefly compare each one of these to our own.
Both papers that we present define the semantics with the aim of facilitating veri-
fication of program properties. Beware that although each paper name the Erlang
subset that they consider Core Erlang, both subsets are much smaller than the
more official Core Erlang presented in [CGJT00].

Toward Parametric Verification of Open Distributed Systems As the title
indicates, the paper by Dam, Fredlund and Gurov ([DFG98]) is on the topic of
program property verification. Properties are specified in first-order p-calculus
extended with Erlang primitives. The programs considered are from a subset of
Erlang which is very similar to our own, except that they allow the name of a
called function to be value of an expression (this value must be an atom — there is
no lambda abstraction).

The authors define a process p to be a triple (e, p,q), where e is an expression,
pisaprocess ID, and q is a queue of values. The latter is the inbox of the process.
They define a system state to be a set s of processes such that

(e,p,q),(¢',p’,q"y € sA(e,p,q) # (¢,p,d) = p#p’

4. Erlang semantics based on congruence 70

Their semantics is a structured operational semantics, defined by three different
relations:

D

la l=a |

(%]
~

where e and e’ are expressions, p and p’ are processes, s and s’ are system states,
and a is either empty or an action of the form p!v or p?v, where v is a value.

Their semantics of message transmission is equivalent to the one in Figure 4.9;
it does not model the fact that messages may be “in the ether”. Process IDs are not
bound by new operator, so all handling of process ID namespaces in the system
state is implicit.

The authors do not assume that evaluation order has been settled syntactically
(as discussed in Section 4.7), so they handle this issue by generalizing expressions
to reduction contexts that always expose the left-most reducible subexpression. A
further complication is that pattern matching and value deconstruction are kept
in their most general form (and not separated), so that the meanings of case and
receive must be defined in terms of most general unifiers.

Verification of Erlang Programs using Abstract Interpretation and Model
Checking This paper ([Huc99]) by Huch addresses the issue of verifying pro-
gram properties specified in Linear Temporal Logic. Observing that this is not in
general decidable for Erlang programs, the author constructs an operational se-
mantics for which the states can be abstracted to a finite domain. The semantics
describes an Erlang subset that resembles the one we consider.

Like the above paper, Huch defines a process p to be a triple, here (p,e,q),
where again p is a process ID, e is an expression, and q is a queue of values. A
state I is defined to be a finite set of processes.

This paper also uses a structured operational semantics. Unlike the above
paper these is only one relation:

n3n’

where a is a label that is either empty or of one of the forms v, ?v or spawn(f),
where v is a value and f is a function symbol. There is an explicit error state that
will be entered if the recipient part of a send expression is not a process 1D, or if
an unassigned variable is used. In [DFG98], as in our semantics, these situations
merely result in a state that cannot be further evaluated.

4. Erlang semantics based on congruence 71

As in [DFG98], the semantics of message transmission does not model that
messages may be “in the ether”, and handling of process ID namespaces in the
system state is implicit. Huch also fixes evaluation though the use of reduction
contexts and defines the meanings of case and receive in terms of unification.

4.9 Conclusion

This chapter has developed a formal semantics for Erlang in details. It has also
reviewed alternative defintions of such a semantics. Our semantics models the
Erlang’s sophisticated message transmission feature and has explicitly handles
namespaces (of process 1Ds) through structural congruence as in the T-calculus.
The semantics is also unusually modular.

Future work for this topic is to extende the semantics to model hot code swap-
ping: the ability of Erlang to change the definitions of functions at run-time. We
would also like to see an extended semantics that supports observations of com-
munication (as in the T-calculus), thus allowing standard definitions of simulation
and bisimulation.

5 - Towards partial evaluation of
Erlang

In this chapter we take some first steps towards the construction of a partial eval-
uator for the Erlang language. At the present, no one has implemented such a
system.

We present a number of motivating examples for partial evaluation (PE) of
Erlang programs. Section 5.1 starts with a classical example: the power function.
The next three sections follow up with examples of truly concurrent programs. We
focus on one particular use of partial evaluation in concurrency: to fuse a client
and a server at specialization-time, leaving only the client present at run-time.
The first example considers a very simple database server and an even simpler
client (Section 5.2). The next example suggests the partial evaluation of a more
interesting client to the same database server (Section 5.3). Our final example,
in Section 5.4, shows a small interpreter that we find fit for partial evaluation.
In Section 5.5, we discuss the problem of defining partial evalution in a concur-
rent setting and propose a reasonably simple such definition. We review related
work on partial evaluation of concurrent languages in Section 5.6, and Section 5.7
concludes.

Note that our examples are based on a syntax that is essentially the same as
Figure 4.1. Our discussion is based on the semantics of Figure 4.20, although this
does not cover the full syntax of our examples.

Acknowledgement The author would like to thank John Launchbury for insti-
gating this work, and for many inspiring discussions on the topic.

5.1 A simple example of partial evaluation

Examples motivating the use of partial evaluation in ordinary sequential or func-
tional programming are legion, see [JGS93]. The most classical among these
examples is the power function (see Figure 5.1).

This function demonstrates the advantage of partial evaluation in a simple
manner. Specializing the code in the figure wrt. n = 3 should give you something
like this:

exp_d3(Xx) ->
X* X* X*1
end.

5. Towards partial evaluation of Erlang 73

exp(X,N) ->
case N of
0 ->
1
_ ->
X * exp(X N 1)
end.

Figure 5.1: The power function.

The specialized version is more efficient — but less general — than the original.
Can we state the relationship more precisely? Yes, if we use our semantics for
Erlang, we can deduce that for all v,Vv':

(p: X =exp(v,3),E)||stackp(L) —=* (p: {V'/X}E)||stacky (L)
=
(p: X =expd3(v),E)|stacko(L) —* (p: {V//X}E}||stacko(L)

Of course this holds exactly when v/ = v3,

This correspondence does not show how the specialized function is more effi-
cient than the original, but we hope that the reader will be able to accept that claim
without proof.

5.2 The world’s simplest database application

Without the concurrent aspect of Erlang, the implementation of a PE for Erlang
could be performed using standard techniques. What we want to show in this and
the following sections is examples where specialization in the context of concur-
rent Erlang programs would be useful.

In Figure 5.2 we show a naive database server. The server is a non-terminating
process, the internal state of which is a list of key/value-pairs. Other processes
communicate with the server through messages and may either ask for the value
associated with a given key or set an entirely new server state.

Now, if we know all the clients to the server, we may be able to eliminate the
server by specialization. As an example, consider the case where the only client
to the server is the one listed in Figure 5.3.

The client instructs the server to map 1,2 and 3 to their squares, then proceeds
to sum the square of 2 with the square of 3. Clearly, the communication between

5. Towards partial evaluation of Erlang

74

db(State) ->
receive
{set, Pid, NewState} ->
Pid ! ok,
db(NewSt ate) ;
{read, Pid, Key} ->
Pid ! read(State, Key),
db(St at e)
end.

read(List, Key) ->
case List of
[{Key, Value}|] ->
Val ue;
[_|Rest] ->
read(Rest, Key)
end.

Figure 5.2: The database server. This process simply has an associative list as its

internal state.

start_toy() ->

toy client(spawn(db,[[]])).

toy client(Server) ->

Server | {set,self(),[{1,1},{2,4},{3,9}1},
Server ! {read,self(), 2},

Server ! {read,self(), 3},

receive ok -> receive X -> receive Y -> X+Y
end end end.

Figure 5.3: A toy database client.

5. Towards partial evaluation of Erlang 75

the two processes is not necessary, and partial evaluation applied to this example
ought to yield something like:

start_toy spec() ->
13.

Of course this example is somewhat trivial as there is no dynamic data. It was
just meant to illustrate how specialization may be able to remove communication
and indeed change the process structure (remove a process entirely). A crucial
observation is that IviPgy:

(p: X = start_toy(), E)||stackp(L)||inbox, () |letherp() —*
new p' P||{p: {v/X}E)||stacko(L)|/inboxy()|lethery()

and

(p: X = start_toy_spec(), E)||stackp(L)||inboxy () |letherp() —*
(p:{v/X}E)][stacky(L)]linboxy () [[etherp()

The two statements hold when v = 13 and Pg;, represents the blocked remains of
the db server. We will discuss the significance of this relationship in Section 5.5.

5.3 Adding spice to the database client

Now lets look at a more interesting and — slightly — more realistic situation. In
this case the only client to the database server is the one in Figure 5.4,

The client basically interprets a very simple language. Its dynamic input is a
list of commands to be executed in sequence. A command may either

e instruct the server to map 1,2,3 to their squares,
e instruct the server to map 1,2,3 to their cubes, or
e look up the value associated with a key.

Interpretation of a list of commands results in the sum of the results of its look-up
operations.

A noteworthy feature of this client is that the possible server states are static. A
dynamic command list can choose between them, but it cannot instruct the server
to go into a state that isn’t already hardcoded in the client. This should allow a
partial evaluator to produce a specialized client as shown in Figures 5.5 and 5.6.

5. Towards partial evaluation of Erlang 76

start(L) ->
client(spawn(db,[[]]).L)

client(Server,L) ->
case L of
[1->
0;
[squares| Rest] ->
Server ! {set,self(),[{1,1},{2,4},{3,9}]},
receive
ok -> client(Server, Rest)
end;
[cubes| Rest] ->
Server ! {set,self(),[{1,1},{2,8},{3,27}]},

receive
ok -> client(Server, Rest)
end;
[N Rest] ->
Server ! {read,self(),N
receive

M-> M+ client(Server, Rest)
end
end.

Figure 5.4: A more complicated database client.

In parallel to the previous example, the fact to observe is that Yv3v/ 3Py :

(p: X =start(v), E)||stacko(L)||inboxy()|letherp() —*
new p' P||(p: {V//X}E)||stacko(L)||inbox,()|letherp()

A

(p: X = start_spec(v), E)||stacky(L)|linboxy()||ethery() —*
(p:{V//X}E)|Istackp(L)l|inboxy()[|etherp()

(assuming v ranges over values that represent correct command lists). This time,
the relationship between v and v/ is more complicated. Process Pg, is again the
blocked remains of the db server.

5. Towards partial evaluation of Erlang

77

start_spec(L) ->
client1(L).
clientl(L) ->
case L of
[1->
0;
[squares| Rest] ->
client2(Rest);
[cubes| Rest] ->
client3(Rest);
[N Rest] ->
readl(N) + client1(Server, Rest)

end.
client2(L) ->
case L of

[1->
0;
[squares| Rest] ->
client2(Rest);
[cubes| Rest] ->
client3(Rest);
[N Rest] ->
read2(N) + client?2(Server, Rest)

end.
client3(L) ->
case L of

[1->
0;
[squares| Rest] ->
client2(Rest);
[cubes| Rest] ->
client3(Rest);
[N Rest] ->
read3(N) + client3(Server, Rest)
end.

Figure 5.5: A specialized version of the database client.

functions are listed in Figure 5.6.

The specialized read-

5. Towards partial evaluation of Erlang 78

readl(Key) ->
fail().
read2(Key) ->
case Key of
1->1;
2 -> 4
3->09;
_->fail()
end.
read3(Key) ->
case Key of
1->1;
2 ->8;
3 ->27;
_->fail()
end.
fail() -
case 1 of 0 -> 0 end.

\

Figure 5.6: The specialized read-functions. Function fail is provided by the partial
evaluator and always causes a pattern match failure.

5. Towards partial evaluation of Erlang 79

5.4 Anexample interpreter

In this section we give a larger motivating example. Our source program (in Fig-
ures 5.7 and 5.8) is an interpreter for a small programming language. A program
in this language (which is not Turing-complete) simulates a recurrent neural net-
work (i.e. one with cycles) for a number of time steps. Neurons are modeled by
processes, and the activation of a neuron (firing) is modeled by messaging. To
make the example smaller, there is no concrete syntax for the input programs.
The interpreter takes as arguments a list of neurons, a list of initial states of these
neurons, the number of time steps to simulate and the name of the neuron whose
final state is the output of the program.

An example input network is shown in Figure 5.9. Each node represents a
neuron. The number inside the node is the neuron’s activation threshold: the min-
imal input that neuron must receive before firing. When a neuron fires (i.e. when
the sum of its inputs is above the threshold), it sends input to the neurons that the
node has edges to. The amount of input is equal to the number on the given edge.

The Start parameter to our interpreter sets the initial input to the neurons
in the network. If, for instance, the example network is initated with Start =
[1,1,0], nodes A and B would fire in the first time step, but node C would not.
In the second time step only node C would fire. In the third step only node A
would fire. After this, none of the nodes would fire again.

Given a static network, a static choice of output neuron and a static time
limit, we would expect partial evaluation to be able to produce a residual func-
tion i nt(Start) consisting of one large case-structure. The residual function
represents a compilation of the given program into Erlang.

5.5 Discussion

Modelling the unknown Partial evaluation is usually set in a situation where
we have some of the information needed to do a computation. I.e. we can split the
needed information into the “known” and the “unknown”.

In sequential languages “the unknown” is just dynamic input. This reflects a
situation where the context is a system that may call your source program with
different values appearing in place of the dynamic parameters. That’s the only
way external systems can interact with your source code. The static parameters
reflect limitations in those interactions.

The situation may be different in a concurrent system. We might want the spe-
cialized code to interact with unknown processes. Instead of just calling a residual
function, the environment may want to exchange messages with a process exe-
cuting the residual code. This is a new kind of “unknown”, and it complicates

5. Towards partial evaluation of Erlang

80

i nt(Network, Start, Tine, Qutput) ->
Di ctionary = net_spawn(Network),
broadcast (Di ctionary, Di ctionary),
start(Start, Dictionary),
[oop(Tine, Di ctionary, | ookup(Qutput, Dictionary)).
net _spawn(Network) ->
case Network of
(1 ->1[];
[{Nane, Threshol d, Synapses} | Rest] ->
[{Nane, spawn(neuron_init, [Nane, Threshol d, Synapses]) }|
net _spawn(Rest)]
end.
broadcast (Di ctionary, Msg) ->
case Dictionary of
(1 ->1[1];
[{Name, Pi d}| Rest] ->
Pid! Mg,
broadcast (Rest, Msg)
end.
start(Start,Dictionary) ->
case Dictionary of
(] ->1[1;
[{Name, Pid}| Di ct Rest] ->
[Input|StartRest] = Start,
Pid ! Input,
start(StartRest, Di ct Rest)
end.
| ookup(Nane, Di ctionary) ->
case Dictionary of
[{Nane, Pi d} | Rest] -> Pid;
[Oher | Rest] -> | ookup(Nane, Rest)
end.
[oop(Tine, Dictionary, Qutput) ->
broadcast (Dictionary, {step,self()}),
Msg = get_all (Dictionary, Qutput),
case Time of
0 -> Msg;
N -> loop(N-1, Dictionary, Qut put)
end.

Figure 5.7: Simulation of a recurrent neural network, page 1.

5. Towards partial evaluation of Erlang

81

get _all(Dictionary, Qutput) ->
case Dictionary of

(] ->11;
[Neuron| Rest] ->

receive
{Qutput, N} ->
get _all (Rest, Qutput),
N
O her -> get_all (Rest, Qut put)
end

end.
neuron_i ni t (Nare, Thr eshol d, Synapses) ->
receive Dictionary ->
NewSynapses = transl at e(Synapses, Di ctionary),
neur on(0, Thr eshol d, NewSynapses)
end.
transl ate(Neurons, Di ctionary) ->
case Neurons of
(] ->1[1;
[{Nare, W} | Rest] ->
[{I ookup(Nare, Di ctionary), W} | translate(Rest,Dictionary)]
end.
neuron(| nput, Threshol d, Neurons) ->
receive
{step, Parent} ->
case (Input > Threshol d) of
true -> propagat e(Neurons),
Parent ! {self(),1};
_ -> propagate([]),
Parent ! {self(), 0}
end,
neur on(0, Thr eshol d, Neur ons) ;
N -> neuron(| nput +N, Threshol d, Neur ons)
end.
propagat e(Neurons) ->
case Neurons of
(1 ->1[1;
[{Pid, W}|Rest] ->
Pid! W,
propagat e(Rest)
end.

Figure 5.8: Simulation of a recurrent neural network, page 2.

5. Towards partial evaluation of Erlang 82

[{nodeA 0.1, [{nodeB, 0. 1}, {nodeC, 0. 5}] },
{nodeB, 0. 9, [{nodeC, 0.5}]},
{nodeC, 0. 8, [{nodeA, 0.5}]}

]

Figure 5.9: A small recurrent neural network, illustrated graphically and coded as
input to our simulator.

specialization. In particular, if unknown processes will have access to the ID of a
process that executes residual code, we must residualize all receive expressions, as
we cannot statically know which messages will be matched by the specified pat-
tern (even if that pattern is static). Unknown processes could dynamically insert
values in a process’s inbox.

Our examples The above examples focus on the possibility of fusing a client
and a server at specialization-time, leaving only the client present at run-time.

The examples were in fact chosen to demonstrate cases where the “unknown”
is of the classical, simple kind: in each case, a client function is called and we ask
for its return value. In particular, the caller of the client does not send messages to
the code being specialized or expect the client to send messages back. Apart from
call parameters and return values, all communication performed is internal to the
code we want to specialize. And even if the server persists, as the database server
in Figure 5.2, all references to it (i.e. all copies of its process ID) are discarded
when the client function returns.

This was reflected in our semantical deductions. Recall for instance the obser-

5. Towards partial evaluation of Erlang 83

vation regarding our non-trivial database client, we observed VYvav/3Pyy:

(p: X =start(v), E)||stacko(L)||inboxy()|letherp() —*
new p’ P||{p: {V'/X}E)||stacko(L)||inboxy()|ethery()

A

(p: X = start_spec(v), E)||stackp(L)|linboxy()||etherp() —*
(p:{V//X}E)|Istackp(L)l|inboxy()[|etherp()

Notice the following:

e We assume the client process’s inbox and ether to be empty in both cases.
If they were not, the messages in them would interfere with the static client-
server communication.

¢ Inthe unspecialized version, there can be no external references to the server
process. That is, no matter which context you insert the final state into, the
process ID p’ cannot be captured. Only the server itself appears under the
binding of p’.

The first item has as consequence that we may statically know the contents of
the inbox. This allows us to specialize the source code without residualizing all
receive expressions. The second item has as consequence that after specialization,
the server does not need to be present at run-time. It is not hard to see that when

P =newp’ ((p': X = receiveM, E)||stack (L)|/inboxy () ||ethery())
then P is really blocked in any context, i.e.

PP’ Q
<~
Q=P|P" A P —P"

Correctness of Erlang partial evaluation A program transformation like par-
tial evaluation is expected to be meaning-preserving, i.e. not change the meaning
of a program during transformation. So before we design partial evaluator we
should make more clear what the term meaning-preserving amounts to.

In ordinary partial evaluation, the specification of “meaning-preserving” is like

this:
vp,s,d.[[spec](p,s)](d) = [p](s.d)

where [[-]] defines the (denotational) semantics of programs. For an operational
semantics we would get a similiar definition: when spec applied to (p,s) yields

5. Towards partial evaluation of Erlang 84

ps we must always have that pe applied to d evaluates to the same value as p
applied to (s,d) does.

For a concurrent program things may be more complicated. Concurrency in-
troduces inherent nondeterminism. Concurrency also means that nontermination
plays a different role. In a sequential program nontermination is considered un-
desirable. In concurrent programs — for example in servers — termination may be
very undesirable. The whole point of a server is for it to keep running and answer
requests.

We therefore suggest a definition of correct specialization that is inspired by
the concept of simulation (see e.g. [Mil99]).

Definition 1. Let ' be a set of function definitions such that f is defined as a
N-ary function in I". We define

Returns r(vy,...,vn) = {v | 3P : InitialState(p, f(v1,...,VN) —f
{p:v)|Istacko ()P }

Definition 2. Let " define f as an n+m-ary function and I’ define f’ as an m-ary
function. We say that (f/,I"") specializes (f,I") with respect to values vi, ..., Vq
when the following two properties hold for all v, ..., vy

Returng /(Vy,...,Vm) € Returng r(Va,...,Vn,Vi,- -, V) (5.1)

Returng r(Vy,....Vm) =0 = Return¢ r(Vy,...,Vn,V4,...,V) =0 (5.2)
This definition reflects the common simplicity of our examples:

e It does not discern between looping and blocked processes (both result in
an empty Return set).

e It does not say anything about functions that return new process IDs (this
also results in an empty Return set).

5.6 Related work on partial evaluation

In this section we briefly review the papers that seem most relevant to the design of
an Erlang PE. While no one has constructed a partial evaluator for Erlang, people
have considered languages with related issues.

There have also been papers on different optimizations of Erlang, but we have
not found any that address matters that are essential to the design of a partial
evaluator.

5. Towards partial evaluation of Erlang 85

Online PE and its correctness Hosoya et al. ([HKY96]) define an online par-
tial evaluator for a subset of the concurrent language HACL. Their focus is on
providing a partial evaluator that is provably correct.

The language is a simple, functional language with a syntax akin to the one we
introduced for processes in Section 4.2. HACL processes do not have identifiers;
they communicate through named channels as in the 1t calculus. Recursion is
implemented in a standard way and not by means of replication.

The meaning of a process is specified by an operational semantics defining a
relation of the form

r-P—reP

where [is a set of function definitions and P and P’ are processes. There are no
actions associated with the relation. Processes are subject to a structural congru-
ence like the one in Figure 4.5.

Partial evaluation is defined by a relation ~» which is also of the form

F>P~ TP

A pair (I >Pp) can be specialized by the partial evaluator by putting P in a static
context Cg[-] and applying ~»:

>Cs[Po] ~* T'>Py

The specialization P; can then be applied by putting it in a dynamic context and
executing the resulting program:

M>Cqy[P1] ~ -+

The PE can handle partially static data structures and it removes communication
that can be performed at specialization time. This means that it also may remove
some nondeterminism in the input program.

It is clear that bisimulation cannot define correctness of a transformation that
reduces nondeterminism. Hosoya et al. base their correctness definition on the
notion of barb-agreed quasi-congruence. A barb of a process P is a channel that
the context of P can communicate with P on. The paper discusses the finer issues
of choosing a barb-based relation that expresses the right kind of correctness.

PE Techniques for Concurrent Programs Marinescu et al. ([MG97]) present
an offline partial evaluator for a variation of CSP (Concurrent Sequential Pro-
cesses). They prove the correctness of the partial evaluator and discuss a number
of practical issues.

The language has a fairly complex syntax. The authors use the term thread
to denote a sequential unit of execution to avoid confusion with Milner’s use of

5. Towards partial evaluation of Erlang 86

the term process. A thread is a sequence of assignments, send operations, re-
ceive operations, thread spawns and guarded commands; recursive threads are not
allowed. A given program has a fixed number of communication channels. Com-
munication along a channel is synchronous and unidirectional. The semantics is
given by an structural operational semantics, defining relation

shg
where S,S C COM x ENV
and A € {a opv | a € Channels, op € {?,!} v € Values}

in 24 rules. The set COM contains all sequences of commands, ENV contains all
environments (mappings from variables to values).

The binding-time analysis analyzes expressions, channels, program points,
commands and guarded commands. In a given program, each syntactical instance
of one of these entities is classified as either static or dynamic. Specialization is
defined using a new relation (defined by an operational semantics) that resembles
the semantical relation but also specifies the residual code generated with each
step taken.

The correctness definition is quite different from the one in [HKY96]. The
authors define a domain of meanings of programs, each meaning being an ob-
servable trace (ways in which the context can interact with the program) and a
possible end-configuration (o if the program is nonterminating). Correctness is
defined using a relation = on these meanings.

Self-applicable partial evaluation for Ttcalculus Gengler and Martel ([GM96])
define a self-applicable offline partial evaluator for asynchronous 1t calculus and
prove its correctness.

The specialization is performed by an extended self-interpreter in the 1t cal-
culus. The authors show how to encode Teprocesses into the 1t calculus itself
and write a self-interpreter Eval based on this encoding. The encoding is then
extended to two-level processes, and Eval is extended appropriately to a partial
evaluator Pev. When Pev is applied to a two-level T-process P, it yields a residual
process R which is weak reduction equivalent to P (i.e. they are weakly bisimilar
wrt. reduction).

The two-level terms that are input to Pev are (as is usual) produced by a
binding-time analysis. The authors define a relation

MFP:w

using a simple rule system. P is an source (one-level) process and w is a two-level
annotated version of P. The I is called the BTA assumption. The assumption is
itself a term in the Ttcalculus.

5. Towards partial evaluation of Erlang 87

In general terms, I = P : w can be read as: “P may be annotated w if all static
communications in w are counteracted (reduced by) by I'”. The annotated version
w of a process P presented to Pev should be satisfy

FrFP:wAll =0

i.e. its assumption should be weakly bisimilar to the zero process. The BTA as-
sumptions serve to match static communications in different parts of the source
process P.

Partial Evaluation of Concurrent Programs Martel and Gengler also described
an offline PE for Concurrent ML (in [MGO01]). Concurrent ML is like synchronous
1t calculus without nondeterministic choice and replication but with higher-order
functions and recursive definitions.

The specialization is performed by a denotational semantics on two-level terms.
Static expressions are reduced, while the semantics of dynamic expressions is de-
fined using external code-building constructors. The two-level expressions are
produced by a BTA described in Martel’s Ph.d. thesis ([Mar00b]). This BTA uses
the result of a control-flow analysis defined in [MGO00]. The control-flow analysis
“builds a reduced product automaton, which [...] describes an approximation of
all possible interleavings of the program” ([MGO01], page 506). The paper [MGO01]
does not discuss correctness criteria but demonstrates some experimental results.

5.7 Conclusion

This chapter has demonstrated how partial evaluation might be useful for the Er-
lang language. We gave a number of Erlang programs and discussed their special-
ization. Based on these discussions, we proposed a theoretical definition of correct
specialization in Erlang. We also reviewed related work on partial evaluation of
other concurrent languages.

There is obviously more work to be done in this area. An actual partial evalu-
ator should be written, and there are still many design issues to settle, e.g. should
the system be online of offline, should it handle partially static data structures,
and does our focus on client-server fusion limit the usability of such a system too
much?

Some of these questions may be answered, if one or more of the related sys-
tems reviewed in Section 5.6 can be applied in an Erlang setting. But due to the
essential differences between concurrency paradigms, such a reapplication will
not be not trivial.

6 - Offline Partial Evaluation can be
as Accurate as Online Partial
Evaluation

In this chapter we show that the accuracy of online partial evaluation, or poly-
variant specialization based on constant propagation, can be simulated by offline
partial evaluation using a maximally polyvariant binding-time analysis. We point
out that, while their accuracy is the same, online partial evaluation offers better op-
portunities for powerful generalization strategies. Our results are presented using
a flowchart language with recursive procedures.

6.1 Introduction

Partial evaluation [JGS93] is a well-known technique for program specialization
based on aggressive constant propagation and extensive call unfolding. Strate-
gies for partial evaluation can be categorized as online or offline depending on
whether they take reduction decisions during or before the transformation. The
latter utilize a static analysis called binding-time analysis to take reduction deci-
sions (BTA) [JSS85]. The benefits of online versus offline partial evaluation have
been discussed extensively.

The first partial evaluators were online (e.g., [Fut71, CL73, BHOS76, Ers77]).
The offline strategy was originally introduced [JSS85, JSS89] to overcome dif-
ficulties associated with self-application of partial evaluators. The offline strat-
egy has proven to be very effective in handling complex language features and
combines well with other program analyses (such as pointer analysis [And93,
GMS99]). Partial evaluation systems for languages like C [And94, CHNT96],
Fortran [KKZG95] and Java [MYO01, Sch01] have been implemented based on
offline techniques. When comparing these two approaches, technical and prag-
matic issues can be considered, such as efficiency of the transformation and ease
of use. We disregard pragmatic aspects of partial evaluation and focus entirely on
the accuracy of the transformation.

We make use of the clear and instructive presentation of partial evaluation [Hat99]
and extend the flowchart language with recursive procedures. Flowchart lan-

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 89

guages are a classical means to study the essence of partial evaluation (e.g., [Bul84,
Jon88, GJ91, Hat99]). They are small enough to allow a clean semantics presen-
tation, while being rich enough to examine a multitude of issues that occur when
specializing more realistic languages.

Beside partial evaluation [JGS93], which is based on constant propagation,
there exist other, powerful specialization techniques based on unification, such
as supercompilation [Tur86] and partial deduction [LS91], or theorem proving,
such as generalized partial computation [FN88] and the specialization method
in [CL73], which we will not consider in this paper (for a detailed comparison
see [GK93, GS94, GS96, SGJ96]).

6.1.1 Anecdotal Evidence

Anecdotal evidence is usually given in the literature discussing the accuracy of
partial evaluation [CD91b, Mey91, WCRS91]. Results produced by one system
are compared with those produced by another system. Such comparisons are often
influenced by subjective design choices and do not always exhibit fundamental
differences in the techniques.

The following example is akin to the ones frequently used to illustrate the ben-
efits of online partial evaluation. The program fragment consists of a conditional
case which, depending on the outcome of the test s > 0, passes control either to
the block labeled sets or setd. In these two blocks, variable x is updated using
the value of s or d, respectively. In both cases, execution resumes at block cont .
This example shows a typical control flow in an imperative language.

CASE (s > 0) sets setd
sets: x :=s +1

GOTO cont
setd: x :=d + 2

@OTO cont
cont: PRINT (x + 3)

Let d be dynamic. Given static value s=1, an online partial evaluator typically
reduces this program fragment to one statement:

PRINT (5)

The static test s > 0 was decided, and the output value 5 was computed. Most
offline partial evaluators (e.g., [JSS89, BD91, And94, HN99]) cannot handle this
situation and will typically produce

X =2
PRINT (x + 3)

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 90

Even though the test was decided, the output value was not computed. This is
due to the monovariant (uniform, pointwise) BTA used in these offline partial
evaluators.! The analysis takes a safe assumption regarding the availability of the
resulting value. Indeed, this value can be either static or dynamic depending on
the value of s which is not available to the BTA.

Clearly, the online partial evaluator performs more static computations (re-
duction to 5) because it can take advantage of the fact that s=1 at specialization
time, while the offline partial evaluator has made a safe approximation at program
point cont beforehand and residualized the results of both arms. Knowing the
value of x, the online partial evaluation may perform further reductions in the pro-
gram, while the offline partial evaluator will not be able to take advantage of this
situation.

But this is not the case with the offline partial evaluator defined in this paper.
A polyvariant BTA will allow the possibility of not residualizing the continuation,
and thus reduce the above to one statement as the online system does.

6.1.2 Contribution

The purpose of this paper is to put the comparison of online and offline accu-
racy on a solid theoretical basis by examining the functional (lack of) difference
between online and offline partial evaluation.

As this paper investigates the limits of accuracy in partial evaluation, we in-
troduce an online partial evaluator that has no intentional loss of precision and
thus is as accurate as possible. We then show that an offline strategy, together
with a maximally polyvariant BTA [CGLO00], has the same accuracy in finding
static information as our online system. This is contrary to the common belief
that a chief disadvantage of offline strategies is the imprecision caused by the
BTA which guides the offline specialization process. The theoretical benefit of an
online strategy is therefore not that it is more precise than an offline strategy, but
that it can make better decisions regarding when to generalize its state, i.e., when
to be imprecise.

It is crucial to our results that the BTA used is maximally polyvariant. This is
in contrast to the uniform divisions used by most offline systems:

... the same division is valid at all program points. Call such a division
uniform. This assumption, which simplifies matters without being essen-
tial, often holds in practice although counterexamples may easily be found
(...) [JGS93, page 77]

1The granularity of BTA is discussed in [JGS93, Section 4.9]; see also [Con93, HDL98,
CGLO00].

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 91

Many systems in practice work well using monovariant BTA. But our results
show that choosing monovariance has serious implications for the precision of
the analysis, indicating that the designer of an offline partial evaluator should not
choose to implement a BTA without considerations. This supports the earlier the-
sis [Con93, CGLO00] that the precision of the BTA should be parameterized rather
than hard-coded at implementation time (see also the design regrets in [Mar00a]).
An example is the parametrization that was done in [CGLOO].

It is well-known that the more information a program transformer propagates,
the more it will suffer from code explosion and non-termination, and the greater
the need will be for a controlled loss of information. Our maximally polyvariant
BTA is not useful in PE practice without external analyses to handle these issues.
A discussion of termination issues in partial evaluation can be found in [JG02].
Similarly, program specialization techniques capturing more information, such as
techniques utilizing unification or theorem proving, require more sophisticated
termination strategies.

6.1.3 Outline

In Section 6.2, we define a flowchart language. Section 6.3 lays out the frame-
work for defining partial evaluation of that language. In Sections 6.4 and 6.5, we
present two partial evaluation systems. Section 6.6 describes block specialization
(code generation). Our main technical result — the proof that these two partial
evaluators are functionally equivalent — is given in Section 6.7. This is followed
by an example illustrating our result. In Section 6.9, we discuss generalization and
what offline systems essentially cannot do. Section 6.10 discusses related work
and Section 6.11 concludes.

We assume the reader is familiar with the basic notions of partial evaluation (a
good source is [Hat99] or [JGS93, Part 11]).

6.2 A Flowchart Language with Procedures

This section presents the syntax and semantics of a simple flowchart language.
The basic aspects of computation in a flowchart language are store transformations
by assignments and control transfers by jumps.

6.2.1 Syntax

Figure 6.1 defines the syntax of a flowchart language, F, with assignments, jumps,
and recursive procedures. An F-program is a sequence of labelled basic blocks.
A basic block contains either an assignment and a jump, a procedure call, or a

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 92

Grammar p = bt
b = l:aj
| l:calll
| l:returnxl
a = x:=o(x)
j = caset(x*) It
Syntax Domains
p € Programs j € Jumps 0 € Operators
b € Basic-Blocks I € Labels t € Tests
a € Assignments X € \Variables

Figure 6.1: Syntax of the flowchart language with procedures

return statement. We denote by Basic-Blocks[p] the set of labeled basic blocks in
program p. An example program is shown in Figure 6.2.

An assignment x := o(x*) contains the application of an n-ary operator o to
arguments x*. For simplicity, we allow only variables as arguments. Nested ex-
pressions can be built using several assignments. Constants are represented by
nullary operators. A jump case t(x*) I contains the application of an n-ary test
t to arguments x* and labels 1. Control will be transferred to one of the labels
inlt.

A procedure call call I’ I” transfers control to a procedure whose entry block
is labeled I’ and copies the whole store. When the procedure returns, control is
transferred to label 1” (possibly offset by the label in the return statement; see
below) and the value of one specified variable is copied back into the original
store. We do not demand that there necessarily be one distinguished entry point
of a procedure; one may call to any basic block, from which execution will then
proceed until a return statement is met.

A return statement return x | returns the value of variable x. The return state-
ment also includes an offset label | which is “added” to the return label given in
the procedure call (for simplicity, this offset is also a label). The offset makes it
easy to return to different basic blocks in the caller. This will be exploited when
we generate residual programs. The concatenation of return label and offset is
defined in Section 6.2.2. The special label nil € Labels is used as the empty offset.
We assume that these concatenated target labels all exist in the program. Because
of this, and because the number of labels in a program is finite, there will only be
finitely many different labels put on the call stack.

To denote syntactic objects of a given F-program p, we write Variables|p],
Basic-Blocks[p], etc.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 93

-

i = 0) done test
-1

a =1) setz |oop

| oop:

test:

g ge

)]

Inrm iomnu
- =~ o

set z:

N

QOTO | 0op
done: z :=z + 1

QOTO retn
retn: RETURN z end

Figure 6.2: Example program monitor-loop (with syntactic sugar)

A program p is represented by a block map I' that maps label | into the basic
block labeled I in p. We often refer to a program with block map I simply as
program I", and to a basic block labeled I as block I. The first basic block in a
program carries the initial label. We assume that every F-program p we consider
is well-formed. The definition demands an independence of assignment and jump
inside a basic block. It is not hard to transform any program to one that does not
violate this demand. This constraint simplifies the semantics definitions.

Definition 3. An F-program p is well-formed if,
in every block of p containing an assignment and a jJump, the assigned variable
X is not part of the condition of the jump.

Example programs in this paper are written using syntactic sugar. We use infix
notation for binary operators, and write goto | instead of case tyue() I .

Example 1. Program monitor-loop (Figure 6.2) contains one loop controlled by
induction variablei . In each iteration, variable a is decremented by i and the new
value is tested. If a equals 1, then the current value of i is saved in z. When the
loop terminates, z is incremented by 1. The program has no particular purpose.

6.2.2 Semantics

The evaluation of a program proceeds sequentially from one block to another.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 94

Assignment Vi.o(xi)=Vi [o]](vVi...va) =V
O F X :=0(X1...Xn) = O[X+—>V]
Jump
Vi.o(xi) =vi [t](vi...Vn,l1...1m) =1
ok caset(x1...xn) l1...Im =1
Basic block

rMy=aj okta=d okj=/I
Hr (I,o):r =i (I',0'):ir

rd)y=calll”
Hr (1,0):r =ine (I,0):(1",0):r

r{d)=returnx!” o’ =ad[x—a(x)]
Hr (1,0):(I,0")ir =i (I"-17,0") i1

Semantic Values

r € Stacks = (Labels x Stores)*

I € Labels = Block-Labels U {nil}

o € Stores = Variables— Values

I € Block-Maps = Block-Labels— Basic-Blocks

Figure 6.3: Operational semantics of flowchart language with procedures

A computational state s € States represents the current state of execution of a
procedure. A state is a pair (I,0) that contains label | of the current basic block
and the values of the program’s variables in store 0. A stack of states r € Stacks
represents the current state of execution of a program.

At a procedure call, the current store is paired with the return label, pushed
on the call stack, and control is shifted to the called label. On return, we observe
the return offset label I’ and the value v of the return variable x. The state (I,0) is
popped off the call stack and the new state will be (I-1",a[x—V]).

Primitives

The semantics is defined wrt the semantics of Operators and Tests.

We access the semantics of these by means of an operator [-]] that works on
both operator names and test names. Each operator name is mapped to a function
from value tuples to values e.g.:

[o]l(v1i...vp) =V

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 95

Each test name is mapped to a function from value/label tuples to labels e.qg.:

ﬂt]](vl...vn, l1... Im) =

Of course, we assume that the test always returns one of its input labels, | €
{l1,...,I;m}, and that the test does not depend on those labels.?

Memory and Control

A store 0 € Stores is a partial function from Variables to Values. We write o[x+— V|
to denote the store that is just like o except that variable x maps to value v.3 By
o|x we denote the store that is just like o except that variable x is not in the domain
of 0. We regard labels as strings, and use an auxiliary function, -, to concatenate
labels (e.g., cont -abc = cont abc). The empty label, nil, in a return-statement is
syntactic sugar for the empty string, €.

Evaluation

The rules in Figure 6.3 define a transition relation — . between stacks of states.
A judgement H-r r —in I’ represents a transition from a stack r to a stack r’ in
a program I'. We omit ' when it is obvious from the context, and write —jnt
in infix notation. The transitive closure is denoted by r —, r’. The rules are
straightforward and should not need particular explanation.

Definition 4. Let p be a program represented by a block map I, let ag be an initial
store, and let lp be an initial label for p, then program evaluation [[]] is defined as
follows:

oo[x—a(x)] if (lo,00):€ =iy (1,0):€ AT(l) =returnx I’
undefined otherwise.

[p](lo,00) & {

6.3 Partial Evaluation

From an abstract view, a partial evaluator performs a three-step process [Jon88,
Hat99]:

1. Collection of all reachable configurations.
2. Block specialization and code generation.

3. Post-processing (e.g., transition compression).

2).e. if [t] (V1---Vi, 11 Im) = Ii then [t] (Va... Vo, I... 15)) = Il for any choice of 1}... I/,
3We use this notation even if x was already defined in o.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 96

The first step determines the set of reachable configurations given an initial
configuration. The second step incorporates the values of the known variables into
the program points and generates specialized blocks. The third step eliminates
redundant code, e.g., jumps caused by blocks chained by one-way jumps. This
last step concerns post-processing a residual program. It is identical for online
and offline partial evaluation and we will not consider it further.

We focus on the first two steps of which the collection of reachable configu-
rations is the most important step during partial evaluation, while block special-
ization is straightforward once the set of reachable configurations is computed. In
practice, both steps are often carried out in a single phase.

6.3.1 Collecting Reachable Configurations
Configurations

The essential difference between interpretation and partial evaluation is that a par-
tial evaluator operates over a partial store in which not all values of the program
variables are known. To keep track of known (static) and unknown (dynamic)
values, we use a separate binding-time store (bt-store) 3 which maps variables to
static and dynamic tags (S, D), telling us which values are available in the store
and which are not. A variable is either static or dynamic; there is no partially static
data. A bt-store is also called division [Jon88] since it divides the set of program
variables into two categories: Static and dynamic.

Formally, a partial evaluation store (pe-store) is a pair (3, 0) of bt-store 3 and
store o such that

e If a variable x has a static value v, then B(x) = S and o(x) = v.
e If a variable x has a dynamic value, then 3(x) = D and o(x) is undefined.

In the following sections, we shall introduce relations —on and — . Rather
than relating stacks of states (like —int), these will relate stacks of configurations.
A configuration (1, (3, 0)) consists of a label | and a pe-store (3, 0). A configura-
tion represents a set of states that contains all states in which static variables are
fixed to their static values.

Reachability

Given an initial configuration stack, the first step of partial evaluation is to com-
pute the set of all reachable configurations, called Poly. Intuitively, to compute
Poly, we have to follow all possible computation traces through a program. Let
lp be the initial label and let (Bo,00) be the initial pe-store. The initial stack is

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 97

(lo, (Bo,00)) : € and we consider a configuration (I, ([3,0)) reachable if for some
r we have (lo, (Bo,00)) :€ —¢n (1,(B,0)):r (in the offline case substitute —on by
—off). Poly is the set of top frames of the stacks in the closure. For online partial
evaluation, we define Poly,,,, and for offline partial evaluation Poly. These two
sets are central to our comparison.

Definition 5.
Polygn, = { (1,(B,0)) | (lo, (Bo;00)):& —on (I,(B,0)):r}
Polyy = { (I,(B,0)) | (lo, (Bo,00)) :€ —gs (I,(B,0)):r}

The order in which configurations are collected in Poly is not essential for our
discussion (depth-first, breadth-first). Also, Poly may or may not be infinite. A
partial evaluator terminates if Poly is finite. This is the case when the static values
only vary finitely during all computations in which the static input is fixed and
the dynamic input varies freely. In most of the partial evaluation literature, it is
considered acceptable for a partial evaluator to loop on some initial configurations.
The two partial evaluators defined in this paper are no exception.

In Section 6.7, we prove that our partial evaluators are functionally equivalent:
The residual programs they generate are identical. This means that the binding-
time analysis of our offline partial evaluator achieves the same accuracy as our
online partial evaluator.

For any program I and any call stacks r,r’ the following holds:
Frr—=onl’ < bFrr -l

6.3.2 Block Specialization

Block specialization produces the residual program that is the result of the spe-
cialization process. Each basic block in the residual program corresponds to some
basic block of the source program. We construct the residual program block by
customizing the source program block wrt a set of static values. The block spe-
cialization builds directly on top of the collection phase: for each configuration
(I,(B,0)) € Poly we must specialize the block labelled | with the static values in
0.

In our system, block specialization is orthogonal to the use of an online or
offline strategy for computing Poly. This lets us separate the construction of Poly
from block specialization, thus greatly simplifying our comparison.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 98

Assignment Vi.B(x)=S Vi.ox)=Vvi [0](V1...vn) =V
(B,0) Fon X := 0(X1...Xn) = (B[x+> S],0[x—V])

di. B(Xi) =D
(B,0) Fon X := 0(X1...Xn) = (B[x— D], 0lx)

Jump
Vi.B(x)=S Vi.o()=Vi [t](V1...Vn,l1.e.lm) =1
(B,0) Fon caset(x1...-Xn) l1--.Im =1

Ji.B(xi)=D 1€{ly,...,Im}
(B,0) Fon caset(x1..-Xp) l1--.Im =1

Basic block
r=aj (B9)tma=(@,0) B, Fomj=1I
Fr (I,(B,c)):r —ron (Ila(Bl70,)):r

r(1)=call I"l”
Fr (1,(B,0)):r —on (I',(B,0)):(I",(B,0)):r

D
S

r()=returnx!” p"'=px—pX)] o= g:|[;(<»—>0(X)] :;Egg

Fr (|,(B,G)) : (|,7(81701)) T —on (II'III7(B”7GH)):r

Semantic Values

r € Stacks = (Labels x (Bt-Stores x Stores))*
I € Labels = Block-Labels U {nil}

B € Bt-Stores = \Variables— Bt-Values

o € Stores = Variables— Values

I € Block-Maps = Block-Labels— Basic-Blocks

Figure 6.4: Online specialization phase: relation — ¢,

6.4 Online Collection Phase

We will now formalize the online collection phase using an operational semantics
that closely follows the structure of the interpreter (Figure 6.3).

The evaluation of operators (and tests) now depends on the bt-store 3. If all
arguments of an operator are static, the operator is evaluated and yields a value;
otherwise, the operator cannot be evaluated and the result becomes undefined.
The task of distinguishing the constructs to be evaluated from those that cannot
be evaluated is performed online as the collection is carried out. In offline partial
evaluation, this task is carried out offline in a separate phase before collection.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 99

Figure 6.4 defines a transition relation — o, between stacks of configurations.
A judgement i r —on I’ represents a transition from a stack r to a stack r’ in a
program I". The rules for handling assignments and jumps are simple.

The rule for assignment-jump basic blocks selects an arbitrary label among the
labels returned by the jump. This enables the control to be transferred to any label
when the test in a jump is dynamic. This leads to the situation of branching traces
in partial evaluation (all possible control flows have to be considered). Note that
the rule assumes that all programs are well-formed, as described in Definition 3.

The rules for call and return mimic the rules of the original semantics, only in
this case, a return must transfer a bt-value and update a partial store rather than
just copying a single value.

Example 2. Consider the program ‘monitor-loop’ from Figure 6.2 and an initial
pe-store where i =2, a=4, and z is dynamic. The set of configurations computed
by online partial evaluation is

i —S,a—S,z—D],[i —2,a—4]))

i —S,a—S,z—D],[i »2,a—2))),

| oop, ([i —S,a—S,z—D],[i —1,a—2])),
], 1))

], 1)

POIYOn:{ [
|
[—=S,a—S,z—D],[i —»1,a—1])),
[
[
[
[

bl

)
)
)
)

i —S,a—S,z—D],[i —»0,a—1))),
| oop, ([i —S,a—S,z+—S],[i —=0,a—1,2—0])),
i —S,a—S,z—S],[i »0,a—~1,z—0])),
i —S,a—S,z—8],[i »0,a—1,z—1])) }

6.5 Offline Collection Phase

In offline partial evaluation, the task of distinguishing constructs to be evaluated
from those that cannot be evaluated at specialization time is carried out in a sepa-
rate step, called binding-time analysis (BTA), before the offline collection phase.
Based on this information, the offline collection phase determines whether a con-
struct is to be evaluated or not. The result of BTA is traditionally returned in the
form of an annotated version of the source program. We choose to return it simply
as a finite relation on stacks (see below).

Figure 6.5 defines a transition relation — o between stacks of configurations.
A judgement Fr r —q I’ represents a transition from a stack r to a stack r’
in a program . The rules closely follow the corresponding rules in the online
collection phase; indeed the two rules for jumps are identical to the jump rules in
the online collection phase. The difference is that only store o is updated; there
is no calculation of a new bt-store. Instead, the first block rule makes use of the
bt-relation — 5 to determine the new bt-store B/. This relation uses stacks of
label/bt-store pairs. Thus, we use the following notation.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 100

Assignment Vi.B(xi)=S Vi.o(x)=Vv;i [o](Vi...vh) =V
(B,0) Foft X := 0(X1...Xn) = O[X—V]

di. B(Xi) =D
(B,0) Foif X :=0(X1...Xn) = Olx
Jump
Vi.B(x)=S Vi.ox)=vi [tJ(Vi---Vn,l1clm) =1
(B,0) Foir caset(xs...xn) l1...Im =1
Ji.Bxi)=D le€{l,...,Im}
(B,0) Foit caset(xi...xn) l1...Im =1
Basic block

r)=aj Borea=ac B0 krori=V (1,B):F = (I',B):F
I—r (Ia(BaG)):r —>off (|’,(B’,0’)):r

r() =call I'1”
Fr (I,(B,o)):r —?off (I’,(B,o)):(l”,(B,c)):r

D
S

r(l)=returnx1” Fr (1,8):(1,B):F —pm (I117,B"):F 0" = g:|[;(<n—>0(x)] :Iggg

Fr (l,(B,G)):(ll,(B/,O")):r —off (II'Illa(Bllaoll)):r

Semantic Values

r € Stacks = (Labels x (Bt-Stores x Stores))*
| € Labels = Block-Labels U {nil}

B € Bt-Stores = \Variables— Bt-Values

o € Stores = Variables— Values

I € Block-Maps = Block-Labels— Basic-Blocks

Figure 6.5: Offline collection phase: relation —

Definition 6. The “binding-time” version of a call stack is obtained using the
operator : (Labels x (Bt-Stores x Stores))* — (Labels x Bt-Stores)* that drops
the store component from a stack recursively by these two equations:

€ = ¢ and (I,(B,o)):r = (I,B):T

Note that the relation — is fixed to the maximally polyvariant BTA defined
below in Section 6.5.1. Our results only hold for this particular BTA.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 101

Assignment Vi.B(x) =S
B Fota X := 0(X1...Xn) = B[x+— 9]

di. B(Xi) =D
B Fpta X := 0(X1...Xn) = B[x— D]
Jump
le{ly,...;Im}
B Fpia caset(Xi... xn) l1...Im =1
Basic block

r=aj Btwaa=p PBruaj=V
Fr (LB):r =pa (I,B):r

r{)y=call'l”
Fr (LB):r =ua (I,B):(1",B):r

r(l)=returnx1” B"=px—P(x)]
Fr (LB):(V,B):r —=pa (I17,B"):r

Semantic Values

r € Stacks = (Labels x Bt-Stores)*

I € Labels = Block-Labels U {nil}

B € Bt-Stores = \Variables— Bt-Values

I € Block-Maps = Block-Labels— Basic-Blocks

Figure 6.6: Maximally polyvariant binding-time analysis: relation —pa

6.5.1 Maximally Polyvariant Binding-Time Analysis

The BTA does not use the static values in store . The BTA relies only on the static
and dynamic tags in bt-store (3 to determine the set of reachable bt-configurations.
A bt-configuration is a pair (I,) consisting of a label | and a bt-store f3.

Figure 6.6 defines a transition relation — 5 between stacks of bt-configurations.
A judgement Fr r —pa I represents a transition from a stack r to a stack r’ in a
program I". The rules extract the computation of the static and dynamic tags from
the online specialization phase (Figure 6.4). In fact, the only rules that determine a
new bt-store are the rules for assignments and returns. The jump rule has to return
all labels because there are no static values available to determine the outcome of
the test.

We can define the set of reachable bt-configurations as follows:

Definition 7.
Polypa = { (I,B) | (lo,Bo):€ —pta (1,B):r}

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 102

Set Polyy, is always finite because a program has finitely many program
points, finitely many variables, and there are finitely many bt-values. We shall
separate the set of reachable bt-configurations from the syntactic annotation of a
source program. (Traditionally, programs are annotated with the bt-information
obtained by the BTA for presenting it to the specialization phase, as well as to the
user. We use the relation as a “database’ to which the specialization phase refers.)

By comparing the rules with those in Figure 6.4, it is not hard to see that re-
lation —pia calculates the same bt-store 3’ for the block labelled | and bt-store
B as the online transition — ¢, would for the same block and the same bt-store
(this relation will be explored further in Section 6.7). The BTA is polyvariant be-
cause each block can be associated with multiple bt-stores. There is no merging or
generalization of bt-stores.* To express this fact, we call the bt-relation maximally
polyvariant [CGLOO] (short polymax). A distinguishing feature is that all program
points are handled in a polyvariant manner during the analysis, including assign-
ment blocks, procedure calls and returns. Existing monovariant and polyvariant
BTAs compromise on some or all of these points. The tradeoff for this precision
is that the number of different bt-stores the maximally polyvariant analysis must
handle may grow for each program point (in the worst case, exponentially: a bt-
store with n variables possibly has 2" different S/D patterns). Thus, the accuracy
of this BTA will clearly come at the expense of its efficiency.

A bt-configuration can be viewed as an abstraction of a configuration in par-
tial evaluation [Roma88] (it represents a set of pe-configurations). The following
relation holds for a maximally polyvariant BTA (see also Section 6.7).

Property 1.
{(Iaﬁ) ‘ (|7 (B? 0)) € POIyon} - POItha

Itis vital for an offline partial evaluator that the BTA used is congruent [Jon88].
In essence, this is a correctness criterion for BTAs. Our maximally polyvariant
BTA is congruent because any variable that depends on a dynamic value is itself
classified as dynamic.

Example 3. Consider again the program and initial pe-store of Example 2. If we
apply the maximally polyvariant BTA to these, we get

Polyy, = { (I oop,[i —S,a—S,z+— D)), (I oop,[i —S,a—S,z+—79)]),
(test,[i —S,a—S,z—D]), (test,[i —S,a—S,z—9]),
(setz,[i —S,a—S,z—D]), (setz,[i —S,a—S,z—79]),
(done,[i —S,a+S,z—D]), (done,[i —S,a+S,z—9)]),
(retn,[i —»S,a—S,z—D]), (retn,[i —»S,a—S,z—9]) }

4In contrast, most partial evaluators control the degree of polyvariance by merging several
bt-stores into one. This means that their rules for computing bt-configurations may be more con-
servative than their online counterpart.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 103

Using this information, it is not hard to see that, for this program and pe-store,
we have Poly,,, = Poly.

Example 4. A uniform BTA would associate at most one bt-store with each basic
block. In the cases where our BTA finds more than one, the uniform analysis
unifies bt-stores by generalization, i.e., turning appropriate variables dynamic.

In the situation of Example 2 a uniform BTA would likely return this set of
configurations:

Polynibta = { (1 00p, [i —S,a+—S,z— D]),
(test,[i —»S,a—S,z—D]),
(setz,[i —S,a—S,z—D]),
(done,[i —S,a+S,z— D]),
(retn,[i —»S,aS,z—D])

}

If we used such an analysis in our offline partial evaluator, the assignment z : =
i (whena=1andi = 1) could not be performed at specialization time, and we
would have that Poly,,, # Poly .

6.6 Block Specialization

We now move to the process of constructing the residual program. The reader
should note that this process is independent of whether the preceding collection
of reachable configurations was done by an online or offline strategy.

As mentioned in Section 6.3.2, the actual code of the residual program will
consist of specialized basic blocks of the source program. The main idea is to
produce a specialized basic block for each reachable state (1, (3,0)). This is done
by specializing block (1: a j) wrt the static values available in the pe-store (B, 0).

Since we have recursive procedures, the generation of residual labels is a bit
more involved. Let Ttrange over pe-stores, i.e., t= (3,0), and define proc(r) to
be the pe-store in the top configuration of stack r, i.e., proc((I’,1):r') = 1. Asa
special case, if the stack is empty, proc(€) is a unique “dummy” pe-store.

6.6.1 Labels in the Residual Program

Our system produces a unique residual block for each (I, 1) and 7 if the collection
phase encounters a stack (I,) :r where proc(r) = 1. We label the residual block
for (I,1) and T by a triple of the form 7¢-1-1t Part of that triple is the pe-store T
with which the procedure was called to which the block labeled | belongs and the
pe-store Ttwrt which that block is specialized. Together this achieves procedure
cloning: for each unique pe-store 7¢, a unique residual procedure is generated.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 104

Assignment
Vi.B(x)=S Vi.ox)=Vvi [o](V1...vn) =V
(1,(B,0)) :r Feg X := 0(X1... Xn) = X 1= 0y()
Ji.B(xi) =D
(1,(B,0)):r Feg X 1= 0(X1... Xn) => X 1= O(X1...Xn)
Jump

Vi.B(xi)=S (1,(B,0)):r =pe (I, TW):r
(1,(B,0)) :r Feg caset(X1... Xn) l1...Im = casetyne () proc(r)-lemi

Ji.Bx)=D VKk.(I,(B,0)):r =pe (I, TW):r
(1,(B,0)) :r beg caset(X1...Xn) l1...Im = case t(Xy...Xn) proc(r)-11-m ... proc(r)-lm-Tm

Basic block
rh=aj (I,mM:rkga=a (I,M:irkegj=j
Fr (I,1):r —¢g proc(r)-I-m: @ '

F(I) =call |1 |2
Fr (I, :r —¢g proc(r)-1-1e: call Tel¢-1t proc(r)-Io

r{)=returnx1” (I,m):r —pe (I',70):1
Fr (I, 1) :r —¢g proc(r)-I-mt: return x I”-10

Semantic Values

I € Labels = Block-Labels U {nil}

o € Stores = Variables— Values

B € Bt-Stores = Variables— Bt-Values

I € Block-Maps = Block-Labels— Basic-Blocks
T € Pe-Stores = Bt-Stores x Stores

Figure 6.7: Block specialization (the relation —pe is either —on OF —off)

This addition is technically necessary, but it also prevents, in some cases, the
sharing of blocks between different procedures. The two pe-stores, Ttand 17, are
contained in the top two configurations of the stack. The reader should still think
of the dot-operator as a concatenation of labels, only in the residual program,
pe-stores are (parts of) labels, too.

In the residual version of a procedure call, the return-label (i.e., the label to
proceed to after the procedure returns) will be a concatenation 17-1 of the first two
parts of our label triples. Although this is not a label of a block in the residual
program, it will not go wrong. This is because all procedure returns will use an

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 105

offset of the form I’-ttand when we define
(n’-l)-(l’-n) = n’-(l-l’)-n

the right-hand side of this equation will be the label of a block in the residual pro-
gram. A return-statement may give raise to several return-statements in a resid-
ual program if that statement is reachable by different pe-stores. Each return-
statement has a different offset depending on the pe-store by which it is reached.
Thus, each of them will return to a different block. We call this polyvariant
specialization of procedure exits. In traditional partial evaluators, specialization
of procedure entries is polyvariant, but the specialization of procedure exists is
monovariant. This can result in a loss of important static information when we re-
turn from a procedure. Our partial evaluators do not suffer from this information
loss. An example will be shown in Section 6.8.

6.6.2 Inference Rules for Code Generation

Figure 6.7 presents all rules for code generation. A judgement =r r —¢g b rep-
resents the generation of a basic block b given a configuration stack r and a pro-
gram I". The relation —pe is either —on Or —of, depending on which kind of
specializer we are generating code for.

To build a constant from a value v, we write the nullary operator oy(), where
[ov]|() = v. This operator is used to lift static values during code generation. It is
used when the operator o(x;...xn) on the right-hand side of an assignment can be
reduced to a value v. Similarly, a test that always selects the first label of a label
sequence is denoted by terue() and we have [[teue]] (1) = 1.

When a test t(x1...Xn) in a jump is static, then the test can be decided and we
generate an unconditional jJump inserting t..,e() as a test; otherwise, when the test
is dynamic, we generate a jump containing m new labels (1 < k < m). Thus, the
residual jump generated when the test is dynamic has the same number of labels
as the original jJump. When the test is static, the residual jump contains exactly
one label. It is equivalent to a goto-statement. Our relations — g, Or — 5 satisfy
these two properties (we also have 1 = ... = T, in the fourth rule of Figure 6.7).

The total residual program is the collection of basic blocks b such that Fr
I —cg b where (lo, (Bo,00)) € —pe T

6.6.3 The Residual Program

In what sense is a source program optimized after partial evaluation? As can be
seen from the rules, operators and tests are replaced by constants if they depend

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 106

Residual program: After postprocessing:

0_loop 0: a:=2 0 test 3: i :=0

GOTO 0_test_1 GOTO 0_| oop_5
0test 1. i :=1 0_loop 5 a:= 1— -
01 . GOT? 0loop_2 QOT0O 0_done_5
loop_2: a:=1

GOTO 0 test 3 0_done 5: z :=1
Otest 3 i :=0 GOTO 0_retn_6

G010 0_setz 4 0 retn 6: RETURN z end 7
0 setz 4. z:=0

GOr0 0_I oop_5
0 loop 5 a:=1

Q01O 0_done_5
0 done 5: z :=1

GOTO 0_retn_6

0 retn 6: RETURN z end_ 7

Figure 6.8: Residual program for monitor-loop (i =2, a=4, z=D)

only on static values; multi-way jumps are reduced to one-way jumps (i.e., uncon-
ditional jumps). Partial evaluation prunes unnecessary branches and specializes
each reachable block wrt each static store that is flowing into that block.

In practice, we also apply a technique of transition compression to eliminate
one-way transitions and inline constants. Dead variable elimination removes re-
dundant assignments. However, due to the simple syntax of our flowchart lan-
guage, these optimizations do not always make sense (arguments of operators
must be variables; assignments cannot be collected in a single basic block) and
to perform them effectively one would have to translate the programs to a less
restricted language.

Example 5. Figure 6.8 shows the residual program generated by the rules in
Figure 6.7 for program monitor-loop (Figure 6.2). Postprocessing can further
improve the residual program by eliminating assignments to dead variables and
compressing redundant jumps.

6.7 Equivalence of the Two Partial Evaluators

In this section, we shall prove the main technical result of this paper: That the
online and offline partial evaluators defined above are functionally equivalent.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 107

Hence, one cannot be said to be more accurate than the other. More precisely,
we shall prove the following:

Theorem 1. For any program I' and any call stacks r,r’ the following holds:

l_r r —>on I’/
<
Frr—or I’

The relations —on, —>off, and —pia are defined in Figures 6.4, 6.5, and 6.6, re-
spectively. Note that the result builds on the fact that we are using a maximally
polyvariant BTA (—pta) in the offline system (—f). As Example 4 illustrated,
the theorem would not be valid if we used a uniform BTA.

The theorem clearly holds when r is empty. If r is non-empty, letr = (1, (3, 0))
We shall prove the theorem by case analysis on the basic block labelled I. We ex-
amine each type of basic block that can be defined by I" (), viz., assignment block,
call block and return block. Each will be treated in its own subsection below.

6.7.1 Case: Assignment Block

In order to prove our theorem in this case, we observe that the offline transitions
for assignment blocks are defined by the conjunction of three conditions. The
following fact is just a rewritten version of the first basic block rule for offline
specialization:

Observation 1. For any program I, any labels I,I’, any bt-stores 3,3’ and any
stores 0,0’, leta and j be such that ' (I) = a j. Then the following holds for all r:

Fr (1, (B,0)):r —ai (I',(B,07)):r
—
(B,0)Fof a=0" A
(B,o) ot j= 1" A
Fro (LB):T —pa (I,3):T

The next three lemmata show that online transition implies each of these three
conditions, thus online transition implies offline transition.

Lemma 1. For any program I, any labels I, I’, any bt-stores 3,3’ and any stores
0,0, letaand j be such that I'(I) = a j. Then the following holds for all r:

|_r (Ia (Ba 0)) ‘I —on (II, (BI, 0’)) r
—
(Ba 0) |_Off a= OJ

' I,II

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 108

Proof. Assume kr (1,(B,0)):r —on (I',(B,0%)):r. By the first basic block rule
for online specialization, we must also have (3,0) Fona=- (B’,0’). Let a be given
by x := 0(X1...Xn). By the two assignment rules for -, We have one of two cases:

Case Vi.B(xi) = S| We conclude that o’ = o[x [[0]](0(X1)...0(Xn))] (which is
well-defined). Moreover, we see that the first assignment rule for o = applies
and yields (B, 0) Foff @ = 0’ with the same @'

Case di.B(xi) = D|We conclude that o’ = a]x. Moreover, we see that the second
assignment rule for o applies and yields (B, 0) Foif @ = 0’ with the same ¢’. [

Lemma 2. For any jump j, any bt-store (3, any store o and any label |, the follow-
ing holds:

(B,0) Fon j =1
=
(B,0) Foft j =1
Proof. Trivial, as the jump rules for online and offline specialization are exactly
the same. O

Lemma 3. For any program I, any labels I,1” such that [(1) = a j, any bt-stores
B,B’ and any stores g, ¢’, the following holds for all r:

Fr (1,(B,0)):r —on (I',(B',0)):r

—
o (1LB):T —wa (11B):F

Proof. Assume Fr (I,(B,0)):r —on (I',(B',0’)):r. By the block rule for the
BTA, we need to prove that

Btpaa=p' (6.1)
and
Btoaj=1 (6.2)

We prove Statement (6.1) by cases. Let a be given by x := 0(X1...Xn). We must
have one of the following two cases:

Case Vi.B(xi) = S|We conclude that ' = [x+—S]. Moreover, we see that the
first assignment rule for e, applies and yields B Fya @ = B with the same B'.

Case di.B(xi) = D|We conclude that B’ = B[x— D]. Moreover, we see that the

second assignment rule for Fy, applies and yields B Fya @ = B’ with the same pB'.
Thus, Statement (6.1) holds.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 109

Now, let j be given by case t(Xi...Xn) l1... Iy and observe that in both jump
rules for online specialization, label I’ is among l4,...,Im. By the jump rule for
Fota, Statement (6.2) holds. O

As mentioned above, Lemmata 1 to 3 have as consequence the following:

Theorem 2. For any program I, any labels I, I’ such that ' (I) = a j, any bt-stores
B, B’ and any stores o, d’, the following holds for all r:

Fr (1,(B,0)):r —on (I',(B,0")):r

—

Fr (1, (B,0)):r —off (I,’(BI,OI))ZI’

We now turn to the reverse implication — that offline transition implies online
transition. Again, we take our outset in the three conditions.

Theorem 3. For any program I', any labels I, I’ such that [() = a j, any bt-stores
B,B' and any stores o, ¢’, the following holds for all r:

(B,0)Fefa=0" A
(B,o) ot j= 1" A
}—r (LB):T —bta (|,7Bl) T
=

Fr (1,(B,0)):r —on (I',(B',0)):r

Proof. Assume that the left side of the implication holds. By the block rule for
online specialization, we need to prove:

(B7 0) }_on a= (BI7 OJ) (63)
and
(B,0) Fon j = ' (6.4)

Statement (6.4) follows directly from Lemma 2.
We prove Statement (6.3) by cases. Let a be given by x := 0(Xj...Xn). We must
have one of the following two cases:

Case Vi.B(xi) = S| We conclude that o’ = o[x [[0]](0(X1)...0(Xn))] (which is
well-defined). Furthermore, (I,3):T —pa (I’,B') :T must hold using the first as-
signment rule for by, hence B/ = B[x—S]. By these observations, the first as-
signment rule for online specialization applies and yields Statement (6.3) with the
same ' and @’.

Case Ji.B(xi) =D| We conclude that o’ = o|x. Furthermore, (I,B):T —pta
(I, B") : ¥ must hold using the second assignment rule for 4, hence B’ = B[x+ D].

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 110

By these observations, the second assignment rule for online specialization applies
and yields Statement (6.3) with the same B’ and o@’. O

From Observation 1 and Theorems 2 and 3 we finally derive our main statement:

Corollary 1. For any program I, any labels |, 1’ such that ' (1) = a j, any bt-stores
B,B’ and any stores g, ¢’, the following holds for all r:

Fr (1,(B,0)):r —on (I',(B,0")):r
<

Fr (L(B0)ir —ort (I',(B,0)):r

6.7.2 Case: Call Block

This case is trivial as the rules for calls are identical in the online and offline
semantics.

6.7.3 Case: Return Block

To show the Theorem in this case, observe the following:

Observation 2. Let I, I, x and 1” be such that [(1) = return x I”. For all B, I, §/,
B”andr:
Fro (LB):(V,B):T —pa (I17,87):T
—

B" = pB'x—B(x)]

This can be seen immediately from the BTA rule for procedure returns.
Given this observation, the rules for procedure returns in the online and offline
semantics must be equivalent, which proves our Theorem in this case.

6.8 Example: Achieving Constant Folding While Spe-
cializing an Interpreter

We will now show how the optimization of constant folding can be achieved
by specializing an expression interpreter — even with an offline partial evalua-
tor. In [Bul93] this was obtained by cleverly rewriting the given expression inter-
preter to incorporate explicit tests on SD-values, dispatching the flow of control
into static/dynamic versions of the procedures in the source program. Together
with a monovariant partial evaluator, this manually produced polyvariant expan-
sion [TS96] of the source program and led to the same optimization that is achiev-
able by an online specializer. Given the results in Section 6.7, namely that our

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 111

PROGRAM (e env) (eval Exp)

; PROCEDURE eval Exp :: Exp x Env -> Val

eval Exp: CASE (isCst? e) getCst isVarQp ; const ant

i sVarQp: CASE (isVar? e) getVar getOp ; variable, operator

get Cst: v := (fetchGCst e) ; get constant
QOTO exit Exp

get Var: v := (lookupVar e env) ; |l ookup variable
QOTO exit Exp

get Op: op := (fetch(e) ; get operator
Q07O get Args

getArgs: es := (fetchArgs e) ; get argunents
QOTO doAr gs

doAr gs: CALL eval Exps doApp ; eval arguments

doApp: v := (applyOp op vs) ; apply operator
QOTO exit Exp

exitExp: RETURN v nil ; return val ue

; PROCEDURE eval Exps

eval Exps:
initVs:

getE
get Es:
doE:

doEs:

consVs:

exi t Exps

CASE (null? es) initVs getE
vs 1= " ()

QOTO exit Exps

e := (car es)

GOTO get Es

es := (cdr es)

GOTO doE

CALL eval Exp doEs
CALL eval Exps consVs
vs := (cons v vs)
QOTO exi t Exps

RETURN vs ni

o [BExp] x Env -> [Val]

; expressions

enpty vs

get first exp

get rest exps

eval first exp
eval rest exps

cons val ues

return val ues

Figure 6.9: Expression interpreter evalExp

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 112

PROGRAM (env) (0_eval Exp_0) ; conputes (+ x 3) * 5

0_eval Exp_0: v := (lookupVar 'x env)
QOTO 1b_doEs_1d

1b_doEs_1d: vs := (cons v '(3))
GOTO 5_doApp_1b

5 doApp_1b: v := (applyQp '+ vs)
GOTO 3_doEs_5

3_doEs_5: vs 1= (cons v '(5))
GOTO 0_doApp_3

0_doApp_3: v := (applyQp '* vs)
GOTO 0_exi t Exp_3

0_exitExp_3: RETURN v _0

Figure 6.10: Residual program for evalExp (e=((x+3) *(7-2)), env=D) after tran-
sition compression and inlining.

offline partial evaluator with a maximally polyvariant BTA is functionally equiv-
alent to our online partial evaluator, we know that this transformation should be
achievable by an offline partial evaluator without modifying the source program.

The expression interpreter in Figure 6.9 consists of two recursive procedures,
which we call eval Exp and eval Exps according to their first block. Given an en-
vironment env, they evaluate an expression and a list of expressions, respectively.
The header of the program tells us that the interpreter has two inputs (e, env) and
that the initial label is eval Exp.> The program is identical to the one in [Bul93]
except for the use of an imperative instead of a functional language.

Consider specializing the interpreter with respect to a static expression e=((x
+3) * (7 - 2)) and a dynamic environment env=D. A monovariant BTA re-
quires that any single block in the interpreter have only one specialization behav-
ior. This prohibits the offline specializer from taking advantage of the structure
of the expression being interpreted, yielding an non-optimizing specialization of
the expression. In particular, in e subtraction (7 - 2) cannot be performed. Con-
sider block doApp. Since the argument values vs of the arithmetic operators are
not always known, appl yOp cannot be applied and is annotated as dynamic. Thus,
assigned variable v becomes dynamic, and the value returned in block exi t Exp is
dynamic, too. Thus, any call to eval Exp will return a dynamic value at specializa-
tion time. This means that a constant folding optimization cannot be performed at
specialization time.

5The procedure headers are only textual comments; syntactically required dummy assignments
are omitted from blocks eval Exp, i sVar Op, and eval Exps.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 113

This is in contrast to the results obtained by our partial evaluators. We have
an implementation that includes all parts of the partial evaluators we have defined
in the earlier sections. The partial evaluators were applied to the expression in-
terpreter, and the results were, of course, identical. The common result can be
seen in Figure 6.10. This is the best specialization result one could hope for.
The problems discussed above were not relevant to the offline system because the
polyvariant BTA in essence incorporates polyvariant expansion as needed.

6.9 Extensions and Limitations

Intentionally changing a variable’s classification from static to dynamic is called
generalization. There are different forms of generalization, and we shall discuss
two types of generalization and argue why the true power of online partial evalu-
ation comes from online generalization.

6.9.1 Offline Generalization

We first discuss what we call offline generalization. To tell the specializer to
generalize a variable x (turn it dynamic), we can add an operator gen to the source
language. In F, we add this operator to the syntax of assignments in Figure 6.1:

a = ... |x:=genx

Such an operator may be used by static analyses, e.g., Glenstrup’s and Jones’s
analysis, for ensuring termination of offline partial evaluation [GJ96]. It is also
common to have such an operator when using online partial evaluation, so that the
user may manually instruct the specializer to avoid possible finite or infinite code
explosion [Hat99, JG02].

The operator is just the identity function in the semantics of F.

Figure 6.11 shows the rules for the online and offline partial evaluator. They
change the variable value in the pe-store from static to dynamic. It is not hard to
see that the operator gen does not change the assumptions in the proof and so our
result also holds when the operator is included in the language. Both partial eval-
uators are controlled in the same way by that operator and their residual programs
are identical.

6.9.2 Online Generalization

We speak of online generalization when the values computed during partial eval-
uation can effect the choice of actions taken for dynamizing values. Consider the
following program fragment:

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 114

Online collection phase

(B,0) on X :=genx = (B[x~ D], 0lx)

Offline collection phase

(B,0) Fott X :=genx = Olx

Binding-time analysis

B Fpta X 1= genx = B[x— D]

Figure 6.11: Generalization operator in online and offline partial evaluation

| oop: CASE (i = 0) done next

next :

CASE (br) done dec
dec : i =i -1

QOTO | 0op
done:

Suppose specialization will reach the block marked | oop with variable i having a
static value of 232 — 1 while variable br is dynamic (the programmer must count
on br to become true sooner or later).

The maximally polyvariant specializers (online and offline) constructed in the
earlier sections of this paper will both suffer from an unreasonable code explosion
when generating the specialization of this program, unfolding the above with i
taking on all (unsigned) 32-bit integer values. Offline termination analyses will
normally not prevent this as the process should, after all, terminate. Estimating
the size of values by offline analysis can be difficult or even impossible.

By contrast, an online specializer may incorporate a simple scheme to avoid
unreasonable code explosion: generalize variable i when the number of copies
of the loop reaches some predetermined upper bound. Such a decision based on
the specialization history is “very online” in its nature and cannot be directly sim-
ulated by an offline partial evaluator in the sense of Section 6.7. An even more
drastic example is where online partial evaluators use criteria on the specialization
history to guide generalizations that ensure termination. This history is not avail-
able to the BTA of an offline system and, again, we have “very online” decisions.

To conclude, while an offline specializer can be as accurate as an online spe-
cializer in propagating static values, the latter may be able to choose generaliza-
tions on the basis of more information (e.g., static values, specialization history).
Our point is that, while this is very important in practice (a clear advantage for an

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 115

online partial evaluator), it cannot help in finding more static information. Hence,
an online specializer is stronger only in the sense that it is able to make more well-
informed decisions regarding which program parts it should not unfold. In other
words, the strength of online partial evaluators is the intentional loss of informa-
tion.

6.10 Related Work

Since the conception of offline partial evaluation [JSS85], much research has been
devoted to improving the results of offline partial evaluation. In this paper, we dis-
regarded practical issues to get to the core of the main question, namely, what are
the theoretical limits of offline partial evaluation? For this, we gave two reference
systems based on constant propagation and polyvariant specialization [Bul84]
(calls are folded if they have identical pe-stores).

Our online system extends the online partial evaluator for flowcharts [Hat99]
with recursive procedures; otherwise, the two partial evaluators are identical mod-
ulo a syntactical simplification of our source language. Both correspond to the
online partial evaluators [RW93, CK95], and are less conservative than the online
partial evaluator [Mey99] which inserts explicators at suspended branches of con-
ditionals. Our offline system extends the offline partial evaluators for flowcharts [Jon88,
GJ91, Hat99] with recursive procedures and a maximally polyvariant BTA [CGLO00].

An early example of a powerful, polyvariant BTA is given in [Con93]. Though
it is not maximally polyvariant as our BTA (bt-stores are merged at procedure exits
and after conditionals), this analysis obtains parametrized polyvariance and treats
both higher-order constructs and partially static structures.

How can online effects be achieved by offline systems? Three techniques are
known: (i) modifying the partial evaluator, (ii) modifying the source programs,
and (iii) inserting an interpreter between a partial evaluator and a source program.

In the first category, we find works which refine the specialization phase and/or
the BTA. One technique is continuation-based specialization [Bon92, LD94]; an-
other is increasing the accuracy of constant propagation by a pointwise or poly-
variant BTA [RG92, AC94, HN99, Asa99]. Offline systems can be combined with
online features in mixline systems [JGS93] (see [SKO00]).

In the second category, we find binding-time improvements: semantics-preserving
transformations that are applied to a source program before specialization. Nu-
merous binding-time improvements are described in the literature [CD91a, Bon93,
JGS93]. It was shown [GIli02] that, for every Jones-optimal offline partial eval-
uator with static expression reduction, there exists a binding-time improver that
allows it to achieve the same residual-program efficiency of any online partial
evaluator.

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 116

In the last category, there are works on bootstrapping higher-order partial eval-
uators from first-order ones [SGT96], and simulating deforestation and unification-
based systems by offline partial evaluators [GJ94].

6.11 Conclusion

We have introduced two specialization systems, representing online and offline
partial evaluation, respectively. The two systems treat a flowchart language with
recursive procedures. We proved the two to be functionally equivalent and gave
an example based on the results of our implementation of the systems. Our result
is contrary to common belief: that offline partial evaluation is weaker in the sense
that it cannot be as accurate — detect as much static information — as online partial
evaluation.

We compared offline and online generalization, and found that the real strength
of online systems as compared to offline systems is that the former can have more
fine-grained strategies regarding when to intentionally forget static values by on-
line generalization. We hope that these results clarify the consequences of choos-
ing either “line” when designing a practical partial evaluation system in the future.
Knowing what can be achieved in principle makes it easier to choose a technique
on practical and pragmatic grounds (e.g., efficiency, usability).

In [Ruf93, page 19], a term is coined, applying to any online specializer, the
effect of which might be achieved by offline methods. Such online specializers
are called vacuously online (“online specializers that really aren’t”). On the basis
of Section 6.7, we see that this predicate does not concern accuracy — the static
reductions a specializer is able to perform — but rather the informed choice of
imprecision as discussed in Section 6.9.

6.11.1 The Designer’s Choice

What factors should be considered, when the designer of a partial evaluator de-
cides whether to make his system online or offline? We suggest the following:

Ease of implementation As mentioned in Section 6.9, some features may be eas-
ier to realize using online rather than offline specialization (or perhaps vice
versa).

Ease of control Often the most useful systems are semi-automatic, allowing the
user to influence on which transformations the system performs. The sepa-
rate BTA phase in offline systems can be used to provide useful feedback to
the user ([GMS99]).

6. Offline Partial Evaluation can be as Accurate as Online Partial Evaluation 117

Sophisticated automatic choices of specialization precision Depending on the
intended use of a partial evaluator, the observations in Section 6.9.2 may
force the designer to choose an online approach.

In relation to the latter point: The demonstration that BTAs that can form
the basis of surprisingly accurate offline partial evaluators exist serves to illus-
trate that the design space of BTAs is indeed large. This supports the earlier the-
sis [Con93, CGLO00] that within the framework of offline partial evaluation, fixing
a BTA strategy at design-time can seriously limit the usefulness of a system.

6.11.2 Future Work

While the language we treat is quite expressive, we would like to investigate the
limits of polyvariant BTA in the presence of non-atomic data types (such as ar-
rays). Early investigations seem to indicate that there are important cases when an
offline approach may simulate the accuracy of online systems even though these
generally work much better on partially static data structures. One central aspect
of such an investigation is the definition of what constitutes an automatic binding-
time improvement, in particular: How much must the result of the improvement
resemble the source program? In a simple polyvariant expansion, all lines of the
improved program are essentially copies of lines of the source, but if we do not
make this relation a requirement of binding-time improvements, some very pow-
erful systems may be constructed along these lines.

Acknowledgements

We would like to thank Kenichi Asai, Neil D. Jones, Torben A£. Mogensen and
Sergei Romanenko for many valuable comments on an earlier version of this pa-
per. We also thank the anonymous referees for their useful feedback.

Part 111

MORI: an application of
domain-specific languages

7 - The becoming of MORI/SQL

Keeping a brave face

in circumstances is impossible
Cannot describe so many decisions
It’s impossible

“2:1”, Elastica

This chapter and the two that follow regard an industrial project in which a domain-
specific language was invented by the author. The language, called MORI/SQL,
facilitates smooth customization of a (specific) complicated software system with
the IT systems at any given customer site.

The specific software system that we® consider is in the product line of Visanti
A/S. Visanti is a Danish IT company the goal of which is to solve problems related
to decision support, knowledge management and document handling in medium-
to large-size companies. Our language and its compiler form an customization
tool for one of Visanti’s products.

Put very simply, the product consists of a log server, a number of logging
clients and a number of clients for querying the server. This system collects and
organizes information related to human interaction with standard software ap-
plications like word processors, e-mail clients and such. When the product is
properly integrated with the IT systems in a given organization, it can help the
members of that organization with keeping track of each other’s knowledge and
expertises. Getting the product properly integrated inside a customer organiza-
tion is not a simple task, though, and that is why the integration tool that we have
developed is a valuable extension of the product.

This chapter describes the Visanti product and its use (Section 7.1) and dis-
cusses the challenge of integrating that product with a customer organization’s
IT systems (Section 7.2). Section 7.3 explains how a domain-specific language
can be a solution to such a problem, and Section 7.4 describes how we set out to
develop a DSL-based solution. Finally, the post mortem in Section 7.5 wraps up
the MORI/SQL project by briefly reviewing how the project developed and what
came out of it.

We do not address the actual language and its implementation in the present
chapter — this is covered in Chapter 8. Chapter 9 focuses specifically on the formal
definition of and the optimizations performed by the compiler we developed.

LI

1We shall use the plural form (“we”, “our” etc.) throughout this part of the thesis, as if speaking
on the behalf of a project team as such, even though the author is solely responsible for the work
described and the chapters describing it.

7. The becoming of MORI/SQL 120

Understanding a problem domain We did not apply a specific method in an-
alyzing the problem domain (such methods are reviewed in [CE0Q]). Our only
instrument for checking the validity of our understanding of the domain was to
review the project progress with the domain experts. This approach was not un-
reasonable as the relevant experts were available to us, and were themselves pro-
grammers, fully capable of comprehending our technical work. Also — and this
was certainly a complication — our domain was not a stable one: it was defined by
a product that kept developing. So none of us (the author or the intended experts)
could at any given point be said to understand the domain fully, because it would
change as we were learning about it.

This has certainly not made it easier to define the problem that we wanted to
address with the development of a domain-specific language. But we do hope
that after reading this chapter it is possible to follow the design decisions that we
present in the next.

The name MORI/SQL MORI is an acronym for “Models of Organizational
Resources and their Interactions”. The SQL-part of the name signifies that the
language is a variant of SQL. This relation to SQL was not decided on from the
beginning of the development project, and we shall occasionally refer to the lan-
guage and its tools as just MORI, when the relation is not important in the given
context.

7.1 The product defining the domain

To understand the domain in which MORI/SQL applies, we must introduce a use
case for one of Visanti’s applications and what we call electronic traces of knowl-
edge. We’ll do that by discussing a scenario involving two employees of a fictional
Visanti customer.

Peter Jensen is employed at the Copenhagen office of EnBank, a larger Danish
financial institution. He works in the investment department, providing analyses
regarding EnBank’s own portfolios as well as advising clients on request.

Peter’sday It’s Monday morning and Peter arrives at the office around half past
eight. As a matter of routine he logs on to see if any e-mails need urgent response
before getting a cup of coffee. There is one, a request for a meeting later that
day, which he answers before going to get the coffee. In the kitchenette he runs
into Tina who wants to hear about the course that Peter attended two weeks before.
Both having a busy schedule, they decide talk over lunch. Peter returns to his desk,
answers e-mail again, and works on an analysis which is due by the end of the day.
A half hour before lunch, a client calls Peter’s office mate Michael inquiring about

7. The becoming of MORI/SQL 121

the stock of Aalborg Boldklub A/S, a Danish premier league football club. Peter is
the unofficial expert on sports-related stocks so Michael transfers the call to him.
Peter answers the question after looking up the club’s latest annual report in the
company database.

After lunch with Tina, Peter has two meetings and some e-mail before he can
go back to his analysis. In the afternoon, Michael returns a favor by answering a
call to Peter about a boat manufacturing company. He finishes his analysis around
five and goes home.

Peter’s electronic trace As a stock analyst, Peter works intensively with the
knowledge he has gained through education and work experience. Knowledge is
a fickle concept to define and capture. We may perhaps more easily discuss traces
of Peter’s knowledge, in particular electronic traces.

Several of his work functions are mediated by a computer: reading and writing
e-mail, looking up information, writing analyses. When performing these func-
tions, his interaction with the relevant tools are observable in a very direct sense
of the word. When the electronic events making up his interactions are logged
we call the logs electronic traces of Peter’s knowledge. Certainly, we don’t know
a way to capture his knowledge in itself, but some interactions may point to the
fact that he has it. For instance, when he accesses the annual report of the football
club, it can be considered as a hint that he may now know things related to that
report. Most likely he knew some things before (he had a background that let him
understand the report) and very likely he learned something new. Collecting such
hints can be useful when trying to find the right employee for a task.

Note that we’ll certainly not capture traces of all of Peter’s knowledge through
logging. Of course, he knows things that he doesn’t apply at work. But even
knowledge that he does apply may not finds its way to an electronic form. He
may give and take a lot of good advice (or gossip) over lunch with Tina, and this
knowledge may just continue to be exchanged orally. But note also that often
such knowledge will eventually affect the way Peter chooses to do his work at the
computer and thus produce electronic traces (however indirect and obscure they
may be).

Annie’s task Annie Hansen also works at EnBank, in their Arhus department.
She performs credit evaluations related to building projects, specializing mainly in
evaluating smaller organizations. On this Wednesday she is looking at the project
of extending and modernizing Egergd Stadium. The client is Egergd Boldklub,
a second league football club with premier league ambitions but a staff of just
fifteen. The club is owned by a fund and two local businessmen.

Annie is not sure about the future financial prospects of the project and feels

7. The becoming of MORI/SQL 122

she needs more knowledge about the branch. Entertainment (and thus sports) is
not a core investement area of EnBank, so there are no internal reports available.
She looks at the annual reports of some major football clubs but still has some
unanswered questions. Annie decides to drag one of the annual reports she just
read into the focus area of her Visanti application window (see Figure 7.1). It
then shows her — among other things — a list of other employees who read the
report. Peter Jensen is at the top of the list, indicating that he has consulted the
report more often than anyone else in the bank. Of course, he may just have been
interested in a few particular details about Aalborg Boldklub A/S. Annie drags
Peter’s icon into the focus area to obtain a list of other documents that he has
consulted significantly more often than others. And indeed, the annual reports of
two other football clubs is shown. Annie calls Peter, and finds out the he actually is
knowledgable about the branch and able to answer her questions. Thus informed,
Annie is able to finish her evaluation.

Discussion The Visanti application helped Annie solve her problem by letting
her browse electronic traces of knowledge collected across offices and platforms
all over EnBank. It let her find people and documents relevant to her task at
hand. The interface is relational: when Annie chooses the relation “Readers of”
and picks a document, the application shows a list of related persons, sorted in a
relevant order. When she picks Peter and the relation “Has read”, she gets back a
list of related documents.

There are many knowledge-oriented relations that Annie, Peter, Michael and
Tina might want to be able to explore in their work. And while their definitions
should be based on the electronic events that make up the traces of knowledge,
the interconnection between a relation and the events may be far from trivial. It is
this complexity that inspired the development of MORI/SQL.

7.2 The problem of customization

In this section, we discuss in detail the problems related to defining a coupling
between knowledge-oriented relations and observable (electronic) events.

While the relations that Annie explored above are rather generic and may
be useful in most customer organizations, many other knowledge-based relations
may be specifically useful to particular types of setups. Experiences at EnBank
might inspire them to define a set of business areas for which the system could as-
sign experts. So in the example, Annie could have chosen an icon for “sports” (or
perhaps “entertainment industry”) and a relation “experts” to get a list of employ-
ees, which would probably have had Peter as its first item. But the list of expertise
areas would not likely be suitable for e.g. a phone service provider. They might

7. The becoming of MORI/SQL

123

Readers

report.doc

4 "eport.doc

/" Readers

Peter Jensen

Brian Larsen

Lizzie Nielsen

>0 >+0 >+0 >0

Pia Geertsen

report.doc

C

@

HasRead ————

Works with

D

@D

Has Read

cv.doc

otherReport.doc

earnings.ppt

yetAnotherReport.doc

report.doc

report.doc

Figure 7.1: Annie’s interaction with her Visanti tool. The graphical user interface
of the tool is just for illustration and somewhat simpler than the real one.

7. The becoming of MORI/SQL 124

want to be able to explore a relation “user of”” which associates a given customer
with a list of the services that he uses the most.

But even when the set of needed relations is the same for two organizations,
the way these are defined from the observable events may differ. Firstly because
logging may behave differently on different platforms. Secondly because working
patterns may differ between companies. For instance, if personal use of e-mail is
prohibited in one place but not another, e-mail activity is likely to be much dif-
ferent in the two organizations. Thirdly, two customers may use the same relation
name about different concepts (e.g. a “client” may be an organization to one of
Visanti’s customers, but an individual to another).

So for each customer, we need to specify which relations should be explorable
and how these should be coupled to the observed events. These definitions must
necessarily build on knowledge about the customer’s organization and needs —
something we can only hope to obtain through cooperation with customer repre-
sentatives. The final result of such specifications is code implementing the de-
scribed system, which is not likely to be readable to the customer representatives.
Thus we have a potential gap in the communication between domain experts and
programming experts; a gap which poses risks to the customization process.

A customization process To integrate the Visanti applications at a customer
site, a set of events and relations must be specified and implemented. This process
could proceed as follows:

1. Analysis: a Visanti systems analyst and a customer representative identify
the resource types, resources, events and relations that should be available.

2. Design: on the basis of the analysis, the Visanti analyst specifies relations
and how these depend on events.

3. Implementation: Visanti programmers implement database code to support
the specifications.

4. Visualization: Visanti GUI programmers implement suitable graphical in-
terfaces to the specified relations.

5. Feedback: The implemented system is presented to the customer who then
decides if it matches their expectations.

6-? Revision, optimizations and installation.

This process is problematic in that there are significant potentials for misunder-
standings between the involved parties, as indicated in Figure 7.2.

7. The becoming of MORI/SQL 125

DB Programmer GUI Programmer

Figure 7.2: Each link of communication between the involved parties constitutes
a potential for misunderstandings.

This is serious as an evaluation (revealing misunderstandings) is not realistic
until step 5 above. Thus, there is a great risk that a lot of work will be done on the
basis of misunderstood specifications.

7.3 A DSL-based solution

The MORI project aimed at addressing the risks described above by introducing
a precise model as basis for communication between the involved parties inside
Visanti.

The first goal was to define a specification language allowing a formal (pre-
cise) specification of the results of the analysis in step 1 above. This should mini-
mize the risk of having ambiguities in the proposed model and prevent misunder-
standings between the analyst and the programmers. A tool could help building
specifications and check that they follow the defined standard.

On top of this system, we would like to put a simulator which, given a specifi-
cation, lets one test the specified system on a small set of example test data. This
should minize the risk of misunderstandings between the customer and the analyst
as the feedback loop is shortened significantly (the customer can now evaluate the
specification before step 3).

Finally, we would like to build a compiler which, given a specification, per-
forms a significant part of the programming job automatically. This not only min-
imizes the risk of misunderstandings on the programmer side; the development
time should also decrease and thus the time until the customer sees the final prod-

7. The becoming of MORI/SQL 126

uct will be smaller.

7.4 The MORI project

We chose an evolutionary project plan. The project was to proceed in a num-
ber of iterations, each ending with a review based on an updated progress report
consisting of four chapters, documenting progress on the following areas:

1. A catalogue of representative, commented relation examples.
2. A technical report on the formal model of relations.

3. A description of the language, preferably including syntax, formal seman-
tics and user manual.

4. Documentation of the simulator, including overview of the code structure
and example input and output.

Each report should also have a separate section on detailed goals for the next
iteration. Given the somewhat unclear (and unstable) statement of the problem
domain it seemed wisest to develop the four above goals as much in parallel as
possible.

Risks We anticipated several potential risks — inherent in any industrial/academic
project — to the project plan:

e Unstable requirements. (The needs of Visanti may change too quickly).
e Unstable design. (The design of the system that we model may change).
e Insufficient communication between research and development.

All of these had caused problems in the earlier stages of the Ph.D. project. We
don’t see any foolproof solutions but suggest that the issues are addressed by
having periodic project reviews. These reviews should serve as workshops for
exchanging information and ideas between research and development. Each of
our reviews was attended by the project responsible (the author), the supervisor
from Visanti and at least one relevant developer.

Further risks included

e Potential problems with interfacing our code with other Visanti code. (This
is always relevant when developing at separate sites).

e The practical utility of the project results. (Is it useful/efficient enough?)

7. The becoming of MORI/SQL 127

We had no clear strategy to address the former. We intended to integrate all pro-
totypes at the earliest possible stage to avoid such problems.

The latter risk really constituted an open question at the time of the project
launch. We agreed to try to keep an open eye for potential drawbacks of our
approach (the most obvious of which would be overkill?) as well as potential
benefits (beyond the ones the project was intended to achieve). A candidate benefit
was ease of porting query implementations to new platforms or revised database
schemes. Updating a compiler provides a uniform way of updating the queries it
compiles.

7.5 Post mortem of the MORI project

The MORI project is finished. We end this chapter with a brief resume of its
evolution and results.

What was actually delivered? We designed a language for specifying relations
based on knowledge traces, as discussed in Section 7.3. We also implemented a
highly optimizing compiler for the language and integrated it with the database
component of the Visanti product.

Because of organizational limitations requirement specifications relating to the
customization process turned out to be hard to come by. To handle that problem
we chose to focus on the the people we did have access to: the database program-
mers. Keeping the long-term goals in mind, we closely inspected the existing
implementations of the relations and discussed the design space with the pro-
grammers. We aimed at simplifying their tasks and making the code accessible to
others.

Severe time restrictions also put limits to our ambitions. In the end we chose
to only implement the compiler, realizing that this would be useful to the database
programmers and still helpful to the other groups shown in Figure 7.2.

What actually happened? The planned iterations were executed on time, al-
though the status reports never quite reached the state of completion we had hoped
for. They were still good enough to serve their main purpose of preparing the
project reviewers.

At the end of the last iteration a compiler was delivered. It did the intended
job but had many opportunities for expansion and improvement. Furthermore,
one of the anticipated risks hit the project: the requirements to the output code
had changed.

20r “shooting sparrows with cannons”, as a Danish idiom goes.

7. The becoming of MORI/SQL 128

Still, we found the results to be promising and decided to go ahead with more
iterations to update the compiler to the new output code format and to add more
functionality to the input language. During this period another — unanticipated
— risk surfaced, when the project leader left the organization. This did not ease
the process of integrating the compiler project into the rest of the system, but a
final version of the compiler was released on schedule and is now integrated in the
Visanti product.

Evaluating the project results The explicit goal of the project was to develop a
tool that could improve on the process of customizing Visanti’s system at customer
sites. It is our thesis that this goal has been achieved by the tool we delivered.

To evaluate whether this thesis is correct, we must analyse the execution of
several customization projects, some of these performed using our tool, and others
not using our tool. We do not see how the thesis could realistically be tested by
theoretical arguments or by controlled experiments, as we cannot describe with
accuracy what would be a representative customization project. The thesis must
be tested in the chaotic world of real customer environments.

We have not had access to tracks of customization projects, either using or not
using the MORI tool, and it does not appear that such information will be available
in the near future, before the deadline of this thesis. Thus, a scientific evaluation
the project results cannot be performed. It is our hope that the following chapters,
by demonstrating the expressiveness of the language and the services of its com-
piler, will convince the reader of the value of MORI/SQL. As a final, unscientific
note we might add that our main user group, the database programmers of Visanti,
have expressed a very positive attitude towards our results.

8 - Design of the MORI tool

In this chapter we describe the overall design of the MORI tool, including the
external requirements to the solution as well as the choices we made, and their
rationales.

The tool is meant to fit into an existing (and evolving) system and we cannot
ignore the requirements stemming from this dependency: the code we write and
the code it produces must interface with the rest of the system’s code. We should
also focus on solving problems that are not handled by other parts of the system,
otherwise the tool might be considered superfluous. Finally, our tool should be-
come an integral part of the system’s code base and therefore not remain in the
“ownership” of the author. Other (industrial) developers must eventually take over
responsibility of upgrades and bug fixes to the tool. So not only should it be rea-
sonably well-documented, the tool must also be designed and implemented in a
way that the developers can understand without studying many technical issues in
semantics and programming language theory.

Thus we begin the chapter by discussing the overall layout of the system that
our DSL should be part of (Section 8.1). The last part of that section explains
our choices regarding the general structure of the MORI tool. The following sec-
tion dicusses what functionalities MORI/SQL applications could ideally have, and
explains our choices regarding the language itself and its syntax. Section 8.3 out-
lines some of the optimizations that we needed the MORI tool to perform. This
is important as efficiency was central to our application. Chapter 9 is devoted to
an especially complex part of the optimization process. Sections 8.4 and 8.5 de-
scribes the implementation of MORI/SQL in detail. We conclude in Section 8.6.

8.1 The context of MORI

In this section we describe part of the Visanti product that the MORI tool relates
to. The first subsection the actual database that stores the electronic tracks of
knowledge, called the Interaction Log Server (ILS). The second subsection shows
how queries are sent to that database, and points out where the MORI tool fits
in. It also discusses issues relating to implementation style and implementation
languages.

8. Design of the MORI tool 130

8.1.1 ILS: an interaction log server

In this section we describe the Interaction Log Server. What we describe is not
the real system architecture but rather a distilled version that brings up all the
elements that we will have to consider, while ignoring other parts of the system
that are not relevant to our task.

As its name implies, the ILS registers (logs) interaction events, that is to say,
events that are the direct result of a human user interacting with some software ap-
plication. In other words, interaction events describe observable human behaviour
and not, say, automatic behaviour of networked servers communicating.

Interaction events come in many flavours: editing a document, sending an
e-mail, posting a message on the internal intranet — all these interactions cause
interaction events. We consider these “flavours” as atoms (i.e. unstructured iden-
tifiers called e.g. edi t - doc, sent - mai | and nsg- post) making up a set of such
flavours. This set will not be the same in all installations of the ILS, but in any
installation it will be a finite set of identifiers.

When an interaction event is registered, the ILS naturally stores the flavour of
the event as well as its time stamp (when the event took place). It also stores a
subjectID and an objectID of the event. The subject will usually be an ID of the
user that made the interaction happen. The object will be an ID of whatever or
whoever the event “happened to”. In the case of an edi t - doc event the object
would be a unique identifier of the document that was edited. In the case of an
sent-mai | event the object is an ID of the receiving user. The ILS keeps and
updates a set of identifiers, having a unique key for any document and user (and
perhaps other entities) that is used in the registration of an event. As mentioned,
the set of flavours is chosen when the ILS is installed. With each flavour there is
a definition of what constitutes subject and object. There is also a definition of
event size. The size is an integer that is also stored on each event. The measure
may of course be very different between different event flavours. For e.g. an
edi t - doc event, the size may be the number of bytes added to or removed from
the document.

The registred interaction events are stored in a relational database table with
the schema event(flavour,subjectID,objectID,timestamp,size). As mentioned above,
flavour, subjectID and objectID are considered atomic. They all have type integer
in the actual representation. So does size (although the size should never be nega-
tive). Values of field timestamp are of type dat e (a suitable type implemented by
the database).

An example event table is shown in Figure 8.1.

8. Design of the MORI tool 131

| flavour | subjectID | objectID | timestamp | size |

sent-mail | 32 15 08:31 12
sent-mail | 32 40 08:44 50
sent-mail | 32 20 08:49 20
edit-doc | 32 2566 08:55 200
read-doc | 32 9804 08:58 154
sent-mai |l | 40 8 09:01 12
sent-mail | 8 40 09:10 22
sent-mail | 40 32 09:15 77
sent-mail | 32 40 09:22 1
sent-mail | 31 20 09:30 35
sent-mail | 31 8 09:40 15

Figure 8.1: An example of what rows in the event table might look like.

8.1.2 Querying the ILS

Figure 8.2 shows part of the Visanti system; the part that our tool should work in
the context of. At the top is a layer of code implementing remote procedure calls.
This is the code that a client application contacts when it needs to perform a query
to the ILS.

A call to the RPC layer is site-specific: its meaning depends on the local setup
of the ILS as discussed in Section 8.1.1. An underlying layer decodes the site-
specific request into the name of an SQL query function and a list of actual pa-
rameters for that function. We dub this layer the site-specific configuration layer,
or just the SSC layer. Having determined which function to call and which param-
eters to pass to that function, the call is performed. This results in an SQL query
being executed on the ILS database. The results of this query is then returned up
through the layers and sent to the requesting client. The existing components are
coded in Java, except the query functions which are in PL/SQL, a vendor-specific
version of SQL.

Our main goal was to provide a tool that will allow query functions to be speci-
fied in MORI/SQL, as shown with the dotted lines in Figure 8.2. Each MORI/SQL
relation must be compiled into a PL/SQL function, simply because this is the only
language at hand that we can access the ILS with. Interpretation in PL/SQL would
be possible but very awkward and inefficient. Partial evaluation might compen-
sate for some of the inefficiency, provided we developed a partial evaluator for
PL/SQL, but most of the speedup had to be achieved by writing a query optimizer
(this is the topic of Chapter 9), and that task is one that PL/SQL is not well suited

8. Design of the MORI tool

132

RPC layer

Site—specific

ILS—configuration

Query functions

Y
 J

Interaction
Log

Y
«_

- -~ N

,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,

PL/SQL DSL

Figure 8.2: Graphical overview of the context in which our DSL should fit. The
modules and arrows demarked by full lines are already in existence, the module
and arrows demarked by the punctured lines is the part that we are designing. We
have not shown the part of the system that updates the interaction log.

8. Design of the MORI tool 133

for.
So we chose to write a compiler from MORI/SQL to PL/SQL. The compiler
was developed in Java for three reasons:

e This would interface smoothly with the rest of the system.

e The industrial developers associated with the project were of course very
familiar with that platform.

e We did not want to introduce too many third-party products (e.g. a Haskell
compiler/interpreter as in [LM99]) into the system, for fear of complicating
the integration task.

8.2 Example relations and a language for their spec-
ification

We now move on to our primary purpose: modelling knowledge-based relations.
The first subsection explores the design space of relevant relations by giving a
list of practical examples. Section 8.2.2 then describes the main choices that we
made towards the definition of MORI/SQL. Finally, Section 8.2.3 presents the
syntax and informal semantics of the language that we settled on.

8.2.1 A list of example relations

In chapter 7 we discussed relations abstractly, with few examples. In this section
we give a number of concrete examples that we used to analyze the design space
of relations. These examples come from practice and are not arranged to fit any
reasonable pattern. Indeed we found that we could not accommodate all of them
in our domain-specific language and chose to model some of them. This will be
discussed in Section 8.2.2.

As we saw in the product use case, illustrated in Figure 7.1, the system always
responds when a relation and a resource is specified. We call this input (a rela-
tion coupled with a resource) a query. The result of a query — the list of related
resources with associated information — is dubbed a table.

MostEdited With this query we wish to list for a given document d those users
who caused most edi t - doc events to d before a given date t. In other words the
resulting table should tell us who was the most active editors of d up to timet. The
table should be sorted having the most active first, and with each user the number
of relevant edi t - doc events and the date of the last such event (before t) should
be stated. An example result table is shown in Figure 8.3.

8. Design of the MORI tool 134

objectID | NumEvents LastDate
2 8 12/5-2002,14:15
7 6 11/5-2002,16:21
21 6 11/5-2002,16:19
9 5 13/5-2002,08:24

Figure 8.3: Example result of a MostEdited query.

DaysBefore | NumReads
0 224

1 48

2 63

30 0

31 0

Figure 8.4: Example result of a DocReadActivity query.

Note that order is really important. The point of the query is to reveal the most
active editors. Thus, the main objective is to show the highest-ranking results
(rather than return the exact number of qualifying result records, for instance).
This theme — often called relevance sorting — is common in information retrieval
and it will apply to many other examples.

DocReadActivity The result of this query on a document d should be the dis-
tribution of r ead- doc events related to the given document d. The distribution
should be on a per-day basis for 31 consecutive days up to a given date t. l.e. “How
many times was d read in the days up to t?”. A result table could look like the
one in Figure 8.4. Here the first dimension (DaysBefore) is of fixed size — we
always consider 31 days — and the natural order on the records is of course the
chronological order.

ReadersAlsoRead Given a document d we wish to know which other docu-
ments were read by the readers of d. Order is certainly important here — we
choose to give priority to those documents that were read by the largest fraction
of d’s readers. Other choices of priority are of course possible. An example result
is shown in Figure 8.5.

An even more useful query would select those documents that are often read

8. Design of the MORI tool 135

Docld | Fraction

199 99%
535 98%
164 35%

Figure 8.5: Example result of a ReadersAlsoRead query.

Userld
47

12

101

Figure 8.6: Example result of a CollaboratesWith query.

by d’s readers but seldom by others. This would assign low priority to useless
positives like the corporate intranet homepage, which may be read very often by
everyone.

CollaboratesWith This is an intricate relation. How do we figure out (from
logged interactions) who collaborates with a given person X? A number of possi-
ble clues spring to mind:

If X andY exchange emails often they may be collaborating.

If X and Y edit the same documents (i.e. co-author documents) they very
likely collaborate.

If X often prints Y ’s documents and vice versa, they may be collaborating.

If X and Y are assigned to the same project, we must assume that they
collaborate.

The precise definition of this query seems like it might depend on the given sys-
tem (which events do we monitor?) and the given organization’s usual working
patterns. A result table might look like the one in Figure 8.6.

8.2.2 Choices regarding DSL content and syntax

Choice #1: Not to replace the SSC layer This choice was implicit in Fig-
ure 8.2. As mentioned above the SSC layer binds flavour parameters to queries,

8. Design of the MORI tool 136

so that a PL/SQL Most function can implement e.g. MostEdited, MostRead, Most-
Mailedto and many more queries. The first version of MORI offered the same
functionality and replaced both the SSC layer and the PL/SQL code for the queries
it supported. Given that it could not support each and every function in the
PL/SQL code, and thus not replace the SSC layer entirely, we ended up with
two ways of implementing the same functionality. This caused a lot of problems
in integration. As the SSC layer was already integrated into the system and used
by many people, we chose to remove the facility from MORI.

Choice #2: SQL-like syntax We put up several suggesions for the general syn-
tactic style of the language. The first suggestion was a domain-specific variant of
Prolog, while the second was based on symbolic logic. The development team’s
internal communication turned out to become smoother when our program exam-
ples were presented as a domain-specific variant of SQL. This version was much
more accessible to everyone (but the author, who liked the different suggestions
equally). Discussing who would be the main target group of the language, we
agreed that SQL was the language most likely to be familiar to these users, and
we adopted that style.

Choice #3: Which examples to focus on Some of our example relations (not
given above) were dropped after a some consideration. Some examples repre-
sented a set of queries that involve other parts of the system than the ones shown
in Figure 8.2, subsystems that perform textual analysis of documents. We dropped
these queries to limit our task.

Of the four remaining examples (given in Section 8.2.1), we found it easy to
fit the three (MostEdited, ReadersAlsoRead and CollaboratesWith) into a logical
pattern. We’ll skip the details of this pattern — it was in essence equivalent to the
algebra presented in Chapter 9. But DocReadActivity did not fit and we discussed
whether the Activity queries had an interesting span of different definitions. Con-
cluding that it did not, we also dropped that example and focussed on the three
mentioned above.

8.2.3 The final syntax of MORI/SQL

Through writing a number of examples and making other (minor) choices, we
ended up with the grammar shown in Figure 8.7. An example MORI/SQL relation
is given in Figure 8.8.

A relation is described as an SQL query parametrized by a focus resource and
one or more flavour paramters. The focus resource is the resource (e.g. a user or
a document) that is being related to other resources. It is an implicit parameter of

8. Design of the MORI tool

137

relation

parlist
query
select
explist
exp

from
fromlist
where
wherelist
constraint

groupby

RELATION Id (parlist)
BEGIN

query

ORDER BY Id (ASC | DESC)

END

Id IN EVENT (, Id IN EVENT)*

select from where groupby
SELECT Id AS Id , explist
exp AS Id (, exp AS Id)*
MAX Id

SUM Id

COUNT *

(exp)* (exp)
(exp)/(exp)

FROM fromlist

Id Id (1d 1d)*

WHERE wherelist
constraint (AND constraint)*
FOCUS =1d

Id = FOCUS

FOCUS < > Id

ld < > FOCUS

Id=1Id

GROUP BY Id

Figure 8.7: Grammar of MORI/SQL. Asterisks and parantheses are terminals,
except for the parlist, explist and wherelist productions.

BEG N

END

SELECT ev.to AS output,
FROM chosen_f | avour ev
WHERE ev. from = FOCUS

GROUP BY out put
CRDER BY score DESC

RELATI ON nost (chosen_f | avour | N EVENT)

SUM ev. score AS score

Figure 8.8: An example MORI/SQL relation.

8. Design of the MORI tool 138

every relation. The EVENT keyword denotes a domain-specific type for flavours.
In MORI/SQL, each flavour is presented to the user as a separate database table
containing the records with that flavour.

A query writer may join one of these flavour tables several times by letting it
appear several times (with different aliases) in the FROMdeclaration. The joined
tables can be restricted by any number of constraints in the WHERE declaration.
Each constraint defines a criterion that records must satsify. The criterion is one
of the following:

e That a given field must match the focus resource.
e That a given field must be different from the focus resource.
e That two given fields must be identical.

The records that satisfy all criteria are then subjected to a GROUP BY operation.
The field in the GROUP BY declaration must be of resource type, not integer or
time stamp types. This field is the output resource (it lists the resources that the
focus resource is related to) and it must also be the one following the SELECT
declaration.

When grouping a table T by one of its fields, the records in T that agree on that
field are all “smashed” into just one record. One can select any positive number
of expressions that aggregate (e.g. sum up) fields in T. If table T’ is the subset of
records of T that all have value v in the GROUP BY field, the one record that will
represent T’ after grouping will contain e.g. sums of columns in T'. The result
after grouping is sorted after one of its integer or time stamp fields.

We also refer the reader to the formal semantics of MORI algebra in Chapter 9.

8.3 Structure of the target code

In this section we study the PL/SQL code that the output of our compiler should
be able to replace. This is important as the code is heavily optimized in ways that
out code generator must imitate.

If we look at the MostEdited example in Section 8.2.1, we might expect the
code for this query to have an overall structure like in Figure 8.9. The input
parameter focus_resource represents the ID of the document d that is in focus.

The truth is more complicated, however. The functionality for MostEdited is
implemented by a function like the one in Figure 8.10. The Most function gener-
alizes over flavours. We get the MostEdited query by binding the chosen _flavour
parameter, not to 4 (representing the edi t - doc flavour) but to a number that rep-
resents the inverse of edi t - doc, where subjectlD and objectID are swapped in

8. Design of the MORI tool 139

FUNCTI ON Most Edi t ed(focus_resource I N INT)
RETURN [sone type representing a table]
BEG N
SELECT subj ect | D,
SUM si ze) AS nunevents,
MAX(timestanp) AS lastdate
FROM i ls
WHERE flavour = 4 /[/where 4 represents ’edit-doc’
AND obj ect| D = focus_resource
GROUP BY subjectID
ORDER BY score
END

Figure 8.9: The MostEdited query as we might expect it to look. All-capitals
words are PL/SQL keywords.

each record.l This binding is performed by the site-specific configuration layer
shown in Figure 8.2. The many extra parameters are either sent by the client or
provided by the site-specific configuration layer as well. The real Most function
contains seven subqueries of which four are tables (one of these is of course the
ILS table). It is 43 lines long.

Templates Or rather, it would be 43 lines long, if it wasn’t for the further op-
timizations. To make the query perform adequately on the huge amount of data
that the ILS (and other tables) usually contains, the SQL query shown above is
actually written as a formatted string template, see Figure 8.11.

Note the single quotes and the colons. The string constant that is constructed
is formatted by substituting the elements starting with colons by the values in the
list after USI NG. There are several hundred of these, and their order in the list must
be exactly the same as their use in the query. Needless to say, writing queries this
way is tedious and error-prone. But it produces very fast queries.

The real (honest!) function is about 115 lines long and not fit for the un-
trained eye.

1The reason for this inversion is technical and related to database optimization.

8. Design of the MORI tool 140

FUNCTI ON Most (focus_resource IN INT,
chosen_flavour I N INT,
/I many paraneters specifying linits on
[Isecurity restrictions on viewable files,
//groups that output resources should belong to
[land number of results to return.

)
RETURN [sone type representing a table]
BEG N
SELECT obj ect I D,
nunevent s,
| ast dat e,

[/more info found in other tables
FROM // ot her tables and
SELECT obj ect 1D,
SUMsi ze) AS nunevents,
MAX(timestanp) AS |astdate
FROM i ls
WHERE flavour = chosen_fl avour
AND subj ect|I D = focus_resource
AND //constraints controlled by the
[lextra paraneters
GROUP BY objectID
CRDER BY score
WHERE //further constraints
END

Figure 8.10: The general Most function with many parameters restricting the
query.

8. Design of the MORI tool

141

FUNCTI ON Most (focus_resource | N INT,
chosen_flavour IN INT,
[/ many paraneters specifying linits on
[Isecurity restrictions on viewable files,
//groups that output resources should belong to
//and number of results to return.
)
RETURN [sone type representing a table]
BEG N
/ISome lines caching tine-critical data
" SELECT object|D,
nunevent s,
| ast dat e,
[Imore info found in other tables
FROM // ot her tables and
SELECT obj ect I D,
SUM si ze) AS nunevents,
MAX(ti mestanp) AS |astdate
FROM ils
VWHERE fl avour = :chosen_flavour
AND subj ectI D = :focus_resource
AND //constraints controlled by the
[lextra paraneters
GROUP BY objectID
ORDER BY score
WHERE //further constraints
" USING
[IHere is a list of "dynamic’ values
[/including the cached ones and the input paraneters.
END

Figure 8.11: The Most query on a template form.

8. Design of the MORI tool 142

MORI/SQL =X MORI algebra
Opmfer MORI algebra
codegen ML
ML | sQL

Figure 8.12: The transformational approach we chose for implementing
MORI/SQL. See also Figure 8.13.

8.4 Overall structure of the implementation

The implementation task was to implement a compiler from MORI/SQL to PL/SQL
in Java. After some prototyping we decided on a transformational approach as il-
lustrated in Figure 8.12. The source MORI/SQL code is transformed through four
steps into the target PL/SQL code:

1. The first step is implemented by the parser. It transforms a MORI/SQL
relation into a term in the MORI algebra we present in Chapter 9. This term
is very close to simply being an abstract syntax tree for the relation.

2. The term is then rearranged into one that has the same semantics but is ex-
pected to yield a more efficient query than the original. This transformation
is performed by the optimizer, which is also discussed in in Chapter 9.

3. From the optimized term, the system generates target code. For each MORI/SQL
relation, the target code is a PL/SQL function that resembles the example in
Figure 8.10, although it is embedded in XML ([HMO02]).

4. The purpose of embedding each PL/SQL function in XML is to avoid the
complications related to the template format shown in Figure 8.11 during
code generation. In the last step of the compilation process, an XML parser
uses the markup to lift each PL/SQL function into the template format.

We found this separation of the compilation process useful because many sim-
ple changes can be implemented without understanding all of the steps in detail.
This was important as we needed the domain experts — database programmers —
to update the code generation steps without necessarily studying the details of op-
timization. The original design had even more steps in the compilation process,
mainly because we anticipated the need for several domain-specific languages to

8. Design of the MORI tool 143

be compiled into PL/SQL, and we wanted to be able to share large parts of the
code between the different compilers.

Integration of MORI/SQL and PL/SQL In the final implementation we did
use one of the steps for another purpose. The ability of our XML parser to lift
PL/SQL code into template form, i.e. to transform Figure 8.10 into Figure 8.11,
was just what the database programmers needed for writing those PL/SQL func-
tions that are not modelled by MORI/SQL. Thus we made the interface of the
XML parser available to the database programmers.

Having done this, it seemed natural to use the XML format to integrate PL/SQL
and MORI/SQL fully. The final format allows the programmer to write both
PL/SQL functions and MORI/SQL relations (a tag surrounding the code signals
whether it is one or the other). The XML parser cuts out each MORI/SQL rela-
tion, delivers it to the MORI/SQL compiler, and pastes the output PL/SQL back
into the XML document, from where it will finally be lifted to template form. The
process is illustrated in Figure 8.13 and explained in more detail in Section 8.5.

The following paragraphs provide some notes on the first three steps of the
compilation process.

Parsing, optimization and code generation The parser reads MORI/SQL in-
put and constructs an algebraic term. The term is represented as a Java object
of type Rel Al g. Query, a proprietary class written by the author. The parser’s
functionality can be described by a simple denotational semantics. This will be
given in Chapter 9 (in Figure 9.2) when we have defined the algebra that the terms
belong to. The parser itself was written using the Cup parser generator for Java
(cfr. [App98]). Employing the use of this third-party application was deemed nec-
essary.

The optimizer produces a term that is functionally equivalent to (but expect
to yield faster code than) the one constructed by the parser. This optimization is
quite complex and we devote Chapter 9 to describing the principles behind it.

The optimizer outputs code in the style of Figure 8.9. The codegen part of
the compiler adds all the aspects present in the code sketched in Figure 8.10. The
final output is PL/SQL embedded in XML.

8.5 The XML parser

As explained at the bottom of Section 8.4, the XML parser ended up being used
for three purposes:

8. Design of the MORI tool 144

XML parser

Y

cut PL/SQL

E MORI/SQL

paste l parser

E MORI algebra

l optimizer

Input XML

_/

-

MORI algebra

I

codegen
XML

Figure 8.13: The whole process of transforming XML input.

8. Design of the MORI tool 145

e Inside the MORI/SQL compiler, for lifting the target code to the template
style of Figure 8.11.

e Independent of the MORI/SQL compiler, for formatting ordinary PL/SQL
functions in the same template style.

¢ As an outermost encapsulation of the MORI/SQL compiler, allowing a pro-
grammer to write both PL/SQL and MORI/SQL in one file.

The input to the XML parser must obey the Document Type Definition in Fig-
ure 8.15. An example input file is given in Figure 8.14. The root tag is <pl - nori >
and has an associated version number, indicating the version of the format used in
the file. The content of the <pl - nori > tag is PL/SQL code.

Interaction between the XML parser and the MORI/SQL compiler Any
MORI/SQL code must be enclosed in a <mori - sql > tag. When the parser sees a
<nori - sql > tag, it passes the content to the MORI/SQL compiler. The compiler
performs the first three steps of the compilation process and returns the resulting
code (recall that the third step yields XML-embedded PL/SQL functions). The
code replaces the <nori - sql > tag, and is then processed as it would have been
if it had been inserted literally in the file. For instance, the MORI/SQL relation
most in Figure 8.14 would be replaced by a PL/SQL function the body of which
is identical to the body of the OtherMost function appearing just below it.

Lifting the PL/SQL functions The net result of this process is that the input
file in effect contains PL/SQL functions embedded in XML. What the XML parser
must do with these functions is to lift each into the template style we demonstrated
in Figure 8.11.

The PL/SQL USI NGfacility is akin to the functionality of printf () inC. The
essence of the lifting is that

e the actual SQL query must be put inside single quotes, and

e each dynamic value occurring in the query must be replaced by a place-
holder and instead be put in a value list following the query.

In this context a dynamic value is either an actual parameter of the PL/SQL func-
tion or a value computed in the PL/SQL statments preceding the actual SQL query.
The order in which the values appear in the list is important, as these are matched
left to right with the placeholders appearing in the quoted SQL query.

A complication arises from the fact that sometimes a dynamic value is not
scalar, but an array like clearances in Figure 8.14. That particular array calls

8. Design of the MORI tool 146

for 150 placeholders to be placed in the quoted SQL query and correspondingly
150 dynamic values to be listed after USI NG. There are also special record values
called attributes that need special handling, but they are of no general interest and
we shall not discuss them here.

Concrete syntax The <usi ng- quer y>tag demarks the actual SQL query. When
scanning the content of that tag, the XML parser outputs all ordinary text literally
but replaces any dynamic value with a placeholder and stores it in an internal list.
A scalar dynamic value is represented by the <pl ug> tag. Each occurence of a dy-
namic array is represented by an <array> tag. The <pl ug> tag has one attribute
that is assigned the actual dynamic value. An <arr ay> tag is a reference to an ear-
lier <def i ne- arr ay> tag, which declares how the given array is to be accessed.
We shall not discuss the details of the <def i ne- arr ay> tag.

The XML parser is implemented as a SAX parser ([HM02]). A Document
Type Definition of valid input for our XML parser is given in Figure 8.15. The
<attrlist>and<attr>tags are used to represent the above-mentioned attribute
values.

8.6 Conclusion

The MORI project has resulted in the definition of a domain-specific language,
called MORI/SQL, and a compiler that translates queries in MORI/SQL into
highly optimized queries in regular SQL. Use of MORI/SQL (rather than regu-
lar SQL) relieves the programmer of many worries that the production of efficient
queries in the Visanti would otherwise cause. MORI/SQL makes the definition of
complex queries possible, simple even.

This chapter has explained the main design choices behind the MORI/SQL
language, its syntax and its compiler. The chapter also described several crucial
features of the MORI/SQL compiler’s implementation.

8. Design of the MORI tool 147

<?xm version="1.0"?7>
<pl-nori version="2.0">

<nori -sql >
RELATI ON nost (chosen_f | avour | N EVENT)
BEG N
SELECT ev.to AS output, SUMev.score AS score
FROM chosen_fl avour ev
WHERE ev. from = FOCUS
GROUP BY out put
ORDER BY score DESC
END
</nori-sql >

function Qther Mst(focus_resource I N INT,
chosen_flavour |IN INT,
user _cl ass I N I NT)
RETURN TABLE_TYPE |S
rc TABLE TYPE;
clerances | NT_TABLE;
BEG N
<define-array nane="cl earances" size="150" cal|="ReadC El ens"/>
[1This fcn call returns an array with 150 el enents:
cl earances := Getd earances(user_cl ass);
OPEN rc FOR
<usi ng- query>
SELECT objectID AS output , SUMscore) AS score
FROM i ls
WHERE i|s. subjectID = <plug val ue="focus_resource"/> AND
ils.classification IN <array nanme="cl earances"/> AND
ils.flavour = <plug val ue="chosen_flavour"/>
GROUP BY out put
ORDER BY score DESC
</ usi ng- query>
RETURN rc;
END;
</pl-mori>

Figure 8.14: An example input file to our XML parser.

8. Design of the MORI tool

148

<IDOCTYPE pl-nori [

<! ELEMENT
<! ATTLI ST
<! ELEMENT
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ELEMENT
<! ELEMENT
<! ATTLI ST
<! ELEMENT
<! ATTLI ST
<! ELEMENT
<! ELEMENT
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ELEMENT
1>

pl -mori (#PCDATA | define-array | using-query | nori-sql)*>

pl-mori version NMIOKEN #REQUI RED>
define-array EMPTY>

define-array name NMIOKEN #REQUI RED>
define-array size NMIOKEN #REQUI RED>
define-array call CDATA #REQU RED>

usi ng-query (#PCDATA | array | plug | attrlist)*>

array EMPTY>

array nane NMIOKEN #REQUI RED>

pl ug EMPTY>

pl ug val ue NMIOKEN #REQUI RED>

attrlist (attr)+>

attr EMPTY>

attr name CDATA #REQU RED>

attr type (number | string | date) #REQU RED>
attr field CDATA #REQU RED>

mori-sql (#PCDATA) >

Figure 8.15: Document Type Definition describing valid input to our XML parser.

9 - A domain-specific relational
algebra

It’s the nexus of the crisis

the origin of storms

Just the place to hopelessly
encounter time

and then came me!
“Astronomy””, Blue Oyster Cult

What we present in this chapter is a domain-specific version of relational algebra
(see e.g. [Die01]). The algebra (called MORI algebra) is an intermediate language
in the compiler from MORI/SQL to PL/SQL. The point of defining this domain-
specific algebra was that terms in the algebra

e are straightforward to generate from MORI/SQL input,
e are easy to generate PL/SQL code for, and
e can be optimized using automatic transformations.

The first objective is treated in Section 9.2. The second objective was not par-
ticularly hard to obtain, and we shall not discuss it here. The third objective is
treated in detail in Section 9.5. An important part of the optimization is a general-
ization of the Generalized Coalescing Grouping principle outlined by Chaudhuri
and Shim in [CS94]. To our knowledge, Section 9.5.2 provides the first proof of
the correctness of those particular optimizations based on formal semantics.

The rest of the chapter is devoted to the theory needed to address the objec-
tives: syntax, semantics and types for the MORI algebra. We conclude in Sec-
tion 9.6.

9.1 Syntax

The syntax of the MORI algebra is shown in Figure 9.1. We do not expect the
reader to have an intuitive idea about what these operators mean. You can think
of each variable as a table in a database. A query Q (parametrized by a “bind-
ing” value r) will correspond to a view in that database. In relational algebra,
o-operators are restrictions i.e. operations that remove rows from the result, while

9. A domain-specific relational algebra 150

Q,Q1,...,Qn € Query = x(c)
| Qix---xQn ;n>0
| Ohind(c) Q
| Ohind-(c) Q
| Oegcyca) Q n>1
| I_ID/C’:CQ
D e Defs = C1=E1---ch=En ;n>0
E1,...,En€ Expr = maxc
| sumcy---cp ‘n>0
| El* E2
| E1/E>
X € Variables
c,c/,c1,...,Ccn € Identifiers

Figure 9.1: The syntax of MORI algebra.

[M-operators are projections: operations that remove and introduce columns in the
result. Product is Cartesian product, sometimes called the Cartesian join. We
have deliberately chosen a small set of expressions to keep things simple in this
presentation.

The operation named bind restricts a field to value r, while the bind-not oper-
ator restricts the field to any value but r. The eq restricts the result to rows whose
fields c1, ..., cn all have the same value. The rather complex projection operator
is a combination of SQL’s SELECT and GROUP BY.

A variable x € Variables represents a table in the underlying database. An
identifier ¢ € Identifiers names a column (or attribute, or field if you prefer) of a
table. In practice, an identifier matches the regular expression

(a—z)(a—1z].)"

where a — z matches any lower case letter and dot matches only the period sign.
Dots will be used to reflect subquery nesting. We shall often need to append a
literal suffix beginning with a dot like “.from” or “.to” to a given identifier c. We
write the extended identifiers as Cgom OF Cio respectively. Warning: This notation
should not be confused with indexed identifiers like cj, ¢k or ¢,. An index of an
identifier will always be a single letter, while suffixes in the above notation will
always consist of several letters.

9. A domain-specific relational algebra 151

Note that the sum expression accepts zero or more columns. For each row in
the sum, the specified columns are multiplied. When there are zero columns, this
product is defined to be 1, and we write the expression as sum 1. This special case
is equivalent to the count* expression in SQL.

Note that we use the word “table” about both tables in the underlying database
(database tables) and tables as results of queries (views).

9.2 Parsing MORI/SQL to MORI algebra

As explained in the previous chapter, MORI/SQL is parsed into MORI algebra.
This process is described formally by the denotational semantics in Figure 9.2.

There are a few things to notice in the figure. First of all, the sets in Roman
font are syntactic categories of the MORI/SQL grammar. Second, we only rep-
resent the actual query part of a relation as a term in MORI algebra. The header
of the relation and the ORDER BY declaration are silently passed on to the code
generating part of the compiler. Third, the syntaxes for expressions in the two
languages are almost identical, so we take the liberty of copying MORI/SQL ex-
pressions directly into the result term. The one exception is the COUNT* expression
in MORI/SQL which — as mentioned above — can be represented by the (sum 1)
expression in MORI algebra. Fourth, to be correct a MORI/SQL relation must
GROUP BY the identifier that it SELECTS as the first.

One detail has been left out of the semantics: to keep our notation more com-
pact in this chapter, we rename the rows of the ILS (see Section 8.1.1). In this
chapter

from is the row previously called subjectID,

to is the row previously called objectID,

ts is the row previously called timestamp, and

score is the row previously called size.

Other than this, the semantics should be straightforward. It is worth noting that
the only I.,. operator in the resulting query is the outermost one. This will be
useful when optimizing the query.

9.3 Denotational semantics

We shall formalize the meaning of terms in MORI algebra with a denotational
semantics. First we’ll need a common understanding of finite maps.

9. A domain-specific relational algebra 152

[Jquery . query — Query
[SELECT cASc/,L
FROM F
WHERE w
GROUP BY ¢ lovry = Mgeu/c=c(W]wherel [F]rom)
[el . explist — Defs
[[E]_AS Cl,...,EnAS Cn]]@(p == C]_:El b Cn:En

;substituting (sum 1) for COUNT

[Dérom . fromlist — Query
ﬂXlCl-“XnCn]]f = X1(C1) X oeee XXn(Cn)

[-Twhere : wherelist — Query — Query
[con1 AND-- - AND conpflwhered @ = [CON1]lcstr © - - - o [CONp]lcstr Q
[-Jestr . constraint — Query — Query
[FOCUS = cllesr Q = Opind(c) Q

[c = FOCUS]csr Q = Opind(c) Q

[FOCUS <> cJlesr Q = Obind—(c) Q

[[C <> FUCUS]]cstrQ = Gbind—|(c) Q

[c=cTesr Q = Oggee) Q

Figure 9.2: Parsing a MORI/SQL query into a MORI algebra query.

9. A domain-specific relational algebra 153

Finite maps A finite map from set A to set B is a function
f:A— BU{undef}

such that »
domf = f~1(B)

is finite. We say that
f € FiniteMaps(A,B)

For any choice of A and B, € denotes the map for which €(a) = undef for all a € A.
Whenever f is a finite map from A to B, a1,...,a, € Aand by,...,bp € BU
{undef } we define

flaz— by,---,an—bp) =Aa. if (a=a,) then by else

if (@=aj) then by else
f(a)

Note that the as do not have to be distinct. In case of multiple updates of the same
a, the last one will get priority. Finally, if f1,..., fy € FiniteMaps(A,B) all have
disjoint domains we define

fiu---ufy=»Aa. if (fi(a)eB) then fi(a) else

if (fa(a) €B) then fy(a) else
undef

The union is not defined if the domains are not disjoint.

Schemas and Tables In a relational database table, all rows in a table must
match the same schema, i.e. have the same number of columns with the same
names and value types. A database schema can be seen as a type for all of its
rows. The schema maps column identifiers to base types.

In our system, we’ll only need three base types: R, 7 and A’. When a column
has base type R, the values in that column come from a set Resources, which is
a countably infinite index set. When a column has base type 7, the values in
that column come from a set TimeStamps and indicate date and time of an event.
When a column has base type A/, the values in that column are natural numbers.
To indicate this correspondence, we define

?A{ = Resources
7T = TimeStamps
N = N

9. A domain-specific relational algebra 154

We model a schema as a finite map from the set of identifiers to our base types:
T € Schemas = FiniteMaps(ldentifiers,{R , 7, A\ })
The set of tables conforming to a specific schema 1 is formally defined as follows:

Tables(t) = {{p1,---,Pn} | Vi.pi € FiniteMaps(ldentifiers,
(Resources U TimeStamps UN))A
Vi.dom p; =dom T A

Vive € dom 1.pi(c) € T/(C\)}

It may seem weird that we don’t define the ps as mappings rather than FiniteMaps
given the second and third conditions. The reason is that it will come in handy
when we define our semantics: the more general set of ps allows us to derive one
table from another table of different schema more easily.

The set of all relational database tables is

Tables = {T | 31 € Schemas.T € Tables(1)}

Definitions for the semantics The underlying database @ is a mapping from
variable names to relational database tables. In our (domain-specific) case, all
tables in the underlying database have the same schema with four columns:

e from of type R,

e to, also of type R,
e tsof type 7, and
e score of type N

We’ll call such a table an event table (because they’re used to register events that
have occurred). So

EventTables = Tables(g[from — R ,to — R, ts — 7 ,score — A])
O : Variables — EventTables

The semantics of queries is given by a denotation of this form:
[-] : Query — Resources — (Variables — EventTables) — Tables
The semantics of expressions is given by a denotation

[-Je : Expr — Tables — Resource U TimeStampsU N

9. A domain-specific relational algebra 155

Denotational semantics

[x(c)]ro® = {¢[Cirom+ p(from),

Cto —> P(10),

Cts — p(tS),

Cscore = P(score)] [p € O(x) }
[Q1 -+ x Qn]ro® = {p2u---Upn|pi € [Qi]ro®}
[Obind(c) QIro® = {p€[Q]re® | p(c) =ro}

[Obind-(c) QlIro® = {pe[QJro® | p(c) # ro}
[Oeq(cy,....cn) QIIF0@ = {pe[Qro® |p(c1) =---=p(cn)}
[M(ci=E1-co=En)/c=cQIF® = let T = [Q]ro®

in{g[c» p(c),
c1— [Ede{p €T | p'(c) = p(0)},

ens [Ene{p €T | 9/(©) = p(c)}] | pE T}

The group-by operator is — as always — the most complex one to define. In brief,
the subquery Q is evaluated. The rows of the resulting table T are then partitioned
into equivalence classes; maximal subsets of T where all members have the same
value r in the field c. Finally, the expressions are used to aggregate values of other
fields, so that each equivalence class becomes one row in the final result. The
renaming of ¢ to ¢’ is just a service to the programmer, inherited from MORI/SQL.
The two identifiers do not have to be different.

A thing to notice is that the semantics of Cartesian product is only defined if
the constituent queries produce tables with disjoint schemas. In other words: if
two of the subqueries define the same identifier (attribute name), the product is
not defined. This convention forces the query writer to be aware of name spaces.
The type system below checks that this is indeed the case for well-typed queries.
The type system will also check that all fields that are made subject to equalities
or inequalities are of resource type (so we avoid considerations about equalities
between elements of different value sets).

The semantics of expressions is defined by:

[max c]eS = MaXpespP(C)

[sumcy---cplleS = Zpesp(cl)“‘p(cn)
[Ex1*E2]leS = ([Ea]eS)([E2]eS)
[E1/E2]eS = ([EaleS)/([E2]eS)

where max : P(TimeStamps) — TimeStamps operates on time stamps. For con-
venience we assume the existence of a special value cot € TimeStamps for which
maxicpt = cot. To avoid concerns regarding division by zero, we also assume the
existence of coy € N and define n/0 = ooy for all n € N.

9. A domain-specific relational algebra 156

Please note that, in the rule for sum expressions, when n = 0 (i.e. the list of cs
to multiply is empty), we consider the product to be 1 for every row.

9.4 Types

The type T of a query Q is a schema: a finite map from identifiers to base types
(resource, time stamp or natural number):

T € FiniteMaps(ldentifiers,{ R, T, A\})

This relation is simply written as
Q:t
Note that the type of a query is completely synthesized (constructed from Q’s
parts) and context-independent. It is not quite so for the type [3 of an expression
E. This type is either T or A/, but only if applied in a schema for which E makes
sense. We write this relation as
THFE:B

Here’s the type system for queries:

x(c) : €[Cirom — R, Cto — R, Cts — T, Ccore —> N]

Qi:11 -+ Qn:Ty
Q1 X - XQpn:TiW---UTy

Q:t 1(c)

Opind(c) Q

R

—

Q:t T1(c

Opind-(c) @ : T

R

Q:t tc1))=R - 1Tcn=R

Oeq(cp,.non) @0 T

iZj=>c#cj Qi1 T(c)=R Vi>01-E B
I_I(C]_:E]_"'Cn:En)/CO:CQ : S[CO — K; C1+ Bl7 -, Ch = Bn]

Note in particular that a Cartesian product can only be typed if its constituent
tables (its factors) define disjoint sets of column identifiers. Note also the ¢ and cg

9. A domain-specific relational algebra 157

must be of resource type. Although the semantics can work even if they are not,
this limitation is useful during optimization.
Here’s the type system for expressions:

1(c) =7
TFmaxc: 7T

Vi:it(c) =N

THsSumcy---Cn: A

TFEL: N THE: A TFEL: N THE: N
T|—E1*E2:9\£ T}—E]_/Eziﬂ\[

9.4.1 Query equivalence

We’re ready for defining semantical equivalence of queries, a concept we shall
find useful later on. We begin by stating the following fact.

Observation 3 (Well-typed programs don’t go wrong). Let Q: 1. Foranyr €
Resources and © : Variables — EventTables: [Q]r© € Tables(t).

This makes our job easier as we are only interested in equivalence of well-typed
queries.

Definition 8 (Equivalence). Let Q1 : 11 and Q> : T2 be well-typed queries. We
say that Q1 and Q2 are equivalent and write Q1 = Q2 if and only if 11 = T2 and

Vr € Resources VO : Variables — EventTables.[Q1]r© = [Q2]r®

Relation = is clearly an equivalence (reflexive, symmetric and transitive).

9.5 Optimization

This section proves some equivalence results for queries. These results show how
one can modify queries without modifying their semantics. We do not give an
optimization algorithm as such.

Our optimizations are of two kinds. The first kind of optimization is to move
bind- and bind-not-restrictions “downwards” in a query term. The point is that
the earlier we perform these restrictions, the fewer rows we’ll have to deal with
in the intermediate result tables. It is of special importance to try to move these
restrictions below product operators, as these are the ones causing blowups in
result table sizes.

9. A domain-specific relational algebra 158

The second kind of optimization is the introduction of extra GROUP-BYS.
This is important as it also (drastically) reduces table sizes in practice. Doing this
kind of optimization without changing the semantics of the query is quite subtle
but often possible, as it will turn out.

Example The following sections will prove the following equivalences

I_Is:(sum 1)/0=Cto Oyi nd(Crom) 0eq(cto C'from) (X(C) X X/(C/))

Ms—(sum 1)/0=c'10 Teq(cto Crrom) (xX'(c') x Obind(Ctrom) x(c))

M= (sum cent) /0=C'10 Teq(Cio Cirom) (XI(C’) X M cge=(sum 1) /cio=cto Tbind(Cirom) X(C)>

In what way is the latter query more efficient (optimized) than the first? The key
point to efficiency is that the intermediate results, the tables that are computed for
subexpressions of the query, have as few rows as possible. From the semantics of
queries we get that

[Q1x Q2flro® = |[Qa]ro®| - [[Q2]ro®|
| [Obing(c) QIINo®@| [Q]re®|
[Mp/e=cQJre®| [[Q[Iro®|

Assuming that all tables in the underlying database © are very large, the above
inequalities will most often mean difference by orders of magnitude. Applying
this to the example, we realize that the second query should be more efficient than
the first, and that the third should be even more efficient.

Section 9.5.1 proves the first equivalence above. Section 9.5.2 proves the sec-
ond equivalence.

9.5.1 Restriction propagation

Definition 9. For notational convenience we introduce two new restrictions:
0triv(c)Q = Q
Otail(c) @ = Obind(c) Obind-(c) Q

where c is an identifier. These restrictions are only syntactic sugar — the left-hand
sides are lexical alternatives to the corresponding right-hand sides. There is thus
no need to define types or semantics for these constructs.

9. A domain-specific relational algebra 159

op,0p,Q =? | P2 =bind(c) | P> = bind—(c) | P, =triv(c) | P> = fail(c)
Pr=bind(c) | Opind(c) Q Oail () Q Opind() Q | Orail()Q
PL=bind-(c) | OigQ Obind-(c)Q | Obind~(¢)Q | Orail(q)Q
PL=triv(c) | ObindigQ Obind-(c) Q Oriv(c)Q Oail () Q
P, = fail(c) Orail(c)Q Orail(¢)Q Orail(Q | Orail(q)Q

Figure 9.3: Algebraic laws for restrictions. We assume Q : T and 1(c) = X. The
query op,0p,Q is equivalent to the query in the corresponding table entry.

Note that when Q : T and 1(c) = R_we have the laws shown in Figure 9.3.

Recall that any query produced by the MORI/SQL parser (Section 9.2) con-
tains only one 1., operator, and that this operator is the outermost one. This
observation will allow to focus on rewriting queries without the I1.,. operator.

Definition 10. A query Q is in bind-normal-form if and only if Q is well-typed
and

Oy ((c1)rom) OPi2(e1)o) X2(C1) X
. o

0Pyt ((en)irom) OPrz (6n)g) X (Cn)

where Vi, j : Pij € {Ohind() s Obind-() » Otriv(), Ofail () }-

Q = Oeq(cye) "+ Oeq(cy))

Theorem 4. If Q is well-typed and does not contain any I1.,. -terms, there exists
Q' such that Q = Q' and the latter is in bind-normal-form.

Proof. The proof is performed by structural induction on Q and uses a number of
algebraic laws that will be given below.

Case Q =x(c): This case is simple as x(¢) = Otriv(Cfrom) Otriv(Cto) X (C).

Case Q = Q1 x --- x Qn: Assume by induction that Qf,...,Qp are in bind-
normal-form and Q1 = Qf,...,Qn = Qp,. The theorem holds by the distributivity
of restrictions (Lemma 4) and associativity of Cartesian product (Lemma 6).

Case Q = Oping(c) Q' OF Q = Oping-() Qs Assume by induction that Q" = Q" and
Q" is in bind-normal-form. The theorem holds by the commutativity (Lemma 5)
and distributivity (Lemma 4) of restrictions.

9. A domain-specific relational algebra 160

Case Q = Ogq(ccy) Q' Assume by induction that Q' = Q" and Q" is in bind-
normal-form. The theorem holds as Ogq(c,...c,) Q" is obviously equivalent to

Oeq(cic) * " Oeq(cn-16n) Q"

O

Corollary 2. If Q is well-typed and Q = MNp ¢— Q" where Q does not contain any
M.,.-terms, there exists Q" such that Q = Mp,v—Q" and Q" is in bind-normal-
form.

Lemma 4 (Distributivity of restrictions). When Q x Q' is well-typed, Q' : 1/, and
T'(c’) = R then

Opind(e') (A% Q) = QX Oping(ey Q'
Obind~(c) (QX Q') = Q X Oping~(c) Q'

Proof. Let © and ro be given. Depending on whether the restriction is Opng() Or
Gbind—|() we define

P(p) & p(c)=ro
or

P(p) & p(c)#ro

The semantics of the left-hand side query is given by

{pup'|pe[Q]re®,p € [QIro®,P(pup’)}

which, because t(c’) must be undef, is equal to

{pup’ | pe[QIr®,p € [QTro®,P(p')}
i.e. the semantics of the right-hand side query. O

Lemma 5 (Commutativity of restrictions). Let Q :tand 1(c) =1(¢’) =1(c1) =
---=T(cpn) = R.. The following equivalences hold:

Obind(c) Obind-(¢) @ = Ohind(c’) Obind(c) Q
Opind(c) Oeq(cr-cn) @ = Oeq(cy---cn) Obind(c) Q
Ohind(c) Oeq(cr—cn) @ = Oeq(cy—cn) Obind—(c) Q

9. A domain-specific relational algebra 161

Proof. Trivial. O
Lemma 6 (Associativity and commutativity of Cartesian product). When
le"'XQnXQ/]_X"'XQ{”n
is well-typed we have
Qux++xQnxQpx--xQf = (Qux-++xQn)xQyx-+xQp
le...xanan...XQﬁn QS_X"'XQ?nXQlX"'XQn
Proof. Trivial. O

9.5.2 GROUP-BY introduction

We now move on to the subject of when and how .. operators may be inserted
into a query Qo = Mp/¢—cQ, where Q is in bind-normal-form, without changing
the semantics of Qg. The approach we describe in this section is closely related to
the Generalized Coalescing Grouping principle outlined by Chaudhuri and Shim
in [CS94]. The following is an important concept in our investigation:

Definition 11 (Observational equivalence). Let Q : T and Q" : T/ be well-typed
queries and E and E’ be expressions such that T+ E : B and T - E’: B. When
M = {c1,...,Cn } is a set of identifiers for which M C T=1(R) UT'"1(R), we say
that (E,Q) and (E’,Q’) are observationally equivalent on M,

(EaQ) ~M (Elan)
if and only if

VO Vro,r1,...,fn: [E]le{p € [Qro® | p(c1) =riA---Ap(Ch) =rn} =
[ETe{p" € [QTro® | p(c1) =r1A---Ap(Cn) =Tn}

Notice that ~ is an equivalence: it is reflexive, symmetric and transitive. It is
weaker than = in the sense that Q : Tand Q = Q' implies (E, Q) ~r1(R) (E,Q").

Definition 12. For convenience and clarity we introduce the following notation:
iISEmpty? = (sum 1)/(sum 1)
That rather peculiar expression has a nice property that we shall need:
[ISEmpty?]¢eS=1<S#0

(It is copy When the set S is empty.)

The following theorem can be used when we want to rewrite Mp ¢—cQ into
Mp/e=c Q', specifically when Q is in bind-normal-form and Q' is similar to Q but
has aI1.,. operator in one of its subterms.

9. A domain-specific relational algebra 162

Theorem 5. If (isEmpty?,Q) ~cy (isEmpty?,Q’) and Vi : (E;, Q) ~q (E{,Q")
then

Mey=Eycn=En/c=cQ = Mey—gtco=r/c=c Q'
Proof. It is clear that the two queries will be well-typed and have the same type.
Let © and rg be given and let

To = [Q[re®
To = [Qre®
Tiet = [Mey=E,..cy=En/c'=c QlIN0®
Tright = [Me,—gf...c—e1/0=cQIro®
Assume for the sake of contradiction that Tiest # Trignt. This implies the existence
of a p such that p € Tiert but p & Trigne (or the other way around, but this situation

is completely symmetrical). Let r = p(c). From the semantics of queries and the
assumptions we get that

p = glct»
c1— [Ealefp € To [P'(c) =11,

en s [Enledp € To | /() = 1}]
= ¢g[cts T,
¢ [Elle{p € Ty | 0/(0) = 1,

enis [ENe(P € Ty | 9/6) = 1]

By the semantics, the latter is in Tyigr if and only if there is a p'in To such that
p'(c) =r. Such a p’ does exists, as

1 = [isEmpty?[e{p" € Tq | p"(c) = r} = [isEmpty?[e{p” € Te | p"(c) = r}
Thus, p € Trignt and we have a contradiction. O

Lemma?7. If
(E1,Q) ~m (E3, Q) A
(E2,Q) ~m (E5, Q")
then
((E1*E2),Q) ~m ((E1*E5),Q) A
((E1/E2),Q) ~m ((E1/E5),Q’)

Proof. Trivial. O

Lemma 7 has as consequence that we only need to establish observational equiv-
alences for ground expressions:

9. A domain-specific relational algebra 163

Definition 13. A expression E isground if E=max c or E=sumcy---Cn. Inthe
rest of this section, all expressions are expected to be ground.

If the query Q that we wish to optimize is on bind-normal-form, its outermost
subterms are field equality restrictions. Therefore we need the following two the-
orems:

Theorem 6. If (E,Q) ~(c¢y (E',Q') then

(E,Oeq(ce) Q) ~ic,c} (B Oeqrer) Q')
when E and E’ are ground.

Proof. Let ©,rg,r and r’ be given. If r = r’ then

[Elle{p € [Oeg(cc) QIN0® [p(c) =rApP(c) =1} =
[Ele{p € [Qllro® | p(c) =r Ap(c) =r}
[Ele{p’ € [QTro®@ | p'(c) =rAp'(c) =T} =
[E'Te{p’ € [Oeqree) QTN0® | p'(c) =r AP'(¢)) =1}
If r # ' then
[EJe{p € [Oeqc) QIIF0@ | p(c) =rAp(c) =1} =
[[E]]so =
[E'Te0 =
[Ele{p’ € [Oeqreer) QTro®@ | p'(c) =r AP'(c)) =1}
The equality [EJl¢ ® = [[E']¢ 0 always holds when E and E’ are ground and of the
same type.]

Theorem 7. If (E,Q) ~mujc) (E',Q’) then (E,Q) ~m (E’,Q) when E and E’ are
ground.

Proof. The types must clearly match. Let M ={c1,...,cn}, and let®,ro,r1,...,Im
be given.

[E]e{p € [Qlro® | p(C1) =Tr1A---Ap(Cn) = In} =
[EJle Ureresources 1P € [QIIro®@ | p(p(C) =rAc1) =riA---Ap(Cn) = In}
[[E/]]S UreR@ources{pl € [[Q’]]rOG) | p’(C) =TA p’(Cl) =TiA---A pl(cn) = rn} =
[ETe{p’ € [QIro® | p'(c1) = r1A---Ap'(Cn) = Fn}

The middle equality holds because E and E’ are ground and of the same type. [

We are now ready to show when and how GROUP BY can actually be per-
formed on a query that is part of a Cartesian product. The next four theorems
relate to this question, each one focusing on preserving observational equivalence
for a different kind of expression.

9. A domain-specific relational algebra 164

Theorem 8. Let Q: tand Q" : T’ be queries such that domtndomt’ =0, 1(c) =T
and T'(c’) = R. Then

(max c,Qx Ql) ~1-Y(R)u{c} (max c,Qx I'IE/C;:C/ QI)

Proof. It is clear that that both expressions are properly typable and will have the
same type. Let © and ro, rq,..., Fle-1(®))> r’ be given. We define predicates P and

P’ on the set of all rows by

P(p) & pler) =raA--AP(Cr-y())) = -t
P(p) & pc)=r

where €1, ..., Cr-1%) IS an enumeration of the elements in T H(R).
We also define

To = [Q[re®

To = [QTre®

Tet = {pUp |peTgp' €Ty, P(pup) AP (pup’)}
T = {ec'—=p'(c)]]p' €Ty}
Tigh = {PUp'|p€Tq,p' € Tn,P(PUp) AP (pup)}

A crucial fact is that there is a p’ € Ty for which P/(p’) if and only if there is a
p’ € T such P/(p’). We have

max p’(c) = max (pup’)(c)
p" € Tiet peTq

p eTy

Plpup)

P(pup’)

= max p(c)
peTo
DIETQ/

= max p(c)
peTQ
P eTn
P(p)
P(p)
= max (pup’)(c)
peTQ
P eTn
P(pup')
P(pup’)

= max p’(c)
p" € Tright

which proves the theorem. O

9. A domain-specific relational algebra 165

Theorem 9. Let Q: Tand Q" : T’ be queries such that domtndomt’ =0, T'(c’) =
R and 1'(c”) = T. Then

(maX ¢ , Q X Q,) ~Mr-L(R)u{c} (maX c” , Q X I'ICu:maX ¢ /d=c Q,)

Proof. The proof of this theorem resembles the proof of Theorem 8. Again it is
clear that both expressions are properly typable and will have the same type. Let
O and ro, rl,...,rh,l(m,r’ be given. We define P,P’,Tg, Toy and Tiet as in the
proof of Theorem 8, but let

T = {e[d'—p'(c), "~ max p"(c")] | p' € To}
0(e) = ()

Tigh = {pWUp' [peTo,p €Tn,P(pup) AP (pup’)}
In parallel to the above proof we now have

max p“(c") = max (pup’)(c’)
" € Tien pPeTy

peTy

P(pup')

P(pup’)

= max p'(c")
peTQ
P eTy

= max p'(c")

P(p)
= max (pup’)(c’)
peTq
Petn
Plpup)
P(pup’)

_ max p”(c”)
" € Tright
L
Theorem 10. Let Q: Tand Q' : T’ be queries such that domtndomt' =0, v/ (¢/) =
R, 1(c") =1'(c") = undef, and 1'(c}) = --- = T'(cy,) = AL where n > 0. Then

(sumch---cn,Q x Q') ~r-1g)uiey (sum ¢, Q% NMer—gum ¢ty Ji=c Q')

9. A domain-specific relational algebra 166

Proof. This proof also resembles the proof of Theorem 8. Once again it is clear
that both expressions are properly typable and will have the same type. Let © and
10,115 Fje-1(g)|: r' be given. We define P,P’, To, Ty and Tiet as in the proof of
Theorem 8, but this time we let
Tn = {e'=p)= Y plc)-p"(c)] | p' € To}
p"eTy
p"(c)=p'(c)

Tigt = {PYUpP' |P€To,p € Tn,P(pup’) AP (pup’)}

We derive

p(cy)--p"(cn) = Y (pup)(c) - (pPup’)(ch)

p" € Tett pPeETQ
p’ETQ/

Il
e
~
—~
o
R~
~—
e
~
—~
(@]
S5~
N

This proves the theorem. O

Theorem 11. Let Q: T and Q' : 1’ be queries such that domtndomt' =0, U/ (¢/) =
R, 1(c") =7/(c") = undef, and 1(c1) = - -- = 1(Cn) = A where n > 0. Then

(sum €1---€n, Q X Q) ~r-1gyuqey (UM’ c1-+Cny Q X Mer—am 1 /¢=c Q')

Proof. This proof follows the same pattern as the above ones. It is clear that
both expressions are properly typable and will have the same type. Let © and
r0: 1, Me-1(g): r' be given. We define P,P’, To, Ty and Tiet as in the proof of

9. A domain-specific relational algebra

167

Theorem 8, and let

7

T = {ed o p(c),¢" o

o
P(c)

{pup'|peTo,p’ €Tn,P

Tright =

This time the our derivation is as follows:

2

peTq
peTy
P(pup’)
Ppup’)

p”(Cl) . p”(Cn) —

p" € Tiet

— Y pler)-plen

peETQ

peTy
P(p)
P(p)

(

= | 2 Pl

peTQ
P

(

= > p(cy)-

K DPE(pT)Q

= Y PP

peTQ

peTQ

p'eTn
P(pup’)
P'(pup’)

— Z p/I(CII) pll(cl) .

P" €Ty ght

This proves the theorem.

p’(C’)

pu

(pup)(ca)--

)

-p(cn)

-p(cn)

(pup) () (pup')(cs)---

Z_ 1]|p' € To}

p) AP (pup’)}

(pup’)(cn)

1

\ (

)\ %
)

/

m
—Q

—~

P €Tn
P ()

(
DA
\

p(cn)

(pup’)(cn)

p"(cn)

O

Note that in the above Theorem, the number n of factors may be 0. Together
with Lemma 7 this case gives us an observational equivalence for the isEmpty?

expression.

9. A domain-specific relational algebra 168

Thus we have shown how a GROUP BY can be introduced into Q x Q’ in
many situations. In fact, the one kind of expression we cannot handle is a sum
of fields from both Q and Q’. The assignment in the GROUP BY that we add is
not the same in all cases, but we can obviously unify the .. operators simply by
appending their assignment lists (assuming the assigned identifiers are different).

9.6 Conclusion

This chapter desribed the MORI algebra, a domain-specific algebra invented to
serve as intermediate language in the compiler we described in Chapter 8.

Working with an abstract algebra proved itself extremely useful, not only as
a stage between MORI/SQL and PL/SQL but especially for reasoning about op-
timizations. The theory in Sections 9.5.1 and 9.5.2 would have been awkward to
develop and near impossible to implement on the SQL level.

The optimization we described in Section 9.5.2 is closely related to the Gener-
alized Coalescing Grouping principle outlined by Chaudhuri and Shim in [CS94].
We generalized their results and proved correctness in a formal setting. Moreover,
we proved our results for concrete aggregation functions.

We have a running implementation of an optimizer based on the principles we
have described, and our use of it have confirmed the usefulness of the work.

Conclusion

10 - Conclusion

Give a man a fish and you feed him for a day.
Teach him how to fish and you feed him for a lifetime.
Lao Tzu

If you give a man a fish he will eat for a day.

But if you teach a man to fish he will buy an ugly hat.
And if you talk about fish to a starving man

then you’re a consultant

Dogbert

In this chapter I will try to sum up the academic contributions of this thesis and
the most interesting directions for future work.

10.1 Contributions

The thesis was divided into three separate parts. | believe that each part contains
contributions to their own separate academic fields.

Part | was called Domain-specific language theory. It contained two surveys,
each one of them relating to a particular aspect of domain-specific languages and
their role in the software development process, and each of them associated with
a discussion that compared methods of the reviewed papers. As a practitioner
— working on concrete applications of domain-specific languages — | needed to
get an overview of the literature on these two aspects. Both surveys came into
existence because | could not find any papers that covered the same particular
aspects of domain-specific languages (DSLSs) in sufficient detail.

Chapter 2 reviewed many papers on methods for implementing DSLs. While
indeed a lot of papers have been written on this topic, most of these papers seem to
only mention one or very few methods, in contrast to my general survey. Chapter 3
covers a topic that seems to receive very little attention in the programming lan-
gauge community: how to compare the advantages and disadvantages of a given,
new DSL to pre-existing alternatives. Some papers do sketch such evaluations,
but the evaluation method employed differs considerably, and there is often no
clear rationale for the choice of method in a given paper. | believe that Chap-
ter 3 provides a first step towards comparing the different evaluation methods and
reasoning about which method to choose in a given project.

Part Il of the thesis, Partial evaluation theory, also made several contribu-
tions. Chapter 4 presented a new semantics for a subset of the language Erlang;

10. Conclusion 171

a semantics which models at least two important issues in Erlang that | have not
seen formalized hitherto: explicit name-spaces for process IDs and ordered, asyn-
chronous message transition. On top of this, the new semantics is also unusually
modular and should thus be relatively easy to extend to larger subsets of the lan-
guage.

Chapter 5 gave a number of motivating examples and potential benchmarks
for partial evaluation of Erlang. The examples were also used as background
for a formulation of what is specialization in perspective of the semantics from
Chapter 4. The chapter also contained a survey of papers on partial evaluation of
concurrent languages.

The last chapter in the second part of the thesis contributes to the theoretical
understanding of differences and similarities between online and offline partial
evaluation. Robert Gliick and | proved that — in contrast to a common belief
— for many languages the two approaches achieve the same accuracy in finding
static information. The chapter has, in form of a regular paper, been accepted for
publication by the ACM Transactions on Programming Languages and Systems.

Part 111 of this thesis was called MORI: an application of domain-specific
languages and described my major example of how domain-specific languages
can be used in practical software development. The three chapters thus add flesh
and blood to the more abstract considerations of Part I, motivating the need for
Chapters 2 and 3. Moreover, Chapter 9 demonstrates how very complicated opti-
mizations of a domain-specific language can be developed and explained through
formal semantics. And in the process, certain results pertaining to the correctness
of relational database query optimizations are established by formal proof. To my
knowledge, this is the most detailed formal treatment of those optimizations.

10.2 Future work

Evaluation of DSLs It seems clear that more work could be done in this area.
Unfortunately, evaluations in the present literature more often resemble sales talks
than whole-hearted attempts at objectively critizing the DSL approach in a given
context. To gain a better understanding of the DSL approach to software devel-
opment, we need more DSL papers to report on reasonably objective evaluations
in details. We also need to compare surveys like Chapter 3 with other texts on
evaluation in the software engineering literature.

Erlang semantics The semantics of Chapter 4 leaves room for improvement.
Most obviously it should be extended to model more of the interesting features of
Erlang, particularly modules and hot code replacement which should be of interest
to the program transformation community. Modelling Erlang’s clever support for

10. Conclusion 172

writing fail-safe servers would also be interesting, because formal inspections of
fail-over handling could turn out to be quite valuable.

On a more theoretical line, I would like to see a version of the semantics based
on observations of communication as in e.g. the Tecalculus. | conjecture that
this would simplify the definition of correct program transformations, as it would
allow standard definitons of simulation and bisimulation.

Partial evaluation of Erlang The future work on this topic is clear: write an
actual partial evaluator for Erlang. There are still design issues to be solved,
e.g. should the system be online of offline, are partially static data structures a
must, and how do we practically handle intended nontermination? An important
question is whether some of the related work that was reviewed in Chapter 5 can be
applied inan Erlang setting. Due to the essential differences between concurrency
paradigms, the answer to this question is not clear.

Polyvariant binding-time analyses What happens to the accuracy and termina-
tion properties of a polyvariant BTA, when the language in Chapter 6 is extended
with non-atomic data types, e.g. arrays, lists and higher-order data? To what ex-
tent can an offline system with a terminating BTA simulate the accuracy of an
online system in such an extended language?

Relational algebra optimization The last four theorems in Chapter 9 can clearly
be generalized so that they refer to an abstract aggregation function with certain
properties, rather than a concrete aggregation function. It would also be nice to
formulate the whole optimization process of that chapter as an algorithm. Further-
more, the benefits obtained by applying my optimizations could probably be ex-
pressed as a function of certain measures on the tables in the underlying database.

Domain stability and community In the introduction (Chapter 1), | briefly
noted that there may not be a general consensus as to what constitutes a prob-
lem domain, and as such is fit for being described by a domain-specific language.
There is no simple criterion.

In my own application (Chapter 7), it became clear that the problem domain
was not stable — it kept developing throughout the project. Take good notice: it
was not only my understanding of the problem domain that developed, it really
was the domain itself that was chaging. This shouldn’t really be a surprise. After
all, my problem domain was defined by a program, and programs are artefacts that
do tend evolve over time. As the Visanti programmers were learning more about
their product and its use, and as customers came up with new requirements for the
program, the problem domain defined be the program evolved. In other words,

10. Conclusion 173

the problem domain | worked with was in a very real sense socially constructed
and depended on the Visanti programmers and the customers.

Now, it can be argued that this perspective applies to anything that has been
suggested as a problem domain, be it 3D animation, device drivers or context-free
parsing®. It seems that the extreme instability of my problem domain simply stems
from the fact that the number of people that contribute to defining it is very small
(a few programmers, a few customers). At the other end of the “stability-spectre”
you may find e.g. the domain of problems relating to solving partial differential
equations. The concepts and methods from that domain are decades old — even
centuries old — and are known to hundreds of thousands of people. If you wrote
a textbook on partial differential equations and discarded all existing notation to
invent your own, no one would accept your exposition. When | wrote Chapter 7 on
my problem domain, | was free to invent new names, notations and perspectives,
because none of these had properly stabilized.

The point of these observations is that when a problem domain is not stable,
implementing a domain-specific language for it is probably risky. If concepts or
methods change, the language must be reinvented, which is likely to be a major
effort. If you want to avoid this risk, the object to study is not the problem domain
itself as given by e.g. a set of example problems, but the people that define the
problem domain by having a stable frame of reference for your example problems.
Rather than domain-specific, our little languages are community-specific.

The future work direction implied by these thoughts is to answer the following
questions:

1. Does it matter? l.e., does focussing on a community rather than a set of
problems have any practical consequences for how we design and imple-
ments little languages?

2. If so, can programming language techniques and tools be made to support
this alternative focus?

Some discussions on DSL design methodologies ([CE00Q], Chapter 2) acknowl-
egde the need for analysing “stakeholder” interest, goals and requirements, but
they do not directly address domain stability or provide clear answers to the above
questions.

1The example of problem domains in this paragraph can all be found in [vDKV00].

Bibliography

[AC94]

[And93]

[And94]

[App98]

[Arm97]

[Arm00]

[Arm01]

J. Michael Ashley and Charles Consel.

Fixpoint computation for polyvariant static analyses of higher-order
applicative programs.

ACM TOPLAS, 16(5):1431-1448, 1994.

Lars Ole Andersen.

Binding-time analysis and the taming of C pointers.

In Proc. of the Symp. on Partial Evaluation and Semantics-Based
Program Manipulation, pages 47-58. ACM Press, 1993.

L. O. Andersen.

Program Analysis and Specialization for the C Programming Lan-
guage.

PhD thesis, DIKU, University of Copenhagen, May 1994.

(DIKU report 94/19).

Andrew W. Appel.
Modern Compiler Implementation in Java.
Cambridge University Press, Cambridge, UK, January 1998.

Joe Armstrong.

The development of Erlang.

In Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP-97), volume 32,8 of ACM SIG-
PLAN Notices, pages 196—-203, New York, June 9-11 1997. ACM
Press.

Phillip G. Armour.
The five orders of ignorance.
Communications of the ACM, 43(10):17-20, 2000.

Phillip Armour.

The business of software: Zeppelins and jet planes: a metaphor for
modern software projects.

Communications of the ACM, 44(10):13-15, October 2001.

BIBLIOGRAPHY 175

[Asa99]

[ASUS6]

[AVWW]

[BD91]

[BDK™96]

[Ben86]

[BHOS76]

[Bon92]

[Bon93]

Kenichi Asali.

Binding-time analysis for both static and dynamic expressions.

In A. Cortesi and G. Filé, editors, Static Analysis. Proceedings,
LNCS 1694, pages 117-133. Springer-Verlag, 1999.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers Principles, Techniques, and Tools.
Addison Wesley, 1986.

J. Armstrong, R. Virding, M. Wikstréom, and M. Williams.
Concurrent Programming in Erlang.
Prentice-Hall, Englewood Cliffs, NJ.

Anders Bondorf and Olivier Danvy.

Automatic autoprojection of recursive equations with global vari-
ables and abstract data types.

Science of Computer Programming, 16:151-195, 1991.

M. G. J. van den Brand, A. van Deursen, P. Klint, S. Klusener, and
E. A. van der Meulen.

Industrial applications of ASF+SDF.

In M. Wirsing and M. Nivat, editors, Algebraic Methodology and
Software Technology (AMAST’96), volume 1101 of Lecture Notes
in Computer Science, pages 9-18. Springer-Verlag, 1996.

Jon Louis Bentley.

Programming pearls: Little languages.

Communications of the ACM, 29(8):711-721, August 1986.
Description of the pic language.

Lennart Beckman, Anders Haraldson, Osten Oskarsson, and Erik
Sandewall.

A partial evaluator and its use as a programming tool.

Artificial Intelligence, 7:319-357, 1976.

Anders Bondorf.

Improving binding times without explicit CPS-conversion.

In ACM Conference on Lisp and Functional Programming, pages 1—
10. ACM Press, 1992.

Anders Bondorf.

Similix 5.0 Manual.

DIKU, University of Copenhagen, Denmark, 1993.

Included in the Similix distribution
(http://www.diku.dk/forskning/topps/activities/similix.html),
82 pages.

BIBLIOGRAPHY 176

[Bra61]

[BSVO03]

[Bulg4]

[Bul93]

[CD914]

[CD91b]

[CEO0]

[CGO0]

[CGJI*H00]

[CGLOO]

Harvey Bratman.
An alternate form of the ”uncol diagram”.
Communications of the ACM, 4(3):142, 1961.

Claus Brabrand, Michael Schwartzbach, and Mads Vanggaard.

The metafront system: Extensible parsing and transformation.

In Proceedings of the Third Workshop on Language Descriptions,
Tools and Applications (LDTA 2003), Warsaw, Poland, April
2003.

Mikhail A. Bulyonkov.
Polyvariant mixed computation for analyzer programs.
Acta Informatica, 21:473-484, 1984.

Mikhail A. Bulyonkov.

Extracting polyvariant binding time analysis from polyvariant spe-
cializer.

In Proceedings of the Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 59-65. ACM
Press, 1993.

Charles Consel and Olivier Danvy.

For a better support of static data flow.

In J. Hughes, editor, Functional Programming Languages and Com-
puter Architecture. Proceedings, LNCS 523, pages 496-519.
Springer-Verlag, 1991.

Charles Consel and Olivier Danvy.

Static and dynamic semantics processing.

In ACM Symposium on Principles of Programming Languages, Or-
lando, Florida, pages 14-24. ACM, January 1991.

Krzysztof Czarnecki and Ulrich W. Eisenecker.
Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

Luca Cardelli and Andrew D. Gordon.
Mobile ambients.
Theoretical Computer Science, 240(1):177-213, June 2000.

Richard Carlsson, Bjorn Gustavsson, Erik Johansson, Thomas Lind-
gren, Sven-Olof Nystrom, Mikael Pettersson, and Robert Virding.

Core Erlang 1.0 language specification.

Technical Report 2000-030, Department of Information Technology,
Uppsala University, November 2000.

Niels H. Christensen, Robert Gliick, and Sgren Laursen.

BIBLIOGRAPHY 177

[CHNT96]

[CKO5]

[CL73]

[CM98]

[Con93]

[CoVO02]

[CS94]

[DFGY8]

Binding-time analysis in partial evaluation: one size does not fit all.

In D. Bjgrner, M. Broy, and A. V. Zamulin, editors, Perspectives
of System Informatics. Proceedings, LNCS 1755, pages 80-92.
Springer-Verlag, 2000.

Charles Consel, Luke Hornof, Francois Noel, Jacques Noyé, and Eu-
gen Nicolae Volanschi.

A uniform approach for compile-time and run-time specialization.

In Olivier Danvy, Robert Gliick, and Peter Thiemann, editors, Partial
Evaluation. Proceedings, LNCS 1110, pages 54-72. Springer-
Verlag, 1996.

Charles Consel and Siau-Cheng Khoo.

On-line and off-line partial evaluation: semantic specifications and
correctness proofs.

Journal of Functional Programming, 5(4):461-500, 1995.

Chin-Liang Chang and Richard Char-Tung Lee.

Symbolic Logic and Mechanical Theorem Proving, chapter 10.9 The
Specialization of Programs, pages 228-231.

Computer Science and Applied Mathematics. Academic Press, New
York, London, 1973.

Charles Consel and Renaud Marlet.

Architecturing software using: A methodology for language devel-
opment.

Lecture Notes in Computer Science, 1490:170-??, 1998.

Charles Consel.

Polyvariant binding-time analysis for applicative languages.

In Workshop on Partial Evaluation and Semantics-Based program
Manipulation, pages 66—77. ACM Press, 1993.

Krzysztof Czarnecki, Kasper @sterbye, and Markus Volter.
Generative programming.
Lecture Notes in Computer Science, 2548:15-29, 2002.

Surajit Chaudhuri and Kyuseok Shim.

Including group-by in query optimization.

In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, 20th
International Conference on Very Large Data Bases, September
12-15, 1994, Santiago, Chile proceedings, pages 354-366, Los
Altos, CA 94022, USA, 1994. Morgan Kaufmann Publishers.

Mads Dam, Lars-Ake Fredlund, and Dilian Gurov.
Toward parametric verification of open distributed systems.

BIBLIOGRAPHY 178

[DHK96]

[Die01]

[EFdMOO]

[EHK96]

[Ers77]

[EST70]

[FGS97]

[FN88]

[FNP97]

Lecture Notes in Computer Science, 1536:150-185, 1998.

A. van Deursen, J. Heering, and P. Klint, editors.

Language Prototyping: An Algebraic Specification Approach, vol-
ume 5 of AMAST Series in Computing.

World Scientific Publishing Co., 1996.

Suzanne W. Dietrich.
Understanding Relational Database Query Languages.
Prentice-Hall, 2001.

Conal Elliott, Sigbjorn Finne, and Oege de Moor.
Compiling embedded languages.
In SAIG, pages 9-27, 2000.

Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek.

‘C: A language for high-level, efficient, and machine-independent
dynamic code generation.

In Conference Record of POPL ’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pages 131-144. ACM SIGACT and SIGPLAN, ACM Press,
1996.

Andrei P. Ershov.
On the partial computation principle.
Information Processing Letters, 6(2):38-41, 1977.

Jay Earley and Howard Sturgis.
A formalism for translator interactions.
Communications of the ACM, 13(10):607-617, 1970.

Markus P.J. Fromherz, Vineet Gupta, and Vijay A. Saraswat.

Cc - a generic framework for domain specific languages.

In Proc. 1st ACM-SIGPLAN Workshop on Domain-Specific-
Languages, DSL ’97, Paris, France, January 18, 1997. Technical
Report, University of Illinois at Urbana-Champaign, 1997.

Yoshihiko Futamura and Kenroku Nogi.

Generalized partial computation.

In Dines Bjgrner, Andrei P. Ershov, and Neil D. Jones, editors, Par-
tial Evaluation and Mixed Computation, pages 133-151. North-
Holland, 1988.

Rickard E. Faith, Lars S. Nyland, and Jan F. Prins.
KHEPERA: A system for rapid implementation of domain specific
languages.

BIBLIOGRAPHY 179

[Fou98]

[Fut71]

[GHS02]

[GI91]

[GI94]

[GJ96]

[GK93]

[G1102]

In Proceedings of the Conference on Domain-Specific Languages
(DSL-97), pages 243-256, Berkeley, October 15-17 1997.
USENIX Association.

Cédric Fournet.
The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, 1998.

Yoshihiko Futamura.

Partial evaluation of computing process — an approach to a compiler-
compiler.

Systems, Computers, Controls, 2(5):45-50, 1971.

Reprinted in Higher-Order and Symbolic Computation, 12(4): 381-
391, 1999.

Jens Christian Godskesen, Thomas Hildebrandt, and Vladimiro Sas-
sone.

A calculus of mobile resources.

In Lubos Brim, Petr Jan&ar, Mojmir Kfetinsky, and Antonin Kuera,
editors, CONCUR 2002: Concurrency Theory (13th Interna-
tional Conference, Brno, Czech Republic), volume 2421 of LNCS,
pages 272-287. Springer, August 2002.

Carsten K. Gomard and Neil D. Jones.
Compiler generation by partial evaluation: a case study.
Structured Programming, 12:123-144, 1991.

Robert Gliick and Jesper Jargensen.

Generating optimizing specializers.

In IEEE International Conference on Computer Languages, pages
183-194. IEEE Computer Society Press, 1994.

Arne J. Glenstrup and Neil D. Jones.

BTA algorithms to ensure termination of off-line partial evaluation.

In Dines Bjgrner, Manfred Broy, and Igor V. Pottosin, editors, Per-
spectives of System Informatics. Proceedings, LNCS 1181, pages
273-284. Springer-Verlag, 1996.

Robert Glick and Andrei V. Klimov.

Occam’s razor in metacomputation: the notion of a perfect process
tree.

In P. Cousot, M. Falaschi, G. Filé, and A. Rauzy, editors, Static Anal-
ysis. Proceedings, LNCS 724, pages 112-123. Springer-Verlag,
1993.

Robert Gliick.

BIBLIOGRAPHY 180

[GMY6]

[GMS99]

[Gro03]

[GS94]

[GS96]

[Hat99]

[HDL98]

Jones optimality, binding-time improvements, and the strength of
program specializers.

In Proceedings of the Asian Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, pages 9-19. ACM
Press, 2002.

M. Gengler and M. Martel.

Self-applicable partial evaluation for the pi-calculus.

Technical report, Ecole Normale Superieure de Lyon, Laboratoire de
I’Informatique du Parallelisme, 1996.

Arne Glenstrup, Henning Makholm, and Jens Peter Secher.

C-Mix: specialization of C programs.

In John Hatcliff, Torben Mogensen, and Peter Thiemann, editors,
Partial Evaluation. Practice and Theory, LNCS 1706, pages
108-153. Springer-Verlag, 1999.

Austin Grossman, editor.
Post Mortems from Game Developer.
CMP Books, 2003.

Robert Gluck and Morten Heine Sgrensen.

Partial deduction and driving are equivalent.

In M. Hermenegildo and J. Penjam, editors, Programming Language
Implementation and Logic Programming. Proceedings, LNCS
844, pages 165-181. Springer-Verlag, 1994.

Robert Gluck and Morten Heine Sgrensen.

A roadmap to metacomputation by supercompilation.

In Olivier Danvy, Robert Gliick, and Peter Thiemann, editors, Partial
Evaluation. Proceedings, LNCS 1110, pages 137-160. Springer-
Verlag, 1996.

John Hatcliff.

An introduction to online and offline partial evaluation using a simple
flowchart language.

In John Hatcliff, Torben Mogensen, and Peter Thiemann, editors,
Partial Evaluation. Practice and Theory, LNCS 1706, pages 20—
82. Springer-Verlag, 1999.

John Hatcliff, Matthew Dwyer, and Shawn Laubach.

Staging analysis using abstraction-based program specialization.

In C. Palamidessi, H. Glaser, and K. Meinke, editors, Principles of
Declarative Programming. Proceedings, LNCS 1490, pages 134—
151. Springer-Verlag, 1998.

BIBLIOGRAPHY 181

[HKY96]

[HMO2]

[HN99]

[Huc99]

[Hud98a]

[Hudosb]

[JG02]

[JGS93]

H. Hosoya, N. Kobayashi, and A. Yonezawa.

Partial evaluation scheme for concurrent languages and its correct-
ness.

In L. Bougeé et al., editors, Euro-Par’96 - Parallel Processing, Lyon,
France. (Lecture Notes in Computer Science, vol. 1123), pages
625-632. Berlin: Springer-Verlag, 1996.

Elliotte Rusty Harold and W. Scott Means.

XML in a nutshell.

In a nutshell. O’Reilly & Associates, Inc., 103a Morris Street, Se-
bastopol, CA 95472, USA, Tel: +1 707 829 0515, and 90 Sher-
man Street, Cambridge, MA 02140, USA, Tel: +1 617 354 5800,
second edition, 2002.

Luke Hornof and Jacques Noyé.

Accurate binding-time analysis for imperative languages: flow, con-
text, and return sensitivity.

Theoretical Computer Science, 248(1-2):3-27, 1999.

Frank Huch.

Verification of erlang programs using abstract interpretation and
model checking.

In Proceedings of the Fourth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP-99), volume 34.9 of
ACM Sigplan Notices, pages 261-272, N.Y., September 27-29
1999. ACM Press.

Paul Hudak.
Handbook of Programming Languages, volume Il1, chapter 3.
Macmillan Technical, 1998.

Paul Hudak.

Modular domain specific languages and tools.

In P. Devanbu and J. Poulin, editors, Proceedings: Fifth International
Conference on Software Reuse, pages 134-142. IEEE Computer
Society Press, 1998.

Neil D. Jones and Arne Glenstrup.

Program generation, termination, and binding-time analysis.

In D. Batory, C. Consel, and W. Taha, editors, Generative Program-
ming and Component Engineering. Proceedings, LNCS 2487,
pages 1-31. Springer-Verlag, 2002.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.
Partial Evaluation and Automatic Program Generation.

BIBLIOGRAPHY 182

[Jon88]

[Jon97]

[JSS85]

[JSS89]

[Kam]

[Kam98]

[KKZG95]

[KMB+96]

Prentice Hall International, International Series in Computer Science,
June 1993.
ISBN number 0-13-020249-5 (pbk).

Neil D. Jones.

Automatic program specialization: a re-examination from basic prin-
ciples.

In Dines Bjgrner, Andrei P. Ershov, and Neil D. Jones, editors, Par-
tial Evaluation and Mixed Computation, pages 225-282. North-
Holland, 1988.

Neil D. Jones.

Computability and Complexity from a Programming Perspective.

Foundations of Computing. MIT Press, Boston, London, 1 edition,
1997.

Neil D. Jones, Peter Sestoft, and Harald Sgndergaard.

An experiment in partial evaluation: the generation of a compiler
generator.

In J.-P. Jouannaud, editor, Rewriting Techniques and Applications,
LNCS 202, pages 124-140. Springer-Verlag, 1985.

Neil D. Jones, Peter Sestoft, and Harald Sgndergaard.

Mix: a self-applicable partial evaluator for experiments in compiler
generation.

LISP and Symbolic Computation, 2(1):9-50, 1989.

S. Kamin.
Building program generators the easy way (extended abstract).
Technical report, University of Illinois at Urbana-Champaign.

S. Kamin.

Research on domain-specific embedded languages and program gen-
erators.

Electronic Notes in Theoretical Computer Science, 1998.

Paul Kleinrubatscher, Albert Kriegshaber, Robert Zochling, and
Robert Gluck.

Fortran program specialization.

SIGPLAN Notices, 30(4):61-70, 1995.

Richard B. Kieburtz, Laura McKinney, Jeffery M. Bell, James Hook,
Alex Kotov, Jeffery Lewis, Dino P. Oliva, Tim Sheard, Ira Smith,
and Lisa Walton.

A software engineering experiment in software component genera-
tion.

BIBLIOGRAPHY 183

[KST98]

[Lan66]

[LD94]

[LM99]

[LS91]

[Mar00a]

[Mar00b]

[Mey91]

In Proceedings of the 18th International Conference on Software
Engineering, pages 542-553. IEEE Computer Society Press,
1996.

P. Kutter, D. Schweizer, and L. Thiele.

Integrating domain specific language design in the software life cy-
cle.

In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Pro-
ceedings of the International Workshop on Current Trends in Ap-
plied Formal Methods, volume 1641 of LNCS, pages 196-212,
Boppard, Germany, October 1998.

P. J. Landin.

The next 700 programming languages.

Communications of the ACM, 9(3):157-164, March 1966.

Originally presented at the Proceedings of the ACM Programming
Language and Pragmatics Conference, August 8-12, 1965.

Julia L. Lawall and Olivier Danvy.

Continuation-based partial evaluation.

In ACM Conference on Lisp and Functional Programming, pages
227-238. ACM Press, 1994.

Daan Leijen and Erik Meijer.

Domain-specific embedded compilers.

In USENIX, editor, Proceedings of the 2nd Conference on Domain-
Specific Languages (DSL ’99), October 3-5, 1999, Austin, Texas,
USA, pages 109-122, Berkeley, CA, USA, 1999. USENIX.

John W. Lloyd and J. C. Shepherdson.
Partial evaluation in logic programming.
Journal of Logic Programming, 11(3-4):217-242, 1991.

Renaud Marlet.
Tempo, a program specializer for C.
SIGPLAN Notices, 35(7):76-77, 2000.

Matthieu Martel.

Analyse Statique et Evaluation Partielle de Systémes de Processus
Mobiles.

PhD thesis, Université d’ Aix-Marseille 11, 2000.

Uwe Meyer.

Techniques for partial evaluation of imperative languages.

In Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pages 94-105. ACM Press, 1991.

BIBLIOGRAPHY 184

[Mey99]

[MGO7]

[MGO0]

[MGO1]

[Mil9g]

[Mog02]

[MogO03]

[MWWO02]

[MYO01]

Uwe Meyer.
Correctness of online partial evaluation for a Pascal-like language.
Science of Computer Programming, 34(1):55-73, 1999.

M. Marinescu and B. Goldberg.

Partial-evaluation techniques for concurrent programs.

In Proceedings of the ACM SIGPLAN Symposium on Partial Evalu-
ation and Semantics-Based Program Manipulation (PEPM-97),
volume 32, 12 of ACM SIGPLAN Notices, pages 47-62, New
York, June 12-13 1997. ACM Press.

Matthieu Martel and Marc Gengler.

Communication topology analysis for concurrent programs.

In SPIN’2000, volume 1885 of LNCS, pages 265-286. Springer,
2000.

Matthieu Martel and Marc Gengler.
Partial evaluation of concurrent programs.
Lecture Notes in Computer Science, 2150:504-514, 2001.

Robin Milner.
Communicating and Mobile Systems: The 1t Calculus.
Cambridge University Press, Cambridge, England, 1999.

Torben Mogensen.

Roll: A language for specifying die-rolls.

In veronica Dahl and Philip Wadler, editors, PADL 2003, volume
2562 of LNCS, pages 145-159. Springer, 2002.

Torben . Mogensen.
Linear types for cashflow reengineering.
In Perspectives of System Informatics 03, LNCS. Springer, 2003.

S. Mauw, W. Wiersma, and T. Willemse.

Language-driven system design.

In HICSS35, Proceedings of the Hawaii International Conference
on System Sciences, minitrack on Domain-Specic Languages for
Software Engineering, Hawaii, January 2002.

To appear.

Hidehiko Masuhara and Akinori Yonezawa.

Run-time bytecode specialization: a portable approach to generating
optimized specialized code.

In Olivier Danvy and Andrzej Filinski, editors, Programs as Data
Objects. Proceedings, LNCS 2053, pages 138-154. Springer-
Verlag, 2001.

BIBLIOGRAPHY 185

[NAOPOO] Lloyd H. Nakatani, Mark A. Ardis, Robert G. Olsen, and Paul M.

[NJ97]

[Orw99]

[Orw00]

[Ous94]

[Ous98]

[PKI7]

[RG92]

[RMO1]

[Rom88]

Pontrelli.
Jargons for domain engineering.
ACM SIGPLAN Notices, 35(1):15-24, January 2000.

L. Nakatani and M. Jones.

Jargons and infocentrism.

In Proceedings of the first ACM SIGPLAN Workshop on Domain-
Specific Languages, pages 59-74, 1997.

Jon Orwant.
EGGG: The Extensible Graphical Game Generator.
PhD thesis, MIT, 1999.

J. Orwant.
EGGG: Automated programming for game generation.
IBM Systems Journal, 39(3/4):782—-794, 2000.

John K. Ousterhout.
Tcl and the Tk ToolKkit.
Addison Wesley, 1994.

John K. Qusterhout.
Scripting: Higher-level programming for the 21st century.
Computer, 31(3):23-30, 1998.

Peter Pfahler and Uwe Kastens.

Language design and implementation by selection.

In Proc. 1st ACM-SIGPLAN Workshop on Domain-Specific-
Languages, DSL ’97, Paris, France, January 18, 1997, pages
97-108. Technical Report, University of Illinois at Urbana-
Champaign, 1997.

Bernhard Rytz and Marc Gengler.

A polyvariant binding time analysis.

In Proceedings of the Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages 21-28. Yale Uni-
versity, Dept. of Computer Science, 1992.

L. Réveillére and G. Muller.

Improving driver robustness: an evaluation of the devil approach.

In Proceedings of the 2001 International Conference on Dependable
Systems and Networks (DSN ’01), pages 131-140, Washington -
Brussels - Tokyo, July 2001. IEEE.

Sergei A. Romanenko.

BIBLIOGRAPHY 186

[Ruf93]

[RW93]

[Sch01]

[SeaBP99]

[SG97a]

[SGO7h]

[SGJ96]

[SGT96]

A compiler generator produced by a self-applicable specializer can
have a surprisingly natural and understandable structure.

In Dines Bjarner, Andrei P. Ershov, and Neil D. Jones, editors, Par-
tial Evaluation and Mixed Computation, pages 445-463. North-
Holland, 1988.

Eric Ruf.

Topics in online partial evaluation.

Technical Report CSL-TR-93-563, Stanford University, Computer
Systems Laboratory, 1993.

Eric Ruf and Daniel Weise.
On the specialization of online program specializers.
Journal of Functional Programming, 3(3):251-281, 1993.

Ulrik Pagh Schultz.

Partial evaluation for class-based object-oriented languages.

In Olivier Danvy and Andrzej Filinski, editors, Programs as Data
Objects. Proceedings, LNCS 2053, pages 173-197. Springer-
Verlag, 2001.

Tim Sheard, Zine el-abidine Benaissa, and Emir Pasalic.

DSL implementation using staging and monads.

In USENIX, editor, Proceedings of the 2nd Conference on Domain-
Specific Languages (DSL ’99), October 3-5, 1999, Austin, Texas,
USA, pages 81-94, Berkeley, CA, USA, 1999. USENIX.

Diomidis Spinellis and V. Guruprasad.

Lightweight languages as software engineering tools.

In Proceedings of the Conference on Domain-Specific Languages
(DSL-97), pages 6776, Berkeley, October 15-17 1997. USENIX
Association.

James M. Stichnoth and Thomas Gross.

Code composition as an implementation language for compilers.

In USENIX, editor, Proceedings of the Conference on Domain-
Specific Languages, October 15-17, 1997, Santa Barbara, Cali-
fornia, pages 119-132, Berkeley, CA, USA, 1997. USENIX.

Morten Heine Sgrensen, Robert Gliick, and Neil D. Jones.
A positive supercompiler.
Journal of Functional Programming, 6(6):811-838, 1996.

Michael Sperber, Robert Gliick, and Peter Thiemann.
Bootstrapping higher-order program transformers from interpreters.

BIBLIOGRAPHY 187

[Shig6]

[SKO0]

[TBS98]

[Thios]

[TMC99]

[TS96]

[Tur36]

[Tur86]

[VDKV00]

In K. M. George, J. H. Carroll, D. Oppenheim, and J. Hightower, ed-
itors, Proceedings of the 1996 ACM Symposium on Applied Com-
puting, pages 408-413. ACM Press, 1996.

O. Shivers.

A Universal Scripting Framework or Lambda: The Ultimate “little
language”.

Lecture Notes in Computer Science, 1179:254-265, 1996.

Eijiro Sumii and Naoki Kobayashi.

Online-and-offline partial evaluation: a mixed approach.

In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, pages 12-21. ACM Press, 2000.

W. Taha, Z. Benaissa, and T. Sheard.

Multi-stage programming: Axiomatization and type safety.

In ICALP: Annual International Colloquium on Automata, Lan-
guages and Programming, 1998.

Scott Thibault.
Langage Dédiés: Conception, Implémentation et Application.
Thése de doctorat, Université de Rennes 1, France, October 1998.

S. A. Thibault, R. Marlet, and C. Consel.

Domain-Specific Languages: From Design to Implementation Appli-
cation to Video Device Drivers Generation.

IEEE Transactions on Software Engineering, 25(3):363-377, May
19909.

Peter Thiemann and Michael Sperber.

Polyvariant expansion and compiler generators.

In Dines Bjgrner, Manfred Broy, and Igor V. Pottosin, editors, Per-
spectives of System Informatics. Proceedings, LNCS 1181, pages
285-296. Springer-Verlag, 1996.

Alan M. Turing.

On computable numbers, with an application to the Entschei-
dungsproblem.

Proc. London Math. Soc., 2(42):230-265, 1936.

Valentin F. Turchin.

The concept of a supercompiler.

ACM Transactions on Programming Languages and Systems,
8(3):292-325, 1986.

Arie van Deursen, Paul Klint, and Joost Visser.
Domain-specific languages: An annotated bibliography.

BIBLIOGRAPHY 188

[Wad95]

[WCRS91]

[Wei]

http://www.cwi.nl/ arie/papers/dslbib/dslbib.html, 2000.

P. Wadler.
Monads for functional programming.
Lecture Notes in Computer Science, 925:24-54, 1995.

D. Weise, R. Conybeare, E. Ruf, and S. Seligman.

Automatic online partial evaluation.

In Functional Programming Languages and Computer Architectures.
Proceedings, LNCS 523, pages 165-191. Springer-Verlag, 1991.

D. Weiss.
Defining families: The commonality analysis.
submitted to IEEE Transactions on Software Engineering.

