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Abstract

The maximum profit two- or three-dimensional knapsack pagkiroblem asks to pack
a maximum profit subset of some given rectangles or boxesifdmer rectangle or box of
fixed dimensions. Items must be orthogonally packed, buttheraestrictions are imposed
to the problem. The problem could also be considered as askokproblem generalized
to two or three dimensions. In this paper we present a newidtieunased on the sequence
pair representation proposed by Murata et al. (1996) usisgnai-normalized packing by
Pisinger (2006) for the two-dimensional knapsack problértocal search algorithm main-
tains a pair of sequences given as permutations of the itenbbers. In each step a neighbor
solution is generated by making a small permutation in onbodh sequences. The new
sequence pair is transformed to a packing and the corresmgpobjective function is eval-
uated. Solutions are accepted based on a Simulated Angealire heuristic is also able to
handle problem instances where rotation is allowed. A singipproach with a novel abstract
representation of box placements, called sequence tripatebeen developed for the three-
dimensional knapsack problem. Comprehensive computtexperiments comparing the
developed heuristics with previous approaches indicaettte results are very promising
for both two- and three-dimensional problems.

Keywords: Cutting and Packing, knapsack, 2D knapsack, 3ipgack, sequence pair,
abstract representation, heuristic, simulated annealing

1 Introduction

Given a set oh rectangles) = 1,...,n, each having a width;j, heighth; and profitp; and a
rectangular plate having widiv and heighH. Themaximum profit two-dimensional knapsack
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packingproblem (2DKP) asks to assign a subset of the rectanglestbatplate such that the
associated profit sum is maximized. All coefficients are ae=iito be nonnegative integers, and
the rectangles may not be rotated. A packing of rectanglethemplate is feasible if no two
rectangles overlap, and if no part of any rectangle excdezplate.

The maximum profit three-dimensional knapsack packingpblem (3DKP) asks to assign a
subset of boxes each with dimensiamgshj, d; into a larger box with dimension®&/, H andD
but is otherwise similar.

The problem has direct applications in various packing anting problems where the task
is to use the space or material in an optimal way. The 2DKPIlpnolalso appears as pricing
problem when solving the two-dimensional bin-packing peab[4, 15, 16]. 2DKP and 3DKP
are NP-hard in the strong sense, which can be shown by reduobm the one-dimensional bin
packing problem.

Integer Programming formulations of the 2DKP have beengutesi by Beasley [1], Hadji-
constantinou and Christofides [7], and Boschetti, Hadptamtinou, Mingozzi [2] among others.

Fekete and Schepers [4, 5, 6] solved the 2- and 3DKP througdnaelv-and-bound algorithm
which assigns items to the knapsack without specifying thgtjpn of the rectangles. For each
assignment of items a two-dimensional packing problem ligeslp deciding whether a feasible
assignment of coordinates to the items is possible suchitagall fit into the knapsack without
overlaps. An advanced graph representation was used fangdhe latter problem. Pisinger
and Sigurd [16] solved the 2DKP through a branch-and-cutcgmh in which an ordinary one-
dimensional knapsack problem is used to select the mostabiefitems whose overall area does
not exceed the area of the plate. Having selected the motapte items, a two-dimensional
packing problem in decision form is solved, through constrarogramming. If all items can
be placed in the knapsack the algorithm terminates, otlseram inequality is added to the one-
dimensional knapsack stating that not all the current iteamsbe selected simultaneously, and
the process is repeated. Finally, Caprara and Monaci [3ldped a branch-and-bound algo-
rithm for the 2DKP. The algorithm is based on a branch-anakbdcscheme which assigns items
to the knapsack without specifying the position of each jtésowed by a feasibility check.
The latter is done using an enumeration scheme from Maytdibmaci, Vigo [10].

In the present paper we first present an IP formulation of thend 3DKP. In Section 3 we
introduce the sequence pair representation, which we uSedhon 4 combined with a simple
local search neighborhood and Simulated Annealing to stidieP. In Section 5 we introduce a
novel abstract representation of box placements in thmeemkions and use the same methods
as for two dimensions to solve 3DKP. Finally in Section 6 wegant our result on existing and
new benchmarks instances for 2- and 3DKP.

2 Integer Programming Formulation of the problem

In the following we show an integer programming formulatairthe 3DKP. A formulation of
2DKP easily follows by removing variables and constraiotstie third dimension.

We will introduce the decision variablg to indicate whether box is packed within the
knapsack box. The coordinates of bioare (x;,Vi,z), meaning that the lower left back corner



of the box is located at this position. If a rectangle is natkea within the knapsack we may
assume thaltx, vi,z) = (0,0,0). As no part of a packed box may exceed the knapsack, we have
the obvious constraints

0<x <W-—w, 0<yi<H-h, 0<z<D-d. (1)

We introduce the binary decision variablgs(left), ri; (right), ujj (under),o;; (over),bjj (behind)
andfjj (in-front), to indicate the relative position of boxies wherei < j. To ensure that no two
packed boxes j overlap we will demand that

Gij +rij + uij + 0ij + bij + fij > 1, (2)

whenevels = sj = 1. Depending on the relative position of two rectangles tiwrdinates must
satisfy the following inequalities

lj=1 = x+w <Xx;, rj=1 = Xj+wj<x,
uj=1 = yi+hi§yj, 0j=1 = Yj+hj§yia (3)
bj=1 = z+d <z, fii=1 = z+dj<z.

The problem may now be formulated as

max_ 3 ps

s.t. 4ij+rij +Uj +0ij +bij + fij > s +sj -1
Xi — Xj +W-ij <W —w;
Xj — X +Wrjj <W —w;
Yi—yj+Huj <H-—h;
Yj —Yi+Hojj <H —h;
z —zj+Dbjj <D—d
zj —z+Dfj; <D —d;
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0<x <W—wj 1
O<yi<H-h =1,...,n
0<z<D-—{ =1...,n
éij,rij,uij,oij,bij,fij6{0,1} ,j=1,...,n
s €{0,1} =1...,n
Xi,¥i,z2 >0 =1,...,n

The first constraint ensures that if boxesd j are packed, then they must be located left, right,
under, over, behind or in-front of each other as stated in T2)e next six constraints are just
linear versions of the constraints (3). The last three iaéties correspond to the constraints (1).

The IP-model hasr& + n binary decision variables and&ontinuous variables. Although
the size ofO(n?) binary variables is not alarming, the problem is difficultsolve. This is
mainly due to the use of conditional constraints (3), asdhé loose their effect when solving
the LP-relaxation, and thus bounds from LP-relaxation arganeral far from the IP-optimal
solution.



Figure 1: A packing represented by sequerce- <e, c, a, d, f, b> and sequenc® =
<f,c, b, e, a,d>

3 SequencePairs

Murata et al. [9] presented an abstract representation efdiwensional rectangle packings
based on sequence pairs. The problem they consider is themammarea enclosing rectangle
packing problem. In the abstract representation every ectrpacking can be represented by
two permutations of the numbefs,2,...,n} where each number represents a rectangle in the
problem instance. The pair of permutations is callsgquence paifA, B).

For a given packing, the two permutatioAsandB are found as follows: We use the termi-
nology 4; to denote that itemprecedeg in sequencé. Then we have

(Xi+wi <xj VvV yj+hi<y) & 4 (5)

In a similar way we use the terminologssj to denote that item precedes] in sequenceB,
getting
Xi+w<x; VvV yi+hi<y) & 5 (6)

Each of the two criteria (5) and (6) define a semi-orderingl la@nce for a given packing the
two permutation®A andB can easily be found by repeatedly choosing one (of possilagejn
minimum elements. Figure 1 illustrates a packing and a spomeding sequence pai, B).

From the definitions (5) and (6) we immediately see that ihiieprecedes iten) in both
sequences, thenmust be placed left of. If i succeedg in sequenceé buti precedes in
sequenc® theni must be placed undgr Formally we have

aij ANBij = iisleftof] (7)
—4ij A Bij = liisunder] (8)

where we use the terminologya;j to denote that j;.

The relations (7) and (8) can be used to derive a pair of cainstgraphs as illustrated in
Figure 2. In both graphs the nodes correspond to the itemghdrfirst graph we have an
edge fromi to j if and only if itemi should be placed left of (aij A 3ij). In the second
graph we have an edge frointo j if and only if itemi should be placed undgr(—a;j A Bij).
Traversing the nodes in topological order while assignmgydinates to the items, a packing (i.e.
the coordinates of the items) can be obtaine®{n?) time. Tang et al. [18, 17] showed how



the same packing can be derived without explicitly definimg ¢onstraint graph, but by finding
weighted longest common subsequences in the sequence pair.

Pisinger [14] further improved the algorithm, by presegtam algorithm which transforms a
sequence pair to a packing in tin¥nloglogn) ensuring that the packing gemi-normalized
A normalizedpacking is a packing where the items are packed accordirgetedquencB and
where each new item is placed such that it touches an alrdadgdgitem on its left side, and an
already placed item on its lower side.s&mi-normalizegbacking is a packing where the items
are packed according to the sequeBand where each new item is placed such that it touches
the contourof the already placed items both from left and from below. @literence between
an ordinary packing and the semi-normalized packing istitated in Figure 3.

The sequence pair representation makes it easy to conatial search heuristic for pack-
ing problems. In each step a neighbor solution is generagetidking a permutation of two
items in one or both sequenc&faandB. The new sequence pair is transformed to a packing and
the corresponding objective function is evaluated. Basethe local search framework chosen,
the new solution can be accepted, or the algorithm tries ansghbor solution to the previous
solution.

4 Sequence pairsfor two-dimensional knapsack packing

Let any sequence pair represent a legal solution to the 2[D&KBvaluate the solution we trans-
form the sequence pair into a packing and add profit valueitdiors located completely within
the knapsackV x H. This is illustrated in Figure 4.

To further speed up the algorithm, we stop the transformdit@m sequence pair to a packing
as soon as the contour of already placed items is completesyde the knapsack. For large
problems where only a limited amount of items fit in the kna@ks#his saves a significant part
of the computational time.

4.1 Simulated Annealing

To solve the 2DKP we use the metaheuristic Simulated Anngavhich works well in cooper-
ation with the sequence pair representation [9, 18, 17, 14].

e o
T |
D
Ny fb
Figure 2: Constraint graphs corresponding to the sequenedr pPAB) =

(<e,c,a,d, f,b><f,c,b, e, a d>). Redundant edges are removed for clarity. Edges
indicate which rectangles should be placed left of eachrdtkepectively under each other).
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Figure 3: Transformation of a sequence pair to a packinggubia ordinary transformation (left)
and using the semi-normalized transformation (right)
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Figure 4: A sequence pajA, B) has been transformed to a packing using the semi-normalized
transformation. Only rectangles completely within the pseckWV x H (dashed line) contribute
to the profit sum

In this setting we repeatedly make a small modification togbguence pair, evaluate the
profit of the corresponding packing, and accept the soludepending on the outcome. Simu-
lated Annealing is used to determine whether a solution Ishoel accepted. An outline of the
algorithm is found in Figure 5.

Our variant of Simulated Annealing is as follows; At any giteme the temperature is eval-
uated as A(tg+ts- a) wherety is a start time-valuds is a time-step value aralis the number of
accepted solutions. The temperature depends on the tirtieg baghettg + tsis, the lower is the
current temperature. The temperature is only decreasedetesolution is accepted, since this
is the only situation where the time is incremented.

The neighborhoodN(s) of a solutions = (A,B) is defined as one of the following three
permutations: Either exchange two items in sequeéXa@xchange two items in sequenBgor
exchange two items in both sequercandB. The items are selected randomly.



choose initial solutiors € S
choose initial timdg
choose time step
a:=0
repeat
chooses’ € N(s)
if f(s) < f(s) then accept:=trueelse

p:=rand0,1)
T:= tozﬁ
A= K f)(s)f(S)
if p< eT then accept:=true
end
if acceptthen
s:i=¢
a=a+1
end
until stop-criteria
return s

Figure 5: Simulated Annealing Heuristic

4.2 Rotations

Few papers consider exact algorithms for packing problehesewotation is allowed. A possible
explanation could be the increased size of the solutionespad the lack of high-quality upper
bounds. In our heuristic, rotations are easy to handle as aie represent each packing by
the triple (A,B,R). Here(A,B) is the sequence pair, ailis a binary vector, representing the
rotations of 0 or 90 degrees. If rotation is allowed the nbarhoodN(s) of our heuristic is
extended with a fourth permutation; Change the rotationdfaan item inR.

5 ThreeDimensions

For the three-dimensional problem we will consider a newasgntation which like the sequence
pair for two dimensions will contain relative box placemémt three dimensions. We call the
representation sequence tripple since it consists of ttegaences. Not all three-dimensional
packings are obtainable with this representation but wepndlve that a large subset of all nor-
malized packings may be represented. The same Simulateglbhng strategy we use for the
sequence pair is applied to the sequence tripple to form adtiedfor 3DKP.

A robot packingis a packing which can be achieved by successively placirgdstarting
from the bottom-left-behind corner, and such that each bar-front of, right of, or over each
of the previously placed boxes [11]. #dlly robot packable packing a packing which satisfies
the robot packing criteria from any of the corners of theddog.
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Figure 6: A packing and the corresponding sequence trigpB,C) = {< 9,4,8,5,1,6,2,7,3 >
,<4,2,5,3,1,9,6,87>,<2,3,6,7,1,4,59,8>}. The lettersA, B,C on the figure indicate the
directions which are used for defining the correspondingieece of boxes

Robot packings are motivated by several industrial appting, where boxes have to be
packed by robots equipped with a rectangular “hand” pdradléhe base of the large box. To
avoid collisions between the hand and the boxes, it is desthtitat no already packed box
block for the movement of the “hand”. In [11] it is shown thiagtquality of a packing is seldom
affected by restricting the solution space to the set of rphokings.

5.1 Sequence Tripple

A given fully robot packable packing is represented by tleeguences, B andC where each
sequence is a permutation of thboxes. For any sequeniewe sayx;; if and only ifi is before
j in sequenc&X and define-xj; < xii.

In a similar way as in Section 3 we define sequeAdsy the criteria

+wi<xp VvV yi>yj+hy vV z>z+d) & 4 (9)
In other wordsa;; iff i is located left, over or in-front of. Using the formulation (2) we have
aij < Gj + 0o + fij > 1.
Sequencd® is defined by
X>xj+wj Vo yi>yj+hy vV oz>zi+d) & B (10)
This meanss;; iff i is located right, over or in-front of. The relation can be expressed as
Bij < rij +0jj + fi; > 1.
Finally, sequenc€ is defined by

X >Xj+w, VvV Yi+hi<y; VvV z>z+d) < G (11)
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In words, ¢jj iff i is located right, under or in-front of, which can be expressed ag <
rij +uij + fij > 1.

Due to the definition of fully robot packable packings, thesié always be an item which
is located furthest left-over-behind. By removing thisntand repeating the operation, we get
the ordering of sequenc® In a similar way the orderings @& andC can be determined, as
illustrated in Figure 6. This shows that every fully robotkable packing can be represented by
a sequence tripple.

Using the relations

aij < lij +oij + fij > 1, Gij +rij <1,
Bij < rij +0ij + fij > 1, 0jj +Uij < 1, (12)
Cij < rij +uij + fij > 1, fij +bij <1,
we find that

aij N BijA cij & fij=1

Aij A=Bij A CGij & Gy +rijp > 1Voi+uij > 1V fij+bjj > 1

—4ij\ Bij\ CGij & rij=1

—4ij ABij A Cij & Uj=1 13

aij N BijACij & 0j=1 (13)

ajj A\=Bij ACGij & Gj=1

—4ij A BijACij & Lij+rip > 1vo+uj > 1V fij+bij > 1

—4ij A\-BiACij & bij=1

Notice thatajj A —3ij A Cij and—4j; A Bij A =¢jj cannot occur for any packing. We have, how-
ever, chosen to assign these cases a meaning, such thasegiagnce tripple has a correspond-
ing packing. This leads to the following four criteria, slamito (7) and (8), which are used to
determine the relative box positions:

Aij A—Bij ACij = Tisleftof (14)
—4ij A\—Bij A Cij = lisunderj (15)
—4ij A—Bij A—Cij = 1is behind] (16)

4ij A—Bij A Cij = s behind] (17)

Notice that both (16) and (17) impose thahust be behind in the packing. The unfortunate
consequence of this is that the representation is biaseatdsvorderings in that direction which
could have a negative impact on the solution process, bueagish to let every sequence tripple
represent a packing, an arbitrary choice had to be done.

5.2 A Placement Algorithm

To find a placement (i.e. the coordinates of the boxes) qooreding to a sequence tripple, we
can construct three constraint graphs similar to Figure 2hé first graph we have an edge from
itemi to item j if i is located left ofj (i.e. aij A =Bij A —cij). In the second graph we have an
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edge from item to itemj if i is located undey (i.e. ~4ij A—Bij A Cij). In the last graph we have
an edge from itemto itemj if i is located behing (i.e. =4ij A ~Bij A—Cij Or 4ij A —Bij A Cij).
Traversing the nodes in topological order for each graphendssigning coordinates to the items,
we find the location of all boxes in tim@(n?).

By observing that:3ij is a necessary criteria for nodto precede nodgin each of the three
constraint graphs, we may actually omit the topologicakardy as it is in each case given by
the reverse order of sequerBe

The last box irB is placed atx,y,z) = (0,0,0) and succeeding boxes are placed one by one
according to the reverse order of sequeBcét any time letP consist of all previously placed
boxes. Now assume we wish to place boxo determine the position efwe compare with
every boxj € P. Let P, C P be the subset of boxes which satisfy (14), i®j A ~Bij A Cij,
let B, C P be the subset which satisfy (15), i.84ij A —8ij A Cij, and letP, C P be the subset
which satisfy (16) or (17), i.e~4ij A —Bij A—Cij Of 4ij A—Bij A Cij). Now assigri coordinates
(Xi,Yi,z) determined by

X = max0,maxx;+w;)) (18)
JePX

yi = max0,maxyj+hj)) (19)
jePy

z = maX(O,rjg%X(ZhLdj)) (20)

Once a box has been placed it is inserted ito

If we maintain a table in which the position of each hdax the three sequencdsB,C is
saved, we can test whetheyj, 8i; or ¢jj holds in constant time for two given boxgg. Since
placing a box only requires comparison with every previgygaced box, calculating (18) to
(20) for a given box can be done i®(|P|) = O(n) time. Placing alh boxes then require®(n?)
time.

To speed up the placement procedure slightly we remove aroox P if it is completely
“shaded” by a newly inserted box. A bgxs shaded by a bokif x; +wj < x +Wwj, yj +hj <
yi+hi andz; <dj < z +d,.

5.3 Simulated Annealing

To solve 3DKP we use Simulated Annealing similarly as for timensions but with the three-
dimensional sequence representation. The neighborhaondre&ased to accommodate the extra
sequence and consists of the following permutations: 1lhaxge two boxes from one of the
sequences, 2) exchange two boxes in sequérered B, 3) exchange two boxes in sequerfce
andC, 4) exchange two boxes in sequeiiandC, 5) exchange two boxes in all sequences.

6 Computational Experiments

The heuristic described in the previous sections was imgieed in C++ using the sequence pair
algorithm by Pisinger [14] for two dimensions and an implatagon of the placement algorithm
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for sequence tripple described in section 5.2 for three dgioas. The implementation was tested
on a computer with an AMD Athlon 64 3800+ (2.4 GHz) processdh\& GB ram using the
GNU-C++ compiler (gcc 4.0). This section is divided into tpyarts; one about 2DKP and one
about 3DKP.

6.1 2D Computational Experiments

To test the 2DKP heuristic we used both the classical insaod a new set of instances. The
instances were used for parameter tuning of the heuriséisuls are reported for instances both
without and with rotation allowed.

6.1.1 Classical Instances for 2DKP

We use the benchmarks instances considered by Fekete 6f ahd Caprara and Monaci. The
instances are listed in Table I. The instanibeas| ey 1- 7 originates from [1]. Thegcut and
gcut instances are guillotine-cut instances from the OR librdhe instancevang?20 is from
[19] and also a guillotine-cut instance. The instari@és CHL5 are also guillotine-cut instances
by Hifi [8]. Finally, the instanc@®kpl- 5 are by Fekete and Schepers [5].

For each instance we determine two valigsand n;. The first value,ng, is defined as
no = n[Knapsack Areg/[Total areq This value should give a hint as to how many items the
knapsack will contain on average in solutions. The valuis the number of items chosen in the
optimal solution for the one dimensional relaxation, asdbed in the sequel.

We also use the valug) to determine the running time of our experiments: For araims
with n rectangles andp defined as above I€t(n,ng) = nplgn. The idea of this function is that
if we expect there to beg items in the knapsack then there are rougtflydifferent possible
solutions to search, therefoFgn,ng) should give us a rough indication of the size of solution
space.

The running time of each instance is determined from thea/lun, ng) of the instance, by
considering the interval th&t(n,np) belongs to. Different intervals and their running times are
shown in Table Il. Thus the minimum and maximum running times 30 and 600 seconds
respectively.

Let theone-dimensional relaxatioof the two-dimensional packing problem be a one-dimengiona
knapsack problem where the knapsack and the items havegsiakte their area, and items have
profit equal to the profit of the rectangles. For all instaneesconsider here this problem is
solved to optimum within 5 seconds using the exact methoddigder [12]. The valu@; is the
number of items chosen in the optimal solution for the oneetisional relaxation and we use
this value to set the Simulated Annealing parameters foingtance (see section 6.2.1), amd
should indicate the number of rectangles to be expected apamal solution.

6.2 New Instancesfor 2DKP

For 2DKP we have created 80 new instances. The rectanglendions in each instance belongs
to one of five different classes which are listed in Table Mhe five classes areal | (T),

11



Instance | n| ng|ni [ Instance| n| ng| n |
beasleyl | 10| 5.3 gcutl0 |20 3.7| 5
beasley2 | 17| 6.3 gcutll | 30| 46| 6
beasley3 | 21| 7.6 gcutl2* | 50| 4.0| 4
beasleyd | 7| 6.5 gcutl3* | 32| 20.1| 18
beasley5 | 14| 6.0 wang20*| 42| 5.0| 4

beasley6 | 15| 7.8 3 62| 39|11
beasley7 | 8| 18.3 3s 62| 39| 6
beasley8 | 13| 8.2 al 62| 42|11
beasley9 | 18| 7.4 als 62| 42| 7
beasleyld 13| 6.8 a2 53| 55|11
beasleyll 15| 9.1 azs 53| 55| 7
beasleyl2 22| 8.6 | 11 || chl2 19| 9.1|10
cgcutl* | 16| 10.7 chl2s 19| 9.1, 9
cgcut2* | 23| 14.8| 11 || chI3 35(89.8| 35
cgcut3* | 62| 3.90| 11 || chi3s 35]89.8| 35
gcutl* 10| 3.82 chl4 27| 92.7| 27
gcut2 20| 4.6 chl4s 27| 92.7| 27
gcut3* 30| 4.6 chl5 18| 74| 5

gcutd 50| 4.3
gcut5 10| 4.6
gcut6 20| 4.1
gecut7 30| 3.7
gcut8 50| 45
gcut9 10| 4.9

okpl* 50| 14.3| 9
okp2 30| 96|11
okp3* 30| 83|11
okp4 61|10.1| 8
okp5* 97 |12.6| 15

GO0, R_ARPRPOPFPONOOWOMONOOO OO,

Table I: Literature instances for 2DKP. Instances market Wi are used for fine-tuning of the
heuristic.

ForF(n,ng) € | [0;25 [25;65 [65;100 [100;25Q [250;)
SetT(n,ng) 30 60 120 240 600

Table 11: The runningr (n, ng) in seconds determined froR(n, np).
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Class Description Width Height

T Tall. Rectangles are tall [1,3-100  [5-100,100

W  Wide Rectangles are wide [4-100,100 [1,3-100

S Square. Rectangles are square (1,100 Equal to width

U Uniform. Largest dimension is no more[-100,100 [4-100 100
than 150% of the smallest

D Diverse. Largest dimension can be up-td1,100 (1,100

100 times the smallest

Table I1I: The 5 different classes of new EP instances. Tldtwand height of the rectangles in
each class are selected randomly from the intervals in théthMand 'Height’ column.

w de (W), squar e (S),uni form(U) anddi ver se (D). The number of rectangles, in
each instance is selected from the £&0,50,100 200}. The rectangles may ke ust er ed
(C) andr andom(R). d ust er ed instances consists of only 20 rectangles which are duplicat
appropriately, while in theandominstances all rectangles are independently generatedllyFin
the area of the bin is either 25 % or 75 % of the total area of ¢életangles and the height of
the bin is always two times the width. The naming convent®E&R- n- c- t- p, wheren €
{30,50,100,200} is the number of rectanglese (T,W, S U,D) describes the classe (C,R)
describes if it is clustered or randomge 25, 75 describes the size of the bin in percentage of the
total rectangle area. The profit of the rectangles is alwhgsatea of the rectangle + 20 units.
The instances are presented in Table IV and are availalig a&ldh the source code to generate
them at this web-addresst t p: / / www. di ku. dk/ ~pi si nger/ codes. htnl .

6.2.1 Parameter tuning

As seen in Figure 5, two values are crucial for the resultsiofuated Annealing; The start
time tg and the time stefy. To determine appropriate valuestgfandts we experimented with
the 22 instances marked with '*' in Table | and IV. These camtaetween 16 and 200 rect-
angles. We performed the experiments viitke {10-3,1072,10~%,1¢°, 10, 107, 10°,104,10°}
andts € {10%,10',107%,1073,107°,1077,1079,10 11, 10713} For the 22 instances each of the
81 combinations were tested using the running times fronkeThbResults from four selected
instances are presented in Figure 7.

Based on the results of the parameter tuning for the 22 inetawe were able to establish
that good values dp andts are:

_n

- 107

The values can be interpreted in the following way: The highendts the less likely is ac-
ceptance of a non-improving permutation. The larger thelbamof rectangles is in an optimal

solution the more improving steps must be done before thedtietshould escape local minima
by accepting a non-improving change.

2
tO - n17 tS
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[ Instance | n] no | m [ Instance [ n] [ m
ep-30-D-C-25 | 30 8.3 | 18 || ep-100-D-C-25| 100 24.9 58
ep-30-D-C-75| 30 | 22.5| 26 || ep-100-D-C-75| 100 74.5 92
ep-30-D-R-25 | 30 7.7 | 17 || ep-100-D-R-25 | 100 24.6 60
ep-30-D-R-75 | 30 | 22.5 | 26 ep-100-D-R-75 | 100 74.1 91
ep-30-S-C-25 | 30 7.4 | 16 || ep-100-S-C-25 | 100 24.9 58
ep-30-S-C-75 | 30 | 22.5 | 26 || ep-100-S-C-75 | 100 75.7 89
ep-30-S-R-25 | 30 7.4 | 17 || ep-100-S-R-25 | 100 24.9 60
ep-30-S-R-75 | 30 | 22.4 | 26 || ep-100-S-R-75 | 100 74.9 89
ep-30-T-C-25 | 30 7.4 | 13 || ep-100-T-C-25 | 100 25.0 44
ep-30-T-C-75 | 30 | 22.3 | 25 || ep-100-T-C-75 | 100 74.9 84
ep-30-T-R-25 | 30 7.4 13 ep-100-T-R-25 | 100 24.9 47
ep-30-T-R-75 | 30 | 224 | 25 ep-100-T-R-75 | 100 74.8 85
ep-30-U-C-25 | 30 7.5 9 ep-100-U-C-25 | 100 25.0 30
ep-30-U-C-75| 30 | 22.5| 23 || ep-100-U-C-75| 100 75.0 79
ep-30-U-R-25 | 30 7.5 9 ep-100-U-R-25 | 100 24.9 31
ep-30-U-R-75| 30 | 22.4 | 23 || ep-100-U-R-75| 100 74.8 80
ep-30-W-C-25| 30 | 10.7 | 17 ep-100-W-C-25| 100 24.7 45
ep-30-W-C-75| 30 | 22.3 | 25 || ep-100-W-C-75| 100 74.5 86
ep-30-W-R-25| 30 | 11.3 | 17 || ep-100-W-R-25| 100 24.8 50
ep-30-W-R-75| 30 | 22.5 | 26 ep-100-W-R-75| 100 74.8 87
ep-50-D-C-25 | 50 | 12.2 | 28 || ep-200-D-C-25| 200 50.0 | 117
ep-50-D-C-75 | 50 | 37.2 | 45 || ep-200-D-C-75| 200 | 149.8 | 183
ep-50-D-R-25 | 50 | 12.2 | 27 ep-200-D-R-25 | 200 495 | 119
ep-50-D-R-75 | 50 | 37.2 | 45 ep-200-D-R-75 | 200 | 149.8 | 182
ep-50-S-C-25 | 50 | 12.4 | 28 || ep-200-S-C-25 | 200 50.0 | 118
ep-50-S-C-75 | 50 | 37.5 | 44 || ep-200-S-C-75| 200 | 149.7 | 179
ep-50-S-R-25 | 50 | 12.5 | 29 || ep-200-S-R-25 | 200 49.9 | 116
ep-50-S-R-75 | 50 | 374 | 44 ep-200-S-R-75 | 200 | 149.9 | 177
ep-50-T-C-25 | 50 | 12.5 | 22 || ep-200-T-C-25 | 200 49.9 89
ep-50-T-C-75 | 50 | 37.3 | 42 || ep-200-T-C-75 | 200 | 149.7 | 170
ep-50-T-R-25 | 50 | 12.5| 22 || ep-200-T-R-25 | 200 49.9 97
ep-50-T-R-75 | 50 | 37.3 | 42 ep-200-T-R-75 | 200 | 149.8 | 172
ep-50-U-C-25 | 50 | 12.4 | 15 || ep-200-U-C-25| 200 49.9 60
ep-50-U-C-75 | 50 | 37.5 | 39 || ep-200-U-C-75| 200 | 149.7 | 159
ep-50-U-R-25 | 50 | 12.5| 15 || ep-200-U-R-25| 200 49.9 63
ep-50-U-R-75| 50 | 37.5| 40 ep-200-U-R-75 | 200 | 149.8 | 160
ep-50-W-C-25| 50 | 14.1 | 25 || ep-200-W-C-25| 200 49.9 91
ep-50-W-C-75| 50 | 37.3 | 43 ep-200-W-C-75| 200 | 149.7 | 174
ep-50-W-R-25| 50 | 13.9 | 25 || ep-200-W-R-25| 200 49.9 | 102
ep-50-W-R-75| 50 | 37.4 | 43 ep-200-W-R-75| 200 | 149.5| 175

Table IV: New instances for 2DKP.
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Simulated Annealing (ep—200-S-R-75) Simulated Annealing (cgcut2)

Figure 7: Results of the Simulated Annealing heuristic fiffiecent values oty andts on four
different instances.

6.2.2 Results

Based on the parameter tuning from the previous sectionewnigtic was applied to the bench-
mark instances described in Section 6.1.1 and 6.2. To detertime robustness of the heuristic
we ran each benchmark instance with 10 different randomsse®@ have reported the best,
worst and average solution value in Table V along with thenioig time of each instance for
each seed. The results on the 80 newly proposed benchmarksted in Table VI and VII. The
heuristic finds the optimal value in all but 4 of the classioatances and on the new instances
the results are generally higher than 95% of the value of tieeddbmensional relaxation, which
demonstrates its ability to find good solutions for both dramadl large instances.

6.2.3 Rotations

We repeated all tests allowing rotation, however we doubitedrunning time to accommodate
for the larger solution space. A maximum time limit of 600 @eds was still assigned to all
instances. Parameter-tuning revealed that the samegsettsreported in section 6.2.1 also give
good results when rotation is allowed. The results on thed®ts of instances are reported in
Table VIII, Table IX and Table X.

For the classical benchmark instances the results withioatare always better or as good
as the results without rotation. Interestingly enough #seilts with rotation are generally larger
than 95% of the optimal solution for the one-dimensionaxetl problem, and often they are
close to 98%.

For the new test instances we got slightly worse results wbiation is allowed in 32 out of
the 80 cases. This is mainly due to the increased solutiarespa only two of the instances are
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Egeblad and Pisinger Exact Methods Time
Instance 1D Optimal Best Avg Worst Best Time | Seed Time Fek-Sch | Cap-Mon
beasleyl 201 164 164 164 164 <0.02 30 <0.02 -
beasley2 253 230 230 230 230 <0.02 60 <0.02 -
beasley3 266 247 247 247 247 0.02 60 <0.02 -
beasley4 275 268 268 268 268 <0.02 30 <0.02 -
beasley5 373 358 358 358 358 <0.02 30 <0.02 -
beasley6 317 289 289 289 289 0.07 60 <0.02 -
beasley7 430 430 430 430 430 <0.02 30 <0.02 -
beasley8 938 834 834 834 834 <0.02 60 <0.02 -
beasley9 962 924 924 924 924 0.41 60 <0.02 -
beasley10 1517 1452 1452 1452 1452 <0.02 60 <0.02 -
beasley1l 1864 1688 1688 1688 1688 0.04 60 <0.02 -
beasley12 2012 1865 1865 1865 1865 0.5 60 <0.02 -
cgeutl 260 244 244 244 244 <0.02 60 1.46 0.3
cgeut2 2919 2892 2892 2892 2892 1.8 120 531.93 531.93
cgeut3 2020 1860 1860 1842 1840 28.24 30 4.58 4.58
gcutl 62488 48368 48368 48368 48368 <0.02 30 0.01 0
geut2 62500 59798 59798 59680.5 59563 23.27 30 0.22 0.19
geut3 62500 61275 61275 61152.6 60663 3.32 30 3.24 2.16
gcutd 62500 61380 61380 61380 61380 1.68 30 376.52 346.99
geuts 249854 195582 195582 195582 195582 0.03 30 05 0
gcuté 249992 236305 236305 236305 236305 0.02 30 0.12 0.06
geut? 249998 240143 240143 240143 240143 0.32 30 1.07 0.22
gcut8 250000 245758 245758 245758 245758 0.07 60 168.5 136.71
gcut9 997256 939600 939600 939600 939600 0.01 30 0.08 0
gcutl0 999918 937349 937349 937349 937349 0.89 30 0.14 0
gcutll 1000000 969709 969709 968582.3 958442 0.19 30 16.3 14.76
gcutl2 1000000 979521 979521 977670.2 976877 7.04 30 25.39 16.85
gcutl3 9000000 | >8408316 8669457 | 8629142.7 | 8613889 85.44 240 1800

>8622498 1800
<9000000

wang20 2800 2726 2716 27125 2711 48.41 60 2.72 2.72
3 2020 1860 1860 1842 1840 28.22 30 <0.02 -
3s 2800 2726 2726 2722 2721 17.49 30 <0.02 -
al 2140 2020 1980 1968 1960 2.31 30 <0.02 -
als 3000 2956 2950 2950 2950 0.16 30 <0.02 -
a2 2705 2615 2615 2566 2545 7.53 30 <0.02 -
azs 3600 3535 3535 3517.9 3516 14.16 30 <0.02 -
chl2 2502 2326 2326 2326 2326 6.78 60 <0.02 -
chl2s 3410 3336 3336 3334.7 3323 0.17 60 <0.02 -
chl3 5283 5283 5283 5283 5283 <0.02 240 <0.02 -
chi3s 7402 7402 7402 7402 7402 <0.02 240 <0.02 -
chl4 8998 8998 8998 8998 8998 <0.02 240 <0.02 -
chl4s 13932 13932 13932 13932 13932 <0.02 240 <0.02 -
chls 600 589 589 586.5 584 2.4 60 <0.02 -
okpl 27718 27718 27718 27542.7 27486 11.83 120 35.84 11.6
okp2 22502 22502 22214 22098.6 21947 36.41 60 1559 1535.95
okp3 24019 24019 24019 23804.6 23531 17.4 60 10.63 1.91
okp4 32893 32893 32893 32893 32893 8.89 60 4.05 2.13
okp5 27923 27923 27923 26753 25456 12.22 120 488.27 488.27

Table V: Results for the classical benchmark instances.id e result of the one-dimensional
relaxed problem. 'Optimal’ is the value of the optimal sadat The columns under 'Egeblad
and Pisinger’ are results of this heuristic. 'Avg’, 'Bestid’Worst’ columns are the average, best
and worst results on each instance for the 10 seeds. 'Be&’ 18rthe time before the heuristic
discovered the best solution. 'Seed Time’ is the given tdhezEdhe 10 seeds. Thus the total
running time on each instance is 10 times 'Seed Time'. ThadEMethods Time’ represent
the running time of the other methods. All running times areeconds. For gcut13 no optimal
value is currently known, but we have reported the resultespectively Caprara and Monaci

and Fekete and Schepers along with their upper-bound.
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Instance 1D Best Avg Worst || Best Time | Seed Time|| 1D Percentage]
ep-30-D-C-25 2155 2062 2025.8 1953 21.38 60 95.7
ep-30-D-C-75 5135 5061 5008.2 4953 66.14 240 98.6
ep-30-D-R-25 2364 2244 2224 2207 45.74 60 94.9
ep-30-D-R-75 6191 6080 6055.9 5995 33.54 240 98.2
ep-30-S-C-25 | 22494 21858 | 21222.8| 20692 25.99 60 97.2
ep-30-S-C-75 | 66935 65675 65313 | 64765 15.27 240 98.1
ep-30-S-R-25 | 21674 20752 | 20287.4| 20067 3.53 60 95.7
ep-30-S-R-75 | 65319 64496 | 64106.5| 62743 129.56 240 98.7
ep-30-T-C-25 10938 9262 9262 9262 0.29 60 84.7
ep-30-T-C-75 32377 32097 | 32034.8| 31827 124.19 240 99.1
ep-30-T-R-25 10647 9919 9919 9919 0.45 60 93.2
ep-30-T-R-75 31750 31461 | 31426.3| 31358 172.63 240 99.1
ep-30-U-C-25 | 52002 49395 49395 | 49395 13.8 60 95.0
ep-30-U-C-75 | 155306 || 145613 145613 | 145613 1.95 240 93.8
ep-30-U-R-25 | 50246 50029 50029 | 50029 17.85 60 99.6
ep-30-U-R-75 | 151710 || 147159 | 144782.1| 144518 26.14 240 97.0
ep-30-W-C-25| 14060 13130 | 13121.3| 13104 34.88 60 93.4
ep-30-W-C-75| 29780 21598 | 21593.2| 21582 29.19 240 725
ep-30-W-R-25| 14840 14235 14235 | 14235 2.96 60 95.9
ep-30-W-R-75| 33396 23860 23860 | 23860 15.56 240 71.4
ep-50-D-C-25 3232 3107 2971.3 2874 119.45 120 96.1
ep-50-D-C-75 8849 8673 8605.4 8533 12.05 240 98.0
ep-50-D-R-25 3546 3361 3308.4 3227 91.19 120 94.8
ep-50-D-R-75 9678 9463 9426 9401 105.08 240 97.8
ep-50-S-C-25 | 37185 36107 | 35887.7| 35468 69.99 120 97.1
ep-50-S-C-75 | 111329 || 109511 108574 | 107633 78.51 240 98.4
ep-50-S-R-25 | 35599 34864 | 34527.5| 33841 12.72 120 97.9
ep-50-S-R-75 | 106699 || 104872 | 104191.5| 103482 210.65 240 98.3
ep-50-T-C-25 17757 17324 17270 | 17231 111.73 120 97.6
ep-50-T-C-75 52863 50907 | 50065.9| 49430 93.18 240 96.3
ep-50-T-R-25 18643 18264 | 18213.7 | 18152 40.51 120 98.0
ep-50-T-R-75 55475 54922 | 54712.1| 54261 106.91 240 99.0
ep-50-U-C-25 | 85978 80416 | 79727.7| 77030 5.8 120 93.5
ep-50-U-C-75 | 257446 || 248564 | 247737.5| 242582 239.47 240 96.5
ep-50-U-R-25 | 83736 78474 78225 | 77346 67.79 120 93.7
ep-50-U-R-75 | 251412 || 245628 | 241946.3| 240375 117.35 240 97.7
ep-50-W-C-25| 18082 17149 17129 | 17103 81.64 120 94.8
ep-50-W-C-75| 48909 46170 | 45617.8| 45024 35.59 240 94.4
ep-50-W-R-25| 19215 18449 18449 | 18449 8.33 120 96.0
ep-50-W-R-75| 55475 54708 | 54601.8| 54431 175.06 240 98.6

Table VI: Results for the small ep instances. '1D’ is the oy solution of the one-dimensional
relaxed problem. 'Best’, 'Avg’ and 'Worst' columns are thedd, average and worst results
for each instance on the 10 seeds. 'Best Time’ is the timepit tuefore the best solution was
encountered. 'Seed Time’ is the time spend on each seed artdt#h time for each instance is
10 times 'Seed Time'. '1D Percentage’ is the percentageadievi between the heuristic solution
and the one-dimensional relaxed problem upper-bound.

17



Instance 1D Best Avg Worst || Best Time | Seed Time|| 1D Percentage]
ep-100-D-C-25 6740 6316 6150.1 5856 108.62 240 93.7
ep-100-D-C-75 18402 18003 17910 | 17769 454.68 600 97.8
ep-100-D-R-25 8201 7804 7713.3 7642 59.34 240 95.2
ep-100-D-R-75 23121 22635 | 22536.8| 22465 515.47 600 98.0
ep-100-S-C-25 73640 72154 | 71389.8| 69990 41.67 240 98.0
ep-100-S-C-75 | 219930 || 215294 214085 | 213022 554.55 600 98.0
ep-100-S-R-25 89670 88334 | 86831.6| 85952 209.43 240 98.5
ep-100-S-R-75 | 267156 || 263237 | 261317.3| 259433 574.8 600 98.5
ep-100-T-C-25 34780 34123 | 33978.3| 33884 160.24 240 98.1
ep-100-T-C-75 102983 || 100645 | 100343.1| 100078 174.21 600 97.7
ep-100-T-R-25 35553 34948 | 34818.1| 34617 193.51 240 98.3
ep-100-T-R-75 105728 || 103888 | 102903.1| 102539 4715 600 98.3
ep-100-U-C-25 | 170233 || 165313 | 163982.6 | 160482 158.73 240 97.1
ep-100-U-C-75| 511610 || 495431 | 495002.2 | 492289 281.83 600 96.8
ep-100-U-R-25 | 171128 || 168779 167433 | 166087 146.84 240 98.6
ep-100-U-R-75| 512135 || 503471 498286 | 491477 596.37 600 98.3
ep-100-W-C-25 31972 24325 24325 | 24325 5.33 240 76.1
ep-100-W-C-75 95052 79803 | 78353.1| 76448 430.71 600 84.0
ep-100-W-R-25 38595 29593 | 29507.1| 29145 188.5 240 76.7
ep-100-W-R-75| 115235 || 109102 | 107764.8| 107113 584.25 600 94.7
ep-200-D-C-25 13541 12415 | 12150.5| 11783 493.41 600 91.7
ep-200-D-C-75 36607 35489 | 35273.7| 35029 514.43 600 96.9
ep-200-D-R-25 16770 15919 | 15780.6 | 15682 461.28 600 94.9
ep-200-D-R-75 46985 45867 | 45671.8| 45537 482.68 600 97.6
ep-200-S-C-25 | 147526 || 143875 | 142676.6 | 141416 242.86 600 97.5
ep-200-S-C-75 | 440265 || 429097 | 426756.9 | 424657 511.84 600 97.5
ep-200-S-R-25 | 172233 || 169314 | 168298.6 | 167148 283.44 600 98.3
ep-200-S-R-75 | 514175 || 504328 | 501084.3 | 497746 586.69 600 98.1
ep-200-T-C-25 69694 68208 67963 | 67686 555.5 600 97.9
ep-200-T-C-75 206059 || 199431 | 197752.1| 196407 590.09 600 96.8
ep-200-T-R-25 65706 64335 64195 | 63854 576.58 600 97.9
ep-200-T-R-75 194811 || 192034 | 190747.8| 189436 585.89 600 98.6
ep-200-U-C-25 | 340668 || 337958 | 335537.5| 328940 365.07 600 99.2
ep-200-U-C-75 | 1022712 || 991048 | 982796.8| 971152 574.16 600 96.9
ep-200-U-R-25 | 337830 || 334623 | 329949.7 | 325238 248.8 600 99.1
ep-200-U-R-75 | 1014222 || 973279 | 970129.5| 967034 412.68 600 96.0
ep-200-W-C-25 64342 62657 | 62456.4| 62048 583.09 600 97.4
ep-200-W-C-75| 189835 || 175161 | 173025.6| 170785 538.25 600 92.3
ep-200-W-R-25 75840 74331 74202 | 74042 528.19 600 98.0
ep-200-W-R-75| 225571 || 217963 | 215865.9| 211880 521.45 600 96.6

Table VII: Results for the large ep instances. See table Mafdescription of the columns.
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Figure 8: Best results for three two-dimensional instangésout rotation.

the results with rotation more than 1% better than withouis &lso important to note that just
as for the smaller benchmark instances the results areaneetter than 95% of the optimal
solution to the one-dimensional relaxed problem, which msethat the heuristic perform well
even for large instances.

6.2.4 Thelnstancegcutl3

Since gcutl3 is the only instance of the classical benchimat&nces from the literature where
the optimal solution is unknown, we decided to investighieinstance further without consider-
ing rotations. We used 144 seeds with 10 minutes running ¢imeach seed, given a total of 24
hours for this instance. The parameters for the SimulateteAling was based on the results we
gathered during parameter-tuning for gcutl3, and wergse0.1 andts = 10 . The best result
was reached after 367 seconds for one of the seeds and wak28AR8ich is somewhat better
than the 8622498 we were able to reach with 10 seeds and 4esinutning time. This demon-
strates that the heuristic is able to find better solutiorigimore running time. The resulting
placement can be seen in Figure 9.

6.3 3D Computational Experiments

A set of experiments where conducted for the three-dimeasigariant similar to the two-
dimensional problems. However, since we were unable to iggtammon benchmark instances
in the literature these experiments were conducted onlyeninstances.
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Instance 1D || No rotation Best Avg Worst || Best Time | Seed Time|| Deviation
beasleyl 201 164 193 193 193 0.01 60 96.02
beasley2 253 230 250 250 250 0.25 120 98.81
beasley3 266 247 259 259 259 0.35 120 97.37
beasley4 275 268 268 268 268 0 60 97.45
beasley5 373 358 370 370 370 0 60 99.20
beasley6 317 289 300 298 298 23.92 120 94.6
beasley7 430 430 430 430 430 0 60 100.0
beasley8 938 834 886 886 886 0.19 120 94.46
beasley9 962 924 924 921.4 918 4.38 120 96.05
beasley10 1517 1452 1452 1452 1452 0 120 95.72
beasleyll 1864 1688 1786 1786 1786 0.01 120 95.82
beasley12 2012 1865 1932 1921 1875 1.82 120 96.02
cgeutl 260 244 260 260 260 0.7 120 100.0
cgeut2 2919 2892 2909 2909 2909 115.29 240 99.66
cgeut3 2020 1860 1940 1922 1900 6.3 60 96.04
gecutl 62488 48368 58136 58136 58136 0 60 93.04
gcut2 62500 59798 60656 60489.1 60431 33.8 60 97.05
geut3 62500 61274 61275 61009.4 60663 47.18 60 98.04
gcutd 62500 61380 61710 61684.2 61581 55.2 60 98.74
geuts 249854 195582 233969 233969 | 233969 1.35 60 93.64
geuté 249992 236305 239467 239467 | 239467 0.06 60 95.79
geut? 249998 240143 245306 | 243401.2| 242925 54.16 60 98.12
gecut8 250000 245758 247462 | 247188.6| 246857 38.25 120 98.95
gecut9 997256 939600 953293 953293 | 953293 0.01 60 95.59
gcutl0 999918 937349 938036 938036 | 938036 0.07 60 93.81
gcutll 1000000 969709 979580 | 975419.1| 970433 30.68 60 97.96
gcutl2 1000000 979521 987674 987674 | 987674 16.3 60 98.77
gcutl3 9000000 || >=8622498 || 8873551 | 8847773.9| 8784146 302.34 480 98.60
okpl 29133 27718 28423 27968.9 27538 74.75 240 97.56
okp2 24800 22502 24263 23489 22804 3.09 120 97.83
okp3 26714 24019 25216 24727 23777 42.48 120 94.39
okp4 33631 32893 32893 32882.1 32784 35.52 120 97.81
okp5 29045 27923 27971 26980.7 25712 96.41 240 96.31
wang20 2800 2726 2758 2758 2758 59.25 120 98.50
3 2020 1860 1940 1922 1900 5.02 60 96.04
3s 2800 2726 2758 2756.4 2756 25.22 60 98.50
al 2140 2020 2080 2038 2000 7.79 60 97.20
als 3000 2956 2985 2985 2985 3.53 60 99.50
a2 2705 2615 2690 2647.5 2595 27.55 120 99.45
azs 3600 3335 3579 3579 3579 4.46 120 99.42
chl2 2502 2326 2429 2422 2394 13.12 120 97.08
chl2s 3410 3336 3390 3390 3390 11.24 120 99.41
chl3 5283 5283 5283 5283 5283 0 480 100.0
chi3s 7402 7402 7402 7402 7402 0 480 100.0
chl4 8998 8998 8998 8998 8998 0 480 100
chlds 13932 13932 13932 13932 13932 0 480 100.0
chl5 600 589 600 600 600 7.58 120 100.0

Table VIII: Results with rotation for the benchmark instaac '1D’ is the result of the one-
dimensional relaxed problem. 'No rotation’ is the valuela# bptimal solution without rotation.
The columns 'Avg’, ‘Best’ and 'Worst’ columns are the aveeapest and worst results on each
instance for the 10 seeds. 'Best Time’ is the time before gugibtic discovered the best solution.
'Seed Time’ is the given to each of the 10 seeds. Thus thenataling time on each instance
is 10 times 'Seed Time’. 'Deviation’ is the deviation betwethe best solution with rotation
and the optimal solution of the one-dimensional relaxedlem. For gcutl3 no optimal values
without rotation is know and we have reported the best swiutiom Table V
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Instance 1D || No rotation Best Avg Worst || Best Time | Seed Time|| Deviation
ep-30-D-C-25 2155 2062 2068 2014.6 1953 49.02 120 95.96
ep-30-D-C-75 5135 5061 5059 5007.3 4947 231.53 480 98.52
ep-30-D-R-25 2364 2244 2308 2251.8 2208 60.26 120 97.63
ep-30-D-R-75 6191 6080 6121 6083.4 6040 108.39 480 98.87
ep-30-S-C-25 | 22494 21858 21858 | 21355.8| 20692 40.17 120 97.17
ep-30-S-C-75 | 66935 65675 65254 | 64938.2| 64257 174.34 480 97.49
ep-30-S-R-25 | 21674 20752 20679 | 20217.8| 20067 33.62 120 95.41
ep-30-S-R-75 | 65319 64496 64356 | 63613.6| 62765 68.13 480 98.53
ep-30-T-C-25 10938 9262 10412 10412 | 10412 0.81 120 95.19
ep-30-T-C-75 32377 32097 32129 | 31897.3| 31675 92.48 480 99.23
ep-30-T-R-25 10647 9919 10287 | 10194.6 9919 0.42 120 96.62
ep-30-T-R-75 31750 31461 31417 | 31301.1| 31221 454 .41 480 98.95
ep-30-U-C-25 | 52002 49395 51839 | 51832.7| 51776 24.52 120 99.69
ep-30-U-C-75 | 155306 145613 || 154176 | 153921.8| 153509 408.7 480 99.27
ep-30-U-R-25 | 50246 50029 50136 | 50099.4| 50053 117.12 120 99.78
ep-30-U-R-75 | 151710 147159 || 150795 | 150586.1| 150381 428.89 480 99.40
ep-30-W-C-25| 14060 13130 13801 | 13756.8| 13673 63.04 120 98.16
ep-30-W-C-75| 29780 21598 29403 | 29250.4| 28916 412.64 480 98.73
ep-30-W-R-25| 14840 14235 14648 | 14571.8| 14560 14.09 120 98.71
ep-30-W-R-75| 33396 23860 32878 | 32786.6| 32670 104.04 480 98.45
ep-50-D-C-25 3232 3107 3033 2962.6 2912 54.55 240 93.84
ep-50-D-C-75 8849 8673 8672 8624.4 8596 440.8 480 98.00
ep-50-D-R-25 3546 3361 3399 3346.9 3293 153.3 240 95.85
ep-50-D-R-75 9678 9463 9526 9468.4 9405 259.74 480 98.43
ep-50-S-C-25 | 37185 36107 36541 | 35892.1| 35021 86.99 240 98.27
ep-50-S-C-75 | 111329 109511 || 109380 108066 | 107270 125.62 480 98.25
ep-50-S-R-25 | 35599 34864 34924 | 34528.9| 34223 204.86 240 98.10
ep-50-S-R-75 | 106699 104872 || 104398 | 103409.2| 102063 377.16 480 97.84
ep-50-T-C-25 17757 17324 17508 | 17463.9| 17441 217.14 240 98.60
ep-50-T-C-75 52863 50907 52089 | 51475.3| 49593 462.5 480 98.54
ep-50-T-R-25 18643 18264 18336 | 18266.6 | 18217 33.88 240 98.35
ep-50-T-R-75 55475 54922 54809 | 54485.7 | 54084 474.01 480 98.80
ep-50-U-C-25 | 85978 80416 83575 82999 | 82935 127.31 240 97.21
ep-50-U-C-75 | 257446 248564 || 249462 249462 | 249462 39.36 480 96.90
ep-50-U-R-25 | 83736 78474 81379 | 80470.6| 79851 68.58 240 97.19
ep-50-U-R-75 | 251412 245628 || 246572 | 241614.4| 240375 200.1 480 98.07
ep-50-W-C-25| 18082 17149 17715 | 17461.1| 17297 226.62 240 97.97
ep-50-W-C-75| 48909 46170 48476 | 47738.2| 46637 217.76 480 99.11
ep-50-W-R-25| 19215 18449 18857 | 18795.5| 18756 189.73 240 98.14
ep-50-W-R-75| 55475 54708 54492 | 54272.1| 53764 407.09 480 98.23

Table IX: Results with rotation for the new instances. '1Btle result of the one-dimensional
relaxed problem. ’'No rotation’ is the value of the best solutwithout rotation. The columns

'Avg’, 'Best’ and 'Worst’ columns are the average, best anarst results on each instance for
the 10 seeds. 'Best Time’ is the time before the heuristicalisred the best solution. 'Seed
Time’ is the given to each of the 10 seeds. Thus the total nghtime on each instance is 10
times 'Seed Time’. 'Deviation’ is the deviation between thest solution with rotation and the
optimal solution of the one-dimensional relaxed problem.
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Instance 1D || No rotation Best Avg Worst || Best Time | Seed Time|| Deviation
ep-100-D-C-25 6740 6316 6265 6171.2 6094 445,01 480 92.95
ep-100-D-C-75 18402 18003 17969 | 17852.7| 17653 454.86 600 97.65
ep-100-D-R-25 8201 7804 7838 7802.5 7728 416.35 480 95.57
ep-100-D-R-75 23121 22635 22601 | 22509.9| 22371 428.67 600 97.75
ep-100-S-C-25 73640 72154 71722 | 71200.9| 69841 61.49 480 97.40
ep-100-S-C-75 | 219930 215294 || 215107 | 213695.9 | 212298 538.94 600 97.81
ep-100-S-R-25 89670 88334 88065 | 86913.9| 85633 95.67 480 98.21
ep-100-S-R-75 | 267156 263237 || 261440 | 260008.3| 256377 591.12 600 97.86
ep-100-T-C-25 34780 34123 34147 | 33947.9| 33586 332.36 480 98.18
ep-100-T-C-75 102983 100645 || 101011 | 100386.1| 99328 506.91 600 98.09
ep-100-T-R-25 35553 34948 34846 | 34672.6| 34390 259.96 480 98.01
ep-100-T-R-75 105728 103888 || 103986 | 103513.3| 102612 585.37 600 98.35
ep-100-U-C-25 | 170233 165313 || 169317 166949 | 164235 225.45 480 99.46
ep-100-U-C-75| 511610 495431 || 502311 495617 | 488923 262.23 600 98.18
ep-100-U-R-25 | 171128 168779 || 170707 | 169411.6| 168041 370.04 480 99.75
ep-100-U-R-75| 512135 503471 || 505508 | 503315.1| 499263 437.34 600 98.71
ep-100-W-C-25 31972 24325 31194 | 30870.9| 30453 193.83 480 97.57
ep-100-W-C-75 95052 79803 92502 | 91626.3| 90481 536.29 600 97.32
ep-100-W-R-25 38595 29593 37945 | 37703.2| 37340 325 480 98.32
ep-100-W-R-75| 115235 109102 || 112656 | 111547.1| 110506 423.84 600 97.76
ep-200-D-C-25 13541 12415 12391 | 12146.7 | 11932 571.35 600 91.51
ep-200-D-C-75 36607 35489 35293 | 34911.6| 34479 588.85 600 96.41
ep-200-D-R-25 16770 15919 15983 | 15785.6| 15680 471.18 600 95.30
ep-200-D-R-75 46985 45867 45541 | 45317.4| 45120 587.72 600 96.93
ep-200-S-C-25 | 147526 143875 || 143315 | 142748.6| 141133 180.06 600 97.15
ep-200-S-C-75 | 440265 429097 || 427467 | 424157.2| 421547 556.73 600 97.09
ep-200-S-R-25 | 172233 169314 || 169257 | 167738.6| 165887 592.84 600 98.27
ep-200-S-R-75 | 514175 504328 || 500715 | 498968.5| 497016 586.85 600 97.38
ep-200-T-C-25 69694 68208 68201 | 67591.2| 66378 404.75 600 97.86
ep-200-T-C-75 206059 199431 || 199998 | 198990.2| 197051 577.65 600 97.06
ep-200-T-R-25 65706 64335 64103 | 63813.8| 62966 579.86 600 97.56
ep-200-T-R-75 194811 192034 || 189799 | 188440.2| 186921 566.36 600 97.43
ep-200-U-C-25 | 340668 337958 || 338184 | 334282.4| 328454 583.73 600 99.27
ep-200-U-C-75 | 1022712 991048 || 991055 | 981830.3| 977775 519.57 600 96.90
ep-200-U-R-25 | 337830 334623 || 334407 | 331243.2| 324314 437.31 600 98.99
ep-200-U-R-75 | 1014222 973279 || 985733 | 975732.4| 967043 552.4 600 97.19
ep-200-W-C-25 64342 62657 62570 | 62240.1| 61794 463.94 600 97.25
ep-200-W-C-75| 189835 175161 || 182498 | 181175.9| 178827 595.65 600 96.14
ep-200-W-R-25 75840 74331 74320 | 74103.6| 73914 500.73 600 98.00
ep-200-W-R-75| 225571 217963 || 219454 | 216625.1| 213193 593.27 600 97.29

Table X: (See description of table 1X)
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Figure 9: The best result achieved with gcutl3 after 144 afri® minutes each. The resulting
profit is 8728123.

6.3.1 New Instances

As we were unable to locate any benchmark instances for the-tfimensional knapsack prob-
lem from the literature we have generated 60 random insgantke instances contain 20, 40
or 60 boxes. The dimensions of the boxes were chosen fromfé&retit classes described in
Table XI. As for the two-dimensional case, boxes are clestand random, and the container
has volume equal to 50% or 90% of the total volume of the boXé® naming convention is
EP- n- c- t- p, wheren € {20,40,60} is the number of boxeg, € (F,L,C,U,D) describes the
classt € (C,R) describes if it is clustered or randomg& 50,90 describes the size of the bin in
percentage of the total box volume. The profit of a box is abudne volume of the box + 200
units. The instances are presented in Table Xl and areadlaihlong with the source code to
generate them at this web-address:t p: / / ww. di ku. dk/ ~pi si nger/ codes. htm .
As for the two-dimensional instances we have determinedvalwes for each instancep and
n;. np = n[Knapsack volumg/[Total box volumé and n; is the number of boxes selected in
the one-dimensional relaxation where each item and thedat&phave a size equal to their
three-dimensional counterpart and the profit of each itethessame as its three-dimensional
counterpart.

For each instance we set the running time based on the farfetim ng) = nolgn, so that for
F(n,ng) <110 the running time is set to 120 seconds, for £1®(n, np) < 200 the running time
is set to 300 seconds, and f6(n,ng) > 200 the running time is set to 600 seconds.

6.3.2 Parameter Tuning

9 three-dimensional instances were selected for pararhetarg tests and we tried witly €
{10, 10, 107, 103, 104, 10°, 107, 10°} andts € {1071, 1078 1076, 1074, 1072, 1CP, 1¢%, 107,
10°}. Based on the 81 parameter combinations we found resulisim the two-dimensional
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Class Description Width Height
F Flat. Boxes are flat [50,200  [50,100
W  Long. Boxes are long [1,2-100 [1,%-100
S Cubes. Boxes are cubes (1,100 Equal to width Equal to width
u Uniform. Largest dimension is no[50,100  [50,100
more than 200% of the smallest
D Diverse. Largest dimension can be[1,50] [1,50]

up-to 50 times the smallest

Table XI: The 5 different classes of new EP3D instances. Tik#hwheight and depth of the
boxes in each class are selected randomly from the intarvdis "Width’, 'Height’ and 'Depth’

column.

Instance n[ o[ n [[ Instance [ n] m|m
ep3d-20-C-C-50| 20 9.9 | 15 ep3d-40-F-R-50| 40 | 19.7 | 25
ep3d-20-C-C-90| 20 | 17.8 | 12 ep3d-40-F-R-90| 40 | 35.7 | 37
ep3d-20-C-R-50| 20 9.9 | 14 || ep3d-40-L-C-50| 40 | 19.9 | 26
ep3d-20-C-R-90| 20 | 17.8 | 16 ep3d-40-L-C-90| 40 | 35.7 | 31
ep3d-20-D-C-50| 20 9.8 | 12 ep3d-40-L-R-50 | 40 | 19.7 | 30
ep3d-20-D-C-90| 20 | 17.8 | 18 ep3d-40-L-R-90 | 40 | 35.6 | 37
ep3d-20-D-R-50| 20 | 10.3 | 15 ep3d-40-U-C-50( 40 | 19.9 | 22
ep3d-20-D-R-90| 20 | 17.8 | 18 ep3d-40-U-C-90| 40 | 36.0 | 36
ep3d-20-F-C-50| 20 99 | 11 ep3d-40-U-R-50( 40 | 20.0 | 24
ep3d-20-F-C-90| 20 | 17.8 | 17 ep3d-40-U-R-90| 40 | 35.8 | 36
ep3d-20-F-R-50| 20 9.9 | 12 ep3d-60-C-C-50| 60 | 29.6 | 44
ep3d-20-F-R-90| 20 | 18.0 | 17 ep3d-60-C-C-90| 60 | 53.3 | 51
ep3d-20-L-C-50 | 20 9.9 9 ep3d-60-C-R-50( 60 | 29.8 | 50
ep3d-20-L-C-90| 20 | 17.7 | 15 ep3d-60-C-R-90| 60 | 53.7 | 56
ep3d-20-L-R-50 | 20 9.9 | 14 || ep3d-60-D-C-50| 60 | 29.6 | 40
ep3d-20-L-R-90 | 20 | 17.6 | 18 ep3d-60-D-C-90| 60 | 53.0 | 55
ep3d-20-U-C-50| 20 | 10.0 | 10 || ep3d-60-D-R-50| 60 | 29.0 | 49
ep3d-20-U-C-90| 20 | 17.9 | 18 ep3d-60-D-R-90| 60 | 52.5 | 57
ep3d-20-U-R-50| 20 99 | 11 ep3d-60-F-C-50| 60 | 29.7 | 36
ep3d-20-U-R-90| 20 | 18.0 | 17 ep3d-60-F-C-90| 60 | 53.3 | 52
ep3d-40-C-C-50| 40 | 19.9 | 27 ep3d-60-F-R-50| 60 | 29.6 | 38
ep3d-40-C-C-90| 40 | 35.3 | 30 || ep3d-60-F-R-90| 60 | 53.6 | 56
ep3d-40-C-R-50| 40 | 19.9 | 32 ep3d-60-L-C-50 | 60 | 30.0 | 43
ep3d-40-C-R-90| 40 | 35.6 | 37 ep3d-60-L-C-90 | 60 | 53.6 | 53
ep3d-40-D-C-50| 40 | 19.5 | 24 || ep3d-60-L-R-50| 60 | 29.8 | 48
ep3d-40-D-C-90| 40 | 35.2 | 31 ep3d-60-L-R-90 | 60 | 53.7 | 57
ep3d-40-D-R-50| 40 | 19.3 | 32 ep3d-60-U-C-50( 60 | 29.9 | 33
ep3d-40-D-R-90| 40 | 35.3 | 37 ep3d-60-U-C-90| 60 | 53.9 | 54
ep3d-40-F-C-50| 40 | 20.0 | 26 ep3d-60-U-R-50( 60 | 29.7 | 37
ep3d-40-F-C-90| 40 | 35.8 | 34 || ep3d-60-U-R-90| 60 | 53.6 | 55

Table XlI: New instances for 3DKP.
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case and based on these we determined good values to be

6.3.3 Reaults

The results from our 3D tests are presented in Table Xlll.tReinstances with 20 items the gap
between the found solution and the optimal value of the anmeedsional relaxation is relatively
large. It may be due to the fact that it is impossible to fullyize the available space within the
three-dimensional knapsack — The dimensions of the boxes wmiat allow for this.

For the instances with 40 items we reach solutions which ateeibthan 80% of the one-
dimensional relaxation in almost half of the instances andne instance we have as solution
which is better than 90%.

For the instances with 60 items, we achieve results whictbateer than 80% of the one-
dimensional relaxation for most of the instances, and wesaea able to reach 90% in 3 of the
instances.

The explanation could be that the larger the knapsack bextmesasier it is to get close to
the one-dimensional relaxation bound, because the dimesnsif the boxes are small compared
to the knapsack and this allows for greater flexibility.

The best results of 8 of the instances are presented in Figur@o the best of our knowl-
edge no published papers have reported utilization reultiree-dimensional knapsack pack-
ing problems of the sizes we consider here, so it is difficulcdmpare our results to other
approaches.

Methods for container loading (e.g. [13]) generally capabl achieving filling rates of
around 90%. However, these problem instances considerdae boxes than the method we
have presented here. Since our problems are smaller, it edataer to achieve high filling
rates, so the obtained filling rates around 80-90% for |aiged instances are very promising.

7 Conclusion

In this paper we have presented heuristic approaches fowth@nd three-dimensional knapsack
problem. The heuristics are based on Simulated Annealingthe two-dimensional knapsack
problem we utilize an abstract representation for recepgtkings called sequence pair and for
the three-dimensional problem we utilize a novel abstrgatasentation for box packings called
sequence tripple. We have proved that the sequence tripplelé to represent any fully robot
packable packing.

The heuristic for two dimensions is generally able to repaetthe results of exact algorithms
with similar running times. The heuristic also gives thetli@®wn results for the only unsolved
classical-instance; gcutl3. To demonstrate the high tyuadithe results of the heuristic for
larger instances we have created a new set of instances priit 200 rectangles and also here
the heuristic performs extremely well by generating reshigher 95% of our upper-bound.
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Instance 1D Best Avg Worst || Best Time | Seed Time|| 1D Percentage]
ep3d-20-C-C-50| 1026348 633672 612688 591704 26.51 120 61.7
ep3d-20-C-C-90| 1834340 916241 916241 916241 0.01 120 50.0
ep3d-20-C-R-50| 2188245 1492413 1492413 | 1492413 0.01 120 68.2
ep3d-20-C-R-90| 3925057 2497691 | 2475532.8| 2386900 86.58 120 63.6
ep3d-20-D-C-50 395916 239532 238906 233272 64.04 120 60.5
ep3d-20-D-C-90 718692 468112 459724.8 456836 112 120 65.1
ep3d-20-D-R-50 240621 195937 193631.8 178164 0.09 120 814
ep3d-20-D-R-90 414188 318848 314384.6 290780 0.53 120 77.0
ep3d-20-F-C-50| 2395087 1900250 1900250 | 1900250 0.02 120 79.3
ep3d-20-F-C-90| 4304020 2989393 | 2857081.7| 2651170 0.09 120 69.5
ep3d-20-F-R-50| 2252037 1563997 | 1547242.3| 1466902 0.05 120 69.5
ep3d-20-F-R-90| 4099982 2918002 | 2881536.5| 2793585 0.57 120 71.2
ep3d-20-L-C-50 | 1064487 834335 821443.8 801375 20.78 120 78.4
ep3d-20-L-C-90 | 1894489 1589303 | 1563319.1| 1560432 99.63 120 83.9
ep3d-20-L-R-50 718561 569900 554808.5 418985 241 120 79.3
ep3d-20-L-R-90 | 1282710 1051084 | 1029080.9 962400 31.6 120 81.9
ep3d-20-U-C-50| 4495440 3088676 3088676 | 3088676 0 120 68.7
ep3d-20-U-C-90| 8067424 | 5360280 | 5326935.6| 5113988 5.82 120 66.4
ep3d-20-U-R-50| 4413077 | 3509748 | 3486244.6| 3433478 0.77 120 79.5
ep3d-20-U-R-90| 8041072 6921250 | 6712730.1| 6359659 1.49 120 86.1
ep3d-40-C-C-50| 2065540 1265664 1265664 | 1265664 0.04 120 61.3
ep3d-40-C-C-90| 3652448 2828160 2828160 | 2828160 0.21 300 77.4
ep3d-40-C-R-50| 4102972| 3002269 | 2760843.9| 2643102 88.17 120 73.2
ep3d-40-C-R-90| 7335602 || 5972946 | 5937447.5| 5704665 47.04 300 814
ep3d-40-D-C-50 788124 539040 525116.4 523276 19.47 120 68.4
ep3d-40-D-C-90| 1423896 1126300 | 1124263.6| 1119512 17.75 300 79.1
ep3d-40-D-R-50 399894 349470 338144.5 328861 5.44 120 87.4
ep3d-40-D-R-90 728248 639819 612172.9 593147 202.97 300 87.9
ep3d-40-F-C-50| 4816926 || 3590244 | 3538845.4| 3427480 0.88 120 74.5
ep3d-40-F-C-90| 8664122 6435962 | 6158772.9| 5829899 96.43 300 74.3
ep3d-40-F-R-50| 4518343 | 3477469 | 3407281.7| 3280100 33.15 120 77.0
ep3d-40-F-R-90| 8199224 | 7336067 | 7233223.4| 7107398 50.31 300 89.5
ep3d-40-L-C-50 | 2127316 1675122 | 1659816.2| 1649077 0.42 120 78.7
ep3d-40-L-C-90 | 3819412 2943657 | 2815563.7| 2700358 99.75 300 77.1
ep3d-40-L-R-50 | 1784686 1609648 | 1579902.6| 1538537 14.92 120 90.2
ep3d-40-L-R-90 | 3224295 2699629 2618748 | 2484532 84.49 300 83.7
ep3d-40-U-C-50| 8988536 7008136 7008136 | 7008136 0.2 120 78.0
ep3d-40-U-C-90| 16241380 || 14065676 | 13761564.4| 13449344 79.29 300 86.6
ep3d-40-U-R-50| 8666294 | 7766238 | 7653893.4| 7553251 6.96 120 89.6
ep3d-40-U-R-90| 15531980 (| 13077284 | 12759327| 12502175 200.88 300 84.2
ep3d-60-C-C-50| 3063219 1504980 1504980 | 1504980 0.18 300 49.1
ep3d-60-C-C-90| 5517671| 4475024 | 4461790.4| 4443374 22.92 600 81.1
ep3d-60-C-R-50| 6493464 || 5695120 5250054 | 4621686 182.83 300 87.7
ep3d-60-C-R-90| 11675188 10209801 | 9970784.5| 9724806 374.56 600 87.5
ep3d-60-D-C-50| 1200408 1057032 | 1014487.6 983668 68.89 300 88.1
ep3d-60-D-C-90| 2143544 | 1843584 | 1786826.8| 1736392 6.06 600 86.0
ep3d-60-D-R-50 538113 484363 469189.2 449308 158.52 300 90.0
ep3d-60-D-R-90 966582 861655 847241.2 831469 521.42 600 89.1
ep3d-60-F-C-50| 7193700 6257697 | 6255808.2| 6250424 149.27 300 87.0
ep3d-60-F-C-90| 12913715 10412682 | 10196815.2| 9972028 199.47 600 80.6
ep3d-60-F-R-50| 6780100 6146420 | 5987831.3| 5824694 277.61 300 90.7
ep3d-60-F-R-90 | 12301636 || 10866326| 10597347| 10283829 435.17 600 88.3
ep3d-60-L-C-50 | 3211612 2327139 | 2256880.4| 2199391 164.39 300 725
ep3d-60-L-C-90 | 5736894 || 4832080 | 4742354.4| 4665578 184.46 600 84.2
ep3d-60-L-R-50 | 2391507 2042317 | 2014109.8| 1977414 135.01 300 85.4
ep3d-60-L-R-90 | 4304649 | 3872594 | 3803699.9| 3710530 286.07 600 90.0
ep3d-60-U-C-50| 13508800 || 12033592 | 11506459.2| 10609988 117.85 300 89.1
ep3d-60-U-C-90| 24342664 || 19787768 | 19474422.8| 18970932 529.11 600 81.3
ep3d-60-U-R-50| 12097660 || 10857656 | 10608234.4| 10343738 108.3 300 89.8
ep3d-60-U-R-90| 21893096 || 19304585| 19047133.3| 18549711 382.61 600 88.2

Table XIllII: Results for the new ep3d instances. '1D’ is theim@l solution of the one-
dimensional relaxed problem. 'Best’, '’Avg’ and 'Worst’ eohns are the best, average and worst
results for each instance on the 10 seeds. 'Best Time’ ignieit took before the best solution
was encountered. 'Seed Time’ is the time spgnt on each seti@atotal time for each instance
is 10 times 'Seed Time'. 1D Percentage’ isgﬁe percentagetien between the heuristic solu-
tion and the one-dimensional relaxed problem upper-bound.
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Figure 10: Best results for 8 three-dimensional instances.
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The heuristic for three dimensions demonstrates the patdat the sequence tripple rep-
resentation. We cannot compare the results for three-difoeal problems with results from
other authors because of the lack of a benchmark set. To sethexg] we have created a new
benchmark set for three-dimensional knapsack problems h@uristic performs well for these
problems often returning results above 85% of the value efuiper-bound. Since the upper-
bound is based on the one-dimensional relaxed problem arekpext this value to be a quite
poor upper-bound, the results are promising.

The heuristics are generally able to return very good regmitoth two- and three-dimensional
problems within few minutes, and often within few secondstfe classical two-dimensional
benchmark instances.
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