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Abstract

Knowledge about the illumination conditions in a real
world scene has many applications among them Aug-
mented Reality which aims at placing virtual objects in
the real world. An important factor for convincing aug-
mentations is to use the illumination of the real world
when rendering the virtual objects so they are shaded
consistently and cast consistent shadows.

This paper proposes two approaches to continuously
estimate the illumination conditions in a static outdoor
scene based on images from a single viewpoint of that
scene while using the scene itself as light probe. Thus,
no additional calibration objects are required. Experi-
mental results show that the proposed illumination esti-
mation is sufficient for Augmented Reality applications.

1 Introduction

Images are formed as a result of light interacting with
surfaces. The radiation emitted by a light source hits a
material’s surface under a certain angle where it is then
reflected, absorbed, and transmitted depending on the
material’s properties. The reflected light may hit other
objects causing interreflections, and one object may oc-
clude another object’s reflections or a light source re-
sulting in shadowing. When images are synthesized us-
ing computer graphics techniques it is important to have
good models of these interactions in order to achieve
realism. Similarly, when the images are real images ac-
quired with some form of camera it is paramount to un-
derstand how the image was formed in order to analyze
it using computer vision techniques. Generally, three
different elements come together in forming images: 1)
the 3D geometry of the scene, 2) the reflectance proper-
ties of the surfaces in the scene, and 3) the illumination
conditions in the scene. Given a model of all three ele-
ments it is possible both to render synthetic images and
to design robust computer vision techniques for analyz-
ing images of the scene.

The Laboratory of Computer Vision and Media Tech-
nology at Aalborg University, Denmark (CVMT/AAU)
has recently initiated a research project (CoSPE: Com-
puter Vision-Based Scene Parameter Estimation) which

lies on the border between computer vision and com-
puter graphics. The project focuses on estimating
the reflectance properties and the illumination condi-
tions in scenes based on images. For more informa-
tion about the project please visit the project’s web-site
www.cospe.dk

In this paper we present some initial results of this re-
search, namely two approaches to the same problem: to
continuously estimate the illumination conditions in a
static scene based on a sequence of images from a single
viewpoint. So far, the most commonly used approach
to scene illumination measurement/estimation has been
the so-called light probe, which is a reflective sphere
placed in the scene and photographed with a camera to
get an omni-directional measurement of light, [5, 8, 10].
None of the approaches presented in this paper require
any special purpose radiometric calibration objects to
be present in the scene. In fact one could say we are
proposing techniques that allow the scene to act as its
own light probe.

Real-time, continuous estimation of scene illumina-
tion conditions is really important for Augmented Real-
ity (AR) systems. Figure 1 shows an example of an AR
system where a virtual object has been rendered into
a real scene. The virtual object is rendered with illu-
mination conditions corresponding to the illumination
condition that are estimated for the real scene, so the
virtual object is shaded consistently with the scene, and
it also casts a consistent shadow on surfaces in the real
scene.

The application scenario we are targeting is a system,
be it an AR or a vision system, which needs to contin-
uously update its internal model of the illumination in
an outdoor scenario. Consider for example a computer
screen mounted on a pole at an archaeological site al-
lowing visitors to view the real scene (filmed with a
video camera) augmented with visualization of virtual
3D buildings that no longer exist. For such a system
the illumination conditions constantly change due to the
passing of time causing the sun to travel across the sky,
clouds causing partial or complete blockage of the di-
rect light from the sun, and changing the illumination
from the sky.

The approaches presented in this paper can estimate
the intensities and color of the direct sunlight and of the
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Figure 1: Two images taken at different times (approximately one hour apart) on a sunny day with partial cloud
cover causing constant changes in the illumination conditions. With one of the methods proposed in this paper
we have automatically estimated the current illumination conditions and used this illumination estimate to render
a virtual sculpture into the scene.

indirect skylight. Additionally one method is able to es-
timate the direction of the sunlight relative to the scene,
whereas the other technique assumes that the system
knows the direction of the sunlight using date, time and
position information. The latter approach is more ro-
bust for cloudy conditions, whereas the former is more
readily applicable to a scene as there is less positional
and orientational calibration to carry out.

Both approaches involve an “off-line” photometric
calibration phase where the reflectances (albedo) of dif-
fuse surfaces in the scene are estimated. After the once-
only reflectance calibration the approaches enable con-
tinuous “on-line” illumination estimation.

This paper is organized as follows. In section 2
we give an overview of related work. Section 3 then
lists the assumptions behind the presented techniques,
and presents the illumination model used by both ap-
proaches (both approaches estimate the values of pa-
rameters in this model). In section 4 we then present
the approach which assumes availability of sunlight di-
rection information, whereas the approach which also
estimates sunlight direction is presented in section 5.
Conclusions are given in section 6.

2 State-of-the-art

Estimating scene illumination conditions from images
is the dual problem of estimating surface reflectance
properties, because the image represents light reflected
off surfaces, and this reflection is governed by the illu-
mination and the reflectances. Therefore illumination
estimation cannot be performed without knowledge of
surface reflectance. This is the reason all related work
is based on placing some kind of special purpose ob-
ject with a priori known reflectance properties in the
scene. For continuously operating AR or vision sys-
tems performing illumination estimation it is not a vi-

able approach to be forced to have calibration objects
in the scene. Therefore we have developed and tested
two approaches to estimate dynamic illumination con-
ditions based on the surfaces naturally present in the
scene. Subsequently we briefly describe some of the
most closely related work. Recent surveys on illumina-
tion estimation may be found in [9, 13].

One group of related work has a somewhat different
focus, namely that of estimating scene reflectances. Yu
and Malik proposed estimation of pseudo BRDFs' for
outdoor scenes, [17]. The approach requires multiple
images of the outdoor scene taken from different view-
points and under differing illumination conditions. The
goal is to be able to re-render the scene under arbitrary
novel illumination conditions. Knowledge of scene il-
lumination is obtained by combining a parameterized
outdoor skylight model with light probe images.

Yu and Debevec proposed an inverse global illumi-
nation rendering approach, [16]. By using multiple im-
ages of all surfaces and a complete 3D model of an en-
tire indoor scenario, and by using knowledge of the illu-
mination conditions they demonstrate that it is possible
to estimate glossy BRDFs for all surfaces. Knowledge
of illumination conditions is obtained by manually mea-
suring the positions and emittances of all light sources.

Loscos and Drettakis proposed a system for interac-
tive re-lighting of indoor scenarios, [11]. Using a sin-
gle image of the scene, combined with a complete 3D
model of the entire room, and knowledge of the orig-
inal illumination conditions they are able to re-render
the scene under arbitrary novel illumination conditions.
The knowledge of the original scene illumination is
obtained by manual measurement of the positions and
emittances of light sources.

Boivin and Gagalowicz proposes an iterative global

IBRDF: Bi-directional Reflectance Distribution Function is de-
fined as the ratio of the reflected radiation to the incident radiation
on a surface.
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illumination approach to estimating surface reflectance
parameters, [3, 4]. This work is also based on a single
image of an indoor scene, and assumes that the posi-
tions and emittances of the light sources are measured
manually.

Masselus and Dutre proposed an approach to image-
based modeling of surface reflectances with the aim of
being able to re-render under novel illumination condi-
tions, [12]. By acquiring multiple images from a sin-
gle viewpoint of a scene illuminated with a manually
moved single light source they were able to model the
reflectance field for re-lighting. The location of the
moving light source is computed for each image by a
triangulation technique based on the shading of four dif-
fuse spheres present at known locations in the scene.

Sato and Sato proposed a technique for estimation
of complex illumination environments, [15]. The tech-
nique requires that a known object is casting shadows
on a surface in the scene, and the reflectance of the
shadow receiver must be known. If this information
is not available the method requires an image of the
scene without the shadow casting object. In this case
the method cannot be applied to scenes with changing
illumination conditions.

Kanbara and Yokoya designed an approach to auto-
matic, real-time estimation of scene lighting for aug-
mented reality, [10]. The approach involves placing a
reflective sphere which is always in the camera’s field
of view. The dynamic scene illumination conditions are
estimated from the environment’s reflection in this spe-
cial purpose sphere.

Using reflective spheres has for several years been the
standard approach to acquiring omni-directional knowl-
edge of scene illumination. The approach has been
pioneered by Debevec and taken up by several other
for various purposes, including real-time AR systems
[7, 5, 6, 8]. The problem with using this approach for
continuously operating systems is that it requires high
resolution images of the reflective sphere, which has to
be placed in the scene.

As seen from the above brief review the standard ap-
proaches to determining scene illumination conditions
are either to manually measure the light sources, or to
photograph a reflective sphere placed in the scene. As
stated our goal is to investigate whether images of sur-
faces naturally present in the scene can be used for esti-
mating illumination, i.e., to determine if changing illu-
mination can be detected from a video sequence.

3 Background

This work is based on a number of assumptions, which
we will list together here. First of all our approaches
are targeted at daytime outdoor scenarios, allowing us
to assume that the illumination conditions are in effect
completely governed by light from a directional source
(the sun) and light from the sky hemisphere. In addition
we assume that the imaged scene is static, that a com-

plete 3D model of the scene is available, and that the
camera is internally and externally calibrated, such that
each pixel corresponds to a ray that can be traced to a
unique 3D point in the scene.

Additionally the presented techniques assume that
the scenes contain diffusely reflecting surfaces and that
different normal directions are represented by these dif-
fuse surfaces. We use the approach that the 3D model
of the scene is manually annotated with information
about which surfaces can be considered diffuse reflec-
tors. As described in section 1 the techniques involve
a reflectance calibration phase, and it is assumed that
surface reflectances do not change after this calibration
phase. This means that precipitation is not allowed, i.e.,
it is not allowed to rain or snow after reflectance cali-
bration.

Both presented techniques are based on an assump-
tion that the Phong Illumination Model can be used as a
reasonable approximation to outdoor illumination con-
ditions, and finally one of the techniques further as-
sumes that the direction of the sun light is known at
all times, computed automatically based on knowledge
of date, time, and the camera’s position in latitude and
longitude.

In order to estimate the illumination conditions of a
scene from 2D images of that scene a model of the im-
age formation process is needed that describes the in-
teractions between light and surfaces. Such a model
requires the reflectance properties of the surfaces in the
scene as well as a 3D description of the scene. Given
a sufficient number of surfaces of different orientations
it is then possible to set up a system of equations and
solve for the variables describing the illumination con-
ditions.

The remainder of this section describes an illumina-
tion model and the acquisition of reflectance properties.
As stated we assume that the scene can be measured
and modeled manually, using for example 3D Studio
Max or similar 3D modeling software.

3.1 Phong Illumination Model

The Phong Ilumination Model [14] is a local illumi-
nation model that is often used in computer graphics
because it is fast to compute and gives reasonably real-
istic results although it is largely an empirical model. It
is called a local illumination model because interreflec-
tions between surfaces are not considered. Interreflec-
tions — also known as global illumination effects — are
approximated with an ambient term that allows for a
global control of brightness in a scene. Besides the am-
bient term the Phong Model is composed of two reflec-
tion components that are due to direct illumination on
a surface: a diffuse and a specular term. Diffuse re-
flections scatter light equally in all directions, i.e., the
intensity at a point on a surface does not depend on
the viewing direction. The diffuse reflections are mod-
eled with Lambert’s cosine law which states that the
reflected light is proportional to the cosine of the an-
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gle between the surface normal and the incident light
;. The specular reflections depend on both the incident
angle 0; and the viewing angle 6,., and may be modeled
as proportional to the cosine of the angle o, see figure 2.

Figure 2: Image formation components of the Phong
Illumination Model. L is a unit vector in the direction
to the light source, N is the unit surface normal, V' is
the viewing direction, and R is the mirror-like reflected
light.

The illumination of an outdoor scene may be mod-
eled by one direct light source, the sun, and ambient
light representing the skylight. The reflected light I,
approximated with Phong’s Illumination Model is then
given by the following equation:

I =kay-Iog+1i1-(Kap-cos(0;)+ks -cos(a)™) (1)

where k,, kg, and k, are the reflection coefficients for
the ambient, diffuse, and specular components, respec-
tively, also called albedos which are described in the
next subsection. I, is the ambient illumination, I; the
direct light source, and m is a factor controlling the
shininess of the surface. To handle color there is a sep-
arate equation for red, green, and blue, therefore the
subscript ! € {R, G, B}.

In the following we assume pure diffuse surfaces and
that k, = k4. Equation 1 then becomes:

Iy =kay- (Lag + Liy - cos(0;)) 2
or using the vectors from figure 2:
Ly =kay-(Ing+ Ly - (NeL)) 3)

3.2 Reflectance Properties

The reflectance properties of the surfaces are needed
when using the scene as light probe. In the Phong II-
lumination Model (eq. 3) the reflectance properties are
modeled with the scalar k4. This is often called the
albedo which is the reflectivity of a surface, or in other
words the ratio of radiation reflected to the amount inci-
dent upon it. The reflected radiation may be expressed
by the radiometric term radiance L. which is the power
leaving a surface per unit solid angle? and per unit sur-
face area. The radiance can be measured using an image
of a scene.

2The solid angle is the angle that, seen from the center of a sphere,
includes a given area on the surface of that sphere. The value of the
solid angle is numerically equal to the size of that area divided by the
square of the radius of the sphere. It is measured in steradians [sr].

The radiometric term describing the received power
per unit area, i.e., the power falling onto a surface, is
the Irradiance E.. For pure diffuse surfaces the albedo
is then:

“

While it is rather easy to obtain the radiance from a
scene using an image, the irrandiance requires knowl-
edge of a 3D model of the scene and the light sources.
One way to calculate the irrandiances for every pixel is
then to synthesize (render) an image using the 3D model
and setting all surface albedos to one.

4 TIllumination Estimation under
known Sun Position

In this first approach we take the illumination model
presented in the previous paragraph and use it to model
the measured pixel intensities from an image of the
scene. If it is assumed that the system continuously can
compute the unit direction vector to the light source rel-
ative to the scene coordinate system, then we arrive at
a set of equations, one for each color channel for each
pixel. These equations are linear in the ambient and the
direct light, I, ; and I, ;, respectively.

4.1 Approach

Let subscript j refer to the jth 3D point in the scene.
Some points will in fact be in shadow and not receive
direct light from the sun. Let S; be a boolean parameter
of value 1 if the jth point is in direct light, and 0 if
it is in shadow. Furthermore, let C; be a real number
between 0 and 1, with the value of 1 if the jth point
receives light from the entire hemi-spherical sky, and
0 if the sky is completely occluded seen from the jth
point. The reflected light from the jth point can then be
written as (the scene is small compared to the distance
to the sun, so the unit direction vector to the sun is the
same for all points in the scene):

Loji=kagji (Cjlog+Sj-Iig- (Nje L)) (5)

The ambient occlusion factor, C;j, can be computed
a priori for all points in the scene. Given knowledge
of the sun’s position the shadow masking parameter S
can be computed at run-time for all points in the scene.
From the offline reflectance calibration we know the
albedos, kg 1, of all diffusely reflecting points. The
surface normal for all points, N; is known from the 3D
model of the scene. The direction vector to the sun, L,
can be computed given: 1) the date, 2) the time, 3) the
Earth position in latitude and longitude of the scene ori-
gin, 4) and the direction of North in the scene, [1]. The
only unknowns in eq. 5 are the 6 parameters for ambient
and direct light, I, ; and I; ;.
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Figure 3: Frames 0, 29, 59 and 89 from synthetic test sequence with known illumination changes. The direction
of the direct light source is not changing but the ambient and source emittances both change over the sequence.
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Figure 4: Comparison of estimated and true values for direct and ambient radiances for the synthetic test sequence
shown in figure 3. All values are normalized to a maximum of 1.

Using the assumption that we know what surfaces in
the scene can be considered diffuse and that the camera
is calibrated to the scene we can also find those pix-
els that correspond to diffuse surfaces. The RGB pixel
values of such a pixel is denoted P;;. If the camera
is radiometrically linear the measured pixel values are
some camera constant K times the reflected radiance
from the corresponding scene point:

Pi,=K- I

J 5,0 (6)

Thus, by picking pixels from the image we can set up
a system of linear equations in I, ; and I ; of the form:

VK- Pjy=kqju(Cj-Ios+S; Iy (Nje L)) (7)

In our implementation of this framework we at ran-
dom select on the order of a few hundred pixels evenly
distributed across the image (among those pixels that
correspond to diffuse surfaces). It is important that the
pixel population represents both areas in shadow (only
ambient light) and in direct light (both ambient and di-
rect light). The camera scene radiance to pixel value
scaling factor K is of course unknown, but a system of
equation of the form of eq. 7 allows us to estimate scene
illumination up to a scaling factor.

4.2 Experiments and Results

The presented framework has been tested extensively
on both synthetic and real images. Figure 3 shows a few
frames from a synthetically generated sequence where
a simple scene has been rendered with known ambi-
ent and direct intensities. Correspondingly, figure 4.1
shows the estimated intensities. As seen synthetic data
results in near perfect estimations. The same scene has
been tested with generating a sequence where a yellow
ball is falling into the scene and bouncing out again in
order to test how the illumination estimation procedure
reacts to dynamic objects in the scene, thus violating
the static scene assumption. The estimation results from
this scenario is not shown, but due to the extraction of
a large number of sample points across the entire im-
age the illumination estimation is very stable and only
in minor degree affected by the dynamic object.

To test the approach on real data a 2 hour time-lapse
sequence has been acquired with one frame every 20
seconds. Figure 5 shows select frames from the se-
quence. Naturally, we do not have ground truth data
for the illumination conditions in this real scene, but
figures 4.2 and 4.2 show the estimated ambient and di-
rect light. The estimated illumination has been verified
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Figure 5: Frames 1, 72, 134, 201, and 259 from real test sequence covering approximately 2 hours of moving sun
and changing cloud cover.
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Figure 6: Estimated values for ambient radiance for the real test sequence shown in figure 5. Notice that the
ambient light in the scene has a relatively low red (R) component as is expected for a sky with only partial cloud

cover.

quantatively by taking the known albedos of surfaces
in the scene, illuminating these surfaces with the esti-
mated light and comparing these values with the real
sequence pixel value for the same surface. These tests
(not shown) demonstrate that the estimated illumina-
tion follows the real scene illumination quite accurately
apart from a tendency to over-estimate the red compo-
nent of the direct light with approximately 10%. This
may be caused by mis-estimating the albedo of the dom-
inant red brick wall due to an in-accurate determation
of the illumination conditions at time the image was ac-
quired for albedo estimation.

In addition to quantitative tests on real data qualita-
tive tests of the estimated illumination has been evalu-
ated by rendering virtual objects into the scenes and vi-
sually judging the quality of the virtual shading. Espe-
cially for sequences with very dynamic lighting condi-
tions it is clearly seen that the estimated light results in
consistent shading of virtual objects. Two frames from
such a test were shown in figure 1.

The current implementation of this estimation tech-
nique can run the estimation at about 10 frames per sec-
ond and is thus easily able to respond to the illumination
condition changes an outdoor AR system would experi-
ence.

5 Illumination Estimation under
unknown Sun Position

This section describes the estimation of the illumination
conditions including the sun direction from an image of
a scene given a 3D model of the scene and the albe-
dos of the surfaces in the scene, and assuming that the
illumination model in equation 2 can be used to approx-
imate outdoor illumination conditions.

5.1 Approach

The illumination conditions may be estimated by set-
ting up a sufficient number of equation 3, and solving
this non-linear system of equations for the unknowns
L, I,;,and I;; (I € {R,G, B}). Thus, there are nine
unknowns. Assuming that the distance r to the sun is
known the estimation of L reduces to the two angles
(azimuth, ¢, and zenith, ). In order to solve a non-
linear system of equations one may formulate it as a
least squares problem and then use a numerical opti-
mization. Let f;(x) be the minimization function that
should converge to zero. The minimization function for
the Phong Illumination Model is given in equation 8:
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Figure 7: Estimated values for direct radiance for the real test sequence shown in figure 5.

fia(x) = kaji(laji+ Lajicost;) — L. ;1 =0 (8)
where
0 , 0>m/2
cost; :{ Niel gcpg<np O
[V 1Ll
and
. r-Ccosp -sinf
L= r-sing -sinf (10)

r-cosf

5.2 Experiments and Results

The evaluation of computer vision methods using real
image data is often difficult due to the lack of ground
truth. In this work the estimation of a 3D model
and of the albedos introduces an error which makes
the evaluation of the illumination estimation inaccu-
rate. Therefore the main evaluation was done using
synthetic image data that were generated from a 3D
scene description including light positions and object
reflectances. They were rendered using a ray-tracer
(Radiance [2]) that generates radiometric correct im-
ages including global illumination effects. Radiance
supports all kinds of light sources among them a day-
light model to create realistic illumination in outdoor
scenes with sun and skylight. Figure 8 shows an exam-
ple of a rendered image that was used for evaluation.
All estimations were done using MATLAB’s Isqnon-
lin for solving non-linear least squares problems.
Using the daylight model images were rendered for
illumination conditions from sunrise to sunset. The es-

Figure 8: Synthesized image using the daylight model.

timation errors are shown in figure 9. In most of the es-
timations the error lies around a few degrees [0.6 —2.5°]
except from three estimations, which are at 9, 9:30 and
17 o’clock. With a look at the image of these time peri-
ods it can be seen that some of the measurement pixels
were occluded resulting in no direct illumination.

These estimation tests have been extended with sun
positions across the entire hemisphere. The azimuth
ranges [0 — 27] and the zenith ranges [0 — 7). All
in all 339 images have been rendered in Radiance. The
scene illustrated in figure 8 has also been used in this
experiment.

The error in these experiments are given as the total
angle between the estimated and actual angles. Total
error means the two actual angles (azimuth ¢ and zenith
) seen in relation to the two estimated, which has been
calculated from equation 11.

AFE = arccos (a_)

®c
|allel

(1)

The two vectors for actual (@) and estimated (€) are
calculated from equation 12, where » = 1 since it is
only the angular difference that is of interest.
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T - Ccos -sinf
r-sing -sinf
r-cosf

(12)

a::

The total angular error for all azimuth and zenith an-
gles of the sun is shown in figure 10 where the error
is indicated by the height of the small circles. The az-
imuth angle is given as the angle in the plan, and the
zenith is zero in the center of the plot and increasing
with distance to the center.

o] iy
0glpooe®?® g

- o / p”

(o] PQoepo@

©
@
\\OOQ);OGQOOGG =
= L

©

Figure 10: Total angular error over all azimuth and
zenith angles.

The camera viewing direction is indicated by the
green line around the an azimuth angle of 90°. It can
be seen that the error is rather low when the illumina-
tion direction is close to the camera direction, whereas
the error increased significantly (up to 80°) when the il-
lumination is opposite to the camera. This is due to the
reduced number of directly illuminated surfaces.

Besides simulated image data we tested the method
on real images of building bricks. These bricks have
rather diffuse reflectance properties. Figure 11 shows
an image of a real scene that was used for illumination

estimation, and figure 12 show a part of that scene with
a virtual shadow that was simulated using the estimated
illumination direction.

Figure 11: Real image used for illumination estimation.

Simuld

Real S

Figure 12: Real scene showing both, the real shadow
casted by the brick and a virtual shadow casted by the
brick. The virtual shadow is rendered using the esti-
mated sun position.

Figure 13 show an example application where the es-
timated illumination direction was used to augment the
scene with four virtual vases.

6 Conclusions

In this paper two methods were proposed and tested to
estimate the illumination conditions of a real outdoor
scene while using the scene itself as a light probe, i.e.,
no additional light probe has to be placed into the scene.
The methods work on single view images and require a
3D model of the scene as well as the reflectance proper-
ties of the surfaces present in the scene. The preliminary
results show their applicability to Augmented Reality.
In future work we aim at combining several comple-
mentary methods in order to achieve more robust illu-
mination estimation. Furthermore, we will look into
possibilities to reduce the offline calibration, e.g., us-
ing reflectance models for common everyday outdoor
objects. These objects may be recognized by some au-
tomatic object recognition and be used as light probes.
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Figure 13: Real scene augmented with virtual vases.
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Abstract

Cast shadows from moving objects reduce the general ability of robust classification and
tracking of these objects, in outdoor surveillance applications. A method for segmentation of
cast shadows 1s proposed, combining statistical features with a new similarity feature, derived
from a physics-based model. The new method is compared to a reference method, and found
to improve performance significantly, based on a test set of real-world examples.

1 Introduction

The introduction of digital video cameras, and recent advances in computer technology,
make it possible to apply (semi-)automated processing steps to reduce the amount of data
presented to an operator in a surveillance application. This way the amount of trivial tasks
are reduced, and the operator can focus on a correct and immediate interpretation of the
activities in a scene.

The Danish Defence Research Establishment (DDRE) is currently focusing part of it’s
research on implementing a system for automated video surveillance. The main objectives
of the DDRE are to gain general knowledge in this area, and eventually implement an
automated surveillance application that is capable of detecting, tracking and classifying
moving objects of interest.

At this point the DDRE has carried out some initial studies in testing and implement-
ing parts of the W-system [4] for automated video surveillance. The W-system effectively
detects moving objects, tracks them through simple occlusions (blocking of the view), clas-
sifies them and performs an analysis of their behavior. One limitation of W* is that the
tracking, classification and analysis of objects fails when large parts of the moving objects
are actually cast shadows.

Distinguishing between cast shadows and self shadows is crucial for the further anal-
ysis of moving objects in a surveillance application. Self shadows occur when parts of an
object are not illuminated directly, but only by diffuse lighting. Cast shadows occur when
the shadow of an object is cast onto background areas, cf. figure [l The latter are a
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major concern in today’s automated surveillance systems because they make shape-based
classification of objects very difficult.

B

Self shadow
(part of ohject)

Cast shadow
(cast onto hackground)

Figure 1: Types of shadows. Self shadow is shadow on the object itself, a person in this case. Cast
shadow is the shadow cast onto the background.

In [9] Prati et al. give a comparative evaluation of the most important methods up
until 2001. They conclude that the more general situations a system is designed to handle,
the less assumptions should be made, and if the scene is noisy, a statistical approach is
preferable to a deterministic model. In [5], Hsieh et al. focus on removing cast shadows from
pedestrians using a statistical model combined with spatial assumptions. Only situations
with pedestrians in an upright posture are handled and the cast shadows are assumed to
touch their feet. Javed et al. [6] make no spatial assumptions of posture or composition
prior to a statistical modelling of shadows, based on a correlation of the derivatives for
regions of similar pixels.

In [7] Nadimi et al. apply a number of steps in a physics-based shadow detection
algorithm. No spatial assumptions are made, but other assumptions makes it less suitable
for some types of weather. Furthermore several threshold dependent parameters should
be optimized. Finlayson et al. [3] use a physics-based approach to derive an illumination
invariant, therefore shadow free, gray-scale image of an RGB image. From this image the
original RGB image, without shadows, is derived. Finlayson’s approach is aimed at shadow
elimination in general in images obtained with a color calibrated standard digital camera
121,131,

The rest of this paper consists of three sections, in section 2 existing methods for shadow
handling are described in more detail, leading to a new combined method for segmentation
of cast shadows. In section 3 the experimental results are presented, and section 4 is the
conclusion.

2 Methods

The statistical approach suggested by Javed et al. [6] is implemented as a reference,
because it makes no spatial assumptions and has the least number parameters to tune. The
physics-based method suggested by Finlayson et al. is elegant, but not previously applied
in surveillance applications. The new similarity feature proposed in this work is based on
the ideas og Finlayson et al. Combining Javed’s method with the new similarity feature, a
new approach for handling cast shadows in surveillance applications is suggested.
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2.1 Statistical Approach

Javed et al. [6] use a statistical approach for segmenting foreground pixels darker than
a reference image (pixel-candidates) into cast shadow, self shadow and object pixels darker
than the background. A K-means approximation of the EM-algorithm is used to perform
unsupervised color segmentation of the pixel candidates. Each pixel candidate is assigned
to one of the K existing Gaussian distributions if the Mahalanobis distance is below a
certain threshold. If above this threshold a new distribution is added with it’s mean equal
to the pixel value. All distributions are assumed to have the same fixed covariance matrix
¥ = 021, where o is a fixed variance of the colors and I is the identity matrix. After a
pixel candidate is assigned to a distribution, the distribution mean is updated as follows:

Pnt1 = pp + (In+1 - ,u’n)a (1)

n—+1

where x is the color vector of the pixel and py, is the mean of the Gaussian before the n+1th
pixel is added to the distribution. Using a connected component analysis the spatially
disconnected segments are divided into multiple connected segments. Smaller segments are
then merged with the largest neighboring segment using region merging. Then each segment
is assumed to belong to one of the three classes, cast shadow, self shadow or part of the
object darker than the background image. To determine which of the segments are cast
shadows, the textures of the segments are compared to the texture of the corresponding
background regions. Because the illumination in a cast shadow can be very different from
the background the gradient direction is used:

6 = arctan &, (2)
T
where @ is the gradient direction and f, and f; are the vertical and horizontal derivatives re-
spectively. If the correlation is more than a certain threshold, the region is considered a cast
shadow. Otherwise it is either self shadow or dark part of the object. This method is con-
sidered as a state-of-the-art method in surveillance applications but still faces fundamental
problems concerning some very context dependent parameters.

2.2 Physics-based Approach

The physics-based approach suggested by Finlayson et al. [3] derives an illumination
invariant grayscale image from an RGB-image.

The color of a pixel in an image depends on the illumination, the surface reflection and
the camera sensors. Denoting the spectral power distribution of the illumination E()), the
surface spectral reflection function S(X), and the camera sensor sensitivity functions Qg ()
(k= R,G, B), the RGB color pi at a pixel can be described as an integral over the visible
wavelengths A:

o = / E(NSMNQe(NdA . k={R.G,B}. (3)

This description assumes no shading and distant lighting and camera placement. If the
camera sensitivity functions Qx(\) are furthermore assumed to be narrow-band, they can
be modelled by Dirac delta functions Qx(A) = qrd(A — Ag), where g is the strength of the
sensor. Substituting this into reveals:
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Lighting is approximated using Planck’s law:
5 ( 72 -t
EO\T) = Iei A~ (eﬁ . 1) , (5)

where I is the intensity of the incident light, T is the color temperature, and ¢; and ¢y are
equal to 3.74183-107"Wm? and 1.4388- 102 Km respectively. Daylight is very near to the
Planckian locus. The illumination temperature of the sun is in the range from 2500K to
10000K (red through white to blue). For the visible spectrum (400-700nm) the exponential
term of is somewhat larger than 1. This is Wien’s approximation [6]:

c2

E\T) ~ I\ Pe™Tx. (6)

If the surface is Lambertian (perfectly diffuse reflection) shading can be modelled as the
cosine of the angle between the incident light a and the surface normal n. This reveals the
following narrow-band sensor response equation:

pe = (a-n)Ie AT BS(N)g . k={R,G,B}. (7)
Defining band-ratio chromaticities r remove intensity and shading variables:

re="% | k={R,B}. 8)
PG

Taking the natural logarithm (In) of ({8)) isolates the temperature:

r. =In(ry) = In(sk/s¢) + (ex —eq)/T , k=1{R,B}, 9)
st = ATS(N)a, (10)
€ = —62/)\]9. (11)

For every pixel the vector (ry, ;)" is formed as a constant vector plus a vector (eg —

eq,ep — eq)! times the inverse color temperature. As the color temperature changes,

pixel values are constrained to a straight line in 2D log-chromaticity space, since @D is

the equation for a line. By projecting the 2D color into the direction orthogonal to the

vector (eg — eq, ep —eq)’, the pixel value only depends on the surface reflectance and not
temperature hence illumination:

TR oty = nlsn/sg) — T °

= f(sr:sG,5B). (12)

MZH(SB/Sg),

Applying to all pixels reveals the illumination invariant image gs(x,y):

gS(J?,y) :alr}g(m,y)—f—agrjg(x,y), (13)

where the constant vector a = (a1, az)? is orthogonal to (egr — eq,en — eg)’, determined
by the camera sensitivity functions only , and scaled to unit length:

al

la[I”

1
a = (_BRBG > (14)
ep—eq

13



Figure 2: Finlayson’s approach to shadow removal [3]. (a): Original image. (b) Illumination
invariant grayscale image. (c): Grayscale of original image. (d): Edge map for invariant image.
(e): Edge map for non-invariant image. (f): Recovered shadow-free image.

Figure (b) shows an example of an illumination invariant grayscale image, where edges due
to shadows are not visible. Figure 2(a) and [(c) show the original image, and the normal
grayscale image.

If the sensor functions of the camera, and thereby Az of , are unknown, [2] and [3]
outline a procedure for camera color calibration. The invariant direction is estimated by
comparing a number of images taken during the day with changing illumination. Daylight is
assumed to be Planckian with varying temperature. Each image contains different standard
color patches from the Macbeth Color Chart.

The shadow edges are detected by comparing the gradient of each channel in the original
log image, Vp/(z,y), with the gradient of the illumination invariant image, Vgs(z,y), cf.
figure 2[d) and [[e). The idea is that if the gradient in p/(z,y) is high, while it is low in
gs(z,y), the edge is most likely to be a shadow edge. The following threshold function
reveals a gradient image of the log response where gradients due to shadows are eliminated
(set to zero):

if Vo' (z,9)| > t1
S(Vp'(z,y), Vgs(z,y)) = and ||Vgs(z,y)[| < t2 (15)
Vo' (z,y) otherwise,

where t; and ¢y are context dependent thresholds. By integrating S a log response image
without shadows is recovered. This corresponds to solving the following Poisson equation:

v2q/($7 y) =V S(Vpl(.T, y)7 ng(J),y)), (16)

where V2 is the Laplacian and ¢’ is the log of the image without shadows. The gradient
image of S equals the Laplacian of ¢’ for each color band. Assuming Neumann boundary
conditions (V¢ = 0 for boundary normals), ¢’ can be solved uniquely up to an additive
constant using the cosine transform [I0]. When exponentiating ¢’ to arrive at the shadow
free image ¢ the unknown constant becomes multiplicative. For the colors to appear "re-
alistic" in each band, the mean of the top 5-percentile of pixels is mapped to maximum of
the RGB image. In this way the unknown constants are fixed, and a shadow free image ¢
is derived, cf. figure 2[f).
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The major drawback of this method is reported to be defining the shadow edges. It
turns out that using a robust edge detection algorithm (e.g. Canny or SUSAN [3]) and
setting the thresholds are crucial factors. Furthermore a morphological opening is applied
on the binary edge map to thicken the shadow edges and thereby improve the suppression
of shadow gradients before the re-integration step.

Despite all of the assumptions and difficulties reported the method shows good results on
the images shown in [2],[3]. It should be noted that the gradient images and thresholds are
very context dependent. However, even when the method performs poorly it still attenuates
the shadows. This is often the case for shadows with diffuse edges. Therefore the method
is interesting in conjunction with surveillance tasks, where the artifacts introduced by the
imperfect shadow edge detection and the re-integration are not crucial.

Due to assumptions in the model, and in the derivation of the shadow free RGB image,
the method is far from perfect, but shadows are attenuated significantly. The method has
not been applied in a surveillance application yet.

2.3 New Similarity Feature

It was found that the illumination invariant image is sensitive to the limited dynamic
range in the video sequences of the camera used (8 bit) and to the spectral sensor functions
of the camera not being delta functions. Because of this, determining edges due to shadows
in a robust way becomes very difficult. Finlayson et al. also reports this to be the major
drawback of the method [3].

Instead of only using the illumination-invariant image to determine edges due to shad-
ows, other information should also be used. An important observation to make is that a
foreground mask is available from the background model in a surveillance application. This
can be used to eliminate artifacts from false shadow edges outside the foreground mask,
and should be exploited in the detection of shadow edges.

A dilated version of the edges of the foreground mask is used to determine which gra-
dients to suppress in the gradient image of the illumination invariant image, before recon-
structing the "shadow-free" image. Figure (a) shows an image and a version of it, figure
(b), that is reconstructed without suppressing any gradients. Therefore the two images are
similar. Figure [3|(c) shows the mask used for suppressing gradients, and figure [3(d) shows
the corresponding reconstructed image.

(@) (b) (©) (d)

Figure 3: Reconstruction of an image. (a): Original image. (b): Reconstructed image without
suppressed gradients. (c): Suggested mask for suppressing gradients. (d): Reconstructed image with
suppressed gradients.

Both shadow and object gradients are suppressed, but figure (d) still clearly contains
additional information that can be exploited in the segmentation of cast shadows.
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The new similarity feature compares corresponding pixels of the reconstructed image
and the background image, for every color segmented region:
1 K
CS=5——"7— (R; — BG;)?, (17)
ok,pc(E —1) ; Z Z

where C'S is the similarity feature of a region, K is the number of pixels of the region times
the three colorbands, R and BG are the intensity values of the i’th pixels in the recon-
structed image and the background image, respectively. &%{7 pe 1s a variance normalization
factor, which is the estimated variance between all pixels in a background image, BG, and
all pixels in a reconstructed image, R, of a new frame containing no foreground objects.

Performing a variance normalization of CS makes it a relative measure of similarity
that, ideally, only contains variation due to the region not being cast shadow, and not
contains variation due to the experimental setup and the complex processing of the images.
The estimate of the variance is based only on one sequence since it was difficult to obtain
sequences, without foreground objects, that were static while an entire background model
was estimated. It is therefore a rough estimate.

The CS measures a normalized mean value of squared differences between regions in
the reconstructed foreground image, cf. figure (d), and corresponding regions in the back-
ground image. If the reconstructed image contains shadow regions along the border of the
foreground mask, cf. figure (c), these shadow regions are attenuated in the reconstructed
image, making them more similar to the background image. This is the key observation that
the enhanced similarity feature, C'S, is based on. Therefore a large value of C'S corresponds
to little similarity, which indicates that the region is part of the object. Small values of C'S
indicate high similarity, i.e. the region is then part of a cast shadow.

It is emphasized that CS only supplies useful information when the shadow edges are
actually part of the edge of the foreground mask. In some cases it will not supply any
additional information, e.g. when edges due to objects instead of shadows are suppressed.
This will tend to smear neighboring background and object regions, for which reason it is
suggested only to apply the CS in cases where the correlation threshold, described in [2.1]
does not produce confident results. This corresponds to introducing a reject class for the
correlation feature.

Figure [4] shows the suggested enhanced classification of color segmented regions. The

Regionis
Object

Figure 4: Flowchart illustrating the enhanced classification of color regions. The enhanced similar-
ity feature, (CS), classifies all regions that the correlation feature assign to a reject class (k-Corr.
threshold < Correlation < Corr. threshold = reject class, 0<k<1).

Javeds Suggested handling of reject class

Criginal Method
Correlation < N
Y4eCorr. Threshold
Yes

[ Region is Cast Shadow ] [ Region is Object ] [ Region is Cast Shadow ]

For Every
Region

Correlation >
Corr. Threshold

left part corresponds to the classification originally suggested by Javed, using a simple
correlation threshold. The enhanced classification introduces a reject class if the correlation
lies in an interval between k and 1 times the Correlation threshold introduced by Javed [6].
k should lie in the interval [0; 1], and is empirically chosen to be 0.5 in this framework. If
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the regions in the reject class have a C'S larger than the CS threshold they are classified as
object regions. Otherwise they are classified as cast shadow regions.

3 Data and Results

The camera used for data acquisition is a state-of-the-art industry digital video camera
(SVS-204CFCL) with a resolution of 1024x768 pixels. The frame rate currently available is
20 fps., with a dynamic range of 8 bits, and with colors obtained through standard Bayer
filtering. A typical scene for a surveillance application is chosen where the typical moving
objects are vehicles, people and bicycles.

A kernel-based background model is used to segment foreground objects [I]. Only
one frame of an object is used in the data set to avoid stochastic dependence between
samples. 18 foreground objects are used in a manual optimization of model parameters and
72 foreground objects are used for validation and comparison of methods [I]. The main
performance parameter used is the overall accuracy (AC), defined as the ratio of correctly
classified pixels and the total number of pixels that are shadow candidates. True positives
(TP) are defined as the proportion of correctly classified object pixels, and true negatives
(TN) as the proportion of cast shadow pixels correctly classified.

A color calibration of the camera was performed to determine the the optimal angle
of projection in the log-chromaticity space (39.4°). This angle corresponded well with the
angle obtained from the spectral sensitivity functions of the camera.

As a reference Javed’s statistical segmentation of shadow candidates is used. This is
compared to the new method using the new similarity feature. In the optimization of model
parameters of the two methods different values for the region merging criteria were found to
be optimal. In the reference method more regions were merged into larger regions, making
it hard to obtain a performance better than mediocre, because some regions contained both
shadow- and object pixels and was classified as a whole. Due to the new similarity feature,
the optimal merging parameter was found to produce more and therefore smaller regions
to classify, making the method less susceptible to regions containing both types of pixels.
Figure [5] compares the classification using the reference method and the enhanced method
on the example of figure

J E
AC: 76.2 81.1

-

(a) (b)

Figure 5: Classification (%), AC=Accuracy, TN=True cast shadow pixels, FP—False object pixels,
FN=False cast shadow pizels, TP=True object pizels. (a): Reference method (J). (b): Enhanced
method (E) applying the new similarity feature.

Table [T] shows the mean and std. of the absolute performance measures, based on the
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test set, for the two methods.

Method AC TP TN
Javed (J) - Mean (Std.) [%] | 64.9 (17.8) | 63.4 (30.0) | 64.7 (33.4)
Enhanced (F) - Mean (Std.) [%] | 69.2 (13.7) | 69.7 (18.3) | 66.0 (23.9)

Table 1: Absolute performance of the two methods (J and E) based on the test set of 72 examples.
Mean values and standard deviations are shown. AC=Accuracy, TP=True object pizels, TN="True
cast shadow pizels.

100 : -

. T
gn ] B ey o)
& I Histogram of E
80 SIS SN = Gaussian fitted to J
% == Gaussian fitted to E
[P
]

m E LY
B0 i : ;' &

a0

AC [%] of J

40
30

Occurrence/probability

20
10

1}

1) 20 40 B0 a0 100 o 10 20 30 40 50 B0 70 80 a0 100
AC [%] of E AC [%]
(@) )

Figure 6: Comparison of performance. (a): Accuracy of Javed’s method (J), as a function of
accuracy of enhanced method (E), based on the test set. (b): Histograms and fitted Gaussians of J
and E, based on the test set.

Figure [0] illustrates some of the results from table [Il There is a trend that examples
with a higher AC in (F), are improved more than the examples with decreased AC, are
decreased. This gives rise to the higher mean values, and indicates that fewer examples
tend to have much better AC, while more examples tend to have slightly decreased AC.

A paired t-test is applied to determine if there is any significant difference, at a 5% level,
in the mean values of the performance measures of the two methods. Table [2] shows the
results.

Paired t-test, Hy: pug —puys =0 AC TP TN
Difference in mean value (E — J) | 1 (0.009) | 1 (0.020) | 0 (0.326)
Lower confidence bound [%)] 1.31 1.28 —3.42

Table 2: Statistical comparison of the absolute measures, AC=Accuracy, TP=True object pixels,
TN=True cast shadow pizels. Row 1: 0 denote that the mean value cannot be rejected to be equal
at a 5% level, and 1 that the difference of the means is significantly positive. p-values are shown
in parentheses. Row 2: Lower confidence bounds for the differences in mean values for the absolute
measures, at a 95% confidence level.

0 denotes that the means cannot be rejected to be equal at a 5% level, and 1 that the
difference of the means is significantly positive. The p-values are shown in parentheses. The
conclusion to make from the test is that the new method (E) produces significantly better
accuracy (AC) and is better at classifying object pixels correctly (TP), than the reference
method J.

The lower confidence bounds of the difference in mean values, at a 95% confidence level,
are shown in the second row of figure [2] They show that the difference in true mean values
of the AC and TP for method FE, are likely to be at least 1.3% above those of method J.
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4 Conclusion

An enhanced method for shadow removal is suggested, based on a new similarity feature
derived from a physics-based model. The new method significantly improves the mean
accuracy at a 5% significance level, compared to the reference method.

The new similarity feature is only applied when the correlation feature of the reference
method is uncertain, ensuring that the spatial assumption does not degrade performance,
when compared to the reference method.

The final conclusion therefore is, that the suggested enhanced method for shadow re-
moval, on average is better than the state-of-the-art method suggested by Javed. The
enhanced method is also more robust, since it tends to improve the accuracy substantially,
for examples where the reference method tends to fail completely.

Combining Javed’s statistical-based method with some of the physics-based ideas of
Finlayson, and a new similarity feature, therefore reveals a better and more robust algorithm
for segmentation of cast shadows from moving objects.

The use of the illumination invariant image, as suggested by Finlayson, might be able
to improve the performance even more, but requires a larger dynamic range than the 8 bits
currently available with the present camera.
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Abstract

The light spectrum that is recorded by a pizel on an
imaging sensor is often a mixture of several distinct
source spectra. Such a mizture may be modeled as
a linear combination of some basis spectra, and if
the basis for the scene is known, each pizel may be
decomposed into its original components using lin-
ear inversion. Since the mazximum number of sepa-
rable basis spectra is equal to the number of image
bands, multispectral images offer advantages com-
pared to RGB-images. It is shown how multispec-
tral images may be used to separate various reflection
components, including second-order scattering, based
on the Dichromatic Reflection Model.

1 Introduction

The light spectrum that is recorded by a pixel on an
imaging sensor is often a mixture of several distinct
source spectra. The mechanisms behind the mixing
may be many, and they may be divided into two
categories:

1. Mixed object surfaces: A pixel may integrate
light originating from different object surfaces,
for several reasons:

e A pixel has a certain spatial extent and
therefore collects light from different opti-
cal paths.

e No real optical system behaves as an ideal
pinhole system. Light rays from one point
in the scene will be dispersed over an area
of the imaging sensor (often several pixels)
and, conversely, each pixel receives light
from different points in the scene. The
major part of this optical dispersion is de-
scribed by the point spread function (spa-
tial domain) or the modulation transfer
function (frequency domain) of the optics.

e Motion blur: Due to the certain integration
time required to collect enough light for the
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sensor elements, the camera as well as the
objects in the scene may move during the
exposure period.

2. Mixed reflection components:

e The light reflected from a single light source
by a point on an object surface is a mix-
ture of specularly reflected light and light
altered or colourized by the material of the
object itself. These two reflection compo-
nents may differ significantly in terms of
intensity and spectral content.

e Each point on an object surface is of-
ten illuminated by a mixture of different
light sources. These may be true emit-
tive (primary) light sources, as well as sec-
ondary sources appearing as a result of
light scattering (reflection, transmission)
during which the primary light sources
have continued with changed direction, in-
tensity and spectrum.

Automated image analysis relies on the ability to
characterize a scene by interpreting such mixed sig-
nals. Sometimes, the effects of mixing are not signif-
icant, but in other situations they have to be taken
into account. In order to make things easier, differ-
ent efforts can sometimes be made before the image
acquisition to control or reduce the mixing processes
by controlling the light sources and the objects in
the scene. More often, however, the scene can not be
controlled and, furthermore, inherent effects of the
imaging process, like the spatial extent of pixels and
the optical blurring, can not be avoided. Thus, any
account of these mixing effects must be taken in the
subsequent image analysis.

The key ideas that are followed in this work are that
1) since all the mixing processes described mentioned
above may be described as linear, it should be possi-
ble to use a linear basis for decomposing each pixel
into some more original spectral constituents, and
that 2) since the maximum number of linearly sep-
arable components is equal to the number of image
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bands, multispectral images', should have more po-
tential than RGB images.

2 Previous work

2.1 Several object surfaces

The initial inspiration for this work was the field of
spectral mixture analysis, or spectral unmixing, for
remote sensing (for a review, see [7]). Here, the
goal is, given an observed spectrum from a phys-
ical mixture where a number of basic constituents
are present in unknown quantities, to determine the
so-called endmember spectra of the original con-
stituents, and the quantities at which these con-
stituents are present. The problem has been studied
for many years in chemical spectroscopy for analyz-
ing chemical mixtures, and in more recent years it has
been important in remote sensing, where mixed pix-
els are more the rule than the exception. Unmixing
algorithms in remote sensing operate on reflectance
data, and normally use a linear mixing model, where
the mixed spectrum of a pixel is assumed to be a lin-
ear combination of the original spectra present in the
pixel, weighted by the quantities of their occurrences.
Let there be L spectral measurements (bands) and
M endmembers, then the linear mixing model is

M
Si:ZT’ijfj+m, 1<i< L,

j=1
or in, matrix notation,
s=Rf+n,

where R is an L x M basis matrix containing the
endmember spectra r;, f is a vector of abundance
fractions, and n is a vector of error terms. For a
physically meaningful interpretation of the model,
the abundance fractions f; should be nonnegative
and sum to one.

The linear mixing model is an intuitive and compu-
tationally attractive model accounting for the contri-
bution of various object surfaces in the mixing pro-
cess. However, it is only correct under the assump-
tion that the surfaces are well-separated, uniform and
non-interacting in terms of light. Thus, scattering
(reflection and transmission) of light between sur-
faces are not accounted for, and neither is the local
variation of geometric effects such as shading and
specular reflection. A common way to handle the
problems with shadows and shading is to augment

IThroughout this paper, the term “multispectral” will be
used in the meaning “more than three bands” (thus including
the case of “many” bands which is often termed “hyperspec-
tral”).
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the reflectance basis matrix with a dark “shade” end-
member [11, 9].

2.2 Several reflection components

In physics-based colour image analysis, the stan-
dard reflection model is the Dichromatic Reflection
Model [10], which describes the reflected light from
a single point light source at a point on an object
surface as a weighted mixture of so-called body re-
flection and surface reflection:

L(0,A) = mp(0)rs (M) EQA) + ms(0)rs(A)EQX),

where 6 is a vector of photometric angles (incident
angle, exit angle, and phase angle) between the inci-
dent light and the observer, ) is the wavelength, F is
the power spectral function of the illuminant, r;, and
rs are the body and surface reflection functions, and
myp and mg are geometrical scaling factors which de-
pend on the photometric angles. A commonly used
special case (Type I) of the model is when the specu-
lar reflectance function does not depend on the wave-
length, i.e., rs(A) = rs (Neutral Interface Reflection),
which is valid for materials having high contents of
water and oil.

Several methods have been proposed to separate sur-
face reflection from body reflection [8, 3, 1, 12]. Some
of these methods use several images (some using po-
larizing filters), and some of them use a single RGB
colour image, mostly in somewhat restricted situa-
tions, for example, only one light source and no in-
terreflections. Some works have also taken into ac-
count interreflections [6, 13, 3], but only in restricted
cases.

2.3 Contribution of this work

In this study the idea is to take a combined approach
to the problem of mixed surfaces and mixed reflection
components using a linear mixing model with multi-
spectral images. Linear basis models for separation
of reflection components have been used before for
RGB images [8, 12, 3], but since the maximum num-
ber of separable (independent) basis spectra equals
the number of bands, only three basis components
can be separated from RGB images. Therefore, an
obvious hypothesis is that with multispectral images
there is potential for handling less restricted scenar-
ious, for example, several mixed illuminants and in-
terreflections of higher order.

The remainder of the paper is structured as follows.
In Section 3, a general linear mixture model will be
proposed that allows mixed multiple scattering re-
flection components to any order. In Section 4, a
case example is studied with an outdoor scene with
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vegetation and soil, and some results for that case
will be shown. Section 5 contains a discussion, and
Section 6 gives a conclusion.

3 Linear mixture model for re-
flection components

The standard dichromatic reflection model describes
the case of single-bounce reflections. In this section
it is proposed how to include transmission, and it is
shown how multiple scatterings may be included in
a linear mixing model. Comments are also given on
model requirements and inversion, and on interpre-
tation of the mixing weights.

3.1 Scattering by transmission

Since scattering by transmission is produced by the
same principles as scattering by body reflection, it
will be regarded as a special case of dichromatic re-
flection, where the surface reflection is zero. Also, it
will be assumed that the transmittance function is
identical to the body reflectance function, and they
will be jointly referred to as the “body spectrum”,
denoted r. Thus, the term “scattering” will be used
as a common term for light-matter interaction in any
of the three forms: body reflection, transmission and
surface reflection.

3.2 Dichromatic scattering of higher
order

Let the spectrum s recorded at a pixel be a mixture
originating from up to M different object surfaces
(with body spectra r;), which may scatter light from
up to N primary illuminants (with spectra e;). As-
sume that the reflectance function is the same for all
points on surfaces of the same type, and that surface
reflection preserves the shape of the illuminant spec-
trum (Neutral Interface Reflection). Then, from the
dichromatic reflection model, all mixtures of scatter-
ings up to order P can be modeled as

s =B w+n,

where BY is a mixing matrix whose columns are
modulated spectra produced by dichromatic scatter-
ings. For zeroth order scatterings (specular reflec-
tion, or direct illumination, from illuminants), the
mixing matrix is

BO:[el €y ... eN]7

and for 1st order scatterings it is

]31 = [el...eNelrl...elrM eer...eNrM].
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Second-order scattering would include the compo-
nents ejriry, ejrire, .... In general, an increased
order of scattering can be included by adding new
columns to the mixing matrix, where the new end-
members are constructed by multiplying the end-
members of the previous order by all the body spec-
tra:
BPt = [BF blr; .

Notice that, because of the neutral interface assump-
tion, higher order scattering involving one or more
surface reflections can not be distinguished from
lower-order scattering with only body scattering.

Obviously, this method is a naive, exhaustive ap-
proach for constructing a linear basis. The number of
columns in the mixing matrix increases quickly with
M and N, and easily becomes high even for simple
scenes. Therefore, it will normally be necessary to
reduce the basis to make it practical for a particu-
lar problem. The case study in the next section will
show an example of this.

3.3 Model requirements and inversion

An essential requirement is that the endmember
spectra are linearly independent. Also, no body spec-
trum must be flat (grey), since it then will be in-
separable from surface reflection. Furthermore, it is
generally expectable that endmembers corresponding
to higher-order scattering are less identifiable than
lower-order scatterings due to a lower signal-to-noise
ratio. Therefore, care must be taken when deciding
which endmembers should be included in the model.

If there are exactly as many endmembers as measure-
ments (spectral bands), the basis is full and a solution
for the mixing weights might be found by inverting
B. If there are more endmembers than bands, the
system is underconstrained, and no unique solution
can be found. Often, there will be fewer endmembers
than bands (undercomplete basis, over-constrained
system), and a least-squares solution must be found.
Also, it is normally necessary to constrain the solu-
tion to be within physically realistic bounds (non-
negative weights, upper bounds on weights and their
sum), which makes it necessary to solve for the
weights using an iterative algorithm instead of a stan-
dard closed-form solution.

3.4 Interpretation of mixing weights

When a spectrum contains distributions from sev-
eral surfaces, it is not straightforward to relate the
weights to abundance fractions. This is because the
geometrically dependent scaling factors (shading and
specularity) as well as the intensity of the illuminants
may vary between the surfaces. Some simplifying
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assumptions will be necessary, as it is known from
remote sensing.

4 Case study:
soil

Vegetation and

Colour image analysis of outdoor vegetation scenes
is often complicated by the fact that leaves not only
reflect, but also transmit a significant portion of the
light they receive. This may confuse, for example, al-
gorithms trying to distinguish plants from the back-
ground, since the background may be coloured by the
light transmitted by the leaves above. Therefore, it
would be useful to be able to detect and quantify the
various scattering components in such scenes, also
including specular reflections.

Interestingly, in [4], ground-based multispectral im-
ages of an agronomic scene were used for spectral
mixture analysis with four reflection components as
endmembers: Sunlit leaves, sunlit soil, shaded leaves,
and shaded soil. Thus, no specular reflection was
considered. Interreflection was only implicitly con-
sidered, since the endmembers were determined from
analysis of manually selected image regions.

4.1 Model

A second-order scattering model will be presented
for images of vegetation and soil. The model will be
the same for all pixels; therefore, it is assumed that
the spectra of the vegetation and the soil do not vary
significantly. Also, only one illuminant spectrum will
be used. This is an important assumption. In over-
cast outdoor scenes it is a reasonable approximation,
but in sunny weather it must be expected to cause
problems. In shadows, for example, the illumination
contribution from the blue sky is more influent than
in the sun.

The illuminant will be denoted e, and the body re-
flectance of the soil will be denoted r; (no transmit-
tance is expected from the soil). It will be assumed
that the transmittance spectrum of leaves is equal to
the body reflectance, and they will be jointly denoted
r,. The endmember spectra up to second order scat-
tering will then be represented by the matrix

B? = [eer, ers er,r; er,r, eryr;|

4.2 Experiment

A multispectral image of some young leaves on a dry
soil was taken with a monochrome camera fitted with
an electronically tunable filter. The camera was of
the model Retina EX from QImaging, and the filter
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was a liquid crystal tunable filter (LCTF) type, the
model was VariSpec VIS from Cambridge Research
& Instrumentation (CRI). 26 bands were used, from
470nm to 720nm, in 10nm intervals. For each band,
expected dark offset was subtracted from the origi-
nal digital number, and the result was then divided
by the integration time and the band sensitivity. A
scaled estimate € of the illuminant spectrum was ob-
tained from an image of a white calibration reference
(Spectralon), and estimates of the leaf and soil spec-
tra, r, and Ty, were measured with a spectrometer. A
mixing matrix B was then constructed as described
above. The resulting endmember spectra are shown
in Figure 1.

e
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soil
er .t

veg veg

2000 - .oe
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r r. .
veg "soll

ro.r.
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5001 e s

500 600
wavelength [nm]

Figure 1: Estimated endmember spectra up to second-
order body scattering.

The original image is shown as an RGB image in Fig-
ure 2. (An RGB image may be created from a mul-
tispectral image by integrating the spectrum mea-
sured at each pixel with some simulated RGB sensi-
tivity functions. Gaussian sensitivity functions were
used, with centres at 475, 550, and 625 nm, respec-
tively, and standard deviations of 25 nm. The func-
tions were scaled (white balanced) using the mea-
sured daylight spectrum é.)

For each pixel, a numerical inversion of the observed
spectrum was performed, solving for the unknown
weights of the reflection components. A least-squares
solution w was found, imposing some additional lin-
ear constraints on the weights: 0 < w; < 1.5, 1 <
i < 6, and Z?zl w; < 3. The iterative optimization
was done using the MATLAB function 1sqlin. Typ-
ically, between 3 and 7 iterations were made, and for
no pixel the number of iterations exceeded 16.

4.3 Results

The absolute values of the estimated weights w; are
not very illustrative, since they follow the intensity
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Figure 2: Original image (shown in RGB).

of the signal. Therefore, relative weights are shown,
which are defined as the fraction of the total sum of
weights:

N w;
fi=
Zj:le

Weight fractions for all six reflection components are
shown in Figure 3.

From w it is possible to make a reconstruction s
which contains only the reflection components of in-
terest:

s = Bw,
where w; = w; for all ¢ corresponding to the com-
ponents of interest, and w; = 0 for all other i. For
example, in Figure 4 are shown the individual contri-
butions of surface reflection and second-order body
scattering. Also, certain classes of reflections may be
removed, as shown in Figure 5.

4.4 Comments on results

When assessing the results, it must be pointed out
that some leaves were moving during the image ac-
quisition? (especially the leaf in the bottom of the
image and the one above it) and therefore show some
unreliable spectra, especially on the edges.

Since no “ground truth” is available, an evaluation
must be based on visual inspection. Generally, the
estimated weight fractions seem believable. Perhaps
the most questionable result is that the soil shows
high fractions of surface reflection, since soil is not
expected to be specular. There may be several ex-
planations for the results:

e There are some grey stones, whose body reflec-
tion can not be distinguished from surface re-
flection.

2The total acquisition time was several seconds
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e In shaded portions of the soil (shaded side of
stones etc.), the used single-illuminant model is
not good, since the bluish sky illumination is
more prominent here. Therefore, in the lack of
a e4yTs endmember, the € endmember may be
used instead to account for the observed spectra.

Also, in general, saturated pixels (although they are
few) may tend to be explained as surface reflections
since their spectra are normally more flat than they
should have been.

0.2 0.4 0.6 0.8 02 04 06

er r . er .r .
veg soil soil soil

0.2 04 0.6 0.8

02 04 06

Figure 3: Estimated weight fractions for all sixz reflec-
tion components. The fractions are mapped to grey
scales, stretched for visualization purposes.
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Figure 4: FEstimated contributions from surface re-
flection and second-order body scattering. (For vi-
sualization, the images are converted to RGB and
intensity stretched.)

all — eryeg — €Ts0i

Figure 5: Image reconstructions using combinations
of estimated reflection components. Top, specular
reflections and second-order body scatterings. Bot-
tom, only first-order body scatterings. (For visualiza-
tion, the images are converted to RGB and intensity
stretched.)
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5 Discussion

The experimental results indicate that multispectral
imaging has the potential to separate multiple re-
flection components, including higher order scatter-
ing, with linear unmixing. Multiple scatterings is a
nonlinear process in the resulting spectra, but the
naive method proposed to construct and expand a
linear basis from a few illuminant and material spec-
tra proved useful.

Compared to other ways of representing imaging us-
ing linear bases (PCA, ICA, cosine transform, etc.),
the proposed basis representation has some interest-
ing properties. Instead of being “blindly” constructed
from data out of pure statistical criteria (such as oth-
ogonality or independence of basis components), it is
based on a physics-based model of the image forma-
tion, and therefore from the start provides a more
“semantic” and physically meaningful basis represen-
tation than standard methods.

The obvious problem, of course, is how to determine
the mixing basis. There are at least two aspects of
this problem, 1) how many illuminant and material
spectra, and how many orders of scatterings, to in-
clude in the model, and 2) to identify the shapes of
the illuminant and material spectra. Since this is
model-based approach, the answer must depend on
the context. For an industrial scenario with well-
controlled lighting and well-known homogenous ob-
jects, an appproriate model should be easily found.
For an outdoor scene of vegetation and soil, a dy-
namic scene parameter estimation might be neces-
sary, for example, classification of illumination con-
ditions [2], estimation of light colour temperature(s),
and estimation of soil and leaf spectra by matching
image data with spectral libraries or a priori given
models of mean and variation.

Instead of using the same basis for all pixels, a vari-
able basis could be useful in at least two cases.

e When the variation of the material spectra is
high, for example, in natural scenes.

e When within-pixel mixing of surfaces is not rel-
evant (such as the image used in the experi-
ment). The basis might then be reduced by ex-
cluding reflection components that can be ruled
out by, for example, a rough pre-classification of
the pixel.

In addition to the problem of determining the mix-
ing model, an important numerical issue is, given a
model, how to estimate the weights from an observed
spectrum. Some questions are, how many bands are
necessary, what is the dependence on the signal-to-
noise ratio, what are the consequences of overlapping
(correlated) bands, etc.. Also, some improvement on
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the least-squares inversion might be achievable by
weighting the observations according to their noise
variances, which may be estimated from radiometric
sensor calibration [5].

Finally, there is the question of how to use or inter-
pret the estimated weights for the different reflection
components. To begin with, for human observers,
they may improve our image understanding and fur-
ther our insight into the phenomena in play in a
given scene. Also, as shown in the results, an obvious
use might be to eliminate the reflection components
that might confuse automated analysis algorithms.
The idea that has initiated this study is to use the
weights to perform within-pixel segmentation in the
case of mixed pixels. This is not a straightforward
task, however, and a formal study of the interplay be-
tween weights, abundance fractions, and geometrical
scaling factors is still a subject to further research.

6 Conclusion

Based on the Dichromatic Reflection Model, a
method has been proposed to construct a linear basis
for separation of reflection components with scatter-
ing of any order. Experimental results showed that
it is possible to unmix multiple reflections from mul-
tispectral image data. Possible issues for future re-
search include how to automatically determine the
mixing basis, and how to use the mixing weights for
segmentation.
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Abstract denoted "actions”, and then building a classifier based on
some kind of learning scheme applied to some training data.
In the last decade speech processing has been applied inmhe result of the training is a sequence of values in some
commercially available products. One of the key reasons state-space for each action. The different learnt seqsence
for its success is the identification and use of an underlying are compared to the input data during run-time and a classi-
set of generic symbols (phonemes) constituting all speechfication is carried out.
In this work we follow the same approach, but for the prob-  |n some systems, however, a different approach is fol-
lem of human body gestures. That is, the topic of this pa-jowed!. This approach is based on the idea that an action
per is how to define a framework for automatically finding can be represented by a set of shorter (in terms of time dura-
primitives for human body gestures. This is done by consid-tion) primitives. These primitives take different namestsu
ering a gesture as a trajectory and then searching for points as movemes [4], atomic movements [5], activities [2], be-
where the density of the training data is high. The trajecto- haviors [11, 16], snippets [8], dynamic instants [15], esat
ries are re-sampled to enable a direct comparison between[3], and examplars [13].
the samples of each trajectory, and enable time invariant  Besjdes the different names used to describe the notion
comparisons. This work demonstrates and tests the primi-gf motion primitives, the approaches also differ in another
tive’s ability to reconstruct sampled trajectories. Prainig way, namely whether a primitive is dependent or indepen-
test results are shown for samples from different test perso  dent on time. The approaches based on independence find
performing gestures from a small one armed gesture set. e inspiration in key-frame animation. Key-frame anima
tion is based on the idea that animating an articulated bbjec
. in a time sequence is a matter of defining the configurations
1 Introduction for a number of distinct frames (key-frames) and then inter-
polate all in-between frames using e.g., inverse kinermatic
In the last decade speech synthesis and speech recognitiomapping this concept to the problem of recognizing human
have transferr_ed from only being research topics into COrépody language converts the problem to a matter of recog-
technologies in commercially available products. One of nizing a number of single configurations and ignoring all
the key reasons for this transfer is the identification and jn_petween configurations. This concept is sound but intro-
use of an underlying set of generic symbols constituting all §,,ces a number of problems including the problem of defin-

speech, the phonemes. Phonemes are basically small soundg which configurations (or key-frames) that best represen
samples that put together in the correct order can generatg,, action.

all the words in a particular language, for example English. In the work by Racet al. [15] the problem of recogniz-

_ Itis widely accepted that more than half of the informa- jn4 qynamic hand gestures is addressed. They track a hand
tion transmitted in a human-human interaction is done by 4 time and hereby generate a trajectory in 3D space (x-
other means than speech, and that the human body languagg, 4 y-position, and time). They search the trajectory for
is responsible for most of this information. Furthermoaoe, f significant changes, denoted dynamic instants, which are
better human-computer interfaces to be build the computeryqfined as instants with a high curvature. In the work by
might need to be equipped with the ability to understand the 3, [7] the problem of finding key-frames for cyclic ac-

human body language [14]. Since automatic recognition of g jike walking and running, is addressed. They capture
human body language is a desired ability research has been

conducted in this area. Much of this research is based on ithese approaches are sometimes motivated directly by thennaftio
defining a subset of the human body language, normallyfinding “phonemes” in the human body language.
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the joint angles using an optical motion capture system andPreprocessing The captured data can have a very high di-

compactly represent a time sequence of such data using a  mensionality and can therefore be represented more
point distribution model. Since the actions are cyclic they compactly using, e.g., PCA. Furthermore, the data
argue that the likelihood of a configuration being part of an might be noisy and is therefore often filtered before

action can be measured as the Mahalanobis distance to the  further processing.

mean. The key-frames are then defined as configurations_ . . i i .
where the Mahalanobis distance locally is maximum, i.e. Primitives It needs to be decided how to define a primitive.
key-frames are the least likely configurations! T Often this is done via a criteria function which local

The alternative to the key-frame approach is to represent minima/maxia defines the primitives.

the entire trajectory (one action), but doing so using a num- application The chosen method needs to be evaluated.
ber of smaller sub-trajectories. That is, the entire ttajgc This can be with respect to the number of primitives
through a state space is represented as opposed to only rep-  versus the recognition rate, but it can also be a com-

resenting a number of single points. Several problems are  parison between the original data and data synthesized
associated with this approach, for example, how to define using the primitives.

the length of the sub-trajectories. If too long then the prim
tives will not be generic. If too short the compactness of the  Our long term goal is to find a set of generic primitives
representation is lost. that will enable us to describe all (meaningful) gestures co

In the work by Howeet al. [8] the problem of captur-  ducted by the upper body of a human. Our approach is to
ing the 3D motion of a human using only one camera is investigate different data representations together difth
addressed. The main body parts are tracked in 2D and comferent criteria functions. We seek to find primitives for ot
pared to learned motion patterns in order to handle the in-recognition and synthesis, and evaluate the relationsip b
herent ambiguities when inferring 3D configurations from tween the two.
2D data. The learned motion patterns are denoted "snip- This particular paper presents the initial work towards
pets” and consist of 11 consecutive configurations. Theseour goal and the focus of the paper is to obtain experi-
are learned by grouping similar motion patterns in the train ences with all the topics listed above. Concretely we de-
ing data. In the work by Bettingest al. [1] the problem  fine a number of one-armed gestures and for each gesture
of modeling how the appearance of a face changes ovewe evaluate a method used to find primitives. The criteria
time is addressed. They use an active appearance model tlunction is based the density of a trajectory. We then use
represent the shape and texture of a face, i.e., one point ithese primitives to reconstruct the complete gestures. Fi-
their state-space corresponds to one instant of the shape amally, the reconstructions are compared to reconstrugtion
texture. They record and annotate a number of sequenceg1ade without use of our density measure, and an optimized
containing facial changes. Each sequence corresponds to ¥ersion of our approach.
trajectory in their state space. The states with the highest The paper is structured as follows. In section 2 the ges-
densities are found and used to divide the data into sub-ture data and the applied motion capture technique are pre-
trajectories. These sub-trajectories are modeled by Gaussented. In section 3 we describe how the data is normalized.
sian distributions each corresponding to a temporal primi- In section 4 the concept behind the primitives is given. In
tive. section 5 we present the density measure used in the criteria

The different approaches found in the literature that usesfunction, and in section 6 we combine this with a distance
the notion of motion primitives more or lees follow the Mmeasure and defined how the criteria function is evaluated
structure below. in order to select the primitives. In section 7 the test tssul

are presented and in section 8 a conclusion is given.

Temporal content Either only a single time instant define

a primitive or a primitive is based on a consecutive
number of temporal instants. 2 The Gesture Data

Motion capture In order to find the primitives the motion ~ The gestures we are working with are inspired by the work
data needs to be captured. This could for example be©f [12] where a set of hand gestures are defined. The ges-

done by an optical system or electromagnetic sensors.tures in [12] are primarily two-hand gestures, but we sim-
plify the setup to one-hand gestures in order to minimize the

Data representation What is measured by the motion cap- complexity and focus on the primitives. Some of the ges-
ture system is normally the 3D position of the different tures were exchanged with other more constructive ones.
body parts. These measurements are often representetihe final set of gestures are, as a result of this, all com-
used normalized angles. Furthermore, the velocity andmand gestures which can be conducted by the use of only
acceleration might also be considered. one arm. The gestures are listed below.
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Stop: Hand is moved up in front of the shoulder, and then
forward (with a blocking attitude), and then lowered
down.

Point forward: A stretched arm is raised to a horizontal
position pointing forward, and then lowered down.

Point right: A stretched arm is raised to a horizontal po-
sition pointing right, and then lowered down.

Move closer: A stretched arm is raised to a horizontal po-
sition pointing forward while the palm is pointing up-
wards. The hand is then drawn to the chest, and low-
ered down. \ I J)

Move away: Hand is moved up in front of the shoulder
while elbow is lifted high, and the hand is then moved Figure 1: Placement of sensors. The figure is adapted from
forward while pointing down. The arm is then lowered [10].
down.

Move right:  Right hand is moved up in front of the left  considered to both start and stop when the arm is hanging
shoulder. the arm is then stretched while moved all the re|axed from the shoulder. A velocity threshold ensures tha
way to the right, and then lowered down. the small movements done between gestures is added to nei-

Move left: Same movement aMove right but back- ther, and simplifigs the separation of the individual gesstur
wards. The trajectories are therefore homogeneously re-

sampled in order to enable time invariant comparisons. This

Raise hand: Hand raised to a position high over the head, is done by interpolating each gesture, in the 4D Euler-space
and then lowered down. by use of a standard cubic spline function. The time and ve-

locity information is, however, still available from param

Each gesture |s_carr|e_d out a number of times by a NUM-ter5 in the new sample points, even though this is not used
ber of different subjects, in order to have both data forinte ;. .o \work. The homogeneously re-sampling allows for

person comparisons, and comparable data for each 9esturg calculation of the statistics for each gestarsl at each

by several different subjects. i i i sample point. Concretely, for each gesture we calculate the
The gestures are captured using a magnetic tracking SYSiean and covariance for each sample point, i.e., each in-

tem with four sensors: one at the wrist, one at the elbow, g, of; This gives the average trajectory for one gesture

one at the shoulder, and one at the torso (for reference), ag,,nq with the uncertainties along the trajectory repreesn
shown in figure 1. The hardware used is the Polhemus Fastby a series of covariant matrices, see figure 2

Trac [9] which gives a maximum sampling rate 2fH z,
when using all four sensors.

In order to normalize the data and make it invariant to
body size, all the collected 3-dimensional position data is
converted to a time sequence of four Euler angles: three at
the shoulder and one at the elbow. Besides normalizing the
data, this transformation also decreases the dimensipnali
of the data from 12 to only 4 dimensions.

3 Normalizing the Data

In order to compare the different sequences they each need ~ M ®“®

to be normalized. The goal is to normalize all the gesture

trajectories so each position on a trajectory can be destrib Figure 2: Six example trajectories for a fictive gesture tl ef

by one variable, wheret € [0; 1]. Input after cubic spline interpolation. Middle: Input ind-
The first step is to determine approximately where the iNg the position of the mean points. Right: The sizes of the

gestures’ endpoints are. In this experiment we have cho-Mean points indicate the density of the curves.

sen to do so by defining a gesture set where all gestures are
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4 Defining Primitives of Human Ges-
tures

This section gives an intuitive description of which criger
define a good primitive candidate. In order to find the prim-
itives we apply the following reasoning. A primitive is a
particular configuration of the arm, i.e., of the four Euler a
gles. For a configuration to qualify as a good primitive can-
didate the configuration must appear in all the training,data
at approximately the same time. For such a configuration to
exist, all the training data must vary very little at this i

in space and time, which will resultin a very high density of
training trajectories at this position in space. The degruit

a particular configuration expresses how close the original

variances from a data point to the mean. It is defined as

P =(x—p)C ! (x—p) 1)

wherex is a data pointu is the mean for this particular
time instant, andC is the covariance matrix. ¥fis constant
then equation 1 becomes a hyper ellipsoid in 4D space. The
data points on its surface have the same variance-distance
to the mean. The volume of a hyper ellipsoid with fixed
Mahalanobis distance is a direct measure of the density of
the data at this time instant. A big volume corresponds to a
low density where the points are spread out, whereas a small
volume corresponds to a high density as the same amount of
data are located at a much smaller space. The volume of a
hyper ellipsoid which is expressed as in equation 1 is given

sequences passed this configuration. The closer they passesk [6]

the higher the density, corresponding to a good candidate
The logic behind this is very simple: At points on the recon-
structed trajectory where all the training data have véitigli
variance, we might also assume that future gestures of thi
kind will parse very close. It therefore makes good sense to
compare an unknown trajectory to our known reconstructed
trajectory, at exactly the points where all the trainingadat
trajectories laid closest, see figure 2. However, just selec
ing then points with the highest density will result in very
inefficient primitives. The point right next to a high depsit
point is also likely to have a high density, and might there-
fore also be selected if density were the only criteria fer th
selection of primitives. One primitive is enough to direct

w2t

V= 5

C|? 2)

SWhere|C| is the determinant of the covariance matrix. We

are notinterested in the actual value of the volume but rathe

the relative volume with respect to the other time instants.
1

Therefore equation 2 can be reducedito= |C|Z and is

illustrated in figure 2. Below we give an intuitive interpre-

tation of this measure.

6 Selecting the Primitives

the interpolated curve through an area, and also enough nbove we have defined and presented a method for calcu-
act as control point when classifying unknown curves. So lating the density measure, and are now ready to include

selecting more primitives at places where the trajectory al
ready parses by will offer little to the reconstruction oéth
original trajectory. It is therefore also interesting tohsmsv
well each primitive can improve the reconstruction, even
thou the benefits from the density measure is most visible
in recognition.

In the next two sections we describe how we calculate the
density measure, and how this is used to select our primi-
tives.

5 Measuring the Density

In section 3 the points constituting each trajectory weire no
malized so that the trajectories for different test sulsjeaen

this into one criteria function that can be evaluated in orde
to find the primitives. The criteria function will combine
the density measure with the distance between the homoge-
neously re-sampled mean gesture trajectasy &nd a tra-
jectory made by interpolating the endpoints and the first se-
lected primitives, using a standard cubic spline functign (
for each of the four Euler angles. In order to make a direct
comparison, both the mean gesture trajectory and the inter-
polated cubic spline trajectory were given the same amount
of points. This enables a calculation of tegor-distance
(6) between the curves for each point pair. If multiplying
this error distance at each point with the densify,(we can
get a distance measure much similar to the Mahalanobis.
Since the four angles might not have the same dynamic
ranges and more freedom to optimize future parameters is

be compared. That is, each trajectory was re-sampled SQyesjred, the criteria function\] is defined as a weighted

that they each consist of the same amount of points which

sum of error measurea() for each of the four Euler angles:

are aligned. We can therefore calculate the covariance ma-

trix for each time instant.

The covariance matrices for each time instant express

/\(t) = wlozl(t) + wgag(t) + w30¢3(t) + (U40é4(t) (3)

both how data are correlated but also how they are spread
out with respect to the mean. The Mahalanobis distance ex-where the four weights;, + ws + w3 + wy = 1, and the
presses this relationship by defining a distance in terms oferror measure:
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This method focuses solely on the primitives’ ability to
ai(t) = Vi(t) - 6,(2)? 4) reconstruct the original trajectories, and might have an un
wanted negative effect on the primitives’ ability to recog-
nize gestures, a problem that future tests might reveal. See
the following section 7 for test results on both previous de-
6i(t) = vV (mi(t) — ci(t))? ®)  scribed methods.
Given the criteria function in equation 3 we are now
facgd with _the problem of finding thbf best_ p_rl_mltl\_/es for 7 Results
a given trajectory. The most dominant primitivg, is ob-
viously defined as

where:

X1 = argmax () (6)

In order to find the second primitive, the first one is
added to the cubic spline function){ and the interpolated e
trajectory is then recalculated, so new error distance mea-
sures can be calculated, see figure 3. This procedure can b 12 "
repeated until the sum of alk] falls below a given thresh- 200} —H0—0—~00—8 1§ 200f——20—0—~00 8140

old, or the number of primitives reaches an upper threshold. *| . — 15°M
100 <o 100

50 50
200! 20 40 60 80 100 200" 20 40 60 80 1

150" e~ P 1SOW

100 100

20 40 60 80 100 140 0 40 60 80 100
120 I

100

50 50
0

10

Figure 3: Calculating the error-distance for one angle. : 5 /\
Solid: The mean gesture trajectory. Dashed: Interpolated |

cubic spline. Dotted: Variance of training data. Circles:
Selected primitives and endpoints.

Figure 4: Reconstruction and error. Solid: The mean ges-
6.1 Optimizing the Primitive’s Position ture trajectory. Dashed: Interpolated cubic spline. Obtte
Variance of training data. Circles: Selected primitived an
Placing the primitive where the density or error is largest endpoints. A: With 2 primitives. C: With 8 primitives.
might be a fairly good solution if the primitives are only to
be used for recognition, butin respect to reconstructian th  The tests described in this section were made on a train-
solution might be very far from optimal. . ing data set based on the eight one arm gestures described
By doing a brute force recalculation of the interpolated jn section 2. Three tests persons conducted each gesture no
trajectory by placing every primitive candidate in evergpo  |ess than ten times resulting in a total of 240 gestures

sible position for each given number of primitives, an op-  The evaluation of our approach consists of two tests for
timal solution should present it self for the given gesture, gach action:

based on the reconstruction criteria. This method demands ) o o
a very high amount of calculations and is therefore also very ® Investigate how many primitives are required in order
time consuming, and only valuable for the given data set. to reconstruct the original gestures.

Instead, tests were done with another much faster
method. After each new primitive was selected by the rules
described in the previous section, each selected primitive
was tested in a position one Step to each Side a|0ng the It iS our be“ef that the Only I’eaSOI’lab|e Way to eVaante
mean gesture trajectory. Only if they could lower the to- whether the reconstruction of a gesture is life like enowgh t
tal error sum, would they move to this position, and as long look natural, is to have a robot or virtual human avatar per-
as just one primitive could be moved, all primitives were forming the reconstructed gestures before a large number of
tested again. This method should bring the error sum to &  2aqditional 160 training gestures were made but had to be rechove
local minimum, but not to a guarantied global minimum.  from the set do to extremely low signal to noise ratio.

e Evaluate the optimization step, and determine whether
or not this should be used in our continuous work.
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Figure 5: Reconstruction and error (Optimizted versiol
Solid: The mean gesture trajectory. Dashed: Interpola
cubic spline. Dotted: Variance of training data. Circle
Selected primitives and endpoints. A: With 2 primitives. (
With 8 primitives.

Error (Log)

test persons, and having these evaluate the result. This
however not within range of our possibilities at this pomt
our research. Instead, all reconstructions were evalugteu

the research group from a large number of graphs such as.. ) - .
= . igure 6: Logaritmic scale of error vs. number of primi-
those shown in figures 4 and 5, and a number of rotating 3D . . : A
tives. Solid: Reconstruction error after primitive seiect

curves depicturing the trajectories in three of the foureEul without the density measure. Dashed: Reconstruction error
angles. The graphs show the four angle spaces and error - ym L g
. . after primitive selection with the density measure. Dash-
measure of the gestuMove Leff with two endpoints and i : - . .
L : dot: Reconstruction error after primitive selection witho
2, and 8 primitives. Figure 4 show the result of the recon-

struction without the optimizing step, where as 5 depicture the density measure, but with optimization. dotted: Re-

the reconstruction of the exact same angle spaces, but Withconstructlon error after primitive selection with the digns

the optimization. measure and optimization.

Number of Primitives

The total error sum between original and reconstructed
trajectory of each gesture, was collected with the number of
primitives ranging from 1-10. Figure 6 shows four graphs
of the decreasing error sums: One there the primitives are
selected only as the point with the largest distance to the
original trajectory. Second graph shows the same, but where
the density measure have been used in the selection process.
The last two graphs show each of these methods after the
optimization method has been conducted.
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8 Conclusion IEEE Trans. on Pattern Analysis and Machine Intel-
ligence 19(12), 1997.

In this paper we have presented a framework for automati-

cally finding primitives for human body gestures. A set of

gestures is defined and each gesture is recorded a number ; o

of times using a commercial motion capture system. The Computer Vision and Pattern Recognitjdsan Juan,

gestures are represented using Euler angles and normalized ~ Puerto Rico, 1997.

The normalization allows for calculation of the mean trajec  [5] |. Campbell and A.F. Bobick. Recognition of Human

tory for each gesture along with the covariance of each point Body Motion Using Phase Space Constraintsnter-

of the mean trajectories. For each gesture a number of prim- national Conference on Computer Visj@ambridge,
itives are found automatically. This is done by comparing Massachusetts, 1995.

the mean trajectories and cubic spline interpolated recon- .
structed trajectories by use of a error measurement based onl6] R.O. Duda, P.E. Hart, and D.G. StorRattern Classi-

] C. Bregler. Learning and Recognizing Human Dy-
namics in Video Sequences. I@onference on

density. Our framework were implemented in two slightly fication Wiley & Sons, Inc., 2 edition, 2001.
different versions, were the optimizted but slower version [7] J. Gonzalez.Human Sequence Evaluation: The Key-
proved to be superior in repect to reconstruction. Figure 6 Frame Approach PhD thesis, Universitat Autonoma

clearly shows that the density measure is not only usable for de Barcelona, Barcelona, Spain, 2004
recognition but will also improve reconstruction by approx
imately a factor two for four or more primitives, as long as  [8] N.R. Howe, M.E. Leventon, and W.T. Freeman.

there position is optimized for the given number of primi- Bayesian Reconstruction of 3D Human Motion from
tives. It is a clear indication that the density measure kEhou Slngle-Camera _Vldeo. IAdvances in Neural Infor-
be taken into consideration in the future. Even thou the fig- mation Processing Systems. MIT Press, 2000.

ure show that the density measure might result in larger er- [9]
rors in the reconstruction without the optimization, it Iwil
clearly have a large advantage when using the same prim-
itives for recognition. lIts is still hard to say exactly how
many primitives are needed to get a natural reconstruction[10] http://www.3dcrimescene.com/. Typical cold case re-
of a given gesture. But our tests indicate that somewhere construction., January 2005.
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Behavior Primitives from Human Motion Data. In-
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tems Lausanne, Switzerland, Sep 2002.
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Abstract

A deformable template method for eye tracking
on full face images is presented. The strengths
of the method are that it is fast and retains accu-
racy independently of the resolution. We com-
pare the method with a state of the art active

contour approach, showing that the heuristic method

15 more accurate.

1 Introduction

Eye Tracking is the process of finding and track-
ing the eye of a human in a sequence of images.
Specifically finding and tracking the iris or pupil
can be used to infer the direction of interest of
the human subject, this is denoted gaze.

Gaze is very important for human communi-
cation and also plays an increasing role for hu-
man computer interaction. Gaze can play a role,
e.g., in understanding the emotional state for
humans [1, 2|, synthesizing emotions [5], and for
estimation of attentional state [16]. Specific ap-
plications include devices for the disabled, e.g.,
using gaze as a replacement for a computer mouse
and driver awareness monitoring to improve traf-
fic safety [8].

It has been noted that the high cost of good
gaze detection devices is a major road block for
broader application of gaze technology, hence,
there is a strong motivation for creating systems
that are simple, inexpensive, and robust [7].

Eye tracking is an active area of research.
COGAIN is a network of excellence on Com-
munication by Gaze Interaction, supported by
the European Commission’s IST 6th framework
program. COGAIN integrates cutting-edge ex-
pertise on interface technologies for the benefit
of users with disabilities. The network aims to
gather Furope’s leading expertise in eye track-

Figure 1: Examples of the dataset. The region sur-
rounding the eyes can be found in various ways. We use
a head tracking algorithm[8] based on Active Appear-
ance Models. A subimage is extracted and subsequently
processed by the eye tracking algorithms.

on assistive technologies for citizens with motor
impairments[3]. The authors of this paper are
members of this network, and it summarizes re-
search presented in|[11].

The paper is organized as follows. First a
brief review of some of the methods used for eye
tracking is given in section 2. Section 3 describes
the proposed deformable template method. Sec-
tion 4 describes the EM-contour method from
|7] with additional constraints on the model.
The two models are compared in section 5. Fi-
nally some concluding remarks are drawn in sec-
tion 6.

2 Recent Work

Detection of the human eye is a difficult task due
to a weak contrast between the eye and the sur-
rounding skin. As a consequence, many exist-
ing approaches uses close-up cameras to obtain
high-resolution images|7][19]. However, this im-
poses restrictions on head movements. The prob-

ing integration with computers in a research project lem can be overcome by use of a two camera
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setup[18][20]. One camera covering the head
and controlling a second camera, which focuses
on one eye of the person. Matsumoto and Ze-
linsky[12] utilizes template and stereo matching.

In many existing approaches the shape of iris
is modeled as a circle [9][10][12][20]. Since the
shape and texture of the object is known, a tem-
plate model can be used with advantage[8][15].
J. Gracht et al.|17] utilizes an iris template gen-
erated by a series of wavelet filtering.

Wang et al.|18] detects the iris using thresh-
olding, morphology and vertical edge operators.
An ellipse is fitted to the resulting binary image.

A probabilistic formulation of eye trackers
has the attraction that uncertainty is handled
in a systematic fashion. Xie et al.[20] utilizes
a Kalman filter with purpose to track the eyes.
The eye region is detected by thresholding and
the center of an eye is used for motion com-
pensation. The center of this iris is chosen as
tracking parameter, while the gray level of the
circle modeled eye is chosen as measurement|21].
Hansen and Pece propose an active contour mo-
del combining local edges along the contour of
the iris|[7]. The contour model is utilized by a
particle filter.

A generative model explaining the variance
of the appearance of the eye is developed by
Moriyama et al.[13]. The system defines the
structures and motions of the eye. The structure
represents information regarding size and color
of iris, width and boldness of eyelid etc. The
motion is represented by the position of upper
and lower eyelids and 2D position of the iris.
Witzner et al. utilizes an Active Appearance
Model[6].

Based on the center of iris estimate, the gaze
direction can be computed utilizing various meth-
ods. Stiefelhagen et al.[15] utilizes a neural net-
work with the eye image as input. Witzner
et al.[6] uses a Gaussian process interpolation
method for inferring the mapping from image
coordinates to screen coordinates. Ishikawa et
al. [8] exploits a geometric head model, which
translates from 2D image coordinates to a di-
rection in space relative to the initial frame.

The present paper is inspired by the line of
thinking mentioned above. We focus on some
of the image processing issues. In particular we
propose a robust algorithm for swift eye tracking
in low-resolution video images. We compare this
algorithm with a proven method[7| and relate

the pixel-wise error to the precision of the gaze
determination.

3 Deformable Template Match-
ing

Modeling the iris as a circle is well-motivated
when the camera pose coincides with the opti-
cal axis of the eye. When the gaze is off the
optical axis, the circular iris is rotated in 3D
space, and appears as an ellipse in the image
plane. Thus, the shape of the contour changes
as a function of the gaze direction and the cam-
era pose. The objective is then to fit an ellipse
to the pupil contour, which is characterized by
a darker color compared to the iris. The ellipse
is parameterized,

X = (Czacya)\laA279)> (1)

where (cz,¢y) is the ellipse centroid, A; and Ao
are the lengths of the major and minor axis re-
spectively. 6 is the orientation of the ellipse.

/ ™~

Figure 2: The deformable template model. Region P
is the inner circle, and region B is the ring around it.

The model proposed here is based on the re-
lationship between pixel values in two regions,
see figure 2. The pupil region P is the part
of the image I spanned by the ellipse parame-
terized by x. The background region B is de-
fined as the pixels inside an ellipse, surround-
ing but not included in P, as seen in figure 2.
When region P contains the entire object, B
must be outside the object, and thus the differ-
ence in average pixel intensity is maximal. To
ensure equal weighting of the two regions, they
have the same area. The area of the inner el-
lipse P is Ap = wA1As. The shape parameters
of B should satisfy the constraint on the area
Ap/p—Ap = Ap. Asa consequence, the param-
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eters is defined as xg = (cgc, Cy, V21, V29, 9),
while xp is defined as (1).

The pupil contour can now be estimated by
minimizing the cost function,

£ = Av(P) — Av(B), 2)

where Av(B) and Av(P) are the average pixel
intensities of the background - in this case the
iris - and pupil region respectively.

The model is deformed by Newton optimiza-
tion given an appropriate starting point. Due
to rapid eye movements|[14], the algorithm may
break down if one uses the previous state as ini-
tial guess of the current state, since the starting
point may be too far from the true state. As a
consequence, we use a simple ‘double threshold’
estimate of the pupil region as starting point.

Figure 3: The blue ellipse indicates the starting point
of the pupil contour. The template is iteratively de-
formed by an optimizer; one of the iterations is depicted
in green. The red ellipse indicates the resulting estimate
of the contour.

An example of the optimization of the de-
formable model is seen in figure 3.

3.1 Constraining the Deformation

Although a deformable template model is capa-
ble of catching changes in the pupil shape, there
are also some major drawbacks. Corneal reflec-
tions, caused by illumination, may confuse the
algorithm and cause it to deform unnaturally.
In the worst case, the shape may grow or shrink
until the algorithm collapses.

We propose to constrain the deformation of
the model in the optimization step by adding
a regularization term. Assume the parameters
defining an ellipse is normally distributed with
mean u and covariance Y. The prior distribu-

Cost Function p(x) E+K(1-p(x))

4 6 8 10 12
A A 1

4 6 8 10 12
A

Figure 4: Given an appropriate starting point x. The
pose and orientation are kept fixed, while the shape pa-
rameters are varied. Note that the surface plots are not
- as expected - smooth. This is due to rounding in the
interpolation when evaluating the image evidence of the
deformable template. (Left) The image confidence given
the state - warmer colors means more likely. (Middle)
The prior probability is a normal distribution with a
given mean value p and covariance X. (Right) Combin-
ing the image evidence and prior according to (4) yields
the constrained estimate.

tion of these parameters are then defined,

px) = N ) x xp (5= "5 x = ) )
®)

where the normalization factor has been omit-
ted. The mean and covariance are estimated in
a training sequence. At last the optimization
of the deformable template matching method is
constrained by adding a regularization term,

E=Av(P)-Av(B)+ K(1-p(x)), (4)

where IC is the gain of the regularization term.

The relevance of constraining the deforma-
tion is visualized in figure 4. A suitable starting
point x is chosen. The pose and orientation are
kept fixed, while the shape parameters are var-
ied. In this case the true shape parameters A\;
and Ag are approximately eight. The image con-
fidence as a function of the shape parameters is
depicted to the left, while the prior distribution
is seen in the middle of figure 4. Combining
the image confidence with a prior according to
(4) yields the constrained estimate, which is de-
picted to the right in figure 4.

By use of the shape constraints, we incorpo-
rate prior knowledge to the solution. The ro-
bustness is increased considerably and the pa-
rameters are constrained to avoid the algorithm
to break down due to infinite increase or de-
crease of parameters.

The deformable template matching method
is seen applied with and without constraints in
figure 5. The constrained estimate is seen to be
less sensitive to noise due to reflections.

37



Figure 5: The deformable template matching method
applied without constraints is seen in green, while the
red ellipse depicts the constrained version . The con-
strained estimate is seen to be less sensitive to noise due
to reflections.

4 EM Contour Tracking

The iris is circular and characterized by a large
contrast to the sclera. Therefore, it seems ob-
vious to use a contour based tracker. Witzner
et al.[7] describe an algorithm for tracking using
active contours and particle filtering. A genera-
tive model is formulated which combines a dy-
namic model of state propagation and an obser-
vation model relating the contours to the image
data. The current state is then found recursively
by taking the sample mean of the estimated pos-
terior probability.

The proposed method in this paper is based
on |7], but extended with constraints and robust
statistics.

4.1 The Dynamic Model

The dynamic model describes how the iris moves
from frame to frame. Again, the iris is modeled
as an ellipse and the state vector x consist of the
five parameters defining an ellipse as defined in
equation 1.

To define the problem of tracking, consider
the evolution of the state sequence

xXpr1 = frpi{x, t € N}, (5)
of a target, given by
X1 = (%, Vi), (6)

where fiy1 is a possibly non-linear function of
the state x; and {v;,t € N} is an independent
identically distributed process noise sequence.

The objective of tracking is to recursively es-
timate x;41 from the measurements,

Mt+1 = ht+1 (Xt—l—l, nt-l—l)a (7)

where hy, 1 is a possibly non-linear function and
{n441,t € N} is an i.i.d measurement noise se-
quence.

The pupil movements can be very rapid and
is therefore modeled as Brownian motions(AR(1)).
Thus the evolution of the state sequence (6) is
modeled,

X1 =X + Ve, v~ N(0,%), (8)

where X; is the time dependent covariance ma-
trix of the noise. The time dependency compen-
sates for scale changes, which affects the amount
of movement. Larger movements is expected
when the ellipse appears large, since the posi-
tion of the eye is nearer to the camera. Con-
trary, when the eye is farther from the camera,
smaller movements are expected. Hence, the
first two diagonal elements of 3; corresponding
to ¢; and ¢, are assumed to be linear dependent
on previous sample mean.

4.2 The Observation Model

The observation model consists of two parts;
a geometric component defining a probability
density function over image locations of con-
tours and a texture component defining a pdf
over pixel gray level differences given a contour
location. The geometric component models the
deformations of the iris by assuming Gaussian
distribution of all sample points along the con-
tour. The gray level information is gathered by
sampling a discrete set of points along the nor-
mals of all contour sampling points. Both com-
ponents are joined and marginalized to produce
a test of the hypothesis that there is a true con-
tour present. The contour maximizing the com-
bined hypotheses is chosen, see [7] for details.

4.3 Active Contour Tracking

The probabilistic formulation has the attraction
that uncertainty is handled in a systematic fash-
ion - Increased uncertainty results the particles
to be drawn from a wider distribution, while
increased confidence results the particles to be
drawn from a narrower distribution.
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The prediction stage involves using the sys-
tem model (6) to obtain the prior pdf of the
state at time t + 1,

p(Xt41|My) = /p(xt+1|xt)P(Xt\Mt)dXt (9)

The observation M; is independent of the

previous state x;_1 and previous observation My_1

given the current state x;. At time step t + 1 a
measurement M;y; becomes available. This is
used to update the prior via Bayes’ rule,

P(Xet1|Mig1) o< pP(Mg1|xe)p(Xeq1|My). (10)

With this in mind, the tracking problem is
stated as a Bayesian inference problem by use
of (9) and (10).

Particle filtering is used with the purpose to
estimate the filtering distribution p(x¢|M;) re-

cursively. This is done through a random weighted

sample set S¥ = {(xP,7)}, where n is the
n sample of a state at time t weighted by
m'. The samples are drawn from the predic-
tion prior distribution p(x¢+1|M}). The samples
are weighted proportionally to the observation
likelihood p(M;|x;) given by the contour hy-
potheses. This sample set propagates into a new
sample set Sﬁl, which represents the posterior
probability distribution function p(x¢i1|Mey1)
at time ¢ 4 1.

4.4 Constraining the Hypotheses

Corneal reflections, caused by illumination, may
confuse the algorithm to weigh some of the hy-
potheses unreasonably high compared to others.
This issue is illustrated left in figure 6, where
the relative normalized weighting is colored in
a temperature scale - Blue indicates low, while
red high scores. By using robust statistics, these
hypotheses are treated as outliers and therefore
rejected.

The contour algorithm may fit to the sclera
rather than the iris. This is due to the gen-
eral formulation of absolute gray level differ-
ences AM|[4], which seeks to detect contours in
a general sense. An example is depicted in fig-
ure 7, where the image evidence of the contour
surrounding the sclera is greater than the one
It turns out that for a large
number of particles, the maximum likelihood
estimate prefers the contour around the white
sclera when the gaze is turned towards the sides.

around the iris.

Figure 6: The relative normalized weighting of the hy-
potheses regarding one particle are colored in a temper-
ature scale - Blue indicates low, while red high scores.
(Left) Corneal reflections cause very distinct edges. Thus
some hypotheses are weighted unreasonable high, which
may confuse the algorithm. (Right) By use of robust
statistics outliers are rejected. This results in a better
and more robust estimate of the hypotheses regarding
the contour.

Figure 7: This figure illustrates the importance of the
gray level constraint. Due to the general formulation of
absolute gray level differences, the right contour has a
greater likelihood, and the algorithm may thus fit to the
sclera. Note the low contrast between iris and skin.

As a consequence, we propose to constrain
the hypotheses. Intuitively, the average inten-
sity value of the inner ellipse could be compared
to some defined outer region as seen in expres-
sion (2). This is a poor constraint due to corneal
reflection causing white blobs in the pupil area.
The robustness of the active contour algorithm
is increased by weighing the belief of hypotheses
and utilizing robust statistics to reject outliers.

We propose to weigh the hypotheses through
a sigmoid function, applied on the measurement

line M, defined as,

W = (1 +exp (‘“U;w“"»_l (11)

where o, adjust the slope of weighting func-
tion, w; and p, are the mean values of the inner
and outer sides of the contour respectively. The
function is exemplified in figure 8. This has the
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Weight
Hypothesis

Gray level intensity value

e Q 5 E 1
Measurement line Houter ™ Minner Measurements

Figure 8: (Left) The two lines depicts the gray level
intensity of two measurement lines - The blue one where
the inner part of the ellipse is dark, and the red in the
reverse case. (Middle) The shifted hyperbolic tangents is
utilized as weighting function. Note, the limit values are
in range [—255;255]. (Right) The cyan bars indicates the
hypothesis value before weighting, while the pink is after.
Measurement ! - The blue line - is nearly unchanged,
while 2 - the red line - is suppressed.

effect of decreasing the evidence when the inner
part of the ellipse is brighter than the surround-
ings. In addition, this relaxes the importance
of the hypotheses along the contour around the
eyelids, which improves the fit.

4.5 Maximum a Posteriori Formula-
tion

The dynamic model may, in certain outlier cases,
grow or shrink the contour to a degree, from
where the algorithm gets lost. As a consequence,
we propose to constrain on the shape of the el-
lipse in analogy to section 3.1. The parameters
defining an ellipse is assumed normal distributed
with mean g and covariance 3. The prior dis-
tribution of these parameters are then defined,

plo) = N ) x xp (5= "5 x =0 )

(12)
where the normalization factor has been omit-
ted. The mean and covariance are estimated in
a training sequence.

Combining the priors - presented in this sec-
tion - with the likelihood, results in the Maz-
imum a Posteriori formulation (MAP), where
the goal is to maximize,

p(x|M) o< p(M[x)p(x). (13)

By incorporation of prior knowledge about
the shape, with the prediction prior and obser-
vation likelihood (10), the robustness increases
considerably and the parameters are constrained
to avoid the algorithm to break down due to in-
finite increase or decrease of parameters.
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Figure 9: The error of the algorithms as a function of
the number of particles for the high resolution data.

5 Results

A number of experiments have been performed
with the proposed methods. We wish to in-
vestigate the importance of image resolution.
Therefore the algorithms are evaluated on two
datasets. One containing close up images, and
one containing a down-sampled version hereof.

The algorithms estimate the center of the
pupil. For each frame the error is recorded as
the difference between a hand annotated ground
truth and the output of the algorithms. This
may lead to a biased result due to annotation er-
ror. However, this bias applies to all algorithms
and a fair comparison can still be made.

Figure 9 and 10 depicts the error as a func-
tion of the number of particles used, for low
resolution and high resolution images respec-
tively. The errors for three different active con-
tour (AC) algorithms are shows; basic, with EM
refinement, with deformable template (DT) re-
finement. The error of the deformable template
(DT) algorithm, initialized by double threshold,
is inserted into the plot.

It can be seen that the proposed constraints
on the active contour generally improves the ac-
curacy of the fit. The refinement by the de-
formable template performs better than the EM
method. The cost is an increased number of
computations, which is resolution dependent. No-
netheless, the deformable template method, ini-
tialized by double thresholding, is seen to out-
perform all active contour algorithms.

The table in figure 5 lists the mean error in
accuracy in centimeters and degrees. Also listed
is the computation time in frames per section of
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Figure 10: The error of the algorithms as a function
of the number of particles for the low resolution data.

Hi-res E(z,y)|mm] | E(0) | [frame/s|
AC 0.9 4.1 0.54
AC w/EM 0.8 3.7 0.49
AC w/DT 0.5 2.3 0.25
DT 0.3 1.4 2.2
Lo-res E(z,y)[mm] | E(0) | [frame/s]|
AC 1.5 7.3 0.57
AC w/EM 1.5 6.9 0.55
AC w/DT 0.8 3.7 0.49
DT 0.5 2.3 8.4

Table 1: Speed and precision comparison of the algo-
rithms. The active contour uses 200 particles.

a Matlab implementation run on a 2.4Ghz PC.
In general, the accuracy improves with high res-
olution as seen in table 5. However, the methods
utilizing deformable template matching are less
sensitive. The computation time for the basic
active contour and EM refinement methods are
independent of resolution. A significant increase
in speed is noticed for the deformable template
methods.

6 Conclusion

In this paper we have presented heuristics for
improvement of the active contour method pro-
posed by [7]. We have shown increased perfor-
mance by using the prior knowledge that the iris
is darker than its surroundings. This prevents
the algorithm from fitting to the sclera as seen
in figure 7.

Also presented is a novel approach to eye
tracking based on a deformable template initial-
ized by a simple heuristic. This enables the al-
gorithm to overcome rapid eye movements. The
active contour method handles these by broad-

Figure 11: The resulting fit on two frames from a se-
quence - the red contour indicates the basic active con-
tour, green indicates the EM refinement and the cyan in-
dicates the deformable template initialized by the heuris-
tic method. The top figure illustrates the benefit fitting
to the pupil rather than the iris. Using robust statistic
the influences from corneal reflections on the deformable
template fit are ignored as depicted in the bottom image.

ening the state distribution and thus recovering
the fit in a few frames. Furthermore, the accu-
racy is increased by fitting to the pupil rather
than iris. This is particularly the case when a
part of the iris is occluded as seen in figure 11.

It is shown that the deformable template
model is accurate independent of resolution and
it is very fast for low resolution images. This
makes it useful for head pose independent eye
tracking.
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A Comparison of Active-Contour M odels Based on Blurring and on
M ar ginalization

Arthur E.C. Pece
Heimdall Vision

Abstract

Many different active-contour methods have been proposed,
but very few comparisons between alternative methods have
been carried out. Further, most of these comparisons have
been either exclusively theoretical or exclusively experi-
mental. This paper presents a combined theoretical and ex-
perimental comparison between two recently proposed con-
tour models. The two models are put into a common theoret-
ical framework and performance comparisons are carried
out on a vehicle tracking task in the PETS test sequences.
Using a Condensation tracker helps to find the few frames
where either model fails to provide a good fit to the image.
The results show that (a) neither model has a definitive ad-
vantage over the other, and (b) Kalman filtering might ac-
tually be more effective than particle filtering for both mod-
els.

1. Introduction

Active contour methods find application to tracking when
camera motion prevents the use of background subtraction
methods, and/or when only specific kinds of objects need to
be tracked, and the shape, but not the appearance, of these
objects is known a priori.

Many active-contour methods have been proposed since
the initial paper by Kass et al. [12]. However, theoretical
and experimental comparisons between these methods have
been very scarse. Amongst experimental comparisons in the
area of tracking, a careful study [17] focused on accuracy
of segmentation of a single walking human in a controlled
setting, but did not address robustness and interactions be-
tween multiple targets. A recent paper on tracking motor
vehicles [4] is closer to the approach followed in this paper,
but is limited to an experimental comparison. A thorough
theoretical comparison of methods, with a focus on segmen-
tation is provided in [19], but it contains no experimental
comparisons and is of little relevance to tracking.

This paper is based on the principle that theoretical and
experimental comparisons should complement each other.
Following this principle, two recently developed active-
contour trackers are put into the same theoretical frame-
work prior to experimental comparisons on the PETS test

43

sequences. One of the methods [15] has previously been
applied to vehicle tracking and the other [16] to articulated
body tracking. The experimental comparisons are carried
out on vehicle tracking for the following reasons:

o the methods are not sufficiently robust by themselves
(i.e. without sensor fusion) for human body tracking;

e open-source software for vehicle tracking has been
made available [21] that will allow the reader to repli-
cate the experiments;

1.1. Active contour methods

Most active-contour methods can be classified as feature-
based if the pose of the object is optimized by minimiz-
ing squared distances between contours and image features;
and contrast-based if the pose of the object is optimized by
maximizing some contrast measure (e.g. the norm of the
grey-level gradient) under the contour.

Feature-based methods have found wide application in
tracking (see [1] and references therein). These methods
facilitate the application of Kalman filtering. However, fea-
ture extraction is a process notoriously sensitive to noise,
which leads to instabilities in tracking. After the introduc-
tion of particle filtering [5], Kalman filtering is no longer
the only option available.

Contrast-based methods include the original snake
model [12], the model-based tracker by Kollnig and Nagel
[13], and several methods making use of image statistics
[9, 20]. The methods compared in this paper are contrast-
based.

Amongst contrast-based methods, there is a subclass of
methods in which the first processing step consist in blur-
ring the image [12, 20, 16], or equivalently the contour [13].
The motivation for blurring is that model contours and im-
age edges are seldom in perfect registration, due to errors
both in pose estimation and in the shape model.

An alternative approach to errors in the shape model is
marginalization over deformations, recently introduced in
[15].

This paper compares the blurring and marginalization
approaches. The comparison starts with the formulation of
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a unified model which includes both the blurring approach
followed by Sidenbladh and Black [16] and the marginal-
ization approach proposed by Pece and Worrall [15]. It
will be shown that the mathematical differences between the
two approaches are small, but significant. This theoretical
comparison is complemented by an experimental compari-
son based on the Condensation algorithm. This algorithm
was selected because it is the most general framework for
comparing different likelihood models. However, no per-
formance comparison can conclusively prove the superior-
ity of an entire class of methods. The analysis in this paper
is meant primarily to illustrate the similarities in practice
between the two models.

The theoretical comparison is presented in section 2. The
experimental comparison is in section 3. The conclusions of
the comparisons are in section 4.

2. Theoretical basis of blurring and
mar ginalization

We begin by formulating a generative model along the lines
proposed in [15].

The object state is described by an m-vector x(¢) which
is a function of time ¢. Given the state and a geometric
model of the object, the object contour is projected onto
the image plane. The contour is then used to estimate the
likelihood of the image, given the object state.

2.1. The observation

A finite set of n sample points on the contour are used to es-
timate the likelihood. The image coordinates and unit nor-
mals to these sample points are computed from the geomet-
ric model together with the estimated state parameters. The
normal line to a sample point will be called observation line.
Due to the aperture problem, only the normal component of
the displacement of the object boundary can be locally de-
tected. Therefore, only the intersection between the object
boundary and the observation line is of interest in the pose
refinement algorithms.

A distinction must also be made between the predicted
intersection (i.e. the contour intersection) and the actual
intersection (i.e. the intersection of the object boundary):
these differ not only because of errors in the state estimate,
but also because of errors (deformations) in the geometric
model. The deformations e are assumed to be Gaussian,
zero-mean, independent, and identically distributed on all
sample points on the contours, with variance o2, so that
the prior pdf (probability density function) of deformations

pp(€) is given by
_e?
exp <ﬁ>

@
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In the following, the symbol v; will be used for the co-
ordinate on the observation line indexed by i. The symbol
u; Will be used for the coordinate of the contour intersec-
tion. The distance between contour and actual intersection
is denoted by ¢;. The subscript ¢ will be dropped when not
needed.

Using a digital computer, only a finite set of grey levels
can be measured on the observation line. Given regularly-
spaced sampling of grey levels with spacing Av, we define
the observation as I; = {I;(jAv)|j € Z}. In the follow-
ing, the subscript j will always denote location on the ob-
servation line. Fig. 1 illustrates the meaning of the symbols
u, v, €, Av.

Figure 1: The yellow line represents a model contour, mis-
matched with the object boundary. The green line repre-
sents the normal to a sample point on the contour. w is the
coordinate of the intersection with the contour and ¢ is the
distance between the intersections of the normal line with
the contour and with the object boundary. Grey levels are
sampled on the normal with a regular spacing Awv.

2.2. Likelihoods of grey-level differences

It is assumed that the pdf of the observation depends only
on grey level differences (gld’s).

We define a binary indicator variable 7(u), with value 1
if the modelled boundary (i.e. the boundary modelled by
the contour used to define the observation line) intersects
the observation line between v — Av/2 and v + Av/2; and
value 0 otherwise.

Given no modelled boundary between image locations
u—Awv/2and u+Awv/2, the pdf of the observation is defined
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as:

oI (I, u) def

F U~ Av/2), I(u+ Av/2) [ 7(u) = 0]
)
The pdf pz, could be estimated by image statistics, as in
[16]. However, a more robust estimate can be obtained by
fitting a single-parameter pdf to the image statistics, as in
[15]. Differently from [15], we use a Laplacian, rather than
a generalized Laplacian. Defining Al (u) = I(u+Av/2)—
I(u — Av/2), the Laplacian is of the form:

where )\ is a parameter that depends on the distance Aw.

Given a modelled boundary between image locations v« —
Av/2 and u + Av/2, the pdf of the observation is defined
as:

pe(l,u)

AI(u)
A

®)

1
pr(I,u) = 5exp (—’

def

SH(uw—Av/2), I(u+ Av/2) [n(u) = 1]

(4)
Given that grey levels observed on opposite sides of a mod-
elled boundary are statistically independent, this pdf is as-
sumed to be uniform:

where ¢ is the number of grey levels.

®)

2.3. Likelihood ratios

The optimal contour location is found by maximizing the
likelihood ratio

def pE(IaU)
pL(LU) ’

Given that the edge likelihood p g is uniform, it can be easily
seen that the likelihood ratio is a more sensible measure.
The full theoretical rationale for using the ratio is given in
[9, 2, 16, 15].

pr(I |u)

(6)

2.4. Estimation of contour likelihood

The previous section has defined the basic elements of the
probabilistic model. However, the deformations defined by
Eqg. 1 have not been taken explicitly into account. To see
why this is a problem, consider that the likelihood ratio,
as defined above, is not a smooth function of the contour
position: a displacement of Av of the contour on the image
plane means that the likelihood ratio is no longer measured
across the object boundary. As a consequence, even at the
optimal pose, errors in the geometrical model will make the
likelihood ratio an inappropriate measure of goodness-of-
fit.

There are at least two possible solutions to this prob-
lem. This subsection describes what will be called the BObs
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(blurred observation) model. The principle is quite sim-
ple: the observation I is convolved with a Gaussian kernel
which we take to be equal to the pdf of the deformations,
Eqg. 1. The convolution takes the form

00
L(v) < /

In practice it is only necessary to integrate within a distance
of 20 on either side of u. After blurring, the likelihood ratio
becomes:

I(v—¢€) pp(e) de (")

def PE (IG‘ ‘ U)
I = =97 7 8
poin) = T, ) ©
The similarity to the edge filters proposed by Sidenbladh
and Black [16] is evident.

2.5 Marginalization of likelihood ratio

Contour deformations are noise variables which are not of
interest when fitting the contour to an image. In such a case,
the standard Bayesian approach is to marginalize over de-
formations.

The likelihood ratio of the observation I given the con-
tour location « and the deformation e is pr(I |u + €). The
joint likelihood ratio of observation I and deformation e,
given the contour location w, is given by

p(L,e|u) =pr(I|u+e€) pp(e) 9

The marginalized likelihood ratio (MLR) of the observation
is obtained by integrating over all possible deformations:

pu(I|u) = /+o<>

— 00

pr(I|u+e€) pp(e) de (10)

2.6 Remarkson the models

It can be seen that the difference in practice between the
BObs and MLR models is whether the observation is first
filtered with a Gaussian kernel, then converted to a likeli-
hood ratio; or vice versa. Conversion from grey levels to
likelihood ratios is a nonlinear operation, and therefore the
two operators (Gaussian filtering and conversion to likeli-
hood ratio) do not commute.

In most practical applications, the major factor in the
computational cost for either model (indeed, for most
boundary-based methods) consists in accessing image pix-
els on the observation line. Therefore, estimating the like-
lihood ratio with either model will have almost the same
computational cost.

3. Experimental comparison between
blurring and mar ginalization

The Condensation filter [11] is possibly the most general
tracking method, because it imposes no restrictions on the
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dynamical, geometric, or observation models; therefore,
it provides the least biased framework for comparing the
BObs model and the MLR model. The comparisons were
carried out on the PETS 2000 [7] test sequence and PETS
2001 [6] test sequence 1 (camera 1).

3.1. Implementation details

The specific dynamical model used in the tracking exper-
iments was the steering-angle vehicle model described in
[14]. The geometric model (called “wireframe” in the fol-
lowing, even though there is hidden-line removal) was the
shape of the “average car” [8]. The “average car” was used
in our experiments because, in practical applications, there
is no a priori knowledge of which car enters the scene; and
also to test the methods to the limit. The value of o was set
equal to the greater of 4 pixels and (F'/d)-0.1 meters, where
F is the focal length of the camera and d is the distance of
the vehicle from the camera. The number of particles was
fixed at 1024.

3.2. Resultson the PETS 2000 test sequence

The experiments were carried out on frames 380 to 1000.
In this segment, a hatchback (compact car) enters the field
of view from the top left and makes two turns before park-
ing; then a white van enters from the bottom right, passes in
front of the hatchback occluding its lower edge, and finally
disappears at the top left.

Fig. 2 gives examples of successful tracking. The two
kinds of observed tracking failures are shown in Fig. 3: ei-
ther the hatchback wireframe did not complete the turn into
the parking slot; or else it was pulled back from the park-
ing slot when the van (which had a higher contrast with the
background) passed in front of it. (Note that collision is not
modelled in our system.) The van itself was always suc-
cessfully tracked.

Bar histograms of the numbers of failures and successful
tracking are shown in Fig. 4. It can be seen that tracking
failures before the hatchback reached its parking slot (fail-
ures of type 1) were only observed with the MLR model.

The tracking failures due to interference between van
and hatchback (failures of type 2) were observed with both
models. This kind of problem requires particle filters specif-
ically designed for multi-target tracking, e.g. mixture par-
ticle filters [18]. However, this is beyond the scope of the
present paper.

A better insight into failures of type 1 can be gained by
plotting the log-likelihood ratio as a function of orientation.
It can be seen in Fig. 5 that in frame 570 the BObs log-
likelihood ratio has its maximum at the correct angle as de-
termined by hand (about -150 degrees). However, the log-
MLR has its maximum at about -175 degrees, a clockwise
rotation of 25 degrees from the correct orientation. This ex-
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Failure 1 Failure2 Success

frequency

Failure 1 Failure 2 Success

Figure 4: Summary of results on the PETS 2000 test se-
quence. Top: BObs model. Bottom: MLR model. Failure
1: hatchback wireframe did not reach parking slot. Failure
2: hatchback wireframe pulled out of parking slot by van.

plains why the tracking failure shown in Fig. 3, frame 570,
is more common with the MLR model.

Some insight into tracking failures of type 2 (Fig. 3,
frame 825) can be obtained from the plots in Fig. 6. It can
be seen that the log-likelihood ratios for both models, as
functions of translation, are not very strongly peaked, so
that most particles will not be found near the correct pose
estimate. (Similar plots were obtained for orientation and
are not shown because of space restrictions.)

3.3. Resultson the PETS 2001 test sequence 1
(camera 1)

This sequence is somewhat more challenging, because of
shorter focal length, less favorable viewing angle, poorer
camera calibration, and large number of distractors (parked
vehicles close to the trajectories of the moving vehicles).

The experiments on this sequence were carried out on
frames 500 to 750, with both models and the same numbers
of particles as for the PETS 2000 sequence. In this segment,
the moving vehicles were again a hatchback and a white
van. The hatchback entered from the lower right corner and
went straight to a parking slot; then the van entered from
the left, passing in front of a row of parked vehicles.

The first thing to note is that it was not possible to track
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frame 570

frame 670

frame 820

Figure 2: Successful tracking of the hatchback and van in the PETS 2000 test sequence.

frame 570

frame 670

Figure 3: Typical failures in the PETS 2000 test sequence: the hatchback wireframe does not complete the turn (frames 570
and 670); or else, having completed the turn, is “pulled out” of the parking slot by the van (frame 825).
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log-likelihood ratio

-180 -160 -140 -120

angle from road axis (degrees)

160

140
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log-MLR

8 -180 -160 -140 -120

angle from road axis (degrees)

Figure 5: Log-likelihood ratios as functions of rotation of
the hatchback wireframe in frame 570 of the PETS 2000
sequence, centered on the “correct” pose variables. Top:
BObs model; bottom: MLR model.
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the van reliably, due to the distractors (Fig. 7, frame 710b).
This tracking failure cannot easily be eliminated by using
a multi-target tracking algorithm, because the parked vehi-
cles, being stationary through the sequence, might not be
easy to identify as distinct targets.

The hatchback followed a straight path from its entry
point to its parking slot. Nonetheless, tracking with the
BObs model was not always successful: occasionally, the
wireframe ended up at a wrong angle (Fig. 8, frames 600
and 710). Another distinct failure was seen when the hatch-
back wireframe “jumped out” of its parking slot (Fig. 8,
frame 750).

Histograms of tracking results are given in Fig. 9. No
results are given for the van, because it was almost always
a tracking failure. The point to note is that the MLR model
was more successful in tracking the hatchback in this se-
quence.

Once more, plots of the log-likelihood ratios give some
insight into the tracking failures. Fig. 10 shows the log-
likelihood ratios as functions of orientation in frame 600 of
the sequence. It can be seen that the BObs log-likelihood
ratio has its peak value at an orientation clockwise from the
correct orientation. The BObs log-likelihood ratio was ac-
tually negative at the correct orientation. No such problems
can be seen in the plot of log-MLR. This explains why the
tracking failures shown in Fig. 8, frames 600 and 710, only
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log-likelihood ratio

log-MLR

0 0

along road (meters)

across road (meters)

Figure 6: Log-likelihood ratios of the hatchback wireframe
as functions of translation in frame 820 of the PETS 2000
sequence. Top: BObs model; bottom: MLR model.

happened with the BObs model.

Log-likelihood ratios for the van wireframe at frame 710
are plotted in Fig. 11. Even more clearly than in Fig. 6, it
can be seen that the log-likelihood ratios for both models do
not have a sharp peak at the correct position, which explains
the failure seen in Fig. 7, frame 710b. (Again, similar plots
were obtained for orientation and are not shown because of
space restrictions.)

4. Conclusions

This paper has compared and contrasted the blurring ap-
proach and the marginalization approach to contour track-
ing. It has been shown that the basic mathematical differ-
ence between the models is the order in which Gaussian
convolution and conversion from grey levels to likelihood
are carried out.

Experiments with the Condensation tracker show that ei-
ther model can fail at some specific frames. Condensation
tracking helps to find the few frames for which the mod-
els fail to provide a good fit to the images. However, it is
not immediately obvious why the MLR model fails in frame
570 of the PETS 2000 sequence, while the BObs model fails
in frame 600 of the PETS 2001 sequence.

The MLR model, being based on marginalization, nat-

48

o

Failure 1 Failure 3 Success

frequency

Failure 1 Failure 3 Success

Figure 9: Summary of results on the PETS 2001 test se-
quence. Top: BObs model. Bottom: MLR model. Failure
1: hatchback wireframe reached parking slot at the wrong
angle. Failure 3: hatchback wireframe jumped out of cor-
rect position.

-100
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Figure 10: Log-likelihood ratios of the hatchback wire-
frame as functions of rotation in frame 600 of the PETS
2001 sequence. Top: BObs model; bottom: MLR model.
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frame 600

frame 710a

frame 710b

Figure 7: Typical results for the PETS 2001 test sequence 1 (camera 1): the hatchback is successfully tracked, but the van is

not.

frame 600

frame 710

frame 750

Figure 8: Tracking failures for the hatchback in the PETS 2001 test sequence: the wireframe turns clockwise at the level of
the lamp-post (frame 600) and remains in that attitude (frame 710a); or else it “jumps out” of its correct pose (frame 730).

urally leads to the use of the EM algorithm, which can be
easily combined with Kalman filtering. This combination
has been shown to achieve better performance than the Con-
densation tracker at a lower computational cost [15].

Of course, a Kalman-type tracker can be implemented
with any contour model: all what is needed is a pose-
refinement method, i.e. a method for maximizing the poste-
rior pdf of the object state, given the Kalman prediction and
the current frame. However, in order to preserve the com-
putational speed of Kalman filtering, a gradient-based opti-
mization method is preferable. In the case of models based
on marginalization, the EM algorithm is a natural choice for
optimization. In the case of blurred-contour models, there
is no obvious choice of optimization method. Kollnig and
Nagel [13] used the Levenberg-Marquardt method. Testing
this and other methods on the blurred-contour model for-
mulated in this paper will be a subject of future research.
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Entropy of quasi-stationary measures on images
with applications to 2D constrained arrays
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1 Introduction

The concept of the entropy of a Markov Source is well known. However, there
are difficulties extending this concept to 2D sources such as images. Markov
Random Fields (MRF'), being the natural generalization of a Markov Source to
2D, have enjoyed a wide range of use in image modeling, but it is intractable to
compute their partition function, and hence the entropy.

A simple class of MRF's, which also have the property of being causal, is
due to Pickard [14], [13]. These are known as Pickard Random Fields (PRF).
Champagnat et el. [2] have investigated these models further and given examples
of their use. We can compute the entropy for a PRF, but they suffer from the
fact they are first order models, and thus have limited modeling power.

We present a method for designing quasi-stationary probability measures
for higher order modelling of images. Based on these models some classes of
2D constrained fields are easily analyzed. We can calculate the entropy of
the measures, thus obtaining a lower bound on the entropy of the constraints
considered.

Constrained codes (in 1D) have enjoyed a widespread use in communication
and data storage. Recently revival of storage ideas such as holographic storage
and advances in nano storage such as the milipede project [17], [4] have caused
interest for 2D constrained fields as models of data storage on a surface. Our
ideas are applicable to generating 2D constrained codes.

2 Basic definitions

We consider 2D fields specified by shift invariant constraints of finite extent
(N, M). A constraint is defined by a list, F, of forbidden blocks of maximum
size N x M made of symbols from a finite alphabet A of size |A|. A configuration
on an n by m rectangle having no forbidden blocks within the rectangle is called
an admissible configuration.

*sf@com.dtu.dk
Ttvl@com.dtu.dk
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Let E(n,m) be the set of admissible configurations on an n by m rectangle
for a given field F' and let B(n,m) = |E(n,m)| be the number of distinct
admissible configurations of size n x m. The entropy of F' is then defined as

(2) s B(n,m)

We will describe a method for designing two-dimensional quasi-stationary
measures that have entropy close to H®)(F) for certain fields F.

Examples of one-dimensional constrained sequences include run-length-limited
constraints. The one-dimensional (1D) (d, k)-run-length-limited (RLL) con-
straint consists of all binary words in which the run-lengths of Os are between d
and k, inclusive, except the first and the last runs which may be shorter than
d. The 2D (d, k) RLL constraint consists of all configurations in which the 1-D
(d, k) RLL constraint is satisfied for every row and every column.

A notable example of a first-order binary 2D RLL constraint is the 2D (1, o)
RLL. Here the extent of the constraint is N = M = 2 and the forbidden blocks

consists of
1
F = {117 1}.

This is also referred to as the hard square constraint [7]. Calkin and Wilf
[1] presented methods giving tight bounds on the entropy for the hard square
constraint. Their methods apply to other (first order) constraints, but they do
not apply when N > 2 and M > 2 [7].

The following sections will focus on higher order constraints (N > 2 and
M > 2).

2.1 Bit-stuffing

Bit-stuffing is a simple, yet efficient way to code for 1D RLL constraints. It is
applicable if it is always possible to write say a 0 at any position. The data
stream is written as is, except that each time a 1 is encountered, the necessary
number of zeros are stuffed immidiately after. This method can be extended to
2D constrained arrays [12], [15], [9]. Constraints of this type includes RLL(d, o)
and other checkerboard constraints [10]. An analysis of 2D bit-stuffing has been
presented in [15], where it is shown that it is very efficient for the hard square
constraint. In [9] bit-stuffing is used for 2D RLL (d, c0). Analysis of the hard-
triangle has also been carried out [12]. In [15], [9] the bit-stuffing is performed
along diagonals, writing bits from a sequence whenever possible and writing
the Os the constraint prescribes. The iid unbiased data sequences to be coded
may be transformed into iid biased sequences in a precoding step in order to
increase the entropy. One can utilize this further by having more than one
biased sequence and choose between them depending on past data besides what
is prescribed by the constraint.

For the hard-square [15] and hard-triangle [12], the entropy of the bit-stuffing
scheme has been determined and optimized. For the higher order constraints 2D
RLL (d, 00) lower bounds on the entropy of the bit-stuffing scheme are presented
in [9]. We will provide better bounds in section 4.1.
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2.2 Finite state sources

In one dimension, sequences satisfying a constraint on N consecutive symbols
such as run-length-limited sequences may be described by finite state sources,
where a state is characterized by N — 1 symbols. The entropy in 1-D, defined
as in Definition 1.1 but with m = M = 1 and n — oo, may be calculated
following Shannon’s approach [16]. The transfer (or adjacency) matrix T of
the source indicates the possible transitions between two states. The largest
eigenvalue A of the transfer matrix T determines the growth rate of the number
of configurations [11]. Taking the logarithm gives the maximum entropy [16]:

H(1) = log(A). (2)

The one-dimensional approach is readily generalized to 2D arrays of finite
(horizontal) width m and arbitrary (vertical) height n. The admissible config-
urations of an array of width m may for all n be described by a finite state
source. For a constraint of extent (N, M), the states of the source are given
by the symbols on the m by N — 1 segment which appear as the first or last
N — 1 rows of an admissible configuration on a N by m rectangle, i.e. a config-
uration of E(N,m). A transition from state i to state j is admissible if there
is a configuration in E(N,m), for which state 7 is identical to the top N — 1
rows and state j to the bottom N — 1 rows. State ¢ and j have an overlap of
N — 2 rows. The last row of j is generated by the transition from ¢ to j7 and
appended to the previous rows of the output. Any admissible configuration of
E(n,m) with fixed m and n (> N — 1) rows may be generated as an output
by starting the source in the state specified by the first N — 1 rows and making
n — N + 1 transitions appending one row to the output in each transition. The
transfer matrix T, indicates transitions which satisfy the constraint by defining
the elements ¢;; = 1 if the transition from state 7 to j is admissible and ¢;; = 0 if
it is not admissible. The per symbol entropy of the source on an array of width
m (n — o0) is given by,

H(m) o log(An)

m m

; 3)

where A, is the largest (positive) eigenvalue of T,,. Equation (3) is an upper
bound on the entropy H?) defined by (1) [7].

For constraints where any two configurations, X and Y, on arrays of width
m may admissibly be concatenated (or cascaded) by padding a merging array,
V', of ¢ columns to form the admissible configuration X VY, the entropy is lower
bounded by H(m)/(m + c).

A probability measure may be induced by defining transition probabilities
Dij such that pij =0 if ti; >0,p;; =0 if t;; =0, and Zj pij =1 for all i. Let
P, denote the transition probability matrix.

3 Quasi-stationary measures

Let W denote a stochastic variable defined on an n by m array over some
alphabet A. Let X and Z denote variables representing the first and last M — 1
columns, ie. they are defined on n by M — 1 arrays. Let Y denote a variable
representing the middle m — 2M + 1 columns. A quasi stationary measure may
be introduced by concatenating these bands.
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In the general case, the stochastic variables can take on any of the |A|™*™
possible values. However, we will restrict ourselves for the time being to mea-
sures agreeing with a constraint defined on an alphabet. That is, configurations
having forbidden blocks are assigned probability zero.

Given a probability measure for W we assume that the measures on the
boundaries X and Z are identical, i.e.

P(X) = P(Z). (4)
Starting with XY ¢Zg, arrays Y;Z; may repeatedly be added to form
XOaY()a Z07Y1Z17 s 7YKZKa

such that Z;_1Y;Z; has the same measure as W. The entropy of (Y,Z;|Z;_1)
is given by

m—M+1 ’

where Hy (m) is the entropy of W (per row) and Hx (M — 1) is the entropy of
X (per row).

Now assume that W is described by a finite state source with states of height
N —1 and width m. Let P,, be the transition probabilities, with the stationary
solution 7P, = 7. Let XY ¢Zg be initiated by 7 and all Y;Z; is initiated by
7 conditioned on the initial state of Z; 1. The entropy for W may be found
from P, and 7. The entropy is given by

Hy :Z _ TiPi log(1/pij)- (6)

?

Given the finite state source for X along with its transition probabilities and
the stationary distribution we can compute Hx in the same way. Hence we can
compute (5).

For the sequence of arrays, Xo,{Y], Zj}{f , the measure, based on P,,, with
the initialization based on m, is quasi-stationary in the sense that each subset
Z; 1Y;Z; is stationary and each column within these subsets are stationary.
Considering an ensemble with random phase yields a stationary measure.

Actually assuming that W is described by a finite state source with a transi-
tion probability matrix P, it is not necessarily important that the columns are
initialized using 7. If transitions from all states to all states are possible, which
is the case for the constraints considered here, then asymptotically (m — oo)
the measure converges to the stationary solution for any width specified by m, d,
and K.

3.1 Analysis of the boundaries

For the hard square (and other first order constraints) the boundaries X and
Z are just one column each. Further the constraint is symmetric (left-to-right)
making it easy to satisfy the prerequisite of (5), P(X) = P(Z). The maxen-
tropic solution for the finite state source yields a transition matrix P,, with
this property. The entropy Hy (m) in (5) is determined by (3), whereas X
may be described as a function of a Markov chain. Therefore Hx (M — 1) may
be bounded from both sides using standard techniques, [3], [7]. To efficiently
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describe the process of Y, Z given X, a backward pass on a trellis given by the
possible states of Y, Z given X is combined with a forward pass. The transition
probabilities of P, may be changed to optimize (5).

For higher order constraints it is more difficult to ensure that the boundaries
X and Z have identical measures, i.e. P(X) = P(Z) (4).

A simple solution is to decompose the probabilities such that

P(X,Y,Z) = P(X)P(Z|X)P(Y|X,Z). (7)

This may be viewed as the boundaries are generated first and thereafter the
interior, Y, given the boundaries. A further simplification is obtained by having
independent boundaries, i.e.

P(X,Z) = P(X)P(Z). (8)

In the following we will use bit-stuffing to determine the transition proba-
bilities. However, we modify the basic scheme slightly in order to satisfy the
requirement of boundary independence (8).

3.1.1 RLL(d, )

Bit-stuffing shall be used to define the transition probability matrix, P,,. The
states are (N — 1 =)d by m elements and a new row of m elements is generated
with each transition.

Let (g, ooy Td—1, Y05 -» Ym—2d—15 205 -+, Zd—1) denote these new elements. To
satisfy (8), the ordering of the bit-stuffing is altered slightly as

(300, vy Ld—15 205 -+ Zd—15 Y0, ~--7ym72d71)-

The transition probability, p;;, is given by the product of the bit-stuff conditional
probabilities considered in the order given above, i.e.

d—1 d—1 m—2d—1
pi; = [T plec) [T p(zle:@)  TT  plonley(0),m > 3d, )
=0 =0 =0

where p(z; = 1]c (1)) = p1(1) if a 2, = 1 is admissible, likewise p(z; = 1|c. (1)) =
p1(1) if admissible and p(y; = 1|y (1)) = py=1(1). c.(I) is the context at the given
position. When a 1 is not admissible, obviously the conditional probability is
set to 0. Whether it is possible to write a 1 in a given position at the time of
writing is only dependent on the d previous elements in the same column and
the previous elements of the current row after reordering. The ordering assures
that X and Z may be described independently (8) and we have P(X,Y,Z) =
P(X)P(Z)P(Y|X,Z). Using the same conditional probabilities for X and Z
ensures (4) is satisfied. The entropy of the modified bit-stuffing, C,,;(d, 00) is
given by (5) and it may be written as

Hy (m) — Hx(d)

Crp(d, 0) = p—

(10)

where Hy (m) and Hx (d) are the entropies (6) of W and X, respectively. The
entropy gives the expected values for all the interior elements of the cascaded
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bands Xj, {Yj,Zj}éf . The overall average converges to this value for n —
00, K — oo.

The transition probability matrix P,, may be modified to optimize the en-
tropy (10) of the code, subject to the constraints on P, and the prerequisites
(4),(7). That is the conditional probabilities p(z; = 1|¢; (1)) may depend on all
(causal) elements of X within one transition, p(z; = 1|c.(!)) may depend on all
(causal) elements of X,Z within one transition, and p(y; = 1|¢y (1)) may may
depend on all (causal) elements of X,Y,Z within one transition. Further the
order of the process describing the boundaries X, Z may be increased to coun-
teract the freedom the boundaries of W has in comparison with the interior,
Y, or equivalently that they are to be concatenated with arrays, Y;_; and Y;
on both sides. Results for RLL(2, 00) is given in the next section.

Considering the extension in the (quarter-)plane, Xo, {Y;, Z;}&, it may be
written either row by row or column by column, writing one element at a time.
Whenever admissible an element from the (biased) sequence designated to the
column is chosen. Within each instance of the m — d elements of Y;Z;, element
z; must be written before y,,_sq1;. Traversing the elements row by row, this
introduces a latency of m — d — 1 elements if zg,...z4_1 is written before y;.
This latency may be reduced to d if the writing of zs and ys are interleaved.
Traversing the plane column by column, the biased sequence designated to the
column is used. Thus the choice of biased sequence is only changed once for each
column. The column with z; must be written before the column with vy, _s44-

3.1.2 Diamond constraints

Another class of constraints is the diamond constraint [10] (Or min. distance by
1-norm between 1s [7]). For a binary alphabet the minimum distance between
1s by the l-norm is (N =)M. In this case X and Z, besides being written
before X, must also be M — 2 elements ahead to ensure a (1-norm) distance of
M between the newest element, x,7_2, of X and the old elements of Y. Besides
this modification the construction of P,, may proceed as for the RLL(d, 00)
constraint, defining the transition probabilities, p;;, by a product of conditional
probabilities derived from the bit-stuffing probabilities.

4 Numerical results

We have considered the following examples: Three instances of the RLL(d, 0o)
constraint, for d = 2,3 and 4 as well as the diamond constraint.

4.1 Entropies for RLL(d, c0)

We have computed several bounds for each of the fields. Hy gives an upper
bound on the entropy using the simple (3). Hy offers an improvement on this
upper bound using a more advanced technique described in [8]. As an estimate
of the entropy we use the expression H = Hyy(m) — Hy (m — 1) as this can be
seen as an estimate of the entropy per column. H,,_,,, gives the entropy using
an unbiased bit-stuffer. H, is the optimized entropy over a single biased stream,
whereas H,, ,, is optimized choosing different biased sequences for the border
X and interior Y respectively. We have collected the results in the following
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table where the width of the band used is also noted.

F m Hy Hy H Hp:1/2 H, Hpy.py

(2,00) 19 0.4530 0.4459 0.4455 0.3917 0.4398 0.4410
RLL(3,00) 16 0.3784 0.3686 0.3675 0.3050 0.3606 0.3628
(4,00) 15 0.3299 0.3188 0.3167 0.2487 0.2982 0.3110

It can be seen that the codes using an optimized probability for the border and
intererior come within 1% of the estimated value of the entropy.

4.1.1 Optimizing the entropy further

One could use a different biased sequence for each column and then optimize the
entropy over all columns. We have tried this using a depest descent approach
viewing the entropy as a function of the column probabilities p1,...,pm_q and
searching in the direction of the gradient. This yielded the following results.

F RLL(2,00) RLL(3,00) RLL(4,00)
H,:  0.4416 0.3640 0.3125

This offers a slight improvement over the result obtained where we only used
two biased sequences.

4.2 Entropy of the diamond constraint

We have computed bounds for the diamond constraint as well using a band of
width m = 15. The results are shown below. A more elaborate scheme for spec-
ifying W in (5) was also devised, resulting in the value H,,:. The probabilities
p1 were made dependent on the other elements on the (N — 1 =) 2 previous
rows. The next row of X (and Z) is specified by probabilities conditioned on the
two previous rows. The new row of Y is specified by probabilities conditioned
on 3 rows of X and Z and 2 rows of Y. These conditional probabilities were
obtained from the maxentropic solution [7] for W (with two rows forming the
states).

F a HP=1/2 HP HPX#’Y HOPt
M =3 03503 0.276 0.344 0.3477 0.3497

5 Discussion and further work

One might suspect that the entropies of bit-stuffing with and without altering
the order are very close. For the simple case where the same probability is used
in all columns one would suspect that the entropy without reordering is greater.

These hunches have been supported by simulations of the bit-stuffing scheme
without alterering the order.

5.1 Other types of constraints

There are constraints for which (the modified) bit-stuffing is not straight forward
and maybe not a good solution. Etzion [5] studied 2D (d, k) SRLL constraints.
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These constraints are symmetric with regards to the symbols, such that the
run-lengths apply to all symbols in the alphabet.

Methods for constructing a merging array, V', given any two admissible ar-
rays, X and Y, were given. The (minimum) width of the merging array, V, for
which merging is always possible was expressed in terms of d. The existence of a
solution in between two given arrays is a prerequisite for applying the modified
bit-stuffing.

Another example is domino tiling, where the whole plane is tiled by one by
two vertical and horizontal domino pieces. For this constraint a merging array,
V', of finite width does not exist for merging any pair of arrays X and Y. A
counter example is the case where X has a zig-zag boundary of all horizontal
pieces where the piece in every other row is displaced one position relative to its
two neighbors. In this case there is only one solution extending off the boundary
of X, namely that which locks up with the boundary. (By induction this extends
to the entire plane.) For such constraints, the boundaries have to be restricted
to avoid configurations for which there is no admissible interior.

However, the frame work of utilizing borders and interiors still seems promis-
ing in this setting. Indeed some preliminary work has already been carried out
in [6].

6 Conclusion

We have presented a higher order image model using quasi-stationary measures.
We demonstrated one application of the model with the modified bit-stuffing
scheme for constrained 2D fields. The scheme presented is easy to analyze based
on well-known 1D techniques. The entropy of the scheme may be calculated once
the m — d conditional probabilities are chosen. The numerical results for the
2D RLL(d, 00) and the big diamond constraints are within 1% of the estimated
entropy of these constraints.
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Confidence sets around critical points
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Abstract

The critical lines and the top-points in the scale space of an image carry
important information about the image, and can be used e.g. for image recon-
struction and matching. In pratical applications these descriptors are always
computed from a finite sample of the image, i.e. a finite number of image
pixels. This implies that the critical points and the top-points in non-trivial
images inherently are measured with an imprecision € > 0. Borrowing ideas
from the theory of parameter estimation we construct confidence sets on the
true position of a critical point given the position of a with imprecision ob-
served critical point. The construction relies on a probabilistic image model,
which also will be described.

1 Introduction

Scale space theory provides a method of multiscale data analysis, notably image
analysis [3]. The linear Gaussian scale space {fs}s>0 of a two-dimensional gray
scale image f: R? — R is defined through Gaussian blurring

1 _ef+ed

1,(@) = (g, % ) (@) = / 6=y fW)dy,  gula) = e 52

R2 2ms

Observe that the scale is parameterized by the variance of the blurring kernel,
hence following the notation of [6]. Local extrema and saddles in the image at the
different scales are called critical points, i.e. the set of points given by

{(z,5) e R* xR, ‘ V. fs(z) = (0,0)}.

The critical points are known to move along lines as scale increases, and generi-
cally [2] are created and annihilated in pairs at the so-called top-points collected
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in the set

{(z,s) e R? xRy | Vafs(z) = (0,0), det Hy fs(z) = 0}.

The critical lines and the top-points are believed to carry essential information
about the image [4, 5], and hence it is of importance to compute these quantities
from image data. However, in practice a given image f is only observed at a finite
set of grid points. This implies that the gradients V, fs(x) and the determinant
of the Hessians H, f;(z) can only be computed via a finite discretization of the
convolution integrals, and inherently are specified with an imprecision ¢ > 0.
This paper investigates the associated confidence sets. We emphasize that the
imprecision typically decreases as the scale increases. This important fact should
be remembered when interpreting our results. However, the quantification of the
imprecision as a function of scale lies outside the scope of the paper.

Stability of top-points has previously been studied in [1], where the variabil-
ity of the top-points as a functional of additive image noise is investigated. The
approach taken in this paper is different. Instead of considering a fixed image
perturbed by additive noise we view the image itself as being random. Based on
the probabilistic description of the image we ask for confidence sets C,,, C R?
and T, ¢ R? x R, on the position of the critical points and the top-points, re-
spectively. Here e denotes the imprecision and € (0, 1) designates a probability
quantifying the degree of confidence. These concepts are explained more carefully
in Section 3, where the sets C, , are also derived. In order to define confidence
sets in the first place we need a probabilistic image model, which is introduced
in Section 2. We remark that the confidence set C., around a position (z, s) can
be computed a priori without any image data. Thus, in difference to the results in
[1] the local image structure at (z, s) observed from the image data is not used.
This is neither a strength nor a weakness of either method, but simply means that
the methods work along different directions. The two methods probably can be
combined, but for clarity of ideas the analysis done in this paper is kept as simple
as possible.

2 Ascale invariant image model

In this section we describe the scale invariant image model derived in [6]. A prob-
abilistic description is achieved considering the image f as a random function.
In order to confine this model two invariance properties are assumed, namely sta-
tionarity and scale invariance. Stationarity means that the distribution of the image
difference f(z) — f(y) only depends on the difference x — y. Especially, there
exists a covariance function p: R? — R, such that

Var(f(z) — f(y)) = p(z — y).
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Scale invariance is formulated through scaling and blurring, with the interpretation
that objects viewed at larger distance become smaller and blurred. Doing the
scaling around the origin x = 0 scale invariance can be stated as the equivalence
of the probability distributions of the images f,(s'/?z) and f,(t'/?z) for every

s,t>0,i.e
{£:(8"2)} yepe = {1 (0 2) ), o

Thus, the width in the blurring kernel can be interpreted as the physical scale in
accordance with the usual definition of scale normalization. In [6] it is proved
that the natural assumptions of stationarity and scale invariance imply a particular
structure on the covariance &, = Var(jx( fs)) of the associated jet J,(fs) of
partial derivatives at some fixed point z = (z1,z2) € R?, i.e. the sets

an+mf8 (.7)) }
(n,m)e]l’

To(fy) = { 1=\ {(0,0)}.

ox 0x
Observe that the zero order structure f,(x) is removed due to the stationarity as-
sumption. Let the alternating-sign anti-diagonals ¥, o,, € R <! be defined by

i—k

— +i7
\IIQn,Zm - {(_]—) 2 2 1i+k:2n,j+l:2m}

(i.4),(k D)l

where 1condgition 1S ONe if the condition is satisfied and zero otherwise. Then the
covariance structure &, = Var(jw(fs)) € R'*! does not depend on the spatial
position z, and is given by

(I)s = Z cn,m(s) \IIZn,Qma

(n,m)€el
where the functions ¢,, ,,: Ry — R are confined by the recurrence relations

n-+m

Cnt1m(8) + Crmr(s) = Cnm(8)- 1)
Thus, the covariance structure on the non-trivial partial derivatives can be derived
from invariance assumptions on the image structure. In order to have a complete
probabilistic description three further components are needed: (i) a description
of the first order structure, (ii) a description of the higher order structure, (iii) a
choice of the functions ¢, ,, satisfying the recurrence (1). Concerning issue (i)
and (ii) we assume a mean zero Gaussian model, i.e. J.(fs) ~ N (0, ®,). Assum-
ing zero mean is of course a minor issue, but the assumption of a joint Gaussian
distribution is a mere postulate. Concerning issue (iii) we can either postulate
a specific model, e.g. the Lévy Brownian motion image model with contrast pa-
rameter oy > 0 given by ¢, m(s) = 75 "M el Bml___ - or the coefficients

22n+2m plm! (n+m)
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cn,m(s) can be estimated from empirical image data subject to the requirement
(1). Certainly, the latter alternative is most appealing. Say, the images might not
be isotropic as implied by the Brownian image model.

In conclusion stationarity and scale invariance combined with the assumption
of zero mean and a joint Gaussian distribution imply the image model given by

(n,m)
fs(y) = Z };;! m)! (y1 — 21)"(y2 — z2)™, {fs(n’m)}(n,m)eﬂ ~ N(O, (I)s), (2)

(n,m)€el

where the covariance structure ®, = Z(n’m)eﬂ Cn,m (8) Yoy, o, preferably is esti-
mated from empirical image data subject to the recursion requirement Eq. (1).

3 Confidence sets

Given an observation f from the image model derived in Section 2 we want to
compute the critical lines and their top-points. Suppose we have computed the
existence of a critical point at position (z, so), but that the computations only can
be done with imprecision € > 0. Since the critical points move along lines in scale
we ask for a set C. ,(z, so) C R? around z containing an z, such that (z, so) is a
true critical point with some confidence. Given a probability n € (0, 1) we call

Cen(z,s0) = {y € R?

P(waso(x) €[~ | Vyfoly) = (0,0)) > n}

an n-confidence set for x, given an with e-imprecision computed critical point at
(x, s0). We remark that a classical n-confidence set D, , (x, so) satisfies

(U Vehala) = 00| Vafule) € o) 20

20 € De n(z,50)

However, we believe the probabilistic analysis needed to find the sets D, ,(z, so)
to be very demanding. Thus, although providing a weaker statement we settle for
the sets C.,,(z, so). Let the set C, , (20, so) C R? be given such that

P(Vyfuly) & =6 | Vafuoloo) = (0,0)) > 1=

fory & 56,,7(950,50). The stationarity of the image model implies that =, can
be translated to the origin, i.e. Cc,(z0,50) = xo + Cep(so) With Cep(so) =

~

Cen(0, so). Then the confidence set C. ,(z, so) is given by

Cenl(,50) = 2 + Cep(s0) = 2 — Coep(50)-
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To see this assume zy & C.,(,s0), 1.6z & 56,,,(950,30). Then the conditional
probability that the gradient V, f,, () lies outside the box [—¢, €]?, and hence dif-
fers from (0, 0) within imprecision e, is larger than 1 — n. Reverting this statement
gives the crucial implication

P(Vafuo(2) € =€, | Vafso(wo) = (0,0)) > 0 = 20 € Coy(a, 50).

In Section 3.1 we find such confidence sets C.,(s) C R?, and examples are
provided in Section 4. Finding confidence sets T ,(s) C R? x R for top-points at
scale s is more involved due to the following two facts: (i) the definition of top-
points involve the determinant of the Hessian, which is a non-linear functional of
the image, (ii) top-points are located at unique scales, and hence also correlation
across scale is needed. We leave the study of the confidence sets T+, (s) for future
research.

3.1 Spatial position of critical points

Suppose (z, s) is a critical point for an image f following the probabilistic model
described in Eq. (2). Due to stationarity we can assume without loss of generality
that z = 0. Doing this we have the image gradients

f(n+1 ,m) fs(n,m+1)
wiw=( X wgs Y L)

(n,m)eNZ . (n,m)eNg "
:(fs’,fs’)‘i‘(ZmylyzaZWyﬂh)
(n,m)€l (n,m)el

Let T = N2 \ {(0,0),(1,0),(0,1)} and let ®, be the conditional variance of
{fs,("’m)}(n e diven £ = %Y — o This variance is calculated in the ap-
pendix. Conditionally on V. f,(0) = (f"%, f{%) = (0,0) we have

fs fnm—i—l
Vyfsly —( > s Y, T ylyé">,

(n,m)el (n,m)el

{5 g ~ N (0, ®5).

Thus, the conditional distribution of V, f,(y) is a two-dimensional Gaussian dis-
tribution. In order to simplify the computations we separate the coordinates of

(n+1,m)
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V., fs(y). Let 1 (y)? and oo (y)? be the corresponding marginal variances, i.e.

2 T(v+1 1 yr " ?JéhLm
= Y dermonm ETA T
(vo11),(n,m)€l ST feme 3
2 T(wpt1) 1) yr " y5+m ©
p— V,,M+ ) nam+
oY) = Z os vin!plm!’

(Vo) (n,m) €l

where &, = { g™} o (mamycr- USING Boole’s inequality and

,m)

Gl NOaw). TR N o)

we have that P(V, f,(y) & [—¢, €] x [—¢, €] | V4 f5(0) = (0,0)) is larger than*

1-— P(agsy(f’) € [—¢,€] ‘ V. fs(0) = (0,0))

ofs(y)

@
—P(g—w e [-ed | V.1(0) = (o,o>).

Introducing the distribution function F(u) = P(U < u) for a standard normal
variable U ~ AN/ (0, 1), and the inverse function F'—!, this lower bound equals

1= (2F(01€(y)) o 1) - (QF(U;(Z/)) o 1) =3 - 2F(01Ey)) a 2F(02€(y))'

If O'l(y) > F—1(€2+T71) and O'Q(y) > #%ﬂ)’ then we have

P(Vy fy) € [—6,¢ x [—, €] | Votfu(0) = (0,0)) >1—1.

Remembering that C,,(s) = —@n(s) is the complement of the set of points y
satisfying these inequalities we have the e-imprecision n-confidence set

o1(-y)” < (#2%7))2 729" < (#%)2}
(%)

1The application of Boole’s inequality implies that the derived confidence set actually is larger
than the exact confidence set. We will not persue this further, but see the discussion in Section 4.

Cen(s) = {y e R?
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Brownian model at scale s=1 Brownian model at scale s=2

,in [-0.1,0.1]
/\ “:
y,in [-0.1, 0.1]

-0.1 -0.08 -0.06 -0.04 y—]D-OIZn [_6.1’ 00021:| 0.04 0.06 0.08 0.1 -0.1 -0.08 -0.06 -0.04 y—:olzn [_(0).1’ 00021] 0.04 0.06 0.08 0.1
) Anisotropic model at scale s=2
Brownian model at scale s=2 g————————————————
x107 </>\\ oo8r /// / \ \\\
14 ': 0.04
12 —77 =} 0.02
NA o 0
3 I
o £ -0
B

02 004 006 008 0.1

fov‘o,z 6 0
y,in [-0.1, 0.1]

1 L L L
<01 -008 -006 -0.04

Figure 1: Confidence sets C,,(0, s) with e = 0.01 and » = 0.95. Points inside
the dashed red curve fulfill the condition on o (y)?, and points inside the blue
curve fulfill the condition on o4(y)?. The confidence set consists of the points
inside both curves. The lower left panel shows the marginal variance o, (y)? as a
function of y. The dashed red curve in the upper right panel is a level curve for
this function, cf. Eq. (5).

4 Examples of confidence sets

The explicit computation of the marginal variance functions o, (y)? and o»(y)?
seems to be a rather demanding task. So we are content with a few numerical
experiments, where we replace the infinite sum in Eq. (3) with a finite sum over
(v, 1), (n,m) withv +n+ p+m < N for some N € N. Doing this facilitates the
choice of coefficients ¢, ,,,(s) satisfying Eq. (1). Only the coefficients c,, ., (s) with
n+m<M o L%J + 2 are needed. We freely choose ¢, 2, forn =0,..., M,
take ¢y ar—n(s) = s ™ cpm—n, and compute the remaining coefficients c;, . (s)
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using Eq. (1). We consider two examples: (i) The Brownian image model given
by

Brownian — (27?’)' (Zm)‘

mm 22nt2m plm! (n +m)’
(if) An anisotropic model, where we for N = 10 have scaled each of the coef-
ficients c,"5™2" by independent uniformly distributed random numbers in [0, 2].
We expect the confidence sets to be narrowest in directions of large variance of
the image increments. The particular realization used is given by

.....

Examples of the associated confidence sets are given in Figure 1. These are not
ellipse-like as intuitively expected, but have corners at points where the two con-
ditions meet. This is due to the application of Boole’s inequality for the derivation
of the lower bound in Eq. (4). The correct, and smaller and ellipse-like, confidence
sets should be derived using the two-dimensional distribution of V, f;(y). This,
however, complicates the probabilistic analysis and will not be pursued further.
We also observe that the confidence sets for fixed imprecision ¢ and confidence
level n increase with the scale s. However, as already mentioned the imprecision
Is expected to decrease as scale increases. Finally, remark the notable anisotropy
visible in the lower left panel, where the anisotropy c7, < ¢y 7 is reflected by the
elongation of the confidence set along the first coordinate axis.

Appendix: The conditional variance

Introducing X = {fs(i’j)}(i and Y = {fs("’m)}( - we have

n,m)€l

,3)€{(1,0),(0,1)}
X b)) b))
NN 0’ XX XY)
()~ (G 5
with conditional distribution £(Y|X = (0,0)) = M (0, Zyy — Syx S5k Zxv)-
We have, also using ¥y, o, for the restriction to the set T x T,

ciols 0
o= (0 0)0 B X ) B

6071 (8) (n;m)EHQ
Furthermore, ¥y x = %, and

i—k_ j—=l
Yxy = Z Cn,m (8) {(_1) Tt 1i+k:2n,j+l:2m}

(n,m)el

— Z (_1)n+m—1 Cnm(S) (1(i,j):(l,O),(Ic,l):(2n—1,2m)) .
’ (k,0)el

L(i,5)=(0,1), (k1) =(2n,2m—1)

(6,9)€{(1,0),(0,1)}, (kDET

(n,m) el
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Combining these covariances we have, that 5{33 =Yyvy — Jyx Z;}X Y xy equals

Z Cn,m(s) \II2n,2m

(n,m) el

_ Z (_1)V—|—n+u+m Cu,u(s) Cn,m(5)

1i j)=(2v— =(2n— m} ~
CI,O(S) { (a]) (2 152“)’(1‘:5” (2 1,2 ) (i,j),(k,l)E]I

(V) (n,m) €L

_ Z (_1)1/-I—n+u+m CV,M(S) Cn,m(s)

1i ) =(2v,2pu— =(2n,2m— } -
co,1(s) { (La)=(u2u= D) O=Cr2m=D) [ by e iyed

(v,u),(n,m)€l

Thus, the ((i, j), (k, 1)) th element ¢{"""*" in @, is given by

kR it (5)_1z' odd, j even

kg (CM Ciss 1(8) Caz 1 (s) ¢i i+1(s) ek i (s)
272 01,0(8) 0071 S

fori + k and j + [ even, and vanishes otherwise.
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A face recognition algorithm based on multiple
iIndividual discriminative models

Jens Fagertun, David Delgado Gomez, Bjarne K. Ersbgll, Rasmus Larsen

Abstract—In this paper, a novel algorithm for facial recogni- increasedly received the interest from the scientific community
tion is p'roposed.. The .techniqu.e combines the color texture and jn recent years.
geometrical configuration provided by face images. Landmarks g first developed techniques that aimed at identifying
and pixel intensities are used by Principal Component Analysis S . .
and Fisher Linear Discriminant Analysis to associate a one people from faC|aI. images were based on.geometncal infor-
dimensional projection to each person belonging to a reference Mation. Relative distances between key points, such as mouth
data set. Each of these projections discriminates the associatedcorners or eyes, were calculated and used to characterize
person with respect to all other people in the data set. These faces [17]. Therefore, most of the developed techniques during
projections combined with a proposed classification algorithm are 6 first stages of facial recognition focused on the automatic
able to statistically deciding if a new facial image corresponds to detection of individual facial features. However, facial feature
person in the database. Each projection is also able to visualizing X > '
the most discriminative facial features of the person associated to detection and measurements techniques developed to date are
the projection. The performance of the proposed method is tested not reliable enough for the geometric feature based recog-
in two experiments. Results point out the proposed technique as nition, and such geometric properties alone are inadequate
3&2253?6 and robust tool for facial identification and unknown 4 face recognition because rich information contained in the

' facial texture or appearance is discarded [6], [13]. This fact

Index Terms—Face recognition, Principal Component Anal- produced that gradually most of the geometrical approaches
ysis, Fisher Linear Discriminant Analysis, Biometrics, Multi- v are abandoned for color based techniques, which provided
Subspace Method. better results. These methods aligned the different faces to
obtain a correspondence between pixels intensities. A nearest
neighbor classifier used these aligned values to classify the
different faces. This coarse method was notably enhanced

Regrettable events which happened during the last yeaish the appearance of the Eigenfaces technique [15]. Instead
(New York, Madrid) have revealed flaws in the existingf directly comparing the pixel intensities of the different
security systems. The vulnerability of most of the current séace images, the dimension of these input intensities were
curity and personal identification system is frequently showfirst reduced by a principal component analysis (PCA). This
Falsification of identity cards or intrusion into physical andechnique settled the basis of many of the current image based
virtual areas by cracking alphanumerical passwords appéactial recognition schemes. Among these current techniques,
frequently in the media. These facts have triggered a rdsikherfaces can be found. This technique, widely used and
necessity for reliable, user-friendly and widely acceptableferred [2], [4], combines the Eigenfaces with Fisher linear
control mechanisms for person identification and verificatiodiscriminant analysis (FLDA) to obtain a better separation

Biometrics, which bases the person authentication on the of-the individuals. In Fisherfaces, the dimension of the input
trinsic aspects of a human being, appears as a viable alternaititensity vectors is reduced by PCA and then FLDA is applied
to more traditional approaches (such as PIN codes or pasgsobtain a good separation of the different persons.
words). Among the oldest biometrics techniques, fingerprint After Fisherfaces, many related techniques have been pro-
recognition can be found. It is known that this technique wagmsed. These new techniques aim at providing a projection
used in China around 700 AD to officially certify contractsthat attain a good person discrimination and also are robust at
Afterwards, in Europe, it was used as person identificatiatifferences in illumination or image pose. Kernel Fisherfaces
in the middle of the19*” century. A more recent biometric [16], Laplacianfaces [10] or discriminative common vectors
technique used for people identification is iris recognition [8]3] can be found among these new approaches. Typically, these
It has been calculated that the chance of finding two randontgchniques have been tested assuming that the image to be
formed identical irises is one ih0™® (The population of the classified corresponds to one of the people in the database. In
earth is below10'%) [7]. This technique has started to behese approaches, the image is usually classified to the person
used as and alternative to passport in some airports in Unitgith the smallest Euclidean distance.
Kingdom, Canada and Netherlands. It is also used as employeelowever, some inconveniences appear when the person to
control access to restricted areas in Canadian airports dmdanalyzed may not belong to the data set. In this case, a
in the New York JFK airport. The inconvenient of theseriterium to decide if the person belongs to the data set has
techniques is the necessity of interaction with the individu& be chosen. E.g. only people with an euclidian distance less
who wants to be identified or authenticated. This fact hdlsan a given threshold are considered as belonging to the data
caused that face recognition, a non-intrusive technique, hset. However, this threshold has not to be necessarily the same
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for all the classes (different persons) and different threshol R0, e g. v @

would need to be found. The estimation of these thresholds N 25 aZarzdlp 4 . ' tg:

not straightforward and additional data might be needed. s m P m
In this work, a new technique that addresses the differe - shaee | © fmriees

inconveniences is proposed. The proposed techniques ta

advantage of two novelties in order to deal with these i [

conveniences. First, not only the texture intensities are tak

into account but also the geometrical information. Second, t  z. zca ! D. PCA 1

data are projected into one-dimensional spaces instead of [ ats o area ] [? b o P Bu }

P P P P

P P, P P
Wiy Win ... Wipq Wig, :|
Wiy Wmz - Wma-1 Wa

(n — 1)-dimensional space, whereis the number of people
in the data set.

Each of these individual models aims at characterizir \{ E. Combined features /'
a given person uniquely. This means that every person [ o my A 3]_,}

Qi Qma oo Qmp1 Qo Bma Bmz oo Bmpi—1 By

the data set is represented by one model. These multi o
dimensional models allow to statistically interpret the "degre
of membership” of a person to the data set and to detect t F. PcA l
knowns. Furthermore, these two facts have several advanta B ma e e n
in interpretability, characterization, accuracy and easiness [ i o }
update the model.

Qmi e Qup Bma e Pma

Tm1l Tm2 ..o Tmpr-1 Tmr
G. <for 1 = 1...m do>

Class 1 Class 2

Model number i projection

Il. ALGORITHM DESCRIPTION

5 r"r: H. FLDA
The proposed algorithm is made up of two steps. In tt }
- = M |
first step, an individual model is built for each person i 1
the database using the color and geometrical informati
provided by the available images. Each model characterizes
a given person and discriminates it from the other people #y. 1.  Algorithm overview. A: Landmarks alignment using full Procrustes
the database. The second step carries out the identificati@lysis. B: PCA on aligned landmarks to remove redundancy. C: Texture
A classife, relaed with the standard Gaussian distributifre "2\ L=09 9006l hsCOre saatiaton O FCA on remelzer
decides if a face image belongs to one person in the databasesX on combined features to remove redundancy. G & H :In turn build the
not. In this section, the two parts of the algorithm are describé&dividual model using FLDA.
in detail. A diagram of the algorithm is displayed in Fig. 1.
This diagram will be referred during the description of the
algorithm to obtain an easier understanding.

0 1 2 3 ] 5 6 7
Class 2 Class 1

A. Creating the individual models

1) Obtaining the geometry of the fac&he geometrical
characterization of a given face is obtained by means of the
theory of statistical shape analysis [1]. In this theory, objects
(faces) are represented by shapes. According to Kendall [11], - -
a shape is all the geometrical information that remains when (A) (B)
location, scale and rotational effects are filtered out from &fy. 2. (A) Set of 22 landmarks placed on a face image. (B) The Delaunay
object. In order to describe a shape, a set of landmarks tidangulation of the 22 landmarks.
points of correspondence that matches between and within
populations are placed on each face. As an example, Fig. 2A
displays a set of 22 landmarks. These landmarks indicate gentered. To center the different shapes, the mean of the shape,
position of the eyebrows, eyes, nose, mouth, jaw and size%fis subtracted from each landmark:

a given face.

To obtain a shape representation according to the definition,
the obtained landmarks are aligned in order to remove the
location, rotational and scaling effects. To achieve this goal
the 2D-full Procrustes analysis is carried out. Briefly, let:

"The full Procrustes mean shape [12], is found as the
eigenvector corresponding to the largest eigenvalue of the

X ={x;} = {zi+i -y}, i=1 n complex sum of squares and products matrix
Y A
n
be a set ofn landmarks expressed in complex notation. In Zwiwf/(wfwi)
order to apply full Procrustes analysis, the shapes are initially ' '
70 =
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= Similarly to the shape analysis, a PCA is conducted in the
- texture data to reduce dimensionality and data redundancy
(Fig. 1 D). However, notice that the large dimension of the
L texture vectors will produce memory problems because of
the huge dimension of the covariance matrix. In order to
avoid this difficulty, the Eckart-Young theorem is used [5].
Formally, letD represents the texture data matrix composed by
(A) (B) s n-dimensional texture vectors after the mean of the texture
Fig. 3. (A) Superimposition of the sets of 22 landmarks obtained over Ag&ctors has been subtracted from each one of them< n).
different face images. (B) Alignment of the landmarks. Then then x n dimensional covariance matrix can be written
as:

LT TR

Sp — -DD”
where w; denotes the transpose of the complex conjugate D=5
of w;. Using this Procrustes mean shape, the full Procrustest g be the smalles x s dimensional matrix defined by
coordinates ofwy,...,w, (Fig. 1) A) are obtained by

1
P X , s =-D'D
w; =wiaw;/(wiw;) i=1,...,n s
Then the non-zero eigenvalues of the matridas and Xp
are equal. Moreover, the columns of:
Fig. 3A displays the superimposition of the set of 22 $p =D - Pg

landmarks described in Fig. 2, obtained on 49 different facq1
: . : W
images. The result obtained after applying the full PrOCUStresrrespond with the the eigenvectors associated to the

alignment on theses landmarks can be observed in Fig. 3B. . .
. L non-zero eigenvalues &p in the sense they have the same
In order to remove redundancy in the data, a Principal Cori'

onent Analysis is applied to the aligned landmarks (Fi irection. Therefore, if the columns @&bp are normalized,
g) y PP 9 g't en &p holds the normalized eigenvectors Bfp that has

eigenvalues bigger than zero. This not only avoid problems

2) Texture formulation: To form a complete model of S .
) with the memory but also it gives a substantial speed up of
the face appearance, the algorithm also captures the texttlhre

) . i . Iculations.
information provided by the pixels. In order to collect this € calculations

texture representation, the Delaunay triangulation of every3) Combining color and geometryThe shape and texture

shape is obtained. The Delanuay triangulation connects ?é%tures are concatenated in a matrix (Fig. 1 E). In order

aligned landmark set of each image by a mesh of trlanglgg, remove correlation between shape and texture and also

S0 no ”""“?g'e has any of the qther po_lnts of the set inside make the data representation more compact, a third PCA
its circumcircle. The Delaunay triangulation obtained for eac .
. . . . is performed on the concatenated shape and texture matrix
image is warped onto the Delaunay triangulation of the me@:_ai 1F)

shape. The Delanuay triangulation of the 22 landmarks is g '

displayed in Fig. 2B.

Formally, letI be a given image and/ the mean shape
previously obtained. Lat; = [z1,y1], us = [22,y2] @anduz =
[3, y3] denote the vertices of a triandlein I, and letvy, v
andvs be the associated vertices of the corresponding trian
in M. Given any internal poinfi = [z, y] in the triangleT,
the corresponding point in the associated triangle in the m

shape can be written as= av; + v, + yvs where:

ere the columns ofpg contain the eigenvectors dEs,

4) Building an individual model:Once the geometry and
texture of the face have been captured, the proposed algorithm
builds an individual model for each person in the data set.
gl_jgch model is built using Fisher linear discriminant analysis.

ormally, letX be the data obtained after combining the shape
and texture and applying the PCA. Let be the number of
€§8ta elements corresponding to the person for whom the model

is being created (class 1) and et be the number of elements
corresponding to the other people (class 2), (Fig. 1 G)Xet
1—(B+7) andx, be the class mean vectoss,be the total mean vector

YTz — T1Y — T3Y1 — Y3T + T1Y3 + T andx; ; be thejth sample in theth class. Then the between

 —Toys +Tayn + a1y + T3Y2 — T3y1 — T1Yo matrix is defined by

L = TWp =Ty - @iy — Ty F Ty F 1y B = (%1 - %)(%1 — %) + na (% — %) (%2 — %)

—T2Y3 + Toy1 + T1Y3 + T3Y2 — T3Y1 — T1Y2 d the withi rix is defined b
. . . and the within matrix is define :
This transformation extracts the texture of a given face y

T

image. A histogram equalization is applied to the collected 2 L ~ o
texture to reduce the effects of differences in illumination [9]. W= Z Z(Xm' = X)(Xij — Xi)
This histogram equalization is performed independently in i=1j=1

each of the three color channels. Afterwards, the three colbine projection that best discriminates the two populations is
channels are converted into gray scale to obtain a maywen by the direction of the eigenvector associated to the
compact representation (Fig. 1 C). 71maximum eigenvalue oW !B (Fig. 1 H). To ensure that
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the within matrix W is not singular, only thef first data A. Experiment one
variables are taken into account, whefeis the number of

. _ The first experiment aims at comparing the performance of
non-zero eigenvalues of the within mati¥. P paring P

the proposed method with respect to the Fisherfaces method in
terms of correct classification rates. In order to be consistent
with a previously published work [15], unknown people are
B. classification not taken into account.

In order to obtain a method to classify a given image To achieve this fir'st goal the AR fac.e database [14] _is
the different individual models are firstly standardized Sgsed. The database is composed of two independent sessions,

they can be compared. The standardization of madet recorded 14 days apart. At both sessions, each person was

1,....m is based on two assumptions. First, the number T}'ﬁcorded 13 times, under various facial poses (all frontal),

observations for persohis much smaller than the number o Ighting condit_ions and ocglusions. The size 9f the images in
the observations of all other people. The second assumpt}gﬁ database is 768 576 pixels, represented in 24 bits RGB

is that the projection of the other people follows a Gaussign " fo_rmat.

distribution. These two assumptions imply that the distributio In this study, a subset of 50 persons (25 male and 25
of all the projected facial images on a particular discriminati .gmale) from the datgbase was r.andomly selected. Seven
individual model can be assumed as a Gaussian distributiB}f9€S Per person without o_cclusmns are u_sed from each
with outliers. The standardization of modeis then achieved S€SS!ON- Therefore, the experiment data set is composed of
by transforming the projections into a standard Gaussigﬁo Images, with 14 images Per person. An_exgmple of the
distribution, keeping the projections of the persopositive. selected images for one person is displayed in Fig. 4.
Formally, letz; be the mean of the projections on modet;
the standard deviation, and lef ; be the projection of image
j in modeli. These projections are standardized by:

&5 = (2ij — &)/ 0

If the standardized projection for the images corresponding

to personi are negative, ther; ; are replaced by-i; ;

for all projections. This causes the projection of the images). 4. The AR data set: (Top row) The seven images without occlusions

corresponding to persarto be positive and far from the meanfrom first session, (Bottom row) The seven images without occlusions from

. the second session.
of the gaussian.
Once that the model is standardized, the probability of

a projected image of be|0nging to the perg‘ois given by All the images were manually annotated with the 22 land-

the value of the standard normal cumulative function in thgarks previously mentioned.

projected value. This fact is used to classify a given image. If The data set was divided into two sets. The images of the

it is assumed that the image belongs to a person from the diigt session were used to build the individual discriminative

set, the image is projected by all the models and classifigtpdels, and images from the second session were subse-

as belonging to the model that gives the largest probabiliguently used to test the performance.

Moreover, it is also statistically possible to decide if a given The landmarks corresponding to the images in the train-

person belongs to the data set or it is unknown. This can ig set were aligned using full Procrustes analysis. The 44

achieved by comparing the largest projection obtained in é,y)-coordinates were obtained to represent the geometrical

the models with a probabilistic threshold. E.g, if a 99.9% afonfiguration of each face. In order to obtain the texture of

probability is required, a given image will only be considereglach face in the training set, the different images were warped

as belonging to the database if the projection in one of théth respect to the mean shape. Each of the textures received

individual models is higher than 3.1 standard deviations. @ histogram equalization in each color band to reduce the
differences in global illumination. The textures were converted
to gray scale and represented by 41337 pixels. The geometrical

I1l. EXPERIMENTAL RESULTS and color representation of each face was combined, reduced
and the individual models were built as described in Section
Two experiments are conducted in order to evaluate the

performance of the proposed method. The objective of theThe test set was used to evaluate and compare the proposed

first experiment is to evaluate the recognition ability in termmethod with respect to the Fisherface technique. In order to

of correct classification rates. This first experiment also aimesaluate the importance of the geometrical information, the

at ranking the importance of shape and texture. The secdfidherface techniqgue was modified replacing the texture data

experiment aims at analyzing if the proposed method caith the shape data and also combining the shape with the

be incorporated into a biometrical facial recognition schemtxture. These two modified techniques will be referred to as

The robustness of the proposed method to the presenceFishershape and Fishercombined from now on. The Euclidean

unknowns is considered in this second experiment. 72Nearest-Neighbor algorithm was used as classifier algorithm
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Pmp'\é':;zor‘:]ethoc '”p‘ggzgte”res Co”eagiﬁ/i'f'(ggt)'o” Ratel  models were built using only the texture. The pixels of the
Proposed method Texture 99.6% (3) faces corresponding to these models which received the 10,
Proposed method Texture and Shape 99.9% (1) 15 and 25% highest weights in the model are displayed (in
Fishershape Shape 85% (105) red) in Fig. 5. It is clear that important discriminating features
Fisherface Texture 98.9% (8) . 9.9 P 9 .
Fishercombined | Texture and Shape 99.7% (2) include eyes, noses, glasses, moles and beards. Notice that the
TABLE | algorithm detects the glasses and the two moles of person 43

AVERAGE CORRECT CLASSIFICATION RATES as discriminate features.

B. Experiment two

in the Fisher methods. The proposed method classified the Ne objective of this second experiment is to test the possi-
images as the person associated to the model that yields Rty of incorporating the proposed technique into a biometri-
highest probability. cal facial r(_acognltlon scheme. This conveys the identification
The test was repeated a second time changing the rapfgpeople in a data set and also the detection of un_knowp
of the training and test sets. So session two was used P&9PIe. The good performance of the proposed technique in
training data and session one as test data. The average coR8EON identification was shown in the previous experiment.
classification rates for the different techniques are shown [iierefore, this second experiment aims at evaluating the
Table I. performance of the technique in detection of unknown people.
From Table I, it is observed that the proposed method has al© achieve this goal, the data set used in the previous
slightly better performance than the Fisher methods. MoreovEXPeriment is selected. In order to evaluate the performance of
it is also noticed that using the texture data one obtains a higif# technique, a 25-fold crossvalidation was conducted. The
accuracy than when the shape is used. This implies that fifYen face images from one male and other seven face images
information contained in the texture is more significant thahom one female were left out in each iteration. These two
that included in the shape. However, the information contain8§OPIe areé considered as not belonging to the data set and
in the shape data is not insignificant. The highest corrdfiereéfore unknowns. The images of the remaining 48 people

classification rate in both techniques is attained when boff¢ré used to train the algorithm.
shape and texture are considered. The average False Acceptance Rate (FAR) and average

False Rejection Rate (FRR) graph, can be observed in Fig. 6.
The corresponding average Receiver Operating Characteristic
5% curve (ROC) is displayed in Fig. 7.

Both graphs show that the known and unknown populations
have a good separability. The best separation happens at the
Equal Error Rate (3.1 standard deviations), giving a FAR
and FRR of 2%. Moreover, notice that, if the algorithm
25% belongs to a security scheme, the degree of accessibility can be

established by increasing or diminishing the standard deviation
y threshold. E.g., if in the test a false rejection rate of 5.5% is

allowed, then a 0% false acceptance rate is obtained. This

accommodates biometrical security systems that requires a

Personnr: 3 10%

e

Person nr: 16 10%

T

Person nr: 31 10% 15% 26% high level of control access.

w w w 1

.1' oor

08F

Person nr: 43 10% 15% 25% ol

o = o (011

Y ) ;i o5t

. ‘ " ¥ oal

o3r
Fig. 5. The 10, 15 and 25% most important pixels (shown in red) for e2r ]
discriminating between the 50 test persons. o1k ,

False Rejection Rate

0 1 2 3 4 5 3] 7 8
Confidence interval

An interesting property of the proposed algorithm are that

it is possible t‘? determine which are the most dIS_CHmInatIVI—%g. 6. Average False Acceptance Rate/False Rejections Rate graph obtained
features of a given person. In order to illustrate this fact, foyy the 25-fold crossvalidation.

INumber of misclassified images reported in parentheses.
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RCGC No glasses Glasses 1 Glasses 2 Glassos 3 Glasses 4

Unknown o glasses Unknown glasses 1 Unknown gla3ses 2 Unkrown glasses 3 Uninown glasses &

2 . 2
R TRTE T N AT .I.l s Ll s Jn fud ot a1
004 T Ll Rl | (L LB LY} L " T I

] 20 40 o E] 40 0 2 40 o 20 @ 0 20 40
models madels modiels models modeis
003 Krown o glasses Known glasses 1 Knawn glasses 2 Krowm glasses 3 Krown glasses 4

True positive rate (sensitivity)

0.82 4 4 4| 4 4|
IITg, 3 3 3 B
TR A

L b po ofal nn T P "l X
LA LA W W ) | ¥ T e oy T ey Ll 8 i il L)

D05 01 015 02 025 03 035 04 e O e b T O e P e

False positive rate (1-specificity)

Fig. 7. Average Receiver Operating Characteristic (ROC) curve obtain p- 8. Impact of changing glasses. (1) Person without glasses and syntectic
by the 25-fold crossvalidation. Notice that only the top left part of the RO tted with 4 glasses form the data set. (Il) The corr_esp_ondlr)g projections in
curve is displayed here. e models as unknown. (Ill) The corresponding projections in the models as

known. Red columns is the model corresponding to the superimposed glasses.

A second test is conducted in order to assess the robustneﬁ)s biometrical security svstems. The technique has been
of the proposed method. This test also aims at showing that Re y sy ' q

S ested on face images, but it can also be used in other

method not only discriminates on removable features, such,as ) .
. . . biometrical data, such as speech. Experimental results have
glasses. To achieve this goal, eight people (four male and four

: 4 ) . roved that the method can attain better classifications rates
female) are synthenc_ally fitted with four dlffe_re_nt glasses tak han an other widely used technigue. Moreover, the final one-
:‘rr;);gepseople belonging to the data set, giving 32 Synthe%clmensional projection allows for a simple interpretation of the

This second test consists of two steps. First, these eiéﬁguns' If 2 given face image is projected onto the different

people are not used to built the individual models. The goal is vidual models, it is visually possible to determine if this

to examine if these eight people who do not belong to the d grson belongs to one of the models. Moreover, it is also

set are considered as one of the person in the data set. Fiessu?ttlsncany possible to observe the degree of belonging to that
. : . e model.
show that none of the 32 images is misclassified when a . -
nother of the attracting characteristics of the proposed

threshold of 3.1 standard deviations is considered (probabilit thod is its ability to deal with unk The d f
of correct classification of 99.9%). This fact can be noticed ethod 1S 1S ability 1o deal with unknowns. the cegree o
elonging to the data set can be determined statistically. A

Fig. 8 II, wh th jecti f f the eight unk _ : . .
9. 8 II, where the projections of one of the eight unknow gcision threshold can be determined in relation to a standard

people on the different models are displayed. It is observ : S _ .
that, when the person is considered unknown, his projectio gussian distribution. This threshold value is used to set the
' X gree of security of the system. The higher this value is set,

onto the individual models belonging to the data set are un o i .
the selected threshold. This means that the proposed met smaller the probability of a person being considered as
onging to the data set.

does not classify any of the unknown people as belonging 6,
the data set. fy any peop ging The robustness of the algorithm has been tested using both

In the second step, the eight people (without glasses) glqeown and unknown peoplg. The alg.onthm has been shown
also used to build the individuals models. In this case th@ be robust to the inclusion of art'faCtS such as 9""?5565-
goal is to analyze if the method can still recognize peop n one hand, unknown peopl_e using _glasses belonging to
belonging to the data set who has slight changes (same pe p_Ie fr_om the data set are still classified as unknown. This
with glasses). In this second step, the 32 images are al &t 'm‘?"es that unknown people WOUld not get access to
classified correctly by the method. In Fig. 8 Ill, it is observe secu_nty system when they use simple removable features
that the projections onto the individual model associated wi longing to peo.ple from the data ;et. On the other hand,
this person clearly surpass the threshold. It is also obser wn people using glasses, belonging to other people from

that the projections into the individual models associated to t data set, are still recognized as themselves. This means if
meone gets glasses, the associated model does not need to

glasses’s owners do not increase significantly. Similar grap?\% )
are obtained for the other seven people. These results show Jecalculated. Moreover,.th!s fact suggests that the da.tabase
suitability of the proposed technique in being incorporated in ould be composed Qf facial |mages.vy|thout glasses. .Th'§ was
a biometrical security system. also shown by ot_)se_rylng that the individual model projections
do not change significantly when the glasses were placed.
Another interesting property of the proposed method is its
easiness to be maintained and updated. If a large data set
In this paper, a novel method to identify people from facis available, it is not needed to recalculate all the existing
images has been proposed. The developed technique aimmdividual models when a new person has to be registered.
being a precise and robust algorithm that can be incorpo7r2@id1ply, a new individual model for the new person is created.

IV. DISCUSSION AND CONCLUSION
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A FACE RECOGNITION ALGORITHM BASED ON MULTIPLE INDIVIDUAL DISCRIMINATIVE MODELS

Similarly, if a person has to be removed from the database, it is
only needed to remove the corresponding individual model. In
conclusion, an accurate, robust and easily adaptable technique
to be used for facial recognition has been developed and
demonstrated.
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Image Uncertainty and Pose Estimation in 3D
Euclidian Space

Brian Wettegren, Lars Bjerre Christensen, Bodo Rosenhahn,
Oliver Granert and Norbert Kriiger

Abstract

We describe a problem of a sucessful 3D-2D pose estimation algorithm
when it is applied in scenarios with large depth variation. In this case
image uncertainty is inhomomogenuously reflected in the Euclidian space
where the constraint equations are formulated. We introduce a scaling of
the constraint equations that equalizes this inhomogenity. We can show
that we can reduce the error significantly in outdoor scenarios with large
depth discontinuities.

1 Introduction

The estimation of the motion of rigid bodies (rigid body motion, RBM) is an
important sub—problem in computer vision for tasks such as object recognition
[3], mutiple view reconstuction [7] and disambiguation of visual representations
[11]. Tt is also important in the context of robot navigation since the ego—
motion of a person or vehicle in a static scene can be described by an RBM. The
mathematical formalization of this kind of motion has been studied for a long
while (see, e.g., [2, 9]). An RBM can be described as a six—dimensional manifold
consisting of a translation (parametrised by the three coefficients t = (1, ta, t3))
and a rotation (parametrised by r = (r1,792,73)). It describes the transformation
of a 3D entity! e in the first frame to a 3D entity e’ in the second frame

RBM®"(e) = ¢ (1)

A camera projects a scene to a 2D chip. Therefore it is often convenient to
work with entities that are extracted from a 2D image. However, there occur
many applications in which prior object knowledge does exist. For example
in industrial robot applications CAD descriptions of objects may be available
(see, e.g., [4]). 3D information can also be extracted from image sequences
beforehand through stereo as done in this paper. This requires then an RBM
estimation algorithm that can work on entities of different dimensions: The
3D object knowledge needs to be aligned with 2D entities in an image of this

Hn the following 3D entities are printed in boldface while 2D entities are printed normal.
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3D Foint/3D Plare Gnstraint

Figure 1: a) Knowing the camera gemometry a 3D line can be generated from
an image point and the optical center of the camera. The 3D point/3D line
constraint realizes the shortest Euclidian distance between the 3D Point and
the 3D line. b) From an image line a 3D plane can be generated. The 3D
point/3D plane constraint realizes the shortest Euclidian distance between the
3D Point and the 3D plane. ¢) Inhomogenity of Uncertainty in the Euclidian
Space. The difference of a projection of a 3D point and the extracted feature
corresponding to this point in the image leads to a deviation d;. However,
in case this projection comes from a far point ps it results in a much larger
distance d; between the generated line and p¢ than in case of a close point pc
(with associated distance d.). An appropriate scaling factor that equalizes these
differences for these two points is w, = dy/d. and wy = d;/ds respectively.

object. The problem of computing the RBM from correspondences between 3D
object and 2D image entities is commonly referred to as 3D-2D pose estimation
problem [6, 13]. In mathematical terms we have the following kind of constraint
equations:

P(RBM(e)) = ¢, 2)

where P represents the perspective projection.

There exist approaches (in the following called 'projective’ approaches) that
formalize constraints directly on equation (2) (see, e.g., [1]). An alternative
is, instead of formalising the pose estimation problem in the image plane, to
associate a 3D entity to each 2D entity: For example, a 2D image point together
with the optical center of the camera spans a 3D line (see figure 1a) and an image
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line together with the optical center generates a 3D plane (see figure 1b). In
case of a 2D point p we denote the 3D line that is generated in this way by L(p).
Now the RBM estimmation problem can be formulated for 3D entities

RBM ") (p) € L(p).

where p is the 3D Point. Such an Euclidian formulation has been applied by,
e.g., [14, 15, 5, 13]. They have coded the RBM estimation problem in a twist
representation. The RBM can then be computed iteratively on a linearized
approximation of the RBM.

This approach is elegant, since it deals with the full perspective projection.
It works in the space where the RBM takes place (i.e., the Euclidian space) and
also allows for nicely interpretable constraint equations which basically represent
the Euclidian distance between the 3D entities (see figure 1,a,b). It can also
deal with any kind of camera model (orthographic, perspective, paraperspective,
...): For switching between these camera models only the reconstruction of the
entities change but not the actual constraint equations.

We have been sucessfully working with this algorithm which is turned out
to be numerically stable and fast [10]. It is also straightforward to implement
and the meaning of constraints and entities is well defined (which will become
important for our improvement of the algorithm). However, one problem of such
a formulation is that when dealing with natural scenes uncertainties are asso-
ciated to the image features used as correspondences. These uncertainties can
be for example caused by unprecise positioning or the calibration of cameras.
These image uncertainties lead to an inhomogeneity in the constraint equations:
The estimation of feature attributes of entities with large depth cause a higher
uncertainty in the constraint equations than that of entities at a close distance.
This is caused by the fact that the constraint equations are formulated on enti-
ties in the 3D—Euclidian space which however originate from 2D entities which
uncertainties reproject back to the Euclidian space in a non-homogenuous way.
Thus, correspondences of entities with large distance would have higher influ-
ence in the constraint equations (see figure 1c).

In this paper, we demonstrate the effect of this inhomogenity on the example
of RBM estimation from stereo sequences: We can show that for scenes with
large depth variation, although we get a good reduction of the error measured in
the 3D constraints this can lead to quite significant errors in the 2D projections.
We then introduce a scaling of the constraint equations that elliminates the
inhomogenity and we can show that we achieve better results for scenes with
large depth variation but not scenes with small depth variation.

The paper is structured as following: In section 2, we briefly describe the
3D—2D pose estimation algorithm. In section 4 we describe our modification of
the algorithm. In section 3, we introduce the scenario in which our algorithm is
applied and in section 5 we show the effect of our scaling.
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2 Constraint Equations

Following [14, 15, 5, 13] an RBM can be represented as

fa G 1 - n
RBM = ¢f® = ZO —(€a) (3)
with é being the 4 x 4 matrix
0  —ws w2 w3g2— wags+ Aw
£~ _ w  —wq—+ AW _ w3 0 —wyp  Wi1Q3 — W3q1 + Aws
0 0 —wy Wi 0 Woq1 — W1qa + Awo
0 0 0 0

with w being the direction of the line around which the rotation is performed,
q being a point on this line A being the translation along the line. A straight
forward linearisation is given by e ~ (I x4 +a£ ). We can represent a 3D point
p = (p1, p2, p3) by the null space of a set of equations

T

1 00 —py 0
X2
FP(x)=| 0 1 0 —ps . =| o0 (4)
0 0 1 —p; 13 0

Note that the value ||FP(x)|| represents the Euclidian distance between x and
p- This will is important to derive interpretable constraint equations.

A 3D line L can be expressed as two 3D vectors r, m. The vector r describes
the direction and m describes the moment which is the cross product of a point p
on the line and the direction m = p X r. r and m are called Pliicker coordinates.
The null space of the equation x X r —m = 0 is the set of all points on the line.
In matrix form this reads

€1
0 Ty —Ty —Myg .
Flx)=| —r. 0 Ty —My x2 =0 (5)
Ty Ty 0 —m, 13

Note that the value ||[F¥(x)|| can be interpreted as the Euclidian distance be-
tween the point (z1,z9,z3) and the closest point on the line to (zi,xz2,x3)
[8, 13].

We now want to formulate constraints between 2D image entities and 3D
object entities. Given a 3D point p and a 2D point p we first generate the 3D
line L(r,m) that is generated by the optical center and the image point (see
figure 1b).2 Now the constraint reads:

FLO ((Lis + a)p) =0, (6)

2Note that the line L depends on the camera parameters.
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Figure 2: A,B,C,D: The scenario for RBM estimation. A,B: Left and right
image of the first frame. Some of the used correspondences are displayed in A.
C,D: Left and right image of the second frame. E,F: Two other scenes used for
testing the pose estimation algorithm. E: Lab Scene without large differences
in depth. F: Another outdoor scene.

Note that although we have 3 equations for one correspondence the matrix
is of rank 2 resulting in 2 constraints. For different correspondences we get more
equations. This results in a system of linear equations which solution becomes
optimized iteratively (for details see [5, 12]).

3 Ego-motion estimation from Stereo Sequences

We apply the pose estimation algorithm in the context of egomotion estima-
tion from stereo sequences (see figure 2A-D). Here we do not have any model
knowledge about the scene. Therefore the 3D entities need to be computed from
stereo correspondences. We provide manually derived correspondences in two
consecutive stereo frames for a number of 3D points. For each 3D points we
therefore get four projections, two in the first and also two in the second frame
(see figure 2A,B,C.D). From the correspondences in the first frame we compute
a 3D point and the correspondences in the second frame result in two 3D lines
for which two constraint equations (6) can be derived.

We measured the image distances between manually determined points and
points projected after the computed RBM has been performed. We noticed that
for the points close to the camera there occur in average large differences. We
expect that this inhomogenity results from the inhomogenity in the constraint
equations.
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4 Scaling of Constraint Equations according to
Image Uncertainty

In the context of ego-motion estimation from stereo sequences we are faced with
uncertainties in the 3D model as well as in the feature extraction. Both uncer-
tainties are caused by the unprecision in the positioning of the corresponding
2D points. First, it results in an unprecision of stereo reconstruction.? Second,
it leads to an unprecision in the reconstruction of the 3D line from the 2D point.
Since we deal with relativeley small motions compared to depth variation in the
scene we can assume that both uncertainties lead to similar distributions and
can be handled by the same mechanism.
We replace equation (6) by

wipFL(p) ((IS><3 + ga)p) =0. (7)

where w,, is computed by

1
|loc — RBM(p)|

Wp = (8)
where o is the optical center of the camera. Note that in our stereo context
the weights for the same 3D point p are different for correspondences of the left
and right camera since their optical centers differ.

The reason for choosing this formula is a straightforward application of the
theorem of intersection of parallel lines with two intersecting lines (see also figure
le):

dp B dr
loc —RBM(p)|| |loc — P(RBM(p))||’

Since the weight w,, is supposed to equalize the effect of d, we need to divide
by

|loc — RBM(p)||
|loc — P(RBM(p))||

We can assume the image uncertainty d; as constant and approximate ||oe —
P(RBM(p))|| by the focal length (i.e., by a constant as well). Both constants
do not influence the relative weighting of constraint equations and can therefore
be neglected such when we devide by d,, we end up with equation (8).

d, = d; -

5 Results

We applied the scaling in 3 different scenarios: motorway (figure 2A-D), lab
(figure 2E) and country road (figure 2F). In the lab scenario, depth differences
were rather small compared to the ego-motion while in the other the depth

3In addition there is also uncertainty in the calibration. However, we negelect these effects
here.
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Figure 3: The average pixel distance of estimated image points depending on
the number of correspondences used for computation is shown for the three

scenarios: country road (top,lefp, motorway (top,right), and lab (bottom).
differences were rather large. From our consideration above we expect small

effects for the low depth variation (lab scene) and improvement for the other
two cases. For all sequences we generated 25 point correspondences manually.
We computed the RBM on a subset of those (computing set). We calculated
from the computing set and the set of remaining points (test set) the average
pixel distance in the image plane separately.* The results are shown in figure 3.

Different observations are of interest. First, the average pixel error is signifi-
cantly lower with our scaling compared to the non-scaling case for the motorway
and the country road sequence (the error can be reduced to approximately the
half). For the lab sequence there is no siginificant difference if scaling is applied
or not due to the small depth variation. We can further observe that we need
approximately 8 to 10 correspondences to get a good generalization. For less

correspondences, we get much better results on the computing set compared to
the test set.

4For a fixed number of correspondences we did 20 runs on different subsets.
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6

Summary

We described a problem of a sucessful 3D-2D pose estimation algorithm [14, 15]
when it is applied in scenarios with large depth variation. Then the image un-
certainties are inhomomogenuously reflected in the Euclidian space where the
constraint equations are formulated. We introduced a scaling of the constraint
equations that equalizes this inhomogenity. We could show that we can reduce
the error significantly in outdoor scenarios with large depth discontinuities. As
expected from the motivation of the scaling method, no measurable improve-
ment is achieved for scenes with small depth variation.
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L ocal featuresfor classification of structural X-ray images
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Abstract.

This work deals with the classification of X-rayages from Frederikssund Hospital.
Previous work by Engholm & Ngrgaard (2003) hasrafieed classification in the same
domain, but the features they used were global.gbia¢ of this work and its derivatives
is to improve on this result by using features gpmadly suitable for the domain of X-ray
images. We propose a simple region model for deisgrispecific types of image
categories, and specific feature statistics basethat model. We first experimentally
evaluate this model based on manual segmenta@masthen propose an algorithm for
automating the segmentation process.

I ntroduction

This work deals with the early stages of classiioraof X-ray images from
Frederikssund Hospital, provided by Knud-Erik Feddf M.D. The problem in the
medical domain is that quite often doctors andneshns make mistakes when labeling
an X-ray image. This occurs for several reasong;iwinclude, for example, fatigue, or a
misclick on a computer. It is thus desirable tooaudte the process of X-ray labeling and
reduce the workload on the doctors and technied. gtt this point, we are entrusted
with the task of automatic classification amongfihieowing 10 categories of X-rays:
Elbow (front)
Elbow (side)
Foot joint (front)
Foot joint (side)
Hand joint (front)
Hand joint (side)
Column (front)
Column (side)
. Thorax (front)

10. Thorax (side).
Figure 1 shows an example from each category. ®uework by [2] has explored the
same problem in the same domain, achieving 20% eate. While the computational
techniques they employed were quite solid (decisiees / boosting), the features the
computations were based on were global. Such fesfailed to capture the essence of
the image content, i.e. bones and other solid tsires, thus depriving the authors of the
ability to take advantage of domain-specific knadge. The goal of this work and its
derivatives is to improve on this result by usiegtlires specifically suitable for the
domain of X-ray images.

CoNoOrwWNE
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As you can see from figure 1, the images exhibiga level of variation, but here we
focus on a particular subset of X-ray images, ngrielt of categories with strong
structural elements, such as hand / foot jointsyelsas elbows. These are categories 1-6
in the original list and we will refer to them stsuctural categorie$rom now on. We
propose a simple 2-region model for the categaniegiestion, and conduct a feasibility
study by semi-automatically collecting featureslos X-ray images and attempting to
guantitatively assess if those features are seifabldiscrimination between the

structural categories. We further propose a wautomate the process of estimating the
parameters of the most suitable regions, so clea8dn can be performed without

human intervention.

Front

Elbow

Hand
joint

Foot
joint

Column
/
Thorax

Figure 1. Examples of X-ray categories
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Section 1. Classification framework

1.1 Simpleregionsfor structural categories.

We note that the images from structural categonid¢ise data set can be conceptually and
practically subdivided into two regions, in suctvay that each region has a high level of
coherency in intensity and orientation. For examtile images in the category Elbow
(side) can be perceived as two major parts: thevohthe upper arm, and the bones of
the lower arm. We propose to similarly divide theges of the other categories into two
regions (see Fig. 2)

Figure 2. Exampls of regions (1 for each strutttaigegory)

1.2. Region statistics

Based on these two regions, we propose a partisatasf features / statistics which
captures the important properties of the regioh®se€ statistics are:

a) The angle between principal orientation of the tegions

b) The ratio of lengths of the two regions

c) The ratio of widths of the two regions

d) The aspect ratio of the longest region, and
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e) the aspect ratio of the shortest region
The selected features are intuitive and invariamrientation and scaling changes.

1.3 Data exploration and assumptions

We assume each category’s feature vectors are Hpmiistributed. Figure 3 shows all

5
the 2-dimensional projections of the 5-dimensidaature vectors (a total {fzj = )0

as well as the projections of the Gaussian cloadsdch of the image categories. It is
evident, that some of the categories are cleapgrsdle from the rest based on the
features we selected. For examglieow sidas separable based on the angle between the
regions, as one would expect. Some of the othesetaseem to have a consistent overlap
with other classes for most of the dimensions, tviniakes the task of the classifier a bit
harder.

angle vs.length ratio angle vs.width ratio angle vs.aspect ratio 1 angle vs.aspect ratio 2

0.8

06

04

0.2

100

25

0 05 1 15 2 25 0 05 1 15 2 25

0: Elbow front +: Foot joint front *: Hand joint front
o: Elbow side o: Foot joint side ¥ : Hand joint side

Figure 3: Separability of categories using 5 fesgumutual angle, length ratio, width
ratio, aspect ratio (long region), aspect ratim(shegion). Pairwise scatter plots and
projections of Gaussian clouds for each categorgamh feature pair.

1.4 Discriminant Analysis

A patrticular X-ray image will have a feature vectoassociated with it, and is classified
under classJ’ based on the maximum a posteriori principle (MA3?) as follows:
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o'(%) = argmaxiog p(e | X)

pled %) O p(@) p(X | @)

We base the prior for clagg on the number of training samptesn that class
p(a)l) On

And the likelihood p(X | )is based on the assumption of a Gaussian distibtdr
classaw with mean & and covariance, . Thus

1
detZ,
and our classification decision is

argmaxlog p(« | X) = arg_ma{log n —%Iog dets, —%(X ) s x- 4 )}

p(X| &) O ex —%(X—M)Tzi‘l(i—m}

Section 2. Experimental results

In order to determine the suitability of our systemclassification, we perform a leave-
one-out test, and classify each sample using MARleacribed in the previous section.
Table 1 shows that 2 categories were classifiefibptty, while 2 others, only had 1
misclassification. The overall error rate was 1233~or comparison, Engholm &
Ngrgaard (2003) [2] achieved only a 20% error usieg decision trees and boosting on
completely global features. Our results are naally comparable to [2] , as we operate
on fewer categories and use manual segmentatiomet#s, the goal here is to
demonstrate the potential of the framework, andsthibility of the simple structural
features for discriminating between structural gatees.

Instances
Category misclass- Further clarification

ified
Elbow front 1/13 1 labeled dsand joint side
Elbow side 0/13 Perfect classification

3/12 1 labeledoot joint side

Foot joint front and 2 asand joint front

Foot joint side 4/12 4 labeled &t joint front
Hand joint front 1/11 1 labeled &and joint side|
Hand joint side 0/12 Perfect classification

Final classification error £2.33%

Table 1. Misclassification of categories using sk&ected
features
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Section 3. Automatic region segmentation

The previous section demonstrates that the twamnegiodel and the selected features are
suitable for classification of the 6 structuralegfiries. However, as this is a real-world
problem, we would like to be able to obtain sudjigrs automatically. This can be done
in a number of different ways, but we chose tonatesegmentation based on the edge
map from the Canny edge detector [1]. The prepsiegsonsists of eliminating edges
that are too short, as well as borders. Then weenrakal region estimates based on the
longest curves from the top and from the bottom.

3.1. Definition of desirableregions

As discussed earlier, each region has a high vaherency in intensity and

orientation, which in the domain of the edge ma@amsethe edges in the regions must be
consistent in orientation, they have to be incluthetthe region as fully as possible, and
as many edges should be included as possible (slowet leave out any parts of the
structure). Also we should include all major edtiest contribute to the formation of the
region. We would also like to exclude noise edgeas arise from the label letters (Figure
4b).

3.2 Mathematical Formulation

Based on the above intuitions, we formulate aut@magion segmentation as an energy
minimization problem.

R”=argminE(R )+E(R,)

+ AE e+ AsE i + AE

partial + 4 =excluded

E(R) = AlEoriem longways

Here the first term is the orientation penalty, vénee penalize deviation of each edge’s
orientationd from main region orientatiof, weighted by the edge’s length(longer
edges should naturally have a greater impact orethien’s energy than shorter ones).

Eorient = Z L; (gu - é)z

ilincluded

The second term formalizes the intuition that thiepnost edges in the crosswise
direction should be as close to the region’s lergtipossible. Also the region should not
include too much empty space around the edgeseasenrying to capture the main
shape of the structures in the X-ray and not tlees@round them.

E ongways = Z (Li - I:)2 + di2

iOperiph
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Here, Lis the region’s length, and is the crosswise distance from the edge to the

closest border of the region.

The next component of our energy function is theaitg on partial inclusions. In the
desired configuration, edges will be either conmgdieinside the regions or completely
outside, the most unfavorable state being an edtjevay in the region. Thus ip, is the

portion of the curve included in the region, the formulation for pdrtreclusion energy
is

E partiar = Z P [(U.— pi)

Finally, we penalize curves which are excludechmdrosswise direction from a region.
The longer the projection of the excluded curvendhe principal axis of the region, the
more we penalize it.

Eexcluded = Z I-i2 Sin(gi - é)

ilexcluded

With this formulation, the penalty for excludingges arising from labels on the X-ray
will not be very large.

3.3 Computation and results

Using the energy definitio(R above, we find automatically find the two-region
configuration that minimizes this energy by usinglid sampler [4] on the parameters of
the initialized regions. Figure 4 shows the progjia@s of the automatic algorithm. We
start with the original image (4a), obtain the edg®, removing borders and short
curves (4b), initialize the regions based on soimgle heuristics (4c), extend the
regions crosswise, including all curves in the svase direction (4d), and finally use the
Gibbs sampler to achieve the final result for theomatic segmentation (4e).
Unfortunately at the moment, the heuristics weinstep (c), and the energy
formulations are not entirely robust, so we areg/@tille to achieve automatic
segmentation for a select subset of X-ray images.
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Section 4. Future Work

This work is still in its early stages, and theiaghd results can be greatly improved
upon in several areas.
1. Coming up with new and better features. Recognitssults based on manual

segmentation could be improved, if we include adddl statistics to our feature
vectors, for example region intensity or crossvgsalient profiles.

. Making automated segmentation more robust. Thideatione improving the
energy function definitions. In the current implertetion, we make some
simplifying assumptions about the orientation @& iimage and the shape of the
regions, but that needs improvement. For examplassame the image and the
regions are oriented vertically and that the regjistiart close to borders, which is
often not the case. As suggested by Engholm anddded (2003), we can use the
Hough transform to eliminate the frame, and estntla¢ global orientation of the
image.

. Basing the regions on cues more stable than efigges may have been a quick
first solution, but they lose much useful inforneati such as the intensity and
gradient. With intensity information we may be atdeanalyze connected
components, and form regions in a more simple \Wwag from edges, which
would incidentally also be more robust.
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4. Being able to discriminate non-structural categobg using other types of
features, such as global or textural (e.g. the esdgpmcolumn sidecategory
contain recurring square patterns, and thorax amtacurring ribs).

5. Incorporating up to 50-100 categories, and increpie complexity of the
models accordingly.

6. Using generative modeling for proposing simple sagiand more complex
structures and employing Data Driven Markov Chawnii¢-Carlo to explore the
solution space [5].

Conclusion

In this work, we have proposed a simple 2-regioml@héor classifying structural X-ray
categories, and conducted a feasibility study biecting features on the X-ray images
from manual segmentations. From those featuregomducted an experimental
evaluation of a MAP classifier based on the feaundere a leave-one-out test yielded
only a 12.33% error rate. This is promising, sificee could achieve this result without
manual segmentation, it would be a significant iovement over the 20% error rate from
previous work [2]. In addition we proposed a waytomate the process of estimating
the parameters of the most suitable regions, ssifieation can be performed without
human intervention, thus laying the foundationdatomatic recognition.
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Exemplar Based Recognition of Visual Shapes

Sgren I. Olsen

Department of Computer Science, University of Copenhagen, Denmark

Abstract. This paper presents an approach of visual shape recogni-
tion based on exemplars of attributed keypoints. Training is performed
by storing exemplars of keypoints detected in labeled training images.
Recognition is made by keypoint matching and voting according to the
labels for the matched keypoints. The matching is insensitive to rota-
tions, limited scalings and small deformations. The recognition is robust
to noise, background clutter and partial occlusion. Recognition is possi-
ble from few training images and improve with the number of training
images.

1 Introduction

Several recent successful approaches to shape recognition [3, 5, 6,8, 9] are based
on attributed image keypoints. By choosing the descriptors carefully, such ap-
proaches has shown robust to rotations, scalings, illumination changes, 3D cam-
era viewpoint including minor deformations, and - probably most important -
background clutter and partial occlusion. The present approach follows this line
of research. In the recognition phase the focus is not on instance detection, but
on semantic contents report. The semantic contents of a training image is sup-
plied as a list of names (labels), e.g. ’house’, 'chair’ etc. The set of names form
the vocabulary by which test images can be recognized. Given a new unlabeled
images the system reports the label(s) with strongest support from the matched
keypoints. Also an image of the recognized structures is produced.

2 Previous work

Probably the most influential early work using keypoints for recognition is the
paper of Schmid and Mohr [9]. Here keypoints are detected at multiple scale
levels using a Harris corner detector, and a vector of differential invariants is used
as descriptor. Recognition is done using multidimensional indexing and voting
and by applying a model of the shape configuration, i.e. the spatial relationship
between the keypoints defining a model. In later work [10, 6] the use of different
interest point operators has been evaluated, and the Harris detector has been
combined with other approaches to result in a scale and affine invariant detector.

Another influential work is the papers by Lowe [3-5]. Here the keypoints
are detected in scale-space as the local extremes in the convolution of the image
with the difference of Gaussians. The descriptor is chosen by sampling the image
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gradient orientation in a rectangular grid centered at the keypoint and aligned
with the dominating local gradient orientation. By using a variant of the k-d-
tree for indexing, input keypoint descriptors are matched to their most similar
neighbor in the database of trained descriptors. Then sets of 3 matched keypoints
defining the pose are grouped using the Hough transform [5]. Next, an accurate
pose of the recognized object is fitted by an iterated least squares affine fit with
outlier removal. Decision to reject or accept the model hypothesis is finally made
based on a probabilistic model [4].

The present work may be seen as a refinement of [8]. In this work keypoints
are detected in scale-space using a model of end-stopped cells [2] and using
centers of circular contours. The former type of keypoint identify corners (2 legs),
junctions (3 legs) and more complicated structures with 4 legs. The directions of
the legs is well suited for indexing. In the present approach the keypoint types
are unchanged, but the detection method has been improved. Compared with the
keypoint types used in [5,6] fewer keypoints are in general detected. These are
larger scale features more likely to mark positions with high semantic contents.

In [8] a 2-dimensional histogram of local edge point gradient orientation lo-
cated within an angular sector relative to the keypoint is used as descriptor.
Comparison between an input and a database keypoint is made by a modified
x2-test. Due to quantization problems this descriptor often does not perform
well. To achieve a recognition invariant to rotations, scalings act. one method is
to choose descriptors that are invariant to such transforms [9,6]. This approach
is reasonable only if the transformations can model the expected deformations
well. In the present work this is not appropriate, because the chosen descriptor
is not very local. To achieve rotational invariance the descriptor measurements
may be made in a coordinate system aligned with the dominating local image
gradient orientation [5]. For the keypoints chosen in the present system there
will be either several or no such orientations. In [5] the problem of multiple
dominating orientations is solved by storing as many descriptors as there are
such orientations. This reduces the time for single descriptor comparisons but
increases the size of the database significantly. We take a third approach, using a
descriptor that is not invariant to the transforms mentioned. Instead rotational
invariance and insensitivity to minor deformations is left to the matching pro-
cess. This choices will lower the size of the database at the expense of a larger
computational complexity during the matching.

The present work is focused on reporting the semantic contents of an image
in terms of one or several labels introduced during training. This is different
from detecting the existence and pose of a specific object in an image [5,9].
Loosely speaking, the method is aimed at object shape categorization rather
than image-to-image matching. Thus a requirement of positional consistency
between a group of neighboring query and database keypoints is not necessary.
In the present system there is no spatial relations between keypoints defining a
shape. The lost discriminative power is regained by choosing a descriptor with a
larger spatial support. Each query keypoint may be matched to multiple database
keypoints. The classification is then made using a simple voting mechanism where
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each match votes on the database keypoint label with a strength determined by
the similarity between the two descriptors.

3 Keypoint detection

First the essential aspects of the visual shape such as object outline contours and
texture contours are extracted by edge detection using Gaussian derivative con-
volution and spatial non-maximum suppression of the gradient magnitude. The
edge points are then used to detect the two types of keypoints: Circular struc-
tures and junctions (including corners). These keypoints mark image positions
where the semantic content of the local image shape is locally rich. The core of
the detection method is described in [8]. Experiments however have shown that
for junctions neither the estimated localization nor the number and directions
of the legs defining the junction are sufficiently stable or accurate.

In the present work each detected junction is validated in a refinement step.
For each detected junction the edge points in the local neighborhood are grouped
according to their local angular positioning and gradient orientation. Then a
straight line is fitted to the points in each group. If few points contribute to the
fit, if the residual of the fit is bad, or if the distance from the junction point to
the fitted line is large, then the group is discarded. If less than 2 groups remain
the junction is discarded. Otherwise the fitted lines are intersected using least
squares. If the residual of the fit is large or if the intersection point is far from the
initial position of the junction this is discarded. Otherwise the intersection point
becomes the new position of the junction. Thus, the remaining keypoints are well
localized and defined by locally straight edges with a well defined orientation.

To achieve an optimal detection of keypoints previous methods have used
a multi-resolution (scale-space) approach where keypoints initially are detected
at a set of scale levels, then linked through scale-space, and accepted only if
some strength measure is extreme. In [6] a single optimal scale for each keypoint
is found. In [5] several (extremal) keypoints may be selected. Experiments have
shown that both corners and junctions may be inconsistently detected over scale,
i.e. the number of legs and their orientation may differ. In the present approach
a scale-space approach is used - not to ensure optimal detection - but to en-
able recognition of shapes scaled in size and to prune unstable detections. First
keypoints are detected in scale-space, using a sampling of v/2 corresponding to
3 samples per octave, and grouped in scale-space according to their type and
positioning. For each group the dominating directions of the legs are found by
histogram analysis. Then a number of the registered representations that are
consistent with respect to the number and directions of the keypoint legs are se-
lected by sampling. The sampling is made such that the scale distance between
two selected items is at least 2 scale levels. Finally, all isolated non-selected key-
points (with no other selected keypoints in their neighborhood spatially as well
as w.r.t. scale) is selected as well. This guarantees that only stable or unique
representatives are chosen. The sampling is chosen as a compromise between a
small amount of redundancy among the representatives and a good coverage of
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different neighborhood sizes coded by the descriptors. The net result is a reduc-
tion in the number of selected keypoints (often by 50 %) and that most of the
selected ones are supported by similar detections at other scale levels. Especially
for junctions, most spurious leg detections are removed in this process.

4 Keypoint descriptors

In the present work the choice of descriptors to a large extend follows the
approach of local gradient sampling proposed by Lowe [3,5]. However, both
the sampling points, the quantization, and the descriptor matching is different.
The exemplar approach, relying solely on the statistics of isolated image patch
matches, requires that the keypoint descriptor is chosen to code the shape in a
sufficiently large image patch in order to possess sufficient discriminative power.
However it also must not be too selective. A reasonable trade off between dis-
criminative power and generalization is experimentally found to correspond to
a support radius between 10 and 20 pixels. In [5] a rectangular sampling grid
is used. This grid is aligned with the dominating direction of gradient orien-
tation. If several peaks in the histogram of gradient orientation are present,
several keypoints are generated. This will double/triple the size of the database
for corners/junctions. The advantage of the redundancy is a simpler matching
of descriptors to the database. The disadvantage is that more descriptors should
be matched to a larger base. We choose to represent each keypoint only once and
to pay the price of having to “rotate” the descriptor vector for a each descriptor
comparison. For this choice a sampling in a rectangular grid is inappropriate. We
choose to sample the gradient information in 5 rings with radii about 34,4 = 1..5,
and with a sampling distance of about 3 pixels in each ring, corresponding to 6,
12, 18, 24 and 30 samples (90 in total). The segmenting of the disc is made using
the k-means algorithm. Each pixel within a distance of about 18 pixels from
the keypoint is classified to the nearest segment sample point and the gradient
with largest magnitude within each segment is chosen (see Figure 1). We then

Segment

Gradient direction

Coded angle

Y S O

Keypoint

Fig. 1. Sampling regions (left), and coded angle for a segment (right).

code the gradient magnitude and the angle between the gradient orientation and
segment direction. Each of the two segment component are quantized to 4 bits
each. Thus the description vector has the size of 90 bytes. The coding of the
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individual sample elements is invariant to rotations, but their position in the
descriptor vector is not.

The motivation for inclusion of the (quantized) gradient magnitude in the
descriptor is that this information allows a (more or less pleasing) reconstruction
of a coded image. Also, a “mental image” of the recognized structures in a query
image can be made based on the stored data, not the query data. As an example
Figure 2 shows a query image, an image reconstructed from the coded data, and
two reconstructions based on matched database descriptors. The database was
constructed using 89 objects from the COIL-100 database [7], each object seen
from 8 different viewing angles (45 degree separation in depth). The two query
images differed from the nearest training image by a rotation of 10 degree (in
depth).

(a) (b) (c) (d)

Fig. 2. Image (a) and reconstruction (b) based on the 63 detected keypoints in the
image. Two reconstructions (c) and (d) based on 22 and 14 keypoints.

The reconstruction is made coarse to fine. The solution at a coarser level is
used as initial value in the reconstruction at the next finer level. At each level
the reconstruction is made in three steps. First a map of gradient magnitudes is
constructed from the database descriptors at the positions defined by the match-
ing input keypoints. Only matches to the winning label is used. Next, this map
is anisotropically smoothed and the ridges detected. Ideally, these correspond to
the recognized shape contours. For each point on the detected ridge the coded
gradient information defines two equations in the partial derivatives of the re-
constructed surface. Using standard regularization, a simple iterative updating
procedure is finally applied. For simplicity a fixed number of iterations is used.
Since no absolute intensity values are known the reconstruction can be made up
to a additive constant only. In areas with few keypoints the reconstruction will
be poor. Areas with no recognized keypoints will be reconstructed by a constant
initial value of middle-gray. Thus the reconstructed image probably will be of
low quality, but nevertheless show the recognized structures.
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5 Shape recognition

The database of stored keypoints is organized in four groups containing circular
structures, corners, junctions, and structures with more that 3 legs. Corners are
indexed by the quantized angle between the two legs. Junctions are accessed
using a 2-dimensional array indexed by a similar quantization of the angles
between the first and the other two legs. The stored keypoint descriptions for
circular structures and structures with more than 3 legs are relatively few and
compared to the query keypoints through an exhaustive search. To handle large
rotations and angular quantization errors several bins are checked for corners
and junctions. For an n-legged keypoint n - 2"~! bins are checked corresponding
to the n possible ways one input leg can be matched to the first leg of the stored
keypoint and the 2"~! combinations the n — 1 angles can be quantized to the
two nearest integer values. Experiments show that the indexing step reduce the
number of further comparisons by a factor of 5-20. Next each input keypoint
is compared to the stored representations in the union of checked bins. In [8]
a fast comparison using a measure of asymmetry was used to further limit the
computational burden. Such fast tests are still relevant but are - for simplicity -
omitted here.

A query keypoint is compared to a database keypoint by comparing the de-
scriptors of gradient sample values. First the query descriptor is rotated to make
the orientation of the first legs of the keypoints match. To eliminate quanti-
zation problems three rotation angles, corresponding the nearest three integral
sampling numbers, is determined for each ring in the descriptor. Based on a score
value the best of the three rotations is chosen independently for each sample in
each ring, and a total match score is computed as a weighted sum over the 5
rings. This procedure ensures rotational invariance and that a significant amount
of non-trivial deformation can be handled. The weights are chosen inversely pro-
portional to the number of samples in each ring, i.e. inversely proportional to
the sample distance. Within each ring the score is computed as a sum of gradi-
ent sample differences. Let g = (v?,m?) and g% = (v, m) be the quantized
sample values of orientation and magnitude for a query and a database seg-
ment, and let dm = |m? — m?|/16 and dv = |v? — v®|, where the value 16
corresponds to the number of magnitude sampling intervals. Then the gradient
sample difference is defined by:

. dm - (dv+1)if dv < 2 and dm < 0.5
q dby __
dist(g",g") = {1 otherwise

Thus small gradient orientation differences are punished mildly, and larger dif-
ferences equally hard. Finally, the match score is converted to a value € [0:1]
with 1 corresponding to a perfect match. The match is accepted if this value is
above an empirically determined threshold.

Each query keypoint may be linked to zero, one or a few database keypoints,
each link attributed with a match-score. Since in the present study we want to
report the semantic contents as specified by the list of training names, a simple
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voting procedure is applied. Each match votes with its score as strength and has
as many votes as there are names in the list associated with the matched database
elements. Then the list of names are sorted according to the accumulated score
value and the top-ranking name selected.

For the matches contributing to the highest ranking semantic association, a
confidence C of the naming is estimated. This is based on the total support score
Sp for the most likely naming and computed by: C = (So/ > S;) x (1 —ea:p(%jg)).
Thus C will be low if the naming is not unique or if the support score for the
naming is not strong.

When training the system with a new image, a list of names is supplied.
A keypoint in a new training image is installed if it cannot be matched to any
previously seen keypoint. If the keypoint can be matched to a database keypoint,
the list of labels for the database keypoint is extended with the new names. The
description vector of the database exemplar keypoint is not updated in any way.

6 Experiments

In the experiments reported below the system was first fed with a number of
images, each annotated with one label. Then the system was tested by presenting
it to new unnamed images and the results of the classification was monitored.
In most of the reported experiments the COIL-100-database [7] was used. This
contains 100 objects each imaged from a full circle of 72 view positions. Prior
to the experiments the images were preprocessed to correct for a 2-pixel column
warp-around error, an incorrect constant background value and noise level, and
added a supplementary border of 20 pixel width to enable detection of keypoints
near the old image border. Also, the images were converted to gray-scale.

First the performance on the COIL-100-database was tested with respect to
the number of objects. For subsets of the 100 objects, 8 views with an angular
separation of 45 degrees were used for training and the remaining 64 views for
test. First the system was first tested on all 100 objects. Then, approximately
10 objects that had the worst classification results were iteratively removed, and
the system was retrained and retested on the smaller database. This procedure
results in an optimal assessment curve. In all runs the threshold on the confidence
C was zero, implying that all images were classified. Below in Figure 3 the results
are summarized. As expected the performance decreases as the number of objects
increases. For less than approximately 50 objects the misclassification rate was
below 4 %.

Next, the ability of the system to perform well, when trained on few training
images, were tested on subsets of the 37 object images of the COIL-100 database.
The test also shows the ability to recognize objects rotated in depth. The ratio
of training images to test images was varied from 36/36 to 4/68 corresponding
to an angular interval between the training image from 10 to 90 degrees. As
before, a confidence level of zero was used. Figure 4 below shows that a mis-
classification rate below 4 % is possible with as few as 6 training images per
object corresponding to an angular separation of 60 degrees. Analysis showed
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that the average confidence value for correct and false classifications was 0.51 and
0.35 with standard deviations 0.08 and 0.06. The two distributions are highly
overlapping making a threshold-based separation difficult. This was typical for
other experiments as well. Assuming normal distributions an optimal confidence
threshold of 0.32 was found. Using this value will equal the number of accepted
false classifications and the number of rejected true classifications. Figure 4 also
shows the misclassification rate and the rate of unclassified images for C' = 0.32.

| 16T T T T T T T T
14 +— pct. errors and pct. rejecte
B 12 — as functions of sampling -
DB-items in K o~ | 12 — angle ]
| o pct. errors | 6 — A
o7 4 = |
~ objects 2 — —
[ 0 L4 odeots L
19 2937 48 58 67 77 89 100 10 20 30 40 50 60 70 80 90
Fig. 3. Misclassification rate on sub- Fig. 4. Misclassification rate for differ-
sets of the COIL-100 database, and the ent number of training images using
size of the build databases in kilo key- C = 0 (upper) and C = 0.32 (mid-
points. dle), and the percentage of unclassified

images for C' = 0.32 (lower).

Rotation in the image plane was tested similarly. For subsets of zero-angle
images of the COIL-100 database used for training, the system was tested on
71 synthetically rotated versions of each training image using a rotation step of
5 degree. Figure 5 shows that the misclassification rate was low when less that
about 45 objects were to be recognized, and that the misclassification rate in-
creased smoothly until the break-down at about 85 objects. For a small number
of objects the recognition rate was independent of the rotation angle. For large
databases the recognition rate was slightly better for images rotated approxi-
mately a multiplum of 90 degrees. Misclassification may happen when several
object share substructures making them alike from certain view angles. In such
cases, and when the queries are expected to show several objects, a list of the
top-ranking classifications may be useful. For two subsets of objects of the COIL-
100 database, the system was trained on 8 images with 45 degree separation, and
tested on the remaining images. Then an accumulated histogram of the ranking
of the correct classification was constructed. As shown in Figure 6 the correct
naming was in most cases among the first few elements in the classification prior-
ity list. However, for the larger object subset still many queries seems difficult to
classify correctly. One reason is that for these subsets several of the objects were
very alike. Another reason is that object names trained from images with many
keypoints tend to receive more votes than object names trained from images with
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few keypoints. Thus images of simple objects may be misclassified. This is due
to the simple unnormalized voting scheme. Please note that in general neither
normalization with respect to the number of keypoints in each training images
nor to the number of identically labeled keypoints seems reasonable. The first
choice will penalize shapes trained from images also showing background clut-
ter. The second choice will penalize shapes with large variability. Experiments
showed that in general neither type of normalization improved the performance.

Finally, the database build on 8 views of each of 37 objects from the COIL-
100 collection was extended with training images of cars in natural (mostly
urban) scenes. The latter images as well as the test images were selected from
the car database [1]. The training images had a size of 40 x 100 pixels. The 144
query images were much larger and showed a significant amount of background
clutter and partial occlusion. Figure 7 shows the amount of misclassification as a
function of the number of car images in the training set. For less than 32 training
images of cars the recognition rate was poor. This is not surprising because of
the difficulty of the images and because the cars may point both left and right
and may be lighter or darker than the background (corresponding to 4 different
types of cars). For larger training sets the misclassification rate stays constant at
a level about 3 %. This is caused by 4-5 images with heavy background clutter
coincidentally giving rise to keypoints matching better to some of the distractors
(keypoints from the COIL-object-views).

7 Conclusion

An exemplar based recognition scheme using attributed keypoints has been de-
scribed and a few preliminary experiments has been reported. The results indi-
cate that the system is robust to rotations, limited scalings, noise, small defor-
mations, background clutter, and partial visibility, when the number of objects
are limited (e.g. < 50). The stability w.r.t. rotations in depth has been shown to
be good, and it has been shown that recognition is possible based on few training
images. The results show that good performance is achievable using only local
information for keypoint matching. Schmid [9] reports an experiment with 20
objects from the COIL collection, using a 20 degree separation between training
as well as test images. We achieve a similar recognition rate of 99.6, but using less
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Fig. 7. Misclassification rate on images of cars in natural scenes as a function of the
number of training images of cars.

than half the number of training images. Much computational effort has been
put on the initial keypoint detection leaving fewer - but hopefully more stable
and semantically rich - keypoints. It is left for future research to investigate
whether this approach is advantageous with respect to the matching success.
Automatic learning of significant keypoints as opposed to keypoints caused by
background clutter and irrelevant details is of high importance for achieving a
good recognition rate and to avoid the database being filled with useless data.
In the present approach - having no concept of an object - this might be done by
removing rarely used keypoints. The viability of this approach is left for future
research.
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Abstract

The linear scale invariance of the multivariate alteration detection (MAD) transformation is used to obtain invariant pixels for automatic
relative radiometric normalization of time series of multispectral data. Normalization by means of ordinary least squares regression method is
compared with normalization using orthogonal regression. The procedure is applied to Landsat TM images over Nevada, Landsat ETM+
images over Morocco, and SPOT HRV images over Kenya. Results from this new automatic, combined MAD/orthogonal regression method,
based on statistical analysis of test pixels not used in the actual normalization, compare favorably with results from normalization from

manually obtained time-invariant features.
© 2004 Elsevier Inc. All rights reserved.

Keywords: MAD transformation; Orthogonal regression; Radiometric normalization

1. Introduction

Radiometric normalization of satellite imagery re-
quires, among other things, an atmospheric correction
algorithm and the associated atmospheric properties at
the times of image acquisition. For most historical
satellite scenes, such data are not available and even
for planned acquisitions they may be difficult to obtain.
A relative normalization based on the radiometric infor-
mation intrinsic to the images themselves is an alternative
whenever absolute surface radiances are not required, for
example in change detection applications or for super-
vised land cover classification.

Several methods (Du et al., 2002; Furby & Campbell,
2001; Hall et al., 1991; Moran et al., 1992; Schott et al.,
1988) have been proposed for the relative radiometric
normalization of multispectral images taken under different
conditions at different times. All proceed under the assump-
tion that the relationship between the at-sensor radiances
recorded at two different times from regions of constant
reflectance is spatially homogeneous and can be approxi-
mated by linear functions. The most difficult and time-

* Corresponding author. Tel.: +49-2461-61-4885; fax: +49-2461-61-
2540.
E-mail address: m.canty@fz-juelich.de (M.J. Canty).

0034-4257/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.1s¢.2003.10.024

consuming aspect of all of these methods is the determina-
tion of suitable time-invariant features upon which to base
the normalization.

Nielsen et al. (2002, 1998) recently proposed a change
detection technique, called multivariate alteration detection
(MAD), which is invariant to linear and affine scaling.
Thus, if one uses MAD for change detection applications,
preprocessing by linear radiometric normalization is super-
fluous. However, radiometric normalization of imagery is
important for many other applications, such as mosaicking,
tracking vegetation indices over time, supervised and
unsupervised land cover classification, etc. Furthermore,
if some other, non-invariant change detection procedure is
preferred, it must generally be preceded by radiometric
normalization.

We have applied the MAD transformation to select the
no-change pixels in bitemporal images, and then used them
for radiometric normalization. The procedure is simple, fast
and completely automatic and compares very favorably with
normalization using hand-selected, time-invariant features.

2. Selecting invariant pixels

In order to mask out the change pixels in a bitemporal
scene, we first form linear combinations of the intensities for
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all N channels in the two images, acquired at times #, and z,.
Representing the intensities by the random vectors F and G,
respectively, we have

U:aTF:alFl +a2F2+...+aNFN

V=b"G=bG +b,Gy+ ...+ byGy,

where a and b are constant vectors. Nielsen et al. suggest
determining the transformation coefficients so that the
positive correlation between U and V' is minimized. This
means that the difference image U—V will show maximum
spread in its pixel intensities. If we assume that the spread is
primarily due to actual changes that have taken place in the
scene over the interval [z,, t;], then this procedure will
enhance those changes as much as possible.
Specifically, we seek linear combinations such that

Var(U — V) = Var(U) + Var(V) — 2Cov(U, V)

— maximum, (1)
subject to the constraints
Var(U) = Var(V) =1 (2)

and with Cov(U, V)>0. Note that under these constraints
Var(U — ) = 2(1 - p), 3)

where p is the correlation of the transformed vectors U and
4

Cov(U, V)

p=ComU. V) = N 0)

The combined random vector for the bitemporal scene
(F G) is assumed to have zero mean and variance—covari-
ance matrix

Zﬁ ' Z]g
ng Zgg

so that

Var(U)=a" ) & Var(V) =b' Zggb and Cov(U, V)

:aTngb

Extremalizing the covariance Cov(U, V) under the con-
straints (Eq. (2)) is equivalent to extremalizing the uncon-
strained function

L=al Zfb__( P )

()

104

where v and p are Lagrange multipliers. This leads to the
coupled generalized eigenvalue problems

Zﬁg Z; nga 4 fo a (4)
Zg/ Zf;l ngb =5 Zggb'

Thus, the desired projections U=a'F are given by the
eigenvectors a;. . .ay corresponding to the generalized eigen-
values

P 2py

of ng Zgg Zg/ with respect to ;. Similarly the desired
projections ”=b' G are given by the eigenvectors b;. . .by of
D Zj;l > With respect to g corresponding to the
same eigenvalues. Nielsen et al. (1998) refer to the N
difference components

MAD; = U; — V; =a F — b/ G, i=1...N, (5)

as the multivariate alteration detection (MAD) components
of the combined bitemporal image. The covariances of the
MAD components are given by

where 0;; is Kronecker’s delta,

1 fori=j
O =

0 for i#j.
The components are thus orthogonal (uncorrelated) with
variances

Var(U; = V) = G%/IADI- =2(1—py). (6)

The last MAD component has maximum spread in its pixel
intensities and, ideally, maximum change information. The
second-to-last component has maximum spread subject to
the condition that the pixel intensities are statistically uncor-
related with those in the first MAD component, and so on.

The MAD components are invariant under linear trans-
formations of the original image intensities. We can see this
as follows. Suppose the second image G is transformed
according to some linear transformation H=TG. The rele-
vant covariance matrices are then

Z//'g = (FH') = ng T
ng (HFT) TZ v
Z]j = ij

Z; (HH") TZ&g T'.
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The eigenvalue problems (Eq. (4)) are therefore equivalent
to

~1
ngTT (nggTT> ngfa - p2 Zﬁ‘a
ngfzﬁ_’l ngTTc: pszggTTc’

where ¢ is the desired projection for H. These in turn are
equivalent to

ngzg_gl nga o4 Zﬁ’a
> =Y (),

which are identical to Eq. (4) with b=T"¢. Therefore, the
MAD components in the transformed situation are

a/F—cH=aF-¢TG=2aF—(T'¢)' G

a F—b/ G

as before. Given this scale invariance, we can select for
radiometric normalization all pixel coordinates which satisfy

N 2
Z(MAD,) “

‘—1 \ OMAD;

where ¢ is a decision threshold. Under the hypothesis of
no-change, the above sum of squares of standardized

Fig. 2. Landsat-5 TM image from July, 1991 over Nevada.

MAD variables is approximately chi-square distributed
with N degrees of freedom. We therefore choose 7=
X]%’P:O'Ol where P is the probability of observing that
value of ¢ or lower.

The pixels thus selected should correspond to truly
invariant features so long as the overall radiometric differ-
ences between the two images can be attributed to linear
effects. Since this method usually identifies quite a large
number of no-change pixels, we can, without serious

Fig. 1. Landsat-7 ETM+ image from December, 1999 over Morocco.

Fig. 3. SPOT HRV image from 1987 over Kenya.

105



M.J. Canty et al. / Remote Sensing of Environment 91 (2004) 441-451

444
Table 1

Time-invariant features chosen for normalization to the 1999 scene
Feature Number of pixels Appearance
Clay 213 bright
Sand 183 bright
Fixed sand 9347 medium
Pediment1 301 medium
Quarzite 117 medium
Pediment2 365 dark

Dark stones 233 dark

penalty, reserve some fraction of them for subsequent
testing and use the remaining pixels for performing the
linear regressions.

With regard to the actual normalization on the basis of
the no-change pixels, this is usually done by means of
ordinary least squares (OLS) regression analysis, see, e.g.
(Yang & Lo, 2000), which is a method that allows for
measurement uncertainty (or error) in one variable only.
For radiometric normalization, both variables involved
have measurement uncertainty associated with them—in
fact which variable is termed reference and which is
termed unnormalized data is arbitrary. We have therefore
also investigated orthogonal linear regression to perform
the actual normalization, as this method treats the data

Table 2

Ordinary least squares regression on manually selected training pixels for
the Morocco scenes; & is the fitted intercept, f§ is the fitted slope, 7 is the
correlation and RMSE is the root mean square error

Band ¢4 b2 p 5 r RMSE
1 8.60 0.39 1.081 0.006 0.818 2.019
2 —3.00 0.24 1.184 0.004 0.928 1.845
3 —7.09 0.23 1.198 0.003 0.947 2.761
4 —6.37 0.18 1.258 0.003 0.961 2.020
5 4.76 0.23 1.081 0.003 0.927 2.891
7 5.31 0.24 1.077 0.003 0.910 2.870
symmetrically. The method is explained in detail in

Appendix A.

3. Data and results

The data set used to investigate radiometric normaliza-
tion consisted of Landsat TM (thematic mapper) images
over Morocco and Nevada and SPOT HRV (high resolution
visible) images over Kenya.

Two Landsat-7 ETM+ (extended thematic mapper)
images acquired over Morocco on December 19, 1999
and October 18, 2000 (see Fig. 1) were examined for

channel 1 channel 2 channel 3
100 100 150
80 80
© ° ° 100
e ® e 60 e
o o o
L 40 2 40 Do
o ] 2 5o
20 20
0 0 0
0 20 40 60 80 0 20 40 60 80 0 50 100
uncalibrated uncalibrated uncalibrated
channel 4 channel 5 channel 7
140
120 120
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100 100
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8 8 8o g 80
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o 60 o o
ko 3 60 o 60
[ [0 [0
40 0 40
20 20 20
0 0 0
0 50 100 0 100 0 50 100
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Fig. 4. Regression of the 1999 Morocco reference scene on the 2000 target (uncalibrated) scene using manually selected training pixels. Solid line: orthogonal

regression; dashed line: ordinary least squares regression.
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Table 3
As in Table 2, for orthogonal regression
Band 4 64 I 4 r RMSE

1 —11.22 0.72 1.400 0.011 0.818 1.273
2 —9.94 0.37 1.300 0.006 0.928 1.157
3 —13.79 0.41 1.280 0.005 0.947 1.734
4 —10.41 0.28 1.322 0.004 0.961 1.237
5 —-295 0.44 1.180 0.005 0.927 1.916
7 —3.80 0.47 1.202 0.006 0.910 1.894

comparison of the MAD procedure with normalization
based on invariant features. The areas were selected on
the basis of availability of ground reference data on
features of constant reflectance. The dimensions of the
scenes were 729 X 754 pixels. The Nevada data consisted
of one Landsat-4 TM and five Landsat-5 TM scenes taken
at approximately monthly intervals in the second half of
1991. A region of interest (1000 x 1000 pixels) was
chosen having some agricultural activity (pivot irrigation)
and significant cloud cover at the time used as normaliza-
tion reference, see Fig. 2. The Kenya data consisted of two
SPOT HRV images recorded in 1987 and 1989 over an
agricultural region near Thika just north of Nairobi, Fig. 3.
The size of scenes was 512 X 512 pixels. These data were
chosen to illustrate radiometric normalization in a non-arid
region.

The Morocco and Nevada scenes were registered to one
another by applying an automatic contour matching algo-
rithm due to Li et al. (1995) and using second-order
polynomial, nearest-neighbor resampling. The RMS errors
were less than 0.5 pixel. The Kenya data were geocoded to a
common reference map with similar accuracy.

3.1. Morocco

As mentioned above, the Morocco scenes, for which
ground reference data were available, were used to compare
the MAD procedure with normalization based on manual
selection of invariant features; see, e.g. Schott et al. (1988).
The features were chosen from dark, bright and medium
reflectance surfaces representative of the surface variability,
see Table 1.

In their original paper on “pseudo-invariant features”
(PIFs), Schott et al. (1988) do not use ordinary linear

Table 4
Comparison of mean intensities of hold-out test pixels for the 2000

Table 5

Comparison of variances of hold-out test pixels for the 2000 Morocco scene
before and after normalization to the 1999 scene with ordinary least squares
regression, with F-tests for equal variances

TM band 1 2 3 4 5 7

Uncorrected(2000)  6.96  14.48 4493 29.60  40.692 31.70
Normalized(2000)  8.14 20.34 64.52 46.85 47.60 36.77
Reference(1999) 10.88  22.09 68.98 49.16 54.16 4327
F 1.336  1.086  1.069 1.049 1.138 1.177
p 0.000 0.013  0.0443  0.147 0.000  0.000

regression, but rather assume a direct (error-free) linear
relation between digital numbers recorded from man-made
features at two times. Since imagery is always subject to
stochastic measurement error, we prefer to use regression
methods which allow for this error. Fig. 4 shows the
orthogonal regressions (solid lines) for normalization of
the two Morocco images, based on 2/3 of the no-change
pixels (referred to henceforth as “training pixels’”) deter-
mined from the invariant features. For comparison, the
results of ordinary least squares regression are also given
(dashed lines). Note that orthogonal regression leads to a
consistently higher slope and correspondingly smaller inter-
cept than ordinary regression. The fitted intercepts (&) and
slopes (f) for ordinary regression are shown in Table 2 for
the 7200 training pixels, those for orthogonal regression in
Table 3. Tables 4 and 5 show, respectively, the means and
variances of the 1999 scene before and after normalization
to the 2000 scene using the ordinary least squares regression
line. They were determined with the 3600 holdout test
pixels. Tables 6 and 7 show similar results after normaliza-
tion using the orthogonal regression lines.

In contrast with the manually selected data, Fig. 5 dis-
plays the orthogonal and ordinary least squares regressions
for normalization of the two Morocco images based on
11260 no-change training pixels derived from the MAD
procedure. Tables 8—13 give the corresponding information
on regression statistics and on the comparisons of means
and variances with 5630 test pixels.

Comparing Tables 4 and 6, we see that the paired #-tests
for equal mean values of the individual bands after the
manual normalization are better (the differences and #-values
are closer to zero and the p-values are higher) for OLS
regression for all bands except TM7. The p-value is the
probability of finding a larger value of |¢|. We also see that
for all bands except TM1 for both OLS and orthogonal
regression, none of the p-values are below 5%. This means

Morocco scene before and after normalization to the 1999 scene with Table 6
ordinary least squares regression, with paired #tests for equal means As in Table 4, for orthogonal regression
TM band 1 2 3 4 5 7 TM band 1 2 3 4 5 7

Uncorrected(2000)  62.080 59.898 81.975 62.612 77.989 72.898
Normalized(2000)  75.720 67.969 91.143 72.400 89.117 83.820
Reference(1999) 75.650 67.969 91.115 72.455 89.114 83.771

Difference —0.069 0.000 —0.027 0.055 —0.003 —0.049
t —2207 —0.001 —0.589 1.668 —0.069 —1.062
)4 0.027 0998 0.555 0.095 0944 0.287

Uncorrected(2000)  62.08  59.90 81.98 62.61 77.99 72.90
Normalized(2000)  75.73  67.97 91.15 7240 89.11 83.81
Reference(1999) 75.65 67.97 91.12 7246 89.11 83.77

Difference —0.084 0.000 —0.030 0.058 0.005 —0.044
t —2367 0.012 —0.635 1.694 0.103 —0.915
p 0.018 0.991 0.525 0.090 0.918 0.360
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Table 7

As in Table 5, for orthogonal regression

TM band 1 2 3 4 5 7
Uncorrected(2000)  6.97 1449 4493 29.60 40.69 31.70
Normalized(2000) 13.67 24.51 73.63 51.78 56.70  45.80
Reference(1999) 10.88  22.09 6898 49.16 54.16 43.27
F 0.796  0.901 0937 0.949 0955 0.945
)4 0.000 0.002 0.050 0.118 0.167 0.0868

that we can assume that the band-wise mean values are
equal after normalization except for TM1. A T’-test for
equality of the mean vectors of all bands after normalization
does not show significant equality. The 7>-value is lower
(19.865 vs. 21.793) and the significance level is higher, i.e.,
better (0.0030 vs. 0.0014) for OLS regression.

Comparing Tables 5 and 7, we see that the band-wise
variances are quite different after normalization for both
OLS and orthogonal regression. The F-values are the ratios
between the variances of the reference data and the normal-
ized data. These values should be close to one. The
significance levels show that we can assume equal variances
for TM4 with OLS and for TM3, TM4, TM5 and TM7 with
orthogonal regression since these are all higher than 5%.

Comparing Tables 9 and 12, we see that the paired #-tests
for equal mean values of the individual bands after the

M.J. Canty et al. / Remote Sensing of Environment 91 (2004) 441-451

Table 8
Ordinary least squares regression on training MAD pixels for the Morocco
scenes

Band a Gy p Gp r RMSE
1 —1.56 0.19 1.230 0.003 0.966 1.074
2 —4.68 0.13 1.191 0.002 0.978 1.372
3 —8.88 0.12 1.194 0.001 0.983 2.109
4 —8.31 0.10 1.265 0.002 0.987 1.546
5 —-222 0.13 1.148 0.001 0.981 2.244
7 —1.33 0.14 1.146 0.002 0.976 1.983

MAD-based normalization are better (the differences and #-
values are closer to zero and the p-values are higher) for
OLS regression for all bands. We also see that for all bands
for both OLS and orthogonal regression, none of the p-
values are below 5%. This means that we can assume that
the band-wise mean values are equal after normalization.
Also the T?-test for equality of the mean vectors of all
bands after normalization shows significant equality. The
T2-value is lower (5.777 vs. 6.063) and significance level is
higher, i.e., better (0.4493 vs. 0.4169) for orthogonal
regression.

In Tables 10 and 13, the F-tests for equal variances show
that we cannot reject the hypothesis of equal variances for
any band with orthogonal regression whereas we must reject
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Fig. 5. Regression of the 1999 Morocco reference scene on the 2000 target (uncalibrated) scene using the MAD training pixels. Solid line: orthogonal

regression; dashed line: ordinary least squares regression.
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Table 9

Comparison of mean intensities of hold-out test MAD pixels for the 2000
Morocco scene before and after normalization to the 1999 scene with
ordinary least squares regression, with paired #-tests for equal means

TM band 1 2 3 4 5 7

Uncorrected(2000) 62.734 61.544 83.894 64.573 88.128 80.094
Normalized(2000)  75.577 68.621 91.319 73.345 98.936 90.441
Reference(1999) 75.576 68.595 91.279 73.323 98.905 90.414

Difterence —0.001 —0.026 —0.039 —0.022 —0.032 —0.027
t —0.059 —1.416 —1.390 —1.079 —1.052 —1.020
)4 0953 0.157 0.165 0.280 0.293  0.308

the hypothesis of equal variances for TM1 and TM7 for
OLS regression.

Tables 2, 3, 8 and 11 show that the RMS errors are lower
for MAD-based normalization and for orthogonal regres-
sion. This is true for all bands.

Finally, the plots in Figs. 4 and 5 clearly show a lot more
scatter in the no-change pixels for the manual method
corresponding to lower correlations as seen in Tables 2 (or
3) and 8 (or 11).

In spite of the better OLS fit for the means, all the above
shows that in this case the automatic MAD-based normal-
ization outperforms the manual normalization and that
orthogonal regression is to be preferred over the OLS
regression normally applied to normalization.

3.2. Nevada

Five of the Nevada images (August through December,
1991) were normalized to the July, 1991 image with the
MAD procedure using orthogonal regression as described
above. Fig. 6 displays the reference image (lower center)
and of the December, 1991 target image before (upper left)
and after normalization (upper right). The main spectral
differences prior to normalization are due to Sun elevation,
circular pivot plantations and clouds. Normalization to the
July image as reference results in a qualitatively similar
image for December. Since the clouds and irrigation pivots
represent real changes, they have no influence on the
calibration. The only other subjectively evident differences
after normalization are the longer shadows in the December
scene and some bidirectional reflectance effects in the
mountainous areas.

For radiometric normalization over arid areas, both
atmospheric differences and actual changes in surface re-

Table 10

Comparison of variances of hold-out test MAD pixels for the 2000
Morocco scene before and after normalization to the 1999 scene with
ordinary least squares regression, with F-tests for equal variances

TM band 1 2 3 4 5 7

Uncorrected(2000) 10.58  28.71 86.99 54.45 95.67 59.79
Normalized(2000) 15.99 40.72 124.11 87.06 126.05 78.50
Reference(1999) 1692 4243 12844 8926 131.27 82.86
F 1.058 1.042 1.035 1.025 1.041 1.056
p 0.035 0.121 0.197  0.348 0.126  0.042

Table 11

As in Table 8, for orthogonal regression

Band & 6, B oy r RMSE
1 —4.96 0.20 1.284 0.003 0.966 0.670
2 —6.66 0.15 1.223 0.002 0.978 0.875
3 —10.98 0.18 1.219 0.002 0.983 1.346
4 —9.65 0.13 1.285 0.002 0.987 0.954
5 —4.53 0.20 1.174 0.002 0.981 1.465
7 —3.95 0.20 1.179 0.002 0.976 1.293

flectance are likely to be small. Fig. 7 displays the overall
mean pixel intensities in the six Landsat TM images before
and after normalization to the July image. The intensities
have been averaged over all six non-thermal bands. The
means were calculated using the 33% holdout test pixels.
Also shown in the figure are the unnormalized mean
intensities multiplied by the factor

d?
L Cosh
cost); d}

where 0; is the Sun zenith angle and d; is the Earth—Sun
distance for each of the six acquisition dates. Since the sensor
gains and offsets were constant over the acquisition period,
this is equivalent to a normalization without atmospheric
correction. Therefore, the variations may be attributed to
differences in atmospheric absorption and scattering.

3.3. Kenya

The Kenya data are from an agricultural region near
Thika just north of Nairobi and were used to test the MAD
normalization based on both OLS and orthogonal regression
on data from a non-arid region. The images cover the town
of Thika, large pineapple fields to the north and small coffee
fields to the northwest of Thika.

Results for the test pixels (not shown) are similar to those
of the data from arid regions: although we see more scatter
and therefore less correlation (especially for band 3) than in
the cases with arid data, both OLS and orthogonal regres-
sion give normalized data with the same mean as the
reference data, OLS gives better significance. OLS regres-
sion gives significantly different variances whereas orthog-
onal regression gives equal variances. Also the RMSEs are
smaller for orthogonal regression.

Fig. 8 shows the cumulative distribution functions for the
three bands before and after MAD-based normalization with

Table 12
As in Table 9, for orthogonal regression
TM band 1 2 3 4 5 7

Uncorrected(2000) 62.734 61.544 83.894 64.573 88.128 80.094
Normalized(2000) 75.580 68.625 91.324 73.349 98.943 90.447
Reference(1999) 75.576 68.595 91.279 73.323 98.905 90.414
Difference —0.004 —0.030 —0.044 —0.026 —0.039 —0.033
t —0310 —1.625 —1.554 —1.248 —1.279 —1.236
)4 0.757 0.104 0.120 0.212 0.201  0.217
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Table 13
As in Table 10, for orthogonal regression
TM band 1 2 3 4 5 7

Uncorrected(2000) 10.58  28.71 86.99 54.45 95.67 59.79
Normalized(2000) 17.44 4296 12937 89.96 131.89 83.06
Reference(1999) 1692 4243 12844 89.26 131.27 82.86
F 0.970 0.987 0.993  0.992 0.995  0.997
)4 0.254 0.644  0.784 0.766 0.858  0.927

orthogonal regression: a visually pleasing fit has been
obtained.

4. Conclusions

The procedure for radiometric normalization suggested
here is automatic, very fast and requires, apart from the chi-

Mean
120

80

60

40

20

July August September October November December

Fig. 7. Unnormalized (stars) and normalized (boxes) mean pixel intensities
(in digital number units) for six Landsat TM images over Nevada from July
to December, 1991. The July image was taken as reference. The diamonds
are the unnormalized mean values corrected for Sun elevation and Earth—
Sun distance (see text).

Fig. 6. Radiometric normalization of the Nevada scene. Top left: the uncorrected December, 1991 image; top right: the December scene after normalization;

bottom middle: the July, 1991 reference scene.
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Fig. 8. Cumulative distribution functions for SPOT HRV bands before and after MAD-based normalization with orthogonal regression.

square percentile, no externally adjustable parameters such
as decision thresholds or subjective criteria for defining PIF
masks; everything else is entirely determined by the image
data themselves. The method yields results which compare
favorably to those obtained by the more laborious manual
choice of time-invariant features in the images involved. On
the whole, orthogonal regression using the no-change pixels
is to be preferred to ordinary least squares regression. As the
no-change pixels are actually selected for each image on the
basis of multispectral change detection relative to the
reference image, the method automatically avoids interfer-
ence due to cloud cover, or indeed due to any other kind of
reflectance changes that might occur.

In a recent proposal by Du et al. (2002), pseudo-
invariant pixels are also selected using statistical properties
rather than physical characteristics of reflecting surfaces.
Their selection of suitable pixels for normalization is based
on a bitemporal principal component transformation. Be-
cause of the presence of change pixels in the transforma-
tion, the principal axis must be recalculated after setting of
rejection thresholds. Since the principal component trans-
formation, unlike the MAD transformation, is not scale
invariant, the method proposed here would appear to be
better and more natural. Conservation of radiometric reso-
lution after normalization, an aspect emphasized in Du et
al. (2002), can of course be achieved similarly with the
MAD method.

Finally, as an example of the application of relative
radiometric normalization with MAD, Figs. 9 and 10 show
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Fig. 9. Mosaic of two Landsat ETM+ scenes from May 2 and May 27, 2000
without radiometric normalization.
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Fig. 10. As in Fig. 9, with radiometric normalization using the MAD
procedure and orthogonal regression.

a part of the intersection area of a mosaic of Landsat
ETM+ scenes over south Morocco on adjacent paths
dating from May 2, 2000 and May 25, 2000. Fig. 9 is
without, Fig. 10 with radiometric normalization. For Fig.
10, a subset of the overlap area of the images was used to
calculate the regression parameters. The true changes in
the surface reflectance, still apparent in the figure after
normalization, are the result of rainfall prior to the acqui-
sition of the second scene, as is the difference in the water
level in the river.
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Appendix A

Some readers may not be familiar with the two types of
regression analysis applied in this paper. We therefore give a
very brief account of some of the more important character-
istics of the two.
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A.1. Ordinary least squares regression

In the model for ordinary least squares (OLS) regression
yi=oa+ pxi + 7, i=1...n (7)

where x is considered as an independent (fixed, determin-
istic) predictor and y is considered as a dependent (ran-
dom, stochastic) response, the x’s are assumed to be
uncertainty- or error-free. (This usage of the terms depen-
dent and independent is different from the usual probabi-
listic meaning.) n is the number of observations and 7y is a
white, Gaussian noise term with mean zero and variance
o, white meaning that y; and y; are stochastically inde-
pendent if i# ;.

In this model, the estimator for f is (see any good
textbook on statistics), for example (Rice, 1995)

p=3 (8)

where

Sy = ;Z(xi = %) =), )
i=1

2= 13w (10)

n
x; and ny = Z y;. The estimator for o is
i=1 i=1

e (11)

The variance/covariance matrix (also known as the disper-
sion matrix) of the vector [& ﬁ]T is

with nx =

n

a2 Zx? =20
nYad = (T | vy

where ¢ can be replaced by

1 n
~2 )
- : 13
6= ;:1 7 (13)

with =y, —a — ﬁxi. The root-mean-squared error (RMSE)
is 6. .

The standard errors of & and f§ are the square roots of the
diagonal elements of the above dispersion matrix. The test
statistics for & and [} being significantly different from zero
are the estimates divided by the standard errors.

A.2. Orthogonal regression

In the model for ordinary least squares regression the x’s
are assumed to be error-free. In the calibration case where it
is arbitrary what we call the reference variable and what we
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call the uncalibrated variable to be normalized, we should
allow for error in both x and y. If we impose the model (we
reuse the symbols & and f, later also o)

yi—ei:oc—l—[f(x,-—é,-), i=1...n (14)

with € and 0 as uncorrelated, white, Gaussian noise terms

with mean zero and equal variances ¢°, we get for the

estimator of f (Kendall & Stuart, 1979),

(=) (5 — 1) + 42
f— Wy \/ Wy y (15)

25,

with
1< _
Sy =;Z(Yi—y)2 (16)
=1

and the remaining quantities defined in the section imme-
diately above. The model in Eq. (14) is often referred to as a
linear functional relationship in the literature.The estimator
for o is

4=y — px. (17)

According to (Bilbo, 1989; Patefield, 1977), we get for
the dispersion matrix of the vector [6f]"

2501 o 2y [B+2) +so/f —F(1+1
P14+ ) | T A+1) 50/ (1+7) 18)

nSyy .

—3(1+1) 1+1
with
"y
= ”76 (19)
(1 Jr ﬁ )SX}/'
and where o~ can be replaced by
= (57, — 2fisy + 53, (20)

(n=2)(1+ )

It can be shown that estimators of o and f can be
calculated by means of the elements in the eigenvector
corresponding to the smallest eigenvalue of the dispersion
matrix of the n by two data matrix with a vector of the x’s in

the first column and a vector of the y’s in the second column
(Kendall & Stuart, 1979). This can be used to perform
orthogonal regression in higher dimensions, i.e., when we
have, for example, more x variables than the one variable we
have in our case.

Software packages to perform ordinary least squares
regression (LAPACK) and orthogonal regression (ODR-
PACK) can be found on the Internet.
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Abstract

We present results on optimization of a 8d shape
model. We optimize the shape, the pose and the light.
Initial estimate of the model parameters is obtained
by interpolation of the neighbours of the sample im-
age in the isomap embedding.

The presented model works on any set of registered 3d
shapes, with applied texture and texture coordinates,
the Jacobian is derived analytically in a form which
is GPU friendly.

Results on artificial and real images are presented.

1 Introduction

Here we’ll be looking at scene modeling, focusing on
the well known object the human face.

Inspired by the work of giants, (ie in this field
the creators of statistical shape models and active
appearence model, Edwards, Cootes and Taylor eg.
[1, 2], and the impressing and realistic faces generated
by Blanz and Vetter [3, 4], and the intersting new ap-
proach to model fitting proposed by Matthews and
Baker [5]) we have, from ranged 3d face data scans,
constructed a 3d statistical shape model of the face.
This model is intended to be used in the modeling of
faces in images, ie for object segmentation and classi-
fication. The current model is build from data of one
person, thereby concentrating on facial deformations
belonging to the expression of the face.

The presented optimization approach is guaranteed
to converge if the model is initialized close to the
actual minimum. Therefor we need some initial clas-
sifier which can provide us with a good initial state.
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Here we do this by exploring a dimensionality reduc-
tion scheme, isomap, put forth by Tenenbaum et al
[9], and map our unseen test images with the esti-
mated mapping to get a weighted estimate of the
scale, pose and light parameters. The model op-
timizes s statistical shape model parameters, seven
similarity transformation parameters, aswell as the
main light position and five parameters for the Phong
[6] light image.

2 what we have done

From 28 3d face scans we have obtained a 3d
statistical shape model of the face. The presented
images are from a model with 414 vertices and 768
triangles[8] which should be considered close to a
minimal model. For the initial classification we have
used Isomap to embed 629 artificial model images.
The training data images are constructed with
varying rotation round y-axis, scale and translation.
The images are embedded by use of the isomap
(isometric feature mapping[7]) algorithm. From the
embeddings and the images we construct a ’image
space to embedded space’ mapper, F mapping
images X onto a low dimensional feature space Y,
FX = Y[10]. This mapping is then used to estimate
the embedding of unseen test samples. Once the test
images have been embedded we estimate the pose of
the object from our knowledge of the parameters of
the embedded training samples.

Once we have an initial estimate of the pose of our
model we may initiate the optimization procedure,
where the model parameters for pose, lights and



shape are optimized. The optimization procedure
used is a standard Levenberg-Marquardt optimiza-
tion procedure, where the model parameters are
updated as 6p = — (JTJ)_1 JTr. Here r is the
current error between the model image and the
sample image, and J is the model Jacobian whose
i’th-column is given by J; = (0r/dp;).

Writing our image of the model as a product of an
image describing the lights, I;, and an image of the
mapped texture values, I,,, we have

Or 0 -
o = oy (LPInm) - T.)
A T
e o\ 0s
N Gpi Im + Il (65) 6pi

for the i’th column of the Jacobian. s is the tex-
ture cordinates of the texture image. The parameter
for the model includes k£ shape parameters for the
statistical shape model, seven parameters for the
similarity transformation and seven parameters for
the ligth image.

3 results

The training database images are constructed at
three diffenret scales, at 10 degrees rotation interval
(from -90 to 90) for rotations round y-axis and at
11 different light positions. Image size is 50 x 70
pixels. Thus we know the data has an intrincis
dimensionality of three dimensions. As seen in
figure 1 Isomap correctly estimates this intrincic
dimensionality.

Plots of two 2-dimensional embeddings obtained
by Isomap are visualized in figure 2. In the first plot
we observe three distinct arms, each with training
samples at the three different scales. In the second
plot the rotation is clearly depicted in loops.

The optimization algorithm works in two steps;
first the pose is optimized in an hierarchical manner
(working on Gaussian images), when converged
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Residual Variance

1 2 3 4 s 3 7 ] 9 10

Figure 1: The residual variance of Isomap. The intrinsic
dimensionality of the data is estimated to be at the ’el-
bow’, ie Isomap estimates 3 dimensions. The number of
neighbours used for the estimation of the manifold is 10.
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Figure 3: Three image samples. First two are images
generated by the model. Last image is real world data.
The images are classified in figure 2 as Test 1, 2 and 3.

Figure 4: Images of isomap training data. Top image
corresponds to points on the 'upper arm’ of the top plot
in figure 2, top row corresponds to square marked sites A
to B (going counterclockwise). Second row corresponds to
marks from C to D. Top row of bottom image is marked
E to F. Last row is G to H.
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Figure 5: Optimized Test image 1. First image in each
column is initial state, second image is final state and
last image is the original sample image. Initial pose and
light, for the first image sequence, is given by the weighted
parameters of the four nearest neighbours in the three
dimensional isomap embedding. The second image se-
quence is with an initial perturbed state (48 degree rota-
tion round y-axis). Optimized state reached in under 10
iterations.

we optimize on all model parameters (also in an
hierarchical manner). A typical optimization runs
with 2-4 iterations for the pose and 4-10 iterations
in the last ’all parameters’-step.

Three test image samples (visualized in figure 3) are
classified by the Isomap mapping, and the initial
estimated state is shown in the first images of the
first image sequences in figures 5, 6 and 7. The first
test image is classified as a frontal view, which is
correct. The optimization result is good, and as
the second image sequence of figure 5 shows, the
optimization procedure seems to work on highly
perturbed states. But as we observe in figure 6 this
is not always the case. The first image sequence
shows optimization results of the model with initial
pose as depicted by the Isomap mapping. The
system gets caught in some local minimum and the
optimization fails. In the second image sequence we
have altered the initial scale and pose and results
are almost satisfactory.

The optimization of the last test sample is shown
in figure 7. Here we have applied the model on a
real world image (image of the same object as that
of the statistical shape model) and with the initial
pose being close to the actual pose, we obtain a good
result.



Figure 6: Optimized Test image 2. First image sequence
is with initial values given by the isomap mapping. Last
image sequence is with a user specified initialization.

Figure 7: Optimized Test image 3. Initial values given
by the isomap mapping. At current development stage
this result is satisfactory. Final state is reached in 17
iterations.

4 Conclusion

We have seen how face images may be classified for
differences in pose by the use of the Isomap nonlin-
ear dimensionality reduction scheme, and we have
seen some results on the optimization of synthetic
aswell as real images of the human face. Results pre-
sented indicates that the outlined scheme for initial
pose classification and model optimization is applica-
ble.
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Abstract

We introduce strings, based on the Symmetry Set, to de-
scribe shapes. These strings denote links between pairs of
extrema of the curvature together with a length measure.
An algorithm is given to match strings of different types of
shapes. Examples show the usability of the presented the-

ory.

1. Introduction

In shape analysis, much effort has been put into the research
on the skeleton, or Medial Axis [2], as a way to represent the
shape in a more simplified way. As it was soon realized, the
Medial Axis it itself didn’t carry enough information [8] and
sophisticated extensions were built, like the Shock Graph
method [17]. Basically, each points on the Medial Axis is
endowed with some augments related to the distance to the
shape itself or related to its neighbours. Next, the potential
changes of the Medial Axis were investigated, yielding a
set of possible transition [9]. In that way different shapes
can be related to each other for shape indexing and retrieval
[15, 16].

The results on transitions boiled down from the results
on the possible transitions of the Symmetry Set. This set,
containing the Medial Axis as subset, has been thoroughly
studied in [4]. Its transitions are described in [3]. The
Symmetry Set has its advantage in being easily described
in mathematical sense, but its visualization is less pleasant
for the eye. So most of the research has been focused on the
(augmented) Medial Axis [10].

Recently, however, a data structure was presented for the
Symmetry Set [13], using information of the evolute of the
shape. The data structure can be visualized by a sequence of
nodes that are pair wise joined. It was claimed that its main
advantage over the graph structure used for the Medial Axis
is that this sequence would allow operations on it with a
lower complexity.

In this paper we use the idea of representing Symmetry
Sets as a sequence. In contrast to [13], we relate this se-
quence directly to the shape. As different shapes have dif-
ferent sequences {A;};—1.., and {Bj}i—1.. ., We propose
to build a matrix M with entries f(A;, B;). The similar-
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Figure 1: Definition of the Symmetry Set. See text for de-
tails.

ity of shapes is then measured as the path P = {M (ix, ji)}
through M that contains each row and column at most once,
and has a maximal sum of the elements M; ;.

2 Symmetry Sets

The Symmetry Set is defined as the closure of the loci of the
circles tangent to a shape. See Figure 1. The shape is given
by the oval. Inside a circle is tangent to it at two locations,
so the unit normals N7 and N3 are equal for the shape and
the circle. The centre of the circle is found by multiplying
minus the radius 7 with the normals. Note that this is also
a Medial Axis point Next, also outside a circle is tangent to
the shape at two locations, where the unit normals A and
Ny are equal for the shape and the circle.

From this image it follows immediately that a point on
the shape relates to at least two points on the Symmetry Set,
in contrast with the Medial Axis. A recipe for finding the
Symmetry Set is the given by the following observations.

Let a circle be tangent to the shape as in Figure 2a. Then
call the points at which it is tangent p; and p» (Figure 2b).
Then the vector p; — ps is perpendicular to the vector N +
N> when the circle is tangent twice from the same side as
shown in these images, or to the vector N7 — As, when
tangent from two different sides (see [9]). So to find these
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Figure 2: Deriving the Symmetry Set. See text for details.

locations it suffices to have a point p; fixed and try all other
points p; along the shape and find zero crossings of
(P = pj)-Ni £ ;) (1)

Next, the centre of the circle - the location of the Symmetry
Set point - is given by

pi —rNi =p; £/ (2)

2.1 Representations

A branch of the Symmetry Set is given by a connected set
of centers of circles. The end points of a branch are the
closures of these sets, obtained when the two points p; and
p; coincide. For the Medial Axis, such a point is an end
point of the graph. In the Symmetry Set, these points come
in pairs, as the Symmetry Set consists of distinct curves.

At these points the circle has a third order of contact at
the shape, or in other words, the shape has a local extremum
of the curvature « at that point. Consequently, each local
extremum of the curvature can be mapped to another local
extremum of the curvature.

Next, the end points are part of the evolute, which is the
curve S + N/k, since r = 1/k for these points. Following
the evolute, one can label the order of appearance of the end
points, yielding a sequence of end points. Connecting the
end points pair wise and augmenting each connection with
’special points’ that arise on the Symmetry Set, gives the
string structure proposed in [13].

An example is given in Fig. 3. On the left, a fish shape
is taken from a common data set [15, 16]. On the right, the
string structure - without special points - is shown.
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Figure 3: A fish shape and its corresponding sequential rep-
resentation.
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Figure 4: A fish shape and its corresponding sequential rep-
resentation.

3 Closed form representation

The evolute can become complicated, especially for con-
cave shapes. Then sometimes x = 0 and the evolute moves
to infinity. The same holds for Symmetry Set branches and
the Medial Axis part outside the shape. It is therefore con-
venient to relate the Symmetry Set directly to the shape.

This can easily be done while computing the Symmetry
Set in Eq. 2 by using the locations of the tangency of the
circle, instead of its centre. This results in pairs of so-called
‘pre-Symmetry Set’ points, known in robotics [1]. They are
shown in Figure 4 on the left.

In this diagram, branches of the Symmetry Set are visi-
ble as curves. Note that the shape is closed, so the left part
of the diagram is connected to the right part, and the bot-
tom to the top. At end point of the Symmetry Set branches,
p; = pj, which is the diagonal. This diagonal can also be
regarded as an identity mapping of the shape on itself, and
therefore as the shape.

Consequently, points on the shape (diagonal) are con-
nected to points on the shape (diagonal) via the curves in
the pre-Symmetry Set. As the shape is closed and not self-
intersecting, it can be represented as a circle. The connec-
tions of points on the shape are visible as cords. An example
is given in Figure 4 on the right.
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Figure 5: Two circles describing different shapes.

Next, each cord can be assigned a weight. This weight is
the number of points on a branch in the pre-Symmetry Set,
divided by the sum of all branches in the pre-Symmetry Set
that intersect the diagonal. So the weights sum up to 1. In
Figure 4 this number is given as a percentage.

3.1 A String representation

A straightforward manner to store the information given by
the circle with cords, is by creating a vector with the same
dimension as the number of end points. Each coordinate
of the vector then get the value of the relative length of the
cord that is related to it. Consequently, the coordinates sum
up to 2. When all cords have different length, the cords
can easily be reproduced from this vector. However, the
connectivity information is lost if two cords have the same
length. Therefore, each coordinate of the vector contains
besides the length also the coordinate to which it relates.

4 Matching strings

Given two shapes, comparison can done visually by com-
paring their circle diagrams A and B. As the information
of these diagrams consists of points and cord, the points are
mapped such, that the number of coinciding cords is high-
est. Obviously, the ordering of points may not change. As
the parameterization has an arbitrary begin point, also all
rotated versions of A up to 27 must be taken into account.
Furthermore, the number of cords of both circles may dif-
fer, as well as the way the cords are connected, see Figure
5.

From the transitions of the Symmetry Set [3] it follows
that a cord (a branch of the Symmetry Set) may (dis-) ap-
pear in a transition where two end points meet and a cord
(dis-) appears. As the removal of a cord in one circle to
optimize matching relates to introducing a cord in the other
circle, it suffices to consider removing cords. Consequently,
a cord connecting two neightbouring end points is allowed
to vanish - in the mapping such a cord may be removed.
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Figure 6: Cost matrix and optimal path for the shape circles
in Figure 5.

4.1 Cost Matrix

The matching of two circle diagrams A and B can be done
as follows. Let {A; }i=1..,, and {B, },=1..., denote the vec-
tors with the lengths of the branches. Then M(i,j) =
f(A;, Bj) is the cost matrix, where f is some distance mea-
sure. In the remainder we shall use f(z,y) = z.y/||z|||y]]
but other choices, like f(z,y) = ||z — y||, can be applied as
well.

If A=B and the starting positions are equal, tr M de-
scribes the inner product between two identical vectors and
equals one. If the starting positions are different, the trace
of a rotated version of M equals one.

To maximize the matching, a path P = {M (i, j;)} is to
be found in M, such that each row and column ¢, and j; are
present only once - each point can be matched only once.
For the two examples given above, this is simple. For dif-
ferent shapes, it must be taken into account that two neigh-
bouring points and their connecting cord may be removed.
This relates to the matrix in removing two subsequent rows
or columns.

Next, when two points are matched, automatically the
two points to which they are connected, must be matched.
For simplicity, one can state that when two cords are given
by (ik,ix+1) and (Ji, ji+1), i and j; can only be matched,
if ix+1 and j;y; are matched, and that the matchings
M (ix, ji+1) and M (ig41, Ji) are forbidden.

An example of a matrix M is given in Figure 6. The ori-
gin is bottom left. The line through the matrix denotes the
optimal match. As one can see, the matrix contains zeros,
denoting the forbidden entries. When two subsequent val-
ues along the line are equal, the off-diagonal neighbouring
points are zero, as described above. As the vectors have dif-
ferent length, the line makes a jump. The jump skips two
rows. In general, jumps skip an even number of rows or
columns, since a jump resembles the removal of a number
of cords, each with two points.



Figure 7: A fish image, fish shape and a blurred fish shape.

4.2 Implementation

The derivation of the Symmetry Set given a shape is de-
scribed in [4, 13]. It basically boils down in computing all
zero crossings in Eqs. 1-1 for all point pairs (p;, p;). These
points pairs form the pre-Symmetry Set as shown in Fig.
4, left. Then the distinct Symmetry Set branches that in-
tersect the diagonal are derived, with the locations at the
diagonal and their lengths. This gives a set with elements
A; = (e1,ea, L);, with e; and e5 the e} and €L position
on the diagonal, and [ the relative length of the branch.

Next, on each cord that is allowed to vanish, the two
points are marked as ’begin’ or ’end’ point. Note that if
two cords are nested, both are allowed to vanish. If the
cross each other, they cannot be removed. For more details
on the type of cords, see [12]. Let L; € Aand L; € B,
then the cost matrix is built up as M (i,j) = 0 if 4; and
B; are a combination of a begin and an end point, and
M{(i,j) = L;L;, elsewhere. The path with maximal value
is found by using a shortest path algorithm [6] on —M. M
can be transferred into a graph with as vertices the rectan-
gular grid, given by the dimensions of M, and edges from
M (%, j) as follows.

o If M(i +1,j +1) = M(i,j) and M(i + 1,5) =
M (i, j+1) = 0 two begin points of a cord are matched
and the only allowed edge is M (i+1, j+1) — M (4, )
with cost M (i + 1,5 + 1).

If M(i+ 1,7+ 1) = 0, this position is not allowed and
the only allowed edges, denoting a possible skip, are
M@G+1,j+1) - M(@+1,j)and M(i+1,j+1) —
M (3, j + 1), both with cost 0.

Else three edges are possible: M (i + 1,5 + 1) —
M(i,j) withcost M(i+ 1,5+ 1),and M (i + 1,5 +
1) > M(i+1,j)and M(i+1,j+1) — M(3,5+1),
both with cost 0.

Obviously, to compute the complete path from a point to
itself, one should handle the boundaries of M properly. To
find the shortest path solution, it suffices to take the shortest
paths through the entries of one column or row and take the
minimum of them.
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Figure 8: Matching of fishes.

5 Results

In the remaining we used shapes from an existing data base
[15, 16]. These shapes are the boundary of 128 x 128 pixel
sized black and white images, as shown in Figure 7, left. Of
each image the boundary is extracted and the points are or-
dered, yielding a sequence of points, Figure 7, middle. The
number of points ranges typically from 1200 to 1500. The
derivatives of a Gaussian filter are applied to this sequence
to find a reasonable estimation of the derivatives [7] of the
shape parameterization. The normal vector is obtained at a
scale of 4.5 pixels. We note that using a small scale resem-
bles applying a (small) mean curvature motion to the shape
[5]. The shape in Figure 7, middle, is therefore slightly
blurred, see Figure 7, right.

This blurring of shapes has the property that it removes
small details. This may be regarded as a disadvantage, but
on the other hand no removal of spurious details, or what-
ever adjustments to the data need to be carried out. The
corresponding string, pre-Symmetry Set and circle diagram
are shown in Figures 3-4.
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Figure 9: Matching of tools.

Next, 10 different fish shapes are compared. The results
are shown in Figure 8. The images show the fish, the num-
bers the score of the match. The first colum shows the best
match, second column the second-best match and so on. As
the matching of any shape with itself matches 1, the first
column also represents the shape to be matched. The fishes
in row three and four are artificially drawn, and they are
each others second-best match. Furthermore, the matching
has a preference for matching fins. This is due to the fact
that fins are introducing prominent extrema of curvature.

The second group of shapes consists of 7 tools, as shown
in Figure 9. Although tool number 7 is significantly smaller
than the others, it is still matched with larger tools. This is
due to the normalization of the lengths of the branches of
the pre-Symmetry Set.

The third test shows the comparison of all 10 fishes and
7 tools. The results are shown in Figures 10-11. Most fishes
and tools have as the 5 best matches shapes from the same
category. In the fishes-part, Figure 10, a wrench occasion-
ally appears. This tool is considered as a fish with only two
tail fins and no other fins. For the same reason some fishes
appear in the tools-part, Figure 11.

6 Summary and Conclusions

We introduced a new way to represent and compare shapes
based on the Symmetry Set, a generalization of the Medial
Axis. This string representation uses the end point of the
Symmetry Set branches and the relative length of the branch
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Figure 10: Matching of fishes and tools; the fish part.
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Figure 11: Matching of fishes and tools; the tools part.

in the pre-Symmetry Set diagram. The end points represent
the extrema of curvature of the shape. Therefore, the rep-
resentation links these extrema pair wise. This idea of pair
wise linking of points on the shape relates conceptually to
that of Curvature Scale Space [14], albeit that we do not use
a scale space to establish a linking, but use the Symmetry
Set. The representation allows the matching of shapes by
comparing strings, for instance by taking the inner product
of appropriate sub sets of these strings. The sub sets are
defined by applying allowed changes of the Symmetry Set.
The maximal matching is found by an adapted shortest pad
algorithm that finds the optimal sub sets. Examples show
the usability of the proposed method. Future work will fo-
cus on improvement of the shortest path based algorithm
and on the influence of alternative difference measures be-
sides the inner product.
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