
 

 

Technical Report no. 06/09 
ISSN: 0107-8283 

 
 

A Simple Plane Patcher Algorithm 
 
 
 

Kenny Erleben & Knud Henriksen 

Dept. of Computer Science 
University of Copenhagen • Universitetsparken 1 

DK-2100 Copenhagen • Denmark 
 



A Simple Plane Patcher Algorithm

Kenny Erleben∗and Knud Henriksen†

Department of Computer Science, University of Copenhagen,Denmark

Technical Report DIKU-TR-06/09

Abstract

The daily work with mesh data structures can be a painful experi-
ence. Topological inconsistency and digital mockup is partof daily
life and often unwanted in both visualization, collision detection
and animation.

In this paper we focus on the particular problem of patching (also
termed capping) an open boundary of a mesh after it has been cut by
a plane. The paper describes an algorithm for planar patching and
outlines an implementation. The novel contribution is a divide and
conquer algorithm working on a spatial hierarchical data structure
of the cutting boundaries of the mesh.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Boundary representations; I.3.5
[Computer Graphics]: Computational Geometry and Object
Modeling—Constructive solid geometry (CSG);

Keywords: Mesh Plane Clipping, Mesh Patching

1 Introduction

In computer graphics and animation we often cut a closed twofold
mesh without self-collisions by a plane. For instance, thisis re-
quired when building octrees for collision detection [I.J.Palmer and
R.L.Grimsdale 1995; Dingliana and O’Sullivan 2000; O’Sullivan
and Dingliana 1999; Tzafestas and Coiffet 1996; Zachmann 1995],
adaptive grids for level set methods [Frisken et al. 2000], and con-
vex decompositions [Coutinho 2001; O’Rourke 1998].

The actual plane clipping [Eberly n. d.] is not a very big problem
although numerical precision can be cumbersome in cases of elon-
gated polygons. The problem with the plane clipping is that it turns
a closed twofold into an open twofold, which is unpleasant when
doing simulation. In simulation we like objects to be closed, in or-
der to resemble the fact that all real-world objects are volumetric
when one look at them at an appropriate scale.

After a clipping operation has taken place we wish to post-
process the clipped pieces with a “patching” algorithm thatturns
the open two-folds into closed two-folds without self-collisions.

This paper describes and shows results of a simple method we
have implemented for patching a twofold mesh that have undergone
a clipping operation by a plane.

∗kenny@diku.dk
†kaiip@diku.dk

From a constructive solid geometry (CSG) point of view the
problem, we have outlined, is easily dealt with. However, for such
a simple problem we will rather not have to implement something
as complex as arbitrary CSG operations on B-reps [James D. Foley
and Hughes 1996]. Furthermore, using CSG operations is likely
to be computational intractable compared to the simple algorithm
we describe in this paper. Just imagine the large number of oper-
ations involved in creating a small octree (5-10 levels). Wewill
rather have a simple and inexpensive alternative that dealswith the
specific problem at hand.

In [Krishnan et al. 1995] a system for boolean combinations of
B-reps is described, although intended for patch-surfacesit could
easily be applied to polygons as well. From [Krishnan et al. 1995]
it is seen that general CSG operations on B-reps include a lotof data
structures and book-keeping which is not really necessary for plane
clipping and patching. We refer the reader to [Mantyla 1988;Hoff-
mann 1989; Naylor 1992; Requicha and Rossignac 1992; Requicha
and Voelcker 1985] for more information on CSG with polyhedral
B-reps.

There exists other methods for doing CSG. Some are based on
rendering [Stewart et al. 2002], they do not produce a B-rep as a
final result and is therefore not usable for us.

Finally, other approaches use voxel [Bærentzen 2001] or im-
plicit representations [Bærentzen 2001; Museth et al. 2002]. Meth-
ods like these would require us to convert between representations,
which can be very costly and therefore not attractive.

In conclusion, existing methods in CSG working on polyhedra
is not optimized for our specific problem, other existing methods
would either require us to convert between representationswhich is
far to costly or will not produce a B-rep at all.

In Section 2 we will introduce our terminology and definitions,
afterwards in Section 3 we will explain how the open cutting bound-
aries are detected. In Section 4 we will present a solution ofa sim-
ple case, and in Section 5 we will introduce a spatial data structure
for the cutting boundaries. In Section 6 we show how the data struc-
ture is used in an incremental divide and conquer method. Finally,
we show some results in Section 7 and conclude our work in Sec-
tion 8.

2 Terminology and Definitions

By a plane patching algorithm we mean an algorithm capable of
capping a mesh volume after it has been cut by a plane. In this paper
we only consider plane clipping, meaning the cutting boundaries
are all planar.

Throughout this paper we will assume that the original mesh (be-
fore the clipping) is a twofold mesh. If a mesh is twofold thenit
means that any path traveled around any given vertex is isomorphic
with a 2D circle. This means one can walk around on the neighbor-
ing faces of the vertex from a starting point and back withoutever
crossing ones own path. Assuming the mesh is a twofold implies
that the mesh is closed, meaning that no face can be found having
an edge without a neighboring face. Furthermore, it is assumed that
there are no self-collisions of the mesh surface.



class Edge

Vertex origin

Vertex destination

Edge twin

Edge next

Edge prev

Face face

class Vertex

Vector3 coord

list<Edge> edges;

class Face

list<Edge> boundary

class Mesh

list<Vertex> vertices

list<Edge> edges

list<Face> faces

Figure 1: Mesh data structure pseudo code.

destination


origin


face


twin


next


previous


Figure 2: A simple 2D mesh. The red arrows indicate the member
references of the edge.

We use a mesh data structure similar to the half edge data struc-
ture in [Mantyla 1988], also known as a double connected edgelist.
The data structure is roughly as shown in Figure 1. Observe that
an edge is in fact represented by two edges going in opposite di-
rections. The relationship between an edge and its “neighbors” is
illustrated in Figure 2. Edge boundaries of faces are assumed to
be given in counter clockwise (CCW) order, and edges that have a
twin with a face null pointer are called open edges and are part of
the open boundaries, i.e. they lie on the cutting plane. Observe that
the mesh is not capable of representing holes in faces, further we
require faces to be convex, but not necessarily triangles.

From our choice of data structure and the assumptions described
above, it is evident that we have three important properties: The
open boundary is connected, all open boundaries are planar and
there is no collision between the open boundaries. We refer to these
properties as A, B and C, they are explained in more detail below.

Property A: If we encounter an open edge then this edge is con-
nected to exactly two other open edges, one at each end point.
If we pick a direction and walk along these open edges then
we will get a closed path. We refer to such a path as a ring.

Property B: All rings are coplanar. In fact the plane they lie in is
the cutting plane. Projecting the rings onto the cutting plane
will allow us to work in 2D instead of 3D.

Figure 3: A blue cut plane through a knot mesh, dividing it into two
parts, a yellow and a green. Rings are shown as red intersection
curves with the plane.

void init(Mesh mesh)

for each edge in mesh.edges

edge.seen = false

next edge

for each edge in mesh.edges

if edge.face is NULL and edge.seen is false then

Ring ring = boundaryWalk(edge)

... do something with ring...

end if

next edge

End init

Figure 4: The initialization method.

Property C: A ring might be concave but never self-colliding. and
no two given rings intersect with each other. Therefore, we
can determine whether a ring lies inside or outside of another
ring simply by testing if a single projected vertex of the ring
lies inside or outside the projection of the other ring.

Figure 3 illustrates some of the concepts.

3 Determining Open Boundaries

Initially our algorithm must determine all the rings of the mesh. We
can exploit property A for doing this. First we search for an open
edge not previously seen as illustrated in Figure 4.

Having found such an open edge it must be part of an unseen
boundary. We therefore walk around the other open edges of the
boundary until we reach the initial open edge. This is shown in
Figure 5). The algorithm works as long as rings do not touch. If
rings touch then we could sort the incoming edges in CCW order
around the normal of outgoing vertex of the touching boundary ver-
tices. The proper edge to continue along while walking the bound-
ary would be the last edge in the ordered CCW sequence. However,
the current implementation ignores the case of touching rings, since
this case can not occur if the original mesh was a true “volume”.



Ring * BoundaryWalk(Edge seed)

Ring ring

seed.seen = true

Edge loop = seed

Vertex cur = seed.destination;

do

Ring.add(cur);

bool found = false

for each edge e in cur.edges do

if e.twin.face is NULL then

loop = e.twin

cur = e.twin.destination

found = true

break

end if

next e

if not found then

error...

return NULL

end if

loop.seen = true

while loop!=seed

return ring

End BoundaryWalk

Figure 5: The boundary walk algorithm.

0


1
 3


2


4


5


6


7


Figure 6: Diagonal example. The red diagonal is illegal, it crosses
the lines from 5 to 6 and from 6 to 7. The blue diagonal is valid.

4 Patching a single Ring

Assume we only have a single ring. In this case it would be a simple
matter to carry out the patching. All we have to do is to decompose
the ring into convex pieces, project back the convex pieces of the
ring from the 2D cutting plane to the 3D space, and then insertfaces
into the mesh corresponding to the convex pieces.

Instead of doing a convex decomposition a first thought might
be to just triangulate the ring, because triangles are convex, so
this will not violate our requirements to our mesh data structure.
However, in general the ring could have any shape, which makes
it a bit difficult to apply a simple brute force approach like ear-
clipping [O’Rourke 1998] for triangulating the ring. We could of
course resort to something like a constrained Delaunay triangula-
tion [Shewchuk 1996; Shewchuk 2002] to deal with our problem,
but this is far from being a simple and fast approach as we want.

Instead, we use a simple recursive convex decomposition. The
method works by searching for a non-intersecting “diagonal”. That
is, a line between two vertices of the ring, such that the linelies
inside the ring, but does not cross the ring. Figure 6 shows examples
of valid and invalid diagonals. When a valid diagonal is found we

void RecursiveDecomp(Ring ring,list<Ring> pieces)

if ring.vertices.size() == 3 then

pieces.add(ring)

return

end if

rightTurn = false

for each vertex, B, in ring.vertices do

let A be previous vertex of B

let C be next vertex of B

if A,B and C makes right turn then

rightTurn = true

break

end if

next B

if not rightTurn then

pieces.add(ring)

return

end if

let A be next vertex of B

do

let A be next vertex of A

while A<>B and line(A,B) inside ring

if A is B then

... error ...

return

end if

Ring piece1;

for vertex V=B to A do

piece1.add(V)

Ring piece2;

for vertex V=A to B do

piece2.add(V)

RecursiveDecomp(piece1,pieces)

RecursiveDecomp(piece2,pieces)

End RecursiveDecomp

Figure 7: The recursive ring decomposition algorithm.

simply split the ring into two rings along this diagonal and process
the resulting two rings recursively. Eventually we end up with a list
of convex rings.

Since faces are given in CCW order the vertices of a ring will
also be in CCW order. Therefore, if all vertices make a left turn
around the ring, then the ring is convex.

We use this fact to find a diagonal. First, we search for a vertex
making a right turn, this vertex will be one end point of the diag-
onal. Then we search for another vertex of the ring such that the
line segment between the right turn and the vertex lies inside the
ring. If such a vertex is found it is used as the other endpointof the
diagonal, and if no such vertex is found an error is reported.

The algorithm is illustrated with pseudo code in Figure 7.
Unfortunately, it is only a limited number of meshes, which will
result in a single ring when they are cut by a plane. In generalthere
could be many rings, some of them might even be nested within
each other.

The algorithm is similar to Hertel and Mehlhorn [O’Rourke
1998]. The main difference lies in how we find diagonals, our
method uses an ear-clipping [O’Rourke 1998] strategy whereas
Hertel and Mehlhorn requires a triangulation. Our worst case time
complexity isO(nlgn) whereas Hertel and Mehlhorn is linear.



class Ring

list<Vertex> vertices

list<Ring> children

class Hierarchy

list<Ring> outermost

Figure 8: Ring hierarchy data structure pseudo code.

A


B
 C
 D


A


B
 C


D


Figure 9: The rings of a cut plane, yellow color shows regionsthat
should be patched. On right side the corresponding hierarchy is
drawn.

5 Hierarchical Ordering

In this section we will describe a method for constructing a hierar-
chical data structure of rings. In the next section it will beevident
how this hierarchical data structure can be used in a divide and con-
quer manner to reduce the problem of handling multiple possibly
nested rings as the simple case described in the previous section.

From the properties A,B and C we can build a hierarchical data
structure giving us the required spatial information aboutthe rings
in constant time. The hierarchy is constructed such that a ring which
is not enclosed by any other rings is placed at the root of the hi-
erarchy. If a ring encloses a set of rings then these rings arethe
immediate children of that ring. Rings enclosed by a child are not
immediate children, but grand-children. At the leaves of the hier-
archy we will find rings that do not enclose other rings. Figure 8
shows the hierarchal data structure in pseudo code. In Figure 9 an
example hierarchy is shown. There is a single outermost ring, A, en-
closing two other rings,B andC, describing “holes” inA. InsideC
another ring,D, is placed. Observe thatD is a descendent ofA and
not its immediate child. Another property of the hierarchy is that
all rings at odd depths in the hierarchy describe holes in thering of
their parent. Rings at even depths describe the outer boundaries of
an area that should be patched.

We build the data structure in an incremental way as illustrated
in Figure 10. We search for new rings, one at the time, by looking
for an unvisited open edge and when such an edge is encountered
we do a boundary walk, tracing the edges of the new ring. During
the trace we mark all the edges of the new rings as being visited so
we will not trace the same ring more than once see Section 3 for
details.

After having found a new ring, we recursively traverse the hier-
archical data structure, testing the already inserted rings against the
new ring in order to determine where the new ring should be placed
in the hierarchy. We use the term candidate ring, when we refer to
a ring that is already inserted into the hierarchy.

We keep a set of the outermost rings encountered so far. After
having found a new ring, we test if it lies inside any of the other
outermost candidate rings. If it does not then we can add it tothe
set of outermost rings. However, if the ring lies inside a candidate
ring then we will test the ring against the children of the candidate
ring recursively. The recursion ends when a descendent candidate

void init(Mesh mesh)

for each edge in mesh.edges

edge.seen = false

next edge

for each edge in mesh.edges

if edge.face is NULL and edge.seen is false then

Ring ring = boundaryWalk(edge)

PlaceInHierarchy(outermost,ring,NULL)

end if

next edge

End init

Figure 10: The complete initialization method.

ring is found, where the ring does not lie inside any of its children.
In this case we add the ring as a child to that descendent candidate
ring.

It might happen that the new ring does not lie inside any other
candidate ring, but encloses it instead. In this case we mustremove
the candidate ring from its parent, and add the new ring as a child
to the parent ring. Finally, the candidate ring must be addedas
a child to the new ring. The pseudo code is shown in Figure 11.
A nice thing about the data structure is that we can update it in
constant time when we do a “split-and-merge”- operation on two
rings (explained in the next section).

6 Split and Merge Operation

If we know a ring that does not enclose any other rings then we can
simply patch it with the algorithm outlined in Section 4. If there are
other rings nested inside the ring then we are in trouble, because
these nested rings describe “holes” in the ring “face”, a complex
topology which our mesh data structure can not deal with.

Our approach to the problem is to reduce the complex problem
of handling the nested rings to the simple case of an empty ring.

We accomplish this by applying a split-and-merge operationfor
each nested ring. The split-and-merge operation is inspired by the
algorithm we used for convex decomposition of a ring.

For each nested ring we search for a “diagonal”-line from a ver-
tex on the nested ring to a vertex on the outer ring. The line is
chosen such that it does not intersect the boundary of the outer ring
nor the boundaries of any of the nested rings. If we find such a line
we call it a split-line.

The split-line is used to cut the outer ring and inner ring topolog-
ically into open polylines starting and ending at the vertices of the
split-line end points.

This is the splitting operation, next we merge the open outerring
and the open inner ring together to form a single closed ring.This is
called the merge-operation. In Figure 12 we have illustrated the ef-
fect of the first split-and-merge operation carried out on the example
from Figure 9. Observe that even though the resulting mergedring
is geometrically touching along the split-line it is “topologically”
separated. We have sort of tunneled our way from the outside of A
to the inside ofB.

In Figure 13 we have illustrated what happens during the second
split-and-merge operation. Observe that the “tunneling” means that
now the ringD has been promoted to the same level as the ring
ABC. We have now reduced the complex nesting problem to two
simple cases.

The pseudo code for the incremental divide and conquer ap-
proach we have explained is shown in Figure 14 and Figure 15.



void PlaceInHierarchy(list<Ring> level,

Ring ring,Ring parent)

if level is empty then

level.add(ring)

return

end if

for each candidate ring in level do

if ring is inside candidate then

PlaceInHierarchy(

candidate.children,ring,candidate

)

return

end if

next candidate

bool enclosing = false;

for each candidate ring in level do

if candidate is inside ring then

ring.children.add(candidate)

if parent<>NULL then

parent.children.remove(candidate)

else

outermost.remove(candidate)

end if

enclosing = true

break

end if

next candidate

if enclosing then

if parent<>NULL then

parent.children.add(ring)

else

outermost.add(ring)

end if

return

end if

level.add(ring)

End PlaceInHiearchy

Figure 11: The place in hierarchy method.

AB


C
 D


AB


C


D


Figure 12: The rings of a cut plane after the first split-and-merge
operation.

D

ABC


AB

C
 D


Figure 13: The rings of a cut plane after the second split-and-merge
operation.

void run(Mesh mesh)

init(mesh)

while not outermost is empty do

Ring ring = outermost.front

divideAndConquer(ring,mesh)

end while

End run

Figure 14: The driver method of the algorithm.

void DivideAndConquer(Ring ring,Mesh mesh)

if ring is empty and outermost then

list<Ring> pieces

RecursiveDecomp(ring,pieces)

for each piece in pieces do

mesh.createFace(piece.vertices)

next piece

outermost.remove(ring)

else

outermost.remove(ring)

while not ring.children is empty do

Ring inner = ring.children.first

ring.children.remove(inner)

outermost.insert(inner.children)

inner.children.clear()

ring = splitAndMerge(ring,inner)

end while

outermost.add(ring)

divideAndConquer(ring,mesh)

end if

End DivideAndConquer

Figure 15: The divide and conquer method.

We will now explain the details of finding a split-line, and perform-
ing the split-and-merge operation.

First, we search for the leftmost projected vertex, B, of theleft-
most inner ring. Second we search for a projected vertex,A, of the
outer ring lying to the left ofB, such that the line,AB, does not
intersect the outer ring. Observe that the line would never intersect
any of the inner rings, because we are always using the leftmost
vertex of the leftmost inner ring.

If a line AB exist (we will give an existence proof later in this
section) it will be a valid split-line, and we can therefore cut up
the rings atA and B, and construct a new ring as follows: Add
vertex A as the first vertex to the new ring, follow the vertices of
the outer ring until vertex A is reached again, each time a vertex is
encountered it is added to the new ring. By now vertex A should
have been added twice to the new ring! Now the same procedure
is repeated for the inner ring, starting at vertex B. Notice that also
B will be added twice. The search for a valid split-line is depen-
dent on a proper left-to-right ordering of the inner rings. This is
easily accomplished by keeping the children of a ring as an ascend-
ing sorted list based on the x-coordinate of the projected leftmost
vertex of the ring. In degenerate cases a descending sortingon the
projected y-coordinates can be used.

If there is no vertex on the outer ring to the left of the leftmost
vertex of the inner ring then the inner ring must touch the outer ring
at a vertical edge. However due to our assumptions in Section2 the
inner ring can never touch the outer ring, so there must be a vertex
on the outer ring that is to left of the leftmost vertex of the inner



Ring SplitAndMerge(Ring outer,Ring inner)

let B be leftmost vertex of inner

bool foundSplit = false

for each vertex A in outer do

if A.x < B.x then

if not line(A,B) intersect outer and inner then

foundSplit = true

break

end if

end if

next A

if not foundSplit then

... errror ...

return

end if

Ring merged

for vertex V=A to A do

merged.add(V)

next A

for vertex V=B to B do

merged.add(V)

next B

merged.children.add(outer.children)

outer.children.clear()

return merged

End SplitAndMerge

Figure 16: The Split and Merge Operation.

ring. This is illustrated in Figure 17. The split-line will always

B


Figure 17: No vertexA to the left ofB implies touching ring as
shown. This is illegal. Hence there exists at least one vertex A to
the left ofB.

point to the left of the leftmost inner ring. Therefore it cannot
intersect the inner ring or any of the siblings of the inner ring, since
these always lie on the right side of the leftmost inner ring.

Finally, there is the question if there exists a vertex on theouter
ring such that the split-line does not intersect the outer ring. If there
is only one vertex to the left of the leftmost vertex of the inner
ring, then it is trivial true that the split-line does not intersect the
outer ring. If there is more than one vertex and we have pickeda
vertex such that the split-line intersects the outer ring, then there
must be a vertex lying to the right of the chosen vertex on the outer
ring. This vertex will eliminate two intersections with theouter
ring, and since we only have finitely many vertices on the outer
ring it implies the existence of a vertex on the outer ring, which
will create a valid split-line. The proof of split-line existence is
illustrated in Figure 18.

B
A

A


B


C


Figure 18: The left picture illustrates the trivial case of exactly one
vertexA to the left ofB. The right picture illustrates the case of
an invalid split-line. The lineA to B intersect the outer ring, how-
ever there must be a vertexC to the right ofA, eliminating the two
intersections.

7 Results

In Figure 19 we have shown how the algorithm have patched sev-
eral meshes clipped by a plane. For visualization purpose weonly
visualize one half of the clipped mesh. The knot case shows that we
can deal with multiple outermost rings and quite large rings(rings
consist of little more than 64 vertices). The torus case shows that
a nested ring does not pose any problem, the box with holes case
demonstrates that nested rings in several layers can be handled. Fi-
nally the last case illustrates that multiple nested rings is also han-
dled.

Mesh statistics and time measurements of the plane clippingand
the plane patching algorithms are listed in Table 1. All measure-
ments were done on a Dell Inspiron 8100, 933 MHz, 256 MB,
W2K, algorithms were implemented in MSVC7.1.

We also tried the plane patcher algorithm in a convex decom-
position based on half angle cutting of reflex edges, some decom-
position results are shown in Figure 20. In our experience the
plane patcher algorithm works well. However, we have seen the
algorithm fail due to numerical roundoff and inaccuracies from the
plane clipping algorithm.

8 Conclusion

In this paper we have described a simple patching algorithm for
planar clipping operations. We have outlined an implementation in
pseudo code and given results of running the algorithm on several
test-cases, which we believe clearly show that the algorithm solves
the problem we have stated.

The algorithm has shown to be fairly easy to implement, most of
our difficulties have been concerned with numerical inaccuracies in
the 2D polygonal intersection testing.

In our opinion the algorithm clearly fulfill our wish for a simple
and fast alternative to more advanced solutions to the planar patch-
ing problem.

We believe that spherical parameterization [Praun and Hoppe
2003] of open boundaries of a clipped twofold mesh, followed
by a 2D constrained Delaunay Triangulation [Shewchuk 1996;
Shewchuk 2002], would provide one with a strong tool for both
planar patching and more general patching. Such a tool wouldbe
valuable in helping cleaning up digital mockup as a pre-processing
step as well as patching gaps from various clipping operations.

These problems might at first hand seem trivial and unimpor-
tant. However, our experience tells us otherwise. Far too often we
have to deal with repairing meshes obtained from segmentation of
medical images, or simply generated from 3D modeling applica-
tions such as 3D Max and the like. This is very tedious and time-
consuming, and really not something we want to do as researchers.

A future goal is to implement the algorithm based on constrained
Delaunay Triangulation as described above and compare it interms



Mesh non-patched part Patched Part

knot

torus

box with holes

box with rings

Figure 19: Screen-dumps of meshes before plane clip, after plane clip and after plane patching.

#V #E #F Clip (secs) Patch (secs) #R
knot 2880 8640 5760 0.551 0.03 8
torus 1536 4608 3072 0.22 0.17 4
box with holes 685 2097 1398 0.09 0.08 18
box with rings 585 1749 1166 0.09 0.051 18

Table 1: Statistics of meshes and timings of clipping and patching. #V: Number of Vertices, #E: Number of Edges, #F: Number of Faces, and
#R: Number of Rings.



Figure 20: Screen-dumps of Convex Decompositions. The blueobjects show the original meshes before decomposition, thered pieces shows
the decomposition with pieces exploded outwards for visualization purpose.

of performance, versatility and user-ability to the simplealgorithm
presented in this paper.

References

BÆRENTZEN, J. A. 2001.Manipulation of Volumetric Solids, with appli-
cation to sculpting. PhD thesis, IMM, Technical University of Denmark.
BMP 08-0011-311.

COUTINHO, M. G. 2001. Dynamic Simulations of Multibody Systems.
Springer-Verlag.

DINGLIANA , J., AND O’SULLIVAN , C. 2000. Graceful degradation of
collision handling in physically based animation.Computer Graphics
Forum 19, 3.

EBERLY, D. Clipping a mesh against a plane. http://www.magic-
software.com.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R.
2000. Adaptively sampled distance fields: A general representation of
shape for computer graphics. InSiggraph 2000, Computer Graphics Pro-
ceedings, ACM Press / ACM SIGGRAPH / Addison Wesley Longman,
K. Akeley, Ed., 249–254.

HOFFMANN, C. M. 1989.Geometric and Solid Modeling. Morgan Kauf-
mann.

I.J.PALMER, AND R.L.GRIMSDALE. 1995. Collision detection for anima-
tion using sphere-trees.Computer Graphics Forum 14, 2, 105–116.

JAMES D. FOLEY, ANDRIES VAN DAM , S. K. F., AND HUGHES, J. F.
1996. Computer Graphics: Principles and Pratice, 2nd ed. in c ed.
Addison-Wesley.

KRISHNAN, S., NARKHEDE, A., AND MANOCHA, D., 1995. Boole: A
system to compute boolean combinations of sculptured solids. online
paper. http://www.cs.unc.edu/ geom/CSG/boole.html.

MANTYLA , M. 1988. An Introduction to Solid Modeling. Computer Sci-
ence Press.

MUSETH, K., BREEN, D. E., WHITAKER , R. T., AND BARR, A. H.
2002. Level set surface editing operators. InProceedings of the 29th an-
nual conference on Computer graphics and interactive techniques, ACM
Press, 330–338.

NAYLOR , B. 1992. Interactive solid geometry via partitioning trees. In
Procedings of Graphics Interface, 11–18.

O’ROURKE, J. 1998. Computational Geometry in C, 2nd ed. ed. Cam-
bridge University Press. http://cs.smith.edu/ orourke/.

O’SULLIVAN , C.,AND DINGLIANA , J. 1999. Real-time collision detection
and response using sphere-trees.15th Spring Conference on Computer
Graphics, 83–92.

PRAUN, E.,AND HOPPE, H. 2003. Spherical parametrization and remesh-
ing. ACM Transactions on Graphics (TOG) 22, 3, 340–349.

REQUICHA, A. A. G., AND ROSSIGNAC, J. R. 1992. Solid modelling
and beyond.IEEE Computer Graphics and Applications (September),
31–44.

REQUICHA, A. A. G., AND VOELCKER, H. B. 1985. Boolean opera-
tions in solid modeling: Boundary evaluation and merging algorithms.
Procedings of the IEEE 73, 1.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D Quality Mesh Gen-
erator and Delaunay Triangulator. InApplied Computational Geome-
try: Towards Geometric Engineering, M. C. Lin and D. Manocha, Eds.,
vol. 1148 ofLecture Notes in Computer Science. Springer-Verlag, May,
203–222. From the First ACM Workshop on Applied Computational
Geometry.

SHEWCHUK, J. R. 2002. Delaunay refinement algorithms for triangular
mesh generation.Computational Geometry: Theory and Applications
22, 1-3 (May), 21–74.

STEWART, N., LEACH, G.,AND JOHN, S. 2002. Linear-time CSG render-
ing of intersected convex objects.The 10-th International Conference
in Central Europe on Computer Graphics, Visualization and Computer
Vision ’2002 - WSCG 2002 II (Feb), 437–444.

TZAFESTAS, C., AND COIFFET, P. 1996. Real-time collision detection
using spherical octrees : Vr application.IEEE Int. Work. on Robot and
Human Communication.

ZACHMANN , G. 1995. The boxtree: Exact and fast collision detection of
arbitrary polyhedra sive.First Workshop on Simulation and Interaction
in Virtual Environments, University of Iowa.


