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Abstract

The maximum profit two- or three-dimensional knapsack packing problem asks to pack
a maximum profit subset of some given rectangles or boxes intoa larger rectangle or box of
fixed dimensions. Items must be orthogonally packed, but no other restrictions are imposed
to the problem. The problem could also be considered as a knapsack problem generalized
to two or three dimensions. In this paper we present a new heuristic based on the sequence
pair representation proposed by Murata et al. (1996) using asemi-normalized packing by
Pisinger (2006) for the two-dimensional knapsack problem.A local search algorithm main-
tains a pair of sequences given as permutations of the item numbers. In each step a neighbor
solution is generated by making a small permutation in one orboth sequences. The new
sequence pair is transformed to a packing and the corresponding objective function is eval-
uated. Solutions are accepted based on a Simulated Annealing. The heuristic is also able to
handle problem instances where rotation is allowed. A similar approach with a novel abstract
representation of box placements, called sequence tripple, has been developed for the three-
dimensional knapsack problem. Comprehensive computational experiments comparing the
developed heuristics with previous approaches indicate that the results are very promising
for both two- and three-dimensional problems.

Keywords: Cutting and Packing, knapsack, 2D knapsack, 3D knapsack, sequence pair,
abstract representation, heuristic, simulated annealing

1 Introduction

Given a set ofn rectanglesj = 1, . . . ,n, each having a widthw j , heighth j and profitp j and a
rectangular plate having widthW and heightH. Themaximum profit two-dimensional knapsack
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packingproblem (2DKP) asks to assign a subset of the rectangles ontothe plate such that the
associated profit sum is maximized. All coefficients are assumed to be nonnegative integers, and
the rectangles may not be rotated. A packing of rectangles onthe plate is feasible if no two
rectangles overlap, and if no part of any rectangle exceeds the plate.

Themaximum profit three-dimensional knapsack packingproblem (3DKP) asks to assign a
subset of boxes each with dimensionsw j ,h j ,d j into a larger box with dimensionsW, H andD
but is otherwise similar.

The problem has direct applications in various packing and cutting problems where the task
is to use the space or material in an optimal way. The 2DKP problem also appears as pricing
problem when solving the two-dimensional bin-packing problem [4, 15, 16]. 2DKP and 3DKP
are NP-hard in the strong sense, which can be shown by reduction from the one-dimensional bin
packing problem.

Integer Programming formulations of the 2DKP have been presented by Beasley [1], Hadji-
constantinou and Christofides [7], and Boschetti, Hadjiconstantinou, Mingozzi [2] among others.

Fekete and Schepers [4, 5, 6] solved the 2- and 3DKP through a branch-and-bound algorithm
which assigns items to the knapsack without specifying the position of the rectangles. For each
assignment of items a two-dimensional packing problem is solved, deciding whether a feasible
assignment of coordinates to the items is possible such thatthey all fit into the knapsack without
overlaps. An advanced graph representation was used for solving the latter problem. Pisinger
and Sigurd [16] solved the 2DKP through a branch-and-cut approach in which an ordinary one-
dimensional knapsack problem is used to select the most profitable items whose overall area does
not exceed the area of the plate. Having selected the most profitable items, a two-dimensional
packing problem in decision form is solved, through constraint programming. If all items can
be placed in the knapsack the algorithm terminates, otherwise an inequality is added to the one-
dimensional knapsack stating that not all the current itemscan be selected simultaneously, and
the process is repeated. Finally, Caprara and Monaci [3] developed a branch-and-bound algo-
rithm for the 2DKP. The algorithm is based on a branch-and-bound scheme which assigns items
to the knapsack without specifying the position of each item, followed by a feasibility check.
The latter is done using an enumeration scheme from Martello, Monaci, Vigo [10].

In the present paper we first present an IP formulation of the 2- and 3DKP. In Section 3 we
introduce the sequence pair representation, which we use inSection 4 combined with a simple
local search neighborhood and Simulated Annealing to solve2DKP. In Section 5 we introduce a
novel abstract representation of box placements in three dimensions and use the same methods
as for two dimensions to solve 3DKP. Finally in Section 6 we present our result on existing and
new benchmarks instances for 2- and 3DKP.

2 Integer Programming Formulation of the problem

In the following we show an integer programming formulationof the 3DKP. A formulation of
2DKP easily follows by removing variables and constraints for the third dimension.

We will introduce the decision variablesi to indicate whether boxi is packed within the
knapsack box. The coordinates of boxi are(xi ,yi ,zi), meaning that the lower left back corner
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of the box is located at this position. If a rectangle is not packed within the knapsack we may
assume that(xi ,yi ,zi) = (0,0,0). As no part of a packed box may exceed the knapsack, we have
the obvious constraints

0≤ xi ≤W−wi , 0≤ yi ≤ H −hi , 0≤ zi ≤ D−di . (1)

We introduce the binary decision variablesℓi j (left), r i j (right),ui j (under),oi j (over),bi j (behind)
and fi j (in-front), to indicate the relative position of boxesi, j wherei < j. To ensure that no two
packed boxesi, j overlap we will demand that

ℓi j + r i j +ui j +oi j +bi j + fi j ≥ 1, (2)

wheneversi = sj = 1. Depending on the relative position of two rectangles the coordinates must
satisfy the following inequalities

ℓi j = 1 ⇒ xi +wi ≤ x j , r i j = 1 ⇒ x j +w j ≤ xi ,
ui j = 1 ⇒ yi +hi ≤ y j , oi j = 1 ⇒ y j +h j ≤ yi ,
bi j = 1 ⇒ zi +di ≤ zj , fi j = 1 ⇒ zj +d j ≤ zi.

(3)

The problem may now be formulated as

max
n

∑
i=1

pisi

s.t. ℓi j + r i j +ui j +oi j +bi j + fi j ≥ si +sj −1 i, j = 1, . . . ,n
xi −x j +Wℓi j ≤W−wi i, j = 1, . . . ,n
x j −xi +Wri j ≤W−w j i, j = 1, . . . ,n
yi −y j +Hui j ≤ H −hi i, j = 1, . . . ,n
y j −yi +Hoi j ≤ H −h j i, j = 1, . . . ,n
zi −zj +Dbi j ≤ D−di i, j = 1, . . . ,n
zj −zi +D fi j ≤ D−d j i, j = 1, . . . ,n
0≤ xi ≤W−wi i = 1, . . . ,n
0≤ yi ≤ H −hi i = 1, . . . ,n
0≤ zi ≤ D−di i = 1, . . . ,n
ℓi j , r i j ,ui j ,oi j ,bi j , fi j ∈ {0,1} i, j = 1, . . . ,n
si ∈ {0,1} i = 1, . . . ,n
xi ,yi ,zi ≥ 0 i = 1, . . . ,n

(4)

The first constraint ensures that if boxesi and j are packed, then they must be located left, right,
under, over, behind or in-front of each other as stated in (2). The next six constraints are just
linear versions of the constraints (3). The last three inequalities correspond to the constraints (1).

The IP-model has 6n2 +n binary decision variables and 3n continuous variables. Although
the size ofO(n2) binary variables is not alarming, the problem is difficult tosolve. This is
mainly due to the use of conditional constraints (3), as these will loose their effect when solving
the LP-relaxation, and thus bounds from LP-relaxation are in general far from the IP-optimal
solution.
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Figure 1: A packing represented by sequenceA = <e,c,a,d,f,b> and sequenceB =
<f,c,b,e,a,d>.

3 Sequence Pairs

Murata et al. [9] presented an abstract representation of two-dimensional rectangle packings
based on sequence pairs. The problem they consider is the minimum area enclosing rectangle
packing problem. In the abstract representation every compact packing can be represented by
two permutations of the numbers{1,2, . . . ,n} where each number represents a rectangle in the
problem instance. The pair of permutations is called asequence pair(A,B).

For a given packing, the two permutationsA andB are found as follows: We use the termi-
nologyA i j to denote that itemi precedesj in sequenceA. Then we have

(xi +wi ≤ x j ∨ y j +h j ≤ yi) ⇔ A i j (5)

In a similar way we use the terminologyB i j to denote that itemi precedesj in sequenceB,
getting

(xi +wi ≤ x j ∨ yi +hi ≤ y j) ⇔ B i j (6)

Each of the two criteria (5) and (6) define a semi-ordering, and hence for a given packing the
two permutationsA andB can easily be found by repeatedly choosing one (of possibly more)
minimum elements. Figure 1 illustrates a packing and a corresponding sequence pair(A,B).

From the definitions (5) and (6) we immediately see that if item i precedes itemj in both
sequences, theni must be placed left ofj. If i succeedsj in sequenceA but i precedesj in
sequenceB theni must be placed underj. Formally we have

A i j ∧B i j ⇒ i is left of j (7)

¬A i j ∧B i j ⇒ i is underj (8)

where we use the terminology¬A i j to denote thatA ji .
The relations (7) and (8) can be used to derive a pair of constraint graphs as illustrated in

Figure 2. In both graphs the nodes correspond to the items. Inthe first graph we have an
edge fromi to j if and only if item i should be placed left ofj (A i j ∧ B i j ). In the second
graph we have an edge fromi to j if and only if item i should be placed underj (¬A i j ∧B i j ).
Traversing the nodes in topological order while assigning coordinates to the items, a packing (i.e.
the coordinates of the items) can be obtained inO(n2) time. Tang et al. [18, 17] showed how
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the same packing can be derived without explicitly defining the constraint graph, but by finding
weighted longest common subsequences in the sequence pair.

Pisinger [14] further improved the algorithm, by presenting an algorithm which transforms a
sequence pair to a packing in timeO(nloglogn) ensuring that the packing issemi-normalized.
A normalizedpacking is a packing where the items are packed according to the sequenceB and
where each new item is placed such that it touches an already placed item on its left side, and an
already placed item on its lower side. Asemi-normalizedpacking is a packing where the items
are packed according to the sequenceB and where each new item is placed such that it touches
thecontourof the already placed items both from left and from below. Thedifference between
an ordinary packing and the semi-normalized packing is illustrated in Figure 3.

The sequence pair representation makes it easy to constructa local search heuristic for pack-
ing problems. In each step a neighbor solution is generated by making a permutation of two
items in one or both sequencesA andB. The new sequence pair is transformed to a packing and
the corresponding objective function is evaluated. Based on the local search framework chosen,
the new solution can be accepted, or the algorithm tries a newneighbor solution to the previous
solution.

4 Sequence pairs for two-dimensional knapsack packing

Let any sequence pair represent a legal solution to the 2DKP.To evaluate the solution we trans-
form the sequence pair into a packing and add profit values foritems located completely within
the knapsackW×H. This is illustrated in Figure 4.

To further speed up the algorithm, we stop the transformation from sequence pair to a packing
as soon as the contour of already placed items is completely outside the knapsack. For large
problems where only a limited amount of items fit in the knapsack, this saves a significant part
of the computational time.

4.1 Simulated Annealing

To solve the 2DKP we use the metaheuristic Simulated Annealing which works well in cooper-
ation with the sequence pair representation [9, 18, 17, 14].
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Figure 2: Constraint graphs corresponding to the sequence pair (A,B) =
(<e,c,a,d,f,b>,<f,c,b,e,a,d>). Redundant edges are removed for clarity. Edges
indicate which rectangles should be placed left of each other (respectively under each other).
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Figure 3: Transformation of a sequence pair to a packing using the ordinary transformation (left)
and using the semi-normalized transformation (right)
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Figure 4: A sequence pair(A,B) has been transformed to a packing using the semi-normalized
transformation. Only rectangles completely within the knapsackW×H (dashed line) contribute
to the profit sum

In this setting we repeatedly make a small modification to thesequence pair, evaluate the
profit of the corresponding packing, and accept the solutiondepending on the outcome. Simu-
lated Annealing is used to determine whether a solution should be accepted. An outline of the
algorithm is found in Figure 5.

Our variant of Simulated Annealing is as follows; At any given time the temperature is eval-
uated as 1/(t0+ ts ·a) wheret0 is a start time-value,ts is a time-step value anda is the number of
accepted solutions. The temperature depends on the time, sothe highert0 + ts is, the lower is the
current temperature. The temperature is only decreased if anew solution is accepted, since this
is the only situation where the time is incremented.

The neighborhoodN(s) of a solutions = (A,B) is defined as one of the following three
permutations: Either exchange two items in sequenceA; exchange two items in sequenceB; or
exchange two items in both sequenceA andB. The items are selected randomly.
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choose initial solutions∈ S
choose initial timet0
choose time stepts
a := 0
repeat

chooses′ ∈ N(s)
if f (s′) ≤ f (s) then accept:= true else

p := rand(0,1)
T := 1

t0+ts·a

∆ := f (s′)− f (s)
f (s)

if p < e
−∆
T then accept:= true

end
if acceptthen

s := s′

a := a+1
end

until stop-criteria
return s

Figure 5: Simulated Annealing Heuristic

4.2 Rotations

Few papers consider exact algorithms for packing problems where rotation is allowed. A possible
explanation could be the increased size of the solution space and the lack of high-quality upper
bounds. In our heuristic, rotations are easy to handle as we may represent each packing by
the triple(A,B,R). Here(A,B) is the sequence pair, andR is a binary vector, representing the
rotations of 0 or 90 degrees. If rotation is allowed the neighborhoodN(s) of our heuristic is
extended with a fourth permutation; Change the rotation flagof an item inR.

5 Three Dimensions

For the three-dimensional problem we will consider a new representation which like the sequence
pair for two dimensions will contain relative box placementfor three dimensions. We call the
representation sequence tripple since it consists of threesequences. Not all three-dimensional
packings are obtainable with this representation but we will prove that a large subset of all nor-
malized packings may be represented. The same Simulated Annealing strategy we use for the
sequence pair is applied to the sequence tripple to form a heuristic for 3DKP.

A robot packingis a packing which can be achieved by successively placing boxes starting
from the bottom-left-behind corner, and such that each box is in-front of, right of, or over each
of the previously placed boxes [11]. Afully robot packable packingis a packing which satisfies
the robot packing criteria from any of the corners of the large bin.
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i wi hi di xi yi zi

1 2 4 9 4 3 0
2 3 7 3 6 0 6
3 3 7 6 6 0 0
4 5 2 3 4 7 6
5 5 2 6 4 7 0
6 6 3 3 0 0 6
7 6 3 6 0 0 0
8 4 6 3 0 3 0
9 4 6 6 0 3 3

Figure 6: A packing and the corresponding sequence tripple(A,B,C)= {< 9,4,8,5,1,6,2,7,3>
,< 4,2,5,3,1,9,6,8,7>,< 2,3,6,7,1,4,5,9,8>}. The lettersA,B,C on the figure indicate the
directions which are used for defining the corresponding sequence of boxes

Robot packings are motivated by several industrial applications, where boxes have to be
packed by robots equipped with a rectangular “hand” parallel to the base of the large box. To
avoid collisions between the hand and the boxes, it is demanded that no already packed box
block for the movement of the “hand”. In [11] it is shown that the quality of a packing is seldom
affected by restricting the solution space to the set of robot packings.

5.1 Sequence Tripple

A given fully robot packable packing is represented by threesequencesA, B andC where each
sequence is a permutation of then boxes. For any sequenceX we sayX i j if and only if i is before
j in sequenceX and define¬X i j ⇔ X ji .

In a similar way as in Section 3 we define sequenceA by the criteria

(xi +wi ≤ x j ∨ yi ≥ y j +h j ∨ zi ≥ zj +d j) ⇔ A i j (9)

In other wordsA i j iff i is located left, over or in-front ofj. Using the formulation (2) we have
A i j ⇔ ℓi j +oi j + fi j ≥ 1.

SequenceB is defined by

(xi ≥ x j +w j ∨ yi ≥ y j +h j ∨ zi ≥ zj +d j) ⇔ B i j (10)

This meansB i j iff i is located right, over or in-front ofj. The relation can be expressed as
B i j ⇔ r i j +oi j + fi j ≥ 1.

Finally, sequenceC is defined by

(xi ≥ x j +w j ∨ yi +hi ≤ y j ∨ zi ≥ zj +d j) ⇔ C i j (11)
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In words, C i j iff i is located right, under or in-front ofj, which can be expressed asC i j ⇔
r i j +ui j + fi j ≥ 1.

Due to the definition of fully robot packable packings, therewill always be an item which
is located furthest left-over-behind. By removing this item and repeating the operation, we get
the ordering of sequenceA. In a similar way the orderings ofB andC can be determined, as
illustrated in Figure 6. This shows that every fully robot packable packing can be represented by
a sequence tripple.

Using the relations

A i j ⇔ ℓi j +oi j + fi j ≥ 1, ℓi j + r i j ≤ 1,
B i j ⇔ r i j +oi j + fi j ≥ 1, oi j +ui j ≤ 1,
C i j ⇔ r i j +ui j + fi j ≥ 1, fi j +bi j ≤ 1,

(12)

we find that

A i j ∧ B i j ∧ C i j ⇔ fi j = 1
A i j ∧¬B i j ∧ C i j ⇔ ℓi j + r i j ≥ 1∨oi j +ui j ≥ 1∨ fi j +bi j ≥ 1

¬A i j ∧ B i j ∧ C i j ⇔ r i j = 1
¬A i j ∧¬B i j ∧ C i j ⇔ ui j = 1
A i j ∧ B i j ∧¬C i j ⇔ oi j = 1
A i j ∧¬B i j ∧¬C i j ⇔ ℓi j = 1

¬A i j ∧ B i j ∧¬C i j ⇔ ℓi j + r i j ≥ 1∨oi j +ui j ≥ 1∨ fi j +bi j ≥ 1
¬A i j ∧¬B i ∧¬C i j ⇔ bi j = 1

(13)

Notice thatA i j ∧¬B i j ∧C i j and¬A i j ∧B i j ∧¬C i j cannot occur for any packing. We have, how-
ever, chosen to assign these cases a meaning, such that everysequence tripple has a correspond-
ing packing. This leads to the following four criteria, similar to (7) and (8), which are used to
determine the relative box positions:

A i j ∧¬B i j ∧¬C i j ⇒ i is left of j (14)

¬A i j ∧¬B i j ∧ C i j ⇒ i is underj (15)

¬A i j ∧¬B i j ∧¬C i j ⇒ i is behindj (16)

A i j ∧¬B i j ∧ C i j ⇒ i is behindj (17)

Notice that both (16) and (17) impose thati must be behindj in the packing. The unfortunate
consequence of this is that the representation is biased towards orderings in that direction which
could have a negative impact on the solution process, but as we wish to let every sequence tripple
represent a packing, an arbitrary choice had to be done.

5.2 A Placement Algorithm

To find a placement (i.e. the coordinates of the boxes) corresponding to a sequence tripple, we
can construct three constraint graphs similar to Figure 2: In the first graph we have an edge from
item i to item j if i is located left ofj (i.e. A i j ∧¬B i j ∧¬C i j ). In the second graph we have an
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edge from itemi to item j if i is located underj (i.e.¬A i j ∧¬B i j ∧C i j ). In the last graph we have
an edge from itemi to item j if i is located behindj (i.e. ¬A i j ∧¬B i j ∧¬C i j or A i j ∧¬B i j ∧C i j ).
Traversing the nodes in topological order for each graph while assigning coordinates to the items,
we find the location of all boxes in timeO(n2).

By observing that¬B i j is a necessary criteria for nodei to precede nodej in each of the three
constraint graphs, we may actually omit the topological ordering as it is in each case given by
the reverse order of sequenceB.

The last box inB is placed at(x,y,z) = (0,0,0) and succeeding boxes are placed one by one
according to the reverse order of sequenceB. At any time letP consist of all previously placed
boxes. Now assume we wish to place boxi. To determine the position ofi we comparei with
every box j ∈ P. Let Px ⊆ P be the subset of boxes which satisfy (14), i.e.A i j ∧¬B i j ∧¬C i j ,
let Py ⊆ P be the subset which satisfy (15), i.e.¬A i j ∧¬B i j ∧ C i j , and letPz ⊆ P be the subset
which satisfy (16) or (17), i.e.¬A i j ∧¬B i j ∧¬C i j or A i j ∧¬B i j ∧C i j ). Now assigni coordinates
(xi ,yi ,zi) determined by

xi = max(0,max
j∈Px

(x j +w j)) (18)

yi = max(0,max
j∈Py

(y j +h j)) (19)

zi = max(0,max
j∈Pz

(zj +d j)) (20)

Once a box has been placed it is inserted intoP.
If we maintain a table in which the position of each boxi in the three sequencesA,B,C is

saved, we can test whetherA i j , B i j or C i j holds in constant time for two given boxesi, j. Since
placing a box only requires comparison with every previously placed box, calculating (18) to
(20) for a given boxi can be done inO(|P|) = O(n) time. Placing alln boxes then requiresO(n2)
time.

To speed up the placement procedure slightly we remove a box from P if it is completely
“shaded” by a newly inserted box. A boxj is shaded by a boxi if x j +w j ≤ xi +wi , y j +h j ≤
yi +hi andzj ≤ d j < zi +di .

5.3 Simulated Annealing

To solve 3DKP we use Simulated Annealing similarly as for twodimensions but with the three-
dimensional sequence representation. The neighborhood isincreased to accommodate the extra
sequence and consists of the following permutations: 1) exchange two boxes from one of the
sequences, 2) exchange two boxes in sequenceA andB, 3) exchange two boxes in sequenceA
andC, 4) exchange two boxes in sequenceB andC, 5) exchange two boxes in all sequences.

6 Computational Experiments

The heuristic described in the previous sections was implemented in C++ using the sequence pair
algorithm by Pisinger [14] for two dimensions and an implementation of the placement algorithm
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for sequence tripple described in section 5.2 for three dimensions. The implementation was tested
on a computer with an AMD Athlon 64 3800+ (2.4 GHz) processor with 2 GB ram using the
GNU-C++ compiler (gcc 4.0). This section is divided into twoparts; one about 2DKP and one
about 3DKP.

6.1 2D Computational Experiments

To test the 2DKP heuristic we used both the classical instances and a new set of instances. The
instances were used for parameter tuning of the heuristic. Results are reported for instances both
without and with rotation allowed.

6.1.1 Classical Instances for 2DKP

We use the benchmarks instances considered by Fekete et al. [6] and Caprara and Monaci. The
instances are listed in Table I. The instancesbeasley1-7 originates from [1]. Thecgcut and
gcut instances are guillotine-cut instances from the OR library. The instancewang20 is from
[19] and also a guillotine-cut instance. The instances3 toCHL5 are also guillotine-cut instances
by Hifi [8]. Finally, the instanceokp1-5 are by Fekete and Schepers [5].

For each instance we determine two valuesn0 and n1. The first value,n0, is defined as
n0 = n[Knapsack Area]/[Total area]. This value should give a hint as to how many items the
knapsack will contain on average in solutions. The valuen1 is the number of items chosen in the
optimal solution for the one dimensional relaxation, as described in the sequel.

We also use the valuen0 to determine the running time of our experiments: For an instance
with n rectangles andn0 defined as above letF(n,n0) = n0 lgn. The idea of this function is that
if we expect there to ben0 items in the knapsack then there are roughlynn

0 different possible
solutions to search, thereforeF(n,n0) should give us a rough indication of the size of solution
space.

The running time of each instance is determined from the value F(n,n0) of the instance, by
considering the interval thatF(n,n0) belongs to. Different intervals and their running times are
shown in Table II. Thus the minimum and maximum running timesare 30 and 600 seconds
respectively.

Let theone-dimensional relaxationof the two-dimensional packing problem be a one-dimensional
knapsack problem where the knapsack and the items have size equal to their area, and items have
profit equal to the profit of the rectangles. For all instanceswe consider here this problem is
solved to optimum within 5 seconds using the exact method by Pisinger [12]. The valuen1 is the
number of items chosen in the optimal solution for the one dimensional relaxation and we use
this value to set the Simulated Annealing parameters for theinstance (see section 6.2.1), andn1

should indicate the number of rectangles to be expected in anoptimal solution.

6.2 New Instances for 2DKP

For 2DKP we have created 80 new instances. The rectangle dimensions in each instance belongs
to one of five different classes which are listed in Table III.The five classes aretall (T),
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Instance n n0 n1 Instance n n0 n1

beasley1 10 5.3 5 gcut10 20 3.7 5
beasley2 17 6.3 8 gcut11 30 4.6 6
beasley3 21 7.6 6 gcut12* 50 4.0 4
beasley4 7 6.5 6 gcut13* 32 20.1 18
beasley5 14 6.0 7 wang20* 42 5.0 4
beasley6 15 7.8 8 3 62 3.9 11
beasley7 8 18.3 8 3s 62 3.9 6
beasley8 13 8.2 9 a1 62 4.2 11
beasley9 18 7.4 9 a1s 62 4.2 7
beasley10 13 6.8 7 a2 53 5.5 11
beasley11 15 9.1 8 a2s 53 5.5 7
beasley12 22 8.6 11 chl2 19 9.1 10
cgcut1* 16 10.7 8 chl2s 19 9.1 9
cgcut2* 23 14.8 11 chl3 35 89.8 35
cgcut3* 62 3.90 11 chl3s 35 89.8 35
gcut1* 10 3.82 4 chl4 27 92.7 27
gcut2 20 4.6 5 chl4s 27 92.7 27
gcut3* 30 4.6 6 chl5 18 7.4 5
gcut4 50 4.3 6 okp1* 50 14.3 9
gcut5 10 4.6 4 okp2 30 9.6 11
gcut6 20 4.1 5 okp3* 30 8.3 11
gcut7 30 3.7 5 okp4 61 10.1 8
gcut8 50 4.5 5 okp5* 97 12.6 15
gcut9 10 4.9 5

Table I: Literature instances for 2DKP. Instances marked with ’*’ are used for fine-tuning of the
heuristic.

ForF(n,n0) ∈ [0;25) [25;65) [65;100) [100;250) [250;∞)
SetT(n,n0) 30 60 120 240 600

Table II: The runningT(n,n0) in seconds determined fromF(n,n0).
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Class Description Width Height

T Tall. Rectangles are tall [1, 1
3 ·100] [2

3 ·100,100]
W Wide. Rectangles are wide [2

3 ·100,100] [1, 1
3 ·100]

S Square. Rectangles are square [1,100] Equal to width
U Uniform. Largest dimension is no more

than 150% of the smallest
[2
3 ·100,100] [2

3 ·100,100]

D Diverse. Largest dimension can be up-to
100 times the smallest

[1,100] [1,100]

Table III: The 5 different classes of new EP instances. The width and height of the rectangles in
each class are selected randomly from the intervals in the ’Width’ and ’Height’ column.

wide (W), square (S), uniform (U) anddiverse (D). The number of rectangles,n, in
each instance is selected from the set{30,50,100,200}. The rectangles may beclustered
(C) andrandom (R).Clustered instances consists of only 20 rectangles which are duplicated
appropriately, while in therandom instances all rectangles are independently generated. Finally
the area of the bin is either 25 % or 75 % of the total area of the rectangles and the height of
the bin is always two times the width. The naming convention is EP-n-c-t-p, wheren ∈
{30,50,100,200} is the number of rectangles,c∈ (T,W,S,U,D) describes the class,t ∈ (C,R)
describes if it is clustered or random,p∈ 25,75 describes the size of the bin in percentage of the
total rectangle area. The profit of the rectangles is always the area of the rectangle + 20 units.
The instances are presented in Table IV and are available along with the source code to generate
them at this web-address:http://www.diku.dk/~pisinger/codes.html.

6.2.1 Parameter tuning

As seen in Figure 5, two values are crucial for the results of Simulated Annealing; The start
time t0 and the time stepts. To determine appropriate values oft0 andts we experimented with
the 22 instances marked with ’*’ in Table I and IV. These contain between 16 and 200 rect-
angles. We performed the experiments witht0 ∈ {10−3,10−2,10−1,100,101,102,103,104,105}
andts ∈ {102,101,10−1,10−3,10−5,10−7,10−9,10−11,10−13} For the 22 instances each of the
81 combinations were tested using the running times from Table II. Results from four selected
instances are presented in Figure 7.

Based on the results of the parameter tuning for the 22 instances we were able to establish
that good values oft0 andts are:

t0 = n2
1, ts =

n2
1

107 .

The values can be interpreted in the following way: The higher t0 and ts the less likely is ac-
ceptance of a non-improving permutation. The larger the number of rectangles is in an optimal
solution the more improving steps must be done before the heuristic should escape local minima
by accepting a non-improving change.

13



Instance n n0 n1 Instance n n0 n1

ep-30-D-C-25 30 8.3 18 ep-100-D-C-25 100 24.9 58
ep-30-D-C-75 30 22.5 26 ep-100-D-C-75 100 74.5 92
ep-30-D-R-25 30 7.7 17 ep-100-D-R-25 100 24.6 60
ep-30-D-R-75 30 22.5 26 ep-100-D-R-75 100 74.1 91
ep-30-S-C-25 30 7.4 16 ep-100-S-C-25 100 24.9 58
ep-30-S-C-75 30 22.5 26 ep-100-S-C-75 100 75.7 89
ep-30-S-R-25 30 7.4 17 ep-100-S-R-25 100 24.9 60
ep-30-S-R-75 30 22.4 26 ep-100-S-R-75 100 74.9 89
ep-30-T-C-25 30 7.4 13 ep-100-T-C-25 100 25.0 44
ep-30-T-C-75 30 22.3 25 ep-100-T-C-75 100 74.9 84
ep-30-T-R-25 30 7.4 13 ep-100-T-R-25 100 24.9 47
ep-30-T-R-75 30 22.4 25 ep-100-T-R-75 100 74.8 85
ep-30-U-C-25 30 7.5 9 ep-100-U-C-25 100 25.0 30
ep-30-U-C-75 30 22.5 23 ep-100-U-C-75 100 75.0 79
ep-30-U-R-25 30 7.5 9 ep-100-U-R-25 100 24.9 31
ep-30-U-R-75 30 22.4 23 ep-100-U-R-75 100 74.8 80
ep-30-W-C-25 30 10.7 17 ep-100-W-C-25 100 24.7 45
ep-30-W-C-75 30 22.3 25 ep-100-W-C-75 100 74.5 86
ep-30-W-R-25 30 11.3 17 ep-100-W-R-25 100 24.8 50
ep-30-W-R-75 30 22.5 26 ep-100-W-R-75 100 74.8 87
ep-50-D-C-25 50 12.2 28 ep-200-D-C-25 200 50.0 117
ep-50-D-C-75 50 37.2 45 ep-200-D-C-75 200 149.8 183
ep-50-D-R-25 50 12.2 27 ep-200-D-R-25 200 49.5 119
ep-50-D-R-75 50 37.2 45 ep-200-D-R-75 200 149.8 182
ep-50-S-C-25 50 12.4 28 ep-200-S-C-25 200 50.0 118
ep-50-S-C-75 50 37.5 44 ep-200-S-C-75 200 149.7 179
ep-50-S-R-25 50 12.5 29 ep-200-S-R-25 200 49.9 116
ep-50-S-R-75 50 37.4 44 ep-200-S-R-75 200 149.9 177
ep-50-T-C-25 50 12.5 22 ep-200-T-C-25 200 49.9 89
ep-50-T-C-75 50 37.3 42 ep-200-T-C-75 200 149.7 170
ep-50-T-R-25 50 12.5 22 ep-200-T-R-25 200 49.9 97
ep-50-T-R-75 50 37.3 42 ep-200-T-R-75 200 149.8 172
ep-50-U-C-25 50 12.4 15 ep-200-U-C-25 200 49.9 60
ep-50-U-C-75 50 37.5 39 ep-200-U-C-75 200 149.7 159
ep-50-U-R-25 50 12.5 15 ep-200-U-R-25 200 49.9 63
ep-50-U-R-75 50 37.5 40 ep-200-U-R-75 200 149.8 160
ep-50-W-C-25 50 14.1 25 ep-200-W-C-25 200 49.9 91
ep-50-W-C-75 50 37.3 43 ep-200-W-C-75 200 149.7 174
ep-50-W-R-25 50 13.9 25 ep-200-W-R-25 200 49.9 102
ep-50-W-R-75 50 37.4 43 ep-200-W-R-75 200 149.5 175

Table IV: New instances for 2DKP.
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Figure 7: Results of the Simulated Annealing heuristic for different values oft0 andts on four
different instances.

6.2.2 Results

Based on the parameter tuning from the previous section our heuristic was applied to the bench-
mark instances described in Section 6.1.1 and 6.2. To determine the robustness of the heuristic
we ran each benchmark instance with 10 different random seeds. We have reported the best,
worst and average solution value in Table V along with the running time of each instance for
each seed. The results on the 80 newly proposed benchmarks are listed in Table VI and VII. The
heuristic finds the optimal value in all but 4 of the classicalinstances and on the new instances
the results are generally higher than 95% of the value of the one-dimensional relaxation, which
demonstrates its ability to find good solutions for both small and large instances.

6.2.3 Rotations

We repeated all tests allowing rotation, however we doubledthe running time to accommodate
for the larger solution space. A maximum time limit of 600 seconds was still assigned to all
instances. Parameter-tuning revealed that the same settings as reported in section 6.2.1 also give
good results when rotation is allowed. The results on the twosets of instances are reported in
Table VIII, Table IX and Table X.

For the classical benchmark instances the results with rotation are always better or as good
as the results without rotation. Interestingly enough the results with rotation are generally larger
than 95% of the optimal solution for the one-dimensional relaxed problem, and often they are
close to 98%.

For the new test instances we got slightly worse results whenrotation is allowed in 32 out of
the 80 cases. This is mainly due to the increased solution space. In only two of the instances are
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Egeblad and Pisinger Exact Methods Time
Instance 1D Optimal Best Avg Worst Best Time Seed Time Fek-Sch Cap-Mon
beasley1 201 164 164 164 164 ≤ 0.02 30 ≤ 0.02 -
beasley2 253 230 230 230 230 ≤ 0.02 60 ≤ 0.02 -
beasley3 266 247 247 247 247 0.02 60 ≤ 0.02 -
beasley4 275 268 268 268 268 ≤ 0.02 30 ≤ 0.02 -
beasley5 373 358 358 358 358 ≤ 0.02 30 ≤ 0.02 -
beasley6 317 289 289 289 289 0.07 60 ≤ 0.02 -
beasley7 430 430 430 430 430 ≤ 0.02 30 ≤ 0.02 -
beasley8 938 834 834 834 834 ≤ 0.02 60 ≤ 0.02 -
beasley9 962 924 924 924 924 0.41 60 ≤ 0.02 -
beasley10 1517 1452 1452 1452 1452 ≤ 0.02 60 ≤ 0.02 -
beasley11 1864 1688 1688 1688 1688 0.04 60 ≤ 0.02 -
beasley12 2012 1865 1865 1865 1865 0.5 60 ≤ 0.02 -
cgcut1 260 244 244 244 244 ≤ 0.02 60 1.46 0.3
cgcut2 2919 2892 2892 2892 2892 1.8 120 531.93 531.93
cgcut3 2020 1860 1860 1842 1840 28.24 30 4.58 4.58
gcut1 62488 48368 48368 48368 48368 ≤ 0.02 30 0.01 0
gcut2 62500 59798 59798 59680.5 59563 23.27 30 0.22 0.19
gcut3 62500 61275 61275 61152.6 60663 3.32 30 3.24 2.16
gcut4 62500 61380 61380 61380 61380 1.68 30 376.52 346.99
gcut5 249854 195582 195582 195582 195582 0.03 30 0.5 0
gcut6 249992 236305 236305 236305 236305 0.02 30 0.12 0.06
gcut7 249998 240143 240143 240143 240143 0.32 30 1.07 0.22
gcut8 250000 245758 245758 245758 245758 0.07 60 168.5 136.71
gcut9 997256 939600 939600 939600 939600 0.01 30 0.08 0
gcut10 999918 937349 937349 937349 937349 0.89 30 0.14 0
gcut11 1000000 969709 969709 968582.3 958442 0.19 30 16.3 14.76
gcut12 1000000 979521 979521 977670.2 976877 7.04 30 25.39 16.85
gcut13 9000000 ≥8408316 8669457 8629142.7 8613889 85.44 240 1800

≥8622498 1800
≤9000000

wang20 2800 2726 2716 2712.5 2711 48.41 60 2.72 2.72
3 2020 1860 1860 1842 1840 28.22 30 ≤ 0.02 -
3s 2800 2726 2726 2722 2721 17.49 30 ≤ 0.02 -
a1 2140 2020 1980 1968 1960 2.31 30 ≤ 0.02 -
a1s 3000 2956 2950 2950 2950 0.16 30 ≤ 0.02 -
a2 2705 2615 2615 2566 2545 7.53 30 ≤ 0.02 -
a2s 3600 3535 3535 3517.9 3516 14.16 30 ≤ 0.02 -
chl2 2502 2326 2326 2326 2326 6.78 60 ≤ 0.02 -
chl2s 3410 3336 3336 3334.7 3323 0.17 60 ≤ 0.02 -
chl3 5283 5283 5283 5283 5283 ≤ 0.02 240 ≤ 0.02 -
chl3s 7402 7402 7402 7402 7402 ≤ 0.02 240 ≤ 0.02 -
chl4 8998 8998 8998 8998 8998 ≤ 0.02 240 ≤ 0.02 -
chl4s 13932 13932 13932 13932 13932 ≤ 0.02 240 ≤ 0.02 -
chl5 600 589 589 586.5 584 2.4 60 ≤ 0.02 -
okp1 27718 27718 27718 27542.7 27486 11.83 120 35.84 11.6
okp2 22502 22502 22214 22098.6 21947 36.41 60 1559 1535.95
okp3 24019 24019 24019 23804.6 23531 17.4 60 10.63 1.91
okp4 32893 32893 32893 32893 32893 8.89 60 4.05 2.13
okp5 27923 27923 27923 26753 25456 12.22 120 488.27 488.27

Table V: Results for the classical benchmark instances. ’1D’ is the result of the one-dimensional
relaxed problem. ’Optimal’ is the value of the optimal solution. The columns under ’Egeblad
and Pisinger’ are results of this heuristic. ’Avg’, ’Best’ and ’Worst’ columns are the average, best
and worst results on each instance for the 10 seeds. ’Best Time’ is the time before the heuristic
discovered the best solution. ’Seed Time’ is the given to each of the 10 seeds. Thus the total
running time on each instance is 10 times ’Seed Time’. The ’Exact Methods Time’ represent
the running time of the other methods. All running times are in seconds. For gcut13 no optimal
value is currently known, but we have reported the results ofrespectively Caprara and Monaci
and Fekete and Schepers along with their upper-bound.
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Instance 1D Best Avg Worst Best Time Seed Time 1D Percentage
ep-30-D-C-25 2155 2062 2025.8 1953 21.38 60 95.7
ep-30-D-C-75 5135 5061 5008.2 4953 66.14 240 98.6
ep-30-D-R-25 2364 2244 2224 2207 45.74 60 94.9
ep-30-D-R-75 6191 6080 6055.9 5995 33.54 240 98.2
ep-30-S-C-25 22494 21858 21222.8 20692 25.99 60 97.2
ep-30-S-C-75 66935 65675 65313 64765 15.27 240 98.1
ep-30-S-R-25 21674 20752 20287.4 20067 3.53 60 95.7
ep-30-S-R-75 65319 64496 64106.5 62743 129.56 240 98.7
ep-30-T-C-25 10938 9262 9262 9262 0.29 60 84.7
ep-30-T-C-75 32377 32097 32034.8 31827 124.19 240 99.1
ep-30-T-R-25 10647 9919 9919 9919 0.45 60 93.2
ep-30-T-R-75 31750 31461 31426.3 31358 172.63 240 99.1
ep-30-U-C-25 52002 49395 49395 49395 13.8 60 95.0
ep-30-U-C-75 155306 145613 145613 145613 1.95 240 93.8
ep-30-U-R-25 50246 50029 50029 50029 17.85 60 99.6
ep-30-U-R-75 151710 147159 144782.1 144518 26.14 240 97.0
ep-30-W-C-25 14060 13130 13121.3 13104 34.88 60 93.4
ep-30-W-C-75 29780 21598 21593.2 21582 29.19 240 72.5
ep-30-W-R-25 14840 14235 14235 14235 2.96 60 95.9
ep-30-W-R-75 33396 23860 23860 23860 15.56 240 71.4
ep-50-D-C-25 3232 3107 2971.3 2874 119.45 120 96.1
ep-50-D-C-75 8849 8673 8605.4 8533 12.05 240 98.0
ep-50-D-R-25 3546 3361 3308.4 3227 91.19 120 94.8
ep-50-D-R-75 9678 9463 9426 9401 105.08 240 97.8
ep-50-S-C-25 37185 36107 35887.7 35468 69.99 120 97.1
ep-50-S-C-75 111329 109511 108574 107633 78.51 240 98.4
ep-50-S-R-25 35599 34864 34527.5 33841 12.72 120 97.9
ep-50-S-R-75 106699 104872 104191.5 103482 210.65 240 98.3
ep-50-T-C-25 17757 17324 17270 17231 111.73 120 97.6
ep-50-T-C-75 52863 50907 50065.9 49430 93.18 240 96.3
ep-50-T-R-25 18643 18264 18213.7 18152 40.51 120 98.0
ep-50-T-R-75 55475 54922 54712.1 54261 106.91 240 99.0
ep-50-U-C-25 85978 80416 79727.7 77030 5.8 120 93.5
ep-50-U-C-75 257446 248564 247737.5 242582 239.47 240 96.5
ep-50-U-R-25 83736 78474 78225 77346 67.79 120 93.7
ep-50-U-R-75 251412 245628 241946.3 240375 117.35 240 97.7
ep-50-W-C-25 18082 17149 17129 17103 81.64 120 94.8
ep-50-W-C-75 48909 46170 45617.8 45024 35.59 240 94.4
ep-50-W-R-25 19215 18449 18449 18449 8.33 120 96.0
ep-50-W-R-75 55475 54708 54601.8 54431 175.06 240 98.6

Table VI: Results for the small ep instances. ’1D’ is the optimal solution of the one-dimensional
relaxed problem. ’Best’, ’Avg’ and ’Worst’ columns are the best, average and worst results
for each instance on the 10 seeds. ’Best Time’ is the time it took before the best solution was
encountered. ’Seed Time’ is the time spend on each seed and the total time for each instance is
10 times ’Seed Time’. ’1D Percentage’ is the percentage deviation between the heuristic solution
and the one-dimensional relaxed problem upper-bound.
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Instance 1D Best Avg Worst Best Time Seed Time 1D Percentage
ep-100-D-C-25 6740 6316 6150.1 5856 108.62 240 93.7
ep-100-D-C-75 18402 18003 17910 17769 454.68 600 97.8
ep-100-D-R-25 8201 7804 7713.3 7642 59.34 240 95.2
ep-100-D-R-75 23121 22635 22536.8 22465 515.47 600 98.0
ep-100-S-C-25 73640 72154 71389.8 69990 41.67 240 98.0
ep-100-S-C-75 219930 215294 214085 213022 554.55 600 98.0
ep-100-S-R-25 89670 88334 86831.6 85952 209.43 240 98.5
ep-100-S-R-75 267156 263237 261317.3 259433 574.8 600 98.5
ep-100-T-C-25 34780 34123 33978.3 33884 160.24 240 98.1
ep-100-T-C-75 102983 100645 100343.1 100078 174.21 600 97.7
ep-100-T-R-25 35553 34948 34818.1 34617 193.51 240 98.3
ep-100-T-R-75 105728 103888 102903.1 102539 471.5 600 98.3
ep-100-U-C-25 170233 165313 163982.6 160482 158.73 240 97.1
ep-100-U-C-75 511610 495431 495002.2 492289 281.83 600 96.8
ep-100-U-R-25 171128 168779 167433 166087 146.84 240 98.6
ep-100-U-R-75 512135 503471 498286 491477 596.37 600 98.3
ep-100-W-C-25 31972 24325 24325 24325 5.33 240 76.1
ep-100-W-C-75 95052 79803 78353.1 76448 430.71 600 84.0
ep-100-W-R-25 38595 29593 29507.1 29145 188.5 240 76.7
ep-100-W-R-75 115235 109102 107764.8 107113 584.25 600 94.7
ep-200-D-C-25 13541 12415 12150.5 11783 493.41 600 91.7
ep-200-D-C-75 36607 35489 35273.7 35029 514.43 600 96.9
ep-200-D-R-25 16770 15919 15780.6 15682 461.28 600 94.9
ep-200-D-R-75 46985 45867 45671.8 45537 482.68 600 97.6
ep-200-S-C-25 147526 143875 142676.6 141416 242.86 600 97.5
ep-200-S-C-75 440265 429097 426756.9 424657 511.84 600 97.5
ep-200-S-R-25 172233 169314 168298.6 167148 283.44 600 98.3
ep-200-S-R-75 514175 504328 501084.3 497746 586.69 600 98.1
ep-200-T-C-25 69694 68208 67963 67686 555.5 600 97.9
ep-200-T-C-75 206059 199431 197752.1 196407 590.09 600 96.8
ep-200-T-R-25 65706 64335 64195 63854 576.58 600 97.9
ep-200-T-R-75 194811 192034 190747.8 189436 585.89 600 98.6
ep-200-U-C-25 340668 337958 335537.5 328940 365.07 600 99.2
ep-200-U-C-75 1022712 991048 982796.8 971152 574.16 600 96.9
ep-200-U-R-25 337830 334623 329949.7 325238 248.8 600 99.1
ep-200-U-R-75 1014222 973279 970129.5 967034 412.68 600 96.0
ep-200-W-C-25 64342 62657 62456.4 62048 583.09 600 97.4
ep-200-W-C-75 189835 175161 173025.6 170785 538.25 600 92.3
ep-200-W-R-25 75840 74331 74202 74042 528.19 600 98.0
ep-200-W-R-75 225571 217963 215865.9 211880 521.45 600 96.6

Table VII: Results for the large ep instances. See table VI for a description of the columns.
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ep-50-T-R-75.eps ep-100-D-R-75.eps ep-200-U-R-75.eps

Figure 8: Best results for three two-dimensional instanceswithout rotation.

the results with rotation more than 1% better than without. It is also important to note that just
as for the smaller benchmark instances the results are generally better than 95% of the optimal
solution to the one-dimensional relaxed problem, which means that the heuristic perform well
even for large instances.

6.2.4 The Instance gcut13

Since gcut13 is the only instance of the classical benchmarkinstances from the literature where
the optimal solution is unknown, we decided to investigate this instance further without consider-
ing rotations. We used 144 seeds with 10 minutes running timeon each seed, given a total of 24
hours for this instance. The parameters for the Simulated Annealing was based on the results we
gathered during parameter-tuning for gcut13, and were sett0 = 0.1 andts = 10 . The best result
was reached after 367 seconds for one of the seeds and was 8728123 which is somewhat better
than the 8622498 we were able to reach with 10 seeds and 4 minutes running time. This demon-
strates that the heuristic is able to find better solution given more running time. The resulting
placement can be seen in Figure 9.

6.3 3D Computational Experiments

A set of experiments where conducted for the three-dimensional variant similar to the two-
dimensional problems. However, since we were unable to find any common benchmark instances
in the literature these experiments were conducted only on new instances.
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Instance 1D No rotation Best Avg Worst Best Time Seed Time Deviation
beasley1 201 164 193 193 193 0.01 60 96.02
beasley2 253 230 250 250 250 0.25 120 98.81
beasley3 266 247 259 259 259 0.35 120 97.37
beasley4 275 268 268 268 268 0 60 97.45
beasley5 373 358 370 370 370 0 60 99.20
beasley6 317 289 300 298 298 23.92 120 94.6
beasley7 430 430 430 430 430 0 60 100.0
beasley8 938 834 886 886 886 0.19 120 94.46
beasley9 962 924 924 921.4 918 4.38 120 96.05
beasley10 1517 1452 1452 1452 1452 0 120 95.72
beasley11 1864 1688 1786 1786 1786 0.01 120 95.82
beasley12 2012 1865 1932 1921 1875 1.82 120 96.02
cgcut1 260 244 260 260 260 0.7 120 100.0
cgcut2 2919 2892 2909 2909 2909 115.29 240 99.66
cgcut3 2020 1860 1940 1922 1900 6.3 60 96.04
gcut1 62488 48368 58136 58136 58136 0 60 93.04
gcut2 62500 59798 60656 60489.1 60431 33.8 60 97.05
gcut3 62500 61274 61275 61009.4 60663 47.18 60 98.04
gcut4 62500 61380 61710 61684.2 61581 55.2 60 98.74
gcut5 249854 195582 233969 233969 233969 1.35 60 93.64
gcut6 249992 236305 239467 239467 239467 0.06 60 95.79
gcut7 249998 240143 245306 243401.2 242925 54.16 60 98.12
gcut8 250000 245758 247462 247188.6 246857 38.25 120 98.95
gcut9 997256 939600 953293 953293 953293 0.01 60 95.59
gcut10 999918 937349 938036 938036 938036 0.07 60 93.81
gcut11 1000000 969709 979580 975419.1 970433 30.68 60 97.96
gcut12 1000000 979521 987674 987674 987674 16.3 60 98.77
gcut13 9000000 >=8622498 8873551 8847773.9 8784146 302.34 480 98.60
okp1 29133 27718 28423 27968.9 27538 74.75 240 97.56
okp2 24800 22502 24263 23489 22804 3.09 120 97.83
okp3 26714 24019 25216 24727 23777 42.48 120 94.39
okp4 33631 32893 32893 32882.1 32784 35.52 120 97.81
okp5 29045 27923 27971 26980.7 25712 96.41 240 96.31
wang20 2800 2726 2758 2758 2758 59.25 120 98.50
3 2020 1860 1940 1922 1900 5.02 60 96.04
3s 2800 2726 2758 2756.4 2756 25.22 60 98.50
a1 2140 2020 2080 2038 2000 7.79 60 97.20
a1s 3000 2956 2985 2985 2985 3.53 60 99.50
a2 2705 2615 2690 2647.5 2595 27.55 120 99.45
a2s 3600 3335 3579 3579 3579 4.46 120 99.42
chl2 2502 2326 2429 2422 2394 13.12 120 97.08
chl2s 3410 3336 3390 3390 3390 11.24 120 99.41
chl3 5283 5283 5283 5283 5283 0 480 100.0
chl3s 7402 7402 7402 7402 7402 0 480 100.0
chl4 8998 8998 8998 8998 8998 0 480 100
chl4s 13932 13932 13932 13932 13932 0 480 100.0
chl5 600 589 600 600 600 7.58 120 100.0

Table VIII: Results with rotation for the benchmark instances. ’1D’ is the result of the one-
dimensional relaxed problem. ’No rotation’ is the value of the optimal solution without rotation.
The columns ’Avg’, ’Best’ and ’Worst’ columns are the average, best and worst results on each
instance for the 10 seeds. ’Best Time’ is the time before the heuristic discovered the best solution.
’Seed Time’ is the given to each of the 10 seeds. Thus the totalrunning time on each instance
is 10 times ’Seed Time’. ’Deviation’ is the deviation between the best solution with rotation
and the optimal solution of the one-dimensional relaxed problem. For gcut13 no optimal values
without rotation is know and we have reported the best solution from Table V
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Instance 1D No rotation Best Avg Worst Best Time Seed Time Deviation
ep-30-D-C-25 2155 2062 2068 2014.6 1953 49.02 120 95.96
ep-30-D-C-75 5135 5061 5059 5007.3 4947 231.53 480 98.52
ep-30-D-R-25 2364 2244 2308 2251.8 2208 60.26 120 97.63
ep-30-D-R-75 6191 6080 6121 6083.4 6040 108.39 480 98.87
ep-30-S-C-25 22494 21858 21858 21355.8 20692 40.17 120 97.17
ep-30-S-C-75 66935 65675 65254 64938.2 64257 174.34 480 97.49
ep-30-S-R-25 21674 20752 20679 20217.8 20067 33.62 120 95.41
ep-30-S-R-75 65319 64496 64356 63613.6 62765 68.13 480 98.53
ep-30-T-C-25 10938 9262 10412 10412 10412 0.81 120 95.19
ep-30-T-C-75 32377 32097 32129 31897.3 31675 92.48 480 99.23
ep-30-T-R-25 10647 9919 10287 10194.6 9919 0.42 120 96.62
ep-30-T-R-75 31750 31461 31417 31301.1 31221 454.41 480 98.95
ep-30-U-C-25 52002 49395 51839 51832.7 51776 24.52 120 99.69
ep-30-U-C-75 155306 145613 154176 153921.8 153509 408.7 480 99.27
ep-30-U-R-25 50246 50029 50136 50099.4 50053 117.12 120 99.78
ep-30-U-R-75 151710 147159 150795 150586.1 150381 428.89 480 99.40
ep-30-W-C-25 14060 13130 13801 13756.8 13673 63.04 120 98.16
ep-30-W-C-75 29780 21598 29403 29250.4 28916 412.64 480 98.73
ep-30-W-R-25 14840 14235 14648 14571.8 14560 14.09 120 98.71
ep-30-W-R-75 33396 23860 32878 32786.6 32670 104.04 480 98.45
ep-50-D-C-25 3232 3107 3033 2962.6 2912 54.55 240 93.84
ep-50-D-C-75 8849 8673 8672 8624.4 8596 440.8 480 98.00
ep-50-D-R-25 3546 3361 3399 3346.9 3293 153.3 240 95.85
ep-50-D-R-75 9678 9463 9526 9468.4 9405 259.74 480 98.43
ep-50-S-C-25 37185 36107 36541 35892.1 35021 86.99 240 98.27
ep-50-S-C-75 111329 109511 109380 108066 107270 125.62 480 98.25
ep-50-S-R-25 35599 34864 34924 34528.9 34223 204.86 240 98.10
ep-50-S-R-75 106699 104872 104398 103409.2 102063 377.16 480 97.84
ep-50-T-C-25 17757 17324 17508 17463.9 17441 217.14 240 98.60
ep-50-T-C-75 52863 50907 52089 51475.3 49593 462.5 480 98.54
ep-50-T-R-25 18643 18264 18336 18266.6 18217 33.88 240 98.35
ep-50-T-R-75 55475 54922 54809 54485.7 54084 474.01 480 98.80
ep-50-U-C-25 85978 80416 83575 82999 82935 127.31 240 97.21
ep-50-U-C-75 257446 248564 249462 249462 249462 39.36 480 96.90
ep-50-U-R-25 83736 78474 81379 80470.6 79851 68.58 240 97.19
ep-50-U-R-75 251412 245628 246572 241614.4 240375 200.1 480 98.07
ep-50-W-C-25 18082 17149 17715 17461.1 17297 226.62 240 97.97
ep-50-W-C-75 48909 46170 48476 47738.2 46637 217.76 480 99.11
ep-50-W-R-25 19215 18449 18857 18795.5 18756 189.73 240 98.14
ep-50-W-R-75 55475 54708 54492 54272.1 53764 407.09 480 98.23

Table IX: Results with rotation for the new instances. ’1D’ is the result of the one-dimensional
relaxed problem. ’No rotation’ is the value of the best solution without rotation. The columns
’Avg’, ’Best’ and ’Worst’ columns are the average, best and worst results on each instance for
the 10 seeds. ’Best Time’ is the time before the heuristic discovered the best solution. ’Seed
Time’ is the given to each of the 10 seeds. Thus the total running time on each instance is 10
times ’Seed Time’. ’Deviation’ is the deviation between thebest solution with rotation and the
optimal solution of the one-dimensional relaxed problem.
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Instance 1D No rotation Best Avg Worst Best Time Seed Time Deviation
ep-100-D-C-25 6740 6316 6265 6171.2 6094 445.01 480 92.95
ep-100-D-C-75 18402 18003 17969 17852.7 17653 454.86 600 97.65
ep-100-D-R-25 8201 7804 7838 7802.5 7728 416.35 480 95.57
ep-100-D-R-75 23121 22635 22601 22509.9 22371 428.67 600 97.75
ep-100-S-C-25 73640 72154 71722 71200.9 69841 61.49 480 97.40
ep-100-S-C-75 219930 215294 215107 213695.9 212298 538.94 600 97.81
ep-100-S-R-25 89670 88334 88065 86913.9 85633 95.67 480 98.21
ep-100-S-R-75 267156 263237 261440 260008.3 256377 591.12 600 97.86
ep-100-T-C-25 34780 34123 34147 33947.9 33586 332.36 480 98.18
ep-100-T-C-75 102983 100645 101011 100386.1 99328 506.91 600 98.09
ep-100-T-R-25 35553 34948 34846 34672.6 34390 259.96 480 98.01
ep-100-T-R-75 105728 103888 103986 103513.3 102612 585.37 600 98.35
ep-100-U-C-25 170233 165313 169317 166949 164235 225.45 480 99.46
ep-100-U-C-75 511610 495431 502311 495617 488923 262.23 600 98.18
ep-100-U-R-25 171128 168779 170707 169411.6 168041 370.04 480 99.75
ep-100-U-R-75 512135 503471 505508 503315.1 499263 437.34 600 98.71
ep-100-W-C-25 31972 24325 31194 30870.9 30453 193.83 480 97.57
ep-100-W-C-75 95052 79803 92502 91626.3 90481 536.29 600 97.32
ep-100-W-R-25 38595 29593 37945 37703.2 37340 325 480 98.32
ep-100-W-R-75 115235 109102 112656 111547.1 110506 423.84 600 97.76
ep-200-D-C-25 13541 12415 12391 12146.7 11932 571.35 600 91.51
ep-200-D-C-75 36607 35489 35293 34911.6 34479 588.85 600 96.41
ep-200-D-R-25 16770 15919 15983 15785.6 15680 471.18 600 95.30
ep-200-D-R-75 46985 45867 45541 45317.4 45120 587.72 600 96.93
ep-200-S-C-25 147526 143875 143315 142748.6 141133 180.06 600 97.15
ep-200-S-C-75 440265 429097 427467 424157.2 421547 556.73 600 97.09
ep-200-S-R-25 172233 169314 169257 167738.6 165887 592.84 600 98.27
ep-200-S-R-75 514175 504328 500715 498968.5 497016 586.85 600 97.38
ep-200-T-C-25 69694 68208 68201 67591.2 66378 404.75 600 97.86
ep-200-T-C-75 206059 199431 199998 198990.2 197051 577.65 600 97.06
ep-200-T-R-25 65706 64335 64103 63813.8 62966 579.86 600 97.56
ep-200-T-R-75 194811 192034 189799 188440.2 186921 566.36 600 97.43
ep-200-U-C-25 340668 337958 338184 334282.4 328454 583.73 600 99.27
ep-200-U-C-75 1022712 991048 991055 981830.3 977775 519.57 600 96.90
ep-200-U-R-25 337830 334623 334407 331243.2 324314 437.31 600 98.99
ep-200-U-R-75 1014222 973279 985733 975732.4 967043 552.4 600 97.19
ep-200-W-C-25 64342 62657 62570 62240.1 61794 463.94 600 97.25
ep-200-W-C-75 189835 175161 182498 181175.9 178827 595.65 600 96.14
ep-200-W-R-25 75840 74331 74320 74103.6 73914 500.73 600 98.00
ep-200-W-R-75 225571 217963 219454 216625.1 213193 593.27 600 97.29

Table X: (See description of table IX)

22



Figure 9: The best result achieved with gcut13 after 144 runsof 10 minutes each. The resulting
profit is 8728123.

6.3.1 New Instances

As we were unable to locate any benchmark instances for the three-dimensional knapsack prob-
lem from the literature we have generated 60 random instances. The instances contain 20, 40
or 60 boxes. The dimensions of the boxes were chosen from 5 different classes described in
Table XI. As for the two-dimensional case, boxes are clustered and random, and the container
has volume equal to 50% or 90% of the total volume of the boxes.The naming convention is
EP-n-c-t-p, wheren ∈ {20,40,60} is the number of boxes,c ∈ (F,L,C,U,D) describes the
class,t ∈ (C,R) describes if it is clustered or random,p∈ 50,90 describes the size of the bin in
percentage of the total box volume. The profit of a box is always the volume of the box + 200
units. The instances are presented in Table XII and are available along with the source code to
generate them at this web-address:http://www.diku.dk/~pisinger/codes.html.
As for the two-dimensional instances we have determined twovalues for each instance;n0 and
n1. n0 = n[Knapsack volume]/[Total box volume] and n1 is the number of boxes selected in
the one-dimensional relaxation where each item and the knapsack have a size equal to their
three-dimensional counterpart and the profit of each item isthe same as its three-dimensional
counterpart.

For each instance we set the running time based on the function F(n,n0) = n0 lgn, so that for
F(n,n0)≤ 110 the running time is set to 120 seconds, for 110< F(n,n0)≤ 200 the running time
is set to 300 seconds, and forF(n,n0) > 200 the running time is set to 600 seconds.

6.3.2 Parameter Tuning

9 three-dimensional instances were selected for parametertuning tests and we tried witht0 ∈
{100, 101, 102, 103, 104, 105, 107, 108} andts∈ {10−10, 10−8, 10−6, 10−4, 10−1, 100, 102, 104,
106}. Based on the 81 parameter combinations we found results similar to the two-dimensional
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Class Description Width Height Depth

F Flat. Boxes are flat [50,100] [50,100] [25,60]
W Long. Boxes are long [1, 2

3 ·100] [1, 2
3 ·100] [50,100]

S Cubes. Boxes are cubes [1,100] Equal to width Equal to width
U Uniform. Largest dimension is no

more than 200% of the smallest
[50,100] [50,100] [50,100]

D Diverse. Largest dimension can be
up-to 50 times the smallest

[1,50] [1,50] [1,50]

Table XI: The 5 different classes of new EP3D instances. The width, height and depth of the
boxes in each class are selected randomly from the intervalsin the ’Width’, ’Height’ and ’Depth’
column.

Instance n n0 n1 Instance n n0 n1

ep3d-20-C-C-50 20 9.9 15 ep3d-40-F-R-50 40 19.7 25
ep3d-20-C-C-90 20 17.8 12 ep3d-40-F-R-90 40 35.7 37
ep3d-20-C-R-50 20 9.9 14 ep3d-40-L-C-50 40 19.9 26
ep3d-20-C-R-90 20 17.8 16 ep3d-40-L-C-90 40 35.7 31
ep3d-20-D-C-50 20 9.8 12 ep3d-40-L-R-50 40 19.7 30
ep3d-20-D-C-90 20 17.8 18 ep3d-40-L-R-90 40 35.6 37
ep3d-20-D-R-50 20 10.3 15 ep3d-40-U-C-50 40 19.9 22
ep3d-20-D-R-90 20 17.8 18 ep3d-40-U-C-90 40 36.0 36
ep3d-20-F-C-50 20 9.9 11 ep3d-40-U-R-50 40 20.0 24
ep3d-20-F-C-90 20 17.8 17 ep3d-40-U-R-90 40 35.8 36
ep3d-20-F-R-50 20 9.9 12 ep3d-60-C-C-50 60 29.6 44
ep3d-20-F-R-90 20 18.0 17 ep3d-60-C-C-90 60 53.3 51
ep3d-20-L-C-50 20 9.9 9 ep3d-60-C-R-50 60 29.8 50
ep3d-20-L-C-90 20 17.7 15 ep3d-60-C-R-90 60 53.7 56
ep3d-20-L-R-50 20 9.9 14 ep3d-60-D-C-50 60 29.6 40
ep3d-20-L-R-90 20 17.6 18 ep3d-60-D-C-90 60 53.0 55
ep3d-20-U-C-50 20 10.0 10 ep3d-60-D-R-50 60 29.0 49
ep3d-20-U-C-90 20 17.9 18 ep3d-60-D-R-90 60 52.5 57
ep3d-20-U-R-50 20 9.9 11 ep3d-60-F-C-50 60 29.7 36
ep3d-20-U-R-90 20 18.0 17 ep3d-60-F-C-90 60 53.3 52
ep3d-40-C-C-50 40 19.9 27 ep3d-60-F-R-50 60 29.6 38
ep3d-40-C-C-90 40 35.3 30 ep3d-60-F-R-90 60 53.6 56
ep3d-40-C-R-50 40 19.9 32 ep3d-60-L-C-50 60 30.0 43
ep3d-40-C-R-90 40 35.6 37 ep3d-60-L-C-90 60 53.6 53
ep3d-40-D-C-50 40 19.5 24 ep3d-60-L-R-50 60 29.8 48
ep3d-40-D-C-90 40 35.2 31 ep3d-60-L-R-90 60 53.7 57
ep3d-40-D-R-50 40 19.3 32 ep3d-60-U-C-50 60 29.9 33
ep3d-40-D-R-90 40 35.3 37 ep3d-60-U-C-90 60 53.9 54
ep3d-40-F-C-50 40 20.0 26 ep3d-60-U-R-50 60 29.7 37
ep3d-40-F-C-90 40 35.8 34 ep3d-60-U-R-90 60 53.6 55

Table XII: New instances for 3DKP.
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case and based on these we determined good values to be

t0 =
n2

1

5
, ts = n2

1.

6.3.3 Results

The results from our 3D tests are presented in Table XIII. Forthe instances with 20 items the gap
between the found solution and the optimal value of the one-dimensional relaxation is relatively
large. It may be due to the fact that it is impossible to fully utilize the available space within the
three-dimensional knapsack – The dimensions of the boxes does not allow for this.

For the instances with 40 items we reach solutions which are better than 80% of the one-
dimensional relaxation in almost half of the instances and in one instance we have as solution
which is better than 90%.

For the instances with 60 items, we achieve results which arebetter than 80% of the one-
dimensional relaxation for most of the instances, and we areeven able to reach 90% in 3 of the
instances.

The explanation could be that the larger the knapsack becomes the easier it is to get close to
the one-dimensional relaxation bound, because the dimensions of the boxes are small compared
to the knapsack and this allows for greater flexibility.

The best results of 8 of the instances are presented in Figure10. To the best of our knowl-
edge no published papers have reported utilization resultsfor three-dimensional knapsack pack-
ing problems of the sizes we consider here, so it is difficult to compare our results to other
approaches.

Methods for container loading (e.g. [13]) generally capable of achieving filling rates of
around 90%. However, these problem instances consider far more boxes than the method we
have presented here. Since our problems are smaller, it may be harder to achieve high filling
rates, so the obtained filling rates around 80-90% for large-sized instances are very promising.

7 Conclusion

In this paper we have presented heuristic approaches for thetwo- and three-dimensional knapsack
problem. The heuristics are based on Simulated Annealing. For the two-dimensional knapsack
problem we utilize an abstract representation for rectangle packings called sequence pair and for
the three-dimensional problem we utilize a novel abstract representation for box packings called
sequence tripple. We have proved that the sequence tripple is able to represent any fully robot
packable packing.

The heuristic for two dimensions is generally able to reproduce the results of exact algorithms
with similar running times. The heuristic also gives the best known results for the only unsolved
classical-instance; gcut13. To demonstrate the high quality of the results of the heuristic for
larger instances we have created a new set of instances with up-to 200 rectangles and also here
the heuristic performs extremely well by generating results higher 95% of our upper-bound.
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Instance 1D Best Avg Worst Best Time Seed Time 1D Percentage
ep3d-20-C-C-50 1026348 633672 612688 591704 26.51 120 61.7
ep3d-20-C-C-90 1834340 916241 916241 916241 0.01 120 50.0
ep3d-20-C-R-50 2188245 1492413 1492413 1492413 0.01 120 68.2
ep3d-20-C-R-90 3925057 2497691 2475532.8 2386900 86.58 120 63.6
ep3d-20-D-C-50 395916 239532 238906 233272 64.04 120 60.5
ep3d-20-D-C-90 718692 468112 459724.8 456836 1.12 120 65.1
ep3d-20-D-R-50 240621 195937 193631.8 178164 0.09 120 81.4
ep3d-20-D-R-90 414188 318848 314384.6 290780 0.53 120 77.0
ep3d-20-F-C-50 2395087 1900250 1900250 1900250 0.02 120 79.3
ep3d-20-F-C-90 4304020 2989393 2857081.7 2651170 0.09 120 69.5
ep3d-20-F-R-50 2252037 1563997 1547242.3 1466902 0.05 120 69.5
ep3d-20-F-R-90 4099982 2918002 2881536.5 2793585 0.57 120 71.2
ep3d-20-L-C-50 1064487 834335 821443.8 801375 20.78 120 78.4
ep3d-20-L-C-90 1894489 1589303 1563319.1 1560432 99.63 120 83.9
ep3d-20-L-R-50 718561 569900 554808.5 418985 2.41 120 79.3
ep3d-20-L-R-90 1282710 1051084 1029080.9 962400 31.6 120 81.9
ep3d-20-U-C-50 4495440 3088676 3088676 3088676 0 120 68.7
ep3d-20-U-C-90 8067424 5360280 5326935.6 5113988 5.82 120 66.4
ep3d-20-U-R-50 4413077 3509748 3486244.6 3433478 0.77 120 79.5
ep3d-20-U-R-90 8041072 6921250 6712730.1 6359659 1.49 120 86.1
ep3d-40-C-C-50 2065540 1265664 1265664 1265664 0.04 120 61.3
ep3d-40-C-C-90 3652448 2828160 2828160 2828160 0.21 300 77.4
ep3d-40-C-R-50 4102972 3002269 2760843.9 2643102 88.17 120 73.2
ep3d-40-C-R-90 7335602 5972946 5937447.5 5704665 47.04 300 81.4
ep3d-40-D-C-50 788124 539040 525116.4 523276 19.47 120 68.4
ep3d-40-D-C-90 1423896 1126300 1124263.6 1119512 17.75 300 79.1
ep3d-40-D-R-50 399894 349470 338144.5 328861 5.44 120 87.4
ep3d-40-D-R-90 728248 639819 612172.9 593147 202.97 300 87.9
ep3d-40-F-C-50 4816926 3590244 3538845.4 3427480 0.88 120 74.5
ep3d-40-F-C-90 8664122 6435962 6158772.9 5829899 96.43 300 74.3
ep3d-40-F-R-50 4518343 3477469 3407281.7 3280100 33.15 120 77.0
ep3d-40-F-R-90 8199224 7336067 7233223.4 7107398 50.31 300 89.5
ep3d-40-L-C-50 2127316 1675122 1659816.2 1649077 0.42 120 78.7
ep3d-40-L-C-90 3819412 2943657 2815563.7 2700358 99.75 300 77.1
ep3d-40-L-R-50 1784686 1609648 1579902.6 1538537 14.92 120 90.2
ep3d-40-L-R-90 3224295 2699629 2618748 2484532 84.49 300 83.7
ep3d-40-U-C-50 8988536 7008136 7008136 7008136 0.2 120 78.0
ep3d-40-U-C-90 16241380 14065676 13761564.4 13449344 79.29 300 86.6
ep3d-40-U-R-50 8666294 7766238 7653893.4 7553251 6.96 120 89.6
ep3d-40-U-R-90 15531980 13077284 12759327 12502175 200.88 300 84.2
ep3d-60-C-C-50 3063219 1504980 1504980 1504980 0.18 300 49.1
ep3d-60-C-C-90 5517671 4475024 4461790.4 4443374 22.92 600 81.1
ep3d-60-C-R-50 6493464 5695120 5250054 4621686 182.83 300 87.7
ep3d-60-C-R-90 11675188 10209801 9970784.5 9724806 374.56 600 87.5
ep3d-60-D-C-50 1200408 1057032 1014487.6 983668 68.89 300 88.1
ep3d-60-D-C-90 2143544 1843584 1786826.8 1736392 6.06 600 86.0
ep3d-60-D-R-50 538113 484363 469189.2 449308 158.52 300 90.0
ep3d-60-D-R-90 966582 861655 847241.2 831469 521.42 600 89.1
ep3d-60-F-C-50 7193700 6257697 6255808.2 6250424 149.27 300 87.0
ep3d-60-F-C-90 12913715 10412682 10196815.2 9972028 199.47 600 80.6
ep3d-60-F-R-50 6780100 6146420 5987831.3 5824694 277.61 300 90.7
ep3d-60-F-R-90 12301636 10866326 10597347 10283829 435.17 600 88.3
ep3d-60-L-C-50 3211612 2327139 2256880.4 2199391 164.39 300 72.5
ep3d-60-L-C-90 5736894 4832080 4742354.4 4665578 184.46 600 84.2
ep3d-60-L-R-50 2391507 2042317 2014109.8 1977414 135.01 300 85.4
ep3d-60-L-R-90 4304649 3872594 3803699.9 3710530 286.07 600 90.0
ep3d-60-U-C-50 13508800 12033592 11506459.2 10609988 117.85 300 89.1
ep3d-60-U-C-90 24342664 19787768 19474422.8 18970932 529.11 600 81.3
ep3d-60-U-R-50 12097660 10857656 10608234.4 10343738 108.3 300 89.8
ep3d-60-U-R-90 21893096 19304585 19047133.3 18549711 382.61 600 88.2

Table XIII: Results for the new ep3d instances. ’1D’ is the optimal solution of the one-
dimensional relaxed problem. ’Best’, ’Avg’ and ’Worst’ columns are the best, average and worst
results for each instance on the 10 seeds. ’Best Time’ is the time it took before the best solution
was encountered. ’Seed Time’ is the time spent on each seed and the total time for each instance
is 10 times ’Seed Time’. ’1D Percentage’ is the percentage deviation between the heuristic solu-
tion and the one-dimensional relaxed problem upper-bound.
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ep3d-20-C-C-50 ep3d-20-L-C-90

ep3d-40-U-C-90 ep3d-40-U-R-90

ep3d-40-F-R-90 ep3d-60-C-R-50

ep3d-60-L-R-50 ep3d-60-D-R-50

Figure 10: Best results for 8 three-dimensional instances.
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The heuristic for three dimensions demonstrates the potential for the sequence tripple rep-
resentation. We cannot compare the results for three-dimensional problems with results from
other authors because of the lack of a benchmark set. To remedy this, we have created a new
benchmark set for three-dimensional knapsack problems. Our heuristic performs well for these
problems often returning results above 85% of the value of the upper-bound. Since the upper-
bound is based on the one-dimensional relaxed problem and weexpect this value to be a quite
poor upper-bound, the results are promising.

The heuristics are generally able to return very good results for both two- and three-dimensional
problems within few minutes, and often within few seconds for the classical two-dimensional
benchmark instances.

References

[1] J.E. Beasley. Algorithms for two-dimensional unconstrained guillotine cutting.Journal of
the Operational Research Society, 36:297–306, 1985.

[2] M.A. Boschetti, E. Hadjiconstantinou, and A. Mingozzi.New upper bounds for the two-
dimensional orthogonal cutting stock problem.IMA Journal of Management Mathematics,
13:95–119, 2002.

[3] A. Caprara and M. Monaci. On the 2-dimensional knapsack problem.Operations Research
Letters, 1(32):5–14, 2004.

[4] S. P. Fekete and J. Schepers. A new exact algorithm for general orthogonal d-dimensional
knapsack problems. InAlgorithms ESA ’97, Springer Lecture Notes in Computer Science,
volume 1284, pages 144–156, 1997.

[5] S. P. Fekete and J. Schepers. On more-dimensional packing III: Exact algorithms.submitted
to Discrete Applied Mathematics, 1997.

[6] S. P. Fekete, J. Schepers, and J. C van der Veen. An exact algorithm for higher-dimensional
orthogonal packing. Technical Report cs/0604045, ArXiv Computer Science e-prints, 2006.

[7] E. Hadjiconstantinou and N. Christophides. An exact algorithm for general, orthogonal,
two-dimensional knapsack problems.European Journal of Operational Research, 83:39–
56, 1995.

[8] Mhand Hifi. Two-dimesional (un)constrained cutting stock problems.http://www.laria.u-
picardie.fr/hifi/OR-Benchmark/2Dcutting/, 2006.

[9] H.Murata, K.Fujiyoshi, S.Nakatake, and Y.Kajitani. Vlsi module packing based on
rectangle-packing by the sequence pair.IEEE Transaction on Computer Aided Design
of Integrated Circuits and Systems, 15:1518–1524, 1996.

28



[10] S. Martello, M. Monaci, and D. Vigo. An exact approach tothe strip packing problem.
INFORMS Journal on Computing, 3(15):310–319, 2003.

[11] S. Martello, D. Pisinger, D. Vigo, Edgar den Boef, and Jan Korst. Algorithms for general
and robot-packable variants of the three-dimensional bin packing problem.ACM Transac-
tions on Mathematical Software, page to appear, 2006.

[12] D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations Research,
45:758–767, 1997.

[13] D. Pisinger. Heuristics for the container loading problem. European Journal of Operations
Research, 3(141):382–392, 2002.

[14] D. Pisinger. Denser packings obtained in O(n log log n) time. INFORMS Journal on
Computing, to appear, 2006.

[15] D. Pisinger and M. Sigurd. The two-dimensional bin packing problem with variable bin
sizes and costs.Discrete Optimization, to appear, 2005.

[16] D. Pisinger and M. M. Sigurd. Using decomposition techniques and constraint program-
ming for solving the two-dimensional bin packing problem.INFORMS Journal on Com-
puting, to appear, 2006.

[17] X.Tang and D.F.Wong. Fast-sp: a fast algorithm for block packing based on sequence pair.
In Asia and South Pacific Design Automation Conference, 2001.

[18] X.Tang, R.Tian, and D.F.Wong. Fast evaluation of sequence pair in block placement by
longest common subsequence computation. InProceedings of DATE 2000 (ACM), Paris,
France, pages 106–110, 2000.

[19] P. Y.Wang. Two algorithms for constrained two dimensional cutting stock problems.Oper-
ations Research, 31:573–586, 1983.

29


	Forside06-13.pdf
	teknisk rapport 06-13.pdf

