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This paper presents a non-robust Branch-and-Cut-and-Price algorithm for the Vehicle Routing Problem
with Time Windows. The standard Dantzig-Wolfe decomposition leads to a Set Partition Problem as master
problem and an Elementary Shortest Path Problem with Resource Constraints as the pricing problem. In a
non-robust algorithm the structure of the pricing problem is modified, this includes adding additional con-
straints or variables to the formulation. The modification of the pricing problem arises with the introduction
of the subset row inequalities used as cutting planes in the master problem. We show that the subset row
inequalities are valid for the Set Packing Problem and correspond to the set of clique and odd hole inequal-
ities which are also known to be valid inequalities for the Set Partition Problem. The pricing problem is
solved with a bi-directional label setting algorithm modified to handle the non-robustness. The introduction
of the subset row inequalities made it possible to solve 10 previously unsolved instances from the Solomon’s
benchmark tests.

1. Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) can be described as follows: A set
of customers, each with a demand, needs to be serviced by a number of vehicles all starting and
ending at a central depot. Each customer must be visited exactly once within a given time window
and the capacity of the vehicles must not be exceeded. The objective is to service all customers
traveling the least distance possible. In this paper we consider a homogenous fleet, i.e. all vehicles
are identical.

The standard Dantzig-Wolfe decomposition of VRPTW is to split the problem into a master
problem (a Set Partition Problem) and a pricing problem (an Elementary Shortest Path Problem
with Resource Constraints (ESPPRC), where demand and time are the constrained resources).
Applying cutting planes in the master problem leads to a Branch-and-Cut-and-Price algorithm
(BCP).

Based on an algorithm by Desrochers et al. (1992), Desrosiers et al. (1984) BCP algorithms
have been intensively studied since the beginning of the nineties when solving the VRPTW. Kohl
et al. (1999) applied subtour elimination constraints, and introduced two-path cuts as cutting
planes in the master problem of the VRPTW. Cook and Rich (1999) used a generalization of the
two-path cuts called k-path cuts. Common for these BCP algorithms are that all applied cuts are
valid inequalities for the VRPTW that have been decomposed into the master problem, hence the
expression of the cuts in the master problem does not lead to a modified pricing problem. This
leads to a robust BCP algorithm. The topic has been thoroughly surveyed by Barnhart et al. (1998)
for the general case. In this paper we extend the framework to include valid inequalities for the
master problem leading to a non-robust BCP algorithm. Nemhauser and Park (1991) developed
a non-robust BCP algorithm for the Edge Coloring Problem but to our knowledge no non-robust
algorithms for VRPTW have been presented.
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Dror (1994) showed that ESPPRC is strongly NP-hard. So far the most successful BCP algo-
rithms have used dynamic programming to solve a relaxation of ESPPRC. Desrosiers et al. (1984)
denoted the solution of the relaxed pricing problem a q-route since the solutions were allowed
to contain cycles. Later the relaxed pricing problem was denoted the Shortest Path Problem
with Resource Constraints (SPPRC). Irnich and Villeneuve (2006) developed an algorithm for the
SPPRC with k-cycle elimination (k-cyc-SPPRC) where cycles containing k or less nodes are not
permitted. This has shown to significantly improve lower bounds of the master problem compared
to the SPPRC.

Beasley and Christofides (1989) were the first to propose solving the ESPPRC directly. Label
setting algorithms have been the most popular approach to solve the ESPPRC. Algorithms have
been implemented by Dumitrescu (2002) and Feillet et al. (2004), the latter being the first to use a
label setting algorithm for ESPPRC in a VRPTW context as they compared lower bounds obtained
with elementary and non-elementary pricing problem algorithms. Later both Chabrier (2005) and
Danna and Pape (2005) successfully solved several previously unsolved VRPTW instances from
the benchmarks of Solomon (1987) using a label setting algorithm for the ESPPRC.

Righini and Salani (2004) developed a label setting algorithm using the idea of Dijkstra’s bi-
directional shortest path algorithm that expands both forward and backward from the depot and
connects routes in the middle, thereby potentially reducing the running time of the algorithm. In
Petersen and Spoorendonk (2006) this result is extended to the label setting algorithms for the
k-cyc-SPPRC, however we only consider the elementary case in this paper.

The paper is outlined as follows: In Section 2 we give an overview of the Dantzig-Wolfe decom-
position of VRPTW and describe how to calculate the reduced cost of columns when column
generation is used to solve the master problem. Furthermore we describe how both robust and
non-robust cutting schemes affect the reduced cost of a column when applied to the master problem.

In Section 3 we introduce the subset row inequalities and show that the separation problem is
NP -complete. In Section 4 we review the basics of a label setting algorithm for solving the ESPPRC
and show how to handle the modified pricing problem in the same label setting algorithm. For
details regarding label-setting (including bi-directionality) we refer to Righini and Salani (2004)
and Petersen and Spoorendonk (2006). This is followed by an algorithmic outline and extensive
computational results, using the Solomon benchmark tests, in Section 5. Finally, in Section 6, we
have some concluding remarks.

2. Decomposition

Let C be the set of customers, let the set of nodes be V = C ∪ {0} where {0} denotes the depot,
and let E = {(i, j) : i, j ∈ V, i 6= j} be the edges between the nodes. Let K be the set of vehicles,
each having capacity D, and let di be the demand of customer i∈C. Let ai be the beginning and
bi be the end of the time window for node i ∈ V . Let si be the service time for i ∈ V and let tik

be the time vehicle k ∈K visits node i∈ V , if k visits i. Let cij be the travel cost between i, j ∈ V

and let xijk be a variable indicating whether vehicle k ∈ K travels from i ∈ V to j ∈ V . Last let
τij = cij + si, be the travel time between i, j ∈ V plus the service time of customer i. The 3-index
flow model from Toth and Vigo (2002) for VRPTW is:

min
∑

k∈K

∑

i,j∈V

cijxijk (1)

s.t.
∑

k∈K

∑

j∈V

xijk = 1 ∀i∈C (2)

∑

i∈C

x0ik =
∑

i∈C

xi0k = 1 ∀k ∈K (3)
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∑

j∈V

xjik −
∑

j∈V

xijk = 0 ∀i∈C, ∀k ∈K (4)

∑

i∈C

∑

j∈V

dixijk ≤D k ∈K (5)

ai ≤ tik ≤ bi ∀i∈ V, ∀k ∈K (6)
x0jk = 1⇒ a0 + τ0j ≤ tjk ∀j ∈C, ∀k ∈K (7)
xijk = 1⇒ tik + τij ≤ tjk ∀i∈C, ∀j ∈ V, ∀k ∈K (8)
tik ≥ 0 ∀i∈ V, ∀k ∈K (9)
xijk ∈ {0,1} ∀i, j ∈ V, ∀k ∈K (10)

Here (2) ensures that every customer i∈C is visited, while (3) ensures that each route starts and
ends in the depot. Constraint (4) is the flow conservation, while (5) ensures that the capacity of
each vehicle is not exceeded. Constraints (6), (7) and (8) ensure that the time windows are satisfied.
The last two constraints define the domain of the variables.

The standard Dantzig-Wolfe decomposition of VRPTW leads to the following master problem:

min
∑

p∈P

∑

i,j∈V

cijαijpλp (11)

s.t
∑

p∈P

∑

j∈V

αijpλp = 1 ∀i∈C (12)

λp ∈ {0,1} ∀p∈P (13)

where P is the set of all feasible routes, the binary constant αijp is one if and only if edge (i, j)
is used by route p ∈ P , and the binary variable λp indicates whether route p is used. The master
problem can be recognized as a Set Partition Problem and the LP relaxation may be solved using
delayed column generation. Let π be the dual variables of (12) and let π0 = 0. Then the reduced
cost of a route p is:

ĉp =
∑

i,j∈V

cijαijp −
∑

i,j∈V

πjαijp =
∑

i,j∈V

(cij −πj)αijp (14)

The pricing problem becomes an ESPPRC where the cost of each edge is:

ĉij = cij −πj ∀i, j ∈ V

When applying cuts during column generation we will distinguish between valid inequalities
for the VRPTW polytope (2)-(10) and valid inequalities for the Set Partition polytope (12)-(13).
Applying inequalities which are valid for (2)-(10) does not change the structure of the pricing
problem and has been the approach used in previous robust BCP algorithms for VRPTW.

Consider a valid inequality for the polytope (2)-(10):
∑

i,j∈V

βijxij ≤ β0 (15)

When decomposed into the master problem, inequality (15) is formulated as:
∑

p∈P

∑

i,j∈V

βijαijpλp ≤ β0 (16)

Let µ≤ 0 be the dual variable of (16). The reduced cost of a column p is then

ĉp =
∑

i,j∈V

cijαijp −
∑

i,j∈V

πjαijp −µ
∑

i,j∈V

βijαijp

=
∑

i,j∈V

(cij −πj −µβij)αijp (17)
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Compared to (14) an additional coefficient µβij is subtracted from the cost of edge (i, j) and the
pricing problem remains an ESPPRC, i.e. the BCP algorithm remains robust.

Given a valid inequality for the polytope (12)-(13):

∑

p∈P

βpλp ≤ β0 (18)

Let σ ≤ 0 be the dual variable of (18). The reduced cost of a column p is:

ĉp =
∑

i,j∈V

cijαijp −
∑

i,j∈V

πjαijp −σβp (19)

In addition to the reduced cost computed for a column p in (14) (or (17)) the cost −σβp must
be considered when σβp 6= 0. If σβp = 0 no additional cost needs to be considered and the pricing
problem remains unaltered. To reflect the possible extra cost −σβp it may be necessary to modify
the pricing problem by adding constraints or variables, thus leading to a non-robust BCP algorithm.
We have developed a solution method that exploits a special structure of the subset row inequalities
introduced in the following section.

3. Subset Row Inequalities

The set of valid inequalities for the Set Packing Problem is a subset of the set of valid inequalities
for the Set Partition Problem since the Set Partition Problem is a special case of the Set Packing
Problem. Two well-known valid inequalities for the Set Packing Problem are the clique and the
odd hole inequalities, where the first is known to be facet-defining for the Set Partition Problem
(Nemhauser and Wolsey (1988)).

Since the master problem previously has been identified as a Set Partition Problem, it would be
obvious to go in this direction when looking for valid inequalities for the master problem. However,
neither clique nor odd hole inequalities are directly applicable to the master problem when column
generation is used due to the impact on the pricing problem.

Consider the separation of a clique or an odd hole inequality. The undirected conflict graph
G(P,E) is defined as follows: Each column is a vertex in G and the edge set is given as:

E =

{

e(p, q) :
∑

j∈V

αijp = 1∧
∑

j∈V

αijq = 1, i∈C, p, q ∈P

}

That is, an edge is present if the two columns p, q have coefficient one in the same row. In a
VRPTW context it reads: Two routes are conflicting if they are visiting the same customer. A
clique in G leads to the valid clique inequality:

∑

p∈P̂

λp ≤ 1 (20)

where P̂ ⊆ P are the columns corresponding to the vertices of a clique in G. A cycle visiting an
odd number n≥ 5 of vertices in G leads to the valid odd hole inequality:

∑

p∈P̂

λp ≤
⌊n

2

⌋

(21)

where P̂ ⊆P are the columns corresponding to the vertices visited on the cycle in G.
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However, when column generation is applied, it is not obvious how to reflect the reduced cost of
(20) or (21) in the pricing problem as described in Section 2 since there is no specific knowledge
of the columns of the master problem when solving the pricing problem.

Inspired by the above inequalities (20) and (21) we introduce the subset row inequalities (SR-
inequalities). These inequalities are specifically linked to the rows of the Set Packing Problem,
hence making it possible to identify the coefficient of a column in a SR-inequality.

Definition 1. Consider the Set Packing polytope

X = {λ∈B
|P | : Aλ≤ 1} (22)

with the set of rows R and columns P , and a |R|×|P | binary coefficient matrix A. The SR-inequality
is defined as:

∑

p∈P

⌊

1

k

∑

i∈S

αip

⌋

λp ≤
⌊n

k

⌋

(23)

where S ⊆R, |S| = n and 0 < k ≤ n.

Example 1 illustrates some SR-inequalities derived from the conflict graph of a Set Packing
Problem.

Example 1.

SR-inequalities derived from the conflict graph of a Set Packing Problem. In the LP-solution to
Aλ ≤ 1 all λ variables are 1

2
, which results in two violated SR-inequalities:

• With n = 3 and k = 2 due to variables λ1, λ2, and λ3 giving the set of rows S = {r1, r2, r3}
• With n = 5 and k = 2 due to variables λ1, λ2, λ3, λ4, and λ5 giving the set of rows S =

{r1, r3, r4, r5, r6}

λ1 λ2 λ3 λ4 λ5

r1 1 1 ≤ 1
r2 1 1 ≤ 1
r3 1 1 ≤ 1
r4 1 1 ≤ 1
r5 1 1 ≤ 1
r6 1 1 ≤ 1

Set Packing Problem Aλ≤ 1.

u u

u

u

u

λ1 λ2

λ3

λ4

λ5

r1

r2 r3r4

r5r6

Corresponding conflict graph.

Given a column p ∈ P we need to have
∑

i∈S
αip ≥ k to get a non-zero coefficient of λp in (23).

For the master problem of VRPTW the coefficient matrix can be translated as αip =
∑

j∈V αijp,
i.e., αip is the sum of all the outgoing edges of a customer i. Hence,

1

k

∑

i∈S

αip =
1

k

∑

i∈S

∑

j∈V

αijp

which is only larger than 0 when more than k customers of S are visited on route i. Refer to
Example 2 for a violated SR-inequality in a master problem LP solution for a VRPTW.
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Example 2.

A violated SR-inequality with n = 3, k = 2, and S = {i, j, h}. Let P = {r1, r2, r3} be three routes
each visiting two of the customers in S. The SR-inequality in our case becomes λr1

+λr2
+λr3

≤ 1.
In an LP-solution λr1

= λr2
= λr3

= 1
2
, which clearly violates the SR-inequality.

h

i j

r1 r2

r3

u

u u

Proposition 1. The SR-inequalities (23) are valid for the Set Packing polytope X.

Proof. The proof follows directly from Chavtal-Gomory’s procedure to construct valid inequal-
ities (Wolsey (1998)). Scale the n inequalities

∑

i∈S
αipλp ≤ 1 in the set of rows S ⊆ R from (22)

with 1
k
≥ 0 and add them:

∑

p∈P

1

k

∑

i∈S

αipλp ≤
n

k

Flooring on left side and right side leads to (23). �

Note that, when the coefficient
⌊

1
k

∑

i∈S
αip

⌋

evaluates to 0 or 1 for all p ∈ P , the set of SR-
inequalities (23) corresponds to the clique inequalities (20) when

⌊

n
k

⌋

= 1 and corresponds to the
odd hole inequalities (21) when n≥ 5 and k = 2, i.e., the right hand side of (23) becomes

⌊

n
2

⌋

.

3.1. Separation of subset row inequalities

The separation problem of SR-inequalities is defined as follows: Given the current LP-solution λ

where λp < 1 for all p ∈ P , and some fixed values n and k where 1 < k ≤ n, find the most violated
SR-inequality. Using the binary variable xi to denote whether i∈ S this can be stated as:

max
∑

p∈P

⌊

1

k

∑

i∈R

aipxi

⌋

λp −
⌊n

k

⌋

(24)

s.t.
∑

i∈R

xi = n (25)

xi ∈ {0,1} ∀i∈R (26)

The corresponding decision problem SR-DECISION asks whether

∑

p∈P

⌊

1

k

∑

i∈R

aipxi

⌋

λp ≥ c (27)
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is feasible subject to (25) and (26), where 1≤ c < n and c∈Z. Since we may multiply (27) by any
coefficient 1

γ
> 0, the coefficient bounds λp < 1 and c < n can be softened to

λp <
1

γ
, c <

n

γ
(28)

This leads to the following proposition:

Proposition 2. The separation problem SR-DECISION is NP -complete.

Proof. We will show the stated by reduction from 3-Conjunctive Normal Form Satisfiability
(3CNF-SAT). Given an expression φ written in three-conjunctive normal form, the 3CNF-SAT
problem asks whether there is an assignment of binary values to the variables such that φ evaluates
to true. An expression is in three-conjunctive normal form when it consists of a collection of
disjunctive clauses C1, . . . ,Cm of literals, where a literal is a variable xi or a negated variable ¬xi,
and each clause contains exactly three literals.

Let x1, . . . , xn be the set of variables which occurs in the clause φ. We transform the 3CNF-SAT
instance to a SR-DECISION instance by constructing a matrix A = (aij) with 2n + 3 rows and
m+n+1 columns, i.e., R = {1, . . . ,2n+3} and P = {1, . . . ,m+n+1}.

The rows 1, . . . ,2n of matrix A corresponds to literals x1,¬x1, x2,¬x2, . . . , xn,¬xn, while columns
j = 1, . . . ,m correspond to clauses C1, . . . ,Cm, and columns j = m + 1, . . . ,m + n correspond to
variables x1, . . . , xn.

We now define matrix A as follows: For j = 1, . . . ,m let aij = 1 iff the corresponding literal
appears in clause Cj . For j = 1, . . . , n let ai,j+m = 1 iff the corresponding literal is xj or ¬xj . For
j = m + n + 1 let aij = 0. The last three rows of A are defined as follows: For j = 1, . . . ,m + n let
a2n+1,j = 0, while a2n+1,m+n+1 = 1. For j = 1, . . . ,m + n + 1 let a2n+2,j = a2n+3,j = 1. Finally we set
k = 3, λp = 1 for all p∈ P and c = m+ n+ 1. Note that all coefficients are within the bounds (28)
for γ sufficiently large. An example of the transformation is illustrated in Example 3.

Example 3.

Illustration of the transformation 3CNF-SAT to SR-DECISION. Given the 3CNF-SAT expression

φ = (x1 ∨¬x1 ∨¬x2)∧ (x3 ∨x2 ∨x4)∧ (¬x1 ∨¬x3 ∨¬x4)

the matrix A = (aij) becomes

1 . . . m m+1 . . . . . . m+n m+n+1
C1 . . . Cm x1 . . . . . . xn

1 x1 1 1
2 ¬x1 1 1 1

x2 1 1
... ¬x2 1 1

x3 1 1
¬x3 1 1
x4 1 1

2n ¬x4 1 1
2n+1 1
2n+2 1 1 1 1 1 1 1 1
2n+3 1 1 1 1 1 1 1 1

while we set k = 3, λp = 1 for p∈P and c = 8.
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With the chosen constants, the SR-DECISION problem (27) reads

∑

p∈P

⌊

1

3

∑

i∈R

aipxi

⌋

≥m+n+1 = |P |

which is satisfied if and only if

∑

i∈R

aipxi ≥ 3 ∀p∈ P

As the last three rows of A always must be chosen, it is equivalent to

2n
∑

i=1

aipxi ≥ 1 ∀p = 1, . . . ,m+n

(i) Assume that there is a feasible assignment of binary values to x1, . . . , xn such that φ evaluates
to true in the 3CNF-SAT instance. In the corresponding SR-DECISION problem choose row i

if and only if the corresponding literal is true in φ. Since exactly n literals are true, we will in
this way choose n rows. Since at least one literal is true in each clause, and each column 1, . . . ,m

corresponds to a clause in A we will get a contribution of at least one in each of these columns.
Moreover, since exactly one of xi and ¬xi is true in φ we will get a contribution of exactly one in
column m+1, . . . ,m+n. Hence, the corresponding SR-DECISION problem is true.

(ii) Assume on the other hand that SR-DECISION is true. Let P ′ ⊆ P be the set of rows
corresponding to the solution. By assumption |P ′| = n. First we notice that exactly one of the
rows corresponding to the literals xi and ¬xi is chosen. This follows from the fact that we have
n columns m + 1, . . . ,m + n which needs to be covered by n rows, and each row covers exactly
one column. For each literal in φ let xi or ¬xi be true if the corresponding row was chosen in
SR-DECISION. Each variable will be well-defined due to the above argument. Moreover, since the
rows P ′ must cover at least one api = 1 for each column j = 1, . . . ,m, we see that each clause in φ

becomes true.

Since the reduction is polynomial, and SR-DECISION obviously is in NP , we have proved the
stated. �

Example 4 shows that typical separation problems of SR–inequalities actually possess the prop-
erties assumed in the NP -completeness proof.

4. Label Setting Algorithm

When solving the pricing problem, it is noted that finding a route with negative reduced cost
corresponds to finding a negative cost path starting and ending at the depot, i.e. an ESPPRC.
Our ESPPRC algorithm is based on standard label setting techniques presented by e.g. Beasley
and Christofides (1989), Chabrier (2005), Danna and Pape (2005), Dumitrescu (2002), Feillet et al.
(2004), hence in the following we will mainly focus on the dominance criteria used for handling the
modifications stemming from the SR-inequalities of the master problem.

The ESPPRC can be formally defined as: Given a weighted directed graph G(V,E) with nodes
V and edges E, and a set of resources R. For each edge e∈E and resource r ∈R three parameters
are given: A lower limit ar(e) on the accumulation of resource r when traversing edge e ∈ E; an
upper limit br(e) on the accumulation of resource r when traversing edge e ∈ E; and finally an
amount cr(e) of resource r consumed by traversing edge e∈E. The objective is to find a minimum
cost path p from a source node s∈ V to a target node t∈ V , where the accumulated resources of p
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Example 4.

To illustrate that the bounds (28) indeed are realistic consider the case k = 3. Chose γ = m+n+1
β

where β = n−2
3

or β = n−1
3

depending on which of the expressions that evaluates to an integral
value. The right hand side of (27) evaluates to

c ·
1

γ
= (m+n+1) ·

β

m+n+1
= β

where an integral value of β gives

β =
⌊n

3

⌋

< n

The value of λ gives

λp ·
1

γ
= 1 ·

β

m+n+1
≤ 1 ∀p∈ P

Hence all bounds are valid according to the separation problem (24)-(26).

satisfy the limits for all resources r ∈R. Without loss of generality we assume that the limits must
be satisfied at the start of each edge e, i.e. before cr(e) has been consumed.

It is noted that equivalent upper and lower limits and consumptions on the nodes can be “pushed”
onto the edges, e.g. the ingoing edges of the node.

For the pricing problem of VRPTW the resources are demand d, time t, a binary visit-counter
for each customer v ∈ V and cost c. Notice that also the cost is considered a resource c. When
considering the pricing problem of VRPTW, the consumptions and upper and lower limits of the
resources at each edge e in ESPPRC are:

ad(e) = 0, bd(e) = D− dj, cd(e) = dj ∀e = (i, j)∈E

at(e) = ai, bt(e) = bi, ct(e) = τij ∀e = (i, j)∈E

av(e) = 0, bv(e) = 1, cv(e) = 1 ∀v ∈ V : v = j, ∀e = (i, j)∈E

av(e) = 0, bv(e) = 1, cv(e) = 0 ∀v ∈ V : v 6= j, ∀e = (i, j)∈E

ac(e) =−∞, bc(e) =∞ , cc(e) = cij ∀e = (i, j)∈E

In the label-setting algorithm labels at node v represent partial paths from s to v. The following
attributes for a label L are considered:

v(L) The node L belongs to, i.e. the current end-node of the partial path represented by L.
r(L) The accumulated consumption of resource r ∈R.

A feasible extension ε∈ E(L) of a label L is a partial path starting in a node v(L)∈ V and ending
in the target node t, that does not violate any resources when concatenated with the partial path
represented by label L.

In the following it is assumed that all resources are bounded strongly from above, and weakly
from below. This means that if the current resource accumulation is below the lower limit at a
given edge e, it is allowed to fill up the resource to the lower limit, e.g. waiting for a time window
to open. This means that two consecutive labels Lu and Lv related by an edge e = (u, v), i.e. Lu is
extended and becomes Lv, where v(Lu) = u and v(Lv) = v must satisfy

r(Lu)≤ br(e), ∀r ∈R (29)
r(Lv) = max{r(Lu)+ cr(e), ar(e)}, ∀r ∈R (30)
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Here (29) demands that each label Lu satisfies the upper limit of resource r corresponding to edge
e = (u, v), while (30) states that resource r at label Lv corresponds to the resource consumption at
label Lu plus the amount consumed by traversing edge e, respecting the lower limitat edge e.

A simple enumeration algorithm could be used to produce all these labels, but to limit the
number of labels considered, dominance rules are introduced to fathom labels which will not lead
to an optimal solution.

Definition 2. A label Li dominates label Lj if

v(Li) = v(Lj) (31)
c(Li)≤ c(Lj) (32)
E(Lj)⊆ E(Li) (33)

In other words, the paths corresponding to labels Li and Lj should end at the same node v ∈ V ,
the path corresponding to label Li should cost no more than the path corresponding label Lj , and
finally any feasible extension of Lj is also a feasible extension of Li.

To determine if (33) holds can be quite cumbersome, as the straightforward definition demands
that we calculate all extension of the two labels, therefore a sufficient criteria for (33) is sought which
can be computed faster. If label Li has consumed less resources than label Lj then no resources
are limiting the possibilities of extending Li compared to Lj , hence the following proposition can
be used as a relaxed version of the dominance criteria.

Proposition 3 (Sufficient condition). Label Li dominates label Lj if:

v(Li) = v(Lj) (34)
r(Li)≤ r(Lj) ∀r ∈R (35)

Proof. We check Definition 2. Equation (31) follows directly from (34) and (32) follows from
(35) with r = c, i.e. the cost resource. Since all resources (including node visits) r ∈ R in Li are
consumed less or equal to the consumption in Lj all paths feasible for Lj must also be possible for
Li, i.e. E(Lj)⊆E(Li) and (33) holds. �

Feillet et al. (2004) suggested to consider the set of nodes that cannot be reached from a label
Li and compare the set with the unreachable nodes of a label Lj in order to determine if some
extensions are impossible. Or in other words: update the node resources in an eager fashion instead
of a lazy. The following definition is a generalization of (Feillet et al. 2004, Definition 3).

Definition 3. Given a start node s∈ V , a label L, and a node u∈ V where v(L) = u then a node
v ∈ V is considered unreachable if v has already been visited on the path from s to u or if a resource
window is violated, e.g.:

∃r ∈R r(L)+ lr(u, v) > br(v)

where lr(u, v) is a lower bound on the consumption of resource r on all feasible paths from u to v.
The node resources are then given as: v(L) = 1 indicates that node v ∈ V is unreachable from node
v(L)∈ V , and v(L) = 0 otherwise.

This leads to the following dominance criteria introduced by Feillet et al. (2004).

Proposition 4 (Sufficient condition). Label Li dominates label Lj if:

v(Li) = v(Lj) (36)
r(Li)≤ r(Lj) ∀r ∈R (37)

and node resources are set according to Definition 3.



Jepsen et al.: A non-robust BCP algorithm for the VRPTW 11

Proof. We check Definition 2. Constraints (31) and (32) checked as in the proof of Proposition
3. The remaining concern is if (33) holds for Li and Lj .

The proof is by contradiction. Assume that (36) and (37) are satisfied but that (33) is not
satisfied. Then there must exist an extension ε ∈ E(Lj)\E(Li), i.e. ε is feasible for Lj but not for
Li. Let Lu denote the label that is obtained with v(Lu) = vu after L has recursively been extended
through ε, let v1, . . . , vh−1, vh, . . . be the nodes on ε and let vh be the first node on ε preventing the
extension of Lh−1

i . There are only two conditions where this can happen:

1) vh(Lh−1
i ) = 1

2) ∃r ∈R, r(Lh−1
i )+ lr(vh−1, vh) > br(h)

Since Lj can be extended with ε the equivalent conditions for Lh−1
j are:

1) vh(Lh−1
j ) = 0

2) r(Lh−1
j )+ cr(vh−1, vh)≤ br(h), ∀r ∈R

Since all resources are consumed equally on ε until vh−1 for both Li and Lj the above conditions
contradicts that (36) and (37) are satisfied. Hence, E(Lj)\E(Li) = ∅ which implies E(Lj) ⊆ E(Li)
and (33) holds. That is, Definition 2 holds and Li dominates Lj . �

Using Proposition 4 as a dominance criteria is a relaxation of the dominance criteria of Definition
2 since only a subset of labels satisfying (31), (32) and (33) satisfies (36) and (37).

4.1. Solving the modified pricing problem

Consider some valid SR-inequality on the form (23)

∑

p∈P

⌊

1

k

∑

i∈S

αip

⌋

λp =
∑

p∈P

1

k

⌊

∑

i,j∈V

αijp

⌋

λp ≤
⌊n

k

⌋

(38)

where S ⊆R, |S|= n and 0 < k ≤ n. Let σ ≤ 0 be the corresponding dual variable when solving the
master problem to LP-optimality. From (19) the reduced cost of a column in the VRPTW master
problem is:

ĉp =
∑

e(i,j)∈E

cijαijp −
∑

e(i,j)∈E\{δ+(0)}

πjαijp −σ

⌊

∑

i∈S

∑

j∈V
αijp

k

⌋

(39)

We will analyze how the label setting algorithm for ESPPRC can be modified to handle this
additional cost.

For an ESPPRC the last term in (39) can be interpreted as: A penalty −σ must be paid for each
k visits to the nodes in S. Let E(L) be the edges and V (L) be the nodes visited on the partial
path of label L. The cost of a label L can then be expressed as:

c(L) =
∑

e(i,j)∈E(L)

cij −
∑

i∈V (L)\{0}

πi −σ

⌊

|S ∩V (L)|

k

⌋

This invalidates the previous dominance criteria of Proposition 4 since the penalty is depending on
both visited and unvisited nodes, i.e. if label Li dominates label Lj regarding Proposition 4, then
c(Lj)≤ c(Li) could be true later due to penalties paid by Li but not by Lj which clearly makes it
invalid to dominate Lj .

It is sufficient to consider if label Li is closer to paying a penalty than label Lj . For a label L let

T (L) = |S ∩V (L)| mod k
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be the number of visits made to S since the last penalty was paid for visiting k nodes in S. Recall
E(L) as the set of feasible extensions from the label L to the target node t and note that when
label Li dominates label Lj their common extensions are E(Lj) due to (33). The following cost
dominance criteria is obtained for a single SR-inequality:

Proposition 5. If T (Li) ≤ T (Lj) label Li may dominate label Lj disregarding any additional

penalties.

Proof. Consider any common extension ε ∈ E(Lj). The comparison of the number of future
penalties for the two labels are:

⌊

|S ∩E(Lj)|+ T (Li)

k

⌋

≤

⌊

|S ∩E(Lj)|+ T (Lj)

k

⌋

since T (Li)≤T (Lj). Hence Lj will always pay at least the same penalties as Li using their common
extensions and the current cost of Li can be used during dominance. �

Proposition 6. If T (Li) > T (Lj) label Li may dominate label Lj if a temporary penalty −σ is

added to the cost of Li.

Proof. Consider any common extension ε ∈ E(Lj). The comparison of the number of future
penalties for the two labels are:

⌊

|S ∩E(Lj)|+ T (Li)

k

⌋

≥

⌊

|S ∩E(Lj)|+ T (Lj)

k

⌋

since 0≤T (Lj) < T (Li)≤ k− 1. Applying an additional penalty to Li gives:

1+

⌊

|S ∩E(Lj)|+ T (Li)

k

⌋

≤

⌊

|S ∩E(Lj)|+ T (Lj)

k

⌋

Adding one additional penalty −σ to the cost of Li during dominance ensures that Lj always pays
at least the same penalties as Li using their common extensions. �

Observe that, if T (Li) + |S ∩ E(Lj)| < k it is not possible for the extension ε to visit S enough
times to trigger a penalty, i.e. the temporary penalty to the cost of Li can be disregarded.

The new dominance criteria is as follows:

Proposition 7. Let Q be the set of all SR-inequalities with dual variables σ where

σq < 0∧Tq(Li) > Tq(Lj) q ∈Q

then label Li dominates label Lj if:

v(Li) = v(Lj) (40)

c(Li)−
∑

q∈Q

σq ≤ c(Lj) (41)

r(Li)≤ r(Lj) ∀r ∈R\{c} (42)

and node resources are set according to Definition 3.

Proof. The validity of (41) follows directly from Propositions 5 and 6. The validity of (40) and
(42) is equivalent to the proof of Proposition 4. �

The new dominace criteria is illustrated in Example 5.
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Example 5.

Consider the instance of ESPPRC depicted in the figure. No resources have influence on the
length of any paths.

u u u u u

u

s i j h t

v

−1 −1 −1 −1

1 0

−1

Let S = {i, j, h} be the nodes (customers) of a SR-inequality with n = 3 and k = 2 and let the
dual cost be σ =−2.
After a few iterations, the label setting algorithm has produced three labels in node j:

L V (L) c(L) V (L) TS(L)
L1 j 0 {s, i, j} 0
L2 j −1 {s, j} 1
L3 j 1 {s, v, j} 1

i.e. the label L contains information on the current node V (L), the cost c(L), the visited nodes
V (L) = {s, . . . } and the number of visits TS(L) to S since the last penalty was paid.
Although the path visiting nodes s, i and j costs −2 label L1 pays the penalty of −σ = 2 since
two nodes in the SR-inequality were visited. Normally L2 would dominate L1 since it is cheaper,
but since TS(L2) > TS(L1) a temporary penalty of 2 must be paid according to (41), hence L2 is
not cheaper than L1 and does not dominate L1. Had the path of L2 been one unit cheaper, it
would have dominated L1 even though a penalty for the unvisited SR-inequality was paid.
L3 is dominated by L1 since the cost of L1 is smaller than that of L3 although a penalty for the
SR-inequality was paid by L1 and not L3. Note that L3 is also dominated by L2.

Extending the remaining labels L1 and L2 to node h gives:

L V (L) c(L) V (L) TS(L)
L4 u −1 {s, i, j, h} 1
L5 u 0 {s, j, h} 0

Although the parent labels of L4 and L5 could not dominate each other, it is now possible for L4

to dominate L5 even though L4 is closer to paying the penalty of the SR-inequality. However, it
was previously observed that if enough nodes of a SR-inequality could not be reached to trigger a
penalty, it could be disregarded which is the case here since only t can be reached from h. Finally
label L4 is extended to t and the shortest path becomes {s, i, j, h, t} with a reduced cost of −2.

5. Computational Results

The BCP algorithm has been implemented using the BCP framework and the open source linear
programming solver CLP, both parts of the framework COIN (2005). All tests are run on an Intel r©
Pentium r© 4 3.0 GHz PC with 4 GB of memory.

The benchmarks of Solomon (1987) follow a naming convention of DTm.n. The distribution D

can be R, C and RC, where the C instances have a clustered distribution of customers, the R
instances have a random distribution of customers, and the RC instances are a mix of clustered
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and randomly distributed customers. The time window T is either 1 or 2, where instances of type
1 have tighter time windows than instances of type 2. The instance number is given by m and the
number of customers is given by n.

The outline of the BCP algorithm presented in this paper is as follows:

1. Choose an unprocessed branch node. If the lower bound is above the upper bound, then
fathom branch node.

2. Solve the LP master problem.
3. Solve the pricing problem heuristically. If any columns with negative reduced cost is found,

then add them to the master problem and go back to Step 2.
4. Solve the pricing problem to optimality. Update lower bound. If the lower bound is above

the upper bound, then fathom branch node. If columns are found, then add them to the master
problem and go to Step 2.

5. Separate SR-inequalities. If any violated cuts are found, then add them to the master problem
and go to Step 2.

6. If the LP solution is fractional, then add the children to the unprocessed branch node and
mark the current node as processed.

We allow a maximum of 400 variables and 50 cuts to be generated in each of steps 4, 5, and 6
respectfully. The pricing problem heuristic is based on the label setting algorithm but a simpler
heuristic dominance criteria is used. If a label Li dominates Lj on cost, demand and time it is
regarded as dominated and Lj is discarded. That is, no concern is taken to the node resources.
The separation of SR-inequalities are done with a complete enumeration of all inequalities with
n = 3 and k = 2. Let B be the set of basis variables in the current LP solution and C be the
set of customers then the separation can be done in O(|C|3|B|). Preliminary tests showed that
SR-inequalities with different values of n and k seldom appeared in the VRPTW instances, hence
no separation of these inequalities was done.

The branch tree is explored with a best-bound search strategy, i.e., the node with the lowest
lower bound is chosen first, breaking ties based on the LP result of the strong branching. We have
adapted the branching rule used by Fukasawa et al. (2005): For a subset of customers S ⊂ C the
number of vehicles to visit that set is either two or greater than or equal to four, i.e.,

∑

k∈K

∑

i∈S

∑

j∈V \S

(xijk +xjik) = 2

and
∑

k∈K

∑

i∈S

∑

j∈V \S

(xijk +xjik)≥ 4

We are using the cut library of Lysgaard (2003) to separate candidate sets for branching, which is
an implementation of the heuristic methods described in Lysgaard et al. (2004).

5.1. Running times

To give a fair comparison between running times of our algorithm and the two most recent algo-
rithms presented by Irnich and Villeneuve (2006) and Chabrier (2005) the CPU speed is taken
into account. This is done according to the CPU2000 benchmarks reported by The Standard
Performance Evaluation Corporation SPEC (2005). Table 1 gives the integer and floating point
benchmark scores and a normalized value, e.g. our computations were carried out on a computer
approximately five times faster than that of Irnich and Villeneuve.
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Table 1 Comparison of computer speed.

Author(s) CPU SpecINT SpecCFP Normalized

Irnich and Villeneuve P3 600 MHz∗ 295 204 1.0
Chabrier P4 1.5 GHz 526 606 2.4
Jepsen et al. P4 3.0 GHz 1152 1201 4.9

Based on CPU2000 benchmarks from SPEC (2005). (∗) benchmarks are given
for P3 650 MHz since no benchmarks were available for P3 600. The normalized
value is an average of SpecINT and SpecCFP.

A comparison of running times is shown in Table 2. We regard the Solomon instances that were
closed by either Irnich and Villeneuve or Chabrier and have been solved by us. Hence we consider
these instances to be among the hardest solvable of the Solomon benchmarks.

Table 2 Comparison of running time for instances recently solved by at least
two of the references Irnich and Villeneuve (2006), Chabrier (2005) and
Jepsen et al..

Irnich and Villeneuve Chabrier Jepsen et al.

Instance Time (s) Time (s) Time (s) Speedup

R104.100 268106.0 - 32343.9 1.7 / -

RC104.100 986809.0 - 65806.8 3.1 / -
RC107.100 42770.7 - 153.8 56.8 / -
RC108.100 71263.0 - 3365.0 4.3 / -

R203.50 217.1 3320.9 50.8 0.9 / 32.0
R204.25 123.1 171.6 7.5 3.3 / 11.1
R205.50 585.7 531.0 15.5 7.7 / 16.8
R206.50 22455.3 4656.1 190.9 24.0 / 11.9
R208.25 321.9 741.5 ∗

2.9 22.7 / 125.2
R209.50 142.4 195.4 16.6 1.8 / 5.8
R210.50 11551.4 65638.6 ∗

332.7 7.1 / 96.6
R211.50 21323.0 - 10543.8 0.4 / -

RC202.50 241.6 13.0
∗10.7 4.6 / 0.6

RC202.100 124018.0 19636.5 312.6 194.3 / 30.8
RC203.25 1876.0 5.1 ∗

0.7 531.7 / 3.5
RC203.50 54229.2 4481.5 ∗

190.9 58.2 / 11.4
RC204.25 - 13.0 ∗

2.0 - / 3.2
RC205.50 52.6 10.6

∗5.9 1.8 / 0.9
RC205.100 13295.9 15151.7 221.2 12.3 / 33.5
RC206.50 469.1 9.4

∗8.2 12.4 / 0.6
RC207.50 - 71.1 ∗

21.5 - / 1.6
RC208.25 - 33785.3 78.4 - / 211.1

Speedup is calculated based on the normalized values in Table 1 and are versus Irnich and
Villeneuve and Chabrier respectively. Results with (∗) are based on an algorithm without
the SR-inequalities. Results in boldface indicate the fastest algorithm after normalization.
(-) indicates that no running times were provided by the author(s) or that the instance was
not solved.

As indicated by the table our algorithm outperforms those of Irnich and Villeneuve and Chabrier
for 17 out of 22 instances. Seven of these instances were solved without any SR-inequalities. In this
case, the faster running time is mainly due to the bi-directional label setting algorithm.
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With the introduction of SR-inequalities our algorithm becomes competitive with the algorithm
based on solving k-cyc-SPPRC (e.g., instances R104.100, RC104.100, RC107.100, RC108.100, and
R211.50) and clearly outperforms the ESPPRC based algorithm on the harder instances (e.g.,
instances R210.50, RC202.100, RC205.100, and RC208.25).

5.2. Comparing lower bounds in the root node

Table 3 reports the lower bounds obtained in the root node of the master problem with and without
SR-inequalities and with best bounds obtained by Irnich and Villeneuve (2006) using k-cyc-SPPRC.
Again we only report results on what we consider the hard instances.

Table 3 Comparing root lower bounds on Solomon instances
closed by either Irnich and Villeneuve (2006), Chabrier
(2005) or Jepsen et al..

Irnich and Villeneuve Jepsen et al.

Instance UB k LB LB(1) LB(2)

R104.100 971.5 3 955.8 956.9 971.3
R108.100 932.1 4 913.9 913.6 932.1

R112.100 948.6 3 925.9 926.8 946.7

RC104.100 1132.3 3 1114.4 1101.9 1129.9
RC106.100 1372.7 4 1343.1 1318.8 1367.3
RC107.100 1207.8 4 1195.4 1183.4 1207.8

RC108.100 1114.2 3 1100.5 1073.5 1114.2

R202.100 1029.6 0 933.5 1022.3 1027.3
R203.50 605.3 4 598.6 598.6 605.3

R203.100 870.8 2 847.1 867.0 870.8

R204.25 355.0 4 349.1 350.5 355.0

R205.50 690.1 4 682.8 682.9 690.1

R206.50 632.4 4 621.3 626.4 632.4

R207.50 575.5 4 557.4 564.1 575.5

R208.25 328.2 4 327.1 328.2 328.2

R209.50 600.6 4 599.9 599.9 600.6

R209.100 854.8 3 834.4 841.5 854.4
R210.50 645.6 4 633.1 636.1 645.3
R211.50 535.5 4 526.0 528.7 535.5

RC202.50 613.6 4 604.5 613.6 613.6

RC202.100 1092.3 3 1055.0 1088.1 1092.3

RC203.25 326.9 4 297.7 326.9 326.9

RC203.50 555.3 4 530.0 555.3 555.3

RC203.100 923.7 0 693.7 922.6 923.7

RC204.25 299.7 4 266.3 299.7 299.7

RC205.50 630.2 4 630.2 630.2 630.2

RC205.100 1154.0 3 1130.5 1147.7 1154.0

RC206.50 610.0 4 597.1 610.0 610.0

RC206.100 1051.1 3 1017.0 1038.6 1051.1

RC207.50 558.6 4 504.9 558.6 558.6

RC208.25 269.1 4 238.3 269.1 269.1

RC208.50 476.7 3 422.3 472.3 476.7

LB by Irnich and Villeneuve is the best lower bound obtained with k-
cyc-SPPRC and valid inequalities, LB(1) is with ESPPRC and LB(2) is
with ESPPRC and SR-inequalities. Lower bounds in boldface indicates
lower bounds equal to the upper bound. Instances in boldface are the
Solomon instances closed by Jepsen et al.
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As seen, the lower bounds obtained with SR-inequalities are improved quite significantly for most
of the instances. Moreover in most cases the problems are solved without branching. Out of the 32
instances considered the gap was closed in the root node in 8 instances due to the ESPPRC and
in an additional 16 instances due to the SR-inequalities. However, one needs to take into account
that the running time of solving the root node is increased due to the increased difficulty of the
pricing problems.

5.3. Closed Solomon’s instances

Table 4 gives an overview of how many instances were solved for each class of the Solomon instances.
We were able to close 10 previously unsolved instances. We did not succeed to solve four previously
solved instances (R204.50, C204.50, C204.100, and RC204.50).

Table 4 Summery of solved Solomona instances.

25 customers 50 customers 100 customers

Class No. Prev. Jepsen et al. Prev. Jepsen et al. Prev Jepsen et al.

R1 12 12 12 12 12 10 12
C1 9 9 9 9 9 9 9
RC1 8 8 8 8 8 7 8

R2 11 11 11 9 9 1 4
C2 8 8 8 8 7 8 7
RC2 8 8 8 7 7 3 5

Summary 56 56 56 53 52 38 45

No. is the number of instances in that class, and for 25, 50 and 100 customers the two
columns refers to the number of instances previously solved to optimality and the number of
instances solved to optimality by Jepsen et al.

Information on all solved Solomon instances can be found in Tables 6–8 in Appendix A. Further-
more Table 5 provides detailed information of the instances closed by Jepsen et al.. The solutions
can be found in Tables 9–18 in Appendix B.

Table 5 Instances closed by Jepsen et al..

Instance UB LB Vehicles Tree LP Timeroot(s) Timevar(s) TimeLP(s) Time (s)

R108.100 932.1 932.1 10 1 132 5911.71 5796.04 77.36 5911.74
R112.100 948.6 946.7 10 9 351 55573.68 199907.03 1598.63 202803.94
RC106.100 1372.7 1367.3 12 37 1035 298.92 4461.64 5214.08 15891.55
R202.100 1029.6 1027.3 8 13 514 974.51 730.04 4810.47 8282.38
R203.100 870.8 870.8 6 1 447 54187.15 48474.45 3973.42 54187.40
R207.50 575.5 575.5 3 1 107 34406.92 34282.47 118.69 34406.96
R209.100 854.8 854.4 5 3 337 31547.45 74779.58 2978.42 78560.47
RC203.100 923.7 923.7 5 1 402 14917.18 13873.53 1025.65 14917.36
RC206.100 1051.1 1051.1 7 1 179 339.63 159.33 171.34 339.69
RC208.50 476.7 476.7 3 1 138 1639.35 1605.40 31.70 1639.40

UB is the optimal solution found by us, LB is lower bound at the root node, Vehicles is the number of
vehicles in the solution, Tree is the number of branch nodes, LP is the number of LP iterations, Timeroot is the
time solving the root node, Timevar is time spent solving the pricing problem, TimeLP is the time spent solving
LP problems, and Time is the total time.
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6. Concluding Remarks

The introduction of the SR-inequalities significantly improved the results of the BCP algorithm.

This made it possible to solve 10 previously unsolved instances from the Solomon’s benchmarks.

Except for four cases (R204.50, C204.50 and C204.100 solved with k-cyc-SPPRC by Irnich and

Villeneuve (2006) and RC204.50 solved by Danna and Pape (2005)) our BCP algorithm is compet-

itive and in most cases superior to earlier algorithms within this field. With minor modifications

in the definition of the conflict graph the SR-inequalities can be applied to the k-cyc-SPPRC algo-

rithm using the same cost modified dominance criteria as described in this paper. Preliminary

results by Jepsen et al. (2005) have shown that the lower bounds obtained in a BCP algorithm

for VRPTW using the k-cyc-SPPRC algorithm and SR-inequalities are almost as good as those

obtained using the approach presented in this paper. This seems to be a promising direction of

research in order to solve large VRPTW instances, since the ESPPRC algorithm is considerably

slower than the k-cyc-SPPRC algorithm when the number of customers increases.

Moreover, we note that the SR-inequalities can be applied to any Set Packing Problem. That

is, they can be used in BCP algorithms for other problems with a Set Packing Problem master

problem. One only needs to consider how the dual variables of the SR-inequalities are handled

in the pricing problems, however this is not necessarily trivial and must be investigated for the

individual pricing problems.

Adding SR-inequalities to the master problem means that the pricing problem becomes a shortest

path problem with non-additive constraints or objective function. By modifying the dominance

criteria, we have shown that this is tractable in a label setting algorithm. A further discussion

of shortest path problems with various non-additive constraints can be found in Reinhardt and

Pisinger (2006). The development of algorithms which efficiently handle non-additive constraints

is important to increase the number of valid inequalities which can be handled in a non-robust

BCP algorithm.

Appendix A: Results on Solomon’s instances

This appendix contains detailed information about solved Solomon benchmark instances. The first

column of the tables is the instance name, then three columns for the branch-and-cut-and-price

algorithm with ESPPRC and with ESPPRC and SR-inequalities follows. The columns are the lower

bound in the rot node, the number of branch tree nodes and the total running time. A (-) means

that the instance was not solved and a (d.o.) means no cuts were generated, hence the results are

identical with the first columns. The last two columns are the optimal upper bound and a reference

to the authors who were the first to solve that instance. The author legend is:

C: Chabrier (2005)
CR: Cook and Rich (1999)
DLP: Danna and Pape (2005)
IV: Irnich and Villeneuve (2006)
JPSP: Jepsen et al.
KDMSS: Kohl et al. (1999)
KLM: Kallehauge et al. (2000)
L: Larsen (1999)
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Table 6 Instances with 25 customers.

with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 617.1 1 0.02 d.o. 617.1 KDMSS
R102 546.4 3 0.13 547.1 1 0.09 547.1 KDMSS
R103 454.6 1 0.11 d.o. 454.6 KDMSS
R104 416.9 1 0.12 d.o. 416.9 KDMSS
R105 530.5 1 0.02 d.o. 530.5 KDMSS
R106 457.3 5 0.29 465.4 1 0.10 465.4 KDMSS
R107 424.3 1 0.12 d.o. 424.3 KDMSS
R108 396.9 3 0.31 397.3 1 0.24 397.3 KDMSS
R109 441.3 1 0.06 d.o. 441.3 KDMSS
R110 438.4 17 1.16 444.1 3 0.29 444.1 KDMSS
R111 427.3 3 0.23 428.8 1 0.13 428.8 KDMSS
R112 387.1 13 1.19 393.0 1 0.52 393.0 KDMSS

C101 191.3 1 0.13 d.o. 191.3 KDMSS
C102 190.3 1 0.53 d.o. 190.3 KDMSS
C103 190.3 1 0.80 d.o. 190.3 KDMSS
C104 186.9 1 3.29 d.o. 186.9 KDMSS
C105 191.3 1 0.17 d.o. 191.3 KDMSS
C106 191.3 1 0.14 d.o. 191.3 KDMSS
C107 191.3 1 0.20 d.o. 191.3 KDMSS
C108 191.3 1 0.37 d.o. 191.3 KDMSS
C109 191.3 1 0.62 d.o. 191.3 KDMSS

RC101 406.7 5 0.20 461.1 1 0.09 461.1 KDMSS
RC102 351.8 1 0.05 d.o. 351.8 KDMSS
RC103 332.8 1 0.19 d.o. 332.8 KDMSS
RC104 306.6 1 0.52 d.o. 306.6 KDMSS
RC105 411.3 1 0.06 d.o. 411.3 KDMSS
RC106 345.5 1 0.10 d.o. 345.5 KDMSS
RC107 298.3 1 0.29 d.o. 298.3 KDMSS
RC108 294.5 1 0.67 d.o. 294.5 KDMSS

R201 460.1 3 0.44 463.3 1 0.27 463.3 CR+KLM
R202 410.5 1 0.61 d.o. 410.5 CR+KLM
R203 391.4 1 0.80 d.o. 391.4 CR+KLM
R204 350.5 19 18.40 355.0 1 7.51 355.0 IV+C
R205 390.6 3 1.62 393.0 1 1.06 393.0 CR+KLM
R206 373.6 3 1.67 374.4 1 0.93 374.4 CR+KLM
R207 360.1 5 4.03 361.6 1 1.39 361.6 KLM
R208 328.2 1 2.87 d.o. 328.2 IV+C
R209 364.1 9 4.99 370.7 1 2.26 370.7 KLM
R210 404.2 3 1.52 404.6 1 1.04 404.6 CR+KLM
R211 341.4 29 38.17 350.9 1 22.62 350.9 KLM

C201 214.7 1 0.84 d.o. 214.7 CR+L
C202 214.7 1 3.00 d.o. 214.7 CR+L
C203 214.7 1 3.02 d.o. 214.7 CR+L
C204 213.1 1 7.00 d.o. 213.1 CR+KLM
C205 214.7 1 1.10 d.o. 214.7 CR+L
C206 214.7 1 1.75 d.o. 214.7 CR+L
C207 214.5 1 2.70 d.o. 214.5 CR+L
C208 214.5 1 1.85 d.o. 214.5 CR+L

RC201 360.2 1 0.25 d.o. 360.2 CR+L
RC202 338.0 1 0.58 d.o. 338.0 CR+KLM
RC203 326.9 1 0.72 d.o. 326.9 IV+C
RC204 299.7 1 1.95 d.o. 299.7 C
RC205 338.0 1 0.62 d.o. 338.0 L+KLM
RC206 324.0 1 0.87 d.o. 324.0 KLM
RC207 298.3 1 0.88 d.o. 298.3 KLM
RC208 269.1 1 78.42 d.o. 269.1 C
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Table 7 Instances with 50 customers.

with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1043.4 3 0.14 1044.0 1 0.09 1044.0 KDMSS
R102 909.0 1 0.27 d.o. 909.0 KDMSS
R103 769.3 13 4.98 772.9 1 2.02 772.9 KDMSS
R104 619.1 21 33.29 625.4 1 6.73 625.4 KDMSS
R105 892.2 29 2.78 893.7 5 1.15 899.3 KDMSS
R106 791.4 5 1.41 793.0 1 0.83 793.0 KDMSS
R107 707.3 11 5.56 711.1 1 4.76 711.1 KDMSS
R108 594.7 789 1723.29 607.4 23 1601.68 617.7 CR+KLM
R109 775.4 77 20.11 783.3 7 11.54 786.8 KDMSS
R110 695.1 9 3.38 697.0 1 1.46 697.0 KDMSS
R111 696.3 41 19.21 707.2 1 3.67 707.2 CR+KLM
R112 614.9 165 169.26 630.2 1 35.67 630.2 CR+KLM

C101 362.4 1 0.47 d.o. 362.4 KDMSS
C102 361.4 1 1.59 d.o. 361.4 KDMSS
C103 361.4 1 6.06 d.o. 361.4 KDMSS
C104 358.0 1 1564.88 d.o. 358.0 KDMSS
C105 362.4 1 0.49 d.o. 362.4 KDMSS
C106 362.4 1 0.69 d.o. 362.4 KDMSS
C107 362.4 1 0.97 d.o. 362.4 KDMSS
C108 362.4 1 1.55 d.o. 362.4 KDMSS
C109 362.4 1 3.62 d.o. 362.4 KDMSS

RC101 850.1 39 5.60 944.0 1 2.12 944.0 KDMSS
RC102 721.9 127 60.41 822.5 1 8.68 822.5 KDMSS
RC103 645.3 9 8.56 710.9 1 40.05 710.9 KDMSS
RC104 545.8 1 5.71 d.o. 545.8 KDMSS
RC105 761.6 21 7.22 855.3 1 4.31 855.3 KDMSS
RC106 664.5 11 3.35 723.2 1 3.88 723.2 KDMSS
RC107 603.6 7 4.60 642.7 1 4.49 642.7 KDMSS
RC108 541.2 5 15.88 594.8 5 260.95 598.1 KDMSS

R201 791.9 1 4.97 d.o. 791.9 CR+KLM
R202 698.5 1 9.88 d.o. 698.5 CR+KLM
R203 598.6 25 355.99 605.3 1 50.80 605.3 IV+C
R204 - - 506.4 IV
R205 682.9 35 118.12 690.1 1 15.45 690.1 IV+C
R206 626.4 47 288.00 632.4 1 190.86 632.4 IV+C
R207 564.1 141 15400.44 575.5 1 34406.96 575.5 JPSP

R208 - - - -
R209 599.9 3 24.45 600.6 1 16.63 600.6 IV+C
R210 636.1 49 332.70 645.3 3 18545.61 645.6 IV+C
R211 528.7 31 44644.89 535.5 1 10543.81 535.5 IV+DLP

C201 360.2 1 42.07 d.o. 360.2 CR+L
C202 360.2 1 67.05 d.o. 360.2 CR+KLM
C203 359.8 1 214.88 d.o. 359.8 CR+KLM
C204 - - 350.1 KLM
C205 359.8 1 64.18 d.o. 359.8 CR+KLM
C206 359.8 1 38.91 d.o. 359.8 CR+KLM
C207 359.6 1 72.81 d.o. 359.6 CR+KLM
C208 350.5 1 55.79 d.o. 350.5 CR+KLM

RC201 684.8 1 3.00 d.o. 684.8 L+KLM
RC202 613.6 1 10.69 d.o. 613.6 IV+C
RC203 555.3 1 190.88 d.o. 555.3 IV+C
RC204 - - 442.2 DLP
RC205 630.2 1 5.88 d.o. 630.2 IV+C
RC206 610.0 1 8.17 d.o. 610.0 IV+C
RC207 558.6 1 21.53 d.o. 558.6 C
RC208 - 476.7 1 1639.40 476.7 JPSP
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Table 8 Instances with 100 customers.

with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1631.2 57 20.08 1634.0 3 1.87 1637.7 KDMSS
R102 1466.6 1 4.39 d.o. 1466.6 KDMSS
R103 1206.8 19 55.78 1208.7 1 23.85 1208.7 CR+L
R104 - 971.3 3 32343.92 971.5 IV
R105 1346.2 113 126.96 1355.2 5 43.12 1355.3 KDMSS
R106 1227.0 147 511.07 1234.6 1 75.42 1234.6 CR+KLM
R107 - 1064.3 3 1310.30 1064.6 CR+KLM
R108 - 932.1 1 5911.74 932.1 JPSP

R109 - 1144.1 19 1432.41 1146.9 CR+KLM
R110 - 1068.0 3 1068.31 1068.0 CR+KLM
R111 - 1045.9 39 83931.48 1048.7 CR+KLM
R112 - 946.7 9 202803.94 948.6 JPSP

C101 827.3 1 3.02 d.o. 827.3 KDMSS
C102 827.3 1 12.92 d.o. 827.3 KDMSS
C103 826.3 1 33.89 d.o. 826.3 KDMSS
C104 822.9 1 4113.09 d.o. 822.9 KDMSS
C105 827.3 1 5.34 d.o. 827.3 KDMSS
C106 827.3 1 7.15 d.o. 827.3 KDMSS
C107 827.3 1 6.55 d.o. 827.3 KDMSS
C108 827.3 1 14.46 d.o. 827.3 KDMSS
C109 827.3 1 20.53 d.o. 827.3 KDMSS

RC101 1584.1 59 56.62 1619.8 1 12.39 1619.8 KDMSS
RC102 - 1457.4 1 76.69 1457.4 CR+KLM
RC103 - 1257.7 3 2705.78 1258.0 CR+KLM
RC104 - 1129.9 7 65806.79 1132.3 IV
RC105 1472.0 191 309.83 1513.7 1 26.73 1513.7 KDMSS
RC106 - 1367.3 37 15891.55 1372.7 JPSP

RC107 - 1207.8 1 153.80 1207.8 IV
RC108 - 1114.2 1 3365.00 1114.2 IV

R201 - 1143.2 1 139.03 1143.2 KLM
R202 - 1027.3 13 8282.38 1029.6 JPSP

R203 - 870.8 1 54187.40 870.8 JPSP

R204 - - - -
R205 - - - -
R206 - - - -
R207 - - - -
R208 - - - -
R209 - 854.8 3 78560.47 854.8 JPSP

R210 - - - -
R211 - - - -

C201 589.1 1 203.34 d.o. 589.1 CR+KLM
C202 589.1 1 3483.15 d.o. 589.1 CR+KLM
C203 588.7 1 13070.71 d.o. 588.7 KLM
C204 - - 588.1 IV
C205 586.4 1 416.56 d.o. 586.4 CR+KLM
C206 586.0 1 594.92 d.o. 586.0 CR+KLM
C207 585.8 1 1240.97 d.o. 585.8 CR+KLM
C208 585.8 1 555.27 d.o. 585.8 KLM

RC201 - 1261.7 3 229.27 1261.8 KLM
RC202 - 1092.3 1 312.57 1092.3 IV+C
RC203 922.6 11 34063.95 923.7 1 14917.36 923.7 JPSP

RC204 - - - -
RC205 - 1154.0 1 221.24 1154.0 IV+C
RC206 - 1051.1 1 339.69 1051.1 JPSP

RC207 - - - -
RC208 - - - -
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Appendix B: Solutions of closed Solomon instances

Table 9 Solution of R108.100.

Cost Route

8.8 53
119.2 70, 30, 20, 66, 65, 71, 35, 34, 78, 77 , 28
105.4 92, 98, 91, 44, 14, 38, 86, 16, 61, 85 ,100, 37
84.1 2, 57, 15, 43, 42, 87, 97, 95, 94, 13 , 58

106.5 73, 22, 41, 23, 67, 39, 56, 75, 74, 72 , 21, 40
114.6 52, 88, 62, 19, 11, 64, 63, 90, 32, 10 , 31
78.4 6, 96, 59, 99, 93, 5, 84, 17, 45, 83 , 60, 89

107.3 26, 12, 80, 68, 29, 24, 55, 4, 25, 54
93.2 27, 69, 76, 3, 79, 9, 51, 81, 33, 50 , 1

114.6 18, 7, 82, 8, 46, 36, 49, 47, 48

932.1 10

The left column is the cost of the routes and the total
cost. The right column is a comma separated list of the
customers visited on the routes and the total number of
routes in the last row.

Table 10 Solution of R112.100.

Cost Route

78.1 6, 94, 95, 87, 42, 43, 15, 57, 58
115.8 2, 41, 22, 75, 56, 23, 67, 39, 25, 55 , 54
117.4 28, 76, 79, 78, 34, 35, 71, 65, 66, 20 , 1
128.2 31, 62, 19, 11, 63, 64, 49, 36, 47, 48
62.8 53, 40, 21, 73, 74, 72, 4, 26
98.0 52, 88, 7, 82, 8, 46, 45, 17, 84, 5 , 89
76.4 12, 80, 68, 24, 29, 3, 77, 50

100.5 61, 16, 86, 38, 14, 44, 91,100, 37, 59 , 96
67.6 18, 83, 60, 99, 93, 85, 98, 92, 97, 13

103.8 27, 69, 33, 81, 9, 51, 30, 32, 90, 10 , 70

948.6 10
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Table 11 Solution of RC106.100.

Cost Route

133.4 65, 52, 87, 59, 75, 97, 58, 74
86.5 61, 81, 94, 67, 93, 96, 54

126.0 11, 12, 14, 47, 15, 16, 9, 10, 13, 17
103.4 82, 99, 86, 57, 22, 49, 20, 24
109.4 2, 45, 5, 8, 7, 6, 46, 4, 3, 1,100
105.6 92, 95, 63, 85, 76, 51, 84, 56, 66
131.6 42, 44, 39, 40, 36, 38, 41, 43, 37, 35
127.9 62, 33, 28, 26, 27, 34, 50, 91, 80
130.8 83, 64, 19, 23, 21, 18, 48, 25, 77
160.6 72, 71, 31, 29, 30, 32, 89
91.6 69, 98, 88, 78, 73, 79, 60
65.9 90, 53, 55, 70, 68

1372.7 12

Table 12 Solution of R202.100.

Cost Route

8.8 53
93.6 52, 62, 63, 90, 10, 32, 70

177.2 83, 45, 82, 48, 47, 36, 19, 11, 64, 49, 46, 17, 5, 60, 89
223.8 50, 33, 65, 71, 29, 76, 3, 79, 78, 81, 9, 51, 20, 66, 35, 34, 68, 77
140.2 27, 69, 1, 30, 31, 88, 7, 18, 8, 84, 86, 91,100, 37, 98, 93, 59, 94
67.1 40, 73, 41, 22, 74, 2, 58

148.9 28, 26, 21, 72, 75, 39, 67, 23, 56, 4, 54, 55, 25, 24, 80, 12
170.0 95, 92, 42, 15, 14, 38, 44, 16, 61, 85, 99, 96, 6, 87, 57, 43, 97, 13

1029.6 8

Table 13 Solution of R203.100.

Cost Route

24.2 53, 40, 58
142.1 27, 69, 1, 76, 3, 79, 78, 81, 9, 66, 71, 35, 34, 29, 68, 77, 28
187.3 89, 18, 45, 46, 36, 47, 48, 19, 11, 62, 88, 7, 82, 8, 83, 60, 5, 84, 17, 61, 91,100, 37, 98, 93, 59, 94
183.3 95, 92, 97, 42, 15, 43, 14, 44, 38, 86, 16, 85, 99, 96, 6, 87, 57, 41, 22, 74, 73, 2, 13
190.3 50, 33, 51, 71, 65, 20, 30, 32, 90, 63, 64, 49, 10, 70, 31, 52
143.6 26, 21, 72, 75, 39, 67, 23, 56, 4, 55, 25, 54, 24, 80, 12

870.8 6
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Table 14 Solution of R207.50.

Cost Route

202.5 27, 31, 7, 48, 47, 36, 46, 45, 8, 18 , 6, 37, 44, 14, 38, 16, 17, 5, 13
130.5 2, 42, 43, 15, 23, 39, 22, 41, 21, 40
242.5 28, 12, 3, 33, 50, 1, 30, 11, 49, 19 , 10, 32, 20, 9, 35, 34, 29, 24, 25, 4, 26

575.5 3

Table 15 Solution of R209.100.

Cost Route

146.8 52, 7, 82, 83, 18, 6, 94, 13, 87, 57, 15, 43, 42, 97, 92, 37,100, 91, 93, 96
198.7 95, 99, 59, 98, 85, 5, 84, 61, 16, 44, 14, 38, 86, 17, 45, 8, 46, 36, 49, 48, 60, 89
205.9 27, 69, 31, 88, 62, 47, 19, 11, 64, 63, 90, 30, 51, 71, 9, 81, 33, 79, 3, 77, 68, 80, 24, 54, 26
157.6 28, 12, 76, 29, 78, 34, 35, 65, 66, 20, 32, 10, 70, 1, 50
145.8 40, 2, 73, 21, 72, 75, 23, 67, 39, 25, 55, 4, 56, 74, 22, 41, 58, 53

854.8 5

Table 16 Solution of RC203.100.

Cost Route

139.4 81, 54, 72, 37, 36, 39, 42, 44, 41, 38, 40, 35, 43, 61, 68
172.8 90, 65, 83, 64, 85, 63, 89, 76, 23, 21, 48, 18, 19, 49, 22, 20, 51, 84, 56, 66
241.4 69, 98, 88, 53, 82, 99, 52, 86, 87, 9, 10, 47, 17, 13, 74, 59, 97, 75, 58, 77, 25, 24, 57
211.0 1, 3, 5, 45, 60, 12, 11, 15, 16, 14, 78, 73, 79, 7, 6, 8, 46, 4, 2, 55,100, 70
159.1 91, 92, 95, 62, 33, 32, 30, 27, 26, 28, 29, 31, 34, 50, 67, 94, 93, 71, 96, 80

923.7 5

Table 17 Solution of RC206.100.

Cost Route

8.4 90
186.6 81, 94, 67, 84, 85, 51, 76, 89, 48, 25 , 77, 58, 74
168.6 92, 71, 72, 42, 39, 38, 36, 40, 44, 43 , 41, 37, 35, 54, 93, 96
180.9 65, 83, 64, 95, 62, 63, 33, 30, 31, 29 , 27, 28, 26, 32, 34, 50, 56, 91, 80
189.6 61, 2, 45, 5, 8, 7, 79, 73, 78, 53 , 88, 6, 46, 4, 3, 1,100, 70, 68
120.9 82, 99, 52, 86, 57, 23, 21, 18, 19, 49 , 20, 22, 24, 66
196.1 69, 98, 12, 14, 47, 16, 15, 11, 59, 75 , 97, 87, 9, 13, 10, 17, 60, 55

1051.1 7
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Table 18 Solution of RC208.50.

Cost Route

97.0 12, 14, 47, 17, 16, 15, 13, 9, 11, 10
163.0 2, 6, 7, 8, 46, 5, 3, 45, 4, 1 , 43, 44, 42, 38, 37, 35, 36, 40, 39, 41
216.7 22, 19, 18, 21, 23, 25, 48, 49, 24, 20 , 30, 31, 29, 27, 28, 26, 33, 32, 34, 50

476.7 3
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Applied Mathematics.

Solomon, M. M. 1987. Algorithms for the vehicle routing and scheduling problem with time window con-
straints. Operations Research 35 234–265.

SPEC. 2005. Standard performance evaluation corporation. Www.spec.org.

Toth, P., D. Vigo. 2002. The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and

Applications , vol. 9. SIAM.

Wolsey, L. A. 1998. Integer Programming . John Wiley & Sons, Inc.


