
A language-independent framework

for region inference

Ph.D. thesis
University of Copenhagen

Henning Makholm (henning@makholm.net)

August 15, 2003

Preface

This thesis is the primary result of three years of Ph.D. studies at the University
of Copenhagen. It is not the only tangible result; I also have co-authorship
of three conference papers [Henglein et al. 2001; Makholm and Sagonas 2002;
Taha et al. 2001] and of an invited monograph chapter [Henglein et al. 2005] to
show for my efforts, plus two solo conference papers [Makholm 2000a,c] based
on my M.Sc. work, and the website of a major conference cluster,

�������������
	�����������
������� � ��� ���

. Most of these other articles contain material that is not duplicated in
the thesis, except that a large piece of [Henglein et al. 2001] was reworked and
extended into Chapter 2.

My original plan for the thesis was a great deal more ambitious than the
finished result. Given that the result almost reaches page 200 before the con-
clusion chapter, which makes it rather long for a Ph.D. thesis (but remember
that quantity does not equal quality) it is safe to say that the original plan must
have been over-ambitious in the extreme. For example, the idea was that the
region optimizations I describe in Section 7.4 would account for about a third of
the dissertation, throughly discussed and backed with solid experimental work.
But I underestimated the amount of work it would take to arrive at a point
where the description would make sense, and (I having foolishly accepted a job
offer before I was sure I could finish the thesis) the section ended up as 9 pages
hacked together in an afternoon, less than a week before the hand-in deadline.

By some small miracle, what I did manage to write seems to me to tell a
relatively coherent story nevertheless. And there will be other opportunities to
write about what I left out.

I suspect that many readers will find the longish proofs of Theorems 3.31, 3.46,
and 5.16 somewhat distracting and not really interesting. Certainly they do not
exhibit any novel innovative proof techniques, but since the formal reason for
writing this text is to prove that I am worthy of having a degree conferred on
me, I have not always resisted the temptation to show off that I do know how
to construct proofs. I hope that my proofs indeed show that, though I could not
bring myself to write them in the field’s customary “fully rigorous style” with
page on page of numbered equations, linked by one-liners like “This, together
with (21) and (56), implies” – a style that I personally find utterly unreadable,
even if the proof in question is about matters that I feel I understand well.

I also hope, however, that people who read the thesis to learn about region
inference (rather than learning what a great person I happen to be) will be
able to cope with these occasional fits of self-glorification without being thrown
completely off the track.

1

2

Language

Our area of computer science has a tradition of avoiding the word “I” in favor of
“we” in works with a single author. Always the rebel, I am not quite happy with
that convention, and in the thesis I have tried (but probably failed miserably)
to choose consistently between “we” when I mean “the author and the reader,
investigating the subject together”, and “I” when I am about to make a claim
that readers may have legitimate reasons to disagree with.

Acknowledgements

Thanks are due to my thesis advisor Neil Jones without whose encouragement
and ever constructive criticism of my drafts this thesis would be a lot harder to
understand than it is,

– to my co-investigators Henning Niss and Fritz Henglein, with whom I devel-
oped the basic shape of the region system I present in the thesis,

– to Kostis Sagonas who hosted me during a pleasant stay at Uppsala in the
fall of 2001 and introduced me to the mysteries of how Prolog is used in the
real world,

– to my friends and coworkers in the TOPPS group,
– to Peter Finderup Lund, for proofreading, and
– to my friends and family who provided moral support and gracefully coped

with my occasional “dropping out of the world” in the cause of science.

Thanks also to the many people, most of whose names I don’t even know, who
created the excellent free software I used for experiments and writing the re-
port, including Moscow ML, the GNU C compiler, GNU Emacs, ����� , �����	��� , CVS,
��
������� , and dvips. And, of course, the GNU/Linux system in general.

Apologies

... are due to the reader, because the thesis is not as polished as it ought to
be. It has been a race against time to reach this point, and such conventional
luxuries as quotations in chapter headings, indices of keywords and notation,
and a through proofreading at the end had to be foregone in favor of getting
the thing finished at all. I hope to get time to prepare a revised version after
the defense where these matters are corrected, but right now I will have to stop
typing and hand in what I have, even if the preface has to end in the middle of

Copenhagen,
August 15 2003

Henning Makholm

Contents

1 Introduction 6
1.1 Region-based memory management 6
1.2 The region manager . 10
1.3 Region inference . 13
1.4 Language-independent region inference 16

1.4.1 Implementations, not languages 17
1.4.2 The UHL model . 18

1.5 Overview . 21
1.6 Notation and formal conventions 22

1.6.1 Set theory . 22
1.6.2 Maps, especially finite ones 23
1.6.3 Variables and metavariables 24

2 Previous approaches to region inference 25
2.1 Tofte–Talpin . 26

2.1.1 Regions and closures . 28
2.1.2 Region polymorphism . 28
2.1.3 The TT region type system 29
2.1.4 Algorithms for TT region inference 30
2.1.5 Other region inferences based on TT 31
2.1.6 Unused region parameters 31

2.2 The ML Kit . 31
2.2.1 Storage modes and region resetting 32
2.2.2 Storage-mode polymorphism 34
2.2.3 Storage modes and region aliasing 34

2.3 Aiken–Fähndrich–Levien . 35
2.3.1 Region aliasing and the AFL system 36

2.4 Henglein–Makholm–Niss . 37
2.4.1 Game of Life in the HMN system 40
2.4.2 Simulation of the Kit and AFL systems 41
2.4.3 The HMN region type system 43
2.4.4 Non-optimality of region annotations 50

3 The universal host language 52
3.1 Uniform mutators without region annotations 52

3.1.1 A simple example . 53
3.1.2 The procedure-less fragment of UHL 55
3.1.3 Subroutines . 59

3

CONTENTS 4

3.1.4 Ideal execution of uniform mutators 63
3.1.5 A scoping discipline for uniform mutators 67

3.2 Region annotations for universal mutators 69
3.2.1 What is an agent? . 72
3.2.2 Managed execution of uniform mutators 73
3.2.3 A scoping discipline for agents 78

3.3 Region soundness . 82
3.3.1 One half of soundness is trivial 84
3.3.2 Soundness from safety: Pointer-blind programs 86
3.3.3 Preservation of soundness 92

3.4 Annotatable edges and flowchart chunks 93
3.4.1 Call chunks . 94
3.4.2 Guidelines for chunk size 94
3.4.3 Pruning the annotatable edges 96

3.5 Possible extensions of the UHL model 97
3.5.1 Region closures as in the TT model 97
3.5.2 Concurrency . 98
3.5.3 Finite regions . 98

4 Application to ML 99
4.1 Indirect calls . 100
4.2 The translation . 103

4.2.1 Variables and let bindings 104
4.2.2 Arithmetic, I/O, and conditionals 105
4.2.3 Lists . 107
4.2.4 Function abstractions and application 108
4.2.5 Simpe exceptions . 111

4.3 Region annotations for ML . 112
4.4 Extending to full Standard ML . 114

4.4.1 Datatype and pattern matching 114
4.4.2 References . 116
4.4.3 Constant expressions . 116
4.4.4 Standard ML exceptions 116
4.4.5 Mutual recursion . 119
4.4.6 The module language . 119

5 A region type system for UHL 120
5.1 A stepwise introduction . 121

5.1.1 Basics: Simple pointers and procedure calls 121
5.1.2 Subplacing: HMN without complex data structures 123
5.1.3 Pointers to pointers . 126
5.1.4 Tuples . 127
5.1.5 Tagged sums . 127
5.1.6 Destructive update . 129
5.1.7 Recursive types . 131

5.2 The full region type system . 132
5.3 Safety proof for the region type system 135

CONTENTS 5

6 Other host-language features 143
6.1 Generic imperative language features 143

6.1.1 Destructive update of heap cells 143
6.1.2 Loops and gotos . 144
6.1.3 Global variables . 144
6.1.4 By-reference parameters 145
6.1.5 Pointers to global variables 146
6.1.6 Pointers to local (stack-allocated) variables 146
6.1.7 Separate initialization of new heap blocks 148
6.1.8 Pointer tricks . 149

6.2 Object-orientation . 149
6.2.1 Class hierarchies and subtyping 149
6.2.2 Dynamic method dispatch 151

6.3 Logic programming . 152
6.3.1 Backtracking . 153
6.3.2 Types . 154
6.3.3 Unification . 155
6.3.4 The WAM . 156

7 Region inference algorithms 157
7.1 Overview . 157

7.1.1 The prototype implementation 159
7.2 Constructing skeleton types . 161

7.2.1 From ML-like types to type graphs 161
7.2.2 Region-annotated type expressions 163
7.2.3 The skeleton typing in detail 163
7.2.4 Adding closures . 165

7.3 Basic region inference . 165
7.3.1 General invariants and region-operation selection 166
7.3.2 No loops, no procedures, no subplacing 169
7.3.3 Handling uncounted variables 171
7.3.4 Calling a leaf procedure 172
7.3.5 Unrestricted calls . 174
7.3.6 Subplacing in the prototype 176
7.3.7 Subplacing by propositional networks 177
7.3.8 Loops in procedure bodies 180

7.4 Region optimizations . 182
7.4.1 Local alias propagation . 183
7.4.2 Global alias propagation 184
7.4.3 Correctness of alias propagation 186
7.4.4 Region merging . 187
7.4.5 Parameter lifting . 190
7.4.6 The “unrename” transformation 190

8 Conclusion 192

Chapter 1

Introduction

This thesis is about region inference. Many readers will not know in advance
what I mean by that, and even those who think they know it may be mistaken.
I am using the term a little more generally than people usually do.

Region inference is a topic within the greater subject of region-based mem-
ory management, so to explain what the thesis is about, let me start by intro-
ducing region-based memory management.

1.1 Region-based memory management

Region-based memory management is an alternative to garbage collection which
relies on compile-time analysis rather than run-time pointer tracing for correct-
ness. So goes the one-sentence abstract that can be given when someone at a
conference dinner asks, so what do you work with? The answer is mostly true,
but in itself it does not really tell the reader anything. So it will be followed up
by further explanations and the drawing of diagrams on napkins.

Usually, the first diagram I draw in such situations is something like the one
in Figure 1.1. It does not really say much more than the one-sentence version,
but it says it in smaller bits that are more likely to take hold in the listener’s
consciousness. It also introduces a couple of key terms that I have invented
specifically for this thesis and will be using unashamedly for the rest of it, so let
us dwell upon it a little.

Figure 1.1(a) is a block diagram of the software modules that are involved with
memory management in a language such as C that use manual memory man-
agement. There are three boxes: the mutator, the C library and the operating
system.

The mutator is the program that the programmer wrote. This term originates
in the literature about incremental garbage collection, where the principal fea-
ture of the mutator is its tendency to change (or “mutate”) the contents of heap
cells in parallel with the garbage collector’s scanning operation. Because I know
of no other nicely short and anthropomorphic name for the-program-as-written-
by-the-programmer, I will continue using that word throughout.

The mutator talks to the C library using an interface consisting of two func-
tions. ���

�������	��

is a request to have a block of heap memory set aside for the

6

CHAPTER 1. INTRODUCTION 7

mutator

cons

mutator

cons
inspect
DATA

agent

new
rgn alloc

free
rgn

inspect
CONTROL

malloc free

mutator

malloc free ��

garbage
collector

region manager

malloc free ��

C library

sbrk

C library

sbrk

C library

sbrk

OS OS OS

a. Manual M.M. b. Garbage collection c. Region-based M.M.

Figure 1.1: Different regimes of memory management

mutator’s use (a pointer to the allocated block is returned to the mutator, sym-
bolized by the dotted arrow on the figure). ������� ��
 asserts that that the mutator
will not use a specified block of memory anymore; the addresses in that block
can be returned in response to future ���

� ��� �	��

requests, or perhaps be over-

written with the C library’s private data.
The C library, in turn, typically acquires memory in bulk from the operating

system. The details of this depends on the operating system; the figure implies
that the classic Unix �
	���� ��
 interface is being used, but in practise it is as likely
to be done by other means, such as � ����

��

.

Implicit in this description is the assumption that whenever I talk about mem-
ory management, the memory I refer to is the dynamically assigned memory
that the mutator may find, while it runs, that it is going to need for indeter-
minate periods of time. Specifically, we do not care about (call) stack memory
where small pieces of intermediate data are stored, or about statically allocated
memory for global variables (in languages that support those) or the code of
the mutator itself. Also, we are concerned about the “retail” allocation of small
individual pieces of heap memory, perhaps a few or several machine words long
each. The “wholesale” allocation of big pieces of memory that is dealt with by
the operating system and its virtual-memory subsystem, is a large and interest-
ing research subject, but in the entire thesis we will just take its services for
granted.

The correctness of manual memory management is entirely up to the human
programmer’s skill. If he writes a mutator that calls �������

��

prematurely, later

accesses the the heap block may or may not find it overwritten with unrelated
data – and the “may not” makes such errors quite hard to discover. The reverse
case is also bad: If the mutator completely neglects to call ������� ��
 , the result
is a space leak, sometimes unappreciated by inexperienced programmers but
dreaded by developers of server software or complex interactive applications.

CHAPTER 1. INTRODUCTION 8

The problem is that human programmers are often not up to the task of pro-
gramming a mutator with the ������� ��
 s placed just right. And though some
are, fewer still are capable of maintaining a mutator such that the ������� ��
 s stay
placed right.

Therefore garbage collection was invented. As shown on Figure 1.1(b), the
responsibility of controlling when heap blocks are freed have been removed
from the mutator. This leads to a mutator that is smaller and easier to un-
derstand – the human programmer can concentrate his efforts on specifying a
computation rather than planning how to make efficient use of space for inter-
mediate data.

In between the mutator and the C library is now sandwiched a special runtime
component: the garbage collector. It provides a simple

� ��� � service to the
mutator, with a semantics much like that of ���

� � ���	��

in the manual model.

However, the garbage collector is supposed to find out itself when it is safe to
reused memory that has already been returned from

� ��� � once.
To enable the garbage collections to make such decisions, it is allowed to

inspect the contents of the heap memory it has provided to the mutator, as well
as the values in the mutator’s local variables and call stack. The mutator is
expected to maintain certain conventions about the data in the heap and stack
that allow the garbage collector to draw conclusions from the bit patterns it
finds in the memory. These conventions may range from elaborate tagging and
“stack map” schemes to the minimal, implicit rules for conservative garbage
collectors. Even though the latter may work without explicit compiler support,
the mutator must not, say, store pointers into allocated memory in encrypted
form and afterwards expect the decrypted pointers to be useful.

The garbage collector itself typically gets its memory in large blocks from the
C library using the standard � �

� �����
/ ������� interface, and does its own subdi-

vision into smaller
� ��� � blocks. In principle it could have gone directly to the

operating system, but implementers often refrain from this, because the garbage
collector needs to coexist with the C library anyway, and because it means that
they won’t have to embed detailed knowledge about how to interact with dif-
ferent operating systems into the garbage collector’s source code. (Figure 1.1
shows the ������� operation in parentheses, because it is common for garbage col-
lectors never actually to free memory to the lower layers in the stack, except in
special circumstances).

Intuitively, the garbage collector is successful if someone who watches the
mutator’s result cannot learn that memory is being reused. The programmer
who writes the mutator should be able to assume that each

� ���
� operation

returns a fresh block of memory that will never be reused. If the mutator’s
behavior with the garbage collector differs from the behavior the mutator should
have, given the semantics of the programming language, then by definition the
garbage collector must have reused memory “too much” or “too early”.1

The garbage collector must work, however, within a terrible constraint: A
garbage collector is a one-size-fits-all component that is supposed to work for
all mutators compiled by a particular compiler. Therefore, the garbage collec-
tor cannot let its decisions depend on which mutator it works for – because it

1We need to except the situation where an intelligent observer can conclude that memory is being
reused simply because the mutator keeps running past the point where a reuse-free implementation
would have stopped with an out-of-memory error. Box 3.1, on page 55, discusses some technical
issues with this exception.

CHAPTER 1. INTRODUCTION 9

Box 1.1—Why “agent”?

What I call the “agent” is usually just
referred to as “region annotations” on
the source code for the mutator, but I
need to speak about it as something that
does things. Therefore I have decided to
use the term “agent” about it through-
out the thesis. This choice of words re-
flects my view of the agent as an inde-
pendently acting co-process (written in
a very domain-specific language) rather
than passive comments to the mutator.

The word “agent” is supposed to in-
voke images of men in nondescript suits
and dark sunglasses who hover dis-
cretely around heads of state or govern-
ment to prevent them from being shot
in the foot (or elsewhere). As far as
I know, these agents rarely care about
the political content of the president’s
(or whomever the VIP in question is)
speeches, but they will get quite agitated
if he decides to stroll through a mall

with another trajectory than the planned
one. It seems to me that this is a good
metaphor for the software component I
speak about, which reacts to the control
flow of the mutator rather than to the
data it processes. Even more so because
the president seldom openly acknowl-
edges the presence of the agents.

Still, the particular word “agent” it-
self might be contested. I have not re-
searched these matters in detail, but it
might be that only in the United States
are the black-clad gentlemen in ques-
tion officially known as “Secret Service
agents”. A more generic word might
be “bodyguard”. However, Hollywood’s
influence on the global mind-share is a
force to be reckoned with, and if I have
to choose between spurious mental im-
ages of James Bond and ones of Whitney
Houston, I choose Mr. Bond.

doesn’t know.2

To summarize: A garbage collector cannot observe the mutator, but it does ob-
serve the data that the mutator works on. Region-based memory manage-
ment can be viewed as an attempt to reverse this relation. Its model is shown
on Figure 1.1(c). Here the job formerly done by the garbage collector is split
into two: The region manager handles the subdivision of memory into muta-
tor objects. It is a one-size-fits all component like the garbage collector, but its
interface is based on the more elaborate region model (see Section 1.2) where
its client specifies explicitly when to deallocate memory.

The mutator is still the same as before; in particular it still uses the same sim-
ple interface to allocate memory. Between the mutator and the region manager
we place the agent, whose task is to convert the mutator’s simple allocation re-
quests and region-based allocations and deallocations for the region manager.

As with garbage collection, the agent is successful if an observer of the mu-
tator cannot learn from its behavior that memory is being reused. When that is
the case, we say that the agent is region sound.

The agent works under conditions that are in some sense dual to the garbage
collector’s: It does not observe the mutator’s data (not because it can’t, but
because it takes time to extract information from it), but it does observe the mu-
tator’s control flow. It can do this because the agent is specific to one particular
mutator, created specifically for that mutator by the compiler. In practise the

2Depending on the hardware and OS protection abstractions, the garbage collector may be al-
lowed to look at the mutator’s machine code, but algorithms that can analyze machine code to get
useful data about its memory-usage patterns – and do it fast enough to be practical at run time –
are not known.

CHAPTER 1. INTRODUCTION 10

compiler will interleave machine code for the agent and the mutator, making
the agent piggy-back on the mutator’s control flow.

Because the agent is tailored to a particular program, it stands a much better
chance of preventing the mutator from learning that memory is being reused.
Whatever devious trick the mutator uses (such as encrypting a pointer and later,
after the memory block pointed to is not itself used anymore, comparing the
encrypted pointer to the encryption of a freshly allocated pointer, to see whether
memory is being reused), that trick will be in the mutator’s source code, which
means that we can just select an agent that prevents the trick from being useful
(such as making sure not to deallocate the pointer being encrypted before the
comparison has taken place).

Of course, noticing the trick in the mutator’s source code and using it to select
an appropriate agent is not trivial and probably hard to automate to the degree
that useful agents for mutators written in “dirty” C can be constructed automati-
cally. However, it would still be conceivable to automatically do a static analysis
on a C program such that “well-behaved” mutators that do not cheat with point-
ers would be recognized as such and then had a “good” agent constructed for
them, while mutators that failed the check would have to make do with more
conservative agents.

1.2 The region manager

What is the role of the region manager in all this? Could the agent not just talk
directly to the C library, doing a ���

� � ���
operation for each of mutator’s cons

requests, and eventually a doing a matching � ����� on its own initiative?
Well, in principle it could, but it would need to keep a large amount of internal

state to do it, which would take time to maintain and make the agent rather
complex. That is where the region manager enters the picture: It implements
the region abstraction which allows the agent to keep track of unboundedly
many memory blocks with only a finite amount of internal state (per recursion
level, at least).

Figure 1.1 enumerated the three primitives of abstract interface between the
agent and the memory manager:

Create a region. Intuitively a region is a part of the heap where memory can
be allocated. Exactly which memory belongs to the region may change
with time; when the region is first created it contains no memory at all.

When the agent asks for a new region to be created, the region manager
returns a handle to the region. The handle can be used in subsequent
region-manager operations.

Formally, a region is best viewed as simply an abstract concept that
could also be though of as a “license to allocate memory”, and in terms of
the abstract interface to the region manager we could say that the handle
is the region. However, the metaphor of a region as an area on the heap
that can “contain” memory blocks is a strong and helpful intuition, which
would not work if we spoke about the region itself being passed back
and forth between the agent and the region-manager. Thus the auxiliary
concept of a “handle” or “reference” to a region.

CHAPTER 1. INTRODUCTION 11

���
time

Figure 1.2: Memory-block lifetimes in the region model. Each horizontal line cor-
responds to the lifetime of one memory block. The triangular collections of blocks
correspond to regions. The figure shows that several regions can exist at the same
time, all growing; but a region can shrink only by being completely deallocated.

Allocate memory. The agent can allocate memory only by supplying a handle
to the region that it wants the new memory to belong to. The agent also
specifies how many memory cells it needs to allocate (actually, by pass-
ing on the number from the mutator’s request), and the region manager
somehow selects that many consecutive unused cells and returns a pointer
to them, after adding them to the specified region.

A useful half-fiction is to think of this as if the region manager locates
some unused space that already belonged to the region before – we can
then speak of allocating memory “in” or “from” a specific region. One
should, however, be aware that this language does not reflect the for-
mal properties of the abstract region-manager interface, which does not
recognize any connection between currently unused memory and specific
regions.

Destroy a region (or “deallocate” it). After a region has been destroyed, it is
of course not valid for further allocation requests. Destroying the region
also has the important side effect that all memory blocks ever allocated in
the region are deallocated and considered available for reuse. This is the
only way to deallocate memory in the region model.

This deallocation is the whole point of the region model; the raison
d’̂etre of the region concept is to provide the agent with an efficient way
of telling the region manager when to deallocate memory blocks. Thus, a
third view of regions is as a “brand” that the agent puts on allocations in
order to be able to find and deallocate them later.

Figure 1.2 shows an example of five regions and the lifetimes of the memory
block within them.

CHAPTER 1. INTRODUCTION 12

This description of the region manager is intentionally quite abstract. It is im-
portant for parts of the formal development in the rest of the thesis that we
can assume that the region manager has full freedom in choosing which cells
it selects for each allocation operation, subject only to the condition that they
must be currently unused.

In practise, however, there is a specific implementation principle for the re-
gion manager that is usually implied by “region-based memory management”.
It consists of dividing the available heap memory into fixed-size cards. A region
consists of a set of cards, tied together in a linked list. Allocations in the region
happens at one end of the front card in the list; when the unused space in a card
becomes too small to satisfy the next allocation another card is fetched from a
global list of unused cards and added to the region as the new front card. When
the region is deallocated the entire card list is appended to the free-list, making
it available for use in other regions.

A region handle is a pointer to a small record of management data, containing
pointers to the first and last card in the list and information about the amount
of yet-unallocated space in its front card. The management record is typically
located in the first card of the region, although in the ML Kit it is allocated as a
local variable on the call stack.

(Traditionally the pieces of memory that make up a region are called “pages”.
I prefer the term “card” which suggests a smaller granularity than the several
hundred cells that are used for “pages” in virtual-memory schemes at the oper-
ating system level).

The standard region-manager implementation eliminates fragmentation of the
heap and has low administrative overhead because there is no need to keep
track of how the used part of a card is divided into individual memory blocks.
In fact, it is possible to implement each of the three operations in the region
manager’s interface such that they run in guaranteed constant time. (Of course,
if the free list runs empty and a fresh batch of cards must be requested from the
lower layers, the running time will be a the mercy of the C library and operating
system – but the work done by region manager itself stays bounded).

This means that it should be possible to reason naturally about the running
time of programs – if you count the number of agent operations done between
points A and B in the program, you can get a fairly tight estimate of the total
time spent on memory management. This property should make region-based
memory management an attractive option in real-time or interactive environ-
ments where it is important to be able to guarantee response times. Strangely
enough, I am not aware of any actual published experiments to reap this ben-
efit, perhaps because time-constrained systems are not usually written in the
languages that have hitherto been used for region-based memory.

Another important feature of the region manager is that it is a very simple
component. The source code for the region manager I have used for benchmark-
ing experiments Henglein et al. [2001, see] totals about 120 lines of straightfor-
ward portable C code3. Furthermore, the interface between the region manager
and the mutator/agent is fully specified by the the three region operations de-
scribed above. The region manager does not depend on the cooperation of its

3Not counting about twice as many lines of instrumentation for profiling and general statistics
collection.

CHAPTER 1. INTRODUCTION 13

client for traversing the stack or moving memory blocks after allocation, because
it does not do any of these things.

This simplicity makes region-based memory management a strong choice in
connection with mobile code, where one has to establish trust that a piece of
code of unknown (possibly malicious) origin can be executed safely. It is easier
to satisfy oneself that a 120-line region-manager does not contain any security
holes that an attacker could exploit, than to reach the same degree of certainty
about a complex state-of-the-art garbage collector. (Of course, then one needs
to establish trust in an agent of unknown origin, but that can be done by a
region type system that allows a formal proof of agent safety to be encoded and
transmitted along with the mobile mutator and its agent).

A third reason to use region-based memory management is simply that some
times it works better than garbage collections. Of course this is not always
true – there are programs that are simply not well suited to having decisions
of memory management made statically. Consider, for example, an interpreter
for a general-purpose language. Even though an agent may be tailor-made to
the interpreter, it does not know the interpreted program (and is prevented by
design from adjusting its actions to it). When the interpreted program requests
an allocation and the interpreter passes it on, the agent will have no idea about
how long it is going to be needed for.

But when region-based memory management works, it tends to work really
well. The region manager is cache-friendly, since its list of free cards naturally
works on a first-in-first-out principle (whereas a garbage collector is sensitive to
differences between the size of the nursery generation and the available first-
level cache that can be afforded for short-lived heap allocations). And there are
few time-to-space tradeoffs for the region manager. As long as there is enough
memory available to run at all, it works at full speed, and if there is not – well,
in the lucky cases this happens only far below the threshold where a garbage
collector goes belly-up.

The region manager is inherently more space efficient than a typical garbage
collector – most of the region cards will be completely filled with payload data,
expect for the link to the next card in the region and the “slack” at the end
where there was not sufficient space for the next allocation. Another reason is
that an agent can sometimes get away with deallocating memory objects that a
garbage collector would consider live, because it knows that the mutator does
not contain the code to access it.

1.3 Region inference

Region-based memory management was born as an independent research area
by a seminal paper by Tofte and Talpin [1994] which suggested that agents
could be generated automatically by a compile-time analysis of the mutator’s
source code. Such automatic generation is known as region inference, and is
the topic of this thesis:

Region inference is the (automatic) construction of a sound, efficient agent
for a particular given mutator.

From the above discussion, we know (hopefully) what I mean by “agent”. A
“sound” agent is one that does not allow an observer to notice that memory is

CHAPTER 1. INTRODUCTION 14

Box 1.2—Why “region inference”?

The term “region inference” is well es-
tablished. The generic use to which I am
putting it is perhaps not.

According to the Oxford Advanced
Learner’s Dictionary, “inference” means
“a conclusion reached on the basis of
knowledge or facts”, or the process of
arriving on such a conclusion. That does
not seem to have much to do with my
definition. What is going on?

The story starts with type inference,
originally the process in a compiler
where the type of an expression was de-
duced from knowledge of its subexpres-
sion’s types. During the years, type in-
ference techniques matured and reached
a famous high point with ML [Milner
1978] where the types of all expressions
in a program could be inferred without
a single explicit type declaration.

When Tofte and Talpin [1994] pro-
posed the first automatic region infer-
ence (in by broad sense) they based its
structure on sophisticated descendants
of Milner’s type inference. Therefore
they named their particular algorithm,
as well as its specification, “region infer-
ence”.

For several years, Tofte and Talpin’s
region inference (in their sense) was

the only known region inference (in my
sense). A couple of algorithmic vari-
ants were developed [Birkedal and Tofte
2001; Tofte and Birkedal 1998], but es-
sentially they could be recognized as
variants of the same thing. Some ex-
tensions to the process were proposed
[Aiken et al. 1995; Birkedal et al. 1996],
but they built upon the results of the
Tofte–Talpin inference.

The Tofte–Talpin monopoly on auto-
matic agent generation were only bro-
ken in early 2001, when I, Henning
Niss, and Fritz Henglein were develop-
ing what later became the HMN model
described in Section 2.4. We wanted to
be able to generate region annotations
automatically and thought of it as want-
ing “something like the region inference
process”. This quickly became shortened
to wanting “a region inference”, so in
our paper [Henglein et al. 2001] we sim-
ply called our technique for producing
annotations automatically “region infer-
ence” even though it had little to do
with the type-inference techniques that
inspired Tofte and Talpin.

From there, the term just stuck – time
will show if it keeps sticking.

being reused. “Efficiency” concerns space and time: How much space will the
region manager need allocate from ���

�������
with a particular agent making the

decisions, and how much time will the agent (and region manager) need to
make (and implement) those decisions? As is so often the case, there is a trade-
off between space efficiency and time efficiency; we will be concerned mainly
with optimizing space efficiency, with time efficiently having second priority –
as long as the time used by the agent and the region manager is at most linear
in the time used by the mutator itself.

For the purpose of understanding the similarities and differences among re-
gion inference techniques, it will be fruitful to decompose the region-inference
problem into three subproblems.

1. An agent programming language. While agents can, in principle, be writ-
ten in any general-purpose programming language, particular region-in-
ference methods will normally only result in agents with a certain simple
internal structure. I propose that in such a situation, the resulting agent
should be viewed as belonging to a domain-specific programming language
specifically designed for writing agents.

CHAPTER 1. INTRODUCTION 15

Programs in a well-designed agent programming language will often
be easier to understand mechanically than agents written in a general
language. Also, limitations of a region-inference method will in general
be easier to understand if they can be described as explicit limitations
in the agent programming language’s expressiveness than if one had to
understand the actual inference algorithms.

Since the mutator is in general written in a different language than the
agent, we will refer to the mutator’s programming language as the host
language. The intuition is that the agent language is embedded in the
host language.

2. A region type system. By this I mean a structured (and algorithmically fea-
sible, in some sense) characterization of a class of mutator–agent pairs,
such that all pairs in the class are region sound.

Usually, this is accomplished with a specially-instrumented type system
for the host language, where “region annotations” on types provide a con-
nection to the agent’s source code. Indeed, when we derive a region type
system in Chapter 5, we will see that a workable system for reasoning
about agent soundness will naturally take the character of a type system;
this is my justification for defining the term “region type system” function-
ally rather than explicitly requiring it to have to do with types.

The region type system allows one to construct a “soundness certificate”
for an agent, consisting of enough information to quickly construct and
verify a typing derivation. Soundness of the region type system means
that the existence of a typing derivation does indeed imply that the agent
is sound. Ideally, this should be proved rigorously, but what the literature
often provides in reality is just intuitive plausibility backed with proofs for
simpler cases (say, no destructive updates or no module system).

3. A region inference algorithm. This is the question of how to derive a effi-
cient agent and its soundness certificate for a given mutator, given that
the agent programming language has been fixed in advance.

It should be emphasized that this analysis is not meant as a divide-and-
conquer decomposition of the original problem. There is a rich mutual interde-
pendence between the three subproblems – the choice for earlier subproblems
determine which answers to later ones are valid or at all meaningful, which
again means that one’s actual choices for early problems are often motivated by
what one would like to be able to later on.

The analysis, however, is useful for getting an overview of the field. Hav-
ing identified the subproblems helps imagine how the big picture fits together,
especially as many parts of the literature focus on only one or two of them.
For example, there is a sequence of works about programming systems [Crary
et al. 1999; DeLine and Fähndrich 2001; Grossman et al. 2002; Walker and
Watkins 2001; Walker et al. 2000] that provide an integrated agent program-
ming language and an (often very strong and sophisticated) region type sys-
tem but expect the user to write the agent himself. On the other hand, work
like Birkedal et al. [1996] focus on improving the expressiveness of the agent
programming language, and devise algorithms for exploiting this extra expres-
siveness but does not base these algorithms on a region type system of their
own.

CHAPTER 1. INTRODUCTION 16

1.4 Language-independent region inference

Most of the existing work that include algorithms for region inference use ML
or ML-like toy languages as their host languages – indeed, the only exception I
know of is my own M.Sc. thesis [Makholm 2000b], where I implemented a sim-
ple region-inference for Prolog because I needed benchmark programs for my
backtracking region manager and did not want to put in the region annotations
by hand.

This is unfortunate, because there is quite some interest in applying region-
based memory management to other language paradigms. However, it is not
obvious from the existing literature exactly how to transfer its lessons to other
languages. Many of the difficulties and peculiarities of the published region-
inference techniques are there to solve specific problems in dealing with the
(polymorphic) lambda calculus, which are simply not present for languages in
other traditions. It is not clear how much of the details one needs to carry
over to another language. Therefore, the task of using region-based memory
management for a new language may seem more difficult than it actually is.

My goal with this dissertation is to remedy this situation. If I had to state
a formal thesis (in the sense of a concrete claim that the dissertation aims to
establish) would be something like:

It is actually quite easy to add region-based memory management to an
existing language (implementation).

I will argue for this by presenting a general theory of region inference, designed
to be applicable for a wide range of different host languages. Such a general
theory will be somewhat more complex than each concrete instance of it, but
the effort in the generalization should be well spent: A reader who wishes to
apply the theory in a concrete setting can simply ignore the parts of it that are
not relevant to him, but will not have to recreate my formal arguments in his
own setting.4

To substantiate my claim that the theory can be applied to a wide range of
host languages, I will argue that it is applicable to typical representatives of
three different language traditions

� ML-like languages, represented by a large subset of the Standard ML Core
language, including functions as computed values, updateable references
and (limited) exceptions. This is the most fleshed-out example (because
most of my practical experiments and the previous literature concern sim-
ilar languages). A description of this language and an interface between
it and the theory appears in Chapter 4; it will be the running example in
Chapters 5 and 7.

� Imperative and object-oriented languages in the tradition of Pascal, C,
C++, Java. The theory supports languages with unrestricted gotos within
method bodies. How to support language features of these languages is
discussed in Sections 6.1 and 6.2

� Logic programming, represented by Prolog with backtracking and cuts,
described in Section 6.3. A special property of this example is that the

4Of course, people will recreate my formal arguments in other settings ... reuse of theory and
arguments seems to work better as a creed than in deed.

CHAPTER 1. INTRODUCTION 17

host language is not typed – the region inference needs to include a “soft
typing” inference of its own as a before it can start the region inference
proper.

The languages that are supported are all sequential, with a control flow that is
directly apparent from the program text except for procedure calls that use a
conventional call stack according to a last-in-first-out discipline. ML-style ex-
ceptions are a slight extension of the LIFO stack discipline but can be handled
within the same framework. Backtracking in Prolog may cause violations of the
call–return discipline, but as we shall see in Section 6.3.1 this problem can be
side-stepped completely, thanks to the special backtracking-aware region man-
ager I developed in [Makholm 2000b,c].

1.4.1 Implementations, not languages

A fundamental premise underlies my approach to generalizing region-based
memory management:

Automatic region-based memory management is not something you add
to a programming language. It is something you add to a particular imple-
mentation of a programming language.

What I mean by this is that it is, in general, futile to develop a theory of region-
based memory management for some language based on a high-level descrip-
tion of how the language works, and then assume that the theory so produced
will be useful for a particular implementation of the language. This is because
high-level descriptions of how languages work commonly do not completely
specify when heap objects are allocated and accessed. For example, the Defini-
tion of Standard ML [Milner et al. 1997] just assumes that the implementation
has some way to implement tree-shaped data and closures, but speaks explicitly
of the heap (or store) only in the case of references. Such omissions are often
deliberate and intended to give implementations maximal freedom to choose
for themselves how to make use of actual heap memory. And implementations
do use that freedom, to the extent that two different implementations of Stan-
dard ML will probably give rise to the different sequences of heap allocations
and accesses for all but the most trivial of source programs. This is caused by
differences in closure representation, unboxing strategies, exception handling,
optimizations to make lists and datatypes more efficient, et cetera, et cetera.

As a concrete example, consider the Standard ML definitions

��� � � ��
�
��� � ��� � � � ��� � 	�
� �

�
�

��� ������ � ���� � � ��

In a simple, “naive”, implementation of Standard ML, the value returned from�
would be a pointer to a heap structure involving the pair object that

�
creates

before calling � – but many actual implementations will attempt to unbox func-
tion arguments and/or cons cells in lists, possibly with the result that

�
does not

itself allocate any part of its own return value. On the other hand, sophisticated
unboxing schemes could potentially lead to the introduction of heap-allocating
“reboxing” operations at places where there is no obvious allocation construct
in the source code. All this means that we should not expect to construct a

CHAPTER 1. INTRODUCTION 18

free-standing region inferencer for Standard ML in general without reference to
a particular implementation.

Of course, some languages exhibit these differences to lesser degrees than
others. In Scheme, compound data are almost always modifiable, which means
that its definition [Kelsey et al. 1998] has to define heap transactions in much
greater detail than that of Standard ML. And in low-level languages such as C,
the details of heap allocations are usually directly visible to the programmer.

The typical way the implementation-dependency has usually been handled
in work about region-based memory management is that one constructs a the-
ory of regions for the intended host language based on reasonable default as-
sumptions about when memory needs to be allocated and accessed. Then one
proceeds to construct an entire implementation around the region theory and
its underlying assumptions. It is debatable whether this description fits the ad-
dition of regions to the ML Kit (but one may argue that the reason why the
TT system does not appear implementation-dependent at first glance is that the
ML Kit was already deliberately adhering to a naive data-representation model
that happened to fit the “reasonable default” assumptions underlying the TT
system). But it certainly describes the history of the prototype implementations
I (co)developed for [Makholm 2000b] and [Henglein et al. 2001].

However, if region-based memory management is to conquer the real world,
we cannot keep producing new implementations from scratch each time we
want to “add regions to language X”. We need to be able to take an existing
implementation of some programming language, with its particular memory-
management subtleties, and construct a system for region inference and region-
based memory management that fits that implementation. To the best of my
knowledge, the only time this has been attempted with a production-strength
implementation of a real language has been the experiment by myself and Kostis
Sagonas [Makholm and Sagonas 2002] on adding region-based memory man-
agement to an existing Prolog implementation. The theory I present here is
derived partly from insights gained by that experience.

1.4.2 The UHL model

My central idea is to consider region annotations and region inference at the
level of the compiler intermediate language rather than source code. At the
intermediate-language level, heap allocation and access is usually explicit. Also
intermediate languages for implementations of different languages – or differ-
ent implementations of the same language – are often similar enough (though
not identical) that the same algorithms for region inference can be used for all
of them, with only superficial differences.

In order to present and reason about my region-inference techniques, I will
formulate the general theory for for an abstraction which I call the “univer-
sal host language”, in short UHL. As a first approximation, UHL can be looked
at as the union of “all sensible intermediate languages” with everything that
is irrelevant to memory management abstracted away. I will develop general
region-inference techniques for “programs written in UHL” (which we shall re-
fer to as uniform mutators, because mutators originally expressed in different
languages look the same to the region-inference algorithms), and these tech-
niques can then be used as blueprints for implementations that work on the
host implementation’s actual intermediate language.

CHAPTER 1. INTRODUCTION 19

A cookbook recipe for adding automatic region-based memory management
for an existing implementation would now be something like

1. Identify the point in the compiler pipeline where region inference should
be done. This will usually be quite late, because the agent that will be gen-
erated is sensitive to the detailed control flow of the mutator, so region in-
ference should come after any optimization passes that may reorder code.
On the other hand, if the source language is typed, the types should still
be present at this point; the region inference will need them. Implementa-
tions of typed languages that do aggressive optimizations after forgetting
types may need major rewriting in order to prepare them for region-based
memory management.

In the rest of the recipe we will refer to the intermediate language at
this point as the intermediate language (because any other ones are not
relevant to us here).

Source
�

IL
�

Object code

(
�

and � are the compiler’s front and back end, respectively).

2. Write down the natural mapping ��� from the IL to our UHL. This ought
to be relatively easy and consist mostly of making explicit the implicit in-
variants of the concrete intermediate language and abstracting operations
that do not touch the heap.

Source
�

IL
�

�	�
Object code

UHL

3. The following chapters of this thesis defines a general region inference
�� U

which takes UHL to UHL-with-annotations, notated as UHLA in the diagram:

Object code

Source
�

IL

�

�� UHL

���
U

UHLA

In order that we can reason about the correctness of
�� U, our general the-
ory will include an “ideal semantics” for uniform mutators, which we will
assume defines the programmer’s intended behavior of his program (with-
out any thought of memory management), and a “managed semantics” for
UHLA.

4. Now, because the translation ��� really just re-expresses the IL code in a
different notation, each of the places in the uniform mutator where region
annotations attach will correspond to a single place in the intermediate
code. Therefore, from the annotation language for UHL we can derive an

CHAPTER 1. INTRODUCTION 20

annotation language for IL, and extend the translation to ��� A which just
carries the annotations unchanged to the UHL world.

Object code

Source
�

IL

�

� � UHL

���
U

ILA ��
A

UHLA

This derivation is an essentially non-creative process.

5. Derive from
�� a region-inference algorithm for the intermediate language
that commutes with ��� and ��� A:

Object code

Source
�

IL

�

� �
���

IL

UHL

���
U

ILA ��
A

UHLA

This may sound harder than it actually is. Remember that
�� does not
change the underlying uniform mutator; it just adds annotations to it. So
we can consider ��� as a “view” of the intermediate language that is invoked
incrementally whenever
�� wants to inspect its input. With appropriate
code factorization, very substantial parts of the source code for
�� IL can be
reused from the region inference for a different intermediate language!5

6. Extend the existing compiler back end � to translate region annotations
along with the rest of the IL.

Object code

Source
�

IL

�

�	�
���

IL

UHL

���
U

ILA � �
A

�
A

UHLA

This step requires some creativity, but if an implementation without re-
gions is available, the core of the burden will usually lie in integrating the
region operations with the existing run-time support system. The changes
in the compiler can be comparatively small – in the experiment where I

5That is, if the two compilers themselves are implemented in the same language. For this reason,
the region inference in [Makholm and Sagonas 2002] was implemented as an external program
written in Standard ML; about six thousand lines of code were reused with only minor changes
from the prototype region inference developed for the experiments in [Henglein et al. 2001].

CHAPTER 1. INTRODUCTION 21

applied this theory to Prolog [Makholm and Sagonas 2002], it took me
less than a week to add the ability to translate region annotations to a
bytecode compiler that I had never seen before.

7. Optional, but important in practise: Mimic step 4 for the compiler front-
end

�
instead of the translation ��� . This gives an annotated source lan-

guage, which can be used to present the inferred region annotations in
human-readable form:

Object code

Source
�

IL

�

��
���

IL

UHL

� �
U

SourceA ILA �	�
A

�
A

UHLA

It is a strong practical experience with region-based implementations that
vastly better memory behavior can be achieved if the programmer gets a
chance to observe the outcome of the region inference and possibly use
the information to change the source program to become more region
friendly. While the programmer does not need to understand the algorith-
mic details of the region inference, it is strongly desirable to have a source
syntax for the region annotations and an execution model for regions that
can be understood in terms of the source code.

Too aggressive code optimizations in the front end may well make this
step rather difficult, but it is hard to say how difficult without practical
experience to back it. More knowledge will be needed to say anything
about this problem in general.

As seen from the final diagram, UHL programs will never need to actually
exist in full in the implementation. This emphasizes the fact that UHL is not an
implementation language; it is primarily a vehicle for moving region inference
techniques between different host languages.

1.5 Overview

The thesis is structured according to the high-level decomposition of region
inference I presented in Section 1.3.

Chapter 2 presents some background information on previous work about re-
gion inference.

Chapter 3 defines the universal host language and its associated agent pro-
gramming language. It also proves some general facts about their seman-
tics and introduces some useful ways of reasoning about agents.

Chapter 4 gives an example of how to translate a small ML subset into the UHL

model. This shows how the UHL framework relates to the ML-based model
of the “HMN system” of Henglein et al. [2001] (which is also described in
Section 2.4).

CHAPTER 1. INTRODUCTION 22

Chapter 5 develops a region type system the works for the ML subset of Chap-
ter 4.

Chapter 6 is a brief interlude that discusses how to generalize the techniques
of Chapters 4 and 5 to a number of common language features that are
not exhibited by the ML subset.

Chapter 7 presents algorithms for actually doing region inference, i.e., con-
structing an agent for a given mutator.

Except for Chapter 2, the chapters are meant to be read in sequence. In partic-
ular, Chapter 3 defines the basic framework without which all of the rest will be
unreadable.

My development is based on a few simplifying assumptions, which I have made
in order to be able to get to the real problem. Hopefully later work will show
how to put back in what I excluded.

Most importantly, I consider only region inference for entire programs. Most
previously published region inference methods [Birkedal and Tofte 2001; Birke-
dal et al. 1996; Tofte and Birkedal 1998] are compositional enough that region
inference for a multi-module program can be done one module at a time (Els-
man [1999] uses this region inference as a central motivating example for his
Ph.D. work on advanced recompilation management). The further optimization
by Aiken et al. [1995] is by its nature nonmodular.

Finding a modular formulation for the region inference techniques I present
here would of course be highly desirable, but at present it seems a long way off.

A less severe restriction is that I do not consider strings and arrays, where
the memory needs of a single object cannot be determined statically. The ML
Kit originally implemented strings as linked lists of segments with bounded size
[Elsman and Hallenberg 1995, section 7.2.9] and arrays as multi-branching
trees. Though such a representation is intuitively “correct”, handling it in the
formal reasoning in this thesis would be complex and offer little new insight.
Later [Elsman 2003, personal communication] the ML Kit’s strategy changed to
allocating large objects outside the region heap and maintaining a linked list
of such large objects for each region. This scheme means that deallocating a
region is not a constant-time operation anymore. It would be straightforward
to handle with the formal techniques of this thesis, however.

1.6 Notation and formal conventions

In the formal development, I use some convenient shorthand notations that are
not completely standard. The underlying concepts should be well-known to any
reader, so I just give a series of definitions to make the notation clear.

1.6.1 Set theory

Notation 1.1. For an arbitrary set
�

, ��� ��� is the set of subsets of
�

, and � fin �
���

is the set of finite subsets of
�

.

Definition 1.2. � is the set of all finite mathematical objects.

CHAPTER 1. INTRODUCTION 23

The precise definition of what “finite mathematical object” means is not impor-
tant as long as � is large enough – it must contain the natural numbers as
well as everything else that we’re going to assume to be contained in it. In ax-
iomatic set theory, � might be defined as the set of all sets with finite rank. An
equivalent definition that looks more like computer science is that � is the least
(actually unique) solution to the fixpoint equation ��� � fin � �

�
.

1.6.2 Maps, especially finite ones

Definition 1.3. A map
�

is any set of ordered pairs such that ������� �
	 �
and

������ ��	 �
implies ���� . The expression

� ��� � is defined iff ������� ��	 �
for some � ;

in that case
� ��� � denotes this � .

Notation 1.4. When we describe a map by listing its elements explicitly, we
shall generally use the infix symbol “ �� ” to construct the ordered pairs.

For example, “ � ���� ��� � 	�������
” means the map

�
such that Dom

� ��� ��� 	 � ,� � � � � � �
, and

� � 	 � � ���
.

Notation 1.5. We often use the compact notation !#"%$&$&$�!(') "*$&$&$) ' as an alternative

notation for the map ����+,�� �-+(�/.0./.1�2�435�� �63 � . In this notation, the empty map
is .

Definition 1.6. For any map
�
, its domain is Dom

� �7�8�:9 � ��� � is defined
�
, and

its image is Img
� �7� � ��� � 9�� 	

Dom
� �

.

Definition 1.7. For arbitrary sets
�

and � ,
�<; � is the set of all maps

�
with

Dom
� � � and Img

�,= � .

Definition 1.8. For arbitrary sets
�

and � ,
� fin; � is the space of finite maps

from
�

to � , that is, the set of all maps
�

such that Dom
� 	 � fin �

���
and Img

�>=
� .

Note that we consider a finite map to be total from its own domain; it does not
“know” which space we happen to consider it part of.

Definition 1.9. For arbitrary sets
�

and � ,
� fin

inj

; � is the space of finite injective

maps from
�

to � .

Definition 1.10. If
�

and ? are maps, then the extension
�A@ B ? is the (finite)

map defined by

� �C@ B ? � ��� � �
D ? ��� � if ? ��� � is defined� ��� � otherwise

Definition 1.11. If Dom
�6E

Dom ?F��G , then the joined map
� @ ? is the same

as
��@ B ? . Otherwise,

� @ ? is undefined.

It is easily seen that
@

is commutative and associative, and the empty map is a
neutral element for it. On the other hand

@ B
is associative but not commutative.

Definition 1.12. If
�

and ? are maps with Img ? =
Dom

�
, then their composi-

tion
��H ? is defined by

� �CH ? � ��� � � �#I ? ��� ��J
Definition 1.13. The strict composition

� H ? is the same as
�KH ? , except that

we only consider it to be defined when Img ?
� Dom
�
.

CHAPTER 1. INTRODUCTION 24

As usual,
H

is associative but not commutative. This holds for
H

as well.
The two restricted operations

@
and

H
will allow us to state some side condi-

tions implicitly in formulae. We follow the common convention that an (implicit
or explicit) quantifier ranges over only those values for its variable that does not
make a subformula within its scope undefined. Notably this includes the (often
implicit) quantifiers in set comprehensions, and the implied set comprehension
in the presentation of inference rules.

As a (contrived) example, the formula � � H ������ ��
� 	 �	�

, where
�

is some set

of maps, implicitly excludes all the
� 	 �

whose domain is not exactly ��
 �� � .
When we define properties of objects, the property shall be considered not

to hold if the evaluation of the defining property requires an undefined value
(which cannot be caught by the quantifier rule). For example, imagine the
following definitions:

The map
�

is sweet iff Img � � @ � � � has an even number of elements.

A map is sour iff it is not sweet.

Then +����� is sweet and � ���� is not. However, � ���� is also not sweet, because

� ���� @ � � is undefined. Thus � ���� and � ���� are both sour – the “sweetness value”

of the latter is not itself undefined but a well-defined “no”. 6

1.6.3 Variables and metavariables

Notation 1.14. Whenever a convention has been established that some (meta)-
variable letter, say “� ”, ranges over a given set of objects, the notation � shall
mean that set of objects.

Of course, this convention is most useful when the range convention has been
established without explicitly naming the range. This can happen with grammar
rules such as

Expressions: ��� � � � 9 � 9 � 9������9��! "� 9#� � � 9$���#�9�% &�'�� �(�*),+-�
which defines � to be the set of expressions with the given form, while also
establishing a convention that variables like �.� and �	/ / range over this set.

0
History of notation: The symbol 1 is my own invention. I don’t think it’s a very good symbol

for this use. Suggestions for other ones would be appreciated.
6I’m fairly sure that this convention corresponds to standard mathematical intuition, but it does

sound rather strange when spelled out in detail. The sweet/sour example shows that definitions
in our mathematical metalanguage are not referentially transparent! If the definition of “sweet” is

substituted into that of “sour”, 2433�3 would stop being sour.

Chapter 2

Previous approaches to

region inference

In this chapter I give a quick summary of relevant previous work about region
inference.1 The chapter can be skipped without losing much of the technical
points in the later chapters.

I do not purport to survey the entire field of region-based memory manage-
ment, but I try to mention all previous work that concern automatic generation
of agents. By this I mean work that strives at making it possible to run the
region inference on legacy code that has been written without any thought of
regions or memory management, and get a decent attempt at a sound agent for
the program. Some of the techniques may do better if the user nudges them
in the right direction by special annotations on the program; I don’t hold that
against them. But I do not consider “partial” region inference techniques that
only work if the user supplies region invariants for all functions (or loops), and
just fill in the blanks automatically.

In most of the cases, I will focus on the agent programming language that is
inherent in the different techniques. This is because the algorithms that have
been proposed are often designed to make full use of the expressive power of
their corresponding agent programming language – so understanding the agent
programming language will also lead to a feeling for the analytic power of the
various techniques.

As a running example, we use a classic benchmark for region-based memory
management: The Game of Life example, which has been used since the first
articles by Tofte and Talpin. The task is is to simulate the “Game of Life” [Gard-
ner 1970] for � generations, but the issues the examples raise apply to iterative
computation in general.

The standard way of programming an iteration in a functional language is to
use tail recursion:

1Part of the text in this chapter has been adapted from an article [Henglein et al. 2001] that I
co-authored with Fritz Henglein and Henning Niss. It thus represents shared work, and it has been
lost in the mist of time exactly who wrote what. I’m reasonably certain that it was me who wrote
the original Game of Life example though.

The discovery that the Kit, AFL, and HMN systems do not always have globally optimal agents
(Sections 2.2.3, 2.3.1, and 2.4.4) is among my original contributions to [Henglein et al. 2001].

25

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 26

�����
nextgen � ? � ��� read ? ; create and return new generation ������
life � �,�1? � �	� � �7� ��
��� � ?�������

life � �
� � � nextgen � ? � �

We shall leave the details of nextgen unspecified here and in the following dis-
cussion (see the Kit distribution for an implementation;

����������� � ������� � � ����� � ��� �
������� !� � � ��" � � � ���). Furthermore we make the simplifying assumption that a sin-
gle region holds all the pieces of a generation description, and ignore other
non-essential details in the discussion.

2.1 Tofte–Talpin

As mentioned earlier, the first suggestion to automate agent creation was Tofte
and Talpin [1994, 1997]. This is still the one that is commonly meant when
articles refer to “the region calculus” or “the region inference algorithm”. In the
following, we will call it the “TT system”, for short. It works for the polymor-
phically typed call-by-value lambda calculus – i.e., “ML”.

Let us introduce its agent programming language by looking at an annotated
version of the Game of Life example:

�����
nextgen [#] �2? � �$� read ? from # ; create new gen. %
 #&������
life [# a �'# g] � �,�1? � �
� � �7� �(
�)� � ?�)� ���*� �+
',-�&. �0/ � #�/a� � life [#�/a �'# g] � �

�<� � nextgen [# g] �2? � � %
 #�/a
The region annotations here are

././. [#] .0./.1� .0./. from # .0./.2%
 #&�././. [# a �# g] .0./.� �&
',-�+. ��/ � #�/a� � ./.0. [#�/a �'# g] ./.0. [# g] .0./.3%
 #�/a
The most conspicuous feature of the region annotations is a new class of region
variables # , syntactically different from ordinary variables, and a new expres-
sion form that was not present in the original Game of Life program:

Expressions: � � � ��.�.�.9 ���&
',-�&. ��/ � #4� � �
When evaluated, a letregion expression allocates a new region from the region
manager and binds its handle to the region variable # within � . After � has been
evaluated, the region is deallocated.

Expression forms that allocate memory – such as the construction of the ar-
gument pair before the recursive call to life – are annotated with an “ %
 # ”
construction that specifies which region to allocate the memory from. In the
case of the argument pair, the allocation is “ %
 #�/a”, so the pair is allocated in
the region constructed by the immediately enclosing letregion expression. Sim-
ilarly, we assume that the body of nextgen contains a number of allocations for
the description of the next generations; the abbreviated sketch contains “ %
 # ”
to indicate that all of these allocations happen in the region called # .

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 27

Box 2.1—Tofte–Talpin and the “stack of regions”

The TT model is also known as the
“stack-of-regions” model, because the
fact that the letregion expressions are
aligned with the mutator’s expression
structure and in particular with each
other. Therefore, the lifetimes of the ac-
tual regions at runtime will collectively
follow a FIFO pattern: Only the newest
existing region can ever be deallocated.
Furthermore, this stack of regions grows
and shrinks in unison with the host lan-
guage’s call stack, so a region manager
tailored for the stack-of-regions model
can use the call stack to store data about
regions.

This property figured prominently in
the title of Tofte and Talpin’s POPL ar-
ticle [1994], which presented region in-
ference as a scheme for stack-allocating
rather than heap-allocating all allocated
data. This has the less fortunate ef-
fect that some readers have thought the
stacking of regions to be an integral part
of the region model. I think differently;
so there has been no mention of a stack
of regions anywhere in Section 1.1. The
region stacking in the TT model is an
artifact of its agent programming lan-
guage, not a general property of regions.

But what is # in nextgen? It gets passed as a region parameter from the call in
life. Region parameters are notated with square brackets on every function def-
inition and function call in the annotated program; they are passed separately
from the mutator-level parameter, and the agent programming language sup-
ports passing any number of region parameters without tupling them together.
(Remember that the agent piggy-backs its control flow on that of the mutator, so
functions in the host language correspond to functions in the agent language).
In the example we see that # in nextgen is the same as # g in life, which itself is
the same as the # g of the enclosing recursive instance, and so forth – in the end
the region where the new-generation data gets allocated is one that is specified
by the (unseen) main program that calls life in the first place.

With these explanations, we can read what the region annotations mean:
The main program creates a region to pass as # g; as the iteration proceeds
more and more intermediate generations get allocated in this region, and only
when the main program is done with reading the final result (showing it to the
user, presumably) can the region be deallocated and the memory occupied by
the intermediate generations made available for reuse. But then the program
is about to terminate! Clearly this is not an example of successful memory
management.

It gets worse: Each of the letregion expressions only deallocate its region
when its body has been fully evaluated – that is, when the recursive call to life
returns. So just before the bottommost call returns, we have a stack full of # /a
regions just waiting to be deallocated. It is easy to see that this fate is inevitable
for any region that contains part of the argument in a tail call. And worse yet:
Because the letregion needs to do things to deallocate its region, the body of a
letregion is never at tail call context, so the recursive call to letregion is not a
tail call, such as was the case in the original, unannotated program.

Does this mean that the TT system is worthless? Of course not, or the original
article would not have had the impact it had. Rather, I have deliberately chosen
an example program that exhibits some weaknesses in the TT system, such that
I can tell a story of how these weaknesses have been overcome by later work.
There are plenty of examples where the TT system does give rise to nontrivial

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 28

memory reuse.

2.1.1 Regions and closures

One feature of the TT model that the Game of Life example did not show is
that its region variables are lexically scoped, just like ordinary variables in the
lambda calculus. If there is a lambda abstraction sandwiched between the letreg-
ion expression and the allocating expression that is annotated with its variable,
the agent will need to store its region handle in the mutator’s closure when the
lambda is executed, and retrieve it again when the function is called. Thus, it
was not completely faithful to the TT system when we claimed in Section 1.1
that the agent cannot observe the mutator’s data structures. It doesn’t observe
them directly, but it does sometimes store its own private data in them.

This feature has the somewhat unexpected side effect that the TT model
seems to be strictly stronger for programs written in a “pure lambda calculus”
style, where lambdas are used to build data structures, than for programs that
manipulate first-order data. For example, it is possible to build an arbitrarily
long chain of closures, each referencing the next as the value of a free variable,
and containing its own set of region handles for the local data in the closure.
This is not possible with first-order data, because the region type system forces
all elements in a list (or another recursive datatype) to be in the same region.2

The downside of this added flexibility is that the presence of region handles
inside closures vastly complicates the region inference process. The algorithms
that are known for the TT system (see below) are very complicated and not yet
quite fully understood, exactly due to the problem of taming such “dormant”
regions.

In this dissertation, my main goal is generalizing region inference to other
languages, many of which do not have lambda abstractions or encourage their
use only sparingly. Therefore I have decided not to try to duplicate the strength
of regions-within-closures from the TT system in the region inference methods
I present here.3

2.1.2 Region polymorphism

Another peculiarity of the TT system that is not demonstrated by the Game of
Life example is how region parameters work in connection with “functions as
values”. First, a function can take region parameters only if it is declared with
Standard ML’s “fun” keyword – that is, if it it immediately being bound to a
name, rather than just being an anonymous lambda. Second, the actual region
parameters must be specified whenever the function’s name is used, even if it
is not for calling it immediately. If the call does not happen immediately after
giving the region parameter, a special closure must be allocated to store the ac-
tual region parameters, and therefore giving region parameters is an allocating
operation that must have an “ %
 ” annotation of its own.

2The linear region discipline by Walker and Watkins [2001] provides a certain amount of this
region flexibility for first-order data, but is not designed as a basis for automatic region inference
and seems wholly unsuited for that role.

3However, it would be an interesting direction for future work to attempt to achieve this strength
within the general framework of my model; see Section 3.5.1.

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 29

Thus, an expression of function type can never evaluate to something that still
expects region parameters. Therefore a function that takes region parameters
cannot be passed as argument to another function (or stored in a data structure)
in its full generality - it will have to have its region parameters passed before,
after which the partially applied function is indeed a first-class value.

The oddities of region parameters in the TT system derives from the fact that
Tofte and Talpin devised them as a way to have the region-annotated type of a
function differ between call points, so they modeled them over Hindley-Milner-
style type abstractions rather than ordinary parameter passing. In much of the
literature, the passing of region parameters is therefore known as region poly-
morphism. However, region parameters differ from ordinary Hindley-Milner
type abstractions in that a region-parameter value must also be passed when a
(recursive) function mentions its own name in its body. This is in contrast to the
usual rule that a recursive function cannot call itself in a different polymorphic
instance, and goes by the name region-polymorphic recursion.

2.1.3 The TT region type system

The original articles by Tofte and Talpin [1994, 1997] almost contained a region
inference algorithm. The “almost” is because they contained a formal inference
system that described the relation between the input to region inference (the
mutator, in my terminology) and the output (an annotated mutator). The only
problem was that this inference system is non-deterministic in a non-trivial way,
so it cannot really be used as an algorithm. What is left is a region type system;
Tofte and Talpin proved that if we somehow find an agent that happens to match
the inference system, then that agent will be sound. (Afterwards, several alter-
native proofs for the safety of this region type system have appeared [Banerjee
et al. 1999; Calcagno et al. 2002; Calcagno 2001; Dal Zilio and Gordon 2000;
Helsen and Thiemann 2000]).

The basic idea behind the TT region type system is to take the ordinary ML
types for the mutator and decorate the syntax trees for types with the region
variables that are bound to the regions that contain the run-time data that cor-
respond to the particular places in the syntax tree. This principle will be found
again in the HMN region type system in Section 2.4.3 and in the UHL region type
system we will develop in Chapter 5.

Because the regions are specified indirectly (the types contain the region vari-
ables that will be bound to the actual regions), the types need to change if the
region variables change – such as when the (mutator-level) parameter to a func-
tion is located in regions that have one name in the caller (the actual region
parameters) and another one in the callee (the formal region parameters). This
is the basis for the view of region-parameter passing as a form of type polymor-
phism.

I will not describe the TT type system in detail;4 most of its intricacies are
concerned with keeping track of regions stored in closures. The only point
that is important in this context is its rule for letregion expression. Somewhat
simplified and paraphrased from the original TT syntax, it is

4Henglein et al. [2005] give a cleaned-up presentation of the TT region type system which we
hope is easier to read than Tofte and Talpin’s original articles.

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 30

#��	 FRV ��� � ��� � ��� #��	 FRV �	� �
�
� � �&
',-�+. ��/ � # � � � ���

where � is the variable letter for region-annotated types and FRV picks out all
the free region variables in a type or set of types. The rule says that a region may
only be deallocated at a point where it is not present in the type of the value
that was computed while the region existed. (The “ #��	 FRV ��� � ” side condition
is there to prevent name capture of #). Because types describe the structure of
values, it is normally the case that “not present in the type” coincides with “not
reachable via pointers”, so one concludes that a TT-certified agent will never
deallocate something that a tracing garbage collector would consider live.

But this is only normally! A closure can contain pointers to values that are not
described by the type of the closure itself. When this is the case, it is indeed pos-
sible for the TT region inference to deallocate something that a tracing garbage
collector considers live. This will be safe because the region type system tracks
the use of regions. If the code part of the closure may actually need to access
the data in question, its region must appear in the “effect” part of the closure’s
type, which will prevent the letregion rule for matching.

This ability to create structures with “dangling pointers” and still stay (prov-
ably) safe helped fuel much of the initial interest in region-based memory man-
agement. In my opinion, however, it looks more like a gimmick than an actually
useful feature – it only applies when one uses intrinsically higher-order pro-
gramming, and sometimes needs non-obvious coding styles. A large part of the
motivation for the development of the HMN system (Section 2.4) was our wish
to make the gimmick real for first-order programs.

2.1.4 Algorithms for TT region inference

Eventually an actual region-inference algorithm for the TT system was pub-
lished by Tofte and Birkedal [1998]. It works by trying to construct a typing in
the TT region type system for the mutator by something like Milner’s Algorithm�

, treating region parameters as a form of polymorphism. Region-polymorphic
recursion is handled by a local (“Kleene–Mycroft”) fixpoint iteration plus some
ad-hoc heuristics to ensure termination.

I will not discuss the algorithm in detail; it is unrelated to my own region
inference algorithms. A significant source of complexity in the algorithm is
the need to extend the unification of Algorithm

�
to the set-shaped “effects”

the the TT region type system uses to track dormant regions in closures. This
complexity is part of the reason why in my own work I have tried to avoid
regions-in-closures.

Later, Birkedal and Tofte [2001] reformulated their algorithm in terms of
constraints such that the ad-hoc heuristics for termination could be eliminated.
The new algorithm was proved complete modulo some technical requirements
on the shape of the typing it produces. If these requirements are as innocuous as
they look, the new algorithm is “optimal” in the sense that the agent it produces
will give rise to minimal lifetimes among all agents that pass a generalization
of the TT region-type system. However, an actual proof of this has not been
forthcoming, and at the moment it is unknown whether such an optimal agent
always exists.

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 31

2.1.5 Other region inferences based on TT

In my M.Sc. work [Makholm 2000b] I derived a region type system for a subset
of Prolog from the ideas behind the TT system. Because Prolog is a first-order
language, I could dispense with the effect mechanisms that TT uses for closures.
I developed and described a similarly simplified region-inference algorithm for
this subset. This algorithm is unrelated to the one by Tofte and Birkedal, as well
as to the one I present in Chapter 7, though some structural ideas from it can
be found in Section 7.3.8. The prototype I developed also contained the first
known (to me) implementation of a region-merging postphase; it later evolved
into the one I describe in Section 7.4.4.

2.1.6 Unused region parameters

The Game of Life example shows one further peculiarity, namely the region
parameter “ # a”. This gets passed to every instance of life but is always ignored.
The TT region inference produces this essentially useless parameter because it
is necessary to convince the TT region type system that it is safe to extracts the
two elements of the argument tuple. Therefore the region inference invents the
invariant that # a must always be the region that contains the argument tuple;
but region polymorphism is so closely tied with parameter passing that # a must
actually appear in the parameter list.

At run-time, it is of course not necessary to pass this region parameter around,
so the ML Kit (which, as far as I know, is the only production-quality language
implementation based on the original TT model) includes a postphase that re-
moves unused region parameter. It is called get-region removal and is briefly
described by Birkedal et al. [1996]5. The name stems from the fact that the
removal works from data collected during the main region inference, which dis-
tinguishes between region parameters that the function “puts” something into
(i.e., allocates in), and ones where it only “gets” data from the heap.

2.2 The ML Kit

The ML Kit [Tofte et al. 1997, 1998, 2002] is the most famous implementation
of the TT region system. Its first version [Birkedal et al. 1993] was little more
than a rendering of the semantics in the Definition of Standard ML as modular,
executable ML code, intended to be used for experiments with compiler tech-
nology. The grandest such experiments was the implementation of region-based
memory management. In version 2 of the Kit, TT region inference and region-
based memory management was added, and the subsequent development has
aimed at making the ML Kit a production-quality Standard ML compiler with
region-based memory management. Version 4 of the Kit adds a garbage col-
lector that coexists with the region-based memory manager [Hallenberg et al.
2002; Hallenberg 1999].

The extension of region-based memory management from the toy language
in Tofte and Talpin’s original articles to the full Standard ML language entailed
a lot of additional development. Some of the innovations – such as the han-
dling of strings, datatypes or exceptions – have not been published and seem

5For unknown reasons, this postphase is described as being part of the multiplicity analysis...

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 32

to be available only as internal documentation in the Kit distribution and “by
the way” comments in its user manual. Few of these have been the subject of
stringent formal investigation; apparently the reasoning has been that the TT
region type system was formally known to work, so its (more or less) “obvious”
generalizations to other settings could be trusted by intuition. Such a practise is
of course not unreasonable; formal reasoning on the scale of an entire general-
purpose programming language borders on the infeasible anyway. But still it is
somewhat disquieting how much of the Kit’s region model rests of the principle
of Proof By Being Unable To Think Of A Reason Why It Shouldn’t Work.

I will limit my description of the ML kit to the main features of its region
implementation that are most relevant to my work in general.

2.2.1 Storage modes and region resetting

For our purposes, the most important feature of the ML Kit is its response to
the basic problem we have seen with the TT system: The hierarchical nesting
of region lifetimes prevents reasonable reuse of memory when tail recursion is
used, as in the Game of Life example.

The ML Kit’s solution, described by Birkedal et al. [1996] is based on the
concept of resetting a region. Resetting a region means deallocating all data
in the region, while not deallocating the region itself. Another way to view this
(in our general model of region-based memory management) is that the region
is deallocated and a new one is created and bound to the region variables that
used to reference the old one – but the Kit’s region manager has an optimized
implementation of the operation that does not need any region variables to
actually be updated.

The agent programming language is extended with constructs to request re-
setting of a specific region. Syntactically these constructs are expressed as a
refinement of the “ %
 ” annotations on allocating expressions. Instead of just
“ %
 ” they now say “ %
�� /
 ”, meaning first reset the region and then allocate, or
“ %

 /�� ”, meaning just allocate. “

� /
 ” and “

 /�� ” are called storage modes. It

is possible to have a region reset without allocating something in it at the same
time, but the ML Kit will only do this as the result of a programmer-supplied an-
notation. Systematically, this annotation can be handled as a request to allocate
zero cells %
�� /
 in the region.

Storage modes are inserted by a storage-mode analysis which runs after the
ordinary TT region inference. The storage-mode analysis builds on the types
from the TT region type system. It works by doing a simple liveness analysis
on the variables in the ML source and allowing an allocation in # to be %
�� /
 if
no variable (or unnamed intermediate result) with a # in its type is live. This
scheme seems intuitively safe, but no actual proof of its safety has appeared.

The ability to reset regions offers the hope of achieving better memory reuse
than in the original TT model with its strictly nested region lifetimes. However,
it does not work all by itself but needs the mutator to be written in a special
style. The ML Kit manual recommends rewriting the Game of Life example in
the following way:

�����
copy �2? � �$� read ? ; make fresh copy ������
life / ��� % � � �,�1? � � �	� � �7� �(
'��� �

�

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 33

�)� ���
life / � �

��� � copy � nextgen � ? � � ������
life � � � � # � � life / �

�

where copy (whose body is omitted here for brevity) takes apart a generation
description and constructs a fresh, identical copy. The ordinary TT region infer-
ence will then produce�����

nextgen [#4�#�/] �2? � � � read ? from # ; new gen. %
 #�/ ������
copy [#�/ �#] � ? � � � read ? from #�/ ; create fresh copy %
 #+������
life / [# a �'# g] � � % � � �,�/? � � �
� � �7� �(
�)� �

��)� ���
life / [# a �'# g] � �

� � �� �&
',-�+. ��/ � #�/g � � copy [#�/g �'# g] � nextgen [# g �#�/g] � ? � �� %
 # a�����
life [# a �'# g] � � # � � life / [# a �'# g] �

�

At first sight, this seems to be worse than the pure TT solution – now all of the
argument pairs are in the same region # a. This is because splitting life into two
functions means that life / , which contains the recursive case, will be forced to
obey the invariant that the result is always in the same regions as the argument.
This again forces the argument to the recursive call to be in the same regions
as the arguments to the enclosing instance – and that eliminates the letregion
expression that prevented the recursive call to be a tail call.

Now, however, the stage is set for storage-mode analysis. In this particular
example it identifies all the allocations as %
�� /
 , so # a will be reset each time a
new argument tuple is allocated, and # g will be reset once for each generation:
�����

nextgen [#4�#�/] �2? � � � read ? from # ; new gen. %

 /�� #�/ ������
copy [# / �#] � ? � � � read ? from # / ; create fresh copy %
�� /
 #+������
life / [# a �'# g] � � % � � �,�/? � � �
� � �7� �(
�)� �

��)� ���
life / [# a �'# g] � �

� � �� �&
',-�+. ��/ � #�/g � � copy [#�/g �'# g] � nextgen [# g �#�/g] � ? � �� %
�� /
 # a�����
life [# a �'# g] � � # � � life / [# a �'# g] �

�

Note that the resetting of # g is possible only because of the seemingly redundant
copy operation. If the result of nextgen had been used directly, nextgen would
have had to produce its result in the same region as it got its input, and then it
would not have been safe to reset it (because, let us assume, that nextgen needs
to be able to allocated the first parts of its output before it as inspected its entire
input).

This solution does make it possible for life to run in constant space (assuming
that the size of a single ? is bounded), but it is by no means obvious that pre-
cisely these changes to the original program would improve the space behav-
ior. Furthermore, inserting such region optimizations in the program impede
maintainability because they obscure the intended algorithm. Even though the
programmer who makes the changes may understand regions well enough to
see how the improvement works, the program certainly gets more difficult to
read for the next, less region-literate, programmer. Finally, the CPU cycles spent
on copy may be considered “waste” because they do not contribute to the com-
putation per se.

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 34

2.2.2 Storage-mode polymorphism

The above explanation of storage modes is a little simplified. In order to reset
a region variable bound as a formal region parameter, it is necessary that the
region variable itself does not occur in any free variables at the point of the reset
itself. But must also be true that the region variable in the caller that was used
as the actual parameter did not occur free at the time of the call.

The storage-mode analysis in the Kit does not know the call graph of the pro-
gram (it works for one module at a time), so the Kit resolves such matters at run
time. Whenever a region parameter is passed, the caller also passes a bit that
says whether the called function is allowed to reset the region. If not, %
�� /
 al-
locations in the callee will work as if they were %

 /�� . As a syntactic reminder of
this, the annotation %
 � /
 is not actually used for region parameters; instead it
is spelled

� / � �����)�),-� %
 . This indicates that the actual storage mode is selected
by the caller; the concept is called storage-mode polymorphism by Birkedal
et al. [1996].

2.2.3 Storage modes and region aliasing

Having region parameters in function definitions potentially leads to region

aliasing. For example, in a (hypothetical) call life / [#4�'#] � �,�1? � , the region vari-
ables # a and # g in the function body will denote the same region. Therefore,
one has to be careful when resetting regions. The analyses in the ML Kit solve
this problem by conservatively approximating the set of aliased region variables
[Tofte et al. 1998, Section 12.2] and prohibiting the resetting of possibly-aliased
regions.

(It seems to me that a less conservative but still safe principle would be to use
storage-mode polymorphism to prevent resetting of aliased regions. If the caller
that initiates the aliasing passes both (all) aliases %

 /�� , the callee will be pre-
vented from resetting the region when called from that caller but could still con-
tain

� / � ��� �)�),-� %
 annotations and reset regions when called from non-aliasing
callers. This idea would “fix” problem of optimal agents for the counterexample
given below. But it would not fix it in general; more complex counterexamples
can be constructed where there are still trade-offs of this kind.)

The Kit’s handling of region aliasing has the surprising effect that in the Kit
system there is not always an “optimal” agent for a given mutator (even though
there may be in the TT system, as I speculated in Section 2.1.4). Namely, con-
sider the following program:

� �&
 ����� �
� � � �&
�� � � sqrt � � . � � � sqrt ���#. � � � � � � � �7� �
��� � � �)� ��� � � �

� � �
����� ? � � ���&
 ������� � � �

� ; �7� � �1� � �	��
 � � � use ��
� � � �&
 � � # + � �� � � � � space-critical section that uses ���

where we assume that sqrt function needs to heap-allocated its return value
(imagine that a real is larger than a machine word).

The function ? is never called but must still be typed. The list construction
means (by the rules of the TT region type system) that � and � must have the
same region annotations. Thus ? must be able to call

�
in such a way that

the components of the pair that
�

returns are guaranteed to be in the same
region. Ignoring (for brevity) the region where the pair containing

���
and � � is

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 35

allocated, there are two different ways to (TT) region annotate
�

which allow
this:

a.
�

takes two region parameters and allocates � �
in one and � � in another.

When called from ? , these two region parameters can be aliased.

b.
�

takes a single parameter where it allocates both square roots.

In the TT system this is not a problem, because there is no reason to chose (b)
rather than (a). But with the Kit’s resetting extension things change. Now (b)
has the advantage that the single region parameter is not aliased in the call
from ? , so the storage-mode analysis will be free to allocate the first square root� / � ��� �)��, � %
 instead of %

 /�� . This means that at no point will more than two
of the square roots actually take up place on the heap. Therefore, if

�
is greater

than
�
, (b) will be the most memory-efficient solution.

On the other hand, if
�

happens to be
�
, (a) is more desirable, because there

will be no loss from not being able to reset, and the single � � that the program
allocated can be deallocated before the space-critical section.

If
�

is not known statically (it may be read in an I/O operation at runtime),
this means that neither (a) nor (b) will be clearly superior to the other – no
matter what we chose, there is a risk that the other choice would sometimes
lead to a better memory behavior of the program.

2.3 Aiken–Fähndrich–Levien

Aiken et al. [1995] proposed an extension of the TT system in another direction,
decoupling dynamic region allocation and deallocation from the introduction of
region variables in the interpretation of the

���&
',-�&. ��/ � construct.
In this system, which we call the AFL system, entry into a

� �&
',-�+. ��/ � block
introduces a region variable, but does not allocate a region for it. During eval-
uation of the body of

� �+
',-�&. �0/ � , a region variable goes through precisely three
states: unallocated, allocated, and finally deallocated. After a TT region infer-
ence, a constraint-based analysis – guided by a higher-order data-flow analysis
for region variables – is used to insert explicit region allocation and dealloca-
tion commands which update the state of the region variables. The allocation
and/or deallocation points can be inside functions that have been passed the
region variable as a region parameter.

Aiken et al. presented their system as an extension to the Kit system (with
resetting), but it can equally well be viewed as an independent and orthogonal
extension to the basic TT system. The two extensions (AFL and resetting) are
useful in different situations, but there are also areas of overlap. For example,
the AFL system provides a solution of its own to the Game of Life problem:

In the AFL system the Life example can be improved by rewriting the original
program to�����

copy �2? � �$� read ? ; make fresh copy ������
life � �,�1? � �	� � �7� ��
��� �

copy � ? ��������
life � �

� � � nextgen � ? � �
where the only difference from the original program being that the base case
returns a fresh copy of its input rather than the input itself. Ordinary TT region
inference results in the following TT annotations:

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 36

�����
nextgen [#4�#�/] �2? � � � read ? from # ; new gen. %
 #�/ ������
copy [#4�#�/] � ? � �$� read ? from # ; fresh copy %
 #�/ ������
life [# a �'# g �'# /] � �,�/? � �
� � �7� �(
�)� �

copy [# g �'#�/] � ? ���� ��� � �&
',-�+. ��/ � #�/a �'#�/g� � life [#�/a �'#�/g �'#�/] � �
� � � nextgen [# g �'#�/g] �2? � � %
 #�/a

The introduction of copy in the base case means that the region where the in-
put to life need not be the same as the one where the final result is allocated.
Therefore, in the recursive case, the new generation can be allocated in a new
region #�/g of its own.

This still looks bad from a TT viewpoint, but then the AFL post-analysis adds
allocation and deallocation points and produces6

�����
nextgen [#4�#�/] �2? � � � � % �0� /��*#�/

 � read ? from # ; new gen. %
 #�/ � � � � , �&� #

�����
copy [#4�# /] � ? � � � � % �0� /�� # /

 � read ? from # ; fresh copy %
 # / � � � � ,-�+� #

�����
life [# a �'# g �'#�/] � �,�/? � �
� � � , �&� # a

 � � � � ��
'��� �

copy [# g �#�/] �2? ���� ���*���&
',-�&. ��/ � #�/a �'#�/g� � life [# /a �# /g �'# /] � �
� � � nextgen [# g �# /g] � ? �

� � % �0� /��*#�/a

 � %
 #�/a
Because deallocation of each region is done explicitly and not by

���&
',-�&. ��/ � , the
body of

� �&
',-�+. ��/ � is a tail call context, and the regions containing the argument
pair and the old generation can be freed the arguments have been matched
and and nextgen � ? � have been computed, respectively. Without rewriting the
original program this would not be the case, because a function must either
always free one of its input regions or never do it.

The AFL analysis is inherently non-modular; it needs a whole program to analyze
at once. The system does come with a safety proof for the analysis, but it is
not framed as a type system, so it is unclear whether compact certificates of a
particular agent’s safety can be produced.

2.3.1 Region aliasing and the AFL system

The AFL system’s handling of region aliasing is more ambitious than that of the
Kit system. The analysis computes the exact7 set of possible aliasing situations
for each function with region parameters. For example, one function may be
marked:

“This function may be called with no aliasing among the parameters,
or with # + and # � aliased (and no other aliasing), or with # � and # �
aliased (and no other aliasing).

Then, the main algorithm makes sure that the % �0� /�� and
� , �&�

annotations makes
sense for each of the computed aliasing instances. For example, if an annotation

6The syntax here is not identical with the one used by Aiken et al.; for example, they write
“ ������� 	���
������� ” for what we write as “ ��� � ����������� � ”.

7The analysis is “exact” relative to a previously computed call graph and an assumption that all
call paths in the graph are possible.

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 37

to free # � is inserted, neither # + nor # � can be freed in that function, because a
region must be freed exactly once.

This interplay between aliasing and annotations means that the combina-
tion of TT+AFL, taken as a whole, does not always have “optimal” agents, in
the same way that optimal agents does not exist for TT+Kit (Section 2.2.3).
Namely, consider this example program:

� �&
 ����� � ������� � � � �&
 �7�- � � � � space-critical section ������ ? � � � �����2� �
� � � �&
 � � sqrt � � . � � ; � � sqrt ���#. � �
� � � � � something �
��� �
� ������� ���� ��� � space-critical section that uses ���

Again, the call from ? means that it must be possible to annotate
�

such that its
two arguments are in the same region. And again, there are two TT annotations
that achieve this:

a.
�

takes two region parameters, expecting � to be in one of them and � to
be in the other.

b.
�

takes a single region parameter containing both of � and � .

In variant (a) the two region parameters must be aliased in the call from ? .
This means that

�
can be allowed to free only one of them early, lest it would

try to free the same region twice when called from ? . Thus in the call from the
main program, either � or � must stay allocated during the space-critical section
within

�
.

Variant (b) does not have that problem, but would on the other hand require

the main program to allocate � �
and � � in the same region, keeping both

allocated during the space-critical section in the
�)� ���

branch.
This kind of trade-offs in the Kit and AFL systems has apparently not been

reported in the literature before the HMN article [Henglein et al. 2001]. Their
existence questions the fundamental design approach of these systems, which
is to build on a classical TT region inference. An unspoken assumption here is
that region annotations produced by a region inference that aims at a pure TT
execution model will also be “good” as a baseline for more advanced execution
models. Our examples show that in some situations the memory behavior can
be better if one uses a baseline that would be inferior in a pure TT setting.

2.4 Henglein–Makholm–Niss

The HMN (Henglein-Makholm-Niss) system is the basis for the generalization to
multiple languages I present in this thesis. It was developed jointly by myself,
Fritz Henglein, and Henning Niss in 2000–2001. Our starting point was to take
a fresh look at region inference and create a system that (a) made the dangling-
pointers gimmick from TT real for first-order data, and (b) include a solution
to the TT system’s problems with tail recursion in the region type system itself,
rather than as postphases.

Thus, the HMN system comprises a novel agent programming language, a
novel region type system, and some region inference algorithms. The first two
items were presented in Henglein et al. [2001], but save for a very sketchy

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 38

description in that article, the present dissertation is the first written account on
how our region inference algorithms for HMN work.

From the beginning, the HMN system was conceived as being applicable to
different host languages. We did the initial development for a small imperative
(but value-oriented) calculus, later to be published as the REGWHILE calculus of
Niss [2002]. Before publication, we reexpressed the model with an ML subset
as its host language; partly to emphasize the relevance to a conference whose
deadline we then hoped on meeting, partly to emphasize its similarities and
differences from the TT system.

This history means that HMN handles a smaller subset of ML than the TT
system does: It support neither higher-order functions nor polymorphic typing
(at the mutator-level). Those restrictions also carry over to my generalization
in this thesis.

There are two central ideas of the HMN system. First: The agent programming
language should be an imperative language even in cases where the host lan-
guage is functional. Second: The agent maintains for each region a reference
count, counting how many region variables are bound to the region. According
to one’s temperament, this can either be viewed as a more refined interface to
the region manager or something that happens in the agent itself – or even a
special reference-counting layer between the agent and the region manager. (In
practise, reference counts are maintained by a specialized region manager).

The imperative agent programming language has four basic operations:

� � � � ��� #

 : allocates a new region with reference count
�

and assigns it to
; # must not be assigned a region before this.

� � � ,-�)� � % ��� #

 : decrements the reference count of the region assigned to #
and then makes # unassigned; the region is deallocated if (and only if)
the reference count drops to

�
.

� � �0# / � � % � ��% � #

 : assigns the region in # to # / and increments its reference
count; #�/ must be unassigned and # must be assigned a region.

� � �0#�/ � � #

 : this renaming operation is equivalent to the sequence � �0#�/ � �
% � ��% � #

 � � ,-�)� � % ��� #

 . It has no net effect on the reference count of the
region originally bound to # . (One can think of this as a linear variant of
region assignment in the previous case.)

Region operations can be inserted at arbitrary places in the mutator. When the
host language is functional, as is the case in the formal development later in
the section, this means that one or more region operations can be attached to
each expression as a pre- or post-operation. Thus, for example, an effect similar
to the TT system’s “

� �+
�, �&. ��/ � # � � � ” can be simulated in HMN by “ � � � ��� #

��
� � , ��� � % ��� #

 ”, but

� ���
and

,-����� % ��� operations are not required to match up in
this way.

The internal ordering of region operations is not subject to any hierarchi-
cal discipline. The “scope” of a region variable, if one insists on using such a
concept, reaches from when it is assigned using a

� ���
, % � ��% � , or renaming op-

eration and until it is consumed by
, ��� � % ��� or renaming. The scope need not

have a “nice” shape (the same region variable can toggle arbitrarily back and
forth between bound and unbound), and there are no ties between the scope of
different region variables.

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 39

The two exceptions to the general rule that the region sublanguage is inde-
pendent of the structure of the base language are conditionals and function
calls.

In a conditional, the two branches of a conditional must lead to the same
region variables being assigned at the end, but they need not do it by the same
means. Thus both of

� � ...

�)� �

... � � ,-�)� � % ��� #

 � � � ��� #

 ...
��� ���

...
� � ...

�)� � � � � ��� #�/

 ... � � ,-����� % ��� #

 �)� ��� � �0#�/ � �$#

 ...

are legal but

� � ...

�)� �

... � � ,-�)� � % ��� #

 ��� ��� ...

is not.
Function calls are more complex (and the reader may want to refer to the

examples on page 48f while digesting the general discussion that follows). The
region annotation for a function call specifies three lists of actual region pa-
rameters:

[c: #4+(�/.�.�.��#���� i: # /+ �/.�.�.��'# /� � o: # / /+ �0.�.�.��'# / /3]

Here the # � ’s are the constant parameters, the #�/� ’s are the input region param-
eters, and the #�/ /� ’s are the output region parameters.

The constant regions and input regions must be bound before the function
call. When the called function starts executing, the bindings are transfered to
region variables listed as formal region parameters in the function definition.
No other region variables are bound at the beginning of the function body. The
function body may not change the bindings of its formal constant parameters,
but may do anything with the formal input region parameters. After the func-
tion body has been executed, the bound region variables must be exactly the
formal constant parameters plus a set of formal output region parameters. The
bindings of these are then transfered back to the caller’s actual constant regions
and output regions.

If any region variable that is neither an actual constant parameter nor an
actual input parameter is bound before the function call, it is hidden from the
called function but reappears in the caller after the call. It must not have the
same name as an actual output parameter.

An actual input region parameter must not be identical to another actual in-
put parameter or actual constant parameter in the same call. Likewise, each ac-
tual output region parameter must be distinct from other actual output param-
eters and from the constant parameters. However, two actual constant region
parameters can be identical. These rules make sure that the region reference
counts are maintained correctly: Any region aliasing must be done by explicit
% � ��% � operations, and previously bound region variables may not be rebound
without first being explicitly released. The relaxation for constant actuals is
sound because the called function may not change the bindings of the corre-
sponding formals; thus the bindings of the constant actuals is always the same
before and after the call.

Note that an actual input region parameter loses its binding during the call
(but can get a new one if it is used as an actual output parameter too).

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 40

2.4.1 Game of Life in the HMN system

The Game of Life example shows the the power of input and output regions
(seeing the need for constant regions requires knowledge of the region type
system, so we defer the rationale to the comments to the typing rule for function
calls). The HMN system makes it possible to handle the Game of Life with no
rewriting at all. We get the annotations
�����

nextgen[i: #�� o: #�/] � ? � �
� � � ��� #�/

 � read ? from # ; new gen. %
 #�/ � � � ,-�)� � % ��� #

�����
life[i: # a �# g � o: #�/] � �,�1? � �
� � ,-����� % ��� # a

 � � � � �
��� � ? � ��# / � �$# g

�������

life[i: #�/a �'#�/g � o: #�/]
� �

� �
, nextgen[i: # g � o: #�/g] �2? � � � � ��� #�/a

 � %
 #�/a

where each iteration of life decides for itself whether to release the region it gets
as its second parameter or to return it back to the caller.

The � �0#�/�� �$# g

 operation serves the same purpose as the copy operation in the
AFL solution, but has no runtime cost. Indeed, even the � ��#�/�� � # g

 operation
itself is superfluous in this particular example; as an alternative all occurrences
of #�/ could simply be changed to # g. Then # g would appear as a formal output
region as well as a formal input region, but that does not matter; there is no a
priori relation between the input and output regions.

To see the benefits of reference counting and the � �0#�/ � � % � ��% � #

 operation,
consider the function

�����
twolife � ?�� �,��� � � � �&
 ? / � life � �,�1? �? / /*� life ���7�1? / �

� � � ? / �1? / / �
In the HMN system this can be annotated as
�����

twolife[i: # g �# a �# m � o: #�/g �'#�/ /g] �2?*� �,��� � ����&
 ? / � life[i: # a �'# g � o: # /g] � �,�1? �? / / � � ��# �g � � % � ��% � #�/g

 life[i: # m �'# �g � o: #�/ /g] ���7�1? / �
� � � ? /��1? / / �

The second call to life is prevented from deallocating ? / because the binding in
#�/g keeps the region alive after life releases # �g . All other invocations of life still

deallocate the generation input.
This behavior is not possible in the AFL system: If any call to life needs to

preserve the region where some of its inputs live, no call can be allowed to
deallocate its argument.

The ML Kit system can handle certain instances of this situation by using
storage-mode polymorphism to let a region be reset conditionally. However,
the twolife example is not handled well by the ML Kit, since the Kit-friendly life
implementation from Section 2.2 depends on being allowed to reset the region
with the generation data.

A combination of the AFL and Kit solutions would be able to obtain a behavior
similar to HMN for twolife. It would need to be guided by an explicit annotation
from the programmer, though, because by default the Kit attempts to reset a
region only when something gets allocated in it.

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 41

2.4.2 Simulation of the Kit and AFL systems

It is immediately clear that HMN can express everything allowed by the (first-
order fragment of the) TT system. We now argue that a similar relation holds
between HMN and the Kit and AFL systems.

Region resetting in the Kit can be simulated in HMN simply by the combination
“ � � ,-�)� � % ��� #

 � � � ��� #

 ”. The Kit prohibits resetting if any live value has a type
that mentions the region variable. When this is not the case, HMN’s region
type system will also allow the

,-�)� � % ��� – � ��� combination. Resetting a region
parameter in the Kit requires that the actual parameter was not live at the call
site, in which case the HMN system would allow the parameter to be converted
from a constant parameter to a pair of (identically named) input and output
regions such that the function can still reset the region.

What HMN cannot simulate directly is the storage-mode polymorphism de-
scribed in Section 2.2.2. We expect that most storage-polymorphic region pa-
rameters can be simulated by a combination of an input region for use before
the resetting and a constant parameter or output region for use after the reset-
ting. However, this does not always work in cases like

�����
nonneg [#] ��� � �	� � ��� � . � %
 #
'��� � � � . ��� / � �����)�),-� %
 # � �)� ��� �

where the region is only reset in some execution paths through the function.
Region renaming in the

�������
branch might work here, but only if all callers can

accept that nonneg decides which region the result will be allocated in.
Simple cases of early deallocation in the AFL system is easily modeled by

HMN’s input region parameters. It is less clear whether HMN can model precisely
all the effects of the AFL system’s handling of region aliasing. Consider, for
example, the following program fragment with AFL annotations:

����� �
[# ! �'#)] ������� � � � �&
�� �7���5� � � � ,-�+� # !

� � � code not depending on � and � ������ ? [#] � � �

[#4�'#] ����� � ��������
[#] � � � �+
�, �&. ��/ � #�/

� � �
[#4�'#�/] ����� ���- � � � % �0� /��*#�/

 � %
 #�/ � � � � ,-�+� #�/

The best emulation of this in HMN is

����� �
[i: # ! �'#)] ������� � ����&
�� �7��� � � � , ��� � % ��� # !

 � � ,-����� % ��� #)

� � � code not depending on � and � ������ ? [i: #] � � � �0# / � �	% � ��% � #

 � [i: #4�'# /] �����2� ��������
[i: #] � � �

[i: #4�'#�/] ����� ��� � � � � ��� #�/

 � %
 #�/ �

In this version,
�

will delete both of its input regions after the comparison,
whereas the AFL version cannot deallocate both # ! and #) lest the same re-
gion would be deallocated twice when

�
is called from ? . We conjecture that

the pattern in this example holds generally: that an AFL agent can always be
translated into a HMN agent that gives at least as good lifetimes of all memory
blocks.

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 42

Region variables: # � � �$# � 9�#4+ 9�# � 9������
Region operations:
 � � � � ��� #F9�#-� � % � �0% � #F9 ,-����� % ��� #F9�#-� �$#
Variable names:

� �2� � � �7� � 9���+ 9 � � 9 �����
Integer constants: � � � � � 9 � 9 � 9������
Bignum constants: �

� � � � ��� 9 � � 9 � � 9������
Operators: � � � � ��� 9�� 9�� 9 � �	� 9 � �
� 9������
Expressions: � � � � � �

 � 9.�� �

9 � �&
 � � � � � � 9 �9 � 9 � ��� � � � 9!� � � �� �
��� � � ��� ��� �9 �

� %
 # 9 ����� � � � %
 #9 � � � � � %
 # 9 # + � 9 # � �9 �
 %
 #F9$� :: � %
 #9 ��% ��� � / � �
� � / , � :: ��� �9�� [�] �
Function definitions:

� � � � �2� �
�
[�] � � �

Declarations: � � � ��� empty �:9�� �
Call annotations: � � � � c: �#�� i: �# � o: �#
Programs: � � � � ���&
 � � � �
Sets of regions: �
��� 	 � fin � # �
Region types: � � � �),+ '-9 �),+ ' � � � � 9 �	��� ��� � �9 �	� %) �' � � � 9��
Function types: � � � �����#4. ��� �#*. � �"! ��� �# . � �
Places:

� � � �$# 9�# 9�%
Environments: � � � � � 9 � �2��� � 9 �1�'& � �

�)(*� / def�+�-,�� � when � E � ��G �

� ��� � def� case � of

.//0 //1
��/��2��� � �� �
��/��2� / � � �� ��/ ��� � ��� �2 � / �
��/��3&#� � �� ��/ ��� �� �� (undefined)

�# is an ordered sequence of region variables.� � # � � � � converts a sequence to a set (when the # � ’s are distinct)

Figure 2.1: Abstract syntax of REGFUN and semantic objects (with associated op-
erations) of the HMN region type system

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 43

2.4.3 The HMN region type system

For reference, we now describe the HMN region type system as published in
Henglein et al. [2001]. A safety proof for the region type system can be found
in Niss [2002].

The host language is a small ML subset called FUN. The primitive data types
are integers in unboxed (),+ ') and boxed (),+ ' �) versions. Our main reason for
having boxed integers is that they make it easy for small examples to require
heap allocation; one can also think of them as infinite-precision integers. We
also include constructed data in the form of binary pairs and lists. The language
contains the usual variables,

���&

-expressions, constructors and destructors for

data, and functions. FUN is “almost higher order” in that functions are first-class
values, but it is not possible to create closures. Thus function values behave
similarly to C’s “function pointers”.

Region inference takes a FUN-program and emits a region-annotated pro-
gram. The resulting program is written in the target language REGFUN, which
is FUN with the imperative agent programming language embedded.

Figure 2.1 shows the syntax of REGFUN, from which the syntax of FUN can
also be inferred by ignoring the region constructs. An evaluation semantics for
REGFUN is given in the online version of Henglein et al. [2001].

Also shown on Figure 2.1 are the semantic objects used in the region type sys-
tem. The various constructions will be explained along with the rules that use
them. In addition to the operations, we use the set frv �	� � of free region variables
of a region type � (where, by definition, frv � � � � G). By point-wise extension,
the free variables of an environment � is called frv ��� � .

The typing judgments that keep track of available regions and data are in-
spired by Floyd-Hoare Logic and take the form of pre- and post-descriptions of
the runtime state. The main typing judgment has the form

� � � � �
� � � ��� � � / �

� / �

Here � and � / are the sets of updateable bound region variables before and
after the evaluation. They are complemented by � which is the set of formal
constant parameters in the current function. They behave mostly like the region
variables in � , except that their bindings cannot change. Therefore, � stays
the same throughout an expression and consequently occurs only once in a
judgment. The sets � and � (or � and � /) are always disjoint; their union is
the set of bound (or “live”) regions variables before (or after) evaluating � .

Though the actual values in the runtime environment ideally do not change
while evaluating an expression, embedded region operations may change the
bindings of the region variables that allow access to them, such that their region-
annotated type must be updated. Therefore the judgment contains two different
type environments � and � / which both describe the same runtime environment,
but relative to the region-variable bindings before and after the evaluation of
� , respectively. The typing rules maintain the invariant that � and � / have the
same structure; that is, the only differences are in the places

�
inside types.

The special place % is used to mark the types of values that are not accessible
through any currently-bound variable. For example, the occurrence of % in

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 44

� � � #4�#�/ � � � � �),+ ' � �'#�/ � �
��� � � %
 # / � %
 # � � ,-�)� � % ��� # /

�� �),+ ' � �'# �

� � # � � ��� �),+ ' � �'% � �
signals that, after evaluation of the expression, the value of � is no longer ac-
cessible. Attempting a subsequent operation involving access to the value of �
would be rejected by the type system.

Intuitively, HMN is very aggressive about deallocating regions: anything can
be deallocated at any point. This is possible if the context of an expression does
not depend on the deallocated data – they are semantically dead. If the context
requires data from the deallocated region then the region type system gives a
type error at the point of the data access. This deallocation strategy is different
from the strategy in the TT system that only allows deallocation of unobservable
regions.

Region operations ���������
	���������
	��
We start by defining the effect of region operations on the set of available re-
gions and on the region-annotated types of live values:

#��	 � (*�� �*� � �
� � � ��� # � �)(�� # � �

� �

# 	 � (*� #�/ �	 � (�� � � � �
� �0# / �� #
 � # / � � % � �0% � # � �)(�� # / � �

� �

# �	 frv ��� �� �*�
��(6� # � �
� � ,-�)� � % ��� # � � �

� �

#�/ �	 � (�� � � �)(%� # � �
� � # / � �$# � ��(�� # / � �

� ��# �� #�/
 �
Except for # �	 frv ��� � in the third rule, the side conditions on the rules corre-

spond to the preconditions listed for each region operation. The side condition
# �	 frv ��� � in the third rule is meant to handle the following situation:

� �&
 � � � � � ��� #

 � � � %
 # � � � ,-��� � % ��� #

� � � � � ��� #

 ��� � � %
 # � %
 #

This fragment should be rejected by the type system since the region created in
the body of the

� �+

is actually a fresh region different from the region used in

the binding to x. And indeed the side condition rejects the fragment. To type
� � � ��� #

 � � � %
 # � � � ,-����� % ��� #

 one would have to use a subtyping step (below),
which would give x the type �),+ ' � �'% � , making it inaccessible in the body of the� �+

expression.

Expressions ���������
	����������������
	����
Expressions with region operations

The rule for a prefixed region operation is natural:

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 45

� � � � + �
� + �
 � � � �

� �
� � � � � � �

� �
� � ��� � � � �

� � �� �*�
� + �
� + � � �

 � ��� � � � �

� � �

but the corresponding attempt to handle a postfix:

� �*� � + �
� + � � ��� �
� � �

� �
� � �*� � � �

� �
�
 � � � �

� � �� � � � + �
� + � �� �

�� � � � � �

� � � (WRONG!)

does not work! Because
 is executed after the evaluation of � it might affect
region variables that appear in � . For example, the rule above would allow
constructions such as

+ � � � � � � %
 # � � ,-�)� � % ��� #

�� � � ��� #

 �

Instead of this rule we have to thread the � through the typing of
 so the latter
can rewrite it appropriately. Similar cases also arise elsewhere in the system,
so we invent a general solution: An environment � can contain anonymous
entries, denoted by & � � , which hold the region-annotated types of intermedi-
ate results that are only needed during the evaluation of the current expres-
sion/operation. The intuition is that a � models the contents of the value stack
if the expression were to be evaluated on a stack machine. Thus we write

� � � � + �
� + � � ��� � � � � �

� �
� � � � � � �

� � �'& � � � �
 � � � �
� � �'&#� � �� � � � + �

� + � �� �

���� � � � �
� � �

This explains the unusual definition of � VarEnv � in Figuregrammar and the cor-
responding lookup operation.

Region subtyping

We define a partial order � on places by

#�� #���%
and its natural pointwise extensions to � ’s (not allowing � inside function
types) and � ’s. The subtyping rule

� � � � + �
� /+ � � ��� � � � � �

� �
�

� +�� ��/+ frv �	��/+ � = � (*� + � � �'& � � � � ��/� �'& � ��/ frv �	��/� �3&#� ��/ � = � (*� �� � � � + �
� + � � ��� / � � � �

� /�
�

now allows region variables inside region types to be changed to % . The effect
of this is that the new type does not allow the values it describes to be accessed.
On the other hand, if all instances of a region variable are changed to % the
variable is not free in the environment anymore; this allows it to be released.

Similarly, a place can start out as # and be changed to a region variable at a
later time when the desired region variable comes into existence. That allows
constructions such as

� �&
 � � ��
 %
 #4� � � life[i: .�. � o: # /] � .�. � :: � � %
 #
where life creates the region that contains the list elements after the ��
 has been
constructed. The type of � can start out as � �2.�.�.��'# � %) �'/�'# � and just before the
cons operation it can be reinterpreted as � � .�.�.��#�/ � %) � '1�'# � .

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 46

Variables and variable bindings

Variables and variable bindings are standard:

� �*�
� + �
� + � � ��� � � � �

� �
� � �*� � � �

� � �2��� � � �	/ ����/ � � � �
� � �2� � ��/ / �� � � � + �

� + �*� �+
 � � � � � � / ��� / � � � �
� � �

� � � � �
� � � ��� ��� � � � �

� �

where the environment lookup � ��� � ignores anonymous entries.

Operations on unboxed integers

With unboxed integers no memory management or regions are needed at all,
and all we have to do is mechanically pass around the environments. Note that
the two branches of a conditional must have the same net effects on the regions
and region types.

� � � � �
� � � �),+�' � � �

� �

� � � � + �
� + � � �),+ ' � � � �

� �
� � � � � � �

� �
� �	/ �),+�' � � � �

� � �� � � � + �
� + � ����� � � / � �),+�' � � � �

� � �

� � � � + �
� + � � �),+ ' � � � �

� �
�

� � � � � �
� �
� �	/���� � � � �

� � � � � � � � �
� �
� ��/ / � � � � � �

� � �� �*�
� + �
� + � � � � �� ��
�)� � � / / �)� ��� � / / ��� � � � �

� � �

Operations on boxed integers

Boxed integers are our main example of a primitive data type that must be
heap allocated. Each constructor expression specifies where its result should be
placed, and the rules check that all involved regions are live.

# 	 � (*�� �*� � �
� � �

� %
 # � �),+ ' � �'# � �
� �
� �

� �*�
� + �
� + � � � � � � � � �

� �
�

� � � � � �
� � �'& � � � � ��/�� �),+ ' � �'#�/ � � � � �

� � �'& � �),+�' � �# � �
#4�#�/ �#�/ / 	 � (*� �� � � � + �

� + � � ��� � � / � %
 # / / � �),+�' � �# / / � � � � �
� � �

In the latter rule, the side condition #4�'# / 	 � (*� � is, strictly speaking, redun-
dant, because the typing rules maintain the invariant that frv �	� � = �$, � (or,
respectively, frv ��� /��3&#� � � = ��, � /). We choose to leave them in for readability.
The condition #�/ / 	 � (*� � is essential.

Pairs

The rules for pairs are simple. Observe that none of the rules check that the
pair’s components are readable. It does no harm to put a dangling pointer into

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 47

a pair and later extract it. What matters is that the pointer does not dangle if
we try to read through it; this is independent of whether it has been stored in a
pair or not.

� � � � + �
� + � � ��� � � � � �

� �
� � � � � � �

� � �'& � � � � �	/�����/ � � � �
� � �3&#� � �

# 	 � (� �� �*�
� + �
� + � � � � � / � %
 # � � ��� � / �'# � � � � �

� � �

� �*� � + �
� + � � � �	��+ � � � �# � �
� � �

� �
� # 	 � (*� �� � � � + �

� + � # � � ��� � � � � �
� �
�

Lists

Lists are the prototypical example of a recursive data type. The rules contain no
surprises for readers who are familiar with the handling of lists in other region
systems. This does not mean, however, that lists are trivial. In a sense, recursive
types such as lists are only source of imprecision in the HMN region inference:
A program that does not use lists can always be annotated such that at runtime,
each region is used for exactly one allocation8.

� # � , frv � � � = � (�� �*� � �
� � ��
 %
 #-� �	� %) � '/�# � � � �

� �

� �*�
� + �
� + � � � � � � � � �

� �
�

� � � � � �
� � �3&#� � � � �	/ � �	� %) � '1�# � � � � �

� � �'& � � �
# 	 � (*� �� �*�
� + �

� + � � :: � / %
 #-� �	� %) �'/�'# � � � � �
� � �

� � � � + �
� + � � � �	� %) �' �# � � � � �

� �
� # 	 � (*� �� � � � � �

� �
� � / � � � � � � �

� � �� �*�
� � �
� � � ��� ��� ��/ � �	� %) � '1�# � � ��/ / � � � � � � �

� � � ��� � /�� ��/ � ��/ / �� �*�
� + �
� + � ��% ��� � / � �
 � � / / , � :: � / � � / / ��� � �
� � �

� � �

Function calls

The HMN model for function calls is illustrated by the syntax for function types:

� �#4. ��� �# / . � / �"! ��� �# / / . � / / �
where �# are the constant region parameters, �#�/ are the input region parameters,
��/ is the argument type, �#�/ / are the output region parameters, and � / / is the
result type. We do not allow function types to have free region variables, so
there are implicit well-formedness conditions

frv � � / � = � � # /� � � � , � � # � � � � and frv �	� / / � = � � # / /� � � � , � � # � � � �
The intuition behind the existential quantifiers comes from dependent types:

A region-annotated type can be viewed as depending on the region variables in

8This property does not hold for the TT system. It depends on being able to use region renamings
to reconcile the region typing of
�� ��� and ��� ��� branches.

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 48

it, and so the input (or output) to the function consists of an existential pair
with some regions and a value whose type depends on the regions.

The peculiar function arrow “
!

” comes from linear logic and supports the
intuition that the input regions and argument value disappear from the caller’s
context in the call; that is, unless the caller explicitly takes steps to save copies
of them.

Finally, the universal quantification of the constant region parameters is bor-
rowed from the TT type system. The constant regions may be present in the
argument type as well as in the result type.

The entire notation supports a type-theoretic intuition about who selects the
bindings of which region variables: The # � ’s are selected by the caller because
they are universally quantified. The #�/ /� ’s are selected by the called function
because they are existentially quantified. The #�/� ’s are also existentially quanti-
fied, but the quantifier is in a contravariant position, so they are selected by the
caller.

The purpose of constant region parameters is to allow the caller to control
the bindings of some of the region variables in the result type. Without constant
region parameters we would not be able to type calls such as

���&
 � � � � � :: ��
 � � � � � � :: �
The list construction requires that the return value from

�
must live in the same

region as the previously-constructed � . If we did not have constant region pa-
rameters,

�
would need to have a type like

���8.),+�' �"! � � #4. �),+ ' � �'# � �
which would not give the caller any guarantee that the region produced by the
function were identical to the region where � is allocated. Even if we passed # !
into the function

� � # ! .),+ ' � ! ��� # ! . �),+ ' � �'# ! � �
it would be allowed to release the # ! input and create a new region to use as
output, so we could not even be sure that � ’s value still existed after the call. (To
prevent this situation, the typing rule below explicitly forbids any of the actual
input regions to occur in the caller’s type environment).

With constant region parameters, however, we can give
�

the type

� # ! . ���8.),+�' �"! ���8. �),+ ' � �'# ! � �
which allows the caller to specify where the results should be allocated.

The rule for function calls is the most complex rule in the region type system,
and we therefore introduce it with an example. Consider the function

�
defined

by �2� �
�
[i: # � � o: #��] � � ���

where
�

expects a boxed integer in # � and returns a boxed integer in #�� (
�

may
release # � and create #�� , we do not know). We capture this with the function
type: � ��� . ��� # � . �),+ ' � �'# � � � ! � � #��*. �),+ ' � �'#�� � �

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 49

To type �
[i: # / � o: # / /] � � � � %
 # / �

we first type the subexpressions using the typing rules above and get

� �*�
�)(1#�/ �
� � � � � �
�)(#�/ �

� �� �*�
�)(1#�/ �
� � � � � %
 #�/ � �),+�' � �#�/ � �
��(#�/ �

� �

We next have to match the actual region parameters # / and #�/ / with the formal
parameters # � and #�� , resulting in substitutions

� / and
� / / . Then we match

argument and result:
� / �),+�' � �#�/ � and

� / / �),+�' � �#�/ / � with �),+ ' � �# � � and �),+�' � �# � � .
The actual input parameter #�/ loses its binding in the call, so we remove it from�)(1# / ; conversely # / / gets bound, and we add that to get the final � . We have
then derived

� � � �)(1# / �
� � �

[i: # / � o: # / /] � � � � %
 # / � � �),+ ' � �# / / � � �)(# / / �
� �

In the general case with multiple region parameters, constant regions, and
potential region operations in the operand we get the following rule.

� � � � + �
� + � � ��� � � � � �

� �
�

� �*� � � �
� � �'& � � � � �	/ ����/ � � � �

� � �3&#� � �
� � � � � � � ��� ��/ � � [�] � � � � � / / �� �*� � + �

� + � � [�] � / ��� / / � � � �
� � �

where we have used an auxiliary relation, described below, to handle the match-
ing of actual parameters to formal parameters.

Parameter matching 	���� ��� � ��� � �
	�� [] � � � ��� � � ��	
The first rule below does the actual matching of parameters via substitutions

�
,� / , and

� / / . The remaining rules allow the manipulation of the current sets of
region variables to match the shape of the function type. The third rule ensures
that the bindings in the type environment does not contain references to the
regions passed to the function.

� � � �#4. ��� �#�/�. ��/ �"! ��� �#�/ /�. ��/ / �
[�] � [c:

� � �# � � i: � / � �#�/ � � o:
� / / � �#�/ / �]��� � ��� � # � � � � � � /*� � / ��� � #�/� � � � � � / /*� � / / ��� � #�/ /� � � � �

� � � � � @ � / � � � / � � �
� � � @ � / / � �	��/ / �
�
��� �F� � / � � � � � [�] � � / / � � � �

�
� � �F� � / � ��/ � � [�] � � / / � � / / �

�
��� (%� # � �F� � / � � / � � [�] � � / / � � / / �

�
� � � � � / � ��/ � � [�] � � / / � � / / � frv �	� � = �

� ��� � � � / � � / � � [�] � � / / � � / / �
� � � (� # � �F� � / � ��/ � � [�] � � / / � ��/ / �

� ��� � � � / (�� # � � � / � � [�] � � / / (�� # � � � / / �

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 50

Function definitions 	�������� � �
Typing a function definition is simply a matter of wrapping up the typing judg-
ment for the body as a function type:

� � # � � � � �*��� � #�/� � � � �
�/�2�	� ��/ � � ����/ /�� � � #�/ /� � � � �

��/ / /�� ��� ��/ / / � ���/�����)# � ��$#�/�
��� �2� �
�

[c: �# � i: �# / � o: �# / /] � � � � � ��� �#4. ��� �# / . � / �"! ��� �# / / . � / / �

Declaration sequences 	
�
	�� 	
Typing declarations is simply a matter of bookkeeping:

��� � �
�
� � � ��/ ��� � � � ���

��� � � � � / �2��� �

Programs ��
The rule for programs sets up some simple boundary conditions:

�
� � � � G �*�4G �
� � � ��� �4G �

��/ �
� � �+
 � � � �

Note that we require that all regions be deallocated when the program is fin-
ished.

2.4.4 Non-optimality of region annotations

It would be nice to be able to show that, contrary to the Kit and AFL systems,

For a given FUN program, there is a set of region annotations that is op-
timal in the sense that no other well-typed annotations for that program
will deallocate any value sooner than the optimal one.

Unfortunately this is not true, with essentially the same counterexample as we
gave for the Kit system in Section 2.2.3

� �&
 ����� �
� � � �&
�� � � � � � � � � � � � � �7� ��
�)� � � ��� ��� � � �

��� �
����� ? � � ���&
 ������� � � �

� ; �7� � �1� � �	��
 � � � use ��
� � � �&
 � � # + � ��� � � � � � space-critical section that uses ���

? must be able to call
�

in such a way that the components of the pair that
�

re-
turns are guaranteed to be in the same region. Ignoring (for brevity) the region
where the pair containing

� �
and � � is allocated, there are two fundamentally

different ways to region-annotate
�

which allow this:

a.
� � � #4+(�'# � . ��� .),+�' �"! � � . �),+�' � �#4+ � � �),+ ' � �'# � � ������ �

[c: # + �# �] � � � �+
 � � � � � %
 # + � � � %
 # � �� � � � �7� ��
�)� � �
�)� ��� �

[c: # + �'# �] � �
� � �

CHAPTER 2. PREVIOUS APPROACHES TO REGION INFERENCE 51

b.
� � � . ��� .),+�' �"! � � # � . �),+ ' � �'# � � � �),+�' � �# � � ������ �

[o: # �] � � � �+
 � � � � � ��� # �

 � � � %
 # � � � � %
 # � �
� � � � �7� �(
�)� � �
�)� ��� � � ,-��� � % ��� # �

 � [o: # �] � �

��� �
Each of these have different advantages. Version (a) contains a space leak in

�
itself if � is large, because the

� �
’s and � � ’s allocated by each iteration are never

deallocated. In version (b), the region containing
���

and � � is released before
the recursive call.

However, from the main program’s point of view, version (a) is desirable, be-
cause then the two components of the pair can be allocated in different regions,
and the second one deallocated before the space-critical section. With version
(b), the main program must keep both elements around until � can be safely
deallocated.

The net result of this is that neither typing (a) nor (b) is clearly superior to
the other.

One way to resolve this dilemma would be to replicate the definition of
�

such that call sites requiring different region separations of the return value call
different implementations of

�
. Then the call from ? could use typing (b) while

the main program would call a different implementation of
�

with typing

c.
� � � . ��� .),+�' �"! � � # + �# � . �),+�' � �# + � � �),+ ' � �'# � � �

This strategy would be sound and terminating even in the presence of recur-
sion, because there is only a finite number of fundamentally different region
annotations of each return type. However, the number of different versions of
each function might grow exponentially with the size of the return type, so the
strategy is not necessarily optimal in a practical sense.

Chapter 3

The universal host language

This chapter presents the “universal host language” UHL, which together with
its associated agent programming language forms the foundation of my lan-
guage-independent (or perhaps rather “language-portable”) theory of region
inference.

The role of UHL in the overall theory was described in Section 1.4.2. Recall
that UHL is supposed to be “the union of all sensible intermediate languages
with everything that is irrelevant to memory management abstracted away”,
and that UHL programs are called “uniform mutators”.

The chapter has four parts:

� In Section 3.1 we define a suitable universal host language and its ideal
semantics.

� Section 3.2 introduces an agent programming language for UHL and de-
fines its semantics formally.

� In Section 3.3 we define a criterion for an agent to be “correct”, region
soundness, and develop some general techniques for reasoning about it.

� Section 3.4 introduces the concept of “annotatable edges”, which are a
way for the host implementation to restrict the shape of the agent pro-
duced by the region inference.

In later chapters we will investigate the problem of finding a sound agent
for a particular uniform mutator (which will in general depend on knowledge
of the particular translation that produced the uniform mutator from a mutator
written in a specific host language), and give algorithms for optimizing an agent
such that it uses the region manager’s operations more efficiently.

In Section 3.5 I will discuss a few possible further extensions to our formalism
that I have not yet investigated in detail.

3.1 Uniform mutators without region annotations

The fundamental design choice is that at its heart the universal host language
will be a flowchart language. This choice is responsible for the general appli-
cability of our theory; the rest of this section really just develops the details
necessary to make this idea work.

52

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 53

The flowchart idea allows us to model the vast majority of control constructs
found in actual programming languages directly in a uniform mutator. One
exception that we cannot model is lazy or call-by-name evaluation, where the
control flow is notoriously difficult to reason about and in any case usually has
little direct relation to the syntactic structure of the program. Another is call/cc
and similarly strong control operators which I simply don’t know how to reason
about in sufficient detail to do region-based memory management.

On the other hand, we shall see that restricted control features such as excep-
tions and backtracking can be integrated with a flowchart-based universal host
language.

3.1.1 A simple example

Figure 3.1 shows a flowchart for a program that computes primes using the
“Sieve of Eratosthenes” algorithm that is presented as a Standard ML-ish pro-
gram in the lower half of the figure. Procedures are going to be rather complex
in UHL, so to give a soft introduction this example goes to some length to avoid
them. Them main problem is that the inner loop in the ML formulation is not
tail recursive. Therefore, the flowchart represents “nil” as a cons cell with the
distinguished value

�
in its first cell. The inner loop can then construct its return

list from front to back by allocating a new “nil” cell and destructively overwrit-
ing the old one (pointed to by the � variable) whenever it needs to append a
number to the list.

The flowchart should be self-explaining, except for the nodes that are con-
cerned with the program’s use of the heap. They fall in three classes:

� � ����� +	� ���8� � � – Allocate, somehow, two consecutive cells of heap memory,
initialize them with the values of � and

�
, and then assign the address of

the first cell to
�
. (The other three

��� +�� nodes in the program also follow
this pattern, but initialize the newly allocated cells with zeroes instead of
variable values).

���8�
	�� � ��� � 	�
 – Read the values in heap cells 	 and 	 �
, and assign them to

� and 	 , respectively. The letter
�

is part of the notation; it is meant to
mnemonically symbolize the heap.

� � �
 � � ���8��� � – Destructively write the current values of � and � into heap cells
 and �

.

These three kinds of nodes will be a uniform mutator’s only way to access
the heap. They will all be handled specially in our formal treatment of uniform
mutators. This is natural in the case of allocations (which is where the memory
manager needs to do its work to locate a suitable block of unused heap), but we
also handle reads and writes specially so that our formal semantics for uniform
mutators can trap access attempts outside the currently allocated address space.
This is what will allow us to prove formal statements about memory safety later.

Note that we distinguish between input/output, which are communication
with the user, or some other entity external to the program, and reads/writes,
which move data between the heap and the mutator’s local variables.

The address of heap cells are just natural numbers. They can be arbitrarily
large; Box 3.1 discusses this decision in detail.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 54

input �
START � � ����� +	�

� � � � � � � � �
� �

���8��	 � � �� � �
 ��� ���
YesNo

� � ����� +	�
� �8� � �

output � � � ���
Yes

No
� � ���Yes

No

& +	� � 9 � �
No

Yes

 � � �

� � ����� +��
� � � � � � � ��� � �8��	 � � �� � 	�

� � �
 � �
� �8�
��� � � ����� +	�

� � � � �
Informal guide to variable use:
� is the prime whose multiples are being eliminated currently.
� is a candidate for elimination.
	 iterates through the old list of candidates.�

points to the front of the new list of candidates.
� points to the end of the new list as it is being built.
 temporarily stores the old value of � .

� � � ��� � ��
 � � � � �
�
 � � � �� �
 ��� � � ��� � ��
 � � � � ��� � � � � �
 � � ��� �

� � � ���
� � � � � � � � ��
 � ��

�
���
� � � � � � � � � 	
 �
�
�
� �

�
��� � � � � � � �

��� � � � � � � � � � � � � ��
 � � � �
� � � � � � � � � � � � � 	
 � � ����� � ��� � � � � ������ � � � � � ��� ��� � 	

�
�
��� � �
� � � � � � ����� 	�

�
� ��� � � �

� �
� � �

� 	
� �

���
� � ��� � � �
 � � ��

�
� � � � � � � �
�
�
� ���

���
�
��
 � � � � � � � ��
�

�
�����

���
� � � � �

� �

Figure 3.1: A flowchart for the Sieve of Eratosthenes. This notation is not yet ex-
actly the Universal Host Language; compare Figure 3.2. To ease understanding,
the lower part of the figure shows the underlying algorithm in Standard ML no-
tation. (Note, however, that the flowchart was constructed by hand rather than
systematically extracted from the ML program).

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 55

Box 3.1—Rationale for using an unbounded address space

In our formal development we allow ar-
bitrary large numbers as heap addresses.
This amounts to assuming that the avail-
able address space is infinitely large,
such that we do not need to worry about
running out of memory. Such a de-
cision may seem to invalidate the en-
tire point of discussing memory manage-
ment: If memory is assumed to be infi-
nite, then why bother freeing heap cells
ever? However, the assumption actually
serves to strengthen our formal results.
It allows us to prove simple statements
such as “If program A does something,
then program B does the same thing”.
If we were to account for running out
of memory, we would often need to say
instead, “If program A does something,
then program B either does the same or
runs out of memory”, which is weaker
because it is trivially satisfied by a B that
always runs out of memory.

The assumption of infinite memory
does not mean that memory manage-
ment has become completely pointless.
It is still possible to express that pro-
gram A can run without ever needing
addresses larger than some � , whereas
program B, which has the same I/O be-
havior, may need many more addresses.
In fact, it is crucial that we can say that
B does have the same extensional be-
havior even if our semantic model of it
will need more addresses than the ma-
chine we intend to run our programs on
has. Otherwise we would have learned
nothing interesting about the relation
between A and B.

A consequence of using natural num-
bers as addresses is that we have to pre-
tend that a machine word can store an
arbitrary natural number. This is, of
course, as untrue of real machines as the
assumption that they have infinite mem-
ory. However, it seems to be the most
convenient way to model program exe-
cution at a low level without also mod-
eling running out of memory.

Another, minor, consequence of using
natural numbers for heap addresses is
that a uniform mutator knows that ad-
dresses are just numbers. It may do
strange arithmetic tricks on them, and if
it can manage to get back the original
number by further calculations, it may
be justified in assuming that the recov-
ered number is still good for heap ac-
cesses. This situation will not arise for
high-level host languages, but if a lan-
guage such as C were mapped to the uni-
versal host language, typecasts between
integers and pointers would amount to
such trickery. Much of our work here
still be useful in this setting, though we
do not present any concrete method for
arriving at a sound agent in this situation
from scratch.

For example, Reynolds [2002]’s “sepa-
ration logic” can prove correct programs
with arithmetic pointer tricks such as
the XOR representation of doubly linked
lists. One might imagine that this work
could eventually be combined with re-
gions, in which case it is important for
the basic model to be able to handle it.

Notation 3.1. For clarity, we will often use � as a synonym for � in con-
texts where it is implied that it is to be interpreted as the address space of
the heap. The variable letter � will in general range over numbers interpreted
as addresses.

3.1.2 The procedure-less fragment of UHL

In order to ease some of the formal development that is to follow, we will require
uniform mutators to have a structure that is a little more fine-grained than the
informal one shown in the previous section.

1. For uniformity, the values used to initialize newly-allocated heap cells

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 56

must always be given as variables rather than arbitrary expressions. In
our example, nodes like “

� � � ��� +	� � � � � � ” will not be allowed, because the
zeros are constants rather than variable. Such constructions must be rep-
resented using a pair of throwaway variables that are explicitly initialized
to zero before the allocation takes place.

2. Heap read and write operations (but not allocation) must take place one
cell at a time. That will simplify our formal treatment of memory errors,
because we will not have to handle the case that a single heap operation
refers to multiple cells, only some of which are allocated at the moment.

We define single-cell reads and writes such that the variable that holds
the heap address will be automatically increased by one after the heap
operation has taken place. This is convenient for reading or writing a
sequence of cells; and certain properties of region-based execution (The-
orem 3.46) will be easier to establish if we can assume that the uniform
mutator uses this auto-increment as its only form of pointer arithmetic.

As a reminder of this auto-increment, the formal syntax for reads and
writes will be “ � � � � � � � �
 ” and “

� � � � �
 � � � ”. The “ � � ” notation, of
course, comes from C.

3. Heap allocations and writes consume the variable(s) that get written to
the heap. If the uniform mutator needs the value later, it must save a
copy of it itself. This decision is essentially arbitrary, but it will make the
treatment of ordinary and region variables more similar.

4. No operation is allowed to give a new value to a variable that is already
bound. A variable can be explicitly unbound, after which it can be as-
signed to again. This is also for consistency with the treatment of region
variables. (And it will slightly simplify our handling of procedures, too).

The uniform mutator corresponding to Figure 3.1 is shown on Figure 3.2.
The two-dimensional notation in the figure is convenient for giving examples,
and for thinking about the language, but it is not well suited to mathematical
treatment. Let us therefore define the following formal abstract syntax for the
procedure-less fragment of UHL (recall the � notation from Section 1.6.3):

Variable names: � � � ��� 9��:9�� 9������
Control state names: ��� � � �
	F9 ��� 9 ��
F9 �����
Jumps: ����-� � ��� � ' � �
Data states: � 	 � fin; �
I/O events: � 	 ��� � ,��
Computation steps: ����� � � � +��; � �
Sets of steps: ��� 	 ��� ��� �
Mutator operations: ����� � � �7� � � ��� +	� � � � �/.0./.�� � � � ������ �! � � �

9 � � � ��� � � � �
 �"����9 � � � � �
 � � � � �"����9 &#+ �9$#) � � ��� + �"���� +&% ����� % ��� � �"���� � �! � � �
Uniform mutators: ' 	 � fin; �(�)�

For now, we will only give an informal discussion of how this syntax works; its
formal semantics will not be separately defined but can be extracted from the

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 57

input �
���

�
� � �

� � 	 � �
�

� � ����� +��
� � � � � 	��

���

� � � �
� ����

	 � �� � � � �

���

� � �� � � � �

��	

� � ���
Yes

No

��
 � � � ��� +	�
� � � � � �

���

unbind
�

��

unbind
	 � ���8� � �
� unbind � � � � � �

output � � � ���
Yes

No
� � ���Yes

No 	 � � 	 �

�
� � �

� unbind
�8�
	 unbind 	

����

unbind 	 �

� 	 � �
� & +	�

�����
	 � � �� � 	 � �

�����

�:9�� �
No

Yes

 � � �

� � ����� +��
� � ��� � 	 �

���

� � � �
���

� � �� � 	 � �

�����

unbind � unbind �

� � � �

� � � �

�����

unbind
����

�
� � �

�

� � � �

� � �

����	

� � � � �
����� � � ����� +��

� � � � � 	��
�����

� 	 � �
�

Figure 3.2: The Sieve of Eratosthenes as a uniform mutator. Compare Figure 3.1.

semantics for full UHL (Section 3.1.4) by ignoring the IXCALL and IXRETURN rules
and letting the stack be empty.

Execution of the uniform mutator implicitly starts at the control state �
	 . We
will use the terms “control state” and “node” interchangeably. (“Node” is shorter
and perhaps more intuitive, but it would be confusing to use variable letter �
for node names, so we keep “control state” around to justify using � instead).

In the syntax, we recognize some of the nodes in Figure 3.2 – they are the
ones that are drawn with square frames. But what about those with rounded
frames? They are all handled by the “ #) � � ” case, which absorbs everything that
does not have to do with the heap. It works as follows:

Before the #) � � node is about to be executed, some variables will already
be bound to values. These bindings are recorded in a data state � . Now, to
execute the #) � � node, choose a step ��� � ��+ �; � � from one of the � � in the
) � � construct, such that ��� � + . If no ��� contains such a step, the program

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 58

gets stuck (this intuitively models a run-time error). If there is more than one
step that matches � , choose among them nondeterministically. Then record the
I/O event � and continue by executing with data state � � and the control state
given by the ���� corresponding to the ��� where the step was found.

Wait – what is an “I/O event”? From the viewpoint of UHL, it is just a tag
that we make no attempt to interpret, except for the special event � which
marks time passing without any I/O. Eventually, we will model the behavior of
a uniform mutator as the set of sequences of I/O events that are possible. (In
general more than one sequence may be possible because of nondeterminism).

The Eratosthenes example would use things like “in.
� �

” and “out.
� � ” as I/O

events. At the UHL level we do not make any formal distinction between input
and output, but one may choose to interpret a nondeterministic choice between
different “in. � ” events as an actual input action.

The completely formal version of our example program would be

' � �
	 � � #) � � � in � 3; ��� � � �3 � � �� �
	 � �

� � � ' � � �
' � � � � � � � ����� +�� � � �*� � 	�� � � � ' � ��

' � ��
 � � #) � � � ���3�� � ; ���
	��3 3�� �� �

	 �-� �� � ��� 	 � �
� � � ' � ��

% � ���3�� � ; �
� �� �

	 �A� � �
� � � 	 � �

� � � ' � ���
' � �� � � � � ����� +�� � � � � � ��� � � ' � ���
' � ��� � � #) � � � ���3�� � ; � �3��C+�� �� �

	 �A� � 	 � �
� � � ' � ��

' � ��� � � � � ��� � � � �
 � � � ' � ���
' � ��� � � 	 � ��� � � � �
 � � � ' � ���
' � ��� � � #) � � � �����

��� 3�� out � 3; ����� � � �3�� � � �� �
	 �A� � �� � � ����� / 	 � �

� � � ' � ��
% � ���!�

� � � � � ; �� ����� / 	 � �
� � � ' � � �"

�����
which is well suited for mathematical treatment but quite unreadable in large
doses. We shall not attempt to write down such an explicit flowchart mapping
again; for giving examples, a visual notation such as the one in Figure 3.2 will
usually suffice.

Observe in the example that each � � in the “ #) � � .�.�. ” operation is generally
an infinite set. It is important to realize that it is the infinite set itself, rather
than some syntactic representation of it, that is part of the uniform mutator.
This is sensible only because uniform mutators never need to exist in full on
the computer – remember that actual implementations of our techniques will
always be done after having mapped the general theory backwards along the
translation from a real host language.

In this way, the ��� has some of the flavor of denotational semantics: It is an
unwieldy mathematical object that represents the abstract meaning of part of
the program. And as in denotational semantics, is not inherent in our definition
that it represents the meaning of an actual possible computation; even a “wild”
set such as

' � ����
 � � #) � � � � 3 � ; �� Turing machine number � halts
�
� � � ' � ���#

% � � 3 � ; �� Turing machine number � diverges
�
� � � ' � ���$�

would qualify as a well-formed mutator operation. Its appearance in a uniform
mutator would constitute a promise from the person who constructed it that

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 59

if only we give him suitable region annotations, he can write machine code
that solves the halting problem without needing to use the heap. He may have
difficulty keeping that promise, but as long as we are concerned with region
inference, that is not our problem.

A final observation is that a single #) � � state in the formal flowchart can cor-
respond to several of the informal primitive nodes in Figure 3.2. For example,
state �
	 in the example simultaneously does the work of the “input � ”, “

�
� � �

�
”,

and “
� 	 � �

�
” nodes in the figure. In general, a #) � � state can represent an entire

single-entry subgraph of the informal flowchart, as long as it consists entirely
of “rounded” boxes and does not contain a path between two I/O nodes. On
Figure 3.2, the edges between nodes that could be combined into a single #) � �
are shown as dotted.

3.1.3 Subroutines

Subroutines of some kind or another are a pervasive phenomenon in all pro-
gramming paradigms, save the most formal models of computability such as
Turing machines. They represent the most primitive form of code genericity;
very little serious programming can be done without them. Like every kind
of genericity, they are likely to cause problems for program analyses in gen-
eral; indeed the main complexity in many schemes for program analysis lies
in preventing the model of one call context from “tainting” the model of an-
other because both must match the model of the body of the subroutine. One
widely-known example is Hindley–Milner type polymorphism, which gives an
acceptable solution for this problem in the case of static type checking. It has
provided a conceptual model for solving many other instances of the problem,
including the original Tofte–Talpin approach to region inference.

Given the importance of good handling of subroutines, we need to model the
call–return discipline in our universal host language (see Box 3.2 for discus-
sion). The natural way to do this would be to define that a procedure should be
an isolated single-entry, single-exit part of the uniform mutator’s flowchart. We
shall, however, go a little further and allow multiple entries and multiple exits.

Multiple exits is the feature that is most remarkable. The flowchart for a pro-
cedure may have more than one return state; a flowchart node representing a
call must have an outgoing edge for each of the called procedure’s returns. The
primary envisaged use of multiple exits is for modeling exceptions. A procedure
will have one return state signifying a normal exit and another signifying throw-
ing an exception. The call site’s outgoing edge for an exception throw would
normally go directly to its own exceptional return, except if the call is lexically
within a handler context.

It is well known that exceptions can also be modeled by having a single exit
and returning a tagged value, but that model would make it more complicated
to reason about an agent whose internal state satisfies a different invariant after
an exceptional exit than it does after a normal exit.

Multiple entries to a procedure offer less immediate benefits, but also require
almost no explicit support in the formal development. In essence, one could
say that we allow them “because we can”. We envisage two applications for
them. One is to model partial static knowledge about the range of dynamic
dispatch, as we shall see in Section 6.2.2. The other is to allow moving more
freely between loops and tail recursion, as discussed in Section 7.3.8.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 60

Box 3.2—An alternative to modeling returns directly

As obvious as the choice to model the
call–return discipline directly may seem,
it is not the only one possible. Subrou-
tines could be reduced to pure flowchart
programming by CPS-transforming the
program and then converting the result-
ing indirect calls to continuation func-
tions to switches on first-order tags. Af-
terwards all calls will be tail calls to stat-
ically known subroutines and can be re-
placed with ordinary jumps.

One argument for this approach
would be that what machine language
implements is actually “pure flowchart
programming”, if we ignore the possibil-
ity of errant indirect jumps to non-code.
In this light the CPS strategy is just a
description of how compilation of a
language with subroutines traditionally
works. Therefore low-level type systems
such as Typed Assembly Language
[Morrisett et al. 1998, 1999] usually
have a strong CPS flavor.

Region-based memory management
has been carried at least part way
through this program; Crary, Mor-
risett, and Walker [Crary et al. 1999;
Walker et al. 2000] have constructed
a region-based “calculus of capabilities”
for programs in continuation-passing
style, with the goal of allowing Tofte–
Talpin style agents to be CPS trans-
formed along with their mutator and
still be proved safe by a region type
system. The resulting model has re-
markable expressive power and actually

seems to be stronger than the region
type systems we will use to guide infer-
ence algorithms in the next chapter.

However, the continuation-based ap-
proach can also be seen as trading the
problem of return to a not-statically-
known call site away for the problem
of calling a not-statically-known func-
tion (that is, the continuation). My in-
tuitive experience is that the latter prob-
lem is intrinsically harder than the for-
mer. This feeling, formed during sev-
eral years of working with region infer-
ence for first-order host languages and
trying to generalize the lessons learned
to higher-order ones, may or may not be
correct, but it suggests that it would be
valuable for a generic model of region-
based memory management to handle
the call–return discipline without neces-
sarily adding in the burden of dynamic
dispatch.

Furthermore, for all the power of the
capability calculus, it is very technical
and not easily accessible for a nonspe-
cialist programmer. This is undesirable
because strong practical experience in-
dicates that it is important for the pro-
grammer of the mutator to be able to
understand how the agent works, even
if he does not need to understand the
region inference process itself. However,
the complexity of the capability calcu-
lus seems to be a natural consequence
of working with a CPS language.

With multiple entries, one does not call a procedure per se; instead one just
calls an entry node. The possible returns from the call are those return states
that happen to be reachable from the specified entry node. Thus, we do not
need to formally partition the program into individual procedures with a body
flowchart each. Instead we have one big flowchart containing all the procedures
as (usually) mutually unconnected components. This means that we can also
handle, without changes to the formal model, completely unstructured mazes of
GOSUB/GOTO/RETURN as found in bad Basic code. As direct jumps between
procedure bodies are added, the precision of our region inference techniques
may deteriorate, but it should do so with reasonable grace.

We can use the “ &#+ � ” mutator operation for returns from procedures, so the
only new syntax we need to add to extend the universal host language with

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 61

�����
��	��

��� � �
procedure executes &#+ �

����

��� � + �
control passes
back to caller

� ��� � � �� �
 � � I � 	 � � � ' � ��� J
��
 % % ����� � �� � �
'�.&#+ � ��� �

���

��� ������

control passes
to procedure

saved
value
of � : �

�����
��	

��� � 	� + �

Figure 3.3: Schematic flow of parameters and return value in a procedure call. The� annotations on each node shows the data state when the node begins execution.

procedures is a call operation. On the other hand, generality requires it to be
somewhat complex:

(Mutator) argument lists: ��� 	 � fin
inj

; �
(Mutator) return maps:

� ��� 	 � fin; ��� � ����
Mutator operations: �(��� � � � �����9 ��
 % % � �!��� � ��'�.&#+ � ���

To pass parameters, the caller will donate some of its local variables to the
callee; they disappear from the caller’s context and instead make up the callee’s
initial data state. Similarly, the procedure can return results by leaving one or
more variables bound when it reaches the & +	� state. (Thus our model naturally
supports returning multiple values).

However, the caller and callee need not use the same names for the local
variables that are used to pass data back and forth. (The caller could arrange to
use the callee’s names by surrounding its

��
 % % state with #) � � states that rename
variables appropriately, but it would be inconvenient to require that this should
always be the case.) A (mutator) argument list ��� is a map that describes the
relation between caller-names and callee-names. We will stick to the convention
that the domain of the map is the callee’s names, and the image of the map is
the caller’s.

Those of the caller’s variables that are not in the image of ��� become tem-
porarily unavailable while the procedure executes, but appear again when it
returns.

As noted, the called procedure can have multiple exits; the
��
 % % operation

includes a return map that provides a separate return specification
I ���#� ���� J

for each &#+ � state that is reachable from the the specified entry point. This pair
specifies how to rename the return values, and where to continue execution
afterwards.

Figure 3.3 shows an example of how all this fits together for a procedure with
a single parameter and a single return value.

The reader may be worried that the syntax does not allow indirect calls where
the target is not statically known. It turns out that this can be worked around,
but we will defer a closer exploration of the options until we define the transla-
tion from ML to UHL in Section 4.1.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 62

unbind �
� ��� �

� �� � � � �

� ��	

� � �� � � � �

�����

� � � +),% � � � +),%

� � �
� � � � ��� +	�

���8� � �
����

� � +),% �
Yes

�����

No

unbind � unbind
�

� ��

unbind
� compare

� with �

��� �
�����

� � �

� � ����� +	�
� �8� � �

�����

��
 % %���� � 	�
�

�
�

'�.&#+ � ��� ���

�����

� � �� � � � �

�����

�
� ����� +��
���8� � �

��

unbind
�8���8� �8� � � � �� unbind

�8� �
��
��

 � ����� +��
� �8����

��
��

� � �� � � � �

�����

input �
or “end”

got
�

got “end”

���

�
� � +#),%

���

&#+ �
��
�� ��
 % %���� � 	�
�

�
�

'�.&#+ � ���
 �

��
 �

� � +#),% �
Yes

���

No

 � � +),% & +	�
��
�

unbind
�

��
 % %���� � 	�
	�

�
�

'�.&#+ � ��� �

���

 � +),% �
No

���

Yes

� � �� � � �

��	

 � � �� � � �

���

output �
��

& +	�
���

unbind unbind
 � � � � unbind

*�
�
� ��� � � � ��
�
 �� I

 � � � ' � �"� J � ��
 � �� I � � � ' � �� J �
� ��� ��� � ����
�
 �� I

 � � � ' � ��
 	 J � ��
 � �� I � � � ' � ��
$ J �
� ���
 � � � ��
�
 �� I

 � � � ' � ��
�
 J � ��
 � �� I � � � ' � ��
 � J �
Informal guide to variable use:
� is the pivot element.
� is an element of the list.�

and � iterate trough the unsorted list.�
is the list of elements smaller than � .�
is the list of elements larger than � .

 is an accumulating parameter that eventually becomes the sorted list.

Figure 3.4: Quicksort as a uniform mutator.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 63

Figure 3.4 shows everyone’s favorite recursive algorithm Quicksort as a uniform
mutator. This variant is semi-imperative; it treats heap data as immutable and
uses lists instead of an array (because we don’t model arrays and the memory
management for array sorting is uninteresting anyway) but modifies the values
of its local variables freely and uses an explicit loop rather than tail recursion
to split its input list. In contrast to the Eratosthenes example, the quicksort
program represents the empty list more conventionally, as a special value “ +),% ”
that is distinct from all pointers.

As an example of exception handling in our model, the sorting routine will
throw an exception immediately if it discovers that the same number appears
more than once in the list. �
�
 is the normal return, which passes the sorted
list by the name . A return from �
 � signifies that an exception is thrown; no
value is returned in that case.

Notice that if the call at � � � results in an exception, the caller cannot pass
the exception up the recursion stack immediately; it first has to unbind � and

�
,

which were saved during the call. This corresponds to deallocating the caller’s
stack frame, which in a real implementation typically happens automatically as
part of the exception-throwing mechanism. However, we still want to model this
unbinding – for example, we might also want to deallocate the heap memory
where the

�
list is allocated.

3.1.4 Ideal execution of uniform mutators

We now give a semantics for uniform mutators as they are ideally run without
any region annotations, indeed without any memory reuse at all. This corre-
sponds to what we can assume is the programmer’s intended behavior of the
program, without any thought of memory use.

The semantics describes an abstract machine that works in a series of non-
deterministic transitions between configurations. The abstract machine is in-
herently nondeterministic – even if the uniform mutator contains no explicit
nondeterminism, it is critical for our simulation results that allocations may re-
turn any choice of free heap cells (as opposed to, say, the one with the lowest
address or the “next in line”).

In addition to the various elements of UHL syntax that we have already de-
fined, we use the following semantic objects:

Heaps:
� 	 � fin; �

Stacks: � � � � � � ��� � � � � ��� 9 �

Configurations: � � � � � � � ��� � ��� �9�� ' �	�9�
� � + �
Behaviors: � � � � � +(�/.0./.���� � �! � � �

9$� +(�/.0./.���� ����� �! � � �
9$� +(�/.0./.���� ����� �! � � �

We will often abbreviate a sequence of events � +(� ��������� � by �� . The empty se-
quence (� �

) is written � . The pseudo-events � and � , which can only appear
at the end of a behavior, denote ordinary program termination and divergence,
respectively.

Definition 3.2. Define the relation � �� ; � / by the following rules:

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 64

' � � � � #) � � ����� % � � � � � ' � �	/ % ����� � � ; � / 	 ���
� � � ��� ��� � � �� ; � � � � / � � / � � � IXMISC

' � � � �7� � � ��� +	� � � � ������� � � �)� � � � ' � ��/ � /�� � @ � $&$&$ � � ���� $&$&$ ���
� � � � @ ! � $&$&$! �� � $&$&$ � � � � ��� � �� ; � � / � � @ ! � � � / � � � IXCONS

' � � � � � / � ��� � � � �
 � � � ' � ��/ �
	

Dom
�

� � � � @ ! � � � ��� � �� ; � � � � @ ! � !� � � � � � + � � / � � � IXREAD

' � � � � � / � � � � � � �
 � � � ' � �	/ �
	 �

�
Dom

�
� � � � @ ! � � � ��� � �� ;
 � � +)� IXREADWRONG

' � � � � � � � � �
 � � � / � � � ' � �	/ �
	

Dom
�

� � � � @ ! ! �� � � � ��� � �� ; � � @ B �� � � @ ! � � + � � / ��� � IXWRITE

' � � � � � � � � �
 � � � / � � � ' � ��/ �
	 �

�
Dom

�

� � � � @ !�! �� � � ��� � � �� ;
� � + � IXWRITEWRONG

' � � � � �
 % % �	/ �!� � � ��'� & + � � �
� � � � @ � / � � ��� � �� ; � � � � H ���#� � / � � � ���8� � / � � � � � IXCALL

' � � � � &#+ � � � � � � � � I ��� ��� � ' � ��/ J
� � � � / � ��� � � � �8� � � � � � � �� ; � � � � @ � � / H ��� � + � � � / ��� � IXRETURN

' � � � � &#+ �
� � � � ��� �

� �� ; � ' �	� IXSTOP

The “IX” in the rule names stand for “Ideal eXecution”. Note how the use of
@

in IXCONS implies that the addresses � to � are all fresh (i.e., not in Dom
�

).
In IXCALL, the use of

H
implies that Dom � must equal Img ��� , which uniquely

determines how the initial data state splits into �%+ and � .

Definition 3.3. A configuration � is stuck if � �� � ' � � and there is no � / , � such
that � �� ; �!/ .
A stuck configuration represents some kind of internal error in the uniform mu-
tator. The prototypical kind of stuckness is reaching a #) � � node with a data
state � that is not matched by any of its ��� ; this usually corresponds to a run-
time error in the human-made program that were translated to UHL. Other kinds
of stuck configurations may arise with “malformed” uniform mutators; for ex-
ample � � � ��� � ��� � is stuck if ' � � � is not defined or � does not contain the vari-
ables that are specified as operands in the mutator operation. In Section 3.1.5
we will define a simple discipline for uniform mutators that will prevent such
spurious stuck configurations.

A special kind of stuck configuration, “
� � + � ”, is reached if the program tries
to access a heap cell that has not been allocated. We single out this outcome so
that we can express the property that it cannot happen, which we call “memory
safety”.

Note that if the program tries to access the heap with something that is not
an address at all (say, +),%), it will get stuck at the heap operation instead of

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 65

Box 3.3—Alternatives to modeling I/O as side effects

Is it is really necessary to go to such
trouble to define behaviors and expected
observations? Obviously we need some
model of program behavior if we are to
speak meaningfully about it being pre-
served by specific memory-management
strategies. But why not use a more light-
weight model?

The main reason is that we want to
be able to model interactive programs
that do not terminate (because region-
based memory management holds spe-
cial promise for embedded and real-
time systems), and most other behav-
ioral models do not distinguish between
nonterminating behaviors. But even for
terminating programs the alternatives
would still not be well suited to reason-
ing about region-based memory man-
agement.

A common choice in theoretical set-
tings is ignore input and output comple-
tely. Programs (or program fragments)
can still be said to “compute” specific
functions, in a sense: One can simulate
input by embedding the actual input as
constants in the program, and for out-
put, a program still has two distinct pos-
sible behaviors: It either halts or does
not. By wrapping the body of the pro-
gram in suitably chosen observation con-
texts, one can encode a multitude of out-
put bits as termination behavior. (One
has to be content that each output bit
is mathematically well-defined; we can
never actually observe that a wrapped
program diverges).

This model has the advantage of sim-
plicity and works well for many theoret-
ical purposes. However, it means that
region inference must be redone each
time the input changes and each time
one wants a different bit of the output.
This is a real problem: Actual region-
inference algorithms might well produce
different annotations for the main pro-
gram depending on which code eventu-
ally consumes its result.

A less minimalistic option is to de-
fine one’s language such that a program
defines a distinguished function that is
applied to the program’s input in or-
der to run the program. However, this
still fails our needs for speaking about
region-based memory management. We
surely want to allow the input and out-
put to be composite data, as it would be
ridiculous to expect the user to encode
the entire input of programs that solve
real-world problems as an atomic value
such as an integer. But composite data
would need to be heap-allocated. This
is especially a problem for output, be-
cause the program would need to leave
its output on the heap, which would pre-
vent us from proving that an agent is
well-behaved enough to eventually deal-
locate all the memory it has allocated.
For input the converse problem would be
how to distribute the pieces of a compos-
ite input value across regions such that
the agent would be able to deallocate
them once the mutator has finished in-
specting them.

going
� � + � . In practise both problems will be equally disastrous, of course,
but the point of
� � + � is to identify those errors that can reasonably blamed
on the memory manager, and it is the mutator’s own job to avoid following +),%
pointers.

Definition 3.4. Define the relation ' � ; ; � inductively by

' �; ; � � � �
	*� �
� IBSTART

'
�
�; ; � � �� ; �!/
'

�
��� �; ; � / IBSTD

'
�
� ; ; � ' � �

'
�
���
�; ; � ' �	� IBTERM

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 66

'
�
� ; ; � � is stuck

'
�
��� �; ; � IBSTUCK1

'
�
� ; ; � � is stuck

'
�
���
�; ; � IBSTUCK2

Furthermore, let ' ; ; � be an abbreviation for � � � ' � ; ; � .

The two rules IBSTUCK1 and IBSTUCK2 give an “artificial” semantics to stuck
states. They say that if the program gets stuck, anything can happen! This
is a way for the semantics to give up; it means that the creator of the uniform
mutator has not specified what is supposed to happen now, so an implemen-
tation that attempts to execute the program is at its liberty to do whatever it
pleases, without risking to violate the semantics. 1

Definition 3.5. ' is memory safe if ' �; ;
� � + � . It is type safe if there is no
stuck � such that ' ; ; � .

Definition 3.6. � is an ideal behavior of ' if ' � ; ; � for some � . The set of
' ’s ideal behaviors is notated � � '

 .
(The “IB” in the rule names stand for “Ideal Behavior”).

� � '

 will be our primary model of ' ’s intended semantics (see Box 3.3 for
rationale).

The reader may have noticed that ideal behaviors never have the form �� ��� ,
which according to the explanation we gave previously ought to signify diver-
gence. That is deliberate, because we want to keep the definition of ideal be-
haviors clean of the co-inductive reasoning that would be necessary for speaking
about divergence. However, because � � '

 contains “prefixes” of the form �� in
addition to completed computations of the form �� ��� , we have enough informa-
tion to recover a description of diverging behaviors:

Definition 3.7. Given a set � of behaviors, its global abstraction � bs � � � is

� bs � � � � ��� �� � �� �� 	 � �
, � � �� � ��� �� �� ��� 	 � �
, � �� / ��� �� � � � � � ��"� �� � � 3 	 ��� �*�� � � �� / �

where, for a sequence �� of events, � �� � denotes the same sequence with every
occurrence of � removed.

Besides making divergence explicit, the global abstraction also hides differences
in how many � ticks the mutator takes to decide on I/O actions. Thus, we
can consider two mutators ' + and ' � to be “observationally equivalent” if
� bs � � � ' +

 � ��� bs � � � ' �

�
.

1This viewpoint can also be explained by viewing the semantics as a “theory” according to the
Popperian philosophy of science. In this philosophy the purpose of a theory is not so much to explain
what does happen, as to define a large class of things that the theory asserts will not happen. If
one of them happens nevertheless, the theory (or the observation) must be wrong. This view is
especially convenient when we deal with nondeterministic programs. A semantics that says “this
program may output 42” does not tell us much, whereas one that says “this program will never
output 43” does: Then we know that the implementation (or the semantics) must be wrong if we
see the program output 43. Therefore, when the semantics “gives up”, the conservative choice is to
say that “anything can happen now” rather than predicting an observable program crash.

Compare also the proverbial explanation of the treatment of certain program errors in the ISO
standard for C: If the standard explicitly declares the meaning meaning of some construction to be
“undefined”, compilers are entitled to translate it to code that “causes demons to fly out your nose”.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 67

When �� � � is in � bs � � � '

 � it means that it is possible for the mutator to do the
I/O events �� and then run silently for an arbitrarily long time. That is almost
the same as running forever, but not quite: A program that nondeterministically
chooses a natural number � , then outputs a beep and finally counts to � be-
fore terminating, will have “ �#&�& � � � ” as an expected observation even though it
always terminates if it gets as far as to actually beep.

3.1.5 A scoping discipline for uniform mutators

In Section 3.1.2 we mentioned the rule that a bound variable cannot be bound
to a new value until its value has been consumed either by a heap operation
(or a procedure call) or explicitly in a #) � � node. The transition relation in the
previous sections enforces such rules at run time; for example, IXREAD uses

@
to

add � to the data state, so the program gets stuck if � is already bound.
We now give static rules to guard against such run-time errors. The rules will

have the flavor of a very primitive “type system”, but they do not really track
the type of values, only which variables have some value bound to them.

Definition 3.8. A uniform mutator ' induces an edge relation � � in Dom '
by:

� +�� � � � iff � � ' � ��+ 	�� I ' � � + ��J
where the function

�
from mutator operations to sets of jumps is defined by

� I � � ����� +	� ��.�. � ������ J � � ���� �� I � /	� ��� � � � �
 �"���� J � � ���� �� I � � � � �
 � � � / �"���� J � � ���� �� I #) � � ��� + � ���� + % ����� % ��� � � ����� � J � � ���� + �0.�.�.�� ���� � �� I ��
 % % � � ��� � ��'� & + � � � J � � ���� 9 I ��� / � ���� J 	
Img

� � � �� I &#+ � J �<G
���� is the reflexive, transitive closure of � � .

Definition 3.9. For each state � , let � � � � � be the set of &#+ � states that are
reachable from � :

� � � � � � �&� / �� ��� �� � / � ' � � / � �"& +	� �

Note that, because we require flowcharts to be finite, � � � � � is finite and com-
putable.

Definition 3.10. Let ' be a uniform mutator, and let the scope invariant 	
be a mapping from Dom ' to sets of variable names. ' is well-formed by 	
if the following conditions are satisfied:

1. When ' � � � � � � � ��� +	� � ��+ �0.�.�.��2� 3�� � � � ' � � / , there must be a
 = � such
that 	 � � � ��
 (� ��+ �/.�.�.��2�43 � and 	 � ��/ � ��
 (��� � .

2. When ' � � � ��� / � � � � � � �
 �&� � ' � ��/ , it must hold that � 	 	 � � � and 	 � � � (� � / � �	 � ��/ � .
3. When ' � � � � � � � � �
 � � � / � � � ' � ��/ , it must hold that � 	 	 � ��/ � and 	 � � � �
	 � ��/ � (� ��/ � .

4. When ' � � � � #) � � ��� + � � � ' � � + % ����� % ��� � � � � ' � � � , then for each i and
each � �; � / 	 ��� � it must hold that Dom � �	 � � � and Dom ��/���	 � � � � .

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 68

5. When ' � � � � ��
 % % ��/ �!� � � � '�.&#+ � � + �� I � � + ��� � ' � ��/+ J �0.�.�.�� � 3 �� I � � 3 �
� � ' � �	/3 J � , then there must be a
 such that

a. 	 � � � ��
 (Img ���
b. 	 � ��/ � � Dom � �
c. � � � ��/ � �7� � + �/.�.�.�� � 3 �
d. For each � , 	 � � � � � Dom � � �
e. For each � , 	 � ��/� � ��
 (Img ��� �

6. 	 � �
	 � ��G .

7. For each � 	 � � � �
	 � , 	 � � � �<G .

Theorem 3.11. Let ' be well-formed by 	 . If ' ; ; � and � is stuck, then it
has one of the following forms:

1.
� � +)� .
2. � � � ��� ��� � � where ' � � � � #) � � ��� + �"���� + % ����� % ��� � ������ � such that no
� � � contains a step of the form � �; � / .

3. � � � ��� ��� � � where ' � � � �7��/ � � � � � � �
 and � ��� � �	 � .

4. � � � ��� ��� � � where ' � � � � � � � � �
 � � � / and � ��� � �	 � .

The proof uses the following auxiliary relations:

Definition 3.12. Define the relations 	>� ' � � and 	>� ' � � ��� by

	>��' � � ' � � ISCSTOP 	>� ' �
� � + � ISCWRONG

Dom � � 	 � � � 	>��' � � ���
	>��' � � � � ��� ��� � � ISCSTD

� ��/ 	 � � � � � � 	 � ��/ � ��G
	 ��' � � ��� ISSEMPTY

�"��/ 	 � � � � � �
.//0 //1
	 � ��/ � � Dom � �
	 � � / / � � Dom � (Img � �
	 ��' � � ����/ /
where

I ���#��� � ' � �	/ / J � � ��� � ��/ �
	>� ' � � � ����� � � � � � � � ISSFRAME

The “ISC” and “ISS” in the rule names stand for “Ideal Scope-invariant for Con-
figurations/Stacks”.

Lemma 3.13. If 	>��' � � � � and � � � �	/ , then 	 ��' � � ����/ .
Proof. Immediate from the definitions of � �� and � � � � � . �

Proposition 3.14 (Subject reduction, level 0). If 	>� ' � � and � �� ; � / .
Then 	>� ' � � / .
Proof. Easy, by comparing each case in the definition of �� ; with the corre-
sponding case in Definition 3.10 and then applying Lemma 3.13 for the stack
part of the configuration.

�

Proof of Theorem 3.11. First, prove 	>� ' ��� by rule induction on ' � ; ; � .
The base case IBSTART is guaranteed by Definition 3.10(6,7). For IBSTD, use the
induction hypothesis and Proposition 3.14, and for the other rules the induction
hypothesis directly.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 69

By definition, � ' � � is not stuck, so assume that ��� � � � ��� ��� � � . If ' � � � �
&#+ � , then the premise that 	>� ' � � � � guarantees that either IXRETURN or
IXSTOP will apply. Otherwise, inspect the appropriate case in Definition 3.10 and
combine it with the respective reduction rules.

�

3.2 Region annotations for universal mutators

We will now define a generic scheme for adding region annotations to a uni-
form mutator. As noted earlier, the region annotations will essentially be the
same as the “HMN model” of Section 2.4. Indeed, annotated UHL will be a very
close relative of the REGWHILE calculus in chapter 6 of Niss [2002]. Our nota-
tion here does not completely equal that used by Niss, due to technical issues
with our handling of unstructured flow graphs and multiple-entry–multiple-exit
procedures.

The basic ideas of the agent programming language are:

� Each
��� +�� state in the uniform mutator is annotated with a region vari-

able that defines which region to do the allocation in.
� Edges in the flowchart may be annotated with region operations that

specify the creation and deallocation of regions at run time, and maintain
the bindings between regions and region variables.

� A region on the heap can be referred to by different region variables at
different times: Region operations can move region references between
region variables.

� A region on the heap can be referred to by different region variables at the
same time. Each region maintains a reference count at runtime and gets
deallocated when the reference count eventually reaches zero.

� When the mutator calls a procedure, the agent can pass a number of re-
gion references as region parameters to the agent code for the procedure
in parallel with the mutator’s ordinary parameters. When the procedure
returns, a number of region references may be returned too, in parallel
with the mutator’s ordinary return values.

� Uncounted region variables are a special restricted form of region vari-
ables. They can only be assigned to as part of a procedure call (and dis-
appear silently at returns). This restriction will allow them to be safely
created and forgotten without adjusting the reference count of the region
they point to.

Figure 3.5 shows the syntax of region-annotated UHL. A (possibly empty) list
of region annotations has been added to each ���� , which represents the edges
in the flowchart (compare Definition 3.8) – which is the reason why we defined
���� as a syntactic class in UHL in the first place.

The syntax for allocation has been extended with an “at annotation” which
is normally

 ' # , giving the region in which the heap cells should be allocated.
The alternative annotation + ��� .& � & means that the allocation should be omitted
completely. It is there for technical reasons; sometimes the region annotation0

History of notation: “Uncounted region variables” are the same as the “constant region pa-
rameters” of the HMN system. My experience is that the “constant” terminology has been difficult to
explain, so I chose here to base my terminology on the reference counts instead of the constancy.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 70

Counted region variables: # 	 � � � � 	F9 � � 9 �
F9������
Uncounted region variables: # � � � � � 	F9 � � 9 �
F9������
Region variables: # � � �$# 	 9�# �

Region operations:
� ��� � � � +.& � # 	9
 %)
 � #4+!' � # 	 �9 � & % &
 � & # 	9 � & +
 # & # 	 + ' � # 	 �

Variable names: � � � ���:9�� 9 � 9 �����
Control state names: � � � � �
	F9 � � 9 �
 9������
Jumps: ����� � � � � �)� �"����9 � � ' � �
Data states: � 	 � fin; �
I/O events: � 	 ��� � , �
Computation steps: ����� � � ��+�� ; � �
Sets of steps: ��� 	 ��� ��� �
Region argument lists:

� � 	 # 	 fin
inj

; # 	
Uncounted argument lists:

� � 	 # � fin; #
Mutator argument lists: � � 	 � fin

inj

; �
Return maps:

� ��� 	 � fin; � � � ��� � ����

At annotations: � ��� � �
 ' #9�+ ��� & � &
Mutator operations: ����� � � �7� � � ��� +	� � � � �/.0./.�� � � � � � �"����9 � � � � � � � � �
 �"����9 � � � � �
 � � � � ������9 &#+ �9 #) � � ��� + �"���� + % ����� % ��� � ������ �9 ��
 % % � � � � � � � ����� � ��'� & + � � �
Ann.d uniform mutators: � 	 � fin; �(���

Figure 3.5: Syntax of annotated uniform mutators. The part of the syntax that
differ from that of plain uniform mutators are marked with a vertical line on the
right.

algorithm will depend on being able to generate it in the unlikely case that the
program never uses the allocated value.

We recognize four different region operations:

1. + & � allocates a new region with reference count
�

and binds a reference
to it to a region variable.

2.

 %)
 � increases the reference count of a region by one, and binds a new
reference to it to a region variable.

3. � & % &
 �& unbinds a region variable and decreases the reference count of the
region it was bound to by one. If the count reaches zero, the region is
deallocated.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 71

4. � & +
 # & moves region references between different region variables. It is
not strictly necessary from a purist’s viewpoint, because its effects can
always be simulated by the other operations: “ � & +
 # &4# 	 + ' � # 	 � ” is equiva-
lent to “

 %)
 ��# 	 + ' � # 	 � � � &#% &

 �& # 	 + ”. However, the � & +
 # & notation makes it

explicit that there is no net reference-count manipulation going on. This
makes it slightly easier to reason about a � &#+
 # & than an

 %)
 � – � &#% &
 �& com-
bination.

None of the region operations can bind or unbind an uncounted region vari-
able. Instead, uncounted region variables can be bound as part of a procedure
call, and disappear again when the procedure returns. We enforce this rule
in the syntax by letting uncounted region variables be lexically different from
counted ones. (In contrast, the original HMN system had only one kind of region
variables, and the difference between “constant region parameters” and other
region variables was enforced by side conditions in the type system. Later we
have come to the conclusion that it is cleaner to distinguish them syntactically.)

Note that the source of an

 %)
 � operation can be an uncounted variable, as it

is neither bound nor unbound by the operation.

Passing region references into and out of procedures is somewhat complex, but
we have already mastered the formal idiosyncrasies, because the notation for
parameter-passing in plain UHL was cleverly chosen to parallel the features we
need for regions.

Each ordinary argument-renaming map ��� (for either calls or returns) is
paralleled by a

� � that does the same job for region variables. Everything
that holds for ��� and ordinary variables is true for

� � and (counted) region
variables, too. In particular, the region variables in Img � � disappear from
the caller’s context as part of the call, so passing a region parameter entails no
reference-count manipulation.

A third argument mapping,
� � is given only at the call and not at the return. It

serves to initialize the # �
bindings for the callee’s agents. Because an uncounted

region variable is, well, uncounted, passing this kind of parameter does not
involve manipulating reference counts. Instead it will be kept alive by the refer-
ence count of the caller-variable it was initialized from – the variables in Img

� �
do not disappear from the caller’s context. A single caller-variable can be used
to initialize several # �

s: The grammar does not require
� � to be injective. (This

is the reason for our convention that parameter-list maps map callee-variables
to caller-variables). However Img

� � must be disjoint from Img
� � – otherwise

the callee would risk releasing one of the reference counts that its # �
s depend

on.
It may be instructive to compare our notation for procedure calls with the one

in the HMN system. Take the following call to a single-exit procedure:

��
 % %����$� � 	 �	 � � �
 � 		 � � � �� � ��'�.&#+ � �� �

�� I 	 � 	 �	 � 	 � � � 	 � � &#% &
 �& � � � � � ' � ��� J �
(which might be an annotated version of the call in Figure 3.3). In the ML-based
HMN system (Section 2.4), the call would be notatedI $�$� [c: # � �'# � � i: # � � o: # � �# �] � J � � release # �

0

History of notation: In the HMN system, renaming of regions is written simply as “ � 2 ��� ��� ”. I
changed the notation to “ ���
	������������� � 2 ” to emphasize that the operation unbinds ��� , in contrast
to the “ ��� ” nodes on Figure 3.2 etc. The meaning of the operation has not changed.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 72

where the callee’s names � , # + , # � , # � , # � , and #�� are given in the definition
of the procedure instead of in the call, and the ordinary return value implicitly
becomes the value of the expression instead of being assigned to � .

The REGWHILE notation of Niss [2002, chapter 6] is a little closer to the UHL

model. It writes the same call as

(# � �# � � �) � � call $�$� [# � �# �](# � � �) � release # �

3.2.1 What is an agent?

It is easy to imagine how one can recover the “underlying” uniform mutator
from an annotated one. One simply removes all of the region-related syntax:

� � ��� �"���� � Jmp � � ����� � Jmp

� � � ' � � � Jmp ��� � ' � �
�
� � .�.�.�� � � �� I � � � ����� � � ���� � J �0.�.�. � ��

Rtn
� � .�.�.�� � � �� I � � � � � ���� � � Jmp

J �0.�.�. �
� � � � ��� +�� � � � �/./.0.��2� � �
 ' #�� ���� � Mop �7� � ����� +	� � � � �0././.�� � � � � � ���� � Jmp

� � / � � � � � � �
 �"���� � Mop �7� / � � � � � � �
 � � ����� � Jmp

� � � � � �
 � � ��/ �"���� � Mop � � � � � �
 � � ��/ � � ����� � Jmp

� &#+ � � Mop �"&#+ �
� #) � � ����� % ��� � �"���� � % ����� � Mop � #) � � ����� % � � � � � ����� � � Jmp % �����

� �
 % % � � � � � � �#� ��� � ��'�.&#+ � ��� � Mop � ��
 % % � �!��� � � '�.&#+ � � ��� � Rtn

� � � � � � � Mop

H �
Conversely, an annotated uniform mutator is completely known if we have

a) The underlying uniform mutator ' � � � � .
b) A (possibly empty) sequence of region operations for each flowchart edge

in ' .

c) An at annotation for each
��� +	� node in ' .

d) A
� � and

� � for each
��
 % % node in ' and a

� � for each of its returns.

Intuitively, the agent comprises items (b), (c), and (d) in this list. We could
define some kind of syntax for “naked” agents and define formally how to com-
bine an agent with a mutator to get an annotated mutator, but doing so would
offer little or no insight in return for the symbolism it would require. Instead,
for the purpose of our formal development, we simply define

Definition 3.15. An agent for a uniform mutator ' is given by an annotated
uniform mutator � such that � � � ��' .

In informal discussions we will usually stick to the intuition that the agent “re-
ally” consists of the difference between � and � � � .0

History of notation: In the HMN syntax for call annotations, the uncounted region parame-
ters come before the counted inputs, because that matches the type-theoretic description from the
callee’s point of view, where the quantifiers for the uncounted (“constant”) regions need to come
before the ones for the counted one. However, this reasoning is not really appropriate here, where
we are developing a universal agent language without reference to a specific region type system.
Therefore I have chosen to notate the counted region parameters first, which matches the opera-
tional intuition at the caller’s end: First the counted region parameters disappear from the caller’s
context, and afterwards values for the uncounted ones may be selected from the region variables
that still remain.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 73

3.2.2 Managed execution of uniform mutators

We now give a semantics for the combination of a uniform mutator and an agent
for it – we shall say that the mutator’s execution is managed by the agent. The
structure of the semantics will be close to the ideal semantics of Section 3.1.4,
but of course extended with a model for region operations.

The major difference between managed and ideal semantics is that cells are
sometimes deallocated from the heap in the managed semantics (in the ideal se-
mantics the domain of the heap is always non-decreasing). Thus, if the mutator
attempts to access a deallocated heap cell it will go
� � + � instead of read-
ing whatever was in the cell the last time it was in use. This is important for
reasoning about soundness, but may look slightly unrealistic – usually region
managers just reuse memory internally and never give it back to the operat-
ing system – but remember (Definition 3.7) that the semantic interpretation of

� � + � is actually just that “anything may happen now”, including getting the
previous value of the cell. So our choice of going
� � + � for deallocated cells
actually just makes the semantics slightly imprecise, not incorrect.

The semantic objects used in the semantics are

Region names: � � � � � 	 9 � � 9 �
 9 �����
Heaps:

� 	 � fin; �
Region-manager states: � 	 � fin; � � � � fin � � �

Region environments:
 	 # fin; �
Stacks: � � � � � � � ���
�� � � � � �9 �

Configurations: � � � � � � ���8�
C� ��� ����*��� �9�� ' � �9�
� � + �
Behaviors: � � � � � + � ������� � � �! � � �

9$� + � ������� � � � � �! � � �
9$� + � ������� � � � � �! � � �

We do not model the inner workings of the region manager, only its extensional
behavior. An � simply records our expectation about how the region manager
will behave in the future – the fact that � � � � � � �,� ��� means that the region
manager is supposed not to reuse any of the addresses in

�
until � � & % &
 � &

operations have been done on � .
Definition 3.16. The following rules for the relation ���
 �����; ��/ �
!/ define the

semantics of region operations:

�8�
 ���
	���; � @ � � �� � � ��G � � �
 @ � � MXNEW

� @ � �>�� � �,� ��� � �
 @ �� ��� � ��� ������� ; � @ � �>�� � � � � ��� � �
 @ ��� � � MXALIAS

� � �
� @ � �,�� � �,� ��� � �
 @ � � � � � � ��� ��� ; � @ � �>�� � �

� � � ��� � �
 MXRELEASEN

� @ � �>�� � � � ��� � �
 @ � � � � � � ��� ��� ; ���
 MXRELEASE1

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 74

�8�
 @ � "� � ��� ��� � � " � ��� �; ���
 @ � ��
MXRENAME

The “MX” in the rule names stand for “Managed eXecution”.
One aspect of the region operations’ semantics that is not captured by these

rules is the actual deallocation of heap cells when a region’s reference count
reaches zero. This is in keeping with our general principle of not modeling
the internals of the region manager. Instead, the definitions that follow will
simply assert that the region manager, somehow, deallocates cells once it has
no obligation to keep them around. Therefore the cells will be deallocated
implicitly when MXRELEASE1 removes the region from the manager state. (Rule
MXROP below).

Definition 3.17. The footprint of a region-manager state � is the union of the
second components of Img � .

Definition 3.18. The restriction of a heap
�

to a region-manager state � means�
with bindings outside � ’s footprint discarded. The restriction is notated

� 9 � .

Definition 3.19. Define the relations � �
; � and � �� ; �!/ by the following

rules:

�8�
 �����; ��/��
 /
� � � �8�
C� ��� � ��� � ����*��� � �

; � � 9 � � � � / �
 / � ��� ����*��� � MXROP

� � � � � #) � � ����� % ��� � ����� % ����� � � ; � / 	 ���
� � �����
C� ��� � � ' � ��� � � �� ; � � � �8�
�� ��� ��������� � MXMISC

� � � � � � � ����� +	� � � � ������� � � ���
 ' #�� ���� � / � � @ � $&$&$ � � �� � $&$&$ � �

 � # � � � � � � � � � �,� ��� � /*� � @ B � �>�� � �,� � , � ���/.�.�.����� � � �
� � ���8�
C� � @ ! � $&$&$�! �� � $&$&$ � � � � � ' � ��� � � �� ; � � / ��� / �
C� � @ ! � � ��������� � MXCONS

��� � � �7� � ����� +	� � � � � ������� � �)��+ ��� & � & �"���� �
	 �

� � � �8�
C� � @ ! � $&$&$�! ���� $&$&$ ��� ��� � ' � � ��� � �� ; � � �����
C� � @ ! � � ����*��� � MXNOWHERE

� � � � �7��/	� ��� � � � �
 �"����� �
	

Dom
�

� � � �8�
C� � @ ! � � � � ' � ��� � � �� ; � � � �8�
�� � @ ! � !� � � � � � + � ����*� � � MXREAD

� � � � �7��/ � ��� � � � �
 �"����� �
	 �

�
Dom

�
� � ���8�
C� � @ ! � � � � ' � � ��� � �� ;
 � � +)� MXREADWRONG

� � � � � � � � � �
 � � � / �"���� �
	

Dom
�

� � �����
C� � @ !�! �� � � � � ' � ��� � � �� ; � � @ B �� ���8�
C� � @ ! � � + � ����*��� � MXWRITE

� � � � � � � � � �
 � � � / �"���� �
	 �

�
Dom

�

� � ���8�
C� � @ !�! �� � ��� � ' � � ��� � �� ;
� � + � MXWRITEWRONG

� � � � � ��
 % % ��/ � � � � � � ����� � ��'� & + � � �

!/ /*� �
 H � � � @ �
 / H � � � � /�� � � ��� �
!/�� � / � � � �

� � �����
 @
 / � � @ � / � � � ' � ��� � � �� ; � � � �8�
 / / � � H ���4� � � ' � � / � � / � MXCALL

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 75

Box 3.4—Different semantic models of the region manager

My semantic model of the interaction be-
tween the region manager and the heap
is more abstract and indirect than the
models commonly used in the literature.

Tofte and Talpin [1994, 1997] let ad-
dresses have the form ��������� , where � is a
region name and � is an “offset” within
the region. They then work with stores

of type � fin	 � fin	�
 but implicitly

reinterpret the store as � � � fin	
 for

actual heap accesses. The region opera-
tions work mostly in terms of the curried
interpretation.

This representation makes it notation-
ally easy to deallocate a region – one just
removes � from the domain of the uncur-
ried store – and allows one to represent
the set of existing regions implicitly as
the domain of the store (there is a differ-
ence between an � that maps to the the
empty map from offsets to data and an �
that is not in the store at all). However,
the address representation means that in
cases like����� ���

����� ���
� ������� ��� ��� �! ��#" ��$&% ���'(�*) � $ �+� ���
, ������� ��� ��- ��./�#0 ��$&% ���

the semantics will claim that it is im-
possible for

�
and

,
to equal each

other. (They must have different �
parts). However, with the intended im-
plementation of the region manager, it
is quite possible for

,
to be allocated

in the same addresses from where
�
’s

tuple was just deallocated. This differ-
ence could become crucial for reasoning
about region-based memory manage-
ment for languages with pointer com-
parison, which is why I do not use the
��������� representation.

Fritz Henglein has suggested [per-
sonal communication] to use the ���1���/�
model as the basis for an alternative im-
plementation of the region manager. In
this implementations, regions are con-
tinuous pieces of memory that the re-
gion manager is allowed to move around
in memory, because any access to the
heap goes through the region manager:
The agent supplies � and � , and the re-
gion manager replies with the current
address of the indicated cell. The muta-
tor itself actually manipulates only the �
parts, and the agent provides the correct
� whenever it is needed. Thus the model
requires region annotations on read and
write operations in addition to

�2� ��� op-
erations.

An entirely different technique is em-
ployed by Calcagno et al. [2002];
Calcagno [2001]; Helsen and Thiemann
[2000]. They use a syntactic reduc-
tion semantics without a store. Heap-
allocated values are represented by spe-
cial terms that include a region variable.
Thus the model does not use a separate
concept of region names, instead region
variables double as the representation of
actually existing regions.

This scheme has the advantage that
it allows very simple syntactic proofs of
the safety of the region type system. On
the other hand, it somewhat removed
from the operational intuition, and it is
difficult to extend to systems with de-
structive or other features that require
a separate store, because the technique
depends on the lexical scoping for let-

region-bound variables, which would
break down if values with embedded re-
gion variables get written to an external
store.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 76

� � � � �"& +	� � � � � � � � I � � � � �#� ����� J
Img
 /� = # �
 / / �
 @ �
 /	 H � � � + � � / / � � @ � � / H ��� �C+ �
� � ���8�
 /	 @
 /� � � / ��� � ' � � � � � ���8�
C� � � � � � � �� ; � � �����
 / / � � / / � ����*� � � MXRETURN

� � � � � &#+ �
� � ����� � ��� � ' � � � �

� �
�
; � ' � � MXSTOP

Note that the region annotation on
��� +	� operations does not constrain where

in the heap the new cells are allocated; the � in MXCONS is still chosen nonde-
terministically. The semantics merely update the model of the region manager
to the effect that the new cells will be deallocated together with the specified
region. In an actual implementation, of course, it will be the region manager’s
job to choose an � , but it is important that our semantics does not constrain
how it does it.

Definition 3.20. Define the relation � � ; ; � by

� �; ; � � � � � � � ' � � 	*� �
� MBSTART

�
�
�; ; � � �

; �!/
�

�
� ; ; � / MBRGN

�
�
�; ; � � �� ; �!/
�

�
� � �; ; � / MBSTD

�
�
� ; ; �4' � �

�
�
���
�; ; � ' �	� MBTERM

�
�
� ; ; � � is stuck

�
�
��� � ; ; � MBSTUCK1

�
�
� ; ; � � is stuck

�
�
���
�; ; � MBSTUCK2

and let � ; ; � abbreviate � � � � � ; ; � .

Definition 3.21. An agent � is region safe if � �; ;
� � + � .
Definition 3.22. � is a managed behavior of � if � � ; ; � for some � . The set
of � ’s managed behaviors is notated � � �

 .
(The “MB” in the rule names stand for “Managed Behavior”).

In the rest of this subsection, we will state some basic invariants of the se-
mantics. First we will relate

�
to � :

Proposition 3.23. Assume that � ; ; � � �����
C� ��� ����*� � � .
a. The footprint of � is exactly Dom

�
.

b. If � � � + � � � �,+(� � + � , � � � � � � � � � � � � � and � + �� � � , then
� + E �

� �<G .

Proof. By an easy rule induction on
; ;

.
�

This lemma tells us tell us that the intuitive model for deallocation in region is
valid: Instead of explicitly restricting the heap after each region operation, it
is enough to deallocate the addresses associated with the region when a � &#% &
 �&
operation decreases the reference count to

�
.

(The reason for the roundabout definition of deallocation is that originally I
had plans of investigating a non-standard semantics for region operations where
Proposition 3.23(b) is not true. When it later became clear that time was too
short for that, it was also too late to change the semantics to work more straight-
forwardly).

Next, to relate � to
 , we will prove

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 77

Proposition 3.24. Assume that � ; ; � � ���8�
C� ��� ����*��� � . Then Img
 =
Dom � .

This basically says that the reference counting of regions works: Each region
name that is bound to a region variable will also be known to the region man-
ager. The statement cannot be proved by direct induction, because it does not
say anything about the dormant region references in the stack � .

As a helper concept, let us define a notation for counting the number of ref-
erences to a region name:

 # � � #� # 	 9
 � # 	 � � � �
and extend it to stacks in the natural way:

� � �����
C� � � � � � # � �
 # � � # �
� # � � �

Note that we are only counting references from # 	 s, not from # �
s. That is why

the latter are uncounted region variables.

Lemma 3.25. Assume that � ; ; � � �����
C� ��� ����*� � � . Then for all � : If # �:�

 # �! � # � � �

then � � � � � � # � � ��� . Otherwise � � � � is not defined.

Proof. By an easy rule induction on
; ;

.
�

Lemma 3.25 proves Proposition 3.24 as regards counted region variables. For
uncounted variables we combine it with

Lemma 3.26. Say that a stack � supports a region environment
 if for all
# � 	

Dom
 it holds that � #
 �-# � �
�

�
, and if � has the form � � ���8�
 /�� � � � � � / ,

then � / supports
 / .
Now assume that � ; ; � � ���8�
C� ��� ������ � � . Then � supports
 .

Proof. Again, by rule induction on
; ;

.
�

This completes the proof of Proposition 3.24: For any � �
 � # � �
, we now know

that

 # �! � # � � � # � � �

and therefore by Lemma 3.25, � � � � is defined.

We also have, by Lemma 3.25 and Proposition 3.23(a):

Corollary 3.27. If � ; ; � � ���8� ��� � ����*� �
�
, then � � and

� � .

Thus, if the annotated uniform mutator eventually ends at � ' � � , then before the
last transition, it will have deallocated every region and every heap cell it ever
allocated. We will not make direct use of this property, but it is nice to know
that our agents clean up after themselves nicely.

In an implementation this would mean that we can safely launch a new
region-based application afterwards without bothering to reinitialize the region
manager. Such a property would be especially important in an embedded or
sandboxed setting where several independent mutators share a pool of memory
managed by a common region manager.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 78

3.2.3 A scoping discipline for agents

Proposition 3.24 tells us that an annotated uniform mutator will never get stuck
because � � � � is not defined in a

��� +�� , � &#% &
 � & , or

 %)
 � operation. However, there

still exists the possibility of getting stuck because
 � # � is not defined. To guard
against this, we need to define a static discipline in the style of Section 3.1.5.
Like in Section 3.1.5, our discipline will not guarantee that the agent is safe.
It does prevent the agent from shooting itself in the foot (and getting stuck
within memory-management code), but it does nothing about the possibility of
shooting the mutator in the foot by deallocating its data prematurely.

Definition 3.28. Let � be a finite map from node names to sets of region
variable names and 	 be a finite map from node names to sets of ordinary
variables. Define by the following rules the relations �:� 	 � � � � � �
 � ����� and

�:� 	 � �
� �
 � ���� , where
 = � and � = # :

� � � � � � 	 � � � ��
 � / = # �

�:� 	 � �
� , � / �
 � � � ' � � ASGOTO

�:� 	 � � � (� # 	 � �
 � ����
�:� 	 � � � �
 � +.& � # 	 � ����� ASNEW

# 	 � �:� 	 � � � (� # 	 � �
 � ����
� � 	 � � � �
 �
 %)
 �1# ' � # 	 � ���� ASALIAS

�:� 	 � � � �
 � ����
�:� 	 � � �-(� # 	 � �
 � � &#% &
 �& # 	 � ���� ASRELEASE

�:� 	 � � �-(F� # 	 � � �
 � �����:� 	 � � � (� # 	 + � �
 � � &#+
 # & # 	 + ' � # 	 � � ����� ASRENAME

� ��� � � �; � / 	 � � � � � Dom � ��

�:� 	 � � Dom � /�� � � ���� �

�:� 	>� � � � � �
 � #) � � ��� + � ���� + % ����� % ����� � ���� � ASMISC

# 	 � �:� 	 � � � �
 (� � � � ����
� � 	>� � � � � �
 (� � � �/.�.�.�� � � � � � � ����� +�� � � � �/.�.�.�� � � �
 '3#��"���� ASCONS

� � 	 � � � �
 (� � � � ����
� � 	>� � � � � �
 (F��� � �/.�.�.�� � � � � � � ����� +�� � � � �0.�.�. � � ����+ ��� & � & �"���� ASNOWHERE

0
History of notation: There is an “underground tradition” of using the letter � to stand for the

set of live region variables. The earliest such use I know of is Christiansen and Velschow [1998],
from which the practise propagated to Henglein et al. [2001]. Wang [2001] also, apparently inde-
pendently, uses � for region assumptions.

The punctuation I use for the relations in Definition 3.28 is inspired by the typing judgment
“�������
	��� expr ����	��� ” in the HMN region type system, which itself mimicked the traditional
notation “���� stmt ���� ” for Hoare triples. In the UHL framework, the continuation of a ����� is
given by its embedded next-state jump rather than by its context, so the judgments do not need
a postcondition. (See Niss [2002] for a thorough development of the connections between Hoare
logic and the HMN region type system).

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 79

� 	
 �:� 	 � � � �
 (� � / � � �����
�:� 	>� � � �
� �
 � � / � ��� � � � �
 �"���� ASREAD

� 	
 � � 	 � �
� �
 � ����
� � 	>� � � � � �
 (F��� / � � � � � � �
 � � � / �"����� ASWRITE

Img
� � � � Img

� � = � / Img � � ��

Dom

� � (Dom
� � � � � � � Dom � � �	 � � �

� � / 	 � � � � � � � �

.///////0 ///////1

� � ��/ � E # 	 � Dom
� � /

	 � ��/ � � Dom ��� /
�:� 	 � �
� / / �
�/ / � ����
where � / / � � / (Img

� � /

 / / ��
�/ (Img ��� /I � � / ����� / � ���� J � � ��� � ��/ �

�:� 	 � � � � � (� / �
 (
 / � ��
 % % � � � �#� � � � � � � ��'� & + � ��� ASCALL

�:� 	 � � � � � �
 � &#+ � ASEND

The “AS” in the rule names stand for “Agent Scoping”.
The only really interesting one of these rules is ASGOTO, which says that un-

counted region variables may disappear silently from � . The point of this is that
a procedure with multiple entries may have different sets of uncounted parame-
ters for each entry, as long as a particular # �

is defined for each entry from which
a region annotation that mentions it is reachable. (However, this possibility is
not a central one in our theory. It will only be useful in quite specialized cases,
and always as an optimization rather than an essential feature. There is just no
reason not to allow it).

Definition 3.29. The annotated mutator � is well-formed by � and 	 iff

a. Dom � � Dom 	 � Dom � .

b. For each � in Dom � , �:� 	>� � � ��� � � � � 	 � � � � � � � � .
c. � � �
	 � ��	 � � 	 � �<G .

d. For each � 	 � � � � � � 	 � , � � � � �	 � � � ��G .

Notice that the system given here is a refinement of the one in Section 3.1.5:

Fact 3.30. If � is well-formed by � and 	 , then � � � is well-formed by 	 .

Theorem 3.31. Let ' be well-formed by 	 . If � ; ; � and � is stuck, then it
has one of the following forms:

1.
� � +)� .
2. � � �����
C� ��� � ��� � where � � � � � #) � � ��� + � ���� + % ����� % ��� � � ���� � such that

no � � � contains a step of the form � �; � / .
3. � � �����
C� ��� � ��� � where � � � � �7� / � ��� � � � �
 and � ��� � �	 � .

4. � � �����
C� ��� � ��� � where � � � � � � � � � �
 � � ��/ and � ��� � �	 � .

Notice that Theorem 3.31 corresponds exactly to Theorem 3.11. The proof
proceeds in much the same way, except that the handling of region operations
is, of course, new:

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 80

Definition 3.32. Define the relations �:� 	>� � � � and �:� 	>� � � � � ����� by

�:� 	>� � � �4' � � ASCSTOP �:� 	>� � �
� � + � ASCWRONG

�:� 	 � � � � Dom
C� Dom � � ���� �:� 	>� � � � � �����
�:� 	>� � � � � ���8�
C� ��� ����*��� � ASCSTD

� � 	>� � � � � ����
�:� 	>� � � � � � ��� � ���� ASSROP

� ��/ 	 � � � � � � � � � � �	/ � �	 � ��/ � ��G
�:� 	 � � � � � � � ' � � ASSEMPTY

� ��/ 	 � � � � � � � �

.////////0 ////////1

� � ��/ � E # 	 � Dom
� �

	 � ��/ � � Dom � �
� � 	 � � � / /��
�/ / � ����� � 	>� � � � � ����

where � / /�� Dom
 (Img
� � /

 / / � Dom � (Img ��� /I � � � � �#� ����� J � � � � � �	/ �
�:� 	>� � � � � � �8�
�� � � � � � � � � ' � � ASSFRAME

The “ASC” and “ASS” in the rule names stand for “Agent-Scoping invariant for
Configurations/Stacks”.

Lemma 3.33. Let � / = # �
.

a. If �:� 	 � � � � � �
 � ���� then �:� 	 � � � � � , � /��
 � ���� .
b. If �:� 	>� � � � � �
 � �(��� then �:� 	 � � � � � , � /��
 � ����� .

Proof. By rule induction on �:� 	>� � �"�
� �
 � ���� � ����� . The cases for ASGOTO

and ASEND are immediate.
For ASRELEASE, ASMISC, ASCONS, ASNOWHERE, ASREAD and ASWRITE, simply apply

the induction hypothesis. Similarly for ASNEW, ASALIAS, and ASRENAME, because
the freshly bound variable is uncounted and therefore cannot be in � / .

For ASCALL, observe that � / and Img
� � / are by disjoint by definition, so the

induction hypothesis can be applied to each of the “ � � 	 � � � / /��
�/ / � ���� ”
premises in turn.

�

Lemma 3.34. Assume � � 	 � �
� �
 � � � ' � � . Then �:� 	>� � � �
� �
 � � � � � .
Proof. By ASGOTO we have that
 � 	 � � � and ��� � � � � , � / where � / consists

of uncounted variables. Because � is well-formed, �:� 	>� � � � � � � � � 	 � � � � � � � � .
Now apply Lemma 3.33(b).

�

Lemma 3.35. If �:� 	>� � � � � � � ' � � and � � � � contains ���� , then �:� 	>� � �
� � ���� .
Proof. Let ����
� � ��� + � ����� � � ��� 3 � � � ' � �	/ . If � � contains ���� , then � � � � � � Mop �
� � � � � � contains � ����� � Jmp ��� � ' � ��/ . Therefore � � � � � �	/ , so � � � � � ��/ � = � � � � � � � .
�:� 	>� � � � ��� � ' � � implies �:� 	 � � � � ��� � ' � �	/ , from which �:� 	 � � � � �
���� is easily derived.

�

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 81

Proposition 3.36 (Subject reduction, level 1). Assume � � 	>� � � � .

a. If � �� ; �!/ , then �:� 	>� � � �!/ .
b. If � �

; � / , then �:� 	>� � � � / .
Proof. Part (a): By inspection of each of the rules for �� ; , we see that � must
have the form � � �����
C� ��� � � ' � ��� � � . Then the derivation of � � 	>� � � � must

be by ASCSTD and ASGOTO, so by Lemma 3.33 we get �:� 	>� � � � Dom
�� Dom � �
� � � � . Now proceed by case analysis on the derivation of � �� ; �!/ .
MXMISC �:� 	>� � � � Dom
�� Dom � � � � � � must be by ASMISC, which gives us

�:� 	 � � Dom
�� Dom � / � ���� / for the new � / and ���� . By Lemma 3.35

we also have �:� 	>� � � � � ����� / , so by ASCSTD we can conclude �:� 	 � � �
�!/ , as required.

MXCONS The updates of � in MXCONS exactly match the updates of
 in ASCONS,
so we have �:� 	 � � Dom
C� Dom � / � ���� / for the new � / and ���� . Now
apply Lemma 3.35 as for MXMISC.

MXNOWHERE, MXREAD, and MXWRITE Similar to MXCONS.

MXREADWRONG and MXWRITEWRONG Immediate by ASCWRONG.

MXCALL From the premises of ASCALL and the assumption that � is well-formed
we get the first premise of ASCSTD for � / . The second one follows by ASS-

FRAME; half of the premises come from the ASCALL, the other half from
Lemma 3.35 applied to the second premise of the original ASCSTD.

MXRETURN The right premise of ASCSTD must be derived by ASSFRAME. We have
� � � � � � � � � � � , so ASSFRAME has exactly two premises which happen to be

just what we need for ASCSTD for the new configuration.

MXSTOP Immediate by ASCSTOP.

Part (b). � �
; �!/ must be derived by MXROP. By comparison of each of

the rules for �����; with the corresponding ASXXX rule we find that �:� 	>� � �
� Dom
 / � Dom � � ����� . We also have �:� 	>� � ��� � � ��� � ���� , hence � � 	>� � �
� � ���� . Thus � � 	>� � � � � 9 � � � � / �
�� ��� ����� � � � , since the heap part of the
configuration is ignored by the ASCXXX rules.

�

Proof of Theorem 3.31. First, prove �:� 	>� � � � by rule induction on � � ; ; � .
The base case MBSTART is guaranteed by Definition 3.29(c,d). For MBRGN and MB-

STD, use the induction hypothesis and Proposition 3.36, and for the other rules
the induction hypothesis directly.

Now do case analysis on the derivation of �:� 	>� � � � . The case ASCSTOP is
immediate (by definition �4' � � is not stuck), as is ASCWRONG, which is explicitly
allowed by the statement of the theorem. So we have �7� � � ���8�
C� ��� ����*��� �
and �:� 	 � � Dom
C� Dom � � ���� . Continue the case analysis on the latter
judgment.

ASNEW Dom
 does not contain # 	 , so MXNEW and MXROP applies and � was not
stuck after all.

ASALIAS Dom
 contains # but not # 	 . Also, by Proposition 3.24, � �
 �-# � � is de-
fined, so MXALIAS and MXROP applies and � was not stuck after all.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 82

ASRELEASE Dom
 contains # 	 , and Proposition 3.24 tells us that � �
 � # � � is de-
fined. Therefore either MXRELEASEN or MXRELEASE1 applies with MXROP, and
� was not stuck after all.

ASRENAME Dom
 contains # 	 + but not # 	 � . Therefore MXRENAME and MXROP ap-
plies and � was not stuck after all.

ASGOTO ���� is � � ' � � for some � , and by the assumption that � is well-formed,
plus Lemma 3.33, we have �:� 	 � � � � Dom
C� Dom � � � � � � . Continue the
case analysis by the derivation of that:

ASMISC Either MXMISC will apply or we are in the situation described by prong 2
in the theorem.

ASCONS We have # 	
Dom
 and � � , ..., � � 	

Dom � . By Proposition 3.24 this
implies that � �
 �-# � � is defined. Therefore, MXCONS applies and � was not
stuck after all.

ASNOWHERE Similar to ASCONS.

ASREAD We know that � ��� � is defined. According to its value, either prong 3 in
the theorem applies, or one of MXREAD or ASREADWRONG will apply.

ASWRITE Similar to ASREAD.

ASCALL The first three premises of ASCALL guarantee that MXCALL will apply, and
� was not stuck after all.

ASEND Continue the case analysis on the derivation of �:� 	 � � � � � � � ' � � .
If ASSEMPTY, then MXSTOP will apply. Conversely, if ASSFRAME, then its
premises guarantees the MXRETURN will apply. In either case � was not
stuck after all.

�

3.3 Region soundness

In Section 3.2.2, we defined an agent to be “region safe” if it makes sure that
none of the mutator’s heap accesses will be outside the currently allocated part
of the heap. It is intuitively obvious that this is what we want to require of
agents that our region inference produces. Or is it?

Certainly, region safety is what most published proofs of “correctness” of the
Tofte–Talpin calculus [Banerjee et al. 1999; Calcagno et al. 2002; Calcagno
2001; Dal Zilio and Gordon 2000; Helsen and Thiemann 2000] or other region
systems [Aiken et al. 1995; Christiansen and Velschow 1998; Niss 2002; Walker
et al. 2000; Wang 2001] aim to establish. But on closer inspection, it is really
not all we need. When our goal is region inference, we are interested in region-
based memory management as an implementation technique for programming
languages with implicit memory management (whereas some of the cited works
view regions as a programmer-visible concept that just happens to be statically
checked). And in general, we expect an implementation to do more than simply
not crash: We expect it to implement the semantics of the original program says
it should do. In the present context, it means that the region-annotated mu-
tator must have the same observable behavior as the original (non-annotated)
mutator had. We define:

Definition 3.37. The agent � is called region sound iff � bs � � � �

 � ��� bs � � � '

 � ,
where ' � � � � .

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 83

� � �
�

���
	 	 	

���

� � � ��� +��
� � �
 ' � �

� � � � ��� � 	 	

� �

� � �
�

���
	 	

��

� � � ��� +��
� � �
 ' � �

� � � � ��� � 	

���

&#+ �
��	

output FOO � � � �Yes No
���

output BAR &#+ �
���

� � � � ���� � � �� � � � �

���

unbind
� ���

��

&#+ �
���

Figure 3.6: Examples of the difference between safety and soundness. The anno-
tated mutator in the top part of the figure is region safe but not region sound. The
one in the bottom part is sound but not safe.

Soundness is (with some variations in terminology) what the original articles by
Tofte and Talpin [1994, 1997] proved. In the subsequent literature, Calcagno
[2001] seems to be alone in mentioning soundness, and that only in a brief
remark to the effect that the safety that he proves obviously implies soundness.
And this implication is indeed more or less obvious in Calcagno’s context, but it
is no longer true in our more general setting!

Indeed, consider the annotated mutator shown on Figure 3.6(a). It is triv-
ially region safe (not containing any read or write operations, it cannot possibly
end up in state
� � +)�), but it is not region sound: If we ignore the region
annotations, we find that the global abstraction of its ideal behavior contains
only � out.BAR ��� � (and its prefixes), because the test at ��� will always come
out false. (In the ideal semantics, all allocations in a single execution trace
will be at different addresses). However, in the managed execution the cell
pointed to by � gets deallocated before the second allocation, so the region
manager is allowed to reuse the same address for both

��� +�� nodes. There-
fore, � � � � � �
� � � out.FOO � � ��� � is a managed behavior, so � out.FOO � � � is in
the global abstraction – which proves the lack of soundness.

Incidentally, the converse implication is false, too: Soundness does not imply
safety. The uniform mutator on Figure 3.6(b) is an example of this. It consis-
tently tries to read from an unknown heap address, and has as its only execution
trace

� � � �
	 � �
� �� ; � � �� � � � � � �

� �� ;
 � � +)�
Nothing an agent can do will prevent this, so any agent will be region unsafe.
On the other hand, this also mean that an arbitrary agent will actually preserve

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 84

the ideal behavior; thus the agent is sound.

3.3.1 One half of soundness is trivial

We shall adopt region soundness as our general standard of correctness for
agents. However, our definition of soundness is quite inconvenient to reason
about. In general it is easier to prove safety, so we want to develop a criterion
allows us to infer soundness from safety and excludes cases like Figure 3.6(a).
We will do that below, after we prove a general theorem that simplifies reason-
ing about region soundness:

Theorem 3.38. Let � be any well-formed annotated uniform mutator, and let
' � � � � . If � � �

 = � � '

 , then � is region sound.

Proof. Below we will show (Proposition 3.43) that � � '

 = � � �

 holds in general.
Therefore � � '

A� � � �

 , so their global abstractions are obviously equal, which
proves that � is region sound.

�

We will prove that every ideal behavior is also a managed behavior directly by
simulation. The idea of the proof is to take an arbitrary ideal execution trace and
show that the annotated mutator can duplicate it exactly, writing and reading
the same values in the same heap cells. This is possible because the managed
semantics merely allows but does not force the reuse of heap cells. The only
way this can fail is if the agent has already deallocated a cell when the ideal
execution accesses it – but in that case the managed execution will get stuck,
whereupon MBSTUCK1 allows it to keep mimicking the I/O events that the the
ideal execution does, nevertheless.

Define, for the duration of the proof, the relation � between managed config-
urations and ideal configurations (with the helper relation � / between managed
and ideal stacks):

�
� / �

SIMEMPTY
��� /	� /

� � ���8�
C� � � � � ��� / � � � � � � Rtn � � � � � � / SIMFRAME

� = � / � ���� � Jmp ��� � ' � � ����/ � /
� � �����
C� ��� ����*� � � � � � / � ��� � ��� / � SIMSTD

� ' �	� � � ' � � SIMSTOP
� is stuck

��� � / SIMSTUCK

Lemma 3.39. Assume �
�
�; ; � � � � � �8�
�� ��� ��������� � and that � ���� � Jmp �

� � ' � � . Then there exists
� / = �

, � / ,
 / such that �
�
� ; ; � � /���� /��
 / � ��� � � ' � ��� � � .

Proof. By structural induction on ���� . The case ���� � � � ' � � is trivial. If, on
the other hand, ���� � � ��� � ���� / , then by Theorem 3.31 � cannot be stuck, so

� �
; �!/ � � 9 � � � ��/��
 /�� ��� ����� / ��� � . Therefore � � ; ; �!/ . Now apply the induction

hypothesis to � / , and we find � � ; ; � � / /���� / /��
 / /�� ����� � ' � � ��� � , where
� / / =

� 9 � � = �
, which completes the proof.

�

Lemma 3.40. Assume � ; ; � , ��� � / , and � / �� ; �!/� . If �5� � � �����
C� ��� � � ' � ���
� � is not stuck, then � �� ; � � for some � � with � � � � /� .

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 85

Proof. ��� �!/ must be derived by SIMSTD; we have

� / � � � / � ��� ��� � � with
� = � / and ��� / � /

Now proceed by case analysis on the derivation of � /��� ; �!/� .
IXMISC We get �!/� � � � � � /�� ��/���� / � with a � / such that by SXMISC we have � �� ;

� � �����
C� � /�� ����*� � � with � ���� � Jmp � � � ' � �	/ . Thus � � � �!/� , as required.

IXCONS Assume first that the at annotation in ��� � � is

 '�# rather than + ��� & � & .

Since by assumption � is not stuck, we know that
 �-# � and � �
 �-# � � are
both defined. Because the � chosen in IXCONS is not in Dom

� / , it is not in
Dom

�
either, so the same � can be used in MXCONS

On the other hand, if the at annotation is + ��� & � & , then the � from
IXCONS can trivially be reused in MXNOWHERE (which does not restrict �
at all).

�
will not grow as

� / does, but that is OK because
�
� is only

supposed to be a subset of
� /� anyway.

IXREAD Either MXREAD or MXREADWRONG will apply. In the latter case SIMSTUCK

completes the proof, so assume the former. Because
� = � / , we have� / ��� � � � � � � , so the � / in IXREAD and MXREAD will be the same.

IXREADWRONG Because � ��� � �	 Dom
� / , it cannot be in Dom

�
either. So MX-

READWRONG applies, and SIMSTUCK completes the proof.

IXWRITE As for IXREAD, assume that MXWRITE will apply. Because IXWRITE and MX-

WRITE both update the heap with
�� � ! � � , the subset relation between them

will be preserved.

IXWRITEWRONG Similar to IXREADWRONG.

IXCALL Because � is not stuck, MXCALL will apply; only one � � is possible. It is
obvious that � � � �!/� by SIMSTD and SIMFRAME.

IXRETURN Because � is not stuck and � / respects the overall shape of stacks,
MXRETURN will apply.

IXSTOP ����/ � / implies � � � , so the only rule that can apply is MXSTOP. As � is
assumed non-stuck it will apply.

�

Lemma 3.41. Assume ' ; ; � / and ��� �!/ . If � / is stuck, then so is � .

Proof. By case analysis on � . SIMSTOP is impossible: � ' �	� is by definition not
stuck. The case for SIMSTUCK is trivial. For SIMSTD, apply Theorem 3.11. Its
first possibility is inconsistent with the shape of � / in SIMSTUCK; the other three
immediately imply that � is also stuck, as required.

�

Lemma 3.42. Assume ' � ; ; �!/ . Then there exists � � such that � � ; ; � � and
� � � �!/ .
Proof. By rule induction.

IBSTART Trivial, by MBSTART.

IBSTD Apply the induction hypothesis to '
�
�; ; � ; we get a � � such that �

�
�; ;

� . If � � is stuck, then use MBSTUCK1. Otherwise � � must have the form
� � �����
C� ��� ����*� � � . By Lemma 3.39 we can assume that ���� has the form
� � ' � � ; so apply Lemma 3.40 and MBSTD.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 86

IBTERM Apply the induction hypothesis to '
�
�; ; �4' � � ; we get � + such that

�8+ � �4' � � . This means that ��+ must either be � ' � � , in which case we can
use MBTERM, or stuck, in which case we can use MBSTUCK2.

IBSTUCK1(2) Apply the induction hypothesis to the '
�
� ; ; �!/ . We get a � such

that � � �!/ . By Lemma 3.41, � is stuck, so MBSTUCK1(2) will apply.
�

Proposition 3.43. Let � be a well-formed annotated uniform mutator, and let
� be a managed behavior of it. Then � is also an ideal behavior of � � � .
Proof. This follows directly from Lemma 3.42.

�

3.3.2 Soundness from safety: Pointer-blind programs

We now turn our attention back to the problem of when soundness is implied
by safety. As explained, the challenge is to find a condition which will exclude
programs like the one in in Figure 3.6(a) which is safe but not sound.

What goes “wrong” in Figure 3.6(a) is that the program compares pointers
after what they point to has been deallocated. So if we disallow pointer com-
parisons altogether, we should at least be on our way to having safety imply
soundness. (Later, we will allow a controlled form of pointer comparison). This
plan also has the appealing feature that we can infer soundness from safety plus
a property of the underlying uniform mutator rather than of the agent.

How can we formally specify the absence of pointer comparisons in a uniform
mutator when such comparisons can be hidden within a #) � � node? Intuitively,
we can test it by taking each ��� set in the uniform mutator and check that it
is closed under the operation of “replacing some pointers by other pointers” on
both sides of each � � ; � / step. If that is the case, everything that the mutator
can do with equal pointers, it can also do with different pointers, and vice versa.

The bit about “replacing some pointers by other pointers” in the previous
paragraph was rather fuzzy, so we hasten to give a formal definition:

Definition 3.44. Let ' be a uniform mutator, and let the displacement
�

be
some map � ; � . A set ��� of steps commutes with

�
if, for all ��+ and � � with��+ � � H � � :

a. If ��+�� ; � /+ 	 ��� then � � � ; � /� 	 � � for some � /� such that � /+ � � H � /� .
b. If � � � ; � /� 	 ��� then ��+ � ; � /+ 	 � � for some � /+ such that � /+ � � H � /� .��+ � � /+ 	 ���;

� � �

���

� /�
���

	 ���;
Definition 3.45. The uniform mutator ' is pointer blind if every

� � � ; �
has an extension

� � � � ; � � �
such that

� � �C+ � � � =
� and each � � in '

commutes with
� �
.

This definition turns out to be the right one (or at least strong enough to prove
what we want):

Theorem 3.46. Let � be a well-formed annotated uniform mutator. If � � � is
pointer blind and � is region safe, then � is region sound.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 87

 � ��� � � ���
����	 	 	

���

� � ����� +	�
� �
 ' � �

� � � � ��� � 	 	

���

&#+ �
���

 � ��� 	 � � �
����	 	

��

output
�

��

� � ����� +	�
� �
 ' � �

���

� � ��� 	���� �
��� � � � � �

� � �

��	 � � �� � � � �

� � � � ��� � 	

���

Figure 3.7: A counterexample to Proposition 3.47.

Some general remarks are in order before we prove this theorem. A uniform
mutator can only be pointer blind if it represents arithmetic numbers by ele-
ments of � that are distinct from the addresses in � (� �): Definition 3.44
must hold for displacements with arbitrary effects on � , which will fail if the
) � � node in question tries to do arithmetic on something in � . This implies
that a pointer-blind program must use a tagged representation to distinguish
between pointers and data.

This may seem problematic, because one might like to use region-based mem-
ory management with a language where a strong type systems subsumes the
need for run-time tags on pointers. However, notice that the uniform mutator
is but a model of the actual execution. We can prove soundness of a tagless an-
notated program by showing2 that it is observationally equivalent to a version
with tags and then applying Theorem 3.46 to the latter one.

The reason why we do not simply fix
� � ��� � �	� for � �	 � is that we want the

theorem to be useful for implementations that sometimes combine a pointer
with some tag bits in a single word (thereby setting up a part of � �

� as a
“shadow copy” of �), or for applications where the uniform mutator sometimes
pack several atomic values into one UHL variable (such as the representation of
the call stack in the second half of Section 6.1.6, or when representing a unifi-
cation operation in Prolog, in which case the unification stack can conveniently
be represented by a single UHL variable).

Now, to prove the theorem, a natural first attempt would be to derive it as a
corollary of

Proposition 3.47 (FALSE!). Let � be a well-formed uniform mutator such that
' � � � � is pointer blind. If �

�
� ; ; � such that � ��
� � + � , then '

�
� ; ; � / for

some � / (with ��� �!/ in some way).

Unfortunately, this proposition is not true. Figure 3.7 shows a counterexample.
Because the two

��� +�� nodes may end up allocating the same heap cell, there is
a risk that the heap write in ��� will not go
� � +)� but instead update the same
cell that � points to, in which case ��� will output

�
	 ��� � instead of the expected� 	���� � . Therefore Proposition 3.47 is not true for this example.

2Such a proof could be done with standard techniques for type soundness. Here it helps that the
“infinite word length” of our model means that there is always room for another tag bit.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 88

However, Theorem 3.46 is not necessarily lost, because even though the uni-
form mutator in the counterexample is clearly pointer blind, the agent is not
safe – it can go wrong at ��� . The unexpected fact is that this possibility of going
wrong seems to harm the soundness even of execution histories where it does
not actually happen.

Back to the drawing board, then. Theorem 3.46 apparently cannot be proved
by the standard procedure of attempting the “obvious” induction proof and then
adding material to the invariant as it becomes clear that it is needed. Instead
we need a trick, and here is one that works:

Take an arbitrary managed execution trace and use it to construct not one but
two simulations:

a. An ideal execution trace that simulates the original one, but with all point-
ers displaced sufficiently far from each other that all

��� +�� nodes in the
trace allocate different cells. At the end of the day, this is what we need
to conclude Theorem 3.46.

b. A managed execution trace that has had its pointers displaced in the same
way as the ideal trace from (a). The purpose of this one is to end up at

� � +)� in all situations where the ideal trace cannot keep simulating the
original one. Because the agent is assumed to be region safe, this cannot
happen, so by contradiction the simulation (a) will keep working.

Definition 3.48. Let an � with a pointer-blind underlying mutator be given,
and fix the displacement

� � � ; � as

� � �
� � �

��� � ��� �

Let
� �

be its (mutator-specific) extension to � given by Definition 3.45.

The displacement maps new “ideal” addresses to the original “managed” ones.
The point of the exact definition is to make sure that each contiguous sequences
of “managed” addresses is hit sufficiently often by

�
that we can always find a

suitable “ideal” address at a
��� +	� node.

Definition 3.49. Define the relation � +�� � ��� � � , where � + , � � are managed
configurations and � � is an ideal one, by

� � ' � � � � ' � � � � ' � � .
� � � +(� �8+(�
�� ��+ � ��������� + � � � � � ��� � �
C� � � � � ����*��� � � � � � � � � � � � � ��� � � iff

1.
� + H � / � � � H �

� , where
� / is a finite, injective restriction of

�
.

2. For all �
	

Dom
�
� it holds that

� � � � � � � � �
� �

.

3.
�
�
= � �

4. � + � I	� � �,� ��� . � �,� � � ��� ��J H � � .
5. ��+ � � � H � � � .
6. � ���� � Jmp ��� � ' � � .
7. � + is � � with every local state � composed with

� �
.

8. � � is � � with every
 removed and every
� ��� replaced by � � � � � Rtn.

Lemma 3.50. Assume ��+ � � � � � � . If ��+ �� ; � /+ then either � � �� ;
� � + � or
there exist �!/� and � /� such that � � �� ; �!/� and � � �� ; �!/� with �!/+ � �!/� � �!/� .

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 89

Proof. By case analysis on the derivation of � + �� ; �!/+ .
MXMISC Because � is pointer blind, and by Definition 3.44(a), the chosen ���

also contains � � � � ; � /� � for some � /� � such that � /+ � � � H � /� � . This allows
us to construct the required � /� and � /� by MXMISC and IXMISC, respectively.

MXCONS The original execution allocates �
words beginning at address � .

Choose � such that
�

� �
� � - �

and � � � max Dom
� � , and let � �

= � � � . Then, for
��� � � �

it holds that � � � � � � � � � � � � , so� ��� � � � � � � and for � �
�

��/ � � � we have
� � ��/ � � � � ����/ � �

.
Construct the appropriate instances of MXCONS and IXCONS for � � and � � ,

where in each case the new heap cells are allocated at address � � . Now
�!/+ � � /� � � /� for the new states: Clause 1 of the definition of � � holds
by extending

� / with values for � � � �0.�.�.�� � � � ; it will stay injective because
by assumption � ���/.�.�.�� � � is disjoint from Dom

� + . Clause 2 continues
holding by explicit construction of � � . Clause 3 keeps holding because the
same addresses � � � �0.�.�.���� � � � get added to

�
� and

� � . Clause 4 keeps
holding because the new addresses map to the old ones. Clause 5 keeps
holding because � � through � � are uniformly removed from both data

states, and
� � � � �

� � � by construction for the new value of � . Clause 6
holds by definition of ' � � � � , and clauses 7 and 8 are not touched.

MXNOWHERE Select � � as for MXCONS. Then apply MXNOWHERE to � � and MXCONS

to � � . Definition 3.49(3,5) obviously keep holding, ant the other clauses
are unchanged.

MXREAD We know that
� � � � � � ��� � � �+��+ ��� �5	 � . Therefore, by definition of

pointer blindness, � � � ��� �K	 � too, so either MXREAD or MXREADWRONG will
apply for � � . In the latter case we are done, so assume MXREAD.

Then � � � ��� � 	 Dom
�
� , so we have

� � � � � � � � � ��� � � � � � + � ��+ ��� � � . There-
fore, the required relation between � /+ ��� / � and � /�
 ��� / � will hold after MX-

READ. Also, because � � � ��� ��	
Dom

�
we have

� � � � /� � ��� � � � � � � � � � ��� � � � � � � � � � � ��� � � � � ��+ ��� � � � � /+ ��� � �
so the value of � will also stay related between � /+ and �!/� .

It is clear that � � can execute by IXREAD in parallel with � � because they
share the same � � � and

� � � �
� .

MXREADWRONG As for MXREAD, we must have � � � ��� �C	 � , but if � � � ��� � 	 Dom
�
�

then
� � � � � � ��� � � � ��+ ��� � 	

Dom
� + , a contradiction. Therefore � �

�
�
;

� � +)� and we are done.

MXWRITE As for MXREAD, we find � �
�
�
;
 � � +)� or � � � ��� � 	

Dom
�
� . Updat-

ing
�
� � � � � ��� � � with � � � ��� / � in parallel with updating

� + � ��+ ��� � � with� + ��� / � � � � � � � � ��� � � will not break the synchronization, and the new value
of � will also match according to the same computation as for MXREAD.

Likewise, � � can execute by IXWRITE in parallel to � � by MXWRITE.

MXCALL, MXRETURN All three traces execute calls and returns in synchrony. There
is a lot of uninteresting plumbing to take care of, but in the end the fact
that the call does not get stuck in � + ensures that it will not do in one of
the other states either, and the � � relation is preserved by design.

MXSTOP Similarly.
�

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 90

Lemma 3.51. Assume � + � � � � � � with � ; ; � + and � ; ; � � . If � + �
; �!/+

then there exists � /� such that � � �
; �!/� with � /+ � �!/� � � � .

Proof. ��+ �
; � /+ can only be derived by MXROP. The premise ��+(�
 �����; � /+ �

easily implies to � � �
 �����; � /� �
 because none of the �����; rules care about the

address sets in � .
Thus � /� can be constructed by its own application of MXROP. Proposition 3.23

ensures that the heap restrictions for � /+ and �!/� proceed in parallel.
�

Proposition 3.52. Assume that � is pointer blind (by
�
,
� �
) and region safe. If

� � ; ; ��+ , then there exist � � and � � such that � � ; ; � � and ' � ; ; � � with
��+ � � � � � � .
Proof. By rule induction on � � ; ; ��+ .
MBSTART Easy:

� � � � � � � ' � �
	 � �
� � � � � � ��� � ' � � 	*� �

�
� � � � �
	*� �

�

MBRGN Use the induction hypothesis and Lemma 3.51.

MBSTD Use the induction hypothesis and then Lemma 3.50. The outcome � � �� ;

� � +)� is impossible because � was assumed to be region safe.

MBSTOP Trivial.

MBSTUCK1/2 If ��+ is stuck, then one of the four cases in Theorem 3.31 applies.
Case (1) contradicts the definition of � � . For case (2), apply Defini-
tion 3.44(b) to see that � � and � � must also be stuck. For case (3) and
(4),

� � � � � � ��� � � � � + ��� � �	 � implies � � � ��� � �	 � by definition of
� �
. In every

case � � and � � are both stuck, so set � /��� � � � ��� � and apply MBSTUCK1/2

and IBSTUCK1/2.
�

Proof of Theorem 3.46. The theorem now follows from Proposition 3.52
�

As it stands Theorem 3.46 is not completely helpful, because one can seldom be
sure that uniform mutators will always be pointer blind. Pointer comparison is
an often-used primitive in many object-oriented language, and even ML offers
pointer comparison for references.

One way around this dilemma would be to instrument the uniform mutator
such that each allocated block contains a unique (non-pointer) sequence num-
ber that can be compared instead of the pointers themselves. Of course this is
not a good solution – it is somewhat impractical and inelegant and breaks the
direct relationship between the heap object layout in our formal model and the
intended low-level implementation of the language.

But the bad solution hints at a better one: If we can be sure that what the
two pointers point to is still there, it will give the same results to compare the
pointers than to read the sequence numbers and compare them. So in that case
it will not hurt soundness to compare pointers. If we can arrange for all pointer
comparisons to have this property, we never need to read sequence tags, so we
don’t have to write them in the first place. This could be done by giving each
pointer comparison a context like

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 91

� � �� � � � �
 � � �� � �
� �
 unbind
�8� � �F��� � Yes

No

The two reads ensure that the program goes
� � + � if the comparison would be
unsound. Because the values read are discarded, no actual “load” instructions
need to be used when the annotated program is eventually compiled to machine
code – the job of the read nodes is only to force the region inference to avoid
unsound agents, by pretending that they would be unsafe.

This strategy can be integrated in the proof of Theorem 3.46: If � � � � is a
comparison between variables �%+ and � � , and we can prove by some method
that � ; ; � � ���8�
C� ��� ��� � � implies � ��� � � � � 	

Dom
�

then we can exempt
� from Definition 3.44 and still have the theorem hold. The MXMISC case in
Lemma 3.50 would need a special case for � : � � � ����+ � � � � �

will both be in
Dom

�
� ; because

�
’s restriction to Dom

�
� is injective this means that

� � � ��� + � � � � � � � ��� � � � ��� � � � � � � ��� + � �<� � � � � � � � ��� � � ��� �
Because of Definition 3.49(2) we also have

� � � � � ��� � � ��� � � ��+ ��� � � � �
, so

� � � ��� + � � � � � ��� � � � � � + ��� + � � � � ��� � �
which means that � � and � � will end up at the same side of the conditional as
��+ , as required.

This proof tactic assumes that the edges between the dummy reads and the
comparison do not contain any region operations that may deallocate the cells
pointed to by � and � . However, it is clear that such region operations would
have no bearing on the values of the pointers themselves, so they cannot influ-
ence the outcome of the test.

The proof can also be extended to deal with the situation that we compare
pointers not only for equality but also for the arithmetic order of different point-
ers (for example, to implement Prolog’s pointer comparison operators � � , � � ,
etc.). We shall just sketch the basic principles: Definition 3.49(1) would need
to be amended with a condition that

�
’s restriction to Dom

�
� should be mono-

tonically increasing. Then the proof case for the comparison operation would
be easy, but maintaining this invariant in the MXCONS case is not trivial. If the
original execution path starts by allocating something at addresses

�
 and
�(�

,
there is no knowing in advance how many times it will allocate something at
address

� �
and expect it to lie between those two first allocations.3 So we need

to parameterize the induction property 3.52 with some extra information that
ensures that enough unused space is left in the final

� /� . I think it is intuitively
clear that this can always be done for any given entire original execution trace,
but the details of formalizing it get messy no matter how it is done, so let us
leave the matter at this sketchy level.

Another language feature that could prevent uniform mutators from being com-
pletely pointer blind is pointer arithmetic. The pointer-blindness restriction

3“Expect” in the sense that we need to prove that whatever the program does when the all of
the subsequent allocations lie between the first two ones, it will be something that is allowed by its
ideal semantics.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 92

does allow a limited form of pointer arithmetic, namely the auto-increment
behavior of the read and write operations. The combination

� � �� � � � �
 unbind �

has the net effect of stepping the pointer in � one address forward4, and a
sequence of such stepping operations will suffice for modeling access to a non-
initial field in a heap structure.

However, one can imagine situations where it would be desirable to perform
some pointer arithmetic without immediately accessing the heap through the
resulting pointer – for example, if one wanted to represent a

 � ��� �
 ��� � � � �
� � � � �
��
statement in C. Such an offsetting operation done by dummy reads would go

� � + � if
 is a dangling pointer, which – though intuitively unnecessary –
would force agents to ensure that the pointed-to structure is still allocated. It is
doubtful whether this anomaly would do much harm to the precision of region
inference (after all, programs rarely do something like this unless they intend
to actually access the structure later anyway), but it would be nice to have a
theoretical justification for not enforcing this artificial requirement in the region
inference.

Unfortunately the proof of Theorem 3.46 relies directly on the guarantee that
a safe program can do pointer arithmetic only on still-allocated addresses. This
assumption allows Definition 3.49(2) to restrict its attention to �

	
Dom

�
� ;

in default of it
�

could have no discontinuities at all and the proof would break
down.

The proof can be fixed to allow
� � +)� -free pointer increments, but as with
comparing pointers for ordering, the details get messy and are left out. Again,
we must let the details of the simulation depend on the future of the computa-
tion, and simulate one execution trace at a time. Definition 3.49(2) would need
to be replaced with a statement that every pointer known to � � can be incre-
mented sufficiently far without running into a discontinuity of

�
. An adequate

interpretation of “sufficiently far” could be the length of the rest of the compu-
tation (here it comes in handy that Proposition 3.52 needs to speak about finite
execution traces only), but it would need some finesse to define “every pointer

known to � � ” robustly if the extension from
�

to
� �

is not trivial.

3.3.3 Preservation of soundness

Theorem 3.46 will be our preferred way of showing from scratch that an agent
is region sound5, but we can get by easier if we already know another region-
sound agent:

4Backward-stepping is rarely useful without C-like explicit pointer arithmetic and arrays, and we
do not handle arrays at all in this thesis. However, if one wanted to model an object layout where
some fields have negative offsets with respect to the pointers that the program passes around, one
could easily imagine adding a primitive backwards-stepping instruction to UHL.

5However, we would need something stronger if we wanted to extend region inference to lan-
guages where the unannotated uniform mutator is not necessarily memory safe, such as C. It follows
from the proof of Theorem 3.38 (more precisely, from Lemma 3.42), that any agent for a memory-
unsafe mutator must be region-unsafe. I leave further exploration of this problem for further work.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 93

Theorem 3.53. Let � + and � � be agents for the same mutator ' . Say that � �
is conservative with respect to � + iff � � � �

= � � � +

 .
If � � is conservative with respect to � + and � + is region sound, then � � is

also region sound.

Proof. Proposition 3.43 tells us that � � '

 = � � � �

 . Because � bs ��� � is a mono-
tonic operator (which is clear from its definition), this implies � bs � � � '

 � =
� bs � � � � �

�
. For the opposite inclusion, the premise � � � �

= � � � +

 similarly im-
plies � bs � � � � �

� = � bs � � � � +

 � � � bs � � � '

 � where the last equality is from the
assumption that � + is region sound.

�

This theorem will be our principal way to show that the output of an agent
transformation preserves region soundness. Note that soundness is preserved
even if the agents are not region safe!

(It is an intuitive fact that Theorem 3.53 is also true with “region safe” in-
stead of “region sound”, but it is not completely trivial to prove this with our
definitions, because � � �

 hides the difference between
 � � +)� and other kinds of
stuckness. We’re not going to need this alternative result, so we shall spare the
time it would take to prove it).

3.4 Annotatable edges and flowchart chunks

Sections 3.1 and 3.2 have presented the uniform host and agent languages as
generally as possible without making the proofs of their properties unnecessarily
complex. In practise one usually wishes to place some restrictions on the shape
of mutators and agents.

First, it is not always convenient that every edge in the flowchart can be an-
notated by region operations. Some edges may only be put there for the sake
of modeling the mutator’s operations within the UHL framework but do not ac-
tually correspond to places in the machine code that the host implementation
intends to generate for the mutator. In other cases it may be that the translation
of a host-language construct into UHL simply introduces more edges than the
number of different places in the source host-language syntax where it would
be convenient to display region annotations. And in general, it is desirable,
for the sake of the efficiency of the region inference algorithms, to reduce the
number of possible places where region annotations can be put.

Therefore, in general we will let the producer of a uniform mutator also pro-
duce a set of edges that are “suited” to be annotated with region operations. We
will refer to this set as the set of annotatable edges for the uniform mutator.

An alternative way of thinking of this is to look at the dual concept: Consider
the flowchart of the uniform mutator with all of the annotatable edges removed.
If there are sufficiently many annotatable edges (as there ought to be), the
flowchart falls apart into (weakly) connected components. Let us call these
components chunks. If two nodes in the flowchart are connected by an edge
that is not annotatable, they are in the same chunk.

We can imagine a “simplified” flowchart consisting of the chunks as nodes
plus the annotatable edges of the original uniform mutator. Most of the region
inference process works on this simplified graph rather than the uniform muta-
tor itself. The internal structure of the chunks will be mostly ignored – this is
part of the reason why we could claim in Section 1.4.2 that uniform mutators

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 94

need not exist in full on the computer. Only the simplified flowchart actually
needs to be constructed, and representations of the chunk internals need only
be handled briefly during the construction of it.

3.4.1 Call chunks

Every chunk that contains a
��
 % % node must have a shape like

��
 % % � �!��� � �
'� & + � � �

unbind � unbind �

unbind
�

unbind �

That is: Every edge from a call node must be annotatable. Every edge to a call
node must be annotatable unless it comes from a #) � � node that just unbinds
variables, in which case the same conditions apply to that #) � � node. (Neither a
call node or the #) � � nodes that fall under this rule may be procedure entries).

Such chunks are called call chunks and are treated specially by most of the
region inference algorithms. The presence of a fan of unbinding nodes in the
chunk is somewhat inconvenient notationally; it would be nicer to be able to
have a chunk consisting only of the

��
 % % node. The reader is free to imagine
that call chunks have this simpler form, if he is also willing to imagine that
the definitions of how to map actual intermediate languages to UHL use slightly
more complicated principles for positioning “unbind” nodes than the one I give
in Chapter 4.

3.4.2 Guidelines for chunk size

Because most of the region-algorithms work on the chunk level, their running
time of the region inference algorithms will to a large degree be affected by the
number of chunks rather than the size of the mutator before dividing it into
chunks. Therefore it is worthwhile to strive to have relatively large chunks. But
if the chunks get too large, the precision of chunk-based transformations and
analyses may suffer.

Imagine, for example, a region-annotated mutator containing

�����
���

��� � ��� 	 � ��� 	

�����
���

���
	 	 ����
	 	

&#+ �
��

where dotted arrows stand for annotatable edges and �� and ��� constitute a
chunk. Now imagine a region optimization that depends on doing some sort
of alias analysis on region variables. If the analysis treats each entire chunk as
an atomic unit, it will conclude that it is possible for

� � and
�
 to be aliased in

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 95

the chunk containing ��� , even though ��� is not actually reachable from the

 %)
 �

operation.
To prevent such problems, and to make sure that reasonable agents are pos-

sible, we will define a set of general rules for the shape of chunks. One of the
requirements will reject the chunk above as “too big” – it should be split into two
smaller chunks by making the edge from �� to ��� annotatable, thereby breaking
the apparent causal chain between ��� and ��� .

The rules are not absolutes – nothing will break if they are not followed, but
in general better agents will be possible when they are observed.

Let a split-node mean a node in the flowchart with more than one outgoing
edge, and a join-node be one with more than one incoming edge. A

�
 % % node
counts as “proxy” join-node (because there may be several calls of the same
procedure) as well as a split node (because a return in the called procedure can
go to either of several

�
 % % nodes).
Now, there should be at least one annotatable edge on any path

a. from a read (or write) node to a
��� +�� node. The read may be the last use

of a heap cell, and we want the agent to have the possibility to deallocate
it and let it be reused in the

��� +	� . The same is true of a write node – the
last access to a heap cell could easily be a write (for example if each read
from the cell is consistently followed by a write, which can be a useful
programming invariant for some uses of updateable locations).

b. from a read (or write) node to a join-node. The read may be the last access
to a region that need exists only in one of the paths to the join-node; it
should be possible to � & % &
 � & the region before the join, lest other paths
need to invent a binding for the region variable simply to keep the agent
well-formed.

c. from a read (or write) node to an &#+ � node. It may be sound to deallocate
some region after the read, and it would be wasteful to force it to be
passed back to the caller and deallocated only after the return.

d. from a split-node to a
��� +	� node. The fact that the mutator chooses a

particular direction at the split-node may be what the agent needs to con-
clude at some heap cells will never be accessed again; it should have the
chance to let them be reused in the

��� +�� .
e. from a split-node to a join-node. Otherwise the agent will be unable to

exploit the knowledge that the mutator takes this particular path rather
than another one.

f. from a split-node to a &#+ � node. Again, the fact that the a particular
direction is chosen may enable the agent to deallocate some region; it
should be possible for this to happen within the procedure.

g. from a procedure entry to a
��� +�� node. It would be wasteful to force all

callers to pass a “scratchpad” region as a parameter if the allocation turns
out to be short-lived.

h. from a procedure entry to a join node. Some set-up region operations may
be necessary for compatibility with the other predecessors of the join; it
should be possible to do them locally rather than distribute across them
all call sites.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 96

We can summarize all these rules simply: There should be an annotatable edge
on any path

from

.//0 //1
a read or write node

a split-node

a
��
 % % node

a procedure entry

� //
�//

�
to

.//0 //1
a
��� +�� node

a join-node

a
�
 % % node

an & +	� node

� //
�//

�

The only of these combinations that has not been argued for above is a path
from a procedure entry to an & +	� node without any intervening splits, joins,
reads, writes,

��� +	� es and
��
 % % s. Such a procedure consists of just a linear se-

quence of #) � � nodes and could be ignored completely by the agent. The most
efficient way of handling it would be to inline it6 at all call sites. In default of
that, it will not hurt much to award an annotatable edge somewhere in it.

The reasoning behind the “from procedure entry to something” cases also ap-
ply to the degenerate case that the procedure entry is a something. We will
generally assume that the uniform mutator is constructed such that no proce-
dure entry is a

��� +�� , �
 % % , & +	� or join-node. This can be easily achieved by adding
a no-op #) � � node and an annotatable edge, if necessary.

One further goal of this kind may be imagined: to have an annotatable edge
on any path from one

��� +	� to another. If the allocated cells turns out never
to be used, it should be possible to deallocate them and reuse the memory for
the next

��� +	� . However, such a rule would be formally awkward and would
also prevent the efficiency benefit that could be reaped from treating a complex
sequence of term constructions as a unit in most of the region inference (which
is a sound principle in general). This is why we added the + ��� .& � & possibility
for the region annotation on a

��� +�� node. With + ��� & � & there will never be any
reason to put region operations between

��� +	� nodes (at least not because they
are

��� +	�).

3.4.3 Pruning the annotatable edges

It will often be the case that the “natural” way of selecting annotatable edges
during the generation of a uniform mutator will lead to many more annotat-
able edges than necessary for satisfying the rules of the previous subsections.
Because many phases of the region inference work at the chunk level, having
too many annotatable edges will harm the performance of the region inference.
Let us therefore present a general algorithm for pruning the set of annotatable
edges down to a minimum.

The basic idea is to consider the annotatable edges one at a time, and only
leaving an edge annotatable if removing it would cause a violation of one of
the principles and rules in the previous subsections. In principle it is immaterial
which order we consider the rules in, but it will be easier to spot violations if
we consider the edges in topological order. For this, we need the flowchart to
be acyclic; if it contains cycles we need to identify, in some other way, at least
one annotatable edge in each cycle and declare it to be immune to pruning. The
last annotatable edge before an arbitrary join-node in the cycle will usually be a

6In the UHL representation, that is. The implementation is still free to implement it as a procedure
call in its final object code if it is too long to actually be inlined.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 97

good choice. 7 (It will not harm if there are cycles entirely without annotatable
edges).

Assuming now that the flowchart is acyclic, consider the annotatable edges
in backwards topological order. (A corresponding algorithm that works in for-
wards order is also possible; I leave it for the reader to imagine how it would
work). For each edge, divide into three cases:

1. The edge leads, directly or indirectly through unbinding #) � � nodes and
non-annotatable edges, to a

��
 % % node.

2. The edge leads, directly or indirectly through non-annotatable edges, to a
join-node or a

��� +	� or & +	� node.

3. None of the above.

The topological order means that the “indirectly through non-annotatable ed-
ges” part of the specifications can be determined quickly by caching the outcome
for previously considered edges.

In case (3) it is always possible to make the edge unannotatable. In case (2)
it is possible unless the edge’s “from” node is, or is reachable through edges that
were non-annotatable initially, a read or write node, a split-node, a

��
 % % node,
or a procedure entry. In case (1) the edge can only be made unannotatable if
the “from” node is an unbinding #) � � node whose in-edges are themselves (yet)
annotatable.

We make no claim that this algorithm is “optimal” in the sense that it always
removes the largest possible number of annotatable edges. It does seem intu-
itively plausible that this is the case, but since the entire pruning operation is
pragmatically motivated rather than essential for correctness, we will not bother
to try to prove its (assumed) optimality formally.

The pruning algorithm can often be integrated into the initial generation of
the flowchart.

3.5 Possible extensions of the UHL model

Here are a couple of loose ideas that I have not had time to develop in full:

3.5.1 Region closures as in the TT model

As described in Section 2.1.1, the Tofte–Talpin region model (and ones build-
ing on top of it) allows a closure to contain one or more region handles in
addition to ordinary mutator data. This allows higher-order programs to be
region-annotated in ways that the UHL model does not support.

Regions within closures might be added to the UHL model by equipping each��� +�� operation with an extra region annotation in the form of a list of region
variables whose handles will be stored in the heap cells following the ones vis-
ible to the mutator. These embedded region variables could be read again by a
new kind of region operation that initializes reads a region handle from the cell
a certain offset from the pointer in a given UHL variable.

7If the cycle contains no join-nodes at all, it will be dead code and can be eliminated from the
flowchart completely.

CHAPTER 3. THE UNIVERSAL HOST LANGUAGE 98

However, such an extension is far from unproblematic – for example, it breaks
the consistency of region reference counts, and a result such as Proposition 3.24
would not be provable without reference to a region type system (as it stands
currently, it needs not even assume that the agent is well-formed).

Nevertheless it would be interesting to try to add a feature such as this (and
associated region inference techniques) such that we could get a combined sys-
tem that truly subsumes the TT system as well as HMN.

3.5.2 Concurrency

The UHL model seems to be excellently suited to be used in concurrent settings
based on message-passing between threads (as in Erlang). All thread could
share a single region-based heap. When a thread has created a region it will be
the only thread that knows the region, so it can do allocations in it and create
and release aliases to it without synchronizing with other threads – until an
alias for the region gets passed to another thread along with a message that
is allocated partly in the region. After that, synchronization would need to be
used.

Each thread could have its own list of free cards and exchange cards with a
master free-list (requiring global synchronization) only when it runs out of free
cards or accumulates them beyond a certain threshold.

3.5.3 Finite regions

The ML Kit includes a special analysis called multiplicity analysis [Birkedal
et al. 1996] which identifies regions where at most one

��� +	� operation is ever
done. Such finite regions have space for them allocated directly on the call
stack instead of from the list of free region cards.

It would not be difficult to adapt the multiplicity analysis to work in the UHL

model, but it is not clear which kind optimized representation could be used for
finite regions here. The ML Kit can allocate them on the call stack, because the
letregion invariant means that the lifetime of a region will always be a “nice”
interval of the lifetime of its creating function’s stack frame. In the UHL model
things are not always that simple, though a static analysis might be able to show
that a finite region behaves well enough to be stack-allocated.

Chapter 4

Application to ML

In this chapter, I give a primary motivating motivating example of how to use
the UHL framework; namely how to derive a region system similar to HMN (Sec-
tion 2.4) for a Standard ML subset. We will go a little step further than HMN

and handle exceptions and lexical closures too.
We will not derive the HMN region type system just yet; that will be done

in Chapter 5 and Section 7.2. Also, for the time being, we will ignore ML’s
native type system and treat it more or less as a typeless language. (The native
types will come into play once we start doing region inference, but they are not
necessary to derive the region-based execution model, which is the purpose of
this section).

As argued in Section 1.4, in a real application one would derive a region
model for the intermediate language in an existing implementation. Doing so
here would entail a lot of detailed exposition of the details and idiosyncrasies
of a real-world intermediate language, which would distract from the points
that are relevant to region inference. So instead, we will follow the simpler but
slightly less realistic path of translating from source code directly to UHL.

Variables: 	
(variables)

Operators: � � � � ��� 9 �F9�� 9 � �	� 9 � � � 9 �����
Exception names: ��� � � ��� ��+ 9�� � � 9 ����� 9�� ���
Expressions: � � � � 9����6 � . � #+(.,� 9 � + � �9 % & ' � � �),+-� +!& +	�9 � 9$� + � � � �9) 	 � � ��� � '�.&#+ � + &#% �&*� �9),+ ��
 '-9 ��
 ' �
 '��9 +#),% 9.� + � � � � 9 ��
 � & � � � 	 +#),% � � + � +�� �� � � � �9�
) � &���� ��� �9 � �
 + �	% &�� � � � � � +

Figure 4.1: Syntax of the ML-subset host language.

99

CHAPTER 4. APPLICATION TO ML 100

Figure 4.1 shows the syntax of a representative subset of Standard ML, chosen
to exhibit the essential subset of our procedure without being too large. We will
discuss ways to extend the procedure to the full language later.

The subset is almost the same as HMN’s host language FUN with region anno-
tations removed. The differences consist of the addition of exceptions, I/O and
function definitions within expressions. Also, we ignore HMN’s “boxed integers”,
which were there only to be used in examples.

We notate the ML-level variables as to prevent confusion with UHL variables� .
The data objects supported by the subset are functions, integers and lists. For

simplicity we have no booleans but instead a conditional primitive that tests
integers for zeroness.

Unlike Standard ML, construction of recursive functions is an expression, not
a declaration. (This is purely for convenience; it means that we won’t have to
define a separate syntactic class for declarations). “ ��� � . � + .,� ” corresponds to
the Standard ML expression “ % & ' 	
 + � + � �*),+ � & +	� ”.

The),+ �
 ' and
�
 ' ��
 '�� expressions are side-effecting I/O constructions; they

input and output integers on some implicit communication channel.),+ �
 ' eval-
uates to a freshly input number;

��
 ' �
 '�� evaluates � to an integer which is
output and also becomes the value of the

��
 ' ��
 ' expression. A program consists
of a closed expression that is evaluated for its I/O side effects (its final value is
discarded).

We assume that each program uses a finite number � of exception names ��� ;
each exception takes a single parameter. Unlike in Standard ML, exceptions are
not first-class values; one must be constructed explicitly at each �
) � & expression
and destroyed at the
 +	� % & expression that catches it. Unhandled exceptions
cause the program to terminate silently.

4.1 Indirect calls

The major problem with representing ML in the UHL model is what to do with in-
direct function calls where it is not statically known which function abstraction
is actually called. We will assume that the intended implementation represent
closures naively as heap objects laid out as

code
ptr. � � � �����

where � , � , �
, ... are the values of the function’s free variables. All the usual

variations (such as indirect access links to closures for enclosing abstractions,
displays, storing more variables than just the ones that actually appear, etc.)
can be implemented with only minor changes to generated UHL, but let us stick
to the simple model for now.

The problem, of course, is the code pointer in the first cell. Our imagined
implementation translates application simply to an indirect call in the target
machine’s language, but UHL does not contain an equivalent of an indirect call.
This omission is by design; the region-inference algorithms depend on the target
of calls being explicitly given in the mutator’s UHL implementation.

Our answer is that region inference must be preceded by some kind of control-
flow analysis that approximates the set of (lexical) function abstractions that

CHAPTER 4. APPLICATION TO ML 101

may be the target of each application expression in the program. Control-flow
analysis is a large topic in itself – see, for example, Mossin [1997] – but our
requirements here will be modest. We will need the flow analysis to divide
the function abstractions in the program into procedure groups, each with
a distinguished label

�
. Each application expression in the program will be

tagged with one label
�

such that the call will always end up going to one of the
abstractions in the named procedure group:

Expressions: � � � � �����9����6 � . ��� #+ .,�9 � + @
� � �

Functions would then have a (small-step) semantics like

I ���6 � . � � #+ .,� J @
��� � ��� � �� � ���6 � . � � #+(.,� � � #+ �� ���

such that � ��� � . ��� + . � � @ � � �
with

� �� � / is a run-time error (and the control-flow
analysis being correct means that this kind of error will never occur).

Given the control-flow information, our strategy will be to construct the uni-
form mutator with one common entry node � � for each procedure group. Each
@
�

call is translated to a call of � � with two parameters: One (say, �) for the
actual function argument, and one (say, �) that is a pointer to the closure being
applied. The entry node then reads the code-pointer part of the closure and
jumps to the appropriate function body, as sketched on Figure 4.2.

The point of this translation is that it can be seen as a UHL representation of
an ordinary indirect call: It can be used as the basis for region inference for
an implementation where the caller reads the code pointer from the closure
and makes an indirect call directly (!) through it. This will make sense for the
agent as long as long as the edge marked with a star on the figure do not have
any region annotations – all other edges belong unambiguously to a single one
of the abstractions, so any region annotations on them can be compiled into a
specific function body in the machine code. And the starred edge can easily be
made unannotatable without violating any of the rules in Section 3.4.

We do not need a very complex control-flow analysis, although it is (or will be)
clear that the precision of the region-inference improves if the control-flow anal-
ysis can find a finer partitioning of function abstractions into procedure groups.
The HMN region type system of Section 2.4.3 implies a simple control-flow anal-
ysis – each region-annotated function type corresponds to a procedure group
label. This analysis is equivalent to the simply-typed CFA that Mossin [1997,
chapter 2] presents as “the simplest imaginable nontrival flow analysis”, and
proved to be perfectly adequate in our experiments. That does not necessarily
tell much, because the host language in those experiments had a monomor-
phic type system and did not support higher-order programming very well, so
the control flow of our benchmark programs was usually simple. I conjecture,
however, that the simple CFA will continue being useful for all monomorphic
programs.

Things are less clear when the source program contains higher-order func-
tions that are used polymorphically. Mossin’s formulation of the CFA general-
izes easily to a polymorphic type system, but it is not clear that the resulting

CHAPTER 4. APPLICATION TO ML 102

� � �� � � � �

�

� �

switch on �
oror

� � �� � � � �
 � � �� � � � �
 � � �� � � � �

� � �� � � � �
 � � �� � � � �

� � �� � � � �

� � �� � � � �

code for
function body

code for
function body

code for
function body

&#+ �
� ��

& +	�
� � +

& +	�
� ��

Figure 4.2: Sketch of a procedure group with three function definitions in it. There
is also, coincidentally, three different returns. � �� is the normal return, and � � +
and � �� correspond to exceptions being thrown. The dotted arrows hint that an
exceptional return may not be reachable from all three abstractions. For a more
detailed look at the code for function definitions, refer to Figure 4.8.

uniform mutator will be able to support an efficient agent at all – it may be nec-
essary to add novel features to our agent sublanguage before such programs can
be handled well. In any case, my region inference techniques do not currently
extend to polymorphically typed programs, so I will leave such extensions of the
model for future work.1

An interesting question is whether it would be useful to employ a CFA that
provides results with greater granularity, such that it can be expressed that the
possible targets of one call is a proper subset of the possible targets of another.
It is certainly possible to add secondary entry nodes (with their own, limited,
switches on �) to the UHL flowchart for the procedure group, but it is not clear
how good use the region-inference algorithms would be able to make of such
extra precision, unless they were allowed to generate region annotations that

1One clear direction for such future work is to try to import features from the TT system, which
does handle higher-order functions seamlessly (but at the cost of conceptual and algorithmic com-
plications in the region-inference process, related to the “effect variables” that the TT region system
uses to reason about higher-order functions); see Section 3.5.1 for further discussion.

CHAPTER 4. APPLICATION TO ML 103

were specific to the combination of a call site and a callee rather than just one
or the other. And this would make the simple indirect-call implementation of
function calls impossible.

One interpretation of the “one label per call expression” is that the label (as
far as it corresponds to one entry node in the uniform mutator) is used to se-
lect the protocol used for communicating between the agent for the caller and
the agent for the callee: How many regions references are passed in and out of
the procedure, and which of the in-regions are uncounted? The more precise
paradigm of “one (unique) label per abstraction and several labels per call ex-
pression” would correspond to a requirement that the caller’s agent adheres to
one of several protocols, which one being statically unknown.

4.2 The translation

We are now in a position to describe a translation from our ML subset to UHL in
some detail. This may seem like a waste of time – surely every reader who has
but a glancing knowledge of elementary compiler construction will be able to
imagine for himself approximately how such a translation would go. Neverthe-
less, the exercise will carry some rewards. First, the translation will serve as a
practical example of how some of the finer points of UHL will be used in practise.
Second, we get to survey in detail which kinds of #) � � nodes will be necessary
to express ML programs as uniform mutators. This knowledge will be useful
when we extend the translation with a region inference algorithm in the next
chapter. Third, we get a chance to point out some features of the translation
that are not necessarily direct models of what happens in a native intermediate
language.

The bulk of the translation is a recursive translation of expressions to flow-
chart fragments. Each step in the translation takes the following arguments:

� : The expression to translate.

� � : The “translation environment”, a finite map from to � . Its domain
should consist of the variables that are lexically in scope at � .

� � : If � is evaluated without throwing an exception, it must jump to this con-
trol state.� � : The value of the expression must be stored in this UHL variable at the jump
to � � .

� + , ..., ��� : If the expression throws ��� � , execution will continue at � � .��+ �/.�.�.�� � � : The counterparts of � � for exception throwing

The output of the translation consists of some new nodes in the flowchart, with
a distinguished entry node � .

We will use a graphical notation for the translation of one expression:

� �
�� �

��+
� �

CHAPTER 4. APPLICATION TO ML 104

� � � ��� � � � ����� �� �
��+
� �

� �
� � �

��+
� �

� � @ B �!� + � �
��+
� �

unbind �

unbind �
unbind �

�� �
% & ' � � �),+ � + &#+ �� �

��+
� �

where � is fresh

Figure 4.3: Translation for variables and let bindings.

The box symbolizes the flowchart fragment that corresponds to the expression.
The arrows that pierce the box stand for the � � inputs and the � output from the
translation. Control enters at the top and leaves at the bottom, or to the right if
the expression throws an exception.

An entire program is simply a closed expression � . Its translation to UHL

just consists of giving the expression translation a suitable context, ignoring the
value it evaluates to and prefixing it with a nop (so that the region inference will
get a chance to insert region operations at the very beginning of the program):

nop
�
	

�
�

�

�

unbind � & +	�

4.2.1 Variables and let bindings

We can now begin to define the individual cases in the translation. Typical
examples are the ones for variables and let bindings, shown on Figure 4.3. The
case for variables is simple – a variable expression is evaluated by copying the
UHL variable � that represents the ML variable into � � which represents the
result of the expression. Variable expressions never result in exception throws,

CHAPTER 4. APPLICATION TO ML 105

shown by the fact that there is no arrows going to the dotted section in the
right-hand edge of the box.

The case for let expressions show the notation for the translation of expres-
sions with subexpressions. For each subexpression it is shown how the excep-
tional exits for � ��+ and ��� � connect to the superexpression’s exceptional exists;
it is to be understood that these two shown connections represent a multitude
of actual connections. However, a connection does not need actually to be gen-
erated if there is nothing at its “from” end, so if � + happens to be, say, a variable,

the only unbind � that needs to appear in the generated UHL program is the
one for normal termination.

The body of the let expression is translated in an environment that has been
extended with a fresh UHL variable to represent the ML variable. Because the
rule uses

@ B
rather than

@
, ML variable declarations naturally shadow each other

in the standard way, with different UHL variables for each instance of the ML
variable. (This is the primary reason why we do not simply take to be a
subset of �).

It is an invariant of the translation that no flowchart fragment will unbind
other UHL variables than its own temporaries. Therefore, the let-expression
translation implies that the UHL variable that represents the ML variable will
stay bound for as long as the ML variable is lexically in scope. This is slightly
unrealistic – if the let expression appears in a tail-call context and contains a
tail call, an actual compiler will probably discard the stack frame containing the
variable as part of the tail call. However (and this is the point), this kind of
deviation from implementation reality is harmless. It will clearly not disturb the
region soundness of the eventual agent that the mutator keeps it data around
for shorter periods in time than specified by the UHL program,2 and it happens
that our region inference process will not care about the precise times when
local variables are unbound either. This point is worth making because there
are often engineering reasons to want to do region inference at a point in the
compilation pipeline where the lifetimes of local variables have not yet been
determined.

4.2.2 Arithmetic, I/O, and conditionals

Next, let us consider integer arithmetic operations, whose translation are shown
in Figure 4.4. These contain some nontrivial uses of #) � � nodes:

� � � � � #) � � �)� � ; � @ ! � � 3 � �� � � � � � � ' � .�.�.
� � � � � � � � /
unbind ��� � / � #) � � � � @ ! ! �� � 3 � � � 3 � � � ; � @ ! �� � � � �� � � � � /�� �

�
� � � ' � .�.�.

input � � � #) � � �)� in � 3; � @ ! �� � 3 � �� �*��� �
�
� � � ' � .�.�.

output � � � #) � � � � @ ! �� � 3 � out � 3; � @ ! �� � 3 � �� � ��� �
�
� � � ' � .�.�.

where
�

is some fixed injective representation function � ; � �
� . It is impor-

tant that Img
�

is disjoint from � ; otherwise nodes like � � � � could never be
pointer blind.

2Actually, neither would it if data was kept around longer than the UHL abstraction says, as long
as they are not used to access the heap.

CHAPTER 4. APPLICATION TO ML 106

� � � � ��� �
� � �

� +
� �

� �
� + �

� +
� �

� �
� �� /

��+
� �

unbind �
unbind �

� � � � � � � ��/
unbind ��� ��/

�� �
� + � � � �� �

� +� �� �

where ��� ��/ are fresh

input � ��� �
),+ ��
 '� �

��+
� �

� �
�� �

��+
� �

output � �
�� �

��
 ' ��
 '��� �
��+
� �

Figure 4.4: Translation for integer constants and arithmetic, and I/O.

CHAPTER 4. APPLICATION TO ML 107

� �
� � �

� +
� �

� �� � �

unbind �
Yes

� �
� +� �

��+
���

unbind �
No

� �
� �� �

� +
� �

�� �
) 	 � � ��� � '� & +-� + &#% � & � �� �

��+
� �

where � is fresh

Figure 4.5: Translation for conditionals.

If one wants to model exceptions being thrown by errors such as division by
zero, an explicit edge from the operation node to an appropriate exception ��� �
can be added straightforwardly, as suggested by the dotted line on the figure:

� � � � � �4) �K� /
unbind ���2� / � #) � � � � @ ! ! �� � 3 � � � 3 � � � ; � @ ! �� � � � �� � � �

� � � /�� � � � � ' � � �
% � � @ ! ! �� � 3 � � � � �

� ; � @ !��� �� � ��� �
�
� � � ' � � �

Ordinary conditionals, shown on Figure 4.5 are unsurprising; the test node� �� � �
stands for

) � � � � � ; � �� � ��� � � � � �
�

for some � �� � �
� � � ' � � Yes

% � � � ; � �� � ��� � � � � � � � � � � ' � � No

4.2.3 Lists

We are now ready to do something that involves the heap. The prototypical
example is lists. Let us assume a representation where the empty list is rep-
resented by a special value +),% , different from all pointers, and other lists are
represented as pointers to blocks of two heap words containing the car and
cdr part, respectively. List introduction constructs are now easy and shown on
Figure 4.6.

CHAPTER 4. APPLICATION TO ML 108

� � � � +#),%�� �
+),%� �

��+
� �

� �
� + �

��+
� �

� �
� �� /

� +
� �

unbind �
unbind �

� � � ����� +��
� ��� � / �

�� �
� +�� �$� �� �

��+
���

where ���2��/ is fresh

Figure 4.6: Translation for list construction

Elimination of lists, Figure 4.7, is slightly more complex. As expected, the
translation looks like a cross between that for a conditional, and the branch for
nonempty list contains read instructions that retrieve the list’s components from
the heap. The interesting detail, however, is the test node:

� � +),% � � #) � � � � � ; � �� � ��� � � +#),% � � � � ' � � Yes

% � � � ; � �� � ��� � �� +#),% � � � � ' � � No

Is that not a pointer comparison? Though +#),% is not itself a pointer, pointers are
compared with it when the program runs. But no – this comparison treats all
pointers equally, so it is allowed to use it in a pointer blind program.

4.2.4 Function abstractions and application

Function abstractions and application are translated according to the strategy
presented in Section 4.1. The details are shown on Figure 4.8. We use the
calling convention that the function-group entry � � receives a pointer to the
closure in callee-variable � and the function’s argument in callee-variable � .
The ordinary &#+ � node delivers the return value in callee-variable � ; exceptional
&#+ � s use the same variable for the thrown exception’s argument.

The translation of applications is simple; the interesting things all happen in
the function definition. The code that goes into the flowchart for the function
containing the definition just constructs a closure on the heap. The translation
of the body itself connects to shared entry and exit code for the entire procedure
group.

CHAPTER 4. APPLICATION TO ML 109

� �
� +� �

� +
� �

unbind � unbind �
� /� � �� � � � �

� /+ � �� � � � �
� � +#),% � No

� �
� �
��/

� +
� �

� � @ B � " � �! �" ! ��
� � �

��+
� �

unbind� /+ � ��/�
unbind��/+ � ��/�

unbind � /+ � � /�

Yes

� �
�
 �& � � � 	 +),%�� � +� + � � � � � �� �

��+
� � �

where ��� ��/+ � � /� are fresh

Figure 4.7: Translation for case analysis on lists.

CHAPTER 4. APPLICATION TO ML 110

� � � �� � � � �

� � � �� � � � �

unbind �8���
� � � � " $&$&$ � '	 ���

� $&$&$ ����
�

�

�

unbind
� ��� �
� �(�/.�.�.��
� �� � � � ��� +	�

� � 	���� � �/.�.�.���� � �
� � � � � � � � 3 � �

� 	 � ���

� � � ��� � � � + � �

unbind
� � �8�
� � �/.�.�.��
� �

unbind
� ��� �
� ���0.�.�.��
� �

&#+ �
� ��

&#+ �
� � +

&#+ �
� � �

� �
��� �/�. ��� #. �� �

� +
� � �

switch on �
� ���

� � �� � � � �

� � � �
� �

where
�
	 � � � � ��#� �/ � � ��#+ �/.�.�.�� 3 ��

is unique tag
	 � �

�

� �
� �

��+
� �

� �
�	/� /

��+
� �

��
 % % � � � 	 �!%! � � �'�.&#+ � � �� �� I � !
� � � � ' � � � J � �� � �

unbind �
unbind �

�� �
� @

� �	/� �
��+
� �

where ��� ��/ are fresh

Figure 4.8: Translation of function abstraction and application. The nodes that
are shown outside the translation box for abstraction are shared between all ab-
stractions in the function group.

CHAPTER 4. APPLICATION TO ML 111

� �
� +� �

� +
� ��� �

�
) �&�� � � ��� �� �
��+� ����

� �
� �� �

� +�� �
� � @ B �!� + � �

� +
� �

unbind �
unbind �

unbind �

�
� �

� �
 + �	% &
� � � � � � � +� �

��+
� �

where � is fresh

Figure 4.9: Translation for throwing and catching exceptions.

In the function body, UHL variables � � through � � represent the free variables
of the abstraction. They could just have specified as � /� s with a freshness side
condition, but it is simpler to name them explicitly when there is no risk of
collision. Similarly, the code that allocates the closure uses fixed temporary
variables � 	 through � � to store the contents of the closure before the allocation.

The variable � is used as a temporary pointer into the closure during the
callee’s initialization – the original pointer � is kept unchanged so that it can be
used for recursive references to the function from within its own body.

If a global exception analysis is available, it can be used to restrict the num-
ber of exceptional exit nodes � �� to the ones for exceptions that can actually be
thrown by one of the functions in the procedure group. Such dead-code elimi-
nation would improve the efficiency of the region inference and would prevent
it from generating region operations for exceptional exits that are never taken.
It will probably not have any effect on the efficiency of the generated agent (but
it may be possible to construct pathologic counterexamples to this conjecture).

4.2.5 Simpe exceptions

The unsurprising translation for the exception primitives are shown on Fig-
ure 4.9.

CHAPTER 4. APPLICATION TO ML 112

4.3 Region annotations for ML

The only task left in a full specification of a translation from our ML fragment
to UHL is to decide which edges in the flowchart to consider “annotatable” in
the sense of Section 3.4. This question is tightly connected with the problem of
expressing region annotation as actual annotations on the ML source syntax, so
let us consider them together.

The easy task is expressing the � � annotations on
��� +	� nodes. We can simply

attach each of them to the ML expression that is directly responsible for the
��� +��

node:

At annotations: � ��� � �
 ' #9 + ��� & � &
Expressions: � � � � �����9 � ��� � . � + .,� � � �9 � � + � �.� � � � �

The annotations for procedure calls are only sligthly more challenging. We
need to decorare each application expression with enough information to re-
cover a � � and a

� � for the call itself and one ��� for each return from the
procedure group. The problem is mostly one of notation. In the HMN system it
was solved by choosing, arbitrarily, an ording of the callee-sides of each of the
maps, and listing the caller-variables in a “call annotation”

Call annotations: � � � � [c: # + �0.�.�.��'# 3 � i: #�/+ �/.�.�.��#�/3 � � o: #�/ /+ �/.�.�.��#�/ /3 � �]
All function definition in the group then carries identical corresponding � ’s with
the callee-variables in the canonical order. (If the group contains no function
definitions at all, then the names of the callee-variables are not important, be-
cause the entire UHL code for the procedure group will be

� � � �
� � � � �� � � � �
 Get stuck

unless � 	 G & +	� $&$&$ &#+ �

which contains no opportunity of even mentioning any region variables in the
callee, because the two edges are non-annotatable).

We might use the same strategy for the translation we have defined here,
except that we would need several “o:” sections in each � : One for the normal
return and one for each exception.

Things get more interesting when we turn to region operations and the selection
of annotatable edges. A simple inspection of each case in the translation shows
us that all the requirements of Section 3.4 will be fulfilled if we decide that the
annotatable edges are excatly the ones that cross an “expression boundary” –
the boxes that symbolize the translation of a single subexpression. As long as we
do not consider exceptions, this strategy gives rise to the HMN syntax of region
operations:

Expressions: � � � � .0./.9�� � � � ���

9 � � � ���

 �

CHAPTER 4. APPLICATION TO ML 113

where the region operations for each annotatable edge can be represented as
a cascade of zero or more postfix or prefix region operations, according to
whether the edge crosses the expression boundary on its way in or on its way
out. However, this correspondence is not perfect, because many edges cross
more than one expression boundary. We can resolve most of this ambiguity by
deciding that the region operations for an annotatable edge always attach to
the first expression boundary crossed by it.

There is, however, one problem left with this naive strategy. Consider, for
example, the translation for
 + � % & expressions in Figure 4.9. There are two
different edges leaving the expression through the normal exit. Where are we

to notate annotations on the one coming from the unbind that follows � + ? It
happens that every expression boundary that this edge crossed is also crossed
by the edge(s) that come out of � � (i.e., when an expression is not thrown). No
matter where we notate the annotations, it will look as if they apply to the other
edge, too.

One way of solving this would be to enforce the invariant that only one edge
leaves each expression box. This would require a number of no-op join nodes to

be added to the translation. Another option would be to eliminate the unbind
node by restructuring the translation such that discarding variables becomes
the task of the last expression that uses them. This would actually improve
the performance of the region inference a tiny bit, but it would be notationally
inconvenient.

But there is much easier solution: Simply use the pruning algorithm from
Section 3.4.3. It will never leave an edge annotatable if it goes from a non-split
) � � node whose incoming edges are all annotatable. Therefore, the problem
dissolves completely, and so does a similar problem for the

�
 �& translation.
The pruning algorithm is quite well suited to being integrated with the trans-

lation to UHL itself. In particular, the computation of which kinds of nodes can
reach a given node “through edges that were non-annotatable initially” can be
statically read off from each individual case in the translation. The only prob-
lem is identifying join-nodes while the flowchart is being built. It will be most
convenient to be slightly imprecise and always consider the ordinary exit target
� � for a conditional, case, or handle expression to he a join-node (even though
that may not actually be the case if one of the branches is a �
) � & expression).
Similarly, the exceptional exit targets � � are always considered to be join-nodes.

Purging the annotatable nodes also means that edges that leave an expres-
sion box by one of the exceptional exits will not usually be annotatable. That is
a good thing, because it means that we don’t have to invent a ML-level syntax
for annotations on these edges. The exceptions to these rules are the excep-
tional return edges from a

��
 % % node, and the exceptional edge from arithmetic
operations (divide-by-zero etc.).

The annotations for exceptional returns for function calls can be lumped to-
gether with the

� � return specification in the call annotation. Call annotations
may end up being fairly hard to read, but there seems to be no good alternative
to this, except for trying to minimize the number of exceptional return edges
by a global exception analysis. For divide-by-zero one would put the region
operations as an annotation on the operator itself, e.g.,

Expressions: � � � ��.�.�. 9$� + � �	� ����� " � � � ����� ' � � � � � � �

CHAPTER 4. APPLICATION TO ML 114

This completes the description of how to map region expressions for the inter-
mediate language back to the ML source for display purposes. It is sometimes
desirable to be able to go the other way: to take an ML source with region an-
notations in it and translate create the intermediate-language representation di-
rectly, skipping the region inference step. This could be necessary, for example,
in an experimental system, or of the region inference has been implemented as
a separate program for engineering reasons. In that case, we need to let the pro-
grammer put prefix and postfix region annotations on any expression; it is not
reasonable to expect human users to predict which edges will still be annotat-
able after the pruning phase. Instead the edges for which the user has specified
region operations must be artificially prevented from having their annotatabil-
ity pruned away. If the annotated ML program specifies region operations for
an expression boundary that is crossed by multiple edges, the operations can
either be duplicated across all the edges, or (better) a no-op #) � � node can be
inserted to join the edges before the region operations.

4.4 Extending to full Standard ML

The techniques we have presented so far ought to scale to most constructions
commonly found in ML-like languages without major trouble. We will leave it
to the reader to imagine most of the details and only comment on the features
that are not straightforward.

Among the straightforward features are tuples and records, which can be im-
plemented directly using UHL’s heap primitives. An implementation may decide
to unbox tuples in certain situations; the outcome of such a transformation can
also be represented naturally in UHL. For example, because UHL can repre-
sent functions that return multiple values simultaneously, a tuple-shaped return
value can be unboxed.

4.4.1 Datatype and pattern matching

Datatypes can also be represented easily. In the most general representation, a
value of a datatype is a pointer to a two-word structure containing a tag and
the argument, or a magic non-pointer value in the case of a nullary construc-
tor. There are a number of commonly used optimizations, such as unboxing
a constructor argument of tuple type or omitting the tag if there is only one
non-nullary constructor, as examplified by the special-case list representation
on Figures 4.6 and 4.7. These tricks all have natural UHL representations.

Pattern matching on one level of datatypes at a time follows the pattern of
Figure 4.7. Standard ML also has complex patterns and matches that cannot
be expressed directly as a decision tree of primitive matches, such as the one
shown in Figure 4.10. Because there are no a priori restrictions on the shape of
a UHL flowchart, we have no problem representing such matching operations.

It might be noted, however, that the translation sketched on the figure con-

tains a join-node – 	 � ��� � � � �
 – which is reached from split-nodes by paths

that stay completely within the pattern-match construction. If we stay with the
principle that only edges that cross expression boundaries can be annotatable,
we cannot satisfy the rule from Section 3.4.2 that there should be an annotat-

CHAPTER 4. APPLICATION TO ML 115

�
�
�
�
��� � � � ��� � �

� � � �
	�� � � �

� ��� �
	���� � �

� ���

����� �
� ��� � 	 � � � � � � � �
 � 	 � � ����
�
 � � ���� � � � 	 ��� � 	
�
 � � ��
� � � � � � �
 � �
 � � �$� � � � � �

� � @ B ������

� + � �
��+
� �

� � @ B ��

� � � �
��+
� �

� � @ B ��

� � � �
��+
� �

� �
� �� �

� +
� �

unbind� � �8� �8� � � � � �

unbind� � �8� �8� � � � � �

unbind� � �8��� ��� � ��� �
� � � 	���� �

No

� � � �� � � � �

unbind� ��� ���8� � � � � �

	 � �� � � � �

Yes

� � � 	�� � �
No

unbind �
Yes

� � � 	�� �
�

No

� � �� � � � �

Yes

� � � �� � � � �

� � �� � � � �
 � � � � ���
�

No

Yes

� � � �� � � � �

� � �� �
� � �

� � �� �
� � �

� �
� � �

��+
���

unbind� �
�
unbind � unbind 	

Figure 4.10: Example of a complex pattern-match operation

CHAPTER 4. APPLICATION TO ML 116

able edge on such a path. Luckily this rule is not a hard requirement but just
a general principle for where it would be useful to have annotatable edges. In
this particular case, our region inference algorithms would not get any benefit
from having an annotatable edge in the middle on the pattern match (because
the types are the same throughout the matching, basic region inference would
need to create the same region operations for all paths to a particular � �), so
there is no reason to worry about the rule here.

4.4.2 References

References with destructive update is straightforward too; we show the trans-
lation on Figure 4.11 just because it is our only chance to show a translation
involving write operations. The “ � arbitrary � ” at the end of the � � translation is
the representation of the

 +#) ' value of the update expression.

4.4.3 Constant expressions

One optimization that is frequently used to a larger or smaller degree by imple-
mentations is to translate expressions that construct constant immutable data
structures to static read-only data rather than allocate a copy of the structure
on the heap each time the expression is evaluated. Expressing this directly in
UHL is somewhat tricky, because the read and write primitives in UHL are sup-
posed to be used only with pointers to memory allocated on the heap by the��� +�� operation. Therefore, in an accurate UHL model for the program, we need
to represent pointers into static read-only data as special values � 	 � �

� . We
must then instrument each read in the program that might referece the static
constants, like

� � �� � � � �

switch on �

���

��� "
��� '

� � � � /+� � � � + nop

� � � �!/3� � � � 3
However, it is not really necessary to present this structure to the region infer-
ence algorithms. For an agent to be region safe with respect to the instrumented
read, we just require that if the value of � is a pointer then what it points to is
still live. But that is also the criterion for being region safe for the original unin-
strumented read, so the region inference will do just as good a job if we show it
the simpler, but not fully correct, code for the read.

4.4.4 Standard ML exceptions

It is not trivial either to support the full exception concept of Standard ML well.
Of course, one straightforward strategy would be to say that Standard ML has
exactly one kind of exception whose argument type happens to be the extensible
datatype �

 �
. This would be true to how Milner et al. [1997] actually specify

CHAPTER 4. APPLICATION TO ML 117

� �
� �

��+
� �

� � � ���� +�� � ���
�� �

� & 	 �� �
��+
� �

where � is fresh

� �
� �

��+
� �

� � � �� � � � �

unbind �

�� �
� �� �

��+
� �

where � is fresh

� �
� + �

��+
� �

� �
� �� /

��+
� �

unbind �
unbind �

� � � � �

� � � /

unbind �
� � � � � arbitrary �

�� �
� + � � � �� �

��+
� �

where ���2� / are fresh

Figure 4.11: Translation for references.

CHAPTER 4. APPLICATION TO ML 118

exceptions to work, but in practise it is common to raise and handle specific
exceptions rather than just arbitrary values of type � � . Lumping everything
together in one uhl-level exception would mean losing the knowledge that this
raise expression may be caught by that handler, but not by the one over there.

Whether or not this is actually a problem depends on the programming style
in the original program. If it uses exceptions only as a bail-out mechanism for
catastropic failures, it is not very important how they are handled by the region
inference. But for programs that are written to raise and handle exceptions in
the course of normal program execution, it will be inefficent to use a system
that means that one raise expression must initialize region variables that are
only used by a handler that will never apply to the exception thrown.

Therefore (and since we are only concerned with whole-program analysis
in this work anyway) I propose to create one UHL-level exception (i.e., one
dedicated & +	� state for each procedure group) for each � � �� � � � � declaration
in the program. Then �
) � & exceptions will have do to a case analysis of the � �

value to find out were to jump to, except in the common case that the form of
the expression inside �
) �& explicitly names the exception.

A catch-all
 + �	% & will either have its handler expression duplicated for each
of the concrete exceptions that can be caught, or have a series of subhandlers
that constructs a fresh � � value and jumps to a single copy of the programmer-
written handler. The former choice will be good for handlers that rethrow the
same expression after some clean-up; the latter is suitable for handlers that
ignore the exception value or explicitly treat it as first-class data (by storing it in
other data structures, etc). I have presently no proposals for how to distinguish
automatically between those two cases.

Local exception declarations pose a special problem. In Standard ML, a func-
tion such as

��� � ������� � � ��
 �
� � � � � �� � � ���

�

��� ��� � � � � � � �� �
�
� � �
 � � � � � � � � � ��� �

�

� � �
� � � ��� � �
 � � �

produces a pair of an � � and a function that knows how to catch exactly that
exception. If ����� �

�
�

 is called twice in succession, the

� ��� � � part of one return
value will not catch the

�
part of the other. Implementations typically achieve

this effect by letting the two exception constructors really be as different as if
they were declared separately, but that strategy will be no good for static anal-
ysis. Satisfactory handling of this situation in the UHL translation will probably
have to involve

� An escape and reentrancy analysis to identify local exception declarations
that can safely be lifted to the top level

� The UHL representation of a handler for an exception that is still local after
this must start with a test that it was the right instance of the exception
that was caught.

� Such a test can be expressed by giving the exception a sequence number
(for the instance of the exception declaration) as an artificial argument.

� The master counter for the sequence number can be threaded through the
entire UHL program, in and out of every function call. However, because

CHAPTER 4. APPLICATION TO ML 119

it will just be an integer, it will not affect the region inference, so the
threading does not actually need to be done, just imagined.

4.4.5 Mutual recursion

Mutually recursive functions (��� � ... �
� �

...) may or may not be simple to rep-
resent, depending on how the implementation handles them at runtime. If if
just creates a set of closures that contain pointers to each other, the knot can
be tied by appropriate write operations after the closures have been allocated.
Other implementations may allocate a single heap block containing partially
overlapping closures. Then functions with higher closure addresses need to
index backwards from their own closure in order to find their brethren. This re-
quires adding UHL constructions that decrement pointers in a controlled way, as
described at the end of Section 3.3.2, such that we can still reason from region
safety to region soundness.

4.4.6 The module language

Finally, I propose that the ML module language can be handled by unfolding
the entire program to a core program before region inference. After all, this
thesis explicity does not handle separate compilation. (A number of existing ML
compilers, including the ML Kit, use this strategy – the ML Kit documentation
calls it “static interpretation” – but the ML Kit does the unfolding after region
inference).

Chapter 5

A region type system for UHL

In Section 1.3 I defined

A region type system is a structured (and algorithmically feasible, in
some sense) characterization of a class of mutator–agent pairs, such that
all pairs in the class are region sound.

If we design our region inference algorithm such that its output will always
be accepted by the region type system, we will then know that the agents it
producess will always be sound. Or, if we don’t trust the producer of agents
(we may be afraid of bugs in the implementation of our region inference, or an
unknown entity across the net which supplies an agent with applet code that
it wants us to run), we could ask him to provide a certificate according to an
agreed-upon region-type-system such that we could trust the particular agent
he sends us.

A secondary function of the region type system is to guide the design of an
algorithm for basic region inference. The algorithm can be understood directly
as an attempt to construct the most fine-grained typing for the uniform mutator
that will be accepted by the region type system.

In this chapter we will develop a region type system that could be applied to
UHL programs produced by the translation from ML in Chapter 4 – as long as
the original programs do not use type polymorphism. It is still unknown what the
best way to add ML-style polymorphism to the system is.

As in most extant region type system, we will not argue directly that the
agents accepted by the system is region sound. Instead will prove (in Sec-
tion 5.3) that all accepted agents are region safe, which, by Theorem 3.46 that
an agent which is accepted by the region type system must be region sound. (Re-
member that an soundness is the extrinsic property that the run-time behavior
of the agent-mutator combination is the same as the mutator’s ideal behavior;
safety is the intrinsic property that no deallocated heap cell will be referenced).

It is worth emphasizing at this point that the words “type system” in the phrase
“region type system” refers to the internal structure of the system, and not to its
role in the larger theory. This means that one should not expect the region type
system to have the same properties that are in general expected of type system.

120

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 121

For example, we put relatively little weight on the feasibility of type checking
an agent in the region type system. In some applications it is, of course, impor-
tant to be able to create and check certificates that an agent satisfies the region
type system, but in such an application one simply has to include enough of the
actual typing in the certificate that it can be reconstructed with sufficient ease.

Likewise, we shall be concerned not at all with whether the region type sys-
tem is decidable in the complete absence of hints from a certificate. I suppose
that it is not.

5.1 A stepwise introduction

Though each ideas that go into the region type system is by itself fairly sim-
ple, the final construction ends up being so complex that it would only lead to
confusion to start by presenting it in full. The complexity comes partly from
generality (we want to present a system that can easily be generalized to many
of the languages that UHL works for), and partly from the fact that is has to
work with the fairly low-level UHL representation – which itself stems from the
generality of UHL. As sources of complexity go, this is a rather benign one. It
means that it will usually be possible to specialize the type system for a partic-
ular way of producing UHL code, and have much of the complexity go away in
the process. Therefore, most concrete implementations of region inference that
builds on our principles will not normally be as complex as the raw region type
system might seem to imply.

To tackle the complexity in installments, we will present the features of the
region system one at a time. This will also give us the opportunity to derive the
region type system from first principles, rather than simply asserting that this is
how it needs to be. Our starting point will be the bare desire to reason statically
about the safety of annotated uniform mutators that are not too different in
structure from the ones we constructed in Chapter 4.

The exposition will remain informal until we reach the full system. Read-
ers who are eager for formality may skip directly to the formal definitions to
Section 5.2; they do not depend on any definitions in the preceding discussion.

5.1.1 Basics: Simple pointers and procedure calls

Let us, initially, restrict our attention to mutators where all
��� +	� operations are

unary (i.e., allocate one heap cell only), and also assume that values of heap
cells never contain pointers.

These are, of course, madly unreasonable premises – if observed in reality
they would prevent the mutator from making any nontrivial use of the heap.
However, they will allow us to investigate the essential region-oriented features
of the region type system without caring about what it is that the pointers ac-
tually point to. These essential features are fairly simple. Once we have a good
grasp of those and begin enlarging our horizon towards more realistic mutators,
we will need to add a lot of auxiliary constructs, but they will not have much
significance for regions as such; essentially they will just be a scaffolding on
which to fasten well-known kinds of region information.

In this primitive setting we can begin to construct the simplest imaginable
region type system:

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 122

Places:
� � � � #9 %

Environments: � 	 � fin; �
Typings: � 	 � fin; �

A � describes the relationship between mutator variables � and region variables
at some point in the program:

� ��� � �$# means that if the value of � is a pointer, then the cell it points to is
being kept alive by the region currently bound to # .

� ��� � �$% means that the value of � may be a pointer to an unallocated address
in the heap, so it must not be used for heap access. (The reason for using
the symbol “ % ” will become apparent in a few pages).

The typing for an entire program will be given by a � which assigns an � for
each control state.

We can then have rules like

� � � + & � # 	 � � � � � ��# 	 �� #
 �
 %)
 �1# ' � # 	 � � �
# 	 �	 Img �

� � � � & % &
 �& # 	 � � � � � � � &#+
 # & # 	 + ' � # 	 � � � �0# 	 + �� # 	 �

�

� � � � � �
� � � � � � � ' � �

� � + � � �)� � � � � � � � � �
� ����

� � � � + � � ��� � �����
� � � � @ ! � � ����

� � � � @ ! �� � � � ����� +�� � � / �
 ' #�� ����
� ��$% � � � � @ ! � !��� � ����
� � � � @ !� � � / � ��� � � � �
 �"����

and so forth.
The rule for � &#% &
 �& has a side condition that prevents a region from being

deallocated as long as � says that there are pointers that point into the region.
Therefore, as long as � ��� � is some # , no matter which, the cell it points to will
still be allocated, and therefore the rule for read operations actually does guar-
antee that the program will never go
� � + � . After the read operation, neither
the pointer (which has been incremented past the allocated cell) nor the value
read (which our primitive system does not keep track of) can be assumed to
point to anything.

The rule for � &#+
 # & operations simply say that after a region renaming, all
values that were previously being kept alive by the old name for the region are
now kept alive by the new name. The rule for

 %)
 � is more interesting. It says
that something that was kept alive by # before the alias operation may now be
considered to be kept alive by either # or # 	 . The formal structure of this rule is
seen to coincide with the axiom for assignment statements in Hoare logic

��� � � � �� ��+
 � � � � � ��+*��� �
which is the ultimate reason why we use Hoare-like braces in the notation for
our judgment forms. Niss [2002] has investigated the relation between Hoare
logic and the HMN region type system in detail, but we will not pursue this
connection further here.

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 123

The rule for procedure calls would be something like

��/�� � � � @ � � @ �� � H � � � � Dom � E
Img

� � ��G
�"��/ 	 � � � � �

./0 /1 � � � ��/ / � �����
where ��/ /�� � @ I � � � / @ � � @ �� � H � � ��/ � JI � � / ����� / � ���� J � � ��� � ��/ �

� � � � @ � / � �
 % % � � � �#� � � � � � � � '�.&#+ � ���
There are two interesting points in this rule. One is the side condition that
says that Img

� � must be disjoint from Dom � . Img
� � are the actual region

parameters that are consumed by the call. The side condition prevents them
from being used in the region description for the caller’s local variables after
the call. This is parallel to the side condition for � & % &
 � & mentioned above.

Perhaps more surprising is the construction of � / / . Here
� � suddenly appears

in the part of the rule that is concerned with returning from the procedure,
whereas in the entire operational development for UHL in Chapter 3,

� � has
only been used in for calling into the procedure! This means that if, at the
&#+ � node, � � �	/ � ��� � is an uncounted region variable # �

, we can map it back to
the region variable in the caller that was used to initialize # �

at the time of
the call, and use that variable as the new description of ��� ��� � . This is a safe
reasoning principle because no region operations are allowed to change the
value of
 � # � �

.1 Without this ability to reason through
� � , the caller-variables

that receive the function’s return value could never have a region description
that was identical to that of a value that the caller computed before the call and
did not pass as a parameter (except if both descriptions were % which is not
helpful). Having identical region descriptions will be important once we add
recursive types to the system in Section 5.1.7.

5.1.2 Subplacing: HMN without complex data structures

The initial system sketched so far (we have not shown rules for read or #) � �
nodes, but they would contain no surprises except for some unpleasant nota-
tion) is like the first-order fragment of the in that it will keep a region alive
for as long as a pointer into it is in scope. The UHL-based model for region
allocations allows the scope to be tracked tighter than the Tofte and Talpin’s
�
�
�
���
� � � �

construct, but it is still the case that if the variable � may contain
a pointer into some region, that region cannot be deallocated until � has been
explicitly unbound or consumed in some other way.

It should be intuitively clear that this is suboptimal. It is not a good reason
not to deallocate a memory block that a pointer to it happens to exist; only if the
mutator may need to access the block do we have to keep it alive. For a garbage
collector the mere existence of a pointer (in scope) to the block is sufficient
reason not to collect it, but that is because the garbage collector does not know
what the mutator will do. Region inference happens statically, so it ought to be
able to do better.

1The rule would not have been safe if we had allowed uncounted region variables to be renamed
– which is the actual reason why uncounted regions must not be renamed. Renaming of uncounted
variables would not have hurt Proposition 3.24, for example, as long as the new name for an
uncounted variable was still uncounted.

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 124

Unfortunately, the simplifying assumptions we are still working under makes
it hard to construct a really convincing concrete example of where we can do
better. In most situations it would be possible simply to unbind the variable as
soon as it is not going to used anymore, but consider this scenario: An algo-
rithm in the beginning of the program produces in � either +),% or a pointer to
an integer. Much later, some decision will depend on whether the result was +),%
or not, but not on the value of the pointed-to integer, if any. Because a simple
comparison between � and +),% does not depend on the memory still being allo-
cated, it will be safe to deallocate the region where the integer lived as soon as
the initial algorithm finished. But the reasoning system we have so far will not
allow this, because � �!� � �$# prevents the deallocation.

An immediate idea for solving this would be to replace the rule for � & % &
 � & by

� � � � &#% &
 � &�# 	 � � ��# 	 �� %
 �
which allows deallocation of a region at any time, but rewrites � such that no
later heap access may use a variable that might have been a pointer into the
deallocated region. This rule turns out to be sound, and its generalization to
settings with complex data structures will be a qualitative improvement over
TT-style systems.

It turns out that the ability to change � �!� � ��# to � �!� � � % may be beneficial
even in situations where we have no immediate reason for releasing # . Take,
for example, the code fragment

� � ���� +	� ��� � � � ���� +�� � � � � � � � � � � � � � �
� or �

where � � � � or � stands for a #) � � node that nondeterministically chooses be-

tween assigning � the value or � or that of � . We have not given a general rule
for #) � � nodes, but it is intuitively clear that we need � � � � to equal � � � � and
� �!� � simultaneously. By transitivity, we need � � � � � � � � � . (Once we introduce
recursive types, we will see that less contrived reasons for needing � � � � � � � � �
exist).

Further assume that the code following the example will access the heap
through � and � – but not necessarily equally often – but never through � or
� .

At first sight it would seem that we must allocate � and � in the same region –
we cannot have � �!� � � � �!� � �$% , because that would prevent the later accesses
through � and � . However, consider the following trick:

� � � ��� +��
� ���
 ' � �

� � � ��� +	�
� � �
 ' ��
 � � � � � � � � ��� � ��� � � � � 	 ������ � ��� �
 � � 	
��� � � � ��� � 	 ���� � � � ��� � 	
��

� � �
� or �

With these annotations we can have �5� � � � �	 � 	
 � � �
 before the two � & % &
 � & op-

erations and � � � � � �� � � � �
 after them. Thus, by inserting a sequence of region

operations with no net operational effect at all, we can certify the safety of a
program that does allocate � and � in different regions. Clearly it is not desir-
able to need to do such spurious reference-count manipulation, so we extend
the system with a general subplacing rule:

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 125

� � � � @ ! � � �����
� � � � @ ! � � ����

Now we can derive the new � & % &
 � & rule from the old one and some number of
applications of the subplacing rule. Therefore we go back to the original � &#% &
 �&
rule with the # 	 �	 Dom � side condition – it seems cleaner to restrict rewriting
of � ’s to as few rules as possible.

In the classic type-theoretic concept of subtyping, “ % ” is a type that describes
all values and therefore is a supertype of any other type. This matches well with
the role of % in the subplacing order on

�
:

� 	 � � �
 ����� � 	 � � �
 �����
%

This diagram, and the connection to subtyping in general, suggests that we
consider a dual to % , written # . Its rule is

� � � � @ ! � � ����
� � � � @ ! � � �����

and the intuitive meaning of � ��� � � # is that the value of � is not a pointer at
all, that is, it belongs to � � � . In that case, if we try to access the heap using � ,
the read/write operation would get stuck immediately instead of going
� � +)� ,
which means that such an access can actually be allowed in a region-safe agent.
Therefore it is also safe to jump from code that assumes � ��� � � # to code that
assumes � ��� � ��# for any # .

An example where # is useful is

� � � +),% � � ���� +	� ��� � � � ���� +�� � � � � � � � � � �
� or �

� � �

� or �

where the following code accesses the heap through � and � . The use of # will

allow us to allocate � and � in different regions, if we let � � � � � �
� 	 � � 	
 just after

� � � � , and then lift it to
� � � �	 � 	 � 	
 	
 using two subplacing steps.

In the full system with complex data, # will have the more subtle task of
describing values that are known not to be pointers because they do not exist
at all! This possibility may arise with lists – for example, the constant “ +),% ” can
have the type “list of pointers to something at # ”. Closures or tagged sums is
another possibility; the thought experiment that originally led me to invent #
involved considering an ML program like

��� � �
��� �#�

��� ����� ��� � � � � � ����� ��� � � �
� � � � � � � ��� �������� �� � � ��� � � �
 � ��

where � and
�

are in the same procedure group. The region-annotated type
for � will need to contain a

�
that describe the

 � pointer in the closure for
�
.

Without # this
�

would need to be some region variable, which would force all
lists ever used as an argument to

���
��� to be allocated in that particular region.

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 126

The features of the region type system we have seen yet directly match features
the HMN system. From here things begin to diverge.

First, HMN has a rich language of types, such that each � ��� � can contain several
different

�
’s, corresponding to pointers that can be reached indirectly from the

value of � . We will add such a type language presently, but it will be more
low-level than the HMN one.

Second, HMN’s region type system incorporates a scoping discipline for re-
gions that closely matches the one we studied in Section 3.2.3. We will not add
such a discipline to our typing rules themselves, for the pragmatic reason that
they would make rules like RTCALL (on page 134) even harder than it already is.
Instead we will stipulate separately that the agent is supposed to be well-formed
according to Section 3.2.3

This has the minor consequence that we cannot directly express the condition
that whenever a subplacing step changes a # to a region variable # , # will
actually be bound to something. We will solve this by arranging the rules such
that “unbound # ” will only appear where # could just as well have appeared.
(However, the region inference algorithms do not depend on this “feature”; it
will appear only in the region safety proof in Section 5.3).

5.1.3 Pointers to pointers

Now that we know how places
�

work, we can now begin to erect the “type
scaffolding” where places are kept in the region type system. To a certain ex-
tent, these mechanisms depend on the native type system (if any) of the host
language, because one wants to be able to map native types to region types.
Here we just develop the minimum of features that are needed to handle UHL

generated from monomorphic ML programs in reasonable generality.
First, let us throw away the assumption that the values in heap cells are not

pointers (we still assume that
��� +�� es are unary, however). Then, the rule for a

read operation such as � � ��� � � � �
 will need to

a. Check that the cell that � points to is still allocated. This is just as before.

b. Somehow construct a new value for � � � � . The only reasonable way to do
this is to let � � � � contain the correct new value for � � � � .

This calls for the insertation of a (syntactically) recursive type layer between
the � and the

�
:

Places:
� � � �$# 9�#F9 %

Types: � � � � ��� � �9 �

Environments: � 	 � fin; �

where the production rule “ � � � � � ” is just an artificial base case, to allow finite
types. Later we will replace it by other devices.

We can then extend the rules for reads and
��� +	� :

� � � � @ ! ������� � ����
� � � � @ ! �� � � � ����� +�� � � / �
 ' #��"�����

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 127

� ��$% � � � � @ ! � !��� � ����
� � � � @ ! � � ��� � � / � ��� � � � �
 �"����

In the new rule for reads, the final value for � ��� � is now � rather than % . This
is just a temporary placeholder that we will replace by something else shortly.

In addition to the two new rules, we also ought to reformulate some of the
other rules, because the mathematical expression we have given them depended
on a � mapping variable names directly to places. Therefore we could write side

conditions such as “ � � � � � @ � � @ �� � H � � � � ” which do not make sense anymore.

However, we shall not bother to define a concrete syntax for such renaming-
of-regions-in-environment operations just now, because we would need to mod-
ify it each time we add a new feature to the type language. Eventually we will
define suitable notation for the final type system in Definitions 5.3ff.

5.1.4 Tuples

Now we’re ready to extend the system to handle
��� +�� es that allocate more than

one cell at one time. With the work we have done so far, this is not difficult. We
redefine the syntax of types:

Types: � � � �$� �8+(� � � �/.�.�.�� � �)� � �! � � �

The � �
case “ � � � ” intuitively stands for a pointer that has been incremented

past the last of the cells it used to point to. It can also be used as a leaf in the
type tree, so we can abandon the artificial “ � ” type from the previous subsection.

The updated rules for these types are not surprising, either:

� � � � @ ! � � " � � � � � � � ��� � ����
� � � � @ ! "*$&$&$! �� "�$&$&$ � � � � � � ��� +�� � ��+ �0.�.�.�� � �)�
 ' #��"�����

� ��$% � � � � @ ! � !� " � � � � � � � � � � � �
� �����

� � � � @ ! ��� " � � � � � � � ��� � � / � � � � � � �
 �"����
5.1.5 Tagged sums

The support for multi-call blocks in the previous section is not quite enough to
express a tagged sum type such as “a heap block that consists of two non-pointer
values if the first cell contains the constant � � � and four non-pointer values if
the first cell contains the constant ��� � ”. For this we need another rewriting of
the type syntax:

Types: � � � � � ��� ��� 	 � �
� �9 ��� +1+ � � + � �/.�.�. � � + � " 9#�����#9 � 3�+ � � 3 � �/.�.�.�� � 3 � ' � � � � � � �� � � � �

The singleton type
� ��� describes the non-pointer value � and nothing else, so

we can express “a pointer to a cell containing ��� � followed by three other cells”
as � � � � ���*� �8+ � � � � � � � � . The entire tagged sum type is now expressed as

� � � � � � � � � 9 � ��� �	�*� � + � � � � � � � �

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 128

where the bar separates alternatives: The pointer points to either a � � � followed
by a � � or a ��� � followed by � + through � � .

How should the existing rules be changed to support such types? Reading the
tagged sum (and branching on the tag) turns out to be the most intricate case,
so consider the UHL idiom for this:

 � �� � � � �
 switch
on

� �
� � � �� � � � �
� �����
��+

unbind���

� + � �� � � � �
� � ��� � � � � � �� � � � �
 � � � �� � � � �
 unbind���

Now, the problem is to find a type invariant that holds at state � � . Here the type
of � is either � � � � � or ��� + � � � � � � � � – but one cannot see from the pointed-to
values which is the correct one. Which should ��� � �

� ��� � be?
My answer is: both. We extend the definition of a � such that each state

can have not just one environment but a set of environments. Then ��� � �
�

can

be � � !� ������� ��� � ��� � � !� � ��� � ��� " � � � � �
	 ��� � , meaning that at least one of the two � s will

describe the actual � whenever control reaches � � The rule for switch on
(which is yet to be defined) will be designed to notice that the two cases match
the branches of the switch, such that ��� � + � and � � � �

�
need only contain one �

each.

Typings: � 	 � fin; � fin � �
�

The rule for � � ' � becomes

� 	 � � � �
� � � � � � � ' � �

and for � to be well-typed by � , it must hold that � � � � � � � � � for each

� 	 � � � � , for all � .
The following rule allows going from one � in which � maps to � �����49#�����49#������� �

to several � ’s that each maps � to a type without bars:

� � � � � � � � � @ ! ��� ��" � � � � � � � � � ��� � ����
� � � � @ ! ��� " " � � � � � � " � " � $&$&$ � � ' " � � � � � � ' � ' ��� � ����

If we insert it in the typing before the first read operations, the typing rules for
heap reads will not need to know about types with bars in them. (An alternative
would be to build the it into the rule for reads, but a separate rule is stronger,
because it allows the typing of schemes where the tag is not the first cell in the
block).

With the dual rule2

2This rule looks suspiciously like a subtyping rule. Might it not be combined with the subplacing
concept? Answer: It might, but it would make the eventual definition of subplacing more complex
and turns out not to be necessary for any of the languages I consider here. If, however, the host
language has a native concept of structural subtyping, it would be necessary to integrate it with
the subplacing concept, and then it would be natural to include such expansion rules in the same
package.

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 129

� � � � @ ! � $&$&$ � � " � � � � � � � � $&$&$ � � � ����
� � � � @ ! ��� " � � � � � � � ��� � �����

we also do not have to extend the rule for
��� +	� .

Aside: This mechanism is strong enough to be able to handle low-level “pre-
fetching” optimizations like

 � �� � � � �
 � � + � �� � � � �
 ./.0. switch
on

unbind���
� ��� �

� � � �� � � � �
� � ��� � � � �� � � � �
 unbind���

(heavily allocating code in here?)

which might allow a region to be deallocated earlier if the reads of � � and � �
can be optimized away (for, example, if they match a wildcard pattern in ML).

5.1.6 Destructive update

What should the rule for heap writes be? It is clear that the value written into
a heap cell should have the type that the heap cell already has. Otherwise later
reads from the cell using another pointer will get a value of another type than
it expects, breaking the invariant of the type system. That is, unless we can
locate and change the type descriptions for all existing pointers to the updated
cell – which is a hard problem because some of the existing pointers may lie
dormant on the call stack, which is not described by the � , and in any case it is
not apparent from the type of a pointer whether it refers to the particular cell
we’re about to update, or just another one with the same type.

Therefore we stick to the “do not change types at destructive updates” rule.
It comes from the ML Kit’s support for ML’s reference type, and though it is not
ideal for programs that make heavy use of destructive update (see Section 6.1.1)
it is the best anyone has been able to think of so far. The natural attempt to
formalize the rule, given the system have developed already, would be

� ��$% � � � � @ ! ��� " � � � � � � � � � � ����
� � � � @ ! ! ���� � � � " � � � � � � � ��� � �

� � � � � �
 � � � / �"����
Unfortunately this rule is not sound. The trouble is that the subplacing op-

erations introduced in Section 5.1.2 could be used to subvert the correctness
of the place annotations on the types; an example is shown in Figure 5.1. It is
well known that such problems arise if one combines subtyping with destructive
updates carelessly. The solution is also well known: The type of the contents of
an updateable cell must be treated as bivariant, that is, it must not change in
subplacing steps.

One way to achieve this would be to forbid subplacing beyond the first layer
of pointers. But this is much too harsh for our purposes; it would prevent
many useful and benign opportunities for early deallocation. Another and better
strategy is to mark in the type the (few) cells that may be updated later:

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 130

� � +),%
� ���

� � � ��� � �7� � ��� � � � �
� � � ��� +�� � � �
 ' � �
� ��

� � ���	
 � � � � �
��� � � � ��� � ���

�
� � � �
�����

� � � �" � � � � �
� � � � � � ��� � ��� � ��

�
� � � � �
 � � �
�����

��� � � � � �7� � � �
��� � � � � � � � � � � �� � ��� � � �� � ��

�
� � ��� � � � �

����	����	

��� � �"� � �7� �	�
� � �� � ��� � � �� � ��

�
unbind �8� ������

��� ���"� � �7� � �
�
��� � � �� � � �� � � ��

�

Figure 5.1: Example of how to use subplacing to cheat the naive rule for heap
writes. The net effect of the sequence is to change the type of � from � � � � 	 to
��� � � 	 	 .

Permissions: ��� � � � � 9 � �
Cell types:

� � � �� � �
Types: � � � � � � � ��� 	 � �

� �9 � � +1+��/.�.�.�� � + � " 9 � � �49 � 3%+(�/.�.�.�� � 3 � ' � � � � � � �� � � � �

A cell type marked � � can be used only for reads, not for writes, but on the
other hand the type inside the cell is subject to subplacing. A cell type marked
� � may be written to (or read from), but is treated as bivariant.

We can incorporate this in the definition of subplacing:

#�� � #��$# � �$% � � � ��� � � � �
��� ��/

� � ��� � � � � /
� � � / � �/� � � � � � � � /� �

� �����49�.�.�.�� � � � �0.�.�.#9#������� � �$������49�.�.�.�� � /� � �/.�.�.49#����� � � � � ����� � � �

Dom � + � Dom � � � � 	
Dom � + ��� + ��� � � � � ��� �

��� � /
Note that the fifth of these rules imply � � � � ��� � � � � � � ��� � . That will be handy if
one needs to use a few destructive writes to “tie the knot” in a circular structure
– such as a cluster of mutually recursive function closures – and thereafter use
it for reading only. It is safe to read from a cell using a subplaced types as long
as each write to the cell uses the exact same type as was used to allocate the cell
in the first place.

These restrictions on read-write cells only concern subplacing. The rewriting
of region types that occurs in the rules for

 %)
 � and � & +
 # & operations, as well as
during procedure calls and returns, do not really change the region description
of data. On the contrary: They maintain the description of data such that it
still means that same in a region environment
 where the run-time regions are
referred to by other region variables.

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 131

5.1.7 Recursive types

By now, the only feature we need to add for the region type system to be actually
useful is recursion in types. Recursive types are necessary to be able to reason
about arbitrarily long chains of pointers-to-pointers; such chains can arise either
from explicit use of lists or other recursive data structures, or implicitly because
the program builds a chain of closures that refer to each other.

Type recursion is usually viewed as an uninteresting feature that one can
“easily” imagine how to add to a system.3 It is, however, one of those features
that are more tricky to handle formally that it intuition suggests. Let us start by
stepping back a few paces and look at the syntax of the region type system so
far:

Places:
� � � �$# 9�#F9�%

Permissions: � � � � � � 9 � �
Cell types:

� � � �� � �
Types: � � � � � ��� ��� 	 � �

� �9 � � +1+(�0.�.�.�� � + � " 9#�����#9 � 3�+(�0.�.�.�� � 3 � ' � � � � � � �� � � � �
Environments: � 	 � fin; �

Typings: � 	 � fin; � fin � �
�

The classic way to add recursive types would be to introduce new syntax like

Type variables: � � � ��� �F9�� 	 9�� � 9������
Types: � � � � �����9��9 ����. �

and proceed to consider the types “ ����. � ” and “ � with every � replaced by ����. � ”
to be either identical types or isomorphic types, according to one’s purpose and
preferences. However, we run into problems if we try to do this with subplacing
and bivariant (or contravariant) types around: What should the subplacing rule
for ����. � be? And the one for � – if any at all?

The standard answers to these questions are given by Amadio and Cardelli
[1993]. They consider recursive types with the ����. � syntax and define a sub-
typing relation by what is essentially a co-inductive definition4. However, they
also present a concrete algorithm for deciding the subtyping relation, which
consider the recursive types as graphs obtained by replacing each � construc-
tion with back edges in the type’s abstract syntax tree. In general, I find that
viewing the recursive type as a graph is much closer to implementation intuition
than the textual � notation, so we shall build our formal support for recursive
types upon that idea.

Thus, we introduce an indirection layer in the syntax, replacing types with
indirect links to types via a type graph:

Type links: � � � � � 	F9 � � 9 �
F9������
Cell types:

� � � �� � �
3Certainly I myself am often guilty of that, and it seems that I am not alone: Many papers on

type theory that purport to be applicable to real-world programming languages actually leave the
addition of type recursion as an exercise for the reader, perhaps without saying it in so many words.

4See Brandt and Henglein [1998] for an explicitly co-inductive formulation of the Amadio–
Cardelli rules.

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 132

Types: � � � � � ��� ��� 	 � �
� �9 � � +1+ �0.�.�.�� � + � " 9#�����#9 � 3�+ �0.�.�.�� � 3 � ' � � � � � � �� � � � �

Environments: � 	 � fin; �

Type graphs:
� 	

� fin; �

Typings: � 	 � fin; � fin �
� � � �

(It would perhaps have been more conventional to let each � ��� � be a pair of a
graph and a distinguished link, but it will allow us to state typing rules more
compactly if we let all links from one � refer to the same graph).

5.2 The full region type system

Definition 5.1. The syntax of the region type system is as follows:

Places:
� � � �$# 9�#F9�%

Type links: � � � � � 	F9 � � 9 �
F9������
Permissions: � � � � � � 9 � �
Cell types:

� � � �� � �
Types: � � � � � ��� ��� 	 � �

� �9 � � +1+(�0.�.�.�� � + � " 9#�����#9 � 3�+(�0.�.�.�� � 3 � ' � � � � � � �� � � � �
Environments: � 	 � fin; �

Type graphs:
� 	

� fin; �

Typings: � 	 � fin; � fin �
� � � �

Definition 5.2. The type graph
�

is closed iff, for every � �����49 .�.�.�� � � � �/.�.�.49$����� � � 	
Img

�
, each

� � � is � � � with �
	

Dom
�

.

We will assume implicitly that all the graphs we manipulate in the following are
closed.

Definition 5.3. Every (total or partial) map
� � # ; �

extends naturally to a

(total or partial) map
� � � �

;
� :� � � � ��� � � � ���� � � ������49�.�.�.�� � � � �/.�.�.49#����� � � � � � �����49 .�.�.�� � � � �0.�.�.#9#������� �� � �2� �����49 .�.�.�� � � � �0.�.�.#9#������� � � � � �����49 .�.�.�� � � � �0.�.�.#9#������� � � � �� � � ������49�.�.�.�� � � � �/.�.�.49#����� � � � � � �����49 .�.�.�� � � � �0.�.�.#9#������� �

Notation 5.4. The notation “
� ��# + �� # �
 ” is an abbreviation for “

I
Id

@ B � "� � J � H �
”,

where Id is the identity map on # .

Notation 5.5. The free region variables of a type graph
�

are

frv
� � � # �� � .�.�.�� � 	

Img
���

The following series of definitions serve to define a coinductive subplacing rela-
tion between graphs:

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 133

Definition 5.6. Let � be the set of pairs of closed type graphs and links into
them:

� � � � � � � � �� �
is closed � � 	

Dom
� �

Definition 5.7. The relation
 in � is a type matching certificate iff each time
� � � � �
 � � /�� � / � , one of the following hold:

a.
� � � � � � / � � / � � � � � .

b.
� � � � � � ����� 9�.�.�.�� � � � � � � � �/.�.�.49#������� � and

� / � � / � ��������*9�.�.�.�� � /� � � � /� � �/.�.�.#9 ����� � � with

the same number of choices and cells in each case, such that � � � � � /� � and

� � � � � � �
 � � / � � /� � � for all � , � .
The type matching relation

2 is the union of all type matching certificates.

One easily sees that 2 is indeed a type matching certificate itself, and that it is
the greatest type matching certificate. 2 can be decided by trying to compute
the least type matching relation that includes a given pair � � � � � � � � � / � � / � � . All
pairs produced during this process will share the same

�
and

� / , and because
those two graphs are finite, the process will terminate with either a finite cer-
tificate or a trace that shows that no certificate can include � � � � � � � � � / � � / � � .
Fact 5.8.

2 is reflexive, symmetric, and transitive, i.e., an equivalence relation.

Fact 5.9. If
�

is closed, then � � @ � /�� � � 2 � � � � � whenever �
	

Dom
�

and
� @ � / is defined.

Definition 5.10. The relation
 in � is a subplacing certificate iff each time
� � � � �
 � � / � � / � , one of the following hold:

a.
� � � � � � / � � / � � � � � .

b.
� � � � � ������-9 .�.�.�� � � � � � � � �0.�.�.-9�������� � and

� / � � / � � � �����-96.�.�.�� �*/� � � � /� � �/.�.�.K9 ����� � � �
with the same number of choices and cells in each case, such that
1. Either

� �$# or
� � � / or

� / �$% .

2. Whenever � /� � � � � , it holds that � � � � � � and � � � � � � � 2 � � /�� � /� � � .
3. Whenever � /� � � � � , it holds that � � � � � � �
 � � /�� � /� � � .

The subplacing relation � is the union of all subplacing certificates.

Fact 5.11. A type matching certificate is also a subplacing certificate. Therefore
� 2 � = � � � .
Fact 5.12. � is reflexive and transitive, i.e., a preorder.

Definition 5.13. Define the relations � � � � � � � ���� and � � � � � � � �(��� by
the following rules:

� � � � � 	 ��� � �
� � � � � � � � � ' � � RTGOTO

� � � � /�� ��/ � ����
Dom � � Dom ��/ � � 	

Dom �-� � � � � ��� � � � � � /�� ��/ ��� � �
� � � � � � � ���� RTSUB

� � � � �$� � +1+ �0.�.�.�� � + � " 9#�����49 � 3�+ �0.�.�.�� � 3 � ' � �� � � � �
�
� � � � � � @ ! � �

� �����
where

� � � � � ��� � � + �/.�.�.�� � � � � � �
� � � � � � @ ! � � ���� RTEXPLODE

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 134

� � � � ��� � + �/.�.�.�� � 3 � �
� � � � � � @ ! � � � ����

� � � / � �������� 9 � + �/.�.�.�� � 3 9#����� � �
� � � � � � @ ! � � ���� RTEXTEND

# 	 �	 frv
� � � � � � � � ����

� � � � � � � + & � # 	 � ���� RTNEW

� � � � � � � ����
� � � � �0# 	 �� #
 � � �
 %)
 �1# ' � # 	 � ���� RTALIAS

# 	 �	 frv
� � � � � � � � ����

� � � � � � � � &#% &
 � & # 	 � ���� RTRELEASE

# 	 � �
	

frv
� � � � � ��# 	 + �� # 	 �
2� � � �(���
� � � � � � � � &#+
 # & # 	 + ' � # 	 � RTRENAME

� � � � ����� � � � � �0.�.�.�� � � � � � � � � � � � � � @ ! � � �����
� � � � � � @ ! � $&$&$! �� � $&$&$ � �

� � � ����� +�� � � � �/.�.�.�� � �)�
 '3#�� ���� RTCONS

� � � � ����� � � � � �/.�.�.�� � �4� � �)� � � � � � � � @ ! � � ����
� � � � � � @ ! � $&$&$! �� � $&$&$ � �

� � � ����� +�� � � � �/.�.�.�� � ����+ ��� .& � & � ���� RTNOWHERE

� � � � ����� � � / � � + .�.�. � � +'� � � ��$%
� � � � � � @ ! � !� � � � �

� ���� � � � / / � ��� � +(�/.�.�.�� � ��� �
� � � � � � @ ! � � � / � ��� � � � �
 � ���� RTREAD

� � � � � � � � � � /�� � + �/.�.�.�� � � � � � ��$%
� � � � � � @ ! � � � � ����� � � � / / � � � � + �0.�.�. � � �)� �

� � � � � � @ ! � !� � �
� � � � � �
 � � � / � ���� RTWRITE

� + is closed Img � + =
Dom

� +
� +A� � � � @ � � � � H �

� � � � � + H � � � �

� � � � � 	 ��� � � �
frv

� E
Img

� � ��G �
is closed Img � =

Dom
�

�"� � 	
Dom

� ��� � � � � � � � � 	 � � � � � �
.////0 ////1
frv

� E
Img

� � / ��G
� � � � @ � � � � @ � � � ����
where

� � � � � � / @ � � � � H � �
� � � � � H ��� /I � � / � ��� / � ����� J � � � � � � � �

� � � � @ � + � � @ � + � ��
 % % � � �
� �#� � � � � � � ��'� & + � � � RTCALL

� � � � � � � &#+ � RTEND

The “RT” prefix stands for “Region Typing”.
Note that, in RTCALL, the equation

� + � � � � @ � � � � H �

� implies that the free
region variables of

�

� all are in Dom
� � or Dom

� � .
There is no general RTMISC rule, because the full generality of the #) � � con-

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 135

struction is not meant to be used all at once by the UHL generator. Instead,
we expect that suitable rules are specified along with the translation from the
host implementation’s intermediate language to UHL. Of course, these must be
compatible with the rest of the type system:

Definition 5.14. The rule

� � � � � � +1+ � ����� + ����� � � � � � � + 3 " � ���� +
...

...
� � � � � � � + � ����� � ����� � � � � � � � 3 � � ���� �
� � � � � � � #) � � ���4+ � ���� + % ����� % ����� � ����� �

is valid if for each � and for each � � ; � / 	 ��� � , there is a � such that for each� / 	 Dom � / , one of the following holds:

1. There is an � 	
Dom � such that � ��� � � � � � ��� / � and � ��� � � � / ��� / � .

2.
� ��� � � ��� / � � is not

� ��� and � / ��� / � �	 � .

3.
� ��� � � ��� / � � � � � � and � / ��� / � �	� .

4. There is an � 	
Dom � such that

� ��� ��� � � � � ��� and � �� � ��� � .
Definition 5.15. The annotated mutator � is well-typed by � iff � � � � � 	
� � � 	 � for some

� � , and each time � � � � �6	 ��� � � it holds that � �"� � � � � � � � �
can be derived by the rules of Definition 5.13 plus perhaps a valid rule according
to Definition 5.14.

5.3 Safety proof for the region type system

In this section we sketch a proof of

Theorem 5.16. Let � be an annotated uniform mutator. If � is well-typed, then
� is region safe.

The details of the proof will not be used afterwards; readers who are willing to
accept my word that the theorem is true can skip directly to the next section (or,
indeed, to the next chapter).

Superficially, Theorem 5.16 is not much more than what was proved by Niss
[2002, Chapter 4], but the proofwork we need here is more intricate, because
we have to handle explicitly recursive types and circular values (which can be
produced by destructive update). For this, we need to work with store typings
(or a coinductive type interpretation, but especially in presence of destructive
update, a store typing is easier to work with). A store typing may need to refer
to regions for which no name is currently in scope (a reference to the region
may be stored somewhere on the stack), so it will be convenient to work with
region names � rather than region variables # .
Notation 5.17. The variables ˜

�
, ˜� , and ˜�

range over places
�

, types � , and type
graphs

�
in which all region variables # have been replaced by region names � .

We call these “tilded” entities runtime places, types, etc.

Definitions 5.3 through 5.10 carry over to runtime entities without change.
Also, we can move between the static and runtime universes by using Defini-

tion 5.3 to extend a map
� � # ;

˜
�

to
� � � �

;
˜� .

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 136

Lemma 5.18. Let
�

be any (total) map # ;
˜
�

. If � � � � � � � � /�� � / � (where �
is the ordinary subplacing relation between static types from Definition 5.10),
then � � � H � � � � � � � � H � /�� � / � (which is a subplacing relation between runtime
graphs and links).

Proof. It is easily seen that � � � � � 2 � � /�� � / � implies � � � H � � � � 2 � � � H � /�� � / � –
the static type matching relation 2 becomes a runtime type matching certificate
when

� � is concatenated onto the graph parts of all the relation pairs.
It is less obvious that the same technique works for � , because

�
may map

some region variables to % or # . On further inspection, however, what we need
to prove is just

� �$#�� � � � / � � / � % � � / � � � � #�� � / � � � � � / � � / � � � / � � / � �$%
where

� /�� � @ � �� � . But clearly each of the disjuncts on the left-hand side imply

the corresponding disjunct on the right-hand side, so the entire implication is
true. Therefore � with

� � applied everywhere is indeed a subplacing certificate,
and the lemma is true.

�

Definition 5.19. A store typing � is a finite map from � to ˜� � ˜� � � .

The role of a store typing is to remember which (runtime) type the value in
each heap cell had when that cell was allocated. This can be used to define

when some value � has the (runtime) type described by � ˜� � � � :
Definition 5.20. The value consistency relation �8��� 9 � � � ˜� � � is defined by

˜� � � � � � ���
�8��� 9 �	� � ˜� � � TISINGLE

� �	 �
˜� � � � �$�������� ˜�
�8��� 9 � � � ˜� � � TIBASE

˜� � � � ��� ������� �
����� 9 �	� � ˜� � � TITOP

˜� � � � ��� � + � �0.�.�.�� � + � ' 9#�����#9 � 3 � �/.�.�.�� � 3 � ' � � � � � � � � � � ���
� � � � ��� � � � � � �

.0 1 � � � � 	��
� � � � � � � � / �������- � � � � ˜� � � / �� � � � � � � � / �������- � � 2 � ˜� � � / �

�8��� 9 � � � ˜� � � TIRGN

Rule TIRGN contains the runtime invariant that describes the difference between
read-only and read-write cells: A read-write type description must match the
cell’s original type exactly. So, intuitively, we have the invariant that (abusing
notation slightly) �8��� 9 � � � � � � � �8+'� � and �8��� 9 � �"�1� � � � � � � � together imply
� � � �8+ , so it is safe to destructively write a � � to the cell and later expect to
read a � + .

We consider the rule

˜� � � � ��� � � � � � � � ���7� ���
�8��� 9 � � � ˜� � �

to be a special case of TIRGN with ��� �
and %+ � � �

– then “ � � ” collapses to a
tautology.

Fact 5.21. If �8��� 9 �	� � ˜� � � and � ˜� � � � � � ˜� /�� � / � , then �8��� 9 �	� � ˜� /�� � / .

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 137

We can extend this typing relation to entire data states and region environ-
ments, closing the link between static and runtime types:

Definition 5.22. The data state consistency relation �8��� 9 �
C� � � � � � is
defined by

Dom � � Dom � �*� 	
Dom � � �8��� 9 � � ��� � � � Bot

@ B
 � � H � � � ��� �
����� 9 �
C� � � � � � TIENV

where Bot is the map that maps every region name to # .

Proposition 5.23. If �8��� 9 �
C� � � � � � and � � � � ��� � � � � � /�� ��/ ��� � � for all � 	
Dom � � Dom � / , then ����� 9 �
C� � � � / � � / .
Proof. By Lemma 5.18 we have � � Bot

@ B
 � � H � � � ��� � � � � � Bot
@ B
 � � H � /�� ��/ ��� � �

for each � . The proposition now follows from applying Fact 5.21 for each � .
�

Of course, we also need to be able to express that the actual heap agrees with
that the store typing says:

Definition 5.24. The heap consistency relation � 9 � � � � is defined by

� � 	
Dom � � �8��� 9 � � � � � � ����� �

� 9 � � � �

Proposition 5.25. Assume ��9� � � � . If � � � / @ � �F�� � �,� ��� � , then there is
a � / such that � /�9� � 9 � � � � / and whenever �8��� 9 �
C� � � � � � with � �	 Img
 ,
then � /���� /89�
C� � � � � � .

This proposition states that it is possible to maintain the store typing when a
region is destroyed, provided no region variable is bound to it. The proof uses
an auxiliary definition and a series of lemmas:

Definition 5.26. Let � be a store typing and � be a region name. The store
typing that corresponds to � without � is written �

� � and defined by

��� � � � � ˜� � � / � � � � � � � � � � � � � ˜� � �>�� %
 � � / �
Lemma 5.27. If � ˜� � � � 2 � ˜� / � � / � then � ˜� � �>�� %
 � � � 2 � ˜� / � �>�� %
 � � / � .

If � ˜� � � � � � ˜� /�� � / � then � ˜� � �>�� %
 � � � � � ˜� / � �>�� %
 � � / � .

Proof. A type matching (or subplacing) certificate is still a type matching (or
subplacing) certificate when the substitution � �>�� %
 is performed on the graph
parts of all its elements.

�

Note that the lemma could not be proved indirectly by high-level properties
(such as transitivity) of the subplacing relation: it allows one to replace a region
name by % below a � � mark, where it would not be allowed by subplacing. The
reason why the lemma still holds is that the substitution must be performed on
both sides of the relation.

Lemma 5.28. �8��� 9 �	� � ˜� � � implies ����� � � 9 �	� � ˜� � �>�� %
 � � .

Proof. By inspection of each of the rules in Definition 5.20. For TIRGN, use
Lemma 5.27 for the subplacing premises.

�

Corollary 5.29. � 9 � � � � implies � 9 � � � � � � .

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 138

Lemma 5.30. If � + @ � � ��� 9 � � � ˜� � � and frv ˜� =
Dom � + , then � + 9 � � � ˜� � � .

Proof. The only rule for �8��� 9 � � � ˜� � � that depends on � is TIRGN. It only

depends on the value of � at � ’s in frv ˜�
, which proves the lemma.

�

Corollary 5.31. Assume �8+ @ � � 9 � � � � and frv � =
Dom ��+ . Then �8+>9� � � � .

Lemma 5.32. �8��� 9 � � � ˜� � � implies �����
9 � 9 � � � ˜� � � , where �
9 � is �
restricted to � ’s footprint, analogous to Definition 3.18.

Proof. The only rule for �8��� 9 � � � ˜� � � that depends on � is TIRGN. It only
depends on the value of � at addresses that are explicitly checked to be in � ’s
footprint.

�

Corollary 5.33. Assume � 9 � � � � . Then � 9 � � 9 �-� � 9 � .

Proof of Proposition 5.25. Set � /,� � � � � � 9 � � . By Corollary 5.29 we have
�:9� � � � � � . By definition � �	 frv � � � � � , so Corollary 5.31 implies � /89� � � � � � .
Now Corollary 5.33 gives us � />9� � 9 � � � � / . This proves the first part of the
proposition.

Now assume �8��� 9 �
�� � � � � � with � �	 Img
 . We must prove that � /���� /�9�

C� � � � � � , that is, for each � 	

Dom � that � /���� / 9 � � ��� � � ˜� � � ��� � , where
˜� � � Bot

@ B
 � � H �
. It is clear that frv ˜� =

Img
 , so � �	 frv ˜�
. Therefore,

˜� �0# �� %
K� ˜�
and by Lemmas 5.28 and 5.30 we get �8��� � � 9 � � ��� � � ˜� � � ��� �

and � / ��� � � 9 � � ��� � � ˜� � � ��� � . Finally, Lemma 5.32 gives � / ��� / 9 � � ��� � � ˜� � � ��� � ,
which completes the proof.

�

Propositions 5.23 and 5.25 contain the main insights behind the proof of The-
orem 5.16. The rest the proof is just about putting the pieces together in the
right order.

In the proof we generally assume the � is well-typed by � .

Lemma 5.34. Assume � � � � � � � ����� and ����� 9 �
C� � � � � � . Then there are
� / and ��/ such that �8��� 9 �
C� � � � /�� ��/ and such that � � � � /�� ��/ � ����� can be
derived without using RTSUB, RTEXPLODE, or RTEXTEND as the last step.

Proof. By induction on the derivation of � � � � � � � ���� . Obviously, the only
cases we need to consider are those for RTSUB, RTEXPLODE, and RTEXTEND. Propo-
sition 5.23 supplies the induction step for RTSUB. The cases for RTEXPLODE and
RTEXTEND are immediate, given the existential quantifier in TIRGN.

�

Definition 5.35. Define the relations � � � and � � �8��� � � �
 by

� � �4' � � RTCSTOP

� 9 � � � � �8��� 9 �
C� � � � � �
� � � � � � � ����� � � �8��� � � �

� � � � �����
C� ��� ����*� � � RTCSTD

� ���8��� � � �
 RTSEMPTY

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 139

 H � � =
 / � ������� � � �

�8��� 9 �
C� � � � � � frv

� =
Dom

�"� � 	
Dom

� ��� �� � � � � � � �C	 � � � � � �
.//0 //1
� � � � @ � � � � @ � � � �����
where

� � � � � � @ � � � � H � �
� � � � � H ���I � � � � � � ���� J � � � � � � � �

�:���8��� � � � � �8�
�� � � � � � �
 / RTSFRAME

Proposition 5.36 (Subject reduction, level 2). Assume � � � and � � ; ; � . If
� �� ; �!/ or � �

; � / , then � � 	>� � � � / .
Proof. Because � ' �	� has no successors, the derivation of � � � must be by RTC-

STD, so � has the form � � ���8�
C� ����� � ' � ��� � � and there exists � ,
�

, � such that
�:9� � � � and �8��� 9 �
C� � � � � � .

We also have � �"� � � � � ���� , and without loss of generality (Lemma 5.34)

we can assume that the last rule for � � � � � � � ���� is the RTXXX rule that cor-
responds to the syntax of ���� . Now proceed by case analysis on the derivation

of �
�
� ��
; �!/ .

MXROP by MXNEW. The addition of a new region to # will never make any of the
consistency relations become less true.

For the addition of a new region # 	 to
 , observe that RTNEW gives us

# 	 �	 frv
�

. Therefore � Bot
@ B
 � � H � � � Bot

@ B
 @ B � � � � H �
, so ����� 9 �
C� � �

� � � keeps holding.
MXROP restricts

�
to the footprint of the new � , but because we assume

� � ; ; � , Proposition 3.23(a) says that this is actually a no-op.

MXROP by MXALIAS. The increment of the region’s reference count will not in
itself make any of the consistency relations become less true (as TIRGN

ignores the reference count).
RTALIAS says that we have

� � � / �0# 	 �� #
 where
� / is the new type

graph. It is evident that

I
Bot

@ B �
 @ �� � J � H � / �0# 	 �� #
�� I
Bot

@ B �
 @ ��� � � � J � H � / �
so the data state consistency relation keeps holding.

Like for MXNEW we can ignore the restriction of
�

to
� 9 � .

MXROP by MXRELEASEN. Like for MXALIAS, the reference count manipulation in �
does not concern the consistency relations. RTRELEASE gives us # 	 �	 frv

�
,

so as for MXNEW the addition or (in this case) removal of a binding for it
in
 does not make the data state inconsistent.

Because the region variable that is released is syntactically restricted,
the values of
 for uncounted region variables cannot change. This is im-
portant if the stack � is not empty, because � � � � � � ��� records the original
original bindings of uncounted variables and requires them to keep hold-
ing.

Like for MXNEW we can ignore the restriction of
�

to
� 9 � .

MXROP by MXRELEASE1. Because # 	 �	 frv
�

, this binding can be removed from

without harming the consistency of the data state. Lemma 3.25 now tells

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 140

us that this binding was the only binding of a counted variable to � either
in
 itself or within the stack � . By Lemma 3.26 this implies that there
can be no uncounted variables that refer to � either. Therefore we can use
Proposition 5.25 to find a new � that will be valid in all the necessary
consistency relations after the region has been deallocated from � and

�
.

MXROP by MXRENAME. Much like for MXALIAS. The side condition # 	 � �	 frv
�

in
RTRENAME guarantees that no name capture will happen.

MXMISC. ���� must be � � ' � � , so from RTGOTO we know that � � � � � 	 � � � � .
Therefore, and because � is assumed to be well-typed, there is a valid
rule according to Definition 5.14 that applies to

�
and � , giving a new ��/

while relating � to the new ��/ according to conditions (1) through (4) of
Definition 5.14.

It is impossible that condition (4) is actually used in the chosen step;
this would contradict that �8��� 9 �
C� � � � � � . Therefore, for each � / 	
Dom � / one of conditions (1) through (3). In case (2) or (3) a derivation
of ������9� � / ����/ � � � Bot

@ B
 � � H � � ��/ ��� / � can be constructed from scratch
using TIBASE or TISINGLE. In case (1) a derivation is already present in that
of �8��� 9 �
�� � � � � � . Altogether, we can prove �8��� 9 �
C� ��/ � � � ��/ , which
is what all need to complete an application of RTCSTD.

MXCONS. ���� must be � � ' � � , so from RTGOTO we know that � � � � �:	 � � � � .
Therefore, and because � is assumed to be well-typed, we know that
� � � � � � � ��� � � by RTCONS.

None of the consistency relations are affected by the fact that some new
addresses are added to the appropriate part of � . When adding the cells

to the heap, we must simultaneously extend � with � ���� � ˜� � � � � �/./.0./�
� <�� � ˜� � � � � � , where ˜� � � Bot

@ B
 � � H �
. Then � / 9 � � /�� � / will

still hold; the cases for the new cells come directly from the derivation of
�8��� 9 �
�� � � � � � .

This new � / allows a derivation of � / ��� / 9 � � ��� , so the new state is
still consistent.

MXNOWHERE. As for MXCONS, we can deduce that RTNOWHERE must apply.
Because

� � � � � � ������� � , rule TITOP allows us to derive �8��� 9 � � � � Bot
@ B

 � � H � � � which is all that is necessary for consistency of the new state.

MXREAD. As for MXCONS, we can deduce that RTREAD must apply.
Because

� �� % , the consistency of the initial value of the pointer must
be derived by either TIBASE or TIRGN. The former requires that � ��� � �	 �
and thus contradicts MXREAD itself. So it must be TIRGN. From this, com-
bined with Definition 5.24 and Fact 5.21 we get that the value read from
the first heap cell has a typing consistent with

�
and � / . We also get

enough values of � to prove that the incremented pointer has the type
predicted by RTREAD.

MXREADWRONG. As for MXREAD we deduce that consistency of � ��� � � � must be
derived by TIRGN with � � �

. Rule RTREAD says that the type is not � � � , so
the bracket in TIRGN must hold for ��� �

. Therefore there is � � � � � � � � ���
with � � 	 �

. That is, � is in the footprint of � ; by Proposition 3.23(a) �
is also in Dom

�
, which contradicts MXREADWRONG. So this case is impos-

sible

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 141

MXWRITE. The mechanics of this case is much like that for MXREAD. The differ-
ence is that the value is written into the heap instead of read from it.
RTWRITE guarantees that its description in the pointer’s type is marked � � .
Then get ��� � � 2 � ˜� � � / � from TIRGN, use Fact 5.11 to derive � ˜� � � / � �
��� � � , and then Fact 5.21 to show that the value of the heap cell can be
replaced without harming the consistency of the heap.

MXWRITEWRONG. Impossible, with the same argument as for MXREADWRONG.

MXCALL. There is a lot of uninteresting plumbing to take care of here. The gen-
eral plan is that MXCALL and RTCALL together contains enough restrictions
to construct instances of RTSFRAME and RTCSTD for the new state.

One slightly nontrivial point here is that each side of the split between
parameter and caller-local data states, region environments, type graphs
and type environments must still be consistent in itself. The important
fact is that each of the two type graphs are closed. Then Facts 5.9 and
5.21 can be combined to see that every value in one of the two data states
is still consistent with its own part of the type graph.

MXRETURN. Again, there is a large amount of uninteresting matching of symbols
to be done here. The crucial point is showing that

�8��� 9 �
 / / � � / / � � @ � � � � @ � �
where
 / / and � / / come from MXRETURN and

�
,

� � , � , � � come from RTS-

FRAME. Set
� / /*� � @ � � and

˜� � � Bot
@ B
 / / � � H � / / � I � Bot

@ B
 / / � � H � J @ I � Bot
@ B
 / / � � H � � J

Because frv
� =

Dom
 we have

� Bot
@ B
 / / � � H � � I

Bot
@ B �
 @ �
 /	 H � � � + � � J � H � � � Bot

@ B
 � � H �

so �8��� 9 �
�� � � � � � (which we know from RTSFRAME) implies �8��� 9 �

 / / � � � � / / � � .

Further, we have

� Bot
@ B
 / / � � H � � � � Bot

@ B
 / / � � H � � � @ � � � � H � �
� I

Bot
@ B �
 / / H � � � @ � � � � J � H � �

� I
Bot

@ B � �
 / / H � � � @ �
 / / H � � � � J � H � �
But

 / / H � � � I
 @ �
 /	 H � � � + � J H � � �
 /	 =
 /
and

 / / H � � � I
 @ �
 /	 H � � � + � J H � � �
 H � � =
 /
(where the last inequality comes from RTSFRAME). Because

� � is defined,
we have frv

� � =
Dom

� ��, Dom
� � , so

� Bot
@ B
 / / � � H � � � � Bot

@ B
 / � � H � �
Therefore ����� 9 �
 /�� � /*� � � � � � (which we know from RTCSTD) implies

�8��� 9 �
 / /�� � /�� � � � � � , and further �8��� 9 �
 / /�� � / H ��� � + � � / /�� � � (because

� � � � � H � � � +).
All in all we get �8��� 9 �
 / / � � / /�� � / /�� � @ � � as wanted.

CHAPTER 5. A REGION TYPE SYSTEM FOR UHL 142

MXSTOP. Trivial, by RTCSTOP.
�

Proof of Theorem 5.16. From Proposition 5.36, an easy induction on
; ;

proves

that � � ; ; � implies � � � . Because it is not true that � �
� � + � , the agent
must be region safe.

�

Chapter 6

Other host-language features

In this chapter we will briefly investigate how some common language features
that are not found in the ML subset of Chapter 4 can be represented in the UHL

model. We will also consider how some of them need special extensions to the
region type system.

Due to time constraints (see the Preface), the examples are less fleshed out
than I had hoped to be able to, but the walkthrough nevertheless ought to give
a feel for the range of possible UHL applications.

6.1 Generic imperative language features

The first set of features we will look at are the ones found in traditional struc-
tured imperative languages such as Pascal or C. From our prespective the most
important property of these languages is actually the absence of function clo-
sures or polymorphic typing, which means that a lot of the shortcomings our
techinques have for ML are not relevant in this context. But there are also a
number of imperative language features that present challenges of their own:

6.1.1 Destructive update of heap cells

The UHL model includes a primitive write operation that destructively updates
a heap cell. We have already shown how to use it for ML references (Sec-
tion 4.4.2) and how it can be handled in a region type system (Section 5.1.6).
Still, there are a few things to be said about destructive update in the context of
imperative languages.

The first factor is that the possibility for destructive update is usually ubiqui-
tous in an imperative language. Most imperative languages’ default concept of
a heap block is one in which the content can be changed at any time. If the
programmer wishes to generate a block of which the language will prohibit up-
dates, he has to ask for it specifically (for example, with a

� ��� � � keyword in C
or C++). Compare this with ML’s convention where heap allocation results in
an immutable heap block unless you ask specifically for a reference. Therefore
programmers in C-like languages often use a mutable heap block even if they
have no intention of actually updating after it has been initialized – partly just
to save the keystrokes of typing

� ���
�
�
; partly because C (and C++) makes it

143

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 144

difficult to work efficiently and flexibly with records that have the same layout
except for differences in which fields it is allowed to update.

This means that if one tries to construct a region typing naively from the
original C or C++ types, it is likely to end up with a lot of � � permissions
and very few � � ’s, if any. This will severely limit the possibility of subplacing,
thus lowering the attainable agent quality. This effect can be counteracted if
the region inference itself tries to change premissions from � � to � � whenever
possible. An algorithm for this will be presented in Section 7.3.7.

The other problem with destructive update is that the use of it is ubiquitous in
imperative programs. The naive rule for destructive update – that the value
written into a heap cell must have the exact same region type as the previous
value – is acceptable in a language such as ML that discourages widespread
use of destructive update. But in an imperative language, where programmers
often prefer updating all data fields in a stucture to building a new one, this
tying-together of successive data value’s lifetimes is likely to have disastrous
consequences for many programs.

I believe that this is the largest single obstacle to widespread use of region-
based memory management for imperative languages. Unfortunately I have no
good idea of what a solution might look like. I have some hope that work like
Reynolds’ “separation logic” [Reynolds 2002] may eventually inspire a better
solution, but so far nothing concrete has come of this.

6.1.2 Loops and gotos

Procedure bodies in imperative languages tend to have more complex control
structures than ones in functional languages. They often contain loops, and
in languages with

� ��� �
statements they may not even have any hierarchical

structure.
The UHL model supports such unstructured control flow by design. Moving

away from the nice acyclic flowcharts that functional languages exhibit will
need some extra algorithmic elbow grease in the region inference; this will be
discussed – and solved – in (i.a.) Section 7.3.8.

Local loops make sense because imperative languages allow the values of lo-
cal variables (such as a loop counter) to change while the procedure executes.
This is also supported natively by the UHL model, even though our formal spec-
ification of the model requires the variable to be explicitly unbound before a
new value is assigned to it. This will make the region type system see the as-
signment not as a new value in an old variable, but as a new variable that just
happens to have a name that has been used before. The new variable can have
its own region-annotated type that is unrelated to the previous type, so local
assignmens do not tie the lifetimes of the old and new values together, unlike
destructive updates on the heap.

6.1.3 Global variables

Imperative languages usually offer some concept of (statically allocated) global
variables, if only in the form of “ � � � � � � ” variables that are only visible in a
small part of the program but exist for the duration of the program.

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 145

Ordinary global variables can be handled almost directly in the UHL model,
by representing each of them as a UHL variable and formally thread its value in
and out of procedure calls, utilizing the ability of UHL procedures to take any
number of parameters and return any number of result values. This gives global
variables the same ability as local ones to change region-annotated types when
their values change.

In a large programs with many global variables, the threading of all the glob-
als may be a liability for the performance of region inference. Therefore one
probably ought to combine it with a simple analysis of which procedures that
may side-effect which global variables, either by themselves or by provedures
that they call. If a procedure does not have any effect on a certain global va-
riable, the threading of that variable can be short-circuited around calls to it.
Furthermore, global variables of atomic (non-pointer) type do not affect region
inference at all, and may be omitted in practise.

The same solution is good for modeling a nested procedure’s access to local
variables of enclosing blocks in Pascal, as long as the nested procedure is called
directly. If one needs to model references to nested procedures to be passed as
parameters (as Standard Pascal allows) or stored in “function pointers” (as I am
told that newer members of Borland’s family of Pascal dialects support by some
kind of implicit thunking), the implementation’s actual access mechanism may
need to modeled more exactly.

6.1.4 By-reference parameters

Passing arguments by reference is often used in imperative programs to “return”
more than one atomic value from a subroutine. It would be easy to dismiss this
use as obsolete – in a modern language with automatic memory management,
the argument would say, it should be easy to construct a tuple of return values
and return that. However, in fact many widely used language still lack conve-
nient syntactic support for constructing such a tuple and (in particular!) picking
it apart in the caller. And even in languages that have such syntax, the natural
intertia of programmer habits means that the idiom of passing by reference is
often common nevertheless. One reason for this is, of course, that unless one
consistently adopts a value-oriented programming style, there is little practical
benefit of returning a tuple instead of using call-by-reference – and in traditional
(or garbage-collected) implementations call-by-reference is often the more effi-
cient option.

Therefore, a region-based implementation of an imperative language ought
to be able to handle the call-by-reference idiom with reasonable grace. Once we
develop a way to represent pointers to global and local variables (which we will
do in the following subsections), the reference-passing mechanism itself could
be expressed “directly” in the UHL model. But this is not really a good solution
for region inference.

The major problem is that when we pass a pointer into a procedure instead
of getting a value out of it, the region type system must use the type of the
input pointer to close the link between where the procedure produces the out-
put value and where the caller expects to find it. This means that the regions
containing the produced value must be decided before the call, thereby prevent-
ing the callee from selecting the regions itself and pass them as output regions.

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 146

This will harm the precision of region inference – for example, we saw in Sec-
tion 2.4.1 that this ability were essential for handling the Game of Life example
well without artificual rewriting.

Another problem is that by treating the target variable as something that
can be pointed to, we force the region type system to apply to it rule from
Section 5.1.6 that updates cannot change its region-annotated type. Thus we
lose the usual ability of local variables to get new region-annoatated types when
they get new values.

For these reasons, it is desirable to try to convert the call-by-reference to copy-
restore in the UHL representation of the program; the UHL model natively allows
a procedure to return more than one value. It takes some program analysis to
determine when this transformation is semantically sound; but when it is, the
two approaches give the same results, so we are free to use the efficient call-
by-reference mechanism in the object code the compiler eventually produces,
while pretending to the region inference that we are actually doing copy-restore.
Thus we can get the best of both worlds.

One minor problem with converting call-by-reference to copy-restore is that
the extra return values may sometimes prevent a tail call from looking like a tail
call. That might harm the heuristics the the region inference ordinarily uses to
prevent agent code from causing loss of tail contexts (one such heuristic will be
presented in Section 7.3.8). Fortunately, there are not many lanaguages where
both of call-by-reference and tail recursion are common idioms.

6.1.5 Pointers to global variables

If the language has an address-of operator that can create pointers to global
variables, things get more complex, as the UHL model does not have any built-
in concept of a mutator value � 	 � referring to an UHL variable rather than a
heap cell.

I believe the most flexible solution is to consider a pointer to a global vari-
able to be a “non-pointer” at the UHL-level, like we did for statically allocated
constant data structures in Section 4.4.3. The UHL representation of Reads and
writes through pointers that may point to global variables must be instrumented
with a switch on the pointer value that goes to either an ordinary heap oper-
ation, or a simulated access to the threaded UHL variable that represents the
pointed-to global.

However, unlike in Section 4.4.3 the instrumentation needs to be visible to the
region inference, so it will pay (in terms of precision of the region inference and
possibly also the efficiency of the inference process) to do a pointer analysis in
advance to determine which pointers have any risk of pointing to which globals
at all. There is a large literature on suitable pointer analyses for imperative
languages – see Hind [2001] for a recent survey with lots of references.

6.1.6 Pointers to local (stack-allocated) variables

Real challenges arise then the address-of operator is used to create a pointer
to a local variable and it cannot be handled as an instance of call-by-reference
that can be transformed to copy-restore. The general solution for global vari-
ables cannot be used, because a local variable in a recursive procedure may

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 147

exist in unboundedly many incarnations simultaneously, and they cannot all be
threaded into other procedures at once.

The peculiar property of pointers to local variables is that the host language’s
type system usually cannot prevent the pointer from escaping the lifetime of the
pointed-to variable, so a well-typed mutator can be memory unsafe even with-
out allocating a single heap cell. We have two different viewpoints to choose
from in this situation.

One is to view the dangling pointer to a former local variable as part of the
problem that region inference must solve. After all, the programmer’s speci-
fication that the variable is to be local (i.e., allocated on the call stack) is a
form of manual memory management, and automatic memory management in
general exists to prevent erroneous manual memory management from causing
program crashes. According to this viewpoint, the declaration of a seemingly-
local-but-pointed-to variables should be represented as a heap allocation in the
entry to the variables’s scope, and then it should be left to region inference (or
garbage collection) to deallocate it at an appropriate, safe time. A pointer to the
freshly allocated memory block would be stored in a “shadow variable” which
is used to simulate the address-operator, in addition to direct accesses.

Later in the process, it should be the agent’s right to allocate space for some
regions on the call stack (which cannot be expressed in in the raw UHL model as
presented here, but might be possible as a general extension of the model; see
Section 3.5.3). Then the original local variable may or may not end up actually
being allocated on the stack, as may any allocation that on the surface refers to
the heap.

A variant of this principle is to take the programmer’s choice to use a local
variable as a hint that the block should be stack allocated if possible, even if
it means extending its lifetime until the end of the block it is local to. (The
programmer may wish this because stack allocation is faster and more efficient
than allocation in a heap region). Taking the hint would involve inserting a
dummy read of the variable at the very end of its scope, which would force the
region inference to extend the lifetime appropriately. If, however, a yet longer
lifetime were necessary such a dummy read would not change anything.

The opposite viewpoint says to Trust The Programmer. He presumably knew
what he was doing when he specified a specific lifetime for the variable and
would have used

�

�
�

or ���
�������

if he wanted automatic memory management.1

This positions may be a little unusual, but it will be instructive to investigate its
consequences.

One first observation to make about it is that it is compatible with our decision
(Section 3.3) to take region soundness rather than region safety to be the main
correctness criterion for agents. A region-sound agent is allowed to let the
program crash with a pointer error, as long as the program also crashes with a
pointer error when no heap memory is reused. And precisely that is, intuitively,

1The “ideology” of automatic memory management commonly asserts the non-existence of trust-
worthy programmers as a fundamental truth. However, some real-world programmers can be
trusted, and some of these are not above using automatic memory management to reduce the
boring parts of programming, as long as they can decide for themselves when to take it and when
to leave it.

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 148

the case when the crash is caused by a stray pointer into the stack rather than
the heap.

Then comes the question of how to express the trust-the-programmer view-
point faithfully in the UHL model. A first attempt would be to extend the UHL

with primitives for explicit allocation and deallocation. If these are not region
annotated they could be used to specify the allocation and deallocation of stack-
allocated objects explicitly in the uniform mutator.

A problem with this approach is that if the mutator attempts to access memory
through an obsolete stack pointer, the ideal semantics will end up in the
 � � +)�
state, which is not formally distinguishable from the kind of errors that the
agent is responsible for avoiding. If the uniform mutator itself is not memory
safe, there can be no region-safe agents (see footnote 5 on page 92), so we
cannot use Theorem 3.46 to establish that an agent is sound.

This can be avoided by distinguising lexically between stack pointers and
heap pointers, such that a read or write operation only goes
� � + � if the pointer
is an unknown heap pointer but blocks immediately for an unknown stack
pointer, just as for a non-pointer. Then it would also be natural to split the�

part of the semantics configuration into a map for the heap pointers and one
for the stack pointers.

But it turns out that this can all be modeled in the ordinary UHL language if
we thread the entire stack around in the program as if it were a global variable
(which, in a sense, it is). The stack can grow arbitrarilty large, but the UHL

semantics does not constrain the size of what can be stored in an UHL variable.
Specialized #) � � operations can be used to allocate and deallocate stack frames,
and to instrument read and write operations to jump around the heap-access
operation and simulate it using the stack representation if appropriates.

The attraction of this solution is that the results about region soundness in
Section 3.3 would all be directly applicable to the uniform mutators that are
built with it. One might expect major changes to the region type system in
Section 5.2, but only little explicit support would be needed. The region type
system would enforce a special status for the UHL variable that represents the
stack, and special rules would be necessary for the #) � � operations that access
the stack. However, if the canonical type of a stack pointer is � ������� � , the #) � �
variants used for instrumenting a read or write would add no constraints on the
typing beyond those of the read or write itself – so the region inference will not
need to to see these instrumenting #) � � s at all!

The safety proof for the region type system in Section 5.3 would of course
need a major upheaval, adding store typings for the stack in parallel to the one
already maintained for the heap.

6.1.7 Separate initialization of new heap blocks

Some languages have a model for heap allocation where freshly allocated blocks
of heap memory is initialized to either random bit patterns or some kind of
default values. After the allocation, the caller must explicitly fill in meaningful
values.

This is usually not a problem for the UHL model. The fresh block can be
considered to have the right types from the beginning if only default contents
is considered to be non-pointers. Even if the default contents are random bit

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 149

patterns that might coincide with a pointer, we can imagine the UHL semantics
running on a machine with “invisible” origin tags on all data, such that a heap
access using a pointer that appeared by chance in a freshly allocated block does
not go
� � +)� but just gets stuck silenty.

In the region type system, one can let the permissions of the fields in the
memory block be � � until they have been filled, and then – if applicable – change
them to � � afterwards such that subplacing will be available.

There is, however, a small potential for problems here: The region type sys-
tem will demand that the region annotations for the values that are filled into
the block are decided on no later than the block is allocated. This means that
programs which allocate the block first and then go on to compute the values
that should be in it will not have the full power of the HMN-like agent program-
ming language available for the compuatation. This is a problem in particular
for Prolog, where such early allocations is a common idiom (see Section 6.3.3).

6.1.8 Pointer tricks

As described in Box 3.1 (page 55), the operational model of UHL supports all
kinds of dirty pointer tricks with no trouble. However, the region type system
does not work with them at all, and I know of no way to generate agents for
mutators with pointer tricks automatically.

6.2 Object-orientation

We now turn to the techniques needed to represent object-oriented programs in
the UHL model. We will imagine a host language that is “somewhat like C++
or Java”, although these two full languages are not currently within the scope
of automatic region inference.

Of course, much of the discussion in Section 6.1 will also be relevant to object-
oriented host languages.

Because I have explicitly chosen not to consider modular region inference
in the thesis, we will work under the closed-world assumption, that is, that
we know the entire class hierarchy of the program. This assumption was also
made by Christiansen and Velschow [1998], who were the first to try to define
region-based memory management for a Java subset; it seems to be essential
for designing region type systems for object calculi at the current state of the
art.

6.2.1 Class hierarchies and subtyping

Assume a “standard” representation of objects at run time: The object consists of
a number of consecutive heap cells, of which the first contains a class identifier
and the following ones contain the values of the object’s fields. Fields that are
inherited from a superclass are placed first, such that a pointer to the object
can also count as a pointer to an object of the superclass, except for the value
of the class identifier. The class identifier is commonly a pointer to a statically
allocated class description, but we will treat it as an opaque magic number here.

Small implementation-dependent variations on this theme are, of course,
common, for example in connection with multiple inheritance.

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 150

� �
exp� �

� +
� �

 � � � �
� � �� � � �

����� �
Yes

No

unbind
8� � � � �

unbind
8� �

�� �
down-cast exp to

�

� �
��+� ����

Figure 6.1: Translation of a down-cast expression

For a single class, creation of objects and access to fields (reading values
or writing a new value) fits well with UHL’s heap primitives. Field accesses
generally ignore the class identifier.

Up-casts and down-casts are operations associated with the class hierarchy.
An up-cast is usually a no-op operationally, and is also invisible at the UHL level.
A down-cast consists of reading the the class identifier and throwing an excep-
tion if the object’s real class is not either the target class of the cast or one of its
subclasses. A possible UHL representation is shown in Figure 6.1.

Now consider how to represent this in the region type system. In the host lan-
guage’s object-oriented type system, a value of type “pointer to

�
” may actually

be a pointer to
�

or any of its subclasses. Therefore, when we translate the
host-level types to region-annotated types, we need to know the entire class
hierarchy, say, �

� �

�

and the type vertex for a “pointer to
�

” becomes

� � � �4� ��� + 9 � � � � ��� + � � � + � � � � � � � � 9 � � �4� ��� + � �	� + 9 � � �4� ��� + � �
� + � ��� + � �� � � �
The down-cast in Figure 6.1 can be typed by inserting a RTEXPLODE before

 � � � � and typing the inspection operation separately in different envirom-

nents for each of the “pointer to precisely this class” types like � � � � � � � + � � � +'� � .
After the “yes” branch, only “pointer to precisely

�
” and “pointer to precisely

�
”

are left, and each of these can be converted to the ordinary “pointer to
�

” type

� � � �*� � � + � � � + 9 � � �4� � � + � � � +(� � � +(� � � � � �

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 151

by the RTEXPAND rule.
Upcasts can be typed by the same general principle: First use RTEXPLODE split

the environment into cases for each class in the subhierarchy below the “old”
class; then use RTEXPAND to convert each of these to the standard type for the
“new” class. (In practise, of course, one is free to imagine a joint rule that does
both of these at the same time).

For field access, use RTEXPLODE on the temporary copy of the pointer just be-
fore the first read instruction. When the temporary pointer is unbound after the
actual access, the difference between the different exploded environments dis-
appear (the field that is access has the same type in all of the relevant classes),
and no special rules are necessary to make them converge again.

6.2.2 Dynamic method dispatch

Many object-oriented languages provide static methods and perhaps also free-
standing funcitons that are called directly. These are, of course, easy to imple-
ment in UHL. Dynamic methods, where a method call goes to different code
depending on the actual class of the object, require a little ingenuity.

The solution is much like the one for ML in Section 4.1, but is actually simpler
because we don’t need any separate control-flow analysis to identify procedure
groups. Instead, we can use the principle that

Each method name corresponds to one UHL procedure.

except that this short phrasing tacitly assumes that we use alpha renaming to
get rid of identically-named methods in disjoint parts of the class hierarchy and
C++-like overloading of methods.

Consider again the class hierarchy from before:

�

� �

�

Figure 6.2 shows the overall structure of an UHL procedure representing a
method � that is defined in class

�
and have overriding definitions for

�
and�

. If we ignore, initially, the dotted nodes at the top right, this looks much like
Figure 4.2 on page 102. The dispatching code at the top can be understood as a
simultaneous down-cast to each of the classes that implement the method. The

nop entry node is there to make space for the RTEXPLODE rule that opens the

down-cast idiom.
If the implementations in

�
and

�
contain explicit calls to the inherited im-

plementation, these calls can be done directly through a secondary entry point
at its beginning, thanks to the UHL model’s support for multiple entries. In this
way, a direct call from

� . � to
� . � might avoid having to set up the region

properties of the arguments in ways that are required only by
� . � .

A more ambitious use for multiple entries is sketched by the alternative dis-
patch code � � � that is shown in dotted lines at the top right half of the figure. If
we let the UHL program contain that as well as there ordinary � � � we can encode
into the uniform mutator the fact that when we call the � method of an object

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 152

nop

� ��
nop

� � �

 � � � �

� � �� � � �

� � �� � � �

switch on
�

oror

switch on
�

or

unbind
8� � unbind

8� � unbind
 � �

code for
� . �

(also used for �-. �) code for
� . � code for

� . �

&#+ �
� � �

& +	�
� � +

& +	�
� ��

Figure 6.2: Sketch of a procedure group with consisting of three methods that
implement the same interface � . The calling convention is that contains the self
(or �������) pointer for the receiving object; explicit arguments are passed in other
UHL that are not shown in the figure.

we know as a
�

, there is no risk that the call will end at
� . � . This may be

beneficial if
� . � needs some special region properties, for example that two of

the method’s arguments must be in the same region.
However we can only put this construction to full use if the outgoing edges

from the switch on
�

nodes are annotatable. Otherwise both entrypoints will
be in the same flowchart chunk, and the same region parameters must be passed
in both cases. However having an annotatable edge here means exactly that the
method may need to start by doing different according to where the call comes
from. This is not directly possible with the usual “vtable” implementation of
dynamic dispatch, so some special support from the implementation is needed
here. The simplest option would be to have several different entries for � in
the vtables of

�
and

�
. One is used by calls that consider the target object an�

, the other by calls that know it to be a
�

or
�

.

6.3 Logic programming

The least mainstream programming language to which region-based memory
management has been adapted is probably Prolog. The first work on com-
bining Prolog and regions was my M.Sc. thesis [Makholm 2000b], in which I

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 153

constructed an experimental region-based Prolog compiler from scratch (and
very little knowledge about how Prolog is usually implemented). Later, as part
of my Ph.D. work, I collaborated with Kostis Sagonas on adding region-based
memory management to an existing, competitive, Prolog implementation. The
joint paper that resulted from that work Makholm and Sagonas [2002] mainly
describes operational issues that are not touched upon in this thesis.

6.3.1 Backtracking

The most conspicuous feature of Prolog is its control-flow constructs, which are
based on backtracking and “cut”s. One would expect this to create problems
with fitting it to the UHL model; backtracking can cause the flow of control to
jump back into a deep recursion tree that had apparently all been unwound.
Such a very non-local control flow seems to be incompatible with the execution
model of UHL.

However, this problems have already found a (satisfactory, I think) solution
with the backtracking-aware region manager that I created for the M.Sc. pro-
totype and described in [Makholm 2000c]. The backtracking-aware region
manager implements the same interface as the standard model described in
Section 1.2 but in addition to this it executes backtracking and choice-point
manipulation operations in unison with the mutator. When the mutator back-
tracks, so does the region manager, unwinding its entire (extensional) state to
what it was when the choice point in question was created. Regions that were
supposedly deallocated spring to life again, their contents intact, and regions
created since the choice point disappear without trace. Even allocations made
in existing regions after the choice point was created are undone.

I will not describe here how the backtracking-aware region manager works
its magic; interested readers are referred to the M.Sc. thesis [Makholm 2000b].

However, the fact that the region manager handles backtracking transparently
means that the region inference can proceed as if backtracking never happens.
On the other hand it must be prepared that a predicate call may jump to another
of the callee’s clauses than the first matching one (when what actually happened
was that the first clause was tries but that execution path eventually failed and
caused backtracking).

The only question is whether we can still trust the results of Chapter 3 (such
as Theorem 3.46, for example) without changing the UHL semantics and redo-
ing all of the proofs. It turns out that we can, by the trick of modeling Prolog’s
sequential nondeterminism by the implicit nondeterminism of UHL’s #) � � oper-
ation. We can record choice-point operations as special “I/O events”, such that
once the (ideal or managed) semantics of UHL has produced a set of behaviors,
we can extract the actual extensional behavior of the Prolog program from that.

Example. Consider the Prolog program

� ��	 � �
 � � � � � � � � � �
 � � �
� � �

� ��	 � �
 � � � � � � � � ��

 �
� ��	 � �
 � � � � � � � � ��
 � � � � � � � �
 �
���
� � � � � � � � � � � �
 � � �

� � �
���
� � � � � � � � � � ��

 � � ��	 � �
 � � � � � � � �
 � � �

� � �
���
� � � � � ��	 �

 � � � � � � � � �
 �

���
� � � � � � � � � � � �
 �

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 154

� � � �
� � �

where the
� �
� � � s are there to make the backtracking behavior visible from the

outside. (Prolog’s
� �
� � � primitive displays text to the user; it does not match

the UHL convention that “write” refers to the heap and “output” to the exter-
nal world). The program can be represented as a uniform mutator with the
(abstracted) ideal behaviors

� bs � � � � � '

 � � � ��� ��� + � � �����
),% � �
��� ��� � � ��
 ��� ��� + � � �����
),% � ���� ��� � � ��
 ��� ��� � � ��
 � ��*�	�
),% � ���� ��� � � ��
 ��� ��� � � �� � � � � *�	�
),% � ���� ��� � �
� ��� + � � �����
),% � �
��� ��� � �
� ��� � � ��
 � � ��� � � ���� ��� � �
� ��� � � �� �
 � � � ��� � �
��� ��� � � � � � � � �

(as well as prefixes of them, of course). From this set one can mechanically
recover the observable behavior of the Prolog program:

� ��� ��
 � ��� � ��
� � �� ��� ��� � � ��� � ��
*� � � ����& �0� �
The special event “ � ��� 3 ” means that the program has reached a choice point
and (nondeterministically) chosen the � th way to proceed. “ �
),% ” means of that
the current execution path has failed. The uniform mutator will be written to
kamikaze after having emitted �
),% – say, by jumping to an empty #) � � node –
whereas the actual Prolog program backtracks. When we interpret the set of
ideal behaviors, we can recover the backtracking by looking for another (ab-
stract) behavior that has a prefix in common with the failed one.

The point of this roundabout definition is that the (mathematical) function
from � bs � � � '

 � to the observable behavior can be used on � bs � � � �

 � from the
managed semantics without changes. Therefore, if we know that an agent is
region sound in the UHL world, it will also be true in the Prolog world that the
observed behavior of the program with the agent is the same as the observed
behavior without memory management. And therefore it is safe to use region-
inference algorithms that assume that the program will kamikaze instead of
backtracking.

6.3.2 Types

Prolog is a typeless language, which means that the region inference needs to
include its own type inference such that the region type system will have some
types to place its region annoatations on. There is quite a bit of literature on
type analyses for logic programming, but much of what I have reviewed is based
on assumptions (such as giving a free variable an atomic type with no place to
put structured region annotations) that make them difficult or impossible to use
as a basis for a region type system.

My prototype implementations use ordinary techniques from type inference
from ML-like languages to do type inference in a simple “soft typing” system of
extensible tagged sums. If the type inference uses a graph unification algorithm
to unify types without occurs-checks, it can invent enough recursive types to

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 155

type any source program, so the type system does not need to be visible to the
programmer.

If the program uses Prologs ��� ��� and ��� ��� � � � �
 to build or analyze val-
ues dynamically, the task of the type system gets harder. In the experiment in
[Makholm and Sagonas 2002] we added some rudimentary support for these
primitives on an ad-hoc basis to the extent that our (legacy) benchmark pro-
grams required them. But I have no good general theory of this problem to
offer.

6.3.3 Unification

The other nonstandard feature of Prolog, aside from backtracking, is that first-
order term unification is a primitive and indeed the only way to build and in-
spect structured data. This mechanism has enough of an imperative flavor that
many of the considerations in Section 6.1 are valid for Prolog, too.

Superficially, unification is just a limited form of destructive updates on the
heap, but treating it just as that will degrade the strength of region inference
severely. In fact, only a few cases of unification will usually need such treatment.
The majority of unification operations in a Prolog program can be identified as
either just building new terms, taking existing terms apart, – or returning data
to the caller of a procedure.

Unification is the only mechanism for passing data out of a predicate – es-
sentially all returning of values must be done using call-by-reference. Thus the
recommendation in Section 6.1.4 of attempting to convert call-by-reference to
copy-restore applies doubly to Prolog.

A special problem is that Prolog programmers very often use the call-by-
reference returning of values to initialize fields of heap blocks that have been
allocated with default contents (i.e., unbound variables). For example, a com-
mon idiom for constructing a list is

������� � � � � � ��� � � ���
 � � � �
�
� � � � � � � � � � � � �
 �

� �

��� ��� � � � � � � �
 �
������� � � � � � �����
 �

and this programming style is often used for the creation of non-recursive data,
too:

� �
� � � � � � � � � � ��
 � � � � ��� � � � � � � � � � �
 �

� ��	�� � � � � � � � � � � � � �
 �
� ��	�� � � � � � � � � � �
 � �
 �
� ��	�� � � � � � � � � � � � ��
 �

where the region type system from Chapter 5 will not allow � ��	�� � � � � � � � to
choose the regions for its output, because the region annotations for � � � must
be decided as soon as the

�
�
�
� block is allocated. I have no finished ideas about

how to repair this. The logic-programming tradition contains many examples
of mode analyses that infer the kind of information we need here, but I have not
yet investigated how to combine them with a region type system.

CHAPTER 6. OTHER HOST-LANGUAGE FEATURES 156

6.3.4 The WAM

Most Prolog implementations are built around a bytecode language that de-
scends from Warren’s Abstract Machine [Äıt-Kaci 1991; Warren 1983]. Ac-
cording to the principle in Section 1.4.2, region inference should take place
at the WAM bytecode level. In the region inference for [Makholm and Sagonas
2002] we tried to do region inference at the Prolog source level in a stand-alone
process, but it turned out that the correctness of the generated agent depended
on being able to predict within rather strict tolerances which exact sequence of
WAM instructions the bytecode compiler would generate. The prototype Prolog
region inference sometimes guesses wrong and generates agents that may not
be safe. A non-toy implementation would almost certainly need to do region
inference only after most of the phases in the bytecode compiler.

The WAM uses three kinds of memory for data

1. A bank of scratchpad registers named � � , ��
 , �� , ... These can be modeled
directly by UHL variables.

There are also various other registers, most of which have to do with
the implementation backtracking and need not be modeled in the UHL

representation.

2. The local stack, which is more or less a call stack with bells and whistles
(for backtracking) added. WAM instructions can refer to “permanent vari-
ables” � � , ��
 , etc., which are locations in the stack frame of the current
procedure.
��� variables can be pointed to by ��� ’s or � � ’s in other stack frames. This

is a little more benign by general pointers to local variables, and the byte-
code compiler guarantees that pointers to ��� ’s will not escape the lifetime
of the stack frame they point into. Thus they can be safely handled by
reifying the entire local stack as an UHL variable, as described at the end
of Section 6.1.6.

3. The heap, which is the part that we usually want to manage with regions.

The WAM uses a data model where a heap cell (or local variable) in general can
contain a pointer and some tag bits that describe how to interpret the pointed-
to value. This need some extensions to the syntax of types in the region type
system, but no large conceptual changes.

Chapter 7

Region inference algorithms

7.1 Overview

Region inference in general inherently depends on the host language. In our
setting, this means: If it is to be done well, one needs to take into account how
the uniform mutator was produced from a concrete program in a concrete host
language. This is because the process involves developing an understanding –
even if just in a mechanical sense – of what the mutator does and how it works.
And too many hints about this get dropped on the floor on the way from an
implementation-specific intermediate language to the raw UHL representation.

It is natural to object that the region type system of Chapter 5 (and the argu-
ments in Chapter 6 that it, or something much like it, applies to a wide range
of languages) show that the safety (and, by implication, soundness) of an agent
can be understood independently of the host languages. But that is like saying
that because we know the rules of first-order predicate logic and the axioms of
set theory, mathematicians do not need intuition. It is one thing to recognize
a proof (or a region typing) when we see one, but a completely different chal-
lenge to create one, much less to decide what to prove, and yet much less to do
it automatically.

Is all lost, then? Must we write off the UHL model as useless for finding agents
automatically? (How sad it would be to reach such a conclusion after digesting
150 pages of preliminaries!) But no, the UHL abstraction is still useful even if it
needs a little outside support. But we must strive to isolate those parts of the
region-inference process that depend on the host language, and phrase as much
as possible in pure UHL terms such that the creative work required for adapting
a new host language (or implementation) to the model is minimized.

Similar considerations apply to the region type system. The system presented
in Chapter 5 is fairly broadly applicable, but it is by no means the final word on
reasoning about the safety of agents. For example, it would be nice to have a
system that supported ML-like polymorphism, or that handled destructive up-
dates of heap cells in a more flexible way. Anticipating future development in
the area of region type systems, we should treat the region type system, too, as
a replaceable component of the region inference – or at least try to identify the
parts of the region inference that would be unaffected by a switch to a radically
different region type system.

157

CHAPTER 7. REGION INFERENCE ALGORITHMS 158

These goals lead to dividing the region-inference process into three phases:

� First, decide on a skeleton typing for the original uniform mutator – that
is, a typing (according to the region type system of Chapter 5) where the
places have not yet been filled in. The points in the program where RTSUB

is used will also be determined in this phase.
This task is where knowledge of the host language is necessary. If the

host language is typed, knowledge of the host typing will be very helpful
in constructing the skeleton typing – in Section 7.2 we will detail how to
do this for the running ML example.

If the host language is not typed, the region inference will need to do its
own (“soft”) typing to construct an appropriate skeleton, but even in this
case knowing about the host language is useful. For example, a region
inference for Prolog needs to pay special attention to the mechanism the
implementation uses for unification. That would not be necessary for, say,
Scheme – on the other hand, when constructing a skeleton for Scheme it
would be advisable to have special heuristics for dealing with the common
Scheme idiom that the value of the first element of a list determines the
type of the following ones.

� Second, basic region inference computes a first-approximation agent for
a given mutator. The overall goal is for this agent to deallocate data as
soon as possible, except that it must (obviously) be sound. Of course,
because soundness (and even safety) are extensional and therefore un-
decidable properties, deallocating everything “as soon as possible” must
be understood as an unattainable ideal rather than a hard requirement
of optimality. Deviations from the ideal may result from impreciseness in
the region type system that we use to prove soundness, or from approxi-
mations we make to improve the efficiency of the basic region inference
itself. In some cases it will also be necessary to choose between two possi-
ble agents where some data will be deallocated earlier by one choice and
some other data will be deallocated earlier by the other.

I give a detailed account of my techniques for this phase in Section 7.3.
They do not directly depend on the host language, but they do depend on
the general structure of the region type system. Some sections of Chap-
ter 6 described small alterations to the region type system, which it would
be straightforward to adapt the techniques to – but if a region type system
based on entirely different principles were to be used instead, most of this
phase would have to be reinvented.

The result of basic region inference is a well-typed agent. By Theo-
rem 5.16 we will know that it is safe, and by the reasoning principles in
Section 3.3.2 (in particular Theorem 3.46) we will know that it is sound.

� Third, do region optimizations on the output of the basic region infer-
ence. They can be viewed as as ordinary compiler optimizations applied
to the agent (but of course tailored to optimize the kind of optimizations
that basic region inference produces) and are therefore independent of
the host language as well as the region type system, as long as the agent
programming language stays unchanged.

The reason for needing region optimizations is that in basic region infer-
ence, we do not worry about is the efficiency of the generated agent itself

CHAPTER 7. REGION INFERENCE ALGORITHMS 159

– for example, the number of region operations it executes or the number
of region parameters it passes to and from procedures. The task of the
region optimizations is worry about such things, but work under the con-
straint of not changing the deallocation decisions the agent make. (This
constraint corresponds to the usual expectation of compiler optimizations
that they do not change the program’s semantics).

Some essential region optimizations will be described (more briefly that
I had hoped for) in Section 7.4. They are all conservative in the sense of
Theorem 3.53 and therefore preserve region soundness. That is all we need
if we trust the implementation of the optimization, but we will also briefly
discuss how they preserve typeability in the region type system, such that
optimized agents can be certified.

7.1.1 The prototype implementation

The region inference algorithms I present are the product of practical experience
with the region inference for HMN that I wrote for the benchmarking results
reported in Henglein et al. [2001]. At some points in the text I contrast what I
did in the prototype implementation with what I propose to do more generally.
Therefore, it is useful to know something about the constraints of the prototype
implementation:

The prototype works for the HMN system’s host language FUN, with a few
practically motivated extensions: User-defined

�
�
�
�
��� �� s and Standard ML

records (including � -tuples for � � �
and a unit type).

One major difference between FUN and the subset we considered in Chap-
ter 4 is that FUN allows functions to be defined only at the program’s top level.
Because functions cannot be curried either, this means that heap-allocated clo-
sures are not needed. Functions are still values which can be passed to and from
other functions and stored in data structures, even though that is not quite as
useful as in the usual simply typed lambda calculus.

In the FUN and REGFUN implementation, function values are represented by
“non-pointer” constants that identify the function actually referred to. In the im-
plementation the constant is actually a pointer to the compiled function body’s
entry point, but because the compiled code is not heap allocated it does not
count as a pointer for region-inference purposes. Because indirect calls may
be present, we still group functions into procedure groups as described in Sec-
tion 4.1, but the (virtual, UHL only) entry code for a procedure group switches
directly on the function value rather than trying to read the first word of a
closure.

Another difference from Chapter 4 is that the prototype does not support
exceptions. There is no deep reason for this, except that I invented the UHL

approach to exceptions after the prototype was constructed.

Some further comments about the relation between the prototype and the UHL

model in general. The prototype was written before I developed the UHL model
that I have described in this thesis so far. It began as a series of transforma-
tion steps, each written as a conventional syntax-driven recursion on FUN and
REGFUN abstract syntax trees. As more transformations were added,1 I discov-

1The prototype has a somewhat larger repertoire of individual transformations and optimiza-
tions than described in this chapter, because for benchmarking purposes we added the capability of

CHAPTER 7. REGION INFERENCE ALGORITHMS 160

ered that the source code for a typical transformation had a lot of “plumbing”
to let intermediate results propagate along the syntax tree between rather small
pieces of code that did the real work. This led to copy-and-paste programming,
where a major source of errors was incomplete adaptation of old code to new
situations.

Therefore, I restructured the code such that all transformations used a few
general combinators (functors, actually) for traversal of abstract syntax tree.
One goal of this was to eliminate code duplication; another was to isolate
knowledge about the representation of abstract syntax trees to the traversal
combinators, such that the FUN language could evolve without changing all
of the transformations. This latter goal was met with success; shortly after
the restructuring changed FUN from having a built-in list type to supporting
datatypes. Thanks to the traversal combinators, this could be done with essen-
tially no changes in the source files that defined the actual transformations.

This experience gave me the first idea that it might be possible to code region-
inference techniques in a language-independent fashion. The idea was put to
the test later, when I needed a region inference for Prolog in the experimental
work I was doing with Kostis Sagonas [Makholm and Sagonas 2002]. Eventu-
ally it did turn out to be possible to share inference code between the FUN and
Prolog implementations, by writing new implementations of the traversal com-
binators that transformed Prolog ASTs but otherwise had the same interface as
the FUN traversors.

But the result was not pretty. It became clear that the signatures I had writ-
ten for the FUN traversors were not quite as general as I had supposed – hidden
assumptions about the structure of the language popped up here and there, and
in some cases I needed to add some “hooks” to the combinators that had not
been necessary in the FUN world (and then back-port the same hooks to the
FUN implementation, such that the to implementations could keep sharing code
letter-for-letter). This experiment taught me that a working theory of language-
independence would need a more general and orthogonal interface between
the language-specific and the transformation-specific parts of the implementa-
tion, than the rather ad-hoc traversor signatures I had developed for the FUN

implementation. So I set out to develop such an interface.
The UHL model, as described in Chapter 3, is my result so far. I have moved

from a higher-order interface (“a mutator is something that can be traversed
in this-and-this way”) to a first-order view (“a mutator is something that can
be represented in UHL”) because the latter makes it easier to specify the se-
mantics of the common interface. Even though our uniform mutators are not
meant to be programs that exist on the computer, it is nevertheless possible to
imagine that they are programs, which is very helpful for understanding the in-
dividual transformations within the region inference. What a uniform mutator
means and does can be explained using techniques from operational seman-
tics that should be familiar to any research-oriented compiler hacker. On the
other hand, it would be very difficult to explain how a higher-order traversal
combinator is supposed to work, precisely enough to judge whether a proposed
implementation is in fact correct, without appealing to some kind of UHL-like
intuition.

“emulating” the TT, Kit and AFL models within the HMN framework, that is, constructing HMN agents
with a strength that roughly parallels what a real TT region inference followed by the storage-mode
or AFL analyses may reach.

CHAPTER 7. REGION INFERENCE ALGORITHMS 161

As of this writing, my implementation of region inference has not yet been
rewritten to be based on the UHL model rather than on the traversal-combinator
model. Nevertheless, where I mention the prototype implementation in the
explanations that follow, I will word the descriptions as if it were based on the
UHL model but otherwise used the same algorithmic ideas as the real one does.

7.2 Constructing skeleton types

As mentioned in the overview, the first part of region inference is to find a way
to fit the region type system of Chapter 5, or something sufficiently like it, to
the uniform mutator – but without worrying about the “places”

�
within types

yet.
In this section, I describe how this can be done for monomorphic programs in

the the ML subset from Chapter 4.
The descriptions in Chapter 5 hopefully made it clear to the reader how most

ML types can be expressed in the region type system. It might be thought that
this is too obvious to warrant a section of discussion. However, as in Chapter 4,
the important point here is not how to do it for ML in particular, but describ-
ing the “obvious” process in such a way that it is easier to see how it can be
generalized to other host languages.

7.2.1 From ML-like types to type graphs

Imagine we have an ML-like type system (still without polymorphism) with an
abstract type syntax such as

Types:
� � � �),+ '9),+ ' �9 � � �

9 � %) � '9 � � �

Now, non-pointer types such as),+ ' and
� � �

(or booleans, characters, floats...)
are all represented by a link to a type vertex marked � � � . The place

�
will never

be constrained by the typing rules (because non-pointers are used in neither��� +�� , read, or write rules), so the region inference can proceed as if it were not
there. One can imagine it being fixed to # , for example.

Boxed integers),+�' � can be represented by a link to a type vertex marked � � � � �
where � � represents the),+�' type. Here

�
is used, of course.

Product types such as
� + � �

� (where
�

ranges over ML types) are easily repre-
sented by a link � such that

� � � � ��� � � � � + � � � � � � � � , where � + and � � represent
� + and

�

� respectively. Likewise, a list type
� � � � � can be represented by a � such

that
� � � � � � � � � ��� � � � � / � � , where � / represents

�
, at least for the special-case

run-time representation shown in Figures 4.6 and 4.7.
Generic user-defined datatypes are somewhat more complex. To the best of

my knowledge, they are a field where all the existing literature leave it to the
reader to imagine the “obvious” generalization. However, it still ought to be
written down somewhere what this obvious generalization is, and perhaps it is

CHAPTER 7. REGION INFERENCE ALGORITHMS 162

not so obvious after all? The general form of a datatype definition is2

�
�
�
�
��� � �

� �
�
� 	 � � �
 � � � ��� � � � ��� � ����� � � � � � � � � �

�
� � �����
�
� � �

� �
�
� 	 � � �
 �� � ��� � � � � � � � ����� � ��� � � � � � �

where the argument types
� � � may contain the placeholders � � , � 	 , �

�
, as well

as the type constructors �6+ , ..., � � themselves. It introduces new type syntax

Types:
� � � � �����9 � � � � � � � � +K9 ����� 9 � � � � � � � � �

Conceptually, what the prototype region inference does is to translate the data-

type definition into a “template” type graph ˇ�
defined by:

� Select distinguished links � � , � � , � 	 and � + , ..., � � .
� For each new type constructor � � , let

ˇ� � � � � �$� � � � � � � + � � � � � � � +>9#�����49 � � � � � � 3 � � � � � � � 3 � � �
where � � � is the representation of

� � � – with the special rule that whenever
it is necessary to represent � � , the distinguished link � � is used (and like-
wise for � 	 , �

�
), and whenever it is necessary to represent � � ��� � 	8� � � � � � �

for some �$/ , the distinguished link � � � is used.
� ˇ� � � � � , ˇ� � � � � , ˇ� � � 	 � are left undefined.

Whenever we later want to represent � � + � �

� � � � � � � , we make a fresh copy of the

entire ˇ�
and instantiate the copies of � � , � � , � 	 as representations of

� + , �

� ,
� �

themselves.
This recipe does not say what to do if one of the type constructors being

defined appears on the right-hand side of a definition with a different set of
operands than the operand list on the left-hand-side. This can happen in two
cases. The first, and benign, is if the programmer used the syntax for mutually
recursive datatypes without actually using mutual recursion, as in�

�
�
�
���

 � � � �
� � � � � � � �

�
� ��� �

� � �
 �
� � �

�
� �

� 	 	�� � � ��� � � � � 	 � � ��� �
���

The other case is if the programmer actually uses polymorphic recursion in
types:�

�
�
�
���

 � � �
� �
��

�
�
�
�
� �
�����

� � � � �
�
 �

� � �� � � � � � �
�
 �

�
�
� � � � �
 � �

�
�
�
�
�
� �
�����

which for some reason Standard ML does allow, even though it is hard to make
sensible use of such a datatype without polymorphically recursive functions. The
prototype “solves” this problem by not supporting polymorphic type recursion –
a type such as

� �
�� � � � � � ����� cannot be expressed as a finite type graph at all.

If one wants to really support such types, one either has to cut off the recursion
artificially at some point (which is always possible as long as polymorphic recur-
sion in functions is forbidden), or to replace the generic graph-based handling
of type recursion with something more ad-hoc and syntactic.

2The reader is supposed to generalize this discussion to the situation with more or less type
arguments than three, of course.

CHAPTER 7. REGION INFERENCE ALGORITHMS 163

7.2.2 Region-annotated type expressions

The previous discussion have shown how to get from an ordinary tree-shaped
ML type to a graph-shaped region type. Indirectly it also shows how to derive
a tree-shaped notation for region types. Namely, the type graph will still be
tree-shaped in its global structure: Each node in the type tree corresponds to a
“cluster” of nodes in the type graph, and though the clusters may contain cycles
internally, the links between clusters closely match the original type tree’s shape.

Now, we can reach a tree-shaped syntax for region types by adding to each
production of the type syntax exactly the

�
’s that decorate the nodes in its “clus-

ter” of the type tree. Normally there is exactly one such node, but we except
the non-pointer node where we ignore the

�
– and for a datatype there can po-

tentially be a large number of
�

’s: one for each node in the template graph ˇ�

for the datatype. If we select some arbitrary but canonical order for these many�
’s, we get

Region-annotated types: ¯� � � �),+ '9 �),+ ' � � � �9 � ¯� � ¯� � � �9 � ¯� %) � '/� � �9 � � �

9 ����� 9 � � ¯� � ¯� � ¯� � � � � � �/.�.�.�� � � 9 �����
which is pretty close to the syntax of HMN’s “region types” on Figure 2.1 (on
page 42). The only thing that is missing is the peculiar HMN syntax for function
types.

In the translation to type graphs before, a function type translated to simply
� � � , which is why it did not change in the grammar for ¯� – there is no

�
to add

to it. What the HMN function type really does, seen from the UHL perspective, is
not to describe the bit pattern in the code pointer itself. It describes the typings
for the entry and exit end of the procedure group that the actual function is part
of. Remember from Section 4.1 that the HMN region type system doubles as a
simple control-flow analysis to justify the division of the program into procedure
groups. The HMN rules for function calls are written to get information about the
callee from the type of the function value, but a better way to think of it may
be: “look up the information in some global table, indexed by the procedure
group label on the call”. Only, in the HMN type system, the contents on the
global table is replicated in the type syntax wherever a type that refers to the
procedure group appears. That fits with the traditions of type-system design,
but in the actual prototype region inference, function types are represented
simply by an index into a procedure group table.

7.2.3 The skeleton typing in detail

Now that we know how to represent single type expressions by type graphs and
vice versa, we can go on to derive an entire skeleton UHL typing from an ML
type derivation. For this task we will follow two invariants:

1. A subplacing rule will be inserted each time an edge crosses an expression
boundary (in the same sense as in Section 4.3), but nowhere else.

CHAPTER 7. REGION INFERENCE ALGORITHMS 164

2. The UHL region type system’s ability to have more than one type descrip-
tion for a particular control state will only be used locally while reading a
memory block, until the switch of a tag value happens. In particular, such
ambiguous typings will never happen across an expression boundary.

The first of these invariants mean that in any local network of mutator opera-
tions within the translation of an expression – for example

unbind � unbind �
��/� � �� � � � �

��/+ � �� � � � �
� � +),% � No

Yes

in the translation of case analysis from Figure 4.7 – the type graph will be the
same throughout; only the environment can change. This common type graph
must contain the representation of the ML types of all variables. Ideally, the
type graphs for different UHL variable should be kept disjoint, but sometimes
the UHL region type system’s rules enforce sharing between them. For example,
under the condition that the initial � ��� � in the fragment above must be the
representation of a list type, the rules for the two read operations together imply
that the initial � ��� � must equal the final � ����/� � , and that it must share its type
graph with � ��� /+ � .

(Note, however, that such sharing of type vertices does not need to propagate
across subplacing steps. The many-to-many nature of the subplacing relation
means that the representation of two types can be distinct before a subplacing
step and shared afterwards – or vice versa!)

The constraints on sharing inside the type graph work together to enforce
exactly the identities between types and regions that are implied by the use of
the same � three times (and the same # two times) in the premises for the HMN

typing rule for case expressions on page 47. The requirement that the twice-
occurring # is a region variable rather than % corresponds to the side condition� �� % in the UHL system’s RTREAD. On the other hand, the UHL type system does
not explain why the place could not be # – and indeed the HMN type system
would stay sound if it allowed # in expressions where values were read rather
than allocated.

In the same way, the rest of the rules of the HMN type system can be derived
systematically from the UHL region type system and our decisions about how
ML types are represented as type trees. The “anonymous entries” in HMN envi-
ronments are seen to correspond to Section 4.2’s “fresh (UHL) variables” when
the latter were not bound to anything in the translation environment.

Sometimes there will be minor differences – for example, the HMN rule for “ �
 ”
wants to have a region as a place, whereas no restrictions can be derived from

the UHL system and Figure 4.6 (the node � � � � +),% works with any place for � �
at all, thanks to Definition 5.14(2).). These differences originate in differences
assumptions about the target implementation: In Chapter 4, the empty list was
represented by a special non-pointer value, whereas the HMN article assumed
that a ��
 expression would actually need to allocated an “empty list” structure
somewhere on the heap.

CHAPTER 7. REGION INFERENCE ALGORITHMS 165

7.2.4 Adding closures

When we add general closures as in Section 4.1 we cannot represent a ML
function type with � � � anymore.

If we know the types of a function definition’s free variables, it is easy to to
construct a region-annotated type for a closure referring to exactly that function
definition. In the same way we can construct the type of a closure referring to
any of the function definitions in a procedure group, using bars in the type.

The only problem is that a function definition can contain a free variable
of the same type as the function being defined itself. Then the region type
corresponding to the procedure group must be a recursive type. One can also
construct examples with mutual recursion in closure types between two or more
procedure groups.

In general, this can be solved by imagining a group of recursive datatype
definitions where each procedure group corresponds to a (nullary) type name
and each function definition corresponds to a data constructor. This implicit
datatype definition can then be represented as a type graph using the general
scheme for datatypes describes in Section 7.2.1

7.3 Basic region inference

The overall principle of the basic region inference is to try to distribute the
mutator’s data across as many regions as possible. This will further the general
goal of deallocating data early, because a heap block can only be deallocated
when everything else in the region it belongs to are clear to be deallocated.
Having as small regions as possible will minimize the risk that heap blocks that
are actually not used anymore will be kept alive by other inhabitants of their
regions that are still needed.

Ideally the “optimal” implementation of this goal would be to have each heap
allocation have its own region. However, this is easily seen to be impossible
in general: Any well-formed agent has a static bound on how many regions
it can have alive at one time for each recursion level, but most mutators will
be able to allocated unboundedly many heap blocks, depending on the input,
and expect them all to be still available. So some amount of region-sharing is
necessary in general. This restriction is also implicit in the design of the region
type system from Chapter 5: A type graph must be finite yet be able to describe,
say, arbitrarily long lists, which means that some heap cells will be described
by the same vertex in the type graph and thus need to be in the same region,
namely one named in the vertex’s place component.

We will try to minimize the region size by constructing a region typing in
where as many different region variables as possible are used to describe each
data state. Of course, because regions may be aliased, different region variables
does not necessarily imply different regions, but this strategy will nevertheless
help towards the original goal.

The basic region inference depends only on some fairly high-level features of
the region type system. It ought to be a trivial taks to adapt the algorithm to
another system that fits the following description, even if it is not exactly equal
to the one from Chapter 5.

CHAPTER 7. REGION INFERENCE ALGORITHMS 166

� A typing describes each control state with a type graph and a map from
mutator variable names to vertices in the graph. (Or there may be several
such graph–map pairs, for reasons explained in Section 5.1.5).

� Some3 of the vertices in the type graph contain a place
�

which can be
either # , % , or a region variable # .

� Each edge in the type graph contains a permission � which can be either
� � or �

�
.

� The typing rules for the various mutator operations entail some restric-
tions on the shape of the type graph, as well as on the places and permis-
sions within it. For example, RTREAD requires that the vertex referred to
by � and the ones each of the ��/ / s all contain the same place, and that this
place is not % .

As another example, there are two typing rules for
��� +	� operations,

which have much the same premises except for the place in the vertex
that describes the newly allocated pointer. Together, these rules constrain
the place to be either % or a region variable # ; # is not possible. The
choice of rule must match the region annotation on the

��� +�� operation.
� The two different control states at either end of a flowchart edge may

be described by different type graph by virtue of the subplacing rule RT-

SUB. The subplacing rule says that certain relations should hold between
the two type graphs. These relations are certified by subplacing and type
matching certificates, it is easy to compute the smallest certificates that
contain all the required relation. Such a smallest certificate consists of
a relation, generally many-to-many, between vertices (and edges) in one
graph and vertices (and edges) in the other graph. The places (or permis-
sions) that decorate related vertices (or edges) must match up according
to Definition 5.10(b) – or, in some cases, be equal, by Definition 5.7(b).

7.3.1 General invariants and region-operation selection

Let us first consider how to create suitable region annotations once we have
decided on place annotations on the skeleton typing such that the region typing
rules are fulfilled within each chunk. (Recall the “chunk” concept from Sec-
tion 3.4). One sort of region annotations we do not consider here are region
parameter lists, which will be discussed in Section 7.3.4.

Some of the internal edges of each chunk may contain a RTSUB step. Without
loss of generality, we can also assume that the annotatable edges that connect
the chunks with each other also contain a RTSUB step each – if it is not already
there it is easy to insert. Thus the subplacing edges divide each chunk into
“proto-chunks”, each with one common type graph.

We will maintain the fundamental invariant that

While the chunk is executed, the bound (counted) region variables are
exactly the ones that appear at least once in one of its type graphs.

3Actually, it would have been conceptually cleaner if all vertices contained a place and singleton
types were a special case of � rather than a special case of � . But this would have needed another
meta-variable letter in the grammar for the type system, which is difficult enough to read already.

CHAPTER 7. REGION INFERENCE ALGORITHMS 167

To convince ourselves that this is a good invariant, we must as two questions:
Do we really need all of these region variables? And: Would anything be wrong
with having more?

The first question is the trickiest one. Actually, our region type system does
not strictly require that all region variables that occur in the type graphs are also
bound. But this is just because it would have been too complex, technically, to
express the invariant; we may nevertheless think of it as a “moral” invariant.
This does not effectively restrict the expressiveness of the region type system: If
we have a region scoping � and a region typing � that breaks the invariant, we
can always derive one that does not, simply by replacing each region variable
that is not bound with % . This will be possible because the only rule that prevent
a region variable in the type graph becoming % is RTCONS, but the corresponding
scope rule ASCONS asserts directly that the region variable cannot be unbound,
either. Another problem would be if a region was visible in the type graph at a
time where it became bound or unbound, such that the doctored typing did not
satisfy the subplacing requirements, but side conditions on the RTXXX rules for
region operations prevent exactly that.

The second question was: Would anything good come of having more bound
region variables than mentioned in the type graphs? At run-time such a region
variable could have three kinds of binding. Either it is aliased to another live
region variable, in which case it is superfluous. Or it is bound to an empty
region, in which case we might as well move the creation of it to the end of
the chunk. Or it is bound to a region with some thing in it, in which case the
region type system allows us to deallocate it at entry to the chunk! Because
deallocating things early is the overall goal of basic region inference, that is
what we should do.

Now for the actual generation of region annotations. The easy part is the “

 '1# ”

or “ + ��� .& � & ” annotations on
��� +�� nodes. We can read these directly off the type

graph – a region variable as decoration on the type vertex that represents the
allocated block gives rise to an

 ' annotation; a % gives rise to a + ��� .& � & . The
case # for this particular place must be forbidden; it corresponds to no correct
region typing.

The difficulty is all in selecting region operations for an annotatable edge that
connects two chunks. In general, the type graphs on each end of the annotatable
edge will have different shapes and annotations; we must insert suitable region
annotations to make them match up according to the region type system. A
representative example would be

CHAPTER 7. REGION INFERENCE ALGORITHMS 168

� " ��� 	 � �� $&$ � ����
� ����� ��� � �
� � �� �

� �� � �� �

� " � � �� � �

� " ��� � � �� � 	 �
� � ����

� � ��� �� � �
� $&$ � ����

� � � � �� � ���

� " � � �� �

� " ��� � �� $&$ � �� �
� ����� ��� � �

� $&$ � ����
� � � � �� � ���

� " � 	 �� � �

� " ��� � � �� $&$&$ � �� �
� ����� ��� � �
� $&$&$ � ��	�

� � � 	 �� � ���

� " ��
 �� � �

� " ��� � � �� $&$ ���
� �����
�� � �

� $&$ � ����
� � ��
 �� �
��

� " ��� �� � �

� " ��� � � �� $&$ � 	�	�
� �����
 � � �

� $&$ ��
� � ��� �� �
 �

where we want to invent region annotations to go from state � � + � � + � to � �

� � � � � .
The dotted lines between the two type graphs symbolize the minimal sub-

placing certificate that can certify � � + � � + ��� � � � � �

� � � � ��� � � for �7� � , � ,...,
�
.

For our purposes here, the difference between subplacing and type matching is
not important; both kinds of certificates say that if two related nodes are anno-
tated with region variables, then the region variables must be the same. So the
minimal certificate says that the region known as

� ��� before the edge must be
the same as

�
�
 after the edge,
� �	
 before must become

�
�� after, and so on.
Elements of the subplacing relation that go to and from a vertex marked #

or % can simply be ignored. Because
� � � on the LHS appears only in

� 	 which
has no region-variable partner to the right,

� � � can be treated as if its was
not mentioned in

� + at all. Such region variables (which must be bound in
the left chunk but do not take part in the region-variable matching across the
annotatable edge) should be � &#% &
 �& d in the region operations on the edge.

At the other end of the edge there is another
� � � which has nothing to do

with the one just considered. It, and other region variables that must be bound
in the right chunk but have no LHS partners, must be bound to a fresh, empty
region during the region operations.

We now need to construct region operations that implement this relation be-
tween LHS region variables and RHS region variables. The relation between
� �	
 and

�
�� is easy – it can be achieved with the region operation

� &#+
 # & � �	
 ' � �
��
� �" is a little more involved. There are two vertices marked

� �" s on the left-
hand side, with three partners on the right-hand side. So the region known as
� �" before must become

�
�
 , �
$, and
�
 � after the edge. We can achieve this

by some

 %)
 � operations:

� &#+
 # & � �"*' � �
�
��
 %)
 � �
�
 ' � �
$ �
 %)
 � �
�
*' � �
$
Wait! We have forgotten the relation between

� ��� and
�
�
 – and there is trouble

brewing here. The subplacing certificate says that
�
�
 after the edge must be

the same as
� ��� before and the same as

� �" before. This is impossible – there
is no legal sequence of region operations that will allow us to do a “reverse
alias”. Instead what we need to do is to change the region-variable names on
the left-hand side such that

� ��� and
� �" becomes identical:

CHAPTER 7. REGION INFERENCE ALGORITHMS 169

If � � + � � + � � � �

� � � � � and � � + � � /+ � � � �

� � � /� � are both in the certificate,
and

�

� � � �
�
and

�

� � � /�
�
contain identical region variables, then the region

variables in
� + � � + � and

� + � � /+ � must be identical, too.

What we have just seen in the example is an instance of this rule with � � �
� /� � � �"� . If we do enforce the rule, say by writing

� � instead of
� ��� , we have

a working sequence of region operations, however:

� " ��� 	 � �� $&$ � �� �
� �" ��� 	 � �� $&$ � �� �

� � � � ��� � 	 ���� ��� ��� � 	 ��� � � 	
�
� ��� ��� � 	 ��
 � � 	
 �����	 	 ���
� � �" ��� 	 � �� $&$ � ����

� � �� ��� ��� � �
� � �� �

� �� � ����

��� � ��� 	
�
 ��� 	
��
� �� ��� ��� � �
� � �� �

� �� � ����

��� � ��� 	
�
 ��� 	
��
� � ��� ��� � �
� � �� �

� �� � ����
� " ��� � � �� � 	 �

� � ����
� �" ��� � � �� � 	 �

� � ����
� � �" ��� � � �� � 	 �

� � 	���
� � �� ��� �� � �

� $&$ � ����
� �� ��� �� � �

� $&$ � ����
� � ��� �� � �

� $&$ � ����
� " ��� � �� $&$ � �� �

� �" ��� � �� $&$ � �� �
� � �" ��� � �� $&$ � ����

� � �� ��� ��� � �
� $&$ � ����

� �� ��� ��� � �
� $&$ � ����

� � ��� ��� � �
� $&$ � ����

� " ��� � � �� $&$&$ � �� �
� �" ��� � � �� $&$&$ � �� �

� � �" ��� � � �� $&$&$ � ����
� � �� ��� ��� � �

� $&$&$ � ����
� �� ��� ��� � �
� $&$&$ � ����

� � ��� ��� � �
� $&$&$ � ��	�

� " ��� � � �� $&$ � �
� �" ��� � � �� $&$ ���

� � �" ��� � � �� $&$ ���
� � �� ���
�� � �

� $&$ � ����
� �� ���
�� � �

� $&$ � ����
� � ���
�� � �

� $&$ � ����
� " ��� � � �� $&$ � 	�	�

� �" ��� � � �� $&$ ��
� � �" ��� � � �� $&$ ��

� � �� ���
 � � �
� $&$ �

� �� ���
 � � �
� $&$ ��

� � ���
 � � �
� $&$ ��

where the first column is an auxiliary subplacing step that changes
� � � to % in

� + � � 	 � such that
� � � is not in frv

� /+ and can be � &#% &
 � & d before the new
� � � is

created (which, similarly, must happen before
� � � appears in its new place in

the type graph.
This principle of this example works in general. On each annotatable edge

we create the following sequence of region operations:

1. (An auxiliary subplacing step that removes region variables with no RHS
partners from the LHS type graph such that they can be released).

2. � & % &
 �& operations for region variables that are bound in the before-chunk
but have no RHS partners.

3. � & +
 # & operations that rename each of the RHS region variables to one of
the LHS variables they correspond to.

4. + & � operations for each region variable that must be bound in the after-
chunk but have no LHS partners.

5. (The main subplacing step goes here).

6.

 %)
 � operations that construct the necessary aliases where several LHS
variables share the same RHS partner.

7.3.2 No loops, no procedures, no subplacing

What is left now is to find a way to a way to chose places in the skeleton typing.
As an easy beginning we will consider the restricted case where the uniform
mutator contains no

��
 % % nodes and is acyclic, at least after having been simpli-
fied to chunks. We will also, for the time being, ignore subplacing and assume
that all places

�
must be region variables.

CHAPTER 7. REGION INFERENCE ALGORITHMS 170

Consider a single chunk. It consists of a number of proto-chunks, separated
by subplacing steps and each with its own type graph. Not all of the regions
mentioned in the type graphs will be different. As already mentioned, some of
the typing rules impose requirements that two or more places in a single type
graphs must be identical to each other. The subplacing rules force equalities
between places in different type graphs – these can be found by computing the
minimal subplacing certificate that contains the relations needed by the RTSUB

rule. All of these requirements combine to form an equivalence relation be-
tween the places in all of the chunk’s type graphs. This equivalence relation can
be computed efficiently by a union-find structure.

Once the equivalence relation has been computed, we can forget most of the
information about how the chunk looks inside. The only thing we need to re-
member are the region annotations on

��� +	� es and the type graphs for the proto-
chunks where annotatable edges attach to the chunk. (Often it will be possible
to use shortcuts to compute the equivalence relation even more efficiently by
using precomputed summaries of the relation for idioms often produced by the
translation from host language to UHL. Then one never needs to represent the
internal structure of those idioms directly).

However, the equivalence relations for different chunk also influence each
other through the subplacing condition on page 169: equivalences in later
chunks may provoke further equivalences in earlier chunks (but not in the other
direction, thanks to reference counting and

 %)
 � operations). This suggests that
we can do the region inference as a weakest-precondition computation, where
a “weaker precondition” means a type-graph annotation that allows more dif-
ferent regions. Therefore, we should consider the chunks in reverse topological
order, from the end to the beginning of the program. And that is what the
prototype inference does:

Algorithm. Process the chunks in reverse topological order. For each chunk,
do the following:

1. Compute the region-variable identities that are forced by the contents of
the chunk.

2. Add in further identities between region variables, as specified by the sub-
placing structure of the outgoing annotatable edges.

3. Choose region-variable names for the resulting equivalence classes of type
annotations. The exact names chosen are not important; there will be re-
naming phases later in the region inference process. However, for read-
ability of the intermediate agent, the prototype inference does try (heuris-
tically) to assign each equivalence class a name that matches one of its
RHS parters in an outgoing edge. Equivalence classes without any RHS
partners always get fresh names.

4. Construct region annotations on each of the outgoing edges, according to
the principles in the previous section.

5. Proceed with the next chunk in the reverse topological order.

It should be intuitively clear that this algorithm produces an agent that causes
every block of heap memory to be deallocated as soon as possible under the
given restrictions (however, “the given restrictions” includes the skeleton typing
and the premise that no subplacing is to be used).

CHAPTER 7. REGION INFERENCE ALGORITHMS 171

(That is, if it results in a well-formed agent at all. That does not happen au-
tomatically; if the chunk that contains �
	 has any nontrivial type graphs, the
generated agent will expect to be started with a number of region variables al-
ready bound to (empty) regions. This is not a large practical problem, however.
It will be solved when we add subplacing. Or one may add an artificial entry
chunk in front of the old entry point, with an annotatable edge that will carry
the requisite +.& � operations).

7.3.3 Handling uncounted variables

Our next topic is to consider how to extend the inference algorithm from the
previous section to work with subroutines. Subroutines add two sources of
complication to the task. First, the interdependence between region annotations
on call sites and on callee code means that a single topological traversal of the
program is not sufficient to fix the region annotations. Second, the UHL calling
mechanism means that uncounted region variables enter the picture, and they
need special support even while handling other code than

��
 % % s.
In this section, when I speak of a “procedure” I mean one of the maximal

(weakly) connected components of the mutator’s flowchart. There may be mul-
tiple actual entry points in the procedure, but as long as they are all connected
we will consider the totality of the code that is reachable from them a single
procedure.

Let us start by discussing region inference for a “leaf” procedure: a (maximal)
strongly connected component of the flowchart that does not contain any

�
 % %
nodes itself. We want to build upon the weakest-precondition idea from the
previous section, so assume that we have already determined, somehow, which
annotations to put on the type graphs on the &#+ � nodes in the procedure group.

The problem is now that, due to circumstances of the caller(s), it may be
necessary for some of the type vertices at the &#+ � nodes to be annotated with
uncounted region variables. However, these are the only uncounted region vari-
ables we need; there is never a reason to use any uncounted region variable that
is not present at at least one &#+ � node.

How can we extend the region-operation selection from Section 7.3.1 to work
with uncounted region variables? First, of course, we must specify that un-
counted region variables are never � &#% &
 �& d or initialized with +.& � – an un-
counted region variable is bound for the entire execution of the procedure, or
not at all. Second, an uncounted variable cannot be the target of

 %)
 � or � & +
 # &
operation. From this we derive the following rule:

If a type vertex on the right-hand side of an annotatable edge is decorated
with an uncountable region variable and has a partner on the left-hand
side, then the partner must be decorated with the same uncountable re-
gion variable.

This rule has some perhaps unexpected consequences. Consider the following
match-up of an annotatable edge:

CHAPTER 7. REGION INFERENCE ALGORITHMS 172

� " � � �� � �

� " ��� � � �� $&$ � �
� � ��� � � �

� $&$ ��� �
� � � � �� � �

� " � � �� � �

� � ��� � � �
� $&$ ��� �

� � � � �� � �

� " � 	 �� �

� " ���
 � �� $&$ ��� �
� � ��� 	 � �

� $&$ � ��
� � � 	 �� � �

� " ��
 �� �

� � ��
 �� � 	

With which region must
� + � � � � be decorated? The rule says that it must equal

� � and also equal �
 . The only way to make this true is to rewrite all region
typings in the procedure we have constructed so far, and replace all occurrences
of � � by �
 , or vice versa. (However, there is nothing wrong with having

�

� �
� � �

keep its
� � – that can be implemented by “

 %)
 � ��
 ' � � � ”, because uncounted
regions can appear at the source side of an

 %)
 � operation).
This can be implemented by working with two levels of union-find struc-

tures. The local union-find works within each chunk, just as described in Sec-
tion 7.3.2. The global union-find is active for the whole traversal of the proce-
dure and keeps track of identities among the uncounted region variables. Each
equivalence class at the local level may or may not have attached a reference to
the global level; if two local classes are unified and both have such a reference
the unification propagates to the global level. On the other hand, it is not nec-
essary to propagate unification from the global level to the local one; two local
classes can just be considered “implicitly unioned” if both happen to reference
the same global classes. When an inter-chunk subplacing relation is considered,
references found in right partners are moved to left partners and unified with
references already found there, if any.

After the entire procedure has been traversed, the final state of the global
union-find structure can be used to backpatch

��� +	� annotations that refer to un-
counted variables and

 %)
 � operations with uncounted variables as the source.

7.3.4 Calling a leaf procedure

For the more difficult problem of what the inference should do for
�
 % % chunks,

we first consider an easy special case: Assume that the leaf procedure from
before has exactly one call in the entire mutator. (If we were genuinely in-
terested in producing a good agent, the intelligent plan would of course be to
inline the entire procedure, but for the moment we are more concerned about
understanding the RTCALL rule.)

RTCALL mentions three type graphs decorated with the caller’s region vari-
ables:

�
contains the types of the local (UHL) variables of the caller that are not
passed to the procedure as arguments.

� + contains the types of the variables that get passed as arguments to the
procedure. (

�

� in the rule is the same graph, but decorated with the
callee’s names for the region variables).

� � – of which there is one for each exit from the procedure – contains the
type of the return value. (

� � are the same graphs with the callee’s names
for region variables.)

CHAPTER 7. REGION INFERENCE ALGORITHMS 173

Without loss of generality (if necessary, by adding some trivial subplacing steps
in the callee’s typing skeleton) we can assume that all these component type
graphs are all disjoint.

(If the call chunk contains any “unbind” nodes in front of the
�
 % % node,

� @ � +
will also need to contain types for the unbound variables. We can put them, as
disjoint components, in

�
, but we need not worry about them in particular:

Even without a systematic treatment of subplacing it is easy to see the subplac-
ing rules always allow these graphs to be decorated with all � � ’s and % ’s.)

Now, an algorithm for basic region inference for the call chunk could be:

1. We assume that the inference steps for the succeeding chunks (the targets
of the return jumps in �����) have already been completed.

2. For each return jump, use the normal algorithm to derive identities among
the region variables in the respective

� @ � � . Use a single local union-find
structure for all of these.

3. For each return jump, inspect the
� � to create constraints on the corre-

sponding
� � . The rules are as follows:

� Any vertex that is decorated by an uncounted region variable in
� �

must be decorated by an uncounted (but not necessarily the same)
region variable in

� � .
� Any vertex in

� � whose decoration has been unified with something
in

�
must be decorated with an uncounted region variable in

� � .
� If two vertices in

� � have been unified with each other but not with
something in

�
and do not refer to an uncounted variable, the must

be decorated with identical (counted) region variables in
� � .

4. When all the
� � ’s have been suitably constrained, do the algorithm from

Section 7.3.2 recursively for the callee. The callee has its own global
union-find that works on the uncounted region variable positions in the

� � ’s
5. After the recursive region inference, there may be more internal region

identities in some of the
� � ’s than in the corresponding

� � . Redo these
identities in the call chunk’s local union find.

6. The recursive region inference may have done some unifications in the
callee’s global union-find structure. Replicate these in the call chunk’s
local union-find, even if they concern uncounted variables that started
out in different

� � ’s. (This may cause the unification to propagate to the
called procedure’s global union-find structure in the usual way). Now
each uncounted variable in the callee is associated with an unambiguous
class in the call chunk local union-find.

7. Inspect
�

� (which was created in the recursive region inference), and
convert any identities between region variables to identities in

� + , to be
recorded in the call chunk’s local union-find structure. For each vertex in

�

� that holds an uncounted region variable # �
, unify the corresponding

places in
� + with # �

’s associated class.

8. Assign names to the call chunk’s counted region variables and fill in region
annotations on its outgoing edges in the normal way.

CHAPTER 7. REGION INFERENCE ALGORITHMS 174

9. Construct the input
� � from the relation between

� + and
�

� . This is
possible because step 7 is the only source of identities between the places
in

� + that correspond to counted region variables in
�

� .
Construct

� � from the association between the callee’s uncounted re-
gion variables and the call chunk’s local union-find.

Construct each per-return ��� / from the relation between its associated
� � and

� � .

7.3.5 Unrestricted calls

The above algorithm is all well and fine, as long as there is only one call to
each procedure. As soon as some procedure can be called from several places,
it becomes difficult (and quickly impossible) to arrange for the computations
such that the traversal of a caller is blocked while the region inference for the
callee is going on. Recursive calls, for example, mane the algorithm breaks
down instantly.

Therefore, in the general case we will have to replace step 4 of Section 7.3.4
with guessing some usable annotations on

�

� and the
� � ’s. Later we can try

to analyze the body of the callee and see if our guess was right – if it wasn’t,
the analysis produces a new “more right”

�

� (and
� � ’s), which we can use as a

guess in a renewed region inference for the procedure that contains the call. By
repeating the analysis of each procedure often enough, we may hope to reach a
fixpoint that correspond to a consistent, well-typed agent for the mutator.

To be sure that the iteration eventually terminates, we decide on the principle
that

Each new guess will have all the identities between counted region vari-
ables that the old guess had, except for positions where a counted vari-
ables has been replaced by an uncounted one. The set of positions that
have uncounted variables on them will be nondecreasing, and all identi-
ties between uncounted variables in the old guess will still hold in the new
guess.

Thus, each time we need to update a guess either the number of positions with
counted variables will decrease, or it will stay stable and the number of different
region variables will decrease. This bounds the number of iterations to a small
multiple of the size of the skeletons for

�

� and the
� � ’s.

The algorithm for region inference on a whole program begins with creating
initial guesses for all procedures by being maximally optimistic: The best possi-
ble guess is that each vertex in a

�

� (the type-graph part of ��� � � where � is a
procedure entry) or a

� � (the type-graph part of � � � � when � � � � � &#+ �) is dec-
orated with its own counted region variable and not identical to other variables
in the same graph.

Then all procedures in the program are put into a worklist, and the algo-
rithm proceeds as long as there are still pending procedures in the worklist, by
selecting one of them, and then run the weakest-precondition algorithm on it.

During the inference, step 3 of Section 7.3.4 does not create fresh
� � ’s but

instead add fresh restrictions (identities between region variables and or this-
must-be-uncounted marks) to the existing guesses for

� � . If any of the new
restrictions were not already satisfied, the callee will be added to the worklist

CHAPTER 7. REGION INFERENCE ALGORITHMS 175

(if not already there), so that its body will eventually be analyzed with the new
postconditions. Then, no matter whether the

� � ’s changed, the old guess for
�

� is used. It will still make sense in the context of new
� � : Any uncounted

variables in
�

� will still appear in
� � after new restrictions have been added.

If an “uncounted” mark is added to a position in the
�

� that has already been
unified with something in the same

�

� , the uncountedness should propagate to
the other positions in the class – but right after, the class should be dissolved
into individual uncounted-variable positions that will only be identified again if
necessary because of internal circumstances in the procedure.

When an entire procedure body has been analyzed, a check is made to see
if its

�

� ’s and
� � ’s differ from the guesses when this iteration of the analysis

started; if any of them do, all procedures that contain calls to the procedure will
be added to the worklist.

Eventually, it will not be possible to restrict the guesses more, and the itera-
tion will end with a consistent set of annotations. This is the initial agent that
is the output of basic region inference.

This iterative algorithm does not always find an agent that deallocates every-
thing as soon as possible. Indeed, we have seen in Section 2.4.4 that such
optimal agents do not always exist. But the basic weakest-precondition method
in Section 7.3.2 does find (or is believed to find) optimal agents within its re-
strictions. What goes wrong when we add procedures?

An analysis of the counterexample in Section 2.4.4 shows what goes wrong.
While analyzing a call, if two places in

� � have been unified, but not with
anything outside

� � , the rules say that the corresponding places in (the guess
for)

� � must also be unified. But there is another way to allow the two places
in

� � to be identical: Mark the corresponding places in
� � as uncounted, and

utilize the fact that
� � need not be injective.

As long as we assumed that there was only one call to the procedure, the
method of unifying in

� � is always superior over using uncounted variables: The
two uncounted variables will always be aliased anyway, and a single counted
variable is more flexible than two uncounted ones.

However, when there are more call sites, a unification in
� � can propagate to

� � of a different call (via step 5 of the call chunk algorithm). In some cases it
will harm the region performance there, while the uncounted-variables solution
would have allowed a better solution.

Section 2.4.4 tells us that there is no general solution to this problem, so the
prototype inference handles it by pretending that it does not exist – it will stick
to the unification method until other circumstances forces one of the places in

� � to be uncounted anyway, and then switch to the uncounted-variable method.

It is actually the case that the algorithm I outlined here is subtly sensitive to
strategy used to select a pending procedure to remove from the worklist. Con-
sider the program

��� � � ��
 � � ��� � � � �
 � ����� � � �

��� ��� �� � ��
 � �� � �

��� ��� ��
 � � � � �
�
� ���� ��
 ��� � 	 � 	 � 	 � 	
 � � � � � � � � �

��� � �
��
 � �

�
� �

�
� ���� �

�����
� �

 � ����� � �
�
 � � � � �

�
�

 � ����

CHAPTER 7. REGION INFERENCE ALGORITHMS 176

We ignore the region used for the pairs and only look at where the reals are
allocated. One analysis history might be:
�

is analysed. It needs to call textttg such that both reals end up in the same
region. The guess for

�
is updated with one counted region for both sides

of the return value. This does not immediately propagate to the
�

� guess
for
�
, so the initial optimistic guess for � need not be changed.

�
is analysed. This updates the

�

� guess to require that the two inputs are in
the same (counted) region. Because the guess has changed, � and

�
are

put into the worklist.

� is analysed. It needs the output from
�

to have the same regions as the � �
and �
 it has already computed, so the output of

�
must be in uncounted

regions. So the single counted region in
�
’s

� � guess is replaced with two
uncounted regions. However, the

�

� guess still says that the input must
be delivered in one counted region. This assumption propagates to the

� �
guess for � which now says that � must deliver its two outputs in the same
region.

�
is analysed again. This updates the

�

� guess to expect the input in two dif-
ferent uncounted regions.�

is analysed again. The guess for
�

now works in terms of two uncounted re-
gions, which is sufficient for

�
to force them to be equal. So the guess for�

needs not change.

� is analysed again. It is still satisfied with the new guess for
�
, which now

means that it does not need � to deliver its result in a single region any-
more. But the old information in � ’s cached

� � guess cannot just be dis-
carded, because the algorithm does not keep track of where the identities
beween the outputs come from.

So in this history � ends up being forced to deliver its output in a single
region, even though its only caller does not need that anymore. This could be
avoided if the first analysis of � happened before the first analysis of

�
– then�

would never be analysed with a postcondition saying that the return values
must be in the same region.

It might be interesting in further work to experiment with other and perhaps
more intelligent heuristics for this problem, but such experiments will need a
large supply of benchmark programs that are known to have the problem. In
the (granted, somewhat limited) set of benchmark programs that I have tried
and reported in [Henglein et al. 2001] and [Makholm and Sagonas 2002], I
have not been aware of any region-inference anomaly that could be traced to
this effect. This suggests that the problem may be rare in practise.

Eventually the best solution to the dilemma would probably be to provide a
reasonable default heuristic and a way for the programmer to artificially force
certain positions in the return type of a given function to be implemented by
uncounted variables.

7.3.6 Subplacing in the prototype

We still have not discussed how to construct region typings that include % and# . Intuitively, we want as many of these as possible – % because it is are neces-

CHAPTER 7. REGION INFERENCE ALGORITHMS 177

sary to allow regions to be deallocated so early that they leave dangling point-
ers, and # especially because a # instead of a region variable in the

�
part of

RTCALL may prevent the return value from needing to be in an uncounted region.
Therefore we want, conceptually before the inference algorithms in the pre-

vious sections run, to locate the places in the type skeleton that cannot be either% or # , and then consider only these places for region variables.
By inspection of the region type system’s rules, we see that the only even-

tual source of reasons-not-to-be- # is the
��� +	� operation, and the only eventual

sources of reasons-not-to-be- % are read and write operations. Our task is to
propagate these reasons along the region type system and see where they coin-
cide. Only places where there is a reason not to put # and a reason not to put% need to be decorated with region variables.

I have two proposals for how to do this. The first is the one that is actually
implemented in the prototype implementation. It is relatively simple to un-
derstand, but depends on the fact that FUN does not support updateable heap
locations. Therefore I will describe a more powerful, but yet unimplemented,
proposal in the next section.

But first, the solution implemented in the prototype. Because references are
not implemented, all “permissions” of the skeleton typing will be � � (recall the
“permission” concept from Section 5.1.6), and the region type system’s subplac-
ing concept collapses to a fully covariant notation. Therefore, nothing on at the
left-hand side of a subplacing edge can prevent something on the right from
being % , and similarly, nothing on the right can prevent a place on the left from
being # . Reasons-not-to-be- # propagate in the direction of the control flow,
while reasons-not-to-be- % propagate against the direction of the control flow.

This means that the set of reasons not to be % can be computed by a weakest-
precondition algorithm, just like the distribution of reasons-for-region-variables-
to-be-identical in Sections 7.3.2ff. In fact, in the prototype these two tasks
are combined into one fixpoint iteration for both of them. Instead of dividing
the places into two cases, counted and uncounted, the implementation in the
prototype divides them into three cases: % , counted and uncounted. Anything
else than % means that an actual reason not to use % has propagated into the
place.

Reasons not to be # propagate in the other direction, so weakest precondi-
tions will not help much here. Instead, the prototype uses a separate strongest
postconditions fixpoint iteration to identify possible # ’s before the weakest-
precondition runs. This pass is conceptually similar to the algorithms that have
already been presented – except for running in the opposite direction – but
is actually simpler because it does not have to reason about equality between
different places but simply propagates a binary attribute on each type vertex.

I will leave it to the reader to imagine the details of this pass.

7.3.7 Subplacing by propositional networks

With host languages that have primitives to update heap-allocated values, the
region typing may need to contain �

�
marks. Then the easy subplacing strategy

in the previous section does not work anymore, because under a � � mark sub-
placing is replaced with strict type matching, and then reasons to be % or # can
flow in both directions across the subplacing edge. In the general case we need
stronger methods for subplacing.

CHAPTER 7. REGION INFERENCE ALGORITHMS 178

A part of these stronger methods should be an attempt to change � � ’s to � � ’s
in the skeleton typing. The syntax-driven methods for constructing skeleton
typings in Section 7.2 will usually decorate all type vertices that represent an
updatable type according to the host language’s type system. However, if at
some point in the program it can be shown that the pointer will not actually
be used for destructive updates its decoration can and should change to � � .
An important special case is when the pointer will not be used at all anymore.
Then changing its permission to � � will allow the decorations on the pointed-to
type to be subplaced to % such that the pointer and what it points to can all be
deallocated.

Minimizing the number of � � ’s in the program invoves reasoning about “rea-
sons not to be � � ”. It turns out that these propagate in mostly the same way
as “reasons not to be % , so I propose a single analysis that locate prospective %
and # locations simultaneously with changing � � to � � .

The analysis works by a techique that I call “propositional networks”, which
I originally developed for doing binding-time analysis for C [Makholm 1999,
under the name “logic-based BTA”] and later used in a subphase of my TT-like
region inference for Prolog [Makholm 2000b, Section 8.8.1], coincidentally for
a purpose much related to the placement of � � ’s.4 Systematically it can be char-
acterized as constraint solving over a simple Boolean domain, with constraints
in the shape of Horn clauses. But that does not convey much of the underlying
intution, so here is an introduction I like better:

The idea is to build a little formal theory5 about how the given program can
be annotated. For each type vertex in the program, the theory contains proposi-
tions meaning, “there must not be a % here” and “there must not be a # here”,
such that each truth assignment for all propositions describes a (not necessarily
well-) typing for the program. The also contain other auxiliary propositions (to
be described in a moment), but the total number of propositions is finite.

A finite number of inference rules and axioms are then derived from the pro-
gram, such that a truth assignment describes a correct typing if and only if it
is a model, that is, is satisfies the axioms and inference rules. Considering a
proposition to be true iff it is provable in the theory (which is decidable be-
cause there are only finitely many propositions and rules in the theory) yields
a model6 which clearly is the “least true” model – which again means that it
describes the typing with the most % ’s and # ’s.

This is how the formal theory is generated. First, for each vertex

� � � � ��� �����49�.�.�.�� � � � � � � � �/.�.�.#9#����� � �
4I am reluctant to claim to be the inventor of the general technique, since it is so simple that it

has surely been thought of a dozen times before I was born. The algorithmic core is stuff that logic-
programming people eat for breakfast. However, simple and useful as it is, I have never seen other
people use it for program analysis, at least not with the heterogenous statement sets and multiary
constraints that I see as its strength.

5People have different expectations about what concepts the phrase “formal theory” entails. We
use the term here in the minimal sense of Mendelson [1997, Section 1.4], where all that is required
is some set of “propositions” (which Mendelson calls “well-formed formulas”) and a way to deduce
propositions from other propositions.

6This is true because we do not include implicit connections between the truth values of propo-
sition. Compare, e.g., with propositional logic which requires that the truth assignment of propo-
sitions such as � and ��� are related in a particular way. In such theories, taking the provable
propositions to be true does not necessarily yield a well-formed truth assignment, let alone a model.

CHAPTER 7. REGION INFERENCE ALGORITHMS 179

in any type graph in the skeleton typing, create propositions reading

“
� � � � is not # ” and “

� � � � is not % ”

(as already described). Furthermore, for each � and � , create the proposition

“
� � � � has �

�
as � � � ”

Now compute a “global subplacing certificate” – the least subplacing certifi-
cate (Definition 5.10) that would be able to certify all of the subplacing relations
in all of the RTSUB steps in the skeleton typing, if all permissions were imagined
to be � � . (This is a formal way of saying “the set of all connections of the kind
that are shown as dotted lines in the graph on page 168, except that we also
consider subplacing steps in non-annotatable edges”). For each element of this
certificate,

I � � � � � � � � /�� � / ��J , where

� � � � �������� 9�.�.�.�� � � � � � � � �0.�.�.#9#������� � and
� / � � / � ��� �����49 .�.�.�� � /� � � � /� � �/.�.�.#9#����� � � �

create the proposition
“ � � � � � 2 � � /�� � / � ”

and the inference rules
� � � � is not #

� / � � / � is not #
� / � � / � is not # � � � � � 2 � � /�� � / �

� � � � is not #
� / � � / � is not %

� � � � is not %
� � � � is not % � � � � � 2 � � /�� � / �

� / � � / � is not %
and for each � , � :

� / � � / � has � � as � � �
� � � � has �

�
as � � �

� � � � has � � as � � � � � � � � 2 � � /�� � / �
� / � � / � has �

�
as � � �

� � � � � 2 � � /�� � / �
� � � � � � � 2 � � / � � /� � �

� / � � / � has �
�

as � � �
� � � � � � � 2 � � / � � /� � �

For each non-subplacing rule that requires the places or permissions in differ-
ent type vertices to be identical, generate inference rules that enforce this (or,
more efficiently, represent the propositions that refer to the two vertices by the
same object in the implementation).

For each
��� +�� operation in the program (to be typed by either RTCONS or RT-

NOWHERE), generate a

� � � � is not #
axiom for the appropriate type vertex.

For each read or write operation in the program (to be typed by RTREAD pr
RTWRITE), generate a

� � � � is not %
axiom for the appropriate type vertex (or vertices, if � � � � includes multiple
possibilities). For write operations, also generate

CHAPTER 7. REGION INFERENCE ALGORITHMS 180

� � � � has � � as � � +
for all relevant � ’s.

Once the propositions and rules have all been generated it is a simple mat-
ter7 to compute which propositions are provable, starting with the axioms and
iteratively adding propositions that are immediate consequences of the already-
proved propositions. Then the assignment of % ’s and # ’s can be derived from
this set of provable propositions.

This analysis can be completed in time and space linear in the size of the
skeleton typing. It can be optimized by not generating “

� � � � has � � as � � � ”
propositions for permissions that are already known to be � � in the original
skeleton typing (supposing that the skeleton typing itself is correct, these propo-
sitions will not be provable), and by generating “ � � � � � 2 � � / � � / � ” propositions
(and the rules that have them as premises) lazily instead of all at once.

7.3.8 Loops in procedure bodies

The techniques described so far for the prototype all depend on the weakest-
precondition algortihm described in Section 7.3.2, which itself depends on be-
ing able to traverse the chunks of each procedure body in topological order,
which prevents it from working for uniform mutators with loops in procedure
bodies. In general, of course, we want to be able to use our techiques for pro-
gramming languages where intra-procedure loops are ubiquitous, so a solution
to this has to be found.

One somewhat hacky solution to this would be to convert loops to tail recur-
sion. Because UHL supports multiple entries to a procedure, we could identify a
“back edge” in each loop and convert the loop from

������ ����� &#+ �
&#+ �
&#+ �

to

nop
���

������ �����
��
 % % ��� � Id � ��� � � �'�.&#+ � � �

&#+ �
&#+ �
&#+ �

where ��� is a fresh entry point to the procedure and
� � � is a return map that

makes the call a tail call by jumping to the very same &#+ � node that the recursive
call returned from.

However, this is not actually a good strategy, because the region inference
techniques just might, in pathological cases, decide that it would be a good idea
with an agent that required region annotations on the edges from the tail call to
the &#+ � nodes. Then the call would be a tail call no more, and it would have to

7An imperative linear-time algorithm is easily constructed [Makholm 1999].

CHAPTER 7. REGION INFERENCE ALGORITHMS 181

be implemented as an ordinary call. (It could greatly confuse the programmer if
his while loop caused a “stack overflow”!)

In fact, one would prefer to do the reverse transformation and convert tail-
recursive calls8 to back edges, precisely to prevent region operations from being
inserted after the “returning” from the tail call. In the case of mutual tail re-
cursion, this will entail merging the two (or more) procedures into one and
unifying their &#+ � nodes (which will match in number and types if the calls are
indeed tail calls). Therefore this transformation also depends on the ability to
have more than one entry in a procedure.

The conclusion is that we do want to handle loops natively in the basic inference
phase. This means that we need to leave the idea of considering the chunks in
order – so let us toss out the idea completely and handle the chunks all at once!
In practical terms this means that we have to maintain separate local union-find
structures for all of the procedure’s chunks simultaneously, in addition to the
global union-find structure which all chunks share.

During the analysis, each class in a local union-find must be marked with
a list of the incoming annotatable edges where it has LHS partners (together
with references to the parters). When two classes are unified, their lists must
be merged; if the same incoming edge appears in both of them, the unification
propagates to the local union-find for the chunk’s predecessor. A stack or queue
of pending unifications can be used to do this. Likewise, when a class first gets
marked with a reference to the global union-find (meaning that it refers to an
uncounted variable), the list must be scanned and the assignment propagated to
the predecessor chunks. Thus there must also be a list of pending local-to-global
links.

Once all of the pending unifications and linkings have been resolved, region-
variable names can be assigned to the entire procedure at once, and the region-
operation selection algorithm from Section 7.3.1 ran for all of the annotatable
edges. (But it is not necessary to do this until a fixpoint for the entire program
has been found, of course).

Surprisingly, calls require little special attention. The region-variable identi-
ties in the existing guess for

� � and
�

� ’s become unifications in the call chunk’s
local union-find, and that is all that is necessary until the unifications for the en-
tire procedure have settled down. Then step 3 of the algorithm in Section 7.3.4
can be executed to find out whether it is necessary to update the

� � guesses.

This strategy, which has a certain flavour of constraint solving even though there
are no explict constraint syntax, still uses the fixpoint iteration of Section 7.3.5
to handle interprocedural connections. It is tempting to try to extend the “every-
thing at once” principle to the interprocedural level and region-infer the entire
uniform mutator with a single sound of constraint solving. This would nicely
bound the running time of the basic region inference to O(the size of the skele-
ton typing).

Alas, this plan founders on the heuristics used when a caller needs a callee to
return several pieces of its output in the same region. As shown by the example
at the end of Section 7.3.5, the fixpoint iteration initially tries to solve this by

8Tail calls that are not recursive (even indirectly) are best left as ordinary UHL calls. There may
be good reasons to need region operations after such a call, and it would only need bounded stack
space to convert such calls to ordinary calls.

CHAPTER 7. REGION INFERENCE ALGORITHMS 182

unifying two counted variables in the
� � guess. If, later, a compelling reason

to make this counted variable uncounted arises, the two places are treated as
separate in the next analysis of the callee. This would not be possible if the
callee already had an active set of local and global union-finds – one would
need to propagate the negation of an identity through its flowchart, and the
usual union-find structure does not support that.

Doing a whole-program basic inference in a single pass might be possible if
another heuristic was used – for example to prefer the solution with several un-
counted variables from the beginning (but too many uncounted variables might
make it hard to exploit the flexibility of the HMN model) or to make only a single
uncounted variable when an already-unified counted variable needs to become
uncounted (but that would mean that very few instances of aliasing-through-
uncounted variables would be generated, and the result might risk becoming
inferior to a TT-style inference, even for first-order programs).

More exprerimentation with different heuristics (which, luckily, can be done
within the fixpoint-iteration paradigm) will be necessary to know wheter it is
worthwhile to try to develop one of these ideas.

7.4 Region optimizations

As mentioned in the overview in the beginning of the chapter, the basic region
inference cares only about deallocating memory as soon as it can. It uses the fea-
tures of the agent programming language quite indiscriminately, not worrying
about the cost of manipulating reference counts or passing region parameters
around.

Keeping these internal costs of the agent under control is the job of region
optimizations that are run after the basic region inferences. These are source-
to-source program transformations of the agent programming language and do
not care about the host language at all, working exclusively on the level of
flowchart chunks rather than individual control states. They must work under
the constraint that they must not extend the lifetimes of the of the mutator’s
memory blocks, at least not significantly.

Of course, the region optimizations must preserve the soundness of the agent,
because the principal goal of region inference is to produce a sound agent. In
general it can be argued that each of the optimizations is conservative in the
sense of Theorem 3.53 and thus preserves soundness.

For most of the optimizations it also holds, coincidentally, that they preserve
typeability in a region type system such as the one from Chapter 5. This is
good news for people who use region-based memory management to certify
the memory safety of compiled code, but I will not have time to go into details
about this.

This section briefly describe the region optimizations that are present in the
prototype region inference. The descriptions will be somewhat sketchy, due to
time constraints (see the Preface). Perhaps I will later have time to publish a
fuller account of them. Readers are advised not to hold their breath.

CHAPTER 7. REGION INFERENCE ALGORITHMS 183

7.4.1 Local alias propagation

The most important region optimization is alias propagation. It can be viewed
as a kind of copy propagation for the agent programming language. Basically,
the problem it solves is this: The basic region inference, since it works back-
wards, has a tendency to create lots of little short-lived aliases for regions when-
ever something is read from them. A common idiom is

� � � �
� � �� � � � �

��� � ��� � � ��� 	 �

unbind �
� � � � ��� � 	 ��

for reading a non-pointer value from a cell in � . The basic region inference
constructs a typing where � refers to a fresh counted variable

� �
 at the time
of the read instruction. Only when it backs up to the preceding chunk does it
learn that � is actually the same as � which is already knows to be in � , and
then emits an

 %)
 � instruction to patch things up.
This is completely acceptable given the restricted goals of the basic region

inference – the short-lived alias does not actually extend any lifetimes. But
the reference-count manipulations it entails still have some cost at run time, in
addition to bloating the agent.

Of course, in this simple example a quick cure would be to make sure that

� � � � was in the same chunk as the read operation. But the same problem
appears on a larger scale, too. We need a more far-ranging solution.

The idea of the alias propagation is to try to defer

 %)
 � instructions to as late

as possible in the control flow. If eventually the

 %)
 � ends up next to a � &#% &
 � &

of the alias, the two operations dissolve each other. If the

 %)
 � ends up next

to a � &#% &
 �& of the source region-variable, it becomes a � & +
 # & operation, which
is cheaper to execute. In fact, the alias propagation will also try to propagate
� &#+
 # & operations, in the hope that it meets another � & +
 # & operation that it
can be fused with (since � &#+
 # & s are naturally transitive).

What can stop an

 %)
 � from propagating further, except reaching a � & % &
 �&

operation to annihilate with? The canonical example is when it reaches a call
chunk where one of the aliases is passed as a region parameter and the other
is not. As shown by the twolife example in Section 2.4.1, this situation is the
primary motivating example for having a

 %)
 � operations at all, so it is OK that
it gets blocked.

An

 %)
 � operation can also be blocked by a call chunk even if both aliases are

passed as region parameters. Global alias propagation, to be described shortly,
can sometimes push the aliasing into the callee, but if there are other calls to
the procedure (entry) in question which may pass two different regions in the
same region parameters, the

 %)
 � must happen before the call.
Similarly, an aliasing can be blocked on entry to a chunk that has another

other incoming edge from a chunk where the two region variables are not nec-

CHAPTER 7. REGION INFERENCE ALGORITHMS 184

essarily aliased. And if the aliasing eventually reaches a chunk with an &#+ �
node, it will have to stop there – until we introduce global alias propagation in
a little while.

The actual implementation, however, does not work in terms of moving actual
 %)
 � operations around in the agent. Its working is more like a dual of basic re-
gion inference. Where basic region inference works by backwards-propagating
reasons for region variables to be identical, alias propagation works by forwards-
propagating reasons for region variables to be different.

The algorithm computes, for each chunk, an aliasing map from “old” to
“new” region variable names. The map needs not be transitive; two “old” re-
gion variable names that map to the same “new” name represent an aliasing
operation that has been moved past the chunk.

As the aliasing map “moves along” an annotatable edge, the “old” region
operations on it interact with the map, possibly changing (or annihilating) the
operations as well as the map. + & � operations introduce new “new” names in
the map; � &#% &
 �& operations disappear unless the “old” name in the operation is
the only one that refers to its “new” name.

 %)
 � and � &#+
 # & operations always
disappear in favor or manipulating the map.

When a chunk has multiple incoming annotatable edges, a “joint” aliasing
map need to be constructed by combining the maps that result from the old
annotations on the incoming edges. In the joint map, two “old” variables map to
different “new” names iff at least one of the incoming edges have them different.
The difference between the incoming maps and the joint map is translated to
 %)
 � and/or � & +
 # & operations at the end if the incoming edges.

The prototype implementation of alias propagation works on acyclic flow-
charts only. If the flowchart has loops, the incoming maps cannot always be
available when a joint map is constructed. Then a fixpointing algorithm must
be used, starting with the optimistic assumption that all region variables are
aliased to each other.

There is still some room for improvement of this algorithm. For example, con-
sider the situation

����� � � � � ��� � 	 �
��� � ��� � � � � 	 � ��� � ��� �
 � � 	 �

Here the creation (and subsequent release) of
� is not necessary for the safety

or soundness of the agent, because it does not change any memory-block life-
times (whatever it keeps alive is kept alive by � � or �
 anyway). But the current
alias propagation is not strong enough to discover this.

7.4.2 Global alias propagation

It is not difficult to imagine an interprocedural variant of the local alias propa-
gation. Aliasings that reach a &#+ � node can readily be recreated in the outgoing
alias maps for the call chunks that receive returns from it. And alias maps for
a procedure-entry chunks can be seeded as joint versions of the incoming alias
maps in the call chunks that jump to it.

CHAPTER 7. REGION INFERENCE ALGORITHMS 185

This has the consequence that it is not possible anymore to consider the
chunks in order, even if procedure bodies are acyclic. The prototype implemen-
tation solves this by keeping a cache of gradually improved guesses for each
procedure, like for the basic region inference in Section 7.3.5. If loops must
be supported it may be cleaner to maintain a set of guesses for each chunk in
the entire program, scheduling a chunk for reconsideration whenever one of its
predecessors change.

This is well and simple as long as we stick to the convention that alias maps
always map uncountable region variables to themselves (but countable region
variables may map to uncountable ones, symbolizing a deferred “

 %)
 � � �-' � � �
”

operation). This allows countable region parameters to be “fused” if all call sites
agree that they will always be aliased anyway.

However, quite a can of worms opens if we want to handle uncounted region
variables too. Ideally we could want to be able to

� Fuse uncounted parameters if they are always passed as aliases.
� Convert a counted parameter to an uncounted one if its source it always

aliased to something that is not passed as a parameter (and is therefore
known to be available as the source of an uncounted parameter). This will
save an

 %)
 � operation as well as a � & % &
 �& s omewhere in the callee. Pos-
sibly it will also make the new uncounted parameter available for fusing
with an existing one.

� Eliminate an output region if it is found to be aliased with an uncounted
region variable at the &#+ � node. Then instead of passing a region back,
the caller’s name for the output parameter can be considered an alias for
the source for the uncounted parameter.

This does not seem too difficult, but there are some subtle problems.
Fusion of uncounted parameters is easy enough, except that whenever a caller

finds a difference between two uncounted parameters, they must be un-fused at
all of the procedure’s entry points, not just the one that particular call site leads
to.

Conversion of counted region parameters to uncounted ones are easy too, as
long as each procedure has only one entry point (as in the case in the prototype).
With more entry points, things get difficult when new uncounted names may be
invented. As an example, consider a procedure that begins with

�����
� ��

�����
�����

�����
�����

��� � ��� 	 � ��� 	 ���� ��� ��� � 	 � ��� 	 ������ � ��� 	
 ��� 	
��� ��� ��� � 	
 ��� 	
��

��� � ��� 	 � ��� 	 ������ � ��� 	 � ��� 	 ���� ��� ��� � 	 � ��� 	
��� ��� ��� � 	 � ��� 	
��

where � �
 and �� � are entry points and the region parameters
� � , �
 , � , � � all

satisfy the conditions for being lifted to uncounted parameters. If four different
uncounted names are used,

� �" , � � � , �
$, and
�
$ must all stay as separate

counted variables. However, if
� � and

� were both mapped to the same un-
counted variable � �" , the alias map for ��� � could map

� � to � �" . But that
would prevent

� � � from being treated in the same way. In general one would

CHAPTER 7. REGION INFERENCE ALGORITHMS 186

Box 7.1—Fusing counted inputs with counted outputs

A really subtle trick (but actually occur-
ring quite often in the benchmark pro-
gram I have studied) in the prototype’s
global copy propagation is the ability to
eliminate an output region in favor of an
ordinary counted region parameter, if it
can be shown that the returned region at
runtime will always be identical to a par-
ticular input region. In this case the two
counted regions (one input, one output)
will be replaced with a single uncounted
region parameter.

There are some conceptual problems
with generalizing this from the single-
entry, single-exit world of the prototype

to the full UHL model. In particular, it
will only work if the particular counted
input region corresponds to at least one
output region in each of the procedures�*��� nodes, lest the caller-variable that
got converted to an uncounted param-
eter get “orphaned” in the other return
jumps. Thus mere ability for a proce-
dure to throw an exception that does not
contain any data (in which case the ex-
ceptional exit should return no regions
either) will prevent it from working.

The feature should probably be con-
sidered superseded by the parameter
lifting of Section 7.4.5

need some heuristic to chose between the various options here, and I do not
have good ideas for one.

The last wish, eliminating an output region in favor of an uncounted param-
eter, is problematic even in the limited case treated by the prototype implemen-
tation (acyclic flowcharts, single-entry procedures). Consider a procedure with
two uncounted input variables � � and � � and one output region

� �" . The op-
timistic initial assumption is that we will be able to fuse ��� and ��� to ��� � and
eliminate

� � in favor of � � � . Now, while we are analyzing a caller, we find the
� � and � � cannot be fused anyway, so we split them into their original names
in the assumption. But what should the assumption about

� � be now? Elimi-
nating it in favor of � � � is meaningless when ��� � does not exist anymore, and
anything we can assume of it might be belied once we complete the analysis of
the callee. This threatens the monotonicity of the assumptions and means that
we cannot be sure that the alias propagation will terminate, which is bad.

The prototype implementation solves this by adding an exceptional alterna-
tive to an alias map during the analysis. This alternative means, “no information
due to mention of obsolete constant parameters”, and whenever a joint alias
map must be computed, predecessors that are in the no-information state can
be ignored. The no-information state can also be used as an initial assumption
that for all alias-map positions. If any of these “holes” are still left after the anal-
ysis has reached a fixed point, it means that the chunks in question are actually
unreachable; they can be removed from the mutator completely.

7.4.3 Correctness of alias propagation

Alias propagation preserves correctness, because the “new” agent is always con-
servative with respect to the “old” one. This can be shown formally by convert-
ing an arbitrary managed execution trace with the “new” agent to a managed
execution trace with the “old” agent. In general this can be achieved by concate-
nating the
 part of the configuration with the aliasing map that corresponds to
the current control state.

Such a simulation also proves that alias propagation does not extend memory-

CHAPTER 7. REGION INFERENCE ALGORITHMS 187

block lifetimes. Because the simulation does not change heap addresses it fol-
lows that whenever the “new” agent keeps something alive it is possible for the
“old” agent to keep it alive, too.

Similarly, alias propagation can be seen to preserve typeability in the region
type system: A typing for the “old” agent can be converted to a typing for the
“new” agent by applying the relevant alias map to all region variables in each
type graph. The prototype actually does does such rewriting on a large part of
the typings during region optimizations. This has been identified as a source of
bad performance of the region optimizer. It is probably faster to transform only
the minimal parts of the typing necessary to recreate it (i.e., the annotations
on the procedure entry and exit type graphs) and reconstruct the rest from this
extract and the skeleton typing once all region optimizations have been been
performed.

7.4.4 Region merging

The alias propagation does a good job of reducing the agent’s use of different
region variables that will just contain the same values at run time. But it leaves
all +.& � operations in the agent unchanged, except for the concrete name of the
region variable that receives the new region.

There are certain fixed costs are associated with having a region. It takes time
at run time to create and deallocate it, and to maintain reference counts. There
is also a space cost, both for the management data and for yet-unallocated slack
in the region’s newest payload card. Therefore, we are interested in creating
as few regions at runtime as possible without extending data lifetimes so much
that it would offset the space saving in the region manager.

The central idea behind region merging is

If two run-time regions are deallocated at the same time, they really ought
to have been the same region from the beginning (which would have re-
sulted in the same data lifetimes but saved the overhead of one region).

This principle was, as far as I am aware, an original contribution of my M.Sc.
thesis [Makholm 2000b, Section 10.3.1]. I am not aware of it being mentioned
in any of the previous work on automatic region inference, and I have it on
reliable sources that the ML Kit does not do anything towards it9.

It is harder to adhere strictly to this principle in an HMN-like agent program-
ming language than in the TT-derived model I originally formulated it for. I the
HMN model it is possible that it was not yet certain when the two regions in
question were created, that they would eventually be deallocated at the same
time. In that case, we need to keep them separate to be prepared for the pos-
sibility that they are not deallocated together. And after the regions have been
created, there is nothing to do; the region manager’s interface does not support
the coalescing of two already existing regions into one (nor does its intended
implementation).

Instead, we must settle for a weaker principle: If we can deduce, for a given
+.& � operation, that a specific other region variable will always be bound to a

9This is not surprising, because merging two regions before the Kit’s storage-mode analysis may
forfeit possibilities for resetting, and it is hard to see after the storage-mode analysis whether it
is safe to merge them, especially if they may be reset within another function than the one that
contains the letregion expression

CHAPTER 7. REGION INFERENCE ALGORITHMS 188

region that will be deallocated at approximately the same time as the freshly
created one, then the +.& � should be replaced by an

 %)
 � operation. We refer to
this rewriting as merging the two regions.

If we take care to do the merging before alias propagation, the new

 %)
 � in-

struction will propagate throughout the lifetime of the two regions (except in
certain pathological cases), so we can get the benefit of less region-handle ma-
nipulation in the agent in addition to more efficient use of the region manager.

It is immediately that replacing a +.& � with an

 %)
 � will not cause a well-typed

agent to become less well-typed. It takes some active reasoning (in the form of
a direct simulation and an appeal to Theorem 3.53) to see that it also preserves
soundness in general. Whether it also preserves the memory footprint of the
agent depends on what we mean by “approximately the same time” and how
we show that the two deallocation points are indeed that close.

Of course, one interpretation of “approximately the same time” would be “on
the same annotatable edge”. Another, more liberal but still fully safe would be
that the two deallocations are close enough to each other if it is impossible for
any (non- + ��� .& � &) ��� +�� operation to happen between them. Then no possibility
for memory reuse would be lost by postponing deallocating the data in the first
region until the merged region can be deallocated.

In the M.Sc. thesis I went a bit further and allowed merging two regions even
if allocations happened between their deallocation points, as long as no proce-
dure calls happened in between. The reasoning was that because the host lan-
guage had no loops other than recursion, this would bound the number of reuse
opportunities that could be forfeited because of the merging, and the merging in
itself would be likely to free some overhead space, to there was a good chance
that it would come out even, and in any case only a constant increase in mem-
ory footprint could result. The M.Sc. implementation also allowed merging of a
region that was deallocated immediately before a procedure’s return with one
deallocated in the caller immediately after the call, under certain restrictions
designed to avoid a region being merged across unboundedly many allocations
on the way up from a deep recursion.

The HMN prototype is more liberal yet: It allows two regions to be merged
if their deallocation points are not separated by any entry to a procedure – but
returning from one is fair game. The rationale is that even if a deallocation may
be postponed across unboundedly many allocations, the number of allocations
will still not exceed a constant factor times the stack size – so the increase in
memory footprint will not be more than linear in the stack (which is usually
considered, by some sort of practical axiom, to be “small” by definition).

The common feature of these definition is that the identify certain points in
the mutator as “checkpoints” across which deallocations must not be postponed.
It is still an open question which strategy for selecting checkpoints is the most
desirable, but the basic algorithms for merging regions should work with any
arbitrary set of checkpoints.

The general procedure for doing region merges has three steps:

1. Compute, for each chunk, an approximation (from above) of the possible
futures of the chunk’s bound region variables – assuming each of them
holds the only reference to some runtime region. Such a description could
read something like

a. It is possible to from here to have a future where first one or more

CHAPTER 7. REGION INFERENCE ALGORITHMS 189

checkpoints are passed, then the regions currently bound to
� � and

�
 are deallocated “approximately at the same time” (i.e., without
any intervening checkpoints), then some checkpoints are passed, then
the region currently bound to

� � is deallocated, then (...)

b. It is also possible to have a future where first some checkpoints are
passed, then the region bound to

� � is deallocated, then (...)

... (...)

During the computation, the intermediate results are parameterized with
what happens to the output regions after the procedure returns; this pre-
vents cross-contamination between the futures of different calls to the
same procedure, and was found to be practically important for producing
the intuitively expected amount of merges.

The future-descriptions, as can be seen from the example description
above, tend to be quite lengthy, and it is easy to construct simple examples
where the number of them grows exponentially in the number of region
variables. I have plans for a reimplementation where the descriptions are
instead structured like

a. It is possible in the future to reach a checkpoint where the regions
currently bound to

� � , �
 , � � , and
� � are still live.

b. It is possible in the future to reach a checkpoint where the regions
currently bound to

� � and
� � are still live.

c. It is possible in the future to reach a checkpoint where the region
currently bound to

� � is still live.

... (...)

Such a description is simply a set of subsets of the bound region vari-
ables; it can be represented by a Binary Decision Diagram [Bryant 1992].
BDDs naturally supports most of the operations needed in the future ap-
proximation, but it remains to be seen whether they are robust enough to
represent common sets of futures compactly.

2. Do a forward propagation through the agent to find out which region
variables have “trustworthy” future information. A variable is trustworthy
if we can be sure that the point at which the future information says it will
be deallocated is in fact the right deallocation point, even in the presence
of aliases.

By definition the region variable the holds a newly created region is
always trustworthy. After a

 %)
 �1#*' � # 	
operation # is trustworthy if # was trustworthy before and there is no
future in which # 	 lives longer than # . Conversely # 	 will be trustworthy
if # was trustworthy before and there is no future in which # lives longer
than # 	 .

Both of # and # 	 can be trustworthy if they happen to have the same
future information.

3. Go through the mutator and consider each +.& � operation. If there is an-
other already bound region variable that is trustworthy and has the same
future information as the newly created region, then replace the +.& � with

CHAPTER 7. REGION INFERENCE ALGORITHMS 190

an

 %)
 � of the other variable. (Because the future information is identi-

cal, both region variables will stay trustworthy, so the order in which +.& �
operations are considered does not matter).

A + & � inside a procedure cannot directly be merged with a region variable in
the caller of the procedure, even if the two regions have the same lifetime. To
work around this, the region-merge phase in the prototype region inference has
a special setting, “speculative merging” where it will add an artificial (counted)
input region for each output region and pretend that the artificial shadow will
be deallocated at the same time as the real output region. The hope is that
the creation of the output region inside the procedure can be merged with the
speculative parameter and the speculative parameter can be merged outside the
call with a region variable that were not visible inside the callee.

However, it is possible that the inner merge will happen only on some paths
through the procedure and the outer merge will be possible only at some call
sites. Call sites without an outer merge will need to construct a fresh region to
pass as the speculative parameter, and if the callee finds that it will not reach
an inner merge anyway, it must � & % &
 � & it explicitly. Thus there is a reason that
speculative merges will lead to a lot of empty regions being created and then
destroyed to no avail. Our (anecdotal) experience with the prototype is that
this happens often enough that speculative merging is more likely to harm the
(time and space) performance of the agent than to improve it.

7.4.5 Parameter lifting

The parameter lifting optimization runs between region merging and alias
propagation and builds on data from the first part of region merging. It goes
over all procedures (all entrypoints) and whenever there is a counted region pa-
rameter that the future approximation says will always stay allocated for each
checkpoint until the procedure returns, the parameter is marked as “long-lived”.

Then all call chunks are inspected. Each time a long-lived parameter is
passed, an alias for the actual value is created just before the call. The alias
is released again after the call. Because the parameter is long-lived, this will
not extend the region’s lifetime by more than what is accepted for region merg-
ing. But the extra aliases will give the the alias propagation the opportunity to
promote the parameter to an uncounted parameter, which is cheaper in gen-
eral (and which will also cause the parameter lifting’s new

 %)
 � operations to
disappear again.

7.4.6 The “unrename” transformation

Usually we should not worry much about whether the name of counted region
variables match up from chunk to chunk. If they do not, � &#+
 # & operations will
be inserted to fix the gap; such operations are assumed to be cheap. In general
I have assumed that eventually the detailed management of region variables
themselves will be handled by the existing implementation’s register allocator,
such that in situations like

����� �����
�����
� ��� ��� � 	 � ��� 	 �

�����
� ��� ��� � 	 � � � 	 �

CHAPTER 7. REGION INFERENCE ALGORITHMS 191

it will be recognized that
� � and

� are “really” the same variable and the re-
namings do not need to actually happen. Of course, specific algorithms for
recognizing and preventing such code in agents could be developed, but the
problem is really a standard register-allocation problem, and should be solved
together with register allocation for the mutator.

The HMN prototype, however, does not have a register allocator as such, so
it includes a optimization that targets a single case where the lack of a general
solution is especially disturbing, namely when the return edge of a tail call is
annotated with a � &#+
 # & operation.

Any region operation on the return edge will prevent the prototype’s code
generator from recognizing the call as a tail call, so the unrename optimization
runs as the last phase in the region inference and tries to move � & +
 # & opera-
tions earlier in the flowchart. They are stopped by almost every operation on
the region variable they rename, but usually they will at least be able to move
past the tail call, allowing it to stay tail.

Chapter 8

Conclusion

In this thesis I have developed and presented a general framework for reasoning
about region-based memory management and region inference in a language-
independent fashion – that is, with a minimum of dependence on the language
and implementation that use the memory-management services of the region
inference and the agent it generates.

The framework is based on an abstract flowchart language, the universal host
language UHL, which has been designed to be sufficiently expressible to repre-
sent the low-level memory-use patterns of conventional implementations of a
wide range of programming languages. To this language I have added a generic
agent programming language (i.e., a framework for region annotation) based
on the “HMN model” that I have codeveloped with Fritz Henglein and Henning
Niss. I have defined a generic region type system that allows the safety of agents
for UHL to be certified. Finally, I have described general algorithms for creating
an agent mechanically given a program in a host language that has a suitable
UHL representation.

I have demonstrated, as a running example, how the REGFUN calculus and
its associated region type system of Henglein et al. [2001] can be systemati-
cally derived from the general framework. But REGFUN was already known,
and it is not difficult so specialize a generalization to the case from which it
was originally generalized. The fire test would be to derive a working system
of region-based memory management for a different setting than FUN, but I
have not had time to actually do this. I can point, however, at the attempt I
made for Prolog Makholm and Sagonas [2002], which however – as described
in Section 7.1.1 – was not completely succesful1 because the UHL model was not
completely developed at the time of the experiment and because I lacked suffi-
cient understanding of how the host language is typically used (as opposed to
just how it works) and the existing body of analyses to help understand Prolog
programs.

It is my hope that the general model will be useful for people who want
to experiment with automatic region inference for other languages than the
traditional ML-like languages described in the standard literature. Whether that
will be the case remains to be seen, however, as does whether or not those

1That is, the region inference part of the experiment was not quite succesful. The run-time support
for regions in the Prolog implementation – which was the subject matter of the conference paper
Makholm and Sagonas [2002] – turned out to entirely satisfactory.

192

CHAPTER 8. CONCLUSION 193

intended readers will be scared off by the sheer length of the description.

In addition to the UHL model itself and its associated examples and algorithms,
I wish to direct special attention to the following new ideas in the thesis. Even
if you are going to forget the details of the model, please at least try to hold on
to one or two of the folllowing:

� The discovery that optimal region annotations do not always exist in a num-
ber of region-inference formalisms and for a natuaral definition of “opti-
mal” (Sections 2.2.3, 2.3.1, and 2.4.4). This result was also published in
Henglein et al. [2001].

It is unknown and an interesting problem for further work whether this
non-optimiality property still holds if we consider region-sound (or region-
safe) agents for UHL in general rather than just the ones accepted by the
region type system.

� The idea that (automatic) region-based memory management must be for-
mulated for a particular implementation of a programming language rather
than for a programming language in genereal (Section 1.4.1).

� The distinction between region safety – that a region-annotated program
will not try to access deallocated data – and region soundness – that it ex-
hibits the same extensional behavior as one would expect without memory
reuse (Section 3.3).

� The idea that region annotations can be viewed as a sepearate coprocess,
the agent, written in a special agent programing language (Section 1.1),
and that the agent can be subject to program transformations and pro-
gram analyses as a separate program, such as the region optimizations in
Section 7.4.

� The identification of the agent programming language, the region type sys-
tem and the agent-construction algorithm as the three conceptual parts of
the region inference problem (Section 1.3).

References

Alexander Aiken, Manuel Fähndrich, and Raph Levien [1995]. Better static
memory management: Improving region-based analysis of higher-order lan-
guages (extended abstract). In Programming Language Design and Implemen-
tation (ACM SIGPLAN Conference, PLDI ’95, La Jolla, CA, USA), special issue
of ACM SIGPLAN Notices, 30(6):174–185.����������� ���
������� � � � ��� ��� � � � ��� � � ��� ��� ��� ��� ��	���� � ����� � � � � � � . (Cited on pp. 14, 22, 35,

36, and 82).

Hassan Äıt-Kaci [1991]. Warren’s Abstract Machine: A Tutorial Reconstruction.
The MIT Press, Cambridge, MA, USA, ISBN 0-262-01123-9 (hardcover), 0-
262-69146-9 (paperback).����������� �������� � � �	� � � 	 � � � ��� � � � � �� � " ��� � � �� " � ���" ��� . (Cited on p. 156).

Roberto M. Amadio and Luca Cardelli [1993]. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575–631.����������� � � �����!�� � � � � " � � � � �	�� � �� " ��
 �!���&� � � � � ��� � ���&� ��	��� ����� � � � 	�� . (Cited on

p. 131).

Anindya Banerjee, Nevin Heintze, and Jon G. Riecke [1999]. Region analysis
and the polymorphic lambda calculus. In Logic in Computer Science (14th
Annual IEEE Symposium, LICS ’99, Trento, Italy), pages 88–97. IEEE Computer
Society.

����������� � � � � � ��������� � � � � � � �������+� �
� � � � � � ��� ��� � ��� � ��� � � � � �+� � 	 � � �� � �
� � � ��� � . (Cited on pp. 29 and 82).

Lars Birkedal and Mads Tofte [2001]. A constraint-based region inference algo-
rithm. Theoretical Computer Science, 258:299–392.����������� �������� � � ����� � ��� �
� �
��� � ��� � � � � � ���
� � ����� ���� ��� � � � � � ��� � . (Cited on pp. 14,

22, and 30).

Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner [1993]. The
ML Kit. Technical Report DIKU-TR-93/14, Department of Computer Science,
University of Copenhagen. (Cited on p. 31).

Lars Birkedal, Mads Tofte, and Magnus Vejlstrup [1996]. From region inference
to von Neumann machines via region representation inference. In Principles of
Programming Languages (23rd ACM SIGPLAN-SIGACT Symposium, POPL ’96,
St. Petersburg Beach, FL, USA), pages 171–183. ACM Press, New York, NY,
USA, ISBN 0-89791-769-3.����������� �������� � ������� � ��� � � ����&� �����	�� � �
� � � ���
���������� � � � � ��� � . (Cited on pp. 14, 15, 22,

31, 32, 34, and 98).

194

REFERENCES 195

Michael Brandt and Fritz Henglein [1998]. Coinductive axiomatization of re-
cursive type equality and subtyping. Fundamenta Informaticae, 33:309–338.� 	������ ���
	���� � ������� � �
� � ������� � �!� " 	� � � � � �
� � ���+� ���&��������� � � � ��� � . (Cited on p. 131).

Randal E. Bryant [1992]. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318. (Cited on p. 189).

Cristiano Calcagno, Simon Helsen, and Peter Thiemann [2002]. Syntactic
type soundness results for the region calculus. Information & Computa-
tion, 173(2):199–221.

����������� � �&����� � � � 	� � " � � � � � � � ��	 ��� � � � ��� � � � ��� � � � �!��� �
� ��� ���� ��
� � � �!��� �
��� � � " 	��� � � 	� � ��������� � � � � � ��� � . (Cited on pp. 29, 75, and 82).

Cristiano Calcagno [2001]. Stratified operational semantics for safety and cor-
rectness of region calculus. In Principles of Programming Languages (28th
ACM SIGPLAN-SIGACT Symposium, POPL ’01, London, UK), pages 155–165.
ACM Press, New York, NY, USA, ISBN 1-58113-336-7.������������� �+����� � � � � ���'"&� � � � ��� � �
��� � � � � 	���� � � ����� � � � � � . (Cited on pp. 29, 75, 82,

and 83).

Morten Voetmann Christiansen and Per Velschow [1998]. Region-based mem-
ory management in Java. Master’s thesis, Department of Computer Science,
University of Copenhagen.� 	������ ���
	���� � ������� � �
� � ������� � �!� " 	� � � � � �
� � ���+� ���&������� � � � � ��� � . (Cited on pp. 78, 82,

and 149).

Karl Crary, David Walker, and Greg Morrisett [1999]. Typed memory manage-
ment in a calculus of capabilities. In Principles of Programming Languages
(26th ACM SIGPLAN-SIGACT Symposium, POPL ’99, San Antonio, Texas, US),
pages 262–275. ACM Press, New York, NY, USA, ISBN 1-58113-095-3.����������� � � � � " � � � � � �� ����� ��� � � ��� �����" � �
	 � " ��� � ���&� � � � � � � � � � ��� � � � � . (Cited on

pp. 15 and 60).

Silvano Dal Zilio and Andrew D. Gordon [2000]. Region analysis and a � -
calculus with groups. In Mogens Nielsen and Branislav Rovan (eds), Math-
ematical Foundations of Computer Science (International Symposium, MFCS
’00, Bratislava, Slovakia), volume 1893 of Lecture Notes in Computer Sci-
ence, pages 1–20. Springer-Verlag, Heidelberg, Germany, ISBN 3-540-67901-
4.

����������� ���!����� � �����!�� !� ��� � " � � � � �	�� � ���" ���� � ��� � � ����� ��� � ��� � �� ����� ������� � �!���&� �
 � � �
� � ��� � � � � �+� � ����� � �+� � "�	�� � � � �� � � � � ����� . (Cited on pp. 29 and 82).

Robert DeLine and Manuel Fähndrich [2001]. Enforcing high-level protocols
in low-level software. In Programming Language Design and Implementation
(ACM SIGPLAN Conference, PLDI ’01, Snowbird, UT, USA), special issue of
ACM SIGPLAN Notices, 36(5):59–69. ACM Press, New York, NY, USA, ISBN
1-58113-414-2.����������� � � �����!�� !� � � � " � � � �
	�� � �� " � �� � ��� � � �� !��� ��� � �!�&� ����� ��� � � � � � 	�� . (Cited on

p. 15).

Martin Elsman and Niels Hallenberg [1995]. An optimizing backend for the
ML kit using a stack of regions. Student project, Department of Computer
Science, University of Copenhagen.����������� �������� � � � � � ��� �
� � ��� � � " �� ����" � � � ���&� � � � � ��� � � � � � . (Cited on p. 22).

REFERENCES 196

Martin Elsman [1999]. Program Modules, Separate Compilation, and Intermod-
ule Optimisation. PhD thesis, Department of Computer Science, University of
Copenhagen. Published as technical report DIKU-TR-99/3.����������� �������� � � � � � �
� � ������� !� � ��� " � � � ��� � � ��� ���	������ ��� ��� � � � � � . (Cited on p. 22).

Martin Gardner [1970]. The fantastic combinations of John Conway’s new soli-
taire game “life”. Scientific American, 223:120–123. (Cited on p. 25).

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and
James Cheney [2002]. Region-based memory management in Cyclone. In
PLDI [2002], pages 282–293.

������������� � ����� � �����!�� !� ��� � ��� � �� " � � � �	 � �
� � �
� � ���� ��� �
� � ���&� ��� � ���� ��� � ����� � ��� � � � 	�� . (Cited on p. 15).

Niels Hallenberg, Martin Elsman, and Mads Tofte [2002]. Combining region
inference and garbage collection. In PLDI [2002], pages 141–152. (Cited on

p. 31).

Niels Hallenberg [1999]. Combining garbage collection and region inference in
the ML Kit. Master’s thesis, Department of Computer Science, University of
Copenhagen.

����������� �������� � � � � � �
� �
� � ��� � � � ��� " � � � ���+� � � ����������������� � � � � � ��� � .
(Cited on p. 31).

Simon Helsen and Peter Thiemann [2000]. Syntactic type soundness for the
region calculus. In Alan Jeffrey (ed.), Higher-Order Operational Techniques in
Semantics (ACM Workshop, HOOTS ’00), special issue of Electronic Notes in
Theoretical Computer Science, 41(3):1–20. Elsevier.����������� � �&����� � � � �!��� � ��� � � � � ���� � � � �	� ��� � � � �� � " � � � � ����" ��� . (Cited on pp. 29, 75,

and 82).

Fritz Henglein, Henning Makholm, and Henning Niss [2001]. A direct approach
to control-flow sensitive region-based memory management. In Principles and
Practice of Declarative Programming (3rd International ACM SIGPLAN Confer-
ence, PPDP ’01, Firenze, Italy), pages 175–186. ACM Press, New York, NY,
USA.

����������� � ������� � ������� � ��� � �2" � ���� " � ��� � ���
� ����� � � � � � " � �����")� � � ��� � � � � ��� � .
(Cited on pp. 1, 12, 14, 18, 20, 21, 25, 37, 43, 78, 159, 176, 192, 193, and 200).

Fritz Henglein, Henning Makholm, and Henning Niss [2005?] Effecttypes and
region-based memory management. In Benjamin C. Pierce (ed.), Advanced
Topics in Types and Programming Languages. MIT Press. To appear. (Cited on

pp. 1 and 29).

Michael Hind [2001]. Pointer analysis: Haven’t we solved this problem yet? In
Program Analysis for Software Tools and Engineering (ACM SIGPLAN-SIGSOFT
Workshop, Snowbird, UT, USA), pages 54–61. ACM Press, New York, NY, USA,
ISBN 1-58113-413-4. (Cited on p. 146).

Richard Kelsey, William Clinger, and Jonathan Rees (eds) [1998]. Revised5

report on the algorithmic language Scheme. Higher-Order and Symbolic Com-
putation, 11(1).

����������� � ������� � � � � � " ����� � ��� �
���� � " ��� � � ���� 	� � !� � � ����� �� � � .
(Cited on p. 18).

Henning Makholm and Kostis Sagonas [2002]. On enabling the WAM with
region support. In Peter J. Stuckey (ed.), Logic Programming (18th Interna-
tional Conference, ICLP ’02, Copenhagen, Denmark), volume 2401 of Lecture

REFERENCES 197

Notes in Computer Science, pages 163–178. Springer-Verlag, Heidelberg, Ger-
many, ISBN 3-540-43930-7. (Cited on pp. 1, 18, 20, 21, 153, 155, 156, 160, 176,

and 192).

Henning Makholm [1999]. Specializing C: an introduction to the principles
behind C-Mix. Student project 99-1-2, Department of Computer Science,
University of Copenhagen. To appear as a DIKU Technical Report in 2000.����������� �������� � ������� � ��� ���2" � ���� " ��� " � � � � � � �� � � � ��� � . (Cited on pp. 178 and 180).

Henning Makholm [2000a]. On Jones-optimal specialization for strongly typed
languages. In Walid Taha (ed.), Semantics, Applications and Implementation
of Program Generation (International Workshop, SAIG ’00, Montréal, Canada),
volume 1924 of Lecture Notes in Computer Science, pages 129–148. Springer-
Verlag, Heidelberg, Germany, ISBN 3-540-41054-6. (Cited on p. 1).

Henning Makholm [2000b]. Region-based memory management in Prolog.
Master’s thesis, Department of Computer Science, University of Copenhagen.� 	������ ���
	���� � ������� � �
� � ������� � �!� " 	� � � � � �
� � ���+� ���&����� � � � � � ��� � . (Cited on pp. 16, 17,

18, 31, 152, 153, 178, and 187).

Henning Makholm [2000c]. A region-based memory manager for Prolog.
In Antony Hosking (ed.), International Symposium on Memory Management
(ISMM ’00, Minneapolis, MN, USA), special issue of ACM SIGPLAN Notices,
36(3):25–34. ACM Press. (Cited on pp. 1, 17, and 153).

Elliott Mendelson [1997]. Introduction to Mathematical Logic. Chapman & Hall,
London, UK, fourth edition, ISBN 0-412-80830-7. (Cited on p. 178).

Robin Milner, Mads Tofte, Robert W. Harper, and David MacQueen [1997]. The
Definition of Standard ML (Revised). The MIT Press, Cambridge, MA, USA,
ISBN 0-262-63181-4. (Cited on pp. 17 and 116).

Robin Milner [1978]. A theory of type polymorphism in programming lan-
guages. Journal of Computer and System Sciences, 17(3):348–375. (Cited on

p. 14).

Greg Morrisett, David Walker, Karl Crary, and Neal Glew [1998]. From system
F to typed assembly language. In Principles of Programming Languages (25th
ACM SIGPLAN-SIGACT Symposium, POPL ’98, San Diego, CA, USA), pages 85–
97. ACM Press, New York, NY, USA, ISBN 0-89791-979-3.����������� �������� � � � � �� ����� ��� � � ��� �
� �����
� � ���&� ��� ���
�
����� � � 	�� . (Cited on p. 60).

Greg Morrisett, David Walker, Karl Crary, and Neal Glew [1999]. From system
F to typed assembly language. ACM Transactions on Programming Languages
and Systems, 21(3):528–569.����������� �������� � � � � �� ����� ��� � � ��� �
� �����
� � ���&� ��� ������
��� �� � � � 	�� . (Cited on p. 60).

Christian Mossin [1997]. Flow Analysis of Typed Higher-Order Programs. PhD
thesis, Department of Computer Science, University of Copenhagen.� 	������ ���
	���� � ������� � �
� � ������� � �!� " 	� � � � � �
� � ���+� ���&��������� � � � ��� � . (Cited on p. 101).

Henning Niss [2002]. Regions are Imperative: Unscoped Regions and Control-
Flow Sensitive Memory Management. PhD thesis, Department of Computer
Science, University of Copenhagen.

REFERENCES 198

����������� � ������� � ������� � �
� � � � � � ��� � ��� ��� � � � ��� ��� � � � � � �" � ��� � � � � � � ��� � . (Cited on pp.

38, 43, 69, 72, 78, 82, 122, and 135).

PLDI [2002]. Programming Language Design and Implementation (ACM SIGPLAN
Conference, PLDI ’02, Berlin, Germany), special issue of ACM SIGPLAN Notices,
37(5). ACM Press, New York, NY, USA, ISBN 1-58113-463-0. (Cited on p. 196).

John C. Reynolds [2002]. Separation Logic: A Logic for Shared Mutable Data
Structures. In Logic in Computer Science (17th Annual IEEE Symposium, LICS
’02, Copenhagen, Denmark), pages 55–74. IEEE Computer Society, Los Alami-
tos, CA, USA, ISBN 0-7695-1483-9. (Cited on pp. 55 and 144).

Walid Taha, Henning Makholm, and John Hughes [2001]. Tag elimination and
jones-optimality. In Olivier Danvy and Andrzej Filinski (eds), Programs as

Data Objects (Second Symposium, PADO ’01, Århus, Denmark), volume 2053
of LNCS, pages 257–275. Springer-Verlag, Heidelberg, Germany, ISBN 3-540-
42068-1.

����������� ����� � ������ � � � � �� � � � � ��� ���� " ��� ��� � ��� � ��� � � � � �+� ��� ��� � � � � � � �
� � ������ � � � � . (Cited on p. 1).

Mads Tofte and Lars Birkedal [1998]. A region inference algorithm. ACM Trans-
actions on Programming Languages and Systems, 20(4):724–767.����������� � ������� � � � � � ��� � ������� !� � � ��" � � � � � � � � � ���	�&���� � ����
��� �� ��� � � � � ��� � . (Cited on

pp. 14, 22, and 30).

Mads Tofte and Jean-Pierre Talpin [1994]. Implementation of the typed call-
by-value

�
-calculus using a stack of regions. In Principles of Programming

Languages (21st ACM SIGPLAN-SIGACT Symposium, POPL ’94, Portland, OR,
USA), pages 188–201. ACM Press, New York, NY, USA, ISBN 0-89791-636-0.� 	������ � ��	���� � ������� � �
� � ������� � �!� " 	� � � � � ��� � ����� ���+����� ��� � � � � ��� � . (Cited on pp. 13,

14, 26, 27, 29, 75, and 83).

Mads Tofte and Jean-Pierre Talpin [1997]. Region-based memory management.
Information and Computation, 132(2):109–176.����������� �������� � � � � � �
� � ������� !� � ��� " � � � ��� � � ����� � � 	���� "������ � � � � . (Cited on pp. 26, 29,

75, and 83).

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Hjfeld Ole-
sen, Peter Sestoft, and Peter Bertelsen [1997]. Programming with regions
in the ML Kit. Technical Report DIKU-TR-97/12, Department of Computer
Science, University of Copenhagen.

����������� � ������� � ������� � ��� � �����!�� !� ���&� ��� � � � �
��
��� � � �
� � � � � � ��� � � � ����� ������� ����� � ��� � � � � � ��� � . (Cited on p. 31).

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld
Olesen, Peter Sestoft, and Peter Bertelsen [1998]. Programming with regions
in the ML Kit (for version 3). Technical Report DIKU-TR-98/25, Department
of Computer Science, University of Copenhagen.

��������� ��� ������� � � ����� � ��� �
�����!�� !� � ��� " � � � ��� � � ����� " 	� � � � � � � ��� � . (Cited on pp. 31 and 34).

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld
Olesen, and Peter Sestoft [2002]. Programming with regions in the ML Kit
(for version 4). Technical report, IT University of Copenhagen.����������� �������� � � � � � ��� � ������� !� � ��� " � � � ��� � � � ����" � � � �&��� ��� � � � � � 	�� . (Cited on p. 31).

REFERENCES 199

David Walker and Kevin Watkins [2001]. On regions and linear types. In 6th In-
ternational Conference on Functional Programming (ICFP ’01, Florence, Italy),
pages 181–192. ACM Press, New York, NY, USA, ISBN 1-58113-415-0.����������� �������� � � � � � � � � � � �� � � � ��� ��� � �����
� � ���+� ��� � � � � 	�� . (Cited on pp. 15 and 28).

David Walker, Karl Crary, and Greg Morrisett [2000]. Typed memory manage-
ment via static capabilities. ACM Transactions on Programming Languages and
Systems, 22(4):701–771.����������� � ������� � � � � � � � � � � �� � � � ��� � � � ��� � � � � � � � � � �&� �
��
� � �� � � � 	�� . (Cited on pp.

15, 60, and 82).

Daniel C. Wang [2001]. Managing Memory with Types. PhD thesis, Princeton
University. TR-640-01.����������� ��� � � � � � ��� � � � � � � � � � �� � � � ��� � � �

� 	� � � ������� ��� �����+����������� � � . (Cited on pp. 78

and 82).

David H. D. Warren [1983]. An abstract Prolog instruction set. Technical Report
309, SRI International, Menlo Park, U.S.A. (Cited on p. 156).

Dansk sammenfatning

Regionsbaseret lagerstyring er en strategi til automatisk styring af lagergenbrug
i computerprogrammer, hvor den velkendte spildopsamling, som træffer beslut-
ninger på kørselstidspunktet efter en analyse af lagerets indhold, erstattes af et
specielt programmodul, en agent, som er konstrueret af oversætteren til at styre
lager netop for det kørende program.

Processen at konstruere en agent automatisk på grundlag af det program den
skal styre lager for, kaldes regionsinferens. Hidtil har resultater om metoder til
regionsinferens kun foreligget for programmeringssprog i ML-familien, og disse
metoder er ikke simple at overføre til andre familier af programmeringssprog.

I denne afhandling fremlægger jeg et generelt begrebsapparat for og en gene-
rel teori om regionsinferens som kan anvendes til mange forskellige program-
meringssprog, og som kan hjælpe med at overføre teknikker fra ét programme-
ringssprog (eller én realisering af et programmeringssprog) til et andet.

Teorien er bygget op om et abstrakt rutediagramsprog, et unverselt værtssprog,
som er konstueret til at have tilstrækkelig udtrykskraft til at repræsentere lager-
anvendelsesmønstre på lavt niveau for et bredt sprektrum af forskellige pro-
grammeringssprog. Jeg har udviklet et generelt, indlejret agentprogrammer-
ingssprog for det universelle værtssprog baseret på “HMN-modellen” som jeg
har udviklet sammen med Henning Niss og Fritz Henglein. Jeg har udviklet et
regionstypesystem som gør det muligt at bevise at agenter i agentprogrammer-
ingssproget er sikre. Endelig har jeg givet algoritmer til at konsturere en agent
mekanisk udfra et program i et programmeringssprog der kan repræsenteres på
passende vis i det universelle værtssprog.

Som løbende eksempel har jeg vist hvordan REGFUN-kalkulen fra Henglein
et al. [2001] og dens tilhørende regionstypesystem kan udledes systematisk fra
den generelle teori.

200

