
 

 

Technical Report no. 2004/06 
ISSN: 0107-8283 

CR subject Classification I.3.5 I.3.7 

 
 

Contact Graphs in Multibody 
Dynamics Simulation 

 
Kenny Erleben 

 
 
 

DIKU 
University of Copenhagen • Universitetsparken 1 

DK-2100 Copenhagen • Denmark 
 



Contact Graphs in Multibody Dynamics Simulation

Kenny Erleben

Department of Computer Science

Copenhagen University

Universitetsparken 1

DK-2100 Copenhagen

kenny@diku.dk

Technical Report DIKU-TR-04/06

Abstract

In rigid body simulation contact graphs are used detecting
contact groups. Contact graphs provide an efficient underly-
ing data structure for keeping information about the entire
configuration and in this paper we extend their usage to a
new collision detection phase termed “Spatial-Temporal Co-
herence Analysis”. This paper will review contact graphs
and demonstrate the performance impact in a typical con-
straint based multibody simulator.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based
modeling; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Multibody Dynamics, Contact Graphs, Con-
tact Groups, Contact Analysis, High Level Control

1 Introduction

Historically contact graphs are used for splitting objects into
disjoint groups that can be simulated independently. Con-
tact graphs are frequently mentioned between people work-
ing with rigid body simulation, as can be seen by search-
ing through the archives of comp.graphics.algorithms, but
they are often not formally described in the literature, for
instance [Mirtich 1998] uses the word “contact group” but
nowhere is it explained. Most of the time people just men-
tion the idea of using contact groups to break down contact
force computations into smaller independent problems [An-
itescu et al. 1998; Coutinho 2001]. The benefit of doing
this is so obvious and not many people would spend a lot
of time on explaining it. To our knowledge [Mirtich 2000] is
the first advanced attempt on using contact groups for other
things than contact force computations, and the first use of
the word “graph” appeared in [Hahn 1988], where a con-
tact graph is used to properly back-up penetrating objects
in the simulation, in our opinion this is the first example
of a primitive time-control algorithm using contact graphs.
Recently [Guendelman et al. 2003] developed a shock prop-
agation algorithm for efficient handling of stacked objects,
which uses a contact graph. The contact graph in [Guendel-
man et al. 2003] is constructed in a different manner than
described in this paper.

Today simulators do exploit contact groups for breaking
down the computations into smaller independent problems,
for instance the Open Dynamics Engine (ODE) (v 0.035)
and Vortex (v 2.0.1) from CMLabs compute contact groups,
which they call islands and partitions respectively, however
they do not store an actual graph data structure as the one

we propose in this paper.
Alternatives to contact graphs are not very surprisingly

neither mentioned or talked about, the closest thing to an
alternative appears to be putting the contact-matrix into
block-form as briefly described in [Barzel 1992]. This is again
as far as we know an idea that is not well described in the
computer graphics literature. In comparison with the con-
tact graph approach the “block-form” matrix approach is
limited to contact force and collision impulse computations
and can not be used for anything else in the simulator.

Lastly we feel that contact graphs are a good compan-
ion for our rigid body simulator module design see [Erleben
2001; Erleben and Sporring 2003] and as such they are a
step further in the direction toward a more standardized
and powerful framework.

The contact graph algorithm we present in this paper
is part of the Spatial-Temporal Coherence (STC) analysis
module. The algorithm shows that STC analysis is scat-
tered in between the other phases of the collision detection
engine. We use contact graphs for caching information, such
as contact points. The cached information can be used for
to improve run time performance of a rigid body simulator.
Several speed up methods are presented, these fall into two
categories, the first is real speed-ups due to improvements
of simulation algorithms, the second is due to changes of
the properties of the mechanical system, which alters the
physical system, but still produces plausible results. Our
main focus is computer animation and not accurate physical
simulation.

2 The Contact Graph

A contact graph consists of a set of nodes, where a node
is an entity in the configuration, such as a rigid body or a
fixed body. However a node can also be a virtual entity,
that is something which does not have a physical influence
on other entities in the configuration. For instance trigger
volumes, i.e. volumes placed in the physical world, which
raises events, when other “physical” objects move in and out
of them. Nodes could also be something without a shape,
for instance a timer event. Another example of a shapeless
node could be logical rules, such as grouping of configuration
objects and/or filters.

The node types are easily divided into three categories:
Physical nodes, Container nodes, and Logical nodes. Ta-
ble 1 the node types and their respective categories together
with the symbolic notation we use. The physical nodes are
those nodes representing entities which can physical interact
with each other. Rigid bodies, fixed bodies, scripted bod-
ies (see [Erleben and Henriksen 2002]) and link bodies are



Category Type Symbol
Physical Rigid Bodies (R)

Fixed Bodies (F)
Link Bodies (L)
Scripted Bodies (S)

Container Composite bodies (C)
Multibodies (M)

Logical Logical Rules (A)
Trigger Volumes (V)
Timers (T)

Table 1: Node types.

all physical objects. Rigid bodies can be rigidly attached
to each other to form a composite body, a composite body
is therefore a “container” type. Link bodies and joints can
form a jointed mechanism, which is called a multibody or ar-
ticulated figure, a multibody is therefore also a “container”
type. Logical rules, trigger volumes and timers are all nodes
which do not have a physical meaning, they are used for gen-
erating events, which have logic consequences in the sense
that an end user reacts to them, and constraining physical
interactions to a specified set of objects. We call all such
kind of nodes logical nodes.

When objects interact with each other, contact informa-
tion are usually computed and cached. It is particular easy
to use the edges in the contact graph for storing information
of interactions between objects. Edges are also useful for
keeping structural and proximity information.

All the edge types are listed in Table 2. An edge between

Category Type
Logical Rule vs. Rigid

Rule vs. Fixed
Rule vs. Scripted
Rule vs. Link

Structural Rigid vs. Composite
Link vs. Multi

Geometrically Trigger vs. Rigid
Trigger vs. Fixed
Trigger vs. Scripted
Trigger vs. Link

Physically Rigid vs. Rigid
Rigid vs. Fixed
Rigid vs. Scripted
Rigid vs. Link
Fixed vs. Link
Scripted vs. Link
Link vs. Link

Table 2: Edge types.

a logical rule and a physical object, means that the logical
rule applies to the physical object. This sort of edge is static
in the sense that it is defined by an end user prior to the
simulation.

An edge between a composite body and a rigid body tells
that the rigid body is part of a composite body. This kind of
edge give us structural information about how the composite
body is build, and it is a static edge i.e. defined prior to
simulation by an end user

An edge between a multibody and a link indicates that
the link is part of the multibody. Again the edges are static
giving us structural information about a multibody.

An edge between a physical object and a trigger volume

indicates that the physical object has moved inside the trig-
ger volume. This kind of edges can therefore be used to
generate trigger volume event notifications. This type of
edge is a dynamic edge, meaning that it is inserted and re-
moved dynamically by the collision detection engine during
the simulation.

The last type of edges we can encounter are those which
tells us something about how the objects in the configuration
currently interact with each other. For instance if two rigid
bodies come into contact, then an edge is created between
them. There are some combinations of edges, which do not
make sense such as an edge between two fixed bodies.

In order to access cached information unambiguisly and
fast. Nodes and edges must be found in constant time, and
edges are bidirectional and uniquely determined by the two
nodes they run between. These properties can be obtained
by letting every entity in the configuration have a unique
index, and letting edges refer to these indices, such that the
smallest indexed entity is always known as A and the other
as B.

Figure 1 contains a pseudo-code outline of the contact
graph data structure. All objects should be inherited from

Class Node

int idx

Enum {...} type

List<Edge> edges

Class Edge

int idxA

int idxB

Class ContactGraph

Hashtable<Node> nodes

Hashtable<Edge> edges

Figure 1: Contact graph data structures.

the Node class such that they can be inserted directly into
the contact graph.

It is fairly easy to visualize a contact graph. In Figure 2
you can see a small complex example of a contact graph.

R
3

R
1

R
2

R
4

R
5

F
1

R
8

C
1

S
1

L
1

R
6

L
3

L
2

M
1

V
1

R
7

F
2

T
1

Figure 2: A contact graph example. Symbolic notation is
listed in Table 1.



3 The Contact Graph Algorithm

We will now outline how a contact graph can be used in the
collision detection pipeline. Notice that although we claim
a contact graph to be a higher order contact analysis phase,
it is not a phase that is isolated to a single place in the
pipeline. Instead it is spread out in between all the other
phases, i.e. in between the broad phase, narrow phase and
contact determination modules.

In the following subsections we will walk through what
happens in the collision detection pipeline step by step.

3.1 Edge Insertion and Removal

The first step in our algorithm is to update the edges in the
contact graph, which is done by looking at the results of the
broad phase collision detection algorithm. The results of the
broad phase collision detection algorithm are an unsorted list
of pairs of nodes, where each pair denotes a detected overlap
in the broad phase algorithm. Observe that each pair is
equivalent to a contact graph edge. We can therefore insert
new edges into the contact graph, which we have not seen
before. At the same time we can handle all close proximity
information, that is detection of vanished, persistent, and
new close proximity contacts. This is done by comparing
the state of edges with their old state. The pseudo-code
in Figure 3 outlines the general idea. The notation eold in

O = BroadPhase.getOverlaps()

for all edges e /∈ O do

mark e as vansihed close proximity

if touching(eold) then

mark e as vansihed touching contact

end if

if obselete(e) then

remove e from graph

end if

next e

for all e ∈ O and e ∈ graph do

mark e as persistent close proximity

next e

for all e ∈ O and e /∈ graph do

create edge e in graph

mark e as new close proximity

next e

Figure 3: Edge insertion and removal.

Figure 3 refers to the “state” of the edge in the previous
iteration, it is not a new instance.

The main idea behind removing edges is to avoid the case
of edges accumulating to O(n2) size, so when the nodes be-
tween an edge are far apart, and it is unlikely that they
come close in the near future, then it is “safe” to remove the
corresponding edge. We call this obsolete testing.

In our simulator we apply an heuristic approach to the
obsolete testing, by simply requiring that the orthogonal dis-
tance along the axes between the AABBs of the correspond-
ing nodes, be twice the maximum edge size of the AABBs.
We favor this test, because it is computational inexpensive,
since it only uses a couple of subtractions and comparisons.

3.2 Logical and Coherence Testing

We can perform logical testing and exploit caching, by scan-
ning through all the reported overlaps and remove those

overlaps, we do not have or want to treat any further. In this
phase logical rules are applied. any kind of logical construct
could be used such as: “Ignore all interactions between ob-
jects in group X and/or group Y ”, .

Overlaps with passive objects are also removed, passive
objects do not really exist in the configuration, they are
merely objects kept in memory in case they should be turned
active later on. In this way objects can be preallocated,
and there is no penalty in reallocating objects that dynam-
ically enter and leave the configuration during runtime. We
refer to objects using the passive/active scheme as being
light weighted. The opposite is called heavy weighted and
it means objects are explicitly deallocated and reallocated,
whenever they are added or removed from the configura-
tion. One drawback of light weighted objects is that there is
a penalty in the broad phase collision detection algorithm.
Fortunately broad phase collision detection algorithms of-
ten have linear running time with very low constants, so the
penalty is negligible.

The last screening test is for change in relative placement.
Every edge stores a transform, xform(·), indicating the rel-
ative placement of the end node objects. If the transform
is unchanged then, there is no need to run narrow phase
collision detection nor contact determination, because these
algorithms would return the exact same results as in the
previous iteration. This is illustrated in Figure 4. Notice

N = empty set

for each e ∈ O do

if not rule(e) then

continue

else if A(e) and B(e) are triggers then

continue

else if A(e) or B(e) is passive then

continue

else if not xform(e) is changed then

if touching(e) then

mark e as persistent

end if

if penetration(e) and ShotCircuit then

terminate

end if

continue

end if

add e to N

next e

Figure 4: Logical and Coherence Testing.

that when objects relative placement is unchanged, then it
is tested if objects are in a persistent touching contact.

3.3 Narrow Phase and Short Circuiting

We are now ready for doing narrow phase collision detec-
tion and contact determination on the remaining overlaps.
Output from these sort of algorithms are typical a set of
feature pairs forming principal contacts, PCs and a pene-
tration state. The contact graph edges provide a good place
for storing this kind of information. The output of the nar-
row phase should of course also be cached in the edge, be-
cause most narrow phase collision detection algorithms reuse
their results from the previous iteration to obtain constant
time algorithms. Sometimes the closest principal contact is
needed, for instance when using impulse based simulation
or estimating time of impact. At this stage it is therefore
possible to search the output of the narrow phase for the



the closest principal contact. Next it is tested if any contact
state changes occurred, such as if touching or penetrating
contact vanishes or is persistent, that is if a contact also
were present in the last iteration. If one of the nodes were
a trigger volume, then we do not mark touching contact,
but rather in- and out- events of the trigger volume, the
same applies to the marking that took place earlier on. The
pseudo-code is shown in Figure 5. As can be seen in Fig-

for each e ∈ N do

NarrowPhase.run(e, PCs(e))

if penetration(e) and ShotCircuit then

terminate

end if

if not only proximity info then

ContactDetermination.addSeed(e,PCs(e))

end if

minPC(e) = min {PCs(e)}

if not separation(eold) then

if not separation(e) then

mark e as persistent touching contact

else

mark e as vanishing touching contact

end if

else

if not separation(e) then

mark e as new touching contact

end if

end if

next e

Figure 5: Narrow phase and short circuiting.

ure 5 the output from the narrow phase collision detection,
PCs(e), is often used as a seed for the contact determina-
tion. This is why the method addSeed() is invoked after the
narrow phase collision detection has been run. The meaning
of the surrounding if-statement will be explained in the next
section.

3.4 Contact Determination

Finally we can run the contact determination for all those
edges, where their end node objects are not separated. The
pseudo-code is shown in Figure 6. Observe the out most if-

if not only proximity info then

for each e ∈ N do

if A(e) and B(e) are physical then

if not separated(e) then

ContactDetermination.run(e)

end if

end if

next e

end if

Figure 6: Contact Determination.

statement in the pseudocode. In an impulse based simulator
it is often not necessary to do a full contact determination,
only the closest points are actual needed [Mirtich 1996b], so
an end user might want to turn of contact determination
completely.

In the pseudo-code we have chosen to skip contact deter-
mination on nodes representing things like trigger volumes.

Such entities are merely used for event notification, so there
is no need for contact determination.

3.5 The Contact Groups

Now we have completed exploiting the logical and caching
benefits we can gain from a contact graph. We are now
ready for using the contact graph for its intended purpose:
determining contact groups. The actual contact groups are
found by a traditional connected components search algo-
rithm, restricted to the union of the list N introduced in
Figure 4, and the structural edges. The algorithm works by
first marking all edges that should be traversed as “white”.
Afterwards edges are treated one by one until no more white
edges exist. The pseudo-code is shown in Figure 7 and 8. In

if should compute groups then

for all edges, e ∈ N do

color(e) = white

next e

for all edges, e ∈ N do

if color(e) = white then

let G be an empty group

traverseGroup(e, G)

end if

next e

end if

Figure 7: Connected components search.

Figure 7 we have again placed a surrounding if-statement, in
order to provide the most flexibility for an end user. Fixed

algorithm traverseGroup(e:Edge,G:Group)

color(e) = grey

add e to G

for end nodes, n ∈ e do

if not n is fixed or scripted body then

for all edges, w ∈ n do

if color(w) = white then

traverseGroup(w,G)

end if

next e

end if

next n

color(e) = black

end algorithm

Figure 8: Traverse group

and scripted bodies are rather special, and they behave as
if they had infinite mass, such that they can support any
number of bodies without ever getting affected themselves.
They work like an insulator, which is why we ignore edges
from these nodes, when we search for contact groups.

Let us look at the contact groups of the example from
Figure 2. As can be seen in Figure 9 we have four contact
groups A, B, C, and D.

4 The Event Handling

In the pseudo-code we have outlined so far, we have not ex-
plicitly stated when events get propagated back to an end
user. Instead we have very clearly shown, when and how the
events should be detected. Table 3 summarizes the types of
events, we have talked about. We can traverse the edges of



R
3

R
1

R
2

R
4

R
5

F
1

R
8

C
1

S
1

L
1

R
6

L
3

L
2

M
1

R
7

F
2

A

AA

A

A

A

A

D

B

B

B

B

B
B

B

C

C

C

Figure 9: Example contact groups.

In Trigger Volume
Out Trigger Volume
New Touching Contact
Persistent Touching Contact
Vanishing Touching Contact
New Proximity
Persistent Proximity
Vanishing Proximity
Timer Tick

Table 3: Event types.

the graph, and simply generate the respective event notifi-
cations for all those edges that have been marked with an
event. This is shown in Figure 10. The only problem are

for each edge e ∈ graph do

if marked(e) then

for each mark m ∈ e do

generateEvent(m, e)

marked(eold) = marked(e)

next m

end if

next e

Figure 10: Event handling.

those edges, we removed due to the obsolete testing. How-
ever this can be handled gracefully by only allowing edges to
become obsolete, if they were at least marked as vanishing
close proximities last time the collision detection query was
run.

There is one major subtlety to event handling: Some sim-
ulators are based on backtracking algorithms, also called
retroactive detection, meaning that they keep on running
forward until something goes wrong, and then they back-
track, correct things, and then go forward once again. This
behavior could occur many times during the simulation of a
single frame, and the consequences is that we might detect
events, which are disregarded.

The problem of backtracking can be handled in two ways.
In the first solution, events can be queued during the simu-
lation together with a time stamp indicating the simulation
time, at which they were detected. Upon backtracking one
simply dequeues all events with a time stamp greater than

the time the simulator backtracks to. After having dequeued
the events one would have to reestablish the “marked” state
of the edges at that time, which can be done by scanning
through the queue. In the second solution, events are re-
stricted to only be generated, when it is “safe”, i.e. when-
ever a backtrack cannot occur or on completion of the frame
computation. The eold state should also only be updated at
these places, such that the events that are generated reflect
the changes since the last time events were generated.

The second solution would clearly miss events, which the
first method might catch, and as the time between event
generation gets bigger it will probably miss even more events.
It is not because the events that are returned indicate a
faulty picture of what has occurred, they merely show the
same picture but with less detail. The first solution on the
other hand is capable of catching more details at the cost of
dynamic memory allocation, something we really would like
to avoid.

We favor the second solution, because event notification
are most likely to be used in a gaming context, and in such
a context a backtracking algorithm would not be favorable.
In predicting motion or validating offline simulation event
notifications might not even be used, so the less details might
not be an issue in such contexts.

As a final remark we should note that overshooting and
missing contact transitions will occur with both solutions,
due to the fact that the collision detection is only invoked at
discrete times during a simulation. From this viewpoint the
second solution can be made just as detailed as one wants,
by lowering the time-step of the simulator at an added per-
formance degradation.

5 The Spatial-Temporal Coherence Analy-

sis Module

Having outlined how the contact graph should be used in the
collision detection pipeline, we can now sketch how a STC
analysis module works together with the three other mod-
ules in a collision detection engine, that is the broad phase
collision detection module, the narrow phase collision detec-
tion module, and the contact determination module. Fig-
ure 11 illustrates the interaction, from which we see that the
STC analysis occurs in three phases, post-broad-phase, post-
narrow-phase, and post-contact-determination. We have not
used a pre-broad-phase in the STC analysis, but if any ini-
tialization is supposed to take place, then a pre-broad-phase
analysis would be a good place for doing this.

We have treated the narrow phase collision detection in
an one-by-one approach. Other narrow phase collision de-
tection algorithms handles all pairs of overlap at the same
time see e.g. [Hubbard 1996; O’Sullivan and Dingliana 1999].
However it is pretty straightforward to modify the pseudo-
code we have outlined to accommodate this behavior, simply
rewrite the for-loop in Figure 5 such that invocation of the
narrow phase collision detection algorithm occurs before the
for-loop and works simultaneously on all overlaps.

6 Using Contact Groups

In our opinion there are basically three different ways to
exploit the contact groups in rigid body simulation. We will
briefly talk about them in the following.



Collision Detection Engine

STC Analysis

Narrow Phase

Broad Phase

Contact

Determination

proximity only testing

Contact Group

Detection

Edge Insertion and
removeable

Logial and Cache

Testing

Event Notification

Figure 11: Spatial-Temporal Coherence Analysis Module

Time Warping Traditionally one would backtrack the en-
tire configuration when an illegal state is found such as pen-
etration of two objects.

This is very inefficient, since there might be a lot of ob-
jects in the scene, who’s motion is completely independent of
the two violating objects. The result of backtracking them
is simply that one would have to redo the exact same com-
putations as previously, thus wasting computation time.

Knowing the contact groups, one could instead only back-
track those contact groups, where the violating objects be-
long to, and leave all other contact groups alone. The reader
should refer to [Mirtich 2000] for more details.

Subdivision of Contact Force Computation Constraint-
based methods for computing contact forces are often NP -
hard, so it is intractable to solve large problems, however the
contact forces needed in one contact group is totally inde-
pendent of all the other contact groups. This knowledge can
be exploited, and instead of computing the contact forces for
all contact groups, the problem is broken down into smaller
problems by solving for the contact forces of each contact
group separately [Anitescu et al. 1998; Coutinho 2001].

Caching Contact Forces If contact forces from the previ-
ous iteration are cached in the contact graph edges, then
these forces can be used as initial guess for the contact force
computation in the current iteration [Baraff 1992].

The contact graph also holds information about change of
relative placement, this can also be exploited, because this
means that the contact forces are the same as in the previous
iteration, so these can simply be reused. Of course contact
forces are dependent on external forces, so one could only
exploit this idea, if current absolute placement and external
forces “physically” agree with the previous absolute place-
ment. As an example, think of a stack of books on a table:
The books do not change placement at all. Similarly for
a block sliding down an inclined plane: The total external
force on the block is independent of the blocks motion down
the plane. An example where this does not hold could be a

block sliding down an inclined plane, where the inclination
angle decreases as the block slides down the plane.

7 Results

We will elaborate on several speed up methods that relies
on or relates to contact graphs. The speed up methods are
generally applicable to any kind of rigid body simulator. In
order to show the effects we have chosen to extend our own
multibody simulator, a velocity based complementarity for-
mulation [Stewart and Trinkle 1996] using distance fields for
collision detection, with the speed ups. Example code is
available from the OpenTissue Project [OpenTissue n. d.].
Our simulator was originally developed for medical applica-
tions to simulate skeleton bone movements, performance was
not a concern but accuracy were. In this paper we will focus
on performance speed up only. For this reason we have cho-
sen a semi-implicit fixed time stepping scheme with a rather
large time-step, 0.01 second, for a medical application we
would have used a fix-point time stepping scheme and done
a convergence analysis to determine the time-step.

Using distance fields for collision detection has one major
drawback with the above mentioned time stepping scheme,
during the “fake” position update objects tend to be deeply
penetrating, in these cases a large number of contact points
will be generated, the consequence will be a performance
degradation due to the large number of variables that must
be resolved. Performance improvements are therefore par-
ticular important even though real-time simulation is out of
our grasp.

We have done several performance measurements and
statistics on 120 spheres falling onto an inclined plane with
the word “DIKU” engraved upon it. The configuration is
shown in Figure 12. The total duration of the simulation is
10 seconds. In Figure 13 measurements of the brute force
method is shown, i.e. without using contact graph. Observe
that the number of variables and real-life time per iteration
are increasing until the point where the spheres settle down
to rest and then the curves flatten out.

In comparison Figure 14 shows how the curves from Fig-
ure 13 change when a contact graph is used. Notice that
the number of variables per contact group is much smaller
than in the brute force method, also observe the impact on
the real-life duration curves. Table 4 shows how the total
real-life running time in seconds is affected by using a con-
tact graph to divide a simulation into independent contact
groups. However one can do even better in the following we
will explain 7 more speed up methods we have successfully
used.

An obvious improvement comes from ignoring contact
groups where all objects appear to be at rest, we call such
objects sleepy objects, and we determine them by tracking
their kinetic energy, An object is flagged as sleepy whenever
its kinetic energy have been zero within numerical threshold
over a number of iterations specified by an user. If a contact
group only contains sleepy objects the group is completely
ignored. Contact graph nodes provide the means for tracking
the kinetic energy. Since this speed up is computationally
inexpensive we have invoked it in all of the measurements
given in Table 5. The speed up could have a potentially
disastrous effect on a simulation if the scheme for tagging
sleepy objects is not well-picked. To greedy an approach
could leave objects hanging in the air, to lazy an approach
would result in no performance gain.

We exploit contact graph edges for caching contact points
and contact forces. Cached contact points are used to skip



Figure 12: 120 Falling Spheres onto inclined plane with engravings.

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n 

(s
ec

on
ds

)

Brute Force Method

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Brute Force Method

min
max
mean

Figure 13: The Brute Force Method. In this case there is only one large contact group.



0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n 

(s
ec

on
ds

)

Using Contact Graph

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

Simulated Time (seconds)

#g
ro

up
s

Using Contact Graph

0 2 4 6 8 10 12
0

100

200

300

400

500

600

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Using Contact Graph

min
max
mean

Figure 14: The performance impact of using contact graph to determine independent contact groups.



Time (secs)
Brute Force Method 28424
Contact Graph 1011.4

Table 4: The performance effect of dividing simulation into independent contact groups.

narrow phase and contact determination whenever two inci-
dent objects of a contact edge are at absolute rest, cached
contact forces are used to seed the iterative LCP solver, we
use Path from CPNET [Path n. d.]. Hopefully the LCP
solver is able to converge much more rapidly. From here on
we call this speed up “caching”.

A further speed up can sometimes be obtained by limiting
the number of times the iterative LCP solver is allowed to
iterate, currently we change the limit from the default value
of 500 to 15, as a consequence the motion is altered but still
looks plausible. The speed up has nothing to do with contact
graphs, but it is interesting to examine in combination with
the other speed ups we apply, see Table 5. We refer to this
speed up as “tweaking”.

Another speed up we use is to reduce the number of con-
tacts between two objects in contact, the reduction is ap-
plied to objects, that are deeply penetrating. During the
reduction all contacts are pruned except the single contact
of deepest penetration. Again the contact graph edges pro-
vide a convenient storage. We have named this speed up
“reduction”. Reduction have an effect on the motion of the
objects, we believe that it is actually more correct, because
intuitively the deepest point of penetration better resembles
the idea of using the minimum translational distance as a
separation measure. Besides theoretically reduction should
give a decrease in the number of variables used in the com-
plementarity formulation.

Inspired by the speed up of detecting independent con-
tact groups, further subdivision into groups that could be
simulated independently seems feasible. An idea to further
subdivide is to prune away sleepy objects from those con-
tact groups containing both non-sleepy and sleepy objects.
We refer to this speed up as “subgrouping”. The idea is
to think of the sleepy object as a fixed object during the
computation of the contact groups. This speed up will of
course have a drastic impact on the motion of the objects,
however from a convergence theory point of view the effect
should vanish as the time step goes to zero. Because what
we have done is to interleave the simulation of subgroups by
one frame. Other subgrouping/sleepy object schemes can be
found in [Barzel 1992; Schmidl 2002]. To help objects set-
tle down and become sleepy faster it intuitively seems to be
a good idea to let the coefficient of restitution fall to zero
the more sleepy an object gets, meaning that sleepy objects
are sticky objects. Currently we simply set the coefficient
of restitution to zero whenever at least one of the incident
objects are sleepy. The speed up is referred to as “zeroing”.
In the same spirit a linear viscous damping term is added to
the motion of all objects in the simulation, the intention is to
slow down objects making them less willing to become non-
sleepy. We call this “damping”. The contact graph is used
for the subgrouping and zeroing. For instance subgrouping
is done by setting the edge color to black in the pseudo-code
of Figure 7 whenever the incident objects both are sleepy.

The last method we have applied consist of setting the
inverse mass and inertia tensor to zero for all sleepy objects.
The main intuition behind this is to “force” sleepy objects
to stay sleepy. We have named this “fixation”, and it has a
dramatic impact on the simulation, object motion is visually

altered as can be seen from ♠ in Figure 15). Fixation only
makes sense to apply when subgrouping is used, otherwise
the iterative LCP solver have to solve for contacts between
two fixated objects.

Table 5 contains performance measurements of all sensible
combinations of the previously mentioned speed up methods.
Figure 15 shows motion results of four selected combinations:
♦,♥,♣, and ♠ from Table 4. These are compared to the mo-
tion of the brute force method. The four combinations were
picked because they resembles the best performance when-
ever a new speed up were used. Observe that the resulting
motion diverges more and more from the brute force method
the more speed ups that are used. Especially ♠ is different,
during the last seconds objects actually fly up in the air.
This is due to constraint stabilization correcting large er-
rors in the simulation. In Figure 16 a comparison is done
between the performance statistics of the four selected com-
binations ♦,♥,♣, and ♠. Observe that the plots of the first
three combinations, ♦, ♥, and ♣, are similar to those shown
in Figure 14. The fourth combination, ♠, has very different
plots for the real-life duration and variables per group plots,
these appear to be nearly asymptotically constant.

8 Discussion

It is obvious from Table 5 that the prober combination of
the speed ups is capable of producing a speed up factor
of 28424

135
≈ 210. It is difficult to describe the impact on

the resulting motion, however it is clear that using Contact
Graphs, Caching Contact Forces and Sleepy Groups do not
change the motion of the brute force method, but all other
speed ups we presented change the physical properties and
as a consequence motion is altered as can be seen in Fig-
ure 15. Especially the reduction and the subgrouping have
great impacts on the motion. The motion do however in the
authors opinion still look plausible.

The tagging of sleepy objects can have a rather drastic
impact on the simulation such as leaving objects hanging
when they should not. For instance in the simulation shown
in Figure 17 near the K-letter, a bunch of spheres land on top
of each other, while the top-most spheres rumbles of the top,
the bottom-most sphere is kept in place and prohibited from
gaining kinetic energy, at the end of the simulation a single
sticky sleepy sphere can be seen on the inclined plane. We
have to be careful not making general conclusions based on
the measurements in this paper, since only one configuration
have been examined.

It is clear though that contact graphs are a valuable ex-
tension to a multibody simulator, they can be used for more
than finding independent groups of objects. Even in the
welhm of physical accurate simulation a speed up factor of
the order of 20-30 is not unlikely, disregarding accuracy com-
pletely the speed up factor can be increased by an order of
magnitude.

Using more speed ups does not always imply better per-
formance, in some cases one speed up cancels the effect of
another. For instance using caching seems to make tweaking
needles, the cached solutions results in fast convergence, only



Cache Tweak Reduce Zero Damp Subgroup Fixate Time

+ - - - - - - 658.499

- + - - - - - 589.523

+ + - - - - - 952.519

- - + - - - - 712.567

+ - + - - - - ♦ 624.274

- + + - - - - 895.157

+ + + - - - - 1157.27

- - - + - - - 840.673

+ - - + - - - 771.285

- + - + - - - 1205.34

+ + - + - - - 575.343

- - + + - - - 1246.65

+ - + + - - - 965.894

- + + + - - - 599.258

+ + + + - - - 688.454

- - - - + - - 578.171

+ - - - + - - 578.339

- + - - + - - ♥ 528.633

+ + - - + - - 533.934

- - + - + - - 788.291

+ - + - + - - 890.056

- + + - + - - 789.72

+ + + - + - - 1093.42

- - - + + - - 766.438

+ - - + + - - 627.623

- + - + + - - 736.771

+ + - + + - - 663.246

- - + + + - - 608.286

+ - + + + - - 956.992

- + + + + - - 1273.16

+ + + + + - - 730.885

- - - - - + - 700.215

+ - - - - + - 541.854

- + - - - + - 785.367

+ + - - - + - 561.064

- - + - - + - 855.264

+ - + - - + - 569.153

- + + - - + - 523.856

+ + + - - + - 618.052

- - - + - + - 1077.2

+ - - + - + - 761.245

- + - + - + - 760.623

+ + - + - + - 903.259

- - + + - + - 767.546

+ - + + - + - 1329.69

- + + + - + - 949.809

+ + + + - + - 535.479

- - - - + + - 515.74

+ - - - + + - ♣ 460.561

- + - - + + - 703.067

+ + - - + + - 578.634

- - + - + + - 863.636

+ - + - + + - 576.862

- + + - + + - 612.122

+ + + - + + - 502.618

- - - + + + - 625.918

+ - - + + + - 569.84

- + - + + + - 550.011

+ + - + + + - 702.223

- - + + + + - 958.467

+ - + + + + - 871.314

- + + + + + - 958.066

+ + + + + + - 643.04

- - - - - + + 253.577

+ - - - - + + 222.027

- + - - - + + 747.439

+ + - - - + + 176.69

- - + - - + + 383.162

+ - + - - + + 264.526

- + + - - + + 134.679

+ + + - - + + 147.884

- - - + - + + 259.678

+ - - + - + + 313.898

- + - + - + + 171.455

+ + - + - + + 172.426

- - + + - + + 410.996

+ - + + - + + 306.881

- + + + - + + 1115.21

+ + + + - + + 174.302

- - - - + + + 191.925

+ - - - + + + 273.825

- + - - + + + 176.747

+ + - - + + + 168.905

- - + - + + + 186.134

+ - + - + + + 311.081

- + + - + + + 179.803

+ + + - + + + ♠ 134.721

- - - + + + + 363.336

+ - - + + + + 296.197

- + - + + + + 704.94

+ + - + + + + 176.358

- - + + + + + 222.81

+ - + + + + + 276.723

- + + + + + + 181.782

+ + + + + + + 137.757

Table 5: Comparison of various combinations of performance speed-up methods. “+” means enabled, “-” means disabled.



Brute Force ♦ ♥ ♣ ♠

0.04s

0.87s

1.70s

2.54s

3.37s

4.20s

5.04s

5.87s

6.70s

7.54s

8.37s

9.20s

Figure 15: Motion Results of selected combinations of speed up.



0 2 4 6 8 10 12
0

1

2

3

4

5

6

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n 

(s
ec

on
ds

)

Caching and Reduction

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

Simulated Time (seconds)

#g
ro

up
s

Caching and Reduction

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Caching and Reduction
min
max
mean

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n 

(s
ec

on
ds

)

Tweaking and Damping

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

Simulated Time (seconds)

#g
ro

up
s

Tweaking and Damping

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Tweaking and Damping
min
max
mean

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n 

(s
ec

on
ds

)

Caching, Damping, and Subgroup

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

Simulated Time (seconds)

#g
ro

up
s

Caching, Damping, and Subgroup

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Caching, Damping, and Subgroup
min
max
mean

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n 

(s
ec

on
ds

)

Cache, Tweak, Reduce, Damp, Subgroup, and Fixate

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

Simulated Time (seconds)

#g
ro

up
s

Cache, Tweak, Reduce, Damp, Subgroup, and Fixate

0 2 4 6 8 10 12
0

100

200

300

400

500

600

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Cache, Tweak, Reduce, Damp, Subgroup, and Fixate
min
max
mean

Figure 16: Performance measurements on the four selected combinations of speed ups.



Figure 17: Figure showing sleepy object hanging in the air. Purple means sleepy, red moving, blue absolute rest, green fixed.
Frame grabs of simulation at time 9.8 secs and 9.87 secs using zeroing, damping, subgrouping and fixation.

seldom is the upper iteration limit dictated by the “tweak-
ing” reached.

Our experiments indicate that a promising avenue for
high-performance simulations is a combination of subgroup-
ing and fixation, however from the resulting motions shown
in Figure 15 it is also clear that this is far from trivial to
device such a scheme.

We believe that contact graphs also can be exploited to
determine when a paradigm switch should occur in a hybrid
simulation as described in [Mirtich 1996a; Mirtich 1996b].
In [Mirtich 1996a] it is suggested to track the contact state,
i.e. the relative contact velocity, and use this information to
determine when a contact should be solved by a constraint
based method or by an impulse based method. Contact
edges provide a perfect place for storing this tracking infor-
mation, they also provide one with the possibility to taking
neighboring contacts into consideration. In [Mirtich 1996b]
large stacks of objects is shown to be infeasible to simulate
with an impulse based method, examining the size of contact
groups and their structure, might give a clue to switch from
an impulse based method to a constraint based method when
lots of objects settle into resting contact upon each other.

Our numerical experiments clearly indicates that sleepy
objects are a promising strategy, it therefore seems promis-
ing to look into better methods for more quickly making
objects become sleepy and stay sleepy. For instance to pre-
process the complementarity formulation with a sequential
collision method truncating impulses [Chatterjee and Ru-
ina 1998] and successfully applied to sequential collision re-
solving [Guendelman et al. 2003], The novelty would be to
extend the ideas to simultaneously contact resolving.

References

Anitescu, M., Potra, F. A., and Stewart, D. E. 1998. Time-
stepping for three-dimensional rigid body dynamics. Comp.

Methods Appl. Mech. Engineering .

Baraff, D. 1992. Dynamic simulation of non-penetrating Rigid

Bodies. PhD thesis, Cornell University.

Baraff, D. 1994. Fast contact force computation for nonpene-
trating rigid bodies. Computer Graphics 28, Annual Confer-
ence Series, 23–34.

Barzel, R. 1992. Physically-based Modelling for Computer

Graphics, a structured approach. Academic Press.

Chatterjee, A., and Ruina, A. 1998. A new algebraic rigid body
collision law based on impulse space considerations. Journal of

Applied Mechanics.

Coutinho, M. G. 2001. Dynamic Simulations of Multibody Sys-

tems. Springer-Verlag.

Erleben, K., and Henriksen, K. 2002. Scripted motion and
spline driven motion. Technical Report 02/18, Department of
Computer Science University of Copenhagen, August.

Erleben, K., and Sporring, J. 2003. Review of a general module
based design for rigid body simulators. Unpublished, draft
version can be obtained by email request.

Erleben, K., 2001. En introducerende lærebog i dynamisk sim-
ulation af stive legemer, Maj.

Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Noncon-
vex rigid bodies with stacking. ACM Transaction on Graphics,

Proceedings of ACM SIGGRAPH .

Hahn, J. K. 1988. Realistic animation of rigid bodies. In Com-

puter Graphics, vol. 22, 299–308.

Hubbard, P. M. 1996. Approximating polyhedra with spheres for
time-critical collision detection. ACM Transactions on Graph-

ics 15, 3, 179–210.

Mirtich, B., 1996. Hybrid simulation: combining constraints and
impulses.

Mirtich, B. 1996. Impulse-based Dynamic Simulation of Rigid

Body Systems. PhD thesis, University of California, Berkeley.

Mirtich, B. 1998. Rigid body contact: Collision detection to
force computation. Technical Report TR-98-01, MERL, March.

Mirtich, B. 2000. Timewarp rigid body simulation. In Proceed-

ings of the 27th annual conference on Computer graphics and

interactive techniques, ACM Press/Addison-Wesley Publishing
Co., 193–200.

OpenTissue. http://www.diku.dk/forskning/image/research/opentissue/.

O’Sullivan, C., and Dingliana, J., 1999. Real-time collision
detection and response using sphere-trees.

Path. PATH CPNET Software,
http://www.cs.wisc.edu/cpnet/cpnetsoftware/.

Schmidl, H. 2002. Optimization-based animation. PhD thesis,
Univeristy of Miami.

Stewart, D., and Trinkle, J. 1996. An implicit time-stepping
scheme for rigid body dynamics with inelastic collisions and
coulomb friction. International Journal of Numerical Methods

in Engineering .




