Datalogisk Tostiturt

A Simple Plane Patcher Algorithm

Kenny Erleben & Knud Henriksen

Technical Report no. 06/09
ISSN: 0107-8283

Dept. of Computer Science

University of Copenhagen e Universitetsparken 1
DK-2100 Copenhagen e Denmark

A Simple Plane Patcher Algorithm

Kenny Erlebetand Knud Henrikseh

Department of Computer Science, University of Copenha@enmark

Technical Report DIKU-TR-06/09

Abstract

The daily work with mesh data structures can be a painful @xpe
ence. Topological inconsistency and digital mockup is padaily
life and often unwanted in both visualization, collisiontetetion
and animation.

In this paper we focus on the particular problem of patchaisq
termed capping) an open boundary of a mesh after it has béég cu
a plane. The paper describes an algorithm for planar patcrid
outlines an implementation. The novel contribution is ad#vand
conquer algorithm working on a spatial hierarchical datacstire
of the cutting boundaries of the mesh.

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Boundary representatiosss |
[Computer Graphics]: Computational Geometry and Object
Modeling—Constructive solid geometry (CSG);

Keywords: Mesh Plane Clipping, Mesh Patching

1 Introduction

In computer graphics and animation we often cut a closeddidof
mesh without self-collisions by a plane. For instance, ihise-
quired when building octrees for collision detection Pdlmer and
R.L.Grimsdale 1995; Dingliana and O’Sullivan 2000; O’$h
and Dingliana 1999; Tzafestas and Coiffet 1996; Zachma®5119
adaptive grids for level set methods [Frisken et al. 20004, eon-
vex decompositions [Coutinho 2001; O’Rourke 1998].

The actual plane clipping [Eberly n. d.] is not a very big fesb
although numerical precision can be cumbersome in casderof e
gated polygons. The problem with the plane clipping is thiatrhs
a closed twofold into an open twofold, which is unpleasanemh
doing simulation. In simulation we like objects to be closiedor-
der to resemble the fact that all real-world objects are mettic
when one look at them at an appropriate scale.

After a clipping operation has taken place we wish to post-
process the clipped pieces with a “patching” algorithm tioans
the open two-folds into closed two-folds without self-csithns.

From a constructive solid geometry (CSG) point of view the
problem, we have outlined, is easily dealt with. However,diach
a simple problem we will rather not have to implement sonmethi
as complex as arbitrary CSG operations on B-reps [James|&y Fo
and Hughes 1996]. Furthermore, using CSG operations iy like
to be computational intractable compared to the simplerilgo
we describe in this paper. Just imagine the large number &f op
ations involved in creating a small octree (5-10 levels). Wi
rather have a simple and inexpensive alternative that detiishe
specific problem at hand.

In [Krishnan et al. 1995] a system for boolean combinatiohs o
B-reps is described, although intended for patch-surfécesuld
easily be applied to polygons as well. From [Krishnan et 885]
itis seen that general CSG operations on B-reps includecd tiata
structures and book-keeping which is not really necessargléne
clipping and patching. We refer the reader to [Mantyla 1988ff-
mann 1989; Naylor 1992; Requicha and Rossignac 1992; Reajuic
and Voelcker 1985] for more information on CSG with polyteddr
B-reps.

There exists other methods for doing CSG. Some are based on
rendering [Stewart et al. 2002], they do not produce a B-eep a
final result and is therefore not usable for us.

Finally, other approaches use voxel [Baerentzen 2001] or im-
plicit representations [Beerentzen 2001; Museth et al. R0@&th-
ods like these would require us to convert between reprasens,
which can be very costly and therefore not attractive.

In conclusion, existing methods in CSG working on polyhedra
is not optimized for our specific problem, other existing noets
would either require us to convert between representatitmsh is
far to costly or will not produce a B-rep at all.

In Section 2 we will introduce our terminology and definition
afterwards in Section 3 we will explain how the open cuttingid-
aries are detected. In Section 4 we will present a soluticnin-
ple case, and in Section 5 we will introduce a spatial datecgire
for the cutting boundaries. In Section 6 we show how the data-s
ture is used in an incremental divide and conquer methodlligin
we show some results in Section 7 and conclude our work in Sec-
tion 8.

This paper describes and shows results of a simple method we

have implemented for patching a twofold mesh that have @uaher
a clipping operation by a plane.

*kenny@diku.dk
Tkaiip@diku.dk

2 Terminology and Definitions

By a plane patching algorithm we mean an algorithm capable of
capping a mesh volume after it has been cut by a plane. Inalpisrp
we only consider plane clipping, meaning the cutting bouieda
are all planar.

Throughout this paper we will assume that the original mésh (
fore the clipping) is a twofold mesh. If a mesh is twofold then
means that any path traveled around any given vertex is it
with a 2D circle. This means one can walk around on the neighbo
ing faces of the vertex from a starting point and back witheugr
crossing ones own path. Assuming the mesh is a twofold implie
that the mesh is closed, meaning that no face can be founddavi
an edge without a neighboring face. Furthermore, it is assiimat
there are no self-collisions of the mesh surface.

class Edge
Vertex origin
Vertex destination
Edge twin
Edge next
Edge prev
Face face

class Vertex
Vector3 coord
list<Edge> edges;

class Face
list<Edge> boundary

class Mesh
list<Vertex> vertices
list<Edge> edges
list<Face> faces

Figure 3: A blue cut plane through a knot mesh, dividing ibitwo
parts, a yellow and a green. Rings are shown as red intevgecti
curves with the plane.

Figure 1: Mesh data structure pseudo code.

void init(Mesh mesh)
for each edge in mesh.edges
edge.seen = false
next edge
for each edge in mesh.edges
if edge.face is NULL and edge.seen is false then
Ring ring = boundaryWalk(edge)
. do something with ring...
end if
next edge
End init

<7

previous

Figure 4: The initialization method.
Figure 2: A simple 2D mesh. The red arrows indicate the member
references of the edge.

Property C: Aring might be concave but never self-colliding. and
no two given rings intersect with each other. Therefore, we
can determine whether a ring lies inside or outside of amothe
ring simply by testing if a single projected vertex of thegin
lies inside or outside the projection of the other ring.

We use a mesh data structure similar to the half edge datz stru
ture in [Mantyla 1988], also known as a double connected ésige
The data structure is roughly as shown in Figure 1. Obseme th
an edge is in fact represented by two edges going in oppoisite d
rections. The relationship between an edge and its “neigtili®
illustrated in Figure 2. Edge boundaries of faces are asdume Figyre 3 illustrates some of the concepts.
be given in counter clockwise (CCW) order, and edges thas hav
twin with a face null pointer are called open edges and aregbar
the open boundaries, i.e. they lie on the cutting plane. @bdbat
the mesh is not capable of representing holes in faces efuvig 3 Determining Open Boundaries
require faces to be convex, but not necessarily triangles.

From our choice of data structure and the assumptions teskri
above, it is evident that we have three important propertidse
open boundary is connected, all open boundaries are plahr a
there is no collision between the open boundaries. We reffiese
properties as A, B and C, they are explained in more detaivbel

Initially our algorithm must determine all the rings of thesi. We
can exploit property A for doing this. First we search for gre
edge not previously seen as illustrated in Figure 4.

Having found such an open edge it must be part of an unseen
boundary. We therefore walk around the other open edgeseof th

Property A: If we encounter an open edge then this edge is con- Poundary until we reach the initial open edge. This is shown i
nected to exactly two other open edges, one at each end point.Figure 5). - The algorithm works as long as rings do not touth. |
If we pick a direction and walk along these open edges then 'ings touch then we could sort the incoming edges in CCW order

we will get a closed path. We refer to such a path as aring. ~ around the normal of outgoing vertex of the touching boundar-
tices. The proper edge to continue along while walking thenie

Property B: All rings are coplanar. In fact the plane they lie inis ary would be the last edge in the ordered CCW sequence. Howeve
the cutting plane. Projecting the rings onto the cuttingipla the currentimplementation ignores the case of touchirggtisince
will allow us to work in 2D instead of 3D. this case can not occur if the original mesh was a true “vofume

Ring * BoundaryWalk(Edge seed)

Ring ring

seed.seen = true

Edge loop = seed

Vertex cur = seed.destination;
do

Ring.add(cur) ;
bool found = false
for each edge e in cur.edges do
if e.twin.face is NULL then
loop = e.twin
cur = e.twin.destination
found = true
break
end if
next e
if not found then
error...
return NULL
end if
loop.seen = true
while loop!=seed
return ring
End BoundaryWalk

Figure 5: The boundary walk algorithm.

Figure 6: Diagonal example. The red diagonal is illegalrdisses
the lines from 5 to 6 and from 6 to 7. The blue diagonal is valid.

4 Patching a single Ring

Assume we only have a single ring. In this case it would be pl&m
matter to carry out the patching. All we have to do is to decasep
the ring into convex pieces, project back the convex pie€ebseo
ring from the 2D cutting plane to the 3D space, and then ifiaees
into the mesh corresponding to the convex pieces.

Instead of doing a convex decomposition a first thought might
be to just triangulate the ring, because triangles are corse
this will not violate our requirements to our mesh data stres
However, in general the ring could have any shape, which make
it a bit difficult to apply a simple brute force approach likare
clipping [O’Rourke 1998] for triangulating the ring. We ddwf
course resort to something like a constrained Delaunagguia-
tion [Shewchuk 1996; Shewchuk 2002] to deal with our problem
but this is far from being a simple and fast approach as we.want

Instead, we use a simple recursive convex decompositioe. Th
method works by searching for a non-intersecting “diagbrigiat
is, a line between two vertices of the ring, such that the liee
inside the ring, but does not cross the ring. Figure 6 shoameles
of valid and invalid diagonals. When a valid diagonal is fduwe

void RecursiveDecomp(Ring ring,list<Ring> pieces)
if ring.vertices.size() == 3 then
pieces.add(ring)
return
end if
rightTurn = false
for each vertex, B, in ring.vertices do
let A be previous vertex of B
let C be next vertex of B
if A,B and C makes right turn then
rightTurn = true
break
end if
next B
if not rightTurn then
pieces.add(ring)
return
end if
let A be next vertex of B
do
let A be next vertex of A
while A<>B and line(A,B) inside ring
if A is B then
. error ...
return
end if
Ring piecel;
for vertex V=B to A do
piecel.add(V)
Ring piece2;
for vertex V=A to B do
piece2.add(V)
RecursiveDecomp(piecel,pieces)
RecursiveDecomp (piece2,pieces)
End RecursiveDecomp

Figure 7: The recursive ring decomposition algorithm.

simply split the ring into two rings along this diagonal arrdgess
the resulting two rings recursively. Eventually we end ughvai list
of convex rings.

Since faces are given in CCW order the vertices of a ring will
also be in CCW order. Therefore, if all vertices make a leftitu
around the ring, then the ring is convex.

We use this fact to find a diagonal. First, we search for a xerte
making a right turn, this vertex will be one end point of thagdi
onal. Then we search for another vertex of the ring such tret t
line segment between the right turn and the vertex lies énthe
ring. If such a vertex is found it is used as the other endpdfitite
diagonal, and if no such vertex is found an error is reported.

The algorithm is illustrated with pseudo code in Figure 7.
Unfortunately, it is only a limited number of meshes, whichl w
result in a single ring when they are cut by a plane. In genbeait
could be many rings, some of them might even be nested within
each other.

The algorithm is similar to Hertel and Mehlhorn [O’Rourke
1998]. The main difference lies in how we find diagonals, our
method uses an ear-clipping [O’Rourke 1998] strategy wdwere
Hertel and Mehlhorn requires a triangulation. Our worsedase
complexity isO(nlgn) whereas Hertel and Mehlhorn is linear.

class Ring
list<Vertex> vertices
list<Ring> children

class Hierarchy
list<Ring> outermost

Figure 8: Ring hierarchy data structure pseudo code.
A
RO,

Figure 9: The rings of a cut plane, yellow color shows regitbrad
should be patched. On right side the corresponding hieyarch
drawn.

5 Hierarchical Ordering

In this section we will describe a method for constructingeadr-
chical data structure of rings. In the next section it willdxédent
how this hierarchical data structure can be used in a dividecan-
guer manner to reduce the problem of handling multiple bgsi
nested rings as the simple case described in the previotisrsec

From the properties A,B and C we can build a hierarchical data
structure giving us the required spatial information akibetrings
in constant time. The hierarchy is constructed such thaigawvhich
is not enclosed by any other rings is placed at the root of the h
erarchy. If a ring encloses a set of rings then these ringshare
immediate children of that ring. Rings enclosed by a chitel ramt
immediate children, but grand-children. At the leaves &f ltier-
archy we will find rings that do not enclose other rings. Fey8r
shows the hierarchal data structure in pseudo code. Iné&@an
example hierarchy is shown. There is a single outermost Angn-
closing two other ringsB andC, describing “holes” imA. InsideC
another ringD, is placed. Observe thatis a descendent & and
not its immediate child. Another property of the hierarchythat
all rings at odd depths in the hierarchy describe holes imitigeof
their parent. Rings at even depths describe the outer bdesdzt
an area that should be patched.

We build the data structure in an incremental way as illtistta
in Figure 10. We search for new rings, one at the time, by logpki

void init(Mesh mesh)
for each edge in mesh.edges
edge.seen = false
next edge
for each edge in mesh.edges
if edge.face is NULL and edge.seen is false then
Ring ring = boundaryWalk(edge)
PlaceInHierarchy (outermost,ring,NULL)
end if
next edge
End init

Figure 10: The complete initialization method.

ring is found, where the ring does not lie inside any of itddrein.
In this case we add the ring as a child to that descendentdztedi
ring.

It might happen that the new ring does not lie inside any other
candidate ring, but encloses it instead. In this case we rausive
the candidate ring from its parent, and add the new ring asl@ ch
to the parent ring. Finally, the candidate ring must be adaed
a child to the new ring. The pseudo code is shown in Figure 11.
A nice thing about the data structure is that we can update it i
constant time when we do a “split-and-merge”- operationven t
rings (explained in the next section).

6 Split and Merge Operation

If we know a ring that does not enclose any other rings thename c
simply patch it with the algorithm outlined in Section 4. liere are
other rings nested inside the ring then we are in troublealrse
these nested rings describe “holes” in the ring “face”, a glem
topology which our mesh data structure can not deal with.

Our approach to the problem is to reduce the complex problem
of handling the nested rings to the simple case of an empgy rin

We accomplish this by applying a split-and-merge operdibon
each nested ring. The split-and-merge operation is indpiyethe
algorithm we used for convex decomposition of a ring.

For each nested ring we search for a “diagonal™-line fromra ve
tex on the nested ring to a vertex on the outer ring. The line is
chosen such that it does not intersect the boundary of thes dot
nor the boundaries of any of the nested rings. If we find sudtea |
we call it a split-line.

The split-line is used to cut the outer ring and inner ringptog-
ically into open polylines starting and ending at the vesiof the

for an unvisited open edge and when such an edge is encadintere SPlit-line end points.

we do a boundary walk, tracing the edges of the new ring. [@urin
the trace we mark all the edges of the new rings as being disie

This is the splitting operation, next we merge the open airtgr
and the open inner ring together to form a single closed fids is

we will not trace the same ring more than once see Section 3 for called the merge-operation. In Figure 12 we have illustréte ef-

details.

After having found a new ring, we recursively traverse ther-hi
archical data structure, testing the already inserted@uginst the
new ring in order to determine where the new ring should begula
in the hierarchy. We use the term candidate ring, when we tefe
aring that is already inserted into the hierarchy.

fect of the first split-and-merge operation carried out @ekample
from Figure 9. Observe that even though the resulting meriged
is geometrically touching along the split-line it is “topgically”
separated. We have sort of tunneled our way from the outgide o
to the inside oB.

In Figure 13 we have illustrated what happens during thergkco

We keep a set of the outermost rings encountered so far. After split-and-merge operation. Observe that the “tunnelingans that

having found a new ring, we test if it lies inside any of theesth
outermost candidate rings. If it does not then we can addtheo
set of outermost rings. However, if the ring lies inside adidate
ring then we will test the ring against the children of thedidate
ring recursively. The recursion ends when a descendenidzted

now the ringD has been promoted to the same level as the ring
ABC. We have now reduced the complex nesting problem to two
simple cases.

The pseudo code for the incremental divide and conquer ap-
proach we have explained is shown in Figure 14 and Figure 15.

void PlaceInHierarchy(list<Ring> level,
Ring ring,Ring parent)
if level is empty then
level.add(ring)
return
end if
for each candidate ring in level do
if ring is inside candidate then
PlaceInHierarchy(
candidate.children,ring,candidate
)
return
end if
next candidate
bool enclosing = false;
for each candidate ring in level do
if candidate is inside ring then
ring.children.add(candidate)
if parent<>NULL then
parent.children.remove (candidate)
else
outermost.remove (candidate)
end if
enclosing = true
break
end if
next candidate
if enclosing then
if parent<>NULL then
parent.children.add(ring)
else
outermost.add(ring)
end if
return
end if
level.add(ring)
End PlacelInHiearchy

Figure 11: The place in hierarchy method.

®

Figure 12: The rings of a cut plane after the first split-anekge
operation.

® ® ©

Figure 13: The rings of a cut plane after the second splitranthe
operation.

void run(Mesh mesh)
init (mesh)
while not outermost is empty do
Ring ring = outermost.front
divideAndConquer (ring,mesh)
end while
End run

Figure 14: The driver method of the algorithm.

void DivideAndConquer (Ring ring,Mesh mesh)
if ring is empty and outermost then
list<Ring> pieces
RecursiveDecomp(ring,pieces)
for each piece in pieces do
mesh.createFace(piece.vertices)
next piece
outermost.remove (ring)
else
outermost.remove (ring)
while not ring.children is empty do
Ring inner = ring.children.first
ring.children.remove(inner)
outermost.insert (inner.children)
inner.children.clear()
ring = splitAndMerge(ring,inner)
end while
outermost.add(ring)
divideAndConquer (ring,mesh)
end if
End DivideAndConquer

Figure 15: The divide and conquer method.

We will now explain the details of finding a split-line, andrfoem-
ing the split-and-merge operation.

First, we search for the leftmost projected vertex, B, ofléfe
most inner ring. Second we search for a projected veAegf the
outer ring lying to the left o, such that the lineAB, does not
intersect the outer ring. Observe that the line would naversect
any of the inner rings, because we are always using the leftmo
vertex of the leftmost inner ring.

If a line AB exist (we will give an existence proof later in this
section) it will be a valid split-line, and we can therefonat cip
the rings atA and B, and construct a new ring as follows: Add
vertex A as the first vertex to the new ring, follow the versiae
the outer ring until vertex A is reached again, each time texds

encountered it is added to the new ring. By now vertex A should
have been added twice to the new ring! Now the same procedure

is repeated for the inner ring, starting at vertex B. Notlwat @also
B will be added twice. The search for a valid split-line is dep
dent on a proper left-to-right ordering of the inner ringshisTis
easily accomplished by keeping the children of a ring as eerat
ing sorted list based on the x-coordinate of the projectéichtest
vertex of the ring. In degenerate cases a descending sortitige
projected y-coordinates can be used.

If there is no vertex on the outer ring to the left of the lefsho
vertex of the inner ring then the inner ring must touch theoring
at a vertical edge. However due to our assumptions in Se2tiba
inner ring can never touch the outer ring, so there must betexe
on the outer ring that is to left of the leftmost vertex of thaer

Ring SplitAndMerge(Ring outer,Ring inner)
let B be leftmost vertex of inner
bool foundSplit = false
for each vertex A in outer do

if A.x < B.x then
if not line(A,B) intersect outer and inner then
foundSplit = true
break
end if
end if
next A
if not foundSplit then
. errror ...
return
end if
Ring merged
for vertex V=A to A do
merged.add (V)
next A
for vertex V=B to B do
merged.add (V)
next B
merged.children.add(outer.children)
outer.children.clear ()
return merged
End SplitAndMerge

Figure 16: The Split and Merge Operation.

ring. This is illustrated in Figure 17. The split-line willveays

Figure 17: No verteXA to the left of B implies touching ring as
shown. This is illegal. Hence there exists at least one xékt®
the left of B.

point to the left of the leftmost inner ring. Therefore it caat
intersect the inner ring or any of the siblings of the innagrisince
these always lie on the right side of the leftmost inner ring.

Finally, there is the question if there exists a vertex onaiher
ring such that the split-line does not intersect the outey.rif there
is only one vertex to the left of the leftmost vertex of thednn
ring, then it is trivial true that the split-line does notemsect the
outer ring. If there is more than one vertex and we have pieked
vertex such that the split-line intersects the outer rihgntthere
must be a vertex lying to the right of the chosen vertex on titero
ring. This vertex will eliminate two intersections with tloeiter
ring, and since we only have finitely many vertices on the route
ring it implies the existence of a vertex on the outer ringjolth
will create a valid split-line. The proof of split-line exénce is
illustrated in Figure 18.

Figure 18: The left picture illustrates the trivial case w&etly one
vertex A to the left of B. The right picture illustrates the case of
an invalid split-line. The lineA to B intersect the outer ring, how-
ever there must be a vertéxto the right ofA, eliminating the two
intersections.

7 Results

In Figure 19 we have shown how the algorithm have patched sev-
eral meshes clipped by a plane. For visualization purposenke
visualize one half of the clipped mesh. The knot case shoatsith

can deal with multiple outermost rings and quite large rirg&®s
consist of little more than 64 vertices). The torus case shibwat

a nested ring does not pose any problem, the box with holes cas
demonstrates that nested rings in several layers can béedafd-
nally the last case illustrates that multiple nested risgal$o han-
dled.

Mesh statistics and time measurements of the plane cligpidg
the plane patching algorithms are listed in Table 1. All nees
ments were done on a Dell Inspiron 8100, 933 MHz, 256 MB,
W2K, algorithms were implemented in MSVC?7.1.

We also tried the plane patcher algorithm in a convex decom-
position based on half angle cutting of reflex edges, somerdec
position results are shown in Figure 20. In our experienee th
plane patcher algorithm works well. However, we have seen th
algorithm fail due to numerical roundoff and inaccuraciesf the
plane clipping algorithm.

8 Conclusion

In this paper we have described a simple patching algorittim f
planar clipping operations. We have outlined an implenteman
pseudo code and given results of running the algorithm oaraév
test-cases, which we believe clearly show that the algorigblves
the problem we have stated.

The algorithm has shown to be fairly easy to implement, mbst o
our difficulties have been concerned with numerical inaacias in
the 2D polygonal intersection testing.

In our opinion the algorithm clearly fulfill our wish for a spte
and fast alternative to more advanced solutions to the plzatah-
ing problem.

We believe that spherical parameterization [Praun and Elopp
2003] of open boundaries of a clipped twofold mesh, followed
by a 2D constrained Delaunay Triangulation [Shewchuk 1996;
Shewchuk 2002], would provide one with a strong tool for both
planar patching and more general patching. Such a tool waeild
valuable in helping cleaning up digital mockup as a pre-pssing
step as well as patching gaps from various clipping operatio

These problems might at first hand seem trivial and unimpor-
tant. However, our experience tells us otherwise. Far ttenofve
have to deal with repairing meshes obtained from segmentafi
medical images, or simply generated from 3D modeling applic
tions such as 3D Max and the like. This is very tedious and-time
consuming, and really not something we want to do as resear.ch

A future goal is to implement the algorithm based on conséehi
Delaunay Triangulation as described above and comparésitrims

Mesh non-patched part Patched Part

T e b e

knot

torus

box with holes

box with rings

Figure 19: Screen-dumps of meshes before plane clip, déieelip and after plane patching.

#V #E #F Clip (secs) | Patch (secs) #R
knot 2880 | 8640 | 5760 | 0.551 0.03 8
torus 1536 | 4608 | 3072 | 0.22 0.17 4
box with holes| 685 | 2097 | 1398 | 0.09 0.08 18
box withrings | 585 | 1749 | 1166 | 0.09 0.051 18

Table 1: Statistics of meshes and timings of clipping andhpag. #V: Number of Vertices, #E: Number of Edges, #F: Nundid-aces, and
#R: Number of Rings.

il
S,
= =
%y B S
I\

Figure 20: Screen-dumps of Convex Decompositions. Thed#jects show the original meshes before decompositiongthpieces shows
the decomposition with pieces exploded outwards for vigatbn purpose.

of performance, versatility and user-ability to the simglgorithm
presented in this paper.

References

BARENTZEN J. A. 2001.Manipulation of Volumetric Solids, with appli-
cation to sculpting. PhD thesis, IMM, Technical University of Denmark.
BMP 08-0011-311.

COUTINHO, M. G. 2001. Dynamic Smulations of Multibody Systems.
Springer-Verlag.

DINGLIANA, J.,AND O’SULLIVAN, C. 2000. Graceful degradation of
collision handling in physically based animatiof€omputer Graphics
Forum 19, 3.

EBERLY, D. Clipping a mesh against a plane.
software.com.

http://www.magic-

FRISKEN, S. F., EERRY, R. N., Rockwoob, A. P., AND JONES, T. R.
2000. Adaptively sampled distance fields: A general reprtasien of
shape for computer graphics. $rggraph 2000, Computer Graphics Pro-
ceedings, ACM Press / ACM SIGGRAPH / Addison Wesley Longman,
K. Akeley, Ed., 249-254.

HOFFMANN, C. M. 1989. Geometric and Solid Modeling. Morgan Kauf-
mann.

1.J.PALMER, AND R.L.GRIMSDALE. 1995. Collision detection for anima-
tion using sphere-tree€omputer Graphics Forum 14, 2, 105-116.

JAMES D. FOLEY, ANDRIES VAN DAM, S. K. F.,AND HUGHES, J. F.
1996. Computer Graphics: Principles and Pratice, 2nd ed. in ¢ ed.
Addison-Wesley.

KRISHNAN, S., NARKHEDE, A., AND MANOCHA, D., 1995. Boole: A
system to compute boolean combinations of sculptured sol@hline
paper. http://www.cs.unc.edu/ geom/CSG/boole.html.

MANTYLA, M. 1988. An Introduction to Solid Modeling. Computer Sci-
ence Press.

MUSETH, K., BREEN, D. E., WHITAKER, R. T., AND BARR, A. H.
2002. Level set surface editing operatorsPtoceedings of the 29th an-
nual conference on Computer graphics and interactive techniques, ACM
Press, 330-338.

NAYLOR, B. 1992. Interactive solid geometry via partitioning 8edn
Procedings of Graphics Interface, 11-18.

O’ROURKE, J. 1998. Computational Geometry in C, 2nd ed. ed. Cam-
bridge University Press. http://cs.smith.edu/ orourke/.

O’SULLIVAN , C.,AND DINGLIANA , J. 1999. Real-time collision detection
and response using sphere-tre@Sth Soring Conference on Computer
Graphics, 83-92.

PRAUN, E.,AND HOPPE H. 2003. Spherical parametrization and remesh-
ing. ACM Transactions on Graphics (TOG) 22, 3, 340-349.

REQUICHA, A. A. G., AND ROSSIGNAC J. R. 1992. Solid modelling
and beyond.|EEE Computer Graphics and Applications (September),
31-44.

REQUICHA, A. A. G., AND VOELCKER, H. B. 1985. Boolean opera-
tions in solid modeling: Boundary evaluation and mergingpathms.
Procedings of the IEEE 73, 1.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D Quality Mesh Gen-
erator and Delaunay Triangulator. Applied Computational Geome-
try: Towards Geometric Engineering, M. C. Lin and D. Manocha, Eds.,
vol. 1148 ofLecture Notes in Computer Science. Springer-Verlag, May,
203-222. From the First ACM Workshop on Applied Computadion
Geometry.

SHEWCHUK, J. R. 2002. Delaunay refinement algorithms for triangular
mesh generation.Computational Geometry: Theory and Applications
22, 1-3 (May), 21-74.

STEWART, N., LEACH, G.,AND JOHN, S. 2002. Linear-time CSG render-
ing of intersected convex objectshe 10-th International Conference
in Central Europe on Computer Graphics, Visualization and Computer
Vision '2002 - WSCG 2002 || (Feb), 437-444.

TzAFESTAS, C., AND COIFFET, P. 1996. Real-time collision detection
using spherical octrees : Vr applicatiotEEE Int. Work. on Robot and
Human Communication.

ZACHMANN, G. 1995. The boxtree: Exact and fast collision detection of
arbitrary polyhedra siveFirst Workshop on Smulation and Interaction
in Virtual Environments, University of lowa.

