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Abstract

Knowledge about the illumination conditions in a real
world scene has many applications among them Aug-
mented Reality which aims at placing virtual objects in
the real world. An important factor for convincing aug-
mentations is to use the illumination of the real world
when rendering the virtual objects so they are shaded
consistently and cast consistent shadows.

This paper proposes two approaches to continuously
estimate the illumination conditions in a static outdoor
scene based on images from a single viewpoint of that
scene while using the scene itself as light probe. Thus,
no additional calibration objects are required. Experi-
mental results show that the proposed illumination esti-
mation is sufficient for Augmented Reality applications.

1 Introduction

Images are formed as a result of light interacting with
surfaces. The radiation emitted by a light source hits a
material’s surface under a certain angle where it is then
reflected, absorbed, and transmitted depending on the
material’s properties. The reflected light may hit other
objects causing interreflections, and one object may oc-
clude another object’s reflections or a light source re-
sulting in shadowing. When images are synthesized us-
ing computer graphics techniques it is important to have
good models of these interactions in order to achieve
realism. Similarly, when the images are real images ac-
quired with some form of camera it is paramount to un-
derstand how the image was formed in order to analyze
it using computer vision techniques. Generally, three
different elements come together in forming images: 1)
the 3D geometry of the scene, 2) the reflectance proper-
ties of the surfaces in the scene, and 3) the illumination
conditions in the scene. Given a model of all three ele-
ments it is possible both to render synthetic images and
to design robust computer vision techniques for analyz-
ing images of the scene.

The Laboratory of Computer Vision and Media Tech-
nology at Aalborg University, Denmark (CVMT/AAU)
has recently initiated a research project (CoSPE: Com-
puter Vision-Based Scene Parameter Estimation) which

lies on the border between computer vision and com-
puter graphics. The project focuses on estimating
the reflectance properties and the illumination condi-
tions in scenes based on images. For more informa-
tion about the project please visit the project’s web-site
www.cospe.dk

In this paper we present some initial results of this re-
search, namely two approaches to the same problem: to
continuously estimate the illumination conditions in a
static scene based on a sequence of images from a single
viewpoint. So far, the most commonly used approach
to scene illumination measurement/estimation has been
the so-called light probe, which is a reflective sphere
placed in the scene and photographed with a camera to
get an omni-directional measurement of light, [5, 8, 10].
None of the approaches presented in this paper require
any special purpose radiometric calibration objects to
be present in the scene. In fact one could say we are
proposing techniques that allow the scene to act as its
own light probe.

Real-time, continuous estimation of scene illumina-
tion conditions is really important for Augmented Real-
ity (AR) systems. Figure 1 shows an example of an AR
system where a virtual object has been rendered into
a real scene. The virtual object is rendered with illu-
mination conditions corresponding to the illumination
condition that are estimated for the real scene, so the
virtual object is shaded consistently with the scene, and
it also casts a consistent shadow on surfaces in the real
scene.

The application scenario we are targeting is a system,
be it an AR or a vision system, which needs to contin-
uously update its internal model of the illumination in
an outdoor scenario. Consider for example a computer
screen mounted on a pole at an archaeological site al-
lowing visitors to view the real scene (filmed with a
video camera) augmented with visualization of virtual
3D buildings that no longer exist. For such a system
the illumination conditions constantly change due to the
passing of time causing the sun to travel across the sky,
clouds causing partial or complete blockage of the di-
rect light from the sun, and changing the illumination
from the sky.

The approaches presented in this paper can estimate
the intensities and color of the direct sunlight and of the
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Figure 1: Two images taken at different times (approximately one hour apart) on a sunny day with partial cloud
cover causing constant changes in the illumination conditions. With one of the methods proposed in this paper
we have automatically estimated the current illumination conditions and used this illumination estimate to render
a virtual sculpture into the scene.

indirect skylight. Additionally one method is able to es-
timate the direction of the sunlight relative to the scene,
whereas the other technique assumes that the system
knows the direction of the sunlight using date, time and
position information. The latter approach is more ro-
bust for cloudy conditions, whereas the former is more
readily applicable to a scene as there is less positional
and orientational calibration to carry out.

Both approaches involve an ”off-line” photometric
calibration phase where the reflectances (albedo) of dif-
fuse surfaces in the scene are estimated. After the once-
only reflectance calibration the approaches enable con-
tinuous ”on-line” illumination estimation.

This paper is organized as follows. In section 2
we give an overview of related work. Section 3 then
lists the assumptions behind the presented techniques,
and presents the illumination model used by both ap-
proaches (both approaches estimate the values of pa-
rameters in this model). In section 4 we then present
the approach which assumes availability of sunlight di-
rection information, whereas the approach which also
estimates sunlight direction is presented in section 5.
Conclusions are given in section 6.

2 State-of-the-art
Estimating scene illumination conditions from images
is the dual problem of estimating surface reflectance
properties, because the image represents light reflected
off surfaces, and this reflection is governed by the illu-
mination and the reflectances. Therefore illumination
estimation cannot be performed without knowledge of
surface reflectance. This is the reason all related work
is based on placing some kind of special purpose ob-
ject with a priori known reflectance properties in the
scene. For continuously operating AR or vision sys-
tems performing illumination estimation it is not a vi-

able approach to be forced to have calibration objects
in the scene. Therefore we have developed and tested
two approaches to estimate dynamic illumination con-
ditions based on the surfaces naturally present in the
scene. Subsequently we briefly describe some of the
most closely related work. Recent surveys on illumina-
tion estimation may be found in [9, 13].

One group of related work has a somewhat different
focus, namely that of estimating scene reflectances. Yu
and Malik proposed estimation of pseudo BRDFs1 for
outdoor scenes, [17]. The approach requires multiple
images of the outdoor scene taken from different view-
points and under differing illumination conditions. The
goal is to be able to re-render the scene under arbitrary
novel illumination conditions. Knowledge of scene il-
lumination is obtained by combining a parameterized
outdoor skylight model with light probe images.

Yu and Debevec proposed an inverse global illumi-
nation rendering approach, [16]. By using multiple im-
ages of all surfaces and a complete 3D model of an en-
tire indoor scenario, and by using knowledge of the illu-
mination conditions they demonstrate that it is possible
to estimate glossy BRDFs for all surfaces. Knowledge
of illumination conditions is obtained by manually mea-
suring the positions and emittances of all light sources.

Loscos and Drettakis proposed a system for interac-
tive re-lighting of indoor scenarios, [11]. Using a sin-
gle image of the scene, combined with a complete 3D
model of the entire room, and knowledge of the orig-
inal illumination conditions they are able to re-render
the scene under arbitrary novel illumination conditions.
The knowledge of the original scene illumination is
obtained by manual measurement of the positions and
emittances of light sources.

Boivin and Gagalowicz proposes an iterative global

1BRDF: Bi-directional Reflectance Distribution Function is de-
fined as the ratio of the reflected radiation to the incident radiation
on a surface.
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illumination approach to estimating surface reflectance
parameters, [3, 4]. This work is also based on a single
image of an indoor scene, and assumes that the posi-
tions and emittances of the light sources are measured
manually.

Masselus and Dutre proposed an approach to image-
based modeling of surface reflectances with the aim of
being able to re-render under novel illumination condi-
tions, [12]. By acquiring multiple images from a sin-
gle viewpoint of a scene illuminated with a manually
moved single light source they were able to model the
reflectance field for re-lighting. The location of the
moving light source is computed for each image by a
triangulation technique based on the shading of four dif-
fuse spheres present at known locations in the scene.

Sato and Sato proposed a technique for estimation
of complex illumination environments, [15]. The tech-
nique requires that a known object is casting shadows
on a surface in the scene, and the reflectance of the
shadow receiver must be known. If this information
is not available the method requires an image of the
scene without the shadow casting object. In this case
the method cannot be applied to scenes with changing
illumination conditions.

Kanbara and Yokoya designed an approach to auto-
matic, real-time estimation of scene lighting for aug-
mented reality, [10]. The approach involves placing a
reflective sphere which is always in the camera’s field
of view. The dynamic scene illumination conditions are
estimated from the environment’s reflection in this spe-
cial purpose sphere.

Using reflective spheres has for several years been the
standard approach to acquiring omni-directional knowl-
edge of scene illumination. The approach has been
pioneered by Debevec and taken up by several other
for various purposes, including real-time AR systems
[7, 5, 6, 8]. The problem with using this approach for
continuously operating systems is that it requires high
resolution images of the reflective sphere, which has to
be placed in the scene.

As seen from the above brief review the standard ap-
proaches to determining scene illumination conditions
are either to manually measure the light sources, or to
photograph a reflective sphere placed in the scene. As
stated our goal is to investigate whether images of sur-
faces naturally present in the scene can be used for esti-
mating illumination, i.e., to determine if changing illu-
mination can be detected from a video sequence.

3 Background
This work is based on a number of assumptions, which
we will list together here. First of all our approaches
are targeted at daytime outdoor scenarios, allowing us
to assume that the illumination conditions are in effect
completely governed by light from a directional source
(the sun) and light from the sky hemisphere. In addition
we assume that the imaged scene is static, that a com-

plete 3D model of the scene is available, and that the
camera is internally and externally calibrated, such that
each pixel corresponds to a ray that can be traced to a
unique 3D point in the scene.

Additionally the presented techniques assume that
the scenes contain diffusely reflecting surfaces and that
different normal directions are represented by these dif-
fuse surfaces. We use the approach that the 3D model
of the scene is manually annotated with information
about which surfaces can be considered diffuse reflec-
tors. As described in section 1 the techniques involve
a reflectance calibration phase, and it is assumed that
surface reflectances do not change after this calibration
phase. This means that precipitation is not allowed, i.e.,
it is not allowed to rain or snow after reflectance cali-
bration.

Both presented techniques are based on an assump-
tion that the Phong Illumination Model can be used as a
reasonable approximation to outdoor illumination con-
ditions, and finally one of the techniques further as-
sumes that the direction of the sun light is known at
all times, computed automatically based on knowledge
of date, time, and the camera’s position in latitude and
longitude.

In order to estimate the illumination conditions of a
scene from 2D images of that scene a model of the im-
age formation process is needed that describes the in-
teractions between light and surfaces. Such a model
requires the reflectance properties of the surfaces in the
scene as well as a 3D description of the scene. Given
a sufficient number of surfaces of different orientations
it is then possible to set up a system of equations and
solve for the variables describing the illumination con-
ditions.

The remainder of this section describes an illumina-
tion model and the acquisition of reflectance properties.
As stated we assume that the scene can be measured
and modeled manually, using for example 3D Studio
Max or similar 3D modeling software.

3.1 Phong Illumination Model
The Phong Illumination Model [14] is a local illumi-
nation model that is often used in computer graphics
because it is fast to compute and gives reasonably real-
istic results although it is largely an empirical model. It
is called a local illumination model because interreflec-
tions between surfaces are not considered. Interreflec-
tions – also known as global illumination effects – are
approximated with an ambient term that allows for a
global control of brightness in a scene. Besides the am-
bient term the Phong Model is composed of two reflec-
tion components that are due to direct illumination on
a surface: a diffuse and a specular term. Diffuse re-
flections scatter light equally in all directions, i.e., the
intensity at a point on a surface does not depend on
the viewing direction. The diffuse reflections are mod-
eled with Lambert’s cosine law which states that the
reflected light is proportional to the cosine of the an-
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gle between the surface normal and the incident light
θi. The specular reflections depend on both the incident
angle θi and the viewing angle θr, and may be modeled
as proportional to the cosine of the angle α, see figure 2.

N
θr θ

LR

iV
α

Figure 2: Image formation components of the Phong
Illumination Model. L is a unit vector in the direction
to the light source, N is the unit surface normal, V is
the viewing direction, and R is the mirror-like reflected
light.

The illumination of an outdoor scene may be mod-
eled by one direct light source, the sun, and ambient
light representing the skylight. The reflected light Ir
approximated with Phong’s Illumination Model is then
given by the following equation:

Ir,l = ka,l·Ia,l+Ii,l ·(kd,l·cos(θi)+ks,l·cos(α)m) (1)

where ka, kd, and ks are the reflection coefficients for
the ambient, diffuse, and specular components, respec-
tively, also called albedos which are described in the
next subsection. Ia is the ambient illumination, Ii the
direct light source, and m is a factor controlling the
shininess of the surface. To handle color there is a sep-
arate equation for red, green, and blue, therefore the
subscript l ∈ {R,G,B}.

In the following we assume pure diffuse surfaces and
that ka = kd. Equation 1 then becomes:

Ir,l = kd,l · (Ia,l + Ii,l · cos(θi)) (2)

or using the vectors from figure 2:

Ir,l = kd,l · (Ia,l + Ii,l · ( ~N • ~L)) (3)

3.2 Reflectance Properties
The reflectance properties of the surfaces are needed
when using the scene as light probe. In the Phong Il-
lumination Model (eq. 3) the reflectance properties are
modeled with the scalar kd. This is often called the
albedo which is the reflectivity of a surface, or in other
words the ratio of radiation reflected to the amount inci-
dent upon it. The reflected radiation may be expressed
by the radiometric term radiance Le which is the power
leaving a surface per unit solid angle2 and per unit sur-
face area. The radiance can be measured using an image
of a scene.

2The solid angle is the angle that, seen from the center of a sphere,
includes a given area on the surface of that sphere. The value of the
solid angle is numerically equal to the size of that area divided by the
square of the radius of the sphere. It is measured in steradians [sr].

The radiometric term describing the received power
per unit area, i.e., the power falling onto a surface, is
the Irradiance Ee. For pure diffuse surfaces the albedo
is then:

kd =
Le
Ee

(4)

While it is rather easy to obtain the radiance from a
scene using an image, the irrandiance requires knowl-
edge of a 3D model of the scene and the light sources.
One way to calculate the irrandiances for every pixel is
then to synthesize (render) an image using the 3D model
and setting all surface albedos to one.

4 Illumination Estimation under
known Sun Position

In this first approach we take the illumination model
presented in the previous paragraph and use it to model
the measured pixel intensities from an image of the
scene. If it is assumed that the system continuously can
compute the unit direction vector to the light source rel-
ative to the scene coordinate system, then we arrive at
a set of equations, one for each color channel for each
pixel. These equations are linear in the ambient and the
direct light, Ia,l and Ii,l, respectively.

4.1 Approach
Let subscript j refer to the jth 3D point in the scene.
Some points will in fact be in shadow and not receive
direct light from the sun. Let Sj be a boolean parameter
of value 1 if the jth point is in direct light, and 0 if
it is in shadow. Furthermore, let Cj be a real number
between 0 and 1, with the value of 1 if the jth point
receives light from the entire hemi-spherical sky, and
0 if the sky is completely occluded seen from the jth
point. The reflected light from the jth point can then be
written as (the scene is small compared to the distance
to the sun, so the unit direction vector to the sun is the
same for all points in the scene):

Ir,j,l = kd,j,l · (Cj · Ia,l + Sj · Ii,l · ( ~Nj • ~L)) (5)

The ambient occlusion factor, Cj , can be computed
a priori for all points in the scene. Given knowledge
of the sun’s position the shadow masking parameter Sj
can be computed at run-time for all points in the scene.
From the offline reflectance calibration we know the
albedos, kd,j,l, of all diffusely reflecting points. The
surface normal for all points, Nj is known from the 3D
model of the scene. The direction vector to the sun, L,
can be computed given: 1) the date, 2) the time, 3) the
Earth position in latitude and longitude of the scene ori-
gin, 4) and the direction of North in the scene, [1]. The
only unknowns in eq. 5 are the 6 parameters for ambient
and direct light, Ia,l and Ii,l.

4



Figure 3: Frames 0, 29, 59 and 89 from synthetic test sequence with known illumination changes. The direction
of the direct light source is not changing but the ambient and source emittances both change over the sequence.

Ia Estimated
Ia Ground truth
Ii Estimated

Ii Ground truth

Frame
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Figure 4: Comparison of estimated and true values for direct and ambient radiances for the synthetic test sequence
shown in figure 3. All values are normalized to a maximum of 1.

Using the assumption that we know what surfaces in
the scene can be considered diffuse and that the camera
is calibrated to the scene we can also find those pix-
els that correspond to diffuse surfaces. The RGB pixel
values of such a pixel is denoted Pj,l. If the camera
is radiometrically linear the measured pixel values are
some camera constant K times the reflected radiance
from the corresponding scene point:

Pj,l = K · Ir,j,l (6)

Thus, by picking pixels from the image we can set up
a system of linear equations in Ia,l and Id,l of the form:

1/K ·Pj,l = kd,j,l · (Cj · Ia,l +Sj · Ii,l · ( ~Nj • ~L)) (7)

In our implementation of this framework we at ran-
dom select on the order of a few hundred pixels evenly
distributed across the image (among those pixels that
correspond to diffuse surfaces). It is important that the
pixel population represents both areas in shadow (only
ambient light) and in direct light (both ambient and di-
rect light). The camera scene radiance to pixel value
scaling factor K is of course unknown, but a system of
equation of the form of eq. 7 allows us to estimate scene
illumination up to a scaling factor.

4.2 Experiments and Results

The presented framework has been tested extensively
on both synthetic and real images. Figure 3 shows a few
frames from a synthetically generated sequence where
a simple scene has been rendered with known ambi-
ent and direct intensities. Correspondingly, figure 4.1
shows the estimated intensities. As seen synthetic data
results in near perfect estimations. The same scene has
been tested with generating a sequence where a yellow
ball is falling into the scene and bouncing out again in
order to test how the illumination estimation procedure
reacts to dynamic objects in the scene, thus violating
the static scene assumption. The estimation results from
this scenario is not shown, but due to the extraction of
a large number of sample points across the entire im-
age the illumination estimation is very stable and only
in minor degree affected by the dynamic object.

To test the approach on real data a 2 hour time-lapse
sequence has been acquired with one frame every 20
seconds. Figure 5 shows select frames from the se-
quence. Naturally, we do not have ground truth data
for the illumination conditions in this real scene, but
figures 4.2 and 4.2 show the estimated ambient and di-
rect light. The estimated illumination has been verified
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Figure 5: Frames 1, 72, 134, 201, and 259 from real test sequence covering approximately 2 hours of moving sun
and changing cloud cover.
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Figure 6: Estimated values for ambient radiance for the real test sequence shown in figure 5. Notice that the
ambient light in the scene has a relatively low red (R) component as is expected for a sky with only partial cloud
cover.

quantatively by taking the known albedos of surfaces
in the scene, illuminating these surfaces with the esti-
mated light and comparing these values with the real
sequence pixel value for the same surface. These tests
(not shown) demonstrate that the estimated illumina-
tion follows the real scene illumination quite accurately
apart from a tendency to over-estimate the red compo-
nent of the direct light with approximately 10%. This
may be caused by mis-estimating the albedo of the dom-
inant red brick wall due to an in-accurate determation
of the illumination conditions at time the image was ac-
quired for albedo estimation.

In addition to quantitative tests on real data qualita-
tive tests of the estimated illumination has been evalu-
ated by rendering virtual objects into the scenes and vi-
sually judging the quality of the virtual shading. Espe-
cially for sequences with very dynamic lighting condi-
tions it is clearly seen that the estimated light results in
consistent shading of virtual objects. Two frames from
such a test were shown in figure 1.

The current implementation of this estimation tech-
nique can run the estimation at about 10 frames per sec-
ond and is thus easily able to respond to the illumination
condition changes an outdoor AR system would experi-
ence.

5 Illumination Estimation under
unknown Sun Position

This section describes the estimation of the illumination
conditions including the sun direction from an image of
a scene given a 3D model of the scene and the albe-
dos of the surfaces in the scene, and assuming that the
illumination model in equation 2 can be used to approx-
imate outdoor illumination conditions.

5.1 Approach

The illumination conditions may be estimated by set-
ting up a sufficient number of equation 3, and solving
this non-linear system of equations for the unknowns
~L, Ia,l, and Id,l (l ∈ {R,G,B}). Thus, there are nine
unknowns. Assuming that the distance r to the sun is
known the estimation of ~L reduces to the two angles
(azimuth, ϕ, and zenith, θ). In order to solve a non-
linear system of equations one may formulate it as a
least squares problem and then use a numerical opti-
mization. Let fi(x) be the minimization function that
should converge to zero. The minimization function for
the Phong Illumination Model is given in equation 8:
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Figure 7: Estimated values for direct radiance for the real test sequence shown in figure 5.

fj,l(x) = kd,j,l(Ia,j,l + Id,j,lcos θj)− Ir,j,l = 0 (8)

where

cos θj =

{ 0 , θ > π/2
~Nj • ~L
‖ ~Nj‖·‖~L‖

, 0 ≤ θ ≤ π/2 (9)

and

~L =




r · cosϕ · sin θ
r · sinϕ · sin θ

r · cos θ


 (10)

5.2 Experiments and Results
The evaluation of computer vision methods using real
image data is often difficult due to the lack of ground
truth. In this work the estimation of a 3D model
and of the albedos introduces an error which makes
the evaluation of the illumination estimation inaccu-
rate. Therefore the main evaluation was done using
synthetic image data that were generated from a 3D
scene description including light positions and object
reflectances. They were rendered using a ray-tracer
(Radiance [2]) that generates radiometric correct im-
ages including global illumination effects. Radiance
supports all kinds of light sources among them a day-
light model to create realistic illumination in outdoor
scenes with sun and skylight. Figure 8 shows an exam-
ple of a rendered image that was used for evaluation.

All estimations were done using MATLAB’s lsqnon-
lin for solving non-linear least squares problems.

Using the daylight model images were rendered for
illumination conditions from sunrise to sunset. The es-

Figure 8: Synthesized image using the daylight model.

timation errors are shown in figure 9. In most of the es-
timations the error lies around a few degrees [0.6−2.5◦]
except from three estimations, which are at 9, 9:30 and
17 o’clock. With a look at the image of these time peri-
ods it can be seen that some of the measurement pixels
were occluded resulting in no direct illumination.

These estimation tests have been extended with sun
positions across the entire hemisphere. The azimuth
ranges [0 → 2π] and the zenith ranges [0 → 1

2π]. All
in all 339 images have been rendered in Radiance. The
scene illustrated in figure 8 has also been used in this
experiment.

The error in these experiments are given as the total
angle between the estimated and actual angles. Total
error means the two actual angles (azimuth ϕ and zenith
θ) seen in relation to the two estimated, which has been
calculated from equation 11.

∆E = arccos

(
~a • ~e
|~a||~e|

)
(11)

The two vectors for actual (~a) and estimated (~e) are
calculated from equation 12, where r = 1 since it is
only the angular difference that is of interest.
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Figure 9: Estimation error in degrees as a function of
the time for azimuth (ϕ) and zenith (θ) respectively.

~a =




r · cosϕ · sin θ
r · sinϕ · sin θ

r · cos θ


 (12)

The total angular error for all azimuth and zenith an-
gles of the sun is shown in figure 10 where the error
is indicated by the height of the small circles. The az-
imuth angle is given as the angle in the plan, and the
zenith is zero in the center of the plot and increasing
with distance to the center.
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Figure 10: Total angular error over all azimuth and
zenith angles.

The camera viewing direction is indicated by the
green line around the an azimuth angle of 90◦. It can
be seen that the error is rather low when the illumina-
tion direction is close to the camera direction, whereas
the error increased significantly (up to 80◦) when the il-
lumination is opposite to the camera. This is due to the
reduced number of directly illuminated surfaces.

Besides simulated image data we tested the method
on real images of building bricks. These bricks have
rather diffuse reflectance properties. Figure 11 shows
an image of a real scene that was used for illumination

estimation, and figure 12 show a part of that scene with
a virtual shadow that was simulated using the estimated
illumination direction.

Figure 11: Real image used for illumination estimation.

Figure 12: Real scene showing both, the real shadow
casted by the brick and a virtual shadow casted by the
brick. The virtual shadow is rendered using the esti-
mated sun position.

Figure 13 show an example application where the es-
timated illumination direction was used to augment the
scene with four virtual vases.

6 Conclusions
In this paper two methods were proposed and tested to
estimate the illumination conditions of a real outdoor
scene while using the scene itself as a light probe, i.e.,
no additional light probe has to be placed into the scene.
The methods work on single view images and require a
3D model of the scene as well as the reflectance proper-
ties of the surfaces present in the scene. The preliminary
results show their applicability to Augmented Reality.

In future work we aim at combining several comple-
mentary methods in order to achieve more robust illu-
mination estimation. Furthermore, we will look into
possibilities to reduce the offline calibration, e.g., us-
ing reflectance models for common everyday outdoor
objects. These objects may be recognized by some au-
tomatic object recognition and be used as light probes.

8



Figure 13: Real scene augmented with virtual vases.
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Abstract
Cast shadows from moving objects reduce the general ability of robust classi�cation andtracking of these objects, in outdoor surveillance applications. A method for segmentation ofcast shadows is proposed, combining statistical features with a new similarity feature, derivedfrom a physics-based model. The new method is compared to a reference method, and foundto improve performance signi�cantly, based on a test set of real-world examples.

1 Introduction
The introduction of digital video cameras, and recent advances in computer technology,make it possible to apply (semi-)automated processing steps to reduce the amount of datapresented to an operator in a surveillance application. This way the amount of trivial tasksare reduced, and the operator can focus on a correct and immediate interpretation of theactivities in a scene.The Danish Defence Research Establishment (DDRE) is currently focusing part of it'sresearch on implementing a system for automated video surveillance. The main objectivesof the DDRE are to gain general knowledge in this area, and eventually implement anautomated surveillance application that is capable of detecting, tracking and classifyingmoving objects of interest.At this point the DDRE has carried out some initial studies in testing and implement-ing parts of the W4-system [4] for automated video surveillance. The W4-system e�ectivelydetects moving objects, tracks them through simple occlusions (blocking of the view), clas-si�es them and performs an analysis of their behavior. One limitation of W4 is that thetracking, classi�cation and analysis of objects fails when large parts of the moving objectsare actually cast shadows.Distinguishing between cast shadows and self shadows is crucial for the further anal-ysis of moving objects in a surveillance application. Self shadows occur when parts of anobject are not illuminated directly, but only by di�use lighting. Cast shadows occur whenthe shadow of an object is cast onto background areas, cf. �gure 1. The latter are a
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major concern in today's automated surveillance systems because they make shape-basedclassi�cation of objects very di�cult.

Figure 1: Types of shadows. Self shadow is shadow on the object itself, a person in this case. Castshadow is the shadow cast onto the background.
In [9] Prati et al. give a comparative evaluation of the most important methods upuntil 2001. They conclude that the more general situations a system is designed to handle,the less assumptions should be made, and if the scene is noisy, a statistical approach ispreferable to a deterministic model. In [5], Hsieh et al. focus on removing cast shadows frompedestrians using a statistical model combined with spatial assumptions. Only situationswith pedestrians in an upright posture are handled and the cast shadows are assumed totouch their feet. Javed et al. [6] make no spatial assumptions of posture or compositionprior to a statistical modelling of shadows, based on a correlation of the derivatives forregions of similar pixels.In [7] Nadimi et al. apply a number of steps in a physics-based shadow detectionalgorithm. No spatial assumptions are made, but other assumptions makes it less suitablefor some types of weather. Furthermore several threshold dependent parameters shouldbe optimized. Finlayson et al. [3] use a physics-based approach to derive an illuminationinvariant, therefore shadow free, gray-scale image of an RGB image. From this image theoriginal RGB image, without shadows, is derived. Finlayson's approach is aimed at shadowelimination in general in images obtained with a color calibrated standard digital camera[2],[3].The rest of this paper consists of three sections, in section 2 existing methods for shadowhandling are described in more detail, leading to a new combined method for segmentationof cast shadows. In section 3 the experimental results are presented, and section 4 is theconclusion.

2 Methods
The statistical approach suggested by Javed et al. [6] is implemented as a reference,because it makes no spatial assumptions and has the least number parameters to tune. Thephysics-based method suggested by Finlayson et al. is elegant, but not previously appliedin surveillance applications. The new similarity feature proposed in this work is based onthe ideas og Finlayson et al. Combining Javed's method with the new similarity feature, anew approach for handling cast shadows in surveillance applications is suggested.
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2.1 Statistical Approach
Javed et al. [6] use a statistical approach for segmenting foreground pixels darker thana reference image (pixel-candidates) into cast shadow, self shadow and object pixels darkerthan the background. A K-means approximation of the EM-algorithm is used to performunsupervised color segmentation of the pixel candidates. Each pixel candidate is assignedto one of the K existing Gaussian distributions if the Mahalanobis distance is below acertain threshold. If above this threshold a new distribution is added with it's mean equalto the pixel value. All distributions are assumed to have the same �xed covariance matrix� = �2I, where �2 is a �xed variance of the colors and I is the identity matrix. After apixel candidate is assigned to a distribution, the distribution mean is updated as follows:

�n+1 = �n + 1n+ 1(xn+1 � �n); (1)
where x is the color vector of the pixel and �n is the mean of the Gaussian before the n+1thpixel is added to the distribution. Using a connected component analysis the spatiallydisconnected segments are divided into multiple connected segments. Smaller segments arethen merged with the largest neighboring segment using region merging. Then each segmentis assumed to belong to one of the three classes, cast shadow, self shadow or part of theobject darker than the background image. To determine which of the segments are castshadows, the textures of the segments are compared to the texture of the correspondingbackground regions. Because the illumination in a cast shadow can be very di�erent fromthe background the gradient direction is used:

� = arctan fyfx ; (2)
where � is the gradient direction and fy and fx are the vertical and horizontal derivatives re-spectively. If the correlation is more than a certain threshold, the region is considered a castshadow. Otherwise it is either self shadow or dark part of the object. This method is con-sidered as a state-of-the-art method in surveillance applications but still faces fundamentalproblems concerning some very context dependent parameters.
2.2 Physics-based Approach

The physics-based approach suggested by Finlayson et al. [3] derives an illuminationinvariant grayscale image from an RGB-image.The color of a pixel in an image depends on the illumination, the surface re�ection andthe camera sensors. Denoting the spectral power distribution of the illumination E(�), thesurface spectral re�ection function S(�), and the camera sensor sensitivity functions Qk(�)(k = R;G;B), the RGB color �k at a pixel can be described as an integral over the visiblewavelengths �:
�k = Z E(�)S(�)Qk(�)d� ; k = fR;G;Bg: (3)

This description assumes no shading and distant lighting and camera placement. If thecamera sensitivity functions Qk(�) are furthermore assumed to be narrow-band, they canbe modelled by Dirac delta functions Qk(�) = qk�(�� �k), where qk is the strength of thesensor. Substituting this into (3) reveals:
�k = E(�)S(�)qk ; k = fR;G;Bg: (4)
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Lighting is approximated using Planck's law:
E(�; T ) = Ic1��5 �e c2T� � 1��1 ; (5)

where I is the intensity of the incident light, T is the color temperature, and c1 and c2 areequal to 3:74183 �10�16Wm2 and 1:4388 �10�2Km respectively. Daylight is very near to thePlanckian locus. The illumination temperature of the sun is in the range from 2500K to10000K (red through white to blue). For the visible spectrum (400-700nm) the exponentialterm of (5) is somewhat larger than 1. This is Wien's approximation [6]:
E(�; T ) ' Ic1��5e� c2

T� : (6)
If the surface is Lambertian (perfectly di�use re�ection) shading can be modelled as thecosine of the angle between the incident light a and the surface normal n. This reveals thefollowing narrow-band sensor response equation:

�k = (a � n)Ic1��5e� c2
T�S(�)qk ; k = fR;G;Bg: (7)

De�ning band-ratio chromaticities rk remove intensity and shading variables:
rk = �k�G ; k = fR;Bg: (8)

Taking the natural logarithm (ln) of (8) isolates the temperature:
r0k � ln(rk) = ln(sk=sG) + (ek � eG)=T ; k = fR;Bg; (9)sk = ��5S(�)qk; (10)ek = �c2=�k: (11)

For every pixel the vector (r0R; r0B)T is formed as a constant vector plus a vector (eR �eG; eB � eG)T times the inverse color temperature. As the color temperature changes,pixel values are constrained to a straight line in 2D log-chromaticity space, since (9) isthe equation for a line. By projecting the 2D color into the direction orthogonal to thevector (eR� eG; eB � eG)T , the pixel value only depends on the surface re�ectance and nottemperature hence illumination:
r0R � eR � eGeB � eG r0B = ln(sR=sG)� eR � eGeB � eG ln(sB=sG);= f(sR; sG; sB): (12)

Applying (12) to all pixels reveals the illumination invariant image gs(x; y):
gs(x; y) = a1r0R(x; y) + a2r0B(x; y); (13)

where the constant vector a = (a1; a2)T is orthogonal to (eR � eG; eB � eG)T , determinedby the camera sensitivity functions only (12)(11), and scaled to unit length:
a = a0ka0k ;
a0 = � 1� eR�eGeB�eG

� : (14)
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Figure 2: Finlayson's approach to shadow removal [3]. (a): Original image. (b) Illuminationinvariant grayscale image. (c): Grayscale of original image. (d): Edge map for invariant image.(e): Edge map for non-invariant image. (f): Recovered shadow-free image.
Figure 2(b) shows an example of an illumination invariant grayscale image, where edges dueto shadows are not visible. Figure 2(a) and 2(c) show the original image, and the normalgrayscale image.If the sensor functions of the camera, and thereby �k of (11), are unknown, [2] and [3]outline a procedure for camera color calibration. The invariant direction is estimated bycomparing a number of images taken during the day with changing illumination. Daylight isassumed to be Planckian with varying temperature. Each image contains di�erent standardcolor patches from the Macbeth Color Chart.The shadow edges are detected by comparing the gradient of each channel in the originallog image, r�0(x; y), with the gradient of the illumination invariant image, rgs(x; y), cf.�gure 2(d) and 2(e). The idea is that if the gradient in �0(x; y) is high, while it is low ings(x; y), the edge is most likely to be a shadow edge. The following threshold functionreveals a gradient image of the log response where gradients due to shadows are eliminated(set to zero):

S(r�0(x; y);rgs(x; y)) =
8<
: 0 if kr�0(x; y)k > t1and krgs(x; y)k < t2r�0(x; y) otherwise; (15)

where t1 and t2 are context dependent thresholds. By integrating S a log response imagewithout shadows is recovered. This corresponds to solving the following Poisson equation:
r2q0(x; y) = r � S(r�0(x; y);rgs(x; y)); (16)

where r2 is the Laplacian and q0 is the log of the image without shadows. The gradientimage of S equals the Laplacian of q0 for each color band. Assuming Neumann boundaryconditions (rq0 = 0 for boundary normals), q0 can be solved uniquely up to an additiveconstant using the cosine transform [10]. When exponentiating q0 to arrive at the shadowfree image q the unknown constant becomes multiplicative. For the colors to appear "re-alistic" in each band, the mean of the top 5-percentile of pixels is mapped to maximum ofthe RGB image. In this way the unknown constants are �xed, and a shadow free image qis derived, cf. �gure 2(f).
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The major drawback of this method is reported to be de�ning the shadow edges. Itturns out that using a robust edge detection algorithm (e.g. Canny or SUSAN [3]) andsetting the thresholds are crucial factors. Furthermore a morphological opening is appliedon the binary edge map to thicken the shadow edges and thereby improve the suppressionof shadow gradients before the re-integration step.Despite all of the assumptions and di�culties reported the method shows good results onthe images shown in [2],[3]. It should be noted that the gradient images and thresholds arevery context dependent. However, even when the method performs poorly it still attenuatesthe shadows. This is often the case for shadows with di�use edges. Therefore the methodis interesting in conjunction with surveillance tasks, where the artifacts introduced by theimperfect shadow edge detection and the re-integration are not crucial.Due to assumptions in the model, and in the derivation of the shadow free RGB image,the method is far from perfect, but shadows are attenuated signi�cantly. The method hasnot been applied in a surveillance application yet.
2.3 New Similarity Feature

It was found that the illumination invariant image is sensitive to the limited dynamicrange in the video sequences of the camera used (8 bit) and to the spectral sensor functionsof the camera not being delta functions. Because of this, determining edges due to shadowsin a robust way becomes very di�cult. Finlayson et al. also reports this to be the majordrawback of the method [3].Instead of only using the illumination-invariant image to determine edges due to shad-ows, other information should also be used. An important observation to make is that aforeground mask is available from the background model in a surveillance application. Thiscan be used to eliminate artifacts from false shadow edges outside the foreground mask,and should be exploited in the detection of shadow edges.A dilated version of the edges of the foreground mask is used to determine which gra-dients to suppress in the gradient image of the illumination invariant image, before recon-structing the "shadow-free" image. Figure 3(a) shows an image and a version of it, �gure3(b), that is reconstructed without suppressing any gradients. Therefore the two images aresimilar. Figure 3(c) shows the mask used for suppressing gradients, and �gure 3(d) showsthe corresponding reconstructed image.

Figure 3: Reconstruction of an image. (a): Original image. (b): Reconstructed image withoutsuppressed gradients. (c): Suggested mask for suppressing gradients. (d): Reconstructed image withsuppressed gradients.
Both shadow and object gradients are suppressed, but �gure 3(d) still clearly containsadditional information that can be exploited in the segmentation of cast shadows.
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The new similarity feature compares corresponding pixels of the reconstructed imageand the background image, for every color segmented region:
CS = 1�̂2R;BG(K � 1)

KX
i=1 (Ri �BGi)2; (17)

where CS is the similarity feature of a region, K is the number of pixels of the region timesthe three colorbands, R and BG are the intensity values of the i'th pixels in the recon-structed image and the background image, respectively. �̂2R;BG is a variance normalizationfactor, which is the estimated variance between all pixels in a background image, BG, andall pixels in a reconstructed image, R, of a new frame containing no foreground objects.Performing a variance normalization of CS makes it a relative measure of similaritythat, ideally, only contains variation due to the region not being cast shadow, and notcontains variation due to the experimental setup and the complex processing of the images.The estimate of the variance is based only on one sequence since it was di�cult to obtainsequences, without foreground objects, that were static while an entire background modelwas estimated. It is therefore a rough estimate.The CS measures a normalized mean value of squared di�erences between regions inthe reconstructed foreground image, cf. �gure 3(d), and corresponding regions in the back-ground image. If the reconstructed image contains shadow regions along the border of theforeground mask, cf. �gure 3(c), these shadow regions are attenuated in the reconstructedimage, making them more similar to the background image. This is the key observation thatthe enhanced similarity feature, CS, is based on. Therefore a large value of CS correspondsto little similarity, which indicates that the region is part of the object. Small values of CSindicate high similarity, i.e. the region is then part of a cast shadow.It is emphasized that CS only supplies useful information when the shadow edges areactually part of the edge of the foreground mask. In some cases it will not supply anyadditional information, e.g. when edges due to objects instead of shadows are suppressed.This will tend to smear neighboring background and object regions, for which reason it issuggested only to apply the CS in cases where the correlation threshold, described in 2.1,does not produce con�dent results. This corresponds to introducing a reject class for thecorrelation feature.Figure 4 shows the suggested enhanced classi�cation of color segmented regions. The

Figure 4: Flowchart illustrating the enhanced classi�cation of color regions. The enhanced similar-ity feature, (CS), classi�es all regions that the correlation feature assign to a reject class (k�Corr.threshold < Correlation < Corr. threshold ) reject class, 0<k<1).
left part corresponds to the classi�cation originally suggested by Javed, using a simplecorrelation threshold. The enhanced classi�cation introduces a reject class if the correlationlies in an interval between k and 1 times the Correlation threshold introduced by Javed [6].k should lie in the interval [0; 1], and is empirically chosen to be 0:5 in this framework. If
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the regions in the reject class have a CS larger than the CS threshold they are classi�ed asobject regions. Otherwise they are classi�ed as cast shadow regions.
3 Data and Results

The camera used for data acquisition is a state-of-the-art industry digital video camera(SVS-204CFCL) with a resolution of 1024x768 pixels. The frame rate currently available is20 fps., with a dynamic range of 8 bits, and with colors obtained through standard Bayer�ltering. A typical scene for a surveillance application is chosen where the typical movingobjects are vehicles, people and bicycles.A kernel-based background model is used to segment foreground objects [1]. Onlyone frame of an object is used in the data set to avoid stochastic dependence betweensamples. 18 foreground objects are used in a manual optimization of model parameters and72 foreground objects are used for validation and comparison of methods [1]. The mainperformance parameter used is the overall accuracy (AC), de�ned as the ratio of correctlyclassi�ed pixels and the total number of pixels that are shadow candidates. True positives(TP) are de�ned as the proportion of correctly classi�ed object pixels, and true negatives(TN) as the proportion of cast shadow pixels correctly classi�ed.A color calibration of the camera was performed to determine the the optimal angleof projection in the log-chromaticity space (39:4�). This angle corresponded well with theangle obtained from the spectral sensitivity functions of the camera.As a reference Javed's statistical segmentation of shadow candidates is used. This iscompared to the new method using the new similarity feature. In the optimization of modelparameters of the two methods di�erent values for the region merging criteria were found tobe optimal. In the reference method more regions were merged into larger regions, makingit hard to obtain a performance better than mediocre, because some regions contained bothshadow- and object pixels and was classi�ed as a whole. Due to the new similarity feature,the optimal merging parameter was found to produce more and therefore smaller regionsto classify, making the method less susceptible to regions containing both types of pixels.Figure 5 compares the classi�cation using the reference method and the enhanced methodon the example of �gure 3.

Figure 5: Classi�cation (%), AC=Accuracy, TN=True cast shadow pixels, FP=False object pixels,FN=False cast shadow pixels, TP=True object pixels. (a): Reference method ( J). (b): Enhancedmethod (E) applying the new similarity feature.
Table 1 shows the mean and std. of the absolute performance measures, based on the
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test set, for the two methods.
Method AC TP TNJaved (J) - Mean (Std.) [%] 64:9 (17:8) 63:4 (30:0) 64:7 (33:4)Enhanced (E) - Mean (Std.) [%] 69:2 (13:7) 69:7 (18:3) 66:0 (23:9)

Table 1: Absolute performance of the two methods ( J and E) based on the test set of 72 examples.Mean values and standard deviations are shown. AC=Accuracy, TP=True object pixels, TN=Truecast shadow pixels.

Figure 6: Comparison of performance. (a): Accuracy of Javed's method ( J), as a function ofaccuracy of enhanced method (E), based on the test set. (b): Histograms and �tted Gaussians of Jand E, based on the test set.
Figure 6 illustrates some of the results from table 1. There is a trend that exampleswith a higher AC in (E ), are improved more than the examples with decreased AC, aredecreased. This gives rise to the higher mean values, and indicates that fewer examplestend to have much better AC, while more examples tend to have slightly decreased AC.A paired t-test is applied to determine if there is any signi�cant di�erence, at a 5% level,in the mean values of the performance measures of the two methods. Table 2 shows theresults.

Paired t-test, H0: �E � �J = 0 AC TP TNDi�erence in mean value (E � J) 1 (0:009) 1 (0:020) 0 (0:326)Lower con�dence bound [%] 1:31 1:28 �3:42
Table 2: Statistical comparison of the absolute measures, AC=Accuracy, TP=True object pixels,TN=True cast shadow pixels. Row 1: 0 denote that the mean value cannot be rejected to be equalat a 5% level, and 1 that the di�erence of the means is signi�cantly positive. p-values are shownin parentheses. Row 2: Lower con�dence bounds for the di�erences in mean values for the absolutemeasures, at a 95% con�dence level.

0 denotes that the means cannot be rejected to be equal at a 5% level, and 1 that thedi�erence of the means is signi�cantly positive. The p-values are shown in parentheses. Theconclusion to make from the test is that the new method (E ) produces signi�cantly betteraccuracy (AC) and is better at classifying object pixels correctly (TP), than the referencemethod J.The lower con�dence bounds of the di�erence in mean values, at a 95% con�dence level,are shown in the second row of �gure 2. They show that the di�erence in true mean valuesof the AC and TP for method E, are likely to be at least 1:3% above those of method J.
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4 Conclusion
An enhanced method for shadow removal is suggested, based on a new similarity featurederived from a physics-based model. The new method signi�cantly improves the meanaccuracy at a 5% signi�cance level, compared to the reference method.The new similarity feature is only applied when the correlation feature of the referencemethod is uncertain, ensuring that the spatial assumption does not degrade performance,when compared to the reference method.The �nal conclusion therefore is, that the suggested enhanced method for shadow re-moval, on average is better than the state-of-the-art method suggested by Javed. Theenhanced method is also more robust, since it tends to improve the accuracy substantially,for examples where the reference method tends to fail completely.Combining Javed's statistical-based method with some of the physics-based ideas ofFinlayson, and a new similarity feature, therefore reveals a better and more robust algorithmfor segmentation of cast shadows from moving objects.The use of the illumination invariant image, as suggested by Finlayson, might be ableto improve the performance even more, but requires a larger dynamic range than the 8 bitscurrently available with the present camera.

References
[1] Erbou, SG. "Segmentation of Cast Shadows from Moving Objects". M.Sc. Thesis,Ørsted�DTU, Technical University of Denmark, October 2004.
[2] Finlayson, GD., Hordley, SD. "Color Constancy at a Pixel". Journal of the Optical Society ofAmerica A, Vol.18 no. 2, pp.253-264, 2001.
[3] Finlayson, GD., Hordley, SD., Drew, MS. "Removing Shadows from Images". European Con-ference on Computer Vision (ECCV), part IV, p823-836, 2002.
[4] Haritaoglu, I., Harwood, D., Davis, LS. "W 4: Real-Time Surveillance of People and TheirActivities". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.8,pp. 809-830, August 2000.
[5] Hsieh, JW., Hu, WF., Chang, CJ., Chen, YS. "Shadow elimination for e�ective moving objectdetection by Gaussian shadow modeling". Image and Vision Computing 21, pp.505-516, 2003.
[6] Javed, O., Shah, M. "Tracking And Object Classi�cation For Automated Surveillance". Euro-pean Conference on Computer Vision (ECCV), part IV, p343-357, 2002.
[7] Nadimi, S., Bhanu, B. "Moving Shadow Detection Using a Physics-based Approach". IEEEProceedings of Pattern Recognition. Vol. 2, pp. 701-704, 2002.
[8] Park, S., Aggarwal, JK. "Segmentation and Tracking of Interacting Human Body Parts un-der Occlusion and Shadowing". IEEE Proceedings of the Workshop on Motion and VideoComputing. pp. 105-111, 2002.
[9] Prati, A., Mikic, I., Trivedi, MM., Cucchiara, R. "Detecting Moving shadows: Algorithms andEvaluation". IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 25, No. 7,pp. 918-923, 2003.
[10] Press, WH., Teukolsky, SA., Vetterling, WT., Flannery, BP. "Numerical Recipes in C: TheArt of Scienti�c Computing". Cambridge University Press. 2nd ed. 1992.

19



Spectral unmixing for separation of re�ection components

Kristian Kirk
kirk@cvmt.dk

Computer Vision and Media Technology Laboratory (CVMT)
Aalborg University (AAU)

July 1, 2005

Abstract

The light spectrum that is recorded by a pixel on an
imaging sensor is often a mixture of several distinct
source spectra. Such a mixture may be modeled as
a linear combination of some basis spectra, and if
the basis for the scene is known, each pixel may be
decomposed into its original components using lin-
ear inversion. Since the maximum number of sepa-
rable basis spectra is equal to the number of image
bands, multispectral images o�er advantages com-
pared to RGB-images. It is shown how multispec-
tral images may be used to separate various re�ection
components, including second-order scattering, based
on the Dichromatic Re�ection Model.

1 Introduction

The light spectrum that is recorded by a pixel on an
imaging sensor is often a mixture of several distinct
source spectra. The mechanisms behind the mixing
may be many, and they may be divided into two
categories:

1. Mixed object surfaces: A pixel may integrate
light originating from di�erent object surfaces,
for several reasons:

• A pixel has a certain spatial extent and
therefore collects light from di�erent opti-
cal paths.

• No real optical system behaves as an ideal
pinhole system. Light rays from one point
in the scene will be dispersed over an area
of the imaging sensor (often several pixels)
and, conversely, each pixel receives light
from di�erent points in the scene. The
major part of this optical dispersion is de-
scribed by the point spread function (spa-
tial domain) or the modulation transfer
function (frequency domain) of the optics.

• Motion blur: Due to the certain integration
time required to collect enough light for the

sensor elements, the camera as well as the
objects in the scene may move during the
exposure period.

2. Mixed re�ection components:

• The light re�ected from a single light source
by a point on an object surface is a mix-
ture of specularly re�ected light and light
altered or colourized by the material of the
object itself. These two re�ection compo-
nents may di�er signi�cantly in terms of
intensity and spectral content.

• Each point on an object surface is of-
ten illuminated by a mixture of di�erent
light sources. These may be true emit-
tive (primary) light sources, as well as sec-
ondary sources appearing as a result of
light scattering (re�ection, transmission)
during which the primary light sources
have continued with changed direction, in-
tensity and spectrum.

Automated image analysis relies on the ability to
characterize a scene by interpreting such mixed sig-
nals. Sometimes, the e�ects of mixing are not signif-
icant, but in other situations they have to be taken
into account. In order to make things easier, di�er-
ent e�orts can sometimes be made before the image
acquisition to control or reduce the mixing processes
by controlling the light sources and the objects in
the scene. More often, however, the scene can not be
controlled and, furthermore, inherent e�ects of the
imaging process, like the spatial extent of pixels and
the optical blurring, can not be avoided. Thus, any
account of these mixing e�ects must be taken in the
subsequent image analysis.

The key ideas that are followed in this work are that
1) since all the mixing processes described mentioned
above may be described as linear, it should be possi-
ble to use a linear basis for decomposing each pixel
into some more original spectral constituents, and
that 2) since the maximum number of linearly sep-
arable components is equal to the number of image
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bands, multispectral images1, should have more po-
tential than RGB images.

2 Previous work

2.1 Several object surfaces

The initial inspiration for this work was the �eld of
spectral mixture analysis, or spectral unmixing, for
remote sensing (for a review, see [7]). Here, the
goal is, given an observed spectrum from a phys-
ical mixture where a number of basic constituents
are present in unknown quantities, to determine the
so-called endmember spectra of the original con-
stituents, and the quantities at which these con-
stituents are present. The problem has been studied
for many years in chemical spectroscopy for analyz-
ing chemical mixtures, and in more recent years it has
been important in remote sensing, where mixed pix-
els are more the rule than the exception. Unmixing
algorithms in remote sensing operate on re�ectance
data, and normally use a linear mixing model, where
the mixed spectrum of a pixel is assumed to be a lin-
ear combination of the original spectra present in the
pixel, weighted by the quantities of their occurrences.
Let there be L spectral measurements (bands) and
M endmembers, then the linear mixing model is

si =
M∑

j=1

rijfj + ni, 1 ≤ i ≤ L,

or in, matrix notation,

s = Rf + n,

where R is an L × M basis matrix containing the
endmember spectra rj , f is a vector of abundance
fractions, and n is a vector of error terms. For a
physically meaningful interpretation of the model,
the abundance fractions fj should be nonnegative
and sum to one.

The linear mixing model is an intuitive and compu-
tationally attractive model accounting for the contri-
bution of various object surfaces in the mixing pro-
cess. However, it is only correct under the assump-
tion that the surfaces are well-separated, uniform and
non-interacting in terms of light. Thus, scattering
(re�ection and transmission) of light between sur-
faces are not accounted for, and neither is the local
variation of geometric e�ects such as shading and
specular re�ection. A common way to handle the
problems with shadows and shading is to augment

1Throughout this paper, the term �multispectral� will be
used in the meaning �more than three bands� (thus including
the case of �many� bands which is often termed �hyperspec-
tral�).

the re�ectance basis matrix with a dark �shade� end-
member [11, 9].

2.2 Several re�ection components

In physics-based colour image analysis, the stan-
dard re�ection model is the Dichromatic Re�ection
Model [10], which describes the re�ected light from
a single point light source at a point on an object
surface as a weighted mixture of so-called body re-
�ection and surface re�ection:

L(θ, λ) = mb(θ)rb(λ)E(λ) + ms(θ)rs(λ)E(λ),

where θ is a vector of photometric angles (incident
angle, exit angle, and phase angle) between the inci-
dent light and the observer, λ is the wavelength, E is
the power spectral function of the illuminant, rb and
rs are the body and surface re�ection functions, and
mb and ms are geometrical scaling factors which de-
pend on the photometric angles. A commonly used
special case (Type I) of the model is when the specu-
lar re�ectance function does not depend on the wave-
length, i.e., rs(λ) = rs (Neutral Interface Re�ection),
which is valid for materials having high contents of
water and oil.

Several methods have been proposed to separate sur-
face re�ection from body re�ection [8, 3, 1, 12]. Some
of these methods use several images (some using po-
larizing �lters), and some of them use a single RGB
colour image, mostly in somewhat restricted situa-
tions, for example, only one light source and no in-
terre�ections. Some works have also taken into ac-
count interre�ections [6, 13, 3], but only in restricted
cases.

2.3 Contribution of this work

In this study the idea is to take a combined approach
to the problem of mixed surfaces and mixed re�ection
components using a linear mixing model with multi-
spectral images. Linear basis models for separation
of re�ection components have been used before for
RGB images [8, 12, 3], but since the maximum num-
ber of separable (independent) basis spectra equals
the number of bands, only three basis components
can be separated from RGB images. Therefore, an
obvious hypothesis is that with multispectral images
there is potential for handling less restricted scenar-
ious, for example, several mixed illuminants and in-
terre�ections of higher order.

The remainder of the paper is structured as follows.
In Section 3, a general linear mixture model will be
proposed that allows mixed multiple scattering re-
�ection components to any order. In Section 4, a
case example is studied with an outdoor scene with
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vegetation and soil, and some results for that case
will be shown. Section 5 contains a discussion, and
Section 6 gives a conclusion.

3 Linear mixture model for re-

�ection components

The standard dichromatic re�ection model describes
the case of single-bounce re�ections. In this section
it is proposed how to include transmission, and it is
shown how multiple scatterings may be included in
a linear mixing model. Comments are also given on
model requirements and inversion, and on interpre-
tation of the mixing weights.

3.1 Scattering by transmission

Since scattering by transmission is produced by the
same principles as scattering by body re�ection, it
will be regarded as a special case of dichromatic re-
�ection, where the surface re�ection is zero. Also, it
will be assumed that the transmittance function is
identical to the body re�ectance function, and they
will be jointly referred to as the �body spectrum�,
denoted r. Thus, the term �scattering� will be used
as a common term for light-matter interaction in any
of the three forms: body re�ection, transmission and
surface re�ection.

3.2 Dichromatic scattering of higher

order

Let the spectrum s recorded at a pixel be a mixture
originating from up to M di�erent object surfaces
(with body spectra ri), which may scatter light from
up to N primary illuminants (with spectra ej). As-
sume that the re�ectance function is the same for all
points on surfaces of the same type, and that surface
re�ection preserves the shape of the illuminant spec-
trum (Neutral Interface Re�ection). Then, from the
dichromatic re�ection model, all mixtures of scatter-
ings up to order P can be modeled as

s = BP w + n,

where BP is a mixing matrix whose columns are
modulated spectra produced by dichromatic scatter-
ings. For zeroth order scatterings (specular re�ec-
tion, or direct illumination, from illuminants), the
mixing matrix is

B0 = [ e1 e2 . . . eN ] ,

and for 1st order scatterings it is

B1 = [ e1 . . . eN e1r1 . . . e1rM . . . eNr1 . . . eNrM ] .

Second-order scattering would include the compo-
nents e1r1r1, e1r1r2, . . .. In general, an increased
order of scattering can be included by adding new
columns to the mixing matrix, where the new end-
members are constructed by multiplying the end-
members of the previous order by all the body spec-
tra:

BP+1 =
[
BP bP

i rj

]
.

Notice that, because of the neutral interface assump-
tion, higher order scattering involving one or more
surface re�ections can not be distinguished from
lower-order scattering with only body scattering.

Obviously, this method is a naive, exhaustive ap-
proach for constructing a linear basis. The number of
columns in the mixing matrix increases quickly with
M and N , and easily becomes high even for simple
scenes. Therefore, it will normally be necessary to
reduce the basis to make it practical for a particu-
lar problem. The case study in the next section will
show an example of this.

3.3 Model requirements and inversion

An essential requirement is that the endmember
spectra are linearly independent. Also, no body spec-
trum must be �at (grey), since it then will be in-
separable from surface re�ection. Furthermore, it is
generally expectable that endmembers corresponding
to higher-order scattering are less identi�able than
lower-order scatterings due to a lower signal-to-noise
ratio. Therefore, care must be taken when deciding
which endmembers should be included in the model.

If there are exactly as many endmembers as measure-
ments (spectral bands), the basis is full and a solution
for the mixing weights might be found by inverting
B. If there are more endmembers than bands, the
system is underconstrained, and no unique solution
can be found. Often, there will be fewer endmembers
than bands (undercomplete basis, over-constrained
system), and a least-squares solution must be found.
Also, it is normally necessary to constrain the solu-
tion to be within physically realistic bounds (non-
negative weights, upper bounds on weights and their
sum), which makes it necessary to solve for the
weights using an iterative algorithm instead of a stan-
dard closed-form solution.

3.4 Interpretation of mixing weights

When a spectrum contains distributions from sev-
eral surfaces, it is not straightforward to relate the
weights to abundance fractions. This is because the
geometrically dependent scaling factors (shading and
specularity) as well as the intensity of the illuminants
may vary between the surfaces. Some simplifying
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assumptions will be necessary, as it is known from
remote sensing.

4 Case study: Vegetation and

soil

Colour image analysis of outdoor vegetation scenes
is often complicated by the fact that leaves not only
re�ect, but also transmit a signi�cant portion of the
light they receive. This may confuse, for example, al-
gorithms trying to distinguish plants from the back-
ground, since the background may be coloured by the
light transmitted by the leaves above. Therefore, it
would be useful to be able to detect and quantify the
various scattering components in such scenes, also
including specular re�ections.

Interestingly, in [4], ground-based multispectral im-
ages of an agronomic scene were used for spectral
mixture analysis with four re�ection components as
endmembers: Sunlit leaves, sunlit soil, shaded leaves,
and shaded soil. Thus, no specular re�ection was
considered. Interre�ection was only implicitly con-
sidered, since the endmembers were determined from
analysis of manually selected image regions.

4.1 Model

A second-order scattering model will be presented
for images of vegetation and soil. The model will be
the same for all pixels; therefore, it is assumed that
the spectra of the vegetation and the soil do not vary
signi�cantly. Also, only one illuminant spectrum will
be used. This is an important assumption. In over-
cast outdoor scenes it is a reasonable approximation,
but in sunny weather it must be expected to cause
problems. In shadows, for example, the illumination
contribution from the blue sky is more in�uent than
in the sun.

The illuminant will be denoted e, and the body re-
�ectance of the soil will be denoted rs (no transmit-
tance is expected from the soil). It will be assumed
that the transmittance spectrum of leaves is equal to
the body re�ectance, and they will be jointly denoted
rv. The endmember spectra up to second order scat-
tering will then be represented by the matrix

B2 = [ e e rv e rs e rvrs e rvrv e rsrs ]

4.2 Experiment

A multispectral image of some young leaves on a dry
soil was taken with a monochrome camera �tted with
an electronically tunable �lter. The camera was of
the model Retina EX from QImaging, and the �lter

was a liquid crystal tunable �lter (LCTF) type, the
model was VariSpec VIS from Cambridge Research
& Instrumentation (CRI). 26 bands were used, from
470nm to 720nm, in 10nm intervals. For each band,
expected dark o�set was subtracted from the origi-
nal digital number, and the result was then divided
by the integration time and the band sensitivity. A
scaled estimate ê of the illuminant spectrum was ob-
tained from an image of a white calibration reference
(Spectralon), and estimates of the leaf and soil spec-
tra, r̂v and r̂s, were measured with a spectrometer. A
mixing matrix B̂ was then constructed as described
above. The resulting endmember spectra are shown
in Figure 1.
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Figure 1: Estimated endmember spectra up to second-
order body scattering.

The original image is shown as an RGB image in Fig-
ure 2. (An RGB image may be created from a mul-
tispectral image by integrating the spectrum mea-
sured at each pixel with some simulated RGB sensi-
tivity functions. Gaussian sensitivity functions were
used, with centres at 475, 550, and 625 nm, respec-
tively, and standard deviations of 25 nm. The func-
tions were scaled (white balanced) using the mea-
sured daylight spectrum ê.)

For each pixel, a numerical inversion of the observed
spectrum was performed, solving for the unknown
weights of the re�ection components. A least-squares
solution ŵ was found, imposing some additional lin-
ear constraints on the weights: 0 ≤ wi ≤ 1.5, 1 ≤
i ≤ 6, and

∑6
i=1 wi ≤ 3. The iterative optimization

was done using the MATLAB function lsqlin. Typ-
ically, between 3 and 7 iterations were made, and for
no pixel the number of iterations exceeded 16.

4.3 Results

The absolute values of the estimated weights ŵi are
not very illustrative, since they follow the intensity
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Figure 2: Original image (shown in RGB).

of the signal. Therefore, relative weights are shown,
which are de�ned as the fraction of the total sum of
weights:

f̂i ≡
ŵi∑6

j=1 ŵj

.

Weight fractions for all six re�ection components are
shown in Figure 3.

From ŵ it is possible to make a reconstruction s̃
which contains only the re�ection components of in-
terest:

s̃ ≡ B̂w̃,

where w̃i = ŵi for all i corresponding to the com-
ponents of interest, and w̃i = 0 for all other i. For
example, in Figure 4 are shown the individual contri-
butions of surface re�ection and second-order body
scattering. Also, certain classes of re�ections may be
removed, as shown in Figure 5.

4.4 Comments on results

When assessing the results, it must be pointed out
that some leaves were moving during the image ac-
quisition2 (especially the leaf in the bottom of the
image and the one above it) and therefore show some
unreliable spectra, especially on the edges.

Since no �ground truth� is available, an evaluation
must be based on visual inspection. Generally, the
estimated weight fractions seem believable. Perhaps
the most questionable result is that the soil shows
high fractions of surface re�ection, since soil is not
expected to be specular. There may be several ex-
planations for the results:

• There are some grey stones, whose body re�ec-
tion can not be distinguished from surface re-
�ection.

2The total acquisition time was several seconds

• In shaded portions of the soil (shaded side of
stones etc.), the used single-illuminant model is
not good, since the bluish sky illumination is
more prominent here. Therefore, in the lack of
a eskyrs endmember, the ê endmember may be
used instead to account for the observed spectra.

Also, in general, saturated pixels (although they are
few) may tend to be explained as surface re�ections
since their spectra are normally more �at than they
should have been.
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Figure 3: Estimated weight fractions for all six re�ec-
tion components. The fractions are mapped to grey
scales, stretched for visualization purposes.
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Figure 4: Estimated contributions from surface re-
�ection and second-order body scattering. (For vi-
sualization, the images are converted to RGB and
intensity stretched.)

all − e rveg − e rsoil

e rveg + e rsoil

Figure 5: Image reconstructions using combinations
of estimated re�ection components. Top, specular
re�ections and second-order body scatterings. Bot-
tom, only �rst-order body scatterings. (For visualiza-
tion, the images are converted to RGB and intensity
stretched.)

5 Discussion

The experimental results indicate that multispectral
imaging has the potential to separate multiple re-
�ection components, including higher order scatter-
ing, with linear unmixing. Multiple scatterings is a
nonlinear process in the resulting spectra, but the
naive method proposed to construct and expand a
linear basis from a few illuminant and material spec-
tra proved useful.

Compared to other ways of representing imaging us-
ing linear bases (PCA, ICA, cosine transform, etc.),
the proposed basis representation has some interest-
ing properties. Instead of being �blindly� constructed
from data out of pure statistical criteria (such as oth-
ogonality or independence of basis components), it is
based on a physics-based model of the image forma-
tion, and therefore from the start provides a more
�semantic� and physically meaningful basis represen-
tation than standard methods.

The obvious problem, of course, is how to determine
the mixing basis. There are at least two aspects of
this problem, 1) how many illuminant and material
spectra, and how many orders of scatterings, to in-
clude in the model, and 2) to identify the shapes of
the illuminant and material spectra. Since this is
model-based approach, the answer must depend on
the context. For an industrial scenario with well-
controlled lighting and well-known homogenous ob-
jects, an appproriate model should be easily found.
For an outdoor scene of vegetation and soil, a dy-
namic scene parameter estimation might be neces-
sary, for example, classi�cation of illumination con-
ditions [2], estimation of light colour temperature(s),
and estimation of soil and leaf spectra by matching
image data with spectral libraries or a priori given
models of mean and variation.

Instead of using the same basis for all pixels, a vari-
able basis could be useful in at least two cases.

• When the variation of the material spectra is
high, for example, in natural scenes.

• When within-pixel mixing of surfaces is not rel-
evant (such as the image used in the experi-
ment). The basis might then be reduced by ex-
cluding re�ection components that can be ruled
out by, for example, a rough pre-classi�cation of
the pixel.

In addition to the problem of determining the mix-
ing model, an important numerical issue is, given a
model, how to estimate the weights from an observed
spectrum. Some questions are, how many bands are
necessary, what is the dependence on the signal-to-
noise ratio, what are the consequences of overlapping
(correlated) bands, etc.. Also, some improvement on
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the least-squares inversion might be achievable by
weighting the observations according to their noise
variances, which may be estimated from radiometric
sensor calibration [5].

Finally, there is the question of how to use or inter-
pret the estimated weights for the di�erent re�ection
components. To begin with, for human observers,
they may improve our image understanding and fur-
ther our insight into the phenomena in play in a
given scene. Also, as shown in the results, an obvious
use might be to eliminate the re�ection components
that might confuse automated analysis algorithms.
The idea that has initiated this study is to use the
weights to perform within-pixel segmentation in the
case of mixed pixels. This is not a straightforward
task, however, and a formal study of the interplay be-
tween weights, abundance fractions, and geometrical
scaling factors is still a subject to further research.

6 Conclusion

Based on the Dichromatic Re�ection Model, a
method has been proposed to construct a linear basis
for separation of re�ection components with scatter-
ing of any order. Experimental results showed that
it is possible to unmix multiple re�ections from mul-
tispectral image data. Possible issues for future re-
search include how to automatically determine the
mixing basis, and how to use the mixing weights for
segmentation.
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Abstract

In the last decade speech processing has been applied in
commercially available products. One of the key reasons
for its success is the identification and use of an underlying
set of generic symbols (phonemes) constituting all speech.
In this work we follow the same approach, but for the prob-
lem of human body gestures. That is, the topic of this pa-
per is how to define a framework for automatically finding
primitives for human body gestures. This is done by consid-
ering a gesture as a trajectory and then searching for points
where the density of the training data is high. The trajecto-
ries are re-sampled to enable a direct comparison between
the samples of each trajectory, and enable time invariant
comparisons. This work demonstrates and tests the primi-
tive’s ability to reconstruct sampled trajectories. Promising
test results are shown for samples from different test persons
performing gestures from a small one armed gesture set.

1 Introduction

In the last decade speech synthesis and speech recognition
have transferred from only being research topics into core
technologies in commercially available products. One of
the key reasons for this transfer is the identification and
use of an underlying set of generic symbols constituting all
speech, the phonemes. Phonemes are basically small sound
samples that put together in the correct order can generate
all the words in a particular language, for example English.

It is widely accepted that more than half of the informa-
tion transmitted in a human-human interaction is done by
other means than speech, and that the human body language
is responsible for most of this information. Furthermore, for
better human-computer interfaces to be build the computer
might need to be equipped with the ability to understand the
human body language [14]. Since automatic recognition of
human body language is a desired ability research has been
conducted in this area. Much of this research is based on
defining a subset of the human body language, normally

denoted ”actions”, and then building a classifier based on
some kind of learning scheme applied to some training data.
The result of the training is a sequence of values in some
state-space for each action. The different learnt sequences
are compared to the input data during run-time and a classi-
fication is carried out.

In some systems, however, a different approach is fol-
lowed1. This approach is based on the idea that an action
can be represented by a set of shorter (in terms of time dura-
tion) primitives. These primitives take different names such
as movemes [4], atomic movements [5], activities [2], be-
haviors [11, 16], snippets [8], dynamic instants [15], states
[3], and examplars [13].

Besides the different names used to describe the notion
of motion primitives, the approaches also differ in another
way, namely whether a primitive is dependent or indepen-
dent on time. The approaches based on independence find
their inspiration in key-frame animation. Key-frame anima-
tion is based on the idea that animating an articulated object
in a time sequence is a matter of defining the configurations
for a number of distinct frames (key-frames) and then inter-
polate all in-between frames using e.g., inverse kinematics.
Mapping this concept to the problem of recognizing human
body language converts the problem to a matter of recog-
nizing a number of single configurations and ignoring all
in-between configurations. This concept is sound but intro-
duces a number of problems including the problem of defin-
ing which configurations (or key-frames) that best represent
an action.

In the work by Raoet al. [15] the problem of recogniz-
ing dynamic hand gestures is addressed. They track a hand
over time and hereby generate a trajectory in 3D space (x-
and y-position, and time). They search the trajectory for
significant changes, denoted dynamic instants, which are
defined as instants with a high curvature. In the work by
Jordi [7] the problem of finding key-frames for cyclic ac-
tions, like walking and running, is addressed. They capture

1These approaches are sometimes motivated directly by the notion of
finding ”phonemes” in the human body language.
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the joint angles using an optical motion capture system and
compactly represent a time sequence of such data using a
point distribution model. Since the actions are cyclic they
argue that the likelihood of a configuration being part of an
action can be measured as the Mahalanobis distance to the
mean. The key-frames are then defined as configurations
where the Mahalanobis distance locally is maximum, i.e.,
key-frames are the least likely configurations!

The alternative to the key-frame approach is to represent
the entire trajectory (one action), but doing so using a num-
ber of smaller sub-trajectories. That is, the entire trajectory
through a state space is represented as opposed to only rep-
resenting a number of single points. Several problems are
associated with this approach, for example, how to define
the length of the sub-trajectories. If too long then the primi-
tives will not be generic. If too short the compactness of the
representation is lost.

In the work by Howeet al. [8] the problem of captur-
ing the 3D motion of a human using only one camera is
addressed. The main body parts are tracked in 2D and com-
pared to learned motion patterns in order to handle the in-
herent ambiguities when inferring 3D configurations from
2D data. The learned motion patterns are denoted ”snip-
pets” and consist of 11 consecutive configurations. These
are learned by grouping similar motion patterns in the train-
ing data. In the work by Bettingeret al. [1] the problem
of modeling how the appearance of a face changes over
time is addressed. They use an active appearance model to
represent the shape and texture of a face, i.e., one point in
their state-space corresponds to one instant of the shape and
texture. They record and annotate a number of sequences
containing facial changes. Each sequence corresponds to a
trajectory in their state space. The states with the highest
densities are found and used to divide the data into sub-
trajectories. These sub-trajectories are modeled by Gaus-
sian distributions each corresponding to a temporal primi-
tive.

The different approaches found in the literature that uses
the notion of motion primitives more or lees follow the
structure below.

Temporal content Either only a single time instant define
a primitive or a primitive is based on a consecutive
number of temporal instants.

Motion capture In order to find the primitives the motion
data needs to be captured. This could for example be
done by an optical system or electromagnetic sensors.

Data representation What is measured by the motion cap-
ture system is normally the 3D position of the different
body parts. These measurements are often represented
used normalized angles. Furthermore, the velocity and
acceleration might also be considered.

PreprocessingThe captured data can have a very high di-
mensionality and can therefore be represented more
compactly using, e.g., PCA. Furthermore, the data
might be noisy and is therefore often filtered before
further processing.

Primitives It needs to be decided how to define a primitive.
Often this is done via a criteria function which local
minima/maxia defines the primitives.

Application The chosen method needs to be evaluated.
This can be with respect to the number of primitives
versus the recognition rate, but it can also be a com-
parison between the original data and data synthesized
using the primitives.

Our long term goal is to find a set of generic primitives
that will enable us to describe all (meaningful) gestures con-
ducted by the upper body of a human. Our approach is to
investigate different data representations together withdif-
ferent criteria functions. We seek to find primitives for both
recognition and synthesis, and evaluate the relationship be-
tween the two.

This particular paper presents the initial work towards
our goal and the focus of the paper is to obtain experi-
ences with all the topics listed above. Concretely we de-
fine a number of one-armed gestures and for each gesture
we evaluate a method used to find primitives. The criteria
function is based the density of a trajectory. We then use
these primitives to reconstruct the complete gestures. Fi-
nally, the reconstructions are compared to reconstructions
made without use of our density measure, and an optimized
version of our approach.

The paper is structured as follows. In section 2 the ges-
ture data and the applied motion capture technique are pre-
sented. In section 3 we describe how the data is normalized.
In section 4 the concept behind the primitives is given. In
section 5 we present the density measure used in the criteria
function, and in section 6 we combine this with a distance
measure and defined how the criteria function is evaluated
in order to select the primitives. In section 7 the test results
are presented and in section 8 a conclusion is given.

2 The Gesture Data

The gestures we are working with are inspired by the work
of [12] where a set of hand gestures are defined. The ges-
tures in [12] are primarily two-hand gestures, but we sim-
plify the setup to one-hand gestures in order to minimize the
complexity and focus on the primitives. Some of the ges-
tures were exchanged with other more constructive ones.
The final set of gestures are, as a result of this, all com-
mand gestures which can be conducted by the use of only
one arm. The gestures are listed below.
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Stop: Hand is moved up in front of the shoulder, and then
forward (with a blocking attitude), and then lowered
down.

Point forward: A stretched arm is raised to a horizontal
position pointing forward, and then lowered down.

Point right: A stretched arm is raised to a horizontal po-
sition pointing right, and then lowered down.

Move closer: A stretched arm is raised to a horizontal po-
sition pointing forward while the palm is pointing up-
wards. The hand is then drawn to the chest, and low-
ered down.

Move away: Hand is moved up in front of the shoulder
while elbow is lifted high, and the hand is then moved
forward while pointing down. The arm is then lowered
down.

Move right: Right hand is moved up in front of the left
shoulder. the arm is then stretched while moved all the
way to the right, and then lowered down.

Move left: Same movement asMove right but back-
wards.

Raise hand: Hand raised to a position high over the head,
and then lowered down.

Each gesture is carried out a number of times by a num-
ber of different subjects, in order to have both data for inter-
person comparisons, and comparable data for each gesture
by several different subjects.

The gestures are captured using a magnetic tracking sys-
tem with four sensors: one at the wrist, one at the elbow,
one at the shoulder, and one at the torso (for reference), as
shown in figure 1. The hardware used is the Polhemus Fast-
Trac [9] which gives a maximum sampling rate of25Hz,
when using all four sensors.

In order to normalize the data and make it invariant to
body size, all the collected 3-dimensional position data is
converted to a time sequence of four Euler angles: three at
the shoulder and one at the elbow. Besides normalizing the
data, this transformation also decreases the dimensionality
of the data from 12 to only 4 dimensions.

3 Normalizing the Data

In order to compare the different sequences they each need
to be normalized. The goal is to normalize all the gesture
trajectories so each position on a trajectory can be described
by one variablet, wheret ∈ [0; 1].

The first step is to determine approximately where the
gestures’ endpoints are. In this experiment we have cho-
sen to do so by defining a gesture set where all gestures are

Figure 1: Placement of sensors. The figure is adapted from
[10].

considered to both start and stop when the arm is hanging
relaxed from the shoulder. A velocity threshold ensures that
the small movements done between gestures is added to nei-
ther, and simplifies the separation of the individual gestures.

The trajectories are therefore homogeneously re-
sampled in order to enable time invariant comparisons. This
is done by interpolating each gesture, in the 4D Euler-space,
by use of a standard cubic spline function. The time and ve-
locity information is, however, still available from parame-
ters in the new sample points, even though this is not used
in this work. The homogeneously re-sampling allows for
a calculation of the statistics for each gestureand at each
sample point. Concretely, for each gesture we calculate the
mean and covariance for each sample point, i.e., each in-
stant oft. This gives the average trajectory for one gesture
along with the uncertainties along the trajectory represented
by a series of covariant matrices, see figure 2.

Figure 2: Six example trajectories for a fictive gesture. Left:
Input after cubic spline interpolation. Middle: Input includ-
ing the position of the mean points. Right: The sizes of the
mean points indicate the density of the curves.
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4 Defining Primitives of Human Ges-
tures

This section gives an intuitive description of which criteria
define a good primitive candidate. In order to find the prim-
itives we apply the following reasoning. A primitive is a
particular configuration of the arm, i.e., of the four Euler an-
gles. For a configuration to qualify as a good primitive can-
didate the configuration must appear in all the training data,
at approximately the same time. For such a configuration to
exist, all the training data must vary very little at this point
in space and time, which will result in a very high density of
training trajectories at this position in space. The density of
a particular configuration expresses how close the original
sequences passed this configuration. The closer they passed
the higher the density, corresponding to a good candidate.
The logic behind this is very simple: At points on the recon-
structed trajectory where all the training data have very little
variance, we might also assume that future gestures of this
kind will parse very close. It therefore makes good sense to
compare an unknown trajectory to our known reconstructed
trajectory, at exactly the points where all the training data
trajectories laid closest, see figure 2. However, just select-
ing then points with the highest density will result in very
inefficient primitives. The point right next to a high density
point is also likely to have a high density, and might there-
fore also be selected if density were the only criteria for the
selection of primitives. One primitive is enough to direct
the interpolated curve through an area, and also enough to
act as control point when classifying unknown curves. So
selecting more primitives at places where the trajectory al-
ready parses by will offer little to the reconstruction of the
original trajectory. It is therefore also interesting to sehow
well each primitive can improve the reconstruction, even
thou the benefits from the density measure is most visible
in recognition.

In the next two sections we describe how we calculate the
density measure, and how this is used to select our primi-
tives.

5 Measuring the Density

In section 3 the points constituting each trajectory were nor-
malized so that the trajectories for different test subjects can
be compared. That is, each trajectory was re-sampled so
that they each consist of the same amount of points which
are aligned. We can therefore calculate the covariance ma-
trix for each time instant.

The covariance matrices for each time instant express
both how data are correlated but also how they are spread
out with respect to the mean. The Mahalanobis distance ex-
presses this relationship by defining a distance in terms of

variances from a data point to the mean. It is defined as

r2 = (x − µ)T
C

−1(x − µ) (1)

wherex is a data point,µ is the mean for this particular
time instant, andC is the covariance matrix. Ifr is constant
then equation 1 becomes a hyper ellipsoid in 4D space. The
data points on its surface have the same variance-distance
to the mean. The volume of a hyper ellipsoid with fixed
Mahalanobis distance is a direct measure of the density of
the data at this time instant. A big volume corresponds to a
low density where the points are spread out, whereas a small
volume corresponds to a high density as the same amount of
data are located at a much smaller space. The volume of a
hyper ellipsoid which is expressed as in equation 1 is given
as [6]

V =
π2 · r4

2
|C|

1

2 (2)

where|C| is the determinant of the covariance matrix. We
are not interested in the actual value of the volume but rather
the relative volume with respect to the other time instants.

Therefore equation 2 can be reduced toV = |C|
1

2 and is
illustrated in figure 2. Below we give an intuitive interpre-
tation of this measure.

6 Selecting the Primitives

Above we have defined and presented a method for calcu-
lating the density measure, and are now ready to include
this into one criteria function that can be evaluated in order
to find the primitives. The criteria function will combine
the density measure with the distance between the homoge-
neously re-sampled mean gesture trajectory (m) and a tra-
jectory made by interpolating the endpoints and the first se-
lected primitives, using a standard cubic spline function (c)
for each of the four Euler angles. In order to make a direct
comparison, both the mean gesture trajectory and the inter-
polated cubic spline trajectory were given the same amount
of points. This enables a calculation of theerror-distance
(δ) between the curves for each point pair. If multiplying
this error distance at each point with the density (V ), we can
get a distance measure much similar to the Mahalanobis.

Since the four angles might not have the same dynamic
ranges and more freedom to optimize future parameters is
desired, the criteria function (λ) is defined as a weighted
sum of error measures (αi) for each of the four Euler angles:

λ(t) = ω1α1(t) + ω2α2(t) + ω3α3(t) + ω4α4(t) (3)

where the four weightsω1 + ω2 + ω3 + ω4 = 1, and the
error measure:

4
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αi(t) = Vi(t) · δi(t)
2 (4)

where:

δi(t) =
√

(mi(t) − ci(t))2 (5)

Given the criteria function in equation 3 we are now
faced with the problem of finding theN best primitives for
a given trajectory. The most dominant primitive,χ1 is ob-
viously defined as

χ1 = arg max
t

λ(t) (6)

In order to find the second primitive, the first one is
added to the cubic spline function (c), and the interpolated
trajectory is then recalculated, so new error distance mea-
sures can be calculated, see figure 3. This procedure can be
repeated until the sum of all (λ) falls below a given thresh-
old, or the number of primitives reaches an upper threshold.
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ng
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Figure 3: Calculating the error-distance for one angle.
Solid: The mean gesture trajectory. Dashed: Interpolated
cubic spline. Dotted: Variance of training data. Circles:
Selected primitives and endpoints.

6.1 Optimizing the Primitive’s Position

Placing the primitive where the density or error is largest
might be a fairly good solution if the primitives are only to
be used for recognition, but in respect to reconstruction that
solution might be very far from optimal.

By doing a brute force recalculation of the interpolated
trajectory by placing every primitive candidate in every pos-
sible position for each given number of primitives, an op-
timal solution should present it self for the given gesture,
based on the reconstruction criteria. This method demands
a very high amount of calculations and is therefore also very
time consuming, and only valuable for the given data set.

Instead, tests were done with another much faster
method. After each new primitive was selected by the rules
described in the previous section, each selected primitive
was tested in a position one step to each side along the
mean gesture trajectory. Only if they could lower the to-
tal error sum, would they move to this position, and as long
as just one primitive could be moved, all primitives were
tested again. This method should bring the error sum to a
local minimum, but not to a guarantied global minimum.

This method focuses solely on the primitives’ ability to
reconstruct the original trajectories, and might have an un-
wanted negative effect on the primitives’ ability to recog-
nize gestures, a problem that future tests might reveal. See
the following section 7 for test results on both previous de-
scribed methods.

7 Results
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Figure 4: Reconstruction and error. Solid: The mean ges-
ture trajectory. Dashed: Interpolated cubic spline. Dotted:
Variance of training data. Circles: Selected primitives and
endpoints. A: With 2 primitives. C: With 8 primitives.

The tests described in this section were made on a train-
ing data set based on the eight one arm gestures described
in section 2. Three tests persons conducted each gesture no
less than ten times resulting in a total of 240 gestures2.

The evaluation of our approach consists of two tests for
each action:

• Investigate how many primitives are required in order
to reconstruct the original gestures.

• Evaluate the optimization step, and determine whether
or not this should be used in our continuous work.

It is our belief that the only reasonable way to evaluate
whether the reconstruction of a gesture is life like enough to
look natural, is to have a robot or virtual human avatar per-
forming the reconstructed gestures before a large number of

2Additional 160 training gestures were made but had to be removed
from the set do to extremely low signal to noise ratio.

5

32

karino
Rectangle



0 20 40 60 80 100
0

50

100

A
ng

le
 1

0 20 40 60 80 100
80

100

120

140

A
ng

le
 2

0 20 40 60 80 100
50

100

150

200

A
ng

le
 3

0 20 40 60 80 100
50

100

150

200

A
ng

le
 4

0 20 40 60 80 100
0

5000

10000

Sample

0 20 40 60 80 100
0

50

100

0 20 40 60 80 100
80

100

120

140

0 20 40 60 80 100
50

100

150

200

0 20 40 60 80 100
50

100

150

200

0 20 40 60 80 100
0

1

2

3

Sample

A B

Figure 5: Reconstruction and error (Optimizted version).
Solid: The mean gesture trajectory. Dashed: Interpolated
cubic spline. Dotted: Variance of training data. Circles:
Selected primitives and endpoints. A: With 2 primitives. C:
With 8 primitives.

test persons, and having these evaluate the result. This was
however not within range of our possibilities at this point in
our research. Instead, all reconstructions were evaluatedby
the research group from a large number of graphs such as
those shown in figures 4 and 5, and a number of rotating 3D
curves depicturing the trajectories in three of the four Euler
angles. The graphs show the four angle spaces and error
measure of the gestureMove Left, with two endpoints and
2, and 8 primitives. Figure 4 show the result of the recon-
struction without the optimizing step, where as 5 depicture
the reconstruction of the exact same angle spaces, but with
the optimization.

The total error sum between original and reconstructed
trajectory of each gesture, was collected with the number of
primitives ranging from 1-10. Figure 6 shows four graphs
of the decreasing error sums: One there the primitives are
selected only as the point with the largest distance to the
original trajectory. Second graph shows the same, but where
the density measure have been used in the selection process.
The last two graphs show each of these methods after the
optimization method has been conducted.
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Figure 6: Logaritmic scale of error vs. number of primi-
tives. Solid: Reconstruction error after primitive selection
without the density measure. Dashed: Reconstruction error
after primitive selection with the density measure. Dash-
dot: Reconstruction error after primitive selection without
the density measure, but with optimization. dotted: Re-
construction error after primitive selection with the density
measure and optimization.
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8 Conclusion

In this paper we have presented a framework for automati-
cally finding primitives for human body gestures. A set of
gestures is defined and each gesture is recorded a number
of times using a commercial motion capture system. The
gestures are represented using Euler angles and normalized.
The normalization allows for calculation of the mean trajec-
tory for each gesture along with the covariance of each point
of the mean trajectories. For each gesture a number of prim-
itives are found automatically. This is done by comparing
the mean trajectories and cubic spline interpolated recon-
structed trajectories by use of a error measurement based on
density. Our framework were implemented in two slightly
different versions, were the optimizted but slower version
proved to be superior in repect to reconstruction. Figure 6
clearly shows that the density measure is not only usable for
recognition but will also improve reconstruction by approx-
imately a factor two for four or more primitives, as long as
there position is optimized for the given number of primi-
tives. It is a clear indication that the density measure should
be taken into consideration in the future. Even thou the fig-
ure show that the density measure might result in larger er-
rors in the reconstruction without the optimization, it will
clearly have a large advantage when using the same prim-
itives for recognition. Its is still hard to say exactly how
many primitives are needed to get a natural reconstruction
of a given gesture. But our tests indicate that somewhere
between five and ten should be sufficient.

8.1 Near Future Work

It is my hope that I will be able to collect a larger dataset
and combine the reconstruction scores of the primitives with
some kind of recognition scores as well. Further more, I in-
tend to extend the testing to include comparisons between
personal primitives and none-personal primitives. Hope-
fully, all in time for the presentation at the conference in
August 2005.
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Abstract

A deformable template method for eye tracking
on full face images is presented. The strengths
of the method are that it is fast and retains accu-
racy independently of the resolution. We com-
pare the method with a state of the art active
contour approach, showing that the heuristic method
is more accurate.

1 Introduction
Eye Tracking is the process of �nding and track-
ing the eye of a human in a sequence of images.
Speci�cally �nding and tracking the iris or pupil
can be used to infer the direction of interest of
the human subject, this is denoted gaze.

Gaze is very important for human communi-
cation and also plays an increasing role for hu-
man computer interaction. Gaze can play a role,
e.g., in understanding the emotional state for
humans [1, 2], synthesizing emotions [5], and for
estimation of attentional state [16]. Speci�c ap-
plications include devices for the disabled, e.g.,
using gaze as a replacement for a computer mouse
and driver awareness monitoring to improve traf-
�c safety [8].

It has been noted that the high cost of good
gaze detection devices is a major road block for
broader application of gaze technology, hence,
there is a strong motivation for creating systems
that are simple, inexpensive, and robust [7].

Eye tracking is an active area of research.
COGAIN is a network of excellence on Com-
munication by Gaze Interaction, supported by
the European Commission's IST 6th framework
program. COGAIN integrates cutting-edge ex-
pertise on interface technologies for the bene�t
of users with disabilities. The network aims to
gather Europe's leading expertise in eye track-
ing integration with computers in a research project

Figure 1: Examples of the dataset. The region sur-
rounding the eyes can be found in various ways. We use
a head tracking algorithm[8] based on Active Appear-
ance Models. A subimage is extracted and subsequently
processed by the eye tracking algorithms.

on assistive technologies for citizens with motor
impairments[3]. The authors of this paper are
members of this network, and it summarizes re-
search presented in[11].

The paper is organized as follows. First a
brief review of some of the methods used for eye
tracking is given in section 2. Section 3 describes
the proposed deformable template method. Sec-
tion 4 describes the EM-contour method from
[7] with additional constraints on the model.
The two models are compared in section 5. Fi-
nally some concluding remarks are drawn in sec-
tion 6.

2 Recent Work
Detection of the human eye is a di�cult task due
to a weak contrast between the eye and the sur-
rounding skin. As a consequence, many exist-
ing approaches uses close-up cameras to obtain
high-resolution images[7][19]. However, this im-
poses restrictions on head movements. The prob-
lem can be overcome by use of a two camera
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setup[18][20]. One camera covering the head
and controlling a second camera, which focuses
on one eye of the person. Matsumoto and Ze-
linsky[12] utilizes template and stereo matching.

In many existing approaches the shape of iris
is modeled as a circle [9][10][12][20]. Since the
shape and texture of the object is known, a tem-
plate model can be used with advantage[8][15].
J. Gracht et al.[17] utilizes an iris template gen-
erated by a series of wavelet �ltering.

Wang et al.[18] detects the iris using thresh-
olding, morphology and vertical edge operators.
An ellipse is �tted to the resulting binary image.

A probabilistic formulation of eye trackers
has the attraction that uncertainty is handled
in a systematic fashion. Xie et al.[20] utilizes
a Kalman �lter with purpose to track the eyes.
The eye region is detected by thresholding and
the center of an eye is used for motion com-
pensation. The center of this iris is chosen as
tracking parameter, while the gray level of the
circle modeled eye is chosen as measurement[21].
Hansen and Pece propose an active contour mo-
del combining local edges along the contour of
the iris[7]. The contour model is utilized by a
particle �lter.

A generative model explaining the variance
of the appearance of the eye is developed by
Moriyama et al.[13]. The system de�nes the
structures and motions of the eye. The structure
represents information regarding size and color
of iris, width and boldness of eyelid etc. The
motion is represented by the position of upper
and lower eyelids and 2D position of the iris.
Witzner et al. utilizes an Active Appearance
Model[6].

Based on the center of iris estimate, the gaze
direction can be computed utilizing various meth-
ods. Stiefelhagen et al.[15] utilizes a neural net-
work with the eye image as input. Witzner
et al.[6] uses a Gaussian process interpolation
method for inferring the mapping from image
coordinates to screen coordinates. Ishikawa et
al. [8] exploits a geometric head model, which
translates from 2D image coordinates to a di-
rection in space relative to the initial frame.

The present paper is inspired by the line of
thinking mentioned above. We focus on some
of the image processing issues. In particular we
propose a robust algorithm for swift eye tracking
in low-resolution video images. We compare this
algorithm with a proven method[7] and relate

the pixel-wise error to the precision of the gaze
determination.

3 Deformable Template Match-
ing

Modeling the iris as a circle is well-motivated
when the camera pose coincides with the opti-
cal axis of the eye. When the gaze is o� the
optical axis, the circular iris is rotated in 3D
space, and appears as an ellipse in the image
plane. Thus, the shape of the contour changes
as a function of the gaze direction and the cam-
era pose. The objective is then to �t an ellipse
to the pupil contour, which is characterized by
a darker color compared to the iris. The ellipse
is parameterized,

x = (cx, cy, λ1, λ2, θ) , (1)

where (cx, cy) is the ellipse centroid, λ1 and λ2

are the lengths of the major and minor axis re-
spectively. θ is the orientation of the ellipse.

B
P

Figure 2: The deformable template model. Region P
is the inner circle, and region B is the ring around it.

The model proposed here is based on the re-
lationship between pixel values in two regions,
see �gure 2. The pupil region P is the part
of the image I spanned by the ellipse parame-
terized by x. The background region B is de-
�ned as the pixels inside an ellipse, surround-
ing but not included in P , as seen in �gure 2.
When region P contains the entire object, B
must be outside the object, and thus the di�er-
ence in average pixel intensity is maximal. To
ensure equal weighting of the two regions, they
have the same area. The area of the inner el-
lipse P is AP = πλ1λ2. The shape parameters
of B should satisfy the constraint on the area
AB/P−AP = AP . As a consequence, the param-
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eters is de�ned as xB =
(
cx, cy,

√
2λ1,

√
2λ2, θ

)
,

while xP is de�ned as (1).
The pupil contour can now be estimated by

minimizing the cost function,

E = Av(P )−Av(B), (2)

where Av(B) and Av(P ) are the average pixel
intensities of the background - in this case the
iris - and pupil region respectively.

The model is deformed by Newton optimiza-
tion given an appropriate starting point. Due
to rapid eye movements[14], the algorithm may
break down if one uses the previous state as ini-
tial guess of the current state, since the starting
point may be too far from the true state. As a
consequence, we use a simple `double threshold'
estimate of the pupil region as starting point.

Figure 3: The blue ellipse indicates the starting point
of the pupil contour. The template is iteratively de-
formed by an optimizer; one of the iterations is depicted
in green. The red ellipse indicates the resulting estimate
of the contour.

An example of the optimization of the de-
formable model is seen in �gure 3.

3.1 Constraining the Deformation
Although a deformable template model is capa-
ble of catching changes in the pupil shape, there
are also some major drawbacks. Corneal re�ec-
tions, caused by illumination, may confuse the
algorithm and cause it to deform unnaturally.
In the worst case, the shape may grow or shrink
until the algorithm collapses.

We propose to constrain the deformation of
the model in the optimization step by adding
a regularization term. Assume the parameters
de�ning an ellipse is normally distributed with
mean µ and covariance Σ. The prior distribu-
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Figure 4: Given an appropriate starting point x. The
pose and orientation are kept �xed, while the shape pa-
rameters are varied. Note that the surface plots are not
- as expected - smooth. This is due to rounding in the
interpolation when evaluating the image evidence of the
deformable template. (Left) The image con�dence given
the state - warmer colors means more likely. (Middle)
The prior probability is a normal distribution with a
given mean value µ and covariance Σ. (Right) Combin-
ing the image evidence and prior according to (4) yields
the constrained estimate.

tion of these parameters are then de�ned,

p(x) = N (µ,Σ) ∝ exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

(3)
where the normalization factor has been omit-
ted. The mean and covariance are estimated in
a training sequence. At last the optimization
of the deformable template matching method is
constrained by adding a regularization term,

E = Av(P )−Av(B) +K (1− p(x)) , (4)

where K is the gain of the regularization term.
The relevance of constraining the deforma-

tion is visualized in �gure 4. A suitable starting
point x is chosen. The pose and orientation are
kept �xed, while the shape parameters are var-
ied. In this case the true shape parameters λ1

and λ2 are approximately eight. The image con-
�dence as a function of the shape parameters is
depicted to the left, while the prior distribution
is seen in the middle of �gure 4. Combining
the image con�dence with a prior according to
(4) yields the constrained estimate, which is de-
picted to the right in �gure 4.

By use of the shape constraints, we incorpo-
rate prior knowledge to the solution. The ro-
bustness is increased considerably and the pa-
rameters are constrained to avoid the algorithm
to break down due to in�nite increase or de-
crease of parameters.

The deformable template matching method
is seen applied with and without constraints in
�gure 5. The constrained estimate is seen to be
less sensitive to noise due to re�ections.

37



Figure 5: The deformable template matching method
applied without constraints is seen in green, while the
red ellipse depicts the constrained version . The con-
strained estimate is seen to be less sensitive to noise due
to re�ections.

4 EM Contour Tracking
The iris is circular and characterized by a large
contrast to the sclera. Therefore, it seems ob-
vious to use a contour based tracker. Witzner
et al.[7] describe an algorithm for tracking using
active contours and particle �ltering. A genera-
tive model is formulated which combines a dy-
namic model of state propagation and an obser-
vation model relating the contours to the image
data. The current state is then found recursively
by taking the sample mean of the estimated pos-
terior probability.

The proposed method in this paper is based
on [7], but extended with constraints and robust
statistics.

4.1 The Dynamic Model
The dynamic model describes how the iris moves
from frame to frame. Again, the iris is modeled
as an ellipse and the state vector x consist of the
�ve parameters de�ning an ellipse as de�ned in
equation 1.

To de�ne the problem of tracking, consider
the evolution of the state sequence

xt+1 = ft+1{xt, t ∈ N}, (5)

of a target, given by

xt+1 = ft+1(xt,vt), (6)

where ft+1 is a possibly non-linear function of
the state xt and {vt, t ∈ N} is an independent
identically distributed process noise sequence.

The objective of tracking is to recursively es-
timate xt+1 from the measurements,

Mt+1 = ht+1(xt+1,nt+1), (7)

where ht+1 is a possibly non-linear function and
{nt+1, t ∈ N} is an i.i.d measurement noise se-
quence.

The pupil movements can be very rapid and
is therefore modeled as Brownian motions(AR(1)).
Thus the evolution of the state sequence (6) is
modeled,

xt+1 = xt + vt, vt ∼ N (0,Σt), (8)

where Σt is the time dependent covariance ma-
trix of the noise. The time dependency compen-
sates for scale changes, which a�ects the amount
of movement. Larger movements is expected
when the ellipse appears large, since the posi-
tion of the eye is nearer to the camera. Con-
trary, when the eye is farther from the camera,
smaller movements are expected. Hence, the
�rst two diagonal elements of Σt corresponding
to cx and cy are assumed to be linear dependent
on previous sample mean.

4.2 The Observation Model
The observation model consists of two parts;
a geometric component de�ning a probability
density function over image locations of con-
tours and a texture component de�ning a pdf
over pixel gray level di�erences given a contour
location. The geometric component models the
deformations of the iris by assuming Gaussian
distribution of all sample points along the con-
tour. The gray level information is gathered by
sampling a discrete set of points along the nor-
mals of all contour sampling points. Both com-
ponents are joined and marginalized to produce
a test of the hypothesis that there is a true con-
tour present. The contour maximizing the com-
bined hypotheses is chosen, see [7] for details.

4.3 Active Contour Tracking
The probabilistic formulation has the attraction
that uncertainty is handled in a systematic fash-
ion - Increased uncertainty results the particles
to be drawn from a wider distribution, while
increased con�dence results the particles to be
drawn from a narrower distribution.

38



The prediction stage involves using the sys-
tem model (6) to obtain the prior pdf of the
state at time t + 1,

p(xt+1|Mt) =
∫

p(xt+1|xt)p(xt|Mt)dxt (9)

The observation Mt is independent of the
previous state xt−1 and previous observationMt−1

given the current state xt. At time step t + 1 a
measurement Mt+1 becomes available. This is
used to update the prior via Bayes' rule,

p(xt+1|Mt+1) ∝ p(Mt+1|xt)p(xt+1|Mt). (10)

With this in mind, the tracking problem is
stated as a Bayesian inference problem by use
of (9) and (10).

Particle �ltering is used with the purpose to
estimate the �ltering distribution p(xt|Mt) re-
cursively. This is done through a random weighted
sample set SN

t = {(xn
t , πn

t )}, where n is the
nth sample of a state at time t weighted by
πn

t . The samples are drawn from the predic-
tion prior distribution p(xt+1|Mt). The samples
are weighted proportionally to the observation
likelihood p(Mt|xt) given by the contour hy-
potheses. This sample set propagates into a new
sample set SN

t+1, which represents the posterior
probability distribution function p(xt+1|Mt+1)
at time t + 1.

4.4 Constraining the Hypotheses
Corneal re�ections, caused by illumination, may
confuse the algorithm to weigh some of the hy-
potheses unreasonably high compared to others.
This issue is illustrated left in �gure 6, where
the relative normalized weighting is colored in
a temperature scale - Blue indicates low, while
red high scores. By using robust statistics, these
hypotheses are treated as outliers and therefore
rejected.

The contour algorithm may �t to the sclera
rather than the iris. This is due to the gen-
eral formulation of absolute gray level di�er-
ences ∆M[4], which seeks to detect contours in
a general sense. An example is depicted in �g-
ure 7, where the image evidence of the contour
surrounding the sclera is greater than the one
around the iris. It turns out that for a large
number of particles, the maximum likelihood
estimate prefers the contour around the white
sclera when the gaze is turned towards the sides.

Figure 6: The relative normalized weighting of the hy-
potheses regarding one particle are colored in a temper-
ature scale - Blue indicates low, while red high scores.
(Left) Corneal re�ections cause very distinct edges. Thus
some hypotheses are weighted unreasonable high, which
may confuse the algorithm. (Right) By use of robust
statistics outliers are rejected. This results in a better
and more robust estimate of the hypotheses regarding
the contour.

Figure 7: This �gure illustrates the importance of the
gray level constraint. Due to the general formulation of
absolute gray level di�erences, the right contour has a
greater likelihood, and the algorithm may thus �t to the
sclera. Note the low contrast between iris and skin.

As a consequence, we propose to constrain
the hypotheses. Intuitively, the average inten-
sity value of the inner ellipse could be compared
to some de�ned outer region as seen in expres-
sion (2). This is a poor constraint due to corneal
re�ection causing white blobs in the pupil area.
The robustness of the active contour algorithm
is increased by weighing the belief of hypotheses
and utilizing robust statistics to reject outliers.

We propose to weigh the hypotheses through
a sigmoid function, applied on the measurement
line M, de�ned as,

W =
(

1 + exp
(

µi − µo

σw

))−1

(11)

where σw adjust the slope of weighting func-
tion, µi and µo are the mean values of the inner
and outer sides of the contour respectively. The
function is exempli�ed in �gure 8. This has the
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Figure 8: (Left) The two lines depicts the gray level
intensity of two measurement lines - The blue one where
the inner part of the ellipse is dark, and the red in the
reverse case. (Middle) The shifted hyperbolic tangents is
utilized as weighting function. Note, the limit values are
in range [−255; 255]. (Right) The cyan bars indicates the
hypothesis value before weighting, while the pink is after.
Measurement 1 - The blue line - is nearly unchanged,
while 2 - the red line - is suppressed.

e�ect of decreasing the evidence when the inner
part of the ellipse is brighter than the surround-
ings. In addition, this relaxes the importance
of the hypotheses along the contour around the
eyelids, which improves the �t.

4.5 Maximum a Posteriori Formula-
tion

The dynamic model may, in certain outlier cases,
grow or shrink the contour to a degree, from
where the algorithm gets lost. As a consequence,
we propose to constrain on the shape of the el-
lipse in analogy to section 3.1. The parameters
de�ning an ellipse is assumed normal distributed
with mean µ and covariance Σ. The prior dis-
tribution of these parameters are then de�ned,

p(x) = N (µ,Σ) ∝ exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

(12)
where the normalization factor has been omit-
ted. The mean and covariance are estimated in
a training sequence.

Combining the priors - presented in this sec-
tion - with the likelihood, results in the Max-
imum a Posteriori formulation (MAP), where
the goal is to maximize,

p(x|M) ∝ p(M|x)p(x). (13)

By incorporation of prior knowledge about
the shape, with the prediction prior and obser-
vation likelihood (10), the robustness increases
considerably and the parameters are constrained
to avoid the algorithm to break down due to in-
�nite increase or decrease of parameters.
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Figure 9: The error of the algorithms as a function of
the number of particles for the high resolution data.

5 Results
A number of experiments have been performed
with the proposed methods. We wish to in-
vestigate the importance of image resolution.
Therefore the algorithms are evaluated on two
datasets. One containing close up images, and
one containing a down-sampled version hereof.

The algorithms estimate the center of the
pupil. For each frame the error is recorded as
the di�erence between a hand annotated ground
truth and the output of the algorithms. This
may lead to a biased result due to annotation er-
ror. However, this bias applies to all algorithms
and a fair comparison can still be made.

Figure 9 and 10 depicts the error as a func-
tion of the number of particles used, for low
resolution and high resolution images respec-
tively. The errors for three di�erent active con-
tour (AC) algorithms are shows; basic, with EM
re�nement, with deformable template (DT) re-
�nement. The error of the deformable template
(DT) algorithm, initialized by double threshold,
is inserted into the plot.

It can be seen that the proposed constraints
on the active contour generally improves the ac-
curacy of the �t. The re�nement by the de-
formable template performs better than the EM
method. The cost is an increased number of
computations, which is resolution dependent. No-
netheless, the deformable template method, ini-
tialized by double thresholding, is seen to out-
perform all active contour algorithms.

The table in �gure 5 lists the mean error in
accuracy in centimeters and degrees. Also listed
is the computation time in frames per section of
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Figure 10: The error of the algorithms as a function
of the number of particles for the low resolution data.

Hi-res E(x, y)[mm] E(θ) [frame/s]
AC 0.9 4.1 0.54
AC w/EM 0.8 3.7 0.49
AC w/DT 0.5 2.3 0.25
DT 0.3 1.4 2.2
Lo-res E(x, y)[mm] E(θ) [frame/s]
AC 1.5 7.3 0.57
AC w/EM 1.5 6.9 0.55
AC w/DT 0.8 3.7 0.49
DT 0.5 2.3 8.4

Table 1: Speed and precision comparison of the algo-
rithms. The active contour uses 200 particles.

a Matlab implementation run on a 2.4Ghz PC.
In general, the accuracy improves with high res-
olution as seen in table 5. However, the methods
utilizing deformable template matching are less
sensitive. The computation time for the basic
active contour and EM re�nement methods are
independent of resolution. A signi�cant increase
in speed is noticed for the deformable template
methods.

6 Conclusion
In this paper we have presented heuristics for
improvement of the active contour method pro-
posed by [7]. We have shown increased perfor-
mance by using the prior knowledge that the iris
is darker than its surroundings. This prevents
the algorithm from �tting to the sclera as seen
in �gure 7.

Also presented is a novel approach to eye
tracking based on a deformable template initial-
ized by a simple heuristic. This enables the al-
gorithm to overcome rapid eye movements. The
active contour method handles these by broad-

Figure 11: The resulting �t on two frames from a se-
quence - the red contour indicates the basic active con-
tour, green indicates the EM re�nement and the cyan in-
dicates the deformable template initialized by the heuris-
tic method. The top �gure illustrates the bene�t �tting
to the pupil rather than the iris. Using robust statistic
the in�uences from corneal re�ections on the deformable
template �t are ignored as depicted in the bottom image.

ening the state distribution and thus recovering
the �t in a few frames. Furthermore, the accu-
racy is increased by �tting to the pupil rather
than iris. This is particularly the case when a
part of the iris is occluded as seen in �gure 11.

It is shown that the deformable template
model is accurate independent of resolution and
it is very fast for low resolution images. This
makes it useful for head pose independent eye
tracking.
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A Comparison of Active-Contour Models Based on Blurring and on
Marginalization

Arthur E.C. Pece
Heimdall Vision

Abstract

Many different active-contour methods have been proposed,
but very few comparisons between alternative methods have
been carried out. Further, most of these comparisons have
been either exclusively theoretical or exclusively experi-
mental. This paper presents a combined theoretical and ex-
perimental comparison between two recently proposed con-
tour models. The two models are put into a common theoret-
ical framework and performance comparisons are carried
out on a vehicle tracking task in the PETS test sequences.
Using a Condensation tracker helps to find the few frames
where either model fails to provide a good fit to the image.
The results show that (a) neither model has a definitive ad-
vantage over the other, and (b) Kalman filtering might ac-
tually be more effective than particle filtering for both mod-
els.

1. Introduction
Active contour methods find application to tracking when
camera motion prevents the use of background subtraction
methods, and/or when only specific kinds of objects need to
be tracked, and the shape, but not the appearance, of these
objects is known a priori.

Many active-contour methods have been proposed since
the initial paper by Kass et al. [12]. However, theoretical
and experimental comparisons between these methods have
been very scarse. Amongst experimental comparisons in the
area of tracking, a careful study [17] focused on accuracy
of segmentation of a single walking human in a controlled
setting, but did not address robustness and interactions be-
tween multiple targets. A recent paper on tracking motor
vehicles [4] is closer to the approach followed in this paper,
but is limited to an experimental comparison. A thorough
theoretical comparison of methods, with a focus on segmen-
tation is provided in [19], but it contains no experimental
comparisons and is of little relevance to tracking.

This paper is based on the principle that theoretical and
experimental comparisons should complement each other.
Following this principle, two recently developed active-
contour trackers are put into the same theoretical frame-
work prior to experimental comparisons on the PETS test

sequences. One of the methods [15] has previously been
applied to vehicle tracking and the other [16] to articulated
body tracking. The experimental comparisons are carried
out on vehicle tracking for the following reasons:

• the methods are not sufficiently robust by themselves
(i.e. without sensor fusion) for human body tracking;

• open-source software for vehicle tracking has been
made available [21] that will allow the reader to repli-
cate the experiments;

1.1. Active contour methods
Most active-contour methods can be classified as feature-
based if the pose of the object is optimized by minimiz-
ing squared distances between contours and image features;
and contrast-based if the pose of the object is optimized by
maximizing some contrast measure (e.g. the norm of the
grey-level gradient) under the contour.

Feature-based methods have found wide application in
tracking (see [1] and references therein). These methods
facilitate the application of Kalman filtering. However, fea-
ture extraction is a process notoriously sensitive to noise,
which leads to instabilities in tracking. After the introduc-
tion of particle filtering [5], Kalman filtering is no longer
the only option available.

Contrast-based methods include the original snake
model [12], the model-based tracker by Kollnig and Nagel
[13], and several methods making use of image statistics
[9, 20]. The methods compared in this paper are contrast-
based.

Amongst contrast-based methods, there is a subclass of
methods in which the first processing step consist in blur-
ring the image [12, 20, 16], or equivalently the contour [13].
The motivation for blurring is that model contours and im-
age edges are seldom in perfect registration, due to errors
both in pose estimation and in the shape model.

An alternative approach to errors in the shape model is
marginalization over deformations, recently introduced in
[15].

This paper compares the blurring and marginalization
approaches. The comparison starts with the formulation of
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a unified model which includes both the blurring approach
followed by Sidenbladh and Black [16] and the marginal-
ization approach proposed by Pece and Worrall [15]. It
will be shown that the mathematical differences between the
two approaches are small, but significant. This theoretical
comparison is complemented by an experimental compari-
son based on the Condensation algorithm. This algorithm
was selected because it is the most general framework for
comparing different likelihood models. However, no per-
formance comparison can conclusively prove the superior-
ity of an entire class of methods. The analysis in this paper
is meant primarily to illustrate the similarities in practice
between the two models.

The theoretical comparison is presented in section 2. The
experimental comparison is in section 3. The conclusions of
the comparisons are in section 4.

2. Theoretical basis of blurring and
marginalization

We begin by formulating a generative model along the lines
proposed in [15].

The object state is described by an m-vector x(t) which
is a function of time t. Given the state and a geometric
model of the object, the object contour is projected onto
the image plane. The contour is then used to estimate the
likelihood of the image, given the object state.

2.1. The observation
A finite set of n sample points on the contour are used to es-
timate the likelihood. The image coordinates and unit nor-
mals to these sample points are computed from the geomet-
ric model together with the estimated state parameters. The
normal line to a sample point will be called observation line.
Due to the aperture problem, only the normal component of
the displacement of the object boundary can be locally de-
tected. Therefore, only the intersection between the object
boundary and the observation line is of interest in the pose
refinement algorithms.

A distinction must also be made between the predicted
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Figure 1: The yellow line represents a model contour, mis-
matched with the object boundary. The green line repre-
sents the normal to a sample point on the contour. u is the
coordinate of the intersection with the contour and ε is the
distance between the intersections of the normal line with
the contour and with the object boundary. Grey levels are
sampled on the normal with a regular spacing ∆v.

2.2. Likelihoods of grey-level differences

It is assumed that the pdf of the observation depends only
on grey level differences (gld’s).

We define a binary indicator variable η(u), with value 1
if the modelled boundary (i.e. the boundary modelled by
the contour used to define the observation line) intersects
the observation line between u−∆v/2 and u + ∆v/2; and
value 0 otherwise.

Given no modelled boundary between image locations
u−∆v/2 and u+∆v/2, the pdf of the observation is defined
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as:

pL(I , u)
def
= f [I(u − ∆v/2), I(u + ∆v/2) | η(u) = 0]

(2)
The pdf pL could be estimated by image statistics, as in

[16]. However, a more robust estimate can be obtained by
fitting a single-parameter pdf to the image statistics, as in
[15]. Differently from [15], we use a Laplacian, rather than
a generalized Laplacian. Defining ∆I(u) = I(u+∆v/2)−
I(u − ∆v/2), the Laplacian is of the form:

pL(I , u) =
1

2λ
exp

(
−

∣∣∣∣
∆I(u)

λ

∣∣∣∣
)

(3)

where λ is a parameter that depends on the distance ∆v.
Given a modelled boundary between image locations u−

∆v/2 and u + ∆v/2, the pdf of the observation is defined
as:

pE(I , u)
def
= f [I(u − ∆v/2), I(u + ∆v/2) | η(u) = 1]

(4)
Given that grey levels observed on opposite sides of a mod-
elled boundary are statistically independent, this pdf is as-
sumed to be uniform:

pE(I , u) = 1/q (5)

where q is the number of grey levels.

2.3. Likelihood ratios
The optimal contour location is found by maximizing the
likelihood ratio

pR(I |u)
def
=

pE(I , u)

pL(I , u)
. (6)

Given that the edge likelihood pE is uniform, it can be easily
seen that the likelihood ratio is a more sensible measure.
The full theoretical rationale for using the ratio is given in
[9, 2, 16, 15].

2.4. Estimation of contour likelihood
The previous section has defined the basic elements of the
probabilistic model. However, the deformations defined by
Eq. 1 have not been taken explicitly into account. To see
why this is a problem, consider that the likelihood ratio,
as defined above, is not a smooth function of the contour
position: a displacement of ∆v of the contour on the image
plane means that the likelihood ratio is no longer measured
across the object boundary. As a consequence, even at the
optimal pose, errors in the geometrical model will make the
likelihood ratio an inappropriate measure of goodness-of-
fit.

There are at least two possible solutions to this prob-
lem. This subsection describes what will be called the BObs

(blurred observation) model. The principle is quite sim-
ple: the observation I is convolved with a Gaussian kernel
which we take to be equal to the pdf of the deformations,
Eq. 1. The convolution takes the form

Iσ(v)
def
=

∫ +∞

−∞

I(v − ε) pD(ε) dε (7)

In practice it is only necessary to integrate within a distance
of 2σ on either side of u. After blurring, the likelihood ratio
becomes:

pB(I |u)
def
=

pE(Iσ |u)

pL(Iσ)
(8)

The similarity to the edge filters proposed by Sidenbladh
and Black [16] is evident.

2.5 Marginalization of likelihood ratio

Contour deformations are noise variables which are not of
interest when fitting the contour to an image. In such a case,
the standard Bayesian approach is to marginalize over de-
formations.

The likelihood ratio of the observation I given the con-
tour location u and the deformation ε is pR(I |u + ε). The
joint likelihood ratio of observation I and deformation ε,
given the contour location u, is given by

p(I, ε |u) = pR(I |u + ε) pD(ε) (9)

The marginalized likelihood ratio (MLR) of the observation
is obtained by integrating over all possible deformations:

pM (I |u) =

∫ +∞

−∞

pR(I |u + ε) pD(ε) dε (10)

2.6 Remarks on the models

It can be seen that the difference in practice between the
BObs and MLR models is whether the observation is first
filtered with a Gaussian kernel, then converted to a likeli-
hood ratio; or vice versa. Conversion from grey levels to
likelihood ratios is a nonlinear operation, and therefore the
two operators (Gaussian filtering and conversion to likeli-
hood ratio) do not commute.

In most practical applications, the major factor in the
computational cost for either model (indeed, for most
boundary-based methods) consists in accessing image pix-
els on the observation line. Therefore, estimating the like-
lihood ratio with either model will have almost the same
computational cost.

3. Experimental comparison between
blurring and marginalization

The Condensation filter [11] is possibly the most general
tracking method, because it imposes no restrictions on the
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dynamical, geometric, or observation models; therefore,
it provides the least biased framework for comparing the
BObs model and the MLR model. The comparisons were
carried out on the PETS 2000 [7] test sequence and PETS
2001 [6] test sequence 1 (camera 1).

3.1. Implementation details
The specific dynamical model used in the tracking exper-
iments was the steering-angle vehicle model described in
[14]. The geometric model (called “wireframe” in the fol-
lowing, even though there is hidden-line removal) was the
shape of the “average car” [8]. The “average car” was used
in our experiments because, in practical applications, there
is no a priori knowledge of which car enters the scene; and
also to test the methods to the limit. The value of σ was set
equal to the greater of 4 pixels and (F/d)·0.1 meters, where
F is the focal length of the camera and d is the distance of
the vehicle from the camera. The number of particles was
fixed at 1024.

3.2. Results on the PETS 2000 test sequence
The experiments were carried out on frames 380 to 1000.
In this segment, a hatchback (compact car) enters the field
of view from the top left and makes two turns before park-
ing; then a white van enters from the bottom right, passes in
front of the hatchback occluding its lower edge, and finally
disappears at the top left.

Fig. 2 gives examples of successful tracking. The two
kinds of observed tracking failures are shown in Fig. 3: ei-
ther the hatchback wireframe did not complete the turn into
the parking slot; or else it was pulled back from the park-
ing slot when the van (which had a higher contrast with the
background) passed in front of it. (Note that collision is not
modelled in our system.) The van itself was always suc-
cessfully tracked.

Bar histograms of the numbers of failures and successful
tracking are shown in Fig. 4. It can be seen that tracking
failures before the hatchback reached its parking slot (fail-
ures of type 1) were only observed with the MLR model.

The tracking failures due to interference between van
and hatchback (failures of type 2) were observed with both
models. This kind of problem requires particle filters specif-
ically designed for multi-target tracking, e.g. mixture par-
ticle filters [18]. However, this is beyond the scope of the
present paper.

A better insight into failures of type 1 can be gained by
plotting the log-likelihood ratio as a function of orientation.
It can be seen in Fig. 5 that in frame 570 the BObs log-
likelihood ratio has its maximum at the correct angle as de-
termined by hand (about -150 degrees). However, the log-
MLR has its maximum at about -175 degrees, a clockwise
rotation of 25 degrees from the correct orientation. This ex-
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Figure 4: Summary of results on the PETS 2000 test se-
quence. Top: BObs model. Bottom: MLR model. Failure
1: hatchback wireframe did not reach parking slot. Failure
2: hatchback wireframe pulled out of parking slot by van.

plains why the tracking failure shown in Fig. 3, frame 570,
is more common with the MLR model.

Some insight into tracking failures of type 2 (Fig. 3,
frame 825) can be obtained from the plots in Fig. 6. It can
be seen that the log-likelihood ratios for both models, as
functions of translation, are not very strongly peaked, so
that most particles will not be found near the correct pose
estimate. (Similar plots were obtained for orientation and
are not shown because of space restrictions.)

3.3. Results on the PETS 2001 test sequence 1
(camera 1)

This sequence is somewhat more challenging, because of
shorter focal length, less favorable viewing angle, poorer
camera calibration, and large number of distractors (parked
vehicles close to the trajectories of the moving vehicles).

The experiments on this sequence were carried out on
frames 500 to 750, with both models and the same numbers
of particles as for the PETS 2000 sequence. In this segment,
the moving vehicles were again a hatchback and a white
van. The hatchback entered from the lower right corner and
went straight to a parking slot; then the van entered from
the left, passing in front of a row of parked vehicles.

The first thing to note is that it was not possible to track
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frame 570 frame 670 frame 820

Figure 2: Successful tracking of the hatchback and van in the PETS 2000 test sequence.

frame 570 frame 670 frame 825

Figure 3: Typical failures in the PETS 2000 test sequence: the hatchback wireframe does not complete the turn (frames 570
and 670); or else, having completed the turn, is “pulled out” of the parking slot by the van (frame 825).
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Figure 5: Log-likelihood ratios as functions of rotation of
the hatchback wireframe in frame 570 of the PETS 2000
sequence, centered on the “correct” pose variables. Top:
BObs model; bottom: MLR model.

the van reliably, due to the distractors (Fig. 7, frame 710b).
This tracking failure cannot easily be eliminated by using
a multi-target tracking algorithm, because the parked vehi-
cles, being stationary through the sequence, might not be
easy to identify as distinct targets.

The hatchback followed a straight path from its entry
point to its parking slot. Nonetheless, tracking with the
BObs model was not always successful: occasionally, the
wireframe ended up at a wrong angle (Fig. 8, frames 600
and 710). Another distinct failure was seen when the hatch-
back wireframe “jumped out” of its parking slot (Fig. 8,
frame 750).

Histograms of tracking results are given in Fig. 9. No
results are given for the van, because it was almost always
a tracking failure. The point to note is that the MLR model
was more successful in tracking the hatchback in this se-
quence.

Once more, plots of the log-likelihood ratios give some
insight into the tracking failures. Fig. 10 shows the log-
likelihood ratios as functions of orientation in frame 600 of
the sequence. It can be seen that the BObs log-likelihood
ratio has its peak value at an orientation clockwise from the
correct orientation. The BObs log-likelihood ratio was ac-
tually negative at the correct orientation. No such problems
can be seen in the plot of log-MLR. This explains why the
tracking failures shown in Fig. 8, frames 600 and 710, only
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Figure 6: Log-likelihood ratios of the hatchback wireframe
as functions of translation in frame 820 of the PETS 2000
sequence. Top: BObs model; bottom: MLR model.

happened with the BObs model.
Log-likelihood ratios for the van wireframe at frame 710

are plotted in Fig. 11. Even more clearly than in Fig. 6, it
can be seen that the log-likelihood ratios for both models do
not have a sharp peak at the correct position, which explains
the failure seen in Fig. 7, frame 710b. (Again, similar plots
were obtained for orientation and are not shown because of
space restrictions.)

4. Conclusions
This paper has compared and contrasted the blurring ap-
proach and the marginalization approach to contour track-
ing. It has been shown that the basic mathematical differ-
ence between the models is the order in which Gaussian
convolution and conversion from grey levels to likelihood
are carried out.

Experiments with the Condensation tracker show that ei-
ther model can fail at some specific frames. Condensation
tracking helps to find the few frames for which the mod-
els fail to provide a good fit to the images. However, it is
not immediately obvious why the MLR model fails in frame
570 of the PETS 2000 sequence, while the BObs model fails
in frame 600 of the PETS 2001 sequence.

The MLR model, being based on marginalization, nat-
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Figure 9: Summary of results on the PETS 2001 test se-
quence. Top: BObs model. Bottom: MLR model. Failure
1: hatchback wireframe reached parking slot at the wrong
angle. Failure 3: hatchback wireframe jumped out of cor-
rect position.
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Figure 10: Log-likelihood ratios of the hatchback wire-
frame as functions of rotation in frame 600 of the PETS
2001 sequence. Top: BObs model; bottom: MLR model.
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frame 600 frame 710a frame 710b

Figure 7: Typical results for the PETS 2001 test sequence 1 (camera 1): the hatchback is successfully tracked, but the van is
not.

frame 600 frame 710 frame 750

Figure 8: Tracking failures for the hatchback in the PETS 2001 test sequence: the wireframe turns clockwise at the level of
the lamp-post (frame 600) and remains in that attitude (frame 710a); or else it “jumps out” of its correct pose (frame 730).

urally leads to the use of the EM algorithm, which can be
easily combined with Kalman filtering. This combination
has been shown to achieve better performance than the Con-
densation tracker at a lower computational cost [15].

Of course, a Kalman-type tracker can be implemented
with any contour model: all what is needed is a pose-
refinement method, i.e. a method for maximizing the poste-
rior pdf of the object state, given the Kalman prediction and
the current frame. However, in order to preserve the com-
putational speed of Kalman filtering, a gradient-based opti-
mization method is preferable. In the case of models based
on marginalization, the EM algorithm is a natural choice for
optimization. In the case of blurred-contour models, there
is no obvious choice of optimization method. Kollnig and
Nagel [13] used the Levenberg-Marquardt method. Testing
this and other methods on the blurred-contour model for-
mulated in this paper will be a subject of future research.
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Entropy of quasi-stationary measures on images

with applications to 2D constrained arrays
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1 Introduction

The concept of the entropy of a Markov Source is well known. However, there
are difficulties extending this concept to 2D sources such as images. Markov
Random Fields (MRF), being the natural generalization of a Markov Source to
2D, have enjoyed a wide range of use in image modeling, but it is intractable to
compute their partition function, and hence the entropy.

A simple class of MRFs, which also have the property of being causal, is
due to Pickard [14], [13]. These are known as Pickard Random Fields (PRF).
Champagnat et el. [2] have investigated these models further and given examples
of their use. We can compute the entropy for a PRF, but they suffer from the
fact they are first order models, and thus have limited modeling power.

We present a method for designing quasi-stationary probability measures
for higher order modelling of images. Based on these models some classes of
2D constrained fields are easily analyzed. We can calculate the entropy of
the measures, thus obtaining a lower bound on the entropy of the constraints
considered.

Constrained codes (in 1D) have enjoyed a widespread use in communication
and data storage. Recently revival of storage ideas such as holographic storage
and advances in nano storage such as the milipede project [17], [4] have caused
interest for 2D constrained fields as models of data storage on a surface. Our
ideas are applicable to generating 2D constrained codes.

2 Basic definitions

We consider 2D fields specified by shift invariant constraints of finite extent
(N,M). A constraint is defined by a list, F , of forbidden blocks of maximum
size N×M made of symbols from a finite alphabet A of size |A|. A configuration
on an n by m rectangle having no forbidden blocks within the rectangle is called
an admissible configuration.

∗sf@com.dtu.dk
†tvl@com.dtu.dk
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Let E(n, m) be the set of admissible configurations on an n by m rectangle
for a given field F and let B(n, m) = |E(n, m)| be the number of distinct
admissible configurations of size n×m. The entropy of F is then defined as

H(2)(F ) = lim
n,m→∞

B(n, m)
nm

. (1)

We will describe a method for designing two-dimensional quasi-stationary
measures that have entropy close to H(2)(F ) for certain fields F .

Examples of one-dimensional constrained sequences include run-length-limited
constraints. The one-dimensional (1D) (d, k)-run-length-limited (RLL) con-
straint consists of all binary words in which the run-lengths of 0s are between d
and k, inclusive, except the first and the last runs which may be shorter than
d. The 2D (d, k) RLL constraint consists of all configurations in which the 1-D
(d, k) RLL constraint is satisfied for every row and every column.

A notable example of a first-order binary 2D RLL constraint is the 2D (1,∞)
RLL. Here the extent of the constraint is N = M = 2 and the forbidden blocks
consists of

F =
{

11,
1
1

}
.

This is also referred to as the hard square constraint [7]. Calkin and Wilf
[1] presented methods giving tight bounds on the entropy for the hard square
constraint. Their methods apply to other (first order) constraints, but they do
not apply when N > 2 and M > 2 [7].

The following sections will focus on higher order constraints (N > 2 and
M > 2).

2.1 Bit-stuffing

Bit-stuffing is a simple, yet efficient way to code for 1D RLL constraints. It is
applicable if it is always possible to write say a 0 at any position. The data
stream is written as is, except that each time a 1 is encountered, the necessary
number of zeros are stuffed immidiately after. This method can be extended to
2D constrained arrays [12], [15], [9]. Constraints of this type includes RLL(d,∞)
and other checkerboard constraints [10]. An analysis of 2D bit-stuffing has been
presented in [15], where it is shown that it is very efficient for the hard square
constraint. In [9] bit-stuffing is used for 2D RLL (d,∞). Analysis of the hard-
triangle has also been carried out [12]. In [15], [9] the bit-stuffing is performed
along diagonals, writing bits from a sequence whenever possible and writing
the 0s the constraint prescribes. The iid unbiased data sequences to be coded
may be transformed into iid biased sequences in a precoding step in order to
increase the entropy. One can utilize this further by having more than one
biased sequence and choose between them depending on past data besides what
is prescribed by the constraint.

For the hard-square [15] and hard-triangle [12], the entropy of the bit-stuffing
scheme has been determined and optimized. For the higher order constraints 2D
RLL (d,∞) lower bounds on the entropy of the bit-stuffing scheme are presented
in [9]. We will provide better bounds in section 4.1.
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2.2 Finite state sources

In one dimension, sequences satisfying a constraint on N consecutive symbols
such as run-length-limited sequences may be described by finite state sources,
where a state is characterized by N − 1 symbols. The entropy in 1-D, defined
as in Definition 1.1 but with m = M = 1 and n → ∞, may be calculated
following Shannon’s approach [16]. The transfer (or adjacency) matrix T of
the source indicates the possible transitions between two states. The largest
eigenvalue Λ of the transfer matrix T determines the growth rate of the number
of configurations [11]. Taking the logarithm gives the maximum entropy [16]:

H(1) = log(Λ). (2)

The one-dimensional approach is readily generalized to 2D arrays of finite
(horizontal) width m and arbitrary (vertical) height n. The admissible config-
urations of an array of width m may for all n be described by a finite state
source. For a constraint of extent (N,M), the states of the source are given
by the symbols on the m by N − 1 segment which appear as the first or last
N − 1 rows of an admissible configuration on a N by m rectangle, i.e. a config-
uration of E(N,m). A transition from state i to state j is admissible if there
is a configuration in E(N,m), for which state i is identical to the top N − 1
rows and state j to the bottom N − 1 rows. State i and j have an overlap of
N − 2 rows. The last row of j is generated by the transition from i to j and
appended to the previous rows of the output. Any admissible configuration of
E(n, m) with fixed m and n (> N − 1) rows may be generated as an output
by starting the source in the state specified by the first N − 1 rows and making
n−N + 1 transitions appending one row to the output in each transition. The
transfer matrix Tm indicates transitions which satisfy the constraint by defining
the elements tij = 1 if the transition from state i to j is admissible and tij = 0 if
it is not admissible. The per symbol entropy of the source on an array of width
m (n →∞) is given by,

H(m)
m

=
log(Λm)

m
, (3)

where Λm is the largest (positive) eigenvalue of Tm. Equation (3) is an upper
bound on the entropy H(2) defined by (1) [7].

For constraints where any two configurations, X and Y , on arrays of width
m may admissibly be concatenated (or cascaded) by padding a merging array,
V , of c columns to form the admissible configuration XV Y , the entropy is lower
bounded by H(m)/(m + c).

A probability measure may be induced by defining transition probabilities
pij such that pij ≥ 0 if tij > 0, pij = 0 if tij = 0, and

∑
j pij = 1 for all i. Let

Pm denote the transition probability matrix.

3 Quasi-stationary measures

Let W denote a stochastic variable defined on an n by m array over some
alphabet A. Let X and Z denote variables representing the first and last M − 1
columns, ie. they are defined on n by M − 1 arrays. Let Y denote a variable
representing the middle m− 2M + 1 columns. A quasi stationary measure may
be introduced by concatenating these bands.
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In the general case, the stochastic variables can take on any of the |A|n×m

possible values. However, we will restrict ourselves for the time being to mea-
sures agreeing with a constraint defined on an alphabet. That is, configurations
having forbidden blocks are assigned probability zero.

Given a probability measure for W we assume that the measures on the
boundaries X and Z are identical, i.e.

P (X) = P (Z). (4)

Starting with X0Y0Z0, arrays YiZi may repeatedly be added to form

X0,Y0,Z0,Y1Z1, . . . ,YKZK ,

such that Zi−1YiZi has the same measure as W. The entropy of (YiZi|Zi−1)
is given by

HW (m)−HX(M − 1)
m−M + 1

. (5)

where HW (m) is the entropy of W (per row) and HX(M − 1) is the entropy of
X (per row).

Now assume that W is described by a finite state source with states of height
N −1 and width m. Let Pm be the transition probabilities, with the stationary
solution πPm = π. Let X0Y0Z0 be initiated by π and all YiZi is initiated by
π conditioned on the initial state of Zi−1. The entropy for W may be found
from Pm and π. The entropy is given by

HW =
∑

i

∑
j

πipij log(1/pij). (6)

Given the finite state source for X along with its transition probabilities and
the stationary distribution we can compute HX in the same way. Hence we can
compute (5).

For the sequence of arrays, X0, {Yj ,Zj}K
0 , the measure, based on Pm with

the initialization based on π, is quasi-stationary in the sense that each subset
Zi−1YiZi is stationary and each column within these subsets are stationary.
Considering an ensemble with random phase yields a stationary measure.

Actually assuming that W is described by a finite state source with a transi-
tion probability matrix Pm it is not necessarily important that the columns are
initialized using π. If transitions from all states to all states are possible, which
is the case for the constraints considered here, then asymptotically (m → ∞)
the measure converges to the stationary solution for any width specified by m, d,
and K.

3.1 Analysis of the boundaries

For the hard square (and other first order constraints) the boundaries X and
Z are just one column each. Further the constraint is symmetric (left-to-right)
making it easy to satisfy the prerequisite of (5), P (X) = P (Z). The maxen-
tropic solution for the finite state source yields a transition matrix Pm with
this property. The entropy HW (m) in (5) is determined by (3), whereas X
may be described as a function of a Markov chain. Therefore HX(M − 1) may
be bounded from both sides using standard techniques, [3], [7]. To efficiently
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describe the process of Y,Z given X, a backward pass on a trellis given by the
possible states of Y,Z given X is combined with a forward pass. The transition
probabilities of Pm may be changed to optimize (5).

For higher order constraints it is more difficult to ensure that the boundaries
X and Z have identical measures, i.e. P (X) = P (Z) (4).

A simple solution is to decompose the probabilities such that

P (X,Y,Z) = P (X)P (Z|X)P (Y|X,Z). (7)

This may be viewed as the boundaries are generated first and thereafter the
interior, Y, given the boundaries. A further simplification is obtained by having
independent boundaries, i.e.

P (X,Z) = P (X)P (Z). (8)

In the following we will use bit-stuffing to determine the transition proba-
bilities. However, we modify the basic scheme slightly in order to satisfy the
requirement of boundary independence (8).

3.1.1 RLL(d,∞)

Bit-stuffing shall be used to define the transition probability matrix, Pm. The
states are (N − 1 =)d by m elements and a new row of m elements is generated
with each transition.

Let (x0, ..., xd−1, y0, ..., ym−2d−1, z0, ..., zd−1) denote these new elements. To
satisfy (8), the ordering of the bit-stuffing is altered slightly as

(x0, ..., xd−1, z0, ..., zd−1, y0, ..., ym−2d−1).

The transition probability, pij , is given by the product of the bit-stuff conditional
probabilities considered in the order given above, i.e.

pij =
d−1∏
l=0

p(xl|cx(l))
d−1∏
l=0

p(zl|cz(l))
m−2d−1∏

l=0

p(yl|cy(l)),m ≥ 3d, (9)

where p(xl = 1|cx(l)) = p1(l) if a xl = 1 is admissible, likewise p(zl = 1|cz(l)) =
p1(l) if admissible and p(yl = 1|cy(l)) = py=1(l). c.(l) is the context at the given
position. When a 1 is not admissible, obviously the conditional probability is
set to 0. Whether it is possible to write a 1 in a given position at the time of
writing is only dependent on the d previous elements in the same column and
the previous elements of the current row after reordering. The ordering assures
that X and Z may be described independently (8) and we have P (X,Y,Z) =
P (X)P (Z)P (Y|X,Z). Using the same conditional probabilities for X and Z
ensures (4) is satisfied. The entropy of the modified bit-stuffing, Cmb(d,∞) is
given by (5) and it may be written as

Cmb(d,∞) =
HW (m)−HX(d)

m− d
. (10)

where HW (m) and HX(d) are the entropies (6) of W and X, respectively. The
entropy gives the expected values for all the interior elements of the cascaded
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bands X0, {Yj ,Zj}K
0 . The overall average converges to this value for n →

∞,K →∞.
The transition probability matrix Pm may be modified to optimize the en-

tropy (10) of the code, subject to the constraints on Pm and the prerequisites
(4),(7). That is the conditional probabilities p(xl = 1|cx(l)) may depend on all
(causal) elements of X within one transition, p(zl = 1|cz(l)) may depend on all
(causal) elements of X,Z within one transition, and p(yl = 1|cy(l)) may may
depend on all (causal) elements of X,Y,Z within one transition. Further the
order of the process describing the boundaries X,Z may be increased to coun-
teract the freedom the boundaries of W has in comparison with the interior,
Y, or equivalently that they are to be concatenated with arrays, Yj−1 and Yj

on both sides. Results for RLL(2,∞) is given in the next section.
Considering the extension in the (quarter-)plane, X0, {Yj ,Zj}K

0 , it may be
written either row by row or column by column, writing one element at a time.
Whenever admissible an element from the (biased) sequence designated to the
column is chosen. Within each instance of the m−d elements of YjZj , element
zi must be written before ym−3d+i. Traversing the elements row by row, this
introduces a latency of m − d − 1 elements if z0, ...zd−1 is written before yi.
This latency may be reduced to d if the writing of zs and ys are interleaved.
Traversing the plane column by column, the biased sequence designated to the
column is used. Thus the choice of biased sequence is only changed once for each
column. The column with zi must be written before the column with ym−3d+i.

3.1.2 Diamond constraints

Another class of constraints is the diamond constraint [10] (Or min. distance by
1-norm between 1s [7]). For a binary alphabet the minimum distance between
1s by the 1-norm is (N =)M . In this case X and Z, besides being written
before X, must also be M − 2 elements ahead to ensure a (1-norm) distance of
M between the newest element, xM−2, of X and the old elements of Y. Besides
this modification the construction of Pm may proceed as for the RLL(d,∞)
constraint, defining the transition probabilities, pij , by a product of conditional
probabilities derived from the bit-stuffing probabilities.

4 Numerical results

We have considered the following examples: Three instances of the RLL(d,∞)
constraint, for d = 2, 3 and 4 as well as the diamond constraint.

4.1 Entropies for RLL(d,∞)

We have computed several bounds for each of the fields. HU gives an upper
bound on the entropy using the simple (3). HV offers an improvement on this
upper bound using a more advanced technique described in [8]. As an estimate
of the entropy we use the expression H̃ = HW (m)−HW (m− 1) as this can be
seen as an estimate of the entropy per column. Hp=1/2 gives the entropy using
an unbiased bit-stuffer. Hp is the optimized entropy over a single biased stream,
whereas HpX ,pY

is optimized choosing different biased sequences for the border
X and interior Y respectively. We have collected the results in the following
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table where the width of the band used is also noted.

F m HU HV H̃ Hp=1/2 Hp HpX ,PY

RLL(2,∞) 19 0.4530 0.4459 0.4455 0.3917 0.4398 0.4410
RLL(3,∞) 16 0.3784 0.3686 0.3675 0.3050 0.3606 0.3628
RLL(4,∞) 15 0.3299 0.3188 0.3167 0.2487 0.2982 0.3110

It can be seen that the codes using an optimized probability for the border and
intererior come within 1% of the estimated value of the entropy.

4.1.1 Optimizing the entropy further

One could use a different biased sequence for each column and then optimize the
entropy over all columns. We have tried this using a depest descent approach
viewing the entropy as a function of the column probabilities p1, . . . , pm−d and
searching in the direction of the gradient. This yielded the following results.

F RLL(2,∞) RLL(3,∞) RLL(4,∞)

Hopt 0.4416 0.3640 0.3125

This offers a slight improvement over the result obtained where we only used
two biased sequences.

4.2 Entropy of the diamond constraint

We have computed bounds for the diamond constraint as well using a band of
width m = 15. The results are shown below. A more elaborate scheme for spec-
ifying W in (5) was also devised, resulting in the value Hopt. The probabilities
p1 were made dependent on the other elements on the (N − 1 =) 2 previous
rows. The next row of X (and Z) is specified by probabilities conditioned on the
two previous rows. The new row of Y is specified by probabilities conditioned
on 3 rows of X and Z and 2 rows of Y. These conditional probabilities were
obtained from the maxentropic solution [7] for W (with two rows forming the
states).

F H̃ Hp=1/2 Hp HpX ,pY
Hopt

M = 3 0.3503 0.276 0.344 0.3477 0.3497

5 Discussion and further work

One might suspect that the entropies of bit-stuffing with and without altering
the order are very close. For the simple case where the same probability is used
in all columns one would suspect that the entropy without reordering is greater.

These hunches have been supported by simulations of the bit-stuffing scheme
without alterering the order.

5.1 Other types of constraints

There are constraints for which (the modified) bit-stuffing is not straight forward
and maybe not a good solution. Etzion [5] studied 2D (d, k) SRLL constraints.
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These constraints are symmetric with regards to the symbols, such that the
run-lengths apply to all symbols in the alphabet.

Methods for constructing a merging array, V , given any two admissible ar-
rays, X and Y , were given. The (minimum) width of the merging array, V , for
which merging is always possible was expressed in terms of d. The existence of a
solution in between two given arrays is a prerequisite for applying the modified
bit-stuffing.

Another example is domino tiling, where the whole plane is tiled by one by
two vertical and horizontal domino pieces. For this constraint a merging array,
V , of finite width does not exist for merging any pair of arrays X and Y . A
counter example is the case where X has a zig-zag boundary of all horizontal
pieces where the piece in every other row is displaced one position relative to its
two neighbors. In this case there is only one solution extending off the boundary
of X, namely that which locks up with the boundary. (By induction this extends
to the entire plane.) For such constraints, the boundaries have to be restricted
to avoid configurations for which there is no admissible interior.

However, the frame work of utilizing borders and interiors still seems promis-
ing in this setting. Indeed some preliminary work has already been carried out
in [6].

6 Conclusion

We have presented a higher order image model using quasi-stationary measures.
We demonstrated one application of the model with the modified bit-stuffing
scheme for constrained 2D fields. The scheme presented is easy to analyze based
on well-known 1D techniques. The entropy of the scheme may be calculated once
the m − d conditional probabilities are chosen. The numerical results for the
2D RLL(d,∞) and the big diamond constraints are within 1% of the estimated
entropy of these constraints.
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Abstract

The critical lines and the top-points in the scale space of an image carry
important information about the image, and can be used e.g. for image recon-
struction and matching. In pratical applications these descriptors are always
computed from a finite sample of the image, i.e. a finite number of image
pixels. This implies that the critical points and the top-points in non-trivial
images inherently are measured with an imprecision ����� . Borrowing ideas
from the theory of parameter estimation we construct confidence sets on the
true position of a critical point given the position of a with imprecision ob-
served critical point. The construction relies on a probabilistic image model,
which also will be described.

1 Introduction

Scale space theory provides a method of multiscale data analysis, notably image
analysis [3]. The linear Gaussian scale space

���	��
 ����
of a two-dimensional gray

scale image
�����������

is defined through Gaussian blurring�����������! #"$�&%'�)(��������+*�,.-/"0�1���3254��6�7�84/�
d
4�9 "$�:�;���<� =>	?A@ e BAC

- DFE
C
---HGJI

Observe that the scale is parameterized by the variance of the blurring kernel,
hence following the notation of [6]. Local extrema and saddles in the image at the
different scales are called critical points, i.e. the set of points given by�K���&9 @ �MLN� �PO ��QSRR$TVU �	�:�;���<�W�FX/9YXZ��
 I
The critical points are known to move along lines as scale increases, and generi-
cally [2] are created and annihilated in pairs at the so-called top-points collected

1
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in the set �K���&9 @ �MLN� � O � QSRR$TVU �	�:�;����� �FX 9 XZ�19 ������� U �	�:�;����� X 
 I
The critical lines and the top-points are believed to carry essential information
about the image [4, 5], and hence it is of importance to compute these quantities
from image data. However, in practice a given image

�
is only observed at a finite

set of grid points. This implies that the gradients T3U ��������� and the determinant
of the Hessians

� U �	�:�;��� can only be computed via a finite discretization of the
convolution integrals, and inherently are specified with an imprecision �
	

X
.

This paper investigates the associated confidence sets. We emphasize that the
imprecision typically decreases as the scale increases. This important fact should
be remembered when interpreting our results. However, the quantification of the
imprecision as a function of scale lies outside the scope of the paper.

Stability of top-points has previously been studied in [1], where the variabil-
ity of the top-points as a functional of additive image noise is investigated. The
approach taken in this paper is different. Instead of considering a fixed image
perturbed by additive noise we view the image itself as being random. Based on
the probabilistic description of the image we ask for confidence sets ���� ���

�<�
and ����� ���

��� O � Q
on the position of the critical points and the top-points, re-

spectively. Here � denotes the imprecision and �
L �8X/9 = � designates a probability

quantifying the degree of confidence. These concepts are explained more carefully
in Section 3, where the sets ����� � are also derived. In order to define confidence
sets in the first place we need a probabilistic image model, which is introduced
in Section 2. We remark that the confidence set ����� � around a position

�;�&9 @ �
can

be computed a priori without any image data. Thus, in difference to the results in
[1] the local image structure at

���&9 @ �
observed from the image data is not used.

This is neither a strength nor a weakness of either method, but simply means that
the methods work along different directions. The two methods probably can be
combined, but for clarity of ideas the analysis done in this paper is kept as simple
as possible.

2 A scale invariant image model

In this section we describe the scale invariant image model derived in [6]. A prob-
abilistic description is achieved considering the image

�
as a random function.

In order to confine this model two invariance properties are assumed, namely sta-
tionarity and scale invariance. Stationarity means that the distribution of the image
difference

� �����M2 � ��4��
only depends on the difference

�N2S4
. Especially, there

exists a covariance function �
�6� � � ��Q

such that

Var
 � �;���72 � �84/� ( �

�
��� 254/� I

2
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Scale invariance is formulated through scaling and blurring, with the interpretation
that objects viewed at larger distance become smaller and blurred. Doing the
scaling around the origin

� � X
scale invariance can be stated as the equivalence

of the probability distributions of the images
�0�:� @���� �Y���

and
��� ��� ��� �Y���

for every@ 9�� 	 X
, i.e. � ���  @ ��� � � ( 
 U
	 , -��� � ���  � ��� � � ( 
 U
	 , - I

Thus, the width in the blurring kernel can be interpreted as the physical scale in
accordance with the usual definition of scale normalization. In [6] it is proved
that the natural assumptions of stationarity and scale invariance imply a particular
structure on the covariance  � � Var

 �� U �#�	� � ( of the associated jet
� U �F��� � of

partial derivatives at some fixed point
� � ��� � 9 � � �'L ��� , i.e. the sets� U �#�	� ��������� Q�� �	�:�;���� � � � � � � � ��� � � ��� 	�� 9 � �! ���" � �FX 9 XZ��
 I

Observe that the zero order structure
�0�������

is removed due to the stationarity as-
sumption. Let the alternating-sign anti-diagonals # � � � � �SLN� ��$��

be defined by# � � � � � �&% �2 = ��')(+*- Q-, (
.- =0/ Q�132 � � � 4 Q�562 � �87 � / � 4 � � � 1 � 56� 	�� 9
where = condition is one if the condition is satisfied and zero otherwise. Then the
covariance structure  �3� Var

 9� U �F��� � ( L � ��$��
does not depend on the spatial

position
�

, and is given by  ��� :� � � ��� 	��+; � � ��� @ � # � � � � � 9
where the functions ; � � � ����Q ���

are confined by the recurrence relations

; � Q � � ��� @ �-< ; � � � Q � � @ � �>= <@?@ ; � � ��� @ � I (1)

Thus, the covariance structure on the non-trivial partial derivatives can be derived
from invariance assumptions on the image structure. In order to have a complete
probabilistic description three further components are needed: (i) a description
of the first order structure, (ii) a description of the higher order structure, (iii) a
choice of the functions ; � � � satisfying the recurrence (1). Concerning issue (i)
and (ii) we assume a mean zero Gaussian model, i.e.

� U �#�	� �BADC �FX 9  � � . Assum-
ing zero mean is of course a minor issue, but the assumption of a joint Gaussian
distribution is a mere postulate. Concerning issue (iii) we can either postulate
a specific model, e.g. the Lévy Brownian motion image model with contrast pa-
rameter E 	

X
given by ; � � ��� @ � � E @ B � B � � � � �GF � � �H�GF� -GI E -GJ � FK�BF � � Q���� , or the coefficients

3
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; � � � � @ � can be estimated from empirical image data subject to the requirement
(1). Certainly, the latter alternative is most appealing. Say, the images might not
be isotropic as implied by the Brownian image model.

In conclusion stationarity and scale invariance combined with the assumption
of zero mean and a joint Gaussian distribution imply the image model given by�	�:��4�� � :� � � �H� 	��

� � � � ����=�� ? � ��4 � 2 � � � � ��4 � 2 � � � � 9!� � � � � ���� 
 � � � ��� 	�� ADC  X/9  � ( 9 (2)

where the covariance structure  �P��� � � � ��� 	�� ; � � ��� @ � # � � � � � preferably is esti-
mated from empirical image data subject to the recursion requirement Eq. (1).

3 Confidence sets

Given an observation
�

from the image model derived in Section 2 we want to
compute the critical lines and their top-points. Suppose we have computed the
existence of a critical point at position

���&9 @ �1�
, but that the computations only can

be done with imprecision �	
X
. Since the critical points move along lines in scale

we ask for a set ����� �
���&9 @ �1� � �<�

around
�

containing an
� �

such that
��� ��9 @ � �

is a
true critical point with some confidence. Given a probability �

L �FX 9 = � we call

� ��� �
���&9 @ �1� �>� 4 LN� � RRR���� TVU �	�	� �;���ML�
 2

�
9
�� � RR$T�� ���	� �84/� � �8X/9 XZ����

� �
an � -confidence set for

� �
given an with � -imprecision computed critical point at���&9 @ �1�

. We remark that a classical � -confidence set � ��� � ���&9 @ � � satisfies

��� �U � 	������ � � U � ����� T U ��� � ���K�1� � �FX/9 X0� RRR TVU �	� � �;���ML�
 2
�
9
� � �"! �

�
I

However, we believe the probabilistic analysis needed to find the sets ����� � ���&9 @ � �
to be very demanding. Thus, although providing a weaker statement we settle for
the sets ����� �

�;�&9 @ �1�
. Let the set #� ��� � �;�K��9 @ � � � � �

be given such that

� � T$� ���	���84/�&%L�
 2
�
9
� � � RR$TVU �	�	���;�K�1��� �FX 9 XZ� �

	 = 2 �

for
4'%L #� ��� � ���K��9 @ � � . The stationarity of the image model implies that

�)�
can

be translated to the origin, i.e. #� ��� � ���K��9 @ � �5� �K��< #� ��� � � @ �1� with #� ��� � � @ � �5�#� ��� � �FX/9 @ � � . Then the confidence set ����� �
���&9 @ � �

is given by

� ��� �
�;�&9 @ � ��� � <

� ��� �
� @ � ��� �32 #� ��� � � @ �1� I
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To see this assume
� � %L

� ��� �
���&9 @ � �

, i.e.
� %L #� ��� � ���K��9 @ � � . Then the conditional

probability that the gradient T U ��� � ����� lies outside the box

 2
�
9
� � � , and hence dif-

fers from
�8X/9 XZ�

within imprecision � , is larger than = 2 � . Reverting this statement
gives the crucial implication

� � TVU ��� � �����ML�
 2
�
9
� � � RR$TVU �	� � ���K�1��� �8X/9 XZ� � �

�
�
�

�K� L
� ��� �

���&9 @ � � I
In Section 3.1 we find such confidence sets ����� �

� @ � � �<�
, and examples are

provided in Section 4. Finding confidence sets � ��� �
� @ � � �<� O �

for top-points at
scale

@
is more involved due to the following two facts: (i) the definition of top-

points involve the determinant of the Hessian, which is a non-linear functional of
the image, (ii) top-points are located at unique scales, and hence also correlation
across scale is needed. We leave the study of the confidence sets � ��� �

� @ �
for future

research.

3.1 Spatial position of critical points

Suppose
���&9 @ �

is a critical point for an image
�

following the probabilistic model
described in Eq. (2). Due to stationarity we can assume without loss of generality
that

� � X
. Doing this we have the image gradients

T$� �	�:��4�� � � :� � � �H� 	�� -�
� � � Q � � �H�� = � ? � 4 �� 4 �� 9 :� � � ��� 	�� -�

� � � � �7Q � �� =�� ? � 4 �� 4 �� !
�  � � � � �9�� 9 � � � � � �� ( < � :� � � ��� 	0�

� � � Q � � �H�� = � ? � 4 �� 4 �� 9 :� � � �H� 	0�
� � � � �7Q � �� = � ? � 4 �� 4 �� ! I

Let
� � �  <�� " � �8X/9 XZ� 9 � = 9YXZ�19 �8X/9 = � 
 and let

� � be the conditional variance of� � � � � ���� 
 � � � �H� 	�� � given
� � � � �9�� � � � � � � �� � X

. This variance is calculated in the ap-

pendix. Conditionally on T U �	�:�8XZ� �  � � � � �9�� 9 � � � � � �� ( � �FX/9 X0�
we have

T$� �	����4�� � � :� � � �H� 	0�
� � � Q � � ���� = � ? � 4 � � 4 �� 9 :� � � �H� 	0�

� � � � �7Q � �� = � ? � 4 � � 4 �� ! 9
� � � � � �H�� 
 � � � ��� 	 � � ADC  X/9 � � ( I

Thus, the conditional distribution of T � �	�:��4�� is a two-dimensional Gaussian dis-
tribution. In order to simplify the computations we separate the coordinates of

5
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T�� �����84/� . Let � � �84/� � and � � �84/� � be the corresponding marginal variances, i.e.

� � �84/� � � :��� � � � � � � � ��� 	�� �� ���
Q � � � � � � � Q � � �H�� 4 � Q �� 4 � Q���� � = ��� � ? � 9

� � �84/� � � :��� � � � � � � � ��� 	�� �� ��� � � Q � � � � � � �7Q � �� 4 � Q �� 4 � Q���� � = �	� � ? � 9 (3)

where
� ��� � �� ��� � � � � � � � �H�� 
 ��� � � � � � � � ��� 	�� . Using Boole’s inequality and� �����84/�� 4 � ADC  X/9 � � �84/� � ( 9 � ���:�84/�� 4 � ADC  X 9 � � �84/� � (

we have that �  T$� �	�:��4�� %L 
 2
�
9
� � O 
 2

�
9
� � RR0TVU �����FXZ� � �8X/9 XZ� (

is larger than1

= 2 � � � ���:�84/�� 4 � L�
 2
�
9
� � RRR TVU �	�:�8XZ� � �8X/9 XZ� !

2 � � � ���:�84/�� 4 � L�
 2
�
9
� � RRR TVU �	���8XZ��� �8X/9 XZ� ! I (4)

Introducing the distribution function 
 ����� � �  	�� � (
for a standard normal

variable
 ADC �FX 9 = � , and the inverse function 
 B � , this lower bound equals

= 2 � > 
  �� D � � � ( 2 = � 2 � > 
  �� - � � � ( 2 = � ����2 > 
  �� D � � � ( 2 > 
  �� - � � � ( I
If � � ��4�� � �� ( D � - E �� � and � � �84/� � �� ( D � - E �� � , then we have

� � T$� �	�:��4�� %L�
 2
�
9
� � O 
 2

�
9
� � RR0TVU ���1�FXZ���W�FX/9 X0� �

	 = 2 �
I

Remembering that ����� �
� @ � � 2 #� ��� � � @ � is the complement of the set of points

4
satisfying these inequalities we have the � -imprecision � -confidence set

� ��� �
� @ �����M4 LN� � RRRR � � �2 4/� ��� � �
 B � � � Q �� � ! � 9 � � � 2 4�� ��� � �
 B � � � Q �� � ! ��� I

(5)
1The application of Boole’s inequality implies that the derived confidence set actually is larger

than the exact confidence set. We will not persue this further, but see the discussion in Section 4.

6
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Brownian model at scale s=1
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Brownian model at scale s=2
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Anisotropic model at scale s=2
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Figure 1: Confidence sets ����� �
�FX 9 @ �

with �
� X I X = and �

� X I�� �
. Points inside

the dashed red curve fulfill the condition on � � ��4��� , and points inside the blue
curve fulfill the condition on � � ��4��� . The confidence set consists of the points
inside both curves. The lower left panel shows the marginal variance � � �84/� � as a
function of

4
. The dashed red curve in the upper right panel is a level curve for

this function, cf. Eq. (5).

4 Examples of confidence sets

The explicit computation of the marginal variance functions � � �84/� � and � � ��4�� �
seems to be a rather demanding task. So we are content with a few numerical
experiments, where we replace the infinite sum in Eq. (3) with a finite sum over� � 9 � �19 � = 9 ? � with � < = < � < ? ���

for some
� L  

. Doing this facilitates the
choice of coefficients ; � � ��� @ � satisfying Eq. (1). Only the coefficients ; � � ��� @ � with= < ? ��� def���
	 ��� < >

are needed. We freely choose ; � �  B � for = � X/9 I I I 9 �
,

take ; � �  B � � @ �3� @ B  ; � �  B � , and compute the remaining coefficients ; � � � � @ �
7
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using Eq. (1). We consider two examples: (i) The Brownian image model given
by ; ���������
	���� � � � � > = � � � > ? � �> � � Q � � =�� ? � � = < ? � I
(ii) An anisotropic model, where we for

� � = X have scaled each of the coef-
ficients ; ���������
	���� �  B � by independent uniformly distributed random numbers in


 X/9 > � .
We expect the confidence sets to be narrowest in directions of large variance of
the image increments. The particular realization used is given by� ; � � � B � 
 � 2�� ������� � � � � >���� I � � 9 � I � � 9 � I ��� 9 = I � X 9 � I = �/9 � I �Z> 9 = X I � � 9 � I ��� 
 I

Examples of the associated confidence sets are given in Figure 1. These are not
ellipse-like as intuitively expected, but have corners at points where the two con-
ditions meet. This is due to the application of Boole’s inequality for the derivation
of the lower bound in Eq. (4). The correct, and smaller and ellipse-like, confidence
sets should be derived using the two-dimensional distribution of T � �	�:��4�� . This,
however, complicates the probabilistic analysis and will not be pursued further.
We also observe that the confidence sets for fixed imprecision � and confidence
level � increase with the scale

@
. However, as already mentioned the imprecision

is expected to decrease as scale increases. Finally, remark the notable anisotropy
visible in the lower left panel, where the anisotropy ; � � ��� ; � � � is reflected by the
elongation of the confidence set along the first coordinate axis.

Appendix: The conditional variance

Introducing � � ��� � / � 4 �� 
 � / � 4 � 	�� � � � �9� � � � � � ��� and � � �.� � � � ���� 
 � � � �H� 	�� � we have

� � � ! ADC  X/9 �  "!#!  "!%$
 &$'!  &$'$ ! (

with conditional distribution (  �*) � � �FX 9 XZ� ( �@C  X/9  &$'$ 2  &$'!+ B �!,!  "!%$ (
.

We have, also using # � � � � � for the restriction to the set
� � O � �

,

 "!#! � � ; � � � � @ � XX ; � � � � @ � ! 9  &$-$ � :� � � �H� 	�� - ; � � ��� @ � # � � � � �
I

Furthermore,
 �$.! �  0/!%$

and
 "!#$ � :� � � ��� 	 � � ; � � ��� @ � % � 2 = � ')(+*

- Q , (
.- =�/ Q�132 � � � 4 Q�5 2 � � 7 � / � 4 � 	�� � � � �9� � � � � � ��� � � 1 � 56� 	 � �� :� � � ��� 	�� � � 2 = � �
Q�� B � ; � � � � @ � � = � / � 4 �K2 � � � �9� � � 1 � 56� 2 � � � B � � � ���= � / � 4 �K2 � � � � � � � 1 � 56� 2 � � � � � � B � � ! � 1 � 56� 	 � �

I
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Combining these covariances we have, that
� ���  &$'$ 2  &$.!+ B �!#!  "!#$

equals:� � � ��� 	�� � ; � � ��� @ � # � � � � �2 :��� � � � � � � � �H� 	 � � � 2 = � �
Q � Q � Q�� ; � � � � @ � ; � � � � @ �; � � � � @ � % = � / � 4 �K2 � � � B � � � � � � � 1 � 5 �K2 � � � B � � � �H� 7 � / � 4 � � � 1 � 56� 	 � �2 :��� � � � � � � � �H� 	 � � � 2 = � �
Q � Q � Q�� ; � � � � @ � ; � � � � @ �; � � � � @ � % = � / � 4 �K2 � � � � � � B � � � � 1 � 56�K2 � � � � � � B � � 7 � / � 4 � � � 1 � 5 � 	�� � I

Thus, the
 ��� 9����19�����9��8� (

’th element
�� � / � 4 � � � 1 � 5 ��

in
� � is given by

�2 = � ')(+*- Q-, (
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A face recognition algorithm based on multiple
individual discriminative models

Jens Fagertun, David Delgado Gomez, Bjarne K. Ersbøll, Rasmus Larsen

Abstract— In this paper, a novel algorithm for facial recogni-
tion is proposed. The technique combines the color texture and
geometrical configuration provided by face images. Landmarks
and pixel intensities are used by Principal Component Analysis
and Fisher Linear Discriminant Analysis to associate a one
dimensional projection to each person belonging to a reference
data set. Each of these projections discriminates the associated
person with respect to all other people in the data set. These
projections combined with a proposed classification algorithm are
able to statistically deciding if a new facial image corresponds to a
person in the database. Each projection is also able to visualizing
the most discriminative facial features of the person associated to
the projection. The performance of the proposed method is tested
in two experiments. Results point out the proposed technique as
an accurate and robust tool for facial identification and unknown
detection.

Index Terms— Face recognition, Principal Component Anal-
ysis, Fisher Linear Discriminant Analysis, Biometrics, Multi-
Subspace Method.

I. I NTRODUCTION

Regrettable events which happened during the last years
(New York, Madrid) have revealed flaws in the existing
security systems. The vulnerability of most of the current se-
curity and personal identification system is frequently shown.
Falsification of identity cards or intrusion into physical and
virtual areas by cracking alphanumerical passwords appear
frequently in the media. These facts have triggered a real
necessity for reliable, user-friendly and widely acceptable
control mechanisms for person identification and verification.

Biometrics, which bases the person authentication on the in-
trinsic aspects of a human being, appears as a viable alternative
to more traditional approaches (such as PIN codes or pass-
words). Among the oldest biometrics techniques, fingerprint
recognition can be found. It is known that this technique was
used in China around 700 AD to officially certify contracts.
Afterwards, in Europe, it was used as person identification
in the middle of the19th century. A more recent biometric
technique used for people identification is iris recognition [8].
It has been calculated that the chance of finding two randomly
formed identical irises is one in1078 (The population of the
earth is below1010) [7]. This technique has started to be
used as and alternative to passport in some airports in United
Kingdom, Canada and Netherlands. It is also used as employee
control access to restricted areas in Canadian airports and
in the New York JFK airport. The inconvenient of these
techniques is the necessity of interaction with the individual
who wants to be identified or authenticated. This fact has
caused that face recognition, a non-intrusive technique, has

increasedly received the interest from the scientific community
in recent years.

The first developed techniques that aimed at identifying
people from facial images were based on geometrical infor-
mation. Relative distances between key points, such as mouth
corners or eyes, were calculated and used to characterize
faces [17]. Therefore, most of the developed techniques during
the first stages of facial recognition focused on the automatic
detection of individual facial features. However, facial feature
detection and measurements techniques developed to date are
not reliable enough for the geometric feature based recog-
nition, and such geometric properties alone are inadequate
for face recognition because rich information contained in the
facial texture or appearance is discarded [6], [13]. This fact
produced that gradually most of the geometrical approaches
were abandoned for color based techniques, which provided
better results. These methods aligned the different faces to
obtain a correspondence between pixels intensities. A nearest
neighbor classifier used these aligned values to classify the
different faces. This coarse method was notably enhanced
with the appearance of the Eigenfaces technique [15]. Instead
of directly comparing the pixel intensities of the different
face images, the dimension of these input intensities were
first reduced by a principal component analysis (PCA). This
technique settled the basis of many of the current image based
facial recognition schemes. Among these current techniques,
Fisherfaces can be found. This technique, widely used and
referred [2], [4], combines the Eigenfaces with Fisher linear
discriminant analysis (FLDA) to obtain a better separation
of the individuals. In Fisherfaces, the dimension of the input
intensity vectors is reduced by PCA and then FLDA is applied
to obtain a good separation of the different persons.

After Fisherfaces, many related techniques have been pro-
posed. These new techniques aim at providing a projection
that attain a good person discrimination and also are robust at
differences in illumination or image pose. Kernel Fisherfaces
[16], Laplacianfaces [10] or discriminative common vectors
[3] can be found among these new approaches. Typically, these
techniques have been tested assuming that the image to be
classified corresponds to one of the people in the database. In
these approaches, the image is usually classified to the person
with the smallest Euclidean distance.

However, some inconveniences appear when the person to
be analyzed may not belong to the data set. In this case, a
criterium to decide if the person belongs to the data set has
to be chosen. E.g. only people with an euclidian distance less
than a given threshold are considered as belonging to the data
set. However, this threshold has not to be necessarily the same
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for all the classes (different persons) and different thresholds
would need to be found. The estimation of these thresholds is
not straightforward and additional data might be needed.

In this work, a new technique that addresses the different
inconveniences is proposed. The proposed techniques takes
advantage of two novelties in order to deal with these in-
conveniences. First, not only the texture intensities are taken
into account but also the geometrical information. Second, the
data are projected inton one-dimensional spaces instead of a
(n − 1)-dimensional space, wheren is the number of people
in the data set.

Each of these individual models aims at characterizing
a given person uniquely. This means that every person in
the data set is represented by one model. These multi one-
dimensional models allow to statistically interpret the ”degree
of membership” of a person to the data set and to detect un-
knowns. Furthermore, these two facts have several advantages
in interpretability, characterization, accuracy and easiness to
update the model.

II. A LGORITHM DESCRIPTION

The proposed algorithm is made up of two steps. In the
first step, an individual model is built for each person in
the database using the color and geometrical information
provided by the available images. Each model characterizes
a given person and discriminates it from the other people in
the database. The second step carries out the identification.
A classifier, related with the standard Gaussian distribution,
decides if a face image belongs to one person in the database or
not. In this section, the two parts of the algorithm are described
in detail. A diagram of the algorithm is displayed in Fig. 1.
This diagram will be referred during the description of the
algorithm to obtain an easier understanding.

A. Creating the individual models

1) Obtaining the geometry of the face:The geometrical
characterization of a given face is obtained by means of the
theory of statistical shape analysis [1]. In this theory, objects
(faces) are represented by shapes. According to Kendall [11],
a shape is all the geometrical information that remains when
location, scale and rotational effects are filtered out from an
object. In order to describe a shape, a set of landmarks or
points of correspondence that matches between and within
populations are placed on each face. As an example, Fig. 2A
displays a set of 22 landmarks. These landmarks indicate the
position of the eyebrows, eyes, nose, mouth, jaw and size of
a given face.

To obtain a shape representation according to the definition,
the obtained landmarks are aligned in order to remove the
location, rotational and scaling effects. To achieve this goal,
the 2D-full Procrustes analysis is carried out. Briefly, let:

X = {xi} = {xi + i · yi}, i = 1, . . . , n

be a set ofn landmarks expressed in complex notation. In
order to apply full Procrustes analysis, the shapes are initially

Fig. 1. Algorithm overview. A: Landmarks alignment using full Procrustes
analysis. B: PCA on aligned landmarks to remove redundancy. C: Texture
normalization using global histogram equalization. D: PCA on normalized
texture to remove redundancy. E: Combining shape and texture features. F:
PCA on combined features to remove redundancy. G & H :In turn build the
individual model using FLDA.

(A) (B)

Fig. 2. (A) Set of 22 landmarks placed on a face image. (B) The Delaunay
triangulation of the 22 landmarks.

centered. To center the different shapes, the mean of the shape,
x̄, is subtracted from each landmark:

wi = xi − x̄, i = 1, . . . , n

.
The full Procrustes mean shape [12],µ̂, is found as the

eigenvector corresponding to the largest eigenvalue of the
complex sum of squares and products matrix

n∑
i=1

wiw∗
i /(w∗

i wi)
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(A) (B)

Fig. 3. (A) Superimposition of the sets of 22 landmarks obtained over 49
different face images. (B) Alignment of the landmarks.

where w∗
i denotes the transpose of the complex conjugate

of wi. Using this Procrustes mean shape, the full Procrustes
coordinates ofw1, . . . ,wn (Fig. 1) A) are obtained by

wP
i = w∗

i µ̂wi/(w∗
i wi) i = 1, . . . , n

Fig. 3A displays the superimposition of the set of 22
landmarks described in Fig. 2, obtained on 49 different face
images. The result obtained after applying the full Procustres
alignment on theses landmarks can be observed in Fig. 3B.
In order to remove redundancy in the data, a Principal Com-
ponent Analysis is applied to the aligned landmarks (Fig. 1
B).

2) Texture formulation: To form a complete model of
the face appearance, the algorithm also captures the texture
information provided by the pixels. In order to collect this
texture representation, the Delaunay triangulation of every
shape is obtained. The Delanuay triangulation connects the
aligned landmark set of each image by a mesh of triangles,
so no triangle has any of the other points of the set inside
its circumcircle. The Delaunay triangulation obtained for each
image is warped onto the Delaunay triangulation of the mean
shape. The Delanuay triangulation of the 22 landmarks is
displayed in Fig. 2B.

Formally, let I be a given image andM the mean shape
previously obtained. Letu1 = [x1, y1],u2 = [x2, y2] andu3 =
[x3, y3] denote the vertices of a triangleT in I, and letv1,v2

andv3 be the associated vertices of the corresponding triangle
in M . Given any internal point̂u = [x, y] in the triangleT ,
the corresponding point in the associated triangle in the mean
shape can be written aŝv = αv1 + βv2 + γv3 where:

α = 1− (β + γ)

β =
yx3 − x1y − x3y1 − y3x + x1y3 + xy1

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

γ =
xy2 − xy1 − x1y2 − x2y + x2y1 + x1y

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

This transformation extracts the texture of a given face
image. A histogram equalization is applied to the collected
texture to reduce the effects of differences in illumination [9].
This histogram equalization is performed independently in
each of the three color channels. Afterwards, the three color
channels are converted into gray scale to obtain a more
compact representation (Fig. 1 C).

Similarly to the shape analysis, a PCA is conducted in the
texture data to reduce dimensionality and data redundancy
(Fig. 1 D). However, notice that the large dimension of the
texture vectors will produce memory problems because of
the huge dimension of the covariance matrix. In order to
avoid this difficulty, the Eckart-Young theorem is used [5].
Formally, letD represents the texture data matrix composed by
s n-dimensional texture vectors after the mean of the texture
vectors has been subtracted from each one of them (s << n).
Then then× n dimensional covariance matrix can be written
as:

ΣD =
1
s
DDT

Let ΣS be the smallers× s dimensional matrix defined by

ΣS =
1
s
DT D

Then the non-zero eigenvalues of the matricesΣS and ΣD

are equal. Moreover, the columns of:

ΦD = D ·ΦS

where the columns ofΦS contain the eigenvectors ofΣS,
correspond with the the eigenvectors associated to the
non-zero eigenvalues ofΣD in the sense they have the same
direction. Therefore, if the columns ofΦD are normalized,
then ΦD holds the normalized eigenvectors ofΣD that has
eigenvalues bigger than zero. This not only avoid problems
with the memory but also it gives a substantial speed up of
the calculations.

3) Combining color and geometry:The shape and texture
features are concatenated in a matrix (Fig. 1 E). In order
to remove correlation between shape and texture and also
to make the data representation more compact, a third PCA
is performed on the concatenated shape and texture matrix
(Fig. 1 F).

4) Building an individual model:Once the geometry and
texture of the face have been captured, the proposed algorithm
builds an individual model for each person in the data set.
Each model is built using Fisher linear discriminant analysis.
Formally, letX be the data obtained after combining the shape
and texture and applying the PCA. Letn1 be the number of
data elements corresponding to the person for whom the model
is being created (class 1) and letn2 be the number of elements
corresponding to the other people (class 2), (Fig. 1 G). Letx̄1

and x̄2 be the class mean vectors,x̄ be the total mean vector
andxi,j be thejth sample in theith class. Then the between
matrix is defined by:

B = n1(x̄1 − x̄)(x̄1 − x̄)T + n2(x̄2 − x̄)(x̄2 − x̄)T

and the within matrix is defined by:

W =
2∑

i=1

ni∑
j=1

(xi,j − x̄i)(xi,j − x̄i)T

The projection that best discriminates the two populations is
given by the direction of the eigenvector associated to the
maximum eigenvalue ofW−1B (Fig. 1 H). To ensure that
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the within matrix W is not singular, only thef first data
variables are taken into account, wheref is the number of
non-zero eigenvalues of the within matrixW.

B. classification

In order to obtain a method to classify a given image,
the different individual models are firstly standardized so
they can be compared. The standardization of modeli =
1, . . . ,m is based on two assumptions. First, the number of
observations for personi is much smaller than the number of
the observations of all other people. The second assumption
is that the projection of the other people follows a Gaussian
distribution. These two assumptions imply that the distribution
of all the projected facial images on a particular discriminative
individual model can be assumed as a Gaussian distribution
with outliers. The standardization of modeli is then achieved
by transforming the projections into a standard Gaussian
distribution, keeping the projections of the personi positive.
Formally, letx̄i be the mean of the projections on modeli, σi

the standard deviation, and letxi,j be the projection of image
j in model i. These projections are standardized by:

x̂i,j = (xi,j − x̄i)/σi

If the standardized projection for the images corresponding
to personi are negative, then̂xi,j are replaced by−x̂i,j

for all projections. This causes the projection of the images
corresponding to personi to be positive and far from the mean
of the gaussian.

Once that the modeli is standardized, the probability of
a projected image of belonging to the personi is given by
the value of the standard normal cumulative function in the
projected value. This fact is used to classify a given image. If
it is assumed that the image belongs to a person from the data
set, the image is projected by all the models and classified
as belonging to the model that gives the largest probability.
Moreover, it is also statistically possible to decide if a given
person belongs to the data set or it is unknown. This can be
achieved by comparing the largest projection obtained in all
the models with a probabilistic threshold. E.g, if a 99.9% of
probability is required, a given image will only be considered
as belonging to the database if the projection in one of the
individual models is higher than 3.1 standard deviations.

III. E XPERIMENTAL RESULTS

Two experiments are conducted in order to evaluate the
performance of the proposed method. The objective of the
first experiment is to evaluate the recognition ability in terms
of correct classification rates. This first experiment also aims
at ranking the importance of shape and texture. The second
experiment aims at analyzing if the proposed method can
be incorporated into a biometrical facial recognition scheme.
The robustness of the proposed method to the presence of
unknowns is considered in this second experiment.

A. Experiment one

The first experiment aims at comparing the performance of
the proposed method with respect to the Fisherfaces method in
terms of correct classification rates. In order to be consistent
with a previously published work [15], unknown people are
not taken into account.

To achieve this first goal the AR face database [14] is
used. The database is composed of two independent sessions,
recorded 14 days apart. At both sessions, each person was
recorded 13 times, under various facial poses (all frontal),
lighting conditions and occlusions. The size of the images in
the database is 768× 576 pixels, represented in 24 bits RGB
color format.

In this study, a subset of 50 persons (25 male and 25
female) from the database was randomly selected. Seven
images per person without occlusions are used from each
session. Therefore, the experiment data set is composed of
700 images, with 14 images per person. An example of the
selected images for one person is displayed in Fig. 4.

Fig. 4. The AR data set: (Top row) The seven images without occlusions
from first session, (Bottom row) The seven images without occlusions from
the second session.

All the images were manually annotated with the 22 land-
marks previously mentioned.

The data set was divided into two sets. The images of the
first session were used to build the individual discriminative
models, and images from the second session were subse-
quently used to test the performance.

The landmarks corresponding to the images in the train-
ing set were aligned using full Procrustes analysis. The 44
(x,y)-coordinates were obtained to represent the geometrical
configuration of each face. In order to obtain the texture of
each face in the training set, the different images were warped
with respect to the mean shape. Each of the textures received
a histogram equalization in each color band to reduce the
differences in global illumination. The textures were converted
to gray scale and represented by 41337 pixels. The geometrical
and color representation of each face was combined, reduced
and the individual models were built as described in Section
II.

The test set was used to evaluate and compare the proposed
method with respect to the Fisherface technique. In order to
evaluate the importance of the geometrical information, the
Fisherface technique was modified replacing the texture data
with the shape data and also combining the shape with the
texture. These two modified techniques will be referred to as
Fishershape and Fishercombined from now on. The Euclidean
Nearest-Neighbor algorithm was used as classifier algorithm
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Method Input features Correct Classification Rate1

Proposed method Shape 86.4% (95)
Proposed method Texture 99.6% (3)
Proposed method Texture and Shape 99.9% (1)

Fishershape Shape 85% (105)
Fisherface Texture 98.9% (8)

Fishercombined Texture and Shape 99.7% (2)

TABLE I

AVERAGE CORRECT CLASSIFICATION RATES.

in the Fisher methods. The proposed method classified the
images as the person associated to the model that yields the
highest probability.

The test was repeated a second time changing the roles
of the training and test sets. So session two was used as
training data and session one as test data. The average correct
classification rates for the different techniques are shown in
Table I.

From Table I, it is observed that the proposed method has a
slightly better performance than the Fisher methods. Moreover,
it is also noticed that using the texture data one obtains a higher
accuracy than when the shape is used. This implies that the
information contained in the texture is more significant than
that included in the shape. However, the information contained
in the shape data is not insignificant. The highest correct
classification rate in both techniques is attained when both
shape and texture are considered.

Fig. 5. The 10, 15 and 25% most important pixels (shown in red) for
discriminating between the 50 test persons.

An interesting property of the proposed algorithm are that
it is possible to determine which are the most discriminative
features of a given person. In order to illustrate this fact, four

1Number of misclassified images reported in parentheses.

models were built using only the texture. The pixels of the
faces corresponding to these models which received the 10,
15 and 25% highest weights in the model are displayed (in
red) in Fig. 5. It is clear that important discriminating features
include eyes, noses, glasses, moles and beards. Notice that the
algorithm detects the glasses and the two moles of person 43
as discriminate features.

B. Experiment two

The objective of this second experiment is to test the possi-
bility of incorporating the proposed technique into a biometri-
cal facial recognition scheme. This conveys the identification
of people in a data set and also the detection of unknown
people. The good performance of the proposed technique in
person identification was shown in the previous experiment.
Therefore, this second experiment aims at evaluating the
performance of the technique in detection of unknown people.

To achieve this goal, the data set used in the previous
experiment is selected. In order to evaluate the performance of
the technique, a 25-fold crossvalidation was conducted. The
seven face images from one male and other seven face images
from one female were left out in each iteration. These two
people are considered as not belonging to the data set and
therefore unknowns. The images of the remaining 48 people
were used to train the algorithm.

The average False Acceptance Rate (FAR) and average
False Rejection Rate (FRR) graph, can be observed in Fig. 6.
The corresponding average Receiver Operating Characteristic
curve (ROC) is displayed in Fig. 7.

Both graphs show that the known and unknown populations
have a good separability. The best separation happens at the
Equal Error Rate (3.1 standard deviations), giving a FAR
and FRR of 2%. Moreover, notice that, if the algorithm
belongs to a security scheme, the degree of accessibility can be
established by increasing or diminishing the standard deviation
threshold. E.g., if in the test a false rejection rate of 5.5% is
allowed, then a 0% false acceptance rate is obtained. This
accommodates biometrical security systems that requires a
high level of control access.

Fig. 6. Average False Acceptance Rate/False Rejections Rate graph obtained
by the 25-fold crossvalidation.
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Fig. 7. Average Receiver Operating Characteristic (ROC) curve obtained
by the 25-fold crossvalidation. Notice that only the top left part of the ROC
curve is displayed here.

A second test is conducted in order to assess the robustness
of the proposed method. This test also aims at showing that the
method not only discriminates on removable features, such as
glasses. To achieve this goal, eight people (four male and four
female) are synthetically fitted with four different glasses taken
from people belonging to the data set, giving 32 synthetic
images.

This second test consists of two steps. First, these eight
people are not used to built the individual models. The goal is
to examine if these eight people who do not belong to the data
set are considered as one of the person in the data set. Results
show that none of the 32 images is misclassified when a
threshold of 3.1 standard deviations is considered (probability
of correct classification of 99.9%). This fact can be noticed in
Fig. 8 II, where the projections of one of the eight unknown
people on the different models are displayed. It is observed
that, when the person is considered unknown, his projections
onto the individual models belonging to the data set are under
the selected threshold. This means that the proposed method
does not classify any of the unknown people as belonging to
the data set.

In the second step, the eight people (without glasses) are
also used to build the individuals models. In this case the
goal is to analyze if the method can still recognize people
belonging to the data set who has slight changes (same people
with glasses). In this second step, the 32 images are also
classified correctly by the method. In Fig. 8 III, it is observed
that the projections onto the individual model associated with
this person clearly surpass the threshold. It is also observed
that the projections into the individual models associated to the
glasses’s owners do not increase significantly. Similar graphs
are obtained for the other seven people. These results show the
suitability of the proposed technique in being incorporated into
a biometrical security system.

IV. D ISCUSSION AND CONCLUSION

In this paper, a novel method to identify people from face
images has been proposed. The developed technique aims at
being a precise and robust algorithm that can be incorporated

Fig. 8. Impact of changing glasses. (I) Person without glasses and syntectic
fitted with 4 glasses form the data set. (II) The corresponding projections in
the models as unknown. (III) The corresponding projections in the models as
known. Red columns is the model corresponding to the superimposed glasses.

into biometrical security systems. The technique has been
tested on face images, but it can also be used in other
biometrical data, such as speech. Experimental results have
proved that the method can attain better classifications rates
than an other widely used technique. Moreover, the final one-
dimensional projection allows for a simple interpretation of the
results. If a given face image is projected onto the different
individual models, it is visually possible to determine if this
person belongs to one of the models. Moreover, it is also
statistically possible to observe the degree of belonging to that
model.

Another of the attracting characteristics of the proposed
method is its ability to deal with unknowns. The degree of
belonging to the data set can be determined statistically. A
decision threshold can be determined in relation to a standard
Gaussian distribution. This threshold value is used to set the
degree of security of the system. The higher this value is set,
the smaller the probability of a person being considered as
belonging to the data set.

The robustness of the algorithm has been tested using both
known and unknown people. The algorithm has been shown
to be robust to the inclusion of artifacts such as glasses.
On one hand, unknown people using glasses belonging to
people from the data set are still classified as unknown. This
fact implies that unknown people would not get access to
a security system when they use simple removable features
belonging to people from the data set. On the other hand,
known people using glasses, belonging to other people from
the data set, are still recognized as themselves. This means if
someone gets glasses, the associated model does not need to
be recalculated. Moreover, this fact suggests that the database
should be composed of facial images without glasses. This was
also shown by observing that the individual model projections
do not change significantly when the glasses were placed.

Another interesting property of the proposed method is its
easiness to be maintained and updated. If a large data set
is available, it is not needed to recalculate all the existing
individual models when a new person has to be registered.
Simply, a new individual model for the new person is created.
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Similarly, if a person has to be removed from the database, it is
only needed to remove the corresponding individual model. In
conclusion, an accurate, robust and easily adaptable technique
to be used for facial recognition has been developed and
demonstrated.
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Image Uncertainty and Pose Estimation in 3D

Euclidian Space

Brian Wettegren, Lars Bjerre Christensen, Bodo Rosenhahn,
Oliver Granert and Norbert Krüger

Abstract

We describe a problem of a sucessful 3D–2D pose estimation algorithm
when it is applied in scenarios with large depth variation. In this case
image uncertainty is inhomomogenuously reflected in the Euclidian space
where the constraint equations are formulated. We introduce a scaling of
the constraint equations that equalizes this inhomogenity. We can show
that we can reduce the error significantly in outdoor scenarios with large
depth discontinuities.

1 Introduction

The estimation of the motion of rigid bodies (rigid body motion, RBM) is an
important sub–problem in computer vision for tasks such as object recognition
[3], mutiple view reconstuction [7] and disambiguation of visual representations
[11]. It is also important in the context of robot navigation since the ego–
motion of a person or vehicle in a static scene can be described by an RBM. The
mathematical formalization of this kind of motion has been studied for a long
while (see, e.g., [2, 9]). An RBM can be described as a six–dimensional manifold
consisting of a translation (parametrised by the three coefficients t = (t1, t2, t3))
and a rotation (parametrised by r = (r1, r2, r3)). It describes the transformation
of a 3D entity1

e in the first frame to a 3D entity e
′ in the second frame

RBM (t,r)(e) = e

′
. (1)

A camera projects a scene to a 2D chip. Therefore it is often convenient to
work with entities that are extracted from a 2D image. However, there occur
many applications in which prior object knowledge does exist. For example
in industrial robot applications CAD descriptions of objects may be available
(see, e.g., [4]). 3D information can also be extracted from image sequences
beforehand through stereo as done in this paper. This requires then an RBM
estimation algorithm that can work on entities of different dimensions: The
3D object knowledge needs to be aligned with 2D entities in an image of this

1In the following 3D entities are printed in boldface while 2D entities are printed normal.
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Figure 1: a) Knowing the camera gemometry a 3D line can be generated from
an image point and the optical center of the camera. The 3D point/3D line
constraint realizes the shortest Euclidian distance between the 3D Point and
the 3D line. b) From an image line a 3D plane can be generated. The 3D
point/3D plane constraint realizes the shortest Euclidian distance between the
3D Point and the 3D plane. c) Inhomogenity of Uncertainty in the Euclidian
Space. The difference of a projection of a 3D point and the extracted feature
corresponding to this point in the image leads to a deviation dI . However,
in case this projection comes from a far point pf it results in a much larger
distance df between the generated line and pf than in case of a close point pc

(with associated distance dc). An appropriate scaling factor that equalizes these
differences for these two points is wc = dI/dc and wf = dI/df respectively.

object. The problem of computing the RBM from correspondences between 3D
object and 2D image entities is commonly referred to as 3D–2D pose estimation
problem [6, 13]. In mathematical terms we have the following kind of constraint
equations:

P (RBM(e)) = e′, (2)

where P represents the perspective projection.
There exist approaches (in the following called ’projective’ approaches) that

formalize constraints directly on equation (2) (see, e.g., [1]). An alternative
is, instead of formalising the pose estimation problem in the image plane, to
associate a 3D entity to each 2D entity: For example, a 2D image point together
with the optical center of the camera spans a 3D line (see figure 1a) and an image

2
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line together with the optical center generates a 3D plane (see figure 1b). In
case of a 2D point p we denote the 3D line that is generated in this way by L(p).
Now the RBM estimmation problem can be formulated for 3D entities

RBM (t,r)(p) ∈ L(p).

where p is the 3D Point. Such an Euclidian formulation has been applied by,
e.g., [14, 15, 5, 13]. They have coded the RBM estimation problem in a twist
representation. The RBM can then be computed iteratively on a linearized
approximation of the RBM.

This approach is elegant, since it deals with the full perspective projection.
It works in the space where the RBM takes place (i.e., the Euclidian space) and
also allows for nicely interpretable constraint equations which basically represent
the Euclidian distance between the 3D entities (see figure 1,a,b). It can also
deal with any kind of camera model (orthographic, perspective, paraperspective,
...): For switching between these camera models only the reconstruction of the
entities change but not the actual constraint equations.

We have been sucessfully working with this algorithm which is turned out
to be numerically stable and fast [10]. It is also straightforward to implement
and the meaning of constraints and entities is well defined (which will become
important for our improvement of the algorithm). However, one problem of such
a formulation is that when dealing with natural scenes uncertainties are asso-
ciated to the image features used as correspondences. These uncertainties can
be for example caused by unprecise positioning or the calibration of cameras.
These image uncertainties lead to an inhomogeneity in the constraint equations:
The estimation of feature attributes of entities with large depth cause a higher
uncertainty in the constraint equations than that of entities at a close distance.
This is caused by the fact that the constraint equations are formulated on enti-
ties in the 3D–Euclidian space which however originate from 2D entities which
uncertainties reproject back to the Euclidian space in a non-homogenuous way.
Thus, correspondences of entities with large distance would have higher influ-
ence in the constraint equations (see figure 1c).

In this paper, we demonstrate the effect of this inhomogenity on the example
of RBM estimation from stereo sequences: We can show that for scenes with
large depth variation, although we get a good reduction of the error measured in
the 3D constraints this can lead to quite significant errors in the 2D projections.
We then introduce a scaling of the constraint equations that elliminates the
inhomogenity and we can show that we achieve better results for scenes with
large depth variation but not scenes with small depth variation.

The paper is structured as following: In section 2, we briefly describe the
3D–2D pose estimation algorithm. In section 4 we describe our modification of
the algorithm. In section 3, we introduce the scenario in which our algorithm is
applied and in section 5 we show the effect of our scaling.

3

78

karino
Rectangle




2 Constraint Equations

Following [14, 15, 5, 13] an RBM can be represented as

RBM = eξ̃α =
∞∑

n=0

1

n!
(ξ̃α)n (3)

with ξ̃ being the 4× 4 matrix

ξ̃ =

(
w̃ −w̃q + λw

0 0

)
=




0 −w3 w2 w3q2 − w2q3 + λw1

w3 0 −w1 w1q3 − w3q1 + λw2

−w2 w1 0 w2q1 − w1q2 + λw2

0 0 0 0




with w̃ being the direction of the line around which the rotation is performed,
q being a point on this line λ being the translation along the line. A straight
forward linearisation is given by eξα ≈ (I4×4 +αξ̃). We can represent a 3D point
p = (p1, p2, p3) by the null space of a set of equations

F
p(x) =




1 0 0 −p1

0 1 0 −p2

0 0 1 −p3







x1

x2

x3

1


 =




0
0
0


 (4)

Note that the value ||Fp(x)|| represents the Euclidian distance between x and
p. This will is important to derive interpretable constraint equations.

A 3D line L can be expressed as two 3D vectors r,m. The vector r describes
the direction and m describes the moment which is the cross product of a point p

on the line and the direction m = p×r. r and m are called Plücker coordinates.
The null space of the equation x× r−m = 0 is the set of all points on the line.
In matrix form this reads

F
L(x) =




0 rx −ry −mx

−rz 0 rx −my

ry −rx 0 −mz







x1

x2

x3

1


 = 0 (5)

Note that the value ||FL(x)|| can be interpreted as the Euclidian distance be-
tween the point (x1, x2, x3) and the closest point on the line to (x1, x2, x3)
[8, 13].

We now want to formulate constraints between 2D image entities and 3D
object entities. Given a 3D point p and a 2D point p we first generate the 3D
line L(r,m) that is generated by the optical center and the image point (see
figure 1b).2 Now the constraint reads:

F
L(p)

(
(I4×4 + αξ̃)p

)
= 0. (6)

2Note that the line L depends on the camera parameters.
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Figure 2: A,B,C,D: The scenario for RBM estimation. A,B: Left and right
image of the first frame. Some of the used correspondences are displayed in A.
C,D: Left and right image of the second frame. E,F: Two other scenes used for
testing the pose estimation algorithm. E: Lab Scene without large differences
in depth. F: Another outdoor scene.

Note that although we have 3 equations for one correspondence the matrix
is of rank 2 resulting in 2 constraints. For different correspondences we get more
equations. This results in a system of linear equations which solution becomes
optimized iteratively (for details see [5, 12]).

3 Ego-motion estimation from Stereo Sequences

We apply the pose estimation algorithm in the context of egomotion estima-
tion from stereo sequences (see figure 2A–D). Here we do not have any model
knowledge about the scene. Therefore the 3D entities need to be computed from
stereo correspondences. We provide manually derived correspondences in two
consecutive stereo frames for a number of 3D points. For each 3D points we
therefore get four projections, two in the first and also two in the second frame
(see figure 2A,B,C.D). From the correspondences in the first frame we compute
a 3D point and the correspondences in the second frame result in two 3D lines
for which two constraint equations (6) can be derived.

We measured the image distances between manually determined points and
points projected after the computed RBM has been performed. We noticed that
for the points close to the camera there occur in average large differences. We
expect that this inhomogenity results from the inhomogenity in the constraint
equations.
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4 Scaling of Constraint Equations according to

Image Uncertainty

In the context of ego-motion estimation from stereo sequences we are faced with
uncertainties in the 3D model as well as in the feature extraction. Both uncer-
tainties are caused by the unprecision in the positioning of the corresponding
2D points. First, it results in an unprecision of stereo reconstruction.3 Second,
it leads to an unprecision in the reconstruction of the 3D line from the 2D point.
Since we deal with relativeley small motions compared to depth variation in the
scene we can assume that both uncertainties lead to similar distributions and
can be handled by the same mechanism.

We replace equation (6) by

1

wp
F

L(p)
(

(I3×3 + ξ̃α)p
)

= 0. (7)

where wp is computed by

wp =
1

||oc −RBM(p)|| (8)

where oc is the optical center of the camera. Note that in our stereo context
the weights for the same 3D point p are different for correspondences of the left
and right camera since their optical centers differ.

The reason for choosing this formula is a straightforward application of the
theorem of intersection of parallel lines with two intersecting lines (see also figure
1c):

dp
||oc −RBM(p)|| =

dI
||oc −P(RBM(p))|| .

Since the weight wp is supposed to equalize the effect of dp we need to divide
by

dp = dI ·
||oc −RBM(p)||
||oc −P(RBM(p))||

We can assume the image uncertainty dI as constant and approximate ||oc −
P(RBM(p))|| by the focal length (i.e., by a constant as well). Both constants
do not influence the relative weighting of constraint equations and can therefore
be neglected such when we devide by dp we end up with equation (8).

5 Results

We applied the scaling in 3 different scenarios: motorway (figure 2A-D), lab
(figure 2E) and country road (figure 2F). In the lab scenario, depth differences
were rather small compared to the ego-motion while in the other the depth

3In addition there is also uncertainty in the calibration. However, we negelect these effects
here.
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Figure 3: The average pixel distance of estimated image points depending on
the number of correspondences used for computation is shown for the three
scenarios: country road (top,left), motorway (top,right), and lab (bottom).
differences were rather large. From our consideration above we expect small
effects for the low depth variation (lab scene) and improvement for the other
two cases. For all sequences we generated 25 point correspondences manually.
We computed the RBM on a subset of those (computing set). We calculated
from the computing set and the set of remaining points (test set) the average
pixel distance in the image plane separately.4 The results are shown in figure 3.

Different observations are of interest. First, the average pixel error is signifi-
cantly lower with our scaling compared to the non-scaling case for the motorway
and the country road sequence (the error can be reduced to approximately the
half). For the lab sequence there is no siginificant difference if scaling is applied
or not due to the small depth variation. We can further observe that we need
approximately 8 to 10 correspondences to get a good generalization. For less
correspondences, we get much better results on the computing set compared to
the test set.

4For a fixed number of correspondences we did 20 runs on different subsets.
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6 Summary

We described a problem of a sucessful 3D–2D pose estimation algorithm [14, 15]
when it is applied in scenarios with large depth variation. Then the image un-
certainties are inhomomogenuously reflected in the Euclidian space where the
constraint equations are formulated. We introduced a scaling of the constraint
equations that equalizes this inhomogenity. We could show that we can reduce
the error significantly in outdoor scenarios with large depth discontinuities. As
expected from the motivation of the scaling method, no measurable improve-
ment is achieved for scenes with small depth variation.
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Abstract. 
 
This work deals with the classification of X-ray images from Frederikssund Hospital. 
Previous work by Engholm & Nørgaard (2003) has attempted classification in the same 
domain, but the features they used were global. The goal of this work and its derivatives 
is to improve on this result by using features specifically suitable for the domain of X-ray 
images. We propose a simple region model for describing specific types of image 
categories, and specific feature statistics based on that model. We first experimentally 
evaluate this model based on manual segmentations, and then propose an algorithm for 
automating the segmentation process.  
 
 
Introduction 
 
This work deals with the early stages of classification of X-ray images from 
Frederikssund Hospital, provided by Knud-Erik Fredfeldt M.D.  The problem in the 
medical domain is that quite often doctors and technicians make mistakes when labeling 
an X-ray image. This occurs for several reasons, which include, for example, fatigue, or a 
misclick on a computer. It is thus desirable to automate the process of X-ray labeling and 
reduce the workload on the doctors and technical staff. At this point, we are entrusted 
with the task of automatic classification among the following 10 categories of X-rays: 

1. Elbow (front) 
2. Elbow (side) 
3. Foot joint (front) 
4. Foot joint (side) 
5. Hand joint (front) 
6. Hand joint (side) 
7. Column (front) 
8. Column (side) 
9. Thorax (front) 
10. Thorax (side). 

Figure 1 shows an example from each category. Previous work by [2] has explored the 
same problem in the same domain, achieving 20% error rate. While the computational 
techniques they employed were quite solid (decision trees / boosting), the features the 
computations were based on were global. Such features failed to capture the essence of 
the image content, i.e. bones and other solid structures, thus depriving the authors of the 
ability to take advantage of domain-specific knowledge. The goal of this work and its 
derivatives is to improve on this result by using features specifically suitable for the 
domain of X-ray images.  
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As you can see from figure 1, the images exhibit a high level of variation, but here we 
focus on a particular subset of X-ray images, namely that of categories with strong 
structural elements, such as hand / foot joints, as well as elbows. These are categories 1-6 
in the original list and we will refer to them as structural categories from now on. We 
propose a simple 2-region model for the categories in question, and conduct a feasibility 
study by semi-automatically collecting features on the X-ray images and attempting to 
quantitatively assess if those features are suitable for discrimination between the 
structural categories. We further propose a way to automate the process of estimating the 
parameters of the most suitable regions, so classification can be performed without 
human intervention.   
 
 

 Front Side 

Elbow 

  

Hand 
joint 

  

Foot 
joint 

  

Column 
/ 

Thorax 

 
 

Figure 1. Examples of X-ray categories 
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Section 1. Classification framework 
 
1.1  Simple regions for structural categories.  
 
We note that the images from structural categories in the data set can be conceptually and 
practically subdivided into two regions, in such a way that each region has a high level of 
coherency in intensity and orientation. For example, the images in the category Elbow 
(side) can be perceived as two major parts: the bones of the upper arm, and the bones of 
the lower arm. We propose to similarly divide the images of the other categories into two 
regions (see Fig. 2) 
 

  

  

  
Figure 2. Examples of regions (1 for each structural category) 

 
1.2. Region statistics 
 
Based on these two regions, we propose a particular set of features / statistics which 
captures the important properties of the regions. These statistics are: 

a) The angle between principal orientation of the two regions 
b) The ratio of lengths of the two regions 
c) The ratio of widths of the two regions 
d) The aspect ratio of the longest region, and  
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e) the aspect ratio of the shortest region 
The selected features are intuitive and invariant to orientation and scaling changes.  
 
1.3 Data exploration and assumptions 
 
We assume each category’s feature vectors are normally distributed. Figure 3 shows all 

the 2-dimensional projections of the 5-dimensional feature vectors (a total of 10
2

5
=








), 

as well as the projections of the Gaussian clouds for each of the image categories. It is 
evident, that some of the categories are clearly separable from the rest based on the 
features we selected. For example elbow side is separable based on the angle between the 
regions, as one would expect. Some of the other classes seem to have a consistent overlap 
with other classes for most of the dimensions, which makes the task of the classifier a bit 
harder. 
 

 
◊: Elbow front 
○: Elbow side 

+: Foot joint front 
□: Foot joint side 

*: Hand joint front 
  ▼: Hand joint side 

Figure 3: Separability of categories using 5 features: mutual angle, length ratio, width 
ratio, aspect ratio (long region), aspect ratio (short region). Pairwise scatter plots and 
projections of Gaussian clouds for each category on each feature pair. 

 
 
1.4 Discriminant Analysis 
 
A particular X-ray image will have a feature vector x

r
associated with it, and is classified 

under class ∗ω  based on the maximum a posteriori principle (MAP) [3], as follows: 
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Section 2. Experimental results 
 
In order to determine the suitability of our system for classification, we perform a leave-
one-out test, and classify each sample using MAP, as described in the previous section. 
Table 1 shows that 2 categories were classified perfectly, while 2 others, only had 1 
misclassification. The overall error rate was 12.33%.  For comparison, Engholm & 
Nørgaard (2003) [2] achieved only a 20% error rate using decision trees and boosting on 
completely global features. Our results are not directly comparable to [2] , as we operate 
on fewer categories and use manual segmentation. However, the goal here is to 
demonstrate the potential of the framework, and the suitability of the simple structural 
features for discriminating between structural categories. 
  

Category 
Instances 
misclass- 
ified 

Further clarification 

Elbow front 1/13 1 labeled as hand joint side 
Elbow side 0/13 Perfect classification 

Foot joint front 3/12 
1 labeled foot joint side, 
and 2 as hand joint front 

Foot joint side 4/12 4 labeled as foot joint front 
Hand joint front 1/11 1 labeled as hand joint side 
Hand joint side 0/12 Perfect classification 

Final classification error = 12.33% 
Table 1. Misclassification of categories using the selected 
features 
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Section 3. Automatic region segmentation 
 
The previous section demonstrates that the two-region model and the selected features are 
suitable for classification of the 6 structural categories. However, as this is a real-world 
problem, we would like to be able to obtain such regions automatically. This can be done 
in a number of different ways, but we chose to attempt segmentation based on the edge 
map from the Canny edge detector [1]. The preprocessing consists of eliminating edges 
that are too short, as well as borders. Then we make initial region estimates based on the 
longest curves from the top and from the bottom.  
 
3.1. Definition of desirable regions 
 
As discussed earlier, each region has a high level of coherency in intensity and 
orientation, which in the domain of the edge map means, the edges in the regions must be 
consistent in orientation, they have to be included in the region as fully as possible, and 
as many edges should be included as possible (so we do not leave out any parts of the 
structure). Also we should include all major edges that contribute to the formation of the 
region. We would also like to exclude noise edges that arise from the label letters (Figure 
4b).  
 
3.2 Mathematical Formulation 
 
Based on the above intuitions, we formulate automatic region segmentation as an energy 
minimization problem.  
 

( ) ( )21minarg RERER
R

+=∗  

( ) excludedpartiallongwaysorient EEEERE 4321 λλλλ +++=  

 
Here the first term is the orientation penalty, where we penalize deviation of each edge’s 

orientation iθ  from main region orientation θ̂ , weighted by the edge’s length iL (longer 

edges should naturally have a greater impact on the region’s energy than shorter ones). 
 
 

( )∑
∈

−=
includedi

iiorient LE
2

θ̂θ  

 
The second term formalizes the intuition that the outermost edges in the crosswise 
direction should be as close to the region’s length as possible. Also the region should not 
include too much empty space around the edges, as we are trying to capture the main 
shape of the structures in the X-ray and not the space around them.  
 

( )∑
∈

+−=
periphi

iilongways dLLE 22ˆ  
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Here, L̂ is the region’s length, and id  is the crosswise distance from the edge to the 

closest border of the region. 
The next component of our energy function is the penalty on partial inclusions. In the 
desired configuration, edges will be either completely inside the regions or completely 
outside, the most unfavorable state being an edge half way in the region. Thus if ip  is the 

portion of the curve i included in the region, the formulation for partial inclusion energy 
is 
 

( )∑ −⋅=
i

iipartial ppE 1  

 
Finally, we penalize curves which are excluded in the crosswise direction from a region. 
The longer the projection of the excluded curve onto the principal axis of the region, the 
more we penalize it.  
 

( )∑
∈

−=
excludedi

iiexcluded LE θθ ˆsin2  

 
With this formulation, the penalty for excluding edges arising from labels on the X-ray 
will not be very large. 
 
3.3 Computation and results 
 
Using the energy definition )(RE above, we find automatically find the two-region 
configuration that minimizes this energy by using Gibbs sampler [4] on the parameters of 
the initialized regions. Figure 4 shows the progression of the automatic algorithm. We 
start with the original image (4a), obtain the edge map, removing borders and short 
curves (4b), initialize the regions based on some simple heuristics (4c), extend the 
regions crosswise, including all curves in the crosswise direction (4d), and finally use the 
Gibbs sampler to achieve the final result for the automatic segmentation (4e).  
Unfortunately at the moment, the heuristics we use in step (c), and the energy 
formulations are not entirely robust, so we are only able to achieve automatic 
segmentation for a select subset of X-ray images.  
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Section 4. Future Work 
 
This work is still in its early stages, and the achieved results can be greatly improved 
upon in several areas.  

1. Coming up with new and better features. Recognition results based on manual 
segmentation could be improved, if we include additional statistics to our feature 
vectors, for example region intensity or crosswise gradient profiles.  

2. Making automated segmentation more robust. This can be done improving the 
energy function definitions. In the current implementation,  we make some 
simplifying assumptions about the orientation of the image and the shape of the 
regions, but that needs improvement. For example we assume the image and the 
regions are oriented vertically and that the regions start close to borders, which is 
often not the case. As suggested by Engholm and Nørgaard (2003), we can use the 
Hough transform to eliminate the frame, and estimate the global orientation of the 
image.  

3. Basing the regions on cues more stable than edges. Edges may have been a quick 
first solution, but they lose much useful information, such as the intensity and 
gradient. With intensity information we may be able to analyze connected 
components, and form regions in a more simple way than from edges, which 
would incidentally also be more robust.  

     

     
(a) Original 

Image 
(b) Edge map 

with some 
noise and 
borders 
removed 

(c) Initialization (d) Expansion (e) Automatic 
result (label 

noise excluded) 

Figure 4. Automatic segmentation of regions.  
Top: an instance of elbow front 

 Bottom: an instance of foot joint front 
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4. Being able to discriminate non-structural categories by using other types of 
features, such as global or textural (e.g. the images from column side category 
contain recurring square patterns, and thorax contains recurring ribs).  

5. Incorporating up to 50-100 categories, and increasing the complexity of the 
models accordingly.  

6. Using generative modeling for proposing simple regions and more complex 
structures and employing Data Driven Markov Chain Monte-Carlo to explore the 
solution space [5].  

 
Conclusion 
 
In this work, we have proposed a simple 2-region model for classifying structural X-ray 
categories, and conducted a feasibility study by collecting features on the X-ray images 
from manual segmentations. From those features, we conducted an experimental 
evaluation of a MAP classifier based on the features, where a leave-one-out test yielded 
only a 12.33% error rate. This is promising, since if we could achieve this result without 
manual segmentation, it would be a significant improvement over the 20% error rate from 
previous work [2]. In addition we proposed a way to automate the process of estimating 
the parameters of the most suitable regions, so classification can be performed without 
human intervention, thus laying the foundation for automatic recognition.  
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Abstract

The linear scale invariance of the multivariate alteration detection (MAD) transformation is used to obtain invariant pixels for automatic

relative radiometric normalization of time series of multispectral data. Normalization by means of ordinary least squares regression method is

compared with normalization using orthogonal regression. The procedure is applied to Landsat TM images over Nevada, Landsat ETM+

images over Morocco, and SPOT HRV images over Kenya. Results from this new automatic, combined MAD/orthogonal regression method,

based on statistical analysis of test pixels not used in the actual normalization, compare favorably with results from normalization from

manually obtained time-invariant features.

D 2004 Elsevier Inc. All rights reserved.
Keywords: MAD transformation; Orthogonal regression; Radiometric normalization
1. Introduction

Radiometric normalization of satellite imagery re-

quires, among other things, an atmospheric correction

algorithm and the associated atmospheric properties at

the times of image acquisition. For most historical

satellite scenes, such data are not available and even

for planned acquisitions they may be difficult to obtain.

A relative normalization based on the radiometric infor-

mation intrinsic to the images themselves is an alternative

whenever absolute surface radiances are not required, for

example in change detection applications or for super-

vised land cover classification.

Several methods (Du et al., 2002; Furby & Campbell,

2001; Hall et al., 1991; Moran et al., 1992; Schott et al.,

1988) have been proposed for the relative radiometric

normalization of multispectral images taken under different

conditions at different times. All proceed under the assump-

tion that the relationship between the at-sensor radiances

recorded at two different times from regions of constant

reflectance is spatially homogeneous and can be approxi-

mated by linear functions. The most difficult and time-
0034-4257/$ - see front matter D 2004 Elsevier Inc. All rights reserved.
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consuming aspect of all of these methods is the determina-

tion of suitable time-invariant features upon which to base

the normalization.

Nielsen et al. (2002, 1998) recently proposed a change

detection technique, called multivariate alteration detection

(MAD), which is invariant to linear and affine scaling.

Thus, if one uses MAD for change detection applications,

preprocessing by linear radiometric normalization is super-

fluous. However, radiometric normalization of imagery is

important for many other applications, such as mosaicking,

tracking vegetation indices over time, supervised and

unsupervised land cover classification, etc. Furthermore,

if some other, non-invariant change detection procedure is

preferred, it must generally be preceded by radiometric

normalization.

We have applied the MAD transformation to select the

no-change pixels in bitemporal images, and then used them

for radiometric normalization. The procedure is simple, fast

and completely automatic and compares very favorably with

normalization using hand-selected, time-invariant features.
2. Selecting invariant pixels

In order to mask out the change pixels in a bitemporal

scene, we first form linear combinations of the intensities for
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all N channels in the two images, acquired at times t1 and t2.

Representing the intensities by the random vectors F and G,

respectively, we have

U ¼ aMF ¼ a1F1 þ a2F2 þ . . .þ aNFN

V ¼ bMG ¼ b1G1 þ b2G2 þ . . .þ bNGN ;

where a and b are constant vectors. Nielsen et al. suggest

determining the transformation coefficients so that the

positive correlation between U and V is minimized. This

means that the difference image U–V will show maximum

spread in its pixel intensities. If we assume that the spread is

primarily due to actual changes that have taken place in the

scene over the interval [t2, t1], then this procedure will

enhance those changes as much as possible.

Specifically, we seek linear combinations such that

VarðU � V Þ ¼ VarðUÞ þ VarðV Þ � 2CovðU ;V Þ

! maximum; ð1Þ

subject to the constraints

VarðUÞ ¼ VarðV Þ ¼ 1 ð2Þ

and with Cov(U, V)>0. Note that under these constraints

VarðU � V Þ ¼ 2ð1� qÞ; ð3Þ

where q is the correlation of the transformed vectors U and

V,

q ¼ CorrðU ;V Þ ¼ CovðU ;V Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðUÞVarðV Þ

p

The combined random vector for the bitemporal scene

(F G) is assumed to have zero mean and variance–covari-

ance matrix

X
ff

X
fgX

gf

X
gg

0
B@

1
CA;

so that

VarðUÞ¼aM
X

ff
a; VarðV Þ ¼ bM

X
gg

b and CovðU ;V Þ

¼ aM
X

fg
b:

Extremalizing the covariance Cov(U, V) under the con-

straints (Eq. (2)) is equivalent to extremalizing the uncon-

strained function

L ¼ aM
X

fg
b � m

2
aM

X
ff

a � 1

 �

� l
2

bM
X

gg
b � 1


 �
;

104
where m and l are Lagrange multipliers. This leads to the

coupled generalized eigenvalue problems

X
fg

X�1

gg

X
gf

a ¼ q2
X

ff
a ð4Þ

X
gf

X�1

ff

X
fg

b ¼ q2
X

gg
b:

Thus, the desired projections U = aMF are given by the

eigenvectors a1. . .aN corresponding to the generalized eigen-
values

q2
1z . . .zq2

N

of
P

fg

P�1
gg

P
gf with respect to

P
ff . Similarly the desired

projections V= bMG are given by the eigenvectors b1. . .bN ofP
gf

P�1
ff

P
fg with respect to

P
gg corresponding to the

same eigenvalues. Nielsen et al. (1998) refer to the N

difference components

MADi ¼ Ui � Vi ¼ aM
i F � bM

i G; i ¼ 1 . . .N ; ð5Þ
as the multivariate alteration detection (MAD) components

of the combined bitemporal image. The covariances of the

MAD components are given by

CovðUi � Vi;Uj � VjÞ ¼ 2dijð1� qjÞ;
where dij is Kronecker’s delta,

dij ¼
1 for i ¼ j

0 for i p j:

8<
:

The components are thus orthogonal (uncorrelated) with

variances

VarðUi � ViÞ ¼ r2
MADi

¼ 2ð1� qiÞ: ð6Þ

The last MAD component has maximum spread in its pixel

intensities and, ideally, maximum change information. The

second-to-last component has maximum spread subject to

the condition that the pixel intensities are statistically uncor-

related with those in the first MAD component, and so on.

The MAD components are invariant under linear trans-

formations of the original image intensities. We can see this

as follows. Suppose the second image G is transformed

according to some linear transformation H =TG. The rele-

vant covariance matrices are then

X
fg

V ¼ hFHMi ¼
X

fg
TM

X
gf

V ¼ hHFMi ¼ T
X

gf

X
ff

V ¼
X

ff

X
gg

V ¼ hHHMi ¼ T
X

gg
TM:



Fig. 2. Landsat-5 TM image from July, 1991 over Nevada.
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The eigenvalue problems (Eq. (4)) are therefore equivalent

to

X
fg

TM T
X

gg
TM


 ��1

T
X

gf
a ¼ q2

X
ff

a

T
X

gf

X�1

ff

X
fg

TMc ¼ q2T
X

gg
TMc;

where c is the desired projection for H. These in turn are

equivalent to

X
fg

X�1

gg

X
gf

a ¼ q2
X

ff
a

X
gf

X�1

ff

X
fg
ðTMcÞ ¼ q2

X
gg
ðTMcÞ;

which are identical to Eq. (4) with b =TMc. Therefore, the

MAD components in the transformed situation are

aMi F� cMi H ¼ aMi F� cMi TG ¼ aMi F� ðTMciÞMG
¼ aMi F� bMi G

as before. Given this scale invariance, we can select for

radiometric normalization all pixel coordinates which satisfy

XN
i¼1

MADi

rMADi

� �2

< t;

where t is a decision threshold. Under the hypothesis of

no-change, the above sum of squares of standardized
Fig. 1. Landsat-7 ETM+ image from December, 1999 over Morocco.
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MAD variables is approximately chi-square distributed

with N degrees of freedom. We therefore choose t =

vN,P = 0.01
2 where P is the probability of observing that

value of t or lower.

The pixels thus selected should correspond to truly

invariant features so long as the overall radiometric differ-

ences between the two images can be attributed to linear

effects. Since this method usually identifies quite a large

number of no-change pixels, we can, without serious
Fig. 3. SPOT HRV image from 1987 over Kenya.



Table 1

Time-invariant features chosen for normalization to the 1999 scene

Feature Number of pixels Appearance

Clay 213 bright

Sand 183 bright

Fixed sand 9347 medium

Pediment1 301 medium

Quarzite 117 medium

Pediment2 365 dark

Dark stones 233 dark

Table 2

Ordinary least squares regression on manually selected training pixels for

the Morocco scenes; â is the fitted intercept, b̂ is the fitted slope, r is the

correlation and RMSE is the root mean square error

Band â r̂a b̂ r̂b r RMSE

1 8.60 0.39 1.081 0.006 0.818 2.019

2 � 3.00 0.24 1.184 0.004 0.928 1.845

3 � 7.09 0.23 1.198 0.003 0.947 2.761

4 � 6.37 0.18 1.258 0.003 0.961 2.020

5 4.76 0.23 1.081 0.003 0.927 2.891

7 5.31 0.24 1.077 0.003 0.910 2.870
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penalty, reserve some fraction of them for subsequent

testing and use the remaining pixels for performing the

linear regressions.

With regard to the actual normalization on the basis of

the no-change pixels, this is usually done by means of

ordinary least squares (OLS) regression analysis, see, e.g.

(Yang & Lo, 2000), which is a method that allows for

measurement uncertainty (or error) in one variable only.

For radiometric normalization, both variables involved

have measurement uncertainty associated with them—in

fact which variable is termed reference and which is

termed unnormalized data is arbitrary. We have therefore

also investigated orthogonal linear regression to perform

the actual normalization, as this method treats the data
Fig. 4. Regression of the 1999 Morocco reference scene on the 2000 target (uncali

regression; dashed line: ordinary least squares regression.
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symmetrically. The method is explained in detail in

Appendix A.
3. Data and results

The data set used to investigate radiometric normaliza-

tion consisted of Landsat TM (thematic mapper) images

over Morocco and Nevada and SPOT HRV (high resolution

visible) images over Kenya.

Two Landsat-7 ETM+ (extended thematic mapper)

images acquired over Morocco on December 19, 1999

and October 18, 2000 (see Fig. 1) were examined for
brated) scene using manually selected training pixels. Solid line: orthogonal



Table 3

As in Table 2, for orthogonal regression

Band â r̂a b̂ r̂b r RMSE

1 � 11.22 0.72 1.400 0.011 0.818 1.273

2 � 9.94 0.37 1.300 0.006 0.928 1.157

3 � 13.79 0.41 1.280 0.005 0.947 1.734

4 � 10.41 0.28 1.322 0.004 0.961 1.237

5 � 2.95 0.44 1.180 0.005 0.927 1.916

7 � 3.80 0.47 1.202 0.006 0.910 1.894

Table 5

Comparison of variances of hold-out test pixels for the 2000 Morocco scene

before and after normalization to the 1999 scene with ordinary least squares

regression, with F-tests for equal variances

TM band 1 2 3 4 5 7

Uncorrected(2000) 6.96 14.48 44.93 29.60 40.692 31.70

Normalized(2000) 8.14 20.34 64.52 46.85 47.60 36.77

Reference(1999) 10.88 22.09 68.98 49.16 54.16 43.27

F 1.336 1.086 1.069 1.049 1.138 1.177

p 0.000 0.013 0.0443 0.147 0.000 0.000
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comparison of the MAD procedure with normalization

based on invariant features. The areas were selected on

the basis of availability of ground reference data on

features of constant reflectance. The dimensions of the

scenes were 729	 754 pixels. The Nevada data consisted

of one Landsat-4 TM and five Landsat-5 TM scenes taken

at approximately monthly intervals in the second half of

1991. A region of interest (1000	 1000 pixels) was

chosen having some agricultural activity (pivot irrigation)

and significant cloud cover at the time used as normaliza-

tion reference, see Fig. 2. The Kenya data consisted of two

SPOT HRV images recorded in 1987 and 1989 over an

agricultural region near Thika just north of Nairobi, Fig. 3.

The size of scenes was 512	 512 pixels. These data were

chosen to illustrate radiometric normalization in a non-arid

region.

The Morocco and Nevada scenes were registered to one

another by applying an automatic contour matching algo-

rithm due to Li et al. (1995) and using second-order

polynomial, nearest-neighbor resampling. The RMS errors

were less than 0.5 pixel. The Kenya data were geocoded to a

common reference map with similar accuracy.

3.1. Morocco

As mentioned above, the Morocco scenes, for which

ground reference data were available, were used to compare

the MAD procedure with normalization based on manual

selection of invariant features; see, e.g. Schott et al. (1988).

The features were chosen from dark, bright and medium

reflectance surfaces representative of the surface variability,

see Table 1.

In their original paper on ‘‘pseudo-invariant features’’

(PIFs), Schott et al. (1988) do not use ordinary linear
Table 4

Comparison of mean intensities of hold-out test pixels for the 2000

Morocco scene before and after normalization to the 1999 scene with

ordinary least squares regression, with paired t-tests for equal means

TM band 1 2 3 4 5 7

Uncorrected(2000) 62.080 59.898 81.975 62.612 77.989 72.898

Normalized(2000) 75.720 67.969 91.143 72.400 89.117 83.820

Reference(1999) 75.650 67.969 91.115 72.455 89.114 83.771

Difference � 0.069 0.000 � 0.027 0.055 � 0.003 � 0.049

t � 2.207 � 0.001 � 0.589 1.668 � 0.069 � 1.062

p 0.027 0.998 0.555 0.095 0.944 0.287
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regression, but rather assume a direct (error-free) linear

relation between digital numbers recorded from man-made

features at two times. Since imagery is always subject to

stochastic measurement error, we prefer to use regression

methods which allow for this error. Fig. 4 shows the

orthogonal regressions (solid lines) for normalization of

the two Morocco images, based on 2/3 of the no-change

pixels (referred to henceforth as ‘‘training pixels’’) deter-

mined from the invariant features. For comparison, the

results of ordinary least squares regression are also given

(dashed lines). Note that orthogonal regression leads to a

consistently higher slope and correspondingly smaller inter-

cept than ordinary regression. The fitted intercepts (â) and
slopes (b̂) for ordinary regression are shown in Table 2 for

the 7200 training pixels, those for orthogonal regression in

Table 3. Tables 4 and 5 show, respectively, the means and

variances of the 1999 scene before and after normalization

to the 2000 scene using the ordinary least squares regression

line. They were determined with the 3600 holdout test

pixels. Tables 6 and 7 show similar results after normaliza-

tion using the orthogonal regression lines.

In contrast with the manually selected data, Fig. 5 dis-

plays the orthogonal and ordinary least squares regressions

for normalization of the two Morocco images based on

11260 no-change training pixels derived from the MAD

procedure. Tables 8–13 give the corresponding information

on regression statistics and on the comparisons of means

and variances with 5630 test pixels.

Comparing Tables 4 and 6, we see that the paired t-tests

for equal mean values of the individual bands after the

manual normalization are better (the differences and t-values

are closer to zero and the p-values are higher) for OLS

regression for all bands except TM7. The p-value is the

probability of finding a larger value of jtj. We also see that

for all bands except TM1 for both OLS and orthogonal

regression, none of the p-values are below 5%. This means
Table 6

As in Table 4, for orthogonal regression

TM band 1 2 3 4 5 7

Uncorrected(2000) 62.08 59.90 81.98 62.61 77.99 72.90

Normalized(2000) 75.73 67.97 91.15 72.40 89.11 83.81

Reference(1999) 75.65 67.97 91.12 72.46 89.11 83.77

Difference � 0.084 0.000 � 0.030 0.058 0.005 � 0.044

t � 2.367 0.012 � 0.635 1.694 0.103 � 0.915

p 0.018 0.991 0.525 0.090 0.918 0.360



Table 7

As in Table 5, for orthogonal regression

TM band 1 2 3 4 5 7

Uncorrected(2000) 6.97 14.49 44.93 29.60 40.69 31.70

Normalized(2000) 13.67 24.51 73.63 51.78 56.70 45.80

Reference(1999) 10.88 22.09 68.98 49.16 54.16 43.27

F 0.796 0.901 0.937 0.949 0.955 0.945

p 0.000 0.002 0.050 0.118 0.167 0.0868

Table 8

Ordinary least squares regression on training MAD pixels for the Morocco

scenes

Band â r̂a b̂ r̂b r RMSE

1 � 1.56 0.19 1.230 0.003 0.966 1.074

2 � 4.68 0.13 1.191 0.002 0.978 1.372

3 � 8.88 0.12 1.194 0.001 0.983 2.109

4 � 8.31 0.10 1.265 0.002 0.987 1.546

5 � 2.22 0.13 1.148 0.001 0.981 2.244

7 � 1.33 0.14 1.146 0.002 0.976 1.983
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that we can assume that the band-wise mean values are

equal after normalization except for TM1. A T 2-test for

equality of the mean vectors of all bands after normalization

does not show significant equality. The T 2-value is lower

(19.865 vs. 21.793) and the significance level is higher, i.e.,

better (0.0030 vs. 0.0014) for OLS regression.

Comparing Tables 5 and 7, we see that the band-wise

variances are quite different after normalization for both

OLS and orthogonal regression. The F-values are the ratios

between the variances of the reference data and the normal-

ized data. These values should be close to one. The

significance levels show that we can assume equal variances

for TM4 with OLS and for TM3, TM4, TM5 and TM7 with

orthogonal regression since these are all higher than 5%.

Comparing Tables 9 and 12, we see that the paired t-tests

for equal mean values of the individual bands after the
Fig. 5. Regression of the 1999 Morocco reference scene on the 2000 target (u

regression; dashed line: ordinary least squares regression.
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MAD-based normalization are better (the differences and t-

values are closer to zero and the p-values are higher) for

OLS regression for all bands. We also see that for all bands

for both OLS and orthogonal regression, none of the p-

values are below 5%. This means that we can assume that

the band-wise mean values are equal after normalization.

Also the T 2-test for equality of the mean vectors of all

bands after normalization shows significant equality. The

T 2-value is lower (5.777 vs. 6.063) and significance level is

higher, i.e., better (0.4493 vs. 0.4169) for orthogonal

regression.

In Tables 10 and 13, the F-tests for equal variances show

that we cannot reject the hypothesis of equal variances for

any band with orthogonal regression whereas we must reject
ncalibrated) scene using the MAD training pixels. Solid line: orthogonal



Table 9

Comparison of mean intensities of hold-out test MAD pixels for the 2000

Morocco scene before and after normalization to the 1999 scene with

ordinary least squares regression, with paired t-tests for equal means

TM band 1 2 3 4 5 7

Uncorrected(2000) 62.734 61.544 83.894 64.573 88.128 80.094

Normalized(2000) 75.577 68.621 91.319 73.345 98.936 90.441

Reference(1999) 75.576 68.595 91.279 73.323 98.905 90.414

Difference � 0.001 � 0.026 � 0.039 � 0.022 � 0.032 � 0.027

t � 0.059 � 1.416 � 1.390 � 1.079 � 1.052 � 1.020

p 0.953 0.157 0.165 0.280 0.293 0.308

Table 11

As in Table 8, for orthogonal regression

Band â r̂a b̂ r̂b r RMSE

1 � 4.96 0.20 1.284 0.003 0.966 0.670

2 � 6.66 0.15 1.223 0.002 0.978 0.875

3 � 10.98 0.18 1.219 0.002 0.983 1.346

4 � 9.65 0.13 1.285 0.002 0.987 0.954

5 � 4.53 0.20 1.174 0.002 0.981 1.465

7 � 3.95 0.20 1.179 0.002 0.976 1.293
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the hypothesis of equal variances for TM1 and TM7 for

OLS regression.

Tables 2, 3, 8 and 11 show that the RMS errors are lower

for MAD-based normalization and for orthogonal regres-

sion. This is true for all bands.

Finally, the plots in Figs. 4 and 5 clearly show a lot more

scatter in the no-change pixels for the manual method

corresponding to lower correlations as seen in Tables 2 (or

3) and 8 (or 11).

In spite of the better OLS fit for the means, all the above

shows that in this case the automatic MAD-based normal-

ization outperforms the manual normalization and that

orthogonal regression is to be preferred over the OLS

regression normally applied to normalization.

3.2. Nevada

Five of the Nevada images (August through December,

1991) were normalized to the July, 1991 image with the

MAD procedure using orthogonal regression as described

above. Fig. 6 displays the reference image (lower center)

and of the December, 1991 target image before (upper left)

and after normalization (upper right). The main spectral

differences prior to normalization are due to Sun elevation,

circular pivot plantations and clouds. Normalization to the

July image as reference results in a qualitatively similar

image for December. Since the clouds and irrigation pivots

represent real changes, they have no influence on the

calibration. The only other subjectively evident differences

after normalization are the longer shadows in the December

scene and some bidirectional reflectance effects in the

mountainous areas.

For radiometric normalization over arid areas, both

atmospheric differences and actual changes in surface re-
Table 10

Comparison of variances of hold-out test MAD pixels for the 2000

Morocco scene before and after normalization to the 1999 scene with

ordinary least squares regression, with F-tests for equal variances

TM band 1 2 3 4 5 7

Uncorrected(2000) 10.58 28.71 86.99 54.45 95.67 59.79

Normalized(2000) 15.99 40.72 124.11 87.06 126.05 78.50

Reference(1999) 16.92 42.43 128.44 89.26 131.27 82.86

F 1.058 1.042 1.035 1.025 1.041 1.056

p 0.035 0.121 0.197 0.348 0.126 0.042
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flectance are likely to be small. Fig. 7 displays the overall

mean pixel intensities in the six Landsat TM images before

and after normalization to the July image. The intensities

have been averaged over all six non-thermal bands. The

means were calculated using the 33% holdout test pixels.

Also shown in the figure are the unnormalized mean

intensities multiplied by the factor

d2i
coshi

� cosh1
d21

; i ¼ 1 . . . 6;

where hi is the Sun zenith angle and di is the Earth–Sun

distance for each of the six acquisition dates. Since the sensor

gains and offsets were constant over the acquisition period,

this is equivalent to a normalization without atmospheric

correction. Therefore, the variations may be attributed to

differences in atmospheric absorption and scattering.

3.3. Kenya

The Kenya data are from an agricultural region near

Thika just north of Nairobi and were used to test the MAD

normalization based on both OLS and orthogonal regression

on data from a non-arid region. The images cover the town

of Thika, large pineapple fields to the north and small coffee

fields to the northwest of Thika.

Results for the test pixels (not shown) are similar to those

of the data from arid regions: although we see more scatter

and therefore less correlation (especially for band 3) than in

the cases with arid data, both OLS and orthogonal regres-

sion give normalized data with the same mean as the

reference data, OLS gives better significance. OLS regres-

sion gives significantly different variances whereas orthog-

onal regression gives equal variances. Also the RMSEs are

smaller for orthogonal regression.

Fig. 8 shows the cumulative distribution functions for the

three bands before and after MAD-based normalization with
Table 12

As in Table 9, for orthogonal regression

TM band 1 2 3 4 5 7

Uncorrected(2000) 62.734 61.544 83.894 64.573 88.128 80.094

Normalized(2000) 75.580 68.625 91.324 73.349 98.943 90.447

Reference(1999) 75.576 68.595 91.279 73.323 98.905 90.414

Difference � 0.004 � 0.030 � 0.044 � 0.026 � 0.039 � 0.033

t � 0.310 � 1.625 � 1.554 � 1.248 � 1.279 � 1.236

p 0.757 0.104 0.120 0.212 0.201 0.217



Table 13

As in Table 10, for orthogonal regression

TM band 1 2 3 4 5 7

Uncorrected(2000) 10.58 28.71 86.99 54.45 95.67 59.79

Normalized(2000) 17.44 42.96 129.37 89.96 131.89 83.06

Reference(1999) 16.92 42.43 128.44 89.26 131.27 82.86

F 0.970 0.987 0.993 0.992 0.995 0.997

p 0.254 0.644 0.784 0.766 0.858 0.927
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orthogonal regression: a visually pleasing fit has been

obtained.
Fig. 7. Unnormalized (stars) and normalized (boxes) mean pixel intensities

(in digital number units) for six Landsat TM images over Nevada from July

to December, 1991. The July image was taken as reference. The diamonds

are the unnormalized mean values corrected for Sun elevation and Earth–

Sun distance (see text).
4. Conclusions

The procedure for radiometric normalization suggested

here is automatic, very fast and requires, apart from the chi-
Fig. 6. Radiometric normalization of the Nevada scene. Top left: the uncorrected December, 1991 image; top right: the December scene after normalization;

bottom middle: the July, 1991 reference scene.
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Fig. 8. Cumulative distribution functions for SPOT HRV bands before and after MAD-based normalization with orthogonal regression.

Fig. 9. Mosaic of two Landsat ETM+ scenes from May 2 and May 27, 2000

without radiometric normalization.

M.J. Canty et al. / Remote Sensing of Environment 91 (2004) 441–451 449
square percentile, no externally adjustable parameters such

as decision thresholds or subjective criteria for defining PIF

masks; everything else is entirely determined by the image

data themselves. The method yields results which compare

favorably to those obtained by the more laborious manual

choice of time-invariant features in the images involved. On

the whole, orthogonal regression using the no-change pixels

is to be preferred to ordinary least squares regression. As the

no-change pixels are actually selected for each image on the

basis of multispectral change detection relative to the

reference image, the method automatically avoids interfer-

ence due to cloud cover, or indeed due to any other kind of

reflectance changes that might occur.

In a recent proposal by Du et al. (2002), pseudo-

invariant pixels are also selected using statistical properties

rather than physical characteristics of reflecting surfaces.

Their selection of suitable pixels for normalization is based

on a bitemporal principal component transformation. Be-

cause of the presence of change pixels in the transforma-

tion, the principal axis must be recalculated after setting of

rejection thresholds. Since the principal component trans-

formation, unlike the MAD transformation, is not scale

invariant, the method proposed here would appear to be

better and more natural. Conservation of radiometric reso-

lution after normalization, an aspect emphasized in Du et

al. (2002), can of course be achieved similarly with the

MAD method.

Finally, as an example of the application of relative

radiometric normalization with MAD, Figs. 9 and 10 show
111



Fig. 10. As in Fig. 9, with radiometric normalization using the MAD

procedure and orthogonal regression.
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a part of the intersection area of a mosaic of Landsat

ETM+ scenes over south Morocco on adjacent paths

dating from May 2, 2000 and May 25, 2000. Fig. 9 is

without, Fig. 10 with radiometric normalization. For Fig.

10, a subset of the overlap area of the images was used to

calculate the regression parameters. The true changes in

the surface reflectance, still apparent in the figure after

normalization, are the result of rainfall prior to the acqui-

sition of the second scene, as is the difference in the water

level in the river.
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Appendix A

Some readers may not be familiar with the two types of

regression analysis applied in this paper. We therefore give a

very brief account of some of the more important character-

istics of the two.
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A.1. Ordinary least squares regression

In the model for ordinary least squares (OLS) regression

yi ¼ a þ bxi þ ci; i ¼ 1 . . . n ð7Þ

where x is considered as an independent (fixed, determin-

istic) predictor and y is considered as a dependent (ran-

dom, stochastic) response, the x’s are assumed to be

uncertainty- or error-free. (This usage of the terms depen-

dent and independent is different from the usual probabi-

listic meaning.) n is the number of observations and c is a

white, Gaussian noise term with mean zero and variance

r2, white meaning that ci and cj are stochastically inde-

pendent if i p j.

In this model, the estimator for b is (see any good

textbook on statistics), for example (Rice, 1995)

b̂ ¼ sxy

s2xx
ð8Þ

where

sxy ¼
1

n

Xn
i¼1

ðxi � x̄Þðyi � ȳÞ; ð9Þ

s2xx ¼
1

n

Xn
i¼1

ðxi � x̄Þ2 ð10Þ

with nx̄ ¼
Xn
i¼1

xi and nȳ ¼
Xn
i¼1

yi. The estimator for a is

â ¼ ȳ� b̂x̄: ð11Þ

The variance/covariance matrix (also known as the disper-

sion matrix) of the vector [â b̂]T is

r2

n
P

x2i � ð
P

xiÞ2

P
x2i �

P
xi

�
P

xi n

2
4

3
5 ð12Þ

where r2 can be replaced by

r̂2 ¼ 1

n� 2

Xn
i¼1

ĉ2i ð13Þ

with ĉi= yi� â � b̂xi. The root-mean-squared error (RMSE)

is r̂.
The standard errors of â and b̂ are the square roots of the

diagonal elements of the above dispersion matrix. The test

statistics for â and b̂ being significantly different from zero

are the estimates divided by the standard errors.

A.2. Orthogonal regression

In the model for ordinary least squares regression the x’s

are assumed to be error-free. In the calibration case where it

is arbitrary what we call the reference variable and what we

Environment 91 (2004) 441–451
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call the uncalibrated variable to be normalized, we should

allow for error in both x and y. If we impose the model (we

reuse the symbols â and b̂, later also r)

yi � ei ¼ a þ bðxi � diÞ; i ¼ 1 . . . n ð14Þ

with e and d as uncorrelated, white, Gaussian noise terms

with mean zero and equal variances r2, we get for the

estimator of b (Kendall & Stuart, 1979),

b̂ ¼
ðs2yy � s2xxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2yy � s2xxÞ

2 þ 4s2xy

q
2sxy

ð15Þ

with

s2yy ¼
1

n

Xn
i¼1

ðyi � ȳÞ2 ð16Þ

and the remaining quantities defined in the section imme-

diately above. The model in Eq. (14) is often referred to as a

linear functional relationship in the literature.The estimator

for a is

â ¼ ȳ� b̂x̄: ð17Þ

According to (Bilbo, 1989; Patefield, 1977), we get for

the dispersion matrix of the vector [âb̂]T

r2b̂ð1þ b̂2Þ
nsxy

x̄2ð1þ ŝÞ þ sxy=b̂ �x̄ð1þ ŝÞ

�x̂ð1þ ŝÞ 1þ ŝ

2
4

3
5 ð18Þ

with

ŝ ¼ r2b̂

ð1þ b̂2Þsxy
ð19Þ

and where r2 can be replaced by

r̂2 ¼ n

ðn� 2Þð1þ b̂2Þ
ðs2yy � 2b̂sxy þ b̂2s2xxÞ; ð20Þ

It can be shown that estimators of a and b can be

calculated by means of the elements in the eigenvector

corresponding to the smallest eigenvalue of the dispersion

matrix of the n by two data matrix with a vector of the x’s in
113
the first column and a vector of the y’s in the second column

(Kendall & Stuart, 1979). This can be used to perform

orthogonal regression in higher dimensions, i.e., when we

have, for example, more x variables than the one variable we

have in our case.

Software packages to perform ordinary least squares

regression (LAPACK) and orthogonal regression (ODR-

PACK) can be found on the Internet.
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Abstract
We introduce strings, based on the Symmetry Set, to de-
scribe shapes. These strings denote links between pairs of
extrema of the curvature together with a length measure.
An algorithm is given to match strings of different types of
shapes. Examples show the usability of the presented the-
ory.

1. Introduction
In shape analysis, much effort has been put into the research
on the skeleton, or Medial Axis [2], as a way to represent the
shape in a more simplified way. As it was soon realized, the
Medial Axis it itself didn’t carry enough information [8] and
sophisticated extensions were built, like the Shock Graph
method [17]. Basically, each points on the Medial Axis is
endowed with some augments related to the distance to the
shape itself or related to its neighbours. Next, the potential
changes of the Medial Axis were investigated, yielding a
set of possible transition [9]. In that way different shapes
can be related to each other for shape indexing and retrieval
[15, 16].

The results on transitions boiled down from the results
on the possible transitions of the Symmetry Set. This set,
containing the Medial Axis as subset, has been thoroughly
studied in [4]. Its transitions are described in [3]. The
Symmetry Set has its advantage in being easily described
in mathematical sense, but its visualization is less pleasant
for the eye. So most of the research has been focused on the
(augmented) Medial Axis [10].

Recently, however, a data structure was presented for the
Symmetry Set [13], using information of the evolute of the
shape. The data structure can be visualized by a sequence of
nodes that are pair wise joined. It was claimed that its main
advantage over the graph structure used for the Medial Axis
is that this sequence would allow operations on it with a
lower complexity.

In this paper we use the idea of representing Symmetry
Sets as a sequence. In contrast to [13], we relate this se-
quence directly to the shape. As different shapes have dif-
ferent sequences {Ai}i=1...n and {Bj}i=1...n, we propose
to build a matrix M with entries f(Ai, Bj). The similar-

N1

N2

N4

s.N1 s.N4

r.N1

r.N2

Figure 1: Definition of the Symmetry Set. See text for de-
tails.

ity of shapes is then measured as the path P = {M(ik, jl)}
through M that contains each row and column at most once,
and has a maximal sum of the elements Mi,j .

2 Symmetry Sets
The Symmetry Set is defined as the closure of the loci of the
circles tangent to a shape. See Figure 1. The shape is given
by the oval. Inside a circle is tangent to it at two locations,
so the unit normals N1 and N2 are equal for the shape and
the circle. The centre of the circle is found by multiplying
minus the radius r with the normals. Note that this is also
a Medial Axis point Next, also outside a circle is tangent to
the shape at two locations, where the unit normals N1 and
N4 are equal for the shape and the circle.

From this image it follows immediately that a point on
the shape relates to at least two points on the Symmetry Set,
in contrast with the Medial Axis. A recipe for finding the
Symmetry Set is the given by the following observations.

Let a circle be tangent to the shape as in Figure 2a. Then
call the points at which it is tangent p1 and p2 (Figure 2b).
Then the vector p1 − p2 is perpendicular to the vector N1 +
N2 when the circle is tangent twice from the same side as
shown in these images, or to the vector N1 − N2, when
tangent from two different sides (see [9]). So to find these

1
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N1

N2

r.N1

r.N2

p1

p2

N1

N2

r.N1

r.N2

N1+N2

p1-p2

Figure 2: Deriving the Symmetry Set. See text for details.

locations it suffices to have a point pi fixed and try all other
points pj along the shape and find zero crossings of

(pi − pj).(Ni ±Nj) (1)

Next, the centre of the circle - the location of the Symmetry
Set point - is given by

pi − rNi = pj ± rNj (2)

2.1 Representations

A branch of the Symmetry Set is given by a connected set
of centers of circles. The end points of a branch are the
closures of these sets, obtained when the two points pi and
pj coincide. For the Medial Axis, such a point is an end
point of the graph. In the Symmetry Set, these points come
in pairs, as the Symmetry Set consists of distinct curves.

At these points the circle has a third order of contact at
the shape, or in other words, the shape has a local extremum
of the curvature κ at that point. Consequently, each local
extremum of the curvature can be mapped to another local
extremum of the curvature.

Next, the end points are part of the evolute, which is the
curve S + N/κ, since r = 1/κ for these points. Following
the evolute, one can label the order of appearance of the end
points, yielding a sequence of end points. Connecting the
end points pair wise and augmenting each connection with
’special points’ that arise on the Symmetry Set, gives the
string structure proposed in [13].

An example is given in Fig. 3. On the left, a fish shape
is taken from a common data set [15, 16]. On the right, the
string structure - without special points - is shown.

Figure 3: A fish shape and its corresponding sequential rep-
resentation.
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Figure 4: A fish shape and its corresponding sequential rep-
resentation.

3 Closed form representation
The evolute can become complicated, especially for con-
cave shapes. Then sometimes κ = 0 and the evolute moves
to infinity. The same holds for Symmetry Set branches and
the Medial Axis part outside the shape. It is therefore con-
venient to relate the Symmetry Set directly to the shape.

This can easily be done while computing the Symmetry
Set in Eq. 2 by using the locations of the tangency of the
circle, instead of its centre. This results in pairs of so-called
’pre-Symmetry Set’ points, known in robotics [1]. They are
shown in Figure 4 on the left.

In this diagram, branches of the Symmetry Set are visi-
ble as curves. Note that the shape is closed, so the left part
of the diagram is connected to the right part, and the bot-
tom to the top. At end point of the Symmetry Set branches,
pi = pj , which is the diagonal. This diagonal can also be
regarded as an identity mapping of the shape on itself, and
therefore as the shape.

Consequently, points on the shape (diagonal) are con-
nected to points on the shape (diagonal) via the curves in
the pre-Symmetry Set. As the shape is closed and not self-
intersecting, it can be represented as a circle. The connec-
tions of points on the shape are visible as cords. An example
is given in Figure 4 on the right.

2
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Figure 5: Two circles describing different shapes.

Next, each cord can be assigned a weight. This weight is
the number of points on a branch in the pre-Symmetry Set,
divided by the sum of all branches in the pre-Symmetry Set
that intersect the diagonal. So the weights sum up to 1. In
Figure 4 this number is given as a percentage.

3.1 A String representation
A straightforward manner to store the information given by
the circle with cords, is by creating a vector with the same
dimension as the number of end points. Each coordinate
of the vector then get the value of the relative length of the
cord that is related to it. Consequently, the coordinates sum
up to 2. When all cords have different length, the cords
can easily be reproduced from this vector. However, the
connectivity information is lost if two cords have the same
length. Therefore, each coordinate of the vector contains
besides the length also the coordinate to which it relates.

4 Matching strings
Given two shapes, comparison can done visually by com-
paring their circle diagrams A and B. As the information
of these diagrams consists of points and cord, the points are
mapped such, that the number of coinciding cords is high-
est. Obviously, the ordering of points may not change. As
the parameterization has an arbitrary begin point, also all
rotated versions of A up to 2π must be taken into account.
Furthermore, the number of cords of both circles may dif-
fer, as well as the way the cords are connected, see Figure
5.

From the transitions of the Symmetry Set [3] it follows
that a cord (a branch of the Symmetry Set) may (dis-) ap-
pear in a transition where two end points meet and a cord
(dis-) appears. As the removal of a cord in one circle to
optimize matching relates to introducing a cord in the other
circle, it suffices to consider removing cords. Consequently,
a cord connecting two neightbouring end points is allowed
to vanish - in the mapping such a cord may be removed.
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Figure 6: Cost matrix and optimal path for the shape circles
in Figure 5.

4.1 Cost Matrix
The matching of two circle diagrams A and B can be done
as follows. Let {Ai}i=1...n and {Bj}i=1...n denote the vec-
tors with the lengths of the branches. Then M(i, j) =
f(Ai, Bj) is the cost matrix, where f is some distance mea-
sure. In the remainder we shall use f(x, y) = x.y/‖x‖‖y‖,
but other choices, like f(x, y) = ‖x− y‖, can be applied as
well.

If A=B and the starting positions are equal, tr M de-
scribes the inner product between two identical vectors and
equals one. If the starting positions are different, the trace
of a rotated version of M equals one.

To maximize the matching, a path P = {M(ik, jl)} is to
be found in M , such that each row and column ik and jl are
present only once - each point can be matched only once.
For the two examples given above, this is simple. For dif-
ferent shapes, it must be taken into account that two neigh-
bouring points and their connecting cord may be removed.
This relates to the matrix in removing two subsequent rows
or columns.

Next, when two points are matched, automatically the
two points to which they are connected, must be matched.
For simplicity, one can state that when two cords are given
by (ik, ik+1) and (jl, jl+1), ik and jl can only be matched,
if ik+1 and jl+1 are matched, and that the matchings
M(ik, jl+1) and M(ik+1, jl) are forbidden.

An example of a matrix M is given in Figure 6. The ori-
gin is bottom left. The line through the matrix denotes the
optimal match. As one can see, the matrix contains zeros,
denoting the forbidden entries. When two subsequent val-
ues along the line are equal, the off-diagonal neighbouring
points are zero, as described above. As the vectors have dif-
ferent length, the line makes a jump. The jump skips two
rows. In general, jumps skip an even number of rows or
columns, since a jump resembles the removal of a number
of cords, each with two points.

3
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Figure 7: A fish image, fish shape and a blurred fish shape.

4.2 Implementation
The derivation of the Symmetry Set given a shape is de-
scribed in [4, 13]. It basically boils down in computing all
zero crossings in Eqs. 1-1 for all point pairs (pi, pj). These
points pairs form the pre-Symmetry Set as shown in Fig.
4, left. Then the distinct Symmetry Set branches that in-
tersect the diagonal are derived, with the locations at the
diagonal and their lengths. This gives a set with elements
Ai = (e1, e2, L)i, with e1 and e2 the eth

1 and eth
2 position

on the diagonal, and l the relative length of the branch.
Next, on each cord that is allowed to vanish, the two

points are marked as ’begin’ or ’end’ point. Note that if
two cords are nested, both are allowed to vanish. If the
cross each other, they cannot be removed. For more details
on the type of cords, see [12]. Let Li ∈ A and Lj ∈ B,
then the cost matrix is built up as M(i, j) = 0 if Ai and
Bj are a combination of a begin and an end point, and
M(i, j) = LiLj , elsewhere. The path with maximal value
is found by using a shortest path algorithm [6] on −M . M
can be transferred into a graph with as vertices the rectan-
gular grid, given by the dimensions of M , and edges from
M(i, j) as follows.

• If M(i + 1, j + 1) = M(i, j) and M(i + 1, j) =
M(i, j+1) = 0 two begin points of a cord are matched
and the only allowed edge is M(i+1, j+1) → M(i, j)
with cost M(i + 1, j + 1).

• If M(i+1, j+1) = 0, this position is not allowed and
the only allowed edges, denoting a possible skip, are
M(i+1, j +1) → M(i+1, j) and M(i+1, j +1) →
M(i, j + 1), both with cost 0.

• Else three edges are possible: M(i + 1, j + 1) →
M(i, j) with cost M(i + 1, j + 1), and M(i + 1, j +
1) → M(i+1, j) and M(i+1, j +1) → M(i, j +1),
both with cost 0.

Obviously, to compute the complete path from a point to
itself, one should handle the boundaries of M properly. To
find the shortest path solution, it suffices to take the shortest
paths through the entries of one column or row and take the
minimum of them.

1. 0.9964 0.9784 0.9671 0.9639 0.9545 0.9461

1. 0.9944 0.9618 0.9584 0.9533 0.9406 0.9372

1. 0.9964 0.9886 0.9657 0.9634 0.9585 0.9538

1. 0.9886 0.9784 0.9678 0.9638 0.9584 0.9543

1. 0.9671 0.9585 0.9366 0.9278 0.9263 0.9167

1. 0.9944 0.9638 0.9634 0.9554 0.9545 0.9402

1. 0.9729 0.946 0.936 0.9351 0.9305 0.9238

1. 0.9729 0.9543 0.9538 0.9418 0.9372 0.9366

1. 0.9483 0.9461 0.946 0.9414 0.9402 0.9302

1. 0.9678 0.9657 0.9639 0.9618 0.9554 0.9278

Figure 8: Matching of fishes.

5 Results
In the remaining we used shapes from an existing data base
[15, 16]. These shapes are the boundary of 128× 128 pixel
sized black and white images, as shown in Figure 7, left. Of
each image the boundary is extracted and the points are or-
dered, yielding a sequence of points, Figure 7, middle. The
number of points ranges typically from 1200 to 1500. The
derivatives of a Gaussian filter are applied to this sequence
to find a reasonable estimation of the derivatives [7] of the
shape parameterization. The normal vector is obtained at a
scale of 4.5 pixels. We note that using a small scale resem-
bles applying a (small) mean curvature motion to the shape
[5]. The shape in Figure 7, middle, is therefore slightly
blurred, see Figure 7, right.

This blurring of shapes has the property that it removes
small details. This may be regarded as a disadvantage, but
on the other hand no removal of spurious details, or what-
ever adjustments to the data need to be carried out. The
corresponding string, pre-Symmetry Set and circle diagram
are shown in Figures 3-4.
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1. 0.9854 0.9708 0.9532 0.9439 0.902 0.8944

1. 0.9522 0.9456 0.9394 0.9128 0.9063 0.8944

1. 0.9673 0.9532 0.9525 0.9468 0.9308 0.9063

1. 0.9673 0.9641 0.9522 0.9501 0.9439 0.9307

1. 0.9854 0.97 0.9501 0.9468 0.9456 0.9131

1. 0.9708 0.97 0.9641 0.9525 0.9228 0.9128

1. 0.9394 0.9308 0.9307 0.9228 0.9131 0.902

Figure 9: Matching of tools.

Next, 10 different fish shapes are compared. The results
are shown in Figure 8. The images show the fish, the num-
bers the score of the match. The first colum shows the best
match, second column the second-best match and so on. As
the matching of any shape with itself matches 1, the first
column also represents the shape to be matched. The fishes
in row three and four are artificially drawn, and they are
each others second-best match. Furthermore, the matching
has a preference for matching fins. This is due to the fact
that fins are introducing prominent extrema of curvature.

The second group of shapes consists of 7 tools, as shown
in Figure 9. Although tool number 7 is significantly smaller
than the others, it is still matched with larger tools. This is
due to the normalization of the lengths of the branches of
the pre-Symmetry Set.

The third test shows the comparison of all 10 fishes and
7 tools. The results are shown in Figures 10-11. Most fishes
and tools have as the 5 best matches shapes from the same
category. In the fishes-part, Figure 10, a wrench occasion-
ally appears. This tool is considered as a fish with only two
tail fins and no other fins. For the same reason some fishes
appear in the tools-part, Figure 11.

6 Summary and Conclusions
We introduced a new way to represent and compare shapes
based on the Symmetry Set, a generalization of the Medial
Axis. This string representation uses the end point of the
Symmetry Set branches and the relative length of the branch

1. 0.9964 0.9784 0.9671 0.9639

1. 0.9944 0.9618 0.9608 0.9584

1. 0.9964 0.9886 0.9657 0.9634

1. 0.9886 0.9784 0.9678 0.9638

1. 0.9671 0.9585 0.9366 0.9317

1. 0.9944 0.9679 0.9638 0.9634

1. 0.9729 0.946 0.936 0.9351

1. 0.9729 0.9543 0.9538 0.9418

1. 0.9483 0.9461 0.946 0.9414

1. 0.9678 0.9657 0.9639 0.9618

Figure 10: Matching of fishes and tools; the fish part.
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1. 0.9854 0.9708 0.9603 0.9532

1. 0.9522 0.9456 0.9394 0.9128

1. 0.9673 0.9532 0.9525 0.9468

1. 0.9673 0.9641 0.9522 0.9501

1. 0.9854 0.97 0.9679 0.9608

1. 0.9708 0.97 0.9641 0.9525

1. 0.9394 0.9308 0.9307 0.9252

Figure 11: Matching of fishes and tools; the tools part.

in the pre-Symmetry Set diagram. The end points represent
the extrema of curvature of the shape. Therefore, the rep-
resentation links these extrema pair wise. This idea of pair
wise linking of points on the shape relates conceptually to
that of Curvature Scale Space [14], albeit that we do not use
a scale space to establish a linking, but use the Symmetry
Set. The representation allows the matching of shapes by
comparing strings, for instance by taking the inner product
of appropriate sub sets of these strings. The sub sets are
defined by applying allowed changes of the Symmetry Set.
The maximal matching is found by an adapted shortest pad
algorithm that finds the optimal sub sets. Examples show
the usability of the proposed method. Future work will fo-
cus on improvement of the shortest path based algorithm
and on the influence of alternative difference measures be-
sides the inner product.
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