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Abstract

In this thesis we investigate the potential use of support vector machines (SVMs) for distributed

machine learning. An SVM is an algorithm out of the machine learning field, which can be used for

classification, regression, and other important tasks. The novel approach in this thesis is to apply

the SVMs as co-active learning units while respecting the distributed setting of the problem. We

construct the problem in such a way that significant constraints in the distributed learning system

are introduced to add further dimensions to the research problems. In this framework, which we for

simplicity label Distributed Support Vector Machine, it is not enough only to look at the objective

function of the SVM. In many instances various constraints of the distributed units would need to

be considered in the training and deployment aspects of the distributed learners. The ideas of using

SVMs as the base learner for co-active, distributed learning is not previously tested. Therefore, this

thesis is about presenting the basic framework and justify further research in the field.



Chapter 1

Introduction

This research is interdisciplinary by nature. Accordingly, we use components from three disciplines

to attain our research objectives of describing an intelligent, energy-aware distributed learning sys-

tem.

Distributed

  Systems

 Intelligent

Algorithms

   Energy

Awareness

Figure 1.1: Interdisciplinary nature of thesis. The study is rooted in three interrelated areas of
computer science, namely intelligent algorithms/machine learning, distributed systems, and energy
awareness.

Machine learning in distributed systems differs from non-distributed machine learning as

it is subject to a number of additional constraints related to communication, computational, spa-

tial, and temporal issues. A general characteristic of machine learning is that it covers fundamental

learning tasks such as classification, regression, and clustering. The application scope of distributed

machine learning is wide, and the selection of an appropriate algorithm is often ad hoc. In a quest
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to develop a distributed machine learning framework capable of solving many learning tasks yet

configurable toward additional distribution-related constraints, a certain algorithmic family seems

particularly interesting: support vector machines (SVMs). Its main asset in this context—as a dual

formulated maximal margin algorithm—is the well-known characteristic that the full model is in-

herently specified by only a smaller subset of the available data points. This basic quality and other

useful modifications are combined with the sequential minimal optimization algorithm to specify a

framework capable of solving fundamental machine learning tasks and also implement and docu-

ment a working prototype in Java. The framework is labelled Distributed Support Vector Machine

(DSVM). Our description, research, and results are positive in terms of the applicability of the SVM

for this purpose. The future of this framework is likely but maybe not immediate.

A brief and high-level introduction to SVMs would be to present it as a mathematical func-

tion that works on data generated by some system. Some examples of data could be sensor data such

as acceleration, light, and temperature, or data related to a group of people in some pervasive domain

such as mobile telephony. The overall goal of using SVMs on such data is to gain insights related

to the nature of the data such that we are able to make or refrain from certain actions. Following

the sensor data example, the sensor nodes can be programmed to take specific actions if they detect

a certain combination of light, sound, and temperature. Data input quickly become too complicated

for ad-hoc programming in order to infer meaningful patterns in the data, and therefore, one can

make use of an appropriate family of algorithms such as SVMs to address this issue. The second

example of using SVMs in a mobile and pervasive setting could be motivated by the idea that we

want to offer relevant services and information to the users. It would be the same goals as hold for

the large online bookstore www.amazon.com: to find out what the customer preferences are based

on previous individual and collective actions. SVMs are one set of algorithms, which has received

significant interest over that last decade. They have been applied to various problems with great

success, and this thesis is subject to a new line of research: the potential use of SVMs in distributed

systems using properties of the SVMs to further make them useful for distributed machine learning.

2



1.1 Research Question

This thesis describes a framework for using the SVM in a distributed environment with an emphasis

on constrained computing. Our definition of a distributed environment is characterized by multi-

ple input data collection nodes for each inference problem. In this supposedly machine-learnable

environment, we attempt to combine one family of algorithms (support vector machines) with one

context (distributed learning) to establish a framework for distributed inference founded in statis-

tical learning theory. More specifically, we research if the SVM is a suitable learning machine

for working in a distributed environment due to its inherent advantages in terms of scalability and

robustness of a possible solution. With respect to the SVM, we develop approaches to exchange

information, which is applicable to SVM-learnable problems such as classification, regression, or-

dinal regression, clustering, and single class novelty detection. This approach is used to create a

scalable solution framework to address some inference problems in a distributed environment.

The two main research questions are:

• Is the standard support vector machine useful for distributed machine learning?

• Can the support vector machine be applied specifically for distributed machine learning?

It has already been established that SVMs are useful in many machine learning problems

such as optical character recognition. Therefore, that is not raised as a research question in this

thesis. We define distributed machine learning as a problem domain characterized by computational

and other system constraints. Accordingly, the research design centers on a review of the SVM

literature with an emphasis on those parts that can be used directly or indirectly to control the

resource and energy consumption of SVMs. The work is empirical in nature with a focus on low

dimensional data examples to allow visualization of the key points. A goal of the thesis is also to

provide implementations of the SVM on multiple constrained platforms.

The overall problem of optimizing a distributed learning system over its entire lifecycle can

3



be expressed as a related set of functions:

W (R, T, S) (1.1)

R(L) (1.2)

T (D, S) (1.3)

S(CC,HW,SW ) (1.4)

The overall optimization problem in consideration isW , which is the overall performance of a

distributed inference system over its entire lifespan. It is a function that depends on three broad

variables. The quality of the learning machines in the distributed inference system can be sum-

marized byR, which is a function of a given loss functionL. Each type of learning problem can

be associated with a particular loss function,L. Next, W depends onT , which is a time-related

variable. Some systems will have longT and other systems, such as sensor networks, currently

have a shorter span of life. The last variable of importance toW is S. It captures the distributed

system properties and associated costs. These costs are related to communization cost and security

costs. WithW being introduced, we can look at the next three equations. The risk functionalR,

is dependent on the loss functionL of the underlying learning machine(s). The time related costs

T , depends onD, the data available to the system, andS, the system properties of the system.S is

defined to be related and determined byCC, communication costs and constraints in the system, the

hardware used,HW , and the software used,SW . This broad range of properties for a distributed

inference system is useful for explaining the scope and motivation of the thesis.

The motivation of the thesis is mostly hinged onCC, the communication cost, andHW , the

hardware related constraints. However, significant effort has also gone into finding methods, within

the SVM class of learning machines, that can facilitate a small software implementation/mainte-

nance cost,SW , which is the primary reason for choosing a well-established language (Java) as the

main prototyping language. Standard security issues, which would be related toS have not been an

area of immediate focus.
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We investigate how SVMs can be used as the means for constructing a distributed infer-

ence model. It is possible to construct both a distributed clustering model as well as a distributed

classification model. As this is a new application of SVMs and because distributed clustering is a

large topic, we mainly discuss distributed classification in this thesis. The use of support vectors for

clustering is discussed in a paper by A. Ben-Hur et al. [6]. The choice of starting with a distributed

classifier is natural as the concepts and ideas in this thesis can be analyzed in this setting without

the need to work in parallel on regression and clustering applications.

The organization of the thesis serves to support our research objectives with respect to a

distributed support vector machine (DSVM). In chapter 2 the background and related work for

the support vector machine (SVM), distributed data mining (DDM), and distributed systems are

discussed. The discussion on SVMs provides the references to the papers that pioneered this field.

These sources provide the foundation for the thesis. There are several a priori reasons why the

DSVM framework is interesting from both an application and theoretical point of view.

1. Vectors (the data) given in the system are either used by the SVM or not, which leads to a

natural reduction in data storage by the distributed nodes.

2. The use of kernels—an important mathematical object for SVMs—on distributed nodes al-

lows for inference in high-dimensional vector spaces while raw data can still be exchanged in

its potentially lower-dimensional input space.

3. Each node in the distributed system can employ a specific kernel to its local data set.

4. The distributed support vector machine classification framework can be extended to other

learning tasks such as distributed regression or distributed clustering.

5. The existence of error bounds rooted in statistical learning theory [93] allows for an analytical

approach to models for trading error margin, or variance of same, for communication load,

CPU power, or speed of training new models.
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It is for these reasons that we foresee the SVM model as a viable learning algorithm for distrib-

uted machine learning environments. The literature review covers existing research within the three

main areas relating to this thesis: Machine learning/support vector machines, distributed systems,

and distributed data mining. The review especially focuses on the segment of the SVM research

that explores methods for reducing the computational burdens of working with SVMs, such that

it can be applied to the DSVM framework to address problems in constrained environments. The

SVM can be used for regression and clustering problems. Therefore, a brief review of those two

important tasks are included in the review. Following the review of SVMs, the already established

work in distributed data mining is presented. A large body of literature related to software agents

and intelligent versions of the same is available. Since we do not use the agent perspective to a

great extent in the DSVM framework, literature addressing this issue is included mainly for com-

pleteness. The constraints, which give meaning to the DSVM framework, are mainly taken from

the science of distributed systems. We include references to recent research such as wireless sensor

networks [99] to point to an area of distributed systems that is particularly dominated by different

forms of computational constraints. It is mainly CPU, storage, and communication constraints that

are of interest when reviewing the literature.

The main part of the thesis consists of two chapters that represent the principal discussion

on the use of SVMs for distributed learning tasks in constrained environments. The first of those

chapters addresses the issues related to using the SVM on a single node, while the following chap-

ter covers the multi-node aspects. The chapter detailing the single-node SVM employs the central

algorithmic aspects. It presents methods for reducing the storage requirements of the SVM while

training. This is based on work originally done by John Platt, Microsoft Research, followed by fur-

ther optimizations by Kerthii et. al [60]. There are several methods available to enhance the SVM’s

usefulness on the distributed nodes, and topics related to both training and testing are incorporated

into the research. After addressing the single-node SVM, we introduce multi-node SVMs.

In chapter 4 we discuss the segment of the DSVM that relates to exchange of data points

6



on multi-node SVMs. This is an indirect discussion of the important issues related to radio com-

munication in distributed (wireless) systems. Experiments are conducted on several combinations

of exchange schemes. We introduce a method motivated by information retrieval to evaluate the

exchange effectiveness in the multi-node setting. A body of proxies that connect the SVM para-

meters to computational constraints is also presented. We later use a portion of these proxies in

chapter 6 for our energy awareness experiments. The main implementation has been done in Java,

and working prototypes on several platforms are available. This is the topic of the next chapter.

A systems analysis is presented in chapter 5. We divide the responsibilities within the

DSVM framework into a number of components. The analysis is on an abstract level, and the

implementation can be found at the online location www.dsvm.org [32]. We conclude the main

portion of this work with a series of energy-related experiments that shows the relative energy

consumption for small Java-based systems and a TinyOS sensor node system.

A goal of a distributed learning system could be energy efficiency. With that in mind, we

have conducted a series of energy-related experiments based on the models of chapter 3 with respect

to the single-node SVM and some experiments on the multi-node SVM. The chapter on energy

awareness is therefore a series of energy-related experiments, which can be divided into three cat-

egories. Syntectic experiments, which are aimed at testing a small portion of the proxies presented

in chapter 3 and 4, is the first category. The second category is direct energy consumption using

the single-node DSVM on different software and hardware platforms. Although not directly com-

parable, we present the first results of running an SVM classifier on a sensor network node. Finally,

we peek into the multi-node SVM by measuring the energy usage of single-node classification vs.

multi-node radio transmission of the data.

Finally, we discuss and summarize the results in chapter 7. A short plan for future research

projects is presented. As this work is interdisciplinary, we introduce the main terms and abbre-

viations up front, see Table 1.1. Other terms used in the thesis are defined at the point of usage.

7



Table 1.1: Definition of Key Terms
Term Definition

SVM Support vector machine that classifies novel points on the
nodes and only transmits key information such as support
vectors across the network.

SMO Sequential Minimal Optimization, which is a method for
training an SVM efficiently [73].

SV Set of support vectors belonging to an SVM model.
SVi A support vector, which is one of the points that make up

the SVM model.
α A Lagrange multiplier, which is a key parameter

denotedα in the SVM model. Each point withαi > 0
is an SV and its importance can be interpreted as the size ofαi

KKT The Karush-Kuhn-Tucker conditions, which is a set of
constraints that the SVM model must obey within a given error
tolerance when trained to optimality.

tol Tolerance parameter for the SVM that is used as a stopping
criterion.

k(xi, xj) Kernel evaluation that is a central computation in the SVM
model. It is a dot product similarity measure between two data
points in a space (usually) of higher dimensionality than the
input space associated with the raw data observations.

#k A count of the number of kernel evaluations the SVM
uses while computing the optimalα for the SVM.#k is
used as a proxy for computational time complexity in the
machine learning community.

Compression A term that we use to measure how many or how much is
saved in network traffic by running remote SVMs. A
compression of 90% is to be understood such that as just 10%
of the raw data is exchanged in the distributed system.
Compression is also to be read asfiltering.

ms Milliseconds, which is the unit used to measure how long
it takes to classify a novel point. [30]

mW Milliwatt, which is the power consumption unit calculated
for each of the node systems. [30]

µ J Microjoule, which is the unit used to measure the
energy consumption per point. [30]

p Number of points sensed at a sensor node, and a key
variable in consuming energy of the SVM on the individual
node.

8



Chapter 2

Background and Related Work

This thesis is interdisciplinary by nature, and therefore we identify and position the work in relation

to well-established research areas such at those identified in Figure 1.1 and Figure 2.1. Machine

learning is the provider of the intelligence part of the distributed support vector machine (DSVM).

The chosen algorithm to be studied is SVM. A brief survey of different SVMs is conducted such that

it will be possible to combine and apply the appropriate SVM to address a specific problem area of

distributed learning. First, we will look at the chosen machine learning algorithm: SVM. The history

of the SVM is briefly covered along with the state of the current research in this area. While the

SVM is the primary target of the later analysis, the distributed systems research will provide much of

the motivation for using SVMs in the distributed context of this thesis. Problems related to resource

constraints provide the guidance of the DSVM design. Therefore, the focus on distribution of nodes,

mobility of nodes, and resource constraints of nodes is the second area of study and a foundation

for this thesis due to its central position in the distributed systems area. Sensor networks, which are

usually characterized by a number of energy constraints, is an research area of significant focus [48].

We look at these small devices taking into account the constraints they bear. An emerging branch

of sensor networks is wireless ad-hoc networks, which is the establishment of connected groups of

sensor radios for some duration of time. Sensor network research and some open problems within

9



this research area are included in the background study. A natural way to combine machine learning

and distributed systems is provided within the context of distributed data mining. The survey of

distributed data mining centers somewhat on classification as there is a large body of existing work

that can be used as a starting point in the analysis. A summary of the background and related work

is provided in Figure 2.1.
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Figure 2.1: The overlap between machine learning, distributed systems, and distributed data mining.

2.1 Machine Learning

Statistical learning theory (STL) has had a profound impact on learning theory over the last two

decades, which could be supported by the over 700 references at the SVM related site www.kernel-

machines.org. STL has been developed and synthesized primarily by Vapnik [93]. He led the work

on the support vector algorithm upon which this theory is based.

In much of the work on distributed data mining (DDM), the primary goal is identical to

that of single-source data mining, namely the ability of the learner to generalize across unseen data

examples. To achieve this behavior of the machine-learner, we need to present to it a series of

data points the represent well the underlying phenomenon that we seek to make a model for. As

classification learners are typically evaluated on their ability to generalize well, so are SVMs when
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used in classification problem settings. A classification problem covers a broad range of application.

One application could be to determined if an image is a tree or not. Another application could be

to determine a state model for a distributed sensor network. The generalization capability comes

from the fact that SVMs are large margin classifiers. This means the training algorithm seeks to

separate the positive points from the negative points, if the learning process is a binary classification

problem. The problem of identifying an vectorial image as either a tree or not is an example of a

binary classification problem. This is achieved by trying to separate the two classes of points with a

plane that is equidistant from the closest points of each class. If there was two measurements on a

line and each one belonged to different classes, then the SVM would place the discriminant function

mid-way between the two points. The solution can also be restated as the plane that separates the

convex hulls of each class with the largest possible margin. A convex hull is set of points on the

boundary of some class of points. Some classification problems are either so noisy or impossible to

separate completely due to the lack of information in the chosen dimensions describing properties

of the class instances. Noise is present when poor measurements is part of the problem domain or

there are lacking key attributed to achieve separation of the data points. The solution to this problem

was proposed by C. Cortes and V. Vapnik in [27]. In their paper, the soft margin SVM is introduced,

which allows the SVM to be trained using slack margins. Slack margins is a method incorporated in

this algorithm to balance the misclassification rate against generalization ability. Misclassification

is related to those data instances that can not be classified correctly during the training process of

the model. This is balanced by introducing an upper limit to the size that the individual Lagrange

multipliers can take. The Lagrange multipliers is part of a linear combination of training points in

feature space. A common choice is to set this upper limit to 10, but it will be problem dependent.

Given that the kernel has been chosen, the choice ofC, which is the name for this parameter, is

optimized to the training set by use of a validation set. The value ofC is varied over a range of

numbers while the classification accuracy is monitored against a validation set. There are variations

of this scheme using the parameterC to control the soft margins. A complementary SVM is the
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ν-SVM that depends on a parameter,ν, to control the margins. The parameterν is interesting in

that it provides an upper bound on the number of support vectors in the solution.

Classification ability is one way of using the system. In particular, distributed classification

can take place using a consolidated global model. A global data model is conceptually a data

matrix of all the data points in rows and the associated data dimensions in the columns. This model

can be constructed using two principles. One is for which the local classifiers remain local and

a consolidated classifier is constructed using some query and meta voting scheme [49] [50]. The

majority vote is perhaps the most-used method. In this case each of the local classifiers would be

queried on the classification of a new point. The class with the majority of votes would be the

label the meta-voter would assign to the class. An alternative method is to merge the models by

extracting information from the local classifiers. If the local classifiers were multi-layer perceptron

(MLP) neural networks (NN) (see Bishop’s bookNeural Networks for Pattern Recognition[12]

for a complete introduction) this would not be a straightforward task; it would be impossible in

many instances. For an algorithm such as the SVM this would be easier as it is characterized by the

dependency on a subset of the training points and, furthermore, it exhibits the feature that the optimal

solution is unique. More specifically, the Lagrange multipliers (α) are the same even if the model is

trained again with the same data. This is different from a MLP NN as it would be unlikely to arrive

at the exact same solution as the weight parameters of the network are randomized prior to training.

It is common to reduce multiclass problems to binary classification problems [2]. The multiclass

classification problem can be solved, if the N binary classifiers are real valued functions by assigning

the point to the class with the largest functional output [76]. In some cases, it can be advantageous

to resort to query-based learning. A strategy used for SVMs by Campbell et al. [20] is to request the

labels of the data that are closest to the separating hyperplanes of a partially trained SVM.. In the

same category of algorithms, which bears the potential to address some computational constraints,

is the incremental SVM [21]. It retains all previous Karush-Kuhn-Tucker (KKT) information while

new points are added to the solution one at a time.
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2.2 Distributed Data Mining

The combination of distributed systems and the pervasive/ubiquitous computing paradigms can lead

into the area of distributed data mining. It is a broad area characterized by combinations of multiple

learning algorithms as well as multiple learning problems. These learning problems are also directed

by constraints such as security and energy restrictions. One distinction in distributed data mining

(DDM) is if the data is partitioned across rows or columns. The column separation scheme has been

researched by Kargupta et al. [58].

It is proposed [66] [94] to split distributed artificial intelligence (DAI) up into two areas:

multi agent systems (MAS) and distributed problem solving (DPS). MAS is more concerned with

broader agent skills and reasoning capabilities while the DPS approach is more problem and domain

specific. We place distributed inference systems (DIS) and the even more specialized distributed

classification efforts in the same category as DPS. The main reason is because the inference problem

is well known: i.e., there is full control of which data, how much data, and where data might appear

in the system.

In some stand-alone data mining problems, it is necessary to partition the data set into

smaller subsets to make a fit into the available main memory. This leads toward a discussion on

parallelization of the learning task as well as an early pointer toward resource-constrained data min-

ing (DM) problems. It has been proposed to split the data into subsets that are subsequently used

for training a model. Later, the results of the local base classifiers are combined by some voting

scheme such a meta voting scheme [22]. It was proposed to use a meta learning algorithm for com-

bining the predictions of the base classifiers. An opposite path is represented in theWoRLD[3],

Worldwide Relational Learning Daemon, which is an inductive distributed database learning tech-

nique. It works by propagating markers indicating an item in a database as either relevant or not.

Propagating these markers and looking for accumulations form the basic functionality ofWoRLD.

Another system for meta-learning in distributed environments is theJAM system, Java Agents for
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Meta-learning [87] as described below.

The research on agents is extensive. There are basically two types of agent architectures,

one in which the agents are tied to one node and one in which the agents move between nodes.

In systems such as Objectspace’sVoyagersystem, the agents move between the machines, while

a peer-to-peer system such asJXTAonly allows agents to be tied to the nodes. In both systems

the agents either reside or migrate to nodes that are prepared for receiving. Distributed objects

can be seen as a premise for agents: only some additional characteristics need to be adorned to

the distributed object. It has been noted that agents normally differ from machine learning algo-

rithms in that the nature of the problems addressed by the agents are larger than those traditionally

associated with machine learning [28]. Intelligent agents are more involved software than just an

agent, which can be compared to a distributed object. The term distributed object perhaps belongs

to systems in which the focus is more on the distributed system than on the interaction between the

agents. One such example is theJava Agents for Meta-Learning(JAM) system developed by Stolfo

et al. [87]. The agent can communicate with other agents using theKnowledge Query and Manip-

ulation Language(KQML) [35] together with the Knowledge Interchange Formalism (KVI) [41]

agent information exchange format. These communications and associated exchange formats allow

the agent to express first order requests. A complementary system for agent corporation is theOpen

Agent Architecture(OOA) [64]. In some cases the agents will query other agents and perhaps ex-

change examples. It is optimal not to exchange all the training examples but rather resort to using

the system in query mode. Grecu and Becker [44] discuss coactive learning [47] in distributed envi-

ronments. This leads to a framework in which the individual agent can decide to update its decision

model based on the information it receives. The use of mobile filter agents was found [90] to reduce

the load on communication lines by up to 90%. The work done by Theilmann and Rothermel was

investigated in the context of distributed clustering. An advanced overview of clustering is found in

a book chapter by J.Ghosh [34].

This section covers the area of distributed knowledge systems.Knowledgeis understanding
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about desires and degrees of belief. A distinction exists about whether or not the agent has beliefs

about beliefs. If this is not the case, then the agent is said to have first order beliefs. Knowledge

is the gathering of information for the purpose of presenting it in distilled formats to the user. A

knowledge query language [35] and a knowledge information interchange format is used to gather

knowledge. This lets an agent express queries toward other agents to fulfill its goals. The knowledge

interchange format lets an agent pack this knowledge in a format understood by other agents. The

degrees of belief that an agent uses can be generated in many ways.

Information Retrieval (IR) has its roots in the library sciences in which document retrieval

is a key process. Despite its roots, IR has moved to occupy a significant role in terms of making

the Internet document base manageable for users. The Web search engine Google makes use of

a system to mark the importance of individual pages in terms of the page-rank algorithm [68]. It

models the Web as a Markov process, which follows hyperlinks on Web pages to assign a rank to

Web pages on the Internet. There is a mechanism to ensure that deadlocks and a certain random

behavior is effectuated. To access the quality of the queries submitted by the user, some measures of

quality of the retrieved document collection are introduced. First, precision is measured, which is the

number of relevant documents retrieved versus the total number of retrieved documents. The second

measure is recall, which is the number of relevant documents retrieved versus the total number of

relevant document in the entire collection. A measure that seeks to combine these two approaches

is the harmonic mean. Joachims [51], among others, introduced SVMs for document classification.

Work on transductive SVMs was also done by Bennet and Demiriz [7]. In the transductive setting,

the learning function is constructed specifically for the unlabelled points and not for all points, as is

usually the case.

In a review from 1982 Gayle W. Hill [47] analyzes the aspects of group decision making

vs. individual decision making from a psychological viewpoint. It is an interesting parallel to the

tasks that are common in machine learning. Hill creates four groupings of performance indicators.

First, the group decision making performance is compared to the individual decision performance.
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Second, the group performance is compared to the most competent member of the group. Third,

the group performance is compared to the statistically pooled responses of the individuals. Fourth,

he compares the group performance against mathematical models. Looking at these individual

comparison modes in detail is an interesting aspect of the thesis. There are a number of comparisons

possible, with similar ideas in machine learning. With some model choices, such as an MLP neural

network, the individual responses are usually not particularly stable, and in some instances it can

be advantageous to overtrain the networks before the individual classifications are polled by a meta

learner [92].

The ubiquitous paradigm is generally attributed to Mark Weiser, as he introduced the subject

in 1991 [95]. It takes a more human oriented approach to what can be regarded as the presence of

computers everywhere. A main vision in ubiquitous computing is that computers should improve

the lives of human beings. Weiser regards this computing paradigm as the opposite of virtual reality:

In a virtual reality world, computers dominate whereas humans dominate in the real world while

being transparently supported by computers for everyday tasks. The ubiquitous paradigm touts

a conversion from many people sharing one computer such as a mainframe toward a scenario in

which one computer shares many people. This setting can be context-aware, and it is a subject

of current and future research [1]. As demonstrated by Bill Bodin, IBM Senior Technical Staff

Member, at a presentation at University of Texas, Austin, in 2002, these ubiquitous ideas can carry

over to the ideas ofpervasivecomputing [98]. Bodin demonstrated a living area largely connected

by computers put in most places imaginable. His demonstration and implementation did not include

distributed machine learning to add a layer of intelligence to the system. However, there were rules

encoded into the system such as that paintings should change to certain people’s preferences as

they entered the house. Bodin predicted that there would be a need for adding machine learning

capabilities to these kinds of intelligent solutions in the future [9].
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2.3 Support Vector Machines

The SVM is an algorithm that is based mainly on work performed by Vladimir N. Vapnik and

coworkers. It was presented in 1992 and has been the subject of much research since. We look at

the algorithm from an application viewpoint and review its characteristics. A secondary purpose of

this review is to introduce the definitions that play a central part in the later chapters that define the

DSVM framework.

The SVM algorithm is a maximal margin algorithm. It seeks to place a hyperplane between

classes of points such that the distance between the closest points are maximized. It is equivalent to

maximum separation of the distance between the convex hulls enclosing the class member points.

Vladimr Vapnik is respected as the researcher who primarily laid the groundwork for the support

vector algorithm. The first breakthrough came in 1992 when Boser et al. [15] constructed the SVM

learning algorithm as we know it today. The algorithm worked for problems in which the two

classes of points were separable by a hyperplane. In the meantime Corinna Cortes was completing

her dissertation at AT&T labs, and she and Victor Vapnik worked out the soft margin approach [27].

It involves the introduction of slack variables, or error margins that are introduced to absorb errors

that are inevitable for non-separable problems. The SVM was primarily constructed to address

binary classification problems. This has been adapted by introducing versions of the SVM that

can train a multiclassifier concurrently. Other approaches involved the use of voting schemes in

which a meta-learner takes the votes from the individual binary classifiers and casts the final vote.

A particularly easy voting scheme is the one-against-all voter [76], which for SVMs amounts to

trainingC classifiers and finding theCi classifier with the hyperplane furthest away from the new

point to be tested. The SVM has been extended to other learning areas as well. The areas relevant for

this work are the extension toward regression and clustering. The regression algorithm extension has

been refined by Alex Smola and Bernhard Schölkopf and pioneered by Vapnik [93]. The regression

case is carried out by using the slack variable approach once again. A so-calledε-tube is constructed
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around the regression line. The widthε constitutes the error free zone, and the points that fall within

this zone are regarded as error free. If a point falls outside the tube, then a slack vector approach is

introduced, which for theL2 norm case amounts to minimizing the square distance to the regression

line. It can be noted that the regression line is identical to the OLS regression should the width of

the tube be set to zero.

Our aim is to provide a framework for addressing inherently distributed inference tasks.

This includes, but is not limited to classification, regression, and clustering. We focus on distributed

problems for which the node set,N , and the inference node set,IN , can be loaded with an appropri-

ate algorithm from the SVM family of models. There are three types of SVMs that we investigate:

classification, regression and clustering SVMs. A short study on using a single-class SVM [81] in

a multi-node setting is also done. Each one is presented below together with a brief introduction to

its set of parameters. The binary classification SVM provides a decision function:

f(x,α, b) = {±1} = sgn

(
l∑

i=1

αiyik(xi, x) + b

)
(2.1)

for whichα has been found by solving this optimization problem:

maximize W (α) =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

yiyjαiαjk(xi, xj), (2.2)

subject to

0 ≤ αi ≤ C, and (2.3)

l∑

i=1

yiαi = 0. (2.4)

The functional output of (2.1) is±1, which works as a classification or categorization of the un-

known datumx into either the+ or − class. An SVM model is constructed by summing a linear

combination of training data (historical data) in feature space. Feature space is implicitly con-

structed by the use of kernels,k. A kernel is a dot product, also called inner product, in a space

that is usually not of the same dimensionality as the original input space unless the kernel is just
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the standard inner product〈 , 〉. The constraints (2.3) and (2.4) are the Karush-Kuhn-Tucker (KKT)

conditions. The main characteristic of SVM solutions, with respect to the KKT conditions, is for

αi > 0: the Lagrange multipliers,α, are greater than zero for active constraints in the dual formu-

lated optimization problem. Each of the training data,xi∈1..l is associated with a class label with

value+1 or−1. This information is contained in the binary variableyi. The classifying hyperplane

induced by (2.1) is offset with a bias parameterb. Estimation of the Lagrange multipliersα is con-

ducted by solving (2.2) subject to the constraints of (2.3) and (2.4). The optimization problem is

constructed by enforcing|f(x, α, b)| = 1 for the support vectors. Support vectors (SV), are those

data,xi, which have active constraints,αi > 0. If the data is not separable by a linear hyperplane in

a kernel induced feature space, then it would not be possible to solve the problem if there was not

an upper limit to the values of the active Lagrange multipliers. Consequently, the constraint,C, in

(2.3) ensures that the optimization problem in (2.1) remains solvable. In those situations when a La-

grange multiplier is equal toC, the problem is called a soft-margin problem, otherwise it is called a

hard-margin problem. An important term, which is used extensively isboundandnon-bound (NB).

A training datum,xi is bound ifαi = C. Further introduction to linear classifiers and non-linear

extensions such as SVMs can be found in Duda et al. [33].

The binary decision function can be extended to a multi-classifier by training
(
CL
2

)
pairwise

classifiers,P , and choosing an appropriate voting scheme, such as the majority vote,

max
P

(CLm) (2.5)

whereCLm is the class voted by the P’th classifier.

The following is the introduction to the Sequential Minimal Optimization (SMO) approach.

The notation and setup is based onAn Introduction to Support Vector Machines and Other Kernel-

Based Learning Methods’ by Christianini and Shawe-Taylor [26]. John Platt [73] discovered a

method for solving (2.2) without the need for specialized optimization software [73]. His work

is central to the use of SVMs in constrained environments. Therefore, we will look at the main
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formulas as well as a simple toy example.

There are some equations that must be obeyed to train an SVM using the SMO algorithm.

αnew
2 = αold

2 +
y2(E1 −E2)

η
(2.6)

The SMO algorithm chooses two data points at a time based on certain selection heuristics. The

calculation, see above, ofαnew
2 is based on the previous valueαold

2 and the difference between the

errorsE1 andE2 divided byη. The variablesE1, E2, andη are explained below. If the classification

problem is not linearly separable, and thus a soft-margin problem, then the following forced clipping

of αnew
2 is needed.

αnew,clipped
2 =





H, if αnew
2 > H

αnew
2 , if L ≤ αnew

2 ≤ H

L, if αnew
2 < L,

(2.7)

Finally, αnew
1 can be estimated as a linear combination ofαold

1 , αnew
2 andαold

2 .

αnew
1 = αold

1 + s(αold
2 − αnew

2 ) (2.8)

where

s = y1 ∗ y2 (2.9)

η = k(~x1, ~x1)− 2k(~x1, ~x2) + k(~x2, ~x2). (2.10)

The value ofη in (2.10) is the negative squared distance in the kernel induced feature space.

Ei = fold(~xi)− yi =




l∑

j=1

αjyjk(~xj , ~xi) + b


− yi, i = 1, 2 (2.11)
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The forced interval forαnew,clipped
2 in (2.7) is calculated as follows:

If y1 6= y2 :

H = min(C, C + αold
2 − αold

1 ),

L = max(0, αold
2 − αold

1 ),

If y1 = y2 :

H = min(C, αold
1 + αold

2 ),

L = max(0, αold
1 + αold

2 − C).

(2.12)

The biasb is calculated like this:

b = −maxyi=−1〈~w·~xi〉+minyi=1〈~w·~xi〉
2

where

~w =
∑l

i=1 yiαi~xi.

(2.13)

The geometric margin is:

γ = 1
‖~w‖2

(2.14)

The following example is used for clarification because it shows the first iteration of a SMO

algorithm and puts the majority of the previously formulas to use: This can be visualized in Figure

2.2.

There are two classes shown in the Figure 2.2. The circle depicts the positive classy1 = +1

and the cross depicts the negative classy2 = −1. The examples are~x1(1, 1) andx2(2, 2). The exact

analytical solution is calculated like this: Initialization:

b = 0,

α1 = 0,

α2 = 0,

C = 10

(2.15)
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Figure 2.2: A simple two-class example with two examplesy1 andy2. Here we can see the
geometric margin and the weight vector.

then we get:

y1 6= y2 :

L = max(0, αold
2 − αold

1 ) = max(0, 0− 0) = max(0, 0) = 0,

H = min(C,C − αold
1 + αold

2 ) = min(10, 10− 0 + 0) = min(10, 10) = 10

E1 = fold(~x1)− y1 = (
∑2

j=1 αjyjk(~xj , ~x1) + b)− y1

= (0 · (−1)〈1, 1〉〈1, 1〉+
0 · 1〈2, 2〉〈1, 1〉+ 0)− (−1)

= 0 + 0 + 0 + 1 = +1

E2 = fold(~x2)− y2 = (
∑2

j=1 αjyjk(~xj , ~x2) + b)− y2

= (0 · (−1)〈1, 1〉〈2, 2〉+
0 · (1)〈2, 2〉〈2, 2〉+ 0)− (1)

= 0 + 0 + 0− 1 = −1

η = k(~x1, ~x1)− 2k(~x1, ~x2) + k(~x2, ~x2) =

= 〈1, 1〉〈1, 1〉 − 2〈1, 1〉〈2, 2〉+ 〈2, 2〉〈2, 2〉 =

= (1 · 1 + 1 · 1)− 2(1 · 2 + 1 · 2) + (2 · 2 + 2 · 2) =

= (1 + 1)− 2(2 + 2) + (4 + 4)

= 2

(2.16)
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αnew
2 = αold

2 + y2(E1−E2)
η

= 0 + (1)·(1−(−1))
2

= 2
2

= 1

L ≤ αnew
2 ≤ H ⇒

0 ≤ αnew
2 ≤ 10 ⇒

αnew
2 = αnew,unc

2 = 1

αnew
1 = αold

1 + y1y2(αold
2 − αnew

2 )

= 0 + (−1)(1)(0− 1)

= 1.

To get the bias we make the following computation:

~w =
∑l

i=1 yiαi~xi

= (−1)(1)(1, 1)′ + (1)(1)(2, 2)′

= (−1,−1)′ + (2, 2)′

= (1, 1)′

b = −maxyi=−1(〈~w·~xi〉)+minyi=1(〈~w·~xi〉)
2

= − 〈1,1〉〈1,1〉+〈1,1〉〈2,2〉
2

= −2+4
2

= −3

(2.17)

The geometric margin is now (see also Figure 2.2):

γ = 1/ ‖ ~w∗ ‖2

= 1√
12+12

= 1√
2

= 0, 7071

(2.18)
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If we try to classify an example pointx3(0.5, 1.5) the functional output would be:

f(~x3) =
∑2

j=1 (αjyjk(~xj , ~x3)− 3)

= 1 · −1 · 〈1, 1〉〈0.5, 1.5〉+ 1 · 1 · 〈2, 2〉〈0.5, 1.5〉 − 3

= −2 + 4− 3

= −1,

(2.19)

which is what we would expect by cross-checking Figure 2.2. Pseudo code for the SMO algorithm:

Outer loop (first choice heuristic): Alternate with a scan of the full data set and multiple partial

scans of the non-bound,NB, (not 0 or C) data set. For each point—from either scan type—find

those that violates the KKT conditions (greater thanε), and call inner loop for each such violating

point. Terminate the outer loop when all points obey the KKT conditions (withinε)

Inner loop (second choice heuristic): SMO chooses the second point such that numerator in the

calculation ofαnew
2 is likely to maximize the step size. For positiveE1 SMO chooses minimum

E2. For negativeE1, SMO chooses maximumE2. If no progress is made from first and second

choice heuristics then a new non-bound example is searched for, and if that also fails then an entire

iteration is started.

The regression SVM will be referred to asε-SVM [93], which refers to a regression problem

that takes the form

f(x,α∗, α, b) =
l∑

i=1

(α∗i − αi)k(xi, x) + b.

The SVM for regression is based on the same principles as the SVM for classification. The differ-

ence is the Lagrange multipliers are used in a different way here. There are two Lagrange multipliers

associated with each of the points in the joint optimization. Efficient regression with the SVM was

extended to SMO by Flake [36] and Flake and Lawrence [37]. Schölkopf et al. [79] introduced a

parameter,ν, such that the fraction of points that fall outside the regression tube is at mostν. Stein-

wart [85] found that optimal value ofν can be set to twice the optimal Bayes risk; should this value

be known a priori. Regression with SVMs is not restricted to scalar values as the algorithm has been

extended to cover ordinal regression as well [46]. Ordinal regression draws on both the finite set of
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numbers in feature space as well as the scalar ordering found in the metric space of regression. This

type of variable is an ordinal variable.

The third type of SVM algorithm that we want to look at is support vector clustering. The

SVM has also been applied to clustering problems that are characterized by the missing label on the

data [81]. The algorithm has two parameters that determines the number of clusters and the shape

of same. Clustering takes place in the kernel induced feature space [43]. Support vector clustering

was introduced by Asa Ben-Hur et. al. in 2001 [6]. The algorithm is also discussed by Schölkopf in

[81].

2.4 Training and Testing Complexity of

Support Vector Machines

An SVM has a computational cost—when trained—that is exactly related to the number of support

vectors. Burges introduced the idea of simplified support vectors [18]. Burges and Schölkopf

later [19] improved the speed of the SVM with 20-fold gains. The resulting support vectors would

generally not be the same as the original support vectors but this was addressed by a elegant and

simple solution by Downs et al. [31] in which those support vectors being linearly dependent were

eliminated from the solution and the Lagrange multipliers of the remaining support vectors were

modified accordingly. It is common to tune the parameters of the SVM using cross-folding. This

further adds cost to the training of the SVM. It has been suggested to use the Lagrange multipliers

of a previous SVM to initiate the training of subsequent SVMs [29]. The rationale is that the

overall training cost of the SVM is dominated by the cost of the first training on the data set. This

is of particular interest when training is performed to reach the leave-one-out error estimate. A

straightforward approach [29] is to use the SVM of theN th crossfold directly in the case of a

zero Lagrange multiplier. If examplei to be tested and theN th crossfold had a non-zero Lagrange

multiplier then this multiplier value,αi, is to be redistributed among the rest of the support vectors.
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One distribution scheme was to redistribute the Lagrange multiplier among the non-bound Lagrange

multipliers. The traditional SVM classifies points according to the sign of the functional output.

Fung and Mangasarian [38] proposed training a classifier by training two parallel planes pushed as

far apart as possible such that the positive and the negative points of each class cluster around the

two resulting planes. The algorithm is called a proximal SVM, and it seems to have much lower

computational complexity than a traditional SVM, but is has been questioned by Ryan Rifkin in his

Ph.D. thesis. The basic SVM was improved by Platt in terms of providing a solution that does not

need to cache the full kernel matrix or even parts of it [73]. This basic algorithm was improved

be Keerthi et al. by using two threshold values instead of one [60]. Several approaches exist to

reduce the memory requirements of the SVMs, but in work done by Mitra et al. a method was

suggested that successively draws small samples from a large database while training and keeping

an SVM classifier [65]. Similar work has been done to speed up SVM classification by making

parallel implementations of the SVM [74]. The approach is to exchange raw data blocks among the

nodes in the system and exchange the raw data to obtain the same solutions as the stand-alone SVM

algorithm would have done. Chapelle and Vapnik proposes to use a gradient descent algorithm

related directly to the desired generalization performance of the SVM [24]. This allows for finding

multiple parameters concurrently. The method is to find the derivatives of the parameters with

respect to the margin.

2.5 Distributed Systems

Distributed computer systems is the setting of a number of computational units participating in

some task. It often involves the exchange of data between these computational units. The data can

be associated with methods that are appropriate for using the data and in those instances it is called

an object. Early work has been done by Jul et al. [55] [54] [53] on using objects in distributed

systems. Their system is named Emerald, and it supports the autonomous use and movement of
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objects with the system. There is support for a number of refinements such as grouping of data

before the objects are exchanged. Later work on Emerald garbage collection was done by Juul [56]

and Juul/Jul [57]. In this thesisgarbageis data that is not really needed for the statistical models to

work in the distributed setting, while in Juul’s thesis it was the ”dead” objects that were the aim of

the analysis.

The framework is applicable as a resource aware protocol in distributed systems. We explain

how it can be used in a purely distributed mode as a P2P system or a sensor network, but the system

can also be used for traditional client/server models, and we show how that could be arranged.

In the distributed systems that we consider, there is seldom an unlimited amount of com-

putational power available. Working with constrained environments is a relative measure that takes

meaning only when considering the problem to be solved. For applications that involve machine

learning and possible large amounts of data, the distributed systems can without simplification be

regarded as constrained devices. Some distributed devices do not have long expected battery life-

time.

Sensor systems are a type of distributed system that usually are associated with small com-

putational devices that can communicate using some wireless means. These systems can be battery

driven, and thus the computations taken by these systems can be expensive in terms of CPU cy-

cles. One popular system is the system offered by Crossbow named Motes. These units run the

small, open source operating system TinyOs. Sensor networks are often ad hoc networks that self-

assemble in the given context [45]. It has been reported that the wireless part of ad hoc sensor

networks could be addressed using an appropriately configured Bluetooth stack [62]. The results

show energy consumption per bit sent. The information and data flow in sensor networks can be

structured by incorporating some of the strengths of SQL such as was done in COUGAR by Bonnet

et al. [14]. This has been worked on by Madden et al. [63] in a power-aware query extension for

TinyDB. Identifying targets in distributed sensor networks [16] can be done. The work centered on

tracking vehicles across sensor cells based on acoustic inputs. Some authors [17] have introduced
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the idea of using SVMs for sensors but without addressing the distributed nature or utilizing the

sparseness or addressing energy awareness of the solution to reduce inter-node communications.

As the distributed systems become more and more aware of one another, we can use the term

peer-to-peer (P2P) [67], which means that connected computers do not have centralized servers as

the main paradigm as the widely popular client-server model depicts. However, there can be sit-

uations in which it is necessary to create roles that, at the local level, resemble a client-server

system. JXTA, a distributed Java system, operates with roles that gives more responsibility to cer-

tain nodes in the system and not to others. A topic that is related to P2P computing—as well as

sensor networks—is the notion of security. To address this concern in a systematic manner, Zhou

and Haas [101] propose to work the problem using the following set of properties: availability,

confidentiality, integrity, authentication, and non-reputation.

In distributed settings, and especially for sensor networks, energy aware implementations of

machine learning algorithms play a key role. Energy consumption can be split into the energy that

is used on computational issues and the energy that is used for communication purposes. Important

data mining algorithms have been tested for energy consumption on a PDA. Bhargava et al. [8]

concluded that distributed power consumption of executing principal component analysis andk-

means clustering on a data set from a mobile vehicle data collection system is more energy saving

than first transmitting the data and then running the algorithms at a centralized location [8]. At the

language level, the standard Java JVM does not offer any resource awareness or control mechanisms

in terms of CPU usage and communication bandwidth usage. Some modifications that address

these issues are described by Binder et al. [10] and also from a security perspective by Binder and

Roth [11]. A small survey of reduction techniques in instance-based learning algorithms can be

found in Wilson [96]. He also draws parallels to early work done by P.E. Hart on the condensed

nearest neighbor rule (CNN).

We also investigate research work in terms of energy aware sensor networks. Then the

choice of intelligent algorithm is investigated to understand how the SVM can assist the local and
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distributed decision-making on the sensor nodes. It appears that more research is conducted on the

TinyOS sensor networks than on Java-based sensor networks [48] [62]. However, energy awareness

in wireless sensor networks focus to some extent on the routing aspects of the sensed data [75] [62].

The reason for this can lie in the observation that sensor networks are deployed in groups formed by

a large number of individual nodes. An approach similar to the one opted for in this chapter is to use

local novelty detection algorithms to limit the radio communication and data transmission to and

from the server [72]. This interesting approach is formalized to a larger extent by the energy-aware

clustering algorithm by Ghiasi et al. [42]. Our measurements on the individual nodes can be used

as input to the basic configuration of the routing algorithms in instances in which a local inference

is appropriate. The local inference can be performed by SVMs [15] as this class of algorithms are

founded in statistical learning theory [93]. The idea of using SVMs on sensor nodes is introduced by

Jordaan [52]. In this work, sensors are not analyzed in terms of the constraints often present when

working with sensors: memory constraints, computational constraints, and battery constraints. The

main part of mapping the support vector algorithm to constrained environments is addressed by

Pedersen [71].

2.6 Distributed Java

Java is an interpreted language that runs using a virtual machine that is running in native code

by some system. This level of abstraction from the hardware and native software comprise Java’s

strength in terms of portability. On the other hand, the use of a virtual machine also sets some min-

imum requirements for the hardware. For example, the KVM from Sun Microsystems requires 40

kilobytes to 80 kilobytes. It allows programs to span heterogenous environments. It does not matter

if the host is a Windows machine or a Symbian mobile phone. This makes the code portable when

the programmer needs to change the executing environment. More interestingly, in the distributed

systems settings the Java language makes it possible to connect a system that spans multiple oper-
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ating systems and multiple connection protocols. The other alternative of using hardware specific

code can limit the portability of the application.

In this section, the Java programming language is discussed and some of its main charac-

teristics are mapped to the context of the DSVM. Java is a popular language that was incepted as

a Sun-sponsored project in 1991. It had the codename Oak. The first application aims were TV

devices, but that did not succeed as such. However, the first versions of Java that were available for

download became hugely popular (even to the extent that some people believed Sun was blocking

the downloads), but the real explanation was that the system was so popular the communication

lines that it used were saturated. Today, Java has become become more than a language. It is widely

popular within with specific implementations ranging from micro devices to enterprise applications.

One of the goals of a distributed inference system is that it can work over a large range of devices,

which is why Java is a viable choice. It seems to have its merits in the academic world as well as

in the commercial. At the time of writing Sun has released version 1.5 of its popular Java virtual

machine. It is likely that the JVM will come on successively smaller chips in the future in some

micro version under the product line that Sun calls Java Micro Edition. The mobile phone that has

been used as a testing unit comes with a built-in JVM that adheres to the specifications for a Per-

sonal Java, or pJava, device. It means that the Swing libraries are removed and the programmer then

needs to use the abstract windows toolkit, AWT. The open source community is actively developing

new JVMs that comes with freely available source code. There is even an open source FPGA Java

processor implementation available [78]. Another aspect of Java that makes it useful in distributed

computing is its networking capabilities. Object level communication is built into the language to

enable objects residing on different JVMs to communicate without the need to perform message

passing on the socket level. The built-in solution in Personal Java and the standard packages is

called Remote Method Invocation (RMI). RMI makes it possible, with few extensions and modifi-

cations, for the code to have objects on different servers communicate as if they were running in the

same address space within the same JVM. That mechanism provides the level of abstraction that is
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needed to strike the balance between a working DSVM prototype and the desire to keep much of

the focus on the functionality rather then on the implementation details. RMI is flexible in terms of

how it can be used. The three main services provided by RMI are the naming service, the remote

methods invocation service, and the distribution of objects. The naming service works such that

an object that has been prepared for remote invocation is bound to an URL-like address. Clients

can obtain a remote reference to this object via this address. To enable clients to make calls on the

remote object, they need to know how this object is represented. That is done via a Java interface

that describes the remote object to the client. RMI provides the service of downloading all these

objects over the communication line the client is using, and that makes it easy to control versioning,

even in a distributed environment. The third service that is provided by RMI is the functionality

surrounding the remote method calls. It involves marshalling the parameters and unmarshalling the

parameters on the remote side and vice versa. These details are hidden for the programmer, who

only needs to implement objects that can be serialized. In this way, a complete distributed system

can be created with small naming servers and clients who only collect, calculate, and distribute.

Should the synchronous method call be prohibitively slow, then the call-back ability of RMI

can be used. Call back allows the caller to leave a reference with the remote object such that it can

be called when some event occurs, such as the completion of the method call just mentioned above.

It is possible to use applets to implement the call-back functionality. It has even been proposed

that the remote references involved can be distributed to all nodes to provide a remote address

book [5]. Finally, the RMI method calls automatically serialize the arguments in the method call

should they not implement the requiredUnicastRemoteinterface. These three mechanisms leave it

to the programmer to construct the distributed invocation profiles that are appropriate in the given

instances.

There are a number of Java peer-to-peer (P2P) projects defined. One open source project

that stands out is the JXTA project [25]. It is a P2P system defined in Java that allows for interaction

of messages in a network of JXTA nodes. The JXTA system incorporates the service aspect such
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that the JXTA nodes can either provide the service to relay the request to a node that provides such

a service.

The existing body of literature is large on the subjects that have been covered in this chapter.

We discussed the main publications in terms of the SVM and its development to the mature algo-

rithm it is today. In addition, important subjects within distributed systems such as sensor networks

were briefly covered. Now, we start to use the reviewed literature to address the research questions

stated at the beginning of the thesis.
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Chapter 3

Single-Node Support Vector Machine

On the basis of our research to date, we believe that statistical learning theory—and especially the

derived SVM—can be a valuable contributor for the distributed data mining (DDM) community. We

hope to gain acceptance for this approach by presenting a framework of how SVMs could address

selected DDM problems. Our hypothesis is that the SVM algorithm provides enough flexibility to be

configured and tailored specifically toward many resource-constrained problems. To our knowledge,

except for own work [70] [69], no similar efforts have been presented previously using SVMs in

DDM while respecting the constrained nature of distributed nodes, but we hope this changes to some

degree with our introduction of the resource-aware distributed support vector machine, DSVM. The

DSVM addresses inherently distributed problems, which differ from the parallelization efforts laid

forth by F. Poulet [74]. The most similar work is by Jordaan [52], in which she focus on the sensors

as individual remote inference machines.

The mapping of SVM-related tools to the CPU and memory constraints are the main theme

of this chapter. In later chapters, the focus will be directed to the communication segment of the

system. In Table 3.1 we can present some SVM tools, which are discussed below. The main tool

for saving on CPU cycles is the SMO algorithm, which is adapted to the Keerthi modifications (see

Table 3.1 for references). When we work with non-linear kernels it is generally necessary to use
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Table 3.1: Mapping SVM Tools to Constraints
SVM Mode

Constraint Training Testing/Filtering

Computational

SMO(Keerthi Mod. 2 [60])
α reuse [29]
Relaxed KKT conditions,
section 3.6

Generalized SVs [18]
Orthogonal SVs [31]
Linear SVM [93]

Memory SMO [73] ν andδ exchange, section 4.8

cross-validation to estimate model parameters to minimize the error on the validation set. Contrary

to MLP NN, the SVM arrives at an exact solution, and it is thus possible to reuse the weights of the

model, which are the Lagrange multipliersα in (2.1). A method for the SVM to achieve its stopping

condition faster is to relax the KKT conditions (see (2.3) and (2.4)), and this is also a topic of this

chapter. The memory constraint of the distributed node is addressed by our choice of the SMO

algorithm over a traditional approach involving a dedicated software package. In terms of testing

and filtering tools, we reduce the time for testing new points by utilizing the concepts of general

or orthogonal support vectors. Obviously, if the SVM is linear, the number of kernel evaluations

is reduced as a weight vector in input space can be constructed. Finally, the single-node memory

requirements can be controlled with a scheme we callν andδ exchange, but this is included in the

table for completeness and discussed in the next chapter.

The significance of the DSVM system is reflected in the discussion regarding the future

directions of distributed data mining by quoting H. Kargupta, C. Kamath, and P. Chan, chapter 15,

”Regardless of the increase in the bandwidth capacity, the ratio of the bandwidth and the quantity

of available data is likely always to be low. Therefore, downloading large amounts of raw data

may not be a practical option for mobile data mining applications. Because DDM often requires

as little [network] communication as possible, it is likely to play a significant role in mobile envi-

ronments.” [59]. The DSVM can greatly reduce the exchange of data, which could mark it as one

of the systems perhaps referred to above. Similar goals are addressed by D.R. Wilson and Tony R.

Martinez in their paper on storage reduction techniques for instance-based algorithms [96].
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The Distributed Support Vector Machine is a specification and reference implementation

for a practical framework of applying kernel-based learning to some (distributed) learning task.

Within the DSVM framework, the fundamental idea is that a set of SVMs work cooperatively,

yet independently, in a digraph (vertex/edge)-based distributed environment toward shared optimal

generalization ability. The focus of this section is on how the SVM can be adapted to fit on a

distributed node subject to a number of system constraints.

3.1 General and Orthogonal Support Vectors

There are two related approaches in Table 3.1 for reducing the testing complexity of SVMs: gener-

alized support vectors (GSV) [18] and orthogonal SVs [31]. Chris Burges’s approach [18] generates

a new set of vectors that are neither necessarily SVs nor do they have to lie on the separating margin.

Furthermore, the desired number of SVs is specified a priori. With reference to (2.1), the weight

vector in feature space is represented as a linear combination of the mapping functionΦ:

Ψ =
lSV∑

j=1

αjyjφ(xj) (3.1)

It is possible to approximateΨ in (3.1) by a reduced set of data points [18] to obtain an approximated

Ψ′. The aim is to reduce the number of data points while keeping the weight vectors in feature space

as similar as possible:

ρ = ‖Ψ−Ψ′‖ (3.2)

The difference between the originalΨ and the estimatedΨ′ is ρ. The algorithm that determinesΨ′

can be found in the Burges paper [18].

Tom Downset al. [31] presented a different approach using orthogonal SVs with better

mathematical properties. Instead of identifying a set of new points in feature space, this work

exploits the fact that support vectors are usually linearly dependent in feature space. It is expressed
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ask(x, xk) =
∑lSV

i=1,i6=n cik(x,xi):

f(x) =
lSV∑

i=1,i 6=n

αiyik(x, xi) + b (3.3)

Note thatαi has been modified to the smaller number of SVs as the SV with indexn was eliminated

using row reduced echelon form. The main difference between these two approaches is that the

Burges approach takes a parameter that determines the resulting compression and Downs’s method

automatically searches for linear dependence in feature space. Compression, as used in this thesis,

is the same as filtering. For example, a compression of 90% is to be read as just 10% of the data

being exchanged. The advantage of Downs’s approach is the decision surface is exactly the same

as before the compression, which means that the classification or regression model does not suffer

a reduction in performance as measured by the error rate. An advantage of the Burges method is

that the desired reduction can be specified as a parameter, which would enable a forced fit into

significantly constrained devices, should that be an issue.

3.2 Support Vector Machines in Constrained Environments

The sparse solutions produced by SVMs make them important components for distributed data

mining problems, especially those related to classification, regression, and clustering—as presented

by the author at the COLT03 kernel impromptu poster session [69]. In this section we extend the

framework to address computational, communication, spatial, and temporal constraints. A dis-

tributed digraph of SVMs, closely related to the virtual,ν, transductive, and sequential minimal

optimization SVMs, is combined with the concept of generalized support vectors to produce two

basic types of SVMs: one that filters data to reduce edge exchanges and another that optimizes a

cost function using the reduced data set. In addition, the alterations on the support vector set by a

controlled relaxation of the Karush-Kuhn-Tucker (KKT) conditions are discussed in the context of

employing the recall and precision metrics commonly found in information retrieval settings. We

defer discussion of the communication constraints until the next chapter. There could be advantages
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of combining machine learning methods with the emerging peer-to-peer (P2P), mobile computing,

and ubiquitous computing paradigms. However, these paradigms could differ substantially from

personal computers if compared along the dimensions of computational, communication, and spa-

tial capabilities.

The resource constraints in our framework include, and to a certain extent focus on, the

minimization of the network traffic among the constrained nodes. Therefore, the constraints in

this system are not limited to the stand-alone nodes but rather applicable to the full digraph of

constrained, interconnected nodes. We discuss how the data exchange addresses the constraints of

the sender (producer node), the aim of minimizing edge traffic, and the task of the destination node

(consumer node) to create a good SVM model.

3.3 Constraint Proxies in Single-Node Setting

The node parameters of interest in this section are CPU speed, memory availability, and battery life.

To achieve a level of abstraction from the physical constraints and costs, we propose map-

ping the categories to a context that is easier to configure in terms of the learning machine. This

allows a principled discussion on the parameters of the DSVM system and the SVM model that can

be modified to address various constraints. The main cost categories are computation, spatial, tem-

poral, and communication. Computational costs are mainly perceived as costs associated with CPU

cycles for reasons such as limited power supply. Spatial costs are some combination of the cost of

using the available memory for the model and how much memory there is available. Temporal costs

are those associated with a slow model, and this can translate into a constraint on the maximum time

the model can train before it is ready for use.

Counting kernel evaluations is a relevant measure, especially when the SMO algorithm is

used. Therefore, we will use the number of times the kernels are evaluated on a given node to derive

a number to evaluate kernel caching schemes, etc. The SVM implementation named LIBSVM [23]
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uses 40 MB for caching as the default setting. One reason for such a direct approach is that caching

would generally be much faster to access than kernels computed from time to time. Furthermore,

some kernels are more expensive to use than others. For example, the Gaussian kernel uses three

dot product evaluations without caching, while the standard dot product kernel apparently amounts

to one dot product calculation.

On resource-constrained devices we often find limited memory availability. Therefore, the

data set size of the full training set can be a measure of how well some space constraint is met.

Another resource sink could be the lack of kernel caching. The Gram matrix, which holds the kernel

outputsK(xi, xj), spares some computational units at the expense of a larger memory footprint. To

evaluate how well the system filters data, we compare the initial data set size as well as the filtered

data.

In some instances, the model would need to complete the training within a certain time slot.

The time it takes from when the first node starts training until the final node is trained—i.e. a steady

state situation—is a proxy for how well the system would address such constraints/demands. For

this reason, the time it takes the DSVM system to reach steady state is a proxy for temporal costs.

As this section addresses a system that is subject to a number of constraints, the discussion

in this subsection centers on the situation in which the size of the Gram matrix would be too large to

fit within the available memory. The usual approach would be to use some kernel caching scheme

that seeks to achieve the highest possible hit rate of cached kernels vs. repeatedly calculating the

kernels. One suggestion is to cache the working set, which is the set of vectors with non-zero

Lagrange multipliers. Another alternative approach is to allocate a certain amount of memory and

then use a simple FIFO (first-in-first-out) kernel-caching scheme.

The generalized support vector (GSV) concept [18] is aimed at simplifying the models rep-

resented by a full set of support vectors. Advantages to this idea include the fact that the final model

becomes faster than the original model, which would have used a larger set of support vectors for

classifying new observations. Experiments by T. Downs el al. show that creation of linearly inde-
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pendent support vectors in feature space can lead to reductions in number of SVs [31]. An additional

advantage to their approach is that the memory consumption is smaller than for the original model.

If the inference node would perform a high number of classifications, then the total number of ker-

nel evaluations would likely be smaller than if the model was based on the original set of support

vectors.
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Figure 3.1: A plot of a convex hull for three dimensions. The idea conveyed in this figure is that the
number of points on the convex hull is substantially lower than the total number of points. In this
particular instance, the compression rate is 0.862, which means that out of the 1,000 points, 138 lie
on the hull surface.
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Figure 3.2: A plot of a convex hull for two dimensions. In this example, the compression is 0.850
for a two-dim uniform distribution. This suggests augmentation of the exchanged support vectors
with convex hull points is inexpensive in terms of network traffic.

We will use the fact that the kernels induce a distance metric,D12 = k(1, 1) − 2k(1, 2) +

k(2, 2), in feature space to identify points that are likely to be on the margin. Our concept addresses

convex hulls of circular, ball (figure 3.1), or hyper sphere shape. On more complex shapes, it would

probably not be an accurate object. First, one sorts theDij , i 6= j, i, j ∈ 1, 2, ..., n for the pairs of
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Figure 3.3: SVM classifier for two nodes with a convex hull. A producer node finds the convex
hull of the circle class points, such as in Figure 3.1, and exchanges this information along with the
support vectors to the destination node. Note that only one extra point was exchanged as the two
other circle class points already were support vectors and thus subject to exchange. Finally, the
consumer node receives the points and retrains using the new information.

points and ensure that no pointPi or Pj participated in the list of pairwise distances more than once.

Secondly, the approach can be optimized by using only a predefined fraction of the sorted points to

address possible external constraints related to memory or reduction of edge traffic. It can be noted

that this is similar to the idea of theν-SVM [80]. This simple convex hull approximation facilitates

the exchange of approximated convex hulls along with the support vector set if permitted by the set

of constraints. A visualization is displayed in Figure 3.3.

Table 3.2: The Constraints and the Proxies
Memory Tool Cost Proxy

CPU SMO, GSV, Convex Hull #k
Time KKT relaxation Convergence time

Communication SV, α ordering Count data points
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It is will not always be necessary to have an accurate model for predictionsper se; it is suf-

ficient that it identifies the relevant support vectors and sends them to a consumer node. Therefore,

the producer node will only need to find the support vector set, and it would not matter if this was

done with KKT accuracy of10−2 or 10−5. It is clear that this is a candidate for experiments to see

the extent to which the support vector set changes as a function of the KKT conditions. A relevant

stopping criterion would be to cease training when the working set has stabilized.

An advantage of the SVM is the ability to work with the input data using just the Gram

matrix, which is the matrix of dot products for linear SVMs or the matrix of other valid Mercer

kernels. The input space can be high dimensional, of which text categorization [51] is one example.

The array of stemmed words can be a possibly large object leading to high memory requirements

to store the individual elements of the array. One approach that spares memory on the distributed

nodes is to save only information [73] for those dimensions in which the attributes are information

bearing. This approach requires two arrays to keep track of the indices in the attribute vector with

actual values. The first array is an index array with the integer value of the original attribute index.

All the actual values are kept in the second value array, so even if an an attribute vector is of size

1,000, then the actual storage requirements for that vector is at most twice the size of the vector

given that all of the slots are filled out. In the worst case, the sparse storage mechanism can lead to

more memory consumption than the usual single-array storage mechanism. A flexible method could

be to mark each record as a candidate for sparse storage, and then activate each storage mechanism,

if needed. The sequential access to each attribute using the sparse solution with only two storage

arrays as described above is not a problem. However, when random access to the attributes are

needed, then a third mechanism must be introduced. This mechanism is a map that links the original

attribute index to the index for which it is stored in the sparse index array. For example, the 20th

attribute might be stored in the 11th position in the sparse index array. The introduction of this third

storage mechanism puts an additional overlay into the sparse implementation.
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3.4 Global and Local Datasets

In this section, we will evaluate the differences in datasets that might occur in the DSVM system.

The system is basically comprised of two kinds of SVMs that run on two types of nodes. A filtering

SVM runs on a node labelled as the producer node, and the inference SVM runs on something

called the inference node. In this context, it is easiest to comprehend scenarios in which the data is

collected on the producer nodes and thus would not be overlapping. In such a case, the producer

nodes would filter and then exchange the data. However, in some scenarios the observations are

not spatially separated. Observations may overlap on a row basis or on a column basis. The SVM

is likely to be well suited for row data that is repeated throughout the system. In that case, the

producer SVM would locate the exchange set and, at the consumer nodes, a preprocessing step

would eliminate the repeated data. Therefore, the system would perhaps see repeated data coming

from the producer nodes toward the consumer nodes. It some circumstances it might be necessary

to introduce a new layer of producer nodes, which would work as a relay node. This node would

act as a relay of the information that was not repeated. Repeated information would be lost in the

training session of the relay node, and thus there would not be extra traffic on the final edges leading

up to the consumer node. A more problematic scenario could be imagined if the system of sensors

were monitoring an object from different angles. The problem is the last columns on one sensor

might become the first columns on the next sensor’s data. There would be no easy way to eliminate

this kind of data as it is incorporated into the final vector that needs to be formed. The local datasets

might be small enough to work with a notion an edge node. We envision a new type of node that

we could call a hyper-edge, which would not run an SVM but would keep some kind of cache that

enables it to eliminate repeated observations before they are relayed to the real producer node. After

receiving the data from the nodes, the producer nodes would send the exchange set to the consumer

nodes, which then would perform the inference tasks on the datasets available in the system. This

allows for a solution that maps toward the Java frameworks. First we have hyper-edges that perform
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local inference tasks. Then close producer peers filter the data by loose training of SVMs. Finally,

the exchange sets are migrated to a server, which finalizes the model in a consumer node setting.

A different scenario follows if this is viewed as a distributed system of autonomous peers. In this

setting each peer would go through two states: training, in which they capture data and exchange

it with the consumer nodes, and a state in which data is received from the producer nodes and the

role of the consumer node is assumed. Upon final training of the model, the nodes would become

consumer nodes, and each node in the system could participate in distributed inference. It would

also be possible to update the nodes online after the models were trained, an advantage of SVMs.

A BP neural network would not lend itself as easily to retraining because it typically has higher

capacity than used in the model. Therefore, it is difficult to unlearn and learn in partial steps with

a BP neural network. In the SVM, the operation merely amounts to injecting the data point with a

reset Lagrange multiplier and commence training.

3.5 Experiments with Code Profiling of DSVM Gui

The first experiment is to profile the DSVM [32] code in a testing mode. The DSVM interface

allows the user to enter data for a binary classification problem, such as the choice of kernel. Subse-

quently, the SVM is trained, yielding the results to be evaluated. To distinguish the decision regions,

the DSVM classifies and colors each of the pixels on the DSVM gui screen. This is achieved by

converting each pixel to a set of coordinates and calculating the functional output from the DSVM.

The color is then presented in RGB by making functional output closest to the decision region blue

or red depending on the sign of (2.1). The red or blue component is then decreased such that the

decision regions have a dark color in areas in which the model is more certain as measured by a

large functional output.

The DSVM gui in Figure 3.4 presents the DSVM in two modes: training and classifying.

These two modes become the unit of analysis with respect to a code profiling of the DSVM core.
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Figure 3.4: A binary classification problem. The DSVM first makes the model, then classifies a 208
by 208 pixel area pixel for pixel. The 43,264 classified pixels are then used to color the background.

A code profiler is available to the Eclipse IDE, which can point out how much CPU time

is spent in each method. It can thus create a profile of CPU time is spent in the DSVM. This tool

can be used to identify bottlenecks in the code. There are dominant program states that can be

profiled to provide insight into the code. These states include training and testing. Training consists

of running the loop of pairwise kernel evaluations in the SMO loop continuously until the stopping

criteria is met. The configuration in Figure 3.5 is a code profile without any caching of the kernel.

As expected, a majority of the time is spent evaluating the kernel, as this is a dominant object in

(2.1).

3.6 Experiment with Stability of DSVM for Different Kernel Config-

urations

The SVM algorithm relies on the kernel to measure the dot product of two data instances in the

induced feature space [26]. A widely used kernel is the Gaussian kernelexp(−‖xi,xj‖)
σ2 that has

one parameter. The parameter is the width of the Gaussian,σ. Another important parameter is
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(a)

(b)

Figure 3.5: Code execution profiling of the DSVM using an Eclipse profiler plugin [77]. The top
image (a) shows the training profile. CPU time is consumed primarily by the error calculating flow
that usestakeStep , getError , getObjectiveFunction , epsEqual , andabs . This flow
sums to 94.24%. The bottom image (b) shows the display profile. The percentages on the picture
show how CPU time is used by the methods in the code. To display a background color, the DSVM
tests each pixel against the decision function provided by the trained SVM. If the percent of time
spent in theshowTestPointClass and the two sub methods is added to the percent of time
spent incalculateColorForTestPoint , it sums to 59,15%.

the regularization constantC. It determines the penalty the SVM places on misclassified points.

To get experimental insight into the SVM training time for different combinations ofC andσ, a

data set from a large public repository is chosen [13]. The Ionosphere and the Wisconsin Breast

Cancer data sets are analyzed in terms of how many kernel evaluations are computed before SVM

convergence. What we are interested in here is not the absolute number but rather the variation of

kernel evaluations. A large variation could indicate unpredictable energy consumption on the node.

It is evident that the kernel evaluations vary to some degree depending on the kernel and

SVM configuration with respect to Gaussian kernel width and the regularization of parameterC.

The stopping criteria of the SVM can also be a way to save energy on the node [71], and,

therefore, we want to experiment with the tolerance that determines if the SVM obeys the Karush-
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Figure 3.6: Counting kernel evaluations for the Wisconsin Breast Cancer data set. The computa-
tional burden, as measured by the number of kernel evaluations, is stable in the majority of the search
space. The one exception is the observation of 7,565,601 kernel evaluations forσ = 9, C = 2.0.

Kuhn-Tucker (KKT) conditions. The larger the tolerance, the fewer kernel evaluations are needed

to make the SVM converge to the specified level of accuracy.

This is an interesting result as it also shows how the DSVM can be configured to run in

a more or less fine-grained mode and thus presents an additional source for tweaking the energy

consumption on the node. The smaller the tolerance, the more energy the DSVM is using. This

result is not energy profiled in terms of how much energy it uses, but instead it is profiled using the

number of kernel evaluations,#k, which is customary in machine learning. We use the modified

SMO [61] to estimate the Lagrange multipliers,α.

3.7 Experiments with Reuse of Lagrange Multipliers

A relevant experiment is to save device energy by reusing the models generated by previous cross

evaluations [29]. In contrast to backpropagation neural networks, previous SVMs can be reused

in training of new models. MLP neural networks are often able to overfit the estimated function,

and therefore the weights need to be estimated from scratch for each training in the crossfold. An

experiment on how many kernel evaluations it takes to train an SVM using a Gaussian kernel on
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Figure 3.7: Counting kernel evaluations for the Ionosphere data set. A classification SVM model is
trained on the Ionosphere data set for different values of C andσ. There is a peak in the number of
kernel evaluations for some combinations.

the Ionosphere data has been conducted. We counted the kernel evaluations for training SVMs for

all combinations of Gaussian kernel widthsσ of 1 through 10 and the regularization parameterC

from 1 to 10. Both values are stepped in increments of 1. This results in 100 runs of the SVM.

The method used is to re-initializeα for new kernel parameters while using an inner loop of new

successively largerC values. A rescaling ofα is conducted between each inner loop by multiplying

α by Cnew/Cold [29]. On the Ionosphere data the experiment fortol = 0.01 without reuse of

alpha scaling resulted in 79,654,146 kernel evaluations. Through reuse and rescaling ofα, the total

number of kernel evaluations was 49,337,258, which is an potentially important source of energy

savings.

3.8 Experiment with Gaussian Approximation

The Gaussian kernel,k(xi, xj) = exp(−‖xi,xj‖)
σ2 , is often chosen when using SVMs. It has one

parameter in the form of the widthσ of the Gaussian function. Java J2SE provides the Math.exp

function to take the exponential of a number. However, under the Java CLDC, this function is

no longer available. Consequently, an approximation to the exponential function is needed. The
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Figure 3.8: The datapoints of the Ionosphere data for different tolerances. The number of kernel
evaluations increases as the required tolerance becomes smaller. The smallest and most restrictive
tolerancet is for the bottom figure, which hast = 0.001. The other figures havet = 0.01, t = 0.1,
andt = 1.0, with the largest value at top left. On the x-axis is the width of the Gaussian kernel
function, which controls the classification performance of the SVM classifier. On the y-axis we
have the number of kernel evaluations needed to train the SVM classifier to the given tolerance t.

implementation can be approximated in the form of a Taylor series expansion. Our implementation

of the function is in theexp function in theUtil class in thedsvm.util package [32]. For a

configuration in which the first 12 components are added, the system yields better performance as

compared to the Math.exp function. For 1,000,000 runs the Math.exp function took about 771 ms,

while the implemented Util.exp function took 451 ms. The error was 0.0003% when subtracting

Util.eps(2) from Math.eps(2). Rather than calculating the permutation of n in each loop, a lookup

table with n! was implemented, but that did not result in further speedup, as Java spends time

performing an array index check when looking up the values.
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3.9 Summary of Single-Node SVM

The single-node SVM in constrained environments has been investigated in this chapter. First, we

identified the relevant constraints for working under such conditions. Subsequently, the SVM was

mapped to the constraints by relevant proxies. Some of the proxies were tested in experimental set-

tings such as the possible savings by reuse of Lagrange multipliers. It was concluded that substantial

CPU time can be saved by reusing Lagrange multipliers in the process of fine-tuning the parameters

of the SVM. In a later chapter we specifically look at the energy consumption of the single-node

SVM to understand better how the algorithm behaves on selected hardware platforms. Next, we can

consider what happens when multiple SVM-based nodes are introduced into the system.
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Chapter 4

Multi-Node Support Vector Machine

The main purpose of the DSVM system is to let the distributed nodes use mutual information to

perform better as a group than on an individual basis. Therefore, this chapter relates to the sec-

ond research question on how the SVM can be tailored to work well in distributed environments.

Our goal with the distributed learning system is to distribute the information from individual nodes

equipped with SVMs to the whole network of distributed, SVM-enabled nodes. The rationale is

that distributed learning is possible and that we want to utilize key properties of the SVM algorithm

such that goals related to minimal network communication are attained. This is linked to the imple-

mentation of distributed queries such as those discussed by Bonnet et al. [14]. One of the example

queries in the paper (Query 3) is on fetching anabnormaltemperature. To address such a goal, the

DSVM framework would be a candidate as the distributed novelty detection in section 4.5 could be

used for this purpose. In this chapter, we formalize the notation of the DSVM system, and introduce

the key terms and definitions such that we can conduct and discuss selected experiments later in the

chapter.

The DSVM is specified as a set of SVMs using a set of specialized kernels, partitioned over

a set of vertices (nodes) connected by some set of directed edges. Each vertex and directed edge can

be associated with a set of properties defining state, statistical characteristics, and computational
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limitations. Furthermore, the set of SVMs is associated with a set of states, roles and parameters

describing its responsibilities within the DSVM. A relevant parallel can to compare with Tumer and

Ghosh [91] as their Figure 6.1 show ”Learner/Classifier 1 ... Learner/Classifier m” and a ”Meta-

learner”. In this framework the distributed learners are called aproducersand the meta-learners are

calledconsumers.

The three main challenges for the DSVM are: (1) The SVMs should only request additional

information when there is sufficient reason for doing so (labelled the

communication-threshold challenge), (2) mechanisms for exchanging optimal information-bearing

data must be identified (labelled theexchange-scheme challenge), and (3) as limited information

is exchanged, the generalization ability of the DSVM might not be fully known (labelled the

generalization-problem challenge).

The SVM learning method provides mechanisms to address each of these challenges. The

communication-threshold challenge could be addressed using ratios of support vectors vs. number

of data points. Perhaps the richest set of tools is available to address the exchange-scheme challenge.

We can opt to exchange information based on raw data, support vectors, generalized support vectors,

convex hulls, or approximations of convex hulls to deliberately limit communication among the

SVMs. We would expect that ensemble and re-sampling theory can be successfully used to quantify

the generalization abilities of the DSVM. In short, there appears to be adequate theory and heuristics

developed to provide a starting point with respect to each DSVM challenge.

The system has not been defined previously in a distributed formulation and, therefore, some

flexibility exists when defining the objective for the system. The more distributed it is, the more data

is also exchanged. For example, it is straight-forward to see that the compression ratio,CR, at each

node is proportional to the amount of data that is not exchanged in the system. Therefore, high

CR will result in high compression in the system. An example of a set-up in which this would

not hold true is for a system ofN nodes, each with minimal training sets of two points on each

node. Provided the data set is not trivial, the two points would be included in theSV set and thus
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Table 4.1: Exchange Schemes for Classification, Regression, and Clustering Problems
DSVM Mode Controlling Parameter

Voting Exchange Classification Regression Clustering
Compression scheme SVM ε/ν-SV SVC

Support Vector - OK C, ν C, ε, ν C, q
Kernel OK OK Kernel family dependent
Data redundancy OK OK Problem dependent

be candidates for immediate exchange with other consumer nodes. We use the producer/consumer

terms in the rest of this thesis. A node that generatesSV s is a producer, while a node that uses the

SV s is a consumer. Nodes can be both consumers and producers at the same time. A node that

collects data takes on the producer role, but another type of node can also come into play when data

are travelling over long distances (as measured by a number of node jumps). As a consumer, the

node would collect data from a number of producers while taking on a consumer role. Upon some

trigger (time or data dependent), the node would train a new SVM classifier and produce a set of

SV s that can be pushed toward the ultimate consumer within the DSVM system.

The DSVM exploits the fact that the SVM algorithm is rooted in the data examples. This

makes the algorithm well suited for such distributed data mining problems that allow the data points

themselves to be exchanged among the nodes in the system. The nodes in the system are thought to

be small learning machines ready for more data such that the local optimization of the cost function

can be fulfilled to maximum extent.

In previous sections, we introduced a cost function, which takes into account the communi-

cation cost in the system. We choose the number of exchanged data points,EP , as an appropriate

proxy for the communication cost and minimization of same. In this section we want to motivate

why the SVM algorithm could be an appropriate algorithm for intelligent exchange of data points

in a distributed inference system. The three different compressions that take place in the DSVM

system has been categorized in the table below.

The number of data points inSV is something that can be controlled by parameters set in
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the algorithm regardless if we are using the SVM for classification, regression or clustering. With

respect to classification, the SV compression is dependent onC for soft margin SVMs as shown in

equation (2.3). Naturally, this dependency onC vanishes if the data is linearly separable in feature

space, but this is not a common phenomenon i practical machine learning as noise and other factors

seems to have a constant presence. Theε-SVR [93] and theν-SVR [80] are both regression SVMs

that depend either directly or indirectly on the C parameter. In this framework compression/filtering

is the key we take direct advantage of the parameterν for controlling the number of support vectors

lying outside the regression line tube. Finally, for the support vector cluster algorithm [6], we can

use the same framework. The smoothness of the cluster boundaries are inversely correlated to the

number of support vectors and bounded support vectors, which is an important property for using

the SVC algorithms in a distributed environment. More precisely, the two parameters, which control

the number of active points in the solution are the scale parameterq of the Gaussian kernel, and the

well-knownC parameter that controls the soft margin.

The DSVM is an implementation and a framework that takes advantage of the fact that the

SVM is rooted in the data examples themselves. This makes the algorithm well suited for DDM

problems that can be addressed using the fact that only the data points need be exchanged among

the nodes in the system. The nodes in the system are thought of as small learning machines always

requiring more interesting information such that the local optimization can be fulfilled. Each node

wants new information in the form of training material that can better instruct about the true function

it is trying to learn.

The notion of sets is central for the framework and Table 4.2 describes the various sets of

objects that are of importance for defining the DSVM system.

We will refer to individual members of each set by using the usual indicatorsi, j, k, and

l as indices. The most important set is the support vector setSV as it is here we find the initial

compression or filtering mechanism. There is oneSV set for each distributed learning machine,

DLMi and it will be the result of training an appropriate SVM on the datasetDi belonging to node
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Table 4.2: The Sets Composing the DSVM Framework
Role Notation Meaning

Configuration N Actual nodes (vertices) in the DSVM system.
PN Producer nodes (special vertices).
CN Consumer nodes (special vertices).
L Directed links (edges).

Learning DLM The set of distributed learning machines.
IN The set of inference nodes.

Data GD The global set of data points.
D The local set of data points.
SV The set of support vectors.
CH The convex hull vectors.
EP The set of exchanged points.

Ni. The nodesN are connected by a digraph with the link setL. A particular linkLjk can have

certain properties such as not allowing a local datasetDi to traverse the link and this particular

property will in some instances make it necessary to run theDLM in voting mode. Depending

on the mode, theCN set of consumer nodes will use theDLM differently. In voting mode the

individual INi query the individualDLMi to establish a voted answer. Alternatively, inexchange

mode, theDMLi sends theSVi data toDLMj . Indeed,DLMj will then use all of theSV s

to create theCNj model, which will be put to use on unseen data such as the test set. Quality

of the exchangedSV data can be enhanced by performing a union of theSV and other schemes

to identify the important points with relation to the final quality of the learning machines inIN .

One example that would enhance the quality of exchanged data is to createEP = SV ∪ CH,

such that the convex hull would be exchanged as well. This enhanced exchange scheme applies to

classification problems for which it is easy to see that it generally would makeDINj = ∪iEPi more

robust to local variations for the separating hyperplane at each classificationDLMi. All data points

mentioned here are in the global set of data points for the DSVM system, such thatGD = ∪iDi.

The DSVM system is characterized by the following elements.

Definition 1 Define a directed graphGd(N,L) for which the edges (connections) are associated

with a direction. Therefore,L is the set of edges defining the connection level in the DSVM.
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The role of this object is to define the existence of the set of nodesN and connecting edges

L. We will enrich this with a connection matrixA for Gd that captures various properties of a

DSVM system.

Definition 2 Let there be defined a connection matrixA. The rows in someA, Aij , i = 1, 2, ..., n

are nodes inGd as are the columns ofAij , j = 1, 2, ..., n. An entryAij defines the existence of a

connection between two nodes by the following rules:

aij = 1 if an edge allows traffic fromnode i tonode j.

aij = 0 if a connection from node i to j is not allowed or does not exist.

Definition 3 For Gd let there be defined a set of property listsK (not to be confused with the kernel

symbolk) further defining the constraint properties of the set of nodesN .

Definition 4 Define a setSV M of support vector machines,SV Mi ∈ SV M .

Definition 5 EachSV Mi ∈ SV M is associated with one node,Ni ∈ N .

The definitions formalize the vocabulary for working with the DSVM system properties.

A directed graphGd consists of a non-empty set of nodesN and a set of connectionsL

between the nodes. Each connection is an ordered pair of nodes inN . Each node has processing

capabilityP associated with it that can be measured MFLOPS. Depending of the complexity of

the distributed system, each P in graphGd can be viewed as a random variable with an associated

probability distribution for how the processing capacity on each node varies with time. The same

argumentation can be applied to the directed connectionsLjk in the system. Furthermore, a cost

CP could be associated with the processing capabilityP and the bandwidthB for each connection

in L.

The basis of a distributed system is there is different information at different nodes. A

conceptual global data matrixGD is introduced to ease notation.GD is normalized in the sense

that no observations (rows) are replicated over nodes inN , and the same is also true for the features

(columns).
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4.1 Producer Nodes and Consumer Nodes

The nodes in a DSVM system can be divided into two categories: one that receives raw data and

creates a model on those data, and one that receives a subset of the data, which we call the exchange

set. It is possible for a node to fulfill both roles simultaneously.
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Figure 4.1: Producer and consumer nodes example. The boxes symbolizes sensor nodes, the dashed
circles symbolizes radio perimeter reach, and the solid arrows are sensor data such as light and
temperature. This example setup shows three nodes that receive a two-dimensional inputx. The
input x is processed on the nodes and a data exchange among the producer nodes P1, P2, and P3
takes place. This data exchange could be the support vectors if the SVM is in training mode: D1
depicts this data exchange. A second data exchange, D2, moves selected data from P1, P2, and P3
to C1, which subsequently acts as a producer node, P4, to the final consumer node C2.

The producer nodes,PN ⊂ N , act as an information filter that transmits the relevant in-

formation along the connected edges,L, toward the network of consumer nodes. A producer node,

PNi, acts as a filter mechanism to minimize edge traffic. Its counterpart, the consumer node,CNj ,
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has a dual role. First, it must receive the points from the producer nodes and train its own model on

those points. This is not unlike theJAM: Java Agents for Meta-Learning[87] project that uses the

termslocal learning agentfor the producer node andlocal meta-learning agentfor the consumer

node. Additionally, it must act as the unit for testing new, unseen points. Let us look at the first

possible state of the consumer node: the receiving state. The points from the different producer

nodes arrive at the consumer node, which stores them in the training set for its local model. Each

point arrives in association with its own Lagrange multiplier [82] based in the SVM model off the

producer node. If the exchange scheme is to send the support vector SV set of data, then the con-

sumer node would get only the points that belong to the support vector set. There is no guarantee

that those Lagrange multipliers make sense for the consumer node on the merged support vector

set. Producer nodes would most likely have trained on different subsets of the data such that the

SVs would only make precise sense in the local part of the problem. One experiment of particular

interest would be to test whether the consumer node can save on kernel evaluations using the given

Lagrange multipliers or discard them and begin training on a nulled set of Lagrange multipliers. The

KKT conditions are probably violated for the union of SV sets received from the producer nodes. In

the likely situation that the SV subsets off the producer nodes are different, producer nodes are also

trained to save on kernel evaluations because they do not necessarily have to send precise Lagrange

multipliers along with the SVs. This is discussed in detail in a later section. It is generally only

important that the exchanged SV set match the SV set that the producer node would have created

using a condition of possibly satisfying the KKT (see (2.3) and (2.4)) conditions within the common

10−3 accuracy.

In this section various structural configurations for the DSVM system are discussed. System

nomenclature was defined: nodes, edges, loops, producer nodes, and consumer nodes. The nodes

are small centers of intelligence, which usually gather data, understand data, send data, or re-send

data. There can also be loops in the structure. Maximum flexibility is achieved by depicting the

DSVM system as a directed graph. Eulers theorem about graphs is interesting at this point as it
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provide insight into the DSVM node/edge/loop structures. The formula states thatN +L−Loops =

1. This basic toolbox is needed to describe general layouts or structures for the DSVM system.

Some of these layouts are well known from graph theory, and they will be revisited here. They

cover star, sequential, time changing, mobile, and hierarchical configurations. The star configuration

would be the most likely configuration as it pertains to a number of observer and producer nodes

at the leaf nodes of the DSVM configuration. They would report back to the central star in the

configuration, which could be a consumer node that was monitored by human personnel. The

aspect-oriented classification in which each node takes a different angular view on the same object

could be an example of a star configuration. A different view to consider is a sequential layout in

which the producer nodes are along a line with a final consumer node as the main point of interest.

An example of an application using this scenario could be vehicle classification as the configuration

opens up for using image, sound, and spatial/time information in the final classification. A further

configuration of novel interest could be to detach the producers and consumers from the physical

node placement such that they could follow the problem they monitor in the DSVM system. This

approach would be similar to object mobility in the Emerald system [55] if we allow the models

and data to follow a problem around in a network. The system take on characterizations of an

agent-based system. In an imaginary example we could consider the DSVM system as attached

to one person and the data and models for this person follows him, such that it is available when

his mobile device is connected to a wireless access point in an airport or shopping mall. There are

also situations in which a hierarchical DSVM structure might prove optimal, such as when there is

value to be gained by filtering information as it nears the final consumer node. We can see this as a

star configuration with nodes that meet on their way to the consumer node. We should envision the

typical tree structure graph. If we imagined the DSVM spanning the Internet, then the local producer

nodes could send support vectors to intermediary consumer nodes, which then could resend the

refined information to the final consumer nodes if that was the configuration of this scenario. Many

of the above configurations have dealt with a consumer node that has been a set to be master node.
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The problems addressed have clearly been centrally distributed, but the model has centrally set up. It

would be equally possible to think of multiple consumer nodes that work within the DSVM system.

This redundancy could be used to ensure higher availability or it could alternatively be used to

extract different information from the system based on the same fundamental inputs. Therefore, the

system is equally well suited for distributed problems and distributed data problems. The prototype

is available for different types of nodes that can have various system characteristics. For example, it

might be better to have an observer node pass the observed data directly to a producer node if it did

not have the memory to hold the entire local data set in memory. In the hierarchical problem above,

the intermediary nodes can be used to process information such that the consumer node would be

presented with distilled information and thus did not have to be a more powerful node.

A main issue in the DSVM system is how well it would scale up to a large number of peers.

It could be claimed that any distributed system needs to scale up gracefully to continue working on

a satisfactory level. The scalability can come from two categories in the DSVM system: System

related, such as the networking scalability; and model related, which results from using the SVM

as the base algorithm. System-related issues could occur at two phases in the DSVM lifecycle.

Initially the nodes will need to join a DSVM system, and each needs to obtain knowledge of the

necessary peers. The name service peer will let each node contact it and at the same time return

knowledge about other peers to the calling peers. Therefore, there are 10 nodes in the system,

the first node would contact the name peer and, as the first node in the system, would not receive

any references to other peers. Node two then joins by calling the name server and leaving its

address and retrieves the address to node one. Node two then is able to work in a distributed fashion

by calling node one to tell it about its existence. The choice here was between only letting the

name sever distribute the node knowledge or letting the nodes distribute the address knowledge

autonomously. The latter scheme reduces the number of calls to the name server by a high factor.

If we look at the 10-node example before, then the tenth node will—just like the previous nine

nodes—call the name server; register itself and retrieve the nine references to the other peer nodes
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in the system. It would then make one call to each of the nine peers to perform the local registration.

The advantage of this autonomous registration system is twofold. It does not put a particularly high

load on the name server, which would only receive 10 requests in the previous example, and it tests

the connections among the peers such that each peer only has a valid list of requests when they

have confirmed the connection. A graph of connected services is then formed in each peer that

identified the nodes. This is similar to the JXTA rendezvous service. The name servers work among

themselves to distribute references at periodic intervals. It would be typical to use one name server

for each DSVM subsystem. The parallel to the JXTA system is the relay peer. Network traffic

is one potential bottleneck in a distributed system and at this point the name and discover service

has been addressed. Therefore, focus can be turned to other sources of scalability in the DSVM

system. The SVM algorithm provides great scalability, which has also been analyzed in JMLR in

the articleOn sparseness of the support vector machine[86]. Another indication of sparseness is

the paper by Chris Burges, which uses the fact that some support vectors can be combined. This

sparseness issue is also interesting in terms of the virtual support vector method, which trains the

SVM and then perturbs the original SVs to produce a more robust representation of the data points.

Bernhard Scḧolkopf and Alex Smola report having the best benchmark on the MINST data base

using this method [82]. It is particularly interesting because it allows us to generate a larger dataset

on the node but only to with the rather small SV set. How much data is exchanged among the nodes

is quite problem dependent. For a hard margin problem, it can be little data, while a soft margin

problem with large C would result in a higher ratio of SVs to be exchanged. In the regression

case the linear problems can lead to small SV sets while non-linearity would result in more support

vectors. In this scenario network traffic is controlled by the width of the discriminative tube that

surrounds the regression function. If the tube width is set to zero, the data set would enter the

support vector set and thus ultimately go out on the network. In essence, the tube width and the

regularization parameter C provide the algorithm-dependent scalability in the DSVM system. For

cluster problems parameter C to some extent controls the number of clusters.
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4.2 Distributed Regression

The DSVM works for regression as well as for the other two areas that are the focus in this thesis.

Regression problems are generally the fitting of a function to a real output number. The regression

problem is usually cast to the fitting of a linear function to a set of targets that are associated with

some inputs. The most popular regression algorithm is the ordinary least squares (OLS), which min-

imizes squared distance to the fitted regression line. The SVM algorithm was not directly applicable

to regression, as it was originally designed for classification problems. Vapnik recast the problem

to fit a tube to the data. This tube consists of the support vector set: points that are more than a

distanceε from the regression line. So this makes it possible to create a regression function that

essentially consists of a low number of points, as was the case for the classification problem. If the

data is noisy or highly non-linear, the set of support vectors for the regression line will be enlarged.

The support vector approach has an potential advantage over OLS and an MLP NN. In the first case,

each nodeNi would create the regression line, which would consist of a weight vector and a bias. In

that sense the OLS is efficient if only those two pieces of information were exchanged. The question

remains as to how the consumer nodes interpret the weight vectorw and the bias b entering from

the nodes in the DSVM system. The straightforward approach would be to take a simple average

of the weight vector and biases to create the final inference model on the node. A more sophisti-

cated approach could be to weight the average of the weight vectors and the biases according to the

number of observations that were present on each producer node. Again the focus is on heuristics

and not on the principled approach that the SVM framework offers. Another limitation of the OLS

is that the algorithm is linear by nature. Therefore the SVM approach offers some advantages to

this approach because it allows for a nonlinear fit of the data. Furthermore, the modifications to the

SVM regression made by Schölkopf [82] make it possible to control what fraction of the vectors

that end up in the support vector set. This is a flexibility only offered by theoretical satisfaction for

problems that run on a single PC in the single model mode that is dominant for many reasons that
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shall not be discussed now. For the distributed problem in which the communication, or number of

(support) vectors are something that we would ultimately like to control, the ability to reduce the

number of support vectors in the exchange between the producers and the consumers is needed. In

the case of the OLS, the amount is fixed and low, which is good in terms of the communication cost.

However, as mentioned above, the algorithm is linear. The MLP neural network algorithm can also

be discussed in terms of the DSVM framework. This would be a difficult algorithm to work with

in a distributed environment if re-training was a goal for each of the consumer nodes. The most

straightforward approach would be to train the neural network on the individual nodes and combine

the models on the consumer nodes. There are various ways to combine the models as discussed

by Tumer and Ghosh on linearly combined neural classifiers [92]. An alternative approach could

be to retrain the models with the data that reside on the consumer nodes, but that would ignore the

data that was used for training the models on the other producer nodes. The retraining of the neural

network would be a difficult and fragile task. Networks are usually trained using early stopping,

and this makes it difficult to retrain the models once a certain network has been locked. A separate

set is often kept aside for which the error is monitored throughout the training period. Furthermore,

the method of crossfolding would perhaps create ten neural models on each node.

It is clear that the implementation should allow a node to identify the important points in

terms of the model. The points on the margin for a classification problem are most important for the

classification model. In terms of regression the problem is a little more subtle because the regression

line will be more visually strong or have weak support on different regions of the line. Therefore,

the points cannot be determined as important simply by their distance to the line. For example,

is a point that is far from the line important just because the square distance deems it so? The

answer is perhaps yes (or no), but the algorithm must have a mechanism for excluding points of this

kind from the final model if it could be regarded as an outlier. We can review the ordinary least-

square model as we recover this algorithm if the SVM regression problem uses a tube with width

of ε = 0. If this is the case then the algorithm fully recovers the OLS method, but on the expense
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of the sparseness of the solution as N. Christianini and J. Shawe-Taylor explain inAn Introduction

to Support Vector Machines[26]. There are ways built into the SVM regression to perform outlier

detection. First, the algorithm makes use of a tube of widthε to ensure that points that fall close

to the regression line do not enter the final model by becoming part of the support vector set. In

other words, those points that might have been on the line in an OLS problem would not be part of

the support vector set for SVM regression points. Secondly, a number of points are excluded from

the solution by the regularization parameterν. The ability to exchange the points that are part of

the support vector set is an important implementation consideration. Therefore, the implementation

allows this set of points to travel from producers to consumers such as in Figure 4.2. It would be

natural to enhance the quality of the points by tagging along the Lagrange multipliers, which came

about as part of the training algorithm. Working strictly with a linear regression, we could create the

weight vector and bias, but this approach presents the same challenge as a distributed OLS, namely,

the points could not enter a new solution in their natural form as they can when dual representation

is used. Ordering points based on their importance and having them enter the training algorithm

immediately upon arrival on the consumer node would be desirable. This would allow for more

efficient training should the consumer node be equipped with a powerful CPU while employing a

slow communication link. Accordingly, the exchange of points must support an ordered sequence

of the point exchange and the points must be able to enter the main loop immediately upon arrival,

which could be done by implementing the training algorithm as a separate thread on the consumer

node.

4.3 Distributed Clustering

The cluster segment the most difficult to work on as compared to regression and classification.

Clusters can be circular or have more complex boundaries, which depend on the clustering algorithm

that is used [34] [100]. What constitutes a good cluster can be quantified, and that also adds a level
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Figure 4.2: DSVM regression. The regression SVM on the producer node exchanges only three
points. Subsequently, the SVR model takes on a new shape on the consumer node.

of subjectivity to this task. It is necessary to understand the clustering task both in a local (per node)

and on a global level to know what points that are eligible for exchange. One property that is needed

of the algorithm is that the identified cluster must not depend on the points that are not in the set of

the support vectors or the bounded support vectors (BSV) [6].

Only those vectors are necessary to reconstruct the clusters to the original shape on the

consumer nodes as they were on the producer nodes, which can be seen in Figure 4.3. Whether

the cluster labels are exchanged is a choice that must be made. Network traffic is not so much the

issue, since it would be an extreme situation if the extra traffic due to the cluster labels constituted

a significant problem in terms of communication cost. The fundamental choice is whether cluster

points are collected on the consumer node and then subject to retraining or if they enter the algorithm
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Figure 4.3: DSVM clustering. This example shows how the support vectors as well as the bounded
support vectors of the producer node are exchanged to the consumer node. Next, the consumer node
trains its support vector cluster model. The labels of the underlying classes are shown as circles
and triangles to show the true classes but, these labels would generally be unknown in clustering
problems.

with their local label as the main piece of information. That is one of the main issues that must be

decided. A. Strehl and J. Ghosh propose hypergraph algorithms [88] that can used if the local labels

are kept. On the other hand, the problems in the DSVM are supposed to be generated from the

same underlying global distribution. Therefore, the arguments concerning different sets of input

vectors are not applicable to this problem. This leads to the solution that the points should be

exchanged without their labels and retrained on the consumer nodes. It should also be noted that

the trivial solution is always present, which is just exchanging all the points, but the DSVM system

was created for situations in which control of exchange sequence, edge traffic, storage and local

producer node intelligence matters. The ability to identify points that almost became a support

vector or a bounded support vector would be useful, as this additional information exchange would

make the inference model at the consumer nodes more robust due to local differences in information.

This difference reveals something about the robustness of the overall DSVM system. That is not

particularly simple in the cluster setting and a proxy for quality could simply be the number of points

that are in the approximated model vs. the number of points that are in the corresponding global

model. The previously introduced usage of precision and recall would be appropriate measures here.
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The question of how to determine with which points to augment the cluster points is still open. One

approach would be to select points close to the support vectors and the bounded support vectors

by using the kernel based distance metrick(1, 1) − 2k(1, 2) + k(2, 2) distance object. We want

to do the opposite and reduce the number of points that are exchanged due to high communication

cost. Consequently, points can be eliminated based on the size of the Lagrange multipliers, with

the smallest multipliers being deleted first. Similar to the case of constructing the convex hulls, we

can employ use of the kernel metric to identify points that are close to the clusters and thus are

almost support vectors or bounded support vectors. This is easily done by working out the kernels

for the remaining points and sorting them according to the closest points as prime candidates for

augmented exchange.

4.4 Distributed Classification

The distributed classification task, which has been the subject of much research, is an interesting

task for the same reasons that the stand-alone classification task is interesting. It is the application

of how objects observed in a distributed system are classified. The basic problem is how a set

of objects is classified into a set of classes. Each class represents a subject different from other

classes. How classified patterns that are produced at a node are exchanged in the system to yield

a distributed classification system will be examined. Again, the same basic principle persists: The

main focus is the support vectors that result from training of the local SVM classification model.

There are ways of augmenting this set with richer information such as the approximated convex

hull measure. Envision two producer nodes of support vectors, each node having its own local

classification problems. Accordingly, the DSVM system would need at least one representative

from each class to train the local classifiers. The DSVM system would have four observations to

work with. The consumer node—a third node—would combine the four points by retraining a model

using the Lagrange multipliers that were passed to it from the two producer nodes. We, for the sake
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of the example, could imagine the points in class one near each other and the same for points in

class two. Therefore, the resulting separating hyperplane is capable of separating all four points

without error, and the shared separating hyperplane is not necessarily the same as found on each of

the producer nodes. There are no easy ways of knowing this beforehand, but there are situations

when there are enough CPU power or transmission capacity to augment the support set with the

convex hulls or take the route of full exchange of all the points. The new problem arises for the

DSVM when the points on the producer nodes are misclassified. That indicates one of two possible

situations. Either the kernel running on the producer node is not capable of complete separation or

the data points are inherently noisy. If this situation occurs, the producer can try performing kernel

optimization and parameter adjustments using crossfolding and then retrain one consistent model.

The problem of binary classification is it is a basic way of working with the classification setting.

However, many problems are inherently multiclass problems, and the producer nodes should be able

to solve these types of problems as well. The SVM works by producing a separating hyperplane

that ensures maximum distance between the points. In the case of multiclass problems, a classifier

for each class is trained and applied using the one-against-all approach [76]. It is intuitively clear

there will be a strong overlap by the support vector points from this multiclass exercise. Before

the producers could send the support vectors, a union of the support vector points would have to be

created such that the points are not retransmitted a maximum ofC times ifC represents the number

of classes. There are ways of associating the Lagrange information attached to each point during

the exchange that takes place between the producers and consumers. In a straightforward manner,

the consumer node retrains the local SVM models using the points that are exchanged between

them such as displayed in Figure 4.4. At that time, the consumer node will have its set of binary

support vector sets from each final binary classifier, the extra points that did not make it into the

final classifier set can be retrained.
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4.5 Distributed Single-Class Classification and Novelty Detection

Most distributed nodes of the sensor type gathers unlabelled data, such as temperature, acceleration

and light intensity. If SVMs can be used to detect when one of these data streams is deviating from

normal levels, it would be one more example of applying SVMs to distributed learning problems.

For example, we can suppose (see Table (4.2)) that a setN in a DSVM system consists of sets of

producer nodesPN and consumer nodesCN . Three things are needed to limit data transmission

in the DSVM system: (1) an appropriate filter algorithm placed on thePNs, (2) a method for

sharing knowledge among thePNs, which does not involve full data dissimilation, and (3) an

opportunity to let thePNs make autonomous decisions. The base algorithm that is considered here

was published by Schölkopf et al. [81]. However, their approach did not consider the distributed

learning perspective. For the quadratic program please refer to [81]. The function that is used takes

the value +1 for most of the examples, while a small fractionν is labelled -1. This is done by the

following function:

f(x) = sgn

(∑

i

αik(xi, x)− ρ

)
(4.1)

The dual problem that was solved to getα, see (4.1)is presented here:

min
α

1
2

l∑

ij

αiαjk(xi, xj) subject to0 ≤ αi ≤ 1
νl

,
∑

i

αi = 1. (4.2)

Two things that make (4.2) this interesting: the parameterν defines both an upper bound on the

fraction of outliers and a lower bound on the fraction ofSV s. It is possible to use the fraction of

outliers to estimate radio communication of novel points once the system is in running state and

new data arrives on the node. We can use the lower boundary on the fraction of SVs to estimate

the amount of memory the algorithm will require when trained. Distribution of this model in the

DSVM system requires only that the data with Lagrange multipliersαi > 0 are exchanged, and

the advantages of lower communication bandwidth over exchanging raw data would have been

achieved. It is similar to distributed regression, classification, and clustering. In addition, this
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method for extra exchanges of data based on pairwise distances in feature space can be used. This

concept is formally introduced in section 4.8.
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Figure 4.4: DSVM classification. A producer node sends the support vectors to the consumer node.
The SVM at the consumer node ends up using one point from each node.

4.6 Data versus Model Exchange Schemes

The distributed inference system exchanges information among the system nodes. There are various

ways to execute this exchange. A naive but straightforward way is to replicate all data between

all nodes such that each node has the full data set available prior to the training of the model.

Alternatively, the inference models can be exchanged among the nodes and allowed them to use the

data that is available on each node. One aspect that differentiates the SVM from a MLP NN is that

the SVM can exchange the data associated with one scalar, which is the Lagrange multiplierα

Exchange of Data: It is possible to just exchange the data among the nodes. If all data is

exchanged, the problem is the equivalent of having each node equipped with a standalone inference
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Table 4.3: Exchange Scheme Analysis
Properties

Exchange scheme Advantages Disadvantages

Only data Simple Possibly high communication load
Only models Security Specialized

problem. It is more relevant to investigate when data is not fully exchanged between the nodes. This

is a gradual from having one pointx on each nodeN to the case in which all points are represented

on all nodes.

Exchange of Models:The other approach is to exchange the models among the nodes and

let each each modelM be updated when it encounters new data on each node. Models can be moved

around the nodes systematically or randomly.

• Systematic movement of the model

• Random movement of the model

Systematic movement of the model is implemented by ordering the model to move from

node to node in an ordered fashion. For some model algorithms this could be as simple as moving

from each node using a list of the nodes. If the model only needs to visit the nodes once, this is a

predictable way of sending the model around to the nodes.

The random movement scheme can be used in cases in which the model may need to visit

the nodes more than once and is not particularly sensitive to the order in which the data is received

and used for training.

There are advantages and disadvantages to each of the exchange schemes, which are listed

in Table 4.3.

The are two types of information exchange between theDLM and theIN sets that we

investigate here (see Table 4.2 for the notation in use), which apply whether we are solving a dis-

tributed classification, regression, or clustering problem. TheDLM set can, in principle, be used

in two ways upon training of its associated set of SVM models. EachDLMi in the DSVM system
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Table 4.4: Combinations of Exchange Schemes
Modea Classification Clustering Regression

Exchange data +SVs +SVs +SVs
+/-Convex hulls +/-Bounded SVs -Zeroα points
+/-Simplified SVs -Interior cluster points
-Zeroα points

Exchange Votes Majority vote Hypergraph partitioning Average

aNote: We denote points that are exchanged by a plus sign,+, and points that remain on the nodes,N with a minus
sign, -. Thevotingscheme does not involve exchange of training data. Using the + and - sign indicates a design choice
that is determined by a specific implementation domain.

thus has a trained SVM, and the well-knownSV set of support vectors. The choice to be made now

is if the inference SVM located at eachINi in theIN set, should be able to receive theSV set from

eachDLMi in theDLM or if the original data cannot be moved around within the DSVM network,

which would naturally lead to the need for using theDLM set as small oracles and query them for

answers based on a certain test observations. We will call these two distinct modes of operation for

exchangeandvoting, see Table 4.4. Inexchangemode theSV set is pushed toward theIN set, in

which final training of the SVM onini takes place upon receipt of theSV sets from theDLM set.

On the contrary we have thevoting mode, or query mode, in which theIN set makes queries to

eachDLMi in DLM . The following table summarizes the method: We perform a series of exper-

iments using two parameterized probability distributions. We have chosen the uniform distribution

and the standard normal distribution to generate data sets. The setup we will use is one in which

two producer nodesPN1 andPN2 have been created, each with a local data setD1 andD2. To

create an inference model on the data, a consumer nodeCN1 is introduced. First, experiments will

show the concept of the convex hull in one producer node. Then a series of experiments will show

how the different exchange schemes introduced earlier work when used on minimal data sets.
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4.7 Distributed Classification Exchange Scheme Experiments

The most straightforward way of exchanging points is to send all points from all producer nodes

PN to the all of the consumer nodesCN in the system. That way all inference models would have

the same data from which to work, which would be the global conceptual data matrixGD. There

are also situations in which communication costs, communication capacity, or sheer data volume on

one or more producer nodes in the system make it optimal to limit the exchange to some consumer

nodes to points that are deemed important according to an exchange scheme.

Separable: Cases in which the global data set is separable and exchange of the full set of

points will, as noted above, result in a classifier as good as if the system were a stand-alone system.

Non-separable: Cases in which the performance of the distributed system would be the

same as the stand-alone system even when the data in a global sense is non-separable because all

data is exchanged to all consumer nodes, the union of all the points render the same data set as in

the conceptual global data set.

Issues addressed in the previous sections have been somewhat abstract, and there are many

ways the distributed inference system could be configured. The focus on the conceptual level in

the experimental section is basing the distributed system on exchange of only important points. We

identified a setup with two producer nodes and one consumer node as the simplest configuration to

illustrate the concepts we have noted. Convex hulls exist for input spaces of dimensionality two and

up. Therefore, we have set the system to work with two-dimensional input data.

If each producer node has a local data setDi, and processing capacity to execute code on

that node, then some algorithm designed to identify the points on the convex hull can be used on

each producer node to find the convex hull of each classCi.

Separable:The identification and exchange of the convex hulls will be optimal in the sense

that all classes on all producer nodes must also be as separable as the conceptual global data matrix

is. When all convex hull points from all producer nodes are sent to one consumer node, the distrib-
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Figure 4.5: Demonstration of four different local data matrices. Two were generated from a uniform
distribution that was restricted to the unit circle. The Two unit spheres were generated from a three-
dimensional unit distribution.

uted model based on support vector classification, would be the same as if the full conceptual data

set had been used.

Experiments show that the complexity of the Matlabqhull function is quite high and

takes a prohibitively long time when the dimension of the input space reaches about dimension

10. Therefore, we need to establish a surrogate for the concept behind the convex hulls that uses

the kernels to find the convex hull. One approach is to sort the points for each class according to

the kernel output. The first two points with the highest kernel output is on the convex hull in the

feature space. The third point we are not certain about. The reason is that it could be lying on the

line between the two other points. It gives us the option to have some sort of mechanism likely to
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Figure 4.6: Standard Gaussian point generator. The data points for the four examples above data
matricesD have been generated using a standard Gaussian.

work as a convex hull. The algorithm would start out with the two points with the highest kernel

output and then use them as the seed for the next pair of points. It can either be the first points

that are part of the convex hull or other points. The algorithm requires that the full Gram matrix is

generated, but that should not be difficult as this algorithm could run virtually transparently along

the SMO algorithm and keep a list of convex hull candidates on the list. The easiest approach could

be this: For each point store the maximal kernel output of some other point. When the time comes

to exchange the support vector set, a given fraction of the points with the highest kernel outputs are

exchanged as well. We know from the first DSVM paper that the number of points on a convex hull
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Figure 4.7: Separable-full exchange. The conceptual global data matrixGD is split onto two local
data matricesD1 andD2. D1 is to the left,D2 is to the right, while the single consumer nodePN1

is in the middle. All points inD1 andD2 has been exchanged to the producer nodePN1.

is surprisingly few for the popular Gaussian and uniform distributions. Therefore, the percentage

of pseudo convex hull points probably does not need to be high. A minimum would probably be

the top 1 percent going up to about 10 percent. Future experiments will determine how well this

scheme overlaps with Matlab’s qhull scheme.

Non-separable: It is not so clear what happens when the global data set is not separable,

because the producer nodes can have separable and non-separable classes, depending on the exact

blend of data points on that node.

This exchange scheme is more a combination of using either the convex hull exchange

scheme or the support vector scheme to identify and exchange the points. It is more robust than

either of the other schemes used on a stand-alone basis.

Separable: This is the simplest case as both selection methods complement one-another.

Important points will be identified using this scheme. If the two identification efforts are run sepa-

rately, we could expect a high computation cost. However, it is possible the two algorithms can be

combined to be used efficiently in this DSVM scheme.

Non-separable:It is possible to have local data sets in which support vector identification

does not catch all points of importance for the consumer node, which is why the union of the support

vector points and the convex hull points can be an improvement.

There is full flexibility in choosing an appropriate exchange schemes to run on each producer
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Figure 4.8: Compression ratios of convex hull for uniform distribution. Figure (a) show how many
points that ended up on the convex hull as compared to how many points were distributed uniformly.
Figure (b) show the compression ratio - i.e. the ratio of points on the convex hull divided by the
total number of points. The observations on both figures have standard errors associated with them.
It is computed by running each experiment ten times.

node.

Dimensionality puts a limiting factor on the usability of the convex hull approximation

scheme.

Table 4.5: Convex Hull Points for Rising Dimensionality for 10,000 Points

Dimension Uniforma Normal
distribution distribution

2 75.50 +/-2.55 13.60 +/-2.32
3 443.60 +/-12.61 50.70 +/-3.62
4 1289.80 +/-19.85 151.60 +/-9.24
5 2610.70 +/-30.10 336.70 +/-11.08
6 4139.00 +/-50.06 674.70 +/-21.96

aNumber of points on convex hull.

Distribution is integral to determining the effectiveness of the convex hull exchange scheme.

Table 4.6 illustrates the normal distribution rather than the uniform distribution was more suited for

the convex hull exchange scheme. The explanation can be visualized by referring to Figure 4.5 and
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Figure 4.9: Compression ratios of convex hull for Gaussian distribution. Figure (a) shows how
many points ended up on the convex hull as compared to how many points were distributed using
a two-dimensional normal Gaussian and the covariance being the identity matrix. Figure (b) shows
the compression ratio - i.e. the ratio of points on the convex hull divided by the total number of
points. The observations in both figures have standard errors associated with them. It is computed
by running each experiment 10 times.

Figure 4.6, as it is evident that the rare points of the normal distribution spans a more rugged convex

hull than is the case for the uniform distribution.

The uniform compression ratio declines rapidly as shown in Table 4.6. It could be a potential

weakness of the convex hull exchange scheme, but its effectiveness would have to be judged in a

real situation when communication costs and other factors were considered as well as well. This

would amount to a traditional constrained optimization problem.

As for the normal distribution, the compression ratio decreases at a more moderate rate

than for the uniform distribution. In Table 4.6 we can see that even for six-dimensional data the

compression ratio remains in the 90% range, which is very good.

77



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1P
2P

3P

4P
5P

1N

2N
3N

4N
5N

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
 6P

 7P

 8P
 9P
10P

 6N

 7N

 8N

 9N

10N

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1P

3P

4P2P

8P

6P

7P

9P

 4N  1N

 3N

 9N
 6N

 8N

10N

Figure 4.10: Separable-convex hull exchange. The points on the convex hull at each producer node
have been identified and exchanged to the consumer node. This eliminates points5P , 2N , and5N
from reaching the consumer nodeCN1 if we just examine producer nodePN1 on the left. There
are points from producer nodePN2 that also did not reachCN1.
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Figure 4.11: Nonseparable-convex hull exchange. The points on producer nodePN1 (left) are now
non-separable. The points falling on the convex hulls onPN1 (left)andPN2 (right) have been
exchanged to the consumer node.

4.8 η and δ Exchange for Classification, Regression and Clustering

A more general exchange scheme exists than the one discussed in the previous section. This new

exchange scheme is rooted in the idea that theSV s are the most important datapoints for an SVM.

Rather than identifying the convex hull of a classification problem, consider a method that works

with SV s also for regression and clustering. The proposed method works for problems associated

with a kernel-induced feature space with positive definite kernels. The method introduced in this

section is that data points in feature space,Φ(x), which are close to theSV s of a trained SVM, are

exchanged to other nodes. The logic is that these points are ”almost”SV s and should be prone to

become anSV on another consumer node. If the exchange of onlySV s (see Figure 4.12) is not
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Figure 4.12: Separable-support vector exchange. The points serving as support vectors at each
producer node have been exchanged to the consumer node. Note how points1P , 2P , and3P from
classCP were eliminated as important onPN1 (left). From classCN points1N , 2N , and5N were
eliminated onPN1 when using the SV exchange scheme.
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Figure 4.13: Nonseparable-support vector exchange. The points to be exchanged from the two
producer nodes have been identified by the support vector exchange scheme. Notice how point6P
on D2 (right) is ignored by this exchange scheme while it might have been an important point for
the final model on the consumer nodeM1 (middle).

enough, thisη (see also (2.10) forη used in a different context) orδ scheme can be used. We use

δ as a pre-defined percentage measure for how much data that is exchanged from a producer node.

Before presenting the definitions, recall that the squared distance between two data pointsx, x′ in

feature space isη = ||Φ(x)−Φ(x′)||2 = k(x, x) + k(x′, x′)− 2k(x, x′). The cases for regression

and clustering are similar. In the clustering case, the bounded support vectors [6]are treated as

belonging toSV . The following equations make use of the terms in Table 4.2:

EPη,t = {x ∈ D \ SV, x′ ∈ SV :
⋃

η(x, x′) ≤ t} (4.3)

EPη,δ = {x ∈ D \ SV, x′ ∈ SV :
⋃

minδ(η(x, x′))} (4.4)
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Figure 4.14: Nonseparable-convex hull and support vector exchange. The points on the convex hull
as well as the support vectors are now exchanged to the consumer node. Point6P from D2 (right)
fell on the convex hull of classCP and was thus exchanged together with the union of the other
convex hull points and SV points fromCP onD2.

Table 4.6: Convex Hull Compression Ratios for Rising Dimensionality for 10,000 Points
Compressiona %

Dimension Uniform Normal
distribution distribution

2 0.992 +/-0.000 0.999 +/-0.000
3 0.956 +/-0.001 0.995 +/-0.000
4 0.871 +/-0.002 0.982 +/-0.001
5 0.739 +/-0.003 0.966 +/-0.001
6 0.586 +/-0.005 0.933 +/-0.002

aExample: A compression of 90% means that just 10% of the data is exchanged.

The first expression, (4.3), selects a complementary set of data points from the local data point set

D by including points, within a certain maximum distance from any of the support vectorsSV . The

threshold parametert that determines how many points are included in the supplementary exchange

setEPη,t. The second expression, (4.4), is designed to select a fixed number of the nearest data

points for each support vectorSVi. Precisely, it is the parameterδ that determines how many data

points are included. To avoid re-transmitting data points, both set specifications create the union,∪,

as an increasing overlap that will occur asδ andt increase. Optimal exchange schemes are domain

specific, but we can note that (4.3) is an on-line algorithm as eachx is tested fully upon calculation

of η(x,x′). Due to themin operator, it is necessary to test allx in (4.4) beforeEPη,δ can be

determined. The on-line version, if time is an important constraint as each data point inEPη,t, can
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Class One

Class Two

Figure 4.15:η exchange for classification. Data points within the perimeter of the circle are deter-
mined by the distance metricη in feature space included in the augmented exchange set of points.
There is one point of each class that is not captured by this specific setting of a threshold.

be transmitted immediately. Should this not be the case, the version that exchanges an additional

fixed number of points is better as it allows for tighter control of amount of data transmitted from the

producer nodes to the consumer nodes. In the classification case, an additional sophistication could

be incorporated by ensuring that prior class probabilities were enforced while selecting additional

points for exchange.

4.9 Constraints Proxies in Multi-Node Setting

Various costs of the DSVM system are evaluated in this section, and proxies for the costs are con-

structed. The costs fall into two categories: system costs and machine learning costs. Within the
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system cost category, network costs, storage cost, CPU costs, and communication costs are exam-

ined. Communication costs are those that stem from exchanging a certain number of bytes over a

network. This is particularly relevant for a resource constraint aware system such as the DSVM. The

machine learning costs include the misclassification, regression, and clustering costs. In short, it can

be labelled model quality cost. Finally, there can be a cost associated with time, which is the time

lag between observing points at the nodes to the time it takes before the consolidated model is ready

at the consumer nodes. We can call thistime cost. The system-related costs and the model-related

costs are discussed now, then are integrated using appropriate proxies rooted in the SVM algorithm.

The two primary cost measures in the system area are network traffic and CPU power. Network

traffic is the cost of the traffic that the DSVM nodes generate. This traffic falls into two subcate-

gories. One is the obvious cost of exchanging large amounts of data, which need to be packaged in

a network format and then transmitted to the end destination. The physical network topology can

be quite complicated with lower-layer routing protocols ensuring final delivery of important data

points to the consumer nodes. The other generator of network traffic is the DSVM structure infor-

mation about, which nodes are up and running and which are not. This distributed picture of the

DSVM system can be propagated in the network at various intervals. It is clear that instability of the

distributed system on one hand and high accuracy in distributing the node information around in the

DSVM both drive up network traffic. The topology information is not a cost-driver in terms of the

amounts of data that is exchanged, but more in terms of the frequency at which the information is

exchanged. This keep-alive information is expensive for distributed nodes that have limited uptime

due to limited battery life. However, the actual exchange of data over the network is also expensive

as distributed nodes have a non-trivial cost of sending and receiving data over the network. The

other system cost is CPU power of training the models (producer and consumer nodes), producing

the models (producer nodes), and gathering the data (producer nodes). It is possible to limit the

CPU power consumption by creating training schemes that are less expensive to run than the tra-

ditional models. Similarly, it is possible to limit the cost of storage on the nodes by only retaining
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the points that are of high importance to the model. The storage, network traffic, and CPU power

costs are interrelated in the DSVM system as the algorithm only depends on the subset of points that

are of high importance to it, such as the points that constructs the weight vector in feature space,

or the points that support theε-tube in the regression case, or the support and boundary vectors of

the clustering case. The cost of these three categories can be found by looking at some examples

of nodes that would run in the DSVM system. Three examples of such nodes are the Motes by the

Berkeley team, the mobile phone that runs the Symbian system, and traditional applet viewers that

are connected to the Internet through a host computer. The first example is the mote unit, which

communicates wirelessly over short distances. It is equipped with a battery, and the mote can shut

down the CPU for periods of time to save energy. The phone is also equipped with a battery and

is similar by that comparison. All three units have costs associated with storage, and they are quite

different.

The DSVM system uses the sparse solutions produced by an SVM to reduce network traffic

in distributed inference systems. Assessment of network traffic costs can be conducted by measuring

how many data points flow among the nodes in the DSVM digraph. It is possible to measure the

actual size in bytes, but we think a data point count would suffice to obtain a proxy for comparing

different network traffic reducing approaches. However, in the chapter on energy awareness, we

measure energy consumption per transmitted byte.

4.10 Using Information Retrieval to Understand Exchange Effective-

ness

The precision and recall metrics—often used within information retrieval (IR) [4]—can be adapted

to study what happens with the sets of support vectors, SV, that are used in the DSVM system.

The two metrics are rooted in information retrieval. They serve as measurements of how well a

set of documents match a query expressed by the user. There are a number of relevant documents
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in the collection and a number of irrelevant documents. With this collection, the retrieval machine

will return a set of documents. The machine will probably return a mix of relevant and irrelevant

documents. Therefore, two metrics have been constructed to measure how well the retrieval machine

works. The first is called recall,R, and measures the ratio of how many relevant documents the

machine retrieved. It is calculated asR = #relevant
#totalrelevant . Equally relevant is the precision metric,

which is calculated asP = #relevant
#retrieved . As illustrated in the formulas, the two measures are inversely

related. To capture this into a common measure, it has been suggested to work with the harmonic

mean [83] of the two measures. It comes out like this:

HM =
2RP

R + P
. (4.5)

There are several places in which IR measures can be used to analyze the behavior of the DSVM

system. The producer node could be the starting point. It would be interesting to experiment on

how well the exchanged SV sets match the SV set that would have been found if the consumer node

was trained on a standalone basis using the full global data set. At the producer node, additional

computations are performed to ensure the best data set is prepared for exchange.

D

SV

EP

D

EP

Figure 4.16: Exchange effectiveness using information retrieval. An SVM on the left producer node
is being trained using local dataD and at some point it will start exchanging data (the dashed set
EP ) to the consumer node on the right side. The dataset on the nodes are labelledD. The exchange
setEP gradually becomes the set of support vectorsSV during training. There are several ways,
such as relaxed KKT conditions, that most likely results in a difference betweenEP andSV . It is
this difference among the two sets that is captured by the harmonic meanHM .

The SVM is trained using relaxed KKT (see (2.3) and (2.4)) conditions to save CPU cycles.

It is interesting to measure the IR metrics,(R,P, HM), profile of the support vector set as the
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training progresses. Though it is quite expensive, it would be an interesting piece of information

to be able to review the relationships betweenR, P , HM , and the number of kernel evaluations

#k. A visual distinction could be made between inner loops on the working set and outer loops on

the whole set of data. Furthermore, it would be worthwhile to collect data on the behavior of the

convex hull approximations, as is discussed later in the section. There would be reason to believe

that the smaller the node data set gets the more important the information from using the convex hull

becomes. The reason is that the local SVMs will differ more and more from the global conceptual

SVM, and therefore the convex hull could make the solution more robust by retrieving the points

that would have been part of the solution if the separating hyperplane had been rotated around

the convex hull. The same IR measures could be used for regression because the SVM algorithm

also can be configured to produce sparse solutions. The role of C, as used in the classification

setting, is somewhat replicated by the width of theε−tube in the regression problem since the size

of the SV set can be indirectly controlled by changing the width of the tube. The same experiment

on monitoring precision and recall as a function of the kernel evaluations should be carried out

in this setting. It would suffice to plot the harmonic mean of the precision and recall measures

vs. the current kernel evaluations. It is likely that there are immediate applications to regression

and classification problems. Cluster problems are perhaps more complicated. First, the per class

approximation of the convex hull cannot be carried out due to the nonexistence of the class notion.

It could be suspected that the local node clusters are sensitive to variations in the local data set.

4.11 Transductive Training of DSVM

Transductive training ideas have prevailed for some time in the SVM community, which state that

some information from the unlabelled data set can be used to create a better model during the

training phase of same. More specifically, the DSVM opens itself up to several possibilities for

transductive training. The node level of the DSVM system can be examined, and the overall system
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level can be looked at. The definitions of the DSVM system might be important to this discussion, so

they shall also be addressed. A DSVM system is a spatially and/or time-distributed machine learn-

able problem. The system consists of a complex cost function, which includes system parameters

such as network traffic, memory cost (sometimes referred to as space complexity), and CPU time.

The problem can be any collection of regression, classification, or clustering problems working in

hierarchies or locally distributed with the DSVM system. The node level is probably the context

in which the transductive idea is introduced most easily. If a node is both producer and consumer,

it would have access to some information regarding the test points. It could be that 1,000 already

classified points as well as 1,000 unclassified points were placed on the same node. Because the

transductive information can be used, it is clear this should be done on this node as well. When

the training model is set up, then the test information is entered in the model as well. This is a

particularly simple scenario as the test points are knowna priori. A more likely situation arises

when the test points are unknown beforehand. One such case is if the model is used for simulation

purposes. It can be difficult, if not impossible, to know where in the input space the trained model

is to be used. The straightforward case is to assign a flat probability to every point in the input

space. This discussion is mainly aimed at the situations in which the test distribution falls into one

of two categories. One possibility is that the test points can be known as a probability distribution.

An easy and pragmatic way of using this information would be to generate a test set based on this

information and then use it in the transductive manner. The second possibility is that the test set

is supplied beforehand as a final set of the formx1, x2, ...,xn: I.e. without the labels that would

enable us to either train the model or test the model using these points. The single producer/con-

sumer node setup has been discussed, and now the focus can shift to more realistic situations. If the

producer and consumer node are separated by some link,Lij , the traffic of points would have be

from the consumer node to the producer node. This is an entirely new situation that has not been

covered previously. The usual path of the training points is to be trained on the producer node and

then exchange only the support vector points. Now the consumer node can send its points to the
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producer node before the training starts, then the producer node can make use if this information

while working out the support vector set for the local model. Upon training the support vectors, the

possible additions are exchanged with the consumer node. It can be argued that the consumer node

generates network traffic by exchanging unfiltered points in this manner. Another approach would

be to query the consumer node for points using some mechanism to express where in the input space

new points would significantly alter the trained model at the producer node. The consumer node

would then on a point-by-point basis supply, or not supply, the information requested. A twofold

challenge presents itself. First, the producer node must be able to express where in the input space

the points would be. Secondly, the consumer node must be able to parse this information and pass

on the best candidate. Upon receiving the point, the producer node would re-train. A proxy for how

much the retraining changed the model could be a dot product of the old Lagrange multiplier vector

and the new Lagrange multiplier vector. I.e. a projection of the old vector to the new one.

We have constructed the framework and identified the main parameters for using the SVM

in a distributed multi-node setting in this chapter. Furthermore, we have tried to use ideas from

other disciplines such as information retrieval to find methods for monitoring the effectiveness of

a given data-exchange scheme. The different combination of exchanging data and/or models was

supplemented with the investigation of using convex hulls as augmented exchange data. In relation

to this, we note that the chosen convex hull algorithm was mainly useful for vectors of relatively

small dimensional spaces.
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Chapter 5

System Analysis

The chapter discuss the considerations that must be taken when an implementation is to be done.

The requirements of a distributed classification system are considered, and it it necessity to consider

topics such as storage, augmented exchange schemes and even the sequence of exchange of the data

points. First, the storage requirements on the nodes for a classification problem are clearly of interest

when working with potentially small distributed devices. The analysis will address issues that drive

the analysis of the DSVM system. To begin with, the different component types are identified and

analyzed.

5.1 Node Types

The distributed classification system is a large software system. In order to develop it in a structured

fashion, it is necessary to divide the system into components that each have a limited scope and

functionality, but will yield a fully flexible distributed inference system when configured correctly.

The necessary components are identified below, along with a list of high-level responsibili-

ties that each component can fulfill in the distributed inference system. All implementation details

concerning issues such as programming languages, libraries, hardware etc. will not be discussed
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Figure 5.1: Component diagram of a complete DSVM system. The diagram identifies the main
components and their primary associations.

below.

Collector Component: The component is an abstraction of any device that has the capa-

bility of collecting data. Examples of such devices could be mobile phones, sensors, web browsers

etc.

Responsibilities:

• Collect data points from different sources, which could be a mobile phone, an existing data

base or some flat file with data in it.

• Store data points temporary volatile buffer.

• Pass on data points to data component via communication component.

States:

• Configured: True if connected to one or more data components
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• Collecting: True if collection is ongoing, such as loading and transferring a larger data source

to a data node.

Data Component:Data that is ready for modelling at this time is stored on this node.

Responsibilities:

• Receive data from collector component(s).

• Store data and make it available for retrieval.

States:

• Configured: True if format of data is known.

• Loading: True if data is in being loaded from a collector component

• Loaded: True if data is loaded and ready for retrieval

The data this system runs on is a natural candidate for the inheritance hierarchy, falling naturally

into input data and output data. The input data can be common across the CCR problems, with

the only difference being the target variables. The target for classification is an integer, clustering

problems have no target class, and regression problems have a real valued target. It is immediately

clear that the inheritance branches out according to the problem type of three different subclasses.

The output data plays a dual role depending on whether the system is training or testing. If the

system is training, the output data determines the training error, a first indication of the extent to

which the algorithm has been able to extract the underlying function from the data. If the model has

been trained and new input data is presented, then output data will provide the answers sought.

Producer Component: The producer node is probably the most involved component as it

will work closely with the other producer nodes depending on the model type employed. This role

works closely with the consumer component. One example is when models are used to identify

important data points and tag them for use at a different level in the system.

Responsibilities:
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• Create a model of the data and tag data points important for the model.

• Query other model components for data points and use them in subsequent training.

• Make models available to consumer component when trained.

States:

• Configured: True if configured and connected to data components.

• Loading: True if data is being retrieved from data component(s).

• Training: True if model is being trained.

• Trained: True if model is ready.

Consumer Component:Responsibilities:

• Query a producer component for data that needs to be run by the model.

• Get the classification from the producer component.

States:

• Configured: True if configuration is set.

• Inferring: When querying of models is taking place with new data.

• Ready: When inference is done and results are ready for use.

Configuration and Monitor Component: This is a component to enable configuration and

monitoring of the distributed inference system. The tasks can be divided into human interaction and

machine interaction.

Responsibilities:

• Enable configuration of all other components.
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• Enable manual monitoring of all other components.

• Enable automatic monitoring of all other components.

• Enable automatic re-configuration to adjust to changes in the system, such as higher and lower

communication speeds and processor speeds.

States:

• Configured: True when the configuration of system is done.

• Monitoring: True when connected to and monitoring other components.

Communication Component:The communication component can be used as naming ser-

vice to establish component awareness.

Responsibilities:

• Provide communication between any pair of components in the distributed inference system.

The components can be of same type or different type.

• Use the security component to create a secure communication context. There is data level se-

curity, which can be a random perturbation of the data itself, or network level communication

where some encryption scheme is employed.

States:

• Configured: True when configured.

• Connected: True when connected to components that are ready.

Security Component: There are many levels of security in the system and the roles of the

security component are naturally many.

Responsibilities:
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• Provide an appropriate security level to the system when requested by the communication

component.

States:

• Configured: True when configured.

• Securing: True when connected to desired components.

• Producer node: capacity, processor speed.

• Consumer node: processor speed.

• Communication object: speed, reliability.

5.2 Persistence Management per Component:

The different components will have different needs for persistence management. Some will have a

stronger need for persistence management than others.

Collector Component: The collector component’s main responsibility is to be where the

data is being generated and to collect it. It must either pass on the data at the same speed as it

arrives at the component or save/buffer it for later transmission. If the collector component is a

small distributed and disconnected device then the data is collected at the component and later

retrieved or transmitted to the data component. The storage can be a relational database, a file, or

flash memory.

Data Component: The data component connects downstream to the collector components

and upstream to the model component. It is natural that the data component that gathers information

from one or more collector components would store its retrieved information in a safe way such that

it can be used at a later stage. Therefore, the data component would in some cases use some storage

mechanism that is part of the whole distributed system and is less vulnerable to data loss. There can
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be multiple pairs of data components and model components. If just one data component fails to

collect the data in that chain of models then the whole inference would fail. The raw data, the data

coming from the collector component, is in most cases the important information.

Model Component: The model component that creates an inference model based on the

data fed from the data component. It is clear that the model that has been trained and created can

be restored from the data. In some cases it would be easy to do so. However, it might be that the

model can not be restored even if retrained on the same data. In those cases is becomes important to

store the model in such a way that it can be used again at a later time. If the inference component is

actively using the model component to classify new data, then it becomes important that the model

can be restored to its original trained state. Model types such as neural networks rarely exactly same

due to the random initialization of the weights in the beginning of the training session.

Inference Component: The inference component is probably the component with the

smallest need for persistence management. It clearly depends on a correct model component being

in place. Fore performance reasons, some results results might be cached, but actually saving the

results on persistent storage would be more than was asked for.

Presentation Component:The presentation component is the user’s view of the results.

There might be multiple views of the data, some of which might involve successive calls to the

inference component to show new dimensions of the results. It would probably be necessary to

store the presentation results, as it could be advantageous in terms of creating some independence

between the presentation layer and the data layer. The presentation of the results could also be so

intensive in terms of network communication and rendering of display objects such that is it some-

thing the needs to be minimized by using the persistent storage for retrieving the results multiple

times without needing to issue queries backwards onto the storage system.
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5.3 Data Identification

The main components for the DSVM system have been discussed in the previous sections. The

identification of data points becomes more important in a statistical model setting than in a situation

where the data is just collected and transmitted as-is. Therefore, this section will examine choices

for distributed data identification useful for the SVM learning machines.

The points belong to the node of which they were created. Therefore, a natural way of

identifying the points is to associate a primary key. This can be a date/time stamp or another number

that serves as a primary key. We will call this forexplicit identificationbecause it distinguishes the

points from one another once they are generated.

Another option for creating an identification scheme is to use the attribute values for gen-

erating a key. An obvious choice for this key generation scheme would be a checksum calculation.

The advantage of generating the key using a well-known algorithm would be that the point could be

exchanged in the system in raw form and would not have to have a primary key associated with it.

The problems that can be anticipated are when some nodeNi gets a point from another nodeNj and

the checksums match. Or if nodeNj fails to resend its points when it reenters the DSVM system.

Or there are many points on nodeNj with the same attributes. The reason why this data based

identification schemes work is because of the way the SVM works. It is a discriminative algorithm,

and in its hard margin version it would not change even if one or one million points had the same

attributes (and the same label). The reason is that in the hard-margin case it is only the margin that

counts. Points that would match are removed in a preprocessing step before being allowed to enter

the training algorithm.

It is also possible to create a pseudo checksum system to further compress the points. Again,

recall that nodeNi would probe nodeNj for new points and then receive an array of checksums.

NodeNi would then query only for those points for which there is no match onNj . If two points of

same class differ by only a small fraction of the attributes, there is still some probability that the point
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would alter the solution of the SVM significantly. This is in some contrast to the neural network,

in which the extra points would play an important role, as this algorithm uses information about the

density of the distribution of the points and can be adapted to provide posterior probabilities. For

classification purposes the pseudo checksum can be used when two points are of same class, but the

input vector varies insignificantly. One way to check this is to round the decimal points to a number

of significant digits so that the checksum is performed on a less precise number of digits than the

actual attribute value in the vector. This should ensure that similar points are not exchanged if one

such point is already residing on the destination node. The approach to exchanging information is

robust for the SVM kind of algorithm that seeks to find the maximal margin of some points.

The similarity mechanism represented in the SVM would also allow it to filter, which would

filter out any points that were similar. Again, the strength of theSV set has been affirmed to work

also as a preprocessing step.

In this chapter, a more abstract view has been taken on the DSVM system. It should al-

low implementation in different languages and on different platforms to follow a shared vocabulary.

Analytically, we divided up the system into components and for each component the main responsi-

bilities were pointed out. We used this analysis when the prototype was programmed in Java. Some

components such as the security component was not implemented. However, many of the same

components are found again when investigating the source code [32].
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Chapter 6

Energy Awareness

Experiments are conducted with different settings on three selected systems, and we reach an inter-

esting yet counterintuitive result regarding the energy efficiency of large sensor nodes vs. energy

efficiency of small sensor nodes. Energy awareness in distributed nodes can be achieved by using

and incorporating machine learning algorithms on each of the individual nodes. In this chapter we

experiment energy consumption of an SVM as a tool for embedding such algorithms in distributed

nodes.

The machine learning community provides the SVM algorithm [93], while energy aware-

ness combined with sensor networks provides the domain in which we incorporate this algorithm.

One approach is to incorporate self-configuration in the system: First, we can use the algorithm to

perform a bootstrap test of the node’s CPU speed, and then it can self-configure the SVM. Secondly,

the node starts filtering or performs other intelligent tasks. This approach is possible on a JStamp

processor as it can be configured to run at different CPU speeds, which could lead to different

settings of the SVM algorithm.

We investigate the energy consumption for a constructed binary classification problem us-

ing our implementation of the SVM in the Java language [32]. The work can can be split into

three main components. One is related to the distributed system itself while the second component
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corresponds to the choice of Java as the programming language. The final component consists of

the chosen machine intelligence algorithm. In terms of the distributed aspects, we address this by

identifying the idea that SVMs depend only in part on a subset of the data examples called the sup-

port vectors (SVs). This is an inherent characteristic of the support vector machine algorithm that

applies across classification, regression, and cluster analysis. These three types of analysis prob-

lems can be addressed within the SVM framework. Java can potentially be an attractive platform

for distributed computing since the terms ubiquitous, pervasive, and ambient computing are likely

to fit well into Sun’s ”Write Once, Run Anywhere” philosophy. In a double effort to assess Java’s

capabilities as well as make the successor to neural networks - the SVM - possible in distributed

environments [70], we present the formulas for how to estimate the additional or marginal energy

consumption when using a DSVM on three kinds of nodes: an IBM laptop, a Symbian OS based

mobile phone, and an embedded Java chip.

This chapter is organized as follows: first we relate our work to previous research. Our

concept of the DSVM is then introduced. The experiments section follows with insights into the

code profiling of the DSVM, porting of the Java code from the J2SE API to the CLDC API, with

the main experimentation focusing on approximating a formula for predicting the energy usage of

the node given a set of parameters. Our experiments center on three node types:

These four nodes are further described in the experiments section in terms of operating

system, type of processor, power consumption, and weight. Within the scope of these nodes we

perform experiments and present some interesting results. The experimental results fall into three

categories: (1) How many sensed points can the sensor nodes classify per second? (2) How much

energy does each type of sensor node use to classify one point? (3) Guidelines for configuring the

nodes to self adapt the algorithm.

We conclude the chapter by summarizing the main results and pointing toward the future of

our work. An observation of particular interest is that our experimental setup shows about a factor

three difference in the amount of energy used by the big node, medium node, and small node to
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Figure 6.1: The big Java node: IBM A31

Figure 6.2: The medium Java node: Sony Ericsson p800

classify a point. The smallest node was the most energy consuming, which was not something we

intuitively expected a priori. Please note this might be specific to our particular setup.

6.1 Experiments

The goal of the experiments is to gain a greater understanding of the energy consumption of the Java

sensor nodes. We use a code profiler, software timers, and voltmeters to analyze the energy aspects

of the code. Direct profiling of the code in terms of how time is spent when running the node DSVM

provides insight into the time spent in each part of the program code. Moreover, the node analysis

is centered on the marginal energy usage of running a binary classification problem. It should be
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Figure 6.3: The small Java node: Systronix JStamp

Figure 6.4: The TinyOS node CPU: ATMEGA128L

noted that a large portion of machine learning and pattern recognition is a binary classification

problem. Therefore, we have chosen to start with this problem. The base power consumption of

the device can be defined as the energy used when performing basic tasks such as listening to the

radio transmitter and capturing data. We measure the additional power consumption by loading a

data set and monitor the device during training, i.e., when the Java Virtual Machine (JVM) runs at

100% speed. First, the code profiling is performed. This is a preliminary step leading up to—but

not directly linked to—the energy consumption analysis. An additional experiment is performed to

obtain an empirical analysis of how predictable the number of kernel evaluations is for a real world

data set. Again, this is used mainly as a path toward the third and final series of experiments, which

actually measures and profiles the energy consumption of the nodes. This concluding experiment

provides our main contributions, which are a number of formulas for predicting the energy usage

for different size Java-based nodes. Furthermore, the energy consumption formulas can be used in a

bootstrap auto configuration mode by the nodes, if they are allowed to sample the speed of the node

running the system.
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6.2 Energy Consumption Profiling

Energy consumption is measured on three toy problems using four nodes of different hardware and

software. Each of the three problems trains a binary SVM classifier with two, three, and, foursv.

The experiment is then to retrieve the functional output of the trained SVM for different numbers of

test points. This experiment is conducted on three node platforms: a big node, a medium node, and

a small node. The goal of the experiment is to better energy consumption for various types of nodes

because it will allow for an analysis of which node is most energy efficient.

The setup of the binary SVM classifier for this problem is to use the dotproduct kernel,

<xi · xj>. It can be an advantage to keep the dual formulation even though the kernel is linear

as this allows for later substitution of other kernels and straight forward modification of the energy

consumption formulas. In this example we use the dot product kernel, which is at least three times

less expensive to calculate than the Gaussian kernel [73].

We set up the experiment for three nodes. The first is a standard laptop with a standard

JVM, the second is a Sony Ericsson p800 mobile phone, the third is a small, native-Java processor

called JStamp by Systronix [89], and the last is an ATMEGA128L 8-bit processor.

Figure 6.5: Experimental setup for the p800. Note the total system power consumption of3.99 V ∗
0.14 A = 559 mW for a running JVM. The measurement instrumentation is placed between the
battery and the phone.
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Table 6.1: Properties of the Nodes
Big Medium Small Tiny

OS Win 2000 Symbian 7.0 JEM2 TinyOS
Processor Intel P4, 1.4 GHz 32-bit RISC ARM9 aJ-80 ATMEGA128L

Environment JVM KVM CLDC TinyOS
API J2SE 1.4.2 Sun PJAE 1.1.1a CLDC 1.0 nesC

Weight 3.18 kg 148 g 10.2 ga 0.46 gb

aThe weight of the print board and components are included.
bWeight ATMEGA128L chip without board etc.

Figure 6.6: Experimental setup for the ATMEGA TinyOS Node. The total developer system power
consumption including the running tinySVM program is11.8 V ∗ 174.3 mA = 2.1 W .

Three nodes are equipped with different JVMs and one is running TinyOS.

The big node has a traditional JVM, which is utilized by Java end-users. Implementation

of the Java interpreter on the medium node is based on Sun’s small KVM. On the small node,

the Java interpreter is based on the native Java executing chip from aJile. Lastly, the Tiny node

is running TinyOS, which is programmed using nesC language [40]. It should be noted that the

JStamp processor has a lower energy consumption than the full developer station. The JStamp

processor uses 200mW when running on a 3.3 V DC battery. This is close to the 260mW that we

measured as the extra power used when running the JStamp versus not. The ATMEGA processor

draws 100 mW according to the specifications, which makes the 97.9 mW quite accurate. However,
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Table 6.2: Node Electricity and Power Properties
Big Medium Small Tiny

Voltage 16.3 V 3.99 V (battery) 15.22 V 11.8 V
SVM Loaded 1230 mA 10 mA 26.4 mA 166.0 mA
SVM Running 1950 mA 140 mA 43.5 mA 174.3 mA

Power Consumptiona 11,736 mW 518.7 mW 260.3 mW 97.9 mW

aPower consumption is calculated by the difference in total system
power with the SVM running minus the SVM in idle state. This
gives the marginal power consumption.

our approach to estimating the marginal energy is rater crude as components on the development

boards can interfere.

The experiment measures how much time it takes the three different systems to classify

different numbers ofp. The experiment is repeated three times while increasing the number ofSV s

in the SVM model. In the first run, the number ofSV s is just two, then three in the second run, and

finally four in the last run. After the series of experiments, we have time measurements that depend

on two parameters: the number ofSV s in the algorithm and the number ofp to classify. If we can

estimate the formula for the prediction time depending on the numbersv andp then it is possible to

use that formula in conjunction with power consumption to estimate the energy usage of the node,

and thus how much of its battery life we use on a given task.

The classification portion of the DSVM program has been ported to nesC. This SVM is

labelled tinySVM. An important difference between the big/medium/small systems and the tiny

system is that the ATMEGA chip does have support for floating point arithmetic. Therefore it

solves a simpler task than the other three systems in that all Javadouble variables have been

interchanged withuint32_t . It could still provide some new insight to compare across the two

systems.

It is possible to calculate the average number ofp each of the systems can predict each

second using time measurements. This is derived by dividing the sum of points with the total time

for each of the systems in the tables: Table 6.3, Table 6.4, and Table 6.5 into Table 6.6.
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Table 6.3: Time Measurements for SVM with 2 Support Vectors
p Big ms Medium ms Small ms Tiny ms

100,000 71 4,172 25,984 16,023
200,000 130 8,328 51,967 18,928
300,000 170 12,500 77,950 28,400
400,000 210 16,640 103,934 37,865
500,000 251 21,594 129,918 47,328
600,000 300 28,703 155,901 56,802
700,000 351 29,110 181,885 66,265
800,000 400 38,093 207,869 75,739
900,000 451 39,719 233,853 85,202

1,000,000 500 44,531 259,836 94,667

Table 6.4: Time Measurements for SVM with 3 Support Vectors
p Big ms Medium ms Small ms Tiny ms

100,000 100 7,672 38,136 13,479
200,000 171 12,282 76,273 26,959
300,000 240 18,297 114,410 40,448
400,000 270 24,406 152,547 53,927
500,000 351 30,515 190,683 67,407
600,000 410 36,604 228,820 80,887
700,000 491 42,687 266,957 94,365
800,000 551 49,797 305,093 107,855
900,000 621 55,594 342,827 121,335

1,000,000 701 62,047 380,919 134,814

Table 6.5: Time Measurements for SVM with 4 Support Vectors
p Big ms Medium ms Small ms Tiny ms

100,000 120 8,250 50,305 17,495
200,000 230 17,969 100,610 34,990
300,000 301 24,500 150,916 52,496
400,000 380 32,625 201,222 69,990
500,000 471 40,766 251,526 87,486
600,000 551 48,937 301,831 104,971
700,000 661 56,422 352,137 122,476
800,000 761 64,500 402,442 139,972
900,000 841 74,344 452,747 157,476

1,000,000 942 80,625 503,053 174,972
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Table 6.6: Average Number of Classified Points Per ms
SV Big ms Medium ms Small ms Tiny ms

2 1,940.7 22.6 3.8 10.4
3 1,408.1 16.2 2.6 7.4
4 1,046.0 12.3 2.0 5.7

Table 6.7: Average Time for Classifying One Point
SV Big Medium Small Tiny

2 0.515× 10−6 s 44.3× 10−6 s 263.2× 10−6 s 95.9× 10−6 s
3 0.710× 10−6 s 61.8× 10−6 s 384.6× 10−6 s 134.8× 10−6 s
4 0.956× 10−6 s 81.6× 10−6 s 500.0× 10−6 s 175.0× 10−6 s

It is evident that the big system is much faster than the three smaller systems, as expected.

The ATMEGA chip is faster than the JStamp.

Time equations for each of the systems can be calculated using ordinary least square regres-

sion (we discard the constant term) on each of the three observation sets in Table 6.7. That then

yields the time it takes to classify a number ofp for an SVM model with a given number ofsv. The

results of this regression are shown in (6.1), (6.2), (6.3), and (6.4):

tbig(sv, p) = 0.221× 10−3 ms× sv × p (6.1)

tmedium(sv, p) = 19.15× 10−3 ms× sv × p (6.2)

tsmall(sv, p) = 118.4× 10−3 ms× sv × p (6.3)

ttiny(sv, p) = 39.6× 10−3 ms× sv × p (6.4)

Marginal energy equations can be constructed by multiplying the time in (6.1), (6.2), (6.3),

and (6.4) for each node with the marginal power consumption in Table 6.2, as measured earlier. The
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results are in (6.5), (6.6), (6.7), and (6.8).

ebig(sv, p) = 11, 736 mW × 0.221× 10−3 ms× sv × p

= 2.59 µJ × sv × p

(6.5)

emedium(sv, p) = 518.7 mW × 19.15× 10−3 ms× sv × p

= 9.93 µJ × sv × p

(6.6)

esmall(sv, p) = 260.3 mW × 118.4× 10−3 ms× sv × p

= 30.82 µJ × sv × p

(6.7)

etiny(sv, p) = 97.9 mW × 39.6× 10−3 ms× sv × p

= 3.9 µJ × sv × p

(6.8)
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e(sv, p) =





2.59 µJ × sv × p for big node

9.93 µJ × sv × p for medium node

30.82 µJ × sv × p for small node

3.9 µJ × sv × p for tiny node

(6.9)

It may be useful to summarize this analysis with two examples of how these results can be

applied.

Example 1:Estimation of marginal energy usage for classifying 500 testpoints on a JStamp

node for an SVM based on threesv.

e(sv = 3, p = 500) = 30.82 µJ × 3 sv × 500 p = 46.23 mJ (6.10)

In this example, the JStamp system would use about 46 mJ to classify the 500 new points.

Example 2:Should a node classify on the node or pass on the data directly to another node

for remote classification and then receive back the model? The answer depends on the cost of radio

transmission of the full data set, the cost of the remote classification, and the cost of transmitting

back the model to the node. For some configurations the optimal decision would be to classify

locally, and in other instances it is better to send the data to a less energy consuming node.

6.3 Energy Usage in Local Classification versus Exchange

One hypothesis of the DSVM system is that it should be advantageous in some situations to classify

new observations locally before making a decision if the radio should be activated. In this experi-

ment we test the energy consumption of classifying one new point on the JStamp vs. performing an

immediate exchange of the point. The radios used in the experimentMaxStream 24XStream 2.4 GHz

9600 Baud Wireless Module. First, the JStamp developer station is connected to one radio and the

second radio is connected to the Big node6.1. Then theClassificationOutputDataPoint
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is serialized in Java, and thebyte array is written to thejavax.comm.SerialPort class of

the JStamp developer board.

Figure 6.7: The wireless setup with MaxStream radios and JStamp. The JStamp connected
MaxStream radio is transmitting while the ampere meter display a reading of 168.4 mA.

Table 6.8: Experiment Data for Local Classification Versus Exchange
Item Measurement

Data point serialized 102 bytes
Radio idle 85.3 mA× 7.98 V = 680.7 mW
Radio sending 168.4 mA× 7.65 V = 1, 288.3 mW
Radio marginal 1, 288.3 mW − 680.7 mW = 607.6 mW
Data exchange 107.5 ms\datapoint
Local classification 263.2× 10−6 s
Number of SVs 2

The basic experimental results are presented in Table 6.8. It is interesting that the size of

the serialized data point is quite large but that is the result of programming in an object oriented

manner. TheClassificationOutputDataPoint contains several other objects [32] and

each of those add size to the data object, which also contains itsα multiplier. This is an advantage

of the SVM that the datapoint and theα are so closely related. For the radio, the marginal energy

consumption has been calculated by subtracting the idle energy from the sending energy. The differ-

ence is the marginal energy, which will be used to calculate the cost of sending a data point. It takes
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the modem102ms to exchange the data point. This result was achieved by exchanging 100,000

datapoints and then taking the average. The associatedjava.io.OutputStream of the serial

port was flushed between each point sent. We also note the time spent on classifying a novel data

point on the JStamp from Table 6.7 containing the average time for classification with 2 SVs.

As a result of this experiment we would like to understand the energy cost ratio between

classifying a data point locally versus just transmitting it over the wireless link in a serialized form.

This ratio is calculated by dividing the cost of radio transmission with the cost of local classification.

rradio vs classification =
607.6 mW × 107.5× 10−3 s

260.3 mW × 263.2× 10−6 s
= 953.4 ∼ 103 (6.11)

To check the transferspeed we can note that the wireless modem is set up with 1 stop bit and

no parity bit. With the start bit and the 8 bits of data then each of the 102 bytes are of length 10 bits.

The achieved transfer rate is thus1000 ms
107.5 ms/point × 102 bytes/point× (8 bit + 2 bit) = 9488 bit/s

which is close to the 9600 baud specification.

6.4 Discussion of Energy Results

Our results fall into four categories:

1. Porting and analysis of the SVM algorithm in a distributed setting.

2. Energy profile of the system on three systems that run on J2SE, pJava, CLDC 1.0, and

TinyOs/ATMEGA128L.

3. Demonstration that the embedded Java device can perform classification using an SVM based

on Java and nesC.

4. Experimental demonstration suggesting that local classification is about103 less energy con-

suming than radio exchange.
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There are two issues of particular interest. One is that the big Java node is more energy

efficient than the smaller Java nodes. In terms of the ATMEGA sensor node equipped with TinyOs,

it is interesting to note that it is 7 times less energy consuming to classify on that node compared

to the JStamp node. However, since the TinyOs program did not use floating points, then the direct

comparison of the two system is not possible.

The classification versus radio exchange and the three energy equations in (6.9) provide the

key results as it can be counterintuitive that both the medium (the p800) and the small node (JStamp)

use approx. 3 and 10 times more energy than the big node (standard laptop) when classifying a new

data instance.

It is foreseeable that radiocommunication cost will play an important role in future designs

of distributed and wireless Java based sensor networks. We consider building a simulator that can

be configured with the energy cost to assist designers of wireless Java-based sensor networks to

strike the balance between computing locally on the node versus sending information to the a more

powerful central node. Commercial availability of wireless RF modems for the popular JStamp

developer station [89] is scheduled for fall 2004, which will further enable development of wireless

Java based sensor networks.
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Chapter 7

Conclusion

The fundamental logic of the DSVM system is that SVMs provide configurable solutions that inher-

ently serve to address the constraints found in the four main constraint categories of computational,

spatial, temporal, and communication costs. We have laid out the foundation for a framework that

is a natural way to leverage important elements of SVMs and statistical learning theory. In the

introduction, we set out to answer the following two research questions:

• Is the standard support vector machine useful for distributed machine learning?

• Can the support vector machine be applied specifically for distributed machine learning?

As an answer to the first question we say: perhaps. To the second research question, we

conclude: yes it can. We consider that our main contribution. The answers are provided throughout

the thesis, but a summarization is appropriate. The standard support vector machine required storage

of a large kernel matrix and specialized software packages to solve the associated quadratic program.

So the answer to the first research question is that the standard support vector machine presented in

the paper by Boser et al. in 1992 [15] is not as useful as the support vector machine presented by

John Platt labelled Sequential Minimal Optimization (SMO). Platt’s extensions make it possible to

balance memory requirements during training of the learning machine. The support vector machine
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is useful in distributed machine learning. The second, and closely related, research question is if the

support vector machine can become useful in distributed machine learning. Again, the answer must

be positive, as we have researched and presented many aspects that directly addressed the resource

constraints that the support vector machine is subject to in distributed systems.

In the chapter on related research we touched on sensor network applications. The small

operating system TinyOS presently dominates, but other sensor networks based on complementary

technology such as Java are likely to emerge. One such example is a field programmable gate array

(FPGA) open source Java virtual machine implemented by Schoeberl [78]. We also found that

distributed data mining is emerging, which is supported by the 278 entries in the Distributed Data

Mining Bibliography (DDMBIB) maintained by Liu and Kargupta.

The single-node SVM chapter introduced the main constraints that are relevant for distrib-

uted systems of potentially small nodes. We presented the concepts of general [18] and orthogonal

support vectors [31], which further reduce the number of support vectors and thus the memory re-

quirements on a node. The potentially high energy consumption associated with training of multiple

SVMs while tuning SVM parameters was successfully addressed by the experiments on re-using the

Lagrange multipliers, which is a key parameter in the SVM.

In the multi-node setting, we expanded the framework vocabulary by defining a producer

node and a consumer node. We used this notion while discussing the applicability of SVMs for dis-

tributed novelty detection, regression, classification, and clustering. Our experiments on advanced

exchange schemes related to support vectors, convex hulls,η/δ exchange, and the harmonic mean

related to information retrieval added further insight into the inherent, significant filtering/compres-

sion capabilities of SVMs.

We devote a chapter to energy awareness experiments with the DSVM code. It yielded the

result that the small Java node was less energy efficient than a bigger faster Java node. However,

the small Java node is fast enough to classify a high number of unseen data per second on the

artificial data used across the experiments. An especially interesting experiment positively affirmed
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the energy savings by local classification and filtering versus raw exchange of data. Furthermore,

we tested a TinyOS node even though the results were not directly comparable, but it served partly

to demonstrate that an SVM can function well across different operation systems and hardware

platforms.

Our contributions is the framework laid forth, which might also be applicable to other ma-

chine learning tasks. One type of constrained machine learning is onboard cloud detection process-

ing [84]. Another example of an application area is object tracking in sensor networks [16]. Yet

others are defined by the semantic meaning of the data distribution itself such as the CarMining

project [97]. On the system level, some of these networks can be characterized by a high number of

nodes that are loosely coupled by a wireless connection protocol. On the other end of the spectrum

we find satellites or ELF (extremely low frequency) communication objects such as submarines.

ELF communication links could be an example of a communication constrained edge in a DSVM

system.

The reference implementation has been done in Java, as this environment is flexible in choice

of underlying hardware. However, this flexibility comes with a price, as noted in (6.9). It seems like

an interesting research opportunity to push Java further toward the same low energy consumptions

as the TinyOS sensor nodes have. It would require to construct a specialized small JVM that fits

in memory footprints smaller that the current Java CLDC 1.1 specification of 192 kilobytes. The

TinyOS environment could be the target for an upcoming implementation of the DSVM framework.

It presents some interesting challenges such as the need for fixed point and integer arithmetic be-

cause the smallest devices would not normally support floating point operations. We will call the

system fortinyMiner and the DSVM implementation component fortinySVM.

There are limitations to the research done in this thesis. The implementation in Java, Matlab,

and TinyOS fully determines the results of the experimental sections. In the future, there might be

other distributed SVM implementations, which can serve as benchmark applications, but none are

present as of today. A candidate for such benchmark implementation is the Weka software data
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mining package [39], which can be re-programmed in a edition suited for smaller devices. In fact,

we are looking into making aWEKA-Eggimplementation of WEKA, which will be able to run on

small Java nodes. In relation to pure machine learning, there would be several experiments that

could be tested with the DSVM, but a starting point would be to split existing data sets evenly

over a number of nodes and compare the final inference models to performance on the same non-

partitioned set. A main outcome of the experiments is to get the energy profile of the consumer

nodes and the producer nodes analyzed, such as was done in the energy awareness chapter. It is

to be expected that the energy profile is more energy intensive than linear counterparts such as

ordinary least square regression with a suitable discriminant function. However, those cases in

which non-linearity in the problem domain demand kernels such as the Gaussian kernel this SVM-

based framework would fit in.

In conclusion, we hope to have laid forth the foundations of a framework rigid enough to

legitimatize further research with respect to using the SVM and other kernel related algorithms in

constrained, distributed data mining problems.
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Appendix A

Danish Abstract

I denne afhandling undersøger vi om en support vektor maskine (SVM) er brugbar til distribueret

maskine læring. En SVM er en algoritme fra området maskine læring, som kan bruges til klassi-

ficering, regression og andre vigtige opgaver. Det nye i denne afhandling er at bruge SVM som

gensidigt lærende enheder samtidigt med at problemets distribuerede kontekst respekteres. Vi kon-

struerer problemet således, at signifikante begrænsninger i det distribuerede indlæringssystem intro-

duceres for at tilføje yderligere dimensioner til forskningsproblemet. I dette system, som vi kalder

Distributed Support Vector Machine, er det ikke nok kun at se på SVM maskinens m̊alfunktion.

I mange situationer vil der skulle tages hensyn til afgrænsninger i relation til de distribuerede in-

dlæringsenheder. Ideen, om at bruge SVM som samarbejdende indlæringsenheder i distribueret

maskine læring, er ikke før testet. Denne afhandling præsenterer derfor de fundamentale rammer

og retfærdiggør yderligere forskning på omr̊adet.
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