
 

 

Technical Report no. 2004/02 
ISSN: 0107-8283 

 
 

My SQL in a Main Memory Database Context 
 

Michael Lodberg Samuel  and Anders Uhl Pedersen
 
 

DIKU 
University of Copenhagen • Universitetsparken 1 

DK-2100 Copenhagen • Denmark 
 



 1 

MySQL in a Main Memory Database Context 
 

Michael Lodberg Samuel 
Anders Uhl Pedersen 

 
Department of Computer Science 

University of Copenhagen 
 
 

Abstract 
In main memory database systems (MMDB) the pri-
mary copy of data is stored in memory. This paper 
explores how main memory residency of data impacts 
data management, and examines MySQL 4.1 in this 
context. Suggestions on how to improve the main 
memory parts of MySQL are presented. 
 
1 Introduction 
 
As the cost of RAM decreases, it becomes more in-
teresting to use databases in which all or a major 
portion of the database is placed in memory – Main 
Memory Database Systems. Due to the different ac-
cess properties of RAM compared to harddisks, 
MMDBs have traditionally used changed or new 
storage- and access-strategies compared to disk-based 
database systems, but as cache-size and -levels in-
creases, RAM’s access properties change as well.  
 
In this paper, we do a general discussion of some of 
the ways main memory database systems differ from 
disk resident database systems.  
 
We then move on to do a more specific examination 
of MySQL 4.1 in this context, and provide sugges-
tions on how to improve the main memory parts of 
MySQL in terms of performance and functionality. 
  
2 Main memory database systems 
 
In the following subsections we discuss how memory 
residency of data impacts database management in 
different functional areas. 
 
2.1 Data Representation 
When moving from disk resident databases (DRDB) 
to main memory databases (MMDB) priorities in how 
to store data shift. This is due to significant changes 
in price of storage and access speed. In DRDB it is 
widely accepted that using a little more space in order 
to gain efficiency in I/O is a good trade-off. 
 
In MMDB, the size of data becomes more important 
as RAM tend to be more expensive and less volumi-
nous than hard disk space. At the time of writing, an 

off-the-shelf 250GB hard drive can be purchased for 
app. €300 while 1GB of RAM will cost app. €200. 
 
For DRDB-systems it has always been important to 
identify objects that are frequently accessed at the 
same time1 and group these objects together on disk 
and in the buffer-manager in order to keep the rela-
tively expensive I/O-waits to a minimum. Especially 
in early articles on the subject of MMDB [1,2] the 
removal of I/O-waits has diminished this concern, 
since RAM2 by definition is more suited for random 
access patterns than disks are.  
 
Also, with the increased speed of access through 
RAM compared to disk, focus has been on data-
management algorithms, trying to decrease the 
amount of computations needed – even at the cost of 
wasted space in some cases - when accessing data, as 
this was perceived as a potential bottleneck.  
 
In Starburst [1], the MM-component has been built 
on top of the existing DRDB-system. This means that 
the record format remains the same in both versions, 
as this seemed more efficient than doing conversions 
on-the-fly between the two formats. The DRDB-
record structure that has self-relative offsets as point-
ers to the various fields in the record, was enhanced 
with a separate block (that can be placed anywhere in 
memory) containing pointers to the memory ad-
dresses of each field in the record. Apart from by-
passing the buffer manager, the need to calculate 
actual addresses from the offsets is thereby elimi-
nated. 
 
Dali3 [3,4] supports different level APIs and uses a 
heap file as the abstraction on the higher levels. On 
the low level, it gives the user direct access to the 
database files. In this scenario, the user will have 
responsibility for maintaining the correct pointers and 
moving data around if need be. The heap file only 
supports fixed-length items, so moving records 
shouldn’t be an issue. 

                                                 
1 One example could be fields in the same record. 
2 Random Access Memory 
3 Now called DataBlitz 



 2 

In Starburst [1], the concept of tombstones is intro-
duced when records grow. Tombstones are basically 
a way of being able to find a record that has been 
moved from its original location without looping 
through all MM-record structures to update pointers 
to it, by placing a pointer to a new address in the re-
cord’s previous location. 
 
The problem with this – and with the general celebra-
tion of the direct address-pointers as a fabulous im-
provement for data representation – is that memory 
caching has become increasingly important recently, 
meaning that random access patterns are not as effec-
tive for RAM as they have been. While the mechani-
cal factors for disks (i.e. search time latency due to 
the relocation of the heads) are not an issue for RAM, 
the segmentation of RAM into main memory and 
several levels of faster (and more expensive) cache-
RAM once again makes locality of data an issue.  
 
This reintroduces some of the same problems that 
were present for DRDB-systems – and especially 
concepts such as tombstones and some of the index-
ing methods give severe performance problems with 
modern architectures, since they enforce a jumping 
between different areas in memory, which effectively 
reduce cache utilization [5]. 
 
2.2 Access Methods 
The most notable change in access methods between 
MMDBs and DRDBs in general, is the lack of the 
buffer manager for MMDBs.  
 
In DRDBs a buffer manager is present to provide 
efficient communication between memory and disk, 
keeping the hot data ready in memory while swap-
ping the cold data out to disk. As all access in 
MMDBs is in memory, a buffer manager is not 
needed. And while the buffer managers are optimized 
with various algorithms for finding and keeping the 
right data ready at the right time, they themselves add 
computation time to accessing data – and the recalcu-
lation and mapping of disk-addresses to memory 
addresses increases usage of precious clock cycles. 
 
When the buffer manager (and disk manager) is by-
passed, the need for copying data from storage to 
buffer and mapping addresses accordingly is also 
eliminated. 
 
This also affects indexes. Traditionally, they contain 
(some of) the data that they are indexing – in the case 
that these data will be sufficient, expensive lookups 
can be avoided. This approach has been considered 

irrelevant in MMDBs since pointer lookups are so 
fast [2] – and when only storing pointers in the in-
dexes, the nodes will (usually) be able to hold more 
elements, making the tree smaller and decreasing the 
time it will take to traverse it. This has been an obvi-
ous benefit, since a lot of effort has gone into maxi-
mising node-capacity in DRDB-indexes. 
 
However, with the increased importance of the cache, 
especially the indirect indexes see significant de-
creases in the competitive performance – simply be-
cause cache misses become predominant and end up 
taking more time than the actual looking up of data 
[5]. 
 
T-trees are basically balanced binary trees, but with 
many key-elements in each node. They have a fairly 
good space overhead, although they also store a re-
cord pointer for each key in the node, but they have a 
poor cache performance, especially with indirect 
pointers [5,6]. 
 
B+ trees only store keys and pointers to child nodes 
(how many of these that will exist is a matter of indi-
vidual design) in the internal nodes. Only leaf nodes 
have record pointers. This means that it will always 
be necessary to traverse to the bottom of the tree in 
order to look up a value. The leaves are joined to-
gether in a linked list, making range scans very effi-
cient. A cache sensitive variant (CSB+-tree) has been 
proposed [7]. 
 
Hashing can be implemented in a number of varia-
tions with many different strategies. Generally, hash-
ing is fast for point searches, but lookups have to be 
done over and over if a range scan needs to be carried 
out, as two elements that would be adjacent in a tree 
will most likely not be placed in the same bucket.  
 
Various optimizations concerning cache-sizes or their 
multiples can be considered for all of the index meth-
ods [6,7,8]. 
 
2.3 Query processing 
When doing query processing in a MMDB rather 
than a DRDB, CPU computation time and (increas-
ingly) cache utilization has replaced number of disk 
I/O operations as the dominant cost. This affects 
query processing in a number of ways. 
 
It is e.g. more efficient to replace foreign key values 
(e.g. departmentID in an Employee relation) with 
foreign key pointers. This way a join consists of 
pointer comparisons instead of value comparisons. 



 3 

The potential cost savings can be significant if the 
keys consist of string values. 
 
Similarly, a materialization of intermediate results 
only needs to contain pointers to the actual values, 
i.e. no data need to be copied to the intermediate ta-
ble. 
 
In MMDB join methods that take advantage of faster 
sequential access4 loose some appeal not least be-
cause of the overhead in terms of CPU-processing 
and space usage imposed by sorting relations before 
joining. While older experimental results have con-
firmed that T-tree based merge joins usually outper-
form sort-merge joins [9], more recent results indi-
cate that sort-merge join still has a place in main 
memory if the sorting method is cache conscious 
[10]. 
 
2.4 Concurrency control 
In the absence of disk accesses and possibly due to 
pre-committing, transaction processing in main 
memory is much faster, which implies that locks are 
held for a smaller amount of time. This suggests that 
coarse granularity locking such as table level locking 
is feasible, thereby avoiding much of the locking 
management overhead in current DRDBs. However, 
this reduces protection from long-running transac-
tions causing delays or from starvation and a more 
flexible locking protocol should be considered. For 
instance a locking protocol that automatically 
switches from coarse to fine granularity whenever 
major lock contention appears or a long-running 
transaction participates in lock conflicts. However, to 
accomplish this de-escalation of locks it is necessary 
that the lock manager keeps track, not only of current 
coarse locks, but also of any potential fine granularity 
locks that could be required.  
In DRDBs a hash-table is the typical lock manage-
ment data structure. In a highly concurrent environ-
ment that supports fine granularity locks such a hash-
table could become a serious bottleneck. In [1] the 
problem is circumvented by attaching lock informa-
tion to data itself. Since de-escalation of locks is sup-
ported, the table lock managers also keep track of all 
tuple lock requests so far. De-escalation of locks con-
sists of deactivating the table lock manager and acti-
vating all the local tuple lock managers by applying 
the tuple lock information in the table lock manager 
to the tuple lock managers. 
 

                                                 
4 I.e. sort-merge 

2.5 Commit processing 
When a transaction commits its activity log records 
must be flushed to stable storage in order to ensure 
transaction durability. If non-volatile memory is not 
present then the log data must be flushed to disk, 
which makes disk I/O a likely bottleneck in transac-
tion processing. 
 
One way of reducing this I/O bottleneck is to take 
advantage of the fact that only the redo log records 
have to be stored on stable storage5. Some recovery 
algorithms [11,12] exploit this by storing only redo 
log records in the system log while the undo log re-
cords are stored in a "local" log, i.e. in transaction 
buffer space. Only if the transaction fails, the undo 
log records must be written to the system log. This 
reduces the amount of log data that must be flushed 
during commit processing. 
 
The idea of a local transaction buffer can be further 
utilized.  Some recovery algorithms [12] use a shad-
owing technique instead of in-place updating. This 
means that all the updates are performed on local 
copies of data. When the transaction commits the 
local updates are transferred to the primary memory 
database. If a transaction fails then the local updates 
are just discarded and no undo log records are re-
quired. 
 
Using group commit can further reduce the disk I/O 
bottleneck. That is, to delay the flushing of the log 
records for a committing transaction until more trans-
actions are ready to commit. This increases the 
amount of log data to be flushed at once and reduces 
the number of I/O operations, but increases the aver-
age commit processing time slightly [12]. 
 
Pre-committing does not reduce the I/O bottleneck 
but it can increase concurrency. Pre-commit is the 
idea that a transaction is allowed to release its locks 
as soon as its log records have made it to the log in 
memory. This means that a commit-ready transaction 
does not delay the execution of other transactions 
while its log records are flushed to disk [11,13]. 
 
 If pre-commiting is not enabled when using group 
commit, group commit will also have a detrimental 
effect on concurrency. 
 
If stable memory is present then the I/O bottleneck is 
less critical because log flushing can be decoupled 
from commit processing. When the redo log records 
                                                 
5 Undo log records might be required if checkpointing 



 4 

have made it to stable memory the transaction has 
committed, and the log records can subsequently be 
flushed to disk in a more efficient manner [14,15]. 
 
2.6 Checkpointing 
Fast recovery highly depends on the existence of a 
nearly up-to-date checkpoint. On the other hand 
checkpointing can significantly impact database 
processing – especially in a large memory context. A 
strategy that halts transaction executing while check-
pointing is running is generally unwanted. In 
MMDBs that will often be tuned for real-time proc-
essing, it is unacceptable.  This favours fuzzy check-
pointing methods [13,16] and strategies that only 
flush dirty pages [15]. 
 
If log data for active transactions are not stored in 
stable memory a fuzzy checkpoint may violate the 
WAL protocol because the undo log record corre-
sponding to an update in a checkpointed page, may 
not yet have been flushed to disk. One way of dealing 
with this problem is to keep the previous checkpoint 
image of the database on disk while checkpointing 
[13]. 
 
To save disk space a segmented fuzzy checkpointing 
strategy has been proposed [16] which checkpoints 
only a segment of the database at a time in a round-
robin fashion. The segment boundaries are automati-
cally changed based on the distribution of update-
operations. A smaller amount of the log must be read 
during recovery with this approach.  
 
2.7 Recovery 
In case of system or media failure the database is lost 
and its most recent consistent state must be con-
structed in memory using the copy of data and log on 
stable storage. 
 
Simple recovery methods do not allow transaction 
execution to resume until the entire database is pre-
sent in memory in a consistent state [12]. Obviously, 
this is undesirable and a concurrent reloading strategy 
is more convenient because transaction processing 
can resume even before the database has been re-
loaded to a consistent state [4,14,15]. 
 
Some concurrent reloading strategies allow transac-
tion processing to be performed as soon as the system 
catalogues and their indices have been reloaded [17].  
 
If a transaction requests data not yet in memory the 
transaction manager will forward the request to the 

recovery manager and the data must be copied to 
memory. 
 
One way of doing this is to only copy the requested 
data back into memory if the data resides in a disk 
page containing merely committed data [15]. If it is 
not the case the missing page updates are executed 
and the page is loaded into memory. For this strategy 
to be efficient it requires grouping log records on a 
page basis during normal processing. 
 
Another approach is to copy the requested page into 
memory even if it contains uncommitted data. How-
ever, before transaction processing can resume the 
logged after images - of pages updated since the most 
recent checkpoint - are loaded into memory [18]. 
When a new transaction requests data on some page it 
checks if an after image version exists. If so the after 
image version takes precedence over the just loaded 
version from disk. 
 
3 MySQL 
 
MySQL has recently acquired Alzato [19], a com-
pany developing a clustered main memory database 
management system (MMDB). It is designed for 
applications that require maximum uptime and real-
time performance, such as telecom and network ap-
plications and heavy-load websites. In this clustered 
MMDB a table is divided into fragments distributed 
among the cluster nodes. The nodes are combined 
into node groups and each fragment has all its repli-
cas in one node group. Replicas are needed since data 
is stored in main memory at each node. A transaction 
has committed when all replica nodes have (synchro-
nously) updated the log and the memory copy of data. 
Only subsequently are the committed updates propa-
gated to disk. This means that even committed data 
might be lost if all members of a node group are lost. 
 
The rest of the article will be devoted to a discussion 
of the heap tables in MySQL. 
 
MySQL internally uses heap tables as temporary 
tables located in memory. If the temporary table be-
comes too big it is automatically converted to a disk 
table. Heap tables are also externally available, ena-
bling the user to create memory resident tables. How-
ever, these are not automatically moved to disk in 
case the table no longer fits into the available RAM. 
Since recovery routines are not implemented heap 
tables are currently only recommendable for holding 
temporary data or copies of data already stored on 
disk. The heap table could e.g. provide a nearly up-



 5 

to-date copy of a disk table (which can then record 
the changes), making data available for fast access. 
The heap table could be regenerated from the disk 
table e.g. once a day. 
 
3.1 Data representation 
A record in the heap table consists of a fixed-size key 
part followed by the fixed-size fields of the record. 
Since the record length is fixed an update cannot 
cause space overflow, which means that a record 
never needs reallocation. This eliminates the need of 
e.g. concepts like the tombstones that are used in 
Starburst to deal with reallocation. Also, the space 
occupied by a record is not de-allocated on record 
deletion. The free record slot is just appended to a list 
of free slots and is reused in case of subsequent in-
serts. 
 
The records can be accessed through a tree structure 
containing records at the leaf level. Each inner node 
(also called a block) contains up to 128 pointers so 
the node size is optimised for today’s typical cache 
line size.  
 
On insertion of a record a position number is attached 
to the new record as if all the record pointers were 
stored in a simple array. This “array” position number 
is translated to the matching position in a leaf node in 
the tree structure by traversing down the tree. The 
insertion may require allocation of a new leaf node 
and possibly up to four inner nodes6, depending on 
the current height of the tree. With a leaf node size of 
approximately 65KB the number of records stored in 
a leaf depends on the record size. 
 
Unfortunately the leaf nodes are not linked, and due 
to implementation decisions it is not possible to move 
freely around in the tree which means that a table 
scan or a range scan requires traversing the tree from 
root to leaf every time the next leaf node must be 
read. Also, since the access methods currently im-
plemented are severely limited, table scans are not 
well supported in the current implementation. 
 
3.2 Access methods 
At present the only externally available index is a 
hash index. As the index is indirect, a bucket element 
consists of a pointer to the key part of the record and 
a pointer to the next element in the same bucket. 
 
The hash table is based on the same tree structure 
mentioned above and it is incremental in nature. On 
                                                 
6 The maximum height of the tree is 5 

insertion of an element the record key is mapped to a 
hash key, which in turn is mapped to a bucket number 
x (0< x <= number of inserted records+1). This 
bucket number is equivalent to the “array” position 
number used for records above and the bucket num-
ber is in turn translated to an actual leaf position in 
the tree structure.  
 
If no bucket element is stored at this leaf position 
then the element is just inserted. However, if an exist-
ing element is already stored at this location it is 
moved to a new free leaf position (if necessary a new 
leaf node is allocated). At this time the element to be 
inserted can be stored at the original, now unoccu-
pied, position. If the hash key of the moved element 
mapped to the same bucket number as the hash key of 
the inserted element then it is part of the same bucket 
so the next-element-in-bucket pointer of the inserted 
element must point to the moved element. 
 
As described below, the hash table is special in that 
elements can be placed in different buckets depend-
ing on the size of the allocated space. Among other 
things, this means that an item in a bucket might need 
to be replaced after the space grows or shrinks. 
 
The algorithm above works because special care is 
taken when mapping a hash key to a bucket number. 
If the number of inserted records consists of n bits 
then the bucket number is the n least significant bits 
of the hash key. However, the most significant bit of 
this n-bit bucket number is zeroed in case the bucket 
number is larger than the number of inserted records. 
If the number of inserted records at some point 
changes to an n+1 bit value then the bucket number is 
equally computed using the n+1 least significant bits 
of the hash key. This situation needs special care as 
some of the already inserted elements in the “lower 
half” (n bit bucket numbers) now map to a new “up-
per half” (n+1 bit) bucket number if the n+1 bit of the 
hash key is 1. Each time we insert an element we 
check if some elements (stored in the next unchecked 
lower half bucket) must be moved to the correspond-
ing upper half bucket. Notice that moving elements to 
the upper half bucket only requires physically moving 
at most one element to the new leaf position. Apart 
from this only the next-element-in-bucket pointers of 
the elements must be updated. 
  
Because of the incremental insertion algorithm the 
lookup procedure has to search both in the lower half 
bucket and in the upper half bucket of the hash table 
because some elements might not yet have been 
moved to the upper half at the time of lookup. 



 6 

At deletion of an element the number of inserted re-
cords is decremented. As a result the maximal bucket 
number is decremented as well. Consequently the 
element that is stored in the leaf position correspond-
ing to the old maximal bucket number must be moved 
to another leaf position. The lower half bucket num-
ber to which its hash key now maps determines to 
which leaf position it must be moved. Finally the 
element at this position is moved to the (empty) leaf 
position of the originally deleted element. 
When the number of inserted records after a series of 
deletions is reduced to an n-1 value all elements are 
consequently stored in leaf positions corresponding to 
lower half bucket numbers and the bucket numbers 
can accordingly be computed using only the n-1 bits 
of the hash key. The upper half space could poten-
tially be de-allocated but this is not done. 
 
If the key value of a record is updated it is obviously 
necessary to reinsert the element containing the re-
cord key pointer in each index as it probably maps to 
a different bucket. 
 
3.3 Query processing 
Heap tables are used internally as temporary tables to 
store intermediate results when processing complex 
queries. The query processor treats heap tables almost 
like disk based tables in the sense that only join order 
and access method are affected. Since hashing is the 
only available index method, the query optimizer has 
no range estimates, i.e. information on how many 
rows there are between two values and this might 
affect the decision on which index to use. Further-
more the indexes do not support ORDER BY. 
 
3.4 Concurrency control, commit processing, 

checkpointing and recovery 
Table level locking is the only option for heap tables. 
This is sufficient, as commit processing and long-
running transactions are not a concern since transac-
tion processing is not supported. Heap tables are 
purely memory resident, which means that recovery 
and checkpointing are not provided. 
 
4 Recommendations 
 
Currently MySQL is not competitive when compared 
to real main memory database systems since heap 
table recovery is not implemented. Nevertheless the 
functionality and performance of the heap tables can 
be improved in a number of ways, some of which will 
be discussed below.  
 

The hash index is designed in a way that allows the 
number of buckets to be equal to the number of in-
serted elements. To minimize the number of cache 
misses pr. lookup the number of elements in each 
bucket must be minimized, since the elements in a 
bucket are not grouped in memory. An ideal hash 
function would consequently lead to only 1-element 
buckets, which is why the hash function is crucial for 
the performance of the hash index. It might be bene-
ficial to reconsider the choice of hash function 
through a performance study. 
 
Finding the next element in a bucket will likely result 
in a cache miss as mentioned above. As the hash in-
dex is indirect the actual key is not stored in the 
bucket element, only a pointer to the location of the 
key in the record is stored. Fetching the key thus re-
sults in an extra cache miss. A direct-key approach 
would most likely shorten the lookup time especially 
because the fixed key size simplifies such an ap-
proach. One might justly argue that storing the key 
values in the index is more space consuming and that 
for large key sizes it might be acceptable to use an 
indirect index. 
 
Currently only a fixed-length record format is sup-
ported which comprises fixed-size keys. Obviously 
the utilization of the heap tables is enhanced if vari-
able-length fields are supported. While variable-
length records introduce some allocation issues 
(overflow, fragmentation etc.), variable-length keys 
make direct-key indexing more complex. To support 
variable-length keys and utilize the current hash in-
dex algorithm a partial-key approach seems to be the 
most practical option. Partial-key indexing might also 
be worthwhile for long keys in order to limit space 
consumption [5]. 
 
While the benefit of de-allocating free space in the 
hash index is limited, de-allocation of unused record 
space due to record deletions is worth consideration. 
Reaching a certain watermark could e.g. trigger a de-
allocation background thread. As memory for record 
storage is allocated in chunks of 65KB an undemand-
ing approach would be to de-allocate only empty 
chunks. This way de-fragmentation stays out of the 
picture. However, de-fragmentation might improve 
cache utilization so this is a trade-off. 
 
If the query optimizer prefers a table scan the record 
tree structure comes into play. As mentioned a table 
scan requires traversing the tree from root to leaf 
every time the next leaf node must be read, as the leaf 



 7 

nodes are not linked. One improvement could be to 
join together the leaves in a linked list. 
 
The traversal of the tree can be improved as well. 
With a leaf node of approximately 65KB the number 
of records stored in a leaf node depends on the record 
size. As previously mentioned the number of pointers 
stored in inner nodes is 128, i.e. a power of 2. If the 
number of records in a leaf node is adjusted to be a 
power of 2 as well then the tree can be traversed us-
ing bit shifting, thereby eliminating the expensive 
modulo and division computations. 
 
In general the heap table implementation relies heav-
ily on pointer arithmetic even in cases where simple 
array indexing would suffice. Rewriting pointer ref-
erences to direct references might lead to a general 
speed up because it assists modern compilers in iden-
tifying what to prefetch. It would also make the sys-
tem easier to maintain by improving readability of the 
code. 
 
References 

1. Lehman et al.: „Evaluation of Starburst’s 
Memory Resident Storage”, IEEE Transac-
tions on Knowledge and Data Engineering, 
Vol. 4, No. 6, December 1992. 

 
2. Garcia-Molina & Salem: “Main Memory Da-

tabase Systems: An Overview”, IEEE Trans-
actions on Knowledge and Data Engineering, 
Vol. 4, No. 6, December 1992. 

 
3. P. Bohannon, D. Lieuwen, R. Rastogi, A. 

Silberschatz, S. Seshadri and S. Sudarshan, 
"The Architecture of the Dali Main-Memory 
Storage Manager", Multimedia Tools and 
Applications, Vol. 4, No. 2, 1997 

 
4. “DataBlitz Architectural Overview”, 

http://citeseer.nj.nec.com/315749.html 
 

5. P. Bohannon, P. McIlroy and R. Rastogi, 
"Main-Memory Index Structures with Fixed-
Size Partial Keys", ACM SIGMOD Confer-
ence, 2001. 

 
6. J. Rao and K. A. Ross, "Cache Conscious In-

dexing for Decision-Support in Main Mem-
ory", The VLDB Journal, 1999. 

 
7. J. Rao and K. A. Ross, Making B + -Trees 

Cache Conscious in Main Memory", SIG-
MOD Conference, 2000. 

 
8. G. Graefe, R. Bunker, and S. Cooper, "Hash 

joins and hash teams in Microsoft SQL 
server", VLDB, 1998. 

 
9. T. Lehman and M.J. Carey, "Query Process-

ing in Main Memory Database Management 
Systems", Proceedings of the ACM SIGMOD 
International Conference on the Management 
of Data, 1986. 

 
10. C. Nyberg, T. Barclay, Z. Cvetanovic, J. 

Gray and D. Lomet, "AlphaSort: A RISC 
machine sort", In SIGMOD, 1994. 

 
11. H. V. Jagadish, A. Silberschatz and S. Suder-

shan, „Recovering from Main-Memory 
Lapses“, VLDB, 1993. 

 
12. E. Levy and A. Silberschatz, “Log-Driven 

Backups: A recovery Scheme for Large 
Memory Database Systems”, The 5th Jerusa-
lem Conf. on Information Technology (JCIT), 
1990. 

 
13. P. Bohannon, R. Rastogi, A. Silberschatz and 

S. Sudarshan, „Multi-Level Recovery in the 
Dalí Main-Memory Storage Manager”, 1998 

 
14. Y. Wang and V. Kumar, "A Main Memory 

Recovery Algorithm with no Checkpointing 
and its Performance Analysis", Data & 
Knowledge Engineering, submitted for publi-
cation, 1997 

 
15. E. Levy and A. Silberschatz, "Incremental re-

covery in main memory database systems", 
IEEE Transactions on Knowledge and Data 
Engineering, Vol. 4, No. 6, 1992. 

 
16. J. Lin and M. H. Dunham, "Segmented fuzzy 

checkpointing for main memory databases", 
Selected Areas in Cryptography, 1996. 

 
17. T. Lehman and M. J. Carey, "A recovery al-

gorithm for a high performance memory-
resident database system", In 19 ACM SIG-
MOD Conf. on the Management of Data, 
1987. 

 
18. Le Gruenwald and Margaret H. Eich, 

"MMDB reload algorithms", 1991. 
 

19. Alzato, http://www.alzato.com 


