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Multiple View Geometry and Global Optimization

Fredrik Kahl
Centre for Mathematical Sciences (LTH), Lund University

Resumé

In this talk, a framework for solving geometric reconstruction problems in computer
vision will be presented based on the Lp-norm of reprojection errors (for various p >=

1). That is, the goal is to minimize the differences between reprojected, hypothesized 3D
scene geometry and image measurements. While traditional algorithms often suffer from
local minima, we pursue the goal of achieving globally optimal solutions. Three different
optimization approaches will be considered, namely (i) quasi-convex optimization, (ii) LMI
relaxations and (iii) fractional programming. These schemes are applied to a number of
classical vision problems including triangulation, camera resectioning and epipolar geometry
estimation. The methods have also been validated on real data in different problem settings
with small and large dimensions and with good performance.
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Automatic Segmentation of the Articular
Cartilage in Knee MRI Using a Hierarchical

Multi-class Classification Scheme

Jenny Folkesson1, Erik Dam1,2, Ole Fogh Olsen1,
Paola Pettersen2, and Claus Christiansen2

1 Image Analysis Group, IT University of Copenhagen, Denmark
jenny@itu.dk

2 Center for Clinical and Basic Research, Ballerup, Denmark

Abstract. Osteoarthritis is characterized by the degeneration of the ar-
ticular cartilage in joints. We have developed a fully automatic method
for segmenting the articular cartilage in knee MR scans based on super-
vised learning. A binary approximate kNN classifier first roughly sepa-
rates cartilage from background voxels, then a three-class classifier as-
signs one of three classes to each voxel that is classified as cartilage by
the binary classifier. The resulting sensitivity and specificity are 90.0%
and 99.8% respectively for the medial cartilage compartments. We show
that an accurate automatic cartilage segmentation is achievable using a
low-field MR scanner.

1 Introduction

Osteoarthritis (OA) is one of the major health concerns among the elderly today
[1]. The main effects of OA is the degradation of the articular cartilage together
with remodeling and overgrowth of bone, a process causing loss of mobility of the
joints. It typically affects large weight bearing joints as hips and knees. Currently,
the treatment of OA is restricted to symptom control, because as yet there are
no disease-modifying drugs [2].

MRI allows for quantitative evaluation of the cartilage [3],[4], and cartilage
deterioration can be detected using this technique [5]. MRI also has the advan-
tage of being a non-invasive technique.

When assessing the cartilage, the MR scans can be manually segmented
slice-by-slice by experts, but for clinical studies manual methods are too time
consuming and are also prone to inter- and intra-observer variability. When au-
tomating the cartilage segmentation, the main challenges are the thin structure
of the cartilage and the low contrast between the cartilage and surrounding soft
tissues. The progression of OA is very often slow and it can take many years
before the cartilage is reduced from its typical thickness of a few millimeters to
possible total loss. It is therefore important to have high accuracy and precision
of the cartilage assessment technique in order to detect statistically significant
changes. This enables the correlation of the method with the effects of drugs, and
the evaluation of their benefit to the joint in reducing the signs of the disease.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 327–334, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

6



328 J. Folkesson et al.

Several groups have developed automated methods for cartilage segmenta-
tion. 2D methods has limited continuation between slices and since they have
to be converted into a 3D segmentation when finding for example thickness
maps, it is advantageous to perform segmentation in 3D directly. Among the
3D techniques that have been developed, Grau et al. [6] use a semi-automatic
segmentation method that is based on a watershed approach. The method is eval-
uated on 7 scans from 4 subjects and has an average sensitivity and specificity
of 90.0% and 99.9% respectively. Pakin et al. [7] have developed an automatic
segmentation method based on region growing followed by two-class clustering.
It is evaluated on one scan with resulting sensitivity and specificity of 66.2%
and 99.6%. The semi-automatic segmentation method of Warfield et al. [8], [9]
iterates between a classification step and a template registration step, and has
a lower variability compared to repeated manual segmentations on the scan it
was evaluated on. Naish et al. [10] use a data set that consists of a longitudinal
study of OA patients and local intensity changes over time is used as a measure of
cartilage degradation. However, the cartilage is manually or semi-automatically
segmented.

All of the methods mentioned (except for the one of Naish et al. but they have
not focused on the segmentation part) have only been evaluated on a handful of
scans, and the only fully automatic segmentation produces low sensitivity and
specificity values compared to the semi-automatic methods.

In this paper, we present a method for segmenting the tibial and femoral
medial cartilage in 3D MR scans of knees. The segmentation is based on an
three class approximate kNN classification scheme and is improved by selecting
the largest connected component from the result of the classification. The seg-
mentation method works directly in 3D, not in 2D slices, and is fully automatic.
This is an improvement of previous work [11] which was a method for locating
tibial medial cartilage for the initialization of a shape model, a method based
on a two class kNN classifier without any feature selection incorporated.

Our segmentation algorithm aids the automatization of cartilage assessment
and is intended for clinical studies on a low-field MR scanner. Though the image
quality of the scanner we are using is slightly lower compared to the conven-
tional high-field scanners, we propose to examine if accurate automatic cartilage
segmentation is achievable also on a low-field scanner. If such a scanner can be
used in clinical studies it would reduce the costs significantly. It has been shown
that low-field dedicated extremity MRI can provide similar information on bone
erosions and synovitis as expensive high-field MRI units [12] comparing manual
segmentations, but there has to our knowledge not been published any work
on automatic segmentation of cartilage on low-field MRI. From the automatic
segmentation, relevant quantitative measures such as the cartilage volume and
thickness can be calculated either globally or locally in a point or a small area.
In the latter case comparison between patients or temporal studies of the same
patient will require establishing geometric or anatomical correspondence either
by expert annotations or by automated modeling of landmarks. An automated
approach for this is planned for future work and will not be part of this paper.

7



Automatic Segmentation of the Articular Cartilage in Knee MRI 329

2 Methods

2.1 Image Acquisition

An Esaote C-Span low-field 0.18 T scanner dedicated to imaging of extremities
acquires Turbo 3D T1 scans (40◦ flip angle, TR 50 ms, TE 16 ms). The scans
are made through the sagittal plane with a voxel size in the range 0.7031 ×
0.7031× (0.7031/0.7813/0.8594) mm3. Among the total of 71 scans, 50 have the
resolution 0.7031×0.7031×0.7813 mm3, 3 the resolution 0.7031×0.7031×0.7031
mm3 and the remaining 18 scans have the resolution 0.7031 × 0.7031 × 0.8594
mm3. The scans all have the size 256 × 256 × 104 voxels, but we only use the
central 170 × 170 × 104 voxels because only they contain information.

The scans have been manually segmented on a slice-by-slice basis by a ra-
diologist. A scan slice with the tibial and femoral medial cartilage manually
segmented is shown in Figure 1.

Fig. 1. To the left, a slice from a knee MR scan where the tibial medial and femoral
medial cartilage is segmented manually by radiologists. The size of this slice is 170x170
pixels. To the right is the result from our automatic segmentation for the corresponding
slice. The sensitivity and specificity for this scan are 92.52% and 99.82% respectively,
with a dice similarity coefficient of 0.83.

The 71 scans in the data set are of both left and right knees. In order to
treat all scans analogously, the right knees are reflected about the center in the
sagittal plane. The test subjects are both males and females aged between 21
and 72 years. They have no or mild OA symptoms, diagnosed by radiologists as
being between 0 and 3 on the Kellgren and Lawrence Index [13].

2.2 Cartilage Classification

For the segmentation of cartilage we use an approximate kNN classifier, which is
implemented in an Approximate Nearest Neighbor (ANN) framework developed
by Mount and colleagues [14]. The ANN classifier is in principle the same as a

8



330 J. Folkesson et al.

kNN classifier, but with the modification that you can allow for a small amount
of error in the search for nearest neighbors which may improve the run time sig-
nificantly. An error bound, ε, is introduced, so instead of returning the k nearest
neighbors from a data set, the ANN search algorithm returns k points such that
the ratio of the distance between the ith reported point (1 ≤ i ≤ k) and the
true ith nearest neighbor is at most 1 + ε. We have found empirically that ex-
amining the 100 nearest neighbors yields a good balance between computational
complexity and accuracy, and we set ε = 2, a value that only marginally lowers
the accuracy while reducing computational time significantly.

In this work we examine the medial cartilage since OA is more often observed
in this compartment [15] and in particular in the medial tibial part [16], thus
these compartments are of major interest when it comes to finding disease mark-
ers for OA. In order to separate different types of cartilage from one another we
use a three class classifier, where the classes are tibial medial cartilage, femoral
medial cartilage and background.

The classification is hierarchical, and the first step is a two class classification
where the voxels are roughly separated into cartilage or background. The kNN
produces class probabilities for every voxel, and in this step we set the threshold
at 0.65 yielding a sensitivity for medial cartilage close to 99%. This also results
in a large amount of false positives, but since typically only a few percent of the
total volume within the knee belongs to the cartilage, this first step is a way of
reducing data significantly. In the second step, the voxels classified as cartilage
in the first step are reconsidered. This time we use a three class classifier, where
the three classes are tibial and femoral medial cartilage and background, and
class membership is decided based on a majority vote. The three class classifier
contains more features and the features are optimized to separate the three
classes whereas the classifier in the first step has features optimized to separate
cartilage from background. A sketch of the hierarchical classification scheme is
illustrated in Figure 2.

We have also tested a direct partitioning into the three classes, but the hier-
archical approach yields better results and is faster, since the first step has less
features and thus lower computational complexity. The classifier in the first step
has a set of 28 features compared to the three class classifier in the second step
that contains 52 features.

Cartilage

All Voxels

Background

Background Tibial Cartilage Femoral Cartilage

Fig. 2. Tree representation of the hierarchical classification scheme
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2.3 Features and Feature Selection

In order to find a feature set that performs well for our classification scheme, we
here introduce our set of candidate features and the subsets of the features that
were found from our feature selection method [17], which consists of sequential
forward selection followed by sequential backward selection.

When a radiologist examines an MR scan for cartilage, she or he takes the
location and the intensity in the image into consideration. We therefore consider
these as candidate features. Both the raw intensity and the Gaussian smoothed
intensities on three different scales (0.65mm, 1.1mm, 2.5mm) are examined.

One can also consider features that are related to the geometry of the ob-
ject in question. The 3-jet, which is all first, second and third order deriva-
tives with respect to (x, y, z) forms a basis which can describe all geometric
features up to third order [18] and are listed as candidate features. All the
derivatives mentioned in this section are Gaussian derivatives and are defined as
Ii1,...,in =

∫
Ĩ(x̄)Di1,...,ing(x̄, σ1)dx̄, where g is a Gaussian, D a differential oper-

ator and σ1 is the scale. All features are examined on the three scales, selected
to cover the range of different cartilage thicknesses, mentioned above.

Cartilage can be described as a thin curved disc in 3D. The Hessian (H),
which is the symmetric matrix containing second order derivatives with respect
to the coordinates (x, y, z),

H =

⎛

⎝
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞

⎠ ,

is therefore considered. The eigenvectors of the Hessian points in the directions
of the principal curvatures and its eigenvalues corresponds to the curvature in
those directions. A thin disc such as cartilage will locally yield one large and
two small eigenvalues. The eigenvalues as well as the three eigenvectors are
candidate features.

A feature that has been shown to be significant in the detection of thin struc-
tures such as fingerprints is the structure tensor (ST) [19]. It is a symmetric matrix
containing products of the first order derivatives convolved with a Gaussian,

ST = Gσ2 ∗

⎛

⎝
IxIx IxIy IxIz

IyIx IyIy IyIz

IzIx IzIy IzIz

⎞

⎠ ,

where σ is not necessarily the same scale as the one used for obtaining the deriva-
tives. The ST examines the local gradient distribution at each location (x, y, z).
The directions of the eigenvectors depend on the variation in the neighborhood.
The eigenvalues and eigenvectors of the ST were considered as potential features
with a combination of three scales of σ1 and three scales of σ2.

The third order derivatives with respect to (x, y, z) can be conveniently rep-
resented in the third order tensor Iijk . Examining the third order structure in the
local gradient direction (Ix, Iy , Iz) can be described using Einstein summation as

Lwww = IijkIiIjIk/(IiIi)3/2.
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The third order tensor is examined in the gradient direction on three different
scales, which were considered as possible features.

2.4 Selected Features

The features used in the two class classifier are the position in the image, the
Gaussian smoothed intensities on three different scales (0.65mm, 1.1mm, 2.5mm)
and the raw intensities, the first order Gaussian derivatives on scales 0.65mm
and 2.5mm, the eigenvalues and the eigenvector corresponding to the largest
eigenvalue of the structure tensor with σ1 = 0.65mm and σ2 = 2.5mm, and the
eigenvalues of the Hessian on scales 1.1mm and 2.5mm.

The features in the three class classifier consist of combinations of first, second
and third order Gaussian derivatives on the three different scales mentioned, the
Gaussian smoothed intensities on three different scales (0.65mm, 1.1mm, 2.5mm)
and the raw intensities, the position, the eigenvector corresponding to the largest
eigenvalue of the ST with σ1 = 0.65mm and σ2 = 1.1mm, the eigenvalues of the
ST with σ1 = 1.1mm and σ2 = 2.5mm, the eigenvalues of the Hessian on scales
1.1mm and 2.5mm.

The features selected as most significant are the Hessian and the structure
tensor along with the intensity and the position in the image. The features
were normalized between zero and one. Normalization for unit variance was
also examined, but the normalization of values between zero and one produces
slightly better results.

3 Results

From our data set of 71 scans we use 25 for training and 46 for the evaluation
of our algorithm. The results of our automatic segmentation is compared to the
manual segmentation made by radiologists, resulting in an average sensitivity
and specificity of 90.0% (±2.6% st.d.) and 99.8% (±0.06% st.d.) respectively

Fig. 3. On the left is the manually segmented medial cartilage from a knee MR scan.
To the right is the corresponding automatic segmentation. For this scan, the sensitivity
and specificity are 94.82% and 99.79% respectively, with a dice of 0.81.
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for the test set for the medial cartilage compartments. A comparison between a
golden standard segmentation and an automatically segmented knee MR scan
can be seen in Figure 3. A slice by slice comparison is displayed in Figure 1.
The dice similarity coefficient (DSC) measures spatial volume overlap between
two segmentations, A and B, and is defined as DSC(A, B) = 2×|A∩B|

|A|+|B| . The
Dice similarity coefficient between our automatic segmentation and the golden
standard segmentation is for the test set on average 0.80 (±0.03 st.d.).

4 Discussion

The average sensitivity and specificity of our method compared to the results of
methods with similar evaluation though on different data is presented in Table 1.
Comparing our method with the fully automatic segmentation algorithm (Pakin
et al. [7]), we get a distinctly higher sensitivity and a slightly better specificity.
Though slightly worse, the sensitivity and specificity of our method are compa-
rable to those of Grau et al. [6]. They have a higher volume overlap (DSC=0.90)
however their method is semi-automatic. We have evaluated our segmentation al-
gorithm on more scans than the other two methods. Some of the semi-automated

Table 1

Our method Method of Pakin [7] Method of Grau [6]
Sensitivity 90.01% 66.22% 90.03%
Specificity 99.80% 99.56% 99.87%
Data set 25+46 1 7
Interaction time 0 0 5-10 min

segmentation techniques described in section 1 have been evaluated in terms of
inter- and intra-observer variability of the method compared to manual segmen-
tation. As for our method, future work will involve inter-scan variability, and we
will also examine intra-user variability for the manual segmentations.

Our segmentation algorithm performs well compared to two leading carti-
lage segmentation schemes, which leads us to the conclusion that accurate, fully
automatic cartilage segmentation is achievable in low-field MR scanners.
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Data mining a functional neuroimaging database for functional

segregation in brain regions

Finn Årup Nielsen∗†‡, Daniela Balslev§, Lars Kai Hansen†∗

July 3, 2006

Abstract

We describe a specialized neuroinformatic data min-

ing technique in connection with a meta-analytic

functional neuroimaging database: We mine for func-

tional segregation within brain regions by identifying

journal articles that report brain activations within

the regions and clustering the abstract of the arti-

cles using non-negative matrix factorization on the

bag-of-words matrix. We divide the brain activations

reported in the articles according to the cluster as-

signment and test for difference between the spatial

distribution of the sets of activations. Among our

findings is that the memory and pain functions are

spatially segregated within the cingulate gyrus.

1 Introduction

Meta-analytic-oriented databases in functional neu-

roimaging, such as the BrainMap [1] and Brede [2]

databases, allow for automated data mining [3, 4, 5,

6]. These databases record so-called Talairach coor-

dinates (“locations”) [7] from published human brain

mapping studies made with, e.g., positron emission

tomography and functional magnetic resonance imag-

ing. The locations represent focal brain activations

and are each represented by a 3-dimensional coordi-

nate referenced with respect to a “Talairach” brain

atlas [7]. Typically a neuroanatomical term is also as-

sociated with the location. Apart from the locations

the databases contain description of the experiments

in the article that can be correlated to the spatial lo-

∗Lundbeck Foundation Center for Integrated Molecular

Brain Imaging
†Informatics and Mathematical Modelling, Technical Uni-

versity of Denmark
‡Neurobiology Research Unit, Copenhagen University Hos-

pital Rigshospitalet
§Danish Research Centre for Magnetic Resonance, Copen-

hagen University Hospital Hvidovre

cation information: For the Brede database we have

used the words from the abstracts [5] and the linkage

to a taxonomy of brain functions [6] as the basis for

automated meta-analysis.

W O RO I: 4 
Cingulate gyrus

W O ROI: 5 
Posterior cingulate gyrus

W O ROI: 8 
Anterior cingulate gyrus

W OROI: 9 
M iddle cingulate gyrus

W O ROI: 305 
Left cingulate gyrus

W O ROI: 306 
Right cingulate gyrus

W O ROI: 310 
Retrospenial cortex

W OROI: 6 
Left posterior cingulate gyrus

W OROI: 7 
Right posterior cingulate gyrus

W OROI: 100 
Left

W OROI: 101 
Right

Figure 1: Part of the brain region taxonomy around

“cingulate gyrus”.

Besides the information from published human

brain mapping studies the Brede database has a tax-

onomy for brain regions, see Fig. 1 for a part of it. It

records, e.g., that the “cingulate gyrus” is a subregion

of the “cerebral cortex” and that it is a super-region

of the “left posterior cingulate gyrus”. This hierarchy

is partially built from information in the NeuroNames

database [8] and the Mai Atlas [9]. It also maintains

the variations in the naming, for, e.g., cingulate gyrus

they are “cingulate gyri”, “gyrus cinguli”, “gyrus cin-

gularis” and “cingulate cortex”. The taxonomy does

probably not capture all relevant variations for many

brain regions.

We have previously made a focused data mining

on the posterior cingulate brain region using textual

data from the PubMed database [10]. In that work we

1
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found that memory and pain (processing) were two

prominent functions for posterior cingulate, and that

their locations were not equally distributed within

this area. Below we will make a similar data mining

restricting the analysis to data taken from the Brede

database, but expanding the data mining to incor-

porate the many areas defined in the brain region

taxonomy.

2 Method

Our method involves a number of steps that each

relies on specific information in our database as well

as statistical modeling of relations between the items:

1. Robust kernel density modeling in 3-dimensional

brain space for identification of Talairach loca-

tions of interest

(a) Select a brain region.

(b) Get naming variations for the brain region

and all its subregions.

(c) Get locations that matches one or more of

the names.

(d) Model the distribution with kernel density

modeling and discard outliers.

(e) Include locations that did not match any

name but lies in the region.

2. Text mining of abstracts

(a) Get all abstracts that are associated with

the locations.

(b) Construct a bag-of-words matrix from

words in the abstract excluding non-

important words.

(c) Cluster the abstracts

3. Robust multivariate test between sets of Ta-

lairach locations.

(a) Extract locations based on cluster assign-

ment.

(b) Compare the distribution of set of locations.

We use the data from the Brede database [2] which

recorded information from 166 journal articles with

a total of 3389 locations. The taxonomy of brain re-

gions contained 313 items. Some of these regions are

functional and cytoarchitectonic defined areas and

these were ignored. For the rest of the areas steps

1–3 listed above are independently carried out. A fi-

nal fourth step involves the sorting and intertwining

of results from all the brain regions.

After selection of a brain region r (step 1a) we

obtain the variations of names from the brain re-

gion taxonomy (step 1b). This includes variation of

names for the brain region itself as well as all its sub-

regions. For, e.g., “cingulate gyrus” this amounted

to 48 different names. We query the database for

locations where the neuroanatomical name matches

any of the variations (step 1c), and obtain a set of

Lr 3-dimensional coordinates that can be represented

in a matrix L(Lr × 3). We model this data with a

kernel density estimator and excluded the 5% most

extreme locations in terms of probability density to

get rid of outliers (step 1d) [3] giving a smaller set of

coordinates. We can augment this smaller set by in-

cluding coordinates associated with high probability

density (step 1e), adding the extra locations that did

not match any of the variations in the neuroanatom-

ical names. Some initial tests were made with the

inclusion of these locations. Often this would lead

to inclusion of location with the label of the neigh-

boring region. There are variation in the applica-

tion of the Talairach atlas: The locations in the so-

called MNI-space are converted by a Brett’s piecewise

affine transformation [11]. This will exclude some of

the variation. However, there still is some overlap

between regions when locations are collected across

studies. The result presented below are did not in-

clude this step.

When we have identified all relevant locations for

the brain region r we obtain the abstract of all the

articles that contain the locations (step 2a). A bag-

of-words matrix X(Nr×P ) is constructed by counting

the frequency of each of the P words in the Nr ab-

stracts (step 2b). A very large stop list is used to

exclude ordinary stop words as well as words for neu-

roanatomy and frequent words not associated with

human brain function. To avoid that abstracts where

some words occur with high frequency will dominate,

the element-wise square root
√

xnp is used in the fur-

ther processing.

For “clustering” the abstract (step 2c) we perform

non-negative matrix factorization (NMF) [12] with an

algorithm for updating an “Euclidean” cost function

[13]. We factorize the bag-of-words matrix into three

matrices plus a residual matrix U whose Frobenius

norm is to be minimized

WSH + U = X, (1)

2
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Figure 2: Illustration showing with arrows all the

possible comparisons performed between locations in

the NMF components (clustered articles). y-axis is

size of the NMF K and x-axis the kth component.

where W(Nr×Kr) and H(Kr×Pr) are non-negative

matrices W ≥ 0, H ≥ 0 and normalized [14],

e.g., with the vectorial 2-norm ‖wk‖2 = ‖hk‖ = 1.

S(Kr ×Kr) is a non-negative diagonal matrix. Kr is

the size of the subspace, i.e., the number of compo-

nents/topics. We distribute the scaling contained in

S equally over the two matrices W and H

w̃k = wk

√
sk (2)

h̃k = hk

√
sk. (3)

A winner-take-all function is invoked for exclusive as-

signment of each abstract n to a component k

w̆nk =

{

w̃nk if ∀k′ 6= k : w̃nk ≥ w̃nk′

0 otherwise.
(4)

A row vector hk in the H matrix contains loading for

words on the kth component. The words associated

with the highest load are used to label the component.

We vary Kr between 2 and K̃r =

⌈

√

min(Nr, Pr)

⌉

and thus generate a set of factorized matrices for each

brain region r: W̆K=2,r . . .W̆K=K̃,r. Each of the ma-

trices contains an assignment of each of the Nr arti-

cles to a specific component/topic, and we construct

sets of articles for the kth component in the K-sized

NMF for the rth brain region:

Ak,K,r = {n : w̆n,k,K,r > 0} (5)

All locations from these articles are extracted. All

combination of two sets of location within each brain

region and within each of the K-sized NMF are com-

pared, Ak,K,r ↔ Ak′,K,r, e.g., for an NMF with five

components (K = 5) that gives K!/(2(K − 2)!) = 10

comparisons. We perform this procedure for all the

different sizes of NMF subspaces, see Fig. 2 for an

illustration with K̃ = 4.

For comparison of the distributions between two

sets of locations we perform multivariate statistical

tests in 3-dimensional Talairach space. We apply the

Hotelling’s T 2
test [15] and a Monte Carlo permu-

tation test on the “peeling mean” [15, p. 111–112].

The peeling mean provides a robust estimate of the

mode by successively deleting the convex hull layers

of the data points and taking the mean of the points

associated with the last and innermost convex hull

[16], see Fig. 3. The permutation test on the peel-

ing mean is performed by randomizing the locations

between the two sets. This test is performed since

the Hotelling’s T 2
is not reliable with non-Gaussian

distributed locations.

The Hotelling’s T 2
test is applied in two different

ways: The first computes the test statistics from the

original two sets of locations and the second computes

it by first finding the average within each article and

then making the test statistics based on the two sets

of averages. The latter way is to ensure that an ar-

ticle containing many coordinates in a specific area

will not dominate the test statistics. Neither of the

three tests allows us to say in which way two sets of

coordinates differ.

We use an Internet search engine reporting style,

where results are reported in a sorted list with the

most relevant information on the top. The results we

will present are ordered according to a conjunction

P -value, where the resulting P -value is the maximum

across the P -values from the three different statistical
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# P-values (First set) - (Second set) - Brain region

-----------------------------------------------------------------------

1 0.000 0.000 0.000 (pain, painful, 211) - (visual, eye, 565) - Cerebral Cortex (14)

2 0.000 0.000 0.000 (pain, painful, 230) - (visual, eye, 587) - Telencephalon (13)

3 0.000 0.000 0.002 (pain, painful, 97) - (memory, retrieval, 141) - Cingulate gyrus (4)

4 0.000 0.002 0.003 (pain, painful, 269) - (visual, eye, 607) - Forebrain (12)

5 0.000 0.005 0.000 (expressions, facial, 15) - (recognition, humans, 10) - Amygdala and Hippocampus (202)

6 0.000 0.004 0.005 (memory, retrieval, 22) - (pain, painful, 5) - Anterior cingulate gyrus (8)

7 0.000 0.004 0.005 (memory, retrieval, 22) - (pain, painful, 5) - Posterior medial prefrontal cortex (204)

8 0.000 0.006 0.000 (ear, musical, 5) - (retrieval, faces, 13) - Right frontal lobe (82)

9 0.000 0.000 0.006 (pain, painful, 100) - (memory, retrieval, 159) - Limbic gyrus (125)

10 0.009 0.002 0.000 (memory, episodic, 27) - (motor, sensorimotor, 20) - Cerebellum (32)

11 0.001 0.004 0.011 (artefacts, categorization, 2) - (memory, word, 28) - Precentral gyrus (68)

12 0.000 0.001 0.015 (pain, painful, 71) - (words, memory, 45) - Limbic lobe (2)

13 0.000 0.000 0.016 (pain, painful, 79) - (memory, episodic, 72) - Prefrontal cortex (22)

14 0.000 0.000 0.024 (artefacts, categorization, 7) - (verbal, visual, 16) - Middle frontal gyrus (148)

15 0.000 0.002 0.029 (memory, episodic, 26) - (pain, painful, 5) - Medial prefrontal cortex (55)

16 0.000 0.031 0.002 (musical, ear, 6) - (artefacts, decision, 10) - Right temporal lobe (86)

17 0.002 0.037 0.009 (pain, noxious, 25) - (motor, visual, 20) - Insula (67)

18 0.000 0.042 0.000 (memory, retrieval, 34) - (pain, painful, 25) - Posterior cingulate gyrus (5)

19 0.006 0.006 0.044 (memory, episodic, 15) - (sensory, visual, 6) - Right fusiform gyrus (134)

20 0.000 0.003 0.047 (visual, emotional, 13) - (faces, familiar, 7) - Left superior temporal gyrus (129)

21 0.000 0.049 0.027 (retrieval, memory, 10) - (rest, memory, 6) - Left anterior cingulate gyrus (94)

22 0.000 0.056 0.006 (memory, episodic, 165) - (artefacts, categorization, 24) - Frontal lobe (18)

23 0.000 0.056 0.042 (facial, faces, 12) - (memory, words, 28) - Left cingulate gyrus (305)

24 0.001 0.039 0.063 (ear, musical, 5) - (artefacts, decision, 10) - Right inferior frontal gyrus (296)

25 0.003 0.070 0.027 (recognition, word, 9) - (eye, attention, 15) - Precuneus (171)

Table 1: Automatically generated list of the 25 most relevant functional segregations in brain regions.

Columns 2–4 are P -values for the Hotelling’s T 2
test with the original coordinates of the locations (column

2) and with the averaged-within-article coordinates used for the test (column 3). Column 4 is the P -value

for the peeling permutation test. The words in parentheses are the words associated with the highest load

on the components and the number in the parentheses are the number of locations in the component. To

the right of the name of the brain region is shown the Brede database identifier for the region.

tests [17].

The data processing uses the Brede toolbox [18],

and once the data are entered in the Brede database

the entire processing pipeline runs automatically.

3 Results and discussion

Table 1 lists the most relevant functional segrega-

tions — one for each brain region. The top entries

are in a sense trivial since they indicate a high-level

segregation for areas such as “cerebral cortex”, “te-

lencephalon” and “forebrain”, and the most relevant

functional segregation our method reports is between

“pain” and “visual”. The most frequent words in the

abstracts of the Brede database are “visual”, “mem-

ory”, “motor” and “perception”, and many of the

studies in the Brede database are pain studies. So

it is not surprising that we with the Brede database

find that major high-level segregation in the brain is

between “pain” and “visual”. “Pain” locations are

mostly distributed in the anterior part of the brain,

while “visual” locations have their major share in the

posterior part.

Apart from this high-level segregation the most

prominent functional segregation appears in the “cin-

gulate gyrus” between pain and memory. Fig. 4

shows the locations for this area colored accord-

ing to component. A number of subregions and

super-region to this area also appear with a segrega-

tion between these two functions: “anterior cingulate

gyrus”, “posterior medial prefrontal cortex”, “limbic

gyrus” and ”posterior cingulate gyrus”. Many of the

studies that make up these areas were included in

connection with our previous study of posterior cin-

gulate [5], where this segregation was identified, and

it is thus not surprising that this is refound.

The compound region “amygdala and hippocam-

pus” is segregated into “expressions” and “recogni-

tion”, and corresponds to a well known functional

division in the medial temporal lobe where the hip-

pocampus area is mainly associated with memory

whereas the amygdala is involved in the processing

of emotional stimuli such as facial expression [20].

4
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Figure 4: The most relevant functional segregation for “cingulate gyrus” within the Brede database: memory

(dark/magenta) and pain (light/yellow). The two sets of locations are plotted in a Corner Cube Environment

where each location is represented by a glyph in 3-dimensional space and projected onto “walls” [19] (In this

plot only the sagittal projections are visible). The view is from back upper left.

Our method has shortcomings, e.g., some of the re-

sults are affected by a number of studies from a single

group that investigates artefacts and categorization

and reports many activations in specific parts of the

brain across articles. Since approximately the same

wording is used the abstracts are clustered together,

and when the locations from the associated articles

are extracted these are spatially clustered often giv-

ing rise to segregation when tested against other sets

of locations. Furthermore, all the words in a specific

article will be modeled together with all locations in

that article, e.g., for “cerebellum” a segregation be-

tween “memory” and “motor” is found. Actually the

“memory” studies have some kind of movement re-

sponse — overt speech or button pressing — and this

is probably why the memory studies activate in cere-

bellum.

4 Conclusion

We have devised a method that mines a neuroimag-

ing database to extract the main functional modules

within a brain region. Such a tool would allow the

individual researcher to access the growing base of

knowledge generated by the functional imaging stud-

ies.
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[18] Finn Årup Nielsen and Lars Kai Hansen. Experi-

ences with Matlab and VRML in functional neu-

roimaging visualizations. In Scott Klasky and

Steve Thorpe, editors, VDE2000 - Visualization

Development Environments, Workshop Proceed-

ings, Princeton, New Jersey, USA, April 27–28,

2000, pages 76–81, Princeton, New Jersey, April

2000. Princeton Plasma Physics Laboratory.

[19] Kelly Rehm, Kamakshi Lakshminarayan,

Sally A. Frutiger, Kirt A. Schaper, De Witt L.

Sumners, Stephen C. Strother, Jon R. Ander-

son, and David A. Rottenberg. A symbolic

environment for visualizing activated foci in

6

19



functional neuroimaging datasets. Medical

Image Analysis, 2(3):215–226, September 1998.

[20] Ian Q. Whishaw and Bryan Kolb. Fundamentals

of human neuropsychology. Worth Publishers,

4th edition, July 1995.

7

20



Detection of Connective Tissue Disorders from

3D Aortic MR Images Using Independent

Component Analysis

Michael Sass Hansen1,4, Fei Zhao1, Honghai Zhang1, Nicholas E. Walker2,
Andreas Wahle1, Thomas Scholz3, and Milan Sonka1

1 Department of Electrical Engineering, University of Iowa, Iowa City, IA 52242, USA
2 Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA

3 Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
4 Department of Informatics and Mathematical Modelling, Technical University of

Denmark, 2800 Lyngby, Denmark

Abstract. A computer-aided diagnosis (CAD) method is reported that
allows the objective identification of subjects with connective tissue dis-
orders from 3D aortic MR images using segmentation and independent
component analysis (ICA). The first step to extend the model to 4D (3D
+ time) has also been taken. ICA is an effective tool for connective tissue
disease detection in the presence of sparse data using prior knowledge to
order the components, and the components can be inspected visually.
3D+time MR image data sets acquired from 31 normal and connective
tissue disorder subjects at end-diastole (R-wave peak) and at 45% of
the R-R interval were used to evaluate the performance of our method.
The automated 3D segmentation result produced accurate aortic sur-
faces covering the aorta. The CAD method distinguished between nor-
mal and connective tissue disorder subjects with a classification accuracy
of 93.5 %.

1 INTRODUCTION

Aortic aneurysms and dissections are the 15th leading cause of death in the the
U.S., representing 0.7 % of all deaths in 2004 [1]. Persons with certain connec-
tive tissue disorders, such as Marfan’s syndrome and Familial Thoracic Aortic
Aneurysm syndrome are at increased risk of developing aortic aneurysm and
dissection, which makes an early detection very important .

This study is approaching cardiovascular disease diagnosis using magnetic
resonance (MR) imaging. Producing manual outlining of the aorta in 3D images
requires expert knowledge and is a tedious and time-consuming task. Detection of
connective tissue disorder is based on a crude diameter measure of the ascending
aorta from a single 2D MR-slice. Figure 1 shows three 2D slices of a typical 3D
cardiac MR images with manually traced aorta contours.

The aortic segmentation of computed tomography (CT) and MR images has
already undergone a lot of research. Rueckert [2] used Geometric Deformable
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Fig. 1. Three sample 2D slices of a typical aorta candy-cane MR image with manually
traced contours outlining aortic lumen.

Models (GDM) to track the ascending and descending aorta. Behrens [3] ob-
tained a coarse segmentation using a Randomized Hough Transform (RHT).
Bruijne [4] introduced Adapting Active Shape Models (ASM) for tubular struc-
ture segmentation. Subasic [5] utilized the level-set algorithm for segmentation
of abdominal aortic aneurysm (AAA). Though aortic segmentation has been
repeatedly attempted in the past, we believe this is the first study investigat-
ing its use for connective tissue detection. We report a computer-aided diagnosis
(CAD) method for objective identification of subjects with connective tissue dis-
orders from 16-phase 3D+time aortic MR images using independent component
analysis (ICA).

2 METHODS

Our CAD method consists of three main stages – aortic segmentation, landmark-
ing of the aortic shape and connective tissue disorder diagnosis using ICA. This
paper focuses on the ICA-based diagnosis process. The results of the 3D image
segmentation were reported previously [6] and are provided here for complete-
ness. The surface segmentation of the aortic lumen is obtained with an automatic
3D segmentation method described in Sect. 2.1. ICA is performed on the aortic
3D shape to provide better descriptors that are visually inspectable, for use in
the disease classification step.

2.1 Segmentation

The 3D segmentation algorithm consists of the following three stages:

1. Aortic surface presegmentation. A fast marching level set method yields an
approximate spatial segmentation of the aorta.

2. Centerline extraction. Aortic centerline is obtained by skeletonization.
3. Accurate aortic surface segmentation. Accurate aorta surface results from

the application of a 2D optimal border detection method.
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Aortic surface presegmentation A 3D fast marching segmentation method
was used to obtain an approximate aortic surface [7]. Starting with a small
number of interactively identified seed points within the aorta, the initial surface
Γ propagates in an outward direction with the speed F. The fast marching
segmentation algorithm stops the surface in the vicinity of object boundaries
yielding an approximate object surface.

In order to achieve an accurate segmentation, a skeletonization algorithm [8]
is applied to the result of the approximate segmentation to extract the aortic
centerline. As a last segmentation step, a cylindrical surface graph search method
is used to accurately determine the final luminal surface.

Accurate aortic surface segmentation Optimal surface detection [9] is an
efficient segmentation algorithm applicable to tubular surfaces such as blood ves-
sel. The method consists of 1) a coordinate transformation, 2) surface detection
using dynamic programming, 3) mapping of the segmentation result back onto
the original image. This method has been utilized in the reported work.

2.2 Point Distribution Model

A Point Distribution Model (PDM) was built on which independent components
suitable for discrimination were estimated.

The Point Distribution Model of the aorta population was obtained using the
segmentation results. Building the PDM consists of two stages: 1) Automatic
generation of aortic landmarks on the 3D segmentation result, using a generated
template shape with landmarks and a subsequent landmark mapping. A march-
ing cubes algorithm [10] was used to generate triangular meshes, and vertices of
these triangular meshes were used as landmarks.. 2) Capturing the shape vari-
ation by performing independent component analysis on the shape vectors of
the individual aortic instances. After landmarking each resulting shape sample
was represented by a shape vector x = (x1, y1, z1, ..., xm, ym, zm), consisting of
m sets of (x, y, z) coordinates of the landmark points.

2.3 Independent component analysis

The ICA approach in this study was based on the assumption that the observed
signal vector x can be described as a vector of n linear mixtures of p indepen-
dent non-gaussian source signals represented by the random vector s. The signal
vector contains the landmarks of an instance of the aorta. The source signals are
assumed centered and of unit variance. The mixture process, performed by the
unknown mixing matrix An×p is governed by

x = A · s (1)

To calculate the original sources a de-mixing matrix Wp×n is introduced by the
following equation.

y = W · x (2)
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Estimating the de-mixing matrix W is done by maximizing the belief that the
estimated sources Y are independent sources. The different existing methods find
projections that maximize some independence measure of the distributions of the
estimated sources. The central limit theorem states that a mixture of signals is
more gaussian distributed than the individual parts. The original sources s can
be recovered except for a scaling factor, if the number of observed signals n are
at least as big as the number of sources p.

Kurtosis The Kurtosis K of the distribution of a random variable is one mea-
sure of Gaussianity. Kurtosis is included it in this paper because it has some
simple analytical properties. The Kurtosis is defined by

K(x) =
E{x4}
E{x2}2 − 3, (3)

where x is a random variable. It can be shown that the Kurtosis is 0 for a
Gaussian distribution. For practical estimation Kurtosis is far from the optimal
measure due to sensitivity to outliers [11]. For theoretical considerations this
does not pose a problem, and for two random independent variables x and y it
holds that

K(x + y) = K(x) + K(y), (4)

K(cx) = c4K(x), (5)

where c is an arbitrary constant. Let the row vector w be a projection wx on
the input data x, and let the projection vector be bounded by E{(wx)

2} = 1. As
stated earlier x is assumed to be generated by the model x = As (1). Let z be
defined by z = wA and observe that E{(wx)

2} = wAE{s2}(wA)
T

= ‖z‖2 = 1,
since the sources are independent and assumed of unit variance.

K(wx) = K(wAs) = K(zs) =

p
∑

i=1

z4

i K(si). (6)

To find distributions diverging from the Gaussian distribution, the numerical
value of the Kurtosis can be maximized under the constraint ‖z‖2 = 1. This
can be shown to be the canonical base vectors ±ei, projections on only one
independent source. Intuitively, remembering the constraint ‖z‖2 = 1, it is also
expected that maximizing Kurtosis corresponds to distributing the variance over
fewer components, as values smaller than one raised to the power of four are
reduced even more.

The number of source signals Maximizing the absolute value of the Kur-
tosis can be interpreted as recovering a projection, that is only directed along
a single of several independent components. Now examining wT x = wT As the
normal assumption in ICA is that An×p satisfies n >= p because in this way no
constraints are imposed on z given by z = wA. Assuming that n < p gives that
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wA is only spanning a subspace of R
n, the space of z. This could mean that

some of the minima are not described in this subspace. Denote the subspace of
z’s space not spanned by wA by V̂p−n×p. The additional constraints on z are
given by (7), where 01×p−n is a vector of zeros due to the orthogonality.

zV̂ T
= 01×p−n (7)

The number of constraints under the maximization is bigger than the number
of parameters and thus the earlier described minima can not be reached. The
Kurtosis measure is still favoring distributing the zi’s on as few components as
possible though, and though recovering a true independent component is not
to be expected, the maxima will by this measure be more independent than an
arbitrary linear mixture of the source signals.

To illustrate the properties of maximizing the Kurtosis, an example of a ran-
domly selected mixing matrix A2×3 is chosen. This corresponds to 3 sources but
only two observables. The Kurtosis of the three distributions are also randomly
chosen (8).

A =

[

0.6136 1.0320 0.7604

−0.8242 −0.4344 1.2546

]

K1 = 0.118 K2 = 0.7005 K3 = 2.133. (8)

The projection vector w is rotated from 0 to π and the size is set to match the
constraint E{(wx)

2} = 1, z is still defined by z = wA. The result is seen in Fig.
2. The rotation of w giving the maximum Kurtosis is seen to include mainly
one of the three independent components, whereas the two eigenvectors, defined
by the maximum and the minimum of the dash-dotted curve, are mixtures of
comparable fractions of all three independent components. This illustrates the
tendency, that the Kurtosis measure under constraints as without constraints is
better than the PCA measure at isolating a few independent components.

The algorithm For recovering the independent components the FastICA algo-
rithm is applied due to its fast convergence and robustness [11]. As mentioned in
Sect. 2.3 the Kurtosis is not very well suited in practical implementations with
only a limited number of samples. The FastICA algorithm is iterative and finds
the components sequentially. The weight vector w is randomly initialized which
influences the obtained solution due to multiple local maxima. Several w’s were
initialized in order to be able to select the one giving the source with the most
desirable properties, namely the best separation between diseased and normal
subjects. The multiple initialization scheme is crucial in finding components well
suited for discrimination.

Ordering measures Two different ordering measures are introduced in this
paper. An ordering measure for extraction of the component that separates the
diseased and normals, and an ordering measure that maximizes localization,
which is preferable in the interpretation of the extracted components.
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Fig. 2. w-projections in an over-constrained independent component system. The x-
axis is the rotation of w in radians. The solid line is the calculated Kurtosis with
the maximum illustrated. The dashed lines are representing the fraction of variance
contributed from each independent component. The dash-dotted line is the variance of
the projection along the w-direction.

The Fisher discriminant The hypothesis of this study is that connective tissue
disorder is one of the sources shaping the aorta. Having no exact knowledge
of the distribution of such a component, it is modeled to be composed of two
normal distributions, one representing the normals and one the diseased offset by
the difference between being diseased and having a normal aorta. As an ordering
measure the Fisher discriminant, evaluating the projection separation the two
populations, is expected to have its maximum at the true source.

The localization of the components The true sources are believed to be localized
in the sense that the effect of being diseased for instance is expected not to
influence the entire shape of the aorta, but only a part of it close to the heart.
A measure is defined, that focuses on the peaks of the variance, extending a
measure defined in [12] to 3D. The variation of the shape by a given projection
is mapped onto the normals of the mean surface. Peaks with a peak value of over
50% of the maximum peak value are counted and the average volume of these
peaks taken as a measure of how the component has centered its changes to the
shape in these large peaks. The principal components represent global variations
which can be seen in Fig. 3.

Independent component analysis on the aorta The data is describing the
shape of the aorta and therefore the number of independent source signals is
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(a) (b)

Fig. 3. (a) Aortic shape variations captured by the first PCA mode. (b) Shape varia-
tions captured by the second PCA mode. Variance from the mean shape is represented
by colors from blue to red. Notice the big variance in color over the whole aortic surface.

expected to be rather high. The physical shape of the subject, the gender of the
subject, the height and the age of the subject just to mention a few, could all be
independent sources shaping the aorta. One of our interest divides the subjects
in two groups with or without connective tissue disorder.

The number of dimensions is an important factor because the data is very
sparse. The observed data X in this study have nlandmarks · 3 = 248 · 3 = 744

dimensions when using one phase and 1581 when using two phases of the car-
diac cycle. The number of samples is only 31, 21 normals and 10 diseased. For
computational convenience and because the data is only distributed along these
directions, the data is projected onto the principal components. To reduce the
number of free parameters a constraint is introduced, that only a certain num-
ber of the parameters are allowed to change at a time, during the estimation of
the independent components. 22 principal components were retained explaining
97.5 % of the variance. The subspace was divided in 5 (≈

√
22) subspaces each

containing ≈ 20% of the variance. Each subspace was initially searched for inde-
pendent components. Subsequently independent combinations of the found pro-
jections were found and combined to form the actual independent components.
This approach proved necessary to avoid overfitting due to the high number of
free paramters compared to the number of samples. In this work this way of
constraining different elements is found to give much more robust results than
just reducing the search space by only retaining a few principal components. Set-
ting the 16 least-variance principal components to zero, were originally chosen
as the constraints on the ICA, which gave a good separation, but a poor ability
to generalize.
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Due to the reduced number of free dimensions and complex shaping of an
aorta there are probably more sources than dimensions of the observed signal.
Several locally stable projections are found, depending on the initialization of
the algorithm, and it is assumed, based on the discussion in Sect. 2.3, that
the different projections favor different source signals. None of them may fully
describe a true source signal, but it will be more or less represented in every
projection. This is the motivation for choosing an ordering measure that favors
the components that is believed to describe the sources well. The aortic shape
of each subject after application of ICA is represented by the projection on the
independent components. As the components are chosen with the property to
divide the two populations, ICA is applied again on the (two) most significant
projections to extract more localized components, because we a priori believe
the sources are localized.

2.4 Discrimination model

The disease detection is based on the scores of the data projected on the inde-
pendent components. A simple quadratic classifier is employed on the scores of
the two most significant independent components. This simple form is reinforc-
ing that the components can be interpreted in clinical terms which has been a
strong motivation for using ICA.

3 RESULTS

3.1 Segmentation result

3D candy-cane view and outflow tract MR images were acquired and merged
to form a 3D image at the R-wave peak and at the time point of 45% R-R
interval from 31 subjects (21 normal, 10 diseased) with image resolution ranging
from 1.5× 1.5× 3.0 mm3 to 2.0× 2.0× 6.0 mm3. To assess the accuracy of the
automated 3D segmentation, the aortic surfaces were compared with the expert
tracing outlines. The positioning errors were defined as the shortest distances
between the manually traced surfaces and the computer-determined surfaces in
the 3D aortic images.

The developed segmentation method produced aortic surfaces with subvoxel
accuracy as judged by the signed surface positioning errors of -0.09±1.21 voxel
(−0.15 ± 2.11 mm) and unsigned positioning errors of 0.93±0.76 voxel (1.62 ±
1.25 mm). An example of a typical segmentation result is shown in Fig. 4. The
segmentation result is shown in transverse and coronal views. For each view
shown in the figure, 4 slices were randomly selected from the 3D image. The
volumetric representation of segmentation is shown in Fig. 5.

3.2 Disease detection results

To assess the performance of the diagnostic model, two different classification
tasks were performed: 1) Disease status prediction using features generated from
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(a) (b)

Fig. 4. Automated segmentation result in 4 randomly selected slices; the segmentation
outlines are shown in green. (a) Transverse view. (b) Coronal view.

Fig. 5. Volumetric representation
of the segmentation result.
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single-phase MR images. 2) Disease status prediction using features generated
from two cardiac phases. Features generated by the ICA were used as input
while expert-defined disease status formed the binary prediction output (nor-
mal/diseased). A leave-one-out validation method was used to evaluate the pre-
dictive classifier performance. Performance was assessed in terms of the sensitiv-
ity, the fraction of correctly identified diseased and the specificity, the fraction
of correctly classified normals.

Figure 7 illustrates the shape variations captured by the first and second
independent components applying ICA on the first phase. The analysis suggests
that the independent components mainly represents the variation along the aor-
tic arch and the ascending aorta. Together they describe a dilation for diseased
subjects which corresponds to the clinical observation that the effect is centered
around the ascending aorta. The distribution of the projection of the data on
the two first independent components, Fig. 6, illustrates that the separation task
can be performed by a simple classifier. Though it always seems possible to find
estimates of independent components dividing the two populations, it is not
guaranteed to generalize to the unseen sample.

The two first independent components for the second phase of the aortic
cycle are more localized, but show similar results.

(a) (b)

Fig. 7. Aortic shape variations observed in the analyzed population. The projection
of the independent components on the normal of the mean shape surface is projected
onto the mean aorta shape. Left corresponds to negative and right to positive varia-
tion. Positive values of the projection correspond to higher likelihood of being healthy.
The diseased subjects (left) have a thicker aortic arch and a dilated ascending aorta.
(a) Shape variations for the first independent component. (b) Shape variations for the
second component.

For the single-phase case, 248 landmarks were automatically generated on
each aortic luminal surface. The quadratic classifier working on two independent
components exhibited a sensitivity of 80%, meaning that 80% of diseased were
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diagnosed as such and a specificity of 100%, meaning that all normal subjects
where classified as being normal in the leave-one-out test. The classification
proved worse when using the model on two phases, a sensitivity of only 70%.The
localization ordering measure was designed for only one object and not two
phases and this may have affected the outcome, but tests on more subjects are
required to see if this difference is significant.

The overall results are summarized in Table 1 and Table 2, showing the
confusion matrices of the single-phase model and the two-phase model.

The single-phase model applied to either one of the two phases gives the
same confusion table, but one of the errors in classifying the diseased was for
different subjects, so a combination of the one phase models might actually give
an even better classification. The very encouraging results obtained analyzing
a single phase is the motivation for further exploration analyzing 2 phases and
later also 16 phases. An issue that may also make the sensitivity worse than
the specificity could be that the number of diseased is only 10 compared to 21
normals. Though more laborious, ICA can also be a more specific tool than PCA,
when reducing dimensionality as only two components are needed to feature the
classification. With a prior knowledge of desired features of the component, more
task-specific information can be contained in the independent components than
in the variance ordered principal components by applying a suitable ordering
measure.

Predicted
Disease Status Diseased Normal

Diseased 8 2
Normal 0 21

Table 1. Classification results of the
single-phase model

Predicted
Disease Status Diseased Normal

Diseased 7 3
Normal 0 21

Table 2. Classification results of the
two-phase model.

4 DISCUSSION AND CONCLUSION

In this study, a computer-aided diagnostic method using ICA to identify sub-
jects with connective tissue disorders from 3D aortic MR images was presented.
Accurate and reliable aortic surfaces were provided by an automated 3D segmen-
tation algorithm which combines a fast marching level set segmentation with an
optimal graph-based border detection.

Independent component analysis in a high-dimensional space with sparse
data was applied to landmarked 3D shapes resulting from the aortic segmen-
tation and formed a very efficient approach for capturing the structure’s shape
variation important to the classification task. A simple quadratic classifier was
efficient for the simple classification task in the 2D space spanned by the two
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first independent components. ICA is well suited for assisting in the disease di-
agnostic task at hand, as it assists in an easily interpretable classification. It is
shown that ICA is a well suited tool for dimensionality reduction, when prior
information about the desired features exist for ordering the components. Two
examples of ordering measures are introduced.

Using 3D MR image data of a single cardiac phase per subject, the classifi-
cation accuracy using a basis of two independent components was 93.5%. The
independent components showed a more localized behavior than the principal
components and could be easier interpreted in terms of shape variation. Earlier
results using a support vector machine for classification demonstrated the im-
portance of utilizing functional information about the aortic motion for the con-
nective tissue disease diagnosis using shape modeling, and our continued effort
will be put into benifitt from the second available cardiac phase. For improved
classification accuracy we will also explore the utility of full 4D information (3D
+ 16 cardiac phases) in the near future.
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in H.264/AVC
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ABSTRACT

A fast motion estimation for inter motion search is provided for H.264/AVC codec down to 8× 8 block size. The
computational complexity is reduced to around one third of the fast algorithm of the reference software and the
rate-distortion performance is maintained. A complexity control algorithm for interlaced video with IBBP(12)

GOP structure is also proposed. The algorithm can control the complexity with a given target complexity and
the Rate-Distortion-Complexity performance is improved by a complexity prediction model and control scheme.
The algorithm also works well for scene change conditions.

Keywords: H.264, Fast motion estimation, complexity, R-D-C.

1. INTRODUCTION

The H.264/MPEG-4 part 10 AVC hybrid video coding standard12 is the new video coding standard. The
encoding performance is improved by a factor of 2 compared with the MPEG-4/part 2 standard. The gain
in coding efficiency comes at a price of a significant increase in encoding complexity. The main part of the
increased complexity stems from new features in the inter motion estimation stage, which can support seven
different block sizes (16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4) and multiple reference frames. Simple Full-
Search motion estimation on all combinations of different block sizes and different reference frames is not feasible
for real-time applications.

The normal solution of limited computation is fast motion estimation. The Enhanced Predictive Zonal Search
(EPZS) fast motion estimation algorithm3 of integer inter motion estimation was implemented with some mod-
ifications for the H.264 reference software encoder in a previous work.5 It is viewed as a good fast motion
estimation solution for the H.264/AVC codec. The 3-D recursive search (3DRS)9 algorithm is a recursive search
algorithm which is based on the philosophy of phase-plane correlation. A match error criterion is thereby able
to only select of a limited number of candidate vectors.

The traditional video coding performance is measured by Rate-Distortion (R-D) performance. When complexity
is also considered as an important factor here, the performance is measured by Rate-Distortion-Complexity (R-
D-C). With the limited computation power and limited bandwidth, a less complex solution must be applied to
real-time implementation and it should not decrease the R-D performance a lot at the same time. A solution
has been proposed to control the complexity by increasing or decreasing the percentage of skipped macroblocks
with the consideration of a Lagrangian R-D-C cost function.7

An operational method for measuring the selection of the macroblock (MB) mode and number of reference frames
optimally has been developed.5 The basic idea is to transform the three-dimensional problem of concurrently
optimizing Rate-Distortion-Complexity into a more tractable two-dimensional problem. Using fixed quantization
initially in the experiments, the minor changes in distortion due to the complexity control can be converted into
small changes in rate by using a local slope of the R-D curve for the searched parameter setting. This effectively
eliminates the distortion parameter, and the optimization problem has thus been reduced to a problem between
two parameters, rate* (R∗) and complexity (C).

In the following paper, a modified 3DRS algorithm will be proposed for variable block sizes in Section 2; the
complexity control algorithm based on EPZS is shown in Section 3; then the results and conclusion are illustrated
at last.

Further author information: (Send correspondence to Mo Wu.)
Mo Wu: E-mail: mw@com.dtu.dk, Telephone: +45 4525 3620
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2. MODIFIED 3DRS FOR VARIABLE BLOCK SIZES

The proposed algorithm is a modified 3DRS algorithm. It utilizes variable block size selection in order to improve
the computational load of real-time H.264. The basic outline of the algorithm can be seen in Figure 1.

The idea in the structure of this VBS-3DRS algorithm is the following:

• All modes are utilized in 3DRS fashion

• At initialization zero motion vector (MV) and one pel refinement helps 3DRS to utilize spatial candidates.
Temporal candidates are utilized after the very first frame.

• SAD (summed absolute difference) is calculated for motion vectors. The total cost is composed of SAD
plus motion vector cost. If the cost is lower than the adaptive threshold then the rest of the algorithm is
skipped and if higher the next step in the algorithm is performed.

• 3DRS is performed. If the new cost is lower than the threshold after this step, one pel integer search is
skipped otherwise it is performed in order to further improve the cost and thereby get a better candidate
motion vector with the respective mode.

2.1. VBS-3DRS
At initialization the motion vectors and best modes for different blocks are decided through one pel search. As
soon as 3DRS spatial candidates ( B(X), CS1, CS2) are available, spatial prediction is performed. Where B(x) is
the current block for which motion estimation is being done. The modes and motion vectors in the first frame
are stored to be used in the next frame. From the second frame, the 3DRS algorithm utilize temporal candidates,
CT1 also. After having spatial and temporal prediction, best motion vectors is collected along with associated
modes. Also from stated theory of 3DRS algorithm, this combination of the spatial and temporal prediction
provides an advantage in giving a look ahead into the direction of motion.

Figure 1. VBS-3DRS

Figure 2. Enhanced 3DRS candidate placement and one pel
refinement around the best match (B)

Figure 3. Adaptive mean
threshold

Best motion vectors are selected from SAD based cost which is calculated for each candidate using the candidate
block motion vectors. If the SAD represents the cost of a candidate and min cost is the minimum cost of the
four blocks against which comparisons are made then from the candidates we have:

SAD = min

(
SAD(CS1), SAD(CS2), SAD(CT1), SAD(B(x))

)
(1)

TotalCost = SAD + λ ·MV Cost (2)

where MVCost is the cost for the bits required to code the motion vector, and lambda is a Lagrangian multiplier
decided by the reference codec.

The best mode is then the mode, for which equation (2) gives the gives the smallest cost. The best motion
vectors are passed on to the next stage for further refinement.
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2.2. One pel integer search

In order to improve the results from the VBS-3DRS a refinement of the best match is performed. Before
refinements, the best VBS-3DRS cost is compared with an adaptive mean threshold (see below) and it allows
refinements performed over best match (B) as shown in Figure 2. The refinement can be skipped when the cost
is compared with the threshold as shown in Figure 1. If a better match is found then the best motion vectors
along with mode information is updated accordingly.

2.3. Adaptive mean threshold

The idea of the adaptive mean threshold is to make an adaptive threshold which is very simple, hence gaining
flexibility without introducing computational complexity. The threshold is constructed by taking the minimum
cost of the previous 6 blocks. The highest and the lowest cost is subtracted and a mean of the rest is found.
As shown by the punctured line in Figure 3 in order to get a cost for the current frame which is better than
the mean cost, 1/4 is subtracted from the mean, indicated by a solid horizontal line. By doing this we will only
accept costs better than the mean if possible.

3. COMPLEXITY CONTROL OF FAST MOTION ESTIMATION IN H.264/MPEG-4
AVC WITH RATE-DISTORTION-COMPLEXITY OPTIMIZATION BASED ON

EPZS

A complexity control algorithm is designed based on the previous extended EPZS fast motion estimation work.5

The fast motion estimation scheme is reserved and some other control related algorithm is added to the original
work.

3.1. Counting method of the inter search complexity, C, and N

The motion search complexity here is measured by the weighted search positions, which are viewed as a good
measurement of the motion search complexity [4]. The weighted search positions of different block partitions are
counted according to the block size searched in the inter mode motion estimation (see Table 1).

Table 1. weighted search positions of different block partitions per search
Block partition 16× 16 16× 8 8× 16 8× 8 8× 4 4× 8 4× 4

Weighted search positions per search 16 8 8 4 2 2 1

The total number of the weighted search positions, C, is accumulated for coding each frame using integer
accuracy inter motion estimation. Inter mode search complexity is here measured by the number of weighted
search positions per second [4] (WSP/s) in the experiment. Complexity, C, is a function of parameters in the
configuration of the encoder. In this problem, C can be viewed as a function of the block partition modes, the
number of reference frame and the index of the frame, i; the minimum block partitions, b(i), and the number of
the reference frames, r(i), of one frame are a function of the frame index, i;

b(i) =





1 partitions : 16× 16,

2 partitions : 16× 16, 16× 8, 8× 16 and 8× 8,

3 partitions : all seven partitions

(3)

The experiment is done with interlaced video, r(i) equals one when reference frames are restricted to the first
reference frame (two reference fields). r(i) increases by one each time one more reference field can be searched.
In the configuration, the maximum number of the reference frame is five, so the maximum number of r(i) is nine
here. The other parameters are constant throughout the encoding process.

C = f(b(i), r(i), i) =
∑

i

CPF (b(i), r(i), i) +
∑

i

CBF (b(i), r(i), i), (4)
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where CPF (b(i), r(i), i) or CBF (b(i), r(i), i) is the complexity for the ith frame, which is P frame or B frame
respectively; CPF (bmax, rmax, i) = 0, when frame is not a P frame; and CBF (bmax, rmax, i) = 0, when frame is
not a B frame. For H.264 video codec, except I frame, the frames are classified into two types by the properties
of inter prediction performed. One is P frame and the other one is B frame. For P frame only previous frames
are used as reference. While both previous and following frames are utilized for prediction for B frame.2





CPF (b(i), r(i), i) =
∑b(i)

b=1

∑b(i)
b=1 CP (b(i), r(i), i),

CBF (b(i), r(i), i) =
∑b(i)

b=1

∑b(i)
b=1 CB(b(i), r(i), i),

CP (b, r, i) = 0, ifb > b(i),
CB(b, r, i) = 0, ifb > b(i),
b, b(i) ∈ {1, 2 and 1},
r, r(i) ∈ {m|1 ≤ m ≤ 9,m ∈ N}

(5)

r = 1 represents the first two reference fields, r = 2 ∼ 9 represents the rest of the reference fields (the maximum
number of reference frame is 5 here); CP (b, r, i) or CB(b, r, i) is the complexity for inter motion search of the ith
frame (P or B frame respectively) on the rth reference and bth partition modes, which are described in eq. (6).

b =





1 partitions : 16× 16,

2 partitions : 16× 8, 8× 16 and 8× 8,

3 partitions : 8× 4, 4× 8 and 4× 4
(6)

N is the accumulated weighted number of 4x4 blocks compressed in inter mode. Similar to the definition of C,
N apply the same weighted number for different block sizes as in Table 1. N can be viewed as a function of the
block partition modes, the number of reference frames and the frame index.

N = g(b(i), r(i), i) =
∑

i

NPF (b(i), r(i), i) +
∑

i

NBF (b(i), r(i), i), (7)

where NPF (b(i), r(i), i) or NBF (b(i), r(i), i) is the weighted number of 4x4 blocks for the ith frame, which is
respectively P frame or B frame; NPF (bmax, rmax, i) = 0, when frame is not a P frame; and NBF (bmax, rmax, i) =
0, when frame is not a B frame.





NPF (b(i), r(i), i) =
∑b(i)

b=1

∑b(i)
b=1 NP (b(i), r(i), i),

NBF (b(i), r(i), i) =
∑b(i)

b=1

∑b(i)
b=1 NB(b(i), r(i), i),

NP (b, r, i) = 0, if b > b(i),
NB(b, r, i) = 0, if b > b(i),
b, b(i) ∈ {1, 2 and 1},
r, r(i) ∈ {m|1 ≤ m ≤ 9,m ∈ N}

(8)

where NP (b, r, i) or NB(b, r, i) is the weighted number of 4x4 blocks for inter motion search of the ith frame (P
or B frame respectively) on the rth reference and bth partition modes. Because of SKIP mode, bi-prediction etc
[8] of H.264/AVC codec, the counting method of NP (b, r, i) and NB(b, r, i) are not as simple as that of CP (b, r, i)
or CB(b, r, i), and they are shown as follows,

If (mode == 0) // skip mode for P frame or direct mode for B frame
{

for (first 4x4 block; the last 4x4 block; next 4x4 block)
{

If (P frame) NP (1, 1, i) + +;
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If (B frame)
{

If (only FW) NB(1, r, i) + +;
If (only BW) NB(1, 1, i) + +;
If (Bi-prediction) {NB(1, r, i)+ = 1

2 ; {NB(1, 1, i)+ = 1
2 ;}

}
}

}
If (1 ≤ mode ≤ 7) // inter mode with partitions mode 1 ∼ 7
{

for (first 4x4 block; the last 4x4 block; next 4x4 block)
{

If (P frame) NP (b, r, i) + +;
If (B frame)
{

if (only FW) NB(b, r, i) + +;
if (only BW) NB(b, 1, i) + +;
if (Bi-prediction) {NB(b, r, i)+ = 1

2 ; NB(b, 1, i)+ = 1
2 ;}

}
}

}

Here in the experiment, the direct mode is tested in spatial mode. In a P frame’s skip mode or a B frame’s direct
mode, there is no motion vectors that are coded. But the encoder and the decoder will use the same predicted
MVs, constructed by previously compressed MVs. Thus, except of the compression method of motion vectors,
the same motion compensation scheme is applied. It is reasonable to count them into NP (b, r, i) or NB(b, r, i)
with the relevant reference frame and block type.

3.2. Complexity prediction
Through the analysis of the statistics of three test sequences, Mobcal, cycling and Barcelona, a more elaborate
method is applied to predict a good setting, b(i) and r(i) with a given complexity. In the experiment, the
GOP structure is IBBP(12). Inside each GOP, there are three BBPs, which are called P -GOPs in the following
content. The complexity prediction is applied on the complexity of P -GOP. The complexity of each P -GOP
frames can be defined as,





CBBP (b(i), r(i), b(i + 2), r(i + 2), i)
=

∑i+1
j=i CBF (b(j), r(j), j) + CPF (b(i + 2), r(i + 2), i + 2),

b(i) = b(i + 1),
r(i) = r(i + 1)

(9)

The block partition settings can be different for P and B frames, whereas the two B frames have the same
setting. For the first (IBBP ), block searching type is set to only 16x16 partition mode and can only be one
reference frame for the first P -GOP. According to Eq. 9, the complexity can be described as,

CBBP (1, 1, 1, 1, i) =
i+1∑

j=i

CBF (1, 1, j) + CPF (1, 1, i + 2), (10)

The prediction of the complexity of different settings in the next P -GOP is expressed as follows,

fP1(b, r, i′) =
ĈPF (b, r, i′ + 2)− CPF (1, 1, i + 2)

CBBP (1, 1, 1, 1, i)
=





k0(r − 1), if b = 1,

k1(r − 1) + k2, if b = 2,

k3(r − 1) + k4, if b = 3,

(11)
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fB2(b′, r′, i′) =

∑i′+1
j=i′ ĈBF (b′, r′, j)−∑i′+1

j=i′ CBF (1, 1, j)
CBBP (1, 1, 1, 1, i)

=





k5(r′ − 1), if b′ = 1,

k6(r′ − 1) + k7, if b′ = 2,

k8(r′ − 1) + k9, if b′ = 3,

(12)

where the parameters km are acquired by collecting the results of

∑
i CPF (b, r, i) +

∑
i CBF (b′, r′, i)∑

i CBBP (1, 1, 1, 1, i)
, (13)

which equals to

E[CPF (b, r, i)] + 2 · E[CBF (b′, r′, i)]
E[CBBP (1, 1, 1, 1, i)]

, (14)

Where E[·] denotes expectation. The statistics are fitted to the model to get parameters. k0 = 0.168, k1 = 0.56,
k2 = 0.6, k3 = 0.82, k4 = 1.05, k5 = 0.4, k6 = 1.34, k7 = 2.0, k8 = 2.0 and k9 = 3.6; So, drawn from Eq. (11),
(12), the prediction of the complexity in different settings can be calculated by the following equation.

ĈBBP (b, r, b′, r′, i′) = ĈPF (b, r, i′ + 2) +
i′+1∑

j=i′
ĈBF (b′, r′, i)

= (fP1(b, r, i′) + fB2(b′, r′, i′) + 1) · CBBP (1, 1, 1, 1, i), (15)

With the given P -GOP complexity, CBBP (1, 1, 1, 1, i), the prediction of P -GOP complexity, ĈBBP (b, r, b′, r′, i′)
can be predicted from Eq. (16). Then the appropriate setting could be selected from the settings using similar
complexity with the target complexity.

Similarly, ĈBBP (b, r, b′, r′, i′) can also be predicted by a given previous P -GOP complexity, CBBP (b0, r0, b
′
0, r

′
0, i),

which could be any possible setting.

ĈBBP (b, r, b′, r′, i′) =
(fP1(b, r, i′) + fB2(b′, r′, i′) + 1)

(fP1(b0, r0, i′) + fB2(b′0, r
′
0, i

′) + 1)
· CBBP (b0, r0, b

′
0, r

′
0, i), (16)

3.3. Definition of the benefits

The complexity is controlled differently for the P frames and B frames. Normally, P frames consume less
complexity than B frames, nevertheless it is more important for motion estimation and compensation. The
setting for P and B frame is decided by the benefits we defined as follow,

BPb(b, i) = s · bitsPF ·
∑

r NP (b, r, i)∑
r CP (b, r, i)

(17)

BPr(r, i) = s · bitsPF ·
∑

b NP (b, r, i)∑
b CP (b, r, i)

(18)

BBb(b, i) = bitsBF ·
∑

r NB(b, r, i)∑
r CB(b, r, i)

(19)

BBr(r, i) = bitsBF ·
∑

r NB(b, r, i)∑
b CB(b, r, i)

(20)

where bitsPF or bitsBF are the number of bits used in coding the P or B frames respectively; s = 2 is used in
the experiment; Benefits here can be viewed as comparable terms for P and B frames with specific partition
modes of b or reference of r. For example,

∑
r NP (b,r,i)∑
r CP (b,r,i) can be viewed as the number of weighted 4× 4 blocks per

complexity that can be improved in the partition modes of b; s and bitsPF are the weights from frame type and
the number of bits respectively. The model of the benefits is constructed based on experiments and related to
the improvement of the R−D (R∗) per complexity.
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3.4. Controlling process

Over a short time period, the properties of the sequence are quite similar. It is not a good solution to tune
the complexity quite frequently with respect to R − D − C performance. It is a better way to use complexity
prediction and make the complexity control process robust to the small fluctuations of complexity and avoid to
change complexity dramatically.

State 0 normal control state after the P -GOP.

State 1 just after detecting a scene change, set setting to b = b′ = r = r′ = 1; Go to state 2.

State 2 this is a state after coding first P -GOP or after state 1; If just after coding first P -GOP, set the setting
by complexity prediction; If after state 1, set setting to b = b′ = 3, r = r′ = 2; Go to state 3.

State 3 Switch between the block partition priority or reference priority preset orders by comparing
∑b

bs=1 NP (bs,1,i)∑b
bs=1 NP (bs,1,i)

with threshold, T ; Set setting by complexity prediction; Go to state 0.

In state 0, the control scheme is described as follow,

If (full fill predicted setting) // in the first several P -GOPs, the setting set by prediction may not be
full filled, because of limited reference frames.
{

if (CP−GOP > CP−GOPT )
{

while (C ′P−GOP + CP−GOP > 2 · CP−GOPT ) // C ′P−GOP is the predicted complexity if switch
off one setting

{
decrease the complexity by switching off search on bs or rs or b′s or r′s with argmin{BP

bs
, BP

rs
, BB

b′s
andBP

r′s
};

}
}
else
{

if ( |CGOP T−CGOP |
CGOP T

< 0.05) {continue}; // 0.05 is a threshold to make the control robust to the
fluctuation of the complexity

else {reset the setting by complexity prediction;}
}

}
else
{

if (CP−GOP > CP−GOPT ) { reset the setting by complexity prediction;}
else {continue;}

}
In the control process, there is a target CT , which is measured by weighted search positions per second (WSP/s).
Here the control method applied targets at the complexity of P -GOP (CP−GOPT ), which has relation with the
target CT . The relation between CT and CP−GOPT is mainly affected by the frame rate and GOP structure,
thus they can be viewed as having a linear relation. We can easily get

CT =
length of GOP − 1
length of P −GOP

· frame rate

length of GOP
· CGOPT (21)

With GOP structure, IBBP(12) and frame rate, 25 (frames/s), it is easy to get the relation, CT = 7.6389·CGOPT .
But in reality, the relation is also slightly affected by the number of frames and CT itself. In order to simply this
problem, we assume there still exists a linear relation between these terms.

CT = α · CGOPT + β. (22)
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After some experiments, α = 7.223 and β = 9.7 are chosen as the parameters of the linear relation, which is
similar to the result of the simple model.

4. RESULTS

4.1. Results of the extended 3DRS
The experiment is conducted with QCIF (176 × 144) sequences, Foreman, Coastguard and Brea. The test
sequences are tested on Pentium IV 2.6 GHz. Figure 4 shows the motion estimated frames comparison between
reference software [11] and new VBS-3DRS implementations along with adaptive thresholding criteria for different
standard sequences. From Figure 5, it is clear that the new implementation has better computational performance
over the reference and the complexity is 32% of that of reference software in average. The relevant R∗ is only
increased by 3% in average.

Figure 4. Number of frames motion estimated per sec-
ond
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Figure 5. Performance comparison between 3DRS and
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4.2. Complexity control results
The adaptive complexity control method was tested on the standard interlaced PAL (interlaced SDTV) sequences.
The GOP-structure is IBBP(12). The best average settings [4] from low to high complexity are (1, 16), (1, 8),
(2, 8), (3, 8), (4, 8), (5, 8) and (5, 4), where (rM , bM ) represents maximum rM reference frames and searched
smallest block size down to bM × bM .

4.2.1. Normal test sequences

The normal PAL (720x576) sequences (Mobcal, barcelona and Table) have 100 frames. The frame rate is 25
frames per second. The experimental results for the test sequences, Mobcal and Table, are shown in Figure 6.
The three test sequences’ average improvement of the R∗ compared with best setting is 1.51%, compared with
best average setting is 0.73%. The accuracy of the complexity control is shown in Table 2.

Table 2. The difference between the target complexity and the real complexity
Sequence barcelona mobcal table

Average complexity difference (MWSP/s) 5.0966 4.2885 4.2414
Average complexity difference

Average C
(%) 2.41 2.54 1.96

4.2.2. Scene change

In the normal video, scene changes happen frequently. The sequences with scene change is edited by concatenating
two normal 100 frames PAL sequences. The test is conducted on MobBar (Mobcal + Barcelona), MobTab
(Mobcal + Table) and BarTab (Barcelona + Table). The experimental results of MobBar and BarTab are
shown in the Figure 7. The three test sequences’ average improvement of R∗ compared with best setting is
1.7591 (MWPS/s), compared with best average setting, it is 2.0796 (MWPS/s). The average percentage of the
complexity control difference to the average target complexity is 1.6733%.
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Figure 6. Test results of Mobcal and Table

Table 3. The difference between the target complexity and the real complexity in scene change condition.
Sequence MobBar MobTab BarTab

Average complexity difference (MWSP/s) 7.3736 1.4788 3.0413
Average complexity difference

Average C
(%) 2.93 0.86 1.23

5. CONCLUSION

This paper presents methods for enhancing the computational performance of the H.264 encoder by employing
VBS-3DRS down to 8x8 block size and one pel refinements along with adaptive mean threshold. The average
SNR and bitrates of the sequences do not vary much as compared with the reference implementation. At the
same time it has been shown to provide less computational load than the reference one. An effective algorithm
of complexity control based on fast inter motion estimation algorithm is also provided. The algorithm can be
based on different fast motion estimation algorithms, because the structure of the complexity control algorithm
is separately designed from the EPZS algorithm. A new term, benefit, is defined to measure the improvement
of rate distortion performance with the given computation power in the control process. The paper also gives
a complexity prediction algorithm for different combinations of block sizes and number of reference frames. It
applies an efficient process in complexity control with the given target of complexity whilst maintaining good
rate distortion performance. Scene changes can be detected and used to govern the complexity control algorithm,
leading to improved rate distortion performance.
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Abstract

We are interested in reconstructing paper-like objects from images. These
objects are modeled by developable surfaces and are mathematically well-
understood. They are difficult to minimally parameterize since the number
of meaningful parameters is intrinsically dependent on the actual surface.

We propose a quasi-minimal model which self-adapts its set of param-
eters to the actual surface. More precisly, a varying number of rules is
used jointly with smoothness constraints to bend a flat mesh, generating the
sought-after surface.

We propose an algorithm for fitting this model to multiple images by min-
imizing the point-based reprojection error. Experimental results are reported,
showing that our model fits real images accurately.

1 Introduction
The behaviour of the real world depends on numerous physical phenomena. This makes
general-purpose computer vision a tricky task and motivates the need for prior models of
the observed structures, e.g. [1, 4, 8, 10]. For instance, a 3D morphable face model makes
it possible to recover camera pose from a single face image [1].

This paper focuses on paper-like surfaces. More precisly, we consider paper as an un-
stretchable surface with everywhere vanishing Gaussian curvature. This holds if smooth
deformations only occurs. This is mathematically modeled by developable surfaces, a
subset of ruled surfaces. Broadly speaking, there are two modeling approaches. The first
one is to describe a continous surface by partial differential equations, parametric or im-
plicit functions. The second one is to describe a mesh representing the surface with as
few parameters as possible. The number of parameters must thus adapts to the actual
surface. We follow the second approach since we target at computationally cheap fitting
algorithms for our model.

One of the properties of paper-like surfaces is inextensibility. This is a nonlinear
constraint which is not obvious to apply to meshes, as Figure 1 illustrates. For instance,
Salzmann et al. [10] use constant length edges to generate training meshes from which a
generating basis is learnt using Principal Component Analysis. The nonlinear constraints
are re-injected as a penalty in the eventual fitting cost function. The main drawback of this
approach is that the model does not guarantee that the generated surface is developable.
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Figure 1: Inextensibility and approximation: A one dimensional example. The curve C

represents an inextensible object, A and B are two points lying on it. Linearly approximat-
ing the arc (AB) leads to the segment AB. When C bowes, although the arc length (AB)

remains constant, the length of the segment AB changes. A constant length edge model is
thus not a valid parameterization for inextensible surfaces.

We propose a model generating a 3D mesh satisfying the above mentioned proper-
ties, namely inextensibility and vanishing Gaussian curvature at any point of the mesh.
The model is based on bending a flat surface around rules together with an interpolation
process leading to a smooth surface mesh. We only assume a convex object shape. The
number of parameters lies very close to the minimal one. This model is suitable for image
fitting applications and we describe an algorithm to recover the deformations and rigid
pose of a paper-like object from multiple views.

Previous work. The concept of developable surfaces is usually chosen as the basic mod-
eling tool. Most work uses a continuous representation of the surface [3, 4, 7, 9]. They
are thus not well adapted for fast image fitting, except [4] which initializes the model
parameters with a discrete system of rules. [11] constructs developable surfaces by parti-
tioning a surface and curving each piece along a generalized cone defined by its apex and
a cross-section spline. This parameterization is limited to piecewise generalized cones.
[6] simulates bending and creasing of virtual paper by applying external forces on the sur-
face. This model has a lot of parameters since external forces are defined for each vertex
of the mesh. A method for undistorting paper is proposed in [8]. The generated surface is
not developable due to a relaxation process that does not preserve inextensibility.

Roadmap. We present our model in §2 and its construction from multiple images in
§3. Experimental results on image sequences are reported in §4. Finally, §5 gives our
conclusions and some further research avenues.

2 A Quasi-Minimal Model
We present our model and its parameterization. The idea is to fold a flat mesh that we
assume rectangular for sake of simplicity. We underline however that our model deals
with any convex shape for the boundary.

2.1 Principle
Generating a surface mesh using our model has two main steps. First, we bend a flat mesh
around ‘guiding rules’. Second, we smooth its curvature using interpolated ‘extra rules’,
as illustrated in Figure 2. The resulting mesh is piecewise planar. It is guaranteed to be
admissible, in the sense that the underlying surface is developable.
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Step 1: Bending with guiding rules. A ruled surface is defined by a differentiable
space curve α(t) and a vector field β (t), with t in some interval I, see e.g. [11]. Points on
the surface are given by:

X(t,v) = α(t)+ vβ (t) , t ∈ I v ∈ R β (t) 6= 0. (1)

The surface is actually generated by the line pencil (α(t),β (t)). This formulation is
continuous.

Since our surface is represented by a mesh, we only need a discrete system of rules, at
most one per vertex of the mesh. Keeping all possible rules leads to a model with a high
number of parameters, most of them being redundant due to surface smoothness. In order
to reduce the number of parameters, we use a subset of rules: The guiding rules. Figure 2
(left) shows the flat mesh representing the surface with the selected rules. We associate
an angle to each guiding rule and bend the mesh along the guiding rules accordingly.
Figure 2 (middle) shows the resulting guiding mesh. The rules are choosen such that they
do not to intersect each other, which corresponds to the modeling of smooth deformations.

Step 2: Smoothing with extra rules. The second step is to smooth the guiding mesh.
To this end, we hallucinate extra rules from the guiding ones, thus keeping constant the
number of model parameters. This is done by interpolating the guiding rules. The folding
angles are then spread between the guiding rules and the extra rules, details are given in
the next section. Figure 2 (right) shows the resulting mesh.

Flat mesh Guiding mesh Smoothed mesh

Figure 2: Surface mesh generation. (left) Flat mesh with guiding rules (in black). (middle)
Mesh folded along the guiding rules. (right) Mesh folded along the guiding and extra
rules.

2.2 Parameterization
A guiding rule i is defined by its two intersection points Ai and Bi with the mesh boundary.
Points Ai and Bi thus have a single degree of freedom each. A minimal parameterization
is their arc length along the boundary space curve. Since the rules do not intersect each
other on the mesh, we define a ‘starting point’ Ps and an ‘ending point’ Pe such that all
rules can be sorted from Ps to Pe, as shown on Figure 3 (left). Points Ai (resp. Bi) thus
have an increasing (resp. decreasing) arc length parameter. The set of guiding rules
is parameterized by two vectors sA and sB which contain the arc lengths of points Ai
and Bi respectively. The non intersecting rules constraint is easily imposed by enforcing
monotonicity on vectors sA and sB.
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As explained above, the model is smoothed by adding extra rules. This is done by
interpolating the guiding rules. Two piecewise cubic Hermite interpolating polynomials
are computed from the two vectors sA and sB. They are called fA and fB. This interpolation
function has the property of preserving monotonicity over ranges, as required. Figure 3
(right) shows these functions and the control points sA and sB. The bending angles are
interpolated with a spline and rescaled to account for the increasing number of rules.
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Figure 3: (left) The generated mesh with the control points (Ai,Bi). (right) Arc lengths sA
and sB of the control points with the interpolating functions fA and fB.

Table 1 summarizes the model parameters. The model has 3 + S + 3n parameters, S
being the number of parameters describing the mesh boundary (for instance, width and
height in the case of a rectangular shape) and n being the number of guiding rules.

Parameters Description Size
n number of guiding rules 1
ne number of extra rules 1
S mesh boundary parameters S
Ps arc length of the ‘starting point’ 1
Pe arc length of the ‘ending point’ 1
sA arc lengths of the first point defining the guiding rules n
sB arc lengths of the second point defining the guiding rules n
θ bending angles along the guiding rules n

Table 1: Summary of the model parameters. (top) Discrete parameters (kept fixed during
nonlinear refinement step). (bottom) Continuous parameters.

The deformation is parametrized by the guiding rules. Those are sorted from the
‘starting point’ to the ‘ending point’, making wavy the deformation. For example, it
can not generate a sheet with the four corners pulled up. It is not however a significant
drawbacks since the model is used for global object deformation recovery.

3 A Multiple View Fitting Algorithm
Our goal is to fit the model to multiple images. We assume that a 3D point set and
camera pose have been reconstructed from image point features by some means. We use
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the reprojection error as an optimization criterion. As is usual for dealing with such a
nonlinear criterion, we compute a suboptimal initialization that we iteratively refine.

3.1 Initialization
We begin by reconstructing a surface interpolating the given 3D points. A rule detection
process is then used to infer our model parameters.

Step 1: Interpolating surface reconstruction. Details about how the 3D points are
reconstructed are given in §4.1. The interpolating surface is represented by a 2D to 1D
Thin-Plate Spline function [2], mapping some planar parameterization of the surface to
point height. Defining a regular grid on the image thus allows us to infer the points on the
3D surface. Figure 4 and Figure 6 show two examples.

Step 2: Model initialization by rule detection. The model is initialized from the 3D
surface. The side length is choosen as the size of the 3D mesh.

Guiding rules must be defined on the surface. This set of n rules must represent the
surface as accurately as possible. In [3] an algorithm is proposed to find a rule on a given
surface. We use it to compute rules along sites lying on the diagonal, the horizontal and
the vertical axes. These sites are visible on Figure 4.

Figure 4: Model initialization. (left) Reconstructed 3D points and the interpolating sur-
face. (right) Points where rules are sought.

The remaining rules are described by the arc length of their intersection points with
the mesh boundary. The two arc lengths defining a rule i can be interpreted as a point Ri
in R

2, as shown in Figure 5 . Our goal is now to find the vectors sA and sB such that their
interpolating functions fA and fB, defining the parametric curve ( fA, fB) in R

2, describe
the rules. We thus compute sA and sB such that the distance between the curve ( fA, fB)

and the points Ri is minimized.
This gives the n guiding rules. The bending angle vector θ is obtain from the 3D

surface by assuming it is planar between two consecutive rules. The initial suboptimal
model we obtain is shown on Figure 6.

3.2 Refinement
The reprojection error describes how well the model fits the actual data, namely the image
feature points. We thus introduce latent variables representing the position of each point
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Figure 5: The points in gray represent the detected rules. The black curve is the parametric
curve ( fA, fB) and the black points are the estimated controls points that define the initial
rules.

onto the modeled mesh with two parameters. Let L be the number of images and N the
number of points, the reprojection error is:

e =

N

∑
i=1

L

∑
j=1

(m j,i −Π(C j,M(S,xi,yi)))
2
. (2)

In this equation, m j,i is the i-th feature point in image j, Π(C,M) projects the 3D point M
in the camera C and M(S,xi,yi) is a parameterization of the points on the surface, with S
the surface parameters. The points on the surface are initialized by computing each (xi,yi)

such that their individual reprojection error is minimized, using initial surface model.
To minimize the reprojection error, the following parameters are tuned: The parame-

ters of the model (the number of guiding and extra rules is fixed), see Table 1, the pose of
the model (rotation and translation of the generated surface) and the 3D point parameters.

The Levenberg-Marquardt algorithm [5] is used to minimize the reprojection error.
Upon convergence, the solution is the Maximum Likelihood Estimate under the assump-
tion of an additive i.i.d. Gaussian noise on the image feature points.

Figure 6: (top) 3D surfaces. (bottom) Reprojection into images. (left) Interpolated sur-
face. (middle) Initialized model. (right) Refined model.
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4 Experimental Results
We demonstrate the representational power of our fitting algorithm on several sets of
images. First, we present the computation of a 3D point cloud. Second, we show the
results for the three objects we modeled. Third, we propose some augmented reality
illustrations.

4.1 3D Points Reconstruction
The 3D point cloud is generated by triangulating point correspondences between several
views. These correspondences are obtained while recovering camera calibration and pose
using Structure-from-Motion [5]. Points off the object of interest and outliers are removed
by hand. Figure 4 shows an example of such a reconstruction.

4.2 Model Fitting
Even if our algorithm deals with several views, the following results have been performed
with two views. Figure 6 and Figure 7 show the 3D surfaces, their reprojection into im-
ages and the reprojection errors distribution for the paper sequence after the three main
steps of our algorithm: The reconstruction (left), the initialization (middle) and the refine-
ment (right). Although the reconstruction has the lowest reprojection error, the associated
surface is not satisfying, since it is not enough regular and does not fit the borders of the
sheet. The initialization makes the model more regular, but is not enough accurate to fit
the boundary of the paper, so that important reprojection errors remain. At last, the refined
model is visually acceptable and its reprojection error is very close to the reconstructed
one. It means that our model accurately fits the image points, while being governed by
a much lower number of parameters than the set of independant 3D points has. More-
over the reprojection error significantly decreases thanks to the refinement step, which
validates relevance of this step.
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Figure 7: Reprojection errors distribution for the images shown in Figure 6. (left) 3D
point cloud. (middle) Initial model. (right) Refined model.

We have tested our method on images of a poster. The results are shown in Figures 8.
The reprojections of the computed model are acceptable: The reprojection error of the
reconstruction is 0.35 pixels and the one for the refined model is 0.59 pixels.

At last, we fit the model to images of a rug. Such an object does not really sat-
isfy the constraints of developable surfaces. Nevertheless, it is stiff enough to be well-
approximated by our model. The results are thus slightly less accurate than for the paper
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Figure 8: Poster mesh reconstruction. (left) Estimated Model. (middle) Reprojection onto
the first image. (right) Reprojection onto the second image.

and the poster: The reprojection error of the reconstruction step is 0.34 pixels and the one
of the final model is 1.36 pixels. Figure 9 shows the reprojection of the model onto the
images used for the reconstruction.

Figure 9: Rug mesh reconstruction. (left) Estimated Model. (middle) Reprojection onto
the first image. (right) Reprojection onto the second image.

4.3 Applications
We demonstrate the proposed model and fitting algorithm by unwarping and augmenting
images, as shown on Figures 10 and 11. Knowing where the paper is projected onto the
images allows us to change the texture map or to overlay some pictures. The augmenting
process is described in Table 2. Since we estimate the incoming lighting, the augmented
images look realistic.

AUGMENTING IMAGES

1. Run the proposed algorithm to fit the model to images

2. Unwarp one of the images chosen as the reference one to get the texture map

3. Augment the texture map

4. For each image automatically do

4.1 Estimate lighting change from the reference image

4.2 Transfer the augmented texture map

Table 2: Overview of the augmenting process.
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Figure 10: Some applications. (left) Unwarped texture map of the paper. (middle) Chang-
ing the whole texture map. (right) Augmented paper.

Figure 11: Augmentation. (left) Augmented unwarped texture map. (middle) Augmented
texture map in the first image. (right) Synthetically generated view of the paper with the
augmented texture map.

5 Conclusion and Future Work
This paper describes a quasi-minimal model for paper-like objects and its estimation from
multiple images. Although there are few parameters, the generated surface is a good
approximation of smoothly deformed paper-like objects. This is demonstrated on real
image sequences thanks to a fitting algorithm which initializes the model first and then
refines it in a bundle adjustment manner.

There are many possibilities for further research. The proposed model could be em-
bedded in a monocular tracking framework or used to generate sample meshes for a
learning-based model construction.

We currently work on alleviating the model limitations mentioned earlier, namely
handling a general boundary shape and the comprehensive set of feasible deformation.
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Abstract

Image-Based Lighting (IBL) has become a very popular
approach in computer graphics, especially for special ef-
fects, such as insertion of virtual objects into real imagery
(Augmented Reality). In essence IBL is based on cap-
turing the illumination conditions in a scene in an omni-
directional image, such that the image describes intending
radiance at a point from all directions. Such an omni-
directional measurement of radiance is typically called
a light probe image. Using the illumination information
from such an image virtual objects can be rendered with
consistent shading including global illumination effects
such as color bleeding.

Rendering with light probe illumination is extremely
time consuming. Therefore a range of techniques exist
for approximating the intending radiance described in a
light probe image by a finite number of directional light
sources. We describe 4 such techniques from the literature
and perform a comparative evaluation of them in terms of
how well they each approximate the final irradiance as
a function of how many sources they are allowed to use
in the approximation. We demonstrate that for relatively
low numbers of sources (e.g., less than 100 sources) one
particular method performs significantly better than the
three other techniques.

1 Introduction

Image-based approaches have gained widespread popu-
larity in computer graphics because of the inherent prob-
lems with purely model-based approaches, [11]. Image-
based techniques have been used for 3D modeling of real
scenes (Image-Based Modeling), for rendering from a
bank of images with no 3D model whatsoever (Image-
Based Rendering), and for modeling the complex illumi-
nation conditions in real scenes (Image-Based Lighting).
The latter has especially been applied for special effects,
i.e, rendering virtual objects into real imagery for movies,
commercials, etc.

Image-Based Lighting (IBL) has become an extremely
frequently used technique since it in an intuitively simple

manner allows you to render a virtual object with illu-
mination conditions that perfectly match those of a real
scene. The idea is simply that you use a camera to mea-
sure the light arriving at some point in the scene, that point
it which you want to insert a virtual object. In practice
people most often use a polished steel ball, place it some-
where in a scene, and take an image of it with a tele-lens
from some distance away. After cropping away every-
thing which is not a projection of a point on the sphere the
image now contains information about how much light ar-
rives at the position of the ball from all possible directions.
In other words the ball image contains information about
the incident radiance (field radiance) at the ball location.
Figure 1 illustrates this concept.

Using reflective sphere for acquisition of light probes is
the standard approach and employed by most researchers
in the field for its simplicity. Most of the light probes
shown in this paper have been downloaded from De-
bevec’s probe gallery, [2], and have been acquired by
merging two views of a reflective sphere in order to avoid
the reflections of the camera and the photographer in the
final light probe, and in order to avoid the problem with a
small ”blind region” behind the sphere.

When we acquire our own light probes we use Sigma
180 degree field-of-view fish eye lens. By taking two such
images in opposing direction we can merge them together
to a complete spherical image using the HDRShop pro-
gram, [7]. With this approach we get much higher reso-
lution light probes, and avoid the smearing of detail that
an imperfect mirror ball can result in. Figure 2 shows an
example of two such hemi-spherical images.

Regardless of whether the light probe is acquired with
a reflective sphere or with multiple views with a fish-eye
lens it is still very important to handle the dynamic range
of the light in the scene. This problem is handled by
acquiring the same view at multiple different exposures,
gradually lowering the exposure time until no pixels in
the image are saturated. These multiple exposure are then
fused into a single High Dynamic Range (HDR) floating
point image, [6].

Once a light probe has been acquired at some position
in some scene it can be used for many purposes. The light
probe is a map of the incident radiance at the acquisition
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Figure 1: Left: the light probe image is based on a cropped image of a reflective sphere. Right: light probe images
are omni-directional, i.e., cover the entire sphere aroundthe light probe position. Here we have remapped the light
probe image to longitude-latitude format, where the a full 360 degrees are represented along the horizontal (longitude)
axis, and 180 degree are represented along the vertical (latitude) axis. For construction and remapping of light probe
images we use HDRShop 2.09, [7].

Figure 2: Left and center: two semi-spherical images acquired with a Sigma 180 degree field-of-view fish-eye lens
in opposing directions. Right: the two semi-spherical images merged and mapped as a longitude-latitude light probe
using HDRShop 2.09, [7].

point. Each pixel in the map corresponds to a certain di-
rection and solid angle, and together all pixels cover the
entire sphere around the acquisition point. A light probe
can thus also be called a radiance map, or an environ-
ment map. With this information virtual objects can be
rendered into the scene with scenario consistent illumi-
nation e.g., [3, 4, 8]. Light probes can also be used to
estimate the reflectance distribution functions of surfaces
from images, as demonstrated in [13, 12]. For a review of
illumination models in mixed reality see [9].

Actually using light probes for rendering is computa-
tionally very heavy. For a full global illumination ren-
dering with path tracing using image-based lighting is ex-
tremely time consuming in order to reduce the noise level
in the final rendering, simply because the light probe has
to be treated as a spherical area light source enclosing the
entire scene. To get a noise free estimate of the irradi-
ance at a certain point requires thousands and thousands
of samples of this area source.

To combat this problem several approaches have been
proposed which take a light probe a attempts to approxi-

mate its illumination by a relatively low number of direc-
tional light sources. That is, the idea of these approaches
is to find directions and the radiances of some number, say
64, directional light sources, such that the combined illu-
mination from these sources approximate the combined
illumination from the entire light probe.

With such a directional light source approximation to a
light probe, Image-Based Lighting using light probes can
also be implemented in real-time applications taking into
account that each source causes shadows to be cast.

The aim of the present paper is simply to test the per-
formance of these approximation techniques in terms of
how well they actually approximate the light probe for a
given number of sources.

The paper is organized as follows. First section 2 gives
a very brief overview of the approach and results in the pa-
per. In section 4 we give a brief description of four differ-
ent approaches to using N directional light sources to ap-
proximate the illumination modeled by a light probe im-
age. Section 5 then tests these four techniques in terms of
their relationships between approximation error and num-
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ber of sources used. Conclusions and directions for future
research are given in section 6.

2 Overview of the idea of this work

Figure 3 shows a light probe together with the result from
one of the approximation techniques we study in this pa-
per. In this particular case the technique has been allo-
cated 8 directional sources which it has then distributed
across the light probe longitude-latitude map in an attempt
to capture the radiance distribution of the original light
probe. Naturally, the accuracy of the approximation de-
pends on the number of sources allocated. The original
light probe is simply xres times yres directional sources,
where xres is the number of pixel in the longitude direc-
tion, and yres is the number of pixels in the latitude direc-
tion.

We then run any given technique on some light probe
image to produce approximations with 2, 4, 8, 16, etc.
light sources. Given these sets of approximated sources
we compute what the resulting error in irradiance is com-
pared to ground truth, which in this case is the irradiance
computed by using the radiance from all pixels in the light
probe.

Before we proceed with the actual techniques and there
performances we need to establish a small theoretical ba-
sis.

3 Terminology

In more formal terms we can say that the light probe im-
age is a spatially discrete measurement of the continu-
ous function describing the incident radiance (measured
in W/(m2

· Sr), which in turn is a function of the in-
cident direction. Using standard spherical coordinates a
direction in space is represented by two angles,θ andφ,
whereθ is the angle the direction vector makes with the
coordinate systemz-axis (latitude), andφ is the angle the
projection of the vector on thexy-plane makes with the
x-axis. Therefore the incident radiance can be written as:

L(θ, φ) (1)

In this paper we will exclusive use the latitude-
longitude mapping (LL mapping) of light probe images.
To establish a relationship between spherical angles and
points in the LL map we will define that the middle row
in the image corresponds to the equator of the unit sphere,
i.e, corresponds toθ = π/2, the top row corresponds to
θ = 0 and the bottom row corresponds toθ = π. More-
over we can arbitrarily defineφ = 0 to correspond the
middle column in the LL map with negativeφ values right
of that column.

Consider a differential area at the position of the light
probe acquisition with thez-axis as surface normal. The

irradiance,E, on that surface is given by:

E =

∫ 2π

0

∫ π/2

0
L(θ, φ) cos(θ) sin(θ)dθdφ (2)

In general, let(θk, φk) denote the orientation of an ar-
bitrary normal, and letΩk denote the semi-sphere defined
by that normal, (a semi-sphere with top point in the nor-
mal direction). Correspondingly,E(θk, φk) shall denote
the irradiance on a differential surface with such a normal.

Returning again to LL maps, the LL mapping is a non-
uniform sampling of the sphere, since it is severely over-
sampled at the poles. To correct for that we must multiply
the RGB values of all light probe pixels in the LL map
with sin θ. After this we can treat all pixels with equal
weight, e.g., by transferring the radiance of one pixel to
the location of another by sampling adding its value to
the other pixel, as most of the approximation techniques
described below do. If the image acquisition process is
photometrically calibrated each pixel will actually repre-
sent a physically correct radiance inW/(m2

·Sr), but we
have mapped this measurement to an LL map in some res-
olution (longitude resolution,l, times latitude resolution,
m), so we have to take into account what solid angle an
LL map pixel corresponds to. The LL map is a rectangu-
lar map that covers2π radians in longitude, andπ radians
in latitude, so the total solid angle is2π2. This area is di-
vided evenly between thel timesm pixels, so by dividing
every LL map pixel with2π2/(l ·m) ensures that we can
sum up pixels easily when we wish to perform radiance
integration for irradiance computations.

For example, the irradiance for a differential area sur-
face with a normal given by(θk, φk) can be calculated as
follows, if we usex andy to denote pixel integer coor-
dinates, and denote the light probe image pixel values by
P (x, y):

E(θk, φk) ≈

∑
P (u, v) cos(ψ) (3)

(u, v) ∈ Ωk

whereψ is the angle between the surface normal and
the direction vector corresponding to(x, y), and where
we use≈ to stress the fact that here we are dealing with
an approximation to a surface integral based on a sum of
discrete samples.

The techniques we are evaluating all produce a set of
N directional light sources, where theith source has ra-
dianceLi, and direction vector given by given by(θi, φi.
Similarly to Eq. 3 the incident irradiance from such a set
of sources can be calculated as:

E(θk, φk) =

N∑

i=1

Li ·max(0, cos(ψ)) (4)

whereψ again is the angle between the surface normal
and the direction vector to the light source, and where we
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Figure 3: Result from running the Median Cut approximation technique using 8 directional sources on a light probe.
Each rectangular region contains a red dot. This red dot marks the chosen direction for a particular directional source,
and all the combined radiance from the region has been transferred to this particular source direction.
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Figure 4: Left: ground truth irradiance for around 20000 normals distributed evenly on a sphere computed for the
Galileo’s Tomb light probe. Right: irradiances resulting from running the Median Cut source approximation technique
to produce 8 directional sources. On print the difference may be visually subtle, but the average error is actually around
25 percent, and the maximum error is more than 75 percent.

have clampedcos(ψ) to non-negative values to rule out
negative irradiance contributions from sources outside the
semi-sphere defined by the normal in question.

4 Light probe approximation tech-
niques

As mentioned previously there exist a number for ap-
proaches to finding a set of directional light sources which
approximate a full radiance map in the form of a light
probe. We have found four different techniques, three of
which are closely related and operate directly in the radi-
ance space image domain of the light probe, in particular
on the longitude-latitude mapping. The last technique is
quite different in that it operates inirradiance space.

Below we briefly describe the four different techniques,
starting with the radiance space techniques.

4.1 Lightgen

A description of this technique will be included in a future
version of this paper. The normal citation given for the
approach is [1].

4.2 Median cut

The median cut technique, [5], is conceptually wonder-
fully simple. The idea is to recursively split the LL map
into regions of approximately equal summed radiance.
Since the method splits all regionsK times the techniques
produces2K sources, i.e., 2, 4, 8, 16, 32, etc. Figure 3
illustrated the result of running the technique on a light
probe. The algorithm is as follows:

1. Add the entire light probe image to the region list as
a single region.

2. For each region in the list, subdivide along the
longest dimension such that its light energy is di-
vided evenly.

56



3. If the number of iterations is less thanK, return to
step 2.

4. Place a light source at the centroid of each region,
and set the light source radiance to the sum of the
pixel values within the region.

The strength of this approach is that it is so straight for-
ward, computationally light and easy to implement. The
problems with this approach lies in two issues. The first
issue is that it subdivides all regions at each iteration and
depending onK there can be a large jump in the num-
ber of sources, which may be disadvantageous for real-
time rendering with the approximated sources, where one
would like as many sources as possible, but at the same
time there is a performance limit in the graphics hard-
ware. The second issue relates to step 4, where, for small
K, and thereby large regions, a lot of radiance is moved
quite large distances over the sphere surface.

4.3 Adaptive median cut

A description of this technique will be included in a future
version of this paper. We have developed this technique
which is heavily based on the original Median Cut tech-
nique, but our version can produce any number of sources,
not just a power of 2.

4.4 Irradiance Optimization

The Irradiance Optimization technique by Madsen et al.,
[10], is significantly different from the first three. While
the first three all operate entirely on a pixel level in the
light probe image, i.e., operate in radiance space, the
Madsen method operates inirradiance space.

The method is based on first using the original light
probe image to compute the ground truth irradiance for
a large number (M) of normal directions uniformly dis-
tributed across the unit sphere using Eq. 3. These M irra-
diance values constitute the goal vector in an optimization
to estimate the parameters of N directional sources. Each
source is defined by five parameters (RGB radiances and
two direction angles).

Given an estimate of these 5 times N parameters it is
possible to compute the approximated irradiances for the
M normals using Eq. 4. By comparing the approximated
radiances to the ground truth radiances we obtain an er-
ror vector, which can be converted to a parameter update
vector. The source estimation process is this an iterative,
non-linear optimization process based on Newton’s itera-
tive method, since the Jacobian can be expressed analyti-
cally.

5 Comparative evaluation

In a future version of this paper we will have compiled
more extensive evaluations. At present we have only
tested two methods (Median Cut and Irradiance Optimiza-
tion), and they have just been evaluated on one light probe
image. In this section we describe the results from these
initial evaluations, and offer some observations based on
them.

5.1 Tested light probes

The evaluation documented in this paper is based on the
light probe shown in figure 5.

5.2 Performances

We ran the Median Cut and the Irradiance Optimization
methods on the test light probe, and produced directional
source approximations with 2, 4, 8, 16, 32, 64, and 128
sources. The Irradiance Optimization technique can be
produce any number of sources, but was constrained to
the source number cases which where also feasible for
the Median Cut approach. We were unable to obtain a
convergence on a 128 source solution with the Irradiance
Optimization technique. This will be discussed later.

The evaluation is based on computing the irradiances
resulting from the estimated set of sources for a large
number of surface normal evenly distributed on a unit
sphere, and comparing them to the ground truth irradi-
ances. For each color channel when then compute the
mean and the maximum of the absolute differences be-
tween estimated and ground truth irradiances. Figure 6
shows curves representing average and maximum error
for each of the two methods as a function of the num-
ber of light sources used. The errors are an average over
RBG.

5.3 Discussion

Figure 6 clearly shows that the Irradiance Optimization
techniques performs much better than the Median Cut
method. Generally the Median Cut method requires 2 to
3 times as many sources to achieve the same error as the
Irradiance Optimization technique. For rendering this is
very important from a computational point of view, since
it will always be an advantage to use as few sources as
possible.

In this test it was seen that the Irradiance Optimization
technique could not converge when the number of sources
comes above some threshold (64). This is a general ten-
dency we have noticed, and it is strongly believed to be
related to the fact that when number of sources grows too
high there is too little energy (irradiance) for some sources
to latch on to. Very quickly in the iterations the domi-
nant sources become stable, leaving ever smaller amounts
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Figure 5: The tested light probe: Galileo’s tomb in Florence, Italy. Acquired from [2]. Here shown in four different
exposures to illustrate dynamic range.
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Figure 6: Mean and max irradiance error in percent for the twotested techniques. Left: Irradiance Optimization.
Right: Median Cut.

of energy to distribute among the rest of the sources be-
ing estimated. At the same time the sources tend to re-
pel each other when they distribute across the sphere, be-
cause each source has a semi-spherical ”‘footprint”’ in the
irradiances, so each source is like shining a torch on a
sphere, and sources will be reluctant to overlap footprints
too much.

6 Conclusions

We have demonstrated that there is significant differences
in the performance of the available techniques to approx-
imate light probes radiance maps with a set of directional
light sources. Test so far clearly demonstrate that the Irra-
diance Optimization technique requires much less sources

to achieve the error level as the other techniques.

Future work includes several straight forward issues,
plus one somewhat more complicated. Primarily we need
to test all the techniques, and we need to do it on more
qualitatively different light probes. In this regard we are
thinking about both indoor and outdoor scenarios. So far
we have only tested the techniques in terms of resulting ir-
radiance. Future experiments will attempt to test not only
irradiance but also the spatial distribution of incident ra-
diance. We plan to evaluate this issue by rendering scenes
with the approximated sources and test the reflected ra-
diance in and around cast shadows and compare them to
shadows rendered with Monte Carlo path tracing.
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Abstract

This paper introduces a new concept within shadow segmentation. Previously, an
image is considered to consist of shadow and non-shadow regions. Thus, a binary
mask is estimated using various heuristics regarding structural and retinex/color
constancy theories. We wish to model natural shadows so that an augmented virtual
object can cast an exact shadow. The penumbras (half-shadows) must be taken into
account so that we can model the soft shadows. We hope to achieve this by modelling
the shadow regions (umbra and penumbra alike) with a transparent overlay. This
paper reviews the state-of-the-art shadow theories and presents two overlay models.
These are analyzed analytically in relation to color theory and tangibility.

Key words: Computer Vision, Shadows

1 Introduction

The methods that are investigated in this paper are part of an idea to augment
real images with virtual objects. If these have to look believable their shadows
must look like the real shadows. For this purpose the light sources must be
known and they can be estimated by detecting the real shadows.

We want to find a model that can be used for shadow segmentation as well as
shadow synthesis. If the model is a good model of the physical shadows, we
can assume that the real shadows were generated by the same model and a
detection of such shadows would be an estimation problem of the parameters
in the shadow model. Thus, the fewer parameters to estimate in the model
the better.

1.1 State of the Art

There is some work done in the field from 2000 through 2006. The density is
concentrated around 2005-2006.
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We can classify the solutions into single image based vs. multiple image based
and natural (un-augmented) scenes vs. augmented scenes. Furthermore, the
degree of known information about the scene and the need for heavy calibra-
tion procedures have to be taken into account.

Our aim is to make a purely pixel driven method which works on single images
in un-augmented scenes with no knowledge about the scene. Usually outdoor
scenes with blue skylight and direct sun is assumed. Even though the aim is
unsupervised segmentation we will consider some simple kind of user inter-
action such as (Wang and Cohen, 2005). They used a few strokes from the
user to train gaussian mixture models in order to segment complex foreground
objects with alpha channels such as hair and spider webs using graph cuts.

(Barnard and Finlayson, 2000) uses chromaticity color segmentation and in-
vestigates the edges between the segments. The color ratio is used with other
tests to determine the probability that the edge is an illumination boundary or
a material boundary. The probability is given by how well the color ratio jump
matches a cone in 3D space generated from 100 cases of typical illumination
and whether the jump is seen between other regions as well. It also assumes
soft gradient boundaries as being shadow boundaries. The reconstruction of
the shadowless scene had artifacts.

(Salvador et al., 2001, 2004) distinguished between cast shadows (onto the
ground plane) and self shadow. The detection relied on the edge image of a
c1, c2, c3 chromaticity image defined by equation 1. It is similar to normalized
rgb space, but it is linear confined to [0 −

π
2
[.

ci = arctan(
ci

max(ck, cl)
) where i 6= k 6= l (1)

They considered dark pixels a-priori to be shadows and corrected this belief
using heuristics concerning the edges of the real image and edges of the ci im-
age. This worked well in images with controlled simple geometry. It was tested
with still images (of fruit) and video (moving people and cars). Considering
the simplicity of this approach and the fact that it requires no assumptions
about the camera, the results are impressive.

(Madsen, 2003) described shadows as an RGB alpha overlay, see equation 2.
It is not just a black layer with an alpha channel, because the shadows are
not only darker versions of the illuminated areas, but there is a change of hue,
caused by the difference in hue between direct and ambient light. There is a
fixed alpha for any given region. RGBr is the resulting image with shadow,
RGBo is the original image, and RGBa is an overlay. i labels an individual
pixel. α can be described as the degree of shadow and the overlay color relates
to the the tonal and intensity change of the shadow.
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Furthermore, shadows are characterized as full shadow, umbra, and half shadow
penumbra, assuming only one light source. Multiple light sources would gener-
ate more complex grades of shadow regions (more variation in an alpha layer
and RGBa).

Another direction takes advantage of planckian light and retinex theory. As-
suming a single direct light source and another ambient light (different hue)
(Finlayson et al., 2002a)(Finlayson et al., 2002b) computes a 1-d invariant

2
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image from the known path (or offset or retinex path) the shadow imposes on
a log-ratio chromaticity plot. Note that ambient occlusion and surface normal
direction is not taken into account in this model.

r̂k = log(
ρk

ρp

) k 6= p (3)

The known path/offset is to be pre-calibrated. The edge maps of this invariant
image can be used just like in (Salvador et al., 2001). The recovery of a shadow
free color image was worse than (Lu and Drew, 2005).

(Lu and Drew, 2005) continued Finlayson’s work using graph cuts for opti-
mizing the shadow mask. Their method finds a binary shadow mask and use
the illumination invariant chromaticity transform (Finlayson et al., 2002a) as
a static clue for computation of the capacities of the capacities in the graph
model. They do not use any data term, but considers the brightness change
as well as the chromaticity "shift" caused by the illumination color. It is not
tested for difficult scenes and it does require knowledge of log illumination
direction.

To explain this log illumination direction Finlayson model the camera response
by equation 4. Sensor sensitivity qk is assumed to be a dirac delta function.
White-balance is considered part of qk. The illumination is described by color
temperature and Wien’s approximation 5. The log chromaticity bands are
given by 8. It assumes that γ actually is a pure gamma correction.

ρk = γ(E(λk)S(λk)qk), k = R,G,B (4)

E(λ, T )∼= Ic1λ
−5e

c2
Tλ ,

c1 = 3.74183E−16mK

c2 = 1.4388E−2mK
(5)

ρk = γ(Ic1λ
−5
k e

c2
Tλk S(λk)qk), k = 1...3 (6)

rk = ρk/ρp (7)

ŕk = log(rk) = γlog(sk/sp) + γ(ek − ep)/T, p = 1...3, k 6= p (8)

sk = Ic1λ
−5
k S(λk)qk (9)

ek =−c2/λk (10)

Equation 8 shows that in log chromaticity space the perception of color on a
surface changes by altering the color temperature T. In a 2-d plot this forms
a straight line, and the direction γ(ek − ep). The model contains some major
assumptions that might not hold any given camera:

• Narrow-band/Delta-function sensitivity (however, spectral sharpening may
be insignificant (Barnard and Funt, 1998))

• Linearity (Note that gamma correction does not change the log illumination
direction)

• The log illumination direction ek − ep must be known (through calibration)
• Variation of the angle of surface and the visibility of hemisphere (ambient

occlusion) is not taken into account.

It follows from this generalization that the color of a surface in full shadow
is assumed to be a product its color in sunlight and a fixed shading factor
(Finlayson et al., 2002b):

3
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This relation holds for all pixels in the image. [αβγ] in this model relates to
the RGBa α-layer model in Eq.2, which is more versatile because it can weight
the shading effect by alpha in penumbra areas and to take variation of the
angle of surface and the visibility of hemisphere into account. See figure 1.

Fig. 1. 2-d log chromaticity space. The illumination direction in log chromaticity
space shows the direction that a surface color moves in the 2-d plot from the color
temperature changes from full sun to full shadow. It follows a straight line. Surface
1 (S1) is plotted in sun and shadow (umbra). This relates to the alpha model as
full α. We extend the model to account for varying degrees of shadow (penumbra
and other factors). Surface 2 (S2) is plotted in sun, half shadow, and full shadow.
However, tonal changes from ǫ → 0 and inter-reflections do not map into the straight
line. ǫ → 0 maps towards [0, 0], while inter-reflections maps toward the colors of the
reflecting surfaces.

1.2 Limitations

Consider the physics based model of camera response ρ in channel k to wave-
lengths λ in equation 12. The surface albedo S(λ) is illuminated by the
weighted irradiance E from the sky Esky and the sun Esun. Note that the
Esky is the integration of light from the entire hemisphere except where the
sun is and ǫ accounts for occlusion of the hemisphere (ambient occlusion).
This means that it is not valid in the case of a sunset, where the hemisphere
can be bright and orange in the western half, and dark blue in the eastern
half. In order to make the angular (cosθ) dependence of the sun explicit Êsun

is a specific irradiance of the sun onto a perpendicular surface.

The camera sensors have certain sensitivities Q to the wavelengths λ. Then
the camera applies a white balance correction W and a nonlinear dynamic
range compression γ, e.g. a gamma 2.2 correction.

ρk = γ
(

wk

∫

Qk(λ)S(λ)(ǫEsky(λ) + cosθÊsun(λ))dλ
)

, k = R,G,B (12)

It relates to the α-layer model very well, where α and (1−α) is a simplification
of ǫ and cosθ. alpha maps to the degree of shadow, and RGBa maps to the
tonal change that occurs because of (in priority):
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(1) Hemisphere-sun color difference
(2) ǫ → 0
(3) Inter-reflections

Fig. 2. This figure shows how umbra and penumbra regions can occur and how
α should respond to those regions (in a photo taken directly from above). In the
corner at the first box is a situation where the shadow becomes darker because the
hemisphere is less accessible from those locations. The question remains whether this
effect (ǫ → 0) should be modeled as a higher α or by adjusting the alpha overlay
layer (RGBa → 0).

It would be interesting to see if a general (an average) transform for standard
consumer cameras can be found which optimizes a best guess of the log illumi-
nation direction. But first we would like to assume that we know the camera
sensitivities.

The sensors in the cameras are somewhat linear, but the human perception
sensitivity is non linear. Cameras apply post processing to the linear raw data.
sRGB and Adobe RGB formats have applied a gamma 2.2 function (which
does not affect the direction of the log chromaticity space). However, cameras
normally compress the dynamic range in an even more complicated manner,
using e.g. an S-curve. In practice, there are some non-linearities in the darkest
shadows and brightest highlights.

2 Materials and Methods

2.1 Shadow Model

Two models will be presented for investigation. Each will be analyzed analyt-
ically regarding the following questions:

• Shadow region as a function of the sunlit region?
• Sunlit region as a function of the shadow region?
• Considerations regarding the overlay color as a function of known parame-

ters and extreme α’s?

2.1.1 The additive model

Assuming equation 2 is a good model of applying shadows into the scene, the
real shadows might as well have been applied the same way. This leaves the
parameters to be estimated. This way the result (the original image RGBr) is
known, but the α, the original shadowless image (RGBô), and the overlay is
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not known (RGBa). The new model looks like equation 13. There is now also
an α for each pixel i. The overlay is actually a RGBA image.






Ri

Gi

Bi






r

= αi






Ri

Gi

Bi






a

+ (1 − αi)






Ri

Gi

Bi






ô

(13)

In an α-estimation one α and RGBa is tested while RGBô which should be
the shadowless image of RGBo is computed using equation 14.
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The notation of the following investigation of optimal overlay color (O =
{or, og, ob}) will be simplified. The surface color (albedo) will be denoted S.
The light from the sky will be Esky and the light from the sun will be Esun. We
consider a sunlit pixel to be S(Esky + Esun) and an umbra pixel to be SEsky.
Furthermore, ambient occlusion and sunlight direction is assumed to be fixed.

SEsky = αO + (1 − α)S(Esky + Esun) (15)

αO = SEsky − (1 − α)SEsky − (1 − α)SEsun

O =
(1 − (1 − α))SEsky − (1 − α)SEsun

α

O = S(Esky −
(1 − α)

α
Esun)

We see that the optimal overlay color depends on the albedo, which is un-
desirable, as that means that the overlay color is not fixed. The albedo, the
irradiance from the sun and the sky must be known in order to estimate α.

Consider when α = 1 then the overlay color should be the actual umbra pixel.
So if we choose the maximum α to be 1, then the color of the shadow free
image is completely overwritten by the overlay, which means that the overlay
should have the exact color of the surface in shadow. Hence, the maximum α
in umbra should be as small is possible.

Consider α = 0.5 then the overlay is S(Esky −Esun) which would probably be
negative.

Consider lim α → 0+ then Esun is weighted by lim
1−0+

0+

α→0+ = ∞. So if we choose
the maximum α to be very small, the overlay will be large negative values. In
order to avoid negative number, α should be as high as possible.

In order to minimize errors with a fixed overlay to be used for any surface
albedo, the overlay could be calculated from S = 50%.

Figure 3 shows how the model reacts to α = {0, 0.1, ..., 1} to two given surface
colors and a given fixed overlay color. It shows that a fixed overlay is for
from accurate. However, in the small alpha range (α < 0.5), the direction is
approximately linear.
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Fig. 3. The effect of different alphas on the log chromaticity plot on two surfaces with
different albedos. The model does not approximate Finlaysons’s model of shadows
as an illumination direction as a straight line.

2.1.2 The multiplicity model

This model takes advantage of the relation described in equation 11. It is
adapted to control the degree of shadow with α in equation 16 (for each pixel
i).
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The shadowless image can be calculated from the original image and an esti-
mated α.
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The optimal overlay color is easy (using the short notation like before):

SEsky = (1 − αO)S(Esky + Esun) (18)

O =
(1 −

SEsky

S(Esky+Esun)
)

αmax

=
(1 −

Esky

Esky+Esun
)

αmax

αmax can be selected arbitrarily. The simplest would be to use αmax = 1.

Note that the evidence needed to compute O is a sunlit pixel divided by its
corresponding umbra pixel (

SEsky

S(Esky+Esun)
).

Consider α = 0 then the sunlit pixel is weighted by 1, i.e. no change.

Consider α = 0.5 ∗ αmax then the color moves gradually toward umbra.

Consider α = αmax then the sunlit pixel is weighted by the intended ratio
between sunlit pixels and umbra pixels.
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Figure 4 shows how the model reacts to α = {0, 0.1, ..., 1} to two given surface
colors and a given overlay color. The model moves the 2-d log chromaticity
plot along an approximate straight line. The points are not evenly distributed,
so α = 0.5 is not halfway toward umbra.
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Fig. 4. The effect of different alphas on the log chromaticity plot on two albedos.
The model approximates Finlaysons’s model of shadows as a straight line.

3 Model Discussion

The additive model is difficult to use in practice because there are too many
unknowns. Assuming a fixed overlay color the normal overlay model will always
offset the chromaticity toward a fixed color (figure 3). Theoretically if this
color is "infinitely" far away from the sunlit pixel color then it approximates
an offset in a fixed direction. The model relates more intuitively to the physical
model which is additive.

On the other hand the multiplicity model will offset it in a fixed direction.
Furthermore, the overlay color in the multiplicity model is easy to compute
from a known match of shadow pixels and sun pixels. The multiplicity model
is also less complex.

Figure 5 shows two manually augmented examples using the additive model
and the multiplicity model. The image is taken outdoor on a table. Notice
that the red object reflects red light on the white object and while the sun
comes from the left, there is a window to the right that reflects sun light. The
overlay color for the multiplicity is chosen by measuring ratio between the red
object in shadow and in sun. The artificial shadows are brushed in the alpha
layer in Adobe Photoshop, so that the edges are soft.

It was harder to find a good overlay color for the additive model. It had to be
as dark as possible but it could not be negative. Consequently, α was rather
high (about 0.67). It was found be comparing some augmented shadow pixels
to real shadow pixels on the same surface.

Table 1 shows that the chosen overlay for the multiplicity was the best aug-
mentation.

4 Conclusion

Our contribution is two novel models of shadows such that natural shadows
can be segmented and augmented virtual objects can cast exact soft shadows.
The new feature in these models are variable penumbra (half-shadows). These
have been analyzed analytically in relation to color theory and tangibility. The
additive model is hard to estimate, while the multiplicity model is consistent
with known color theory and easy to use.
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Fig. 5. Examples of fake shadows superimposed using the additive overlay (left) and
the multiplicity overlay (right).

Table 1
Average RGB values in shadow regions. The multiplicity model maintains the actual
chromaticities better. Sum of Squared difference errors of the log chromaticities for
additive model is 1.1935 and for the multiplicity model it is 0.4212.

Real Additive Multiplicity

Red R,G,B 74,9,10 60,12,12 74,11,10

Log Chr. r,b 2.1068 , 0.1054 1.6094 , 0 1.9062 ,-0.0953

Green R,G,B 20,26,10 30,39,16 33,37,14

Log Chr. r,b -0.2624 , -0.9555 -0.2624 , -0.8910 -0.1144 , -0.9719

Blue R,G,B 20,67,95 32,62,70 36,77,92

Log Chr. r,b -1.2090 , 0.3492 -0.6614 , 0.1214 -0.7603 , 0.1780

White R,G,B 103,92,106 77,77,78 100,100,108

Log Chr. r,b 0.1129 , 0.1417 0 , 0.0129 0 , 0.0770

Dark skin R,G,B 7,8,5 11,8,9 10,9,5

Log Chr. r,b -0.1335 , -0.4700 0.3185 , 0.1178 0.1054 , -0.5878

Further work includes experiments with the color models in changing illumi-
nation. This will reveal if the effect of ambient occlusion and to some degree
inter-reflections can be approximated by the models. A main element of the
research is Graph cut (Kolmogorov and Zabih, 2002) segmentation of the
shadows using the overlay models.
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Abstract. The number of potential applications has made automatic recognition
of human actions a very active research area. Different approaches have been
followed based on trajectories through some state space. In this paper wealso
model an action as a trajectory through a state space, but we representthe actions
as a sequence of temporal isolated instances, denoted primitives. These primitives
are each defined by four features extracted from motion images. The primitives
are recognized in each frame based on a trained classifier resulting in a sequence
of primitives. From this sequence we recognize different temporal actions using a
probabilistic Edit Distance method. The method is tested on different actionswith
and without noise and the results show recognizing rates of88.7% and85.5%,
respectively.

1 Introduction

Automatic recognition of human actions is a very active research area due to its nu-
merous applications. As opposed to earlier the current trend is not as much on first
reconstructing the human and the pose of his/her limbs andthen do the recognition on
the joint angle data, but rather to do the recognition directly on the image data, e.g.,
silhouette data [18] [17] or temporal templates[4] [1].

Common for these approaches is that they represent an actionby image data from
all frames constituting the action, e.g., by a trajectory through some state-space or a
spatio-temporal volume. This means that the methods in general require that the applied
image information can be extracted reliably in every singleframe. In some situations
this will not be possible and therefore a different type of approach has been suggested.
Here an action is divided into a number of smaller temporal sequences, for example
movemes [6], atomic movements [7], states [5], dynamic instants [13], examplars [11],
behaviour units [9], and key-frames [8]. The general idea isthat approaches based on
finding smaller units will be less sensitive compared to approaches based on an entire
sequence of information.

For some approaches the union of the units represents the entire temporal sequence,
whereas for other approaches the units represent only a subset of the original sequence.
In Raoet al. [13] dynamic hand gestures are recognized by searching a trajectory in
3D space (x and y-position of the hand, and time) for certain dynamic instants. Gon-
zalezet al. [8] look for key-frames for recognizing actions, like walking and running.
Approaches where the entire trajectory (one action) is represented by a number of sub-
sequences, are Barbicet al. [2] for full body motion, where probabilistic PCA is used
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for finding transitions between different behaviors, and Bettingeret al. [3] where like-
lihoods are used to separate a trajectory into sub-trajectories. These sub-trajectories are
modeled by Gaussian distributions each corresponding to a temporal primitive.

2 Paper Content and System Design

In this paper we address action recognition using temporal instances (denoted primi-
tives) that only represent a subset of the original sequence. That is, our aim is to recog-
nize an action by recognizing only a few primitives as opposed to recognition based on
the entire sequence (possibly divided into sub-trajectories).

Our approach is based on the fact that an action will always beassociated with a
movement, which will manifest itself as temporal changes inthe image. So by measur-
ing the temporal changes in the image the action can be inferred. We define primitives
as temporal instances with a significant change and an actionis defined as a set of prim-
itives. This approach allows for handling corrupted input sequences and as we shall see,
does not require the lengths, the start point, nor the end point to be known, which is the
case in many other systems.

Measuring the temporal changes can be done in a number of ways. We aim at prim-
itives that are as independent on the environment as possible. Therefore, we do not rely
on figure-ground segmentation using methods like background subtraction or person-
alized models etc. Instead we define our primitives based on image subtracting. Image
subtraction has the benefit that it measures the change in theimage over time and can
handle very large changes in the environment.

Concretely we represent our primitives by four features extracted from a motion-
image (found by image subtraction). In each frame the primitive, if any, that best ex-
plains the observed data is identified. This leads to a discrete recognition problem since
a video sequence will be converted into a string containing asequence of symbols, each
representing a primitive. After pruning the string a probabilistic Edit Distance classifier
is applied to identify which action best describes the pruned string. The system is illus-
trated in figure 1. The actions that we focus on in this work arefive one-arm gestures,

Fig. 1.System overview.
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but the approach can with some modifications be generalized to body actions. The ac-
tions are inspired by [10] and can be seen in figure 2. The paperis structured as follows.

Fig. 2. Samples from the five actions.A - Point right: A stretched arm is raised to a horizontal
position pointing right, and then lowered down.B - Move left: A stretched arm is raised to a
horizontal position pointing right. The arm is then moved in front of the bodyending at the right
shoulder, and then lowered down.C - Move right: Right hand is moved up in front of the left
shoulder. The arm is then stretched while moved all the way to the right, and then lowered down.
D - Move closer:A stretched arm is raised to a horizontal position pointing forward while the
palm is pointing upwards. The hand is then drawn to the chest, and lowered down.E - Raise arm:
The arm is moved along the side of the person and stretched above the head, and then lowered
again.

In section 3 we describe how our features are extracted. In section 4 we describe how
we recognize the primitives, and in section 5 we describe howwe recognize the ac-
tions. In section 6 the approach is evaluated on a number of actions and in section 7 the
approach is discussed.

3 Feature Extraction

Even though image subtraction only provides crude information it has the benefit of
being rather independent to illumination changes and clothing types and styles. Further-
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more, no background model or person model is required. However, difference images
suffer from ”shadow effects” and we therefore apply double difference images, which
are known to be more robust [19]. The idea is to use three successive images in order to
create two difference images. These are thresholded and ANDed together. This ensures
that only pixels that have changed in both difference imagesare included in the final
output. Multiple steps between the three successive imagesused to generate the double
difference image have been tried out (frame 1-2-3, frame 1-3-5, and frame 1-4-7, etc.).
The approach is rather invariant to this choice, i.e., invariant to the frame-rate and the
execution speed of the actions. Frame 1-3-5 are used in this work.

When doing arm gestures the double difference image will roughly speaking con-
tain a ”motion-cloud”. However, noise will also be present.Either from other move-
ments, e.g., the clothes on the upper body when lifting the arm (false positives), or the
motion-cloud will be split into a number of separate blobs, e.g., due to the shirt having a
uniform color (false negatives). Since the two noise sources ”work against each other”,
it is difficult to binarize the difference image. We therefore apply a hysteresis principle
consisting of two thresholdsT1 andT2 with T1 > T2. For all difference pixels above
T1 we initiate a region growing, which continues to grow until the pixel values falls be-
low T2, see figure 3. The resulting connected motion components arefurther sorted in
respect to their size to obtain robustness towards noise. This hysteresis threshold helps
to ensure that noisy motion-clouds are not broken up into multiple fragments and at the
same time eliminates small noisy motion blobs. The result isone connected motion-
cloud. We model the motion-cloud compactly by an ellipse. The length and orientation

Accepted motion
Rejected motion

T2

T1

Fig. 3.An illustration of the hysteresis with an upper thresholdT1 and a lower thresholdT2. The
figure illustrates the advantage of the hysteresis, where most of the ”motion-blob” of interest is
accepted while the smaller ”noise-blobs” are rejected.

of the axes of the ellipse are calculated from the Eigen-vectors and Eigen-values of the
covariance matrix defined by the motion pixels.

We use four features to represent this cloud. They are independent of image size
and the person’s position in the image. Furthermore, two aredefined with respect to a
reference point currently defined manually as the center of gravity of the person. The
features are: the eccentricity of the ellipse, the orientation of the ellipse, the size of the
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ellipse with respect to the distance from the reference point to the ellipse, and the angle
between the reference point and the ellipse.

4 Recognition of Primitives

Each incoming frame is represented by the four extracted features described above. In
this block the feature vector is classified as a particular primitive or noise. A Maha-
lanobis classifier is build by forming the covariance matrixfor each primitive based on
a set of representative training examples, see below. The four features are not equally
important and therefore weighted in accordance with their importance. This yields the
following classifier for recognizing a primitive at time,t:

Primitive(t) = arg min
i

[
(W · (f t − pi))

T Π−1
i (W · (f t − pi))

]
(1)

wheref t is the feature vector estimated at timet, pi is the mean vector of theith
primitive, Πi is the covariance matrix of theith primitive, andW contains the weights
and are included as an element-wise multiplication.

The classification of a sequence can be viewed as a trajectorythrough the 4D feature
space where, at each time-step, the closest primitive (in terms of Mahalanobis distance)
is found. To reduce noise in this process we introduce a minimum Mahalanobis distance
in order for a primitive to be considered in the first place. Furthermore, to reduce the
flickering observed when the trajectory passes through a border region between two
primitives we introduce a hysteresis threshold. It favors the primitive recognized in the
preceding frame over all other primitives by modifying the individual distances. The
classifier hereby obtains a ”sticky” effect, which handles alarge part of the flickering.

After processing a sequence the output will be a string with the same length as the
sequence. An example is illustrated in equation 2. Each letter corresponds to a recog-
nized primitive andØ corresponds to time instances where no primitives are belowthe
minimum required Mahalanobis distance. The string is pruned by first removing ’Ø’s,
isolated instances, and then all repeated letters, see equation 3. A weight is generated to
reflect the number of repeated letters (this is used below).

String= {Ø,Ø, B,B,B,B,B,E,A,A, F, F, F, F,Ø, D,D,G,G,G,G,Ø} (2)

String= {B,A, F,D,G} (3)

Weights= {5, 2, 4, 2, 4} (4)

4.1 Learning Models for the Primitives

In order to recognize the primitives we need to have a prototypical representation of
each primitive, i.e., a mean and covariance in the 4D featurespace. As can be seen in
figure 2 the actions are all fronto-parallel.

Ongoing work aims at generalizes this work by allow for multiple viewpoints. One
problem with this is how to train the system - it will require avery large number of
test sequences. Therefore we have captured all training data using a magnetic tracking
system with four sensors. The sensor placements are: one at the wrist, one at the elbow,
one at the shoulder, and one at the upper torso (for reference). The hardware used is the
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Polhemus FastTrac [15] which gives a maximum sampling rate of 25Hz when using all
four sensors. The data is converted into four Euler angles: three at the shoulder and one
at the elbow in order to make the data invariant to body size. An action corresponds to
a trajectory through a 4D space spanned by the Euler angles.

The data is input to a commercial computer graphics human model, Poser [16],
which then animates all captured data. This allows us to generate training data for any
view point and to generate additional training data by varying the Euler angles (based on
the training data) and varying the clothing of the model. Figure 4 shows a person with
magnetic trackers mounted on the arm, two different visualizations of the 3D tracker
data from Poser, and an example of the test data. Based on thissynthetic training data
we build a classifier for each primitive.

Fig. 4. An illustration of the different types of data used in the system. From left to right: 1)
3D tracker data is acquired from magnetic trackers mounted on personswho perform the five
actions. 2) The tracker data is animated in Poser from a fronto-parallel view. 3) The tracker data
can be animated from any view point with different clothings and models. 4) After training the
primitives on semi-sythetic data we recognize actions in real video.

4.2 Defining the Primitives

Defining the number of primitives and their characteristics(”human movement”) is
quite a significant optimization problem. We are aiming at automating this process [14],
but in this work it was done manually.

The primitives are defined based on an evaluation of video sequences showing three
different people performing the five actions. The criteria for defining the primitives
are 1) that they represent characteristic and representative 3D configurations, 2) that
their projected 2D configurations contain a certain amount of fronto-parallel motion,
and 3) that the primitives are used in the description of as many actions as possible,
i.e., fewer primitives are required. In this way we find 10 primitives that can represent
the five actions. Each primitive is appearing in several actions resulting in five to eight
primitives for each action.

To obtain the prototypical representation we randomly select 20 samples of each
primitive from the training video sequences. The double difference images of these
samples are calculated and the motion-clouds are each represented by the four features.
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The 20 samples then yields a mean vector and a 4x4 covariance matrix for each primi-
tive.

In figure 4 the 10 primitives and their representations are visualized together with
the letter denoting the primitive.

Fig. 5. The figure of each primitive contains the silhouettes of the 20 samples added together
which gives the gray silhouette. The 20 motion clouds from the double difference images of the
samples are added on top of the silhouette as the white cloud. The figures furthermore illustrates
the mean of the four features for each primitive by depicting the axes of the fitted ellipse and the
distance and direction from the reference point to the motion cloud.

5 Recognition of Actions

The result of recognizing the primitives is a string of letters referring to the known
primitives. During a training phase a string representation of each action to be recog-
nized is learned. The task is now to compare each of the learned actions (strings) with
the detected string. Since the learned strings and the detected strings (possibly includ-
ing errors!) will in general not have the same length, the standard pattern recognition
methods will not suffice. We therefore apply the Edit Distance method [12], which can
handle matching of strings of different lengths.

The edit distance is a well known method for comparing words or text strings, e.g.,
for spell-checking and plagiarism detection. It operates by measuring the distance be-
tween two strings in terms of the number of operations neededin order to transform
one to the other. There are three possible operations:insert a letter from the other string,
delete a letter, andexchange a letter by one from the other string. Whenever one of these
operations is required in order to make the strings more similar, the score or distance is
increased by one.

When the strings representing the actions are of different lengths, the method tends
to favor the shorter strings. Say we have detected the string{B,C,D} and want to
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classify it as being one of the two actions:#1 = {J,C,G} and#2 = {A,B,C,D,H}.
The edit distance from the detected string to the action-strings will be two in both cases.
However, it seems more likely that the correct interpretation is that the detected string
comes from action #2 in a situation where the start and end hasbeen corrupted by noise.
In fact, 2 out of 3 of the primitives have to be changed for action #1 whereas only 2 out
of 5 have to be changed for action #2. We therefore normalize the edit distance by
dividing the output by the length of the action-string, yielding 0.67 for action #1 and
0.2 for action #2, i.e., action #2 is recognized.

The edit distance is a deterministic method but by changing the cost of each of
the three operations with respect to likelihoods it becomesa probabilistic method1.
Concretely we apply the weights described above, see equation 4. These to some extent
represent the likelihood of a certain primitive being correct. The higher the weight the
more likely a primitive will be. We incorporate the weights into the edit distance method
by increasing the score by the weight multiplied byβ (a scaling factor) whenever a
primitive is deleted or exchanged. The cost ofinserting remains 1.

The above principle works for situations where the input sequence only contains
one action (possibly corrupted by noise). In a real scenario, however, we will have
sequences which are potentially much longer than an action and which might include
more actions after each other. The action recognition problem is therefore formulated as
for each action to find the substring in the detected string, which has the minimum edit
distance. The recognized action will then be the one of the substrings with the minimum
distance. Denoting the start point and length of the substring,s andl, respectively, we
recognize the action present in the detected string as:

Action =arg min
k,s,l

PED(Λ, k, s, l) (5)

wherek index the different actions,Λ is the detected string, andPED(·) is the proba-
bilistic edit distance.

6 Results

6.1 Test Setup

Two kind of tests are conducted: one with known start and stoptime of action execution,
and another with ”noise” added in the beginning and end of thesequences (unknown
start time). By adding noise to the sequence we introduce therealistic problem of having
no clear idea about when an action commence and terminates which would be the case
in a real situation. To achieve a test scenario that resembles this situation we split the
five actions into halves and add one of these half actions randomly to the beginning
and one to the end of each action to be processed by the system.In this way we get an
unknown start and end point of the real action.

We use eleven test subjects, whom each performs each gesture10 times. This leads
to 550 sequences. The weighting of the featuresW are set to{1, 4, 2, 4}, andβ = 1/8.
A string representation of each action is found and since theshortest string contains
five primitives and the longest eight primitives, we only perform the probabilistic edit
distance calculation for substrings having the lengths∈ [3, 15].

1 This is related to the Weighted Edit Distance method, which however has fixedweights.
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6.2 Tests

The overall recognition rate for the test with known start time is88.7%. In figure 6(a)
the confusion matrix for the results is shown. As can be seen in the figure, most of the
errors occur by miss-classification between the two actions: move closer andraise arm.
The main reasons for this confusion are different performances by the test subjects
(some do not raise their arm very much when preforming theraise arm action), the
similarity of the actions, and the similarity of the primitives in these actions. As can be
seen in figure 2 both actions are performed along the side of the person when seen from
the fronto-parallel view and differs mainly in how high the arm is raised. From figure
5 it can be seen that primitives ’F’, ’G’, ’H’, and ’I’ have similar angles between the
reference point and the motion cloud and ’F’, ’H’ and ’I’ alsohave similar orientation
of the ellipse. These two features, which are the ones with highest weights, make these
four primitives harder to distinguish.

Figure 6(b) shows the confusion matrix for the test results with noise. The overall
recognition rate for this test is85.5%, which is 3.2% lower than without noise. The
errors are the same as before but with some few additional errors caused by the unknown
start and end time of the actions.

(a) Known start and stop time. (b) Unknown start and stop time.

Fig. 6.The confusion matrix for the recognition of the different actions with and without noise.

7 Conclusion

In this paper we have presented an action recognition approach based on motion primi-
tives as opposed to trajectories. Furthermore, we extract features from temporally local
motion as opposed to background subtraction or another segmentation method relying
on learned models and a relatively controlled environment.We hope this makes our
approach less sensitive, but have still to prove so in a more comprehensive test.

The results are promising due to two facts. First, the modelsare generated from
synthetic data (generated based on test subjects) while thetest data are real data. In fact,
the test data and training data are recorded several months apart, hence this is a real test
of the generalization capabilities of the action recognition process. This means that we
can expect to use the same scheme when learning models for thenext incarnation of the
system, which is aimed at view-invariant action recognition. Secondly, the system does
not break down when exposed to realistic noise. This suggests that the approach taking
has potential to be expanded into a real system setup, as opposed to a lab setup which
is virtually always used when testing action recognition systems.
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The primitives used in this work are found manually. This turned out to be quite an
effort due to the massive amount of data and possibilities. Currently we are therefore
working to automate this process [14]. Another ongoing activity is to avoid manually
defining the reference point, see section 3, by using the face(found by an Adaboost
trained face detector) as a reference for the features.
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Abstract

We analyse vector fields, where only the normal component is known. Examples
of such fields are: optical flow fields and warps of signed distance maps. We propose
to model the tangential component by minimizing an general energy functional of
the total field, and we present a novel iterative solution based on Euler-Lagrange
equations. Possible applications are estimating physical flow in image sequences, es-
timating human growth processes, and co-warping textures in animation sequences.
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Scan Conversion of Signed Distance Fields
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Abstract

Fast and robust signed distance field computation is often either a
performance bottleneck due to high resolution fields or nearly im-
possible due to degeneracies in input meshes. Thus, it can bete-
dious and very time consuming to obtain a signed distance field
to be used for collision detection in for instance a physicalbased
animation, motion planing, or geometry processing.

Sign leaking problems in scan conversion methods may result
in erroneous signed distance fields for even perfect two-manifold
meshes. We present solutions for the sign leaking problems.The
major contribution is the robust handling of errors caused by over-
lapping bounded volumes of neighboring features.

Our method is simple to implement, and has a tradeoff between
performance and quality. Further the method is robust in thesense
that it handles the sign problems of previous work.

The novelty lies in representing the narrow-band as a decompo-
sition of tetrahedra, a shell mesh. We provide numerous examples
and comparisons on different methods for generating the narrow-
band shell.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: Tetrahedra Mesh, GPGPU, Scan Conversion, Distance
Field

1 Introduction

Signed distance fields are very attractive in computer graphics and
related fields. Often they are used for collision detection in cloth
animation [Bridson et al. 2003], multibody dynamics [Guendelman
et al. 2003], deformable objects [Fisher and Lin 2001], alsomesh
generation [Molino et al. 2003; Persson and Strang 2004], motion
planning [Hoff, III et al. 1999], and sculpting [Bærentzen 2001].

In all of these applications a signed distance field is represented
as a regular sampling of the closest distance to the surface of an
object. Usually the convention of using negative values inside the
object and positive values outside the object is applied. There does
exist adaptive distance fields [Frisken et al. 2000], but we will not
consider these in this paper.

The first problem of using distance fields is to actually compute
them. There are several issues involved here: The object surface

∗{kenny,henrikd}@diku.dk

is in most cases modeled as a polygonal model by an animator or
obtained by some means of scanning or segmentation. In all cases
one often has to deal with a polygonal model having holes, flipped
surfaces, overlapping faces, and much worse. This is often termed
inconsistent meshes [Bischoff et al. 2005]. Inconsistent meshes are
unpleasant, mostly because it is not always meaningful, what is in-
side or outside.

The computational complexity is also often problematic. A naı̈ve
implementation on CPU can take hours, even days, to completefor
high-resolution grids (2563 resolution or greater).

Thus the practicalities in obtaining a signed distance fieldis of-
ten overwhelming, and it is these problems that is the focus of this
paper.

The brute force approach to computing distance fields can be de-
scribed as: For each grid node compute the closest distance to the
faces in a polygonal model. Acceleration techniques do exist, such
as only querying grid nodes against a bounding volume hierarchy
or reversing the iteration to iterate over bounding volumesaround
faces. These previous methods used a two-pass strategy to resolve
the sign issue. In [Aanæs and Bærentzen 2003] angle weighted
pseudo-normals was used to determine the correct sign, thusallow-
ing for a single pass only.

A straightforward parallelization of the naı̈ve approach is possi-
ble by reversing the order of iteration, that is for each facecompute
the distance to all grid nodes. This was done in [Hoff, III et al.
1999]. Here the authors mesh the distance function of a vertex,
edge, or face, and render it directly to the depth buffer. Forvol-
umes this is done in a slice by slice manner, and the distance field is
read back from the depth buffer. Any distance metric can be used,
but signs are not handled. The simplicity of the method is attractive,
although it requires tessellation of elliptical cones and hyperboloid
sheets in 3D. Obviously the tessellation causes discretization errors
in the distance computation, but the errors can be controlled. This
approach is henceforth termed distance meshing.

Scan conversion algorithms using the GPU have become quite
popular. Here various external regions is scan converted which
bounds the space of points lying closer to a geometric feature, than
any other geometric feature. These methods require the construc-
tion of bounded volumes that is scan-converted in a slice by slice
manner. For each grid node being rendered (voxel), a distance value
is being computed. In [Mauch 2003] the characteristic scan conver-
sion (CSC) algorithm was presented. Here three different kinds of
Characteristic Polyhedra is used: A prism (for faces), a cone (for
vertices), and a wedge (for edges). Conceptually easy to under-
stand it is not very clear how the curved surfaces of the conesand
wedges should be tessellated. To avoid aliasing, the polyhedra was
enlarged, however the author did not describe the possible errors in
the computations, caused by grid nodes getting caught on thewrong
side of the surface. This artifact is described in detail in Section 2.

In [Sigg et al. 2003] an optimized GPU version of CSC is pre-
sented, together with a more aggressive scan-conversion method,
named Prism Scan. Here prisms are constructed for faces only, thus
reducing the number of bounded volumes that need to be scan con-
verted. Also a novel fragment program is presented for computing
the signed distances of the rasterized grid nodes.

Prism Scan suffers from the same sign problems as CSC, since
only the face plane are used to determine the sign, explainedin de-
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tail in Section 2. These sign errors may seem very innocent since
they only occur rarely for small narrow-bands and smooth curved
objects. However if narrow-band size is increased and objects with
sharp ridges and valleys are scan converted, the sign errorsimme-
diately blows up as huge areas of discontinuities where the wrong
side of the surface is leaked into the other side.

Both Prism Scan and CSC are limited by a user specified narrow-
band size, unlike the distance meshing approach which is capable
of computing a full grid.

Both these methods relies on the input surface mesh to be a per-
fect two-manifold. Working with real-world models this is often
not the case and one must often resort to some kind of mesh recon-
struction [Nooruddin and Turk 2003]. In this paper we will take the
stand point that meshes might be ugly and may cause errors in the
signed distance field.

In [Sud et al. 2004] several performance improvements for com-
puting distance fields on graphics hardware are presented. The main
two contributions is a culling method based on occlusion queries
and a conservative clamping computation based on the spatial co-
herency of the distance field. Although distance meshing wasused
in this paper, the method generalizes to scan-conversion algorithms
as well, here the conservative clamping can be used to control the
size of the narrow-band parameter.

To summarize, methods for computing distance fields on graph-
ics hardware falls into two different approaches: distancemeshing
or scan conversion of bounded volumes. In [Hsieh and Tai 2005] a
hybrid of these two approaches is presented for the 2D case.

Other approaches involve solving the Eikonal equation using for
instance a two stage fast marching method [Sethian 1999b]. First
one marches from the surface out, then from the surface in. Inor-
der to be efficient these methods rely on a good (fast) heap imple-
mentation. Besides, one have to seed the fast marching method by
computing the distance values on nodes lying just next to thesur-
face. Whereas the scan conversion methods described above com-
pute exact signed distance fields, fast marching methods have a dis-
cretization error of orderO(1). Although [Sethian 1999a] presents
a higher order accurate version.

There are other ways for dealing with the computation of dis-
tance fields, such as Danielsson’s distance field algorithm [Daniels-
son 1980]. Here a four pass scan method is used to propagate dis-
tance information on a regular 2D grid. The method can be ex-
tended to 3D, and has some resemblance with the fast marching
method.

We will not discuss CPU based algorithms any further since itis
our goal to exploit graphics hardware to obtain a sufficient perfor-
mance.

In this paper we will present a novel scan conversion approach.
Our approach combines the novel fragment program from Prism
Scan with the pseudo-normal method. Hereby, we avoid any sign
errors of the previous scan conversion algorithms.

Our approach uses a tetrahedral shell [Erleben and Dohlmann
2004; Erleben et al. 2005], meaning only tetrahedra volumesare
considered. This allows the usage of a fast tetrahedron slicer to
compute cross sections. Slicing tetrahedra are well known from
volume visualization and are extremely efficient. Thus it ischeaper
to compute cross-sections from scratch, and render these, than
doing a 3D scan conversion of more complex prisms, cones, or
wedges.

We will present and discuss several methods for computing tetra-
hedra shells.

• First we will discuss a shell generation method based on sim-
ple extrusion along vertex angle weighted pseudo normals,
which will be combined with a convex hull computation [Bar-
ber et al. 1996], and an enlargement to handle aliasing. The
convex hull computation will ensure consistency and removal
of degeneracies.

A


B


Figure 1: Plane test sign error. The figure shows a cross section of
a polygonal model focused on two faces, A and B. Shown together
with the bounded region around A, in which the signed distance
is calculated. In the dashed red area, the points are closestto A,
and the sign will therefore become positive. This is clearlywrong.
The points in the dashed red region is located inside the object, so
the sign should have been negative. The sign will be correct in the
green dashed region. If the planes alone are used to determine the
distance, then the distance will be wrong in both the red and green
dashed areas.

• Then we will extend the simple method with the extrusion
algorithm from the thin tetrahedral shell mesh [Erleben and
Dohlmann 2004] combined with a simple face normal extru-
sion technique to avoid leaking. The benefit over the more
simple approach is a more tight fitting shell with less overlap-
ping tetrahedra, thus implying fewer rasterized grid nodes.

• Finally an oriented bounding box (OBB) fitting method is pre-
sented, which is simple and easy to implement. In comparison
with the other methods, it may have large overlapping regions,
even regions expanding far beyond the wanted narrow-band.

The first two shell creation methods, we present, rely on the ability
to compute the angle weighted vertex pseudo normals, the last shell
creation method makes no assumption on the mesh whatsoever and
can be used for unstructured meshes with all kinds of degeneracies.

Note any kind of tetrahedral shell generation method could be
used in our scan conversion method, e.g. the adaptive thin tetra-
hedral shell mesh [Erleben et al. 2005]. This allow for a tradeoff
between simplicity of creation and efficiency of scan-conversion.

The correct sign computation in the fragment program relieson
the angle weighted pseudo normals of both vertices and edges. If
these cannot be computed correctly, then there is no guarantee that
the method will compute the proper sign of the distance field.

We have organized our paper as follows: In Section 2 we de-
scribe the leaking problems and their sources. Hereafter wepresent
our method in Section 3 and our results in Section 4. Finally we
conclude in Section 5.

2 Leaking

In characteristic scan conversion (CSC) and Prism Scan a plane test
is used to determine the sign of the distance function, as illustrated
in Figure 1. As seen in the figure, this may lead to incorrect com-
putation of the sign. In the case of CSC this becomes even worse,
because the characteristic polyhedra are enlarged to avoidaliasing.
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Figure 2: Real life example of leaking due to the plane test prob-
lem. Note that the red color have leaked into the blue color. Red
is negative and blue is positive. Figure 7 shows the result using our
method.

Thus for the face case, the distance of grid nodes outside theface-
Voronoi region are also computed wrt. the face plane. This means
that the dashed lines will produce grid nodes with distancesclose
to zero inside Voronoi regions of neighboring faces. Prism Scan
performs a case analysis of grid nodes in enlarged regions and will
only suffer from a wrong sign computation. Figure 2 show reallife
examples of these problems.

Requiring a mesh to be a two-manifold is not a sufficient con-
dition to avoid sign problems. If a surface mesh contains folds,
then the orientation of a triangle face can be flipped. Thus, if scan-
conversion algorithms are used, then the results depend on the scan
order. If the flipped face is scan converted first, then it willresult
in wrong sign computations. This creates a strange leaking effect.
Figure 4 illustrates the mesh-topology of a fold, and Figure3 shows
a real life example.

The final source for leaking problems is due to construction of
bounding volumes representing the narrow-band. This is illustrated
in Figure 5. Here, the narrow-band shells have different widths on
opposite sides of a thin region. This causes the inside region of one
side to extend beyond the outside region on the opposite side. In
Figure 6 a real life example is shown.

Our method the Tetrahedra (T4) GPU scan method is capable
of handling the leaking by plane test and construction problems as
shown in Figure 7.

Figure 3: Real life example of leaking by the folding problem. Note
that red color is leaking into the blue color. Red is negativeand blue
is positive. The triangles shaded in black are folded.

Fold


F


B


Figure 4: A planar mesh is folded, such that the back sideB of a
triangle is turning outside instead of the front sideF .
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Inside Leaking


Thin Object


Figure 5: Cross section of a mesh with thin structure, shown to-
gether with their bounding regions. The top face has a bounding
region shown in green, and the bottom face has a bounding region
shown in red. For this configuration, the bounding region of the
top face extrudes below the bounding region of the bottom face.
This results in the small grey area, wherein the distance becomes
negative.

Figure 6: Real life example of leaking by construction problem.
Observe the red area on the wrong side of the blue area. Figure7
shows the result using our method.

3 The T4 GPU Scan Method

We call our method the tetrahedron (T4) GPU scan method. In the
following we will give an overview of our method.

Given a surface of an object as a collection of triangles, we com-
pute the signed distance within a user specified narrow-band. First
we generate tetrahedra in such a way that a single tetrahedron is
related to a single triangle face. Note that several tetrahedra can be
related to the same triangle face. Tetrahedra are generatedwhile
iterating over the triangular faces. Figure 8 illustrates the tetrahe-
dra shell creation in pseudo code. A tetrahedron bounds a region
of space containing a subset of grid nodes. For each of these grid
nodes, the closest distance to the related triangle face is computed,
and the sign is determined using pseudo-normals.

In order to determine the grid nodes lying inside a tetrahedron
we move a z-plane in the direction of the positive z-axis. At each
z-slice of the regular grid, we halt the z-plane and find the cross
sections between tetrahedra and the z-plane. We have adopted a
simple sweep-line [de Berg et al. 1997] algorithm to quicklyfind
all tetrahedra that intersects the z-plane. As an alternative one could
use the occlusion query method from [Sud et al. 2004].

Having found the cross-sections we render these and use a GPU
fragment program to compute the signed distances. Before moving
on to the next z-slice of the regular grid, we read back the computed

Figure 7: Example showing how our T4 GPU scan method handles
the real-life examples from Figure 2 and 6. Notice that no leaking
is present.

distance values from the frame-buffer, and store it in an internal data
structure.

Figure 9 shows the overall steps of the T4 GPU scan method.
Note that the shell creation could be done during the scan conver-
sion, which will minimize storage usage. However, in our imple-
mentation we have chosen to keep the shell creation as a separate
stage for better modularity of the implementation.

Our shell creation methods presented in Section 3.3, 3.4, and
3.5 have linear time complexity,O(n) in the number of triangle
facesn, because while iterating once over the triangle faces a fixed
number of tetrahedra is generated for each triangle face. The ini-
tialization of the sweep-line ie. the z-sorting of the tetrahedra have
O(nlgn) time complexity, although the actual scan-conversion can
be expected to have linear complexity in the number of generated
tetrahedra.

In the following subsections we will describe the details ofthe
individual steps. In Section 3.1 we describe an efficient method for
computing the cross-section of a tetrahedron and a z-plane.In Sec-
tion 3.2 we describe how to compute the signed distance values in
a fragment program. In section 3.3 we describe a simple approach
to shell creation, which is extended in Section 3.4. Finallyin Sec-
tion 3.5 another shell creation approach is described.

3.1 Computing Cross Section of a Tetrahedron

We use tetrahedra as the underlying primitive that bounds the mesh.
To scan convert the distance field, we therefore need an efficient
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algorithm create-shell()

L = empty list

for each face F

generate tetrahedra of F

add tetrahedra to L

next F

sort L in increasing min. z-values

end algorithm

Figure 8: Pseudo code for tetrahedra shell generation.

algorithm T4-GPU-scan()

for z = min z plane to max z plane

set S = {t in L, and intersects z}

for tetrahedra t in S

find cross-section with z

render cross section

next t

read back distance values

next z

end algorithm

Figure 9: Pseudo code for our tetrahedra (T4) GPU scan conversion
method.

way to slice a tetrahedron with a plane. This method is inspired
by [Bærentzen 2005].

To calculate a cross section of a tetrahedron, the four points of
the tetrahedron is sorted by increasing z-value. This allows for a
very simple algorithm to find the number of intersections andto
create polygons to be processed by the fragment program.

Consider Figure 10. If the z-plane under consideration is below
the lowest point in the tetrahedron, then there will be no intersec-
tions. Similar, if the z-plane is above the highest point in the tetra-
hedron, then there will be no intersections.

There are only three topologically distinct ways a z-plane can
actually slice the tetrahedron:

A: The z-plane lies belowp1. In this case the plane cuts the lines
p0p3, p0p1, andp0p2.

B: The z-plane lies betweenp1 andp2. In this case the plane cuts
the linesp0p3, p1p3, p1p2, andp0p2.

C: The z-plane lies abovep2. In this case the plane cuts the lines
p0p3, p1p3, andp2p3.

In case B, the polygon will always be convex. This can be seen
by drawing all the possible configurations of a tetrahedron and con-
sider the order, in which the plane cuts the four lines.

Cases, where the tetrahedron is only sliced in one point or along a
line, has no area and should not be considered. The above algorithm
ensures this never happens.

The polygons might be either clockwise or counter-clockwise,
so a post-process might be necessary to ensure a proper orientation.
However, the T4 GPU Scan method does not need this property.

3.2 Computing the Sign using Angle Weighted

Pseudo Normals

A novel fragment program was introduced in [Sigg et al. 2003],
which calculated the distance to a triangle. Here we give a descrip-
tion of the case analysis used to determine the distance, together
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Figure 10: The possible topological different slicings of atetrahe-
dron.

(r,s,t )


(x,y,z)


Figure 11: Local triangle frame for a triangle in the mesh anda
related cross section.

with our extension that calculates the correct sign using the angle
weighted pseudo normals.

Each triangle on the mesh is encased in a bounded volume. Each
bounding volume consists of tetrahedra. The triangle is used to cre-
ate a local triangle frame consisting of vectors~r,~s and~t, as shown
in Figure 11. The coordinates of the slice of the tetrahedronis con-
verted to the local triangle frame and send to the GPU as texture
coordinates.

The triangle on the mesh is analyzed to produce three lengths:
the height calledh, the length from the origin of the triangle frame
to vertex~v1 calleda, and the length from the origin to vertex~v0
called b. See Figure 12. Further, the six angle weighted pseudo
normals,~nv0 ,~nv1, and~nv2 for the vertices, and~ne0,~ne1, and~ne2 for
the edges, are calculated and transformed to the local triangle frame
using a rotation matrix constructed from unit column vectors, as
shown in (1).

~n′ =
[

~a
||~a||

~h
||~h||

~n
||~n||

]T
~n, (1)

where~n′ is the transformed normal of~n. These pseudo normals and
the three lengths are sent to the GPU as texture coordinates.

On the GPU, the first thing that happens is a reduction of the
problem to the half-plane, wherer ≥ 0. That is, if ther-coordinate
is negative, we flip the data such thatr = −r, a = b,~nv1 =~nv0, and
~ne1 =~ne2. This reduces the further analysis considerably.

Next, ther ′-, ands′-coordinates is constructed from ther- ands-
coordinates, and a case analysis is performed according to regions
shown in Figure 13. From the case analysis, the distance to the clos-
est feature can be computed, and the corresponding pseudo-normal
can be determined. The sign of point~p can be computed using the
pseudo normal of the closest feature,~n(~c), and some point,~c, on
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Figure 12: Local triangle with lengthsa, b andh, and pseudo nor-
mals.
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Figure 13: Regions used in the case analysis for the triangle.

the closest feature, as

d =~n(~c) · (~p−~c), (2)

as described in [Bærentzen and Aanæs 2005].

3.3 Angle Weighted Vertex Pseudo Normal Shell

For each triangular face we extrude the user-specified narrow-band
distance,ε, outward and inward along vertex normals, which gen-
erates 6 points. Then we compute the convex hull to get a con-
vex mesh completely covering and enclosing the triangular face,
as shown in Figure 14. Hereafter we use the center of the con-
vex mesh as apex for each generated tetrahedron and the triangular
faces of the convex hull as bases of the generated tetrahedra. If
non-triangular faces are found, then we use a simple ear-clipping
algorithm [O’Rourke 1998] to tessellate these into triangular faces.

Note that this will in general not generate a connected tetrahedra
mesh. In some cases tetrahedra generated from one face do not
connect nicely with tetrahedra generated from neighboringfaces.

This is either because, the quadrilateral faces of the generated
prism in Figure 14 are not necessarily planar, or because theextru-
sion may cross over and create a swallow tail as shown in Figure 15.

In both cases using the convex hull of the extruded vertices
ensures a conservative coverage; it also guarantees that nogaps
will occur between the bounded region of the convex hull and the

Figure 14: Convex hull of pseudo normal extruded vertices.

Extruded


Convex Hull


Pseudo Normal


Too Large


Figure 15: Swallow-tail extrusion making shell region of a single
face too large. The too large region is illustrated in grey.

bounded regions of hulls from neighboring faces. The drawback
is that grid nodes belonging to overlapping regions will be scan-
converted more than once, causing a slight performance degrada-
tion.

Aliasing artifacts from rasterization of the sliced cross-sections
may cause empty voxels inside the narrow-band. Working with
floating point arithmetics may lead to numerical imprecision and
truncation errors. Thus, even if the tetrahedra generated from two
neighboring faces are perfectly meeting along the shared edge of
the faces, then truncation and imprecision can lead to smallvoids.
Furthermore, obscure faces could result in oblong tetrahedra, which
would generate slivers when rendered. In conclusion, emptyre-
gions are unavoidable unless we do something extra.

The method of choice in the past have been to enlarge the poly-
hedra being scan-converted. However past methods did not rec-
ognize the leaking problems caused by the enlargement. Besides,
enlargement have an inherent scale dependency of mesh size versus
grid spacing, thus leading to an element of parameter tuning. Con-
servative rasterization [Hasselgren et al. 2005] ensures no aliasing
effects and have no element of parameter tuning. The only draw-
back is a computational penalty, due to extra geometry processing
in the vertex program pipeline. Another problem with the pseudo
normal based shell creation method is that it may result in a leaking
problem, due to the way the shell mesh is constructed.

3.4 Thin Tetrahedral Shell

The shell creation method in the previous section suffers from the
swallow tail problem. This causes the shell around a single face
too become too large, thus causing large overlapping regions with
neighboring faces. This is illustrated in Figure 15. To remedy
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Figure 16: Using thin-shell extrusion lengths result in a more tight
fitting convex hull, illustrated by the grey area.
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Figure 17: The six corner points defining a prism, and vectorsyield-
ing extrusion directions.

this problem we could try to keep the shell region of a single face
as tight as possible, e.g. by using the thin-shell extrusionlength
method in [Erleben and Dohlmann 2004], the details of which will
be described later.

Using the thin-shell extrusion length method we compute three
inward extruded vertices and three outward extruded vertices, for a
total of 6 vertex positions which is passed along to the convex hull
algorithm before doing the tetrahedra tessellation. Againconvex
hull and apex construction method can be applied as in the pseudo
normal shell method. Note that if the extrusion length is limited,
then the coordinates of some of the 6 extruded vertices will be the
same. Figure 16 illustrates the thin-shell idea.

Given a triangle consisting of three vertices~p1, ~p2, and ~p3,
with corresponding three unit direction vectors (we use theangle
weighted normals)~n1, ~n2, and~n3, indicating the extrusion line di-
rection, Then the inward extruded prism is defined by the six corner
points(~p1,~p2,~p3) and(~q1,~q2,~q3) where:

~q1(ε) = ~p1−~n1ε (3)

~q2(ε) = ~p2−~n2ε (4)

~q3(ε) = ~p3−~n3ε. (5)

The extrusion length is given byε > 0. Notation is illustrated in
Figure 17. Similarly, the corner points of the outward extrusion can
be found by flipping the extrusion direction vectors.

By requiringε to be strictly positive, all generated prisms will
have non-zero volume. We therefore seek a robust way to determine
an upper bound onε, such that the prism will be valid.

The direction of the normal of the extruded face,~nq, can be found
from~q1,~q2, and~q3, using the cross-product:

~nq(ε) = (~q2(ε)−~q1(ε))× (~q3(ε)−~q1(ε)) . (6)

This is a second order polynomial inε,

~nq(ε) =~aε2 +~bε +~c, (7)

where

~a = (~n1−~n2)× (~n1−~n3) (8)

~b = (~p2−~p1)× (~n1−~n3)+(~n1−~n2)× (~p3−~p1) (9)

~c = (~p2−~p1)× (~p3−~p1) . (10)

Observe that~c 6=~0, since its magnitude is equal to twice the area of
the triangle being extruded.

To ensure we avoid a swallow-tail, the dot product of the di-
rection of the normal of the extruded face,~nq, with the vectors,
~n1, ~n2, and~n3, must always be positive. That is~n1 ·~nq(ε) > 0,
~n2 ·~nq(ε) > 0, and~n3 ·~nq(ε) > 0. This yields the following system
of constraints,




~n1 ·~a ~n1 ·~b ~n1 ·~c
~n2 ·~a ~n2 ·~b ~n2 ·~c
~n3 ·~a ~n3 ·~b ~n3 ·~c








ε2

ε
1



 > 0. (11)

We solve for the smallest positiveε fulfilling the system of con-
straints. That is, each row represents the coefficient of a second
order polynomial inε, thus for each row we find the two roots of
the corresponding polynomial. The three rows yields a totalof 6
roots. If no positive root exist, thenε = ∞, otherwiseε is set equal
to the smallest positive root.

In fact, the tree dot-product constraints ensure that no neighbor-
ing prism will intersect each other, nor will the prism turn its inside
out (ie. flipping the extruded face opposite the original face).

The thin-shell extrusion length creation method can lead toa
leaking artifact, when creating shells for thin objects. This is il-
lustrated in Figure 5. Computing extrusion lengths along vertex
normals only guarantee that we reach the outer boundary of the
narrow-band along the vertex normals. Everywhere else the com-
puted narrow-band will have less extent than along the vertex nor-
mals.

To minimize the chance of leaking due to differences in pseudo
normal angles and trying to make the narrow-band evenly thick, we
could extend the current shell creation method with more extruded
vertices. We have chosen to make an outward and inward extrusion
of the face vertices along the face normal, thus passing a total of 12
extruded points to the convex hull algorithm. We term this heuristic
“face-offsetting”.

The idea of face-offsetting is illustrated in Figure 18. Face-
offsetting do result in lesser tight shell region around theface. Thus
increasing overlap with shell region of neighboring faces.This
causes more grid nodes to be scan converted.

3.5 OBB Shell

Using the longest edge,~e, and the orthogonal height vector,~h, a
tight fitting rectangle can be placed in the face plane of the triangle.
Hereafter the rectangle is enlarged by the user-specified narrow-
band size,ε. Finally the four vertices of the rectangle are extruded
ε-distance outward and inward along the face normal,~n, in order
to produce an enclosing OBB around the triangle face. Figure19
illustrates the steps involved. The OBB can be directly decomposed
into 5 tetrahedra. This is very simple to implement and nearly
impossible to get wrong. It does ensure a complete coverage of
the narrow-band, although large parts may stick outside or overlap.
Thus simplicity comes at a performance degradation.
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Figure 18: Using face-offsetting to minimize chance of leaking and
creating a more evenly thick narrow-band. Grey area show there-
dundant region.
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Figure 19: Fitting an OBB around a triangle face.

4 Results

All measurements were performed on a 2.4 GHz P4, with 4GB
RAM, running Gentoo Linux. The graphics card installed is a
Geforce 6800GT with 256MB RAM. We used a narrow-band size
corresponding to 10% of the maximum mesh extend.

We have plotted performance measurements in Figures 20, 21,
22, 23, 24, 25, and 26. As expected all figures shows linear com-
plexity that scales with mesh sizes.

Figures 22, 23, 24, and 25 show the CPU time overhead for the
4 different configurations. A clear bottleneck in our implementa-
tion is the lookup operations in our tetrahedra mesh. Next most
expensive operation is surface mesh lookup of vertex coordinates
and normals.

Figure 26 shows the GPU time overhead. It shows that the frag-
ment program is computationally most expensive and out-weights
the frame-buffer read back for large mesh sizes.

In Figure 27 we have shown a few of our signed distance field
results using OBB shell creation method. Left column shows the
sign computation. Middle column shown the signed distance field.
Right column has the mesh super-imposed. Note that no leaking
is present, and that the signed distance field appears smoothevery-
where.

Figure 28 shows the different narrow-bands obtained using the
different shell creation methods. Here it is clearly seen that pseudo-
normal extrusion, thin-shell extrusion, and face-offsetting creates a
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Figure 20: Time used totally.
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Figure 21: Time used to create the shell.

somewhat jagged narrow-band. The OBB creation method clearly
yields the best quality, however it is also the one with worstscan
conversion performance as seen in Figure 20. This is due to the too
large OBBs extending far beyond the narrow-band size and having
large overlaps.

5 Conclusion

We have presented an approach for scan conversion of signed dis-
tance fields.

• It is based on a single type of simple geometry: a tetrahedron.

• It uses pseudo normals to handle correct sign computations.

We have presented several shell generation methods and dis-
cussed drawbacks and benefits. They are all simple to understand
easy to implement. All put together our work yields a robust,sim-
ple, and efficient system for computing signed distance fields.

88



(a) Cow

(b) Knot

(c) Propeller

(d) armadillo

Figure 27: Sign verification and Signed Distance Field Results. Red is negative and blue is positive.
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(a) Pseudo normal (b) Thin shell with face offset (c) OBB shell

Figure 28: Differences in shell creation method illustrated using a cylinder. Red is negative and blue is positive.
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Figure 22: Time used to process the geometry on the CPU for
pseudo normal extrusion and anti-aliasing.
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Figure 23: Time used to process the geometry on the CPU for thin
shell extrusion length.
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Figure 24: Time used to process the geometry on the CPU for the
addition of face offsetting.
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Figure 25: Time used to process the geometry on the CPU for the
OBB shell creation method.
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Figure 26: Time used to process the geometry on the GPU.

There is still room for improvements in this work. Faster meth-
ods of generating tight fitting tetrahedral shell meshes could boost
the performance.

Although we have presented a shell generation method not re-
lying on pseudo normals, the fragment program does need the
pseudo normals. This may be an disadvantage for several degener-
ate meshes, that have redundant vertices creating open boundaries,
which meet, but are not topologically connected. Other thanthat,
the method is capable of handling open boundaries, even overlap-
ping faces. Future work could focus on the dependence on pseudo
normals, for instance by an algorithm capable of computing mean-
ingful pseudo normals for degenerate meshes.

Besides, we have shown that folding cannot be handled with
pseudo-normals. We speculate that a solution to folding problems
requires a two-pass method. This is left as future work.
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Abstract

The recovery of 3D shape and camera motion for non-rigid
scenes from single-camera video footage is a very impor-
tant problem in computer vision. The low-rank shape model
consists in regarding the deformations as linear combina-
tions of basis shapes. Most algorithms for reconstructing
the parameters of this model along with camera motion are
based on three main steps. Given point tracks and the rank,
or equivalently the number of basis shapes, they factorize a
measurement matrix containing all point tracks, from which
the camera motion and basis shapes are extracted and re-
fined in a bundle adjustment manner. There are several is-
sues that have not been addressed yet, among which, choos-
ing the rank automatically and dealing with erroneous point
tracks and missing data.

We introduce theoretical and practical contributions that
address these issues. We propose an implicit imaging
model for non-rigid scenes from which we derive non-rigid
matching tensors and closure constraints. We give a non-
rigid Structure-From-Motion algorithm based on comput-
ing matching tensors over subsequences, from which the im-
plicit cameras are extrated. Each non-rigid matching tensor
is computed, along with the rank of the subsequence, using
a robust estimator incorporating a model selection criterion
that detects erroneous image points.

Preliminary experimental results on real and simulated
data show that our algorithm deals with challenging video
sequences.

1. Introduction
Structure-From-Motion – the recovery of 3D shape and
camera motion from images – is one of the most studied
problems in computer vision. The decades of work has led
to significant successes, especially when the observed en-
vironment is static. However, the assumption of rigidity
is violated in many cases of interest, for example expres-
sive faces, moving cars, etc. For that reason, dealing with
non-rigid scenes coming from single-camera footage has re-
ceived an increasing attention over the last few years. The
problem is highly challenging since both the camera mo-
tion and the non-rigid 3D shape have to be recovered. A
major step forwards for such cases was made by Bregler et

al. [5, 9], Brand [4] and Aanæs et al. [1]. Building on the
work of [2, 7], they developed and demonstrated factoriza-
tion of images of non-rigid scenes, where the non-rigidity
was represented as a linear combination of basis shapes.
Xiao et al. [14] studied the degenerate deformations that
may defeat the reconstruction algorithms.

This paper tackles the two following open problems. (i)
the factorization of a measurement matrix containing all
point tracks in the presence of missing and erroneous im-
age points. This must be done to recover the parameters of
the implicit imaging model. Most previous work do not deal
with missing data [1, 4, 5, 9, 13]. (ii) the automatic choice
of the rank r of the measurement matrix, characterising the
degree of non-rigidity in the sequence. Most previous work
rely on a user-defined rank [4, 5, 9, 10, 13].

More precisly, we build on the low-rank shape model to
derive an implicit imaging model projecting points affinely
from Rr – the implicit shape points – onto the images us-
ing implicit camera matrices. The rank r reflects the degree
of non-rigidity of the model and is thus a very important
parameter. This implicit model is simpler than the explicit
model used in e.g. [5, 10], in the sense that it ignores the
replicated block structure of the camera matrices. The im-
plicit model gives weaker constraints on point tracks than
the explicit model. It is the model used for non-rigid fac-
torization in e.g. [5, 9, 13]. Based on this model, we derive
non-rigid matching tensors that constrain point tracks and
encapsulate information about the implicit camera matrices.
We define non-rigid closure constraints relating the match-
ing tensors to the implicit camera matrices. These theoret-
ical concepts are based on the fact that implicit reconstruc-
tion is performed in Rr. They lead to a batch algorithm for
computing the motion and structure matrices in the presence
of erroneous and missing data. The idea is to robustly com-
pute a set of matching tensors over several subsequences
using MAPSAC and the GRIC criterion to choose the associ-
ated rank [8]. From these matching tensors, we solve for the
implicit camera matrices using the closure constraints. The
next step consists in computing the basis shapes by non-
rigid triangulation. We refine both the implicit cameras and
implicit shape in a bundle adjustment manner. Finally, each
image point is classified as an inlier or an outlier. Almost all
steps in this algorithm are done robustly, meaning that blun-
ders are detected and thus do not corrupt the computation.
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Roadmap. In §2, we derive the non-rigid shape and imag-
ing models. We examine previous work in §3. We derive the
non-rigid matching tensors and closure constraints in §§4
and 5 respectively. Our Structure-From-Motion algorithm
is derived in §6 while the robust estimation of matching ten-
sors and associated ranks is given in §7. Experimental re-
sults are reported in §8 and our conclusions in §9.

Notation. Vectors are denoted using bold fonts, e.g. x
and matrices using sans-serif or calligraphic characters, e.g.
M or X . Index i = 1, . . . , n is used for the images,
j = 1, . . . ,m for the points and k = 1, . . . , l for the ba-
sis shapes, e.g. xij is the position of the j-th point track in
the i-th image and Bkj is the k-th basis shape for the j-th
point. Visibility indicators modeling occlusions are denoted
vij . The Hadamard (element-wise) product is written �.
The zero and one vectors are respectively 0 and 1, 0 is the
zero matrix and T is vector and matrix transpose. Bars in-
dicate centred data, as in e.g. X̄ . Notation [i, i′] refers to a
subsequence between image i and image i′, e.g. X[i,i′] is the
measurement matrix for this subsequence. {} is a set over
some variable. We use the Singular Value Decomposition,
denoted SVD, e.g. X = UΣVT where U and V are orthonor-
mal matrices, and Σ is diagonal, containing the singular val-
ues of X in decreasing order.

Noise distribution. The noise on image point positions is
supposed to be centred Gaussian i.i.d. Under this hypoth-
esis, minimizing the L2-norm between measured and pre-
dicted point positions, often dubbed the reprojection error,
yields Maximum Likelihood Estimates.

2. Non-Rigid Imaging Model
We review the low-rank shape model, dubbed the explicit
model and derive our implicit model.

2.1. Explicit Model
The low-rank shape assumption consists in writing the co-
ordinates of a time-varying set of points Qij as linear com-
binations over l basis shapes Bkj with the configuration
weights αik: Qij =

∑l
k=1 αikBkj . Points Qij are pro-

jected onto the images by affine cameras: xij = PiQij +ti,
from which the explicit imaging model is obtained:

xij = Pi

(
l∑

k=1

αikBkj

)
+ ti. (1)

This trilinear equation is the most explicit form of the
low-rank shape imaging model. Only rank-3 basis shapes
are considered for simplicity, but rank-2 and rank-1 basis
shapes can be modeled as well [14].

2.2. Implicit Model
Rewriting (1), one obtains:

xij =
(
αi1Pi · · · αilPi

)B1j

...
Blj

+ ti

= MiSj + ti with (2)
Mi =

(
αi1Pi · · · αilPi

)
.

We call Mi a (2 × 3l) explicit camera matrix and ST
j =(

BT
1j · · · BT

lj

)
a (3l×1) shape vector. Introduce r = 3l,

the rank of the model, a (r × r) full-rank matrix A and
relaxing the replicated structure yields the bilinear implicit
model. From (2), xij = MiSj +ti =

(
MiA−1

)
(ASj)+ti,

giving:

xij = JiKj + ti. (3)

We call Ji = MiA−1 and Kj = ASj the implicit camera
matrix and the implicit shape matrix respectively. Matrix
A represents a corrective transformation. As shown in the
next section, this is the model used for non-rigid factoriza-
tion. The model generalizes, in some sense, the Pk → P2

projection matrices introduced by Wolf et al. [12].

3. Previous Work
Most of the previous work [1, 4, 5, 9, 13] is based on fac-
torizing a measurement matrix using SVD and hence do
not cope with missing data. We note that Torresani et al.
[10] propose an approach where the likelihood of the ex-
plicit model is maximized over the entire image sequence
using a generalized EM (Expectation Maximization) algo-
rithm which finds the nearest local optimum. The important
rank selection problem is neglected in most papers, besides
[1]. Below, we describe the three main steps involved in
most algorithms. The inputs are the complete measurement
matrix X and the rank r. The outputs are the camera pose,
the configuration weights and the basis shapes.

Step 1: Factorizing. A (2n×m) measurement matrix X
is built by gathering all point coordinates. The translation
part of the imaging model, i.e. the ti, is estimated as the
mean of the point coordinates in each image. A (2n × 1)
joint translation vector tT = (tT

1 · · · tT
n) is built and used

to centre the measurement matrix: X̄ ← X − t · 1T, from
which we get:x11 · · · x1m

...
. . .

...
xn1 · · · xnm


︸ ︷︷ ︸

X̄(2n×m)

=

J1

...
Jn


︸ ︷︷ ︸
J(2n×r)

(
K1 · · · Km

)︸ ︷︷ ︸
K(r×m)

,
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where J and K are the joint implicit camera and shape ma-
trices. The centred measurement matrix is factorized using
SVD as X̄ = UΣVT. The joint implicit camera and shape
matrices J and K, are recovered as the r leading columns
of e.g. U and ΣVT respectively.

Step 2: Upgrading. The implicit model is upgraded to the
explicit one by computing a corrective transformation. Xiao
et al. [13] show that constraints on both the explicit camera
and shape matrices must be considered to achieve a unique
solution, namely the ‘rotation’ and the ‘basis’ constraints.
They give a closed-form solution based on these constraints.
Previous work [4, 5, 9] use only the rotation constraints,
leading to ambiguous solutions. For instance, Brand [4]
shows that a block-diagonal corrective transformation is a
good practical approximation. Once the replicated structure
has been approximately enforced, the rotation matrices are
extracted using orthonormal decomposition. The configu-
ration weights are then recovered using the orthonormal-
ity of the rotation matrices. Bregler et al. [5] assume that
the information about each basis shape is distributed in the
appropriate column triple in the shape matrix by the initial
SVD, in other words that the entries off the block-diagonal of
the corrective transformation matrix are negligible. Experi-
ments show that this assumption restricts the cases that can
be dealt with since only limited non-rigidity can be handled.
A second factorization round on the reordered weighted mo-
tion matrix elements enforces the replicated block structure,
yielding the weight factors and the Pi, which are upgraded
to Euclidean by computing a linear transformation as in the
rigid factorization case. Aanæs et al. [1] assume that the
structure resulting from rigid factorization gives the mean
non-rigid structure and camera motion. Given the camera
motion, recovering the structure is done by examining the
principal components of the estimated variance.

Step 3: Nonlinear refinement. The solution obtained so
far is finely tuned in a bundle adjustment manner by mini-
mizing e.g. the reprojection error. The algorithms proposed
in [4, 9] differ by the prior they are using to regularize the
solution. These priors state that the reconstructed shapes
should not vary too much between consecutive images.

4. Non-Rigid Matching Tensors
Matching tensors are known for the rigid case. Examples
are the fundamental matrix and the trifocal tensor. They re-
late the image position of corresponding points over multi-
ple images. The implicit imaging model allows us to derive
matching tensors for non-rigid scenes. These tensors are
briefly mentioned in [6, §18.3.1].

A non-rigid matching tensor is a matrix N whose
columns span the d dimensional nullspace of the (2n×m)

centred measurement matrix X̄ :

NTX̄ = 0. (4)

The size of matrixN is (2n×d) where the tensor dimension
is d = 2n − r. Loosely speaking, N constrain each point
track x̄j – the j-th column of X̄ – by NTx̄j = 0. These
constraints easily extend to the non centred measurement
matrix X by substituting X̄ = X − t · 1T into equation (4):(

NT −NTt
)(X

1T

)
= 0.

Minimal number of points and views. The three follow-
ing parameters are characteristic of an image sequence: the
number of images n, the number of point tracks m and the
rank r. They can be related to each other, in particular for,
given r, deriving what the minimal number of point tracks
and views are for computing the matching tensor. The com-
putation is possible if the (2n × m) centred measurement
matrix X̄ is at least of size (r× r). Counting the point track
needed to compute the translations for centring the measure-
ment matrix, we directly get the minimal number of point
tracks as m ≥ r + 1. From 2n ≥ r, we obtain the minimal
number of views as n ≥ b r

2c + 1. These numbers can also
be derived by counting the number of degrees of freedom in
the tensor and the number of independent constraints given
by equation (4).

Example: 2D rigid scene. In this case, r = 2 and pairs
of points are related by a 2D affine transformation that can
be estimated from 3 point correspondences. With centred
coordinates, the relationship is x̄2j = Ax̄1j , i.e. :

(
A −I

)︸ ︷︷ ︸
NT

(
x̄1j

x̄2j

)
= 0,

from which we observe that the matching tensor has size
(4×2). More generally, even-rank matching tensors predict
an image point given all other n− 1 image points.

Example: 3D rigid scene. In this case, r = 3 and pairs
of points are related by the affine fundamental matrix that
can estimated from 4 point correspondences. With centred
coordinates, the relationship is (x̄T

2 1)F̄A(x̄T
1 1)T = 0 with

F̄A =
(

0 0 a
0 0 b
c d 0

)
the centred affine fundamental matrix:

(
c d a b

)︸ ︷︷ ︸
NT

(
x̄1j

x̄2j

)
= 0.

More generally, odd-rank matching tensors predict the
equivalent of an epipolar line in an image given all other
n− 1 image points.
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OBJECTIVE

Given m point tracks over n images as a an incomplete (2n×m)
measurement matrixX and a (n×m) visibility matrix V , compute
the implicit non-rigid cameras Ji, the non-rigid shape points Kj

and the rank r.

ALGORITHM

1. Partition the sequence, see §6.1 while robustly computing the
matching tensors {N[ib,i′

b
]} and associated ranks, see §7.2.

2. Solve for the implicit cameras (Ji, ti) using the closure con-
straints, see §6.2.

3. Triangulate the point tracks to get the implicit shape points
Kj , see §6.3.

4. Nonlinearly refine the implicit cameras and shape points by
minimizing the reprojection error, see §6.4.

5. Classify each image point track as an inlier or an outlier.

Table 1: Summary of our non-rigid implicit Structure-From-
Motion algorithm.

5. Non-Rigid Closure Constraints
The closure constraints introducted by Triggs in [11] relate
matching tensors to projection matrices. These constraints
are used to derive a batch Structure-From-Motion algorithm
dealing with high amounts of missing data.

In this section, we derive new types of closure constraints
for the non-rigid case, based on the above-derived matching
tensors, namely the N -closure. Our derivation is valid for
any rank r.

Let K ∈ Rr be an implicit shape point. We project
K in the images using the joint implicit camera matrix J :
x̄ = JK, ∀K ∈ Rr. From the definition (4) of the match-
ing tensors, NTx̄ = 0. Substituting the joint projection
equation yields NTJK = 0, ∀K ∈ Rr, which gives the
N -closure constraint:

NTJ = 0. (5)

This constraint means that the joint implicit camera matrix
lies in the right nullspace of NT.

6. Non-Rigid Structure-From-Motion
Our batch algorithm for implicit non-rigid Structure-From-
Motion is based on the above-derived non-rigid matching
tensors and closure constraints. It is summarized in table 1.
We consider only sets of consecutive images for simplicity.
It begins by selecting a set of s subsequences {[ib, i′b]}b=s

b=1

and by computing a set of matching tensors {N[ib,i′b]
}, one

for each subsequence, and the associated rank estimates
{r[ib,i′b]

}. Our joint tensor and rank estimation algorithm

is presented in §7. The full sequence rank r is the maximum
over all subsequence ranks: r = maxb(r[ib,ib]).

6.1. Partitioning the Sequence
The measurement matrix is partitioned into overlapping
blocks with points visible in all of the selected images. Be-
fore going into further details, we must figure out what the
minimal tensor dimension is, and how many views each ten-
sor should operate on. Let [ib, i′b] and [ib+1, i

′
b+1] be two

consecutive subsequences and let δb,b+1 = ib+1 − ib be the
offset between them. We need to determine what the max-
imum value of δb,b+1 is. The b-th matching tensor, with
dimension db = 2nb − rb, gives db constraints. The num-
ber of unknowns constrained by the first matching tensor
only is δ1,2, from which we get δ1,2 ≤ n1 − b r1+1

2 c. Mak-
ing the same reasoning for the b-th tensor, i.e. ignoring the
constraints coming from previous overlapping sets, gives a
bound on δb,b+1:

δb,b+1 ≤ nb − b
rb + 1

2
c. (6)

Taking into account the other constraints lead to a tighter
bound on δb,b+1, but requires a cumbersome formalism to
count the number of constraints and unknowns. Requiring
δb,b+1 > 0 gives the minimal size of each image set as:

nb ≥ brb + 1
2
c+ 1. (7)

For instance, for a 2D rigid scene, i.e. r = 2, the mini-
mal nb is 2 from equation (7) and the maximal δb,b+1 is 1
from equation (6), i.e. using the affine transformations over
pairs of consecutive views is fine. For a 3D rigid scene, i.e.
r = 3, the minimal nb is 3 and the maximal δb,b+1 is 1,
meaning that using trifocal tensors over triplets of consecu-
tive of views is fine1.

In practice, we do not know the ranks rb at this step. We
tune an initial guess while jointly partitioning the sequence
and computing the matching tensors, as described in §7.2.

6.2. Solving For the Implicit Cameras
The leading part. We solve for the non-rigid cameras us-
ing the closure constraints. For each computed matching
tensor, equation (5) gives the following constraints on the
joint camera matrix J :(

0(db×2(ib−1)) NT
[ib,i′b]

0(db×2(n−i′b))

)
J = 0.

Stacking the constraints for all {[ib, i′b]}b=s
b=1 yields an ho-

mogeneous system AJ = 0. It must be solved, e.g. in the
least-squares sense, while ensuring that matrix J has full

1Triggs [11] states this result and shows the equivalence of using pairs
of fundamental matrices over triplets of consecutive views.
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column rank: minJ ‖AJ ‖2 s.t. det(J ) 6= 0. We replace
the full column rank constraint by a column orthonormality
constraint, i.e. J TJ = I(r×r). Note that the latter implies
the former. This is done without loss of generality since for
any full column rank joint camera matrix J , there exist sev-
eral coordinate transformations, say G(r×r), such that JG
is column orthonormal. One such a transformation is given
by the QR decomposition of J = J ′G−1. The transformed
problem is solved by using the SVD A = UΣVT. Matrix
J is given by the r last columns of V. Note that matrix A
typically has a band-diagonal shape that one might exploit
to efficiently compute its singular vectors, see e.g. [3].

The translations. The implicit imaging model (3) is
xij = JiKj + ti. By minimizing a least-squares error over
all image points, the translations ti in the joint translation
vector t, along with the basis shape vectors Kj can be re-
constructed. We prefer to postpone the basis shape vector
reconstruction to the next step, for robustness purposes. In-
stead, we consider the translation estimate y[i,i′] for each
subsequence [i, i′], giving the centroid with respect to the
points visible in the subsequence. We reconstruct these
centroids along with vector t. Note that in the absence of
missing data, these centroids coincide. We minimize the re-
projection error

∑s
b=1 ‖y[ib,i′b]

−J[ib,i′b]
Y[ib,i′b]

− t[ib,i′b]
‖2,

where J[i,i′] and t[i,i′] are respectively a partial joint projec-
tion matrix and a partial joint translation vector restricted to
the subsequence [i, i′], and Y[i,i′] is the reconstructed cen-
troid. By expanding the cost function, the reprojection error
is rewritten ‖Aw − b‖2, where the unknown vector w con-
tains the Y[ib,i′b]

and t. The solution is given by using the
pseudo-inverse of matrix A, as w = A†b. One must use
a pseudo-inverse, since there is a r-dimensional ambiguity,
making A rank deficient with a left nullspace of dimension
r. This is a translational ambiguity between the basis shapes
and the joint translation t, that one can see by considering
that ∀γ ∈ Rr, xj = JKj + t = J (Kj − γ) + J γ + t =
JK′

j + t′, with K′
j = Kj − γ and t′ = J γ + t.

6.3. Reconstructing the Implicit Shape Points
We compute the basis shape vectors by non-rigid triangula-
tion. This is done by minimizing the reprojection error. As-
sume that the j-th point is visible in the subsequence [i, i′],
then this is formulated by:

min
Kj

‖x̄[i,i′] − J[i,i′]Kj‖2,

with x̄[i,i′] = x[i,i′] − t[i,i′]. The solution is Kj =
J †[i,i′]x̄[i,i′]. We perform the minimization in a robust man-
ner to eliminate erroneous image points. We use a RANSAC-
like algorithm with adaptive number of trials. The number
of image points sampled in the inner loop is b r

2c+ 1.

6.4. Nonlinear Refinement
We complete the reconstruction algorithm by minimizing
the reprojection error in order to finely tune the estimate:

min
J ,t,K

‖V+ � (X − JK − t · 1T)‖2,

where V+ is obtained by duplicating2 each row of the
(n×m) visibility matrix V . The minimization is done in a
bundle adjustment manner. More precisly, we use a damped
Gauss-Newton algorithm with a robust kernel. The damp-
ing is important to avoid singularities in the Hessian matrix,
due to the r(r+1) dimensional coordinate frame ambiguity.
Contrarily to the explicit case, see [1, 13], no extra regular-
izing constraint is necessary.

7. Estimating the Non-Rigid Matching
Tensors and Ranks

Our method estimates a non-rigid matching tensor over a
(sub)sequence, i.e. for a complete measurement matrix, in a
Maximum Likelihood framework. First, we tackle the case
where the data do not contain outliers, and when the rank
is given. Second, we examine the case where the data may
contain outliers, and when the rank have to be estimated.

7.1. Outlier-Free Data, Known Rank
We describe a Maximum Likelihood Estimator, that handles
minimal and redundent data. The translation t is obtained
by averaging the point positions, and the measurement ma-
trix is then centred as X̄ = X − t · 1T. The problem of
finding the optimal N is formulated by minX̂ ‖X̄ − X̂ ‖2

s.t. NTX̂ = 0, where X̂ contains predicted point posi-
tions. This is a matrix approximation problem under rank
deficiency constraint. It is solved by computing the SVD
X̄ = UΣVT, from which X̂ is obtained by nullifying all but
the r leading singular values in Σ and recomposing the SVD.
Matrix N is given by the 2n− r last columns of U.

7.2. Contaminated Data, Unknown Rank
In most previous work, the rank of the sequence is assumed
to be given. One exception is Aanæs et al. [1] who use the
BIC model selection criterion to select the rank, but do not
deal with blunders. When one uses subsequences, the subse-
quence rank may be lower than the sequence rank, and must
be estimated along with the matching tensor. In addition,
one has to deal with erroneous image points. We propose
to use the robust estimator MAPSAC in conjunction with the
GRIC model selection criterion proposed in [8]. GRIC is a
modified BIC for robust least-squares problems. Our algo-
rithm maximizes the GRIC score, as follows. In the inner

2This is simply to make it the same size as X .
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loop of the robust estimator, we sample point tracks and not
only compute a single matching tensor, but multiple ones by
varying the rank. Obviously, an upper bound rmax on the
rank is necessary to fix the number of point tracks that one
samples at each trial. One must take into account that the
computational cost rises with rmax. One possible solution
is to divide the sequence of trials into groups using gradu-
ally narrower intervals of possible rank values. The GRIC
score is given by:

GRIC =
m∑

j=1

ρ

(
e2
j

σ2

)
+ λd + rm log(m),

where ej is the prediction error for the j-th point track,
λ = 4d log(z) − log(2πσ2) and z is chosen as the image
side length. Function ρ is ρ(x) = x for x < t and ρ(x) = t
otherwise, where the threshold t = 2 log(θ) + dλ/(2n)
with θ the ratio of the percentage of inliers to the percent-
age of outliers. The noise level is robustly estimated using
the weakest model, i.e. for a tensor dimension d = 1, as
σ2 = med(e2

j )/0.67452. We refer the reader to [8] for more
details.

8. Experimental Results
Most other methods do not handle missing data, and hence
can not be compared to our. The method from Torresani et
al. [10] handles missing data but uses the explicit model.

8.1. Simulated Data
We simulated n = 180 cameras observing a set of m =
1000 points generated from l = 5 basis shapes, hence with
rank r = 3l = 15. The configuration weights are cho-
sen in order to give a decaying energy to successive defor-
mation modes. The simulation setup produces a complete
measurement matrix X̃ , from which we extract a sparse,
band-diagonal measurement matrixX , similar to what a real
intensity-based point tracker would produce. A Gaussian
centred noise with variance σ2 = 1 is added to the image
points.

In the experiments, we measured the reprojection error
and the generalization error, which are dubbed in a machine
learning context training and test error respectively. The re-

projection error is E =
√

1
e‖V+ � (X − JK − t · 1T)‖2,

where e is the total number of visible image points. In other
words, the reprojection error reflects the difference between
the measures and the predictions. The generalization er-
ror is given by Gγ =

√
1
eγ
‖Ṽ+

γ � (X̃ − JK − t · 1T)‖2,
where γ indicates the percentage of hidden image points
in X̃ involved in the estimation and eγ is the total num-
ber of image points used in the calculation. The (n × m)
matrix Ṽγ indicates which image points are used in the cal-
culation: it is constructed by including points further away
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Figure 1: Reprojection and generalization error versus the
variance of added noise σ for different percentages γ of hid-
den points to compute the generalization error.

from the visible points area while γ grows, i.e. Ṽ0 = V
and Ṽ100 = 1(n×m). For example, G0 = E and G100 =√

1
nm‖X̃ − JK − t · 1T‖2, i.e. all the visible and hidden

image points are used to compute the error. Obviously, we
expect the generalization error to be greater than the repro-
jection error, and to grow with γ.

The first experiment we performed consists in varying
the level of added noise σ for different percentages γ of hid-
den points to compute the generalization error. The results
are shown on figure 1. We observed that the reprojection
error is slightly higher than the level of noise. The ability to
generalize is accurate for a 1 pixel noise level, and smoothly
degrades for larger noise levels, but is still reasonable: in the
tested rang σ = 0, . . . , 5 pixels, the γ = 100% generaliza-
tion error is slightly higher than twice the noise level.

The second experiment we performed consists in vary-
ing the rank used in the computation, namely we tested
r = 11, . . . , 27, for different percentages γ of hidden points
to compute the generalization error. The results are shown
on figure 2. We observed that it is preferable to overesti-
mate rather than to underestimate the rank, up to some up-
per limit. A similar experiment with roughly equal magni-
tude configuration weights to generate the data shows that
r can be slightly underestimated and largely overestimated.
The conclusion is that in practice, overestimating the rank
is safe.

The third experiment is devised to assess the quality of
the rank estimation based on GRIC in the presence of out-
liers. We tested for true ranks in the range r = 3, . . . , 18
which covers what one expects to meet in practice. The
results we obtained are shown in table 2, which shows av-
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3 6 9 12 15 18
0% 3.82 6.06 8.48 11.28 13.82 16.22
10% 3.86 6.02 8.60 11.02 13.66 16.24
20% 3.72 5.98 8.48 11.20 13.84 16.44
30% 3.64 5.94 8.52 11.00 13.52 16.58
40% 3.60 5.98 8.44 11.00 13.58 16.28
50% 3.40 5.88 8.30 10.86 13.68 16.16

3 6 9 12 15 18
0% 0.38 0.42 0.57 0.66 0.65 1.12

10% 0.35 0.37 0.49 0.65 0.55 1.14
20% 0.45 0.37 0.50 0.60 0.58 0.50
30% 0.48 0.37 0.57 0.53 0.61 0.67
40% 0.49 0.32 0.57 0.53 0.64 1.08
50% 0.49 0.62 0.70 0.63 0.71 1.17

Table 2: (left) Average estimated rank r and (right) its standard deviation σr versus the true rank r and percentage of outliers.
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Figure 2: Reprojection and generalization error versus the
rank r for different percentages γ of hidden points to com-
pute the generalization error. The true rank r = 15 is indi-
cated with a vertical bar.

erages over 50 trials. We observed that these results are
acceptable, even if the GRIC criterion we used is slightly
biased since low ranks, i.e. less than 6, are slightly overes-
timated, while larger ranks, i.e. greater than 9 are slightly
underestimated. It is however possible to correct for this
bias in accordance with our conclusions on the previous ex-
periment.

8.2. Real Data
We tested our algorithm on several image sequences. For
one of them, extracted from the movie ‘Groundhog Day’,
we show results. The sequence shows a man driving a car
with a groundhog seated on his knees. The head of the man
is rotating and deforming since he is speaking, and the ani-
mal is looking around, deforming its fur, opening and clos-
ing its mouth. Finally, the interior of the car is almost static,
while the exterior is rigid, but moving with respect to the
car.

The sequence contains 154 images, see figure 3 (top). We

ran a KLT-like point tracker. We obtained a total of 1502
point tracks after having removed the small point tracks,
namely which last less than 20 views. The visibility matrix,
shown on figure 3 (bottom) is filled to 29.58%.

Figure 4: One frame with points and motion vectors repro-
jected from the reconstructed model.

For some parts of the sequence, where the motion of the
different moving and deforming parts in the images is slow,
computing the matching tensors is quite easy. Indeed, blun-
ders can clearly be detected and classified as outliers. How-
ever, other parts in the sequence contain significant motion
between single frames and motion blur occurs, making the
point tracks slightly diverging from their ‘true’ position, and
making the detection of outliers difficult. Large illumination
changes sometimes make the tracker fails for entire areas of
the image.

The reprojection errors we obtained at the non-rigid
matching tensors estimation stage were distributed between
0.5 and 0.9 pixels, and 0.65 pixels on average. We used a
user-defined rank r = 15. The initialization step yielded
58021 inliers over 68413 image points, i.e. the inlier rate
was 84.8%, with a reprojection error of 1.19 pixels. The ro-
bust bundle adjustment yielded 61151 inliers, i.e. the inlier
rate was 89.4%, with a reprojection error of 0.99 pixels. We
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Figure 3: (top) 5 out of the 154 frames and (bottom) the visibility matrix V for the ‘Groundhog Day’ sequence.

believe it is a successful result on this challenging image
sequence.

Figure 5: Closeup on the actor, the groundhog and the back-
ground overlaid with points and motion vectors reprojected
from the reconstructed model (white dots), original points
(light grey squares) and outliers (dark grey diamonds).

9. Conclusions

We proposed an implicit imaging model for non-rigid
scenes, from which we derived non-rigid matching tensors
and closure constraints. Based on these theoretical con-
cepts, we proposed a robust batch implicit Structure-From-
Motion algorithm for monocular image sequences of non-
rigid scenes, dealing with missing data and blunders. Future
work will be devoted to comparing various model selection
criteria, and segmenting the scene based on the configura-
tion weights, to recover objects that move or deform inde-
pendently.
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3DOT
An Open Source Game Engine

André Tischer

July 12, 2006

1 Abstract

This is a short description of the 3DOT game
engine and its overall design. It is not meant
as a complete guide but more as an introduc-
tion to 3DOT and large scale game engine de-
sign. It demonstrates the framework that con-
trols the visual rendering process and how it
can be altered during execution. We will not
be diving into implementational details.

Note: this article is an extraction of the
master thesis by André Tischer and what is
presented here is only meant as a quick glance
at game engine design and what it involves,
for more detail see [Tis06]. High resolution
versions of the figures can also obtained from
that location.

2 3DOT - Game Engine

3DOT is a open source 3D game engine devel-
oped by students at the Department of com-
puter science at University of Copenhagen.
The engine is a large collection of different
modules, which in many cases can be used as
a stand alone program, i.e. out of the 3DOT
context. The engine is designed as a multi-

game environment. This means that 3DOT
is not restricted to support any specific game
or game type. The typical game made with
3DOT would be a real-time 3D game.

Some design rules have been enforced dur-
ing the development of the 3DOT engine: the
language that we have used to write comments
and documentation is English. All modules
are implementations of some 3DOT API, this
is done in order to increase modularity of the
engine. This also applies to all third party
software and especially operating system spe-
cific modules. The APIs makes it possible to
remove any part of the engine, so it becomes
possible for the programmer to replace it with
his own module, or improved tool, without
having to rewrite the whole engine.

Further to ensure modularity the engine,
including all engine modules, is kept free of
any game application specific code. When
creating a module that relate to a specific pro-
ject, it can be added to the repository. The
module is not considered a part of the basic
functionality of the engine. This way it can
be used by others and enrich all projects us-
ing the 3DOT engine.

3DOT closely incorporates a XML serial-
ization system and a script language. This is
a standardization of how to store and retrieve
user data and it also makes it easy for the pro-
grammers to develop application specific and
dynamic code using the script language. It
promotes a fast way of prototyping and de-
veloping modules. XML has been chosen be-
cause:

• It is a very easy and standard method to
create structured data

• Its wide spread use in many fields

• It is understood by many people, i.e. they
do not have to learn some new file for-
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mat in order to understand 3DOTs data
files.

A simple gauge of XMLs popularity can
be achieved with a search with the keyword
XML using http://www.google.com/. This
search yields over 1.9 billion hits within many
different areas of subject.

Commercial game engines has a lot of run-
time requirements, but as 3DOT is not devel-
oped with commercial purposes it does not
have to meet the normal requirements of com-
mercial game engines. This means that 3DOT
can avoid the confining constraints that com-
mercial engines has, such as the backwards
compatibility, restrictions on memory and CPU,
and diversity among specialized hardware. It
is also hoped that not having these thigh run-
time requirements, that the 3DOT engine can
be used in research of future technology. 3DOT
expects that the machine its running on is a
relatively new machine in terms of memory,
CPU, and graphics hardware. At the time of
writing (summer 2006) the minimum require-
ments is: a 1.8 gHz CPU, 1 Gb of RAM, and a
graphics card that is directX 9.0 compliant.

This section introduces the game engine,
its overall design, and a walk through of how
the modules fit’s together when used as a com-
plete solution.

2.1 General Design

The mantra of 3DOT development is mod-
ularity where possible. Figure 1 illustrates
the main modules and how they relate. In
the following the figure is examined in detail.
Please refer to this figure during the explana-
tion of the different modules.

A main design idea we have adopted is
the model-view-controller scheme [GHJV94].
The model-view-controller scheme ”is a soft-
ware architecture that separates an applica-
tion’s data model, user interface, and control
logic into three distinct components so that
modifications to one component can be made
with minimal impact to the others.” [Wik06b].
View means the presentation, i.e. the render-
ing in this case. This scheme applied to a
game engine is described in [Rou05]. A nice
consequence of this is for example the pos-
sibility of simultaneous development on the

Figure 1: Main design of 3DOT. It shows how the ren-
dering, representation, and the control logic is separated
into different modules.

renderer and the AI system. It also means
that we can shut off the rendering and still
run the game should we wish to do that. This
can be very useful if one for example want to
implement a server for net-gaming.

2.1.1 Game State - Model

Below the tree main modules of the game state
is explained:

Different games are called applications in
3DOT terminology. This is due to the Appli-
cation Servermodule. This module is the
C++ main function. What it does is to serial-
ize an XML file that describes which modules
to load, how to initialize them, and describes
what to do in the render and main loop, also
known as the game loop. This constellation
makes it possible to have several applications
running on the same engine. This is achieved
simply by changing the XML application file
and reloading the engine. The application makes
sure to load the scene description as specified
in the application file. The application server
makes sure to initialize and start up the ap-
plication.

The Core module is basically a process
handler. It is the main scheduler in the engine
just like the process task handler of an op-
erating system. The scheduler is a singleton
priority queue of function handles. Modules
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that must be updated at some frequency can
register their update function in the sched-
uler along with the update time, i.e. the time
until next call. The scheduling is implemented
using voluntary process handling, this means
that it is up to each function to yield or re-
turn before the function monopolizes the sys-
tem. The reason that the scheduler uses this
scheme, instead of automatic process handling,
is because a lot of modules are dependant upon
the same data. This data dependency demands
that a module finishes its update before start-
ing on another module. With automatic schedul-
ing the developers have no control over which
modules are in the process of being updated
or not. Another issue for game developers is
that the different modules have some guar-
antied update frequencies, like each frame, twen-
ty times a second, and so on. Using a volun-
tary process handling makes it easier to achieve
this. It can be imagined that some of the mod-
ules could be handled by a automatic sched-
uler, the advantages of having two schedulers
has not been explored.

Entities are things within the game that
have some kind of dynamic state data. An
in-game character will always be an entity.
It will as a minimum have a world position
and orientation, but most likely also some in-
ternal memory (state), and current task. An
entity could also be an invisible trigger that
set off some alarm when some event occurs.
However, an entity is not some static land-
scape or house placed in the game world. En-
tities are only things with some state data that
changes, i.e. data that needs to be saved in
order to replicate the situation correctly. An
example of what is not an entity is the cloud
system of the game Far Cry (Crytek 2004). It
is not possible for the player to interact with
the clouds and the positions of the individual
clouds are not important for the game play in
any other way than as a visual pleaser. Even
though the clouds are animated, i.e. they have
changing position, they are not considered en-
tities in 3DOT terminology because of their
lack of any state data.

The only place where game state data is
stored is within the collection of entities. A
consequence of this is that all other modules
that requires access to game state data needs
to interface with this module. Only two mod-
ules are allowed to modify the game state and
that is either the simulator, which take care of

natural motion, and controllers. Of cause the
entities them selves can impose changes.

2.1.2 Controller API - Controller

The controller interface is the API that deter-
mines how to access a specific entity and the
state data stored there. An entity can have
many different controllers depending on the
input device, AI, Human Interface Device (HID),
and such. Most likely an entity will have a
small tree of controllers, as figure 2 demon-
strates. It is, however, not all entities that has
a controller attached. It is only those that need
input from outside the system. Input is de-
fined as all external forces that cannot be con-
sidered a part of the model, for example grav-
ity would not be an external force but adding
a sudden force to an object in some direction.

Figure 2: Demonstration of how an entity can have
more than one controller. Also notice that the child con-
trollers implement different versions of the parent func-
tions, depending on the input type.

With this scheme we are able to make a su-
per class that defines some common function-
ality and some requirements (C++’s pure ab-
stract class) of all inheriting objects. This way
it is possible to provide a uniform interface to
each child controller, no matter whether they
are AI or a HID. In many cases all types of
input providers (AI or HID) will utilize the
same interface.

Here the strength of the model-view-con-
troller design scheme becomes apparent: the
entity does not care about whether it is an AI
or a HID that provides the input, as long as it
uses the right mapping from whatever func-
tion the controller exposes to the entity func-
tionality. This also provides some degree of
freedom parallel development for designing
new in-game items.

It is the responsibility of the controllers to
translate the many different types of input into
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a uniform batch that can be applied to the en-
tity. It is often the case that the controller is
exposed to LUA so that it becomes easier to
alter and fine tune the individual controller.

2.1.3 Simulator - Model

The main job of a simulator is to make ob-
jects move. Often it simulates an earth like
environment and objects in the world (enti-
ties) fall down when pushed over the edge.
It is the job of the simulator to move all en-
tities according to the physics settings of the
particular game. It is also the job of the sim-
ulator to make sure that objects do not inter-
sect with each other - collision detection. The
simulator is the only module that is volun-
tary. Many games, such as typical RTS games,
do not have a global simulator. The main rea-
sons to skip this module is to save develop-
ment time, to minimize the amount of risk in-
volved in the development process, to gain
performance, and the fact that game design-
ers are just warming up to the challenge of
using simulated physics as an integrate part
of the game design. The many tasks that the
simulator performs can be faked to some ex-
tent. For example, walking on the terrain may
be done by constraining all movement to the
2d ground plane, determining the height over
this plane by applying the landscape height
at this position, and by playing some prere-
corded animation at some appropriate pitch.
To avoid collision detection the path planner
can simply make sure that it avoids all static
objects. If a few objects need to fall then just
implement a very simple simulator within the
entity AI program. This method is used and
is a very effective way of controlling the com-
puter resources, but more and more games
incorporates a full simulation system.

A simulator is regarded as a part of the
model. Even though the simulator is modify-
ing the game state, a simulator is not a mod-
ule that is closely controlled and it more or
less takes care of itself as long as it gets CPU
time. Another reason to regard the simulator
as a part of the model is the close relationship
between it self and the entities. All entities
must be developed in a way such that they
expose the information needed by the sim-
ulator and they do not have to update their
own data. Note that not all entities have to
be simulated. It is often the case that only

a few objects are simulated, and once an ob-
ject becomes static again it is put to sleep and
removed from the list of simulated objects.
Sleeping objects are all objects that are not mov-
ing or has so little movement energy that they
are clamped to be static. The sleeping/simu-
lated object method is used in order to save
processor time.

3DOT is designed to interface with a broad
range of simulators. It is a non-trivial thing
to implement a simulator and to integrate it
into an engine. This process must be done
with care. Entities that are moved by the sim-
ulator must still have all data within the en-
tity while working with the simulator. This
can be achieved by a double representation
or by making the simulator acquire the data
directly from the entities.

The 3DOT engine has been working with
two different simulators over the years, the
RenderLoop engine and a simulator provided
from OpenTissue [EDSH01]. The example game
of this thesis has no simulator attached. All
motion projection is done by the entities them-
selves.

2.1.4 Renderer - View

3DOT uses a double representation of all data
used in the rendering process. This means,
that the renderer has its own transformation
data even though it is the entities that ulti-
mately decide where all game objects are lo-
cated. This double representation has been
chosen for two reasons: Not all game objects
that has to be rendered is entities, for example
the landscape and clouds from previous ex-
amples. The renderer has its own scene graph
it stores all needed information in and utilizes
it at each render event

A scene graph can be many things, but
normally as a minimum, the term covers a
transformation hierarchy, i.e. a tree structure
where each node is a geometric entity with a
transformation and a orientation that trans-
forms into its parent object space. The root
node is the origin of the world space: [0, 0, 0].
This is a very convenient way of storing data
when rendering the data and manipulating
the data [WP00, chapter 9]. But from a simu-
lator standpoint it might not be, for example
an aero plane entity may consist of eight to
ten different geometric nodes, wings, guns,
fuselage, flaps, and so on, but it is only the
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root node of this sub tree that is needed when
simulating. The rest of the nodes are expected
to just follow their parent node. Also simula-
tors work only in world space. It is not given
that a geometric node in the scene graph nec-
essarily is expressed in terms of world space,
for example the flaps of the plane. Figure 3
shows both how a collection of geometric nodes
can comprise one single entity, how the node
tree (scene graph) looks, how an entity im-
plementation can manipulate the geometric
nodes, and how a controller and simulator
can influence the system.

2.1.5 Utilities and APIs

Accompanying the central part of the game
engine is an abundance of utility libraries. Most
of these modules are more loosely connected
to the engine than the modules described above.
Here is a short list and descriptions of the cen-
tral modules:

• Math: No game engine without an ex-
tensive math module. 3DOTs math mod-
ule has been developed since before the
start of 3DOT and is a very well tested
module. The math module contains a
broad range of types. With regard to
game development the most basic are:
quaternion, vectors, small and large ma-
trices, and transformation library.

• Audio: The audio module describes a
general API to a audio system. As of
summer 2006 only a windows implemen-
tation of the API has been added. It uses
OpenAL [ope06] as a basis. It is pos-
sible to create emitters and place them
in the 3D game world and them attach
sources to these emitters. Each emitter
has a position, a orientation, and veloc-
ity. A source can either be streamed or
immediate. Streamed sounds are han-
dled as a separate thread whereas the
immediate sound is loaded into mem-
ory and played directly from there.

• Input Handler: Like the audio module,
and in accordance with the 3DOT de-
sign mantra, the input handler describes
a generalized API for handling input from
joystick, keyboard, mouse, and other types
of HIDs - All special input devices such
as dance mats, guitar controllers, drum

controllers, registers themselves as joy-
sticks. Only a DirectInput Microsoft
implementation has been added at time
of writing [dir05].

• Operating System: The operating sys-
tem module is not quite a module in the
standard way. No application without
an interface to the operating system. This
module wraps all functionality that goes
to opening a window, and handling mes-
sages from the underlying operating sys-
tem. Again, only a windows implemen-
tation has been implemented at the time
of writing.

Porting 3DOT to another operating sys-
tem is in large part done by implement-
ing this module. But some other mod-
ules must also be ported. All input and
output modules must be able to run on
the target system, audio, file IO, and such.

• File IO: Handling IO operations with
regard to fetching of files from data stor-
age, calculation of the correct paths and
such. This module is operating system,
file system, dependent. As all file han-
dling is done through this module it is
only this module that needs to be im-
plemented in a new version if the en-
gine is to be ported.

• Crazy Eddie Graphics User Interface
(GUI): 3DOT incorporates a full third
part open source GUI system. Crazy
Eddie (CE) is a game oriented GUI sub-
system [Wik06a]. It takes care of draw-
ing all head-up-display (HUD) objects,
such as dialog boxes, menus, sub win-
dows, text input, and such. The Crazy
Eddie homepage states that it is: ”tar-
geted at games developers who should
be spending their time creating great games,
not building GUI sub-systems!” [Wik06a].

• XML serialization: Serialization to and
from XML documents [xml06]. The way
this module works is by forcing all se-
rialize objects to implement a function
that takes care of loading or saving, de-
pending on the current activity. It is pos-
sible to call other serialize objects and
their respective serialize function is then
recursively called. This way it is possi-
ble to create a whole hierarchy of serial-
ize functions.
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• Script Language - LUA: 3DOT has cho-
sen LUA script [lua06]. Scripting has
become a very integrate part of many
modern game engines. In 3DOT it has
been chosen not to wrap an API around
the script language. Due to compile time
issues, we have chosen to gather all script-
ing in a few libraries, but as scripting
is heavily used in many different situ-
ations, LUA library code can be found
in many modules, but where possible it
has been gathered in one library.

The LUA programming language is not
a new language it has been around since
1993. It is made by TeCGraf - Computer
Graphics Technology Group at Pontifi-
cal Catholic University of Rio de Janeiro.
It has over the years been used in sev-
eral commercial products among these
games such as World of Warcraft (Bliz-
zard Entertainment 2005), Grim Fandango
(Lucas Arts 1998), and Escape from Mon-
key Island (Lucas Arts 2000). Because of
the very large community and the con-
tinued development of the language 3DOT
has chosen to incorporate LUA closely
into the engine. Together with luabind,
a library that helps the creation of bind-
ings between C++ and LUA, 3DOTs script
engine is utilized in many modules and
works well with the serialization sys-
tem.

For more information about LUA and
luabind see [IdFC06] and [WN03]. The
background of LUA is explained in [IdFC01].

• Reflection System: 3DOT has an auto-
mated reflection system that makes sure
that some class, LUA or C++, can be au-
tomatically instantiated and that it can
expose properties to the GUI system. This
automates the process of making GUI
components to each type and instance.
When creating level altering tooles this
module is the corner stone. It makes it
possible to create all entities and GUI
components dynamically.

• Event Handler: It can be very impor-
tant to have a way of communicating
between two arbitrary points within the
game engine. The global event handler
takes care of this functionality. From any
where an object can register a event, just

a string value for example ”GLOBAL-
PROGRAM EXIT”, and a handler call-

back function. When some other part
of the program fires the event of that
name, all waiting callback functions are
called. It is also possible to parse data
values via this interface.

It shall however not be mistaken with
the local event system that each entity
can have attached. This system has the
same basic functionality but the domain
is only within the collection of entities.
These local event managers are mostly
used to build the game mechanics: when
this lever is pulled the trap door opens.

Not all modules are listed here. Among
the unlisted modules are the timer module,
log file module, string utility, and more.

3 The Future

The 3DIKU engine is an engine in develop-
ment. It is by far not a finished product. Be-
fore it can support any real large scale game
development it needs an editor to support hav-
ing non-tech people to create the levels and
game worlds, more finish with regard to the
whole use of the code base, such as a consis-
tent documentation, i.e. tutorials, introduction
to module design, overall design philosophy,
and a function reference document. As 3DIKU
have been a student driven project based upon
the work done in a couple of master thesis’,
some written projects, and voluntary work,
it has somewhat lacked behind with regard
to Quality Assurance (QA) and documenta-
tion. These issues have however over first
half of 2006 become a more important issue
and steps to remedy these have been taken -
this work being one of them. Also the people
behind the 3DIKU engine have begun a col-
laboration with the people behind OpenTis-
sue [EDSH01]. The aim is to provide 3DIKU
with state of the art simulators to be used along
side the 3DIKU engine. From the OpenTis-
sue perspective the need for a advanced vi-
sualization, complete with GUI, input han-
dling, scene handling and such, has been a
long standing issue, as these areas are not within
the scope of the OpenTissue charter.

Any questions can be directed to André
Tischer at tischer@diku.dk.
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Figure 3: An overview of how the model-view-controller scheme looks in the 3DOT engine. The color scheme is
adopted from figure 1. It shows the break-up of a geometric model, how it is arranged in a transformation hierarchy
(scene graph), how the entity moves the different nodes around, and how the controller exposes functionality to induce
changes into the system. The curved arrows indicate how influence is propagated around in the system. The plane
model is created by Lars Westergaard Thomsen (2006) in 3D Studio Max.
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1 Introduction

Crouzon syndrome was first described nearly a century ago when calvarial defor-
mities, facial anomalies, and abnormal protrusion of the eyeball were reported
in a mother and her son [1]. Later, the condition was characterized as a con-
stellation of premature fusion of the cranial sutures (craniosynostosis), orbital
deformity, maxillary hypoplasia, beaked nose, overcrowding of teeth, and high
arched or cleft palate. Identification of heterozygous mutations in the gene en-
coding fibroblast growth factor receptor type 2 (FGFR2) have been found respon-
sible for Crouzon syndrome [2]. Recently a mouse model was created to study
one of these mutations (FGFR2Cys342Tyr)[3]. This model allows for detailed ex-
amination of the craniofacial growth disturbances. The goal of this study is to
automatically assess, visualise and statistically analyse these deviations in a set
of adult wild-type (normal) mice and mice with Crouzon syndrome. This paper
presents the preliminary steps towards these goals. Firstly, the construction of
a nonrigid craniofacial wild-type (WT) mouse atlas. Secondly, the estimation of
deformation fields from the atlas to all subjects using nonrigid registration.

The outline of the paper is the following. In the next section, data acquisition
and methodology will be discussed. Section 3 presents the experimental results
in terms of qualitative and quantitative, landmark-based registration accuracy.
Section 4 provides a discussion of the results and conclusions.

2 Methods and Materials

2.1 Data

Production of the FGFR2C342Y/+ and FGFR2C342Y/C342Y mutant mouse (Crou-
zon mouse) has been previously described [3]. All procedures were carried out in
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agreement with the United Kingdom Animals (Scientific Procedures) Act, guide-
lines of the Home Office, and regulations of the University of Oxford. Mutant
mice of breeding age were determined by phenotype.

For three-dimensional (3D) CT scanning, 10 WT and 10 FGFR2C342Y/+

specimens at six weeks of age (42 days) were sacrificed using Schedule I meth-
ods and fixed in 95% ethanol. They were sealed in conical tubes and shipped
to the Micro CT imaging facility at the University of Utah. Images of the skull
were obtained at approximately 46µm × 46µm × 46µm resolution using a Gen-
eral Electric Medical Systems EVS-RS9 Micro CT scanner. Figure 1 shows an
example of the mice and imaging data appearance.

(a) (b) (c)

Fig. 1. (a) Photo of a Crouzon mouse (left) and a WT mouse (right). Skull surfaces
extracted from CT images of (b) a Crouzon mouse, (c) WT mouse.

2.2 Nonrigid registration

The goal of image registration is to warp one image into the coordinate system of
another using an optimal transformation T(x, y, z) 7→ (x′, y′, z′). A basic image
registration algorithm requires the following:

– A transformation type.
– A measure of image similarity.
– An optimisation method to optimise the transformation parameters with

respect to the similarity measure.

In this study the FFD-based nonrigid registration algorithm presented in [4]
was adopted. In this approach, the transformation consists of both a global and
a local model, i.e.

T(x, y, z) = Tglobal(x, y, z) + Tlocal(x, y, z). (1)
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The global transformation model describes the overall difference between the
two images. This is achieved by an affine transformation. In this study, the
affine transformation was defined by rotation and translation in addition to
anisotropic scaling since the largest changes between the two groups stem from
the differences in aspect ratio. This gives an affine transformation with 9 degrees
of freedom. In this way, the largest part of the differences between the two groups
of mice is covered by the affine registration.

However, local differences between the groups still remain. This calls for a
nonrigid (and nonaffine), local transformation model. The FFD model based on
B-splines has proven to be a powerful tool when modelling such deformations.
In 3D, the FFD is defined by an nx × ny × nz mesh of control points Φ with
spacing (δx, δy, δz). The underlying image is then deformed by manipulating the
mesh of control points. The FFD model can be written as the tensor product of
the one-dimensional (1D) cubic B-splines

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2)

where i = bx/nxc − 1, j = by/nyc − 1, k = bz/nzc − 1, u = x/nx − bx/nxc, v =
y/ny − by/nyc and w = z/nz − bz/nzc

Br represents the rth basis function of the B-spline

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u3 + 3u+ 1)/6

B3(u) = u3/6.

The similarity metrics tested in this study were Sum of Squared Differences
(SSD), Cross Correlation (CC) and Normalised Mutual Information (NMI). In
short, NMI outperformed the other two and was therefore used in the remaining
experiments. A gradient descent approach was used to optimise the similarity
measure. An implementation of the algorithm by Rueckert6 [4] was applied.

2.3 Atlas construction

An anatomical atlas was constructed from the set of WT mice in an iterative
manner using nonrigid registration. The procedure is listed in Table 1.

Lines 6 and 7 from table 1 are intended to reduce the bias towards the choice
of reference subject as done with good results in [5]. Figure 2 shows the resulting
atlas in three different views and as a surface extracted from the volume.

6 http://www.doc.ic.ac.uk/∼dr/software/
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Table 1. Atlas construction

1 atlas ← a selected reference subject from the set of WT mice
2 do
3 Nonrigidly register all WT mice to atlas
4 atlas ← Average of all registered mice
5 until atlas stops changing
6 Nonrigidly register atlas to all WT mice
7 Deform atlas by d̄ = the average deformation obtained in step 6

(a) (b) (c) (d)

Fig. 2. The craniofacial, nonrigid mouse atlas in (a) axial, (b) sagittal and (c) coronal
view. (d): 3D surface view of the atlas.

3 Results

3.1 Registration accuracy

To assess the craniofacial deviations caused by the Crouzon syndrome, the atlas
in Figure 2 was registered to all subjects (WT and Crouzon cases). The regis-
tration accuracy was examined both qualitatively and quantitatively. Figure 3
shows difference images between one of the Crouzon cases and the atlas before
and after registration. Figure 4 shows the closest point difference between the at-
las and one of the Crouzon cases before and after registration, as a color overlay
on the two surfaces. To provide a quantitative analysis of the registration accu-
racy, surfaces were extracted from the images and two independent observers put
26 anatomical landmark on all the cases. Using the optimal deformations, the
landmarks were also obtained automatically by propagating the atlas landmarks
to each of the remaining subjects. Figure 5 shows the landmark errors, i.e. point
to point distances between the two observers and between the automatically
generated landmarks and each of the observers.
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(a) (b) (c)

Fig. 3. Difference images before (top row) and after (bottom row) registration of the
atlas to a Crouzon mouse in (a) axial, (b) sagittal and (c) coronal view.

4 Discussion

Figure 3 indicates that the differences between the atlas and the Crouzon case
have been compensated for during the registration. In the top row, one can ob-
serve large global differences especially in the length and width of the skull.
Locally, the shape of the nose and the upper jaw is very different. All these
differences and many more, not seen in this figure have been compensated for
by the registration (both the global and the local one). Figure 4 gives a semi-
quantitative impression of the registration accuracy. Before registration, the dis-
tance between the surfaces of the atlas and the Crouzon case reach over 0.75
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(a) (b)

Fig. 4. Surface views with color coding denoting closest point difference (in mm) be-
tween the surface of the atlas and the Crouzon mouse (a) before and (b) after regis-
tration.
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Fig. 5. Landmark errors for Crouzon cases. (a) Interobserver errors, (b)Automatic to
observer I, (c) Automatic to observer II.

mm. After affine and nonrigid registration, these differences have been reduced
to around 0.1-0.2 mm. A further inspection of the accuracy is given in Figure 5.
The landmark errors indicate that the automatic approach is just as good as the
manual annotations and even more consistent. However, one landmark (number
22) seems to give problems. This landmark is placed where the frontal nasal su-
ture and sagittal suture meet. The explanation might be that image information
is not sufficient for these sutures to match accurately. It was also noted that
in some of the Crouzon cases they are hardly visible. Overall, the accuracy is
considered to be good. This allows for automatic assessment of the deviations in
Crouzon subjects in terms of morphological measuremnts on the skull. Further,
the nonrigid registration parameters serve as a good basis for statistical analysis
of the deformations between and within the two groups.
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5 Conclusion

In summary, this paper has presented the construction of a nonrigid craniofacial
wild-type mouse atlas. Furthermore, the atlas has successfully been registered to
wild-type mice as well as Crouzon mice. Provided the accurate registrations, it is
now possible to automatically assess the growth deviations in Crouzon subjects
and carry out statistical analyses of the nonrigid deformations.
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Abstract 

Existing video-footage of a person speaking can be used to construct 
a model, which maps speech to lip movements and facial 
expressions. The facial model is based on an Active Appearance 
Model (AAM) framework (Edwards et al. 1998, Stegmann et al. 
2003). The face in the video sequence is matched 
from frame to frame semi-automatically - typically based on a 
person-specific model. The matched video sequence contains 
information on lip movements and other facial expressions, which 
can be extracted via the parameters in the AAM model 
parsimoniously. The sound-track containing the speech is analysed in 
segments corresponding to each video frame. These can now be 
modelled using e.g. mel cepstral coefficients. Finally, a state-space 
model is used to map between the speech model and the face model 
(Lehn-Schiøler 2005). 
Once the model and correspondences have been established it is 
possible to let speech control the lip movements and facial 
expressions. Because the model is parsimonious and only linear 
operations involving vectors and matrices are needed it is feasible to 
make a real-time implementation on a standard computer. 

Introduction 

The motivation for transforming a speech signal (or other signals e.g. 
typed text) into lip movements is obvious for use by handicapped. If  
video footage of a handicapped person in a period prior to the 
handicap exists then a personal avatar can be constructed. 
However, multiple other uses may be considered. Firstly, the 
language synchronization of movies often leaves the actors mouth 
moving while there is silence or the other way around, this looks 
rather unnatural. If it is possible to manipulate the face of the actor 

Figure 1. The digital face preforming at a 
conference. Picture courtesy of Carsten 
Broder Hansen, IMM/DTU. 
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to match the actual speech it would be much more pleasant to view synchronized movies (and a lot easier to 
make cartoons). Secondly, even with increasing bandwidth sending images via the cell phone is quite 
expensive, therefore, a system that allows single images to be sent and models the face in between would be 
useful. The technique will also make it possible for hearing impaired people to lip read over the phone. If the 
person in the other end does not have a camera on her phone, a model image can be used to display the facial 
movements. Thirdly, when producing agents on a computer (like Windows Office Mr. clips) it would make 
communication more plausible if the agent could interact with lip movements corresponding to the 
(automatically generated) speech. 

Feature Extraction 

Many different approaches have been 
considered for extraction of sound features. If 
the sound is generated directly from text 
(Ezzat and Poggio, 1998), phonemes can be 
extracted directly and there is no need to 
process the sound track. However, when a 
direct mapping is performed one can choose 
from a variety of features. A non-complete list 
of possibilities include Perceptual Linear 
Prediction or J-Rasta-PLP as in (Dupont and 
Luettin, 2000) and (Brand, 1999), Harmonics 
of Discrete Fourier Transform as in 
(McAllister et al., 1998), Linear Prediction 
Coefficients as in (Lewis, 1991) or Mel 
Frequency Cepstral Coefficients (MFCC) 
(Goldenthal et al., 1998) and (Massaro, 1999) 
and (Hong et al., 2002). 
In this work the sound is split into 25 blocks 
per second (the same as the image frame rate) 
and a number of  MFCC features are extracted 
from each block. To extract features from the 
images an Active Appearance model (AAM) 
(Cootes et al., 1998) is used. The use of this 
model for lip-reading has previously been studied by Mathews et al. (Matthews et al., 2002). In this work the 
implementation by Mikkel B. Stegmann (Stegmann, 2002) is used. For the extraction a suitable subset of 
images in the training set is selected and annotated with points according to the MPEG-4 facial animation 
standard. Using these annotations a n-parameter model of the face is created. Thus, with n parameters it is 
possible to create a photo realistic image of any facial expression seen in the training set. Once the AAM is 
created the model is used to track the lip movements in the image sequences, at each point the n parameters 
are picked up. In Fig. 2 the result of the tracking is shown for a single representative image.  

Model 

Unlike most other approaches, the mapping in this work is performed by a continuous state space model and 
not a Hidden Markov Model or a Neural Network. The reasoning behind this choice is that it should be 
possible to change the parameters controlling the face continuously (unlike in HMM) and yet make certain 

Figure 2. Annotating an image for the AAM model. 
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that all transitions happen smoothly (unlike NN’s). Currently an experimental comparison of the performance 
of HMM’s and the continuous state space models is investigated. In this work the system is assumed to be 
linear and Gaussian and hence the Kalman Filter can be used (Kalman 1960). This assumption is most likely 
not correct and other models like particle filtering and Markov Chain Monte Carlo are considered. However, 
as it is shown below, even with the simplification the model produces useful results. The model is set up as 
follows: 
 

x
kkk nAxx += −1   (1) 

 (2) 
 

z
kkk nCxz +=   (3) 

 
In this setting kz  is the image features at time k, ky  is the sound features and kx  is a hidden variable without 

physical meaning, but it can be thought of as some kind of brain activity controlling what is said. Each 
equation has i.i.d. Gaussian noise component n added to it. During training both sound and image features are 
known, and the two observation equations can be collected in one. 
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By using the EM algorithm (Dempster et al., 1977) and (Ghahramani and Hinton, 1996) on the training data, 

all parameters { }zyxCBA ΣΣΣ ,,,,,  can be found. Σ ’s are the diagonal covariance matrices of the noise 
components. When a new sound sequence arrives Kalman filtering (or smoothing) can be applied to equations 
(1, 2) to obtain the hidden state x. Given x the corresponding image features can be obtained by 
multiplication: kk Cxy = . If the intermediate smoothing variables are available the variance on ky  can also 

be calculated. 

Real-time Implementation and Model Training 

The original implementation of the work was an off-line version where audio clips were used to create a 
rendered video sequence of the talking model. A real-time version greatly increases the possible uses of the 
system. Obviously, a real-time implementation needs to be fast, but since all calculations are linear and 
creation of video by the AAM is also fast, the real-time version proved to be very responsive with no 
noticeable lagging of the synthesized face. 
A sound sampler was integrated and sound packages suitable for the model are created by the sampler 
continuously. The package is processed by the model and the resulting parameter vector is passed to the AAM 
which in turn creates the model image for display.  
Training the model was done by filming small video clips (~60s) of the test person reading pre-defined 
sentences. The sentences are gibberish but their objective is to span the phoneme-space of the language being 
used, thus making the test person pronounce all possible phoneme combinations, e.g. “mm” and “oo” and so 
on. 
The AAM is created by converting each video frame to a still image and ensuring that the model is able to 
track all facial expressions using an iterative process. If an expression is unable to be tracked by the AAM, the 
still image is annotated and included in the model. Once the model is sufficiently able to track all expressions, 
AAM feature vectors are extracted at each frame. MFCCs are also extracted from the audio-tracks in such a 

y
kkk nBxy +=
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fashion that an MFCC vector is present for each video frame. The audio-to-video model is then trained using 
these vector sets as previously described. 
Training the model proved to be a non-trivial task, however. Firstly, the subject being modelled needs to be 
very aware of posture and head movement and furthermore needs to deliver the sentences in a normal 
speaking manner so the program later is able to recognize normal speech by the test subject. Secondly, it is 
important which video clips are used in the model creation because over and under training of certain words 
can result in certain facial expressions being over or under emphasized. 

Conclusion 

A real-time speech to face mapping system relying on continuous state space models is proposed. The system 
makes it possible to train a unique face model that can be used to transform speech into facial movements. 
The training set must contain all sounds and corresponding face gestures, but there are no language or 
phonetic requirements to what the model can handle. The real-time model is very fast and can run smoothly 
on a normal desktop or laptop computer. However, the resulting simulated face is not always entirely 
convincing. The major problem is that some phonemes are not emphasised strongly enough although they 
were present in the training material. Work should be concentrated on improving the actual training of the 
model to account for these problems. Improvements should also be made on making the audio-to-video model 
more robust. 
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Classification of fungi using

multi-spectral image analysis:

A comparison of dimension

reductive methods

Line H Clemmensen1, Michael E. Hansen2, Bjarne K. Ersbøll1

Abstract

Three species of the fungal genus Penicillium are subject to classification.
In order to obtain an objective identification digital image analysis has been
considered. Multi-spectral images of 18 spectra, both visible and NIR, have
been acquired. The number of features extracted from the images are many
in relation to the number of observations, and the multivariate statistical
analysis is hereby complicated. Two methods which solve this problem are
compared. One is to use feature selection previous to discriminant analysis,
and the other is called LARS-EN (Least Angle Regression - Elastic Net) and
was suggested in [1]. LARS-EN can perform both regularization and variable
selection or one of these depending on the parameters. LARS-EN is here used
for classification and for this use dummy variables representing the three
classes are introduced as dependent variables. The methods are compared
on their computational effort and on their ability to produce simple models.
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Estimation of the f/k-factor of Concrete
Aggregates by Image Analysis

Peter S. Jørgensen and Bjarne K. Ersbøll

Informatics and Mathematical Modelling, Technical University of Denmark,

Abstract. We analyze images of concrete aggregate materials and ex-
tract features by means of a series of erosions and dilations. Feature selec-
tion and regression is done simultaneously using the LARS-EN method to
estimate the f/k-factor for each aggregate type. Validation is performed
using leave-one-out cross-validation .The method proves to be successful
in ordering the aggregates according to their f/k-factor for aggregates
with grain sizes larger than the pixel size.

1 Introduction

Currently the mix design of self compacting concrete (SCC) is based mainly
on trial and error. The f/k-factor is one of many parameters that are part of
the SCC mix design model. It is defined as the ratio between the surface area
and the volume of a particle with projected diameter 1. The definition leads to
for instance spheres having the lowest f/k-factor of 6 and more irregular shapes
having larger f/k-factor. The f/k-factor is however hard to estimate on aggregates
in practice since the surface area of aggregates can not easily be measured. In the
work described here we attempt to estimate the f/k-factor of aggregates using
image analysis.

2 Data

The image data consist of various aggregate samples of varying origin, size, color
and shape. 8 different aggregates were available. 3 samples from each aggregate
type was prepared in separate petri dishes and one multi spectral image of each
sample was recorded using the VideometerLab. Note that only the exact f/k-
factor for the spherical aggregates was known. For the rest of the materials
only an ordering of the materials by f/k-factor was available. To have some
values to perform regression on, ”dummy” values where assigned to the materials
indicating the ranking of the relative f/k-factor between them. Thus, the artificial
glass spheres were given the lowest ranking of 6 and the very rough surfaced NSV
bottom ash was given the ranking 13.
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3 Feature Extraction

[1] describes a method for assessing aggregate shapes using silhouette images.
From the silhouette images boolean images are constructed as aggregate versus
background. A number of binary erosions are performed followed by as many
dilations. A measure they call the surface parameter, SP, is calculated as:

SP =
A1 −A2

A1
(1)

where A1 and A2 are the area of the objects on a boolean image before and
after the erosion-dilation cycles. This measure is then used to predict aggregate
surface parameters.

By extending the formulation of Equation 1 to grey-scale images a measure
similar to the SP can be measured. The change is straight forward and only
involves changing the use of binary erosion and dilation above to greys-scale
erosion and dilation. This leads to the SP value expressing mainly the degree
of changes in surface direction but also to a lesser degree fast changes in the
direction of grain edges in the image plane.

The proposed feature was calculated for the combinatorial space spanned by
varying the parameters over a range of values. The number of erosions/dilations
was set at 1−8 and the disc shaped structuring element was set at radii of 1−25.
Combined this resulted in 392 features.

4 Feature Selection and Regression

The feature space obtained from measuring the SP is very high dimensional with
a high degree of collinearity between features. Obviously some form of feature
selection will be needed to not allow all features into the regression model. The
LARS-EN [2] (Least Angle Regression - Elastic Net) method is used to perform
simultaneous feature selection and regression. It is expected that many features
will have almost exactly the same values and thus the exact features that are
included in the model will vary depending on which samples are included when
training the model.

5 Results

Figure 1 shows the result of leave-one-out cross validation using samples with
medium and large grain sizes. There is generally a good separation of aggregates
with differing f/k-factor orderings, and the estimates do no deviate greatly from
their target values.

When comparing aggregates of the same type with differing grain size distri-
butions, for instance the 14mm and the 6mm glass spheres (glas14 and glas6 ), it
is seen that the same predicted f/k-value is achieved for both size distributions.
This indicates that the model is largely independent of the size distribution of
aggregates.
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Fig. 1. The result of leave-one-out cross validation using 5 features and large and
medium grain sizes. The line at each name shows the distance from the predicted value
(where the name is located) to the target value.

Different features were included in the models by the LARS-EN algorithm
depending on which samples were omitted from the training set during the cross-
validation. This indicates that it is a group of features that are of interest rather
than a few specific features. Recall that the features used were variations of dif-
ferent degrees of smoothing, erosions/dialtions and structuring element size. In
general the features without smoothing and with a modest amount of morpho-
logical change performed the best.

6 Conclusion

There are good indications that a good prediction of f/k-factor can be obtained
from the proposed features on aggregates with grains that are clearly distin-
guishable on the images. The model is able to order the aggregates according
to their true f/k-factor value and is largely independent of grain size. Overall
the amount of completely different samples (not just repetitions) is on the low
end to draw any decisive conclusions but the trend that has been shown here is
promising.
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Classi�cation of biological objects using Active Appearance
Modelling

Extended Abstract
Anders Bjorholm Dahl Henrik Aan�s Rasmus Larsen Bjarne Ersb�llInformatics and Mathematical Modelling, DTUabd@imm.dtu.dk

Abstract
Here the use of the popular active appearance models(AAM) for classi�cation of biological objects is in-vestigated, based on images. Two approaches are in-vestigated; one where an AAM is �tted to all classesin question, and one where an AAM is �tted to eachindividual class. In the �rst case, the parameters forthe 'global' model is used as a feature vector for agiven instance, which again is feed into a linear clas-si�er. In the latter all the AAM's are �tted to a newobject in question, and the goodness of �t of the mod-els are used as a classi�er. The two approaches arecompared on two real data sets, one containing vari-ous vegetables and one containing di�erent species ofwood logs.
1 Introduction
Object recognition is one of the fundamental prob-lems in computer visions, and plays a vital role inconstructing 'intelligent' machines, in that is neededfor a robot to do semantic reasoning about the worldit 'sees' in general. Object recognition, however, alsoplays a more mundane role, in that it is a vital partof many visual inspection systems, e.g. determiningwhat produce is passing through a production lineor which person trying to board an aeroplane. Ourinitial motivation for this work is the construction ofan automated forestry system, which needs to keeptrack of wood logs.

Many of the objects in our daily environment ingeneral, and in our motivating problem in particular,are biological, and pose special challenges to a com-puter vision system. The origin of these challengesare the high degree of interclass variation, which weas humans are very good at dealing with. Considere.g the multitudes of ways a face or a potato can look.In this regard AAM's have proven very well suited foraddressing this challenge in the case of image regis-tration, c.f. e.g. [1]. It is thus highly interesting if thisproperty of the AAM's also transfer to object recogni-tion, and how this should be achieved/implemented.This is the scope of this paper.Previously the use of AAM's for object recognitionhave been considered. Notably, Edwards et al. [2] useAAM's for face recognition. Here the use of AAM'sfor object recognition on general biological objectsis investigated. The necessitates considering imple-mentation issues, such as if one global AAM shouldbe used or one for each class. An issue which is alsoaddressed here.
2 Classi�cation Methods
The AAM model - in 2D as it will be used here - is adescription of an object in an image via it's contouror shape and it's texture. Each of these entities canbe represented as a vector, i.e. si and ti respectively,where the subscript, i, denotes an instance. The pa-rameters of the AAM model is, however, a lower di-mensional vector, pi, and a speci�c AAM consists of

1

125



an a�ne mapping for pi to si and ti, i.e.
mi = �st

�
i = �pi + � ; (1)

where � and � are a matrix and vector respectivelyrepresenting the a�ne map. Typically, the AAM or� is estimated from an annotated training set. Thevariance structure of themi is estimated, followed bya PCA on this structure to have a su�ciently sparsemodel. The interested reader is referred to [1], for amore detailed description.The classi�cation problem under consideration is,that we are given images with objects xi, belongingto one of n classes, i.e. xi 2 Cj j 2 [1 : : : n], and theclass is to be determined, i.e. j.In the following the two methods of interest will bedescribed.
2.1 Global AAM as Classi�er

In this case a single global AAM, �; �, is �tted toinstances of all classes. Following this, the pi are cal-culated for each instance in the training set, which,together with the corresponding class, is used in con-structing a standard linear classi�er, c.f. e.g. [3].Given the image of an unknown object, themi andthen the pi are calculated which are then feed intothe above mentioned classi�er, for a result.Interesting issues, in this regard, apart from thestraight forward performance, is the construction ofthe training set. E.g. what is the e�ect of one classbeing highly over-represented, or how well would anAAM trained on potatoes be at at distinguishing be-tween carrots and cucumbers.
2.2 Multiple AAM's as Classi�ers

In this case an AAM, �j ; �j , is �tted to each class
Cj . I.e. the training set is divided into its componentclasses, and one AAM is �tted to each.In this case the classi�er proposes a goodness of �t,i.e. for a given unknown object xi a score, sij , is cal-culated for each class, using a Mahalanobis classi�eras follows
sij = (�jpi � �j)T ��1j (�jpi � �j) log(det(�j)) ;(2)

where �j is the variance structure associated with
Cj . Object xi is then classi�ed as the class with thelowest score, sij . This corresponds to classifying xias the class where it is most probable.
3 Experiments
The above posed questions are investigated via exper-iments on classifying carrots vs. potatoes and classi-fying three common tree species, see �gure 1 and 2.The experiments are conducted using the AAM-APIby Stegmann [4] [5].

Figure 1: Example of images belonging to the two classes
in the carrots vs. potatoes experiment.

Figure 2: Example of images belonging to the three
classes in the wood log experiment.

We have made a combined AAM for each of the twocombined experiments and an AAM for each class inthe two multiple AAM experiments. These model arebuild from annotated images, see �gure 3. For eachmodel a representative sample of images are used forbuilding the model. To be representative the imagesare selected, so they represent most of the variationfor the class. E.g. carrots vary in shape and texture,so the models containing carrots are build from im-ages showing both the di�erent shapes, e.g. long and
2
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thin vs. short and thick carrots, and di�erence intexture, e.g. very yellowish vs. more greyish carrots.

Figure 3: Example of an annotated image used for build-
ing the AAM.

We have tested the model on series of unknownimages. At �rst the AAM is �tted to the object inthe unknown image by calculating the model param-eters pi that gives the least di�erence in the modelinstance and the image, see �gure 4. The parame-ters obtained by this minimization are secondly usedfor classi�cation, both in the global and the multiplecase.

Figure 4: Example of a model �tted to an unknown im-
age (left) and the model instance overlaid (right).
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