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Abstract

This paper evaluates the wireless sensor network testbed at Harvard University
from a user’s perspective qualitatively by evaluating the web-based user interface
and quantitatively by running several pre- and custom-made programs on the test-
bed. The purpose of this evaluation is to provide feedback to the ”TinyOS Testbed
Working Group” community and to contribute to the development of the WSN in-
frastructure at DIKU.
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1 Introduction

1 Introduction

A Wireless Sensor Network (WSN) is characterized by a network of small autonomous
units equipped with sensors and radio. These units form a wireless network and solve a
given task in collaboration with each other. The units are often referred to as motes, since
the vision of WSN is to have dust sized units, and are typically equipped with limited
processing and storage capabilities. The motes are usually powered by their own power
supply which makes power consumption a key factor in WSN. Since it is often impossi-
ble to recharge or replace batteries in a fully deployed WSN, the power supply puts and
effective limit to the motes lifespan. The abillitie to turn on components only when they
are needed, and otherwise have them turned off, is known as duty-cycling, and forms an
integral part in WSN, since the lowered power consumption often increases the lifespan of
a mote by several orders of magnitude. The collected data from the sensors are typically
either stored in the network for later retrieval or transmitted through the network to a
basestation which collects the data. Since the power needed to transmit data does not
depend linearly on the transmitted distance, but rather on some power n of the distance
(where n > 1), data are often routed through the network instead of directly to the
basestation in order to save power.

WSN has been used with success in several real-life deployments, with the Great Duck
Island habitat monitoring as one of the most famous. In the Great Duck Island experi-
ment biologist wanted to monitor the habitat of the Leach’s Storm Petrel. This was done
by monitoring the microclimate in the nesting burrows by placing motes equipped with
temperature, humidity, barometric pressure and infrared sensors inside the burrows. The
readings were then forwarded to the basestation using either a star-topology network or
a mesh-topology network. The reason for using two different kind of network topologies
was to determine which one was better under real-life circumstances. Besides from being
a biology project, the experiment also served as a testing environment for a WSN. Giving
researches the abilitie to test power consumption, mote durablility and different network
topologies all under real-life conditions. The problem with this approach in WSN develop-
ment is the cumbersome and expensive task of programmming individual motes, placing
them inside nesting burrows and reclaiming them after use. [1]

1.1 Motivation

In the research of network topology, power consumption, applications and WSN in gen-
eral, the time consuming task of programming individual motes, deployment and retrieval
from a real life environment and the economical cost of loosing motes are all barriers that
moves the focus away from the actual research. Further more the down payment for a
WSN easily mounts to several thousand dollars, effectively confining the majority of peo-
ple to do research on simulators or networks consisting of just a few motes.

In order to do more effektive research on WSN the problems mentioned above must be
dealt with appropriately. One should be able to program all the motes simultaneously and
without the need to interact individually with every single mote. Deployment and retrieval
should also be made transparent to the programmer, and reusability is mandatory. A team
at Harvard University lead by Prof. Matt Welsh have implemented a WSN testbed called
MoteLab [2]. The testbed makes it possible to program an entire WSN remotely and
since the motes are permenantly placed, deployment and retrieval are no longer an issue.
The usefulness of such an infrastructure is obvious, and the same MoteLab infrastructure
has already been implemented at Massachusetts Institute of Technology and a similar
infrastructure is in development at the Dept. of Computer Science at the Copenhagen
University (DIKU).
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1.2 TEP

The purpose of this paper is to evaluate the MoteLab infrastructure at Harvard University
from the end users perspective.! This will include all the steps from finding the appropriate
site, to running actual programs on the testbed. The goal is to find weaknesses in the
implementation and suggestions for improvements. Hence this paper will function both as
a draft for an actual TinyOS Enhancement Proposal (TEP) [3] and as a contribution to
the infrastructure development project at DIKU.

1.3 Development platform

The platform used for code development was a Windows XP with the the TinyOS
1.1.0 Installshield installation (with Cygwin and Java SDK) and upgraded with the
TinyOS 1.1.11Feb2005cvs RPM. Additionally the SUN Javax library was added.

1.4 Acknowledgements

Graduate student Jan Flora and Esben Zeuthen for lending me their ” Directed Diffusion”
implementation and subsequently help in adapting the program to the MicaZ mote. Prof.
Matt Welsh and the people at Harvard University for letting me use their MoteLab testbed
and answering my questions. Ass. Prof. Philippe Bonnet for supervising this project.

This paper

Section 2 contains a description of the MoteLab software and how to obtain it as dictated
in the TEP guidelines. Section 3 contains the preliminary work of finding a WSN testbed
and how to get started using it. In section 4 several programs are tested on MoteLab.
Section 5 describes the work of going from a theoretical implementation to an actual
hardware specific implementation. Section 6 lists the suggested recommendations found
during the evaluation. And finally section 7 concludes the paper.

The raw data obtained during this project can be found at

/net/urd/home/disk14/marcus/projekter/motelab
on the DIKU computer network. The files are:
e startup-data-4325.zip - Startup
e startup-data-4326.zip - Startup
e startup-data-4327.zip - Startup
e lsource-data-4335.zip - Startup using radio with 1 source
e 2source-data-4357.zip - Startup using radio with 2 sources
e 3source-data-4363.zip - Startup using radio with 3 sources
e rf-powerManage.log - power profile for Startup with radio
e uart-powerManage.log - power profile for Startup with UART
e sn-g9-s7-data-4127.zip - SensorNode with gateway = 9 and source = 7
e sn-g9-s7-data-4128.zip - SensorNode with gateway = 9 and source = 7
e sn-g9-s7-data-4143.zip - SensorNode with gateway = 9 and source = 7
e sn-g9-s27-data-4125.zip - SensorNode with gateway = 9 and source = 27

1Tt was originally intended to include an evaluation and comparison with the testbed at Massachusetts
Institute of Technology as well, but since the team at MIT have just implemented the same system
developed at Harvard University there was no point in doing so.
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2 Implementation

2.1 Hardware

The testbed at Harvard University consist of 30 MicaZ motes. The MicaZ mote is equipped
with an Atmel ATMEGA128L processor running at 7.3 MHz, 128 KB of read-only program
memory, 4 KB of RAM and a Chipcon CC2420 radio operating at 2.4 GHz.2 The radio are
IEEE 802.15.4 compliant and has a transmission rate of 250 kbps. Each mote is connected
to a Crossbow MIB600 ethernet gateway board which power the motes and provides remote
reprogramming and logging capabilities [5]. Due to the size of the Crossbow MIB600
programming board the motes do not have any sensor board attached. The 30 motes and
programming boards are distributed over three floors with 2, 25 and 3 motes on the first,
second and third floor respectively at the Maxwell Dworkin building at Harvard University.
In order to meassure real power consumption a digital multimeter Keithley 2701 has been
attached to mote no. 3 and it is capable of sampling at 250Hz. [6] [2]

2.2 Software

The MoteLab software controlling the infrastructure of the testbed consist of: MySQL
Database Backend, Web Interface, DBLogger and Job Daemon. These four mod-
ules run on a central server and utilizes a MySQL Database Server [7] and a TinyOS
SerialForwarder connected to each mote [8].

Web Interface

This module consist of PHP pages and Javascripts which creates, edits and schedules
jobs, displays a schedule of the testbed, provides user information and enables download
of logged data. A job consist of one or more executables and java classes. Each job also
has a certain number of motes (possible them all) associated with it and a mapping of
motes to executables. Finally a job also contains other configuration parameters such as
enabling of power profiling.

MySQL Database Backend

The database contains all the information needed for testbed operation. This includes
testbed states which are: user information, access rights, mote state, information about
uploaded files, job properties and testbed schedule. And job-generated data, which for
each instance of a job consist of a table for each message type associated with that job.

DBLogger

A Java program called DBLogger connects to each motes data logging port, and parses
messages sent over the serial port and inserts them into the database. Each table consist
of the inspected message’s structure, identifikation of the mote from which the message
originated from, a timestamp and a global sequence number.

Job Daemon

The Job Daemon is a Perl script run as a cron job. The daemon sets up experiments
by reprogramming the motes, starting system components such as the DBLogger and
SerialForwarder. Afterwards its responsible for closing down the afore mentioned pro-
grams, stopping motes, killing processes and dumping data from the database into an easy
downloadable file.

2These specifications are slightly lower than what Crossbow Technology Inc. states on their homepage
for the MicaZ mote [4], probaly because the motes at Harvard University are of an older version.
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2.3 SourceForge

All the software behind MoteLab have been made open source and are available for down-
load at SourceForge at http://sourceforge.net/projects/syrah/

3 Preliminary work

3.1 Finding a testbed

As a novice WSN programmer the first task is to find a testbed. Which did not seem
to be a problem since searching for the keywords ”sensor”, "network” and ”testbed” in
Google yielded the Harvard MoteLab as the third choice. [6] In comparison the MoteLab
implemented at MIT did not show up at all. Not even after adding the keyword ”MIT”
to the search. One could argue that people with the need for a WSN testbed must be so
involved in the community that finding a testbed would not be a problem, but nevertheless
search engines is the most popular way to find things on the Internet.

3.2 Getting access

After finding the homepage for the testbed, the next objective was getting access. This
information was directly available from the MoteLabs’s frontpage and the account creation
was done manually by mailing a request to Prof. Welsh. Besides providing information
on how to get access, the frontpage also has a conscise description of the site, the usage
of the WSN testbed, how to get access to the source code, a description of the MoteLab
hardware and a description of what software the motes can run. Links to a graduate
course that had used the testbed, Prof. Welsh personal information page and a map of
the deployed motes and their status was also available from the frontpage.

After logging in several pages become available: user info, schedule, create job, edit
job and home.

The ”user info” page gives information about the user’s account name, account type,
testbed quota, database handle and the abilitie to change password. It also describes how
to gain access to the MySQL database where all the generated data are being stored and
how to connect directly to each mote’s SerialForwarder through a TCP connection.

The ”schedule” page contains a table of scheduled jobs and free timeslots. Each times-
lot is 5 minutes wide and the standard user is granted at 30 minutes quota. A job is
scheduled by choosing the job, choosing which part of the motelab the job should run at
and last by choosing one or more vacant timeslots.

The ”create job” page is divided into 4 sub-pages: Description, files, motes and op-
tions. On the ”description” page one designates the job a name and a description. On the
”files” page one can upload executables and java class files, and associate each job with
one or multiples files. The uploaded files must be named and optionally described. On the
”motes” page one can choose to either run one program on all available motes, distribute
several binaries evenly throughout the testbed or finally select which program should run
on individual motes. The last page ”options” is a checkbox for enabling high resolution
(250 Hz) power consumption meassurements on the specific mote no. 3.

The ”edit job” holds a list of all the jobs the user has created, and the job editing is
similar to the job creation process.

The "home” page displays a status over a currently running job, scheduled jobs and a
list of completed jobs with the task number, job name, start and completion time and the
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generated data as a zip archive.

3.3 Getting Started
Compiling for the MicaZ

The obvious way to get to know the MotelLab is by running some simple applications on the
testbed. And the easiest way to do this is by using the standard applications distributed
with TinyOS. Since the target platform is the MicaZ mote the straightforward approach to
obtain executeables, is by running a ”make micaz” inside the selected application directory.

This did not work however, since all the applications inside the /tinyos-1.x/apps
folder is configured to use the older Makerules file from the /tinyos-1.x/apps folder
(which does not include support for the MicaZ mote) instead of using the newer
Makerules file from the /tinyos-1.x/tools/make folder. After changing the Makefile
to use the newer Makerules, there were no problems compiling the code.® Alternative
one could use the software branch Crossbow Technology Inc. has made for the MicaZ
mote, which include support for different sensor boards and several other applications not
originally supplied by TinyOS [9].

Creating a job

After obtaining the executeables the next step is to try it out. After inserting a name
and a description for the job, one then has to upload one or more program and class files.
Once uploaded however the files remain on the MoteLab and can subsequently be used
directly in other jobs.

At this point it is not quite obvious what the class files are for, only that at least one
must be associated with each job. If one have followed the TinyOS tutorial it says in
lesson 6 how to communicate with motes by using the Message Interface Generator
(MIG) to generate Java class files that correspond to Active Message types [10]. This
would be the most obvious choice for a class file, although a bit odd that such a file is
an absolute necessity upon job creation. Only after reading the MoteLab article [6] and
reading the assignment [11] for the graduate course, is it clear that the MIG generated
Java class is used by the MoteLab program DBLogger to parse packets read over the
serial line into the database. Hence the Java class facilitates logging of data. This does
however raise the question why a job demands at least one Java class associated with it
since not all applications would require the logging of data.

After uploading and selecting program and class files, each program must be associated
with none, some or all motes. This can be done by either choosing to run one program
on all motes, distribute the selected programs evenly throughout the testbed or finally by
mapping each program to none or more motes. At this point one encounters a small bug
in the Javascript if multiple programs have been selected and added at once, instead of
being added individually one at a time. The motes designation page thus behave as only
one program has been selected, and it is only possible to run one of the selected programs
on all of the motes.

Finally to complete the job creation one can choose to enable power consumption
meassurements on mote no. 3.

Scheduling a job

Once a job has been created it can be scheduled for execution. The schedule consist of 5
minutes timeslots, and each scheduled job occupies at least one timeslot. Since a standard

3This was probaly caused by compiling on a system which originally was running TinyOS version 1.1.0
and subsequently upgraded to version 1.1.11, but developing under a Windows environment one does not
have that much of an option.
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user has a 30 minutes quota, one can either schedule up to 6 jobs at once or schedule 1
job to run for 30 minutes. After a job has been scheduled it can be deleted (from the
schedule) as well. This leads however to a minor display bug, since the name of the job
still occupies the vacant timeslot. Besides from choosing vacant timeslots one also gets
the opportunity to choose if the job should be run on MD All, MD West og MD East.
Assuming this partitioning is aimed at the actual motes it is a bit odd that a job can be
scheduled to run on one partition, even though the mapping inside the job do not contain
any motes from this subset. This also leads to a minor display bug, since after scheduling
two jobs to run on its own partition, the timeslot is still flagged as vacant although it is
not.

Interacting with the motes

During the execution of a job, it is possible to connect to each motes SerialForwarder
and thereby send and receive data directly to each mote. It should be noted though,
that even if two way commmunication is possible, it is not possible to connect a terminal
directly to the SerialForwarder. Only Active Message packets can be communicated
this way.

Logging data

As mentioned above logging is done solely through the inspection of Active Message pack-
ets send through the serial line which matches an uploaded Java class. This implies that
the only way to log data in the MoteLab database is by wrapping an Active Message
around the data and transmitting this message to the UART address. In other words in
order to have something stored in the database one must first create an Active Message,
write the data into a predefined struct, use the struct as payload in the Active Message
and finally transmit the Active Message through the TinyOS radio stack, making it im-
possible to use the radio and communicate over the UART at the same time. Furthermore
the struct must be known by the MoteLab as a Java class file, or else no logging is done
if the class is not recognized.

This rather complex scheme to enable logging makes the wording on the frontpage
sound a bit odd,

”During the job all messages and other data are logged to a database which is presented
to the user upon job completion and then can be used for processing and visualization.
In addition, simple visualization tools are provided via the web interface for viewing data
while the job is running.” [6]

since nothing is actually logged unless the user specifically does so in the program,
and it does not say anywhere on the MoteLab page how this should be done. Finally
the simple visualization tools provided by the web interface are simply not present. The
only way to gain access to the logged data, is either by establishing a remote connection
directly to the MySQL database or by downloading the tables as a zip archive.

Debugging

One of the biggest problems when working with a remote system is the lack of ground
truth. When running programs on a local mote there are several ways to debug. First,
motes usually are equipped with LEDs and reset buttons, which would indicate if a mote
is running or not, and the abilitie to reset a mote at any given time gives plenty of insigt
in were the program might have failed. Second, by connecting a terminal directly to a
mote it is possible to gain insigt in what is transmitted over the UART. When running a
job on MoteLab the only way of knowing if a program worked or not is by inspecting the
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logged data. But in the case of absent data debugging becomes ekstremely tedious since
the source of the problems could be in the communication path as well as the rest of the
program. This could be the Java class having a slightly different struct than the one in
the Active Message, the Active Message not having the correct number, communication
between the mote and UART conflicts with communication on the radio, and the UART
not wired in correctly.

4 Running programs on MoteLab

4.1 Startup sequence

In order to implement duty-cycling in a WSN the motes involved must be synchronized
to some extent. It is thus important to understand the startup sequence in the network.
Since the programming of the motes is done from a centralized server one would expect
the motes to be fairly synchronized from start. In order to test the startup sequence a
simple program was written. The program Startup consist of a single task that dumps
the system time? with an incremental serial number to the serial port. This task i posted
every second from the moment the mote starts up. This simple test should show if the
motes internal counters are reset upon every startup and in which order the individual
motes become operational. Table 1 shows a typical output from the program.

Only the SerialNumber and counter field has been set by the program. The insert_time,
motelabMotelD and motelabSeqNo have been inserted automaticaly by the MoteLab soft-
ware. The first one notices is that all the motes except number 4 appears to be relatively
synchronized, eg. they all share the same SerialNumber. For some reason mote no. 4
always seemed to be 5 seconds behind all the other motes. The second thing that comes
to mind is that the actual logging in the database apparently also is 5 second behind since
the first 5 packets has been lost for all the motes except mote no. 4. This appears to be
correlated since subsequent tests with other programs on motes different than no. 4 does
not show this delay. Third, the counter values are not strictly increasing but they are close
enough to each other to conclude that the counters indeed are reset upon startup. Not
shown by this single table is that multiple runs of the Startup program shows that the
actual logging happens in a random order, but the actual mote startup and presumably
programming happens in a fixed sequence. This becomes evident when multiple outputs
are sorted by counter values, as shown in table 2.

Although a definite sequence cannot be resolved certain patterns a clearly visable when
multiple tables are compared, e.g. motes no. 1, 8 and 27 always shows with low counter
values while motes no. 5, 16 and 18 always shows with high counter values.

The source code to Startup can be found at appendix B.

4.2 Packet loss

In order to estimate the kind of reliability required by the network protocol for a given
task, it is necessary to at least know the average packet loss on a typical hop between two
motes. To test this the previous program was altered to use the radio broadcast address
instead of the serial port address. On the receiving end the standard TinyOS basestation
TOSBase was used. To represent a typical good connection mote no. 21 and 26 was
chosen as source and sink respectively.®

As shown in table 3 a simple link between two motes has an average packet loss at
about 1.2%. This is under the condtitions that no interferens are present and the two
motes are located close to each other. Hence this value can be used as a lower bound for
the average packet loss. By adding more sources to the experiment, packet loss due to
interferens and packet drops due to the sink mote being busy can be meassured. First

4Where system time is the number of clock cycles since activation.
5See appendix A for an overview map of the main testbed floor.
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Table 2: Startup - sorted by counter

Source(s) | Send | Received | Lost | %
1 1813 1790 23 1.3
2 2396 2119 277 | 11.6
3 1815 1347 468 | 25.8

Table 3: Packet Loss
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4.3 Power Consumption

mote no. 9 and was added and second mote no. 1. As shown in the table the packet
loss increases to 11.6% with 2 sources and to 25.8% with 3 sources. Disregarding each
motes counter drifting apart from each other over time, the transmissions occurs almost
simultaneously, hence the packet losses observed are good estimates on the upper bound
for 2 and 3 motes broadcasting within close range.

In a multihop network with multiple packets being routed simultaneously one should
not expect a very high transmission success even after just a few hops unless some sort of
reliability is added to the network protocol.

4.3 Power Consumption

One of the key constraints in a WSN is the limited power supply. Although power con-
sumption can be estimated based on the power ratings given by the manufacture, the
only way to know for sure if a certain program behaves as intended with regards to power
savings, is by doing real meassurements on the mote during the progams execution. To
test this both Startup programs was executed on mote no. 3 with power meassurement
enabled, in order to get an idea of the actual difference in power consumption with and
without the radio enabled.

The actual data was not logged in the database but only archived for download from
the homepage. The format of the file is shown below. The timestamp appears to be in
seconds and the reading in Amps, but nothing official can be found on the homepage.

# Data from job 1030 run on Wed May 25 14:26:17 2005
# Column format

# <timestamp> <current reading> <sample number>
+0.000000 +2.39584278E-02 +00000

+0.003556 +2.41000596E-02 +00001

+0.007078 +2.38464903E-02 +00002

+0.010583 +2.39264444E-02 +00003

+0.014075 +2.42611114E-02 +00004

Disregarding the last column and choosing a small time interval, e.g. 2 seconds, the
data files are easily converted to graphs with GnuPlot [12].

Figure 1 shows the power profile of the Startup program only using the serial port
and figure 2 shows the same program using the radio instead. Not surprisingly there is
a power increase each time the mote transmits a message over the radio as seen in figure
2. What is surprising is the factor 6 difference between running with the radio enabled
or disabled and the relatively small difference between transmitting and listening on the
radio.

4.4 TinyDB

The purpose of MoteLab is to enable developers to run full blown programs on a fully
deployed WSN. The only way to evaluate the testbed in this regime is to actually run real
programs. A typical task for a WSN is to perform some meassurements and then send
the data through the network to a base station where the data can be stored. This can
be done by letting all motes sample data continously and only when a given condition is
fulfilled the data is routed to the sink mote. Ideally this should be done with the lowest
duty cycling possible. For this evaluation purpose TinyDB fits very well since it provides
the above mentioned functionality with a simple user interface.

Unfortunately it was not possible to get TinyDB to work on MoteLab. After the
modifications was made to the Makefile both the mote program and user front-end com-
piled without incident. But upon running the program on the testbed it was not possible
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44 TinyDB
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Figure 2: Power Profile with radio - plotted with GnuPlot
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4.5 Surge-View

to establish commmunication to the different motes with the user interface. Further more
by placing TOSBase programs on central motes it should be possible to intercept control
packets, but no packets were received at all.

This could be the result of a badly configured TinyOS production environment since
there had been problems with other network related tools, e.g. the SerialForwarder,
but the lack of any packets at all points to an incompatability between TinyDB and the
MicaZ motes, possible due to the newer radio (compared to the Mica2 mote). Apparently
a similar problem was posted to the TinyOS-help mailing list half a year ago, which
supports the former assumption, but the lack of debugging tools makes this an unsolved
question [13].

4.5 Surge-View

Since there might be some incompatibility problems with the MicaZ mote and older
TinyOS programs, it would make sense to try and run some programs written by the
manufacture. One of the more advanced programs contributed by Crossbow Technology
Inc. is the Surge-View program. In essence it is at program designed to test a given
mote setup by establishing a routing tree for the network and then continously route sen-
sor readings back to the mote connected to the user interface, for all the motes in the
network [14].

This program did however not work at all. Since the user interface was a pre-compiled
binary the development platform could not be at fault. Like with the TinyDB case several
TOSBase motes was placed in the network and as before no packets were interceptet at
all.

4.6 Sensornode program

In the light of these failures to run a program that resembles a real problem solving one, a
custom program SensorNode was made. The program establishes a routing tree rooted at
a predetermined sink. The tree is build by the sink broadcasting tree-establishing-packets.
Motes that receive this packet determines, based on the link quality and the distance to
the sink, if it should use the mote as parent. Once a mote has choosen a parent it too
broadcasts a tree-establishing-packets, but with the distance to the root set accordingly. A
mote only updates its parent when the distance to the root has improved. This should also
help against loops in the routing tree. Based upon the meassurements performed above
regarding packet loss, precautions were made to the network protocol by adding implicitly
acknowledgements. Since a parent is choosen based upon the link quality, asynchronic
links can be minimized by setting the quality thresshold high. Assuming synchronic links,
a mote resends a packet to it’s parent until it either receives the same packet from the
parent or receives a new packet that needs to be forwarded. This packet drop was choosen
to simplify the program and minimize the buffer need. In it’s current form the program
will try to resend a packet ten times within two seconds.

Originally the program was intended to only send data to the sink when a certain
condition was met on the sensors. But since the motes do not have any sensors, the pro-
gram was changed to use a predetermined source and repeatedly send data to the sink
every third second. Also to ensure that the routing tree eventually is established the sink
repeats it’s tree-establishing-packet every tenth second. This will of course conflict with
the data packet every thirty second but for this evaluation purpose this is ignored. As
the program is in it’s current form the motes wont change their parent eventhough no
acknowledgements are received. This should of course be changed to include some sort of
timeout of the parent, but for now mote loss is not supported.

A test of the program with mote no. 7 as source and mote no. 9 as sink yielded the
following table as result:

12



5 From teori to application

Fm————————— - - e o ———— +
| lastSampleNumber | light | temp | data | insert_time |
e e L e e e L Fm—————— Fo———— B e B e +
I 11 374 | 404 | | 20050503181441 |
I 21 217 | 307 | | 20050503181443 |
I 3] 219 | 305 | | 20050503181446 |
I 4 | 214 | 308 | | 20050503181449 |
I 51| 214 | 310 | | 20050503181452 |
I 6 | 217 | 304 | | 20050503181454 |
I 71 218 | 305 | | 20050503181459 |
I 8| 213 | 310 | | 20050503181501 |
I 9| 214 | 308 | | 20050503181504 |
I 10 | 218 | 304 | | 20050503181507 |
I 11 | 215 | 306 | | 20050503181511 |
I 12 | 214 | 311 | | 20050503181512 |
I 13 | 216 | 307 | | 20050503181515 |
I 14 | 218 | 304 | | 20050503181518 |
I 15 | 214 | 307 | | 20050503181522 |
I 16 | 214 | 311 | | 20050503181524 |
I 17 | 217 | 306 | | 20050503181527 |
I 18 | 218 | 304 | | 20050503181530 |

where the trivial fields have been omitted. The data field contains the route taken
but for some reason this field does not get converted to ASCII characters. But with a
hex-editor the route can be deciphered to:

7 ->24 ->19 -> 20 -> 5 -> 16 -> 9

which by inspection of the MotalLab map seems to be a plausable route. Several
consecutive test showed close to no packet loss.® The mote no. 9 was chosen as sink since
it’s location forms a bottleneck in the network, which might become a source of a possible
network partitioning. Besides the sink sending data over the serial port for logging, each
mote was instructed to send it’s depth to the serial port, in order to establish some sort
of graphical representation of the routing tree. Unfortunately this output must have
conflicted with date forwarding, since very few of these packets eventually got logged in
the database.

The source code to SensorNode can be found at appendix C.

5 From teori to application

One of the main advantages of a WSN testbed, is the ability to bridge the gap between
running programs on a simulated sensor network like the TOSSIM simulator [15] to run-
ning programs in a real life experiment. One could say that this application is the most
important, since it allows a programmer to develop code not possible to simulate on
TOSSIM, e.g. a new MAC-layer, and still be able to remove bugs before an actual real life
implementation is performed, which could be a costly affair without proper debugging.

To this end graduate student Jan Flora and Esben Zeuthen has been kind enough
to lend me their support, since they have made a TinyOS implementation of ”two-phase
pull Directed Diffusion” [16] as part of their master thesis. Their program was developed
entirely on the TOSSIM simulator, and is stable in it’s current state.” It was however
not part of the design phase and development process that the implementation eventually
should be able to run on real motes.

60ne of these tests uses mote no. 27 as source, with the same results.
7Since the master thesis has not been submitted yet, it is not possible to show the program’s sourcecode.
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6 Recommendations

The first step in the adaption process was to make the program able to compile to the
MicaZ platform. One of the things that needed to be done was to change certain unit
types inorder for them to be compatible with the mote hardware. The second thing was
the use and allocation of buffers. In it’s native form the compiled program would exceed
the memory requirements by a factor 2. This emphasizes the fact that motes indeed have
limited memory capacity and that other hardware restrictions might apply.

The second step was to actual get some confirmation that the program indeed was
running. This could either be done by logging data or by connecting to each mote through
the SerialForwarder. Since the program originally did not contain any form for user
interface the easiest way would be to log data. This could either be done directly by the
program or indirectly by intercepting messages sent over the radio with the TOSBase
program. The program was modified to include a command to send packets directly to
the serial port and TOSBase motes were placed at strategical chosen positions. Both
approaches requires the presence of Java class files with data structures matching the
Active Message payload. This lead to the discovery of a bug in the program since the
payload size was set incorrectly, leading to packets being send over the serial port, but
not being recognized and parsed by MoteLab. This was discovered by modifying a local
version of the SerialForwarder program, making it dump the raw packets to a terminal,
disregarding the payload structure. By setting one mote to act as both subscriber and
publisher, it was shown that the program indeed was running, that the communication to
the serial port was working and that at least some of the program logic was working, since
data was received as expected.

The third step was to actually have two motes, a publisher and a subscriber, com-
municate with each other. This was however not possible since the radio apparently did
not work as intended. The motes did run but no radio transmissions were interceptet at
all by the TOSBase motes. The component responsible for calling the radio was tested
seperately to see if it was just bad wirering or something similar, but surprisingly the radio
did work in this simple setup. The lack of debugging tools were a problem at this point,
since it was not possible to get an indication of where in the program the problem resided.
Under normal conditions debugging code could be used, but since the only way of logging
data is by using the radio stack, the debug messages themselfes might cause problems.

We were not able to find the reason behind this problem in the given time, but more
testing will most certainly reveal the problem.

6 Recommendations

6.1 Documentation

One of the biggest problems when working with MoteLab, was the lack of documentation
or rather the difficulty in finding it. Article [2] and the student assignment [11] gave and
excellent inside into the workings of MoteLab and references to them both would help new
users alot. But of course some real documentation or a how-to would be preferred. This
should of course include how the actual logging takes place, since from the current wording
on the homepage one gets the impression that logging is done automatically without the
need of any user actions, e.g. like making suitable class files. Second it should be mentioned
eksplicitly that the motes do not have any sensor boards attached, since this might be the
last assumption one would make about a sensor network testbed. On a side note (since
it is trivial to mention that information on a homepage needs to stay up-to-date), really
important information like what kind of motes that are currently installed and being used
at the testbed, must be kept updated. Finding out that the testbed in fact used MicaZ
motes and not Mica2 as the homepage said was really difficult, especially since the lack of
debugging tools often leaves guessing as the only resort.®

8This information was changed though during this evalutaion.
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6.2 Jobs

6.2 Jobs

The first impression of the whole job scheduling process was that it was nice and intuitive
(except the use of class files), and it made running batches of jobs easy. In the long run
however the lack of the ability to remove jobs from the job list, and remove, rename or
delete uploaded files, makes it difficult to keep the different files and jobs sorted, and
mistakes are easily made. Second, the way jobs are scheduled makes it hard to work
interactively since one has to wait until a job has completed until it can be modified,
unless one would resort to deleting a job in process and risk another user taking the now
vacant timeslot. A better way to do this scheduling would be to add the option of booking
motes, instead of booking a job, so one could better utilize the reserved time. Also, when
the testbed is used as a development platform and not just as a batch test platform, the
whole graphical user interface becomes a bottleneck. Preferably some sort of command
line interface would be more efficient, similar to typing ”make install” when one work
locally on a mote attached physically to one’s computer.

6.3 Interaction

By using SerialForwarders directly on each mote and making them publicly available
makes it in teori easier to use standard TinyOS programs. The drawback of this is however
the lack of debugging abilities, since the SerialForwarder only works with Actice Mes-
sages, and as discussed in the last section, these messages are not suitable for debugging
messages when the radio is at fault. A better solution would have been to make the serial
port directly available over TCP with some sort of real serial port forwarder. This would
enable the user to attach any kind of tools including terminals and SerialForwarders
directly to the motes, and there by gaining access to the raw data coming from the serial
port. In the absence of class files this raw data could also be logged automaticaly, since
output of any kind is invalueable during debugging. One would thus be able to use both
the serial port and the radio at the same time without the two conflicting with each other.

6.4 Logging

The idea of logging all data in a relational database and subsequently making the database
avaible with remote login is excellent. However storing each data structure of each job of
each run in a seperate table is not very efficient. Since the payload size is fixed a generic
table could be made to contain all records of a given job, and the job execution number
and data structure type could be attributes in this table. Cleaning up this table could be
done with some cascade deletes on the run number.

7 Conclusion

The purpose of this paper was to evaluate the MoteLab testbed at Harvard University
both in regards of finding weaknesses and places for improvement to the MoteLab soft-
ware, but also as a contribution to the current development of a WSN infrastructure at
DIKU. The former was done by testing several different programs on the testbed with as
little knowledge of the inner workings as possible, and thus using the discovered prob-
lems as basis for recommendations for improvement. The latter was done by supplying
the working group with firsthand experience of a working testbed including some of the
material discovered during the evaluation.

A 2nd floor at the Maxwell Dworkin Laboratory
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Figure 3: Connectivity and link quality graph
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B Startup

B Startup
B.1 Header files

struct StartupMsg

{
uint16_t serialNumber;
uint32_t counter;

};

enum {
AM_STARTUPMSG = 10,
};

B.2 Startup.nc

includes StartupMsg;

configuration Startup { }
implementation
{
components Main, StartupM
, TimerC
, SysTimeC
, GenericComm as Comm;

Main.StdControl -> StartupM;
Main.StdControl -> TimerC;

StartupM.SysTime -> SysTimeC;
StartupM.Timer -> TimerC.Timer [unique("Timer")];
StartupM.CommControl -> Comm;
StartupM.SendMsg -> Comm.SendMsg[AM_STARTUPMSG] ;

B.3 StartupM.nc

includes StartupMsg;

module StartupM
{
provides interface StdControl;
uses {
interface Timer;
interface StdControl as CommControl;
interface SendMsg;
interface SysTime;
}
}
implementation
{
uint16_t serialNumber;
uint32_t counter;
TOS_Msg msg;
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B.3 StartupM.nc

/%%
* Used to initialize this component.
*/
command result_t StdControl.init() {

call CommControl.init();

atomic {
serialNumber = 0;
counter = 0O;

3

return SUCCESS;
¥

VELS

* Starts the CommControl components.

* Q@return Always returns SUCCESS.

*/

command result_t StdControl.start() {
call Timer.start(TIMER_REPEAT, 1000);
call CommControl.start();
return SUCCESS;

}

/**
* Stops the SensorControl and CommControl components.
* Q@return Always returns SUCCESS.
*/
command result_t StdControl.stop() {
call Timer.stop();
call CommControl.stop();
return SUCCESS;
¥

task void Task() {
struct StartupMsg *pack;
atomic {
pack = (struct StartupMsg *) msg.data;
serialNumber++;
pack->serialNumber = serialNumber;
pack->counter = call SysTime.getTime32();

3

call SendMsg.send(TOS_BCAST_ADDR,
sizeof (struct StartupMsg),
&msg) ;

/%

* Signalled when the previous packet has been sent.
* Qreturn Always returns SUCCESS.

*/

18



B.3 StartupM.nc

event result_t SendMsg.sendDone(TOS_MsgPtr sent, result_t success) {
return SUCCESS;
}

/**

* Signalled when the clock ticks.

* Q@return Always returns SUCCESS.

*/

event result_t Timer.fired() {
post Task(Q);

return SUCCESS;
}
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C SensorNode

C SensorNode

C.1 Header files
DataMsg.h
// DatalMsg.h

enum {
BUFFER_SIZE = 14
};

struct DatalMsg {
uint16_t sender;
uintl6_t receiver;
uint16_t sourceMotelD;
uintl16_t lastSampleNumber;
uintl6_t light;
uintl16_t temp;
uint8_t data[BUFFER_SIZE];
};

enum {
AM_DATAMSG = 10,
};

TreeMsg.h
// TreeMsg.h

struct TreeMsg {
uint16_t depth;
uintl6_t time;
uint16_t sourceMotelD;

};

enum {

AM_TREEMSG = 32
};
SensorNode.h

// SensorNode.h

enum {
GATEWAY = 7,
SOURCE = 27,

STRENGTH = 215
};

C.2 SensorNode.nc

// SensorNode.nc

includes DataMsg;
includes TreeMsg;
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C.3 SensorNodeM.nc

configuration SensorNode { }
implementation

{

components Main, SensorNodeM

B

TimerC

, PhotoTemp
, GenericComm as Comm;

Main.StdControl -> SensorNodeM;
Main.StdControl -> TimerC;

SensorNodeM.
SensorNodeM.
SensorNodeM.
SensorNodeM.
SensorNodeM.
SensorNodeM.

SensorNodeM

SensorNodeM.
SensorNodeM.
SensorNodeM.

SensorNodeM

Timer -> Ti
ResendTimer
CommControl

ReceiveDatalMsg

ReceiveTree

SendDataMsg ->
.SendTreeMsg ->

Temp -> Pho

merC.Timer [unique ("Timer")];
-> TimerC.Timer [unique("Timer")];
-> Comm;
-> Comm.ReceiveMsg[AM_DATAMSG] ;
-> Comm.ReceiveMsg[AM_TREEMSG] ;
Comm. SendMsg [AM_DATAMSG] ;
Comm.SendMsg [AM_TREEMSG] ;

Msg

toTemp.ExternalTempADC;

Light -> PhotoTemp.ExternalPhotoADC;

TempStdCont

rol -> PhotoTemp.TempStdControl;

.LightStdControl -> PhotoTemp.PhotoStdControl;

C.3 SensorNodeM.nc

// SensorNodeM.nc

includes DataMsg;
includes TreeMsg;
includes SensorNode;

module SensorNodeM

{

provides interface StdControl;

uses {
interface
interface
interface
interface
interface

Timer;
Timer as Re
StdControl
ADC as Temp
ADC as Ligh

sendTimer;
as SensorControl;
5

t;

interface StdControl as TempStdControl;
interface StdControl as LightStdControl;

interface
interface
interface
interface
interface

StdControl
SendMsg as
SendMsg as
Receivelsg
ReceiveMsg

as CommControl;
SendDataMsg;
SendTreeMsg;

as ReceiveDatalMsg;
as ReceiveTreeMsg;
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C.3 SensorNodeM.nc

implementation

{
TOS_Msg treeReceiveBuffer, treeSendBuffer;
TOS_Msg dataReceiveBuffer, dataSendBuffer;
TOS_Msg uartBuffer;

TOS_Msg *treeReceiveBufferPtr, *treeSendBufferPtr;
TOS_Msg *dataReceiveBufferPtr, *dataSendBufferPtr;
TOS_Msg *uartBufferPtr;

uint8_t treeDepth;
uintl6_t parent;
uintl6_t time;

uintl6_t signalStrength;

uintl16_t dataSeq;
uint16_t vectorClock[32];
uint8_t resend;

uint8_t printData;
uint8_t printTree;

uintl6_t light;
uintl6_t temp;

/%%

* Used to initialize this component.

*/

command result_t StdControl.init() {
uint8_t 1i;

//turn on the sensors so that they can be read.
call TempStdControl.init();
call LightStdControl.init();

//turn on the radio and UART
call CommControl.init();

if (TOS_LOCAL_ADDRESS == GATEWAY) {
treeDepth = 0;

parent = O;

time = 0;

dataSeq = O;

} else {

treeDepth = 99;

parent = 99;
time = 0;
dataSeq = O;
}

for (i = 0; i < 32; i++) {
vectorClock[i] = 0;
}

atomic {
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C.3 SensorNodeM.nc

printData = 0;
printTree = 0;
resend = O;
light = 0;
temp = 0;

}

treeReceiveBufferPtr = &treeReceiveBuffer;
treeSendBufferPtr = &treeSendBuffer;

dataReceiveBufferPtr = &dataReceiveBuffer;
dataSendBufferPtr = &dataSendBuffer;

uartBufferPtr = &uartBuffer;

return SUCCESS;
}

/**
* Starts the SensorControl and CommControl components.
* Qreturn Always returns SUCCESS.
*/
command result_t StdControl.start() {
call TempStdControl.start();
call LightStdControl.start();
call CommControl.start();

if (TOS_LOCAL_ADDRESS == GATEWAY) {

call Timer.start(TIMER_REPEAT, 10000);
} else {

call Timer.start(TIMER_REPEAT, 3000);
}

return SUCCESS;
¥

/**
* Stops the SensorControl and CommControl components.
* Q@return Always returns SUCCESS.
*/
command result_t StdControl.stop() {
call TempStdControl.stop();
call LightStdControl.stop();
call Timer.stop();
call CommControl.stop(Q);

return SUCCESS;
3

task void relayDataTask() {
struct DataMsg *pack;

uint8_t jump;

atomic {
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C.3 SensorNodeM.nc

pack = (struct DataMsg *) dataSendBufferPtr->data;

pack->sender = TOS_LOCAL_ADDRESS;
pack->receiver = parent;

jump = pack->datal[1] + 1;
pack->data[0] = treeDepth;
pack->data[1] = jump;
pack->data[jump] = TOS_LOCAL_ADDRESS;

call SendDataMsg.send(TOS_BCAST_ADDR,
sizeof (struct DataMsg),
dataSendBufferPtr);
}

}

task void sendDataTask() {
struct DataMsg *pack;

atomic {
dataSeq++;

pack = (struct DataMsg *) dataSendBufferPtr->data;

pack->sender = TOS_LOCAL_ADDRESS;
pack->receiver = parent;

pack->sourceMoteID = TOS_LOCAL_ADDRESS;
pack->lastSampleNumber = dataSeq;
pack->light = light;
pack->temp = temp;
pack->data[0] = treeDepth;
pack->datal[1] 2;
pack->data[2] = TOS_LOCAL_ADDRESS;

call SendDataMsg.send(TOS_BCAST_ADDR,
sizeof (struct DataMsg),
dataSendBufferPtr);
}

}

task void plantTreeTask() {
struct TreeMsg *pack;

atomic {

if (TOS_LOCAL_ADDRESS == GATEWAY) {

time = time + 1;

}
pack = (struct TreeMsg *) treeSendBufferPtr->data;
pack->depth = treeDepth + 1;

pack->time = time;

pack->sourceMoteID = TOS_LOCAL_ADDRESS;

call SendTreeMsg.send(TOS_BCAST_ADDR,
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C.3 SensorNodeM.nc

sizeof (struct TreeMsg),
treeSendBufferPtr);
}

}

/%%

* Signalled when data is ready from the ADC.

* Q@return Always returns SUCCESS.

*/

async event result_t Light.dataReady(uint16_t data) {

atomic light = data;
call Temp.getData();

return SUCCESS;
}

async event result_t Temp.dataReady(uint16_t data) {

atomic {

temp = data;

resend = 10;

printData = 1;

post sendDataTask();

call ResendTimer.start(TIMER_ONE_SHOT, 200);

}
return SUCCESS;
}
/**
* Signalled when the previous packet has been sent.
* QOreturn Always returns SUCCESS.
*/
event result_t SendDataMsg.sendDone(TOS_MsgPtr sent, result_t success) {
atomic {

if (printData == 1) {

printData = 0;

call SendDataMsg.send(TOS_UART_ADDR,
sizeof (struct DataMsg),
dataSendBufferPtr) ;

}

}

return SUCCESS;
}

event result_t SendTreeMsg.sendDone(TOS_MsgPtr sent, result_t success) {
atomic {

if (printTree == 1) {
printTree = 0;
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C.3 SensorNodeM.nc

call SendTreeMsg.send(TDS_UART_ADDR,
sizeof (struct TreeMsg),
treeSendBufferPtr) ;

}

}

return SUCCESS;
¥

/%%

* Signalled when the clock ticks.
* Qreturn SUCCESS.

*/

event result_t Timer.fired() {

if (TOS_LOCAL_ADDRESS == GATEWAY) {

printTree = 1;

post plantTreeTask();

} else if (TOS_LOCAL_ADDRESS == SOURCE && parent < 99) {
call Light.getData();

} else {

}

return SUCCESS;
}

event result_t ResendTimer.fired() {

atomic {

if (resend > 0) {

resend--;

call SendDataMsg.send(TOS_BCAST_ADDR,
sizeof (struct DataMsg),
dataSendBufferPtr) ;

call ResendTimer.start(TIMER_ONE_SHOT, 200);
}
}

return SUCCESS;
}

/%%

* Signalled when data message received.

* Q@return The free TOS_MsgPtr.

*/

event TOS_MsgPtr ReceiveDataMsg.receive(TOS_MsgPtr m) {
TOS_Msg *tmp;
struct DataMsg *pack;

atomic {
pack = (struct DataMsg *) m->data;
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C.3 SensorNodeM.nc

if (vectorClock[pack->sourceMoteID] < pack->lastSampleNumber) {
if (TOS_LOCAL_ADDRESS == pack->receiver) {
vectorClock[pack->sourceMoteID] = pack->lastSampleNumber;

if (TOS_LOCAL_ADDRESS == GATEWAY) {

tmp = dataSendBufferPtr;
dataSendBufferPtr = m;
m = tmp;

printData = 1;
post relayDataTask();
} else {

tmp = dataSendBufferPtr;
dataSendBufferPtr = m;
m = tmp;

resend = 10;

post relayDataTask();

call ResendTimer.start(TIMER_ONE_SHOT, 200);

}

}

} else if (vectorClock[pack->sourceMoteID] == pack->lastSampleNumber) {

// message from child, send ack
if (TOS_LOCAL_ADDRESS == pack->receiver) {

tmp = dataSendBufferPtr;
dataSendBufferPtr = m;
m = tmp;

post relayDataTask();
// message from parent, cancel resend and print local copy to uart
} else {

resend = 0;

tmp = dataSendBufferPtr;
dataSendBufferPtr = m;

m = tmp;
}
}
}
return m;
}

event TOS_MsgPtr ReceiveTreeMsg.receive(TOS_MsgPtr m) {
struct TreeMsg *pack;

pack = (struct TreeMsg *) m->data;

if (TOS_LOCAL_ADDRESS != GATEWAY) {
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C.3 SensorNodeM.nc

if (treeDepth > pack->depth && m->strength > STRENGTH) {

treeDepth = pack->depth;
parent = pack->sourceMotelD;
time = pack->time;
signalStrength = m->strength;

printTree = 1;

post plantTreeTask();

} else if (parent == pack->sourceMoteID) {
time = pack->time;

post plantTreeTask();

}

}

return m;

3
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