

Technical Report no. 06/02
ISSN: 0107-8283

Evaluation of Accelerometers Mounted on
 Wireless Sensor Motes

Marcus Chang

(Joint technical report with Cambridge University)

Dept. of Computer Science
University of Copenhagen Universitetsparken 1

DK-2100 Copenhagen Denmark

Evaluation of Accelerometers Mounted on
Wireless Sensor Motes

Marcus Chang
Department of Computer Science

University of Copenhagen
Denmark

marcus@diku.dk

Abstract

In this project we investigate the properties of accelerometers mounted on wireless sensor devices with the
purpose of mounting wireless sensors on athletes to facilitate performance measurement. To this end a hetero-
genious data collection architecture with a system wide sampling rate of 200 Hz was developed to facilitate the
evaluation. A variant of the Reference Broadcast Synchronization protocol was implemented and without MAC-
layer timestamping we achieved an accuracy of 4 ms for a WSN with a single gateway and 27 ms for a WSN
with two gateways connected to the same time source. The subsequent evaluation showed that, in order to use
acceleration measurements to calculate the velocity and position, a gyroscope is crucial in order to compensate
for rotation and a calibration within 0.1% accuracy is necessary as well. With a non-rotating accelerometer we
were able to establish the position of an elevator with an accuracy within 10%.

keywords: wireless sensor networks, WSN, accelerometers, dead reckoning, Analog Devices ADXL202E,
Freescale MMA1260D, Freescale MMA6261Q, TinyOS, time synchronization, Reference Broadcast Synchro-
nization

page 2

Figure 1: Four Crossbow MicaZ motes (back) and two Freescale MC13192SARD (front).

page 3

Contents
Contents 4

1 Introduction 5
1.1 Motivation . 5
1.2 Purpose . 5

2 Freescale MC13192SARD 6
2.1 TinyOS . 7

2.1.1 EVB13192 vs. MC13192SARD . 7
2.1.2 Loading Code . 8
2.1.3 Communicating over RS-232 . 8
2.1.4 Reading from Accelerometers . 9
2.1.5 Communicating with MicaZ . 9

2.2 Future Work . 9
2.3 Summary . 10

3 Acceleration 11
3.1 Related Work . 11
3.2 Reference Frames . 11
3.3 Hardware . 12
3.4 Application . 12

3.4.1 Sampling rate . 12
3.4.2 Transmit . 13
3.4.3 Gateway . 13
3.4.4 Xlisten . 14

3.5 Evaluation . 14
3.5.1 Calibration . 14
3.5.2 Zero-motion Drift . 16
3.5.3 Power . 20
3.5.4 Walking . 22
3.5.5 Elevator . 26

3.6 Future Work . 29
3.7 Summary . 29

4 Time Synchronization 30
4.1 Related Work . 30
4.2 Protocols . 30

4.2.1 Time Beacon . 31
4.2.2 Reference Broadcast . 31

4.3 Implementation Issues . 32
4.4 Evaluation . 33

4.4.1 Round-Trip-Time . 33
4.4.2 Clock Drift . 33
4.4.3 Agreement . 36

4.5 Future Work . 38
4.6 Summary . 40

5 Conclusion 41

References 42

A Application Source Code 44

B Acceleration Data Files 44

C Synchronization Data Files 44

page 4

1 Introduction
This report is the result of a six week visiting student project carried out at the Computer Laboratory at the Univer-
sity of Cambridge, England. The project contributes to the Sentient Computing and Sports research at the Digital
Technology Group and is part of the Embedded WiSeNts1 project in which the Department of Computer Science
at the University of Copenhagen, Denmark, is a participant.

I would like to thank the people at the University of Cambridge, especially Professor George Coulouris and Dr.
Marcelo Pias for hosting and supervising the project, Dr. Alastair Beresford for organizing residence, and Dr.
Robert Harle, Brian Jones and Alastair Tse for helping with the local computer system. I would also like to thank
the people at the Univerity of Copenhagen, especially Associate Professor Philippe Bonnet for supervising, and
Jan Flora and Esben Zeuthen for technical support regarding the Freescale devices.

The project was funded by: The EU Framework 6 Embedded WiSeNts Project, Cambridge University Computer
Laboratory, and DIKU University of Copenhagen.

1.1 Motivation
In the field of sports technological advances have been used for a long time to improve the performance of athletes.
Until recently this has been done either inside a lab with wired sensors, or outdoor with external measuring equip-
ment (e.g. a stop watch). The goal of the Sentient Sports project is to combine these two approaches and enable
athletes to wear wireless sensors, without restrictions to the environment, in order to help improve performances.

One of the physical properties we intend to measure is acceleration. With this information it is possible to calculate
physical parameters such as velocity, position, step length, and frequency. Also, with multiple sensors, it will even
be possible to measure these properties for the body as a whole, as well as for each individual body part.

1.2 Purpose
The key issue we want to understand is the precision of the physical properties obtained from acceleration mea-
surements. This includes the drift of the sensors over time, and, of course, the growth of error over time. The main
purpose of this project is thus to study and evaluate accelerometers mounted on a wireless sensor device. In order
to perform this evaluation we had to develop a data collection infrastructure.

This report consists of three parts which can be read individually. Section 2 describes the process of making
the Freescale MC13192SARD motes ready for TinyOS and how to use the accelerometers with TinyOS. Section
3 consist of the actual development of the data collection infrastructure and the subsequent evaluation of the
accelerometers. Finally, Section 4 consist of the implementation of a time synchronization protocol which is
essential when several motes are measuring the same events.

1Cooperating Embedded Systems for Exploration and Control using Wireless Sensor/Actuator Networks

page 5

2 Freescale MC13192SARD

Figure 2: Freescale MC13192SARD wireless sensor mote [1].

One of the devices used in this project is the Freescale MC13192SARD2 [1] mote (shown in Figure 2), which
is based upon the Freescale EVB131923 [2]. The core of the device is the Freescale MC9S08GT60 [3] Micro
Controller Unit which has the following key features:

• 0-40 MHz HCS08 8-bit CPU

• 4K RAM

• 60K FLASH

• 2 two-channel 16-bit timers

• 8-channel, 10-bit ADC

• 2 Serial Communications Interface modules (SCI)

• 1 Serial Peripheral Interface module (SPI)

Furthermore, the MCU has several power saving modes which make it possible to reduce power consumption by
shutting down internal subsystems and changing operating frequency, e.g. power consumption, when running at 16
MHz, can vary from 6.5 mA to 25-675 nA. Also, the 8-channel ADC is in fact an 8-channel multiplexer equipped
with cross-talk preventing circuitry4 with a maximal sampling rate of 14.0 µsec.

Connected to the SPI module is the Freescale MC13192 transceiver [4], which is a low power, short range 2.4 GHz
ISM band radio with the following key features:

• IEEE 802.15.4 compliant (ZigBee)

• 16 channels (5 MHz intervals)
2Sensor Application Reference Design
3Evaluation Board
4Dedicated circuitry to avoid signals from one channel to interfere with another.

page 6

• 250 kbps transfer rate

Power consumptions range between 34-37 mA when transmitting/receiving and 500 µA in idle mode. Two on-
board antennas are used for sending and receiving respectively.

Connected to three of the ADC ports are the Freescale MMA6261Q dual-axis accelerometer [5] and the Freescale
MMA1260D single-axis accelerometer [6]. Both accelerometers have a ±1.5 g range of operation, but the
MMA6261Q has a noise5 and sensitivity rating of 3.5 mV and 800 mV/g respectively, where the MMA1260D
is rated as 5.0 mV and 1200 mV/g respectively. This means that the single-axis accelerometer has a higher sensi-
tivity, but with a lower precision.

Besides these three key parts, the MC13192SARD also has 4 LEDs, 4 push buttons, and 1 reset button. The device
can be powered either by a 9 V battery or a 3-9 V DC power supply. Programming can be done either via the BDM
interface (Background Debug Module), or via the 9 pin RS-232 port which is connected to the SCI module SCI1
on the MCU. This port can also be used as a regular communications port.

2.1 TinyOS
Since the key constraints, when developing a wireless sensor networks (WSN) application, are the limited resources
on each device such as processing power, storage capability, and electrical power, it is important that the operating
system in use honours these constraints. TinyOS is an open-source operating system built specifically for WSN
[8]. It uses an event driven execution model and utilises a component-based architecture, which makes it easy to
move the boundary between dedicated hardware and software emulation and save power by shutting down unused
components. Also, this component-based architecture minimizes the overall program size since only essential
components are included. The TinyOS core itself only requires 400 bytes of code and data memory combined. All
these features make TinyOS a much preferred operating system for wireless embedded sensor networks and are
therefore available on a wide range of platforms, in particular the MicaZ motes from Crossbow [7].

However, the support for TinyOS on the Freescale EVB13192 is a work in progress, currently being carried out at
the Department of Computer Science at the University of Copenhagen (DIKU). The current build is available from
CVS at SourceForge6 under cvs:tinyos/tinyos-1.x/contrib/diku/. Since the MC13192SARD is a platform
in itself, it is only appropriate to have the same support in TinyOS as for the EVB13192. Therefore, the work in
the following sections has been integrated with the EVB13192 code tree at SourceForge as of October 12th 2005,
so the MC13192SARD will benefit from any improvements made to the EVB13192.

To compile to the MC13192SARD platform the compile command

> make dig536

can be used once inside the contrib/diku/evb13192/apps/<application> directory. The current build re-
quires direct access to the internet and curl7 must be installed, since the compiling and linking are done remotely
on a server located at DIKU. This is because currently no open-source compiler compatible with the HCS08 in-
struction set exists. The TinyOS code is thus precompiled to C-code locally and the result is transmitted to the
compile host at DIKU. This host has a propriertary compiler installed which finally compiles the executable. Work
in progress though on porting the current propriertary compiler to an open-source compiler. This would make it
possible to perform the entire build process locally without the need for internet access.

2.1.1 EVB13192 vs. MC13192SARD

Because of several differences between the EVB13192 and the MC13192, several software modifications and
additions had to be made in order to run TinyOS on the MC13192SARD.

5Where noise is measured as the RMS error when operating at 0.1 Hz - 1.0 kHz. RMS =
√

1
N ∑N

i=1 (xi − x)2

6http://www.sourceforge.net
7cURL, http://curl.haxx.se/

page 7

The two most obvious differences between the EVB13192 and the MC13192SARD are the extra serial-over-
USB port (connected to the second SCI module, SCI2) on the EVB13192 and the two accelerometers on the
MC13192SARD. Not so obvious is the bootloader program pre-installed on the MC13192SARD which is not
compatible with code generated through DIKU. In order to develop TinyOS applications to the MC13192SARD
these three problems must be solved.

Additionally, as mentioned above, the MC13192SARD is equipped with two on-board antennas, each dedicated to
transmit and receive respectively. Since the EVB13192 only has one antenna, it uses a special pin to set if either the
input or output port of the transceiver is connected to the antenna at a given time. Because this pin is left unused
on the MC13192SARD, programs written for the EVB13192 are thus also compatible with the MC13192SARD,
eventhough the radio is connected differently. Had the process been reversed and had the original development
first been performed on the MC13192SARD, instead of the EVB13192, this would not had been the case.

2.1.2 Loading Code

The pre-shipped bootloader was replaced by a new one written by Jan Flora and Esben Zeuthen at DIKU (which are
the people responsible for a major part of the DIKU contribution to the TinyOS repository). The new bootloader is
a low-speed version of the one used at DIKU and uses the RS-232 port instead of the USB port. With a Background
Debug Module this new bootloader was installed on all of the MC13192SARD devices.

Programming through the RS-232 port is done with the Developer’s Serial Bootloader program [10]. Since
the EVB13192 has not been fully integrated with TinyOS yet, the usual

> make <platform> install,<id> <programmer>,<location>

command is not supported. In order to change the value of the system variable TOS_LOCAL_ADDRESS after compi-
lation, the script

> set-mote-id <id>

located at contrib/diku/evb13192/tools/scriptsmust be used.8 The new executable is called app.s19.<id>
and resides in the <application>/build/evb13192 directory. The executable file can then be uploaded with the
command:9

> hc08s.exe <com-port-number> <com-speed> <file>

2.1.3 Communicating over RS-232

As mentioned above the EVB13192 is equipped with both a RS-232 port and a USB port, but because the USB
connection can serve as a power supply as well, all work at DIKU has been done under the assumption that this
port would be the preferred communications port.

The former HPLUART0 module, located in the contrib/diku/evb13192/tos/platform/hcs08 directory, was the
primary UART communication module and resided at the lowest level, such that all other applications, in need of
UART communication, were build on top of this. This module was connected directly to the USB port via the SCI2
module. Since the RS-232 port is connected via the SCI1 module, the most consistent way to implement RS-232
connectivity is to create two new modules, HPLUART1 and HPLUART2, where the HPLUART2 module is simply the
old HPLUART0 module renamed and the HPLUART1 module has had all communication diverted to the SCI1 module
instead of the SCI2 module.

Thus it becomes possible to communicate with the RS-232 port on the MC13192SARD by using the HPLUART1
module and to communicate with both the USB and RS-232 port simultaneously on the EVB13192.

8The default value for TOS_LOCAL_ADDRESS is 1.
9The execution of this command must be combined with a reset of the MC13192SARD. The sequential order of this process can vary from

time to time, and usual several retries are necessary.

page 8

2.1.4 Reading from Accelerometers
According to the MC13192SARD schematics [1] the dual-axis accelerometer’s x and y-axis are connected to
the two ADC ports AD0 and AD1 respectively, and the single-axis accelerometer (which becomes the z-axis) is
connected to port AD7 on the ADC. Since all values are with respect to the common ground, all measurements
become absolute values and sampling from the two accelerometers hence can be done simply by reading the
values of the three ADC ports. The three modules XaxisM, YaxisM and ZaxisM do exactly this.

The readings are, however, neither in volts nor in m/s2 but some arbitary 10-bit value taken from a linear voltage-
to-value conversion table inside the ADC. These values must subsequently be transformed into measuring units
in order to get an absolute acceleration. Only the raw ADC values are supplied by the modules, however, and
the user is required to perform a calibration of these readings before an actual acceleration can be obtained.10 To
use the accelerometers one only needs to insert the line SENSORBOARD=accelerometer in the makefile for the
application. Each of the above modules provides the interface ADC and can be included as any regular TinyOS
component in any combination. Sampling is done asynchronously with a call to the command

call ADC.getData();

and the measurement is returned by the event

async event ADC.dataReady(uint16_t data)

Notice that even though the ADC only has 10-bits of accuracy, the measurement is stored as a 16-bit value. If
performance is an issue, data transmission can be reduced by only regarding the lower 10-bits of each measurement
as actual data.

2.1.5 Communicating with MicaZ
Since a TOSMsg compatible radiostack for the EVB13192 is still in beta test, the current stable radio stack is
the SimpleMacM module. This component is capable of receiving messages that have been transmitted with the
Crossbow MicaZ radio [7], but not the other way around. Since the messages used by the SimpleMacM module are
not following the IEEE 802.15.4 standard and only contain pure data, i.e. no headers of any kind, these messages
are automatically discarded by the MicaZ radio. This also means that all transmitted messages have no destination
address and all received messages must be checked since the module in effect works in promiscuous mode.

Whether or not it is possible for the SimpleMacM module to achieve full compatibility with the MicaZ mote, by
inserting the appropriate TinyOS headers, remains to be seen. Since a native TinyOS radiostack is well under way
we did not pursue this issue any further.

On the flip side it is possible to set the radio’s communication channel with the

call SimpleMacM.setChannel(<channel>);

command (where the <channel> ranges from 0-15 and corresponds to the ZigBee channels 11-26 respectively)
which is not as easily done on the MicaZ mote since this has to be done at compile time.

2.2 Future Work
In order to perform time synchronization in a wireless sensor network it is essential to have two-way communi-
cation, since sensor motes transmitting data must be able to receive synchronization messages as well. Since the
SimpleMacM module is capable of receiving messages from the MicaZ motes, it is possible to develop a heteroge-
nous data collection architecture, by using a SARD mote as gateway. However, it will not be possible to time
synchronize the MicaZ motes with the SARD gateway. It is thus important to establish full duplex communication
between the SARD motes and other ZigBee complaint motes such as the MicaZ. Either by making the appropriate
modifications to the SimpleMacM module or by completing the new native TinyOS radiostack.

10Since all analog accelerometers have a characteristic signal response, a universal calibration would be useless. And, as later experiments
will show, the signal response is highly dependent of the supplied voltage.

page 9

2.3 Summary
With the TinyOS contribution library from DIKU and the new bootloader it is possible to compile and upload
TinyOS programs to the MC13192SARD. With the alterations made to the UART component, communication
over the RS-232 port is possible and all the test programs that uses the UART for communication now works
on the MC13192SARD. With the new accelerometer modules it is possible to sample meassurements from the
accelerometers and use the measurements directly in TinyOS. In effect this makes the MC13192SARD device as
TinyOS compatible as the EVB13192.

page 10

3 Acceleration
The ability to use simple observations of velocity to deduce a position is known as “dead reckoning” and has
been used by sailors since the early Middle Age. By throwing wooden objects overboard and counting how many
seconds it took them to fall behind, navigators had a simple but efficient tool to estimate the traveled distance. The
connection between acceleration and velocity and position was however first quantified with the publication of
“Philosophiae Naturalis Principia Mathematica” by Sir Isaac Newton in 1687, and Newton’s equations of motions
have since then become the basic foundation for all common11 motion calculations ranging from designing marry-
go-arounds to launching rockets to Mars.

Using Newton’s equations of motion on acceleration data gathered from people in motion, with the purpose of
obtaining a position, however, has not been possible until recently when such measurement devices became small
enough for a person to carry. With the advent of Micro-Electro-Mechanical Systems (MEMS) accelerometers,
personal navigation systems based on “dead reckoning” made it possible to measure the position of the body as a
whole. The next step would then be to measure the position of individual body parts.

The knowledge of the positions of individual body parts during a course of actions would be useful for athletes in
order to improve their performances. A runner would be able to know the exact length and duration of each step
instead of just an averaged value. Gymnasts would have direct access to the three-dimensional movement of their
body without the need to resort to guessing from watching two-dimensional video recordings.

In order to put accelerometers on athletes it is necessary to understand the behavior of these devices and especially
their drift. The purpose of this part of the project is to evaluate the accelerometers on the Freescale MC13192SARD
and the Crossbow MicaZ, specifically with the goal of obtaining a position from acceleration measurements.

Section 3.1 describes work related to accelerometers and Personal Navigation Systems and Section 3.2 discusses
the transformations between different reference frames. Section 3.3 presents the accelerometers used in this ex-
periment and Section 3.4 gives an overview of the TinyOS applications developed to evaluate the two different
platforms. Last Section 3.5 contains an analysis of the experimental results obtained and Section 3.7 summarizes
this part of the project.

3.1 Related Work
The use of “dead reckoning” for Personal Navigation Systems has been done by [11] and [12]. In [11] the use
of a sophisticated measurement device including GPS, gyroscopes and compass were used in conjunction with
map-matching in order to provide an indoor navigational system. By matching the measured position with known
physical viable positions the accuracy was improved. The need for a 3D-map model makes the usability limited,
however. [12] uses an estimate of the step length together with directional measurements (compass and gyroscopes)
to deduce a position with an accuracy of 2-20 m. Their method is prone to errors on the step length estimation
which is deduced by the magnitude of the vertical acceleration. Since the tilt of the measuring equipment was not
taken into account the vertical acceleration was ill-defined.

The measurement of accelerometers’ drift and noise has been done extensively for stationary accelerometers by
[13]. The error of the position achieved by integrating the acceleration twice was calculated and measured for
several factors such as noise, sampling rate and time and it was found to grow as the square of time. This work did
not encompass moving accelerometers, however.

3.2 Reference Frames
In order to understand the samples measured by the accelerometers it is important to understand in respect to
what this acceleration is measured. When one performs a measurement, e.g. measuring the speed of a car driving
by with a laser beam, this speed is measured relative to the measuring device. Since such devices usually are
stationary this reference frame is called the laboratory reference frame (or sometimes the geocentric reference
frame). If, however, the measurement device is not stationary all measurements are said to be taken relative to the
local reference frame. In order to convert these measurements to the laboratory reference frame it is necessary to
perform a reference frame transformation.

11Where common refers to the non-relativistic and non-quantum mechanical regime.

page 11

According to the equivalence principle of mechanics [14], measuring an acceleration of a reference frame is equiva-
lent to measuring an opposite gravitational acceleration inside the said frame. Since the acceleration measurements
in these experiments are taken with respect to an accelerated reference frame, the accelerometers are actually mea-
suring the gravitational acceleration mentioned above. Because this corresponds to an opposite acceleration of the
reference frame, the actual acceleration as seen from the laboratory reference frame can be deduced by simply
changing the sign of the acceleration. This is however only true for accelerated reference frames without rotation.

If the accelerated reference frame is rotating as well, the transformation is not quite as simple. One must then
perform a rotational transformation of the acceleration as well, in order to measure the acceleration relative to the
laboratory reference frame. This, however, requires that the rotation vector of the accelerating reference frame is
known. Since this information was not available to us due to lack of gyroscopes, all measurements hence forward
are all with respect to the local reference frame.

One transformation can, however, be done without the use of gyroscopes, although it will be a purely cosmetic one.
By using the Earth’s gravitational acceleration, which can be measured when the accelerometers are stationary, it is
possible to use this vector to rotate the local reference frame so the z-axes from both reference frames are aligned.

3.3 Hardware
The three accelerometers used were the Analog Devices ADXL202E, Freescale MMA1260D and Freescale
MMA6261Q with the ADXL202E being mounted on the Crossbow MTS310CA sensor board.

Analog Devices ADXL202E

This dual-axis accelerometer has a range of ±2 g on both axes. It has a noise density and sensitivity of 200 µg
√

Hz
and 167 mV/g respectively. Also, the temperature drift is listed to be ±0.5% [15].

Freescale MMA1260D
This is a single-axis accelerometer with a range of ±1.5 g. The noise density and sensitivity are listed as 500
µg
√

Hz and 1200 mV/g respectively, which makes it a more sensitive accelerometer than the previous one but with
lesser accuracy. This accelerometer has, however, built-in circuitry to compensate for temperature drift [6].

Freescale MMA6261Q
This is a dual-axis accelerometer with a range of ±1.5 g for each axis. The noise density and sensitivity are listed
as 300 µg

√
Hz and 800 mV/g respectively, which puts it between the two previous accelerometers with regard to

noise and sensitivity. This accelerometer also has built-in circuitry to compensate for temperature drift [5].

3.4 Application
In order to sample measurements from the accelerometers and have them stored on a PC, three applications were
used: Transmit, Gateway and Xlisten. Transmit and Gateway were developed in TinyOS while Xlisten is a
modified version of Crossbows logger program. A reference to the source code for all three programs can be found
in Appendix A.

3.4.1 Sampling rate
Since this particular type of WSN contains several layers of hardware abstractions, e.g. sensor motes, gateway,
and PC, it is important to look at the limiting factors in each layer in order to achieve optimal performance. This
will, in effect, determine a maximum sampling rate for each layer.

Designating the sampling rate for the actual measurements to be at the sensor level, the measurement transmission
rate over the radio to be at the communications level and the measurement transmission rate between the gateway
and the PC to be at the network level, an estimate of the overall limiting factor would be the network level. Because
the transmission speed of the UART12 is 38.4 kbps and the radio is 250 kbps, a standard TinyOS message13 can

12In its current configuration the SARD UART has a maximum transmission speed of 38.4 kbps although it might be possible to increase
this to 115.2 kbps.

13The standard size of a TinyOS message is 29 bytes.

page 12

be transmitted in 6 ms and 0.9 ms respectively (disregarding overhead). In comparison the ADC can be sampled
every 14 µs.

Depending on the header size and the number of axes measured, a typical TinyOS packet payload can contain 3
and 4 samples for the SARD and MicaZ respectively. Since the transmission time for a packet payload is at least
6 ms at the network level, the maximum theoretical number of samples transmitted within a second would be 498
and 664 respectively. Because the transmission speed at the communication level is higher than at the network
level it is reasonable to assume that the communication level can sustain a similar sampling rate.

At the sensor level the maximum sampling rate would depend on the number of sensor motes present and in contest
of the communication level. In a multi-mote environment the overall sampling rate should be divided among the
motes, since they all share the same communication level.

Since overhead and busy channels have not been included in the above discussion it is reasonable to believe that
the 498 Hz and 664 Hz sampling rate should be regarded as a theoretical upper bound and will not be obtainable
in reality.

3.4.2 Transmit

This program resides on the motes carrying accelerometers and samples each measurement when a timer is fired.
The timer is controlled by a predefined sampling rate and each axis is sampled one at a time. The result is stored in
a buffer together with a timestamp, which is the lowest 16-bit of the internal counter. On the Freescale motes this
corresponds roughly to one count each millisecond. When the buffer is full the data is copied to the radio packet
which also contains the address of the mote and a timestamp of when the packet was sent. This timestamp is the
full 32-bit counter though, and if the sampling rate is high enough to avoid overrun of the measurement timestamp
the upper 16-bit can be used to restore a full 32-bit timestamp for each measurement. The sampling rate is set by
the compiler define

#define SAMPLING_RATE <number of milliseconds between each sampling>

and is the actual time between each sampling on each mote. With a single SARD mote this can be as low as 5 ms
which is quite far from the theoretical 2 ms.

The packet structures for the above mentioned program can be seen in Table 1 and Table 2 for the SARD and
MicaZ mote respectively, and both have been designed specifically for this application.

Byte offset Data
0 mote number
1-4 32-bit packet timestamp
5-6 1st x-axis measurement
7-8 1st y-axis measurement
9-10 1st z-axis measurement
11-12 1st 16-bit measurement timestamp
...
21-22 3rd x-axis measurement
23-24 3rd y-axis measurement
25-26 3rd z-axis measurement
27-28 3rd 16-bit measurement timestamp

Table 1: SARD payload structure

3.4.3 Gateway

This program resides on the mote connected to the PC, and basically dumps all received radio packets to the UART,
similar to the standard TinyOS gateway program, TOSBase. Because of some communications incompatibilities

page 13

Byte offset Data
0 mote number
1-4 32-bit packet timestamp
5-6 1st x-axis measurement
7-8 1st y-axis measurement
9-10 1st 16-bit measurement timestamp
...
23-24 4th x-axis measurement
25-26 4th y-axis measurement
27-28 4th 16-bit measurement timestamp

Table 2: MicaZ payload structure

between the MicaZ and SARD and since it is desirable to have one gateway capable of receiving packets from both,
the Gateway program was written almost from scratch and only runs on the Freescale platform. Since Gateway
eventually needs to do time synchronization, a high level of control is desired which makes TOSBase unsuitable.

The program consists of one write buffer and one queue buffer. When a packet is received and the UART is not
engaged in communication the received packet buffer becomes the new write buffer and vice versa by swapping
pointers, and the program begins to transmit the write buffer over the UART connection. If however the UART is in
use, the packet buffer is swapped with the queue buffer and once the write buffer has been completely transmitted,
the write buffer is swapped with the queue buffer and subsequently transmitted over the UART connection. If both
the write buffer and the queue buffer are in use the packet is dropped. One could add more queue buffers, but for
this project a high sampling rate is desired which means that packets will be arriving at a constant rate. Since the
UART connection is the bottleneck of the system, once the sampling rate exceeds the UART transmission rate no
amount of queues will prevent packet drops. In a burst environment, however, a higher number of queue buffers
would be advantageous.

3.4.4 Xlisten

The Xlisten program is one of the standard TinyOS programs to log mote data sent over the UART or ethernet.
The program was modified to communicate with the Gateway program and print the accelerometer data packets in
the correct format.

The program can be started with the following command:

> ./xlisten.exe -j -s=com<number>

3.5 Evaluation
The evaluation of the accelerometers has been divided into five subsections. Subsection 3.5.1 contains the cali-
bration data for all the accelerometers. Subsection 3.5.2 studies the drift measured by a stationary accelerometer.
Subsection 3.5.3 examines the impact of the power supply’s voltage on the acceleration measurements. In subsec-
tion 3.5.4 the acceleration from a walking person is measured and finally in subsection 3.5.5 the acceleration from
a purely translatorical movement is measured.

3.5.1 Calibration

The first and foremost thing one must do in order to use the accelerometers to measure an absolute14 acceleration,
is to convert and scale the readings from the ADC into proper measuring units. Since the voltage response from the
accelerometers is linear15 with respect to the measured acceleration, a straight line can be fitted to known reference
points and the absolute acceleration can be deduced by the linear relation:

14Since we want to calculate a physical length a relative acceleration is unsuitable.
15According to the specifications this holds for most of the devices measurement range.

page 14

(ADC value) = a× (acceleration measured in < m/s2 >) + b

As mentioned in the Crossbow documentation [9], the simplest way to determine a and b is by using the gravita-
tional acceleration as a point of reference. This is accomplished by first measuring the two extreme values each
axis senses when it is pointed either vertical up or down. Since the accelerometers have a linear response, these
two extremes would be equal to g and -g respectively and the spanned interval would be of the magnitude 2g.
Second, by measuring the acceleration the axis senses when it is oriented horizontal, one also learns the value
corresponding to 0g.

The calibrations made were done with g = (9.81258± 0.00005) m/s2 which were obtained from the National
Physics Laboratory.16 Hence all values forward will be in SI units.17

The raw accelerometer measurements were obtained by attaching each mote (one at a time) to a spirit level which
was then used to align each axis parallel with the gravitational acceleration. Each extreme was measured between
one and two thousand times and the median were used for the calibration since the median is more robust to sudden
spikes and variations than a simple mean. Table 3 and Table 4 shows the calibration data and the RMS error for
the Freescale motes and Crossbow sensor boards respectively. Figure 3 show an example of an actual calibration
curve for Freescale mote 6. A reference to the raw data files can be found in Appendix B.

mote 5 mote 6 mote 7 mote 8
median RMS median RMS median RMS median RMS

x up 255 1.4 x up 239 1.9 x up 220 1.4 x up 233 1.7
x hor. 501 3.2 x hor. 492 2.7 x hor. 460 7.1 x hor. 490 4.6
x down 747 1.3 x down 746 1.7 x down 713 1.4 x down 745 1.4
y up 248 1.9 y up 271 2.1 y up 255 2.0 y up 263 1.7
y hor. 494 2.9 y hor. 513 2.5 y hor. 499 2.9 y hor. 499 4.1
y down 741 1.8 y down 755 2.1 y down 747 2.0 y down 739 1.7
z up 239 1.0 z up 226 1.2 z up 240 1.2 z up 241 1.2
z hor. 483 4.7 z hor. 474 1.5 z hor. 487 5.7 Z hor. 485 3.0
z down 728 1.1 z down 723 1.1 z down 732 1.2 z down 732 1.2

Table 3: Calibration data for Freescale motes

board 1 board 2 board 3 board 4
median RMS median RMS median RMS median RMS

x up 413 0.4 x up 405 0.4 x up 464 0.5 x up 447 0.7
x hor. 467 0.5 x hor. 455 1.0 x hor. 513 4.1 x hor. 502 1.4
x down 524 0.1 x down 502 0.5 x down 564 0.5 x down 558 0.6
y up 436 0.6 y up 481 0.6 y up 466 0.9 y up 476 0.7
y hor. 492 1.4 y hor. 532 1.5 y hor. 519 1.7 y hor. 532 0.7
y down 549 0.5 y down 583 0.5 y down 570 0.5 y down 588 0.3

Table 4: Calibration data for Crossbow sensor boards

It can be seen from Table 3 and Table 4 that the measuring range of [−g;g] is of the order of 500 and 100 ADC
units respectively for the Freescale and Crossbow motes. This results in a resolution of 0.0393 m

s2<ADC units> and
0.196 m

s2<ADC units> respectively.

There are however several problems with this calibration method. First of all, it is based on the assumption that
all three accelerometer axes have been perfectly aligned with the gravitational acceleration. If this is not the case
the measured value will be smaller than the actual |g| since only a projection of the gravitational acceleration
is measured, and, subsequently, all absolute accelerations will thus be larger than their real values. Second, the
calibration is only based on three reference points spanning an interval of [−g;g], hence one should not expect the
calibration to be valid far from this interval.

16By using the formula at http://www.npl.co.uk/mass/faqs/gravity.html with the latitude 52.211048◦ and height 24 m above sea level. These
values were taken for the William Gates building with the help of Google Earth, http://earth.google.com.

17Système International d’Unités (International System of Units), http://www.bipm.fr/en/si/

page 15

 100

 200

 300

 400

 500

 600

 700

 800

 900

-15 -10 -5 0 5 10 15

A
D
C

u
n
i
t
s

m/s^2

Calibration for Freescale mote 6

f(x)

’calib.txt’

Figure 3: Calibration curve

A more precise calibration could be achieved by inducing a constant acceleration to the sensors of different magni-
tude so more reference points can be collected. This could be done by placing the sensors on the rim of a rotating
disk, and by varying the rotational speed different magnitudes of acceleration can be measured.

3.5.2 Zero-motion Drift
The zero-motion drift is the change of acceleration measured from a stationary mote. This kind of drift usually
manifests itself over a long period of time and can primarily be attributed to temperature changes. Since the
accelerometer’s temperature rises after prolonged use it is expected that the measured acceleration would change
for a stationary mote, and if one knew the exact temperature, it would be possible to compensate for this drift.18

A measurement of this zero-motion drift was made for three of the Freescale motes and one of the Crossbow sensor
boards. First, one Freescale mote was set to run for five hours uninterrupted. For each axis the median of the first
1000 measurements were used as reference value in calculating the ratio for all the measurements.

Ratio: ameasured
are f erence

The CDF plot of the ratio for each axis can be seen in Figure 4. The experiment was then repeated with three
Freescale motes (this time only for 100 minutes though). The plots can be seen in Figure 5, Figure 6, and Figure 7.

The figures show that over 90% of all the measurements lie between ±1% of the reference value. For the five hour
long measurement data, a straight line was fitted to each axis and the RMS error was calculated to be 1.29, 1.89
and 1.11 for the x,y and z-axis respectively (all in ADC units).

As it can be seen in Figure 8 the range of acceleration values spanned by the three lines are less than that of the
RMS error for each axis respectively. Since the magnitude of this apparent drift is smaller than the precision of
the measurements it is not possible to measure any drift in the Freescale accelerometers as expected, since the
Freescale accelerometers have temperature correction circuitry.

Similar experiments were conducted with one Crossbow sensor boards and the corresponding ratio CDF plots for
the five hour long experiment can be seen in Figure 9. As seen with the Freescale accelerometers, over 90% of the
measurements are within ±1% of the reference value. In fact, the noise is so low on the MicaZ accelerometer that
one can say over 90% of the measurements are within ±0.4% of the reference value.

18This only applies for the accelerometers on the MicaZ motes however, since the accelerometers on the SARD motes have built-in circuitry
to compensate for temperature drift.

page 16

0.97 0.98 0.99 1 1.01 1.02 1.03

0.2

0.4

0.6

0.8

1

x−axis
F(

x)

Empirical CDF − mote, 5 hour

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
0

0.2

0.4

0.6

0.8

1

y−axis

F(
x)

0.98 0.99 1 1.01 1.02 1.03
0

0.2

0.4

0.6

0.8

1

z−axis

F(
x)

Figure 4: Ratio CDF plot of 5 hours measurements. Freescale accelerometer.

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

0.2

0.4

0.6

0.8

1

x−axis

F(
x)

Empirical CDF − mote 5

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

0.2

0.4

0.6

0.8

1

y−axis

F(
x)

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015

0.2

0.4

0.6

0.8

1

z−axis

F(
x)

Figure 5: Ratio CDF plot of mote 5, 100 minutes. Freescale accelerometer.

page 17

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

0.2

0.4

0.6

0.8

1

x−axis
F(

x)

Empirical CDF − mote 6

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

0.2

0.4

0.6

0.8

1

y−axis

F(
x)

0.985 0.99 0.995 1 1.005 1.01 1.015

0.2

0.4

0.6

0.8

1

z−axis

F(
x)

Figure 6: Ratio CDF plot of mote 6, 100 minutes. Freescale accelerometer.

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

0.2

0.4

0.6

0.8

1

x−axis

F(
x)

Empirical CDF − mote 7

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

0.2

0.4

0.6

0.8

1

y−axis

F(
x)

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025

0.2

0.4

0.6

0.8

1

z−axis

F(
x)

Figure 7: Ratio CDF plot of mote 7, 100 minutes. Freescale accelerometer.

page 18

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time / seconds

A
cc

el
er

at
io

n
/ A

D
C

 u
ni

ts
x−axis
y−axis
z−axis

Figure 8: Three straight lines fitted to the 5 hour experiment data. All lines have been moved to the
common origin to emphasize the drift. The RMS errors are 1.29, 1.89 and 1.11 for the x,y and z-axis
respectively.

0.99 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01
0

0.2

0.4

0.6

0.8

1

x−axis

F(
x)

Empirical CDF

0.99 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01
0

0.2

0.4

0.6

0.8

1

y−axis

F(
x)

Empirical CDF

Figure 9: Ratio CDF plot of 5 hours measuremements. MicaZ sensorboard.

page 19

However, if a line is fitted to the measured data, as seen in Figure 10, the drift is higher than that observed with
the Freescale accelerometer. Calculating the RMS error for the two fits one get 0.4 and 0.3 for the x and y-axis
respectively. Since the error of the fit for both axes is lower than that of the observed drift (measured acceleration
interval) the lines do indeed represent measured drift from the accelerometers. This is consistent with the expected
drift from temperature and in the absence of correction circuitry this must be taken into account when actual
measurements are performed.

0 0.5 1 1.5 2 2.5

x 107

−2

−1.5

−1

−0.5

0

0.5

Time / milliseconds

A
cc

el
er

at
io

n
/ A

D
C

 u
ni

ts

x−axis
y−axis

Figure 10: Two straight lines fitted to the 5 hour experiment data. All lines have been moved to
the common origin to emphasize the drift. The RMS errors are 0.40 and 0.26 for the x and y-axis
respectively. MicaZ sensor board.

A reference to the raw data can be found in Appendix B.

3.5.3 Power

Another interesting source of error was found in the power supply. Since the accelerometers on the Freescale
motes require a larger amount of voltage than the rest of the mote in order to function properly, it is possible to
continue sampling even though the output from the accelerometers cannot be trusted. This can be seen in Figure
11 where the left part of the plot is taken from a mote with a battery close to depletion, and the right part is taken
from a mote with a new battery. When calculating the RMS deviation from the mean value one gets 12.6 m/s2 and
2.0 m/s2 for the left and right part respectively. Although it appears that only the noise increases and the mean
remains constant when the battery is nearing depletion, Figure 12 shows this not to be the case and that it is vital
to use batteries with sufficient voltage. It should be noted that neither motes where moving during the collection
of data. A reference to the data files can be found in Appendix B.

According to the Freescale accelerometer documentation [5] and [6] the devices stop functioning properly when
the supplied voltage drops below 2.7V and 4.75V for the dual-axis and single-axis accelerometer respectively.
Hence if one knew the power supply voltage (and thus the voltage supplied to the accelerometers) it would be
possible to determine when the measurements were invalid. However, it is undetermined if the noise observed in
Figure 11 increases as the voltage approaches the cut-off voltage or if it only occurs after this point.

It remains to be seen if the accelerometers on the MicaZ motes have the same kind of behavior.

page 20

20 25 30 35 40 45 50 55 60 65
495

500

505

510

515

520

525

530

535

540

545

Time / Seconds

A
cc

el
er

at
io

n
/ A

D
C

 u
ni

ts

Noise from low power voltage

Figure 11: Comparison between a Freescale mote with low power (left) and full power (right).

0 5000 10000 15000
200

400

600

800

1000

x−axis

0 5000 10000 15000
200

400

600

800

1000

A
cc

el
er

at
io

n
/ A

D
C

 u
ni

ts

y−axis

0 5000 10000 15000
200

400

600

800

1000

Time / Seconds

z−axis

Figure 12: Freescale mote running out of power.

page 21

3.5.4 Walking

After these preliminary experiments we measure the actual acceleration of a person walking. A Freescale mote was
mounted inside a plastic case and the case was attached to the chest of the test subject. The most simple experiment
would be to walk a straight line. Two tracks were set up by sticking adhesive tape on the floor perpendicular to the
walking direction as seen in Figure 13 and Figure 14. The first track was 2.5 m long and the adhesive tape were
placed with 50 cm intervals. The second track were 15 m long and had adhesive tape placed with 60 cm intervals.
The purpose of the adhesive tape was to ensure a fixed step length and hence the two tracks were 5 and 25 steps
long respectively.

Figure 13: Short track. 2.5 m long and with stickers every 50 cm.

Several tests were conducted on the two tracks and Figure 15 and Figure 16 show some typical measurements.
Before and after each walk several seconds of stationary measurements were sampled in order to establish a clear
point of reference for the orientation of the mote. This data was subsequently used to rotate the local reference
frame as mentioned in Section 3.2. The measurements were also filtered for any corrupted data, by enforcing that
time is moving forward and by removing unrealistic acceleration e.g. several g’s.19

Figure 15 is a plot of measurement data taken from the short track and by looking at the z-axis it is possible to count
the number of steps by counting the number of large peaks. The increased acceleration is caused by the fictitious
force (measured by the mote) being directed towards the Earth’s gravitational field (as explained in Section 3.2).
It can be seen from the figure that exactly five steps were taken, which corresponds to the number of strips of
adhesive tape on the track. By calculating the time difference between each peak it is also possible to deduce the
duration of each step. By defining the middle of each step to be the acceleration turning point when the force
applied to the mote is exactly equal to and opposite the gravitational acceleration. Table 5 shows a summary of
each step duration.

No. Middle <s> Duration <s>
1 3.780 -
2 4.440 0.660
3 5.069 0.629
4 5.688 0.619
5 6.277 0.589

Table 5: Step duration

19These defects were probably caused by transmissions errors, either between the radios or the serial connection, since no error control were
present.

page 22

Figure 14: Long track. 15 m long and with stickers every 60 cm.

page 23

0 1 2 3 4 5 6 7 8 9
−4

−2

0

2

Time / Seconds

A
cc

el
er

at
io

n
/ m

/s
2

x−axis

0 1 2 3 4 5 6 7 8 9

0

1

2

3

Time / Seconds

A
cc

el
er

at
io

n
/ m

/s
2

y−axis

0 1 2 3 4 5 6 7 8 9

6

8

10

12

14

16

Time / Seconds

A
cc

el
er

at
io

n
/ m

/s
2

z−axis

Figure 15: Walking experiment on the short track.

0 2 4 6 8 10 12 14 16 18 20

−4

−2

0

2

4

Time / Seconds

A
cc

el
er

at
io

n
/ m

/s
2

x−axis

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

4

6

8

Time / Seconds

A
cc

el
er

at
io

n
/ m

/s
2

y−axis

0 2 4 6 8 10 12 14 16 18 20

5

10

15

Time / Seconds

A
cc

el
er

at
io

n
/ m

/s
2

z−axis

Figure 16: Walking experiment on the long track.

page 24

Unfortunately, besides the step duration it is not possible to deduce any quantitative information from the three
plots. Ideally, the x and y-axis should be integrated twice with regard to time, in order to get the velocity and
position as a function of time, which would be a plot of the walked distance and combined with the step duration
each step length could be deduced. However, disregarding drift20 the measurements for each axis should return
to their original values at the end of the experiment since the test subject was standing still before and after the
experiment. Since neither of the three axes have this behavior a simple integration would lead to a non-zero
velocity at the end of the experiment and thus resulting in an unbounded position. This fact is most obvious by
looking at the acceleration in the y-direction since it is easy to see that the majority of the acceleration is positive
and hence leading to a positive velocity at the end.

The experiment leading to the measurements in Figure 16 was conducted on the large track and was carried out
in the same manner as the one on the short. The figure shows great resemblance with the former, especially the
z-axis, which again enables one to count the actual number of steps taken and calculating the duration of each step
which has been summarized in table 6. Although the acceleration for all three axes return to their origin after the
experiment is completed, the acceleration in the y-direction has the same problem as in the former experiment,
since the overall acceleration is clearly positive which makes it futile to deduce a position from the acceleration.

No. Middle <s> Duration <s>
1 2.572 -
2 3.236 0.664
3 3.916 0.680
4 4.485 0.569
5 5.109 0.624
6 5.673 0.564
7 6.272 0.599
8 6.841 0.569
9 7.445 0.604

10 7.898 0.453
11 8.587 0.689
12 9.161 0.574
13 9.710 0.549
14 10.26 0.55
15 10.84 0.58
16 11.37 0.53
17 11.96 0.59
18 12.49 0.53
19 13.08 0.59
20 13.62 0.54
21 14.17 0.55
22 14.73 0.56
23 15.31 0.58
24 15.88 0.57
25 16.49 0.61

Table 6: Step duration

This trend of not being able to recover the actual events from the acceleration measurements (besides the step
duration and count) is present in all the gathered measurements collected from walking with the accelerometers.
Several different positions and motes were tried but all yielded the same result. A probable cause for this could
be the rotation of the mote itself, hence leading to the equations of motion for the mote, not only including ac-
celeration, but also rotation, since the coordinate system, which the accelerations are measured with respect to,
itself is rotating. This sounds plausible since other Personal Navigation Systems such as the one mentioned in
article [12] are equipped with gyroscopes to compensate for rotation of the reference coordinate system during
movement. This would explain why the acceleration measured for each axis did not return to the original value

20Since the duration of the experiment is of the order of seconds, it is reasonable to disregard drift.

page 25

once the experiment was over since the reference point for each axis had been changed. This mixing of axes could
also explain the cumulative velocity measured along the y-direction, since the oscillations on the mote could cause
the overall buildup of acceleration along this axis (e.g. positive acceleration was mostly measured by the y-axis
while negative acceleration was mostly measured by the x-axis).

Another possible cause could be interference on the ADC on the mote. If there was any cross-talk between the
three channels on the ADC, any measurement in one axis would be tainted by values from the other, which could
explain the cumulative velocity buildup.

A reference to the raw data files can be found in Appendix B.

3.5.5 Elevator

In order to measure whether the effects of the mote’s rotational oscillations could account for the observed prob-
lems, the walking motion from the last experiment were transformed into a purely translatorical movement by
replacing the human test subject with an elevator car. Since the motion of the elevator car is restricted by vertical
tracks and controlled by an electrical engine, this would in effect give a repeatable environment with a close to per-
fect translatorical movement. The obvious downsides of this are the inability to automate the experiment process
and that the primary measuring axis would be skewed by gravity which could lead to boundary effects since the
measurements are being carried out at the boundary of the calibrated measuring interval.

The experiment was carried out at the public elevator at the William Gates Building which is two stories high. The
distance between each floor was measured to be 3.50±0.01 m. Four different kind of trips were carried out with
the elevator:

1. Moving from the ground floor directly to the second floor.

2. Moving from the second floor directly to the ground floor.

3. Moving from the ground floor to the first floor and from the first floor to the second floor (with the only
brake being the doors opening and closing on the first floor).

4. Moving from the second floor to the first floor and from the first floor to the ground floor (with the only
brake being the doors opening and closing on the first floor).

As with the other experiments the measurements were filtered for corrupted transmissions and the reference coor-
dinate system was rotated once to align the z-axis towards gravity. As an example the measurements of each axis
sampled in experiment 4 are plotted in Figure 17 (the other experiments showed similar results).

First and foremost, it can clearly be seen from the measurements sampled from the x and y-axis that the motion
indeed was translatorical since no acceleration can be measured in these two axes. Second, these two axes also
show that if there is any crosstalk between the ADC channels it must be of the same order of magnitude or less
than the background noise. Also, disregarding gravity, one can clearly see symmetry between the different peaks
on the z-axis which one would expect since the elevator car was stationary at the beginning and at the end of each
experiment. Since this is directly opposite of what was seen in Section 3.5.4 it seems reasonable to try to calculate
the velocity and position of the elevator car.

After subtracting g = 9.81258 m/s2 from the z-axis and filtering the measurements with a moving average, a
lowpass filter and a Savitzky-Golay21 filter (in that order), the acceleration data was integrated twice (with respect
to time) to yield the velocity and position as a function of time. These two functions can be seen in Figure 18.

It can clearly be seen that neither the velocity nor the position are bounded which seems odd as the symmetry in
the acceleration would suggest that. Since the shape of the velocity and position curves, although skewed, seem to
correspond to the behavior of the elevator, we suspect that the calibration of the accelerometers might be off and
that the measured acceleration are offset from the real acceleration.

page 26

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1
x−axis

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n
/ m

/s
2

y−axis

0 5 10 15 20 25 30 35
9

9.5

10

10.5

11
z−axis

Time / Seconds

Figure 17: Measurements from an elevator going from second to first to the ground floor.

This seems to be the case since when we shift the value of the gravitational acceleration that is subtracted from the
z-axis to g = 9.7942 m/s2 the plots of the velocity and position correspond to the theory as seen in Figure 19.

The two plateaus for the position correspond to -3.6 m and -7.2 m respectively and the maximum velocity is -1.0
m/s. This measured elevator car speed seems reasonable since typical speeds for elevator cars from this particular
firm are 0.5, 1.0, 1.6 and 2.5 m/s [16]. Similar results were obtained from the three other elevator experiments and
the values can be seen in Table 7. Values for g were chosen as to minimize the end velocity as much as possible.

Experiment g <m/s2> max. velocity < m/s > 1st < m > 2nd < m >
1 9.8019 1.0 - 6.9
2 9.8026 -1.0 - -7.1
3 9.7967 1.0 3.9 7.7
4 9.7942 -1.0 -3.6 -7.2

Table 7: Elevator experiments

With a new g = (9.800±0.005) m/s2 the travelled distance of the elevator car was estimated to be (7.2±0.5) m.
According to these experiments, performing an accurate calibration is of high importance since even when the
calibration is off by as much as 0.1 % the results can change from being useless to fairly accurate. However,
since the resolution of the Freescale accelerometer, when used in conjunction with the on-board ADC, is 0.0393

m
s2<ADCunits> with the general noise level being of the order of 1-2 ADC units, it is not possible to achieve the high
accuracy calibration that is required.

The problem described above is mainly caused by the movement being parallel to the gravitational acceleration

21This noise filter is better to preserve the area under the graph than a regular moving average. A mathematical definition can be found at
http://www.mathworks.com/access/helpdesk/help/toolbox/curvefit/ch_data8.html

page 27

0 5 10 15 20 25 30 35
−1.5

−1

−0.5

0

0.5

Time / seconds

V
el

oc
ity

 /
m

/s

Velocity

0 5 10 15 20 25 30 35
−15

−10

−5

0

5

Time / seconds

D
is

ta
nc

e
/ m

et
er

Position

Figure 18: Velocity and position of elevator car with g = 9.81258 m/s2.

0 5 10 15 20 25 30 35
−1.5

−1

−0.5

0

0.5

Time / seconds

V
el

oc
ity

 /
m

/s

Velocity

0 5 10 15 20 25 30 35
−8

−6

−4

−2

0

2

Time / seconds

D
is

ta
nc

e
/ m

et
er

s

Position

Figure 19: Velocity and position of elevator car with g = 9.7942 m/s2.

page 28

which must be removed in order to calculate the travelled distance. It remains to be seen if the axes orthogonal to
the Earth’s gravity field might be less sensitive to this calibration error.

In the light of the last two experiments we were discouraged to perform the same set of experiments with the
MicaZ sensorboards, since rotation would have the same negative effect on these devices and the five time lower
resolution would have a worse impact on the calibration and subsequently on the numerical integration.

A reference to the raw data files can be found in Appendix B.

3.6 Future Work
As seen by the huge differences in the results obtained from walking and driving the elevator, the need to com-
pensate for rotation of the accelerometers is of paramount importance. Without the assistance of gyroscopes to
adjust for these rotations of the local reference frame it is futile to use accelerometers to achieve a position from
the acceleration. For future work this integration of gyroscopes must be performed.

Also, the data collection programs are far from complete. The measurement packets could be optimized by ex-
ploiting the fact that the ADC only samples measurements with 10-bit accuracy although this is represented with
16-bit in TinyOS. By reclaiming this unused space it would be possible to include an entire measurement more
in each packet and hence increase the overall sampling rate. The gateway could also be made more robust for
transmission bursts by increasing the number of queueable packets before one is dropped.

The power level remains an issue as well, since a depleted battery renders the accelerometers useless. A work-
around for this problem could be to constantly monitor the noise level (the deviation from the current mean value)
locally at each sensor mote and sound an alarm if the noise rose above a certain threshold. This would however
effect the overall performance negatively. Another option would be to attach a voltmeter to each sensor mote,
and regularly read the voltage on the battery. This could be done with minimal additional hardware by using the
on-board ADC as a simple voltmeter although this would increase the power consumption.

The drift from a stationary accelerometer was measured, however, it remains to be seen if a moving accelerometer
has the same drift. This could be measured by moving the accelerometer in a known oscillating pattern and observe
deviations over time from this pattern (e.g. by mounting the mote on an electrical model train moving backworth
and forworth on a fixed track and subsequently measure the differences in the acceleration pattern).

Finally, as seen in Section 3.5.5, the measured accelerations were not precise enough to be used for position
estimation by numerical integration. Future experiments should be done with accelerometers with both a higher
sensitivity and a lower noise density than the ones used in this experiment. Preferably, the accelerometer should
be capable of measuring the gravitational acceleration with a precision of at least two orders of magnitude higher
than the desired precision on the position.

3.7 Summary
A set of TinyOS applications was developed to facilitate sampling of measurements and even with room for several
optimizations we achieved a system wide sampling rate of 200 Hz. Calibration measurements were collected for
the different accelerometers and an upper bound on the precision was found to be 0.0393 m/s2 and 0.196 m/s2 for
the SARD and MicaZ mote respectively. The zero-motion drift was measured on both the MicaZ mote as well as
the SARD mote and we found that only the MicaZ mote had detectable drift. We also found the power supply to
be a source of error if the voltage drops below a certain point.

Several experiments were performed by walking on a straight line carrying accelerometers and, although it was
possible to deduce the step duration and the number of steps taken, the experiment especially showed the effects
that rotations of the local reference frame can have on the acceleration measurements and the subsequent need for
gyroscopes to compensate for these rotations. This was even more clear in the last experiment where the rotation
factor had been removed by using an elevator car to ensure a translatorical movement. This experiment yielded,
however, another source for error namely the sensitivity of the calibration and that the given accelerometers lacked
the desired precision. With this taken into account it was possible to deduce the velocity and position of the elevator
car with 10% accuracy.

page 29

4 Time Synchronization
One of the key aspects of a WSN is the ability to observe the environment simultaneously from multiple sites. In
order to compare measurements collected from different motes a temporal ordering is often necessary. Especially
if several motes are monitoring the same event the collected data must be in temporal agreement.

Since the overall project goal is to monitor the performance of athletes with several wireless sensor motes placed
on different parts of the athlete’s body, it is essential to have a fine grained time ordering of the collected measure-
ments in order for the data to be compatible. This involves first and foremost a timestamping of all the collected
measurements. Nevertheless, since this has to be done at each and every mote in the WSN the clocks, from which
the timestamping originates, must be synchronized in order for the timestamps to be compatible.

The purpose of this part of the project is to investigate and implement a clock synchronization protocol in the data
collecting architecture developed in the previous chapter. Since there are several fundamental constraint differences
between regular computer networks and WSN, it should be emphasized that the protocol in question must honor
these constraints and be scalable in order to be suited for a WSN.

Section 4.1 describes work related to time synchronization in WSN. Section 4.2 analysis two different protocols
based on broadcasting and Section 4.3 discusses several implementation issues. Section 4.4 evaluates the accuracy
of the implemented time synchronization. Finally Section 4.5 describes different aspects future work might focus
on and Section 4.6 summarizes this chapter.

4.1 Related Work
The field of time synchronization for WSN have been thoroughly studied and much of the work has been summa-
rized by [17] and [18]. Particularly one of the paradigms studied is the usage of message broadcasts as a common
point of reference.

This technique was first theorized by [21] which also established an upper bound of (1 + 1
K)ε on the precision

attainable after K broadcasts, where ε is the time it takes to receive a broadcast message. Since the wireless
medium facilitates broadcasts, this approach is particularly well suited for WSN. Actual implementations based on
this work have been carried out by [20] and [19].

In [20] an internal synchronization of the network is performed by having a reference mote broadcast message
beacons. The receival times of these beacons are captured by each of the other motes and put in a local timetable.
By exchanging timetables with all the motes, each mote is capable of calculating an offset that minimizes the
overall RMS error of the local timetables. The drawback of this approach is the increased overhead caused by the
exchange of timetables among the motes, which has a quadratic increase in the number of participating motes.

This lack of scalability was improved by [19] which assumes that the transmission delay time between the reference
mote and each of the other motes is the same. By having the reference mote calculate the transmission time to one
particular mote and afterwards broadcast this delay to all the other motes, all motes within communication range
can be synchronized with a total of three messages transmitted. As will be shown later, this can be improved to a
total of two transmitted messages.

4.2 Protocols
The main target platform for this time synchronization is the collection of acceleration measurements from sensor
motes placed on athletes. Since a high sampling rate of the accelerometers is desired the time synchronization
protocol must be as light as possible in order not to decrease the overall performance.

The system we want to time synchronize consists of a logger program located on a PC, a gateway program connect-
ing the sensor motes with the PC and the actual application on the sensor motes. The data communication in this
setup is highly asymmetrical with the sensor motes transmitting data to the gateway which in turn transmits data
to the PC. The gateway is in one-hop communication range with all the motes. This also means that the gateway is
a common reference point suitable for the other motes to synchronize with. Since the gateway also is permanently
connected to the PC, this connection can be used to synchronize the gateway with the local time on the PC as well.

page 30

4.2.1 Time Beacon

If only time synchronization between the individual sensor motes is required e.g. there is no need to associate
each measurement with real time, a simple time beacon protocol can be used. Since all the motes are in direct
communication range with the gateway, a packet containing a timestamp broadcasted from the gateway will reach
all the sensor motes simultaneously if one disregards the propagation time of electromagnetic waves.22 Each sensor
mote can thus calculate an offset from the motes local time to the timestamp and by adding this offset to the local
time all the sensor motes will in effect be synchronized with each other.

This protocol does not account for drift and clock skew which means that at some point the local time on each
sensor mote will be unaligned again. This can be compensated for by transmitting another time beacon before
the drift and skew becomes significant. Since this protocol does not account for the transmission delay, it is not
possible to extend it to a multi-hop environment. Also, since the sensor motes are not synchronized with an
external source, it would not be possible to extend this protocol to encompass several gateways that are not in
communication range.

4.2.2 Reference Broadcast

To overcome the short comings of the time beacon protocol mentioned above it is necessary to perform an external
synchronization which in turn requires the knowledge of the transmission delay. In order for mote A to calculate
the most accurate transmission delay to mote B at least two packets and four timestamps are required:

• Mote A transmits a packet with the timestamp, t0, of the transmission time.

• Mote B timestamps the packet upon receival with the arrival time, t1.

• Mote B returns the packet to mote A, but timestamps the packet with the transmission time, t2, as well.

• Mote A timestamps the packet with the receival time, t3, and is now in possession of four timestamps.

• By calculating the difference t3 − t0 mote A has the Round-Trip-Time (RTT).

• By calculating the difference RT T − (t2 − t1) mote A has the total transmission time and by dividing with
2 mote A also has the average transmission time.

• The average transmission time combined with the timestamp t2 enables mote A to synchronize itself with
mote B.

This is known as Christian’s method [22]. In order for this algorithm to be effective it is necessary to do the
timestamping as close to the physical layer as possible or else the time difference t2 − t1 will be neglible.23

Since the radio transmission bandwidth is limited and mostly saturated with acceleration measurements it would
be infeasible to do a sensor mote-to-gateway RTT calculation for each and every mote. This approach would also
have the defect of not being scalable to larger networks.

Instead of calculating the exact RTT for each mote we use an approximation of the RTT as proposed in [19]. The
principle is called Reference Broadcast and is based on the same fact as the time beacon protocol that broadcasts
arrive close to simultaneously at all the sensor motes in communication range. By appointing a master mote to
initiate a RTT-calculation with the gateway (transmitted as a broadcast), the other motes can use the RTT-request
and reply to estimate the RTT. This approach is different than that proposed in [19] since both messages are
transmitted as broadcasts and hence each mote in the network is capable of calculating the RTT. Also, since the
message flow is highly asymmetrical, the gateway should have a lower reply latency than the sensor motes because
the former only receives messages while the latter transmit them.

22Since this is close to the speed of light traveling in the atmosphere, the time delay caused by propagation for motes placed within meters
of each other will be of the order of nanoseconds. Since this is several orders of magnitude smaller than the desired accuracy it is reasonable to
disregard this time delay.

23It should be noted that all timestamps are taken with respect to the local clock and are thus not directly compatible, however since the time
difference is only calculated with timestamps taken from the same mote e.g. both t2 and t1 are from mote b, the calculated time differences are
compatible with one another.

page 31

Figure 20: Overview of the Reference Broadcast Synchronization protocol.

The protocol is illustrated in Figure 20. The master mote initiates synchronization with the gateway by broadcasting
a synchronization request containing the local transmission time t0. This is symbolized by the two arrows on the
upper part. At time t2 the gateway broadcasts the reply containing t0, t1 and t2 (where t1 is the receival time of t0).
The master mote then has the complete information to perform a regular RTT calculation by using the algorithm
mentioned above. The slave mote(s) however cannot do the same calculation since the timestamps t0 and t3 are not
compatible since t3 is measured with a different clock than t0. Instead an estimate of the transmission time can be
calculated by assuming that t1 ≈ t1. The partial RTT is thus t3 − t1 and the transmission time from the gateway
to the slave mote can be calculated by:

Ttransmission = (t3 − t1) − (t2 − t1)

Since only the partial RTT is measured, it is not necessary to divide by 2 to obtain the transmission time.

This protocol scales well with larger networks and is extendable to multi-hop networks as well. It does not account
for clock drift and skew, but this can be compensated for, as mentioned in the previous section. One flaw with this
protocol, however, is the presence of a master mote, which is a single-point-of-failure. In order to overcome this
problem a rotation and/or an election scheme must be added to ensure fault-tolerance.

4.3 Implementation Issues
Since the current MAC-layer for the Freescale MC13192 has not been fully implemented in TinyOS24 yet, it
was not possible to implement MAC-layer timestamping of packages and thus the value (t2 − t1) could not be
measured since this this difference was neglible at the application layer given the current resolution of the clock.
Since t1 ≈ t2 only one timestamp was added to the synchronization reply instead of two.

In this simple implementation the master mote mentioned above was one of the sensor motes since these transmit
a constant flow of measurement packets. Since each measurement packet contains the transmission time, each
measurement packet can be used as a RTT-request packet. However, since a reply is required from the gateway it
would not be feasible to turn all the measurement packets into RTT-requests. It is, however, part of the TinyOS

24The current TinyOS radio stack is actually a wrapper around a Freescale proprietary MAC-layer and thus not easy to modify.

page 32

packet header to include the packet type, and by defining a new packet type that symbolizes a measurement
packet with a piggybacked RTT-request, time synchronization can be initiated without the need for any extra
packets. The RTT-reply cannot be piggybacked though since no transmissions from the gateway to the sensor
motes are necessary during data collection. This packet is unavoidable but fortunately it only needs to contain two
timestamps.

The gateway was synchronized with the PC in a similar manor except that the RTT-request was a completely
separate packet. Although it would be possible to use the piggy-bagged RTT-request from the master mote to
synchronize the gateway with the PC as well, it would not be optimal since only after the second synchronization
would the motes be synchronized with the PC.

With time synchronization embedded in the acceleration collection application, the application was modified to
enforce transmission windows to minimize packet collision. By dividing the time interval between each packet
transmission with the sensor motes and the gateway, and using the mote address to allocate time slots, the process
was self-configuring.

4.4 Evaluation
The evaluation of the time synchronization protocol has been divided in three sections. First the Round-Trip-Time
is measured in Section 4.4.1, second the drift is measured in Section 4.4.2 and finally the precision is measured in
Section 4.4.3. However, since the MicaZ motes were not able to receive messages transmitted by the SARD motes,
and thus unable to participate in the time synchronization, only the latter were used in the experiments.

4.4.1 Round-Trip-Time

In order to measure the calculated RTT at each mote over a period of time, a network consisting of four SARD
motes and one gateway were resynchronized every 600 ms. The time difference between the RTT-request and the
RTT-reply can be seen in Figure 21 and a reference to the data can be found in Appendix C.

As mentioned above since the slave motes only calculate a partial RTT (compared to the master mote’s RTT), the
slave motes should have a difference half of that of the master mote.

This explains the lower times for the slave motes compared to the master mote as seen in Figure 21 to a certain
degree. However, since these times are generally lower than half of that of the master mote this deviation is
probably caused by the RTT calculation being done at the application level and with only two timestamps instead
of four. It should be noted, however, that the three slave motes have an almost identical distribution of time
differences which means that the broadcast messages were indeed received almost simultaneously at the three
slave motes. This shows that the assumption in which the Reference Broadcast protocol was based upon25 is
indeed sound.

By looking at the variances between half the master mote’s RTT and the slave mote’s RTT one should not expect
the precision attained from this synchronization to be higher than 1-2 ms.

4.4.2 Clock Drift

The clock drift is the deviation observed with respect to some reference frame after a certain amount of time. By
synchronizing all the motes once and subsequently calculate the offset from some reference clock, the drift can be
measured. Two reference clocks were used: the PC clock and the master mote clock.

Since all packets are timestamped upon receival at the PC and the PC clock is used by the sensor motes to perform
the external synchronization, the offset between the PC and the sensor motes can be used as a measure of the
absolute drift of the sensor motes’ clocks. This difference between the PC and the sensor motes’ clocks can be
seen in Figure 22.

It can clearly be seen from the figure that the change of offset are almost identical for all four motes since they
all possess the same saw-tooth characteristic. Also, the order of magnitude is several times larger than that of the

25All broadcasted messages are received (almost) simultaneosly by neighboring motes.

page 33

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000
Master / mote 5

Offset / milliseconds

C
ou

nt

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000
Slave / mote 6

Offset / milliseconds

C
ou

nt

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000
Slave / mote 7

Offset / milliseconds

C
ou

nt

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000
Slave / mote 8

Offset / milliseconds

C
ou

nt

Figure 21: Histogram of 10,000 Round-Trip-Time calculations. The histogram for the master mote is
the full RTT while the ones for the slave motes are the partial RTT.

measured transmission time which can thus be disregarded. The cause of this systematic drift must be the lack of
precision of the PC clock, caused by the differences in process scheduling by the operating system on the PC.

By looking at the relative differences between the master sensor mote’s clock and the clocks on the other motes,
it is possible to remove the PC’s clock as a source of error and hence measure the relative clock drift. Since the
timestamps taken from each mote represents a discrete function, evaluated at different points in time, they are
not directly compatible. The timestamps used for the relative offset calculations were found by interpolating the
timestamps from the three slave motes. These three continously functions were subsequently evaluated at the same
points in time as the master mote, in effect creating a new set of compatible discrete functions. The relative offsets
can be seen in Figure 23.

Compared to the former figure the offset is now of the same order of magnitude as the variance of the transmission
time which seems more reasonable since this is of the same order as the expected achievable precision. It is
also clearly seen that mote 7 has a linear drift compared to the other motes which can thus be compensated for.
In order to maintain a precision similar to the variance of the transmission time (1-2 ms) it is thus necessary
to resynchronize the sensor motes at least every 2 min. (120000 ms).26 Similarly, an accuracy of 4 ms can be
maintained by resynchronizing at least every 4 min. A reference to both data collections can be found in Appendix
C.

26This figure is taken as an estimate based on Figure 23 and has the noise taken into account as well.

page 34

0 0.5 1 1.5 2 2.5 3

x 106

−800

−600

−400

−200

0

200

400

Time / milliseconds

O
ffs

et
 /

m
ill

is
ec

on
ds

mote 5

mote 6

mote 7

mote 8

Figure 22: Evolution of time differences between the PC clock and the four sensor motes’ clocks after
one synchronization.

0 0.5 1 1.5 2 2.5 3

x 106

−20

−15

−10

−5

0

5

Time / milliseconds

R
el

at
iv

e
of

fs
et

 /
m

ill
is

ec
on

ds

mote 6

mote 7

mote 8

Figure 23: Evolution of time difference between the master mote and the three slave motes after one
synchronization. Each graph represents the time difference between a slave mote and the master. All
three graphs have been smoothed with a moving average with a window size of 100.

page 35

4.4.3 Agreement
The most important reason to perform time synchronization in a WSN is the need to be able to combine measure-
ments taken from several different sensor motes without losing the temporal dimension. This can be evaluated by
comparing measurements taken from different sensor motes monitoring the same event. In this case the four SARD
motes were strapped to a metal beam and with the motes synchronizing every 10 s the beam were shaken by turn in
all three directions parallel to the accelerometers’ axes. In order for the time synchronization to be successful, the
measurements must be in agreement with each other. However, since the magnitude of the acceleration is depen-
dent on the calibration of each sensor, one should not expect the motes to agree on the size of the acceleration but
only on when it occurred, e.g. peaks in the acceleration corresponding to the extreme points of the beam’s position
can be compared directly.

Figure 24 shows the acceleration measurements sampled from the four sensor motes. The three rectangular boxes
mark the movement of the beam parallel to the axis in question and a close-up of each box can be seen in Figure
25. By looking at the time difference between the first and last mote crossing the zero-acceleration line one can
estimate the accuracy of the time synchronization to be of the order of 4 ms. An example of such a reading can be
seen in Figure 26. This is worse than the former estimate which was based upon the variance of the transmission
time. A probable cause is the timestamping taken place at the application layer which is prone to errors caused by
the current workload. This seems reasonable since the gateway in the former experiment only processed packets
every 150 ms on average while in the latter the average time between packets has decreased one-tenth to 15 ms.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 104

−10

−5

0

5

10
x−axis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 104

−10

−5

0

5

10

A
cc

el
er

at
io

n
/ m

/s
2

y−axis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 104

0

5

10

15

20

Time / milliseconds

z−axis

Figure 24: Acceleration measurements taken from four motes synchronized with Reference Broadcast.
All motes are measuring the same event and each mote are represented by a distinct color.

Subsequently, the experiment was repeated with two gateways instead of one. The WSN were partitioned in two
identical parts consisting of one gateway and two sensor motes by assigning a different radio frequency to each
partition. The four sensor motes were still attached to the same beam however. The purpose of this experiment
was to simulate an environment were measurements collected from different WSN had to be compared solely on

page 36

3 3.2 3.4 3.6 3.8 4 4.2

x 104

−5

0

5

x−axis

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

x 104

−10

−5

0

5

10

A
cc

el
er

at
io

n
/ m

/s
2

y−axis

6000 7000 8000 9000 10000 11000 12000 13000
0

5

10

15

20

Time / milliseconds

z−axis

Figure 25: Close-up of each of the axes as marked with rectangular boxes in Figure 24.

2.2473 2.2474 2.2475 2.2476 2.2477 2.2478

x 104

−0.01

0

0.01

Time / milliseconds

A
cc

el
er

at
io

n
/ m

/s
2

y−axis

22473.6 ms 22477.4 ms

Figure 26: Close-up of the y-axis as marked by the rectangular box in Figure 25. The arrow repre-
sents the magnitude of the disagreement between the four motes when measuring the same event. As
indicated by the readings the accuracy of the time synchronization is of the order of 4 ms.

page 37

the timestamp. This could also be seen as a large WSN where measurements were collected by the use of two
distinct gateways instead of using one gateway and a multi-hop protocol.27 As seen in Figure 22, the sampling of
the PC clock is not very accurate. Hence the two gateways were connected to the same PC to minimize this source
of error.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

−5

0

5

x−axis

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

−10

−5

0

5

10

A
cc

el
er

at
io

n
/ m

/s
2

y−axis

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

0

5

10

15

20

Time / milliseconds

z−axis

Figure 27: Acceleration measurements taken from four motes synchronized with Reference Broadcast
similar to Figure 24 but with the use of 2 gateways. All motes are measuring the same event and each
mote are represented by a distinct color with the motes represented by blue and red belonging to one
gateway and the motes represented by cyan and green belonging to the other.

Figure 27 shows the acceleration measurements collected while the beam was shaken. The three rectangular boxes
mark the movement of the beam parallel to the axis in question and a close-up of each box can be seen in Figure
28. An estimate of the accuracy measured from figures similar to Figure 29 shows this to be of the order of 27 ms.
This is not surprising since the fluctuations from the PC clock observed over a short time period is of this order of
magnitude as seen in Figure 22.

A reference to the data files can be found in Appendix C.

4.5 Future Work
As seen in the last section, the accuracy of the synchronization was of the order of milliseconds which is several
orders of magnitude worse than the reported microsecond accuracy reported in [20] and [19]. Two sources of error
can easily be identified as being the lack of MAC-layer timestamping and the millisecond resolution of the clock.
Since without the actual transmission and receival timestamps at the lower level the calculated transmission time
also includes the time spent processing at the upper levels, which is highly dependent on the current workload
and thus susceptible to great variation. When a fully native TinyOS radio stack has been implemented on the

27This would be advantageous in a high performance environment where the overhead of packet routing would have a negative impact on
performance.

page 38

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

x 104

−5

0

5

x−axis

2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

x 104

−10

−5

0

5

10

A
cc

el
er

at
io

n
/ m

/s
2

y−axis

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

Time / milliseconds

z−axis

Figure 28: Close-up of each of the axes as marked with rectangular boxes in Figure 27.

3.649 3.65 3.651 3.652 3.653

x 104

−0.02

−0.01

0

0.01

0.02

Time / milliseconds

A
cc

el
er

at
io

n
/ m

/s
2

y−axis

36495.3 ms 36521.9 ms

Figure 29: Close-up of the y-axis as marked by the rectangular box in Figure 28. The arrow represents
the magnitude of the disagreement between the four motes when measuring the same event. As indi-
cated by the readings the accuracy of the time synchronization is of the order of 27 ms when using two
gateways.

page 39

Freescale MC13192 radio, MAC-layer timestamping combined with increased clock resolution should greatly
improve accuracy.

The current implementation assumes that all the motes (master, slave(s) and gateway) are within communication
range. This is however not always the case and the need for a multi-hop adaption is necessary. Similarly it would
be advantageous to have multiple gateways collecting data in unison. It would then be necessary to be able to
distinguish between synchronization replies transmitted from different gateways in order to calculate the exact
transmission time.

As seen in Figure 22 the PC clock is the largest source of error when an external synchronization is performed. If
accuracy in the microsecond range is the goal a more precise external clock must be used. This could be a GPS
clock connected to either the PC or gateway since many of these devices can operate with nanosecond accuracy.

Another improvement would be a rotation scheme among the motes to remove the single-point-of-failure from the
master mote. This scheme could also be responsible to elect a new master mote in the case of a failure. Algorithms
for the rotation and election scheme have been studied extensively and protocols such as the Bully algorithm [23]
could be used to elect at new master.

4.6 Summary
A 2-tier external time synchronization protocol was implemented on the Freescale SARD. First, the gateway were
synchronized with the connected PC by Christian’s method. Second, the sensor motes were synchronized with
the gateway with a modified version of the Reference Broadcast Synchronization. The protocol were adapted to
the highly asymmetrical and continuous data flow in the previous developed acceleration collection architecture
resulting in a minimal amount of packet overhead caused by the time synchronization.

With application level timestamping and a clock resolution of 1 ms subsequent experiments showed the synchro-
nization between the sensor motes and a single gateway to be accurate within 4 ms. Further experiments also
found the accuracy between different WSN connected to the same PC to be 27 ms. This increase is primarily
caused by the inaccurate reading of the PC clock since experiments showed the drift of this clock to be of this
order of magnitude. The relative time difference between the sensor motes were seen to drift and the difference
became comparable with the synchronization accuracy of 4 msec after a period of 4 min. The network thus has to
be resynchronized at least this often in order to maintain the accuracy.

page 40

5 Conclusion
The main goal of this project was to investigate the precision of the physical properties obtained from acceler-
ation measurements, specifically those obtained from accelerometers mounted on wireless sensor devices. Two
different types of devices were used in order to accomplish this task: the Crossbow MicaZ and the Freescale
MC13192SARD.

In order to develop TinyOS applications to both platforms, several modifications were made to the motes and
the TinyOS contribution from DIKU. Specifically, the embedded bootloader was changed to one compatible with
executables generated with TinyOS, the component responsible for UART communication was changed to use the
RS-232 port instead of the USB port, and, finally, three components were developed to sample the ADC ports
where the accelerometers were connected. These components were subsequently used to develop a data collection
architecture capable of collecting measurements from both hardware platforms and we achieved a system wide
sampling rate of 200 Hz.

Subsequently, the data collecting architecture was augmented with a 2-tier external time synchronization protocol
on the Freescale SARD. Further evaluations found the accuracy of the synchronization to be within 4 ms for a single
WSN with one gateway and 27 ms for two WSN connected to the same PC. With these applications acceleration
measurements were collected from different experiments.

First, the accelerometers were calibrated in order to convert the readings to SI units and an upper bound of the
accuracy was found to be 0.0393 m/s2 and 0.196 m/s2 for the SARD and MicaZ mote respectively. This is caused
by the combination of voltage range on the accelerometers and the resolution of the ADC.

Second, the zero-motion drift was measured and we found that only the Crossbow motes had detectable drift. This
was caused by the lack of temperature correcting circuitry which was present on the Freescale motes.

Third, it was discovered that the power voltage had a significant negative influence on both the noise and value of
the acceleration measurements resulting in increased noise and drifting values.

Fourth, the necessity of knowing the orientation of the accelerometers became clear when measurements obtained
during walking yielded no useful information except the step duration. This fact was emphasized when a similar
experiment with fixed axes showed the velocity and position of an elevator car with 10% accuracy.

Fifth, the sensitivity of the calibration and the acceleration as a means for calculating the position were investigated
and it was found that the calibration had to be accurate within 0.1% in order to measure position parallel to the
Earth’s gravity. As a result the accelerometers used in this project were not sensitive and precise enough to deliver
the needed accuracy. It is unclear, though, if measurements obtained from axes perpendicular to Earth’s gravity
have the same instability.

page 41

References
[1] Freescale Semiconductor Inc.: “Sensor Applications Reference Design (SARD) User’s Guide”,

MC13192SARDUG, Rev. 1.5, 07/2005.
http://www.freescale.com/files/rf_if/doc/user_guide/MC13192SARDUG.pdf

[2] Freescale Semiconductor Inc.: “MC13192 Evaluation Board Reference Manual”,
MC13192EVBRM/D, Rev. 0.0, 08/2004. http://www.freescale.com.

[3] Freescale Semiconductor Inc.: “MC9S08GB60/GB32/GT60/GT32GT16 Data Sheet HCS08
Microcontrollers”, http://www.freescale.com.

[4] Freescale Semiconductor Inc.: “MC13192 2.4 GHz Low Power Transceiver for 802.15.4”,
MC13192/D, Rev. 2.4, 07/2004. http://www.freescale.com.

[5] Freescale Semiconductor Inc.: “+/- 1.5g Dual Axis Micromachined Accelerometer”, MMA6160Q,
Rev. 2, 10/2004. http://www.freescale.com/files/sensors/doc/data_sheet/MMA6260Q.pdf

[6] Freescale Semiconductor Inc.: “ Low G Micromachined Accelerometer”, MMA1260D, Rev. 1,
10/2004. http://www.freescale.com/files/sensors/doc/data_sheet/MMA1260D.pdf

[7] Crossbow Technology Inc.: “MOTE-KIT2400 Datasheet”, 6020-0062-01, Rev. C.
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Kit_Datasheet.pdf

[8] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler and Kristofer Pister: “System
Architecture Directions for Networked Sensors”, ASPLOS 2000, Cambridge, November 2000.
http://www.tinyos.net/papers/tos.pdf

[9] Crossbow Technology Inc.: “MTS/MDA Sensor and Data Acquisition Board User’s Manual”,
7430-0020-03, Rev. B, April 2005.
http://www.xbow.com/Support/Support_pdf_files/MTS-MDA_Series_Users_Manual.pdf

[10] Freescale Semiconductor Inc.: “Developer’s Serial Bootloader for M68HC08 and HCS08 MCUs”,
AN2295D, Rev. 6, 11/2004.
http://www.freescale.com/files/microcontrollers/doc/app_note/AN2295.pdf

[11] Pierre-Yves Gilliéron, Daniela Büchel, Ivan Spassov and Bertrand Merminod: “Indoor Navigation
Performance Analysis”, Proceedings of the 8th European Navigation Conference GNSS 2004, 17-19
May, Rotterdam, The Netherlands

[12] Cliff Randell, Chris Djiallis and Henk Muller: “Personal Position Measurement Using Dead
Reckoning”, Department of Computer Science, University of Bristol.

[13] Y K Thong, M S Woolfson, J A Crowe, B R Hayes-Gill and R E Challis: “Dependence of Inertial
Measurements of Distance on Accelerometer Noise”, Measurement Science and Technology.
13(2002) 1163-1172 http://stacks.iop.org/MST/13/1163

[14] J. M. Knudsen and P. G. Hjorth: “Elements of Newtonian Mechanics”, Springer, Second edition,
1996.

[15] Analog Devices: “Low-Cost ±2 g Dual-Axis Accelerometer with Duty Cycle Output”, Rev. A,
10/2000 http://www.analog.com/UploadedFiles/Data_Sheets/53728567227477ADXL202E_a.pdf

[16] Kone http://www.kone.com/

[17] Kay Römer, Philipp Blum and Lennart Meier: “Time Synchronization and Calibration in Wireless
Sensor Networks”,

[18] Bharath Sundararaman, Ugo Buy and Ajay D. Kshemkalyani: “Clock Synchronization for Wireless
Sensor Networks: A Survey”, March 22, 2005

[19] Hui Dai and Richard Han: “Tsync: A Lightweight Bidirectional Time Synchronization Service for
Wireless Sensor Networks”, ACM SIGMOBILE Mobile Computing and Communications Review,
8(1):125-139, January 2004.

page 42

[20] Jeremy Elson, Lewis Girod and Deborah Estrin: “Fine-grained Network Time Synchronization using
Reference Broadcasts”, In Fifth Symposium on Operating Systems Design and Implementation (OSDI
2002), December 2002.

[21] Joseph Y. Halpern and Ichiro Suzuki: “Clock Synchronization and the power of Broadcasting”,
Distributed Computing, 5(2):73-82, 1991.

[22] F. Christian: “Probabilistic clock synchronization”, Distributed Computing, Vol. 3, pp. 146-58, 1989

[23] H. Garcia-Molina: “Elections in Distributed Computer Systems”, IEEE Transactions on Computers,
Vol. C-31, No. 1, pp. 48-59, 1982

page 43

A Application Source Code
http://www.distlab.dk/sensornet/sentientsports/datacollection.zip

B Acceleration Data Files
Calibration Data
http://www.distlab.dk/sensornet/sentientsports/calibrationdata.zip

Drift Data
http://www.distlab.dk/sensornet/sentientsports/driftdata.zip

Low-Power Data
http://www.distlab.dk/sensornet/sentientsports/lowpowerdata.zip

Walk Data
http://www.distlab.dk/sensornet/sentientsports/walkdata.zip

Elevator Data
http://www.distlab.dk/sensornet/sentientsports/elevator.zip

C Synchronization Data Files
RTT Data
http://www.distlab.dk/sensornet/sentientsports/rttdata.zip

Offset Data
http://www.distlab.dk/sensornet/sentientsports/offsetdata.zip

Agreement Data
http://www.distlab.dk/sensornet/sentientsports/agreementdata.zip

page 44

