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Abstract

The Vehicle Routing Problem with Backhauls is a generalization of the ordinary capacitated vehicle routing
problem where goods are delivered from the depot to the linehaul customers, and additional goods are brought
back to the depot from the backhaul customers. Numerous ways of modeling the backhaul constraints have
been proposed in the literature, each imposing different restrictions on the handling of backhaul customers. A
survey of these models is presented, and a unified model is developed that is capable of handling most variants
of the problem from the literature. The unified model can be seen as a Rich Pickup and Delivery Problem with
Time Windows, which can be solved through an improved version of the large neighborhood search heuristic
proposed by Ropke (2003). The results obtained in this way are comparable to or improve on similar results
found by state of the art heuristics for the various variants of the problem. The heuristic has been tested on 338
problems from the literature and it has improved the best known solution for 227 of these. An additional benefit
of the unified modeling and solution method is that it allows the dispatcher to mix various variants of the Vehicle
Routing Problem with Backhauls for the individual customers or vehicles.

Keywords: metaheuristics, vehicle routing problems, large neighborhood search

1 Introduction

In the classical Capacitated Vehicle Routing Problem (CVRP) we have to deliver goods from a depot to a set of
customers, using a set of identical vehicles. Each customer demands a certain quantity of goods and the vehicles
have a limited capacity. Our task is to construct routes starting and ending at the depot that minimize the total travel
distance and that obey the capacity of the vehicles.

The problems that need to be solved in real life situations are usually much more complicated. One complica-
tion that arises in practice is that goods not only need to be brought from the depot to the customers, but also must
be picked up at a number of customers and brought back to the depot. A simple way of handling such problems
is to solve two independent CVRPs. One for the delivery (linehaul) customers and one for the pickup (backhaul)
customers, such that some vehicles would be designated to linehaul customers and others to backhaul customers.
This approach is not likely to create high quality solutions though — it seems more profitable to serve both pickup
and delivery customers using the same vehicles. The Vehicle Routing Problem with Backhauls (VRPB) models
problems with both pickup and delivery customers in the same route.
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Applications of VRPB can be found in the distribution of groceries. Groceries are delivered to supermarkets
and grocery stores from a central distribution center and groceries are picked up at production sites and brought to
the distribution center. Another application is the handling of returnable bottles, where full bottles are brought to
customers and empty bottles are brought back to breweries to be recycled. Such applications are likely to become
more common in the future due to the increased awareness of environmental issues. It is important to develop fast
and robust algorithms for real-life transportation problems, which are able to handle various side constraints that
appear in practice.

The general trend in the transportation sector is that transportation companies are merging to larger units which
can provide a large number of delivery services. In order to get the most possible benefit from the vehicle fleet, it
can be attractive to service conceptually different transportation tasks by the same fleet, thus models are needed that
can handle all additional constraints associated with a transportation task. Cordeau et al. [6] for example provide
a unified approach for several Vehicle Routing Problems with Time Windows. The present paper considerably
extends the expressibility of the model, by also allowing pickup and delivery requests, precedence constraints, etc.
This allows us to formulate the six most common variants of vehicle routing problems with backhauls within the
framework, and to find high quality heuristic solutions that are comparable to or improve on similar results for
specialized algorithms.

The underlying problem of all of the problems we consider is the Pickup and Delivery Problem with Time
Windows (PDPTW), which we will describe in Section 2. A survey of the six most common variants of vehicle
routing problems with backhauls — and additional, less frequently used models — is given in Section 3. The
subsequent sections present the heuristic algorithm proposed in this paper, which is outlined in Figure 1. Some
of the problem types we wish to solve are illustrated at the top of the figure. To solve an instance of one of
these problem types, we transform it to an instance of the Rich Pickup and Delivery Problem with Time Windows,
as illustrated by the arrows from the top row to the next row. Transformations are discussed in Section 4. The
PDPTW instance is solved by a heuristic which will be presented in Section 5; this produces a PDPTW solution
that finally is interpreted as a solution to the original problem. This solution framework has been tested on 338
benchmarks problems proposed in the literature. The results of this computational test are reported in Section 6.
The paper is finally concluded in Section 7.

2 The Pickup and delivery problem with time windows (PDPTW)

Before starting to discuss the various variants of the VRPB we introduce the Rich Pickup and Delivery Problem
with Time Windows (Rich PDPTW). All considered variants of the VRPB can be seen as extensions of the PDPTW.
IP models of the PDPTW can be found in Desaulniers et al. [8] and Sigurd et al. [34], for our purpose we will only
give a verbal description of our problem which differs slightly from the problems in the afore-mentioned papers.

In the Rich PDPTW we have n requests and m vehicles. A request i ��� 1 ��������� n � consists of picking up a
quantity li of goods at one location and delivering it to another location. With each request is associated a pickup
time window, a delivery time window, and two service times sp

i and sd
i indicating how long the pickup and delivery

operations take to perform. A vehicle is allowed to arrive at a location before the start of the time window, in which
case it will have to wait before starting the corresponding operation. A vehicle may never arrive at a location after
the end of the time window. Each request furthermore has an associated pickup precedence number, and a delivery
precedence number. Each vehicle must visit the locations in nondecreasing order of precedence number (see e.g.
Sigurd et al. [34] for various applications of precedence constraints).

Each request i can only be served by a vehicle k
�

Fi, where Fi is the set of feasible vehicles corresponding
to request i. Each vehicle k ��� 1 �������	� m � has an associated capacity Ck, a start time bk and end time ek, and an
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Figure 1: Solution framework: As described in Section 3 the algorithm accepts as input variants of the Vehicle Routing
Problem with Backhauls, including: (VRPB), (MVRPB), (MDMVRPB), (VRPBTW), (MVRPBTW) and (VRPSDP). All
of the problems are transformed to a Rich Pickup and Delivery Problem with Time Windows, which is solved heuristically
through a Large Neighborhood Search algorithm. The last step of the algorithm transforms the obtained solution back to the
original problem. The framework is not limited to backhaul models, but can be used to solve other types of vehicle routing
problems, such as the vehicle routing problem with time windows or the capacitated vehicle routing problem.
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associated start terminal Bk and end terminal Ek where it starts and ends its duty respectively. The vehicle must
leave its start terminal at time bk even though this might introduce waiting time at the first customer visited. The
vehicle must return to the end terminal at time ek or before.

The problem can be defined on a directed graph where the locations are represented by a set of nodes V �� 1 ��������� 2n
�

2m � , and for each edge � i � j � we have an associated distance di j and travel time ti j, where we assume
that travel times satisfy the triangle inequality while the only assumption on the distances is that they must be
non-negative. The locations will often be referred to as visits.

The task is to construct a set of valid routes for a limited number of vehicles such that an associated objective
function is minimized. The objective function is a weighted sum of 1) the sum of the distance traveled by the
vehicles. 2) the number of requests not assigned to a vehicle. The two terms are weighted by the coefficients α and
β. Notice that this objective function does not necessarily assign all requests to a vehicle. Requests not assigned to a
vehicle are placed in a virtual request bank, which in a real world situation must be handled by a human dispatcher.
Hence, normally a high value is assigned to the coefficient β to stimulate that as many requests as possible are to be
serviced. In the experiments performed in this paper, β was chosen sufficiently high to avoid situations were some
requests where left in the request bank upon termination.

3 Overview of vehicle routing problems with backhauls

This section gives an overview of the vehicle routing problems with backhauls proposed in the literature. We
restrict ourselves to multi-vehicle problems. Single-vehicle problems have been studied by for example Gendreau
et al. [14], Ghaziri and Osman [15] and Süral and Bookbinder [36].

3.1 The Vehicle Routing Problem with Backhauls (VRPB)

In the vehicle routing problem with backhauls (VRPB) we wish to minimize the total traveled distance and we are
allowed to serve linehaul and backhaul customers on the same routes subject to the following limitations.

(A) If a route contains both linehaul and backhaul customers then the backhaul customers must be served
after the linehaul customers.

(B) A route is not allowed to consist entirely of backhaul customers.
(C) The capacity of the vehicle should be obeyed, that is, neither the sum of the demands of the linehaul

customers nor the sum of the demands of the backhaul customers served by a vehicle may exceed the
vehicle capacity.

(D) The number of vehicles to use is given in advance. This means that even if it is possible to find better
solutions using fewer or more vehicles, we must report the best solution we can find that uses the specified
number of vehicles.

(E) All customers are serviced from a single depot.
(F) All vehicles have the same capacity.

Constraint (A) might seem artificial but it is justified by the fact that many vehicles are rear-loaded. This makes
it problematic to try to load the vehicle with goods heading for the depot before we have delivered all goods to the
customers as the pickup goods might block access to the delivery goods. The constraint is also justified by the fact
that the linehaul customers frequently prefer early deliveries while backhaul customers prefer late pickups.

A recent survey of the VRPB was presented by Toth and Vigo [42]. Exact methods for the VRPB are proposed
by Mingozzi et al. [26] and Toth and Vigo [41]. Heuristics have been developed by Anily [3], Casco et al. [5],
Crispim and Brandao [7], Goetschalckx and Jacobs-Blecha [16], [22] and Toth and Vigo [40].
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3.2 The Mixed Vehicle Routing Problem with Backhauls (MVRPB)

The Mixed Vehicle Routing Problem with Backhauls (MVRPB) is derived from the VRPB by relaxing limitations
(A), (B) and (D). That is, we can mix linehaul and backhaul customers freely within a route and we are free to
use as many vehicles as we want. We still have to obey the capacity limit of the vehicles. The capacity check is
slightly more complicated in the MVRPB problem as the vehicle load fluctuates during the route. Furthermore,
some MVRPB also have a duration limit that implies that routes should be completed within a certain time frame;
for such problems the travel time between customers and the service time at the customers is given.

The name Vehicle Routing Problem with Pickups and Deliveries (VRPPD) is sometimes used instead of MVRPB.
Heuristics for this problem are presented by Halse [19], Nagy and Salhi [27], [32] and Wade and Salhi [43], [44].

3.3 The Multiple Depot Mixed Vehicle Routing Problem with Backhauls (MDMVRPB)

The Multiple Depot Mixed Vehicle Routing Problem with Backhauls (MDMVRPB) is a generalization of the
MVRPB. In the MDVRPB limitation (E) is relaxed such that we instead of just considering a single depot are
faced with problems where several depots are present. At each depot a limited fleet of vehicles is available, and a
vehicle should start and end its duty at the same depot. Heuristics for the problem are proposed by Nagy and Salhi
[27], [32]. They denoted the problem the Multi Depot Vehicle Routing Problem with Pickup and Deliveries.

3.4 The Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW)

The Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW) extends VRPB by assigning a time
window to each customer, by having travel times associated with each pair of locations, and by having service
times associated with the customers. Visits at a customer should start within the time window. If the vehicle arrives
too early at a customer it has to wait until the start of the time window. If the vehicle arrives too late the route is
invalid. Limitations (B) and (D) from the VRPB are relaxed in the VRPBTW. The objective of VRPBTW is either
to minimize the total traveled distance or to minimize the number of vehicles as the first priority and then minimize
the total traveled distance as the second priority.

An exact algorithm for the VRPBTW based on column generation was proposed by Gelinas et al. [13], and
heuristics were proposed by Duhamel et al. [12], Hasama et al. [20], Reimann et al. [30], Thangiah et al. [38] and
Zhong and Cole [48].

3.5 The Mixed Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW)

The Mixed Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW) is derived from VRPBTW
by relaxing limitation (A) saying that backhaul customers should be visited after linehaul customers. The objective
that has been considered in the literature is to minimize the number of vehicles as the first priority and the distance
traveled as the second priority. Two heuristics have been proposed in Kontoravdis and Bard [23] and Zhong and
Cole [48].

3.6 The Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP)

In the Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP) a subset of the customers
simultaneously demand goods from—and supply goods to—the depot, and thus both a delivery and a pickup
should occur at these customers. The pickup and delivery should be performed simultaneously such that each
customer is visited only once by a vehicle. Unloading is obviously done before loading at these customers. The
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Figure 2: An example showing that simultaneous pickup and delivery at customers may increase the overall route lengths.
The four customers have pickup/delivery requests of 2/2, 1/2, 1/2, 2/0 respectively. The vehicle has a capacity C of 6 units,
and normal Euclidean distances are used. In a MVRPB setting, the shortest route is D1, P2/D2, P4/D4, P3/D3, P1 of total
length 7 � 66. If simultaneous pickup and deliveries are demanded, the shortest route becomes P3/P3, P2/D2, P4/D4, P1/D1 of
total length 8 � 65.

simultaneous pickup and delivery operation decreases the customers’ expenses or inconvenience associated with
handling vehicles, but may result in longer routes as illustrated in Figure 2.

This problem was first introduced by Min [25] in the context of transportation material between public libraries
and a library administration center (acting as a depot). Halse [19] presented exact and heuristic methods for the
problem and Dethloff [9], [10] considered heuristic algorithms. Nagy and Salhi [32] used their MVRPB heuristic
to solve the problem, but apparently the “simultaneous” constraint is not handled by the heuristic. This is discussed
in further detail by Dethloff [10]. Two variants of the problem have been proposed recently. Nagy and Salhi [32]
introduce a multi depot version of the problem, while Angelelli and Mansini [2] solve a version with time windows
to optimality using column generation. The heuristic proposed in the present paper is not tested on the two last
problem types although the underlying PDPTW model without modifications could handle these problem classes
also.

3.7 Other backhauling problems

Wade and Salhi [45] introduce a problem that generalizes VRPB and MVRPB. In this problem one is not allowed
to mix linehaul and backhaul customers on a route freely. A vehicle can only start to serve backhaul customers
after a certain percentage of the linehaul load has been delivered. If this percentage is set to 0% then we get the
MVRPB and if the percentage is set to 100% then we get the VRPB. Percentages in between 0% and 100% result
in a blend between VRPB and MVRPB.

Halskau et al. [17] propose a backhauling problem with so called lasso tours. In their problem most customers
require both a pickup and a delivery. At the first few customers visited on a route a delivery is performed to free
up some room in the vehicle, at the customers in the middle of the route, the delivery and pickup operation is
performed simultaneously. The tour is ended by visiting the first couple of customers again, this time in the reverse
order to perform the omitted pickups. This creates a tour that looks like a lasso, as the first customers that are
visited twice form the spoke of the lasso, while the customers that are visited once form the loop of the lasso.

These two problem variants cannot be solved by the heuristic presented in this paper in its present form. It
would only require minor modifications to the heuristic and the underlying model to be able to solve these problems
though.
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4 Problem transformations

This section describes how each of the problems discussed in Section 3.1–3.6 can be transformed to a Rich PDPTW.
The basic transformation is to represent a linehaul customer by a request with a pickup at the depot and a delivery
at the linehaul customer. Backhaul customers are represented by a request with a pickup at the backhaul customer
and a delivery at the depot. This transformation might seem sufficient to represent the MVRPB but it has the
flaw that it allows a vehicle to go back to the depot for re-stocking or offloading and afterwards continue its duty.
This is not allowed in a standard MVRPB. The problem is easily solved by assigning precedences to the different
tasks: pickups at the depot get precedence 1, deliveries at linehaul customers and pickups at backhaul customers
get precedence 2 and deliveries at the depot get precedence 3.

The backhaul after linehaul constraint (A) found in VRPB is also easily modeled using precedences. Instead
of giving linehaul and backhaul customers identical precedences, we assign precedence 2 to the linehaul deliveries,
precedence 3 to the backhaul pickups and precedence 4 to the deliveries at the depot.

In the VRPB we have to use a specified number of vehicles as stated by constraint (D). Our model only allows
us to set an upper bound on the number of vehicles, so we need to model a vehicle equality constraint. This is done
by modifying the distance matrix by setting the distance from the start terminal to the end terminal of each vehicle
to M, where M is a sufficiently large number. This forces the heuristic towards solutions with at least one request
on each route in order to avoid the penalty M.

The VRPB constraint (B) saying that no route can consist of backhauls only, is handled in a similar way. Here
we add the penalty M to the cost of each edge from a start terminal to one of the backhaul pickup locations.
This drives the heuristic towards solutions where such edges are not used, which means that at least one linehaul
customer is served before a backhaul customer.

The simultaneous delivery and pickup constraint in VRPSDP is also modeled using penalties. As before, the
delivery to a customer is modeled by a request from the depot to the customer and a pickup at a customer is
modeled as a request going from the customer to the depot. In order to ensure that the delivery and pickup occur
“simultaneously” we modify the distance matrix. The distance from a delivery visit to the simultaneous pickup
visit is set to zero, while the distances from the pickup to all other visits are increased by the penalty term M. This
forces the heuristic to visit the simultaneous pickup after a delivery. The situation is illustrated on Figure 3.

The multiple depots in the MDMVRPB are harder to model even though the underlying PDPTW model already
supports multiple depots. The problem is that we until now have modeled a linehaul customer by a pickup at the
depot and a delivery at the customer, and vice-versa for the backhaul customers. In the multi depot problems we
cannot assign a request to a given depot in advance as we do not know where the pickup of a linehaul request or
the delivery of a backhaul request should occur. To model this kind of constraint we do the following. For each
vehicle in the problem (remember that in the MDMVRPB a fixed number of vehicles is available in each depot)
we create a dummy request with pickup and delivery locations at the depot of the vehicle. There is no demand
associated with the dummy requests. A dummy request should only be served by the vehicle it is designed for,
which is ensured by letting its feasible set of vehicles Fi contain that one vehicle only. We still represent each
linehaul customer by one request. All pickups of these linehaul requests take place at a virtual depot. All distances
to and from the virtual depot are set to zero. Backhaul customers are represented in the same way — by a pickup
at the backhaul customer and a delivery at the virtual depot. The idea is that linehaul requests should travel via
the dummy pickup location and backhaul requests should travel via the dummy delivery location. This is ensured
using precedences: Linehaul pickups get precedence 1, pickups of the dummy requests get precedence 2, linehaul
deliveries and backhaul pickups get precedence 3, deliveries of the dummy requests get precedence 4 and linehaul
deliveries get precedence 5. This forces the dummy request to “surround” the linehaul deliveries and backhaul
pickups such that the distance to and from the right depot is used. Figure 4 shows an example of a MDMVRPB
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Figure 3: Modeling of simultaneous delivery and pickup. Request 1 is a delivery to a customer, request 2 represents the
simultaneous pickup at the same customer and request 3 is another unrelated request. The names “Px” denotes “the pickup
of request x” and “Dx” denotes “the delivery of request x”. Edge weights are the distances di j. In order to ensure that D1
is followed by P2 we increase all other distances from D1 with M, while the distance from D1 to P2 is set to zero. In this
way, the algorithm will first visit the pickup site of request 1 (the depot) and then travel to the delivery site of request 1 (the
customer site). We might perform other visits along the dashed edges. After performing the delivery of request 1, only one
edge has cost less than M, hence we go to P2 which is the simultaneous pickup.

route with two linehaul customers and one backhaul customer.
A remark should be made about penalty based modeling: If a feasible solution exists that does not violate any of

the constraints, the optimal solution will not contain any of the penalty terms. However, since we use heuristics for
solving the model, we may end up with a solution which still contains some penalties. This can easily be detected
by inspecting the objective value and the heuristic can either be repeated (hoping that a second run will find a better
solution) or some manual adjustment of the data may be needed, e.g. by increasing the number of vehicles or by
removing some customers which cannot be handled. It should, however, be pointed out that the heuristic has never
produced any infeasible solutions during the computational experiments performed in Section 6.

We made heavy use of precedences in the transformations described above. The precedences can also be used
to speed up the heuristic when faced with the problem types described in this paper. Consider for example the

P1 P3D1 D2 D3P4 D4P2

1 1 2 3 3 3 4 5Precedence:

Figure 4: An example of a MDMVRPB route with two linehaul customers and one backhaul customer. The linehaul
customers are represented by request 1 and 2 and the backhaul customer is represented by request 3. Request 4 is the dummy
request. The start and end terminals are represented by squares, the visits of the normal requests are represented by circles
and the visits of the dummy request are represented by hexagons. Pickups and deliveries at the depot are shown in grey and
the precedence of the visits is displayed underneath the route. One can observe that the actual MDMVRPB route can be
inspected by looking at the white visits; here the hexagons should be viewed as depot visits and the normal deliveries and
pickups correspond to the linehaul and backhaul customers respectively.
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MVRPB where several pickup and deliveries occur at the depot and all permutations of the pickups at the depot
within a route are feasible and equally good as long as the deliveries stay fixed (and similarly for the backhaul
deliveries). We can use precedences to create an ordering on the pickups and deliveries at the depot such that only
one permutation is valid. We enumerate the request from 1 to n. If request i involves a pickup at the depot, then this
pickup gets precedence i, if request i involves a delivery at the depot then this delivery gets precedence i

�
n

�
2.

Pickups and deliveries that corresponds to visits at the customers gets precedence n
�

1. The same idea can be used
for the five other problems as well.

5 Solution methods

Recent work on local search methods indicate that larger neighborhoods may be needed to solve some difficult
optimization problems as shown by e.g. Ahuja et al. [1]. Due to the size of the neighborhoods, various heuristics
are generally used to search the neighborhood in order to keep the time complexity at a reasonable level. This
means, that the performance of a local search algorithm is limited by the quality of the heuristic that searches
the neighborhood. To work around this bottleneck, Ropke [31] proposed to use several heuristics to search the
neighborhood, where the frequency of using each heuristic is based on some empirical evidence from the search.
An extended version of this heuristic is used to solve our PDPTW model.

The heuristic is based on Large Neighborhood Search (LNS) as proposed by Shaw [35] and it has similarities
with the Ruin and Recreate (R&R) framework proposed by Schrimpf et al. [33]. Our heuristic repeatedly runs
through the following steps:

LNS iteration
1 Choose a removal heuristic R and an insertion heuristic I.
2 Remove a number q of requests from the routes using heuristic R.
3 Insert the free requests into the existing routes using heuristic I.
4 Evaluate the objective function of the new solution.
5 If the objective function is improved, accept the new solution. Otherwise accept the new

solution with a probability that depends on the increase of the objective function.

The heuristic differs from the ordinary LNS and R&R methods by incorporating several large-neighborhood heur-
istics, which are applied with a variable frequency controlled by a learning layer. Each insertion or removal heuristic
in the LNS heuristic may have various properties. Some heuristics are used to intensify the search while other heur-
istics mainly play the role of diversifying the search. In this way, the learning layer not only distributes CPU-time
among the various heuristics involved, but also controls the intensification or diversification of the search based on
empirical information. This can be seen as an extension of the tabu search methods described by Hertz et al. [21].
One may also see the LNS algorithm as a variant of Variable Neighborhood Search (VNS) described by Hansen and
Mladenovic [18], the main difference being that VNS operates on one type of neighborhood with variable depth,
while LNS operates with structurally different neighborhoods.

In the PDPTW heuristic the removal heuristic R removes up to 40% of the requests in each iteration. This
enables the heuristic to make significant changes to the current solution in a single iteration. We use six different
removal heuristics in our LNS heuristic; each removal heuristic has its own strategy for choosing the requests to
remove. The heuristics are:

� Random removal: The requests are chosen at random.

� Shaw removal: Remove related requests, i.e. requests that are geographically close to each other (Shaw [35]).
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� Worst request removal: Remove the request whose removal decreases the cost function the most.

� Cluster removal: Attempt to partition the nodes into subsets so that the nodes in each subset are somehow
“close to each other”. For a more detailed description of this removal heuristics see Section 5.3.

� History based removal: This heuristic makes use of historical information when removing requests. Two
variants of this heuristic have been considered as will be described in Sections 5.4 and 5.5.

The first three removal heuristics have been used previously [31] while the three last are new.
In order to insert the requests we use the five insertion heuristics proposed by Ropke [31]. The heuristics can

be divided into two classes:

� Basic insertion heuristics: which are similar to the insertion heuristic of Solomon [37]. In each iteration a
request is inserted into the solution such that the cost function is increased the least possible.

� Regret insertion heuristics: which are similar to heuristics proposed by Potvin and Rousseau [29] and Tillman
and Cain [39]. In each iteration of the standard version of the heuristic a request is inserted so as to maximize
the gap in the cost function between inserting the request into its best route and its second best route.

The insertion heuristics are described in more details in [31].
In each step of the PDPTW heuristic one removal and one insertion heuristic are used. Computational exper-

iments have shown that in order to reach high-quality solutions all removal and insertion heuristics are necessary,
but their contribution to the solution process may vary during the search.

The monitoring and learning layer observes how often a given removal or insertion heuristic contributes to a
new, accepted solution, and increases the probability of choosing the given heuristic according to its success. This
is done using roulette wheel selection where each heuristic has a probability corresponding to its success-rate. In
order to ensure that statistical information is collected for all heuristics throughout the search, each heuristic is used
not less than a given lower limit.

The LNS algorithm is basically a local search algorithm, and hence it can be combined with most state-of-art
local search paradigms. Using the simulated annealing paradigm, we evaluate the cost function after each LNS
step. If the cost has decreased or is unchanged, the new solution is always accepted. If the cost has increased, the
solution is randomly accepted with a probability exponentially decreasing with the increase of the cost.

5.1 Measuring the distance between two requests

In the removal heuristics we need a measure for the distance d � r1 � r2 � between two requests r1 and r2. Ropke
[31] used the following expression: d � r1 � r2 � � da1 � a2

�
db1 � b2 where a1 and a2 are the pickups of the requests and

b1 and b2 are the deliveries. This works fine for the pure PDPTW problems but the definition is problematic
for backhaul problems. Consider for example two requests corresponding to a linehaul and a backhaul customer
located far from the depot. Using the old distance function, the distance between these two requests would be
large even though the linehaul and backhaul customer are located close to each another. Instead we use d � r1 � r2 � �
1
4 � da1 � a2

�
da1 � b2

�
db1 � a2

�
db1 � b2 � . If a pickup or a delivery is located at the depot then the distances involving this

visit are removed from the formula and the denominator is decremented accordingly.

5.2 Simplified Shaw removal

Shaw [35] defines a removal method that removes related requests. Ropke [31] defines the relatedness between
two requests in terms of the distance between the two requests, their capacity demands, temporal information and
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information about which vehicles can serve the requests. In this paper we take a simpler approach as we define the
relatedness between two requests solely by the distance d � r1 � r2 � between the requests.

5.3 Cluster removal

Given a set of points in the plane we can ask to partition the set into k
�

2 disjoint subsets such that the points
within each subset are close together with respect to the distance d � r1 � r2 � . We say that we partition the points into
k clusters.

A heuristic for finding such a partition can be constructed by modifying Kruskal’s algorithm [24] for the min-
imum spanning tree problem. Instead of running Kruskal’s algorithm to the end, it can be stopped when k connected
components are left. These connected components are our approximation of the desired clusters.

The clustering algorithm is used in a removal heuristic as follows. First a route is selected at random. Then the
requests on this route are partitioned into two clusters. One of these clusters is chosen at random and the requests
from the chosen cluster are removed. If we need to remove more requests then we pick one of the removed requests
and find a request that is close to the chosen request. The new request should come from a route that has not been
touched by removals in the current iteration. The route of the new request is partitioned into two clusters and so
the process continues until the desired number of requests has been removed. The motivation for the heuristic is
to remove large chunks of related requests from a few routes instead of removing a few requests from each route.
Figure 5 illustrates when the cluster removal heuristic can be useful.
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Figure 5: Cluster Removal example: The circles mark the delivery locations, all pickups take place at the depot (marked by
the square). In the figure to the left we have a suboptimal solution and we would like to move to the solution shown in the right
part of the figure where requests h-k are placed on the same route as requests a- f . To reach this solution we need to remove
requests h, i, j and k at once. If just one of the requests h, i, j or k is left on route 2 then the insertion heuristics most likely are
going to insert the rest of the requests back into route 2. The removal heuristics presented so far may not be able to remove
all of the requests at once, but the cluster removal heuristic does just that. The result of applying the clustering algorithm on
route 2 would be the two clusters g  l  m  n and h  i  j  k and the last cluster would be removed with probability 0.5.

5.4 Neighbor graph removal

None of the removal heuristics proposed so far have made any use of historical information when removing re-
quests. The decision about which requests to remove has been made solely by using the information available in
the current state.
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The neighbor graph removal heuristic uses both historical information and the current state to select the requests
to remove. The historical information is stored in a complete, directed, weighted graph called the neighbor graph.
The graph contains a node for each visit in the problem. The weight of all edges is initially set to plus infinity. The
weight of an edge � a � b � stores the cost of the best solution encountered so far in which the visit corresponding to a
is performed just before the visit corresponding to b. Each time a new solution is discovered during the search, the
edge weights in the graph are updated if necessary.

The graph is used to remove requests that seem to be placed in an unsuitable place. When the removal heuristic
is invoked it calculates a score for each request in the current solution. The score is calculated by summing the edge
weights in the neighbor graph corresponding to the neighbor configuration in the current solution. The requests
with high scores seem to be misplaced and are removed. Every time a request has been removed the scores of the
surrounding requests are recalculated. Some randomness is introduced in the removal process in order to avoid
removing the same requests over and over again. Specifically the randomness ensures that we sometimes do not
remove the requests with the highest score but instead remove some with slightly lower scores.

5.5 Request graph removal

In the request graph removal heuristic we store historical information in a graph called the request graph. This
graph is complete and undirected and each node in the graph corresponds to a request in the PDPTW problem. The
weight of an edge � a � b � denotes the number of times the two requests corresponding to a and b have been served by
the same vehicle in the t best unique solutions observed so far in the search. The weights of all edges are initially
set to zero, and in all experiments the parameter t was set to 100.

This graph could be used in a similar fashion as the graph described in Section 5.4. That is, we could examine
all planned requests r and calculate the score

score � r � � ∑
i � R

�
r � � i �� r

wri

where R � r � is the set of requests in the route containing r and wri is the weight of the edge between r and i in the
requests graph. A request with a low score is situated in an unsuitable route according to the request graph and
should be removed. Our initial experiments indicated that this was an unpromising approach, probably because it
strongly counteracts the diversification mechanisms in the LNS heuristic.

Instead, the graph is used to define the relatedness between two requests, such that two requests are considered
to be related if the weight of the corresponding edge in the request graph is high. This relatedness measure is used
as in the removal heuristic proposed by Shaw [35], mentioned in Section 5.2.

6 Computational experiments

6.1 Parameter tuning

Even though the proposed heuristic is controlled by quite a few parameters, we have tried to keep the parameter
tuning to a minimum in this paper. This is achieved by using the same parameters that were found in the parameter
tuning performed by Ropke [31], where applicable. The only parameters that have been tuned are the two paramet-
ers that control the simulated annealing: the cooling rate c and the start temperature control parameter w. After
each LNS iteration the temperature T is updated using the recursion T : � cT . The parameter w controls the start
temperature T0. In order to set the start temperature T0 we use an estimate of the objective value of a reasonable
solution to the problem. This estimate is found by obtaining an initial solution using one of our insertion heuristics
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and calculating the modified objective value z � of this solution. The modified objective value is obtained by setting
the coefficient β to zero, such that unplanned requests do not make the estimate of the objective value unreason-
ably high. Now the start temperature is set such that a solution that is 1

�
w times larger than z � is accepted with

probability 0.5 when the current solution has objective z � . We have tested the algorithm on 11 problems chosen
from 5 of the 6 problem categories. The configuration w � 0 � 05 and c � 0 � 9998 proved to be the best among the 30
configurations tested. The same parameters were used for all problem types considered in the following sections.

6.2 Test strategy

The LNS heuristic is tested on 9 data sets proposed in the literature. The test serves two major purposes. The first
purpose is to compare three configurations of the LNS heuristic against each other. The three configurations are:

� A configuration similar to the one used by Ropke [31]. This configuration benefits from the learning layer
but is limited to the 3 “old” removal heuristics: The simplified Shaw removal, the worst removal and the
random request removal. This configuration is denoted standard in the following.

� A configuration that uses all 6 removal heuristics but has disabled the learning layer. This implies that all
removal and insertion heuristics are equally likely to be selected during the search. This configuration is
denoted 6R - no learning in the following (the “6R” indicates that 6 removal heuristics are in use).

� The last configuration is similar to the second, but in the third configuration the learning layer is activated
again. The configuration is denoted 6R - normal learning.

These three configurations allow us to see if the new removal heuristics improve the quality of the heuristic and
enable us to judge the effectiveness of the learning layer.

The second major purpose of the test is to compare the solution quality obtained by the unified heuristic to the
results obtained by more specialized heuristics proposed for the various problem types. We want to know whether
a general heuristic can be competitive with specialized heuristics.

The stopping criterion employed is to stop when the heuristic has performed 25000 remove-insert iterations.
Each configuration of the heuristic is applied 10 times to each problem instance. The reported computation times
are, however, for a single run of the algorithm.

All problems considered in the following are geometric problems where distances and travel times are defined
by the Euclidean distance, hence the triangle inequality is satisfied for both parameters. When it has been necessary
to calculate distances from a set of coordinates we have used double precision calculations unless otherwise stated.
For many of the problem classes we only present a summary of the experiments performed. We refer the reader
to the appendix for the full tables for these problems. All experiments were performed on a Linux based PC,
equipped with 256 MB RAM and a 1.5 GHz Pentium IV processor. The heuristic was implemented in C++.

6.3 The Vehicle Routing Problem with Backhauls (VRPB)

The first problem type we study is the symmetric VRPB. This problem along with the VRPBTW is probably the
most studied of the backhaul problems. Two data sets are proposed in the literature, the first was proposed by
Goetschalckx and Jacobs-Blecha [16] and contains 62 instances with between 20 and 150 customers. The second
data set was proposed by Toth and Vigo [40] and contains 33 instances with between 21 and 100 customers. We
denote the two data sets the Goetschalckx and the Toth-Vigo data sets respectively.

Comparing results on the Goetschalckx data set are a little problematic as at least 3 different rounding conven-
tions have been used for calculating the distances between the customers in the data sets. We report our results
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obtained using 2 of the 3 rounding conventions and refer to the appendix for a discussion about the third rounding
convention and the results obtained using it.

Currently the two best heuristics for the VRPB are probably the heuristic proposed by Toth and Vigo [40] and
the heuristic by Osman and Wassan [28]. The heuristic by Toth and Vigo finds good solutions in a short time
while the heuristic proposed by Osman and Wassan spends more time but on the overall finds better solutions.
We compare our heuristic with the results found by Osman and Wassan as the running time of our algorithm is
comparable to that of Osman and Wassan’s heuristic. In order to calculate the distance between two customers,
Osman and Wassan used floating point arithmetic, hence we do the same (using double precision) in the tests
reported in Table 1.

The tests show that the configurations using all 6 removal heuristics are better than the one using only three
removal heuristics. This test also shows that the configuration that does not include the learning layer overall is
slightly better than the configuration including the learning layer, which is a bit surprising. All configurations of
the LNS heuristics do better than Osman and Wassan’s heuristic when looking at how many best known solutions
the heuristics have found. It should be noted that the best solution found by Osman and Wassan’s heuristic was
found in 8 experiments, while we used 10 experiments for each LNS configuration. If one looks at the sum of
the best solution costs identified by the heuristics, it is observed that the LNS heuristics overall only marginally
improve the solutions found by Osman and Wassan’s heuristic; for all LNS heuristics the improvement is within
0.1%. All together the LNS heuristics improved the solution of 26 of the 62 problem instances. Finally we see that
the average solution costs found by the LNS heuristics are quite good as they on average are less than 0.5% from
the best known solution costs.

Generally it is hard to compare the running time of our heuristic to that of the heuristics proposed in the
literature, as the computational experiments have been performed on different computers. According to the Linpack
benchmarks reports [11], our computer has a TPP rating (Toward Peak Performance) of 1311 MFlops while Osman
and Wassan’s Computer has a TPP rating of 25 MFlops, implying that our computer is around 53 times faster.
The average time for solving one problem was between 69 and 73 seconds for the LNS heuristics. Osman and
Wassan tested two versions of their heuristic, the fastest version using around 2800 seconds to solve one problem
and the slower version using 4000 seconds. This corresponds to 52 and 75 seconds on our computer, which is very
comparable to the time used by our algorithm. Hence our general heuristic is on par with Osman and Wassan’s
specialized heuristic both with respect to solution quality and solution times.

The second way to calculate the distances is to round them to one decimal, and store them as an integers
using a fixed point representation. The final result is rounded to an integer. This type of rounding is used in
the exact methods developed by Toth and Vigo [41] and Mingozzi et al. [26]. 34 of the 62 instances have been
solved to optimality and a good solution is provided for 13 more problems without proving optimality. Table 2
summarizes the results obtained by applying the heuristic to these 47 problems (problem A1-K4) using the same
rounding conventions as the exact methods. These results also show that the configurations that use the new removal
heuristics are better than the one that only uses the 3 old removal heuristics. This time the configurations with and
without the learning layer are virtually equally good. All configurations find 28 optimal solutions out of the 34
optimal solutions reported by Toth and Vigo [41] and Mingozzi et al. [26]. Eight new best solutions were found in
the tests.

The Toth-Vigo data set have been approached by the exact methods of Toth and Vigo [41] and Mingozzi et al.
[26] and by the heuristics of Crispim and Brandao [7], Osman and Wassan [28] and Toth and Vigo [40]. Table 3
reports the results found by the LNS heuristic compared with the best known results from the literature. We see
that the configuration with learning enabled provides the best solutions on the average; furthermore it is the only
one which identifies all known optimal solutions. The configuration without learning overall finds slightly better
solutions compared to the learning version when summing the best solution from the ten experiments. The LNS
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heuristics improve the best known solutions to 5 of the problems.
A class of asymmetric problem instances was proposed by Toth and Vigo [41], but we have not included this

data set in our test even though our PDPTW model would be able to handle the asymmetric problems.

6.4 The Mixed Vehicle Routing Problem with Backhauls (MVRPB)

Two data sets have been proposed for the MVRPB. The first set is based on a relaxed version of the Goetschalckx
problems, and it has been studied by Halse [19] and Wade and Salhi [43], [44]. The other data set, which was
proposed by Nagy and Salhi [27], is constructed by transforming 14 well-known CVRP instances into MVRPB
instances. Three MVRPB instances are constructed from each CVRP instance, having 10%, 25% and 50% of the
customers transformed to backhaul customers. Heuristics are applied to the last data set by Dethloff [9] and Nagy
and Salhi [27], [32]. We decided to test our heuristic on MVRPB by using the last data set.

The chosen data set contains 42 problems with 50 to 199 customers. Table 4 compares the solutions obtained
by the LNS heuristics to the solutions obtained by Nagy and Salhi. Unfortunately it is not possible to include the
results obtained by Dethloff [9] in the table as Dethloff only tested his algorithm on a subset of the problems. The
heuristic named NS1 in the table is a construction algorithm and the heuristic named NS2 is a construction heuristic
followed by an improvement algorithm. Both are much faster than the LNS heuristics. The comparison shows that
great improvements can be achieved by using a more advanced heuristics such as the LNS heuristic proposed here,
as we get results that are more than 10% better than those obtained by the simpler heuristics. We succeeded in
improving the best known solution for 41 out of the 42 problems. On the last problem we matched the solution
reported by Nagy and Salhi. Notice that the average solution cost decreases when more customers are turned into
backhaul customers in the solutions provided by the LNS heuristic. This is expected as a greater percentage of
backhaul customers leads to greater flexibility in the planning as long as the percentage of backhaul customers is
not greater than 50%. It is worth noting that Nagy and Salhi’s results do not show this behavior.

Table 5 compares the three LNS configurations. The results show that the configurations with six removal
heuristics overall are better than the one with three removal heuristics when one compares the gaps. The results
also show that the configuration with the learning layer enabled is better than the one without the learning layer.
One can also notice that the computation time increases as more customers are turned into backhaul customers.
This behavior can most likely be explained by the fact that routes in general contain many customers when the
percentage of backhauls customers is around 50%. Long routes imply that more time is spent in the insertion
heuristics.

6.5 The Multiple Depot Mixed Vehicle Routing Problem with Backhauls (MDMVRPB)

Only one data set has been proposed for the MDMVRPB. This data set was proposed by Nagy and Salhi [32] and
is constructed from Gillett and Johnson’s 11 multi depot vehicle routing problems. Each of the 11 problems are
turned into three MDMVRPB problems by creating problems with 10%, 25% and 50% backhaul customers; thus
the MDMVRPB data set contains 33 problems with between 50 and 249 customers. The only heuristics that have
been applied to the problems so far are those by Nagy and Salhi which also were used for the MVRPB discussed
in Section 6.4.

In Table 6 we compare the results obtained by the LNS heuristic with those obtained by the best heuristics of
Nagy and Salhi [27], [32]. It has been necessary to reconstruct the problems from Gillett and Johnson’s original
problems following the description in [32], as the original problems no longer were available from the authors. We
believe that the problems have been constructed properly. The reconstructed problems have been made available
on the web [46] for future comparisons. Again, we observe that the LNS heuristic offers huge improvements over
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Best known Standard 6R - no learning 6R - normal learning
n cost avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

A1 25 229885.65 229885.65 229885.65 0.00 7 229885.65 229885.65 0.00 7 229885.65 229885.65 0.00 7
A2 25 180119.21 180119.21 180119.21 0.00 8 180119.21 180119.21 0.00 8 180119.21 180119.21 0.00 8
A3 25 163405.38 163405.38 163405.38 0.00 9 163405.38 163405.38 0.00 10 163405.38 163405.38 0.00 9
A4 25 155796.41 155796.41 155796.41 0.00 10 155796.41 155796.41 0.00 10 155796.41 155796.41 0.00 11
B1 30 239080.15 239080.16 239080.16 0.00 9 239080.16 239080.16 0.00 9 239080.16 239080.16 0.00 9
B2 30 198047.77 198047.77 198047.77 0.00 10 198047.77 198047.77 0.00 10 198047.77 198047.77 0.00 10
B3 30 169372.29 169372.29 169372.29 0.00 13 169372.29 169372.29 0.00 14 169372.29 169372.29 0.00 14
C1 40 250556.77 250846.82 250556.77 0.12 14 250560.15 250556.77 0.00 14 250556.77 250556.77 0.00 13
C2 40 215020.23 215020.23 215020.23 0.00 16 215020.23 215020.23 0.00 16 215020.23 215020.23 0.00 16
C3 40 199345.96 199345.96 199345.96 0.00 18 199345.96 199345.96 0.00 20 199345.96 199345.96 0.00 18
C4 40 195366.63 195366.63 195366.63 0.00 19 195366.63 195366.63 0.00 19 195366.63 195366.63 0.00 19
D1 38 322530.13 322530.13 322530.13 0.00 12 322530.13 322530.13 0.00 12 322530.13 322530.13 0.00 12
D2 38 316708.86 316708.86 316708.86 0.00 11 316708.86 316708.86 0.00 12 316708.86 316708.86 0.00 12
D3 38 239478.63 239478.63 239478.63 0.00 13 239478.63 239478.63 0.00 13 239478.63 239478.63 0.00 13
D4 38 205831.94 205831.94 205831.94 0.00 16 205831.94 205831.94 0.00 16 205831.94 205831.94 0.00 15
E1 45 238879.58 238879.58 238879.58 0.00 18 238879.58 238879.58 0.00 18 238879.58 238879.58 0.00 18
E2 45 212263.11 212463.34 212263.11 0.09 23 212263.11 212263.11 0.00 23 212458.75 212263.11 0.09 22
E3 45 206659.17 206710.33 206659.17 0.02 26 206697.72 206659.17 0.02 27 206761.96 206659.17 0.05 26
F1 60 264299.6 268346.03 267060.43 1.53 31 268430.58 267060.43 1.56 30 268306.24 267060.43 1.52 29
F2 60 265653.47 265214.16 265214.16 0.00 29 265214.16 265214.16 0.00 29 265214.16 265214.16 0.00 28
F3 60 241120.77 241969.77 241969.77 0.35 37 241969.77 241969.77 0.35 36 241969.77 241969.77 0.35 35
F4 60 233861.85 235175.20 235175.20 0.56 43 235528.13 235175.20 0.71 44 235449.66 235175.20 0.68 42
G1 57 306305.4 306388.11 306305.40 0.03 23 306322.98 306305.40 0.01 23 306354.90 306305.40 0.02 22
G2 57 245440.99 245529.35 245440.99 0.04 29 245440.99 245440.99 0.00 28 245440.99 245440.99 0.00 27
G3 57 229507.48 229507.48 229507.48 0.00 33 230737.17 229507.48 0.54 32 230583.46 229507.48 0.47 30
G4 57 235251.47 232913.81 232521.25 0.17 32 233006.36 232521.25 0.21 32 233263.98 232521.25 0.32 31
G5 57 221730.35 221826.32 221730.35 0.04 35 222435.96 221730.35 0.32 36 222442.67 221730.35 0.32 35
G6 57 213457.45 213541.70 213457.45 0.04 40 214090.55 213457.45 0.30 42 213457.45 213457.45 0.00 39
H1 68 268933.06 269342.45 268933.06 0.15 41 269467.78 268933.06 0.20 42 269317.64 268933.06 0.14 39
H2 68 253365.5 253423.34 253365.50 0.02 49 253462.09 253365.50 0.04 49 254194.18 253365.50 0.33 47
H3 68 247449.04 247532.87 247449.04 0.03 56 247508.59 247449.04 0.02 55 247449.04 247449.04 0.00 53
H4 68 250220.77 250317.37 250220.77 0.04 52 250269.07 250220.77 0.02 53 250269.07 250220.77 0.02 52
H5 68 246121.31 246532.25 246121.31 0.17 58 246767.73 246121.31 0.26 58 246217.90 246121.31 0.04 55
H6 68 249135.32 249294.67 249135.32 0.06 55 249231.92 249135.32 0.04 57 249206.96 249135.32 0.03 55
I1 90 351606.91 350958.02 350258.81 0.20 55 350852.85 350245.28 0.17 54 350897.94 350247.61 0.19 52
I2 90 309955.04 312489.95 309943.84 0.82 66 311016.93 309943.84 0.35 65 310434.77 309943.84 0.16 63
I3 90 294507.38 295236.14 294507.38 0.25 86 294858.13 294507.38 0.12 83 294821.76 294507.38 0.11 81
I4 90 295999.65 296820.65 295988.45 0.28 79 296159.12 295988.45 0.06 77 296401.46 295988.45 0.14 76
I5 90 302524.33 302707.04 301236.01 0.49 76 301909.59 301236.01 0.22 75 301980.98 301236.01 0.25 74
J1 95 335593.42 336680.78 335006.68 0.50 60 336522.31 335006.68 0.45 58 336789.92 335479.75 0.53 56
J2 95 310800.53 312206.97 310417.21 0.58 71 312458.56 310417.21 0.66 67 311763.08 310417.21 0.43 65
J3 95 279219.21 281807.92 279219.21 0.93 94 279423.74 279219.21 0.07 87 279729.03 279219.21 0.18 84
J4 95 296773.38 298412.68 297232.88 0.63 77 297781.22 296533.16 0.42 74 297344.74 297086.58 0.27 72
K1 113 395546.4 397774.56 394846.98 0.86 86 395993.78 394375.63 0.41 83 397076.46 395006.60 0.68 81
K2 113 363214.24 365791.18 362656.70 1.01 100 362998.61 362130.00 0.24 97 363253.47 362130.00 0.31 96
K3 113 366222.05 367806.64 365694.08 0.58 99 366218.02 365694.08 0.14 97 366388.14 365694.08 0.19 95
K4 113 349038.84 351441.74 348949.39 0.71 113 349266.17 348949.39 0.09 111 349241.78 348949.39 0.08 108
L1 150 426017.86 428037.41 426013.41 0.48 162 427658.80 426013.41 0.39 153 427641.03 426281.89 0.38 149
L2 150 402245.17 402073.43 401466.27 0.21 192 401587.25 401228.80 0.09 181 401492.36 401247.70 0.07 176
L3 150 403886.22 404784.84 402677.72 0.52 187 403029.19 402677.72 0.09 176 402860.67 402677.72 0.05 174
L4 150 384844.01 387660.68 384636.33 0.79 220 385207.32 384636.33 0.15 207 385073.14 384636.33 0.11 205
L5 150 388061.69 390091.24 387564.55 0.65 210 388677.62 387564.55 0.29 211 389778.12 387564.55 0.57 200
M1 125 400860.79 402962.88 401006.99 1.02 108 401540.39 398913.70 0.66 104 401666.48 398913.70 0.69 102
M2 125 398908.71 400924.09 399001.11 0.53 108 401724.68 399336.27 0.73 102 401347.29 398827.67 0.63 100
M3 125 377352.81 379362.69 377411.62 0.85 122 378502.30 377212.23 0.62 115 378031.96 376159.13 0.50 114
M4 125 348624.42 349984.33 348624.42 0.45 147 348663.06 348417.94 0.07 140 348905.97 348532.69 0.14 137
N1 150 408926.4 414655.53 409210.18 1.40 162 414044.03 410789.32 1.25 156 414915.65 410419.05 1.46 155
N2 150 409280.16 413434.54 410595.02 1.02 164 413124.59 409385.19 0.94 155 415985.72 411131.25 1.64 153
N3 150 396167.85 402418.80 398841.27 2.05 181 399363.23 394337.86 1.27 177 400984.40 396827.00 1.69 170
N4 150 397753.86 401362.13 397363.45 1.67 178 402131.56 398965.12 1.86 172 400553.31 394788.36 1.46 170
N5 150 376431.84 380168.38 375895.96 1.79 222 377447.83 373476.30 1.06 214 378201.49 375201.45 1.27 210
N6 150 377665.19 381099.86 377368.09 1.96 216 376612.61 373758.65 0.76 211 376966.15 373789.70 0.86 209
Tot. 18058230 18124900 18055590 4536 18093048 18042916 4405 18098312 18044860 4299
Avg. 0.43 73 0.29 71 0.31 69
BTPB 20 24 23
#B 36 43 53 46

Table 1: Goetschalckx problems. The table compares the results obtained by the three configurations of the LNS heuristics
with the best results obtained by Osman and Wassan’s heuristic [28]. The two first columns show the problem name and the
number of customers in the problem. The third column displays the best solution found by Osman and Wassan’s heuristic.
The rest of the columns are divided into three sections, one for each configuration. These should be interpreted as follows:
avg. sol. - the average of the solution costs obtained in the 10 experiments, best sol. - the cost of the best solution found in the
10 experiments, avg. gap (%) - the gap between average and best known solution cost, avg. time (s) - the average time needed
to perform one experiment (in seconds). The best solution for each problem instance is marked with bold. The row Tot. at
the bottom of the table gives the sum of the given column and the row Avg. gives the average of the column. The row BTPB
reports the number of problem instances where a particular configuration found solutions that were better than the previous
best known solution, the row #B contains the number of times the heuristic found the best known solution to a problem.
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Avg. gap (%) #B Avg. time (s) Opt. BTPB
Standard 0.28 35 39 28 8

6R - no learning 0.18 38 40 28 8
6R - normal learning 0.17 36 40 28 8

Table 2: Summary of testing the 47 first Goetschalckx problems using distances rounded to one decimal. Each row in the
table corresponds to one of the three LNS configurations. The columns Avg. gap (%) and Avg. Time (s) should be interpreted
like the corresponding entries in the Avg. row in Table 1. The rest of the columns are: #B - the number of problems where the
best known solution was reached, Opt. the number of optimal solutions found (out of 34 known optimal solutions), BTPB - the
number of problems for which the heuristic improved the solutions found by the branch and bound methods. The improved
solutions correspond to problems were the branch and bound algorithms did not reach optimality because they were stopped
before optimality was proved.

the simpler heuristics. This time the solution costs are decreased by up to 24% and the best known solutions to
all problems were improved. As before we note that the heuristics proposed by Nagy and Salhi are faster than the
LNS heuristic.

Table 7 compares the three LNS configurations with each other. The most interesting observation is that the
multi depot problems seem to be the hardest problems considered so far, as the average solutions are farther from
the best known solutions than before, but the results must anyway be considered as very promising.

6.6 The Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW)

The VRPBTW is another well-studied backhauling problem. The primary objective considered in the heuristics
described in the literature is to minimize the number of vehicles used and the secondary objective is to minimize the
traveled distance. These objectives are also used in our experiments. The vehicle minimization is done by solving
the problem for a decreasing number of vehicles, as proposed by Ropke [31]. Gelinas et al. [13] proposed a data
set containing 15 problems with 100 customers and Thangiah et al. [38] introduced a data set containing 24 large
problems.

Our heuristics are tested on both data sets. The results obtained on Gelinas’ data set are presented in Table
8. Five papers have reported results on this data set: Duhamel et al. [12], Hasama et al. [20], Reimann et al.
[30], Thangiah et al. [38] and Zhong and Cole [48]. It should be noted that apparently there is no standard for
how distances should be represented internally in the heuristic, which makes comparisons a bit problematic. We
have chosen to represent the distances using doubles like Reimann et al. [30], as is standard in the literature about
VRPTW heuristics. The tables reveal that we are able to improve 10 out of the 15 solutions and reduce the number
of vehicles needed for 5 of the problems. Again the configurations using all removal heuristics turns out to be the
best.

The only heuristic that has been applied to the large VRPBTW problems is the heuristic by Thangiah et al. [38].
Table 9 compares the results obtained by this algorithm to the results obtained by the LNS heuristic. We see that
the LNS heuristic is able to decrease the necessary number of vehicles by a large amount and at the same time also
decrease the traveled distance. The best known solutions to all 24 problems were improved by the LNS heuristic.
Table 10 gives further information about the performance of the LNS heuristic, including the running time. The
time increases with the problem size, but its growth is not alarming. Once again the configurations using 6 removal
heuristics found the best solutions.
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Best known Standard 6R - no learning 6R - normal learning
n cost opt reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

EIL22.50A 21 371 X TV + EHP 371 371 0.00 8 371 371 0.00 8 371 371 0.00 8
EIL22.66A 21 366 X TV + EHP 366 366 0.00 7 366 366 0.00 8 366 366 0.00 7
EIL22.80A 21 375 X TV + EHP 375 375 0.00 7 375 375 0.00 8 375 375 0.00 8
EIL23.50A 22 682 X TV + EHP 709 682 3.94 13 682 682 0.00 12 682 682 0.00 12
EIL23.66A 22 649 X TV + EHP 654 649 0.77 12 649 649 0.00 13 649 649 0.00 13
EIL23.80A 22 623 X TV + EHP 625 623 0.26 11 623 623 0.00 12 623 623 0.00 12
EIL30.50A 29 501 X TV + EHP 501 501 0.00 17 501 501 0.00 19 501 501 0.00 18
EIL30.66A 29 537 X TV + EHP 537 537 0.00 13 537 537 0.00 14 537 537 0.00 14
EIL30.80A 29 514 X TV + EHP 514 514 0.00 13 514 514 0.00 14 514 514 0.00 14
EIL33.50A 32 738 X TV + EHP 738 738 0.00 17 738 738 0.00 20 738 738 0.00 20
EIL33.66A 32 750 X TV + EHP 750 750 0.00 15 750 750 0.00 17 750 750 0.00 16
EIL33.80A 32 736 X TV + EHP 737 736 0.18 15 736 736 0.05 15 736 736 0.05 15
EIL51.50A 50 559 X TV + EHP 561 559 0.41 35 559 559 0.00 39 559 559 0.00 36
EIL51.66A 50 548 X TV + EHP 553 548 0.91 30 550 548 0.35 31 549 548 0.11 30
EIL51.80A 50 565 X TV + EHP 569 565 0.65 28 571 565 1.12 29 570 565 0.80 28
EILA76.50A 75 739 X TV + EHP 740 739 0.16 49 739 739 0.00 50 739 739 0.00 48
EILA76.66A 75 768 X TV + EHP 774 768 0.77 44 774 769 0.73 44 772 768 0.51 42
EILA76.80A 75 781 TV + EHP 794 783 1.63 41 794 783 1.72 40 791 783 1.22 39
EILB76.50A 75 801 X TV + EHP 804 801 0.31 42 802 801 0.12 42 803 801 0.25 40
EILB76.66A 75 873 X TV + EHP 876 873 0.38 38 875 873 0.22 38 873 873 0.01 37
EILB76.80A 75 919 X TV + EHP 927 919 0.90 36 924 919 0.58 38 922 919 0.37 37
EILC76.50A 75 713 X TV + EHP 715 713 0.21 60 713 713 0.04 61 713 713 0.00 59
EILC76.66A 75 734 X EHP 740 735 0.75 51 739 734 0.69 51 736 734 0.23 50
EILC76.80A 75 733 TV + EHP 738 734 0.71 48 741 736 1.09 48 738 737 0.70 47
EILD76.50A 75 690 X TV + EHP 702 690 1.77 71 696 690 0.81 75 691 690 0.20 71
EILD76.66A 75 715 TV + EHP 717 715 0.22 59 716 715 0.20 60 715 715 0.00 57
EILD76.80A 75 694 EHP 699 694 0.72 53 699 695 0.76 55 696 694 0.26 53
EILA101.50A 100 842 OSMAN 845 837 1.72 138 840 831 1.05 137 836 831 0.55 129
EILA101.66A 100 846 X TV + EHP 852 846 0.67 99 848 846 0.21 100 846 846 0.05 99
EILA101.80A 100 875 OSMAN 872 862 1.77 91 869 857 1.41 87 866 861 1.03 86
EILB101.50A 100 933 EHP 930 925 0.54 82 928 925 0.31 79 929 925 0.38 77
EILB101.66A 100 998 OSMAN 1007 994 1.79 69 1010 989 2.13 66 1001 991 1.24 66
EILB101.80A 100 1021 OSMAN 1022 1018 1.43 63 1021 1010 1.26 61 1015 1008 0.65 61
Tot. 23189 23314 23160 1373 23251 23140 1394 23201 23142 1349
Avg. 0.71 42 0.45 42 0.26 41
BTPB 5 5 5
#B 28 26 28 29

Table 3: Toth-Vigo data set. The column opt indicates if optimality is proven for the particular instance and the column
reference points to the algorithm that found the solution in the best known column. TV refers to the exact method by Toth
and Vigo [41], EHP refers to the exact algorithm by Mingozzi et al. [26] and OSMAN refers to the heuristic by Osman and
Wassan [28].
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NS1 NS2 Standard 6R - no learning 6R - normal learning
10% 1011 995 956 (3.9%) 955 (4.0%) 956 (3.9%)
25% 1034 998 923 (7.5%) 923 (7.5%) 922 (7.6%)
50% 1045 991 881 (11.1%) 881 (11.1%) 881 (11.1%)

Table 4: Summary of the 42 Nagy-Salhi MVRPB problem instances. This table compares the solutions obtained by the LNS
heuristic to those obtained by Nagy and Salhi [27], [32]. Each row reports the average solution over 14 MVRPB instances
with a particular percentage of backhaul customers (10%, 25% or 50%). The columns NS1 and NS2 contain the best results
reported by Nagy and Salhi in [32] and [27] respectively. The last three columns show the results obtained by the LNS
heuristic. The numbers in parenthesis show how much better the LNS solutions are compared to the solutions reported by
Nagy and Salhi.

Standard 6R - no learning 6R - normal learning
Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

gap (%) time (s) gap (%) time (s) gap (%) time (s)
10% 0.51 10 13 129 0.43 11 13 133 0.37 11 13 133
25% 0.49 11 14 135 0.38 9 14 142 0.30 11 14 143
50% 0.71 7 13 164 0.45 10 14 178 0.41 12 13 178

Table 5: This table provides a comparison of the 3 LNS configurations when applied to the 42 Nagy-Salhi MVRPB instances.
Each row summarizes 14 instances with the same percentage of backhaul customers. The meaning of the headings is as in
Table 2.

NS1 NS2 Standard 6R - no learning 6R - normal learning
10% 2008 1996 1798 (9.9%) 1795 (10.1%) 1799 (9.9%)
25% 2050 2007 1671 (16.7%) 1663 (17.1%) 1662 (17.2%)
50% 2088 1993 1512 (24.1%) 1510 (24.2%) 1509 (24.3%)

Table 6: Summary of results obtained on the 33 Nagy-Salhi MDMVRPB instances. The columns NS1 and NS2 contain the
best results reported by Nagy and Salhi in [32] and [27] respectively.

Standard 6R - no learning 6R - normal learning
Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

gap (%) time (s) gap (%) time (s) gap (%) time (s)
10% 0.93 7 11 204 0.63 10 11 217 0.61 6 11 216
25% 0.97 5 11 219 0.65 6 11 237 0.66 8 11 237
50% 0.88 8 11 258 0.71 6 11 288 0.66 7 11 288

Table 7: Nagy-Salhi MDMVRPB instances. Comparison of the performance of the three LNS configurations.
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Best known Standard 6R - no learning 6R - normal learning
% BH m cost ref avg. best best avg. avg. best best avg. avg. best best avg.

#veh. sol. #veh. time #veh. sol. #veh. time #veh. sol. #veh. time
(s) (s) (s)

BHR101A 10% 22 1831.68 RDH 22.0 1818.86 22 98 22.0 1818.86 22 107 22.0 1818.86 22 109
BHR101B 30% 23 1999.16 RDH 23.0 1959.86 23 94 23.0 1959.56 23 101 23.0 1959.56 23 103
BHR101C 50% 24 1909.84 HKK 24.0 1939.10 24 93 24.0 1939.10 24 100 24.0 1939.10 24 101
BHR102A 10% 19 1677.62 RDH 19.0 1653.19 19 110 19.0 1653.19 19 118 19.0 1653.19 19 121
BHR102B 30% 21 1764.3 TPS 22.0 1750.70 22 103 22.0 1750.70 22 111 22.0 1750.70 22 114
BHR102C 50% 21 1745.7 TPS 22.0 1775.76 22 103 22.0 1775.76 22 111 22.0 1775.76 22 113
BHR103A 10% 15 1371.6 TPS 15.0 1387.57 15 117 15.0 1387.57 15 123 15.0 1387.57 15 128
BHR103B 30% 16 1395.88 RDH 15.0 1390.33 15 108 15.0 1390.33 15 112 15.0 1390.33 15 115
BHR103C 50% 16 1486.56 ZC 17.0 1457.31 17 106 17.0 1456.48 17 113 17.0 1456.48 17 115
BHR104A 10% 11 1205.78 RDH 11.0 1084.22 11 127 11.0 1084.17 11 130 11.0 1084.17 11 132
BHR104B 30% 12 1128.3 RDH 11.0 1163.24 11 119 11.0 1154.84 11 121 11.0 1154.84 11 122
BHR104C 50% 12 1208.46 RDH 11.0 1191.41 11 117 11.0 1191.38 11 119 11.0 1191.38 11 119
BHR105A 10% 16 1544.81 RDH 15.5 1564.88 15 104 15.3 1561.28 15 110 15.4 1561.28 15 109
BHR105B 30% 16 1592.23 RDH 16.0 1583.30 16 97 16.0 1583.30 16 102 16.0 1583.30 16 102
BHR105C 50% 17 1633.01 RDH 16.6 1711.36 16 96 16.6 1710.75 16 100 16.5 1710.19 16 100
Tot. 261 23495 260.2 23432 259 1593 260.0 23418 259 1679 259.9 23417 259 1703
Avg. 106 112 114
BTPB 10 10 10
#B 5 4 9 10

Table 8: The table shows the results obtained on the VRPBTW instances proposed by Gelinas et al. [13]. The first column
shows the name of the problem, the next columns are: %BH - ratio of backhaul customers, m - number of vehicles in best
known solution, cost - distance traveled in best known solution, ref - HKK = Hasama et al. [20], RDH = Reimann et al. [30],
TPS = Thangiah et al. [38] and ZC = Zhong and Cole [48], the result found by Zhong and Cole was listed in their technical
report [47]. The rest of the columns report the solutions found by the LNS heuristics: avg. #veh. - average number of vehicles
best #veh. - lowest number of vehicles found. The other columns should be interpreted as in Table 1. The original data files do
not specify the latest return time to the depot and the maximum capacity of the vehicle. In our experiments these parameters
have been set to the values they have in the original Solomon problems from which the Gelinas problems were created.

TPS Standard 6R - no learning 6R - normal learning
#veh. cost #veh. cost #veh. cost #veh. cost

250 517 57509 449 54256 444 54711 445 54499
500 799 94144 677 83498 676 82946 675 82796

Table 9: Large VRPBTW instances. This table compares the 3 LNS configurations to the heuristics by Thangiah et al. (TPS).
The data set contains 12 problems containing 250 customers and 12 containing 500 customers. The best solutions found by the
heuristics have been accumulated and the table shows the total number of vehicles needed and the total traveled distance for
all instances of a particular size. The vehicle capacity was set to 200 for all problems and no latest arrival time was specified
for the depot.

Standard 6R - no learning 6R - normal learning
Customers Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

#veh. time (s) #veh. time (s) #veh. time (s)
250 37.5 1 12 489 37.3 6 12 492 37.4 5 12 504
500 57.1 0 12 1562 56.8 4 12 1651 56.7 8 12 1570

Table 10: Comparison of the three LNS configurations when faced with the large VRPBTW instances proposed by Thangiah.
The Avg. #veh column displays the average of the average number of vehicles needed to serve all customers.
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LB KB ZC Standard 6R - no learning 6R - normal learning
#veh. #veh. cost #veh. cost #veh. cost #veh. cost #veh. cost

MR2 4 4 1168.53 4 1016.66 4 904.55 4 902.73 4 903.00
MC2 4 4 1094.94 4.625 903.56 4 731.38 4 732.38 4 732.13

MRC2 4 4.5 1496.91 4.125 1330.31 4.125 1125.00 4.125 1129.25 4.125 1127.63

Table 11: Kontoravdis MVRPBTW problems. The table compares the results reported by Kontoravdis and Bard [23] (KB)
and Zhong and Cole [48] (ZC) with the results obtained using the LNS heuristics. The primary objective in these problems
is to minimize the number of vehicles needed to serve the customers. The data set is divided into three classes according to
the geographical distribution of the customers in the problems: randomly distributed customers (MR2), clustered customers
(MC2), and a mix between the two first categories (MRC2). The MRC2 and MC2 classes both contain 8 problems while the
MR2 class contains 11 problems. Each row in the table summarizes the performance on each class. The column LB #veh.
shows the lower bound on the number of vehicles as given by Kontoravdis and Bard.

Standard 6R - no learning 6R - normal learning
Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

gap (%) time (s) gap (%) time (s) gap (%) time (s)
MR2 1.34 4 11 362 0.63 8 11 375 0.63 8 11 368
MC2 0.62 6 8 162 0.60 5 8 165 0.65 5 8 163

MRC2 2.83 5 8 183 1.99 1 8 183 1.76 4 8 180

Table 12: The table compares the three LNS configurations when applied to Kontoravdis’ MVRPBTW problems. In all test
runs the heuristics reached the same number of vehicles when applied to the same problem. This allows us to report the avg.
gap, which doesn’t make sense if the heuristics use a different number of vehicles to solve the same problem.

6.7 The Mixed Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW)

Two datasets have been proposed for the MVRPBTW. Hasama et al. [20] use Gelinas’ data set by relaxing the
linehaul-before-backhaul constraint while Kontoravdis and Bard [23] construct 27 new problems from Solomon’s
VRPTW problems. We test our heuristics using Kontoravdis and Bard’s data set which also has been attempted
by Zhong and Cole [48]. The LNS heuristic is compared to the previous heuristics in Table 11. Again the LNS
heuristic is able to find solutions of better quality compared to the older heuristics. It is interesting to note that
the LNS heuristic reaches the lower bound on the number of vehicles needed to solve the problems on all but one
instance. The LNS heuristics improved all the previously best known solutions to the problem instances.

Table 12 provides the usual comparison of the three LNS configurations. It should be observed that the MRC2
problems turn out to be hard to solve, as indicated by the rather large gaps. This is not surprising as the MRC2
problems were constructed from Solomon’s RC2 VRPTW problems, which are known to be hard to solve. One
cannot expect that adding the extra complexity of backhaul customers should make the problems easier to solve.

6.8 The Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP)

Allthough the VRPSDP is not the problem in the backhauling family that has received the most attention, there
exist nevertheless quite a few data sets for the problem. The first data set was proposed by Min [25] and con-
tained only one problem, which originated from a real life application. Halse [19] proposed a set containing 16
problems constructed from CVRP problems and Dethloff [10] proposed 40 new problems containing 50 customers
each. Nagy and Salhi [32] constructed two classes of VRPSDP problems and two classes of multi depot VRPSDP
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Dethloff NS1 NS2 Standard 6R - no learning 6R - normal learning
Dethloff 824 - - 747 ( 9.3%) 746 (9.5%) 745 (9.6%)

NS-X 1006 1096 991 927 (6.5%) 925 (6.7%) 919 (7.3%)

Table 13: Summary of the results obtained on the VRPSDP instances. The table should be interpreted like Table 4. The row
denoted Dethloff summarizes the results obtained on Dethloff’s 40 instances [10] and the single instance provided by Min
[25]. Each of Dethloff’s instances contains 50 customers. The row marked NS-X summarizes Nagy and Salhi’s 14 VRPSDP
instances of class X [32]. These problems contain between 50 and 200 customers. Results for these problems are reported by
Dethloff [10] and Nagy and Salhi [32], [27]. The columns Dethloff, NS1 and NS2 summarize the best results reported in [10],
[32] and [27] respectively.

Standard 6R - no learning 6R - normal learning
Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

gap (%) time (s) gap (%) time (s) gap (%) time (s)
Dethloff 1.07 24 40 128 0.96 23 40 129 0.58 36 40 155

NS-X 2.81 6 11 685 2.73 7 13 686 2.00 7 12 772

Table 14: The table compares the 3 LNS configurations when applied to VRPSDP instances.

problems. Finally Angelelli and Mansini [2] presented a class of VRPSDP problems with time windows.
As mentioned earlier we are not going to test our heuristic on the multi depot and time window variants of the

VRPSDP. The problems we choose for our tests are Min’s problem, Dethloff’s problems and the first class of Nagy
and Salhi’s VRPSDP problems (the one denoted with an X in [32]). The results are summarized in Tables 13 and
14. Again it must be stressed that the heuristics by Dethloff and Nagy and Salhi are simple construction heuristics
that are substantially faster than the LNS heuristics.

The LNS heuristics find the optimal solution to Min’s problem (the optimal solution was found by Halse [19])
and are able to improve all of the best known solutions to Dethloff’s problems which were found using Dethloff’s
construction heuristic. The 6R - normal learning configuration is able to improve the best known solutions by more
than 9%. Having said that, it should be noticed that the LNS heuristics are fairly slow when faced with this type
of problems, because each order is represented by 2 requests and introduces significant overhead in the algorithm.
This also suggests that this problem type would benefit greatly from a specialized version of the LNS heuristic
where the overhead can be avoided. The LNS heuristic also experiences difficulties when faced with the larger
problems from Nagy and Salhi’s data set. Here the avg. gap increases to 2% for the best configuration, but the
heuristic nevertheless improves 13 of the 14 best known solutions. The configuration with learning enabled and
using all 6 removal heuristics clearly is the most robust configuration when faced with these hard problems.

6.9 Computational experiments conclusion

In Section 6.2 we raised a number of questions that the computational experiments should clarify. The first question
was whether it is possible to design a unified heuristic for a large class of vehicle routing problems with backhauls
that is able to provide solutions comparable to those obtained by specialized heuristics. We believe that the experi-
ments conducted in this paper show that this indeed is possible. This is an interesting achievement, as it to a large
extent allows practitioners to focus on a single heuristic and apply this to the problems they are faced with instead
of “reinventing the wheel” each time a new problem type needs to be solved.

The second question asked to give an evaluation of the effect of the three new removal heuristics and the
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#prob Standard 6R - no learning 6R - normal learning
Avg. #B Avg. #B Avg. #B

gap (%) gap (%) gap (%)
Goetschalckx 1 62 0.43 43 0.29 53 0.31 46
Goetschalckx 2 47 0.28 35 0.17 38 0.17 36

Toth-Vigo 33 0.71 26 0.45 28 0.26 29
MVRPB 50% 14 0.71 7 0.45 10 0.41 12
MVRPB 25% 14 0.49 11 0.38 9 0.3 11
MVRPB 10% 14 0.51 10 0.43 11 0.37 11

MDMVRPB 50% 11 0.88 8 0.71 6 0.66 7
MDMVRPB 25% 11 0.97 5 0.65 6 0.66 8
MDMVRPB 10% 11 0.93 7 0.63 10 0.61 6

VRPSDP 1 41 1.07 24 0.96 23 0.58 36
VRPSDP 2 14 2.81 5 2.73 7 2.00 7

MVRPBTW C 8 0.63 6 0.6 5 0.65 5
MVRPBTW R 11 1.34 4 0.63 8 0.63 8

MVRPBTW RC 8 2.83 5 1.99 1 1.76 3
VRPBTW 1 15 4 9 10
VRPBTW 2 24 1 10 13

Avg. 0.81 0.62 0.50
Sum 338 201 234 248

Table 15: Summary of experiments. This table shows a summary of the tests performed in this paper. Each row in the
table corresponds to a problem class. Most of the titles in the first row should be fairly self explanatory: Goetschalckx 1 -
Goetschalckx VRPB without rounding distances, Goetschalckx 2 - Goetschalckx VRPB where distances have been rounded to
one decimal. VRPSDP 1 - Dethloff VRPSDP , VRPSDP 2 - Nagy-Salhi VRPSDP, VRPBTW 1 - Gelinas VRPBTW VRPBTW 2
- Thangiah VRPBTW. The column #prob displays the number of problems in each class. The Avg. row shows the averages of
the Avg. gap(%) column. The numbers in the avg. row were calculated by summing the products of the numbers in the #prob
column with the numbers in the gap column and dividing the sum by the total number of problems. This was done to take
into account that some data sets contains more problems than others. The missing entries in the VRPBTW rows have been
left out because the primary objective of these problems is to minimize the number of vehicles and not all test runs resulted
in the same number of vehicles. Reporting the gap for these runs could make the heuristic that could not reach the minimum
number of vehicles look too good.

consequence of disabling the learning layer. Table 15 provides an overview of the experiments performed. The
Avg. row displays the overall gaps between average solutions and best known solutions. This gap is an indication
of the robustness of the heuristic. The Sum row contains the number of problems for which the particular LNS
configuration found the best known solution. The table clearly shows the impact of adding the three new removal
heuristics, as we see a great improvement in the quality of the heuristic from configuration 1 to configuration
3. The table also shows that disabling the learning layer decreases the overall quality of the results as expected.
Although comparable results can be obtained without the learning layer for specific problem types, the learning
layer apparently helps the algorithm to adapt to all the various problem types.

7 Conclusion

This paper is the first to present a unified heuristic for a large class of vehicle routing problems with backhauls.
For this purpose we have introduced a Rich VRPTW model which extends the ordinary VRP model with time
windows, pickup and delivery pairs, as well as precedence constraints. The model is very expressive, and it allows
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us to model all of the most common VRPB models within the framework, as well as other routing problems from
the literature. The unified model has the additional benefit that it allows us to combine pickup and delivery request
with a more clean VRPB or VRPSPD, as well as scheduling mixed transportation problems for a general fleet of
vehicles.

For several of the VRPB problem types presented in this paper, we report the first applications of a metaheuristic
to the problem. The results are very promising as we found a new best solution to 67% of the problems tested.
Even faster and better performing heuristics could be constructed by specializing the proposed heuristic to just one
of the problem types. We have chosen not to do this to maintain the generality of the solution approach.

The present experiments indicate that the combination of several neighborhoods makes it easier for the local
search heuristic to explore the solution space, and hence to find solutions of high quality. This conforms to similar
observations for simpler neighborhoods.

The monitoring and learning layer to control the choice of neighborhoods can be seen as a layer which maintains
a proper balance between intensification and diversification. Several other approaches have been working with this
balance, see e.g. Reactive Tabu Search [4]. In the proposed framework we do not explicitly care about which
heuristics intensify or diversify the search. The layer steadily maintains a proper balance of the heuristics so that
new, improved solutions are found. The computational results show that the learning layer overall is able to increase
the robustness of the heuristic but also indicate that further refinements may be possible as the configuration without
the learning layer occasionally outperformed the configuration that included the learning layer.

An interesting topic for further research would be to apply the framework proposed in this paper to combinat-
orial optimization problems outside the vehicle routing domain.
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9 Appendix

This section contains additional information about the experiments performed in section 6. Tables 16 to 31 list the
individual solutions found to the many problem instances considered in this paper.

An important comment should be made about Table 17. The results in this table were obtained by rounding
distances to the nearest integer when doing distance calculations. This gives results that look like the results
reported in Table III in Osman and Wassan [28] and Table 1 in Toth and Vigo [40] but both author pairs state
that results in these tables were found using a different rounding procedure. We have not been able to reproduce
the results in the two mentioned tables from Toth and Vigo and Osman and Wassan papers using the rounding
procedures described in the papers. Consequently, the objective values listed in the column Best known in table
17 should only be seen as a rough guideline of the obtainable solution quality, and the table should not be used to
make a direct comparison between the LNS heuristic and the heuristics by Toth and Vigo and Osman and Wassan.
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Best known Std. Removals 6R - no learning 6R - normal learning
n cost opt. reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

A1 25 229886 X TV + EHP 229886 229886 0.00 7 229886 229886 0.00 7 229886 229886 0.00 7
A2 25 180119 X TV + EHP 180119 180119 0.00 7 180119 180119 0.00 8 180119 180119 0.00 8
A3 25 163405 X TV + EHP 163405 163405 0.00 9 163405 163405 0.00 10 163405 163405 0.00 9
A4 25 155796 X TV + EHP 155796 155796 0.00 10 155796 155796 0.00 11 155796 155796 0.00 10
B1 30 239080 X TV + EHP 239080 239080 0.00 8 239080 239080 0.00 9 239080 239080 0.00 9
B2 30 198048 X TV + EHP 198048 198048 0.00 10 198048 198048 0.00 10 198048 198048 0.00 10
B3 30 169372 X TV + EHP 169372 169372 0.00 12 169372 169372 0.00 14 169372 169372 0.00 14
C1 40 249449 X TV + EHP 250899 250557 0.58 13 251037 250557 0.64 14 250557 250557 0.44 13
C2 40 215020 X TV + EHP 215020 215020 0.00 15 215020 215020 0.00 16 215020 215020 0.00 16
C3 40 199346 X TV + EHP 199346 199346 0.00 17 199346 199346 0.00 18 199346 199346 0.00 18
C4 40 195366 X TV + EHP 195366 195366 0.00 18 195366 195366 0.00 19 195366 195366 0.00 19
D1 38 322530 X TV + EHP 322530 322530 0.00 11 322530 322530 0.00 12 322530 322530 0.00 12
D2 38 316709 X TV + EHP 316709 316709 0.00 11 316709 316709 0.00 13 316709 316709 0.00 12
D3 38 239479 X EHP 239479 239479 0.00 12 239479 239479 0.00 13 239479 239479 0.00 12
D4 38 205832 X EHP 205832 205832 0.00 14 205832 205832 0.00 15 205832 205832 0.00 15
E1 45 238880 X TV + EHP 238880 238880 0.00 16 238880 238880 0.00 18 238880 238880 0.00 18
E2 45 212263 X TV + EHP 212547 212263 0.13 21 212263 212263 0.00 23 212505 212263 0.11 24
E3 45 206659 X TV + EHP 206698 206659 0.02 24 206698 206659 0.02 27 206711 206659 0.03 26
F1 60 263173 X TV + EHP 268334 267060 1.96 28 268463 267060 2.01 29 268321 267060 1.96 29
F2 60 265213 X TV + EHP 265213 265213 0.00 27 265213 265213 0.00 28 265213 265213 0.00 28
F3 60 241120 X TV + EHP 241969 241969 0.35 33 241969 241969 0.35 35 241969 241969 0.35 35
F4 60 233861 X TV + EHP 236547 235175 1.15 40 235258 235175 0.60 42 235449 235175 0.68 42
G1 57 306305 X EHP 306450 306306 0.05 21 306306 306306 0.00 22 306306 306306 0.00 22
G2 57 245441 X EHP 245441 245441 0.00 27 245441 245441 0.00 27 245441 245441 0.00 27
G3 57 229507 X TV 229536 229507 0.01 30 230430 229507 0.40 30 230003 229507 0.22 30
G4 57 232521 - EHP 232784 232521 0.11 29 233767 232521 0.54 31 233649 232521 0.48 31
G5 57 221730 X TV 221805 221730 0.03 33 221771 221730 0.02 35 221730 221730 0.00 36
G6 57 213457 X TV 213562 213457 0.05 38 213457 213457 0.00 41 214084 213457 0.29 39
H1 68 268933 X TV 269701 268933 0.29 38 269276 268933 0.13 40 269371 268933 0.16 40
H2 68 253365 X TV + EHP 253414 253365 0.02 45 253437 253365 0.03 48 253365 253365 0.00 47
H3 68 247449 X TV + EHP 247684 247449 0.10 51 247474 247449 0.01 53 247475 247449 0.01 54
H4 68 250221 X TV + EHP 250244 250221 0.01 49 250221 250221 0.00 52 250295 250221 0.03 51
H5 68 246121 X TV + EHP 247300 246121 0.48 56 246170 246121 0.02 57 246140 246121 0.01 55
H6 68 249135 X TV + EHP 249397 249135 0.11 53 249246 249135 0.04 54 249246 249135 0.04 55
I1 90 353021 - EHP 351106 350437 0.25 52 350951 350246 0.20 52 351069 350801 0.24 52
I2 90 309943 X EHP 311714 309944 0.57 63 310738 309944 0.26 63 310846 309944 0.29 63
I3 90 294833 - EHP 296221 294507 0.58 80 294728 294507 0.07 84 294950 294507 0.15 81
I4 90 295988 - EHP 296889 295988 0.30 75 296172 295988 0.06 75 296374 295988 0.13 76
I5 90 301226 - EHP 302666 301236 0.48 71 301619 301236 0.13 74 302066 301236 0.28 73
J1 95 335006 - EHP 336598 335007 0.48 57 336475 335480 0.44 58 336347 335007 0.40 57
J2 95 315644 - EHP 311853 310417 0.46 65 311440 310417 0.33 66 310964 310417 0.18 67
J3 95 282447 - EHP 282335 280401 1.12 83 279801 279219 0.21 86 279468 279219 0.09 84
J4 95 300548 - EHP 298004 296773 0.50 72 297529 296533 0.34 74 297249 296533 0.24 72
K1 113 394637 - EHP 398657 394376 1.09 82 397183 394376 0.71 83 395965 394517 0.40 82
K2 113 362360 - EHP 364447 362130 0.64 96 363103 362130 0.27 98 363258 362130 0.31 95
K3 113 365693 - EHP 367725 365694 0.56 95 366549 365694 0.23 97 366698 365694 0.27 96
K4 113 358308 - EHP 352064 348950 0.89 108 349775 348950 0.24 109 349483 348950 0.15 107
Tot. 12174445 12188672 12157811 1832 12172829 12156670 1902 12171434 12156893 1881
Avg. 0.28 39 0.18 40 0.17 40
< PB 8 8 8
#B 39 35 38 36

Table 16: Goetschalckx data set. The results have been produced by using distances rounded to one decimal and rounding
the final result to an integer. This rounding scheme allows us to compare the LNS heuristics to the exact methods by Toth
and Vigo [41] and Mingozzi et al. [26], we only report results on the instances that either Toth and Vigo or Mingozzi et al.
attempted to solve. The table should be read like Table 3, notice that the row <PB should be interpretted like the BTPB row in
Table 3.
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Best known Std. Removals 6R - no learning 6R - normal learning
n cost reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

A1 25 229884 TV 229884 229884 0.00 7 229884 229884 0.00 8 229884 229884 0.00 8
A2 25 180117 TV 180117 180117 0.00 8 180117 180117 0.00 9 180117 180117 0.00 8
A3 25 163403 TV 163403 163403 0.00 9 163403 163403 0.00 10 163403 163403 0.00 10
A4 25 155795 TV 155795 155795 0.00 10 155795 155795 0.00 11 155795 155795 0.00 11
B1 30 239077 TV 239077 239077 0.00 9 239077 239077 0.00 10 239077 239077 0.00 9
B2 30 198045 TV 198045 198045 0.00 10 198045 198045 0.00 11 198045 198045 0.00 11
B3 30 169368 TV 169368 169368 0.00 13 169368 169368 0.00 15 169368 169368 0.00 15
C1 40 250557 TV 250557 250557 0.00 13 250557 250557 0.00 14 250557 250557 0.00 14
C2 40 215019 TV 215019 215019 0.00 15 215019 215019 0.00 17 215019 215019 0.00 17
C3 40 199344 TV 199344 199344 0.00 18 199344 199344 0.00 20 199344 199344 0.00 21
C4 40 195365 TV 195365 195365 0.00 18 195365 195365 0.00 20 195365 195365 0.00 20
D1 38 322533 TV 322533 322533 0.00 11 322533 322533 0.00 13 322533 322533 0.00 13
D2 38 316711 TV 316711 316711 0.00 11 316711 316711 0.00 13 316711 316711 0.00 12
D3 38 239482 TV 239482 239482 0.00 12 239482 239482 0.00 14 239482 239482 0.00 13
D4 38 205834 TV 205834 205834 0.00 15 205834 205834 0.00 16 205834 205834 0.00 16
E1 45 238880 TV 238880 238880 0.00 17 238880 238880 0.00 19 238880 238880 0.00 19
E2 45 212262 TV 212262 212262 0.00 23 212262 212262 0.00 24 212262 212262 0.00 24
E3 45 206658 TV 206734 206658 0.04 25 206709 206658 0.02 28 206722 206658 0.03 28
F1 60 263175 TV 268435 267061 2.00 30 267941 267061 1.81 31 268242 267061 1.93 31
F2 60 265214 TV 265230 265214 0.01 29 265214 265214 0.00 30 265214 265214 0.00 30
F3 60 241121 OW 242014 241970 0.37 36 241970 241970 0.35 38 241970 241970 0.35 37
F4 60 233861 TV 235912 235178 0.88 42 235261 235178 0.60 45 235204 235178 0.57 44
G1 57 306304 OW 306455 306304 0.05 22 306336 306304 0.01 23 306304 306304 0.00 24
G2 57 245441 TV 245533 245441 0.04 28 245441 245441 0.00 29 245441 245441 0.00 29
G3 57 229506 OW 229963 229506 0.20 32 230421 229506 0.40 33 230414 229506 0.40 32
G4 57 232646 TV 233142 232519 0.27 31 233951 232519 0.62 33 233705 232519 0.51 33
G5 57 221731 OW 221823 221731 0.04 36 221858 221731 0.06 38 221800 221731 0.03 39
G6 57 213457 TV 213605 213457 0.07 41 213457 213457 0.00 43 213516 213457 0.03 43
H1 68 268933 OW 269630 268933 0.26 40 269460 268933 0.20 43 269226 268933 0.11 42
H2 68 253366 TV 253513 253366 0.06 48 253463 253366 0.04 50 253414 253366 0.02 50
H3 68 247449 TV 247803 247449 0.14 54 247594 247449 0.06 57 247472 247449 0.01 57
H4 68 250221 TV 250449 250221 0.09 51 250269 250221 0.02 56 250269 250221 0.02 55
H5 68 246121 TV 246367 246121 0.10 57 246265 246121 0.06 61 246339 246121 0.09 60
H6 68 249136 TV 249280 249136 0.06 54 249284 249136 0.06 60 249187 249136 0.02 59
I1 90 351609 OW 351136 350437 0.25 54 350902 350248 0.19 55 350992 350248 0.21 55
I2 90 309957 OW 312017 309946 0.67 66 311039 309946 0.35 66 310739 309946 0.26 66
I3 90 294509 OW 295043 294509 0.18 86 294788 294509 0.09 88 294773 294509 0.09 88
I4 90 295988 TV 296414 295988 0.14 79 296370 295988 0.13 80 296254 295988 0.09 84
I5 90 302525 OW 302482 301238 0.41 75 301916 301238 0.23 78 302225 301238 0.33 80
J1 95 335590 OW 336867 335004 0.56 60 336418 335478 0.42 61 336243 335004 0.37 60
J2 95 310798 OW 312248 310417 0.59 70 311378 310417 0.31 71 311662 310417 0.40 70
J3 95 279220 OW 281860 279307 0.95 90 279830 279220 0.22 91 279889 279220 0.24 92
J4 95 296774 OW 297926 296861 0.47 77 297487 296533 0.32 79 297436 296533 0.30 78
K1 113 395544 OW 397824 394511 0.88 87 396806 394458 0.62 88 395328 394369 0.24 87
K2 113 363213 OW 365244 362358 0.86 102 363938 362128 0.50 103 363350 362128 0.34 102
K3 113 366222 OW 368228 365693 0.69 100 366593 365693 0.25 102 366420 365693 0.20 101
K4 113 349037 OW 351283 348947 0.67 115 349713 348947 0.22 116 349191 348947 0.07 114
L1 150 426021 OW 427532 426014 0.36 162 427786 426283 0.42 162 428031 426178 0.47 160
L2 150 402246 OW 402643 401231 0.35 196 401917 401426 0.17 192 401720 401231 0.12 188
L3 150 403886 OW 404400 402681 0.43 189 402829 402681 0.04 189 402681 402681 0.00 187
L4 150 384843 OW 388152 384635 0.91 221 384962 384635 0.08 219 385656 384635 0.27 218
L5 150 388060 OW 392003 387563 1.15 216 388986 387563 0.37 215 388398 387563 0.22 214
M1 125 400858 OW 403542 400085 0.86 109 402393 400660 0.58 109 402158 401076 0.52 108
M2 125 398902 OW 400668 398712 0.81 109 400842 399263 0.85 109 400262 397448 0.71 106
M3 125 377352 OW 379724 377139 0.70 123 378814 377399 0.46 121 378548 377093 0.39 121
M4 125 348624 OW 349623 348604 0.31 149 349083 348530 0.16 149 349331 348530 0.23 146
N1 150 408921 OW 416448 409897 1.84 166 414350 410046 1.33 165 413239 409506 1.06 163
N2 150 409275 OW 415947 410232 1.63 167 415411 410232 1.50 163 415049 410616 1.41 163
N3 150 396162 OW 401857 396870 1.44 185 401359 396825 1.31 182 400977 397546 1.22 180
N4 150 397748 OW 402257 398293 1.89 180 399558 394785 1.21 180 401012 398667 1.58 181
N5 150 376426 OW 380571 377081 1.90 229 375915 373471 0.65 227 378486 374553 1.34 222
N6 150 377660 OW 379159 375646 1.45 221 378089 373752 1.16 226 376755 375348 0.80 225
Tot. 18053986 18130660 18051840 4555 18096042 18044295 4629 18092915 18048852 4598
Avg. 0.45 73 0.30 75 0.28 74
< PB 20 20 20
#B 39 45 49 51

Table 17: Goetschalckx data set. The results have been produced by using distances rounded to integers. The results in the
best known columns were found by the heuristics proposed by Toth and Vigo (TV) [40] and Osman and Wassan (OW) [28].
Notice that the TV and OW heuristics might have used a different rounding procedure, and consequently this table cannot be
used to compare the LNS heuristics to the two earlier heuristics (see the text in the appendix). The table is provided for future
reference only.
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Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

CMT01T 541 NS 520 520 0.00 32 520 520 0.00 34 520 520 0.00 34
CMT02T 839 NS 790 783 0.95 52 792 784 1.13 56 788 783 0.63 57
CMT03T 903 NS 805 801 0.83 104 804 801 0.72 110 803 798 0.65 109
CMT04T 1111 NS 1004 998 0.63 203 1004 998 0.61 213 1005 1000 0.73 212
CMT05T 1423 NS 1239 1231 0.97 323 1239 1232 0.95 334 1234 1227 0.57 333
CMT06T 571 NS 555 555 0.00 29 555 555 0.00 31 555 555 0.00 31
CMT07T - - 909 903 0.69 48 907 903 0.38 52 904 903 0.16 52
CMT08T 911 NS 869 866 0.43 91 868 866 0.33 94 866 866 0.10 95
CMT09T 1164 NS 1172 1166 0.75 173 1170 1164 0.56 179 1172 1164 0.67 178
CMT10T 1418 NS 1410 1398 1.09 285 1408 1395 0.93 291 1410 1402 1.05 291
CMT11T 1075 NS 1002 999 0.29 158 1001 999 0.24 163 1003 1000 0.39 164
CMT12T 827 NS 789 788 0.14 92 788 788 0.00 96 788 788 0.00 96
CMT13T 1600 NS 1550 1544 0.35 124 1548 1544 0.23 126 1547 1544 0.21 127
CMT14T 866 NS 827 827 0.06 84 827 827 0.00 86 827 827 0.00 86
Tot. 13249 13442 13378 1801 13430 13375 1864 13422 13376 1864
Avg. 0.51 129 0.43 133 0.37 133
< PB 13 13 13
#B 1 10 11 11

Table 18: Nagy and Salhi MVRPB problems with 10% backhaul customers. The entries in the Best known columns are the
best result reported by Nagy and Salhi (NS) [32] and Dethloff (D) [9]. It should be noted that Dethloff’s heuristic only have
been applied to half of the problems. No solution were given for problem 7 (this explains the dash in the table).

Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

CMT01Q 557 NS 490 490 0.02 35 490 490 0.00 40 490 490 0.00 41
CMT02Q 860 NS 737 732 0.62 57 736 733 0.54 64 737 733 0.64 65
CMT03Q 918 NS 752 747 0.68 119 751 747 0.58 126 749 747 0.23 128
CMT04Q 1164 NS 922 916 0.60 228 921 918 0.58 244 922 918 0.59 244
CMT05Q 1477 NS 1133 1124 1.35 358 1127 1118 0.83 382 1124 1119 0.52 381
CMT06Q 594 NS 555 555 0.00 28 555 555 0.00 30 555 555 0.00 30
CMT07Q - - 905 901 0.44 48 903 901 0.26 52 902 901 0.17 53
CMT08Q 918 NS 868 866 0.25 90 867 866 0.23 93 866 866 0.10 93
CMT09Q 1178 NS 1170 1162 0.69 167 1170 1164 0.69 170 1169 1162 0.62 171
CMT10Q 1477 NS 1404 1394 1.06 280 1405 1398 1.11 285 1402 1389 0.91 288
CMT11Q 1075 NS 941 939 0.22 183 941 939 0.23 195 941 939 0.12 196
CMT12Q 843 NS 731 729 0.28 100 731 729 0.21 107 730 729 0.17 108
CMT13Q 1613 NS 1554 1545 0.67 117 1546 1544 0.14 120 1546 1543 0.14 120
CMT14Q 873 NS 822 822 0.00 84 822 822 0.00 85 822 822 0.00 85
Tot. 13547 12983 12922 1896 12966 12924 1993 12954 12914 2003
Avg. 0.49 135 0.38 142 0.30 143
< PB 14 14 14
#B 0 11 9 11

Table 19: Nagy Salhi MVRPB problems with 25% backhaul customers. See Table 18 for a decription.

Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

CMT01H 536 D 468 466 0.63 44 465 465 0.08 50 466 465 0.19 51
CMT02H 801 D 666 663 0.47 69 664 663 0.21 76 664 663 0.21 78
CMT03H 850 D 705 701 0.62 165 702 701 0.14 183 702 701 0.11 186
CMT04H 1099 D 842 835 1.57 306 840 829 1.27 346 840 829 1.24 345
CMT05H 1329 D 996 986 1.36 461 994 986 1.12 514 991 983 0.78 514
CMT06H 595 NS 555 555 0.00 29 555 555 0.00 31 555 555 0.00 31
CMT07H - - 904 901 0.40 49 902 901 0.23 52 903 900 0.29 54
CMT08H 915 NS 866 866 0.08 92 867 866 0.14 94 868 866 0.26 95
CMT09H 1164 NS 1169 1164 0.72 172 1171 1161 0.86 176 1169 1166 0.69 177
CMT10H 1509 NS 1406 1389 1.24 290 1406 1396 1.23 295 1401 1393 0.92 296
CMT11H 961 D 829 818 1.37 271 820 818 0.26 315 818 818 0.04 303
CMT12H 765 D 636 630 1.00 135 633 629 0.65 146 635 629 0.86 150
CMT13H 1546 NS 1552 1544 0.54 120 1545 1544 0.13 123 1546 1543 0.18 125
CMT14H 866 NS 822 822 0.00 87 822 822 0.00 89 822 822 0.00 89
Tot. 12936 12416 12338 2291 12387 12335 2490 12379 12333 2493
Avg. 0.71 164 0.45 178 0.41 178
< PB 13 14 13
#B 0 7 10 12

Table 20: Nagy Salhi MVRPB problems with 50% backhaul customers. See Table 18 for a decription.
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Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

GJ01T 614 NS 570 569 0.12 30 569 569 0.00 34 569 569 0.00 35
GJ02T 497 NS 464 464 0.04 34 464 464 0.04 37 464 464 0.00 38
GJ03T 662 NS 627 624 0.34 60 626 624 0.29 65 626 625 0.19 64
GJ04T 1055 NS 976 972 1.43 80 969 962 0.75 85 971 962 0.92 86
GJ05T 794 NS 739 735 0.85 114 738 733 0.62 118 738 733 0.61 119
GJ06T 914 NS 859 851 0.90 85 853 851 0.21 90 852 851 0.16 91
GJ07T 992 NS 864 854 1.23 82 862 855 1.04 88 859 854 0.59 87
GJ08T 4674 NS 4183 4134 1.17 417 4170 4134 0.86 431 4179 4152 1.08 435
GJ09T 4087 NS 3727 3684 1.39 452 3718 3677 1.12 492 3716 3678 1.06 485
GJ10T 4002 NS 3540 3502 1.58 444 3524 3485 1.11 472 3516 3492 0.88 467
GJ11T 3794 NS 3428 3390 1.12 445 3421 3390 0.92 469 3432 3409 1.23 464
Tot. 22085 19977 19780 2243 19915 19745 2382 19921 19789 2371
Avg. 2008 0.93 204 0.63 217 0.61 216
< PB 11 11 11
#B 0 7 10 6

Table 21: Nagy Salhi MDMVRPB problems with 10% backhaul customers.

Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

GJ01Q 666 NS 529 528 0.04 32 528 528 0.00 36 528 528 0.00 38
GJ02Q 550 NS 451 450 0.34 38 451 450 0.27 43 451 450 0.39 44
GJ03Q 670 NS 607 605 0.26 64 608 605 0.40 71 607 605 0.36 72
GJ04Q 1168 NS 879 876 0.47 87 876 875 0.13 94 880 876 0.55 95
GJ05Q 828 NS 705 700 0.72 124 705 702 0.65 133 706 703 0.83 134
GJ06Q 978 NS 805 794 1.39 92 800 794 0.78 100 799 794 0.60 100
GJ07Q 940 NS 808 803 0.69 89 807 803 0.51 94 806 802 0.45 95
GJ08Q 4877 NS 3826 3799 1.72 449 3810 3774 1.29 479 3792 3762 0.80 478
GJ09Q 4087 NS 3433 3391 2.31 482 3393 3355 1.13 535 3394 3362 1.15 535
GJ10Q 3931 NS 3294 3259 1.61 477 3267 3245 0.79 513 3276 3242 1.04 510
GJ11Q 3840 NS 3191 3171 1.15 472 3192 3165 1.17 511 3189 3155 1.10 505
Tot. 22535 18528 18375 2407 18437 18296 2609 18428 18279 2608
Avg. 2049 0.97 219 0.65 237 0.66 237
< PB 11 11 11
#B 0 5 6 8

Table 22: Nagy Salhi MDMVRPB problems with 25% backhaul customers.

Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

GJ01H 619 NS 499 499 0.06 36 499 499 0.04 40 499 499 0.00 42
GJ02H 562 NS 440 440 0.00 44 440 440 0.00 51 440 440 0.00 53
GJ03H 662 NS 584 581 0.60 73 583 581 0.40 81 583 581 0.35 82
GJ04H 1055 NS 795 789 0.73 102 797 790 0.91 112 796 790 0.84 114
GJ05H 853 NS 681 678 0.50 154 680 678 0.28 168 680 678 0.27 171
GJ06H 1034 NS 753 748 1.06 106 751 747 0.80 116 751 745 0.91 118
GJ07H 932 NS 739 733 0.88 107 734 733 0.23 117 735 733 0.29 113
GJ08H 5188 NS 3391 3370 1.92 530 3373 3327 1.38 581 3371 3342 1.31 577
GJ09H 4087 NS 3043 3005 1.27 582 3028 3006 0.78 646 3027 3008 0.75 650
GJ10H 4041 NS 2961 2931 1.16 547 2963 2930 1.21 644 2962 2927 1.19 637
GJ11H 3933 NS 2898 2855 1.49 557 2905 2880 1.74 609 2893 2859 1.33 606
Tot. 22966 16785 16630 2841 16753 16611 3166 16738 16601 3163
Avg. 2088 0.88 258 0.71 288 0.66 288
< PB 11 11 11
#B 0 8 6 7

Table 23: Nagy Salhi MDMVRPB problems with 50% backhaul customers.
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Best known Std. Removals 6R - no learning 6R - normal learning
% BH n m cost ref avg. best best avg. avg. best best avg. avg. best best avg.

#veh. sol. #veh. time #veh. sol. #veh. time #veh. sol. #veh. time
(s) (s) (s)

BHR1DO.10 10% 250 49 5085 TPS 46.0 4848.2 46 556 46.0 4844.8 46 571 46.0 4843.9 46 586
BHR1DO.30 20% 250 48 5243 TPS 45.0 5074.2 45 502 45.0 5062.7 45 512 45.0 5066.9 45 528
BHR1DO.50 50% 250 52 5403.1 TPS 49.0 5122.6 49 508 49.0 5107.1 49 531 49.0 5113.7 49 541
BHR1UP.10 10% 250 39 4278.6 TPS 32.0 3942.3 32 514 31.8 4056.9 31 503 32.0 3943.1 32 530
BHR1UP.30 30% 250 41 4715.2 TPS 35.0 4448.9 35 475 35.0 4427.8 35 474 34.8 4549.7 34 488
BHR1UP.50 50% 250 43 4921.4 TPS 36.0 4443.7 36 465 35.6 4618.4 35 473 36.0 4442.2 36 476
BHRC1DO.10 10% 250 39 4613.4 TPS 33.0 4116.8 33 506 32.8 4310.4 32 500 32.6 4211.6 32 519
BHRC1DO.30 20% 250 41 4852.2 TPS 34.4 4506.3 34 466 34.2 4534.4 34 466 34.2 4526.2 34 478
BHRC1DO.50 50% 250 41 4329.4 TPS 35.0 4500.2 35 456 34.4 4513.9 34 458 34.6 4589.6 34 463
BHRC1UP.10 10% 250 40 4445.8 TPS 33.4 4160.9 33 497 33.0 4137.0 33 488 33.4 4105.3 33 506
BHRC1UP.30 30% 250 43 4722.4 TPS 36.0 4485.2 36 466 35.0 4538.0 35 459 35.4 4555.8 35 469
BHRC1UP.50 50% 250 41 4899.4 TPS 35.6 4605.8 35 455 35.6 4558.5 35 464 35.2 4550.2 35 464
Tot. 517 57509 450.4 54255.1 449 5868 447.4 54710.0 444 5899 448.2 54498.3 445 6050
Avg. 489 492 504
< PB 12 12 12
#B 0 1 6 5

Table 24: Thangiah et al. 250 customer VRPBTW instances. The previously best known results have been found in [38]
(TPS).

Best known Std. Removals 6R - no learning 6R - normal learning
% BH n m cost ref avg. best best avg. avg. best best avg. avg. best best avg.

#veh. sol. #veh. time #veh. sol. #veh. time #veh. sol. #veh. time
(s) (s) (s)

BHR1DO.10 10% 500 67 7620.4 TPS 58.4 6899.9 58 1726 58.0 6860.2 58 1691 58.0 6868.0 58 1763
BHR1DO.30 20% 500 69 9020.2 TPS 59.4 7320.8 59 1555 58.8 7337.2 58 1557 59.0 7262.3 59 1595
BHR1DO.50 50% 500 76 8376.5 TPS 61.8 7342.7 61 1554 61.0 7342.4 61 1575 60.8 7294.7 60 1584
BHR1UP.10 10% 500 64 7267.2 TPS 55.0 6776.6 54 1660 55.0 6702.7 54 1378 54.6 6784.7 54 1692
BHR1UP.30 30% 500 73 7926.6 TPS 57.8 7243.0 57 1533 57.8 7055.0 57 1679 57.6 6991.0 57 1566
BHR1UP.50 50% 500 68 8043.7 TPS 59.4 7119.1 59 1500 59.0 7126.2 59 1741 58.6 7217.3 58 1548
BHRC1DO.10 10% 500 61 7099.4 TPS 52.2 6362.6 52 1652 52.2 6346.8 52 1814 52.2 6313.3 52 1658
BHRC1DO.30 20% 500 63 7707.1 TPS 54.8 6959.3 54 1511 54.8 6889.0 54 1703 54.4 6813.6 54 1530
BHRC1DO.50 50% 500 65 7771.6 TPS 55.0 6983.7 54 1503 54.8 6914.5 54 1727 54.4 6896.5 54 1520
BHRC1UP.10 10% 500 63 7209.4 TPS 55.8 6493.5 55 1584 55.2 6483.4 55 1622 55.2 6464.1 55 1591
BHRC1UP.30 30% 500 63 7967.1 TPS 58.0 7030.2 57 1476 58.0 6918.8 58 1628 58.0 7028.3 57 1500
BHRC1UP.50 50% 500 67 8135.1 TPS 57.4 6965.8 57 1486 56.6 6969.6 56 1701 57.2 6862.3 57 1296
Tot. 799 94144 685.0 83497.3 677 18742 681.2 82945.7 676 19815 680.0 82796.0 675 18843
Avg. 1562 1651 1570
< PB 12 12 12
#B 0 0 4 8

Table 25: Thangiah et al. 500 customer VRPBTW instances. The previously best known results are the solutions found by
Thangiah et al. (TPS) [38].

Best known Std. Removals 6R - no learning 6R - normal learning
veh. cost Reference avg. avg. best best avg. avg. avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s) (%) (s)

MC201 5 763.88 ZC 774.59 4.0 766.82 4 1.01 140 769.96 4.0 766.82 4 0.41 141 766.82 4.0 766.82 4 0.00 144
MC202 4 1186.24 ZC 736.76 4.0 732.93 4 0.52 165 734.85 4.0 732.93 4 0.26 171 737.51 4.0 732.93 4 0.63 165
MC203 4 1096.31 ZC 710.14 4.0 705.86 4 0.80 171 708.68 4.0 707.75 4 0.60 177 708.48 4.0 704.49 4 0.57 174
MC204 4 885.73 ZC 677.75 4.0 676.18 4 0.23 188 679.06 4.0 676.18 4 0.43 193 678.54 4.0 676.18 4 0.35 189
MC205 5 781.7 ZC 754.81 4.0 748.34 4 0.86 152 755.72 4.0 751.96 4 0.99 153 758.83 4.0 751.96 4 1.40 152
MC206 5 860.74 ZC 750.16 4.0 748.17 4 0.41 157 748.33 4.0 747.08 4 0.17 158 748.09 4.0 747.08 4 0.14 157
MC207 5 792.96 ZC 745.38 4.0 737.39 4 1.08 161 745.43 4.0 737.39 4 1.09 164 745.57 4.0 738.70 4 1.11 162
MC208 5 859.92 ZC 736.19 4.0 735.17 4 0.14 161 741.69 4.0 738.70 4 0.89 164 742.76 4.0 738.70 4 1.03 162
Tot. 37 7227 5885.79 32.00 5850.87 32 1295 5883.72 32.00 5858.82 32 1320 5886.63 32.00 5856.87 32 1305
Avg. 5 0.63 162 0.60 165 0.65 163
< PB 8 8 8
#B 0 6 5 5

Table 26: Kontoravdis and Bard’s MVRPBTW instances. C-type problems. The previously best known results are the
solutions found by Zhong and Cole (ZC) [48]. Kontoravdis and Bard [23] do not give detailed information about their
solutions.
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Best known Std. Removals 6R - no learning 6R - normal learning
veh. cost Reference avg. avg. best best avg. avg. avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s) (%) (s)

MR201 4 1388.73 ZC 1272.20 4.0 1260.48 4 1.27 157 1263.64 4.0 1256.31 4 0.58 165 1261.90 4.0 1256.31 4 0.45 160
MR202 4 1198.99 ZC 1101.54 4.0 1092.01 4 1.39 359 1092.08 4.0 1086.46 4 0.52 371 1092.36 4.0 1086.46 4 0.54 362
MR203 4 988.82 ZC 913.57 4.0 894.54 4 2.13 387 900.08 4.0 896.14 4 0.62 383 899.59 4.0 896.14 4 0.56 374
MR204 4 858.32 ZC 739.43 4.0 737.51 4 0.36 419 737.87 4.0 737.51 4 0.15 436 738.63 4.0 736.75 4 0.25 432
MR205 4 1172.53 ZC 994.25 4.0 974.26 4 2.05 351 994.86 4.0 974.26 4 2.11 367 989.36 4.0 974.26 4 1.55 353
MR206 4 979.5 ZC 910.42 4.0 897.03 4 1.83 386 896.47 4.0 894.05 4 0.27 397 894.25 4.0 894.04 4 0.02 388
MR207 4 912.69 ZC 811.92 4.0 800.79 4 1.39 421 800.79 4.0 800.79 4 0.00 426 800.79 4.0 800.79 4 0.00 422
MR208 4 764.52 ZC 722.34 4.0 719.12 4 0.85 412 719.05 4.0 716.28 4 0.39 435 718.91 4.0 716.28 4 0.37 431
MR209 4 978.82 ZC 894.18 4.0 879.63 4 1.65 354 886.97 4.0 879.63 4 0.83 371 893.49 4.0 881.60 4 1.58 361
MR210 4 1061.36 ZC 936.45 4.0 930.92 4 1.29 361 929.49 4.0 924.56 4 0.53 377 928.71 4.0 924.56 4 0.45 369
MR211 4 878.81 ZC 767.51 4.0 763.54 4 0.58 376 770.42 4.0 763.09 4 0.96 400 772.21 4.0 765.03 4 1.19 394
Tot. 44 11183 10063.80 44.00 9949.83 44 3983 9991.73 44.00 9929.07 44 4128 9990.20 44.00 9932.21 44 4046
Avg. 4 1.34 362 0.63 375 0.63 368
< PB 11 11 11
#B 0 4 8 8

Table 27: Kontoravdis and Bard’s MVRPBTW instances. R-type problems.

Best known Std. Removals 6R - no learning 6R - normal learning
veh. cost Reference avg. avg. best best avg. avg. avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s) (%) (s)

MRC201 5 1498.9 ZC 1370.16 5.0 1346.30 5 1.77 234 1357.26 5.0 1355.42 5 0.81 238 1356.84 5.0 1355.63 5 0.78 236
MRC202 4 1539.41 ZC 1263.92 4.0 1230.24 4 2.74 171 1261.06 4.0 1241.77 4 2.51 174 1250.88 4.0 1230.24 4 1.68 171
MRC203 4 1303.48 ZC 1020.29 4.0 997.06 4 2.48 177 1004.33 4.0 995.63 4 0.87 175 999.79 4.0 995.63 4 0.42 176
MRC204 4 932.48 ZC 843.99 4.0 833.60 4 1.25 187 844.08 4.0 835.13 4 1.26 188 846.01 4.0 836.89 4 1.49 187
MRC205 4 1632.04 ZC 1461.20 4.0 1417.14 4 3.30 168 1449.27 4.0 1419.07 4 2.46 166 1452.19 4.0 1414.52 4 2.66 160
MRC206 4 1433.43 ZC 1286.51 4.0 1231.52 4 4.47 168 1277.35 4.0 1249.48 4 3.72 170 1291.85 4.0 1254.51 4 4.90 166
MRC207 4 1217.2 ZC 1119.23 4.0 1096.06 4 3.31 175 1109.06 4.0 1084.81 4 2.37 174 1101.21 4.0 1083.33 4 1.65 169
MRC208 4 1085.57 ZC 875.86 4.0 847.46 4 3.35 180 863.90 4.0 852.25 4 1.94 182 851.50 4.0 849.30 4 0.48 175
Tot. 33 10643 9241.15 33.00 8999.36 33 1461 9166.31 33.00 9033.57 33 1467 9150.29 33.00 9020.05 33 1441
Avg. 4 2.83 183 1.99 183 1.76 180
< PB 8 8 8
#B 0 5 1 4

Table 28: Kontoravdis and Bard’s MVRPBTW instances. RC-type problems.
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Best known Std. Removals 6R - no learning 6R - normal learning
n cost reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

Min 22 88 H 88.3 88.0 0.34 37 88.5 88.0 0.57 44 88.5 88.0 0.57 50
SCA3-0 50 689 D 640.6 640.5 0.71 173 641.1 640.5 0.79 173 638.3 636.1 0.35 232
SCA3-1 50 765.6 D 698.4 697.8 0.08 170 698.8 697.8 0.14 173 697.8 697.8 0.00 218
SCA3-2 50 742.8 D 659.3 659.3 0.00 161 660.2 659.3 0.14 160 659.3 659.3 0.00 203
SCA3-3 50 737.2 D 681.4 680.6 0.12 182 682.7 681.3 0.31 179 681.4 680.6 0.11 241
SCA3-4 50 747.1 D 691.2 690.5 0.11 160 693.1 690.5 0.38 166 691.0 690.5 0.08 208
SCA3-5 50 784.4 D 662.2 659.9 0.34 178 660.5 659.9 0.10 179 659.9 659.9 0.00 226
SCA3-6 50 720.4 D 651.3 651.1 0.04 179 652.1 651.1 0.15 171 651.3 651.1 0.04 233
SCA3-7 50 707.9 D 667.9 666.1 0.27 169 667.0 666.1 0.13 162 667.0 666.1 0.13 206
SCA3-8 50 807.2 D 721.3 719.5 0.26 167 719.5 719.5 0.00 157 719.5 719.5 0.00 190
SCA3-9 50 764.1 D 681.0 681.0 0.01 171 681.0 681.0 0.01 167 681.0 681.0 0.00 220
SCA8-0 50 1132.9 D 991.1 982.2 1.63 82 993.2 987.9 1.85 94 986.3 975.1 1.15 98
SCA8-1 50 1150.9 D 1083.1 1072.8 2.92 82 1082.6 1068.8 2.87 94 1066.5 1052.4 1.35 95
SCA8-2 50 1100.8 D 1046.3 1039.6 0.64 83 1049.9 1044.5 0.99 87 1049.2 1044.5 0.92 94
SCA8-3 50 1115.6 D 1016.5 1007.8 2.49 85 1012.5 991.8 2.08 91 1006.3 999.1 1.45 94
SCA8-4 50 1235.4 D 1067.4 1065.5 0.18 84 1067.0 1065.5 0.14 87 1065.6 1065.5 0.01 93
SCA8-5 50 1231.6 D 1052.8 1039.6 2.50 84 1047.9 1040.4 2.02 89 1039.9 1027.1 1.24 96
SCA8-6 50 1062.5 D 996.2 986.0 2.44 82 987.5 972.5 1.54 93 983.5 977.0 1.14 94
SCA8-7 50 1217.4 D 1067.1 1062.2 0.57 82 1068.3 1063.2 0.69 88 1065.8 1061.0 0.45 92
SCA8-8 50 1231.6 D 1086.4 1071.2 1.42 85 1084.3 1077.7 1.22 93 1078.8 1071.2 0.71 98
SCA8-9 50 1185.6 D 1077.0 1067.3 1.55 82 1068.8 1060.5 0.79 86 1064.7 1060.5 0.40 92
CON3-0 50 672.4 D 623.4 617.6 1.11 173 621.5 616.5 0.81 171 619.0 616.5 0.40 215
CON3-1 50 570.6 D 558.1 554.5 0.65 190 555.5 554.5 0.18 190 554.5 554.5 0.00 245
CON3-2 50 534.8 D 522.3 521.4 0.18 176 523.0 521.4 0.32 177 521.6 521.4 0.05 232
CON3-3 50 656.9 D 591.2 591.2 0.00 185 591.2 591.2 0.00 177 591.2 591.2 0.00 231
CON3-4 50 640.2 D 591.7 588.8 0.49 187 590.5 588.8 0.29 173 590.0 588.8 0.21 221
CON3-5 50 604.7 D 566.3 563.7 0.47 181 567.3 563.7 0.64 179 564.4 563.7 0.12 209
CON3-6 50 521.3 D 501.6 499.1 0.51 195 503.0 501.8 0.78 180 501.9 500.8 0.57 225
CON3-7 50 602.8 D 579.7 577.5 0.56 178 584.1 578.4 1.32 181 579.5 576.5 0.53 227
CON3-8 50 556.2 D 523.5 523.1 0.08 186 523.7 523.1 0.12 174 523.5 523.1 0.08 237
CON3-9 50 612.8 D 585.9 578.2 1.32 175 587.4 578.2 1.58 163 588.2 586.4 1.71 207
CON8-0 50 967.3 D 867.8 857.2 1.24 86 867.7 858.0 1.22 87 860.9 857.2 0.43 94
CON8-1 50 828.7 D 761.0 740.9 2.72 85 754.2 741.7 1.81 92 750.5 740.9 1.30 94
CON8-2 50 770.2 D 731.3 719.3 2.14 85 728.8 718.3 1.79 93 721.4 716.0 0.75 94
CON8-3 50 906.7 D 827.9 822.9 2.07 88 816.7 811.1 0.69 91 813.7 811.1 0.33 98
CON8-4 50 876.8 D 779.1 772.3 0.89 88 779.3 772.3 0.91 87 774.3 772.3 0.27 95
CON8-5 50 866.9 D 773.9 763.1 2.41 85 772.2 763.1 2.19 92 766.5 755.7 1.44 94
CON8-6 50 749.1 D 717.0 705.8 3.46 88 712.5 696.9 2.81 95 707.9 693.1 2.14 96
CON8-7 50 929.8 D 844.8 831.5 3.69 86 843.1 818.0 3.48 94 833.1 814.8 2.24 94
CON8-8 50 833.1 D 781.2 774.1 0.93 87 781.3 775.9 0.94 88 778.8 774.0 0.63 94
CON8-9 50 877.3 D 813.3 812.0 0.49 86 814.5 812.0 0.64 91 813.0 809.3 0.46 92
Tot. 33797 30867.6 30642.7 5267 30823.9 30592.8 5308 30695.7 30530.3 6368
Avg. 824 1.07 128 0.96 129 0.58 155
< PB 40 40 40
#B 1 24 23 36

Table 29: The first problem in the table is Min’s 21 customer problem which was solved to optimality by Halse (H) [19].
The rest of the problems were proposed by Dethloff (D) [10].

Best known Std. Removals 6R - no learning 6R - normal learning
n cost reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

SN1X 50 501 D 475 467 1.75 171 472 467 1.22 190 473 467 1.27 221
SN2X 75 782 D 718 702 2.40 255 722 709 2.84 271 719 704 2.46 294
SN3X 100 847 D 739 727 1.56 768 746 731 2.54 695 741 731 1.93 863
SN4X 150 1050 D 919 894 4.75 1345 903 877 2.95 1459 893 879 1.79 1676
SN5X 199 1348 D 1132 1108 2.13 2057 1162 1138 4.83 2217 1130 1108 1.99 2340
SN6X 50 584 D 559 559 0.08 97 559 559 0.08 98 559 559 0.08 113
SN7X 75 961 D 918 905 1.82 154 917 903 1.72 158 910 901 0.95 167
SN8X 100 923 NS 872 866 0.69 384 872 866 0.74 367 868 866 0.29 413
SN9X 150 1215 NS 1239 1221 3.54 703 1235 1197 3.17 726 1228 1205 2.57 765
SN10X 199 1571 D 1526 1494 4.42 1136 1522 1490 4.13 1214 1501 1462 2.71 1275
SN11X 120 959 D 907 875 8.33 1725 921 875 10.05 1410 901 837 7.70 1821
SN12X 100 804 D 698 688 2.11 628 692 683 1.32 574 692 685 1.29 684
SN13X 120 1576 D 1637 1595 3.90 494 1601 1591 1.57 539 1593 1578 1.09 563
SN14X 100 871 D 904 876 4.69 354 896 863 3.75 367 897 885 3.87 387
Tot. 13992 13242 12976 10270 13219 12947 10286 13105 12866 11585
Avg. 999 3.01 734 2.92 735 2.14 827
< PB 11 13 12
#B 1 6 7 7

Table 30: Nagy and Salhi’s VRPSDP instances. X-type problems.
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Best known Std. Removals 6R - no learning 6R - normal learning
n cost reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

SN1Y 50 501 D 470 467 0.69 194 471 467 0.88 192 469 467 0.53 235
SN2Y 75 782 D 692 685 1.04 315 704 691 2.88 268 694 685 1.34 331
SN3Y 100 847 D 743 734 1.20 632 751 742 2.28 625 747 738 1.71 708
SN4Y 150 1050 D 868 854 1.57 1866 876 856 2.56 1487 881 876 3.08 1788
SN5Y 199 1348 D 1158 1131 2.37 2030 1186 1132 4.86 2106 1169 1146 3.31 2177
SN6Y 50 584 D 560 559 0.21 93 562 559 0.63 96 560 559 0.20 101
SN7Y 75 961 D 987 969 3.73 158 1008 979 5.92 163 993 952 4.38 166
SN8Y 100 923 NS 896 880 2.63 361 916 894 4.85 362 895 873 2.43 398
SN9Y 150 1215 NS 1282 1267 5.55 732 1286 1256 5.83 720 1288 1271 6.03 757
SN10Y 199 1527 NS 1597 1567 4.57 1207 1596 1573 4.54 1195 1591 1552 4.16 1255
SN11Y 120 1070 D 972 938 5.71 1193 980 956 6.54 1154 951 920 3.42 1376
SN12Y 100 825 D 683 673 1.58 531 689 686 2.39 506 684 675 1.65 539
SN13Y 120 1576 D 1771 1726 12.38 531 1629 1612 3.34 538 1613 1602 2.33 547
Tot. 13209 12680 12451 9844 12654 12403 9412 12534 12315 10378
Avg. 944 3.33 703 3.65 672 2.66 741
< PB 9 9 10
#B 3 7 2 6

Table 31: Nagy and Salhi’s VRPSDP instances. Y-type problems.
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