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Abstract

In this thesis we do image sequence upscaling using variational methods. We
have developed, implemented and tested the three main elements of the upscal-
ing part of a video processor using variational methods plus a non-variational
preprocessing method detecting the scan format of the input video. The three
upscalings needed are deinterlacing (DI), which is creating the never recorded
every other line in interlaced video, video super resolution (VSR), which is
increasing the spatial resolution of each frame in the video throughput, and
temporal super resolution (TSR), which changes the frame rate of a sequence
by creating fully new frames at the correct temporal positions.

Our variational upscaling methods have been derived from a Bayesian infer-
ence framework for image sequence restoration and enhancement. The frame-
work dictates simultaneous computation of the flow and intensities of the re-
paired and/or enhanced output sequences. The framework was first suggested
for image sequence inpainting in [65].

From the framework we derive a motion adaptive (MA) deinterlacer and a
motion compensated (MC) deinterlacer and test them together with a selection
of known deinterlacers. To illustrate the need for MC deinterlacing the inter-
lacing problem is introduced. It cannot be solved by MA deinterlacers or any
simpler deinterlacers but only by MC deinterlacers. The major hurdle in doing
MC deinterlacing is reliable optical flow computations on interlaced video. We
discuss a number of strategies for computing optical flows on interlaced video
hoping to shed some light on this problem. We produce results on real world
video data with our variational MC deinterlacer that even in many difficult cases
are indistinguishable from the ground truth.

Producing high image quality on high definition (HD) displays when showing
standard definition (SD) material is a problem of upscaling frame resolutions
from low resolution (LR) to high resolution (HR) and is as such a super resolu-
tion (SR) problem, or as we prefer: Video super resolution (VSR). In technology
available today the problem is typically solved using simple spatial interpola-
tion. Using motion compensated methods instead will allow for information
transport along the optical flow trajectories of the video and increase the level
of detail and sharpness in the high resolution output. We present a variational
motion compensated VSR method derived from our Bayesian framework that
simultaneously computes the desired high resolution video and a high resolution
flow field to increase accuracy of the temporal information transport. Creating
super resolution flows has to our knowledge not been done before. Most ad-
vanced SR methods found in literature cannot be applied to general video with
arbitrary scene content and/or arbitrary optical flows as it is possible with our
simultaneous VSR method, which also allows for arbitrary discrete magnifica-
tion factors. We show in test that our variational simultaneous VSR algorithm
outperforms other SR methods applicable to our general video problem, and we
also attempt to break the limits of super resolution [2] in our experiments by
increasing the frame resolution eight times in both height and width (8x8 VSR).

Temporal super resolution (TSR), the ability to convert video from one frame
rate to another is a key functionality in a modern video processing systems. A
different and often higher frame rate than what is recorded is desired for high
frame rate displays, for video/film format conversion, or for super slow-motion.
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We present a novel motion compensated TSR algorithm using variational meth-
ods for both optical flow calculations and the actual new frame interpolation as
naturally derived from our Bayesian framework. The flow and intensities are
calculated simultaneously in a multiresolution setting. We discuss what output
quality is desired from a TSR algorithm. A major problem in watching video
on large and bright displays is that the motion of high contrast edges often
seem jerky. We test an implementation of our algorithm focussing on getting
the motion of high contrast edges to seem smooth and natural by doubling the
frame rate, thus reestablishing the effect of motion pictures.

We introduce an algorithm – commonly known as a film mode detector
– for separating progressive source video from interlaced source video. Due to
interlacing artifacts in the presence of motion, a difference in isophote curvature
can be measured and a threshold for effective classification can be set. This can
be used in a video upscaling to ensure high quality output as one can determine
if deinterlacing is necessary or not.

Finally we discus the remaining unsolved problems in variational upscaling
(hopefully) subject to future development. The most essential is realtime im-
plementations of our algorithms, which from our assessment are doable with
today’s technology.
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Chapter 1

Introduction

1.1 The Challenge

The purpose of this PhD project has been to develop the elements needed for the
upscaling part of a video processor using variational methods. The three types of
needed upscalings are deinterlacing (DI), which is creating the never recorded
lines in interlaced video, also known as interlaced to progressive conversion,
video super resolution (VSR), which is increasing the spatial resolution of each
frame in the video throughput, and temporal super resolution (TSR), which
changes the frame rate of a sequence by creating fully new frames at the temporal
positions where they are needed.

De-noising, image reconstruction and inpainting are some of the problems
earlier tackled with success using variational methods. From the work done by
Lauze in [64] we had the platform of doing variational based inpainting, and
to put it simple, the job was no longer to repair pixels but to create new ones.
Holes in images, whether it is the result of a damage to a film strip or lines not
recorded in an interlaced video signal, are in a general sense the same, just holes.
But as this work will show there is a is great deal more to doing upscaling than
just applying an inpainting algorithm to the problem. When actually solving
the problems it becomes clear that the three types of upscalings, DI, VSR and
TSR are three quite different problems, making variational DI, VSR and TSR
three challenging problems.

1.2 Motivation

Today’s video upscalers do not produce outputs of a quality good enough to
please the human observers, and thus improved deinterlacers, frame rate con-
verters (TSR) and spatial upscalers (VSR) are sought for in both broadcast-
ing, film/tv production and home consumer products. Variational methods,
although still only being an emerging technology, have already proven their
worth in inpainting (see [64]) and thus it seemed obvious to us that variational
methods would give high quality results if applied to the problem of video up-
scaling.

By the time we started our work on deinterlacing (late 2003), this prob-
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lem had only been attacked from an electronic engineering point of view and
variational methods had never been applied to the problem. Along with the
work of Tschumperlé and Besserer in [102] (using 2D spatial structure tensors)
we were the first to introduce variational approaches to the field of deinterlac-
ing. Bayesian formulations, energy minimizations and total variation was not
unknown to the field of super resolution (SR), but our ideas of a motion com-
pensated approach with no limitations on the flow, and an algorithm producing
simultaneously a) a high resolution sequence and b) a corresponding high reso-
lution optical flow, are new. And the integration in our variational framework
is also new. When it comes to temporal super resolution, motion compensated
methods are the only way to get reasonable results, but mostly block matching
flow estimation and simple temporal interpolation are used. Thus the simulta-
neous calculation of both intensities and flows using variational methods is new.
All in all the basics of a full research project was there, and work on this PhD
thesis was started.

The general idea of variational, energy minimizing video upscaling given
in the following chapter is also what is covered by the US and PCT patent
applications [66] and [67]. It is our hope to see our algorithms implemented
and used in ’real world’ video processing systems in the (near) future. This
system could be placed in the editing room of a film/tv production company,
at a broadcasting company doing HDTV transmissions or in a private home
incorporated in video playback devices, displays, high end stand alone video
processors like Faroudja’s DVP-1010 (see Chapter 3) or other electronic media
devices.

Our focus throughout the process of doing this work has been to lift the bar
on what can be achieved in terms of output image quality from video upscalers.
The most likely reasons why variational methods have never been tried in up-
scaling before, are that they are considered too computationally expensive and
are relatively unknown in the field of electronic engineering. But the fast growth
in the performance/price ratio of field-programmable arrays (FPGAs) and other
multiprocessor technologies along with the work of Andres Bruhn and others
(see e.g. [11]) on realtime variational optical flow computations on standard
PCs, have assured us that realtime variational video upscaling is within reach
at a reasonable price even today.

1.3 Organization of this Dissertation and How to
Read It

The basic idea of this project to build the elements of an upscaling video proces-
sor is reflected in the organization of this thesis as the four main chapter each
represents an element.

• In Chapter 2, before going into details with each element, we present the
background of our work: We look at human vision, basic technical details
and the general idea of building an inference machine, the philosophy and
method leading to a model of image sequence enhancement and recon-
struction in general and a video upscaling solution in particular.

• Chapter 3 is on deinterlacing. An extension of the work done on vari-
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ational motion adaptive (MA) deinterlacing in the master thesis [57] of
Sune Høgild Keller is presented along with the work on it successor, vari-
ational motion compensated (MC) deinterlacing. The chapter is intended
for future journal publication in IEEE Transactions on Image Processing.
Earlier versions of the work has been published in [55] and [53].

• Chapter 4 is on video super resolution (VSR) and also intended for journal
publication. Initial work on variational video super resolution not produc-
ing high resolution flows along with the high resolution intensity sequences
was published in [54].

• Chapter 5 is on temporal super resolution (TSR). Although intended for
journal publication, it is written in integrated chapter form, requiring prior
reading of Chapter 2 to get the in-depth picture. Chapter 3 and Chapter 4
can be read independently of any other chapters, but readers will benefit
from also reading Chapter 2.

• In Chapter 6 we present a scan format detector separating interlaced video
from progressive video by measuring curvature statistics. The scan format
detection is a crucial preprocessing step in upscaling, determining whether
or not to deinterlace a given input. This work was earlier published in [56].

The ordering of the Chapters 3–5 above suggests our basic idea of how
to cascade the three types of upscaling in a video processor. If the input is
progressive to begin with but packed in an interlaced broadcast signal as is the
case with for instance cinematic movies, one needs to bypass the deinterlacing
simply just rejoining the separated frames. Determining whether the signal is
progressive or interlaced is not straightforward and that is where the method
of Chapter 6 comes in. Although format detection is a preprocessing step, we
have placed in the back as it is the smallest of the four contributions represented
by the Chapters 3–6, and the chapters 3–5 relates directly to the general idea
presented in Chapter 2 and each other. Since Chapters 3, 4 and 6 are written
in the form of stand alone publications, they can be read individually. Reading
the full thesis some redundance will inevitable occur, mainly in the theoretical
parts of the chapters. To the reader less experienced with variational methods
this might serve as a help to understand the field.

Finally, in Chapter 7 we summarize and look ahead, discussing how the
work presented in this thesis can possibly be used and improved in the future,
for instance we look at how to organize and integrate the three upscalings steps
deinterlacing, video super resolution and temporal super resolution.



Chapter 2

Background

In this chapter we will go through the most important parts of the foundation of
knowledge on which our work stands. We will start by giving an overview of the
technical details in video and broadcasting today in Section 2.1, then we look
at human vision in Section 2.2 as it is the sense we wish to optimally stimulate
with our results. In Section 2.3 we then look at how to measure the quality of
our work by it deviation from a ground truth or by how pleasing it is to the
human visual system. Section 2.4 is on color versus grey scale video upscaling
and Section 2.5 discuss work on variational optical flow, which is integrated into
our variational video upscaling framework presented in Section 2.6.

2.1 Technical Overview

Since this section is dense with facts upon facts, to keep it fairly readable, we
have not stated references for each and every small piece of information. As
main sources of information we have used [4], [70], [82], [97], [98] and [107], and
we only give the main, necessary information leaving out the details not needed
explicitly in this thesis.

In Europe the dominating broadcasting standards are PAL (Phase Alter-
nating Line) and SECAM (Séquentiel couleur à mémoire) which in their ana-
log forms have an apparent resolution of 576 horizontal lines of video. They
both transmit 50 interlaced fields per second, each field containing 288 lines of
video, alternatingly the even numbered or the odd numbered horizontal lines
(illustration given in Figure 3.1(b) in Chapter 3 on deinterlacing). The name
interlacing comes from the fact that the transmission order is even-odd-even
etc. and as such the fields seems interleaved or interlaced. The North American
and Japanese standard is called NTSC after the National Television System
Committee and is likewise interlaced but with 480 apparent horizontal lines of
video and 60 fields per second.1 In their digital forms used on storage media like
DVD Video and in digital broadcast, the resolutions are vertical by horizontal,
PAL and SECAM: 576× 720 pixels, and NTSC: 480× 640.

1Nominally 60 Hz/100.1% ≈ 59.94 to avoid interference with the 60 Hz power source it was
set to match originally. In the same way PAL and SECAM match 50 Hz AC power sources,
but due to the different color systems used, only NTSC had serious interference problem. Still
NTSC is popularly know to be short for Never The Same Color.
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Most flat panel screens (Plasma, LCD plus some emerging new technolo-
gies), projectors (DLP, LCD etc.) and classic ’deep’ PC monitors (cathode
ray tube, CRT) are progressive, meaning they need deinterlacing – interlaced
to progressive conversion – to be able to show interlaced PAL, SECAM and
NTSC broadcasts or video. Furthermore most displays are of a higher spatial
and/or temporal resolution and thus requiring video super resolution and/or
temporal super resolution. The old standard definition (SD) formats are slowly
being replaced by high definition (HD) formats, the dominating ones being 720p
(720× 1280 progressive, 24, 25, 30 or 50 fps) and 1080i (1080× 1920 interlaced,
50 or 60 fps) or 1080p (1080×1920 progressive, 24, 25 or 30 fps). These formats
are used in high definition television (HDTV) broadcasts and on the new digital
video disc media HD DVD and Blu-ray disc.

PAL, SECAM and NTSC use the academy screen aspect ratio with a 4:3
= 1.33:1 frame width to height aspect ratio, whereas the HD formats are
widescreen with a 16:9 aspect ratio. The academy format was the preferred film
aspect ratio until the 1950s recommended originally by the American Academy
of Motion Picture Art and Sciences, thus the name. As television took over the
format, motion pictures gradually switched to widescreen formats, e.g. cine-
mascope. The HD pixels in widescreen are 1:1 in size, but with use of 1.422:1
pixels PAL also exists as an SD widescreen format, which is used for most cine-
matic moves on DVD.2 The pixel squeeze used is similar to the format squeeze
obtained when recording films with an anamorphic lens to get e.g. 2.35:1 cine-
mascope and thus denoted anamorphic widescreen.

Telecine is a process scanning recordings from film to video and even though
they are displayed at 50 or 60 interlaced fields per second, they are recorded
progressively at 24 frames per second (fps). Converting progressive source video
back from interlaced is called a pulldown – 3:2 for NTSC and 2:2 for PAL
and 30 fps film recordings (many US tv shows, e.g. sitcoms like Friends).
Thus deinterlacing only denotes the process of actually creating extra lines in
interlaced to progressive conversion.

All these facts on standards given above arise not only from technical and
physical issues and limitations. The values and characteristics as for instance
frame rates, are often fixed at their given values to accommodate properties of
the human visual system (HVS), and interlacing was also employed to (ab)use
properties of the HVS. To optimize the viewing experience, the THX norm
(www.thx.com) was defined based on the minimum requirements needed to give
a ’good’ movie experience. Thus sound and video equipment and movie theaters
upholding this norm gets THX certified as a sign of high technical quality.

2.2 Human Vision and the Displaying of Image
Sequences

The reason why we are at all interested in doing upscaling is to enhance the
viewing experience of human beings. There is no doubt that visual processing
takes up a lot of the capacity of the human brain. Better visual inputs will give

2This pixel ratio is most often given as 1:1.422. There seems to be no general agreement
on whether to use height:width or width:height when giving aspect, pixel, screen and frame
ratios or sizes, but we will try to stick to using height:width in accordance with the rows,
columns notation used for 2D matrices.
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Figure 2.1: The human eye. Figure from [73].

two improvements. First, the better the input provided the less resources are
spend processing it, which makes the viewing experience more relaxing. Second,
the more natural the input appears, the less it will annoy the viewer. And that
is what we are after.

Visually pleasing a human being can be done on several levels. On the high-
est level it is a question of psychology, does a person like certain colors more
than other colors, does she prefer football over fashion shows, horror movies
over comedies etc. All lower level vision serves to aid higher level vision. In
providing quality inputs for the lower level vision, technology help film direc-
tors, tv producers etc. get their message through, e.g. by making sure the
viewer sees colors the right way, that the image sequences displayed are sharp
and detailed, that there is no annoying artifacts brought forth by bad record-
ing, transmission, storage, coding etc. We do not want to change the artistic
(or commercial) message presented by the sender, but we wants to make sure it
reaches its human receiver as undistorted as possible, providing the lower level
vision with optimal input. Unless references otherwise, the sources of any infor-
mation given in the following subsections of this section (2.2) are the excellent
book on human sensation and perception by Matlin and Foley [73], and to a
lesser extent the book [43] by Gonzalez and Woods on digital image processing.
Certain technical details mentioned are given in the references mention at the
beginning of Section 2.1.

2.2.1 Basic Properties of the Human Visual System

The lower level part of the human visual system (HVS) consist of the eye, a vi-
sual pathway and (parts of) the visual cortex in the brain. A schematic drawing
of the eye is shown in Figure 2.1. Light is projected through the lens and the
cornea, ensuring (in the healthy eye) the information carried by the light reaches
the retina covering the back of the inside of the eye. The retina is covered by
photoreceptors called rods and cones. The rods gives us the ability to see when
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there is very little light, but only provides grey scale information. The widely
used RGB color model is based over how the cones operate: There are three
kinds of cones each covering parts of the visual light spectrum giving us color
vision when there is an abundance of light available. The photoreceptors are
connected vertically through bipolar cells to ganglion cells, each of the ganglions
collecting the input from a number of photoreceptors forming a receptive field.
It is the size of these receptive fields that crudely put decides the resolution of
the eye and the HVS. But the density of receptive fields vary on the retina and
already in the horizontal interconnection of photoreceptors and receptive fields
through amacrine and horizontal cells complexity is added to the processing of
the visual stimuli and the same goes for it passage through the visual pathway
also doing some processing of the data. This illustrates how complex human
vision is and explains why measuring and deciding on the properties of the HVS
is not straightforward.

It is however a given fact that the stimuli of the receptive fields are treated
in the visual cortex. On a higher level complex objects are recognized, but
very interestingly the less complex processing in the visual cortex responds to
edges, producing different signals according to the orientation and strength of
the given edge. This makes edges a primary cue in vision. When there is no
edges in the light signal projected onto the receptive fields in the retina, no signal
is transmitted from the edge processing cells in the visual cortex connected to
this receptive field. Thus we have to fill data from around edges into any smooth
area where there is no edges present to give stimuli. Thus the variational image
model total variation modelling images as smooth regions separated by edges
mimics the lower level human vision rather well.

We have so far been concerned with the spatial processing of the HVS, but
the time dimension also plays a role. A uniformly colored input (no edges seen
in it) covering the full visual field will over time fade to a medium gray as there
is no changes in the input to the eye over time and the receptive fields will
just transmit a ’standby’ or ’null’ signal. It is changes in light the cells register
and to keep the input from fading the eye makes small rapid movements all the
time. When there are no edges no changes occur and thus the fading described
above occurs, but only after a while (when both the memory stored and the
filling-in effect described further above will fade out). A bit more important to
our work is the fact that the eye to a certain extent is able to track and give
the HVS a fixed and detailed view of moving scenes and objects. Another very
interesting fact and the reason we have motion pictures is that the eye can be
fooled to see motion where there is really none. Stroboscopic movement, e.g.
created by flashing a light briefly at one location of the retina and shortly after
flashing another light at another location will make the viewer perceive it as
just one light moving in a straight line from one position to the other. The
same sensation of movement is obtained with most rapidly changing patterns,
e.g. still images only shown briefly to create motion pictures.

The eye is generally very sensitive to changes in stimuli (mostly induced
by movement in the scene viewed) especially away from the center of focus on
the retina (the fovea). The size of the area changing is also important to the
response of the eye, the larger the area of change, the larger the sensitivity. The
sensitivity to temporal changes in stimuli is called flicker sensitivity in the field
of image sequence display.
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Figure 2.2: The projection of an on-screen image onto the retina. α is the
vertical viewing angle dependant of the screen height h and the viewing distance
d. The same relations are found for the horizontal (and diagonal) directions.
The resolution of the screen ultimately set the limit of the maximal viewing
angle possible.

2.2.2 Meeting the Requirements of the HVS in Technology

The many characteristics of the lower level HVS given above have been impor-
tant in fixing the specifications of the video and broadcast standards described
in section 2.1. Here we will discuss some the connections from HVS to technical
specifications and requirements.

First, the spatial resolution of a discrete (digital) image stimuli has to meet
the resolution of the HVS. The resolution of a screen is critical to how close
viewers can be placed to the screen without spotting pixels instead of what
appears to be a continuous image. The viewing distance and the size of the
screen decides the viewing angle and the size of the projection of the image onto
the retina. A sketch of this projection is given in Figure 2.2.

We know that a) pixels are square and receptive fields mostly circular, b)
receptive fields are unevenly distributed on the retina and of different sizes, c)
the visual processing and perception of details more complex than just defining
the size of receptive fields, and d) the properties of the stimuli (brightness,
color etc.) and viewing conditions affect the viewing experience. Thus the
minimum required resolution of an image display at a given viewing angle has to
fixed empirically. The THX norm requires horizontal viewing angles of at least
25◦ to probably ensure engulfment in the visual experience, keeping the viewer
focused on the on-screen story and nothing else. Since degrees are not that
easy to measure in the living room, the equivalent minimum viewing distance
required is more widely used. On an standard PAL 576i tv-set the minimum
viewing distance is six times the height of the screen. With the higher vertical
resolution obtained by switching to progressive, a 576p screen should be viewed
at distance of at least 4.3 times the height [108]. Thus deinterlacing increases
the engulfment at a given screen size if it is done right (that is, deinterlacing
without creation of visually annoying artifacts). Increasing the spatial resolution
(VSR) will enable increased viewing angle and also lift the viewing experience
if done right. The viewing distances given here and in [108] for other formats
as well are not fixed as many factors decide the minimum and optimal viewing
distances, but the viewing distance given serve as a frame of reference.

We have now established that increased spatial resolution is beneficial thus
justifying the need for deinterlacing and video super resolution but also the
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temporal resolution is important.
The ability of the eye to induce apparent motion when exposed to rapidly

changing patterns is used to make the phi-effect occur: Frame recordings (stills)
of moving objects are shown in succession at a rate high enough to makes the
motion depicted seem fluent. This is motion pictures. In early film recordings
16 fps was considered enough to create the phi-effect, but as technology evolved
the film recording frame rate was since increased to 24 fps, which is the rate
still used today. The rapid change of images needed to create motion pictures
can (depending on the screen size and brightness etc.) be sensed by the eye
as flickering, thus often requiring the frames to be updated faster than what
is required to obtain the phi-effect. That is one of the major reasons why the
PAL, SECAM and NTSC standards have field rates of 50 and 60 Hz.3

The area dependency of the flicker sensitivity in the eye described at the end
of Section 2.2.1 is why interlacing exists. Each line can be updated at half the
rate at which the full screen is updated without the eye sensing it – the area of
a single line is too small to make it flicker in the eye in spite of it low refresh
rate. But as screens grew larger and brighter (in living rooms not growing at
the same speed) the flicker of single lines became apparent. With that a need
of breaking the limits set by the SD television formats appeared. Before HDTV
was introduced, PAL tv-sets with doubled field rates (100 Hz) where developed
in a successful (but time limited) attempt to improve quality without changing
the broadcasting standard.

The viewing angle dictated by the viewing distance (fairly static in most
homes) and screen size is the major reason why higher refresh rates are needed,
but also the screen type (CRT, LCD, plasma, film/DLP/LCD projector), screen
brightness, image content and the general viewing conditions (lighting condi-
tions in the room mainly) puts requirements on the refresh rate. Higher refresh
rates can however be obtained by just redisplaying the same frame, which works
fine on e.g. computer monitors as they mainly show stationary content.

In movie theaters with 24 fps recorded progressive on film (similarly on LCD
screens) one can just let the current image be displayed constantly for 1/24 of a
second as it will not flicker. The same goes in principle with e.g. LCD screens
as they do not suffer from the same problem as CRT screens (and to some
extent plasma screens): The image on screen will fade over (very short) time
on a CRT and thus needs refreshing in order not to flicker. Projection of the
same progressive frame or image for a longer time onto the retina – even just for
1/24 second in moderns cinemas – will make it appear to be a still image and
thus give a sense an abrupt transition to the next frame and destroy the illusion
of fluent motions otherwise obtained by the phi-effect. Therefore a shutter (a
rotating disc which is semi hole, semi impenetrable to light) in the projector
will give short blackouts once or twice during the display of a single frame,
increasing the frame rate to 48 or 72 fps. The same need exist on LCD screen
displaying video. Still, with only 24 fps recorded, high contrast edges in motion
will sometimes appear as moving jerky thereby breaking the illusion of motion
pictures. This failure to uphold the phi-effect also goes for video versions of film
recordings and HD recordings at lower frame rate. Thus the need for increased
temporal resolution is there.

3The values were beyond what was needed with early tv sets under normal viewing con-
ditions, but the values were fixed at these specific values to correspond with the frequency of
the electrical AC power supply to simplify the engineering of tv sets as mentioned earlier.
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2.2.3 Good and Bad Human Vision

As mentioned above the retina photo receptor resolution is not decisive when
it comes to the limit of detail perception in the HVS. Recent research by Rucci
et al. [87] has confirmed what was long suspected: The rapid eye movements
do not only serve the purpose of keeping visual stimuli from fading over time,
it is also used to increase perceived resolution by integrating the low resolution
input of the retina over time. This is human vision at its best.

The eye is able to track motion in an observed scene to a certain limit, and
when this limit is crossed only motion blurred input is received on the retina.
But in some cases the HVS fools its owner by deciding to classify some (motion
blurred) input as sharp even though it is only registered in a blurred version
on the retina, [15] and [74]. This could be seen as a counterpoint to the case of
good vision described just above. In the space between the two cases we need to
provide sharp an detailed video input at a reasonable computational cost. The
challenge will be to produce as sharp and detailed video as possible and keep it
free of any artifacts. We must try to remove artifacts present in the input and
not introduce new ones in the upscaling process. In the next section we will
discuss how to measure the quality of our upscaling results.

2.3 Quality Assessment: Objective vs. Subjective
Measures

”Do you like fermented beans?” Ask a person this and many will not know
what fermented beans are and among those who know, mostly Japanese people
will answer yes as it is a traditional Japanese dish. Taste, emotions, feelings,
inheritance and environment; humans are formed and driven by many factors
hard to measure as objectively as a number, we are individual beings with
subjective opinions and tastes. When it comes to vision there might be similar
measurable neural responses in lower level vision to a given visual input, but
we can unfortunately not use these lower level patterns to predict how each
individual judge or psychologically interpret the visual stimuli leading to this
specific neural pattern. The human psyche and the brain as such are not (yet)
mapped to a degree enabling quantification of it, and we are anyway highly
subjective in our judging of visual – and other – inputs.

Using statistics on a larger number of subjective evaluations done by hu-
man observers can of course give some average answers on e.g. the quality of a
given video enhancement method. But statistically significant answers require
a large test panel and a standardized test setup like the ITU4 recommenda-
tion for subjective quality assessment of video in [50]. The Danish producer of
audiovisual consumer electronics Bang & Olufsen has its own setup using both
layman and expert panels [100] and the same goes for Philips in the same line of
business as described in [4]. These large scale subjective evaluation setups are
so time and resource consuming that they are often not used when presenting
new video processing methods. The alternatives are either smaller subjective
test panels consisting of the authors and maybe some colleagues, or (simple)
objective measures – or often both. Typically results are compared to results

4ITU is the International Telecommunication Union, a United Nations agency.
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obtained by existing methods, simple or advanced, to show the qualities of the
new method presented – in the good cases the visual differences are very clear
and thus the advantages of the new methods clearly shown.

Objective measures give clear cut differences between results obtained with
different methods and leaves no room for interpretation, but are also often very
far from giving a true picture of how the results would be evaluated by a large
group of subjective viewers. Objective measures require a ground truth for
comparison and thus we artificially need to create the degraded low resolution
video by removing (scan) lines, downsampling frames, or removing frames. This
will of course only serve as a simulation of real ’degraded’ data (e.g. video
recorded with an interlaced camera) and thus devaluate the use of objective
measures. Exceptions from the requirements of a ground truth sequence are
the MTI and MSEi measures for deinterlacing evaluation given by Bellers and
de Haan in [4], but the measures then depend on the optical flow computed on
the sequence. The two most widely used objective measures are: Mean square
error (MSE) and peak signal to noise ratio (PSNR). We have used objective
evaluation with varying success. For assessment of deinterlacing (Chapter 3) we
show how the MSE does not correspond with the subjective evaluation, whereas
it corresponds perfectly in video super resolution evaluation (Chapter 4) and
temporal super resolution evaluation (Chapter 4). For the case of deinterlacing
a study of quality assessment carried out by Zhao and de Haan in [109] compares
PSNR with an 18 person subjective evaluation finding statistically significant
correlation between the two. This study can along with ours be considered
limited cases, as the data sets are small (in [109] only five test sequences are used
and the test data is also subject to some postprocessing before the subjective
evaluation is carried out).

In our opinion objective evaluation gives a hint of what to expect from a sub-
jective evaluation, but should never be used on its own, this goes also for more
advanced objective measures that claim to model the HVS closely. 36 objective
measures are put to the test by Kanters in [51] to evaluate image reconstruc-
tion, and it is ”...concluded that it is almost impossible to find an objective error
measure that correctly resembles the human observer results.” ([51], Chapter 4,
p. 76.) We agree on this and are of the opinion that in limited cases (small
data set or certain tasks, e.g. video super resolution) some objective measures
might actually agree quite well with the subjective evaluation, an opinion that
it is also uttered by Kanters in [51] and Nadenau et al. in [77]. In the latter
Nadenau et al. summarizes the results of a larger test of subjective (following
[50]) and objective video quality evaluation by the Video Quality Experts Group
(VQEG) [106]. The correlation in quality ratings between subjective evaluations
conducted at different labs is 0.9 - 0.95 while the best objective measures only
have correlations of 0.8 - 0.85. In [84] Puttenstein et al. have tested 20 objective
quality measures in evaluating noise reduction in video, and found none of them
to correlate very well with the subjective evaluations conducted as well.

In the conclusion of [84] Puttenstein et al. writes: ”Even a combination of
objective measures only approximates the subjective assessment of the quality
of noise reduction algorithms with a descriptive power as low as 59%.” In the
conclusion of the report by the Video Quality Experts Group [106] it is stated
that the VQEG does not recommend the addition of any objective measure to
the ITU Recommendations on video quality assessment. Furthermore it is stated
that no objective measure is able to replace subjective evaluation, a conclusion
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we had also drawn before knowing of this report.

The objective measure used most widely for assessment of accuracy in op-
tical flow calculations, the average angular error (AAE) suffers from the same
problems as the objective image quality assessment measures and can only be
used on artificial sequences due to the lack of a ground truth optical flows on
real world sequences.

2.4 Color Video Processing

All inputs and results given in this thesis are 8-bit luminance channel video.
There are several reasons why we have not produced color video results. First,
and least important is that in many publications color printing is not an option
or rather expensive and thus it is customary to present gray scale results only.
Secondly, extension to full RGB or YCrCb is straightforward as all channels
can be processed independently using the same code as applied to just the
luminance channel. More advanced vectorized version of our algorithm could
be devised (e.g. following the directions given in[103]) which should give better
coherence in geometrical structures between the three channels and thus better
results. This leads us to the third reason why we do luminance processing
only: Advanced vectorized color processing will most likely not be beneficial
on video in general. Analog video is broadcasted and stored using half of the
total bandwidth available for the luminance channel, sharing the other half
between the two color channels [70]. This has two reasons, first, using YCrCb

and not RGB made it easy to add color information to the black and white
broadcasting signals so that people were not forced to buy new color tv sets
and the broadcasters not forced to broadcast both in color and black and white.
At the same time the subsampling of the color channels made room for more
broadcast channels. Secondly, the HVS is less sensitive to information (on edges)
given in the color channels than information given in the luminance channel.
The color compression by subsampling w.r.t. to the full frame resolution has
also found its way into digital video and broadcast where MPEG-2 used on
DVDs and its HD successors (MPEG-4/H.264) all subsample the color channels
when applied in practice on video. The term 4:2:2 describes the sampling ratios
of the YCrCb signal and along with 4:1:1 (or 4:2:0, see [107] for details) this
factor two subsampling in one or two dimensions are the commonly used color
formats.

Therefore it is obvious to just apply simpler methods for the color channels in
deinterlacing. As described in Chapter 3, throwing the full variational algorithm
at the color channels is a complete waste of resources. For temporal super
resolution where fully new frames are created it will of course be necessary to
fully process the color channels, but since the resolution of each color channel is
50 or 25% of that of the luminance channel and the flow will be almost directly
reusable as the channels are highly correlated, the computational overhead will
be small. For video super resolution simple interpolation could be used on the
color channels as long as the magnification factors are not to large, but when
the full algorithm needs to be applied, the flow can again be reused.
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2.5 Optical Flow

In this section we will give a short introduction to the importance of knowing
how an image sequence changes from one frame to the next, how we find the
optical flow of the image sequence. Focus will be on how we can use optical flow
computations to improve upscaling by doing motion compensation (MC).

2.5.1 Temporal Information and Motion Compensation

It should be clear by now, that temporal information is of high value in video
processing. In the 2D spatial plane of an image or video frame, we have in each
point access to neighboring information, helping us to improve processing. The
information could be knowledge of edges, how strong are they and what are their
orientations, helping us to preserve and maybe even enhance the edges when
processing the frame. There is an abundance of information available in image
sequences due to the (relatively) dense temporal information sampling. If there
is no or only very small motion (less than one pixel in size in the digital/discrete
image sequence grid) the relevant temporal information correlated to the pixel
currently being processed is easily found. In case of larger motion we need to
follow the trajectory of the motion to find the relevant temporal information:
We do motion compensation, which requires an estimation of the motion first.

Motion compensation is a cornerstone of all our upscalings and in any image
sequence with motion it is crucial to now the flow if one wants to optimize the
output quality. But there is a price to pay for the gain in quality: Estimating
reliable and precise motion is a complex task.

2.5.2 Motion and Optical Flow

The physical world is 3+1D (3D space and 1D time). In a projection of the world
into 2+1D as done when recording image sequences (2D spatial image frames
and time) information will be lost, and thus we can only do an estimation of the
real, physical 3D motion. The intensities (or in many cases, color) and positions
projected onto the 2D frame plane is all the information we have available when
estimating the motion in image sequence analysis and processing – but also as
human viewers of film, video and television. The apparent motion perceived
when viewing or analyzing 2+1D image sequences is in the computer vision
literature called optical flow.5 Optical flow does in some cases differ from the
true projected 2D motion, the textbook example being the zero optical flow in a
projection of a rotating, uniformly colored sphere, the true projected 2D motion
being the rotation. An illustration of this example is given in Figure 2.3. The
optical flow maps the changes from one frame into the next, which is what we
would like to compute when doing motion compensated video upscaling. Any
knowledge of the geometrically true 2D motion or for that matter the physically
true 3D motion, will not improve the upscaling and thus the data we transmit
to the eye via the display as it is still just an optical 2D projection. In other
fields of computer vision, e.g. robot navigation, true 3D motion reconstruction
is of great importance.

5We will use the terms optical flow computation/calculation/estimation and motion es-
timation interchangeably from here on, as we do estimate the motion when computing the
optical flow.
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3D object Image plane

Figure 2.3: A uniformly colored sphere rotating around any of its own axes on
the left and its projection onto the image plane on the right. Any 2D rota-
tion (speed and axis) can be projected but the optical flow either computed or
perceived will be zero unless additional information is provided. Figure from
[64].

The foundation of optical flow calculation is the assumption that one can
find information recorded in one frame in the next frame as well even if objects
in the recorded scene moves around. We are looking for a displaced frame
difference (DFD). It is typically assumed that the information we are looking
for is (pattern of) intensities that do not change from frame to frame. Thus
the DFD is also known as the brightness (or grey level) constancy assumption
(BCA) and is

u(x + ~v, t + 1)− u(x, t) = 0 (2.1)

where u = u(x, t) is the 2+1D image sequence with x = (x, y) being the spatial
coordinates and t the time dimension. The optical flow we are looking for is
~v = (v1, v2) where (v1, v2) are the (x, y)-coordinates of the flow from frame t to
frame t + 1 assuming a distance of 1 between neighboring frames.

The intensities (or colors) cannot be expected to stay the same from frame
to frame: A red ball is also red in the next frame no matter if it moves or not,
but not if the lighting of the scene changes. The gradient constancy assumption
(GCA)

∇u(x + ~v, t + 1)−∇u(x, t) = 0 (2.2)

which assumes the image gradient ∇u stays constant, helps to cope with the
instability of the BCA under changing lighting conditions. The gradient of the
edge between white an black patches of a football stays (close to) constant even
if the light on the ball changes.6

6Gradients are the almost salient measure of edges in images and as we know from Sec-
tion 2.2, edges is a key cue to the lower level vision. Thus computing optical flows with good
gradient/edge mapping will be a help in doing good motion compensation.
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Figure 2.4: The aperture problem in optical flow computation. Two edges and
corner moves from frame t to frame t + 1. In Aperture 1 we cannot uniquely
identify the correct flow, but in Aperture 2 we have enough (local) information
to uniquely determine the correct flow.

When computing optical flows one would like to get it very detailed and
thus use a small aperture in which we define the flow for each part of a frame.
The aperture is often a small block (e.g. 8x8 pixels) or single pixels in discrete
settings. But when we use a small aperture, we do not always get all the
information we need to calculate the flow correctly. The general problem of
only having very local knowledge of what is going on is called the aperture
problem. Say we have a line moving, then any point on the line in frame t could
go to any point on the line in the next frame t+1 as illustrated with ’Aperture 1’
in Figure 2.4. Say we extend our aperture to include a corner at the end of the
line, then in the corner point we have spatial gradient in two direction and can
determine the exact flow for the whole line as with ’Aperture 2’ in Figure 2.4.
The second fundamental problem in computing optical flows is the occlusion
problem. When an object moves it covers (occludes) and uncovers (disoccludes)
background or other objects behind it in the scene. Since we are looking for
similarities between frame we have a problem when information is only present
in one of the frames. A solution to the problem when one needs the flow to do
motion compensated video processing, is to look for information along the flow
both backwards and forwards in time.

In the next section we will look at how we solve the aperture problem and
handle the occlusion when using variational methods to compute optical flows.

2.5.3 Variational Optical Flow

Variational methods for optical flow calculations are among the most accurate
in existence as found in the major survey by Bruhn et al. in [12] and they fit
perfectly into our variational framework presented later in this chapter. A very
detailed work on variational optical flow is the PhD thesis by Bruhn [13].

All three of our upscalings (DI, VSR and TSR) are motion compensated
thus they need an optical flow field to be operational.7 This complicates matter
as typical implementations of variational optical flow methods can be compu-
tationally heavy. However, being able to draw on temporal information from
neighboring frames is a major gain and will provide improved quality (e.g. shown
for the case of inpainting in [64] by Lauze). Returning to the computational

7We also present a motion adaptive deinterlacing algorithm but our focus is on the motion
compensated deinterlacer.
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complexity of variational optical flow methods, it is possible to run them in re-
altime. In [11] Bruhn et al. presents an implementation of a linear, variational
flow algorithm that produces dense web-cam resolution (18 frames per second
(fps), 252 × 316 spatial resolution) flows in realtime on a standard PC. The
nonlinear methods we used are (a lot) more complex and even SD video (PAL,
25 fps, 576 × 720) requires more resources, but with dedicated hardware and
the right amount of parallel processors it should not be impossible as we will
discuss in Chapter 7 of this thesis.

Fitting any variational optical flow methods into our framework given later
in Section 2.6, is straightforward. Practically all variational flow methods from
the early method of Horn and Schunck in [48] to the so far most accurate
method by Brox et al. presented in [9] consists of two terms. The first is a
data fidelity term defining the temporal correspondence from frame to frame
and is derived from the brightness and gradient constancy assumptions in (2.1)
and (2.2). The second term is a prior on the flow telling us about the expected
local correlation between neighboring flow values. In short the prior models the
fact that local clusters of pixels will have the same or very similar motion as
they will represent just one object with (relatively) uniform motion due to the
physical rigidity of the world. It is more probable that neighboring pixels will
have the same flow than have very different flow. The prior is also the key to
solving the aperture problem, although we really do not care where on the line
in Aperture 1 in Figure 2.4 we get our information from when using the flow for
motion compensation. Still, the prior term imposes a necessary regularization
on the optical flow computation not provided by the data term.

In the pioneer work by Horn and Schunck [48] the data term is the classical
optical flow constraint (OFC),

~v · ∇u + ut = 0 (2.3)

where ∇u = (∂u/∂x, ∂u∂y)T and ut is the derivative of u w.r.t. time. Equa-
tion (2.3) is the differential and linearized version of the brightness constancy
assumption in (2.1). The OFC can also be written

~v · ∇u + ut = ~V T∇3u = £~V u = 0

where ∇3 is the spatiotemporal gradient of u, ~V = (~vT , 1)T and £~V u denotes
the OFC as the Lie-derivative of u along the flow ~V (see e.g. [42]).

In [9] Brox et al. combines the BCA in the data term with the gradient
constancy assumption, which in its linearized form is

£~V∇u = 0 (2.4)

the ~V -directional derivative of the spatial image (frame) gradient.
Taking the classical approach to variational optical flow computations, the

prior term is added to the BCA data term as the aperture problem is an ana-
lytical derived consequence of having one equation (the BCA data term) with
two unknowns, v1 and v2 of the flow vector ~v = (v1, v2). But still with the
GCA added to give us the extra equation, the regularization imposed by the
prior (smoothness term) is important to get a dense flow field by pushing flow
values into areas where salient image content is missing (e.g. along the line in
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Aperture 1 of Figure 2.4. If the line from Aperture 1 to the corner in Aper-
ture 2 is long, the aperture will be too small even with the prior added. The
well-established solution to this problem is to first scale down the sequence and
compute an initial guess of the flow at a coarser version of the image sequence.
This is known as the multiresolution approach when it is done in several steps
forming a pyramid of scales. Since the optical flow constraint and the linearized
GCA are implemented as filter with only very local support, it will take many
iterations to compute flows of high magnitude. Using multiresolution will also
scale down the magnitude of the flow and thus also aid computation of high
magnitude flows.

Between the landmark works by Horn and Schunck [48] and Brox et al. [9]
many variations of variational optical flow have been suggested. For in-depth
reading on variational optical flow we refer to the PhD theses by Bruhn [13]
and Lauze [64]. We ended up mainly using the method of Brox et al. [9] as
it is the most accurate method and had also been used successfully for motion
compensated inpainting by Lauze and Nielsen [65].

The use of this method (and other variational approaches) on real world
video has been relatively limited. When evaluating the quality of a method, the
goal is to minimize the angular error to the ground truth flow, which only exist
if the test sequence has been artificially generated like the Yosemite sequence
mostly used in optical flow benchmarking. Thus we conducted a tedious but also
thorough test to optimize the settings in our implementation of the method from
[9] (on both interlaced and progressive video) by visually judging the quality of
the flow fields obtained using different parameter settings on real world data.
The optimal parameter settings are the ones presented in each of the Chapters
3, 4 and 5 of this thesis.

2.6 Variational Upscaling Framework

Our upscaling problems are sampling problems. Deinterlacing and video super
resolution are subsampling problems as the number of recorded spatial samples
is too low compared to what we need. Temporal super resolution is in most
cases also a subsampling problem, but can also be a case of upsampling. As we
will make clear in Chapter 5 on temporal super resolution, creating fully new
frames is a hard problem no matter whether you increase or decrease the frame
rate of a sequence.

We will start our problem analysis using the sampling theory on the sub-
sampling problem. In the recording process the 2+1D data projected from the
real world has been sampled at frequencies lower than what we would like to
display it at. The Nyquist-Shannon (sampling) theorem

Fmax ≤ Fs

2

tells us to use a sampling frequency Fs at least twice as high as the highest fre-
quency Fmax we want to be able to sample from our signal. In video this decides
how fine details of the scene depicted we will be able to include. Frequencies
higher than Fs/2 will be aliased if present in the signal and no (analog) low pass
filtering is applied prior to the sampling (for details refer to [83] and [43]).
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The essential message we get from this analysis is that our upscaling prob-
lems as they are subsampling problems by birth, are ill-posed. We will never
be able to create what was never sampled, the sub-sampling process is an ir-
reversible problem. Due to the presence of motion temporal super resolution
is also an ill-posed problem when decreasing the frame rate. Spatiotemporal
frequency analysis of the deinterlacing problem in the presence of motion has
conducted by Bellers and de Haan in [4].

2.6.1 Bayesian Inference

To model image sequences, their optical flow and content and to impose some
regularity to the ill-posedness we need an inference machine. The human viewer
might be satisfied with many different solutions to our problems, but even if the
human observer cannot see when or if the sampling process has been reversed,
trying to go back as far as we can towards the analytically true solution is a
good idea. We know it will be satisfactory for sure and where we cannot get
close, the regularity will help us not stray to far in a wrong direction. Especially
if the model applied for regularization lies close to how the human visual system
itself imposes regularity and generally processes visual input. Exemplified the
above problem view means that going towards how an standard definition signal
would have looked recorded in high definition (HD) is a good idea when doing
upscaling. Doing so we should impose regularity in our model to avoid creat-
ing new artifacts (e.g. the ringing patterns often created by super resolution
algorithms) that would annoy the viewer.

The inference machine we will use to define a framework for our upscaling
problem of creating new data in an image sequence and impose some regular-
ization on the ill-posedness of the problem is the Bayesian inference

p(a|b) =
p(b|a)p(a)

p(b)
(2.5)

where p(a|b) is the a posteriori, p(b|a) is the likelihood, p(a) the prior on (or
simply the probability of) a and p(b) is the evidence of b.

When it comes to the need of (re)creating information never sampled or
missing due to a degradation of the image sequence data, de-noising, inpainting
and upscaling are very similar problems. The similarity becomes even clearer
when defining a joint framework of the problems using Bayes inference. Substi-
tuting a with u a desired output image (de-noised, upscaled or inpainted) and
b with u0 the input image (e.g. noisy, of low resolution or scratched), we get

p(u|u0) =
p(u0|u)p(u)

p(u0)
. (2.6)

To keep this example clear, we have started looking just at single images. The
likelihood p(u0|u) is also known as the data (fidelity) term in variational for-
mulations as it tells us how the input relates to the output, e.g. how to place
the existing lines of an interlaced signal in the deinterlaced, progressive output.
p(u) is the spatial prior on u, which decides what image content we allow in
our images, how we model images. Maximizing the a posteriori, equal to maxi-
mizing the right hand side in (2.6), optimizes the probability of u knowing u0,
which is just what we wish to do. The process is called maximum a posteriori
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(MAP) and to do MAP we do not need the evidence p(u0), which is just a nor-
malization factor (the probability of the input is fixed since it is known), thus
we have

p(u|u0) ∝ p(u0|u)p(u). (2.7)

The locus of missing data D which is always known in upscaling, can be
harder to find when doing inpainting. We wish to include it as known in our
model, that is we get a new a posteriori, p(u|u0, D) and from that a new like-
lihood term p(u0|u,D) and a new prior p(u|D). Our choice of prior on u is in-
dependent of the locus of missing data, it models what (ideal) image sequences
are, what we strive for. Thus p(u|D) = p(u) and we have

p(u|u0, D) ∝ p(u0|u,D)p(u).

In (pure) de-nosing D will just cover the whole image and thus can be excluded.
The same goes for video super resolution, but in temporal super resolution and
deinterlacing D tells us where data is missing. The likelihood term is what has to
be different between different uses of our framework, thus it will be thoroughly
discussed in each of the Chapters 3, 4 and 5.

Extending our formulation to be on image sequences instead of images, u0

denotes an input image sequence and u a desired output image sequence. We
now also wish to compute the flow, ~v of u, which gives us a new a posteriori,
p(u,~v|u0, D), and thus get a new likelihood term, p(u0|u,~v, D) and a new prior,
p(u,~v) = p(u|~v)p(~v). Since the degradation or subsampling of u0 is independent
of the optical flow ~v, the likelihood is p(u0|u,~v, D) = p(u0|u,D). We have
already discussed in Section 2.5 how spatiotemporal image sequences are not a
3D but a 2+1D volume with space and time being separate dimension, thus we
assume that the p(u|~v) part of the prior is p(us, ut|~v) and factor it as

p(us, ut|~v) = p(ut|us, ~v)p(us|~v)

where the first term models the temporal coherence of an image sequence. The
latter term on the right hand side gives a change to model motion blur, but as we
consider motion blur a desired artistic expression and for the sake of simplicity
we assume independence of us and ~v, thus p(us|~v) = p(us).

Gathering the new terms for image sequences, we end up at the Bayesian
framework for joint image sequence inpainting and motion recovery given by
Lauze in [64] (and Lauze/Nielsen in [65])

p(u,~v|u0, D) ∝ p(u0|u,D)︸ ︷︷ ︸
P0

p(us)︸ ︷︷ ︸
P1

p(ut|us, ~v)︸ ︷︷ ︸
P2

p(~v)︸︷︷︸
P3

(2.8)

which we will also use for deinterlacing and temporal super resolution. Leaving
D out we have the form of the framework we will use for video super resolution

p(u,~v|u0) ∝ p(u0|u)︸ ︷︷ ︸
P0

p(us)︸ ︷︷ ︸
P1

p(ut|us, ~v)︸ ︷︷ ︸
P2

p(~v)︸︷︷︸
P3

. (2.9)

For both forms, (2.8) and (2.9), the right hand side terms are: P0, the
image sequence likelihood, P1 the spatial prior on image sequences, P3 the prior
on motion fields as discussed in Section 2.5, and P2 a term that acts both
as spatiotemporal prior on the image sequence and as likelihood term for the
motion field, which was also discussed in Section 2.5.
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2.6.2 Variational Formulation

The Bayesian modelling framework could be used directly to maximize the a
posteriori (MAP) but we rewrite (2.9) into an energy minimization problem.
From [75] by Mumford we know that E(x) = − log p(x) (given that the proba-
bility functions are Gibbsian) and get

E(u,~v) = E(u0, u)︸ ︷︷ ︸
E0

+ E(us)︸ ︷︷ ︸
E1

+ E(ut, us, ~v)︸ ︷︷ ︸
E2

+ E(~v)︸ ︷︷ ︸
E3

. (2.10)

Using calculus of variation we find and solve corresponding Euler-Lagrange
equations as will be described in Chapters 3–5.

In deinterlacing the data term E0 tells us where the missing lines are located
in the spatiotemporal data volume that constitutes u, and it controls whether or
not to do any processing of the known lines in the output. In video super reso-
lution E0 represents the super resolution constraint telling us how to map image
data between high and low resolution frames. In temporal super resolution it
ensures that we keep input frames untouched, also when they are located in
the same temporal position as an output frame and thus included in the output
(e.g. every other frame in the output of a frame doubling).8

The data term is the only term that needs to be different in different appli-
cations of our framework, the remaining terms could each be exactly the same
no matter what kind of upscaling (or other video processing) we were doing.
They define what image sequences and their flows as the should be according
to the model chosen. We need to chose these terms to give the best possible
modelling of real image sequences, but still keep the implementations of the
framework mathematically tractable and the computational complexity down
to a reasonable level. Total variation is mostly a good compromise between
optimal output quality and complexity.

The last term, E3 is the regularization on the flow (equivalent to the prior
P2). We have discussed in Section 2.5 how total variation will give better flow
segmentation as it preserves edges. For the spatial regularization of the intensi-
ties E1, it is well-known from image de-nosing and diffusion that total variation
will help preserve edges. For the E2-term total variation will help handle occlu-
sions in the flow calculations as it was also mentioned in Section 2.5. For the
intensities the beneficial effect is even higher as total variation in E2 will stop
diffusion across temporal edges at occlusions.

Actually minimizing (2.10) is done by minimizing two separate, yet coupled
equations, E(u) and E(~v). As they are functionals of only u or ~v, the terms E0

and E1 only appears in E(u) and E3 only in E(~v). But E2 is a mixed term, but
we can still formulate it differently in E(u) and E(~v). This will to some degree
ruin the beautiful theoretical consistency of our framework, but will in practice
be a tool to optimize results and control complexity. In general we use both
the brightness constancy assumption and the gradient constancy assumption
when minimizing the energy of the flow E(~v) as it is done by Brox et al. in
[9]. For the intensity energy E(u) the GCA will lead to a fourth order term

8In temporal super resolution we consider every frame a discrete time sample with near
zero temporal aperture, but in case one wishes to model the temporal aperture of frames, then
there could be overlaps between output and input temporal point spread functions. In that
case one needs a more complex data term close to the one used for video super resolution, but
with added modelling for temporal dynamic events (motion).
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in the Euler-Lagrange equation derived from it (see [64]). Since the intensity
Euler-Lagrange equation otherwise only contains first and second order terms,
adding the GCA will make the minimization of E(u) a lot heavier. Since we use
Taylor approximations to get numerical implementations of the Euler-Lagrange
equations and we solve them by taking small, iterative steps, this fourth order
term will (most likely) have very little effect on the overall result, and thus we
leave it out of E(u). Further discussion on the (possible) use of the GCA in
E(u) can be found in Chapters 3– 5.

A very important feature of our framework is that it suggests simultaneous
optimization of the flow and intensities. The idea is that the solution to u will
be optimal if we know the optimal flow ~v and vice versa. True simultaneousness
is a theoretic concept, but we get as close as possible in practice by solving this
chicken-egg problem incrementally, switching between improving u and ~v as we
iterate towards a solution. Thus we stepwise improve both flow and intensities
when minimizing E(u) and E(~v) in parallel.



Chapter 3

Deinterlacing

We present a variational framework for deinterlacing that was born for inpaint-
ing and since redeveloped for deinterlacing. From the framework we derive
a motion adaptive (MA) deinterlacer and a motion compensated (MC) dein-
terlacer and test them together with a selection of known deinterlacers. To
illustrate the need for MC deinterlacing the interlacing problem is introduced.
It cannot be solved by MA deinterlacers or any simpler deinterlacers but only
by MC deinterlacers. The major hurdle in doing MC deinterlacing is doing re-
liable optical flow computations (a.k.a. motion estimation, ME) on interlaced
video.1 We discuss a number of strategies for computing optical flows on inter-
laced video hoping to shed some light on this problem. We produce results on
real world video data with our variational MC deinterlacer that even in many
difficult cases are indistinguishable from the ground truth and in general the
best deinterlacing results we have seen.

3.1 Introduction

Throughout the history of television interlaced scan has been the dominant scan
format for recording, broadcasting, storing and displaying of video and televi-
sion. Interlacing is cost efficient and has until recently been sufficient to ensure
the best possible viewing experience to the human visual system (HVS). This is
no longer the case for several reasons. First, interlacing artifacts that were once
not a problem, has started to become visible as screens has grown larger and
brighter with higher contrasts. Secondly, progressive scan screens (and tv/video
cameras) has become available, offering significantly better viewing quality.

Progressive scan is when all horizontal lines of a 2D spatial video frame is
scanned, whereas interlaced scan is alternating between recording only the even
or the odd horizontal lines of the frames, denoting these half frames even and
odd fields. Interlacing scan is illustrated in Figure 3.1(a). When the interlaced
fields are recorded separated in time, then two neighboring fields (even, odd
pair) cannot be merged to one full frame to be displayed on progressive screens
without problems, and neither can the illusion of full frames being shown on

1In this chapter we will use the terms optical flow calculations and motion estimation (ME)
interchangeably referring to the determining optical flow changing on video frame/field into
the next frame/field as discussed in Section 2.5 of this thesis.
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(a) (b) (c)

Figure 3.1: (a) The interlacing (width, height, time)-volume. (b) Interlacing
artifacts shown by a merge of a time t field with its neighboring time t + 1
field, first serration due to horizontal motion in the scene is depicted, second
line crawl due to vertical motion. (c) shows how the simple scene in (b) should
look perfectly deinterlaced.

interlaced screens be kept when these interlaced screens are big and bright.2 It
is a well-known fact that the HVS is more sensitive to flicker in large areas (see
Section 2.2.1), which is why interlaced scan was thought of in the first place:
On smaller screens no one will spot single lines. It was as screens grew in size,
brightness and contrast that single image lines grew big enough to be spotted
individually by the HVS and interlacing artifacts became visible.

The interlacing artifacts serration and line crawl are shown in Figure 3.1(b),
whereas the third kind, line flicker cannot be shown in print. It appears when
a detail appears in just one horizontal line (it has the highest possible sampling
frequency according to the Nyquist-Shannon sampling theorem) and is then only
displayed at half the intended screen refresh rate and thus appears to flicker.
Details on interlacing artifacts can be found in [4], [55] and [81].

The broadcasting and distribution of television and video media is still
dominated by interlaced scan. Even with the rise of high-definition television
(HDTV) and the known superiority in viewing quality of progressive video over
interlaced video, interlacing persists, e.g. as one of the formats used for HDTV
in the US and Japan (1080i, 1080 × 1920 resolution with only 540 lines scanned
in each frame). As most plasma and LCD screens are progressive displays and
they are dominating the world market of both tv sets and computer monitors
today, and as devices used for tv and video (and music) are integrating with
computers into media centers, there is – and will be in the future – a need for
conversion between interlaced and progressive formats.3 going from progressive
to interlaced scan is a simple downsampling whereas interlaced to progressive
conversion, more commonly known as deinterlacing, is an ill-posed upscaling
problem.

The goal of deinterlacing is to create high quality progressive video from in-
terlaced video, thus removing all interlacing artifacts, while doubling the amount
of information as each field is converted to a frame.

In this chapter we will present a variational framework for deinterlacing and
two deinterlacing algorithms developed from that, both of which do high qual-

2The size of the screen is of course only a problem if the viewing distance is short and thus
the viewing angle big. Details on this can be found in section 2.2 of this thesis.

3The ALiS panel technology by Hitachi and Fujitsu is a known example of interlaced scan
applied to flat panel displays.
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(a) (b)

Figure 3.2: The Interlacing Problem. (a) Cutout of two consecutive progressive
frames of the sequence Truck of a truck driving towards the camera. (b) the
same two cutouts viewed as interlaced fields (by setting every other line to
zero/black) where almost all information on the correct spatial structure is
gone, thus making deinterlacing an extremely difficult task.

ity deinterlacing. Let us say we have a representative selection of interlaced
video w.r.t. motion and details depicted (high spatial frequency content). Us-
ing simple spatial or temporal deinterlacing techniques on this video will yield
acceptable (spatial interpolation) to poor (temporal interpolation) results and
have plenty of interlacing artifacts left in the output. The poor quality comes
from not adapting to or compensating for the presence of motion.

Using motion adaptive deinterlacers like one of the two we will present in
this paper along with the ones given in [94] and in state of the art chips sets like
the DCDir by Faroudja (and Genesis Microchips) will often get rid of most of
the interlacing artifacts.4 Motion adaptive deinterlacers use motion detection
to determine whether to use local temporal interpolation – in case of no motion
and thus high local temporal coherence – and when to interpolate spatially only
– in case of motion. Motion adaptive deinterlacers are, however, unable to solve
what we like to call The Interlacing Problem. It is basically the problem of
correctly deinterlacing sequences containing details (high spatial frequencies) in
motion as in the example given in Figure 3.2. ’Correctly deinterlacing’ meaning
that the output appears detailed to the human visual system, and does not
contain any visible artifacts to annoy it.

The Interlacing Problem can be handled by smoothing the region with de-
tails in motion to remove any interlacing artifacts but the resulting blur is also
an artifact. A better choice is to propagate information along the motion trajec-
tory (optical flow) doing motion compensated (MC) deinterlacing, which done
right will transport detailed video content recorded in neighboring fields into the
lines in the present field where they are missing. From a mere visual inspection
of the two frames/fields of the sequence Truck given in Figure 3.2 it is obvious
how difficult it would be to recreate the correct structure using only local tem-
poral and spatial information as all non-MC deinterlacers do. Figure 3.3 shows
another example of The Interlacing Problem, on which any of the five motion
adaptive deinterlacers we have tested on it fails – as does any simpler deinter-
lacers. As seen in Figure 3.3 our variational motion compensated deinterlacer
is able to solve The Interlacing Problem in this case.

Not all cases of The Interlacing Problem can be solved with our variational
MC deinterlacer, as estimating the optical flow precisely on the perforated struc-
ture of interlaced image volumes is not a simple task, which the Truck example

4The Faroudja DCDir is generally rated as the best deinterlacer (and video processor)
there is in the world of high-end home entertainment, see e.g. www.hometheaterhifi.com.
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(a) (b)

(c) (d)

Figure 3.3: Part of the progressive sequence Grille in (a) with closeup zoom in
(b). The security roller grille is moving downwards at a speed of ca. 2 pixels per
frame (≈ 1/4 vertical grille space). This sequence is then artificially interlaced.
(c) deinterlaced output using our variational motion adaptive algorithm (the
four other motion adaptive deinterlacer tested on Grille give similar or worse
results). (d) deinterlaced output of our variational motion compensated dein-
terlacer, the result being almost identical to the original with unbroken grille
lines and sharp, straight edges.

in Fig. 3.2 illustrates (especially when viewed as video). Even with motion
compensated deinterlacing increasing the density of information available for
the actual deinterlacing, The Interlacing Problem embodies the ill-posedness of
doing deinterlacing. We can however hope to get asymptotically close to the
perfect solution of the problem. Using modelling of the human visual system
and real world physical constraints on recorded image sequence content as in
our suggested variational MC deinterlacing algorithm is a significant step in the
right direction.

This chapter is organized as follows. In Section 3.2 we discuss deinterlacing in
depth and give an overview of related work on deinterlacing including a number
of known deinterlacers we have implemented and tested. In Section 3.3 we
present our probability based variational framework and our two deinterlacing
algorithms derived from it and before we conclude, we present our experimental
work and deinterlacing results in Section 3.4.

3.2 Background and Related Work

In this section we will discuss other work on deinterlacing and present ten dein-
terlacing algorithms from literature, which we have implemented and tested
along with our own two algorithms and the DCDir deinterlacing in Faroudja’s
DVP-1010 video processor. We also discuss motion adaptive and motion com-
pensated deinterlacing, optical flow estimation on interlaced video and the origin
of variational deinterlacing.



26 Deinterlacing

3.2.1 Simple Deinterlacing Techniques

The simple algorithms given here can be found in video processing text books
like [98] and [107] and in the ’must-read’ book on deinterlacing by Bellers and
de Haan, [4]. Starting with the spatial methods, Line Doubling (LDB) is the
simplest interpolating the missing horizontal line by repetition of the above
known line. LDB has been widely used in practice. Line Averaging (LAV),
which is just a bit more advanced. LAV is the vertical fifty-fifty average of the
above and below lines and is probably the most used deinterlacer in practice
(often called ’bob’). In the comprehensive testing of deinterlacers in [4] and
in our test as well LAV performs – given it simplicity – extremely well, which
explains its popularity. The same cannot be said about the simplest temporal
deinterlacer, Field Insertion (FI), a.k.a. merging or weaving. FI fills in the blank
lines with neighboring lines in time and is basically a temporal version of LDB.
FI was the algorithm used to simulate interlaced views of serration and line crawl
in Figure 6.1(b) and its results are generally very similar to the images seen on
an interlaced display, [4] and [107]. Field averaging (FAV) is a the temporal
equivalent of LAV averaging the before and after temporal neighboring lines of
each missing line. Vertical Temporal interpolation (VT) is a simple fifty-fifty
combination of LAV and FAV. Many variations of vertical temporal filters have
been suggested, e.g. by Thomas in [99]. All schemes mentioned so far are fixed,
linear filters, whereas the algorithms we describe from here on are nonlinear
and adapt to certain conditions in their local neighborhood and chose one of
several possible interpolations depending on the local image content to yield
better results. Or they are motion compensated.

Median filtering (Med) which is a real classic, is used for deinterlacing in
many variations, see for instance [4], [16], [45], [94], [95] and [98]. For our
testing we have chosen a 3-tap vertical spatiotemporal version from [4] although
we use the forward temporal neighbor instead of the backward. In both cases
the second and third taps are the two vertical spatial neighbors also used in
LAV.

Spatial Edge Adaptive deinterlacing (EA) has been suggested in several
forms, e.g. in [31], [63] and [98]. In all cases one tries to find dominating
edge direction along which to interpolate with a skewed LAV filter.5 This works
relatively well on ±45o edges, but it fails miserably on data like the example
in Figure 3.2. We have chosen to implement a scheme that determines the di-
rection of interpolation by measuring the Summed Absolute Differences (SAD)
along as set of candidate edge directions as described in [98]. We have modified
it to detect the best of five directions, 0o, ±45o and ±63o from vertical. We have
now found seven of the ten deinterlacer we have implemented and tested (LDB,
LAV, FI, FAV, VT, Med and EA), the remaining three are motion adaptive.

3.2.2 Motion Adaptive Deinterlacing

Motion adaptive deinterlacing (MA) can be done in a countless number of ways,
but all MA deinterlacers have to do some form of per frame/region/pixel mo-
tion detection to switch off temporal interpolation when motion is present in
a frame/region/pixel. Some graduate the switch-off depending on the amount

5The edge direction mentioned here is along the edge and not the more common crossing
direction (gradient direction).
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or strength of the motion detected. We have chosen to describe and implement
three MA deinterlacers.

The first is suggested in [94] and [95]. It does explicit per pixel motion
detection and takes advantage of the qualities of simpler schemes under different
conditions: FAV when no motion is detected, spatiotemporal median filtering
when the motion is detected to be slow and LAV when fast motion is detected.
Thresholds classify the motion. We denote it MA1.

The second algorithm we have implemented is weighted vertical temporal
deinterlacing (MA2) and is a simpler motion adaptive deinterlacer than MA1.
MA2 uses a smooth weighted transition between temporal and vertical inter-
polation instead of a hard switching between schemes as in MA1. MA2 is de-
scribed in detail in [63], where it is the second level in a successive approximation
scheme. The idea of the successive approximation is to weigh the deinterlaced
output of the current level with the result(s) from the previous one(s). The
first level of approximation in [63] is LAV, the second the MA2 and the third
is and edge adaptive scheme doing edge detection on the output of the MA2
deinterlacer.

In our tests we have implemented as a third motion adaptive deinterlacer
(MA3) the third level of the successive approximation, but have used our own
edge adaptive deinterlacer, EA from Section 3.2.1 above, which works directly
on the interlaced input. We thereby take the successiveness out of the scheme
but in also remove the possibility of error propagation. Error propagation is
the big risk of successive methods where the faults caused by the simplicity of
methods used first might no be robustly discovered and removed later. We will
discuss the problem of error propagation in optical flow estimation on interlaced
sequences in Section 3.2.5.

The video processor we have used to benchmark our own algorithms against
is the Faroudja DVP-1010 video processor, which is considered the state of the
art deinterlacer in the high-end home cinema market today. The deinterlacing of
the Faroudja processor known as DCDir (Direction Correlated De-interlacing)
is basically a motion adaptive algorithm with a motion detector (MD) classifying
the amount of motion on a 5-10 step scale. When there is no motion a median
spatio-temporal filter is applied, which is then turned stepwise off as the amount
of motion detected increases while a the output of a purely spatial filter is
stepwise mixed in. The spatial filter, which takes completely over when the
highest level of motion is reached is edge adaptive (a.k.a. direction correlated)
detecting ±45◦ edges. If no dominant edge orientation can be detected, LAV is
used as fall-back.

Another deinterlacing technology on the market today is Sony’s X- Algo-
rithm which is part of the signal processing unit sold with their top of the line
professional broadcast/film HD LCD monitors (see www.sonybiz.net/lmd for
further details). The X-algorithm is also motion adaptive and like Faroudja’s
DCDir it uses a seven directional edge adaptive filter in pixels where motion
is detected. We have not had the chance to test this algorithm, but sincerely
doubt that the extra directions will improve results on e.g. the Truck sequence
(Figure 3.2) as it is unlikely that the dominant edge direction detected will be
the right one. The thin, brighter metal grid lines will most likely not be chosen
over the darker background not even with very robust detection and switching,
there is simply to little information available locally in each frame. Even with
our five directional EA we doubt that interpolation in the ±63o direction will
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take place very often.

3.2.3 Motion Compensated Deinterlacing

In the intensity interpolation part motion compensated deinterlacing is basically
the same as motion adaptive deinterlacing except on very important difference:
One replaces the local temporal information at the same (x, y)-coordinates with
t± 1 information along the flow trajectories. In theory this gives you access to
correct temporal information in all pixels and high quality results are no longer
obtained only in stationary parts of the frame. In practice there are some factors
preventing you from getting perfect results in all cases. We will discuss the three
most important of these factors.

First and least important, flows often point to spatially non-grid point in
your discrete grid, thus invoking a need for spatial interpolation to get the t± 1
intensity values.

Second, optical flow methods do not guarantee precise and reliable flows in
general wherefore we need local spatial interpolation – like in motion adaptive
deinterlacers – as a fall-back option where temporal information is not suffi-
ciently reliable.

Third, and most important, precise and reliable optical flow estimation is
more difficult on interlaced video than on progressive video, and most existing
optical flow methods are developed for use on progressive video. Using any of
these methods on interlaced image sequences is not straightforward. The typical
approach to interlaced optical flow estimation is using a simple non-motion
compensated deinterlacer to create an initial progressive sequence to be used in
the optical flow estimation, as discussed in [4] and done in [63]. This of course
influences the accuracy of the resulting obtained flow due to the interlacing
artifacts introduced by the simple deinterlacer used for initialization. Spatial
interpolation is always the only reliable choice of any non-motion compensated
deinterlacer in regions of motion, and thus the problem of obtaining an accurate
flow will ironically be most severe in the regions where an accurate flow is needed
the most: Regions troubled by The Interlacing Problem.

In [4] Bellers and de Haan thoroughly test 16 deinterlacers, among them 11
motion compensated methods, of which some are developed by the authors of
[4]. The 11 MC deinterlacers use flows generated by block matching motion esti-
mation algorithms also described in [4]. Using mean square error (MSE, to some
known as the L2-norm) as a quality measure when testing the 16 algorithms on a
set of sequences with motion, the simple line averaging scores an average MSE of
43 and four of the motion compensated algorithms actually scores worse (45-72).
The seven algorithms performing better than LAV scores 36-27 thus performing
up to 37% better. Even when introducing two other measures, MSEi and MTI
(see [4] for details) that use the flow in calculating the error, it does not show
that MC deinterlacing is significantly better than simple deinterlacing. It is a
problem that no motion adaptive deinterlacers are included in the test. Since
they are in output quality somewhere in between simple deinterlacing and MC
deinterlacing, it widens the gap, it questions how good the MC deinterlacers in
test are compared to MA deinterlacers. The argument of not considering mo-
tion adaptive deinterlacing is, that the motion detection is almost as complex
as motion compensation – at least when using block matching. Block matching
is when implemented right a very fast way to estimate optical flows, but due to
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the simplicity in modelling (translational motion only etc.) block matching flow
are not among the most precise and reliable. That is, we believe, a common
handicap of the 11 MC deinterlacers tested in [4]. Objective measures are how-
ever not the optimal method for evaluating deinterlacing results as it models
very poorly how the human visual system judges the quality of deinterlacing.
In [4] some subjective testing is presented, but not to an extent that provides
full evidence of the superior performance of the presented motion compensated
deinterlacers.

At least one of the MC deinterlacer from [4] have been used in circuits for
Philips TV sets and progressive DVD-players.6 Even though we have raised
some critique here, the book [4] is highly recommended reading and it should
be considered that the methods are at least seven years old (in 2007).

In [6] a newer example of a motion compensated deinterlacing algorithm
is presented. Video versions of the deinterlacing results that could earlier be
downloaded from the authors web site, did not really show the full potential of
MC deinterlacing as e.g. the Apollo example still had severe serration artifacts.

There exists no common benchmark for performance evaluation for deinter-
lacing and there is an ongoing discussion on whether objective measures are
really worthwhile, as they are not good models of subjective quality as judged
by human observer (see Section 2.3 of this thesis). The human visual system,
the perception, sensation and psyche of humans is simply to complex to eas-
ily model in objective error measures. The work by Biswas et al. in [5] is a
resent attempt to come up with a performance analysis for MC deinterlacing,
but [5] mostly focusses on the effect of errors in the flow vector field. Quality is
measured using MSE on output deinterlaced sequences, but does not provide a
generic, objective benchmark for deinterlacer performance.

We have chosen not to implement any motion compensated deinterlacers
besides our own. Deinterlacers and optical flow algorithms are very complex
and we wish to focus on our framework and algorithms derived from it. A
discussion on the problems of benchmarking can be found in Section 5.2.8 later
in this thesis.

3.2.4 Variational Deinterlacing

The idea of doing deinterlacing using variational methods was born when com-
paring the problems of deinterlacing and inpainting. Inpainting is to recreate
regions in an image or film lost due to scratches, blotches etc. Deinterlacing is
creating new lines in a video sequence, but considering the lines as having been
lost during the recording of the scene, the problems can be considered similar.

A presentation of our variational framework for deinterlacing derived from an
variational inpainting framework [65] is given in Section 3.3.1. From literature
study we deduct that we are the first to use variational methods for deinterlac-
ing. Variational methods for inpainting are still relatively new and since they
are also computationally heavy, they do not seem immediately suited for use in
deinterlacing, which mostly has to be done in realtime at the viewer end of a
broadcasting or other video distribution chain (in a DVD-player, tv-set, set top
box etc.). Inpainting can be done on a render farm over night (or longer) before
printing a new and restored copy of the (old) damaged film, thus allowing the

6Both authors are or have been affiliated with Philips Research.
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developer to prioritize quality without limitations on running times, memory
requirements etc.

Variational methods for optical flow computations have been widely known
since the pioneering work [48] by Horn and Schunck was published in 1981.
The most accurate optical flow algorithm to date is presented in [9] and is
also variational. Both these methods and most other variational methods can
be integrated into both our variational framework for deinterlacing as well as
in it inpainting ancestor in [65]. Generally variational optical flow algorithms
produce the best and most accurate flow field of any methods available today,
as the survey on motion estimation in [12] shows.

Both variational methods for inpainting and optical flow computations are
computationally expensive. Recent work by Bruhn et al. in [11] shows that vari-
ational optical flow computations can be done in real-time on a standard PC.
Since the flow computation is the heavy part of a variational motion compen-
sated deinterlacer, variational MC deinterlacing in real-time seems realistic, es-
pecially as we aim at doing hardware implementations using field programmable
gate-arrays (FPGAs). As variational motion adaptive deinterlacing is less com-
plex than MC deinterlacing, real-time implementations are also within reach
here.

We have so far only seen one other publication presenting work similar to
ours in term of methodology. In [102] inpainting techniques are being used for
deinterlacing, doing edge adaptive deinterlacing with edge orientations being
detected by computation of structure tensors. (See [103] for details on struc-
ture tensor based inpainting.) The edge adaptive deinterlacing is successively
followed by a motion compensated step, which do not do further deinterlacing,
but do shutter-modelling to create motion blur and thus make video look more
film like when combining the two types of footage in film/video production.

3.2.5 Optical Flow Estimation in Interlaced Video

As discussed earlier in Section 3.2.3 optical flow estimation on interlaced video
is not straightforward. Known optical flow methods for progressive video need
to be redesigned before they can be applied or the interlaced video has to be
preprocessed in some fashion.

The very common approach of using a simple non-motion compensated dein-
terlacer to create an initial progressive sequence for optical flow computation
(see e.g. [63]) is potentially troublesome. Any use of prior deinterlaced data in
the optical flow computation might propagate errors caused e.g. by remaining
interlacing artifacts, the problem being worst in areas with details in motion
(i.e. The Interlacing Problem). Thus there is a risk of getting unreliable and
unprecise optical flows and poor deinterlaced output quality.

Due to these risks we wanted to calculate the optical flow in another way,
but we are faced with a hen-egg problem: In the new lines, should you compute
the flow or the intensities first? In ’solving’ the hen-egg problem we do in all
cases need some optical flow and/or intensity initialization, which should be
calculated under as few assumptions as possible to minimize error propagating
from doing too simple preprocessing.

We have considered six possible solutions computing either a flow field to be
used in the actual MC deinterlacing or in some way interleaving optical flow and
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intensity computations.7 The six suggested solutions are listed here in order of
estimated effect on visual output quality:

1. The cost efficient approach: Work at half the vertical resolution using the
original pixels of the odd fields and the simple deinterlaced odd lines of
the even fields to get odd line data for the full sequence. (Or only use the
even lines instead.) This cuts the computational cost by 50% but then
requires a vertical doubling of the flow field as postprocessing.

2. The standard approach: Do optical flow estimation on a simple deinter-
laced version of the full progressive sequence.

3. The ’half a pixel up half a pixel down’ approach: Use original data only
and correct for the misalignment of half a pixel when vertically doubling
the flow field. This seems a simple solution but in practice it will not
be easy to handle top and bottom boundary conditions and all motions
will be imposed a up-down zigzagging motion requiring some adaption.
Alternatively one could use information at half-grid positions in every
other field but this is nontrivial to do in actual implementations and would
bring us close to solution 1) suggested above.

4. The original data only approach: Use given input data only but process
the even fields and the odd fields separately as two independent progres-
sive sequences. This is what we actually chose to use in our variational
MC deinterlacer. To obtain the final flow field from the two separately
computed even and odd ’t to t+2’ flow fields a ’fusion-scaling-smoothing’-
scheme is needed.

5. The idealistic approach: Develop an interlaced optical flow estimator which
is specifically designed to run on the perforated interlaced data volume.
There is an unknown complexity to this task, e.g. in the obvious idea of
allowing for flows to go through not yet deinterlaced lines and point at
further away existing lines (flow vectors could have lengths one, two or
more in time). To our knowledge these kind of methods have never been
tried and furthermore they would require some post-interpolation of flows
vectors for the new lines.

6. The simultaneous approach: Develop a motion compensated deinterlacer
which simultaneously calculates intensities and optical flows in the new
lines as finding the flow and intensities in the new lines where neither
exists is really a ’hen-egg’ problem. We have worked on this subject in
video super resolution (Chapter 4 of thesis) and temporal super resolution
(Chapter 5) but have not (yet) done any simultaneous deinterlacing. The
basic idea is to alternate between optimizing flow and intensities and it-
eratively improve both as better and better versions of the other becomes
available, or in its truest (an most likely only theoretically possible) form
solve an integrated system optimizing both at the same time. Simulta-
neous variational deinterlacing will be discussed further in Sections 3.3.1
and 3.3.7.

7The term field is used for both interlaced frames and for fields of flow vectors. To avoid
confusion we will try to use flow field whenever we talk of flow vectors of an image sequence
frame and say fields (odd and even) whenever we talk of a frame of intensities missing every
second line and thus being interlaced.
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The idealistic approach is unlikely to be useable in practice and the simulta-
neous approach still to come. We strongly believe that using only original data
followed by a good fusion-scaling-smoothing-scheme – solution 4 above – will
give the best results of the four remaining solutions. The ’half a pixel up half
a pixel down’ approach seems almost as unrealistic as the idealistic approach
and the cost efficient approach is just too bad. Doing variational optical flow on
pre-deinterlaced video using the standard approach might yield usable results,
but would compromise the quality by leaving artifacts or over-smoothing the
output as smoothing the flow field would (partially) remove the effects of the
artifacts but also result in a loss of details.

Several approaches to doing MC deinterlacing without using the standard
approach and risking error propagation from that is discussed by Bellers and de
Haan in [4] and some of these methods are likely to rank close to our ’original
data only’ approach (as far as the block matching methods used can produce
optical flows of the same quality as variational methods) but the iterative na-
ture of the simultaneous approach is the closest we come to solving the hen-egg
problem of accurate and reliable computations of intensities and flows in dein-
terlacing, as it is the only way to overcome any possible problems with having
to rely on simple and possibly erroneous initializations.

3.2.6 Deinterlacing in Colors

Good and computationally costly deinterlacers are normally only applied to the
luminance/brightness channel of a color video signal with the chrominance chan-
nels only being simple deinterlaced. In [4] and [94] it is specifically mentioned
as the method used (the simple deinterlacer for the color channels being line
averaging), but other than that, exact strategies for color deinterlacing is not
mentioned (in the approximately 50 deinterlacing papers and patents we have
read).

This simple approach is in most case sufficient because the human visual
system is much less sensitive to changes in color than to changes in luminance.
This property of the HVS is used in both analog video and broadcasting and in
digital video and broadcast to subsample the two color channels of the signal
with at least a factor of two compared to the luminance channel with only
very little or no loss in quality. In analog video and broadcasting it is done
by halving the bandwidth of each of the two chrominance channels compared
to the bandwidth of the luminance channel [70] and in digital media (using
standards like MPEG-2 and MPEG-4/H.264) by simply subsampling the two
color channels as thoroughly described in [107].

We did a few test to see if advanced deinterlacing of the chrominance channels
improve quality but found line averaging to be more than adequate to give
optimal color deinterlacing quality.

3.3 Theory and Algorithms

3.3.1 Variational Framework

The framework we present was originally proposed for image and image sequence
inpainting, but as described in Section 2.6 it can be used in general for image



3.3 Theory and Algorithms 33

sequence restoration and enhancement. It can be used as a framework for video
super resolution – increased spatial resolution of each frame in the video – and
temporal super resolution – changing the frame rate in a given sequence. Here
we will focus on its use in deinterlacing.

The generic framework for image sequence inpainting and motion estimation
(or motion recovery in the inpainting terminology) was proposed by Lauze and
Nielsen in [65]. Starting with a Bayesian formulation of the problem we denote
the observed damaged image sequence u0 and define it to be on a spatiotemporal
domain denoted Ω with D being the locus of the missing data in Ω, that is
D ⊂ Ω. ~v is the optical flow field of the restored and de-noised (optional) image
sequence u, the desired outcome of the inpainting process. The joint probability
of ~v and u knowing u0 and D is factored as

p(u,~v|u0, D) ∝ p(u0|u,D)︸ ︷︷ ︸
P0

p(us)︸ ︷︷ ︸
P1

p(ut|us, ~v)︸ ︷︷ ︸
P2

p(~v)︸︷︷︸
P3

(3.1)

where us is the spatial distribution of intensities and ut is the temporal distri-
bution of intensities. P0 is the likelihood for the image sequence, P1 the spatial
prior on image sequences, P3 the prior on flow fields and P2 acts as both a
likelihood for the flow fields and a temporal prior on image sequences. The
optimum solution, the maximum a posteriori (MAP) is then sought for in order
to reconstruct the image sequence and recover the flow field. To transform the
Bayesian formulation into a variational one we use Mumford’s Bayesian to vari-
ational rationale from [75], E(x) = − log p(x). We are then given a continuous
minimization problem of the form

E(u,~v) = E0(u, u0) + E1(us) + E2(us, ut, ~v) + E3(~v). (3.2)

Under mild regularity assumptions, a minimizing pair (u,~v) must satisfy the
condition ∇E(u,~v) = 0 where ∇ is the gradient and the solution expressed by
the coupled system of equations





∂E

∂u
(u,~v) = 0

∂E

∂~v
(u,~v) = 0.

(3.3)

The above problem formulation is used in [65] to develop and implement an im-
age sequence inpainter that pseudo-simultaneously minimizes the energies for
both the flow and the intensities in a multiresolution scheme – The necessary
split in (3.3) is the step preventing perfect theoretical simultaneousness in the
solution of the hen-egg problem. On each level of the pyramid first a the flow
energy is minimized and then the energy of the intensities is minimized. The
values are then warped to the next level, which has a bit higher resolution.
The decrease in resolution from the finest to the coarsest level should be large
enough to make the biggest hole to be inpainted small enough to get an opti-
mally inpainted output. There is no analogy to this strategy in deinterlacing as
scaling down by a factor of two vertically would remove all missing lines. The
multiresolution approach is therefore only used for the flow optimization in dein-
terlacing, and we cannot obtain the same level of integration between flow and
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intensity calculations. In that sense the deinterlacing problem is simpler than
inpainting problem – the holes are small already – but on the other hand 50%
of the sequence is missing data, which would be considered difficult to recover
if it were a case of inpainting. Luckily we know exactly where we have to create
new data (detection and masking of scratches etc. is hard to automate and is
often done by hand or semiautomatically in inpainting). Still the odd-even data
distribution of the interlaced sampling grid is generally considered the curse of
deinterlacing and it what makes deinterlacing a hard problem.

3.3.2 Selecting the Terms of the Energy

Selecting the model (some descriptive measure on the image sequence content
and its distribution in real image sequences) to use for each of the Ei-terms in
(3.2) is a tradeoff between mathematical tractability and maximum obtainable
quality – models describing ’real’ image sequence content well are mathemati-
cally complex. Here is a short discussion on how each term is selected.

E1(us) should punish too large local spatial variations in intensities and also
try to model the true spatial intensity distributions in the new pixel positions.
Using total variation on the spatial gradient in E1 allows for smooth regions as
well as edges.

The last term, E3(~v), should enforce a reasonable local smoothness of the
flow field. It is assumed that the displacement in the image sequence is caused
by objects moving so that each pixel does not necessarily have an individual
displacement but will have a displacement similar to that of (some of) its neigh-
bors. Just as in E1(us) we need smooth regions – this time of the flows – with
edges in the flow field at boundaries between objects moving differently, thus
total variation is also the obvious choice for E3(~v), but here applied to the local
3D spatiotemporal gradient of the flow field.

The term E2(us, ut, ~v) states that the image content information should stay
the same along the flow vectors and penalizing large discrepancies and is the
most complex of the three terms. This term operates on both the intensities
and the flow. It is a representation of the brightness constancy assumption
or the optical flow constraint (OFC), see [9] and [48] and Section 2.5 of this
thesis. Using total variation on E2(us, ut, ~v) allows smooth flows and temporal
edges, occurring at occlusions thus helping to solve the occlusion problem. To
improve performance under changing brightness (e.g. from changes in lighting)
E2(us, ut, ~v) is in [9] and [65] extended to also include the gradient constancy
assumption (GCA). Since both these terms operate badly on smooth regions
(low spatial gradient of the intensities) the flow prior E3 helps fill in motion
vectors in these regions.

The term E0(u, u0) in (3.2) is the well-known data or likelihood term from
energy and probability formulations of diffusions. In the new pixel positions in
deinterlacing it has no function, but in the known pixel positions it tells how
much to diffuse, i.e. it controls the degree of diffusion imposed in de-noising.

3.3.3 Variational Motion Adaptive Deinterlacing

Looking at Figure 3.3 it seems a waist of time to do motion adaptive deinterlac-
ing, especially when one’s framework allows for motion compensated deinterlac-
ing. But as we aim at hardware implementation at some point, we also need to
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carefully examine the potential of this more cost efficient form of deinterlacing.
Also, it gave us a good starting point for doing variational deinterlacing and
obtain a deeper understanding of the task before venturing into the more com-
plex task of doing variational optical flow estimation and motion compensated
deinterlacing. The algorithm we give here has also been presented as the best of
two algorithms given in [55]. In [55] we did not introduce the overall variational
framework and the focus was on whether to use a local 3D prior or to split the
prior into a 2D spatial prior and a 1D temporal prior.

In order to get a variational motion adaptive deinterlacer from the presented
framework, we simply set the flow to zero and thus only have to minimize

∂E

∂u
(u,~v = 0) =

∂E(u)
∂u

= 0.

Since we assume ~v = 0 the term E3 in (3.2) disappears and the task of optical
flow (motion) estimation is replaced by the need to do motion detection. Using
the variational approach with total variation as the distribution chosen for the
term E2 in (3.2), which is now only a temporal prior on the intensities, we do
not need explicit motion detection. Total variation in E2 allows temporal edges
and thus gives us implicit motion detection: When there is motion there is also
a local temporal edge that total variation detects and will not diffuse across and
thus we have implicit motion detection and adaptation.

The likelihood term on the intensities, E0 in (3.2) is chosen to be a hard
constraint as it simply leaves all original lines unchanged as it is customary in
world of deinterlacing – but not the world of variational approaches. In e.g.
de-noising, the data term8 primarily acts as a reaction to the diffusion action of
the remaining terms controlling the degree of de-noising. With the data term
being u = u0|Ω/D and plugging in the total variation terms, the general energy
formulation can be rewritten to

E(u) =
∫

Ω/D

(αs|∇u|+ αt|∂tu|) dx, u = u0|Ω/D (3.4)

where ∇ is the spatial image gradient, ∂t the local temporal gradient and the
constants αs and αt the weights of the spatial and temporal priors. This is
almost the energy to be minimized in total variation motion adaptive deinter-
lacing (denoted VMA), but since the function | · | is not differentiable at the
origin, we replace it by the approximation ψ(s2) =

√
s2 + ε2, with ε = 0.1 or

0.01 in our experiments and obtain

E(u) =
∫

Ω/D

(
αsψ(|∇u|2) + αtψ(|∂tu|2)

)
dx, u = u0|Ω/D. (3.5)

The spatial gradient term is thus a variation of the term introduced by Rudin
et al. in [88]. In order to do the actual minimization, we us the fact, that
ψ′(s)/s = 1/ψ(s) and from using calculus of variation we obtain the Euler-
Lagrange equation

−αsdiv2

( ∇u

ψ(|∇u|2)
)
− αt∂t

(
∂tu

ψ(|∂tu|2)
)

= 0, u = u0|Ω/D (3.6)

8Likelihood term and data term are aliases for the E0-term.
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where div2 is the spatial divergence operator. We have chosen to solve this
system using gradient descent and the gradient descent equation corresponding
to (3.5) is

∂τu = αsdiv2

( ∇u

ψ(|∇u|2)
)

+ αt∂t

(
∂tu

ψ(|∂tu|2)
)

, u = u0|Ω/D (3.7)

where τ is the evolution time of this iterative solver. The numerics of the solution
is given later in Section 3.3.5. In (3.6) and (3.7) it can be seen clearly that a large
gradient either temporally or spatially will shut down the diffusion contribution
of its own term, thus preserving edges spatially as well as temporally, the latter
being the implicit motion adaption of VMA.

Additional Explicit Motion Detection

The setting of the weights αs and αt adds extra adaptivity to the implicit motion
adaptivity of the algorithm. A very thorough test of different settings was done
in [57], but is was found that optimal results on different test sequences required
different weight settings and even internally in sequences (and frames) different
weights would be required to get local optimal results.

Trying to improve results we added a local adaption for the weight of the
temporal interpolation part. The spatial weight αs was fixed at 1.0 while the
temporal weight αt was found by

αt =
1

1 + (C/C0)2n
or αt = 0.2 +

0.8
1 + (C/C0)2n

(3.8)

where the first is basically a Butterworth filter and the second a Butterworth
with the minimum value of wt lifted from 0 to 0.2. C is the measure of how
much motion is present at a location as found by a motion detector. Further
details on (3.8) including testing along with a discussion on motion detection in
general can be found in Section 3.4.5.

3.3.4 Variational Motion Compensated Deinterlacing

Dropping the assumption of zero motion and returning to the full motion com-
pensated scheme using the full potential of the framework presented earlier in
Section 3.3.1 and using the terms as described in Section 3.3.2, the energy (3.2)
is instantiated as

E(u,~v) = λ0

∫

Ω\D
(u− u0)2dx + λ1

∫

Ω

ψ(|∇u|2)dx +
∫

Ω

ψ
(
λ2

∣∣£~V u
∣∣2 + γ

∣∣£~V∇u
∣∣2

)
dx +

λ3

∫

Ω

(
ψ(|∇3v1|2) + ψ(|∇3v2|2)

)
dx (3.9)

where ∇ is again the spatial gradient operator, ∇3 is the local spatiotemporal
gradient, λi and γ are some constants and v1 and v2 are the x- and y-components
of the flow field, i.e. ~v = (v1, v2)T , and ~V = (~vT , 1)T . The two £~V -terms are
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the ~V -directional derivatives of u and ∇u respectively, also known as the Lie-
derivatives (see for instance the book on Riemannian geometry by Gallot et
al. [42]). To set the notation straight we have9

£~V u =
∂u

∂~V
= ∇u · ~v + ut = ~V T∇3u ≈ u(x, t)− u(x + ~v, t + 1) (3.10)

where the right hand side of the approximation is the brightness constancy
assumption and the other terms are all notions for the linearized version of the
brightness constancy assumption denoted the optical flow constraint (OFC).
∇3u is the spatiotemporal gradient of u. We also have that

£~V∇u =
∂∇u

∂~V
≈ ∇u(x, t)−∇u(x + ~v, t + 1) (3.11)

where the right hand side of the approximation is the gradient constancy as-
sumption and the two other terms are its linearized version. The notation ∂ ·/∂~V
is used to some extent in literature on image and shape geometry but is prob-
lematic, as e.g. ∂~V /∂~V 6= 1 although it would be considered equal to one in
standard (partial) differential notations. Thus to avoid confusion we do not use
this notation.

Returning to (3.9) ψ is the same as in the motion adaptive algorithm given
in (3.5). As it can be seen in (3.9) diffusion is also allowed outside the region of
missing/new data allowing for de-noising and of course imposing some smooth-
ness as the price to pay for de-noising. Solving the system according to (3.3),
the flow part loses the E0- and E1-terms and is thus a slight rewriting of the
energy proposed by Brox et al. in [9] and is

E(~v) =
∫

Ω

ψ
( ∣∣£~V u

∣∣2 + γ
∣∣£~V∇u

∣∣2
)
dx + λ3

∫

Ω

(
ψ(|∇3v1|2) + ψ(|∇3v2|2)

)
dx

(3.12)
leaving out λ2 for obvious reasons. The resulting Euler-Lagrange equation to
be discretized – with the data term E2 in vectorial form and the regularization
term E3 in scalar form for increased readability – is

∂E

∂~V
=

2ψ′
(∣∣£~V u

∣∣2 + γ
∣∣£~V∇u

∣∣2
) [

(£~V u) · ∇u(x + ~V ) + γH(
u(x + ~V )

)
(£~V∇u)

]
= 0

∂E

∂~vi
= λ3div3

( ∇3vi

ψ(|∇3vi|2)
)

= 0, i = 1, 2 (3.13)

where div3 is the 3D local spatiotemporal divergence operator and H is the
spatial hessian.

This is the equation we find an optimal solution to when minimizing the flow
energy and is run on each of the separated even and odd fields (now progressive)
in the first part of the ’the original data only approach’ to finding the flow on
an interlaced in progressive out sequence (see Section 3.2.5) We will return to
the ’fusion-scaling-smoothing’ part of the approach in Section 3.3.4.

9∂f(x)/∂~V = limε→0

�
f(x + ε~V )− f(x)

�
/ε = ∇f(x) · ~V .
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For the intensity part of the calculations we have simplified things a bit
compared to the energy given in (3.9) (which is used as is for inpainting by
Lauze and Nielsen in [65]). The gradient constancy assumption part of the E2-
term has been skipped. It serves it purpose very well in the flow calculations to
produce accurate and reliable flows under changing lighting conditions, but is
very complex to work with when the Euler-Lagrange equation for the intensity
energy E(u) is derived as discussed in Section 2.6. On the negative side, we do
not know if including the GCA would actually improve the results we obtain
from our variational motion compensated deinterlacer, but inpainting results
presented in [64] both with and without the gradient constancy assumption in
E(u) indicate that for small regions of missing data, the difference in output
quality between the two is likely to be small.

The energy we minimize for the intensities when the forwards and backwards
flows have been calculated is then

E(u) = λ0

∫

Ω/D

(u− u0)2dx + λ1

∫

Ω

ψ(|∇u|2)dx + λ2

∫

Ω

ψ(
∣∣£~V u

∣∣2)dx. (3.14)

The Euler Lagrange equation derived from this energy still using ψ(s2) =√
s2 + ε2 is

∂E

∂u
= λ0χ(u− u0)− λ1div2

(
ψ′(|∇u|2)∇u

)

−λ2div3

(
ψ′(|£~V u|2)(£~V u)~V

)
= 0

(3.15)

where χ is the characteristic function taking on the value 1 in Ω/D and 0 in D,
and the discretization of the last term suggested by the approximation given in
(3.10). λ0 can either be set to zero to do pure deinterlacing without de-noising
leaving all original pixels (u0) untouched in the output similar to what almost
all other deinterlacers do. λ0 = 1 includes de-nosing (any other value of λ0

is just similar to scaling λ1 and λ2 with the inverse of the same value). As
argued by Bellers and de Haan in [4] de-noising can help remove some temporal
flickering noise. We agree on this, but wish to emphasize the importance of
carefully controlling the de-noising to avoid over-smoothing and loss of valuable
information on details.

Algorithm Part I, Variational Optical Flow Estimation on Interlaced Video

We assumed to know the flow, when solving (3.15), but as discussed in Sec-
tion 3.2.5 we cannot apply the variational optical flow algorithm that minimizes
the energy in (3.12) directly on interlaced video. Here is our two step algorithm
for flow calculations on interlaced video.

First we extract the odd field sequence, i.e. the sequence of the known lines
for odd fields, and ’compress’ it vertically by removing the unknown lines. In
the same way, we produce the even field sequence (yielding a field distance of
twice the input filed distance). The algorithm is:

1. Compute the flow ~vo for the odd field sequence and the flow ~ve for the
even field sequence applying the implemented solution of (3.13).

2. Join ~vo and ~ve in order to produce a candidate flow field for the full
progressive sequence using fusion-scaling-smoothing.
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3. Repeat step 1 and 2 on the time-reversed sequences to calculate backward
flows as well.

The first step we have already described, for the joining of the two flow fields
~vo and ~ve both containing flows from fields at time t to time t + 2, we have to
fuse – interlace them in time – then we have to scale twice, first the vertical
component of the flow is double to accommodate the full frame height, the flow
vectors are halved in length to be from time t to time t + 1. Finally we have
to smooth the new flow field to get the two parts to be consistent with each
other and to fill in good estimates in the new empty lines of the sequence to
be deinterlaced. This all ends up being fusion-scaling-smoothing and can be
expressed mathematically as the energy

E(~v) = λ

∫

Ω/D

(~v − ~vo/e)2dx +
∫

Ω

(
ψ(|∇3v1|2) + ψ(|∇3v2|2)

)
dx (3.16)

we can then minimize. Composing ~vo/e in (3.16) is the fusion-scaling part,
and the full minimization is the smoothing. ψ is the same as earlier. The
fusion is done by just interleaving the two flow fields and the initial values in
the empty lines are found by line averaging. The scaling is elementary as we
assume linearity of the flow from time t to time t+2 and just halve the vectors.
It is then up to the smoothing step to complete the process of producing one
optimally merged and consistent flow field. For the Euler-Lagrange equation of
(3.16), the first term is – after composing ~vo/e – the same as E0 in (3.14) just
acting on the flow now. The second term is the same as E3 in (3.12), which
ensures coherence and give a feel of integration between the two steps of the
full flow calculation. In our testing we skipped the de-noising of the already
computed flow, that is we set λ = 0, as we had high confidence in the already
computed flows. More about this in Section 3.4.

Algorithm Part II, Variational Motion Compensated Deinterlacing

Now we know how to obtain backwards and forwards flow, and all that remains
to be done is using them in minimizing (3.15).

The algorithm for the intensity calculations is very similar to the one used
for motion compensated sequence inpainting by Cocquerez and Chanas in [23]
and by Lauze [64].10 The optical flow algorithm we use is also fairly well-known
from (see for instance [9] and [64]), so the part of the overall scheme predicted
most likely to cause trouble is the full task of doing optical flow estimation
on interlaced sequences including the fusion-scaling-smoothing algorithm. The
scheme presented here has also been described very superficially in [53].

3.3.5 Numerics and Solvers

So far we have only presented Euler-Lagrange equations, that is partial differen-
tial equations (PDEs) in the continuous domain. We need implementations in
the discrete domain to actually minimize the energies on digitally sampled im-
age data: We need numerical solutions to our problems and have used different
well-known methods of discretizing PDEs.

10In [64] inpainting both with and without the GCA in E(u) are implemented and tested.
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Motion Adaptive Deinterlacing

Our target is to solve the gradient descent equation in (3.7) and we do so explic-
itly, using forward difference for the evolution derivative ∂τ and central difference
for the divergence terms. (Approximations of continuous derivatives as discrete
differences are described in several books, e.g. [89] and [1]). The forward dif-
ference of the evolution time derivative in (3.7) is a Taylor approximation of
∂τu = ∂u/∂τ :

δ+
τ u =

∂u

∂τ
=

u(x, y, t; τ + ∆τ)− u(x, y, t; τ)
∆τ

m
u(x, y, t; τ + ∆τ) = u(x, y, t; τ) + ∆τ · ∂u

∂τ
(3.17)

Using (3.17) all we have to do is to add the time step ∆τ multiplied with the
output of (3.7) to the current value of each pixel. For the 2D spatial diver-
gence term in (3.7) we have used three different schemes, one using a 4-point
neighborhood of the current pixel and two using a full 8-point neighborhood, as
described in [1]. These filters are very similar to those described below for the
motion compensated deinterlacer. It is a well known (and proven) fact that us-
ing gradient descent with spatial filters of the type we use, the time step should
be ∆τ ≤ 0.25 in (3.17) and using any values larger in e.g. de-nosing or inpaint-
ing will give an unstable solution (typically the whole image will turn uniformly
average grey). But in testing our variational MA deinterlacer, we found that
even with ∆τ ∈ [0.5 − 1.5] depending on the sequence our scheme stayed sta-
ble, owing to the fact that the filter support is mostly fixed pixel values from
original, untouched lines.

Optical Flow

We have made our numerical implementation along the lines of [65] and [9] using
a fixed point solver to isolate the linear part of the system, which is then solved
using a Gauß-Seidel solver run until convergence or until a maximum number
of iterations is reached. For the optical flow estimation it is still possible to use
a multiresolution setting, which will handle large motions easily and speed up
convergence. We thus use multiresolution as in [65] and [9], employing a down-
and up-sampling scheme described in [11].

For the fusion-scaling-smoothing, after deriving an Euler-Lagrange equation
of (3.16), discretization is done using standard methods. The first term is
similar to the E0 in (3.14) just operating on both flow components v1 and v2.
The second term is the same as the E3-term of (3.13) and thus treated in the
same way.

Motion Compensated Deinterlacing

To solve (3.15) we use a Gauß-Seidel solver with a fixed point strategy to lin-
earize the nonlinear system as described e.g. in Section 5.3.6 of this thesis. The
discretization is as follows. We first look at the spatial term of (3.15) and fol-
lowing the ideas of discretization of total variation on the spatial 2D gradient
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given in [1], [18], [64] and [88] we can do a simple rewrite

div2

( ∇u

ψ(|∇u|2)
)

= divxy(A∇u), A =
1

ψ(|∇u|2) (3.18)

remembering that ψ′(s)/s = 1/ψ(s). The spatial gradient is

∇u = (∂u/∂x, ∂u/∂y)T = (∂xu, ∂yu)T . (3.19)

Now from the definition of the 2D divergence we have

divxy(A|∇u|) = ∂x(A∂xu) + ∂y(A∂yu). (3.20)

Using (3.19) and (3.20), equation (3.18) can be approximated finitely as ([1])

divxy(A∇u) ≈ δo
x,h/2(Aδo

x,h/2u) + δo
y,h/2(Aδo

y,h/2u) (3.21)

where δo
x,h/2 is the central difference approximation of ∂u/∂x and δo

y,h/2 the
same in the y-direction. h is the distance between two horizontally or vertically
neighboring pixel positions (grid points) and most often set to 1. By definition

δo
x,h/2 =

(u(x + h/2, y, t)− u(x− h/2, y, t)
h

δo
y,h/2 =

(u(x, y + h/2, t)− u(x, y − h/2, t)
h

. (3.22)

Before we do the next rewrite we switch to compass coordinates where the
indexes w, e, n, s represents the directions in the grid and is short for west, east,
north and south, uw = u(x−1, y, t) and so on. uc is the center (or current) pixel.
Plugging (3.22) in (3.21) and rewriting gets us the divergence approximation

divxy(A∇u) ≈ 1
h2

(
(Aw/2 · uw + Ae/2 · ue + An/2 · un + As/2 · us)−

(Aw/2 + Ae/2 + An/2 + As/2) · uc

)
. (3.23)

We need the A’s at half-grid point, and we get them by calculating A’s at all
grid points and then interpolating them at the half-grid points. We could use
linear interpolation, i.e.

Aw/2 ≈ (Ac + Aw)/2 (3.24)

but
Aw ≈ 2

1
Ac

+
1

A′w

(3.25)

endorses edge preservation. Say Ac = 100 (flat region) and A′w ≈ 0 (edge), then
the approximation would be Aw = 50 from (3.24) corresponding to a flat region
and Aw ≈ 0 from (3.25) corresponding to the close by edge we wish to preserve.
To calculate the A’s at grid points, the choice of ψ(s2) =

√
s2 + ε2 is clever.

Since 1/|∇u| = 1/
√

(∂xu)2 + (∂yu)2 the choice leads to

A ≈ 1√
1
4

(
(ue − uw)2 + (un − us)2

)
+ ε2

(3.26)
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when using central differences and is similar to the 2D total variation term used
for inpainting by Chan and Shen in [18]. This is also the 4-point neighborhood
scheme used for the motion adaptive deinterlacer. The first of its two 8-point
scheme also uses the diagonal directions, and the second weighs the 4-point
diagonal with the 4-point standard given in (3.26) according to a detection of
edge directions. Extensive testing of the performance of the three in [57] showed
practically no difference in output quality, and thus we chose to use the 4-point
standard scheme in (3.26) only, as it approximately a factor of two faster than
the two 8-point schemes.

For the temporal part we have a 1D divergence, div, or simply a derivative
along the flow. Since the flow is subpixel precise, the intensities at the position
the flow points to is mostly not at grid point and has to be interpolated. We
use bilinear interpolation for that. uc is once again the current, center pixel,
ua = u(x + vx, y + vy, t + 1) is the after intensity value along the forward flow
and ub = u(x+vx, y +vy, t−1) is the before intensity value along the backward
flow and we have

Ba ≈ 1√
(ua − uc)2 + ε2

and Bb ≈ 1√
(uc − ub)2 + ε2

This lead us to the complete direct solution

uc =
λ1(Aw · uw + Ae · ue + An · un + As · us) + λ2(Ba · ua + Bb · ub)

λ1(Ae + Aw + An + As) + λ2(Ba + Bb)
(3.27)

where the A’s and the B’s are the nonlinear components. In case we include
the data term, the full solution becomes

uc =
λ1(Aw · uw + Ae · ue + An · un + As · us) + λ2(Ba · ua + Bb · ub) + χ · u0,c

λ1(Ae + Aw + An + As) + λ2(Ba + Bb) + χ
(3.28)

where u0,c is the current pixel in the input (χ is one for known lines and zero for
new lines). We run a number of outer fixed point iterations where we update the
A’s and the B’s once in each followed by a number of inner relaxation iterations
(the Gauss-Seidel solver) where we update uc by solving (3.27) or (3.28).

3.3.6 Iterative Schemes

A basic advantage of using iterative schemes in combination with a temporal
aperture spanning both backwards and forwards in time is an increased spatial
and temporal coherence when calculating either intensities or flow fields. By
iterating information from further away than the ±1 neighbors is propagated to
the current pixel. The use of total variation ensures that only relevant informa-
tion is propagated as it stops diffusion over edges. In the intensity calculations
e.g. in our variational deinterlacer, knowing the flow (i.e. motion compensation)
of course increases the temporal information propagation.

3.3.7 Simultaneousness

With the above given motion compensated deinterlacing algorithm we lose the
simultaneousness that its ancestor the MC inpainting had since it no longer
makes any sense to include the intensity part in the multiresolution pyramid.
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A way of getting close to the simultaneous approach suggested in Section 3.2.5
is to have a reasonably precise initialization of a) the flow for all pixels and b)
the intensities in the empty lines. Then one would alternate between updating
intensities and flow in each iteration. This would in practice be as simultaneous
as the MC inpainter and is the same as what we do for MC video super resolution
in Chapter 4.

For deinterlacing it might not prove as worthwhile to increase the simul-
taneousness as it clearly will in inpainting and temporal super resolution (see
Chapter 5, which both have large unknown regions. The results presented in
the next section support this claim as they show that we are close to an optimal
solution of the interlacing problem.

3.4 Experiments

In this section we present the results obtained with our variational deinterlacers
and benchmark them against other deinterlacers. Before getting to the actual
results some general information about our test setup is given.

3.4.1 Quality Measurements

We use both objective and subjective quality evaluation the deinterlacers in test,
but give focus to the subjective evaluation. The example given in Figure 3.3
of the sequence Grille illustrates why: In spite of the subjectively large dif-
ference in quality between variational motion adaptive and variational motion
compensated deinterlacing on Grille the objective difference measured using
the mean square error (MSE) is insignificant (and in favor of the MA deinter-
lacer!) as only a small percentage of each frame is affected by the problems in
the grille. The MSE and most other objective measures are global and have
problems giving significant weight to local problems very disturbing to the hu-
man observer. Objective measure like the MSE could be used more locally but
then the output MSEs becomes a large data set itself and the evaluation of it
tedious and possible also subjective (when sorting and selecting what to give
as results). The goal of our evaluation is to measure how pleased the human
visual system is with our deinterlacing results and thus subjective evaluation is
the best measure, which is also acknowledged in industry, e.g. at the consumer
electronics producer Bang & Olufsen [100].

The exact form of the MSE used is

MSE =
1
N

∑

D

(u− ugt)2 (3.29)

where ugt is the ground truth and we sum over the missing lines D only, making
N equal to half the number of pixels in the sequence. The MSE cannot be used
on image sequences that only exist as interlaced video, but only on artificial
interlaced video, which is produced by removing every other line of a progressive
sequence, the progressive sequence providing the ground truth. Some measures
enabling objective evaluation of deinterlacing of true interlaced material are
given in [4] and have been discussed in Section 3.2.3 of this chapter, but they
rely heavily on the optical flow computed for a sequence. Further discussion on
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objective vs. subjective evaluation can be found in [4] and Section 2.3 of this
thesis (and references therein).

3.4.2 Test Material and Online Video Results

In testing we used both true interlaced video and interlaced material made
from removing lines in progressive video. The truly interlaced material was
recorded using a Sony VX-1000 DV camera while some truly interlace and all
progressive origin material has been taken from PAL DVD’s. We have chosen
sequences challenging the deinterlacers and several sequence are plagued by the
interlacing problem. All tests were conducted on the 8 bit luminance channel.11

Online video results of running variational motion compensated deinterlacing
on the test sequences Building, Copenhagen Pan, Truck and Credits are given
at http://image.diku.dk/sunebio/DI/DI.zip.

3.4.3 Initialization Tests

For all variational deinterlacing results given in this paper we initialized the
new lines of the input sequences by line averaging. This is to give our iterative
variational deinterlacers a rough but reasonable starting point. To thoroughly
test the influence of initialization we ran several test on our variational dein-
terlacers using other initializations. Initializing all new pixels with the median
value of 128 we still ended up at the same results as when initializing with
line averaging (LAV). The only difference was that convergence to the end re-
sult was faster from LAV. Using the output of the motion adaptive deinterlacer
MA1 (described earlier in this chapter) as initialization did again give the same
result as starting from LAV initialization, but with a marginally speedup in
convergence. Our variational deinterlacers seems rather robust against bad ini-
tialization, but with Gaussian noise in the span [0-255] as the initialization we
did not get convergence and were left with a rather noisy ’deinterlaced’ image
sequence.

3.4.4 Objective vs. Subjective Results

The ten deinterlacers mentioned as implemented in Section 3.2 and our varia-
tional motion adaptive deinterlacer has been thoroughly tested in [57] and part
of this test is presented in [55]. We have included parts of this test along with
some tests of these 11 deinterlacer on other sequences here to clearly show the
advantages of both variational methods as such and variational motion compen-
sated deinterlacing in particular.

An extensive test of the parameter settings was presented in [57] the conclu-
sion being that tuning αs and αt in (3.7) can improve performance on a given
sequence slightly, but we recommend setting αs = αt = 1, which makes the
motion detection completely implicit.

Objective results for a number of sequences are given in Table 3.1. The
MSE’s for the two first test sequences, Person and C&T (from [55]), show that our
algorithm is superior to the others in test. For the sequence C&T the MSE ranking
is the same as the subjective ranking found by careful and repeated visual

11As mentioned in Section 3.2.6 we did conduct some tests on YCrCb color video, but are
not further discussed here.
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Scheme Person C&T Grille Building Credits

Line Doubling (LDB) 17.90 79.72 151.7 92.8 516.7
Line Averaging (LAV) 5.53 26.31 63.7 27.4 159.8
Field Insertion (FI) 22.26 472.25 247.2 414.6 1639.0
Field Averaging (FAV) 9.03 284.22 162.4 253.7 908.5
Vertical Temporal (VT) 5.62 94.34 99.0 98.5 405.6
Median (Med) 9.27 65.72 127.8 89.2 509.8
Motion Adapt. 1 (MA1) 5.53 28.18 63.1 27.9 158.9
Motion Adapt. 2 (MA2) 5.07 67.97 110.5 83.3 337.5
Edge Adaptive (EA) 8.77 32.87 87.1 58.5 511.2
Motion Adapt. 3 (MA3) 5.36 48.79 95.7 61.2 342.5
Variational MA (VMA) 4.97 26.06 70.2 35.8 165.7
Variational MC (VMC) – – 80.3 44.7 103.7

Table 3.1: Objective results. The measures given here are mean square errors
(MSE). The non-variational methods are described in Sections 3.2.1 and 3.2.2.

inspections of the deinterlaced outputs. But the small difference in MSE to the
nearest competitors does not justify how much better our algorithm actually
is when subjectively comparing the results. On Person our algorithm even
produces a result hardly distinguishable from the original progressive version of
the sequence. Only FAV and FI fails miserably on Person whereas the remaining
deinterlacers give reasonable to good results, but none of them performs as well
as our variational MA deinterlacer.

On Grille LDB is subjectively the worst, the remaining methods are not
quite as bad with our VMA being the least bad of all. None of these 11 deinter-
lacers come close to the quality obtained with variational motion compensated
deinterlacing as shown in Figure 3.3 although the MSEs in Table 3.1 rank it
only forth. The ordering by subjective quality on Grille is not the same as the
corresponding ordering by MSE’s.

On Building the ordering by MSE is again different from the subjective
ranking. The objective (MSE) top five is 1. LAV, 2. MA1, 3. variational MA,
4. variational MC, 5. EA. Subjectively the top five becomes: 1. variational
MC, 2. EA, 3. variational MA, 4. LAV, 5. MA1. Even though VMC and EA
scores significantly worse MSEs than the three deinterlacers in front of them,
they are subjectively evaluated a lot better than all other deinterlacers in test
as it should be clear from inspecting Figure 3.4. Besides the good subjective
result on Building EA deinterlacing in general performs horribly as it mostly
creates serious salt-pepper like artifacts.

On Credits variational MC deinterlacing is subjectively a lot better than
any other deinterlacer in the test and although it is ranked first by MSE as well,
the difference sown to number two does not justify the difference. Variational
MA is ranked fourth by MSE but subjectively a clear number two and LDB
which is tenth by MSE is subjectively fifth (after LAV and MA1 on a tied third
place). VMA and VMC results are shown in Figure 3.5.

From the results given here and in [57] we see that MSE is not a good
measure of deinterlacing quality – at least not on our test data. We will now
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(a) (b)

(c) (d)

(e)

Figure 3.4: The sequence Building with tilting camera motion. (a) Original
progressive, deinterlaced with (b) EA , (c) LAV, (d) variational MA, and (e)
variational MC, which is very close to the original (a bit smoother due to de-
noising). EA is also close to the original but has some salt-pepper artifacts that
are very noticeable during playback.
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(a) (b)

(c)

Figure 3.5: The sequence Credits has rolling end titles and the output of
our variational MC deinterlacer in (a) is practically indistinguishable from the
progressive original in (b) when viewed as video but appears a bit smoother as
still (due to de-noising). The result of variational MA deinterlacing shown in
(c) is also the second best performing deinterlacer on Credits and it does look
quite good as still but has severe flickering when played.

determine which motion adaptive deinterlacer performs the best in terms of
output quality.

3.4.5 Best Motion Adaptive Deinterlacer

In Figure 3.6 of the sequence Copenhagen Pan, which is true interlaced so that
no MSE can be measured, it is clearly seen how our variational MA deinterlacer
outperforms two other motion adaptive methods shown, MA1 and MA2. In our
earlier tests presented in [57] and [55] MA1 and MA2 are the two methods that
come closest to our variational MA deinterlacer in both subjective and objective
quality, but they are still significantly worse. The bad performance of MA3 is
most likely caused by our implementation of edge adaption (part of MA3, see
Section 3.2.2) which is not as robust as could be. The Faroudja DVP-1010 video
processor with DCDIr prides itself of being very good at edge adaptation and
thus should be the best motion and edge adaptive deinterlacer there is. It is a
’closed box’ system and due to Macrovision and HDCP copy protections we have
not been able to do any objective evaluation of its deinterlacing performance
and all subjective evaluation has to be done realtime. We conducted a A/B
real time comparison test which was repeated on different screens (high quality
plasma, LCD and DLP (projector) displays.) The DVP-101 came quite close
to variational VMA in terms of subjective quality, but is not quite as good as
VMA on average.
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(a) (b)

(c) (d)

Figure 3.6: Cutout of Copenhagen Pan deinterlaced with (a) MA1, (b) MA2,
(c) our variational MA, and (d) our variational MC. The motion in Copenhagen
Pan is a ca. 5 pixel/frame camera pan to the left. MA1 gives median ’sparks’
around the windows, MA2 serrates heavily, variational MA is almost perfect
and variational MC just a bit better, mainly due to de-noising.

The result of VMA in Figure 3.6 is good, but still we do not show the full
frame of Copenhagen Pan, because there are areas where all MA deinterlac-
ers performs poorly. We have already seen on three examples that variational
motion compensated deinterlacing is subjectively much better than any other
method in test, but before we go into details of VMC deinterlacing test results,
we will discuss the results of trying to improve our variational MA deinterlacer.

Additional Explicit Motion Detection

As described in Section 3.3.3 we aimed at improving our variational MA dein-
terlacer by using additional explicit motion detection. From extensive test-
ing we found the optimal setting to be C0 = 6 and 2n = 4 using the sec-
ond filter in (3.8). C in (3.8) is the measure of how much motion is present
at a location. We used C = |u(x, y, t − 1) − u(x, y, t + 1)| but also tested
C = |u(x, y, t−1)−u(x, y, t)|, which proved unstable. In some cases the explicit
motion detection falsely detected no motion in pixels where there was motion.
This resulted in some weak serration artifacts making the overall performance
of VMA a bit worse with explicit motion detection. Still the performance of
our VMA was always marginally better than or equal to that of the Faroudja
DVP-1010. But the general limitations in performance of MA deinterlacers
– the inability to solve The Interlacing Problem – is the major reason why
(variational) motion compensated deinterlacing is so interesting in spite of its
increased complexity.

3.4.6 Variational Motion Compensated Deinterlacing Results

As seen from the results given so far, variational motion compensated dein-
terlacing performs much better than any motion adaptive deinterlacer, mainly
because it solves The Interlacing Problem by properly deinterlacing highly de-
tailed regions in motion.
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fixed point relaxation weights
iterations iterations

Eq. (3.13) Flow estimation 5 20 γ = 100
λ3 = 70

Eq. (3.16) Fusion-scaling-smoothing 10 100 λ = 1
λ0 = 1

Eq. (3.15) Deinterlacing 5 50 λ1 = 0.1
λ2 = 5

Table 3.2: Recommended settings for variational motion compensated deinter-
lacing.

Parameter Testing and Intermediate Flow Results

There are more parameters to tune in the VMC than in the VMA deinterlacer.
In Table 3.2 an overview is given of what we found to be the optimal setting
after extensive testing. In all three parts a convergence threshold of 10−7 or
10−6 is set but never reached in testing.

For the motion estimation step we used an 80 level multiresolution pyramid
with a scale factor of 1.04 between the levels, which we found to be optimal
for our PAL resolution test material. Lowering the number of levels does af-
fect the flow mildly, but any differences disappear almost completely when the
flow is further processed with the fusion-scaling-smoothing. We suggest setting
λ3 = 70 as lower values will over-segment the flow: Smooth changes in flows at
deformations will be segmented in separate parts and regions of uniform mo-
tion (e.g the hair of a person) will not be merged to a unform flow field but
have a mishmash of incorrect flows (outliers) as seen in Figure 3.7(a). Higher
values of λ3 will provide a unnecessary smoothing of the flow as some regular-
ization inevitable occurs in the fusion-scaling-smoothing step. Setting γ = 100
is a good choice. Higher values will possibly provide additional details to the
flow, but these details as well as any over-segmentation are smoothed out in the
fusion-scaling-smoothing step.

In the fusion-scaling-smoothing λ = 1 to 3 is appropriate: Higher values will
produce a smoother flow, which can both help get rid of over-segmentation but
also remove fine details in the flow. We ran 10 outer fixed point and 100 inner
iterations with a convergence threshold of 10−6. In Figure 3.7 it can be seen
how typical flow outputs look before and after fusion-scaling-smoothing.

In the deinterlacing step optimizing the solution of (3.15), setting λ0 = 0
and thus shutting off de-noising in original pixels results in more temporal flicker
in moving detailed regions. The temporal weight λ2 should be at least one, but
values of five and 10 has also yielded good results, although they do introduce
some smoothing in moving regions. We recommend and have used λ2 = 5 with
spatial weighting λ1 = 0.1 in the results given in this section. The chosen setting
of λ1 minimizes temporal flicker in the output.

Generally our three step algorithm has – within limits – proven to be quite
robust to changes in parameter settings, but further parameter testing might
still improve performance. Especially the flow calculations can give very de-
tailed (or controlled poorly, over-segmented) flows, but they are smoothed out
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(a) (b)

Figure 3.7: Typical flows, here from a sequence showing a person at a desk. (a)
shows how the flow is typically over-segmented before fusion-scaling-smoothing.
(b) shows how the fusion-scaling-smoothing not only upscales the flow, but also
homogenizes it, removing incorrect flows (the over-segmentation) in the process.
The border shows the flow directions coded by the hue, while the intensity codes
the magnitude of the flow normalized in [0.5,1].

by the fusion-scaling-smoothing. It would be optimal to make sure the most
accurate and detailed flow possible reaches the deinterlacing. Flow estimations
on interlaced video is as discussed earlier in this chapter a hard problem and
work on improved optical flow estimation for deinterlacing will most likely be
the source of the biggest improvements of (variational) MC deinterlacing.

Running Times

We have not focussed on optimizing our code for speed (yet). The code is written
in C++ using the CImg library (http://cimg.sourceforge.net/) interfacing
with Matlab. The running times given here was found on a Windows XP PC
with a 1.6 GHz Pentium M processor using the settings given in Table 3.2. On
six frames of the sequence Truck (436 × 714 progressive spatial resolution) it
typically takes just under 4 min. to compute each of the four initial flows (for-
ward/backward, even/odd fields only). The fusion-scaling smoothing process
takes approximately 45 sec. for each of the two flows (forward and backward).
The intensity energy minimization takes approximately 3 min. 40 sec. In total
that is 20 min. 40 sec. with the flow calculations taking up 84% of the total
computation time. With 50 fps interlaced video, we are about a factor 1500
from realtime for the intensity part. For the slower part, the flow calculations,
we know that simpler variational flow algorithms run in real-time on standard
PCs (although on web camera resolution video) [11]. The running time results
given are representative for all our tests.

Results

Three experts and two laymen have judged the output quality of our variational
motion compensated deinterlacer in an A/B comparison with the Faroudja
DVP-1010 video processor with DCDir. On seven different test sequences all
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Figure 3.8: Variational motion compensated deinterlacing of the sequence BBC3
(cutout shown). A few artifacts are seen in the still, but they are not observed
during playback. The motion in BBC3 is rotation around an axis in the lower
left corner of the frame.

suffering from the The Interlacing Problem – detailed regions in motion – our
algorithm clearly outperformed the Faroudja DCDir according to all five test
persons. The output from our variational MC deinterlacer on each of the three
test sequences having a progressive original was judged almost indistinguish-
able from their original (again in an A/B comparison). Due to copy protection
(Macrovision and HDCP) we are unable to produce stills or record video of the
output from the Faroudja processor. We were however able to stream our own
progressive results through the DVP-1010 to ensure that we were comparing the
two deinterlacers directly.

On the sequence BBC3 (Figure 3.8) details are recovered and seen clearly and
motion is smooth with the variational MC deinterlacer, whereas the Faroudja
has staggering motion and the details are hard to see.

On the sequence Truck, which was used to illustrate the interlacing problem
in Figure 3.2, we are able to (re)create the correct structure of the front grille
whereas all other deinterlacer we have tested, MA and simple, fails at this and
creates some dark, diagonal lines across the front grille. Comparing the result
from our MC deinterlacer with the progressive ground truth in Figure 3.9 shows
hardly any differences.

The superior performance of variational MC deinterlacing on Grille has
already been discussed and is clearly seen in Figure 3.3. Figure 3.4 shows
how variational MC deinterlacing also produces the best result on Building,
although slightly smoothed it is clearly better than the second best, EA dein-
terlacing, as observed during playback. The sequence Credits in Figure 3.5 has
rolling titles, a type of content causing most deinterlacers to perform very bad,
but the output of our variational MC deinterlacer is practically indistinguishable
from the progressive original during playback.

On the Copenhagen Pan cutout in Figure 3.6 the variational MC deinterlacer
is not much better than variational MA except for a bit of de-noising. But all
the MA deinterlacers we have tested including the Faroudja produce serious
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(a) Ground truth (b) Variational MA (c) Variational MC

(d) Ground truth (e) Variational MA (f) Variational MC

Figure 3.9: Deinterlacing of Truck shown in Figure 3.2. (a)-(c) frame 5, (d)-(f)
frame 17. The results of variational motion compensated deinterlacing in (c)
and (f) is almost indistinguishable from the progressive ground truth in (a) and
(d) while the best of the rest, variational motion adaptive deinterlacing in (b)
and (e), creates some horrible artifacts.

flicker on other buildings in the sequence. The Faroudja also produces quite a
lot of serration on the roof windows of the castle (the cutout in Figure 3.6) thus
performing worse than variational MA. The variational MC deinterlaced output
has no flicker and is overall perfect (although there is no progressive original to
compare to) and Figures 3.10(a) and 3.10(b) shows how much better it is on
another part of Copenhagen Pan compared to the best MA deinterlacer, our
VMA.

So far we have presented only good results from our variational motion
compensated deinterlacer, but we also encountered one bad result. On the
sequence Keyboard with very complex motion (close-up of fingers typing fast
on a keyboard and hand held camera) the motion was not recovered correctly
and results in serration clearly observed when inspecting the frames as stills.
Of the five persons in the panel only one (expert) observed the serration in
Keyboard. Thus variational MC deinterlacing can be improved as no optical
flow estimation algorithms is perfect. The serration in Keyboard also shows
that we could improve robustness against unreliable flows in our variational
MC deinterlacer, but improved flows calculations on interlaced video would
probably help even more (robustness fixes a problem whereas better flows lifts
the quality). The temporal coherence gained by calculating flows on sequences
as one and not frame pair by frame pair is a major strength, but on dynamic
motion with large accelerations it becomes a weakness. The problem is general
for variational motion compensated video upscaling and we will analyze this
problem further and suggest solutions in Chapter 5.

Unfortunately we do not have an easy way of comparing the quality of our
deinterlacing results with results in literature. There is no common set of data
and quality measure like the Yosemite sequence and the angular error measure
used in the optical flow community. Comparing our results with the ones from
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(a)

(b)

Figure 3.10: Another cutout of Copenhagen Pan (same frame as in Figure 3.6)
showing the superiority of variational MC deinterlacing (a) over variational MA
deinterlacing in (b) as it manages to solve The Interlacing Problem. Notice
the stair step effect on almost horizontal and diagonal lines in the MA output,
which also causes severe flickering during playback.

the survey by Bellers and de Haan in [4], there is too few subjective results
given in [4] to judge by. Taking the relatively small gap in objective evaluated
performance compared to line averaging and the fact that no motion adaptive
schemes were tested, we believe to outperform all the schemes given based on
the results of variational MC deinterlacing given in this section. It might be
that one or more of the MC deinterlacers given in [4] could compete with our
method, if the block matching was improved or replaced with a better motion
estimation scheme. The methods in [4], however, have one major advantage
over our variational MC deinterlacer: They all run in realtime.

3.5 Conclusion and Future Work

We have shown that using variational methods for deinterlacing is advantageous.
The variational MA is best among simple and motion adaptive deinterlacers just
outperforming the Faroudja DVP-1010 video processor with DCDir which is
considered state of the art in home cinema deinterlacing. But no MA deinter-
lacer including our variational MA deinterlacing solves The Interlacing Problem
of detailed image regions in motion. This problem is solved by our variational
motion compensated deinterlacer, which yields high quality results close to the
ground truth. To fully prove its quality a benchmarking against other MC
deinterlacers is needed. Our variational MC deinterlacer still has flaws mostly
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related to bad optical flow estimation, partially due to the problems of working
on interlaced video. Improvements are to be expected if the flow and intensity
calculations are integrated in a simultaneous scheme. In terms of running time,
we are far from realtime in our current software version, but the realtime com-
putations of variational optical flows presented by Bruhn et al. in [11] shows
that realtime variational MA and MC deinterlacing is close at hand. Especially
if dedicated hardware and parallelization are employed. Our algorithms repeat-
ing the same operations on all pixel over and making it an obvious target of
parallelization.



Chapter 4

Video Super Resolution

Producing high image quality on high definition (HD) displays when showing
standard definition (SD) material is a problem of upscaling frame resolutions
from low resolution (LR) to high resolution (HR) and is as such a super resolu-
tion (SR) problem, or as we prefer: Video super resolution (VSR). In technology
available today the problem is typically solved using simple spatial interpolation.
Using motion compensated (MC) methods instead will allow for information
transport along the optical flow trajectories of the video and increase the level
of detail and sharpness in the high resolution output. We present a variational
motion compensated VSR method that simultaneously computes the desired
high resolution video and a high resolution flow fields to increase accuracy of
the temporal information transport. Creating super resolution flows has to our
knowledge not been done before. Most advanced SR methods found in literature
cannot be applied to general video with arbitrary scene content and/or arbitrary
optical flows as it is possible with our simultaneous VSR method, which also
allows for arbitrary discrete magnification factors. We show in test that our
variational simultaneous VSR algorithm outperforms other SR methods appli-
cable to our general video problem, and we also attempt to break the limits of
super resolution [2] in our experiments by increasing the frame resolution eight
times in both height and width (8x8 VSR).

4.1 Introduction

Super resolution (SR) is a thoroughly investigated subject in image processing
where a majority of the work is focussed on the creation of one high resolution
(HR) still image from n low resolution (LR) images (see for instance [19]).
In this chapter we will join the minority doing video super resolution (VSR)
defined to be the creation of an n frames high resolution video from an n frame
low resolution video. An overview of work done on VSR can be found in [38]
although under the name multiframe super resolution.

Our motivation for doing VSR is to solve the problem of showing low reso-
lution, typically standard definition (SD) video signals on high definition (HD)
displays at high quality. The SD signals that are either broadcast or stored
on DVDs, hard disks, etc. and could be in PAL, NTSC or SECAM and need
to be upscaled before they can be displayed on modern displays such as LCD
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(a) (b) (c) (d) (e) (f)

Figure 4.1: Frame no. 3 of 5 in the Skew sequence: (a) ground truth (arrows
show skew motion), (b) ground truth downsampled by 0.5x0.5 with loss of in-
formation. 2x2 super resolution on (b): (c) bicubic interpolation, (d) bilinear
interpolation, (e) our motion compensated VSR algorithm and (f) our algorithm
run purely spatial.

and plasma tv-sets and most projectors (DLP, LCD etc.). Until high definition
television (HDTV) takes over from current SD standards there will be a need
for upscaling and even far into the future both broadcasters and private homes
will have large archives of SD material that needs to be upscaled before being
displayed. The increase in spatial resolution does not need to stop with the
current HDTV formats, and in coding the availability of high quality upscaling
will allow for lower bit rates and/or higher image quality.

But since millions of HD displays are already in use, upscalers are also in
use. The problem is that they do not do a very good job as it is shown in
Figure 4.1. Bilinear interpolation (for instance used in the expensive, high end,
stand-alone video processors by Faroudja) and bicubic interpolations are the two
very widely used upscalers and in Figure 4.1(c) it can be seen that bicubic comes
a little closer to the ground truth (Figure 4.1(a)) than bilinear interpolation
does (Figure 4.1(d)). Our motion compensated video super resolution using
total variation filters is indistinguishable from the ground truth as can be seen
in Figure 4.1(e).

The two standard methods bilinear and bicubic interpolation hardly qualifies
as super resolution methods as they are simple spatial interpolation methods
and by Borman and Stevenson’s classification in [8] they are ranked lowest in
the SR hierarchy. Depriving our method of its flow part and running it purely
spatial on single frames, it still performs clearly better than the two standard
methods as seen in Figure 4.1(f). From the examples in Figure 4.1 it should be
clear that our method has the potential to improve the experience of SD video
on HD displays.

The Skew example in Figure 4.1 is a simplification of the world and recordings
of it, we cannot always expect to come this close to the ground truth. Super
resolution is an ill-posed problem: One wants to reconstruct a hypothetical
higher resolution image (sequence) from an image (sequence) sub-sampling at a
lower resolution. The inevitable loss of high frequency information as foretold
by the Nyquist-Shannon sampling theorem, causes the super resolution problem
to be ill-posed.

The idea of doing super resolution (one HR image from multiple LR images)
in spite of the limitations posed by the subsampling is coupled to how detail
enhancement happens in the human visual system (HVS). The input resolution
on the retina is not as high as the resolution perceived by the HVS after it has
processed the input. The eye constantly makes small, rapid movements thus
supplying the visual system with a number of low resolution views from which
the HVS can construct a higher resolution, more detailed view. It has been
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debated for a long time whether the small, rapid eye movements did more then
just stop the visual input from fading [87], but it was not proven until recently
by Rucci et al. [87].

The suspected super resolution effect of the HVS might have inspired early
work on super resolution in the early 1980s, e.g. the work by Tsai and Huang
in [101]. It seems obvious that the unsteadiness of a video camera will give
subpixel differences from frame to frame. From this spatial low resolution but
temporally abundant data one should be able to mimic the HVS in creating
higher resolution outputs. No matter if inspiration came from vision, signal
processing, or both, it is the basic idea of super resolution that one can increase
the level of details somehow inferring knowledge over a number of time and/or
space shifted low resolution samples of a scene.

Ideally we wish to model what the HVS in computer vision also when it
comes to doing super resolution. We build our model of video super resolution
based on knowledge of how the lower level vision works. If one applies the right
modelling in doing (video) super resolution, one should be able to generate high
resolution images or image sequences that will please the HVS, or at least not
disturb it with annoying artifacts.

In typical super resolution producing just one HR image, the n LR views are
registered to a common frame of reference before the HR output is generated.
The registration is often simplified by using different known transformations
and subsamplings of the same image thus simplifying the registration. If the
LR input is an n-frame video sequence, the registration is typically done by
computing the optical flow from each frame to the common frame of reference.

In VSR we could do as in single frame SR by define a support area of
e.g. ±4 LR frames for each HR frame and slide a window along the sequence
to produce n HR frames from n LR frames. This would be extremely heavy
in terms of computational requirements and thus we will ’just’ compute the
standard backward and forward optical flows of our n frame LR sequence and
use only the optical flow between neighboring frames in time to produce our n
HR frames. We then claim that through solving our system iteratively, we will
propagate information from more than just the two neighboring frames to each
HR frame. We also benefit from having increasingly more and more detailed HR
frames and not just LR frames to draw information from: We produce the n HR
frames simultaneously. Furthermore we simultaneously update the optical flows
of the sequence also in high resolution, which aids accurate detail propagation
from frame to frame. Last but not least we use total variation as our main
model spatially, temporally and spatiotemporally. Total variation allows for
sharp edges, also temporal edges, and used within the right framework it does
not introduce any artifacts as often seen with super resolution algorithms: Very
often the prize payed for sharp edges is ringing artifact (see for instance several
of the examples given in [47], [2] and [38]). By controlling the diffusion of our
total variation model properly we avoid getting cartoon look of total variation
run too extensively where the image is divided into very smooth, almost flat
regions with sharp edges as boundaries.

This chapter is organized as follows. In Section 4.2 we present the details of
the super resolution problem and look at other work on SR and VSR algorithms,
and in Section 4.3 we discuss the theory and modelling behind our variational
motion compensated VSR method before we give the actual algorithm. Finally
we present our experiments and results in Section 4.4.
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4.2 Background

4.2.1 The Super Resolution Problem

Before describing our algorithm or discussing related work on super resolution,
we will present the basic model used in super resolution. In practice SR is
a subsampling problem in the discrete domain as we have images or frames
that are sample at a resolution lower than what is desired. As a subsampling
problem it is an ill-posed problem, and even though it is a problem existing in
the discrete domain it is possible to model it in the continuous domain. We
follow [69] and start the analysis of the SR problem with the continuous image
formation equation that models the projection R of a high resolution image into
a low resolution one:

u0(y) = R(u)(y) + e(y) :=
∫

B(x, y)u(x)dx + e(y). (4.1)

u0(y) in (4.1) is the LR irradiance field, u(x) the HR irradiance field, e(y) some
noise and B(x, y) is a blurring kernel. In general this kernel is assumed to be
shift invariant and takes the form of a point spread function (PSF). Replacing
images with image sequences, x is replaced by (x, t) where t is the time dimension
of the sequence.

The general discrete formulation is

L = RH + E

where H ∈ RN , L ∈ Rn with n < N and L and H being the discretizations of u0

and u respectively. R is a linear map RN → Rn and E ∈ Rn is a random vector.
Inverting this equation is severely ill-posed and more information is needed to
get a stable solution. First, more than one low resolution view is used for a
given HR view, which is the fundamental idea of SR and what happens in the
HVS as described in Section 4.1. Secondly, some regularization of the problem
is introduced, e.g. in the form of a prior on the distribution of HR images, p(u).
A common type of prior imposes spatial or spatiotemporal regularity. Another
one (that can be used together with the first type of priors) relies on expected
content of images. The general process can be described as follows: different LR
images L1, . . . , Ln are registered toward a common one, say L1, via sub-pixel
displacement fields w2, . . . , wn such that L1(y) = Li(wi(y)), hoping to get as
close as possible to the ground truth H.

Related to SR is image interpolation, which is used e.g. in image zooming
where only one view of a given scene is available. One HR image is then created
from just one LR image and one then has to rely completely on the regularization
to supply information for the upscaling.

A crucial part of an SR algorithm is the modelling of the point spread func-
tion, but before we go into details with that, we will look at related work on
(video) super resolution.

4.2.2 Related Work on Super Resolution

Pioneering super resolution Tsai and Huang in [101] modelled their approach
of solving the super resolution problem in the frequency domain but did not
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take noise into account in their models. Kim et al. extended the formulation of
Tsai and Huang to include noise in [60]. A different family of methods emerged
directly in the spatial domain where a maximum likelihood estimator (ML)
would produce HR output H̄ which minimized the projection distances to all
the sample LR images Li. Adding priors to these approaches will replace the ML
estimator by a regularized ML or a maximum a posteriori (MAP) like estimator
as (see e.g. the work by Schultz and Stevenson in [90]).

An extensive review of different approaches to solving the super resolution
problem is given by Borman and Stevenson in [8]. Another extensive bibliog-
raphy can be found in [19], and an overview including some of the most recent
work is found in [93]. In the work of Irani and Peleg [49] motion compensation
(MC) is used to extract and register several frames from a given sequence and
then create an HR image from them. Schultz and Stevenson [90] also integrate
motion compensation as well as prior smoothness constraints more permissive
for edges than the Gaussian one. Here too, authors aim at reconstructing one
HR frame from a video sequence input. Generalizations of these methods have
been used for spatiotemporal super resolution of video sequences by Shecht-
man et al. in [92]: From a set of low resolution sequences one high resolution
sequence is generated (multi-camera approach).

The recent video super resolution algorithm by Farsiu et al. [38] models
only affine or similar parametric optical flow and is a typical example of how
modelling of the registration simplified. This is typical example of ignoring the
complexity of the registration task in it self. Any super resolution algorithm
applied on real world data1 is no good without a reliable and precise registration,
in the case of video the registrations becomes the complex task of computing
optical flow.

In [37] Farsiu et al. introduce an interesting combination of demosaicing and
video super resolution. As amateur video cameras only have one charge-coupled
device (CCD) they can only sample one color per pixel and thus demosaicing is
essential for obtaining full color video sampling (e.g. RGB). Professional cam-
eras have 3 CCDs, one for each of the RGB channels, thus making demosaicing
unnecessary.

Super resolution has its limits as shown by Baker and Kanade in [2] and
recently by Lin and Shum in [69]. The limits is imposed by the fact that noise
amplified by the super resolution algorithm will grow quadratically with the
magnification factor making large magnifications (more than two on real image
data) impractical. In order to overcome these limitations, Baker and Kanade
have proposed doing hallucination, which is to add a generative, trained model
part to the reconstruction. We want to be able to process any kind of video
content and just as the limitations in the modelling of the registration in the
algorithm of [38] (affine and parametric flow only) prevents us from using that
method, we cannot use the method of Baker and Kanade either as it is optimized
on a subset of video and image data only. Even the semi-generic, learned priors
of Freeman et al. in [40] are too limited, as the patches used for training comes
from images similar to the images used in test. We thus need to develop a
generic VSR algorithm able to handle arbitrary scene content and optical flows
without prior training.

1Typical test data is transformed (shifted/rotated/skewed) and then subsampled versions
of one HR image. Thus the registration is just using the known transform.
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4.2.3 The Foundation of Our Method and Related Work on
Variational Methods

The starting point of our work is Bayesian inference. We derive a variational
formulation and replace the optimization via maximum a posteriori (MAP)
with an energy minimization whose optimization takes the form of a non linear
reaction-diffusion spatially within each frame and temporally along the flow
field. The optical flows composing the flow fields are themselves computed
simultaneously with the intensities using variational methods in an integrated
framework. This is a technique known from image sequence inpainting [65]. An
earlier variational approach for motion compensated inpainting was presented
in [23] computing first the flow and then the intensities as it is also done in
variational motion compensated deinterlacing in Chapter 3 of this thesis. In our
first version of variational motion compensated video super resolution in [54] we
also used this sequential approach. The simultaneous approach for variational
MC VSR also computing high resolution flows is presented for the first time
here (a detailed description will be given in Section 4.3).

The use of a highly precise variational optical flow algorithms as part of
our framework enables us to capture flows even more complex and detailed
than the one in the skew sequence example in Figure 4.1, whereas even the
skew motion would be a source of problems to the widely used block matching
motion estimators.

Lillholm et al. [68] have presented a method for the reconstruction of images
from a finite set of features measured on the image (linear filter responses) under
smoothness constraints in a variational framework, a problem very similar to
super resolution. In both cases the iterative minimization of the given energy
will not be restrained to the correct solution hyperplane. The correct energy
minimization can be found by orthogonally projecting the suggested energy
minimization back onto the solution hyperplane. In the super resolution case
the projection is dictated by the super resolution constraint R · u− u0 = 0 that
follows from the model of the image formation process given in Section 4.2.1
(assuming e(y) = 0 in (4.1)). In our Bayesian formulation, which will be given
in Section 4.3, R · u− u0 = 0 poses as the likelihood (data fidelity) term.

Our Bayesian framework models both super resolution on the sequence and
the optical flow field formation and from that we derive a maximum a posteriori
(MAP) approach simultaneously computing HR flows and HR image sequences.
Shen et al. [93] presents a MAP approach that jointly computes a HR image,
the flow field of the LR sequence it comes from, and a (flow based) object seg-
mentation in one iterative, cyclic scheme. The segmentation, the flow from each
LR frame to the reference frame and the HR image are considered interdepen-
dent, just as we would like to consider the flow of a sequence and sequence
as integrated and as dependent on each other as possible. The model in [93]
only allows for perspective, parametric motion, the spatial prior is the Lapla-
cian (that smooths across edges) and the number of moving objects needs to be
known in advance, which makes it unsuitable for our purposes.

Simultaneous registration and single HR image construction was also done
earlier by Hardie et al. in [46] but without considering multiple motions in the
scene.

Since we cannot use the advanced learned spatial priors of e.g. Baker and
Kanade [2] we have chosen to use total variation, although more advanced
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generic regularization models are available, e.g. structure tensor based meth-
ods, which are used for image interpolation in [103] and [86]. Tschumperlé and
Deriche does energy minimization without back projection as dictated by the
image formation process in (4.1). Therefore Roussos and Maragos, who do do
back projection get better results when comparing their method to the method
of Tschumperlé and Deriche in [86]. The major disadvantage of structure ten-
sor based regularization is the computational cost: Recalculating the structure
tensor in each iteration is costly, but does give better results than just doing
spatial total variation based regularization (as shown e.g. in [86]). Having tem-
poral coherent frames available in an sequence of images (enabling us to do
video super resolution instead of image interpolation) gives a potential of detail
enhancement not possible in image enhancement. But the increased ability to
produce sharp edges with structure tensors compared to total variation makes
it interesting for future improvements.

Total variation is nonlinear and thus more complex to use than the linear
Gaussian distribution but it will preserve and strengthen edges and is thus
worthwhile using. The spatial bilateral total variation filter is suggested for VSR
in [38] and shown to perform better de-noising than standard total variation on
an artificial example (noisy text), but no comparisons of the two used on natural
images are given in [38], neither for de-noising nor for VSR.

So far we have discussed scientific work on super resolution focussing on
getting as close a possible to the ground truth. In actual products for video
processing like the Faroudja and DVDO video processors, and in build-in pro-
cessors in high-end DVD-players and displays (plasmas, projectors etc.) focus
is on visual quality as judged by the human observers. In these devices the
majority of the resources are typically spent on deinterlacing, noise filtering,
correction of MPEG-2 errors and color corrections. Unfortunately bilinear in-
terpolation as in Figure 4.1(d) is the standard method used for video super
resolution as it is cheap, easy to implement and does not create severe artifacts.
The smoothing produced is not and artifact severely unpleasing to the HVS,
but given the trend of larger and better displays it will not suffice over time,
sharper video is needed.

4.2.4 Modelling the Point Spread Function

When recording a far away star in astronomy it is crucial to get as much infor-
mation from just one point sample as possible, and something similar can be
said about recordings in microscopy. In the irradiance image formation model
in (4.1) it is the same point spread function we are looking for. We need to
model how the light is dispersed through the camera lens and sampled on the
recording medium, the sensor. We have

PSF = PSFlens ∗ PSFsensor (4.2)

where ∗ is the convolution operator. To keep the modelling balanced between
correctness and mathematical tractability, Gaussian or uniform (mean) distri-
butions are typically chosen for the two terms. Lenses in cameras are of high
quality and blurring usually not a problem. Blurring might be a problem in
lenses for astronomic telescopes and microscopes and probably that is why the
lens PSF has found its way into PSF modelling in super resolution. The prob-
lem with digital camera lenses is not blurring but more the opposite, that is
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aliasing. As it is pointed out e.g. in [4] anti-aliasing (low pass filtering) in lenses
is very difficult in practice and when reading tests of digital still cameras the
problem of moiré often comes up even with 10 megapixel cameras. Thus lens
blur modelling has no place in PSF modelling in SR except for in very special
cases.

Choosing between Gaussian and uniform distributions for the sensor PSF,
the uniform distribution is the obvious choice for digitally scanned film record-
ings (not modelling the film granularity). The Gaussian mainly seems to be
used when lens blur is included in the PSF model (e.g. in [37] and in [92])
maybe to fit a Gaussian downsampling of test data often used prior to running
the SR algorithm.2 A problem with the Gaussian is that it has one degree of
freedom, the variance, which needs to be set but there is nothing in the model
that suggest a certain value, thus it has to be found empirically for a given data
set, and retuning for other data sets might be necessary. The uniform sampling
is fixed, it is the distribution that most truthfully models the sampling across
CCDs [3] and it is for instance used in [2], [69], [79] and [90] – and we will
use it as well: Most digital video have been sampled using CCDs, either when
recorded with digital cameras or scanned from film using modern telecines (film
scanners).3

Roussos and Maragos [86] use the uniform distribution convolved with a
Gaussian of large standard deviation, which they claim helps remove blockiness
(a.k.a. jaggedness or ’jaggies’). The restricted use of Gaussians might also
remove some moiré and noise, but one will of course risk removing fine details.

Temporal integration or point spread in time to model the temporal aperture
of the recording is typically left out of the modelling. In [102] it is used to add
film-like motion blur to video recordings when the two types of material is edited
together (no (V)SR done). Both Patti et al. [79] and Lin and Shum [69] assumes
the PSF to be uniform in time also, but Lin and Shum point out it should be
time integrated to remove motion blur, this is however complex as one ideally
should know the shutter time use in the recording. We also assume temporally
uniform PSF and our model allows for any motion blur to be (almost) untouched
as it is most likely a desired artistic effect of the film maker(s).

4.3 Variational Video Super Resolution

In this section we will go through the different aspects of designing and de-
veloping our algorithm for simultaneous computation of high resolution image
sequences and their optical flows. Some aspects have already been mentioned
briefly, for instance our starting point, a Bayesian framework, from which we
derive our algorithm.

4.3.1 Bayesian Framework and Motion Compensated Image
Sequence Upscaling and Restoration

The framework we present here was first formulated by Lauze and Nielsen in
[65] to be used for simultaneous image sequence inpainting and motion recovery,

2Downsampling is done to enable a comparison between the SR results and ground truth.
3Telecines use 3 CCDs to scan in full RGB, so demosaicing is not needed for digitally

scanned films.
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we have used it for deinterlacing in Chapter 3 of this thesis, for temporal super
resolution (frame rate conversion) in Chapter 5 and for a simpler version of
video super resolution in [54]. Thus it spans widely.

We wish to model the image sequence content and its optical flow using
probability distributions. The locus of missing data given in [65], is a necessary
tool to model missing lines in deinterlacing and missing frames in temporal super
resolution, but we have no regions of missing data in video super resolution, so
we are left with

p(u,~v|u0) ∝ p(u0|u)︸ ︷︷ ︸
P0

p(us)︸ ︷︷ ︸
P1

p(ut|us, ~v)︸ ︷︷ ︸
P2

p(~v)︸︷︷︸
P3

. (4.3)

where ~v is the optical flow of the high resolution output sequence u, and u0 is
the low resolution input sequence. us and ut are the spatial and temporal dis-
tribution of intensities respectively. On the left hand side we have the posterior
distribution which we wish to maximize doing MAP. The right hand side terms
are: P0, the image sequence likelihood, P1 the spatial prior on image sequences,
P3 the prior on motion fields and P2 a term that acts both as likelihood term
for the motion field and as spatiotemporal prior on the image sequence. The
term spatiotemporal do not denote the spatial plane and the purely orthogonal
temporal component, which is a commonly used, stringent definition of spa-
tiotemporal in a 3D sense. We consider an image sequence to be 2D + 1D, time
can not be juxtaposed with the third spatial dimension as step sizes cannot be
said to be the same in time and space. More importantly, with motion in the
sequence the relevant information is found along the motion trajectories, thus
we define spatiotemporal as the 2D spatial neighborhood in combination with
the information rich time dimension located along the optical flow field.

In the sequel we assume that u0 comes from a noiseless image formation
equation, i.e. e(y) = 0 in (4.1).

4.3.2 From MAP to Variational Energy Minimization

We use the Bayesian to variational rationale by Mumford [75], E(x) = − log p(x)
to get to a variational formulation of our problem and replace MAP with an
energy minimization. This means that the optimal pair (u,~v) minimizes the
constrained problem

{
E(u,~v) = E1(us) + E2(us, ut, ~v) + E3(~v)
Ru = u0

(4.4)

where Ei = − log Pi and R the projection described in Section 4.2.1. The
likelihood term P0 is the constraint Ru = u0 governing the mapping back and
forth between high resolution and low resolution sequences.

Applying calculus of variations, a minimizing pair (u,~v) must under mild
regularity assumptions satisfy the condition ∇E(u,~v) = 0 where ∇ is the gra-
dient. The optimized solution is expressed by the coupled system of equations





∂E

∂u
(u,~v) = 0

∂E

∂~v
(u,~v) = 0.

(4.5)
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where ∂E(u,~v)/∂u = 0 is subject to the constraintRu = u0, the projection onto
the true solution hyperplane. There is no back projection of the flow, R~v = ~v0

as there is no ground truth ~v0 governing what the true solution hyperplane
is. When calculating the HR flow ~v0 is linked to the ground truth through its
coupling to and dependency of u and the projection Ru = u0.

4.3.3 Variational Video Super Resolution and Optical Flow

It has already been mentioned in the previous sections of this chapter that
we have chosen to use total variation as the distribution for all terms. Total
variation fits our purpose of balancing between computational complexity and
mathematical tractability. Using total variation on the (spatio)temporal parts,
E2 and E3 in (4.4), allows for temporal edges, which means that occlusions
will be handled. It has been discussed in Sections 2.6 and 3.3.2 (Deinterlacing
chapter) on which measures of the image sequence intensity values (u) and its
flow field (~v) to apply total variation.

Using total variation we get the following energy from (4.4):




E(u,~v) = λ1

∫
ψ(|∇u|2)dx

︸ ︷︷ ︸
E1

+
∫

ψ(λ2

∣∣£~V u
∣∣2 + γ

∣∣£~V∇u
∣∣2)dx

︸ ︷︷ ︸
E2

+

λ3

∫ (
ψ(|∇3v1|2) + ψ(|∇3v2|2)

)
dx

︸ ︷︷ ︸
E3

Ru = u0︸ ︷︷ ︸
E0

(4.6)

where x runs over the whole domain of the HR sequence u, the λi’s and γ are
some positive constant weights and ∇ is the 2D spatial gradient. ∇3 in E3 is the
3D local spatiotemporal prior on the flow: v1 and v2 are the x- and y-components
of the flow field, i.e. ~v = (v1, v2)T and V = (~vt, 1)T . ψ(s2) =

√
s2 + ε2 is an

approximation of the | · | function regularizing it around the origin, where it is
non-differentiable. ε is a small positive constant set to 10−8 in our tests.

E1 is then the well-known 2D spatial total variation filter and E3 is a similar
3D regularizer on the flow. E2, which acts as the spatiotemporal prior on the
intensities and likelihood for the flow, is more complex. The two £~V -terms
are the ~V -directional derivatives of u and ∇u respectively, also known as the
Lie-derivatives (see for instance the book on Riemannian geometry by Gallot et
al. [42]). To set the notation straight we have4

£~V u =
∂u

∂~V
= ∇u · ~v + ut = ~V T∇3u ≈ u(x, t)− u(x + ~v, t + 1) (4.7)

where the right hand side of the approximation is the brightness constancy
assumption (constant intensity along the optical flow field) and the other terms
are all notions for the linearized version of the brightness constancy assumption
know as the optical flow constraint (OFC) [48]. ∇3u is the spatiotemporal
gradient of u. The second term in E2 is

£~V∇u =
∂∇u

∂~V
≈ ∇u(x, t)−∇u(x + ~v, t + 1) (4.8)

4∂f(x)/∂~V = limε→0

�
f(x + ε~V )− f(x)

�
/ε = ∇f(x) · ~V .
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where the right hand side of the approximation is the gradient constancy as-
sumption (GCA) and the two other terms are a linearized version of the GCA,
which sharpens motion boundaries and lowers sensitivity to changes in bright-
ness (change of lighting, motions in and out of regions in shadow). The notation
∂ · /∂~V is used to some extent in literature on image and shape geometry but is
problematic, as e.g. ∂~V /∂~V 6= 1 although it would be considered equal to one
in standard (partial) differential notations. Thus to avoid confusion we do not
use this notation.

We split (4.6) in two parts, E(u) and E(~v) to minimize it according to (4.5).
For the flow we then get this energy to be minimized:

E(~v) =
∫

ψ(
∣∣£~V u

∣∣2 + γ
∣∣£~V∇u

∣∣2)dx

︸ ︷︷ ︸
E2

+ λ3

∫ (
ψ(|∇3v1|2) + ψ(|∇3v2|2)

)
dx

︸ ︷︷ ︸
E3

.

(4.9)
According to the survey in [12] this energy is the scheme yielding the most
precise optical flow. It was first presented by Brox at al. in [9]. Simpler
versions of variational optical flow algorithms have been shown to run real time
on standard PCs in [11], which shows why we are not that far from real time
variational VSR even when using variational optical flow methods (the flow
calculation is the computationally heavy part of our VSR algorithm).

The intensity energy to be minimized is

E(u) = λs

∫
ψ(|∇u|2)dx

︸ ︷︷ ︸
E1

+ λt

∫
ψ(

∣∣£~V u
∣∣2)dx

︸ ︷︷ ︸
E2

, Ru = u0︸ ︷︷ ︸
E0

(4.10)

where we have removed the GCA in E2 as it gives fourth order terms in the
Euler-Lagrange equations of E(u) and makes the computations to minimize the
energy very heavy. Since we already have well-segmented flow field with sharp
motion boundaries from using the GCA in E(~v), it will most likely not lift the
output quality if used in the intensity part as well. Imagine an object moving
into a darker region (e.g. a car driving from the sun into the shadow) and take
a point p on the object, which is in the sun in frame no. 1, and in the shadow in
frames 2 and 3. Temporal diffusion in p in frame 2 along the flow using just the
brightness constancy assumption will be from frame 3 mainly as an temporal
edge is detected between frame 1 and 2 in p. Adding the GCA will force the
gradient to be diffused from both frame 1 and 2, which might lead to an increase
in details, but most likely does nothing as we already get precise information
from frame 3 alone. The GCA has already done its work in the flow energy
minimization. Further discussions on whether or not to use the GCA in E(u)
can be found in Chapters 2, 3 and 5 of this thesis.

For details on the Euler-Lagrange equation of (4.9) we refer to Chapter 3
of this thesis and the references [9] and [64]. The Euler-Lagrange equation of
(4.10) is




∂E

∂u
= −λsdiv2

(
ψ′(|∇u|2)∇u

)− λtdiv3

(
ψ′(|£~V u|2)(£~V u)~V

)
= 0

Ru− u0 = 0

(4.11)
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where div2 and div3 are the 2D and 3D divergence operators respectively. and
the discretization of the optical flow constraint is suggested by the approxima-
tion £~V u ≈ u(x + v, t + 1)− u(x, t) from (4.7).

4.3.4 Simultaneous Optimization of High Resolution Flows
and Intensities

It is the level of integration in minimizing E(u) and E(~v), how the coupled
system in (4.5) is solved, that decides the level of simultaneousness of the so-
lution. The high level of simultaneousness in inpainting in [65] and temporal
super resolution in Chapter 5 of this thesis comes from using a multiresolution
scheme. Both the flow and intensity energies are minimized on each level in the
multiresolution pyramid giving highly reliable initializations for the next level
when the scale factor from level to level is small. In the deinterlacing in Chap-
ter 3 and in our early video super resolution in [54] simultaneousness cannot
be claimed. In both cases in E(~v) is minimized first, using the interlaced video
(u0) in the deinterlacing and the low resolution input u0 as u in computing ~v.
This flow is then used in minimizing E(u). This gives fine results for the dein-
terlacing case. In the VSR case the low resolution flow is all that is computed
solving ∂E(u,~v)/∂~v = 0, the high resolution flow is just a simple initialization
from that LR flow. This HR flow does not allow for the full use of temporal
information as it is not detailed enough.

It makes no sense to introduce simultaneousness to VSR by using multires-
olution with the LR sequence composing the highest resolution. In the simulta-
neous VSR algorithm presented in this chapter we will therefore iterate between
minimizing each of the two parts in (4.5) at the high resolution directly to pro-
vide better and better version of the fixed part currently not under optimization.

This will not give us quite the level of simultaneousness as if we solved the
system in a multiresolution setting, but to make multiresolution VSR possible
we would either have to drop the super resolution constraint derived from the
projection back onto the true solution space, Ru = u0, and thus the solution
would no longer be correct, or we would get an extremely complex system if we
kept the SR constraint.5 By iterating and all the time using the latest version of
the other, temporarily fixed part we do get a well controlled scheme producing
optimized flows and intensities. The HR intensities are nicely locked to their
LR counterpart, u0 through the back projection Ru = u0, but we also keep the
HR ~v nicely controlled through its dependency of the latest version of u (which
is controlled by the projection).

We tried in a first attempt to just recalculate the HR flows on the outputs of
our VSR algorithm from [54] and then run the intensity VSR part again, but we
got literally no change in the output HR sequence: The HR inputs (intensities
and the following flows) were already optimized, but not to the global minimum
but to some stable local minimum to the variational approach. Thus we ran
the algorithm for too long and on with to poor a flow, and ended up in a (bad)
local minima with a smooth output low on details and sharpness. Here we will
simultaneously create high quality HR flows and sequences. Thus the iteration
between minimizing E(u) and E(~v) will have to be controlled carefully to avoid

5As it will be made clear in Section 4.3.5 using the SR constraint with the typical small
scale factors in a multiresolution pyramid will create a very complex solution.
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local minima.

4.3.5 The Super Resolution Constraint

As mentioned in the previous section, the super resolution constraint does not go
well with multiresolution schemes but before we show why that is, we will first
describe the SR constraint, which governs the projection back to the solution
hyperplane. It can be put as simple as: The average pixel intensity over an
area of interest is kept constant. We use the uniform distribution to model the
point spread function, which makes R, the discretized version of the projection
operator R, a moving average filter.

Replacing the uniform distribution with a Gaussian would complicate the
SR constraint modelling as we would no longer be working with area overlaps
between two set of rectangular pixels in the HR and LR grids respectively (see
Figure 4.2(b)) but a more complicated Gaussian weighed area overlap.

The PSF modelling is the first key element in defining the super resolution
constraint, the second key element being the magnification factor. Our model
allows for arbitrary, independent magnification factors in both frame height
and width (integer to integer size of course). Due to the independence between
height and width magnification factors we do not require any preservation of
aspect ratio in our super resolution constraint, which is fully on purpose as it
enables us to change between different pixel aspect ratios in video, e.g. from PAL
widescreen 1:1.422 pixels to square 1:1 HD pixels when going from widescreen SD
PAL (576×720) to 720p HD (720×1280). This and the classic 2x2 magnification
are the two magnifications we have focussed on in our tests, but we can easily
adapt our algorithm to do VSR to any other HD format, e.g. the 1080p format
(1080× 1920). These magnifications keep us reasonably within the limits of SR
([2] and [69]) but we have also tried doing both 4x4 and 8x8 magnifications to
see how far we can take our VSR algorithm.

To make the presentation of the SR constraint straightforward, we first de-
scribe the discretized back projection filter R in 1D before we take it to 2D.

1D Super Resolution Filter

The mapping RN
n : Rn → RN can be decomposed as a replication step S :

Rn → RnN , where each source component is replicated N times, followed by an
average step T : RnN → RN , where consecutive blocks of n entries are replaced
by their average. A 1D example is shown in Figure 4.2(a). The R4

3 mapping
and its action on a vector u ∈ R3 is

R4
3 =

1
3




3 1 0 0
0 2 2 0
0 0 1 3


 , R4

3

(
u1, u2, u3

)
=

1
3

(
3u1, u1 + 2u2, 2u2 + u3, 3u3

)

which tells us that e.g. the third HR pixel is composed of 2/3 of the middle LR
pixel (u2) and 1/3 of the right LR pixel (u3).

2D Super Resolution Filter

The 2D and higher dimensional filters of this form are separable, i.e. they can
be obtained by cascading 1D filters along the appropriate dimensions. Thus a
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Figure 4.2: The super resolution constraint in 1D and 2D. With uniform PSF it
is a matter of calculating area overlap between high resolution and low resolution
pixels.

2D filter is obtained by defining the needed vertical and horizontal 1D filters,
Rv and Rh, and taking the Kronecker product of them (vectorizing the image
matrix lexicographically column by column)

R =
mn

MN
Rh ⊗Rv. (4.12)

For the m × n = 2 × 3 to M × N = 3 × 4 example shown in Figure 4.2(b) R
becomes

R =
mn

MN
Rh⊗Rv =

1
6




6 3 0 2 1 0 0 0 0 0 0 0
0 3 6 0 1 2 0 0 0 0 0 0
0 0 0 4 2 0 4 2 0 0 0 0
0 0 0 0 2 4 0 2 4 0 0 0
0 0 0 0 0 0 2 1 0 6 3 0
0 0 0 0 0 0 0 1 2 0 3 6




T

. (4.13)

This solution tiles for larger integer multiplications of it, so we have to find the
greatest common divisors (GCD) of the two sizes (LR and HR) of each of the
two dimensions (height and width) respectively. When we e.g. go from 576×720
SD to a 720× 1280 HD our projection will map LR pixel blocks of size 4× 9 to
HR pixel blocks of size 5 × 16 separated where boundaries of the LR and HR
pixel grid aligns. Still, we have 80 HR pixels depending on each others update
in this case.6

Projecting back to the solution space can be done directly in high resolution:
Each time we get an update of the energy, we orthogonally project this energy
update back onto the true solution hyperplane T as done for feature based,
variational image reconstruction in [68] by

∇E(u) ⊥ T = R(RT R)−1RT∇E(u) (4.14)

where u and R are the same as before, ∇E(u) is the suggested energy update,
RT is the transpose of R and ∇E(u) ⊥ T is the correct, back projected energy
minimizing update as dictated by the super resolution constraint.

6Using Gaussians to model the PSF instead of the uniform distribution would make this
divide and conquer block processing strategy impossible as soon as the Gaussian used are
larger than 1 pixel wide in its numerical implementation: There would no longer be any
boundaries without pixel overlap at which to divide into blocks.
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Multiresolution VSR and the super resolution constraint

For the example of going from m×n = 2×3 to M ×N = 3×4 in Figure 4.2(b),
the projection matrix M = R(RT R)−1RT is of size 12×12 and in the SD to HD
example it is of size 80×80. Doing 2x2 VSR in a multiresolution setting having
a typical scale factor of 1.04 would give some very large and complex mapping
matrices at each level, thus multiresolution VSR would be computationally very
costly. It is not impossible that multiresolution VSR using small scale factor
could improve the output quality. We have done no test using small scale
factors, but have done multiresolution VSR with a scale factor of two, which
gives a simple 2× 2 projection matrix, to get 4x4 and 8x8 VSR.

Combined Spatio-Temporal Video Super Resolution

Discussing multiresolution VSR also brings up the question of combining tem-
poral and spatial video super resolution as it is done in [92] using a multi-camera
approach (discussed in Sections 4.2.2, 5.2.1 and 5.2.7 of this thesis). Our frame-
work allows for the combination in theory as well, but in practice it would
have to be a cascaded function first doing TSR first and then naturally contin-
uing with VSR when TSR reaches the finest level of its multiresolution solver
pyramid, which is the spatial input resolution and the stating point of VSR.
The cascading could also be done VSR first followed by TSR. We will discuss
integrated solutions in Section 7.2.4.

4.3.6 Minimizing Algorithm

Initialization

Choosing the right initialization for our algorithm is important. In Section 4.3.4
we described how trying to rerun our VSR algorithm from [54] failed as the
rather smooth inputs where considered optimized and left us stuck in a local
minimum. Bilinear interpolation produces very smooth results and using it as
initialization would also leave us caught in a local minima. Thus we use the
projection in (4.12)

R =
mn

MN
Rh ⊗Rv

to initialize both flows and intensities to get unblurred (but also jagged) initial-
izations. We have tried (with our non-simultaneous VSR algorithm from [54])
to initialize the intensities with bilinear interpolation instead, and as predicted
we got stuck in a local minimum with outputs so smooth that they were hardly
different from their inputs. The fact that our variational method is satisfied
with blurred regions is why motion blur will also stay untouched doing VSR.
Thus we do not change the artistic work of the film makers. Algorithms using
structure tensor regularization also cannot de-blur already (too) blurred regions
as it is pointed out by Roussos and Maragos in [86].

If we start with bilinear interpolation of the HR flows using the non-simulta-
neous VSR algorithm from [54] it does not change the intensity output, which
is a clear indication that an accurate and reliable HR flow is necessary to get
optimal VSR results. The LR flow that we initialize with R is computed on the
input LR sequence using a full multiresolution scheme with the same type of
fixed point approach as described below for the intensities. It is the energy in
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(4.9) that is minimized, but with the modification that u is replaced by the low
resolution sequence u0 such that x only runs over the LR domain. To calculate
the backward LR and HR flows on the sequence, the energy in (4.9) is minimized
on a time reversed ({1, 2, 3..., n} 7→ {n, n − 1, n − 2, ..., 1}) version of u0 and u
respectively.7

Core Algorithm

To efficiently minimize the energy in (4.10) we handle the nonlinearity of its
Euler-Lagrange equation (4.11) by using a fixed point approach. First we define
A(u) = 2ψ′(|∇u|2) and B(u) = 2ψ′(|£~V u|2), which represents the nonlinear
parts of (4.11). We only update A(u) and B(u) in a number of outer fixed
point iterations in order to have a fully linear approximation of (4.11). For
each outer fixed point iteration, we run a number of inner iterations on the
now linearized system using a Gauss-Seidel relaxation scheme with the super
resolution constraint incorporated: We back-project the energy update in each
inner iteration modulated by a positive weight, α, in order to respect intensity
bounds. A similar solver is used to minimize the energy of the flows in (4.9).
The overall sketch of the algorithm is:

• Let u0 be the initialization of the HR sequence, and

• let ~v0 be the initialization of the HR flow.

• For i = 0 until I − 1

1. Run L outer fixed point iterations each with M inner relaxation
iterations of the flow solver.

2. Run J outer fixed point iterations each with K inner relaxation iter-
ations of the intensity solver.

3. In each solver always use the latest updated version of the other
component (u for ~v-solver and the other way around).

• Output the final HR sequence u, and if needed, the final flow ~v.

The intensity solver used above is given next. Denoting the null space of R by
T as in Sec. 4.3.5 and by PT the orthogonal projection onto T as in (4.14), we
have:

• Let u0 be the initial guess for the HR sequence.

• For j = 0 until J − 1

1. Let Aj := A(uj), Bj := B(uj), uj,0 := uj .

2. for k = 0 until K − 1

(a) From uj,k, compute ūj,k+1 by one Gauss Seidel sweep on G(Aj , Bj).
(b) Form the update vector δ̄j,k := uj,k − ūj,k+1.
(c) Project it onto T , δj,k := PT (δ̄j,k).

7The multiresolution scheme in computing the flow employs a down- and upsampling
scheme described in [11] and is the same as using R to scale from level to level with rounding
to the nearest integer frame size as typical scale factors give non-integer frame sizes.
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(d) Update current estimate uj,k+1 := uj,k − αδj,k.

3. uj+1 := uj,K .

• Output the HR sequence uJ .

Leaving out the projection, the flow solver runs similarly.

Projection Details

As described in Sec. 4.3.5 the projection allows processing in blocks, e.g. in
blocks of 5 × 16 = 80 pixels in the SD to 720p HD case mentioned, so for any
M ×N block step 2(c-d) above is

uj,k+1
l = uj,k

l − α

(
δ̄j,k
l +

MN∑

i=1

PT (l, i)δ̄j,k
i

)
, l = 1, ...,MN (4.15)

due to the dependance of the update of all other pixels in the support area. A
simple example: In the 2x2 SR case, if the suggested update for pixel 1, δ̄j,k

1 = 4
and δ̄j,k

l = 0 for the remaining pixels in the current block (l = 2, 3, 4), equation
(4.15) tells us to add one to all four pixels and subtract four from pixel 1. This
is the normalization incorporated in PT as dictated by the super resolution
constraint.

The variational (diffusion) part of our algorithm follows the minimum-maxi-
mum principle (see for instance [80]) and keeps intensity values within bounds,
but we need the weight α in (4.15) to ensure that the projection does not create
values out of bounds as it does not follow the minimum-maximum principle.
If a value in a block, B, is detected out of bounds, α is recursively lowered
from 1 to 0 in steps of 0.1, and all values in the block B recalculated with the
new α, stopping when all values in B are within bounds. This can potentially
stop the evolution of the sequence, but it was found not to do so in practice.
The problem of out of bound intensities was limited to very few regions around
extremely high contrast edges and thus the computational overhead by enforcing
bounds was also negligible.

4.3.7 Discretizations

So far we described the overall algorithm and the solvers used. The final com-
ponent missing in the complete description of our algorithm is the numerical
details in discretizing the Euler-Lagrange equation (4.11). For details on the
discretization of the flow Euler-Lagrange of (4.9) we refer to [9] and [65].

We first look at the spatial term of (3.15) and following the ideas of dis-
cretization of total variation on the spatial 2D gradient given in [1], [18], [64]
and [88] we can do a simple rewrite

div2

(
ψ′(|∇u|2)∇u

)
= div2

( ∇u

ψ(|∇u|2)
)

= divxy(A∇u) (4.16)

where

A =
1

ψ(|∇u|2) .
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The spatial gradient is

∇u = (
∂u

∂x
,
∂u

∂y
)T = (∂xu, ∂yu)T . (4.17)

Now from the definition of the 2D divergence we have

divxy(A|∇u|) = ∂x(A∂xu) + ∂y(A∂yu) (4.18)

Using (4.17) and (4.18), equation (4.16) can be approximated finitely as

divxy(A∇u) ≈ δo
x,h/2(Aδo

x,h/2u) + δo
y,h/2(Aδo

y,h/2u) (4.19)

where δo
x,h/2 is the central difference approximation of ∂u/∂x and δo

y,h/2 the
same in the y-direction. h is the distance between two horizontally or vertically
neighboring pixel positions (grid points) and in most cases set to 1. This is in
coherence with the fact, that these filters are only applied to 1:1 square HD
pixels. By definition

δo
x,h/2 =

(u(x + h/2, y, t)− u(x− h/2, y, t)
h

δo
y,h/2 =

(u(x, y + h/2, t)− u(x, y − h/2, t)
h

. (4.20)

Before we do the next rewrite we switch to compass coordinates where the
indexes w, e, n, s represents the directions in the grid and is short for west, east,
north and south, uw = u(x−1, y, t) and so on. uc is the center (or current) pixel.
Plugging (4.20) in (4.19) and rewriting gives us the divergence approximation

divxy(A∇u) ≈ 1
h2

(
(Aw/2 · uw + Ae/2 · ue + An/2 · un + As/2 · us)−

(Aw/2 + Ae/2 + An/2 + As/2) · uc

)
. (4.21)

We need the A’s at half-grid point, and we get them by calculating A’s at all
grid points and then interpolating them at the half-grid points. We could use
linear interpolation, i.e.

Aw/2 ≈ (Ac + Aw)/2 (4.22)

but
Aw ≈ 2

1
Ac

+
1

A′w

(4.23)

endorses edge preservation. Say Ac = 100 (flat region) and A′w ≈ 0 (edge), then
the approximation would be Aw = 50 from (4.22) corresponding to a flat region
and Aw ≈ 0 from (3.25) corresponding to the close by edge we wish to preserve.
To calculate the A’s at grid points, the choice of ψ(s2) =

√
s2 + ε2 is clever.

Since 1/|∇u| = 1/
√

(∂xu)2 + (∂yu)2 the choice leads to

A ≈ 1√
1
4

(
(ue − uw)2 + (un − us)2

)
+ ε2

when using central differences and is similar to the 2D total variation term
used for inpainting by Chan and Shen in [18]. Extensive testing of this 4-point
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discretization and two more advanced 8-point discretizations in [57] showed no
significant difference in output quality when used for deinterlacing, and thus we
use this 4-point version as it approximately a factor of two faster than the two
8-point versions.

For the temporal part, the approximation £~V u ≈ u(x + v, t + 1) − u(x, t)
gives the discretization and we end up with a 1D version of (4.16) but with
the derivative given along the flow. Since the flow is subpixel accurate, the
intensities at the position the flow points to is mostly not at grid point and
has to be interpolated. We use bilinear interpolation for that.8 This might be
considered an Achilles heel of the scheme, but the fact is that any information
on details have to found in or very close to grid points to exist at all makes the
bilinear interpolation as reasonable choice. We will use bilinear interpolation
until we can easily a) do VSR on flexible grids b) come up with other subpixel
interpolation computationally cheaper and more accurate than bilinear inter-
polation, or c) use some other method, e.g. let the flow continue for several
frames until it gets close to grid point. uc is once again the current, center
pixel, ua = u(x + vx, y + vy, t + 1) is the after intensity value along the forward
flow and ub = u(x + vx, y + vy, t − 1) is the before intensity value along the
backward flow and we have

Ba ≈ 1√
(ua − uc)2 + ε2

and Bb ≈ 1√
(uc − ub)2 + ε2

This lead us to the complete direct solution of the scheme – the Gauss-Seidel
solver

uc =
λ1(Aw · uw + Ae · ue + An · un + As · us) + λ2(Ba · ua + Bb · ub)

λ1(Ae + Aw + An + As) + λ2(Ba + Bb)
. (4.24)

A Boundary Conditions Issue

The boundary conditions (BC) of our VSR algorithm is inherited from the
inpainting algorithms presented in [64], where a theoretical discussion on the
subject of boundary conditions can be found. We use Dirichlet BC on the
flow when used in the intensity calculations that is, if there is no flow value
available (primarily forward flow in the last frame of a sequence and backward
flow in the first frame of a sequence), the flow is set to zero. This is logically
the only thing to do as there is no information to find along these flows and
we will thus get a zero contribution from this component. For the intensity
values we – as it is often the case in image processing – use Neumann boundary
conditions to prevent diffusion across the sequence boundaries. This use of
boundary conditions, which is perfectly logical and correct for still images, is
not nearly as well suited for image sequences. The temporal nature of image
sequences is not handled well by Neumann BC as there is actually a flow of
intensities in and out of the spatial camera framing of the scene.

Here we will analyze one particular problem occurring in the first and last
frame of any sequence, and another problem of using Neumann BC at the spacial
boundaries of the image sequence will be discussed in Section 5.4.

8Using bicubic interpolation instead did not improve results.
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Looking at (4.24) and leaving out the spatial part for now, we have

uc =
Bf · ua + Bb · ub

Bf + Bb
.

Say we are in the last frame (the process is similar for the first frame) and we use
Neumann boundary conditions for the intensities in combination with Dirichlet
BCs for the flows, then ua = uc (flow is zero and uc is on the forward temporal
boundary of the data volume). This leads to

Bf =
1√

(ua − uc)2 + ε2
=

1√
(uc − uc)2 + ε2

=
1√
ε2

=
1
ε

(4.25)

and
uc =

Bf · uc + Bb · ub

Bf + Bb
(4.26)

Combining (4.25) and (4.26) gives us

uc =
1
ε · uc + Bb · ub

1
ε + Bb

m
uc( 1

ε + Bb) = 1
εuc + Bbub

m
ucBb = Bbub

m
uc = ub (4.27)

This is of course a very strong update of the pixels in the last frame (and the
first frame where we get uc = ua). The spatial part was left out but with the
result obtained in (4.27) the spatial part will have to produce a very strong
contribution to the update to get any influence. Not even when using a spatial
to temporal diffusion ratio of λs : λt = 500 : 1 did the spatial part manage to
dominate over the temporal part and the first and last frame of the sequence in
test would stay practically unchanged from their initialization.

One might consider this a major flaw in the implementation, but it is in line
with standard uses of boundary conditions and the problem is easily fixed in
practice. One can either include an extra frame in each end of the sequence
being processed or simply set λt = 0 in the first and last frame of the sequence,
thus only using spatial diffusion in these frames. To keep the computational
cost down we used the second approach. The problem will not have an effect
at cuts in the sequence, but just provide a very strong temporal (occlusion)
edge. This claim was found to be true empirically when running a test on a
substantial amount of sequences with cuts.

4.4 Experiments

Before we evaluate the results obtained with our video super resolution algo-
rithm there are some topics we would like to go through.
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(a) (b) (c) (d)

Figure 4.3: The importance of the super resolution constraint. (a) input, (b)
HR initialization, (c) VSR without SR constraint destroys the image content,
and (d) preservation of true content when running VSR with the SR constraint.
The HR initialization (b) and the result with SR constraint (d) are very similar
as there is no sharp edges in this example.

4.4.1 The Importance of the Super Resolution Constraint

We have stressed the importance of using the super resolution constraint through-
out this chapter and would like to give an example why we add this extra com-
plexity to our already complex regularization scheme. In Figure 4.3(a) we have
shown one frame of four identical LR frames in a small sequence, a 4×9 matrix
filled line by line with the values 1 to 36, and in Figure 4.3(b) the correspond-
ing HR frame, a 6 × 12 matrix initialized using (4.12). In Figure 4.3(c) we see
how pure regularization without the SR constraint destroys the image content,
whereas it is preserved in Figure 4.3(d) with the back projection of the SR
constraint included. The breakdown shown in Figure 4.3(c) is similar to the
classical cartoon effect obtained when running 2D spatial total variation for too
long on a natural image. When we increase the weight for the temporal diffusion
in our VSR algorithm (knowing the flow to be zero) the destruction process is
significantly slowed down. In practice we are however unable to discard the SR
constraint as flows are not (yet) guaranteed to be precise enough for that, and
in test we ended up with cartoons when running VSR on real sequences without
using the SR constraint.

The advantage of leaving out the SR constraint – besides lowering the com-
plexity and the computational cost – would be de-noising and reduction in
blockiness but with an inevitable loss of details. One could chose to update
each pixel with a weighted mix of the pure total variation regularization and
the SR constraint controlled update. Since we work on clean data and have
had no real problems with blockiness, we have not experimented with weighed
mixing.

4.4.2 Subjective and Objective Evaluation

We have used both subjective and objective evaluation of our results, but fo-
cussed on the subjective evaluation to best mimic the perceptive evaluation in
the human visual system. We have discussed objective vs. subjective evaluation
in Section 2.3 of this thesis and further information can be found in [4], [51] and
[77]. Our view is that objective measures can give an idea about the subjective
quality, and in some limited cases (small data set and/or a specific problem)
they might even be in almost full correlation with the subjective results. In
Chapter 3 we have shown experimentally for the case of deinterlacing how the
very popular means square error (MSE), which is also directly equivalent with
the peak signal to noise ratio (PSNR), does not correlate with subjective results.
Our subjective evaluation have been done by a ourselves and in some case by
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other image (sequence) processing experts.
The above discussion covers the evaluating of the output video sequences.

Evaluation of optical flows quality in literature is typically done by testing the
algorithm on artificial sequences with known ground truth flows and measuring
the angular error between ground truth and computed flows (see for instance
[12]). On real video sequences one is left to visually evaluate the quality of the
flows, which we have done extensively to find the optimal parameter settings.
Fortunately we produce output intensity sequences based on the flows and as we
consider the flows the means for producing intensity sequences, we can further
tune our flow calculations by evaluating the quality of the intensity outputs.

4.4.3 Test Material

We aim at applying our VSR algorithm either at the end user in a home
video/entertainment system or in the video scaling system at a broadcaster.
Therefore we have chosen to conduct our tests using standard video material,
specifically PAL DVDs telecined from film. We use a number of 5-15 frames se-
quences selected to be challenging in terms of detail level and motion complexity.
We work only the luminance channel (8 bit, [0-255]) of the test sequences, but
since the two chroma channels are already subsampled (the HVS is less sensitive
to details in the color channels than in the luminance channel [70]) in practically
any broadcasting or storage system today, simple bilinear interpolation can be
used here – at least at lower magnification factors. Of course our algorithm can
be applied to the Cr and Cb color channels as well or on a RGB version of the
sequence. Some ideas on how to couple the processing of the three channels can
be found in [103].

4.4.4 Parameters

As with almost any other image/video processing algorithm we have a number
of parameters that needs to be tuned. We have run extensive tuning tests,
but with nine free parameters it is of course not complete. Testing just three
different settings of each parameter in all possible combinations would result in
39 = 19683 different test results for evaluation. Thus we rely on our common
sense and our experience with variational methods for inpainting ([64] and [65]),
deinterlacing (Chapter 3 of this thesis) and prior work on variational VSR [54]
and have (hopefully) optimized the parameters for use on video data in general.9

Unless clearly stated otherwise, the parameter settings given in this section are
the ones used in all tests.

The initial low resolution flow is calculated running 10 fixed point iterations
each with 40 inner relaxation iterations. 5 times 20 iterations or even less
will give the same results visually, but to be on the safe side we ran 10 times 40
iterations in our tests. The multiresolution pyramid has 100 levels with a coarse-
to-fine scale factor of 1.04. The weight on the gradient constancy assumption
in (4.9) is γ = 200 and the weight on the prior is λ3 = 70.

The actual VSR algorithm runs 10 outer iterations. For both the flow and
intensity calculations respectively we run 1 fixed point iteration with 5 inner

9We do not believe there is any data available in any major broadcast or storage format
recorded or artificially generated, on which or settings would fail. There might be cases where
changing the settings would produce slightly better results.
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relaxation iterations. For the flow γ = λ3 = 100 in (4.9) and for the inten-
sity calculations λs = λt = 1 in (4.11). In all computations the convergence
threshold is set to 10−7 (and never reached).

On our way to the optimal parameters for the actual VSR algorithm given
here, we made a few interesting discoveries.

Increasing the number of outer overall iterations does not give any improve-
ments, while lowering the number from 10 to anywhere down to five can give just
as good results, but 10 is the failsafe setting. The algorithm is fairly sensitive
to changes in the number of inner iterations (fixed point and relaxation). Iter-
ating to much on either the flow or the intensities stops the other from evolving
further: Probably a local minimum is reached. Lowering the number of inner
iterations causes a slowdown in convergence (the system is not sufficiently re-
laxed). It seems there is a fragile balance between evolving the flow and the
intensities, especially the flow should not be allowed to evolve too far without
the intensities being evolved simultaneously as the flow then seems to get stuck
in local minima resulting in a loss of details.

Changing the γ and λ3 weights of the flow mainly changes how homoge-
neous the flow is, but larger changes from the optimal settings results in either
too smooth or too detailed intensity outputs, too detailed meaning artifact-like
details or oversharp edges appearing clearly unnatural to the sequence (”they
should not be there”).

Increasing the spatial diffusion by turning up λs gives smoother results sim-
ilar to the ones obtained with the nonsimultaneous VSR algorithm from [54]
(comparisons given in Section 4.4.7). Turning up λt has no effect on some se-
quences and on others it slowed down development away from the initialization.
It seems the implicit weighing in the variational algorithm is enough to ensure
optimal temporal diffusion and pushing it too hard with high λt-values is un-
necessary or even has a negative effect. We also experimented with changing
λs and λt over time (e.g. eight outer iterations with λs = λt = 1 and two with
λt = 5) and got minor improvements on some sequences, whereas the same
settings failed on other sequences. Thus finer parameter tuning might improve
some results, but it is data dependent and we have no measure to automatically
control it. Since we aim at general applicability of our algorithm, we use the
fixed set of failsafe parameters as given above.

4.4.5 Running Times

We have not focussed on optimizing our code for speed (yet). The code is written
in C++ using the CImg library (http://cimg.sourceforge.net/) interfacing
with Matlab.

The initial flow computations (backward and forward) takes 1-4 hours on a
standard PC. The running time of the VSR algorithm when doing 2x2 magni-
fication from 576× 720 SD PAL resolution is ca. 19 seconds per outer iteration
per frame. from 576p SD PAL to 720p HD (720 × 1280) the running time is
ca. 13 seconds per outer iteration per frame on the same PC. The number of
HR pixels being processed is 1.7 times higher in the 2x2 case but the processing
time is only 1.45 times higher, which shows that the more complex back projec-
tion in the SD to HD case (80 corrections per pixels contra 4 in the 2x2 case)
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does give a minor overhead in computation time.10 The times given are on a
specific sequence but there is no major difference in average computation time
per pixel from sequence to sequence: The algorithm is in practice data inde-
pendent when it comes to running times. It is clear that it is in the initial flow
computations the need for speedup is the greatest, but from [11] we know that
simpler variational flow algorithms run in real-time on standard PCs (although
on web camera resolution video).

4.4.6 Online Material and Correct Viewing of Results

Selected test results are available as video (*.avi) and electronic stills (*.bmp)
online at: http://image.diku.dk/sunebio/VSR/VSR.zip. The printing pro-
cess will often blur the figures, so the results given as figures in this chapter
are best viewed on-screen and in some cases with a given zoom (given in the
captions). In Appendix A the figures requiring zooms are given at the zoomed
size, but we still recommend on-screen viewing. This is to best see the correct
results and to some degree to simulate a true 1:1 resolution relation between
image and screen. The program Virtual Dub that displays avi (and bmp) files
at their true 1:1 resolution is included in the zip file.

4.4.7 2x2 and SD to 720p Results

In this section we will focus on subjective evaluation of results from doing VSR
with the classic 2x2 magnification and 576p SD PAL to 720p HD VSR (576×720
to 720×1280). In Section 4.4.8 we will give objective results and in Section 4.4.9
we will give 4x4 and 8x8 VSR results. There exist no commonly used benchmark
for evaluation of (video) super resolution results and the only thing most tests
have in common is the use of the magnification factor 2. The general problems
of benchmarking is discussed in Section 5.2.8 of this thesis.

SR algorithms with learned priors are only applicable on specified types of
data (e.g. faces or text as in [2]) they cannot be used in processing of general
video. On the data they are trained for they are likely outperform our VSR
algorithm and structure tensor based SR methods would also be very competi-
tive, but they are for now to computationally heavy for our field of application.
Methods like to one given by Farsiu et al. in [38] are typically limited to simple
flow (registration) modelling, thus making them unfit for use on general video
signals. Thus we have chosen to compare our results to our own nonsimultane-
ous VSR results, to bilinear interpolation, the most advanced(!) method widely
used in video processors today, and to bicubic interpolation, which is know to
perform better than bilinear interpolation.

Results for 2x2 SR/VSR on the sequence Truck is given in Figure 4.4
(zoomed versions in Figures A.1 and A.2 in Appendix A). First we see how
jagged (or blocky) the Initialization is in 4.4(b) and how bilinear interpola-
tion produces a very smooth result in 4.4(c). Bicubic interpolation produces
a much sharper result as seen in 4.4(d) but the output of our two variational
VSR methods in 4.4(e) and 4.4(f) are even sharper again. The simultaneous
VSR (S-VSR) produces a sharper result than the nonsimultaneous VSR but the
difference between the two are not as big as the differences bilinear to bicubic or

10With reservation for different handling of the jobs by the computer (memory allocation
etc.).
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(a) LR input (b) HR 2x2 initialization

(c) Bilinear 2x2 SR (d) Bicubic 2x2 SR

(e) Nonsimultaneous 2x2 VSR from [54] (f) Simultaneous 2x2 VSR (S-VSR)

Figure 4.4: 2x2 VSR on the sequence Truck. A 70 × 160 pixels cutout of LR
is shown in (a) and the HR cutouts (b)–(f) are 141 × 321 pixels. Sharpness
increases step by step from (c) through to (f) as seen most clearly when viewed
on-screen zooming to 175% or more. (a)-(f) can be found zoomed in Figures A.1
and A.2 in Appendix A. For Truck the motion is a zoom as the truck drives
towards the camera.

bicubic to nonsimultaneous VSR. The videos from which Figures 4.4(c), 4.4(e)
and 4.4(f) are taken from are given in the online material [59] in the folder
Truck 2x2 oldAndNewVSRandBilinear.

The flow produced using the optimal settings given in Section 4.4.4 is shown
in Figure 4.5(b). In Figure 4.5(a) we see how lowering the weight on the prior
of the flow from λ3 = 100 to λ3 = 70 makes the flow a bit oversegmented,
resulting in artifacts in the intensity result (bright single spikes and horizontal
lines on the front grill). The very smooth flow resulting from setting λ3 = 250
and shown in Figure 4.5(c) seems more correct (i.e. the grill line flows are now
part of the overall zoom and not segmented independently), but the intensity
output loses in sharpness. This illustrates the approach we used in parameter
tuning: We always tried to find the balance point between introducing artifacts
and over-smoothing.

As with Truck we also see a gradual improvement in sharpness from bilinear
over bicubic and nonsimultaneous VSR to simultaneous VSR on all other 18
sequences in our test when doing 2x2 magnification. For some sequences like
Bullets shown in Figure 4.6 the differences are less significant. The sequence
Truck appears very sharp in its LR version while Bullets appears less sharp
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(a) Oversegmented flow (b) Flow with optimal settings (c) Oversmoothed flow

Figure 4.5: Flows from 2x2 VSR on the sequence Truckof a truck driving to-
wards the camera. The direction of the flows is given by the hue value (in color)
on the border and the magnitude by the intensity.

(a) LR (b) 720p S-VSR (c) Bilinear (d) Bicubic (e) VSR [54] (f) S-VSR

Figure 4.6: VSR on the sequence Bullets. Cutout sizes are: 90 × 56 (LR),
113× 100 (720p) and 179× 111 (2x2). To illustrate the increase in detail level
with higher resolution the LR input (a) and the 720p VSR result (b) are shown
at the same height as the 2x2 results in (c) to (f). As with Truck we have
increasing sharpness step by step from (c) to (f) although less significant than
for Truck. Results are best viewed on-screen zoomed to 200% or more as in
Figure A.3 of Appendix A. The 720p result is shown at its correct aspect ratio
whereas the rest (LR and 2x2) are 1:1.422 PAL anamorphic widescreen pixel
shown here as 1:1 pixels.

(due to recording method or choices in post processing and the film to DVD
transfer processing etc.) and overall the differences between the results of the
algorithms are more significant in the test sequences containing details to begin
with: There is more information available for temporal (and spatial) transport
and less trouble from ending up in local minima due to already smooth regions
of image data. When doing SD to HD 720p VSR the differences between the
algorithms are smaller, the exception being that bilinear always perform much
worse than the three other algorithms. Comparing the 720p result on Bullets
in Figure 4.6(b) with the 2x2 result in Figure 4.6(f) shows how the higher
pixel density – e.g. two screens of the same size and viewing distance but
with different resolution – carries more information and gives room for larger
improvements.

Figure 4.7(b) shows how simultaneous VSR removes the blockiness seen in
the LR input in Figure 4.7(a) and Figure 4.7(c) shows how Boardwalk would
look on many LCD and plasma tv-sets of today when bilinear interpolation re-
moves the blockiness but at the price of smoothing. The Figures 4.7(d) and
4.7(e) shows just how big the gain in detail from SD to 720p HD can actually
be. In the zooms on Manhattan shown in Figures 4.8(d) and 4.8(e) there is
no difference between simultaneous VSR and bicubic interpolation on the heli-
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(a)
LR

(b)
S-VSR

(c) Bilin-
ear

(d) LR (e) 720p simultaneous VSR

Figure 4.7: 720p VSR on the sequences Boardwalk and Straw Hat. The block-
iness in the cracks between the boards in Boardwalk is removed going from (a)
LR SD to HR 720p HD, in (b) by simultaneous VSR and in (c) by bilinear
interpolation, where (b) is still sharp. On Straw Hat a major gain in details is
obtained going from (d) SD to (e) 720p HD. Best viewed on-screen zoomed to
150% as in Figure A.4 of Appendix A. Cutout sizes are Boardwalk: 146 × 50
(LR) and 182× 88 (720p) and Straw Hat: 113× 89 (LR) and 113× 201 (720p).

copter, but on the building to the right simultaneous VSR performs a lot better
than bicubic interpolation.

The figures given in this chapter do not give the full picture of the differences
between the different algorithms as the outputs should be seen as video on a
large screens. Local gains in sharpness can to a large extent be evaluated on
still, but the sense of overall gain in sharpness of full frames (720 × 1280 or
1152× 1440) is hard to portray in printed figures. To really determine how big
an advantage the gain in sharpness is a test with longer sequences, should be
conducted under realistic viewing conditions and on large screens. Preferably
according to the subjective quality evaluation standard ITU-R Rec. 500 [50] or
similar.

Another improvement only seen when viewing the outputs as video is the
decrease in flicker. It is (almost) impossible to compare differences in flicker be-
tween LR and HR version of a video as they cover different areas of a given
screen and flicker perception is highly dependent on the size of the image
projected onto the eye (see Section 2.2 of this thesis). But across different
HR results, we can do a comparison. A video example is found in the folder
Boardwalk2 720p FlickerReduction of the online material [59], where bilin-
ear, bicubic and simultaneous VSR results are given in 720p HD. The results
produced using bicubic interpolation flickers the most, while our nonsimultane-
ous VSR does significantly better and is close to having as little flicker as the
two best algorithms here, simultaneous VSR and bilinear interpolation.

On large and bright screens (e.g. 42 inch plasma and LCD displays) the
reduction in flicker is a major quality improvement. As bilinear interpolation
smooths outs to many details and edges and the temporal regularization in
simultaneous VSR removes flicker while still preserving details and sharpness
including the film granularity, there is no doubt that simultaneous VSR produces
the best results in SD to 720p conversion and is also best at 2x2 VSR, where the
quality difference in the results from the algorithms is more significant.11 To

11As with motion blur, film granularity is a considered an artistic tool, which the film makers
wish to preserve.
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(a) 720p simultaneous VSR (b) Corresponding flow (c) Flow error
handling

(d) 720p bicubic (e) 720p S-VSR

Figure 4.8: 720p VSR on the sequence Manhattan Flyby. A bad case of faulty
flow: The repetitive structure of the building on the left in (a) causes the flow
calculations to fail as seen in the flow field (b), but in spite of that the result is
still good as seen in the zoom-in in (c). (d) and (e) shows the difference between
simultaneous VSR and bicubic interpolation in SD to 720p HD conversion. All
subfigures are best viewed on-screen and (a)-(c) and are zoomed in Figures A.5
and A.5 of Appendix A. (a) and (b) are full frame 720× 1280, (c) is 226× 166
and (d)-(e) are 141× 166.

stress this point we did 2x2 simultaneous VSR on a 25 frame sequence provided
to us by the film post production company Digital Film Lab, and their evaluation
of the result was, that is was a lot better than anything they would be able to
produce with any of their professional post production and editing systems (Da
Vinci, Discreet/Autodesk and others).

Even though variational flow methods produce the most accurate flows avail-
able (see the survey in [11] by Bruhn et al.) they still fail on occasion. The
sequence Manhattan in Figure 4.8 is an example of this. The repetitive struc-
tures on the buildings cause highly incorrect flows to be computed in several
small regions, worst on the building on the left in Figure 4.8(a). Still the in-
tensity output is fine as seen in Figure 4.8(c) due to the robustness of our VSR
method: a) if the flow is wrong, the detected structure might be correct, and
b) the spatial regularization takes over if the gradient of the intensity along the
flow trajectory is too large.
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(a) Original (b) Downsampled input (c) 2x2 bilinear

(d) 2x2 bicubic (e) 2x2 simultaneous VSR

Figure 4.9: Down- and up-scaling of the sequence Straw Hat. (a) is down-
sampled with factors 0.5x0.5 as shown in (b). (c)-(e) are 2x2 (V)SR results
computed from (b). Cutout sizes: (b) 45 × 57 pixel, the rest 89 × 113 pixels.
Best viewed on-screen, optimally switching between the bitmap files provided
in the online material [59].

4.4.8 Down and Up Again: Objective Results

So far we have concluded that simultaneous VSR produces the highest quality
outputs, but the difference to the simpler method bicubic interpolation has not
been that very significant in term of sharpness when taking and average over
all 19 sequences in test. In this section and the next we will show that the
difference can be very significant.

A typical method for evaluation of (V)SR algorithms is to downscale an
image (sequence) by the inverse of the magnification factor(s) to have a ground
truth to compare upscaling results to. The downside of doing such up and down
tests is that the way one downscales can effect the results. Typically a Gaussian
blur kernel is used as a preprocessing step, and the chosen variance of this kernel
decides where to draw the line between detail preservation and aliasing in the
downsampling. One can argue that the using the Gaussian for downsampling
will model the image formation process given in (4.1), but as we have discussed
earlier there is hardly any blur in modern lenses and CCDs samples the signal
uniformly. Thus we have chosen to just use the projection R as given in (4.12)
to downscale without any pre-blurring. In the tests presented in this section we
do 2x2 (V)SR, so we need to downscale with factors 0.5x0.5.

As can be seen in Figure 4.9 we are not able to recreate the original data in
4.9(a) when upscaling from 4.9(b). The results from doing bilinear and bicubic
interpolation shown in Figures 4.9(c) and 4.9(d) respectively, are very smooth
while the simultaneous VSR result in Figure 4.9(e) is sharper and has much
more details. For this sequence Straw Hat and the two other sequences in
test in this sequence, Truck and Street, full frame stills are given as bitmap
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(a) Original (b) 2x2 bicubic (c) 2x2 simultaneous VSR

(d) Original (e) 2x2 bicubic (f) 2x2 simultaneous VSR

Figure 4.10: Down- and up-scaling of the sequences Truck (cutout size: 241×201
pixels) and Street (cutout size: 396 × 350 pixels). Best viewed on-screen,
optimally switching between the bitmap files provided in the online material
[59] (bilinear result also provided). Alternatively the zoomed versions given in
Figures A.7, A.8 and A.9 of Appendix A can be used.

images in the online material [59]. Single frame ground truth, simultaneous
VSR, bicubic and bilinear are given along with simultaneous VSR videos in the
folder Truck_StrawHat_Street_2x2_DownAndUp.

For the two sequences Truck and Street the results are the same as with
Straw Hat, simultaneous VSR gives much sharper and more detailed results.
The original and the results of bicubic interpolation and simultaneous VSR are
shown in Fig. 4.10. When switching between the bitmaps of Truck, notice how
the lit windows in the building in the background seems to light up in the
result of simultaneous VSR compared to the results of both bicubic and bilinear
interpolation.

Comparing the simultaneous VSR result with the original we still lack some
details and there is some blockiness on high contrast edges. The blockiness is
found in all three types of upscaling, e.g. on the wall grille to the right of the
truck in Truck. Most likely some Gaussian blur in the downsampling e.g. as a
preprocessing step, or the use of a semi-Gaussian PSF like in [86] will remove
the blockiness but will also give a loss of details.

As we have original ground truth sequences available, we have computed the
mean square error (MSE) and the peak signal to noise ratio (PSNR) for the
three sequences in test and the results are given in Table 4.1.
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Bilinear Bicubic Simultaneous VSR
Sequence MSE PSNR MSE PSNR MSE PSNR
Straw Hat 83.03 28.94 73.63 29.46 44.72 31.63
Truck 30.56 33.28 24.97 34.16 15.16 36.32
Street 178.3 25.62 151.1 26.34 102.7 28.02

Table 4.1: Objective quality assessment, MSE and PSNR for the down- and
upscaling experiment. Results are given for bilinear interpolation, bicubic in-
terpolation and simultaneous VSR, the latter clearly outperforming the two
others.

The MSE is
MSE =

1
N

∑

Ω

(u− ugt)2 (4.28)

where ugt is the ground truth and we sum over all N pixels of the sequence (the
domain Ω).

The PSNR is

PSNR = 10 log10

(
2552

MSE

)
(4.29)

with inverse ordering of the MSE and measured relative to the maximum pos-
sible grey value, 255.

As with the subjective evaluation, we can conclude from the MSE-values
that bicubic interpolation performs better than bilinear interpolation, and that
simultaneous VSR is by far the best of the three. The good correspondence
between subjective evaluation and MSE is most likely due to the fact that we
do not have problems with HVS-unfriendly artifacts as in the deinterlacing. The
HVS-unfriendly artifacts are typically very strong but also very local giving only
a small increase in the globally measured MSE. Our ’up and down’ experiment
is too small to draw any final conclusions but our results indicate that MSE
(and thus also PSNR) are useful in evaluating (V)SR results when ground truth
data is available.

4.4.9 Attempting to Break the Limits of Super Resolution

Baker and Kanade discuss the limits of super resolution in [2] and claim that it
is mainly the ability of the prior to mimic or model the image content, which
decides how much one can magnify: Too large magnification factors will impose
too much noise in the result. To break these limits Baker and Kanade suggest
using hallucination, a prior learned on specific image content types, e.g. faces
or text. This gives highly detailed images at rather large magnification factors,
but they do not avoid some ringing and enhancement of unwanted details, that
is, noise. Using advanced, content specific learning prior on our problem of up-
scaling general video would require a complete and nearly perfect image content
detection an segmentation system, which do not exist (yet?). We try instead to
push details through the temporal consistency, but since optical flow computa-
tions on arbitrary video is still a much harder problem than e.g. registering face
images that you have yourself transformed and downscaled to each other, we do
not get the same detail level as seen e.g. in [2] at high magnification factors.
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(a) 4x4 bicubic (b) 4x4 S-VSR (c) 8x8 bilinear

(d) 8x8 bicubic (e) 8x8 S-VSR

Figure 4.11: 4x4 and 8x8 VSR on Straw Hat. Results are best evaluated on-
screen either by viewing the bitmap files given in the online material [59] (bi-
linear result also provided) or the zoomed versions given in Figures A.10, A.11
and A.12 of Appendix A. Image sizes are 356 × 453 pixel (4x4) and 711× 905
pixels (8x8).

We have tested our simultaneous VSR at 4x4 and 8x8 magnification to find
the limits of our algorithm and show its advantages over bicubic and bilinear
interpolation. To get 4x4 and 8x8 magnification respectively we have run our
algorithm with 2x2 magnification in cascade two, respectively three times. This
is simply multiresolution VSR, which helps to optimize results at high magnifi-
cation factors.

In Figure 4.11 showing result on the sequence Straw Hat it is seen clearly
how simultaneous VSR performs much better than bicubic interpolation at both
4x4 and 8x8 magnification – and how bad bilinear interpolation really is (goes
for 4x4 as well although it is not shown.)

As can be seen in Figure 4.11(b) and more clearly in Figure 4.11(e) the
use of total variation does give a touch of the cartoon-like look typical for total
variation, but it is a small price to pay compared to gain in details and sharpness
over bicubic interpolation. The observations from the test on Straw Hat are all
confirmed in the test on Truck as shown in Figure 4.12. For both sequences 4x4
and 8x8 bilinear, bicubic and S-VSR results are given as bitmaps in the online
material [59] in the folder Truck_StrawHat_4x4_8x8.

In our opinion the loss in naturalness when using simultaneous VSR is small,
but it is a matter of individual preferences. Doing 8x8 magnification is border-
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(a) 4x4 bicubic (b) 4x4 S-VSR (c) 8x8 bilinear

(d) 8x8 bicubic (e) 8x8 S-VSR

Figure 4.12: Breaking the limits on Truck. Results are best evaluated on-screen
either by viewing the bitmap files given in the online material [59] (bilinear
result also provided) or the zoomed versions given in Figures A.13 and A.14 of
Appendix A. Image sizes are 400× 800 and 800× 1600 pixels.

line with respect to the limits of super resolution. We do not create artifacts,
but the spatial tv prior and the temporal diffusion cannot bring out sufficient
detail to give a fully natural look. When looking at the 8x8 simultaneous VSR
results the biggest problem is not lack of sharpness but lack of what could be
called natural detailedness, and even with better priors (e.g. learning based)
and/or more reliable and accurate optical flows we believe these details have to
be added, they cannot be pulled out of the image at these high magnifications,
they are simply nonexisting in the recordings and these high magnifications are
trying to bend the subsampling theorem too far.

To finish the discussion on the limits of super resolution, we do not get the
over-enhancement problems that Baker and Kanade [2] and others get. But
we do not get the same level of details either. Baker and Kanade replaces the
problem of noise amplification with ringing artifacts and we get the cartoon look
of total variation. In both cases we lose the naturalness of the images/frames.

The limits of super resolution truly lie how much one can magnify an image
(sequence) still balancing the level of noise/artifact with detail enhancement
while pushing the magnification factors upwards. It is finding the right tradeoff
while still pleasing the human observer with (seemingly) natural images and
frames. (When the magnification is just a preprocessing step to some image
(sequence) analysis, the limit is likely to be different.)

Thus breaking the limits of super resolution is not straightforward, not even
with Baker and Kanade’s hallucinations [2] and similar methods. Natural look-
ing results at above 4x4 magnifications are (still?) out of reach. It is also
questionable whether such large magnifications will be useful anywhere but in
saving bits in coding.



88 Video Super Resolution

4.5 Improved Video Super Resolution

We consider our simultaneous VSR algorithm as finally developed in terms of
output quality for now and are focussing on implementing it as a software plug-in
for editing suites and as realtime hardware (as field programmable gate-arrays,
FPGAs). This is not an unrealistic goal as our algorithm is highly parallelizable,
the same operations are performed on each pixel. We do not get the ideal result
obtained on the simple case of the skew sequence (Fig. 4.1) in real world cases,
thus we do have some ideas on how to improve the output quality in possible
later versions of simultaneous VSR. First, the distribution (total variation) and
filters we use in our model could be improved. As we know the eye is able to
do SR, improved modelling could come from learning what filters are used in
the HVS (lower level vision is already to some degree modelled by Gaussians
and Gaussian derivative filter kernels). Learned priors as in [2] could also be a
possibility as mentioned in the previous section. The HVS inspired priors might
also be complex and computationally heavy, so we believe structure tensor based
VSR to be the most likely next version – that is next after adding the gradient
constancy assumption to the intensity calculations in hope of sharper edges and
more details.

The gradient constancy assumption might help transport more information
from neighboring frames but a higher gain in details is expected from improving
the accuracy of the optical flows computed. The results produced with our old
nonsimultaneous VSR from [54] are not far in quality from the results produced
by our new simultaneous VSR, thus indicating that our flow might not be as
precise as we could wish for. How much can be done is however an open ques-
tion as most developments of optical flow is done minimizing the angular error
on computer generated sequences or they are developed for highly specialized
and limited application, e.g. satellite films of cloud systems or spatiotemporal
medical scan data and not on real world, general video data.

4.6 Conclusion

The simultaneous VSR method presented in this chapter is in terms of output
quality clearly better than bicubic and bilinear interpolation (the latter widely
used in video processing devices today) and also outperforms highly expensive
film post production and editing systems. There are super resolution methods
found in literature that are likely to perform better than simultaneous VSR,
but only on limited cases, say faces only or parametric flow only. Our method is
applicable to general video with arbitrary (natural) content and motion. Real
time applications of variational methods does exist today [11] and we therefore
hope to see realtime S-VSR implemented in video processing systems in the
near future, e.g. highly parallelized on FPGAs.



Chapter 5

Temporal Super Resolution

Temporal super resolution (TSR) is the ability to convert video from one frame
rate to another and is as such a key functionality in modern video process-
ing systems. A higher frame rate than what is recorded is desired for high
frame rate displays, for video/film format conversion where also lower frame
rates than recorded is requested, or for super slow-motion. In this chapter we
present a novel motion compensated (MC) temporal super resolution algorithm
using variational methods for both optical flow calculation and the actual new
frame interpolation. The flow and intensities are calculated simultaneously in
a multiresolution setting. We discuss what output quality is desired from TSR
algorithms. A major problem in watching video on large and bright displays is
that the motion of high contrast edges often seem jerky and thus unnatural. We
test an implementation of our algorithm focussing on getting the motion of high
contrast edges to seem smooth by doubling the frame rate, thus reestablishing
the illusion of motion pictures.

5.1 Introduction

Temporal super resolution, full frame temporal interpolation, the conversion of
a video signal from one frame rate to another is widely asked for in coding,
video teleconference systems and in modern video processing systems used in
production, broadcasting and viewing of television and video. In this chapter
we present a novel motion compensated temporal super resolution algorithm
using variational methods for simultaneous optical flow calculation and intensity
calculation of the needed new frames in a sequence. We aim at application in
frame rate conversions in video processors used in broadcast and home cinema
systems.

Our variational TSR method is developed from a joint image sequence up-
scaling and restoration framework and has been used for deinterlacing (Chap-
ter 3 of this thesis) video super resolution (Chapter 4 of this thesis) and for
motion compensated inpainting by Lauze and Nielsen in [65]. In the upscaling
cases, deinterlacing, video super resolution and TSR one adds information to
image sequences, while one repairs damaged or missing information in inpainting
and de-nosing: The framework, which is based on Bayes inference and was first
used for inpainting, can also be used for image sequence de-noising if desired.
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TSR is most asked for in displaying low frame rate recordings on high frame
rate displays, but is also needed for both super slow-motion (super ≡ high
quality) and for combining different frame rate recordings into one common
frame rate program. In terms of number of frames per second (fps) created from
a given input TSR is not just an upscaling, but also a downscaling. In spatial
super resolution (going from one discrete spatial resolution to another) upscaling
is considered the difficult inverse transform of an ill-posed subsampling problem
while downscaling is just the easy (well-posed) process of low pass filtering and
downsampling. In upscaling you have to increase the amount of information
and try to solve a subsampling problem. Upscaling in therefore what is meant
with the term super resolution. So why use the term super resolution for a
downscaling in time? Let us say we want to go from 25 fps to 20 fps, then we
can just remove every 5th frame. The result would be usable, but the quality
would be rather poor in case of motion in the sequence: every 1/4 of a second the
motion would jump where a frame was skipped. To ensure a high quality result
one will have to go from 25 equally space frames per second to 20 equally space
frames per second. This means we will have to create entirely new frames even
if we downscale in time and thus we use the term TSR also for downscaling.
Creating fully new frames in time is an ill-posed problem whenever the new
frames are needed sufficiently far away from existing frame. TSR is not as spatial
super resolution a subsampling problem, but rather a ’wrong’ sampling problem,
where frames needs to be time-shifted making warping along the optical flow a
natural solution. Both spatial super resolution and TSR are ill-posed sampling
problems. Although downsampling TSR is also a hard problem, it is however
a fact that with a dense sampling in time (high frame rates) the problem of
downscaling becomes easier solved as the distance to nearest known neighbor
decreases.

Downscaling is not what is most sought for, it is only done when needed for
technical reason, like showing an American television show recorded in 60 fps
NTSC in Europe where the PAL broadcast standard requires 50 fps. Upscaling
in time is widely needed as most displays (projectors, plasma, LCDs and CRTs)
have higher frame refresh rates than the frame rate used when recording the
material. All cinematographic movies are for instance shot at 24 fps, while
practically all displays today have refresh rates of at least 50 Hz. The higher
display frequencies are necessary to stop the perceived image sequence from
flickering. The human visual system (HVS), especially the peripheral parts
of an image projected onto the retina away from the center of a focus at the
fovea, is subject to flicker as these regions of the retina are highly sensitive to
flickering. Thus high refresh rates are needed in displays that projects images
to more than just the fovea. (Details on the HVS and a sketch of the eye are
given in Section 2.2.1 of this thesis, while the projection from screen to eye is
illustrated in Figure 2.2.)

Most flat panel tv-sets and most PC displays do not use real TSR but just
repeat the same frame once or twice, and also in cinemas every frame is repeated
two or three times to avoid flicker. Frame repetition works fine most of the time,
but when the display is sufficiently bright and the viewing angle large enough
(big screen tvs and cinemas with viewers sitting close to the screen) motion will
start to appear jerky. The so called phi-effect of perceiving a sequences of still
images as motion pictures is halted [73]. The problem is typically seen around
high contrast edges in motion as edges are the major information perceived and
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(a) (b) (c)

Figure 5.1: Left true frame from a sequence where the square moves diagonally,
middle bad TSR by frame interpolation, and right good motion compensated
TSR (variational in this case).

processed in lower level vision. The archetype example of jerky motion is a
horizontal camera pan in well lit interior scenes or exterior shots of houses and
cities.

Frame repetition is the simplest form of frame rate upscaling and next in
complexity is frame averaging, where the two nearest known frames a weighed
by the inverse of their distance to form the new frame. The results of frame
averaging are double exposure-like whenever there is motion in the portrayed
scene as shown in Figure 5.1(b). Better results are obtained when one computes
the 2D optical flow between known frames and then compensate for the motion
in the new frame. That is motion compensated temporal super resolution.
Variational frameworks offer methods for computing both dense and accurate
flow fields and high quality motion compensated intensity interpolation to get
optimal TSR results as seen in Figure 5.1(c).

This chapter is organized as follows. In the next section (5.2) we do a
problem analysis and discuss the relation between temporal super resolution
and the human visual system in terms of required output quality. We also look
at related work on TSR as found in literature. In Section 5.3 we describe our
Bayesian based variational framework from which we derive and implement an
algorithm for frame rate doubling with simultaneous optical flow and intensity
calculations. The frame doubler is tested in Section 5.4. Before we conclude in
Section 5.6 we discuss in Section 5.5 how to build a generic frame rate converter
and the possibilities of improving the optical flows used in motion compensated
variation upscaling methods (TSR, video super resolution and deinterlacing).

5.2 Background

5.2.1 Problem Analysis: Frame Rate Requirements

Temporal super resolution is done obtain a certain frame rate, as required by
the receiver of the output sequence. In most cases the need is for a higher
frame rate. We will focus on the frame rate requirements of humans viewers as
our TSR algorithm is aimed at application in video processors in broadcast or
home entertainment systems where pleasing human viewers is the final goal. The
properties of the human visual system guides what minimum frame rates should
be used to keep the viewing experience pleasing. The two main requirements
put forth are listed below in order of importance.

• The phi-effect [73] should be obtained to create apparent living pictures
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with natural motion portrayal.

• Flickering should be avoided when displaying image sequences.

Before we look a the two requirements, we would like to stress the point that
determining the exact minimum required frame rate of image sequences is a dif-
ficult, multiparameter problem. The applied display technology (film projectors
in cinemas, LCD tv set, etc.), screen size, screen brightness, contrast and color
reproduction, viewing distance and angle, lightning conditions in the viewing
room, image sequence content, motion in the scene depicted, and aperture time
of cameras, are but the main factors in the equation of defining the minimum
frame rate required.

There are however some general (standardized) agreements of which frame
rates to use in different media to meet the three requirements posed above.
Since sometime around the 1920s almost all film recordings have been done in
24 fps [7]. The American and Asian tv standard NTSC requires 60 interlaced
fields per second (also abbreviated fps), while the European PAL requires 50
fields per second. There was also a growing consensus up through the 1990’s
that 50 fps was no longer enough to avoid flickering as the size and brightness
PAL CRT tv-sets grew too large. This gave birth to the 100 Hz technology, an
example of early TSR (see for instance [32]).

The phi-effect was already discussed in Chapter 2 of this thesis, but to recap
it is the effect of showing a set of still images, recorded and shown so fast after
each other, that any motion in the depicted scene appears real and natural. To
create the illusion of motion pictures, each frame cannot be exposed to the eye
for too long as the human visual system will interpolate the simplest (linear)
motion between the frames erasing any complexity in it [73]. Thus the frames
need to be recorded at a rather high rate to obtain the phi-effect – at least when
motion is complex.

Flickering occurs on when an image is not updated often enough, that is
the update frequency (frame refresh rate) is so low that the eye senses flicker.
Thus in cinemas a rotating shutter blinds out each frame shortly once or twice
to get 48 or 72 Hz refresh rates. Since the eye is very sensitive to changes
in the light it is exposed to – especially in the periphery of the retina away
from the fovea – and since cinema screens and many larger television screens
expose a large part of the eye, the flicker can be sensed at frame rates higher
than what is traditionally required to obtain the phi-effect. Although one might
not consciously sense any flicker it is still sensed subconsciously tiring the visual
system.1 There seems to be a consensus that refresh rates somewhere around 70
to 100 HZ will suffice to stop most flickering on most displays, but it ultimately
depends on the tracking done by the eye of the human observer.2

1By looking at something next to a CRT screen without really focussing on it, the screen
will now be projected to the more flicker sensitive parts of the retina and if the refresh rate is
set to 60 Hz or less one will clearly see the flicker normally only sensed subconsciously as the
HVS is busy with what is in focus at the fovea.

2While film projectors needs to change frames and CRTs has the problem of the light
emission of the phosphor used on the screen drops over time, LCD monitors are not subject to
forced blackouts between frames: they are hold-type image displays, not impulse-type image
displays see [20]. Also plasma displays have some memory in the plasma gas to partially
prevent flicker problems. Even with the flicker problem (almost) eliminated, LCDs and plasma
are still subject to the need of creating the phi-effect when displaying video and thus needs
higher frames rates when displaying motion.
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As our discussion of the two requirements have shown, the major reason
why we do temporal super resolution is to obtain the phi-effect. Flicker can be
handled by simple frame repetition, but since the eye is able to track motion
to a certain degree, the frequency used for sampling the signal is too low to
establish the phi-effect and the motion seems unnatural: As the eye track the
motion, the sampling frequency is too low and the eye senses flickering and no
natural motion between the two samples can be inferred by the HVS to get the
phi-effect. Thus our two requirements are closely related, with the difficult task
being to prevent flicker in tracked motions to reestablish the phi-effect.

The problem of unnatural motion is most prominent when the boundary of
an object moving (or some internal edge of the object) is of high contrast (large
gradient). If the recorded frame rate is too low, the phi-effect is not obtained
and the viewer is left with an sensation of a jerky, unnatural motion. Along with
the contrast of the edge the velocity of the motion can break the phi-effect. The
faster an object (or the camera) moves the more jerky the apparent motion
becomes until the eye is no longer able to track the motion.

Decreasing the apparent jerkiness of fast moving, high contrast edges will be
our focus when developing and testing our motion compensated temporal super
resolution algorithm.

An effect that might cover up the jerky motion appearing when using too
low frame rates, is motion blur. Motion blur occurs (in regions of motion) when
the camera used has a long aperture time and the input in each point or pixel
of the frame is integrated over a relatively long time interval.

5.2.2 Blur Acceptance in Human Vision

Before looking at related work on TSR algorithms and discussing its relevance
to our work, we would like to get a more specific idea of what output quality to
aim at. What is required to satisfy the final judge: the human visual system.
We have discussed the HVS in Chapter 2 and would also like to refer the reader
to the book [73] on human sensation and perception by Matlin and Foley, while
books like [4], [82] and [107] give some insight on the adaption and accommoda-
tion of video engineering (processing, coding, transmission, displaying etc.) to
the HVS.

Doing TSR in a wrong or incomplete way will most likely create artifacts in
the new frames interpolated. Using a motion compensated variational method,
blur will be the most likely artifact. Thus we need to know (if possible) how
much blur is acceptable to the human visual system.

Judging generally and objectively how unsharp we can allow parts (say every
other frame) of an image sequence to be is still an open question. Vision research
does not offer an answer as the border between sharp and blurred in human
perception is still sought for in more limited subproblems. The paper [22] by
Ciuffreda et al. is a typical example. Ciuffreda et al. tries to find out when blur
becomes bothersome on simple stationary text and letters (similar to the Snellen
eye charts found at opticians etc.). With the general mapping of blur sensitivity
and acceptance in the HVS still to be found, we will have to subjectively evaluate
if we produces satisfying results when doing temporal super resolution.

In video and image processing (and analysis) focus is on either removing or
adding blur from ones data. Removing it is done in a) de-blurring to remove
motion blur, in b) super resolution to compensate for lack of resolution in the
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image recording and c) in de-noising as noise is normally removed at the prize
of added blur. Adding blur deliberately is mostly done to remove artifacts,
typically blocking artifacts from too hard coding compression, but has also been
used to simulate film aperture blur in video recordings (see for instance [102]
by Tschumperlé and Besserer). When processing video one wishes to know how
much blur one can add or leave in the image (sequence) without annoying the
HVS, which is hard to tell as objective factors like video content (local and global
motion, color, level of details etc.), screens (brightness, viewing angle, resolution
etc.) and physical viewing conditions (light mainly) play a major part in such
an evaluation – not to mention the still immeasurable human psyche, the overall
subjective judge affected by all these objective factors.

Even though we do not get an answer to our question on blur acceptance
from vision research, we do get helping pointers. Doing TSR on non-moving
sequences is easy, one can just repeat frames, we know it is in regions of motion
that the task of doing quality TSR gets difficult. In [15] (Burr and Morgan)
and [74] (Morgan and Benton) it is shown experimentally that moving objects
often appear sharp to the HVS, not because some mechanism removes blur,
but because the HVS is unable to decide whether the object is really sharp
or not. (Try for instance to watch the video BoatTSR50fps.avi given in the
online material [58] and see how sharp it looks as video compared to the relative
unsharpness when viewing it as still in Figure 5.6.) At what motion magnitudes
this effect of perceived sharpness starts to appear is unclear – when does the eye
stop tracking etc. – but it seems we can allow for some blur when doing temporal
super resolution and still get good results subjectively evaluated. In [20] Chen
et al. shows that motion blur in LCD displays can be reduced by inserting
blurred frames between frames that are enhanced correspondingly in the high
frequencies. This indicates, that even without enhancing any frames, we can
allow for blur in some frames and still hope for a total perceived sharpness. For
now we will just have to try to get our new frames in the output as sharp as
possible to ensure optimal results.

5.2.3 Strategies of Creating New Frames

There are three different methods for creating new frames in an image sequence:

• Frame repetition.

• Frame averaging.

• Motion compensated interpolation.

Of these three methods, frame repetition is the simplest, it solves the flicker-
ing problem and does not create any artifacts from bad temporal interpolation,
but the motion portrayal stays unnatural. It is very cheap to do and any frame
rate can achieved, one just have to repeat the frame recorded closest to where
the current output frame is needed. When conversion ratio it not integer, e.g.
24 to 30 fps, frames will be repeated a different number of time adding some
nonlinear jumps to the motion, possibly increasing the unnaturalness of the
motion.

Frame repetition and frame averaging will give perfect results on sequences
with no motion, but in case of motion frame averaging will give a blend-
ing/fading or superimposed effect between the two frames used in the averaging.
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This will to a certain extent smooth the flow but the blending is definitely to
be considered an undesired artifact as seen in Figure 5.1.

Taking motion in the depicted scene into consideration one can do motion
compensated interpolations, which is what we denote temporal super resolution.
Motion compensation is an essential component in TSR, non-MC does not exist
in our terminology. Only when knowing the flow one can truly create the data
in moving regions of the frame.

The traditional approach to temporal super resolution is to first compute the
flow of the sequence and then interpolate the intensity values in the new frames.
The simplest form of TSR uses linear interpolation along the flow trajectories,
weighing each of the two original input frame contribution inversely by their
distance to the frame being interpolated. Simple TSR gives perfect results if
the computed flow field is reliable and precise, but this is rarely the case. Thus
a fall back option is needed.

The flow can be unreliable or imprecise for many reasons, e.g. at motion
boundaries (especially if one uses block matching), at occlusions, or because the
flows in the new frames has been interpolated from flows computed on the old
frames. More advanced nonlinear interpolations can be employed to handle the
problems as we will discuss further when looking at related work in section 5.2.7.
If the flow is just unreliable in one direction, one can give more weight to the
interpolation in the other direction, but often a fall back to simple non-MC
averaging is necessary (4-42% fall back is reported by Dane and Nguyen in
[27]).

When interpolating or warping the flow computed between two known frame
into any new frame(s) positioned between them, it will not always be so that
there is a flow vector in all pixel positions of the new frame(s). The fall back de-
scribed above could be used in such a case, but one could also fill in neighboring
flow vectors hoping they will be correct – if not the fall back mentioned above is
necessary. Exactly how complex this filling in of missing flow vectors is, can be
seen in the patent [85] by Robert. Without knowing the intensities of the new
frame(s), it is impossible to know if the guessed flow is correct, but to get the
intensities we need to know the flow! This case of two unknown each depend-
ing on the other is truly a hen-egg problem. Typically (as will become clear
in section 5.2.7) one first computes the flow from the neighboring frame and
interpolate it into the new frame, which is apparently considered trivial as none
of the references we have found gives any details on how the warp/interpolation
is done (the patent by Robert [85] being the exception). After interpolating the
flow, the intensities are interpolated.

5.2.4 Simultaneous Flow and Intensity Calculations

To truly get a chance of computing the optimal estimates of the flows and
intensities one has to compute them simultaneously as we will do. The simul-
taneousness can be achieved by iteratively improving always using the latest
version of the other. Multiresolution processing of images and image sequences
creating a pyramid of spatially downscaled version of the image (or frames) is
a well-established tool and is usually used for variational optical flow compu-
tations. We will use in temporal super resolution to switch between flow and
intensity calculation: The flow calculation will draw on intensity data from the
level above and the intensity calculation will have the flow from the current
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level available. Making the steps in the pyramid relatively small one will always
have a highly reliable version of the intensities available for flow computations
thus optimizing the following intensity computations at that level (and the flow
calculations at the next level etc.). Starting with a very coarse version of the se-
quence at the top of the multiresolution pyramid, we initialize using just simple
frame averaging as there is hardly any motion due to the downscaling. Using
multiresolution we also have good spatial estimates of intensity values available
at any given position in the new frames allowing us to have a spatial fall back
to replace the temporal fall back when flows are unreliable. Using spatial fall
back has to our knowledge not been done before. The temporal fall back to
frame averaging is really a bad solution whenever there is motion in a sequence,
but spatial fall back can also be really bad, if there is large regions of unreliable
or missing flow, but this is rarely the case when using variational flow compu-
tations as compared to block matching. Variational flow algorithms compute
dense and highly accurate flow fields (see for instance the survey by Bruhn et al.
in [12]). Should the flow be unreliable, then spatial fill-in using a good spatial
image model in multiresolution settings (as we will do) will provide estimates
of the image content that are realistic to the human visual system and most
certainly a lot better than some blended output resulting from frame averaging.

5.2.5 Worst and Best Case: Frame Doubling

Frame doubling is the most difficult case of temporal super resolution. Exactly
in the middle between two known frame we have the maximum distance to
known frames, and thus it is the position where any method will have the
highest uncertainty in its prediction of the new frames. Test results showing
this can be found in [78] by Ojo and de Haan.

Since we can keep all original frames in frame doubling and since no other
frame rate conversion will allow for 50% original data in the output (under the
logical requirement of equally space frames) frame doubling is the easiest case
of TSR – given we do not expect new frame to be as good as the old frames in
all cases.

Considering the two criteria given above on how to decide worst/best cases,
we believe the challenge lies in creating sharp and artifact-free frames anywhere
not close to an original frame. Thus the real worst case is any frame rate conver-
sion where we need longer parts of the output to be purely new frames positioned
relatively far from original frames. This happens when we only change the frame
rate a little, e.g. from 24 fps film recordings to 23.98 fps (NTSC progressive
rate) where we will have long periods with new frames close to original frames
alternating with long periods with new frames far away original frames. These
small changes in frame rates are often done by altering the speed of the record-
ing, e.g. 24 fps film is speed up 4% to be shown in 25 fps progressive PAL. (Each
frame is split into two fields to get 50 fields per second interlaced). However,
true changes of the frame rate without changing the real time speed is sought
for in the broadcasting industry.

5.2.6 Super Slow-motion

As we have discussed in section 5.2.2, the requirements on how sharp the new
frames need to be is not clear, we might make do with somewhat blurred frames.
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The sharpness we end up with is highly depending on the quality of the flow.
We will test using two types of optical flow, one which is 100% theoretically
consistent with how we formulate our framework of joint flow and intensity
calculation, and another which is inconsistent and takes longer to compute, but
also gives very sharp, well-segmented flows. Shaper flow is expected to give
sharper new frames.

Super slow-motion is parallel problem to frame rate conversion, but since
the temporal super resolution out when used for super slow is viewing at lower
frame rates (same as the input was recorded in, but stretched in time) the need
for very sharp frames is much more explicit than in frame rate conversion, thus
one will likely need shaper new frames.

5.2.7 Other Work

Temporal interpolation of signals is not new, it has been done for a long time
for 1D signals in signal processing, but these methods cannot be applied to our
problem as we have motion to consider. If we compute the flow of a sequence it
should just be possible to take a simple average along the backward and forward
flows to create new frames. This is however an oversimplification of the problem
as we do not know what comes first in a new frame: the flow or the intensities?
To optimally solve this hen-egg problem one has to iterate between estimating
the flow and the intensities as we suggested above. This idea of simultaneous
multiresolution flow and intensity calculation has already been proven itself
useful for motion compensated inpainting in [65]. Let us have a look at what
others have done before us in the field of temporal super resolution.

In medical imaging interpolation of new frames or volumes of a time se-
quence of 2D or 3D scans are of interest, mainly in lung (respiratory gated) and
heart (heart gated) imaging. The work by Ehrhardt et al. in [35] is a typical
and recent example, where temporal super resolution in heart gated imaging is
performed using an accurate flow algorithm, but doing simple motion compen-
sated interpolation of intensities along the flow lines to get the new frames. In
our own field of video processing there are several TSR patents like the one by
Cornog et al. [24] and the already mentioned [85] where the same procedure as
in [35] is used: Flow calculation (good or bad) followed by some non-iterative
averaging along the flow. TSR is also done in integrated circuits (ICs) as de-
scribed by de Haan in [28] using 8× 8 block matching flow with a median filter
for motion compensated interpolation (details on the intensity interpolations is
given in [78] by Ojo and de Haan). In a recent paper [27] by Dane and Nguyen
motion compensated interpolation with adaptive weighing to minimize the error
from imprecise or unreliable flow is presented, which is surely needed as the flow
used in [27] is the MPEG coding vectors (typically prediction error minimizing
vectors). The advantage of using MPEG vectors as flow is that one avoids the
computationally expensive flow calculation.

In [52] Karim et al. focus on improving block matching flow estimation for
motion compensated interpolation in low frame rate video and no less then 16
references to other TSR algorithms are given. An overview of early work on mo-
tion compensated temporal interpolation in general (TSR, coding, deinterlacing
etc.) is given by Dubois and Konrad in [33] where they state that even though
motion trajectories are often nonlinear, accelerated and complex, a simple lin-
ear flow model will suffice in many cases. In [17] Chahine and Konrad shows
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that modelling the acceleration will improve results in motion compensated TSR
when measuring the picture signal to noise ratio (PSNR) between the results and
the ground truth. The improved flow modelling will make interpolation (and
prediction) coding better in terms of quality to bandwidth ratio. We are not
necessarily interested in optimizing an objective error measure like the PSNR,
but are more focussed on pleasing the human viewer. Variational optical flow
algorithms can model and calculate acceleration as a consequence of temporal
regularization. An example of this is the flow of the sequence Ettlinger Tor
computed by Brox et al. in [9], but in interpolating flow and intensities in all
new frames, a straight motion trajectory is likely to be chosen as the flow of
minimum energy (variational optical flows are typically found by minimizing the
energy of the model applied to the image sequence and its optical flow). Specif-
ically modelling acceleration in the flow will give a smoother flow trajectory in
TSR. Whether this increased smoothness of the flow will improve the quality of
TSR is doubtful as the human visual system itself does linear interpolation.

A problem somewhat more complex than our new frame interpolation prob-
lem is trying to create a new arbitrary viewpoint 2D sequence from a multi-
camera recording of a scene as done by Vedula et al. in [105]. The 3D registra-
tion and scene modelling (similar to structure from motion problems) is what
complicates matters, but the multicamera recordings does at the same time
provide you with an abundance of available information. Leaving out all the
3+1D shape and flow modelling, the 2+1D TSR part used in [105] is the classic
Lucas-Kanade flow estimation [71] followed by simple motion compensated in-
tensity interpolation using weighing by linear distance in time from forward and
backward known frame neighbors. No optical flow estimation is performed by
Shechtman et al. in [92] and in their version of the multiple camera approach,
all the cameras are assumed to be close spatially or the scene assumed planar
to allow the different input sequences to be registered by simple alignment to
the common frame of reference. From the multiple inputs a high resolution
output in either space or time – it is a tradeoff – is produced. Shechtman et
al. therefore already have a very dense recording of a registered scene making it
very easy (according to the authors) to produce high frame rate TSR outputs
without flow estimation (e.g. 75 fps from four 25 fps sequences). This technique
can not be used on single camera recordings and the view point can no longer
be chosen arbitrarily as it could in [105].

Using patches to represent salient image information is well-known (see e.g.
the papers by Freeman et al. [40] and Griffin and Lillholm [44]) and an exten-
sion to spatiotemporal image sequences under the name of ’video epitomes’ is
presented and used for TSR by Cheung et al. in [21]. The framework for video
epitomes can just as our Bayesian inference based framework be used in general
for image sequence inpainting, upscaling and de-noising. In the case of TSR it
is not at all discussed in [21] to which degree video epitome TSR can handle
motion and in the example given on generating frames dropped unevenly in an
Internet broadcast there is only very little motion. Furthermore video epito-
mes need to be learned on either a better representation of the degraded data
(e.g. high resolution sequences) or on the input data available. Learning is a
computationally very costly process (no details given in [21]) and it is therefore
unclear whether video epitome TSR can be applied to general video at all (and
at what processing cost in time and hardware) but video epitomes is as such an
interesting technology.
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5.2.8 Benchmarking in Testing

When presenting a new solution to a problem any claims of improved results
or performance should be supported by a reasonable validation of the claims.
In medical imaging requirements on validation are obviously strict and often
very formalized, whereas they are less formalized in image processing where one
’just’ enhances data.

In evaluating enhancement of images or image sequences, e.g. in TSR, the
choice is between objective and subjective quality assessment as discussed in
Section 2.3 of this thesis. These quality measures are then used to show the
difference in quality between the suggested new method and other methods.
(To use objective measure a ground truth version of the sequence needs to be
available) This is exactly as we have done for deinterlacing in Chapter 3 of
this thesis and for video super resolution in Chapter 4 of this thesis. In most
cases the methods used in comparison are rather simple as you often has to
balance the effort between improving your own method and implementing other
advanced methods.

In [52] Karim et al. test several TSR algorithms, the difference between the
algorithms being the specific block matching algorithms used in the flow calcula-
tions. They all use simple averaging along the flow as intensity calculation, thus
making it a study on the quality of block matching when used in motion com-
pensated schemes (in this case TSR). In [27] Dane and Nguyen focus on testing
different weighing schemes for the intensity interpolation and simple averaging
along the flows is compared to two adaptive weighing schemes, the adaption
being based on either reliability of the flow vectors or the prediction error (as
in video coding). To directly compare the performance of our variational TSR
algorithm to the performance of any of the above, we would have to test our
method on the same data as they have used in their tests.

As it is now, authors rarely use the same input data to produce their results
(as given in papers). There do exist a number of sequences commonly used
for video processing (coding primarily) including sequences as Flowers, Stefan,
Foreman, Carphone, Mobile calendar (mobcal), Bicycle, Tokyo, Football etc.,
which has been used in TSR testing. Unfortunately different subsets of this data
set is used (selected sequences or frames and at different resolutions, QCIF, SIF,
CIF etc.). Even with partial overlaps between different TSR tests, visual results
given as figures in the papers (video results are rarely given) are too small to
really compare, or different frames are selected for display. Since we cannot
find comparable results in literature, we could then implement the methods of
others, but as mentioned above, it often takes resources away from developing
your own method – unless what you do is based on earlier methods. Since
basically all TSR methods we have come across use block matching, we would
have to build up an expertise in that field, but have not (yet) done so as it is
not done easily.

Furthermore limits on paper lengths often prevents the full story with all
details in an algorithm to be given and thus (extensive) dialog with authors is
also necessary.

Next option to get directly comparable results is to ask authors to run their
code on the same data that we use in our tests or to ask for a copy of their code
(if the system exists as software for standard PCs). This can be troublesome due
to (research) political issues, especially if any commercial interests are involved.
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But some labs do share their code, an example being the spatial video super
resolution and demosaicing work by Farsiu et al. presented in [37] and [38].

The ways of obtaining directly comparable results we have discussed so far
have all been troublesome, but there is one last and mutually beneficial way to
go, which is to develop a joint taxonomy for benchmarking in TSR (or any other
field of application). An example of this is the IEEE International Workshop
on Performance Evaluation of Tracking and Surveillance, where the tenth is
held in the fall of 2007. Here all algorithms presented in workshop papers
are to test on the benchmark data given by the workshop organization (see
http://pets2007.net). It is in no way guaranteed that work on temporal super
resolution can carry a series of workshops, but just one founding workshop or
meeting agreeing on a benchmark data set would be enough.

A risk when forming a benchmark is that the test set might end up being too
big, leading to selective testing which is no better than what is already done. On
the other hand the test set should not be too small as it should both deal with
the major problems in TSR and be representative of video as such: We cannot
have a TSR method solving the hard cases but creating artifacts in other types
of video. We suggest a few examples of unnatural motion (mainly high contrast
edges in sequences with camera motion given a jerky motion effect) and some
example of complex motion to see that the motion estimation can handle more
than just translational motion.

But even with a data set for benchmarking selected and generally agreed
upon, there still is the question of how to evaluate the results, should it be done
objectively and/or subjectively and what exact method(s) of evaluation should
be used?

5.3 Theory and Algorithm

The temporal super resolution algorithm presented here was derived from a
variational framework based on a Bayesian inference for restoring and enhancing
image sequences as presented in Section 2.6 of this thesis. We recapitulate the
framework here and give its specific use in TSR before we describing the two
versions of a frame doubling algorithm we have implemented.

5.3.1 Bayesian Inference and Variational Framework

Probability distributions are a good starting point for modelling image sequences
and their optical flow. In its general form for adding information to an image
sequence it is

p(u,~v|u0, D) ∝ p(u0|u,D)︸ ︷︷ ︸
P0

p(us)︸ ︷︷ ︸
P1

p(ut|us, ~v)︸ ︷︷ ︸
P2

p(~v)︸︷︷︸
P3

. (5.1)

where ~v is the optical flow of the output sequence u, and u0 is the input sequence.
us and ut are the spatial and temporal distribution of intensities respectively.
D is the domain where data should be added, the holes in inpainting and the
set of the new frames in TSR. On the left hand side we have the a posteriori
distribution from which we wish to extract a maximum a posteriori (MAP)
estimate. The right side terms are: P0, the image sequence likelihood, P1 the
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spatial prior on image sequences, P3 the prior on motion fields, and P2 a term
that acts both as likelihood term for the motion field and as spatiotemporal
prior on the image sequence. We use the Bayesian to variational rationale by
Mumford [75], E(x) = − log p(x) to get to a variational formulation. We are
then given a continuous energy minimization problem of the form

E(u,~v) = E0(u, u0) + E1(us) + E2(us, ut, ~v) + E3(~v). (5.2)

Under mild regularity assumptions, a minimizing pair (u,~v) must satisfy the
condition ∇E(u,~v) = 0 where ∇ is the gradient and the solution expressed by
the coupled system of equations





∂E

∂u
(u,~v) = 0

∂E

∂~v
(u,~v) = 0.

(5.3)

This system can, depending on the level of integration in the actual imple-
mentation and numerical solution chosen, be considered simultaneous. The
simultaneousness comes from alternatingly updating the guesses on solutions to
∂E/∂u = 0 and ∂E/∂~v = 0 down through a multiresolution pyramid as dis-
cussed in section 5.2.4. We thus minimize both the flow and intensity energy
on each level in the pyramid as we iterate down through it. Multiresolution is a
well-known technique from pure optical flow calculations (see for instance Brox
et al. [9]). We will get back to the use of multiresolution in temporal super
resolution in Section 5.3.6.

5.3.2 Variational Temporal Super Resolution

Returning to Equation (5.2) we need to define the functions of each of the energy
terms.

First, E0 would control the strength of diffusion in de-noising, but in TSR
it to defines where the frames of the output u is located and how it relates to
the input data u0. It tells us to keep original intensity data u0 untouched as it
represents our anchor points for creating new data and should not be altered.

The most important term is where E2 we want to temporally transport
information into the new frames along the flows (forward and backward). It acts
both as a prior on the intensities and as likelihood on the flow modelling the
consistency of the intensity data along the flows, it is the brightness constancy
assumption (BCA). WE use the linearized version of the BCA, the optical flow
constraint (OFC) dating back to the pioneering work of Horn and Schunck [48].
(The BCA and the OFC are discussed in Section 2.5 and definitions given in
Equations (2.1) and (2.3) respectively.)

Horn and Schunck also defined the need for a prior on the flow, which in (5.2)
is represented by the E3-term. It serves the purpose of filling in good estimates
of flow vectors in smooth regions from accurate values calculated where salient
image data is available (edges, corners etc. giving nonzero image gradients). It
also give reasonable guesses for flow vector in occluded areas, but these guesses
are mostly ignored by the intensity calculations at we have both forward and
backward flows available.
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E1 is the classic, spatial regularization term and will in case of unreliable
flow give spatial filling in. To keep it from doing (inaccurate) spatial diffusion
where flows are reliable and temporal information thus correct, detailed and
sharp, it should be given very small weight. The control gained by explicitly
giving the E1-term a small weight is and augmentation of the implicit control of
our algorithm. Giving a low weight to the spatial diffusion term will jut tell the
algorithm to only start using spatial information when the temporal information
is really bad due to imprecise or unreliable flows.

The distribution of each of the energy terms Ei (i = 1, 2, 3) in (5.2) are
in standard variational image and video processing of today either a Gaussian
or total variation. Both allow smooth regions while total variation also allows
for edges in its modelling of images and image sequences. The edges can be
both standard spatial edges in each frame of the sequence and temporal edges
in the sequence as caused by (dis)occlusions. In minimizing the intensity en-
ergy (solving ∂E(u,~v)/∂u = 0) total variation on E2 will stop diffusion in the
direction of unreliable flows (e.g. at occlusions) as the incorrect flow forms a
temporal edge. When we need to resort to spatial diffusion in the intensity data,
total variation on E1 will make sure edges are preserved and not smoothed out
– as they would be if we used the Gaussian. On E3 total variation will also
preserve edges in the flow (boundaries segmenting the flow). Because of the
edge preserving properties of the nonlinear total variation we chose it over the
linear Gaussian although it comes with a price: The numerical implementation
is more complicated and the running times longer, but these negative effects are
outweighed by the increase in output quality. With the use of total variation
and the Ei’s (i = 1, 2, 3, 4) discussed above, (5.2) becomes

E(u,~v) = λ1

∫

Ω

ψ(|∇u|2)dx

︸ ︷︷ ︸
E1

+ λ2

∫

Ω

ψ(
∣∣£~V u

∣∣2)dx

︸ ︷︷ ︸
E2

+

λ3

∫

Ω

(
ψ(|∇3v1|2) + ψ(|∇3v2|2)

)
dx

︸ ︷︷ ︸
E3

, u = u0|K︸ ︷︷ ︸
E0

(5.4)

where ∇ = (∂x, ∂y)T is the spatial gradient, ∇3 = (∂x, ∂y, ∂t)T is the local
spatiotemporal gradient, and the λ’s are positive constants weighing the terms
with respect to each other. x runs over the whole image sequence domain Ω
and K is the domain of known data, where K may overlap the domain of the
output sequence C, e.g. in frame doubling where it is composed 50/50 of D
and K (for frame doubling C = D ∪K) and thus we need E0 to be u = u0|K .3

v1 and v2 are the x- and y-components of the flow field, i.e. ~v = (v1, v2)T and
~V = (v1, v2, 1)T ). As discussed in Chapters 3 and 4 £~V u denotes the temporal
Lie-derivative of u along the flow ~V (the ~V -directional derivative of u) and is
the optical flow constraint. ψ(s2) =

√
s2 + ε2 is an approximation of the | · |

function as the latter is non- differentiable at the origin. ε is a small positive
constant (10−8 in our implementation).

Splitting the energy (5.4) according to (5.3) we get this energy to be mini-

3Since we allow for both up- and downconversions of frame rates, Ω can be either equal to
C or K depending on which is longest in time.
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mized for the intensities

E(u) = λs

∫

Ω

ψ(|∇u|2)dx

︸ ︷︷ ︸
E1

+ λt

∫

Ω

ψ(
∣∣£~V u

∣∣2)dx

︸ ︷︷ ︸
E2

, u = u0|K︸ ︷︷ ︸
E0

(5.5)

where λs = λ1 and λt = λ2 in (5.4). For the flow we need to minimize

E(~v) = λ2

∫

Ω

ψ(
∣∣£~V u

∣∣2)dx

︸ ︷︷ ︸
E2

+ λ3

∫

Ω

(
ψ(|∇v1|2) + ψ(|∇v2|2)

)
dx

︸ ︷︷ ︸
E3

. (5.6)

In order to improve quality, the brightness constancy assumption in E2 can
be supplemented with the gradient constancy assumption (GCA) (see section 2.5
of this thesis) as it is done in the inpainting algorithm by Lauze and Nielsen
in [65]. Using the GCA in the intensity minimization adds a serious layer of
complexity, while it more unclear to what degree it will improve the quality of
the resulting output image sequence. The use of the GCA in E(u) is discussed
in Section 2.6 and Chapters 3 and 4 of this thesis.

5.3.3 Gradient Constancy Assumption on the Flow

In the temporal super resolution literature (e.g. [17], [24], [27], [28], [52], [78]
and [85]) the flow estimation is considered the important and difficult part of
any TSR algorithm as advanced intensity interpolations are only suggested to
remedy errors in the flow. But even the advanced intensity interpolations are
far from as complex as the flow computations. Flow computations are in general
more complex and the need for segmentation (which is one of the things the GCA
should helps do) is more explicit in the flow – if the flow in a TSR algorithm is
well-segmented, then the intensities will be as well.

From the work on variational optical flow by Brox et al. in [9] and the survey
of optical flow methods (practically a benchmark) by Bruhn et al. in [12] it is
clear that the gradient constancy assumption will improve the precision and
reliability of the flow. The formulation of our TSR algorithm has so far been
consistent with the idea of joint flow and intensity optimization and we are the-
oretically minimizing the joint energy of (5.2). In theory a 100% simultaneous
solution will minimize (5.2) directly to solve ∇E(u,~v) = 0, but in practice we
are minimizing the split energies in (5.5) and (5.6) according to (5.3). Thus we
can add terms to either (5.5) or (5.6) independently and we have chose add the
(linearized) GCA to the flow energy. E2 with GCA ( flow energy only) then
becomes

E2(~v) =
∫

Ω

(
λ2ψ(

∣∣£~V u
∣∣2) + γψ(

∣∣£~V∇u
∣∣2)

)
dx (5.7)

where γ is a positive, constant weight and £~V∇u the ~V -directional Lie-derivative
of ∇u, that is the linearized GCA. If we set γ = 0 in our implementation, we
are back at (5.5) and thus we are able to test both with and without GCA in
one joint implementation.

Even if we should be able to estimate a perfect flows one day, simple inter-
polation it not always enough. Whenever there is non-integer motion we need
spatial subpixel interpolation. In TSR we have a hen-egg problem making a
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perfect flow impossible to obtain. Since the TSR problem is ill-posed and solu-
tions to it thus suboptimal, it would be interesting to see if using the GCA in
the intensity energy E(u) will improve variational TSR results.

5.3.4 Temporal Super Resolution Is not Inpainting

Inpainting small holes in a sequence is very different from creating (several) full
new frames of a sequence. Claiming that inpainting and TSR are the same is the
same as saying de-noising and inpainting are the same: It is all true in a broad
scene as shown with our Bayesian framework (or the video epitome formulation
by Cheung et al. in [21]) where the difference between the applications lies in
the formulation of the data term P0 (and equivalently E0). In de-nosing it is
simply a weight on how hard to regularize all data, in video super resolution it
is the somewhat more complex super resolution constraint governing the pro-
jection of data back and forth between low resolution and high resolution frame
(see Chapter 4). Solving any of the problems, de-noising, inpainting, deinterlac-
ing, video super resolution or temporal super resolution in practice, shows that
the similarity is mainly theoretic and lies in the common modelling of image
sequences content. Solving the actual problems are very different.

The major difference lies in the support or masking of the problems. In de-
noising all data is available for support, but then again any of the pixels might be
noisy. In inpainting the noise can be said to have grown in size, but in contrary
to de-nosing the damaged regions are located manually or automatically before
inpainting. On the downside, inpainting only has spatial support from the
boundaries of the damaged regions, which is problematic if the damages are
large. Still image inpainting relies 100% on spatial information support, whereas
image sequence inpainting also has temporal support from (mostly undamaged)
neighboring frames. In temporal super resolution we only have temporal support
and cannot rely on any spatial support to help solve the problem of missing
information. Smaller holes in image sequences that are inpainting reasonably
well are also easier overlooked by the human observer than full frames created
reasonably well as full frames takes up more visual attention than only a small
parts of frames. As image sequence modelling improves in the future it also
likely that TSR will benefit more from it than inpainting – depending on the
hole sizes of course: At 100% of the frame size inpainting then is TSR.

5.3.5 Motion Blur

Some would claim that motion blur should be included in modelling tem-
poral super resolution in the sense that TSR aims at sharp sequences. We
(dis)respectfully disagree. We model motion blur in the sense that we preserve
it. If a film maker or tv-producer has created motion blur, it is part of the
artistic expression and should be preserved. We consider the input frames as
perfect and want to get the new frame to ultimately resemble them as much as
possible, motion blur or no motion blur. De-blurring has no direct link to TSR
except that variational methods can be used for de-blurring.
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5.3.6 Algorithm for Frame Doubling

Our framework handles any reasonable frame rate conversion.4 For testing
we have chosen just to implement a frame rate doubler, but at the end of this
chapter we will discuss how to implement algorithms for other conversion ratios,
which turns out to be mainly a practical problem fairly easy solved. Here we
look at the implementation of a frame doubler minimizing the energies in (5.5),
(5.6) and (5.7) according to (5.3).

Let us start with the flow energy minimization. After exchanging the E2-
term of the flow energy in (5.6) with the E2-term from (5.7), the flow Euler-
Lagrange equation is derived. It is implemented numerically along the lines
given by Brox et al. in [9] and by Lauze in [64] and minimized iteratively using
a Gauss-Seidel solver with a fixed point approach to linearize the otherwise
nonlinear system.

The same general solution is used for the intensity energy. We have that the
optical flow constraint is approximated by the brightness constancy assumption,
that is

£~V u = ∇u · ~v + ut = ~V T∇3u ≈ u(x, t)− u(x + ~v, t + 1)

with the discretization suggested by u(x, t)− u(x + ~v, t + 1). We define A(u) =
2ψ′(|∇u|2) and B(u) = 2ψ′(|£~V u|2). Then the gradient of the energy in (5.5)
is

G(A(u), B(u)) :=
∂E

∂u
= −λsdiv2 (A(u)∇u)− λtdiv3

(
B(u)(£~V u)~V

)
(5.8)

where div2 and div3 are the 2D and 3D divergence operators respectively. Dis-
cretization is performed as described for deinterlacing and video super resolution
in Chapters 3 and 4. Equation (5.8) set equal to zero is the intensity Euler-
Lagrange equation. It is unfortunately nonlinear with A(u) and B(u) being
the nonlinear terms. In order to linearize the system so that we can apply a
Gauss-Seidel solver to it, we use a fixed point approach. A(u) and B(u) are
only updated in each of a number of outer fixed point iterations. For each outer
iteration we run a number of inner iteration in which the values of A(u) and
B(u) are now just constants (fixed) and the system thus linearized, enabling the
use of a Gauss-Seidel relaxation solver.

In our multiresolution settings, on each level k of the pyramid, we first com-
pute the forward and backward flows, ~vf

0 and ~vb
0, of the original input sequence

u0 (resized to the size of the current level), minimizing (5.6) (with or without
the GCA included in E2) in which the resized input sequence u0 simply replaces
u.5 This is to have a highly reliable anchor flow when calculating the flows ~vf

and ~vb of the full output sequence. At the given level of the pyramid, k, we then
initialize intensities and the flows of the new frames by resizing the intensities
and flows calculated at the above coarser level k + 1. Then we calculate from
these initializations the flows by minimizing the energy in (5.6), again with or
without the GCA in E2. Next we calculate u at level k by minimizing the energy
(5.5) knowing ~vf and ~vb and using the resized intensities from level k + 1 as
initialization of u in the new frames, just as when calculating ~vf and ~vb.

4We have already found frame doubling to be the worst case scenario, but doing e.g. 25
fps from 1 fps video or similar is what we would consider unreasonable, as good results would
be unrealistic in case of complex motion in the scene.

5This corresponds to minimizing E(~v) over the domain K instead of minimizing it over Ω.
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The resizing function (resize) we use to initialize flows and intensities at
level k from the values calculated at the above level k + 1 is a simple spatial
down- and upscaling function for multiresolution schemes as given in [11]. We
also use this resize function to downscale u0 to the given level k to always have
the best representation of the original frames at the given level.

The recalculation of the flow of the original frames, ~vf
0 and ~vb

0, is important,
because it rids us of the assumption that the flow is constant/linear and can just
be halved when we insert new frames. When the flows in the original frames is
more precise, the flow we calculate in the new frames and actually use in the
intensity calculations, also becomes more precise and reliable.

The use of a multiresolution schemes is considered essential when doing
variational flow calculations. In TSR, calculating both flow and intensities at
each level solves the hen-egg problem of what comes first in a new frame: The
flow or the intensities. Thus we iteratively improve first one and then the other
to get simultaneous computations and optimize our solution. By using a small
scale factor between pyramid levels ensures a very good initial guesses of the
intensities and flows in the new frames at each level. Using further integration
to make the calculations ’more’ simultaneous (as it is done for video super
resolution in Chapter 4) by alternating between minimizing E(~v) and E(u)
internally on each level in the pyramid is unlikely to improve output quality
when using small scale factors in the pyramid.

At the coarsest level at the top of the pyramid we do not have a k + 1 level
to initialize our data from and thus have to use temporal initialization (inferior
to k + 1 initialization). For the flow calculation we have chosen to do frame
averaging of both flow and intensities. If the new frame is located at time n and
the two know frame are at time n± 1/2 then

~v(x, n) =
~v0(x, n− 1/2) + ~v0(x, n + 1/2)

2

and

u(x, n) =
u0(x, n− 1/2) + u0(x, n + 1/2)

2
.

Since the spatial size of the frames at the top level is only a fraction of the size of
the frames at bottom level, even very large motion will be downscaled to be very
small at the top level, and thus the initialization will be a good approximation
of the actual values. Even though the flow we compute at the top level is of
subpixel (or close to) size, we still use it to re-initialize the intensities by simple
interpolation along the flow

u(x, n) =
u0(x + ~vb, n− 1/2) + u0(x + ~vf , n + 1/2)

2

before we minimize E(u). As the top level is only a very crude estimate of the
finest level at the bottom and still has to go through many corrections down
through the pyramid, this initialization should suffice.

The algorithms we use is (leaving out the special initialization case at the
top level):

At each level from the top, coarse to fine, for k = levels until k = 1 :

1. Calculate the forward and backward flows, ~vf
0 and ~vb

0, of the resized orig-
inal input sequence u0,k minimizing (5.6) with/without E2 from (5.7).
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2. Initialize new frames: u(x, t, k) = resize[u(x, t, k − 1)] in the domain D.

3. Initialize forward and backward flows of new frames:
v(x, t, k) = resize[~v(x, t, k − 1)] in the domain D.

4. Calculate the flows ~vf and ~vb of the output sequence u minimizing (5.6)
with/without E2 from (5.7).

5. Calculate new frames in u|D by minimizing (5.5).

5.4 Experiments

In our tests we will focus on the major problem caused by having to low frame
rates in image sequences: Unnatural motion. The problem is mostly caused by
camera pans on scenes containing high contrast edges. By doubling the frame
rate we will make the apparent motion of these high contrast edges smoother
and (partially) reestablishing the phi-effect.

As discussed in the previous section we have implemented our frame doubling
algorithm in such a way that we can test it in two versions: The first includes
the gradient constancy assumption in the flow calculations and is expected to
give the most correct results as both flow and intensities are subject to minimal
blurring when the GCA sharpens the flow. The second method without GCA in
the flow is expected to blur the flow more and following from that, also blur the
intensities more. The version without GCA is, when implemented in a version
where the GCA is not turned out by setting its weight to zero, faster. We test
it in the hope that its results, although expected to be more smooth, will be
convincing to the human viewer and not be perceived as unsharp (as discussed
in section 5.2.2). If we get results with different sharpness in the new frames,
it will help us say something about blur acceptance in frame doubling. Before
we start to look at our frame doubling results, there are some topics we wish to
discuss first.

5.4.1 Test Material

We have tested on a few homemade sequences as well as on cutout sequences of
real world motions pictures on standard PAL resolution (720×576 pixels, 25 fps,
telecined) DVDs. We only process the luminance channel, but the extension to
full color processing is discussed in Section 2.4 of this thesis. The cutouts used
are of areas with high contrast edges in motions and the sequences chosen were
experienced to have jerky motion when watched in their full frame PAL versions
on a 43” Pioneer plasma screen with a viewing distance of 2 to 2.5 meters. The
frame rate of the screen is unknown, but the frame rate up-conversion from 25
fps is unlikely to be motion compensated due to the experienced jerky motion.
The jerkiness in the test sequences was also confirmed by played back the 25 fps
sequences on a LCD PC monitor with 75Hz refresh rate using frame repetition.

Online Video Files

All inputs and results given in the figures in Section 5.4.5 (Frame Doubling
Results) are also given as video files (*.avi) online at: http://image.diku.dk/
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Without GCA With GCA
Multiresolution Scale factor 1.04 1.04

Levels 55 or 75 55 or 75
Flow Fixed point iterations 10 5

Relaxation iterations 40 20
λ3 in (5.6) 30 100
λ2 in (5.7) 1 1
γ in (5.7) 0 100

Intensities Fixed point iterations 5 5
Relaxation iterations 10 10
λs in (5.5) 1 1
λt in (5.5) 50 50

Table 5.1: Optimal parameter settings for variational TSR. The parameters are
discussed in details in section 5.4.2. The eleventh parameter of the algorithms
is the convergence threshold set to 10−7 in all tests.

sunebio/TSR/TSR.zip [58]. References to specific files are given when they are
discussed in Section 5.4.5 and all files are named with the same name as the
input test sequence and the method used on them. The shareware AVI video
editor VirtualDub is also given in the online material.

5.4.2 Parameters

As with any advanced method there is a number of parameters that needs to be
tuned in our algorithms to optimize performance. To be exact there are eleven
parameters. In our case optimal performance is optimal output quality, we have
left tuning for lower running times for later, but will discuss the issue in this
section. Through extensive parameter testing we have optimized two sets of
parameters for variational frame doubling TSR; with and without GCA in the
flow. Our experience from doing deinterlacing and video super resolution (see
Chapter 3 and Chapter 4 of this thesis) together with literature on inpainting
and optical flow calculation ([9], [12], [14], [64] etc.) enabled us to give qual-
ified guesses on parameters. From these initial guesses we could then try to
push each parameters in both directions making our parameter tuning deter-
ministic. Testing just three different settings of each parameter in all possible
combinations would result in 311 = 177, 147 different test results for evaluation.

The settings we decided on were optimal (given our obviously incomplete
search) can be found in table 5.1 for both versions of our algorithm. We see
that settings for the intensity energy minimization is the same for both algorithm
versions, we did of course test other settings, but the given settings optimizes
output quality. The weight ratio temporal to spatial diffusion is high in favor
of temporal diffusion which ensures that spatial diffusion is only used when
temporal information is highly unreliable. Lowering the ratio from 50:1 to 20:1
gave similar results when evaluating on video, but judging from the stills, there
where minor degradations, thus we recommend λt:λs = 50:1. It is possible that
fewer intensity iterations will give results similar to those we get now, but as we
consider lowering the number of iterations to be pure running time optimization,
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we have (not yet) tested this tuning option thoroughly.
The number of flow iterations needed are higher than the number of intensity

iterations needed, which indicates a larger complexity in the flow calculations.
We did conduct tests with fewer flow iterations, but we are close to the bottom
limit as is. Experiments of running more iterations than given in Table 5.1 gave
no visual improvements – with one exception: While tuning we found that doing
20 fixed iterations instead of 10 in the flow calculations without GCA gave very
small visible improvement, but only when results where viewed as still, thus we
are confident that 10 iterations are enough here. Even though we appear to
be at convergence with the given number of iterations, we never reached the
convergence threshold of 10−7, which would break out of the loops and stop
iterations. Thus a higher value of convergence threshold might be of more use,
if this parameter is to live up to its name.

Table 5.1 also shows that without GCA in the flow we need more iterations
to get optimal flows. This is because fewer point give reliable flow information
when only evaluating brightness constancy, which increases the need for flow
diffusion by the regularization term on the flow (E3) – and this takes extra
time. The E3-term is weighed 30 times over the OFC when we do not use
the GCA, but is given the same weight as the GCA when the GCA is used
(with the OFC nearly neglected due to the λ2:γ = 1:100 ratio). Since we have
implemented flow calculations without GCA by setting γ = 0, we cannot say
if the version without GCA in the flow is faster than the version with GCA in
spite of its need for four times as many iterations, but we do expect it to be
faster. It would under all circumstance be less complex to implement e.g. in
hardware.

The number of levels in the multiresolution pyramid is set to either 55 or
75 depending on the frame size of the given image sequence with a 1.04 (coarse
to fine) scale factor between the levels. The low scaling factor ensures good
information transfer down through the pyramid, but we have not tried increasing
to values above 1.1 (and only tried the value 1.1 on one sequence) but doing so
could optimize running times as each level would shrink in size. Whether larger
scale factor will decreasing the output quality is unknown. The maximum flow
magnitude (relative to the frame size) should be scaled to (close to) subpixel
at the top level. With larger scale factors the number of levels in the pyramid
could also be decreased, but this would only give a minor speedup as we would
remove only the very small coarse levels at the top of the pyramid. It is more
likely that we would get a speedup from the lowering the number of iterations
at all levels but the finest bottom levels of the pyramid (and possibly the top
levels to cope with the inferior initializations used) but again this is a speedup
optimization and is left for later.

We also conducted experiments using zero as initial values for both flows and
intensities in the new frames at the top level. Given the many levels we use, the
error introduced was corrected down through pyramid, showing great robust
against bad initializations. The robustness of our algorithm is also enforced by
the fact that we compute the flows on the original frame only on each level.

5.4.3 Other Methods in Test

To get a perspective on the quality of our algorithms (with/without GCA in
the flow) we will also give results from doing frame averaging. We would also
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have liked to compare our method with other advanced motion compensated
methods to get a really strong benchmark, but this has not been possible as
discussed in Section 5.2.8 – Benchmark in Testing.6

5.4.4 Evaluation Strategy

As the human visual system is the final judge when evaluating the enhancement
achieved by upscaling, here TSR, we will focus on subjective results. To give a
broad validation, we have also given objective results. The problem of finding
an objective measure that really qualifies as a reliable measure of the quality as
perceived by the HVS has been discussed in Section 2.3 of this thesis.

One cannot evaluate the quality of frame doubling or TSR by looking at stills
alone. Stills are valuable as they give detailed view of the quality of results, the
degree of smoothing and other artifacts. It is imperative to evaluate on video
as well to get the true realtime experience of the results. It might be that the
some blur in the new frames is not seen in realtime playback and that sharp
artifacts, which are often sensed much clearer by the eye than blurring, also
disappear. Video evaluation is also essential to judge if motion portrayal has
become natural.

In our tests we have doubled frame rates from 25 to 50 fps, which should
enable viewing the video examples in the online material [58] at any modern PC
screen at refresh rates at 50 Hz or above. For comparison we have also given
the 25 fps input sequences in [58]. Playing the videos in Windows Media Player
clearly illustrates the difference in qualities that are described in frame doubling
results section (Section 5.4.5). As the example sequences given are rather short,
looped playback can be used. This is of course not the true way of seing the
results – in looping one might spot something not seen in just one pass – but it
can help do detailed analysis. Detailed analysis can also be done by frame by
frame inspection of the result for which we recommend using VirtualDub given
in [58].

As objective measures we have used the mean square error (MSE) and the
peak signal to noise ratio (PSNR). Using the notations given in Section 5.3, the
MSE is

MSE =
1
N

∑

Ω

(u− ugt)2 (5.9)

where u is the frame doubled output and ugt is the ground truth. We sum over
all pixels of the sequence (also frames from the input kept unchanged in the
output). The PSNR is

PSNR = 10 log10

(
2552

MSE

)
(5.10)

with inverse ordering of the MSE. PSNR is measured relative to the maximum
possible grey value, 255.

5.4.5 Frame Doubling Results

In Figure 5.2 results for the sequence Square is given. Square has 50×50 frame
size, is 5 frames long in the input and 9 frames in the output. The 10 × 10

6If we get the chance to continue work on TSR, doing a thorough TSR benchmark would
be high on the list of priorities.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Frame Doubling on the 50×50 sequence Square. (a) Original frame
3, now frame 5 of the double frame rate output. The new frame 6 of the out
put created by (b) frame averaging, (c) variational TSR without GCA, and
(d) variational TSR with GCA. Optical flows computed in variational TSR:
(e) backward from frame 6 to 5 without GCA, (f) forward from frame 6 to 7
without GCA, (g) backward from frame 6 to 5 with GCA, and (h) forward from
frame 6 to 7 with GCA. In this color representation, the hue value gives the
flow direction as coded at the frame boundary and the intensity (normalized in
[0.5-1]) gives the flow magnitude.

square moves 2 pixels/frame diagonally down to the right in the output. This
sequence will test the ability to handle local object motion and (dis)occlusions.

Frame averaging as shown in Figure 5.2(b) clearly creates a double, semi-
transparent square. Variational TSR without GCA does not perfectly recreate
the square as seen in Figure 5.2(c), but when the result is truthfully watched
as video, the square is not perceived as unsharp in any way and the motion
looks fluent compared to the jerky and unnatural motion seen in the input.
Played as video there is no way to tell apart the two variational TSR re-
sults apart (with/without GCA) even though there is a distinct difference in
the still outputs as variational TSR with GCA perfectly recreates the square
as seen in Figure 5.2(d). The frame averaging output is on the other hand
clearly jerky and has a trail of the square. The outputs are given as the videos
SquareFrameAv.avi, SquareVarTSRnoGCA.avi and SquareVarTSRwithGCA.avi,
all are at 25 fps and should be watched zoomed to 200% or sitting very close to
the screen as they are very small.

The flows computed in the variational TSR algorithm are shown in Fig-
ures 5.2(e)-(h). The background in Square has zero motion and both variational
TSR versions gives flows that are approximately zero as expected, but the flows
computed with GCA has large directional variation due to the strong direction
coding in our color visualization of the flows. Since the flow are ≈ 0 this has no
influence on the intensity results. A (dis)occlusion trail can be seen in the flows,
which in the non-GCA version gives some artifacts as shown in Figure 5.2(c).
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(a) (b) (c) (d)

Figure 5.3: Frame doubling of the 130 × 100 sequence Cameraman Pan. (a)
original frame 5, now frame 9 of the double frame rate output. New frame 10
by (b) frame averaging, (c) variational TSR without GCA, and (d) variational
TSR with GCA.

Under very careful still inspection of the GCA version, the (dis)occlusion causes
a slight smoothing of the background in the trail where the non-GCA version
has artifacts. The smoothing is due to the use of spatial diffusion where the
flow is not highly reliable. We also see an nice filling in of the flow (by the
E3-term) in the center of the completely flat square, and even though it is very
hard to detect visually in the flows, the GCA version is closer to the correct flow
magnitude and direction at the corners of the square causing better intensity
result as seen in Figure 5.2(d).

The sequence Cameraman Pan is a pan (10 pixel/frame in the input) across
the image Cameraman in a 130× 100 window. Results of frame doubling (25 to
50 fps) is given in Figure 5.2. Videos (with descriptive names) for the input and
all three outputs can be found in the online material [58].

On the sequence Square frame averaging was performing bad but not unac-
ceptable. On Cameraman Pan the performance of frame averaging is unaccept-
ably bad as it is should become clear from looking at Figure 5.3(b). Artifacts
this bad is not hidden when viewing the result as video and the motion seems
if possible even more jerky than the motion in the 25 fps input. The motion of
the two variational TSR outputs are much smoother and appears very natural.
In Figures 5.3(c) and 5.3(d) it is also seen how the new frames produces with
variational TSR are very similar to the original in Figure 5.3(a) except for a
slight smoothing seen only in the stills. The good performances of our motion
compensated methods are only natural as the motion is a uniform global pan
that any optical flow method should easily estimate correctly.

Some minor (dis)occlusion errors occur at the right and left frame bound-
aries of Cameraman Pan when details leave or enter the frame, e.g. the shadow
extension of the upper camera lens in Figures 5.3(c) and 5.3(d). These errors
are only spotted during video playback if one looks for them or happens to focus
on that particular part of the frame. The problem does not lie in the flow calcu-
lation, the flow is estimated correctly all over the frames, but is caused by the
fact that, if one of the flows in a pixel (backward or forward) points out of the
frame, then we use Neumann boundary conditions to find a replacement value
of the pixel sought for in neighboring frame. This creates a temporal gradient
of high magnitude if the next frame pixel found is very different from the pixel
currently being processed (which is the case where detailed regions are moving)
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(a) (b)

(c) (d)

Figure 5.4: Frame doubling on the 284 × 236 sequence Building. (a) original
frame 1 and still frame 1 of the double frame rate output. New frame 2 by (b)
frame averaging, (c) variational TSR without GCA, and (d) variational TSR
with GCA.

and leads to decreased temporal diffusion and increased spatial diffusion – as
can be deduced from Equation (5.8). The implicit temporal edge adaptiveness
of total variation thus fails (due to boundary conditions and choices made in
the implementation) and to fix the problem one could (and should) hard code a
boundary flow reliability measure simply shutting of temporal input from any
of the two flows pointing out of the frame. To be fair to our framework and
its total variation based modelling, the use of forward and backward flow is
introduced as an assumption of bidirectional flows in the numerical scheme and
is not modelled directly in the framework (the E(u) part).

The sequence Building is a 284×236 cutout of a PAL DVD (telecined from
film). The scene chosen has a camera tilt down a building, making the motion
close to global but with discrepancies from uniform global translational motion
due to the depth of the scene and the fixed camera viewpoint. The motion of the
camera is also not constant, it varies slightly up and down in speed throughout
the sequence. The structure of the building and the contrast obtained in the
recording makes the apparent motion of the 25 fps input jerky. Results on frame



114 Temporal Super Resolution

doubling Building can be seen in Figure 5.4 and in the online videos [58].
Frame averaging on Building blurs the new frames quite a lot as can be

seen in Figure 5.4(b). During video playback this blurring is not sensed, but
the motion is still as jerky as in the input and the lamps seen inside the building
seems to flicker as they are blurred to middle grey in the new frames. The human
visual system is very sensitive to flickering as discussed earlier in this chapter.
The flicker is perceived as a temporal change and temporal change sensitivity
is larger away from the fovea. Since the lamps are spread out over the frame,
some will be projected to the off-fovea part of the retina when viewed at a large
viewing angle (large screens, short viewing distances). The contrast between
the lamps and their surroundings is large and together with the flicker and the
jerky motion mentioned above, the frame averaging result is very annoying to
watch.

The motion portrayal in the two variational TSR results is natural and no
flickering occurs. As seen in Figures 5.4(c) and 5.4(d) the new frames are a
bit smoothed compared to the original frames, but this is not noticeable in the
videos.

From the same movie as we got Building from, we have taken the sequence
Control Panel (256× 220 cutout) with a fast camera pan and complex motion
(the person walking behind the control panel and being tracked by the camera).
Results are given in Figure 5.5 and in the videos [58].

As with Building the frame averaging result on Control Panel still has
jerky motion and flickering seen when playing the video (found in the online
material [58]) and as Figure 5.5(b) shows the new frame averaged frames are
also blurry.

For the panning motion on the control panel, Figures 5.5(c) and 5.5(d) show
that we still get new frames only a fraction smoother than the original frames
when applying variational TSR, and as can be seen in the accompanying videos
the apparent motion becomes natural and is no longer jerky as in the input.
In the top third of the frames of Control Panel we have the complex motion
of the walking person. The right arm with creases and sewings in the shirt is
correctly reproduced in the new frames although with some denoising/smooting
on the sleave. But the west worn by the person and swinging back and forth as
he walks is not reproduced correctly as can be seen clearly in new frames 6 and
10 in both of the variational TSR videos. (Try to go back and forth between
frame 5-7 and 9-11 manually in the program VirtualDub given in the online
material [58].) The changes in the motion of the west (the motion acceleration)
and the complexity of the motion with many and fast (dis)occlusion is too much
for our variational optical flow schemes in their current versions. Analysis of the
problem and suggestions on how to solve it will be discussed in section 5.5.1.

The sequence Boat (320 × 306 cutout) taken from a PAL DVD (film ori-
gin) has an even faster pan than Control Panel and object motion as well.
The motion is very stuttering when the 25 fps input sequence is played back
(Boat25fps.avi) and Boat has the most unnatural motion of all the sequences
we have run tests on. Results are given in Figure 5.6 and accompanying videos.

Again the frame doubling result is of poor quality as seen in Figure 5.6(b)
and the video (BoatFrameAv50fps.avi), and the two variational TSR schemes
produce high quality results, only slightly smoothed (Figures 5.6(c) and 5.6(d))
but with natural motion portrayal as seen in the videos.

Repeated watching of the variational TSR results on Boat gives a sense of
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(a) (b)

(c) (d)

Figure 5.5: Frame doubling on the 256 × 220 sequence Control Panel. (a)
original frame 4, now frame 7 of the double frame rate output. New frame 8
by (b) frame averaging, (c) variational TSR without GCA, and (d) variational
TSR with GCA.

a slight stutter in the motion, indicating that even though the edges in the
sequence are a bit unsharp due to motion blur in the input, the contrast is
so high that viewing it on really large and bright screens might require 75 fps
to get a smooth and fully natural motion portrayal. For frame tripling we will
need to change our current frame algorithm only suited for frame doubling. The
design of a generalized variational TSR scheme producing arbitrary frame rates
is discussed in section 5.5.2.

5.4.6 Objective Evaluation of Frame Doubling Results

We have computed objective results for four of the test sequences evaluated
subjectively in the previous section. For the two artificially created sequences
Square and Cameraman Pan we have created the ground truth frames corre-
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(a) (b)

(c) (d)

Figure 5.6: Frame Doubling on the 320×306 sequence Boat. (a) Original frame
2, now frame 3 of the double frame rate output, new frame 4 by (b) frame
averaging, (c) variational TSR without GCA, and (d) variational TSR with
GCA.

sponding to the new frames in the frame doubled outputs. For the real se-
quences Building and Control Panel we have taken out every other frame
of the inputs and used these shortened sequences to compute frame doubled
outputs the length of the original sequences now acting as ground truth. This
means larger panning/tilting motions from frame to frame as we now do 12.5
to 25 fps frame doubling. Since frame repetition is not really worth comparing
with other results in stills, and since it is what you get from playing the 25
fps input on a monitor capable of playing 50 fps or more, we left it out of the
subjective evaluation but have included it here.

As the results in Table 5.2 show, our variational TSR algorithms outper-
forms frame averaging as it was also the case in the subjective evaluation. It
is also no surprise that in the presence of motion, frame repetition is clearly
the worst performing frame doubling algorithm in terms of objective results.
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Square Cameraman Building Control
Pan Panel

Frame repetition MSE 158.4 1887.9 462.5 1369.8
PSNR 26.13 15.37 21.48 16.76

Frame averaging MSE 82.54 1208.3 287.8 849.9
PSNR 28.96 17.31 23.54 18.84

TSR without GCA MSE 13.05 39.47 13.82 76.59
PSNR 36.97 32.17 36.73 29.29

TSR with GCA MSE 8.97 107.9 16.44 96.87
PSNR 38.60 27.80 35.97 28.27

Table 5.2: Objective evaluation of the four frame doubling methods in test:
Frame repetition, frame averaging and variational TSR without/with GCA.
MSE (5.9) and PSNR (5.10) scores are given for the four test sequences Square,
Cameraman Pan, Building and Control Panel.

Whether it is worse than frame averaging is however a question up for debate.
Subjectively frame repetition does not change the jerky motion present in the
input while frame averaging slightly smooths it. But frame repetition does not
introduce any flickering, double exposure effect or smoothing in the new frames
as frame averaging does. The smoothing might give less objective error, but
frame averaging is worse than frame repetition on our data set as it does too
little to remove the jerky motion and introduce visually annoying artifacts.

Returning to the far better variational TSR frame doublers, their objective
measures are very close to each other as it was also the case when we evaluated
their performances subjectively. The use of the GCA help in the case of object
motion. Variational TSR with GCA gives the best result on the sequence Square
which corresponds well with the subjective results given in Figure 5.2. For the
two sequences Cameraman Pan and Building dominated by global motions, the
non-GCA version is objectively slightly better than the GCA version, which
might tend to overfit the flows. On the sequence Control Panel the non-
GCA version produces a smoother flow field and thus the intensity output is
also somewhat smoother, which helps dampen the problems with wrong flow
estimations on the walking person as mentioned in the subjective evaluation of
Control Panel.

In a subjective evaluation the ground truth sequences we use to get objective
measures might not score better than some corresponding sequence produced
using a good frame doubling algorithm. The problem with many objective
measures including MSE and PSNR is that they give a global average and does
not give special weight to local problems which might be judged very annoying
by the human visual system.

From our combined tests we can conclude that variational TSR without
GCA performs slightly better or the same as TSR with GCA in cases where
the sequences are dominated by global flow (camera motion). From the results
on the sequence Square it is indicated that TSR with GCA is better in case
of object motion, but there are more fundamental problems with the flow than
the minor differences in performance with/without GCA. These problems were
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observed in the sequence Control Panel and will be discussed in the next
section, and from the improvements suggested we believe that TSR with GCA
will give the best results on sequences with complex motion.

It is clear that our motion compensated variational TSR frame doublers are
producing outputs far superior to the outputs from the simple methods frame
averaging and frame repetition, but we need to benchmark variational TSR
against other motion compensated TSR algorithms to show its full potential.
The problems of doing such a benchmark was discussed in section 5.2.8.

5.5 Discussion

5.5.1 Improving Variational Optical Flow in Motion
Compensated Upscaling

Scenes with complex motion can cause problems even to advanced optical flow
algorithms. We will look at some examples of variational optical flow computed
on sequences with complex motion. The flows have been computed by minimiz-
ing the flow energy with gradient constancy assumption as given in Equations
(5.6) and (5.7).

First, in cases where there is many different motions in a scene, e.g. crowd
scenes, a highly segmented optical flow needs to be computed. In Figure 5.7(b) a
relative complex scene, School Yard, with multiple motions including a camera
pan is shown and in Figure 5.7(a) we see how the variational optical flow is
nicely segmented – the two persons in the middle (red in the flow illustration)
do actually have identical projected motion. In the sequence Street also used
in Chapter 4 the motion is even more complex and many of the object in motion
(far away cars and pedestrians) are too small to be segmented in the flow, see
Figures 5.7(c) and 5.7(d). As shown with the flows of the sequence Square
(see Figure 5.2) the flow computations with GCA will produce very fragmented
flows even in detailed regions in with no or very little uniform motion, e.g. the
stationary background in Square and the close to stationary buildings part of
Street. To get smoother (and better looking) flows one could do some Gaussian
pre-smoothing of the image sequence, but it might cause a loss of details in the
flows.

Looking only at the objects with significant flow magnitudes in Street, the
cars in the front, the van turning right around the corner in the middle of the
frame, the Canadian flag to the upper right and the US flags on the left, they
are all well segmented with reliable flows. For both examples in Figure 5.7 we
have been able to compute artifact-free video super resolution results.

It is important to have a robust motion compensated algorithm that switches
off temporal input when flows are unreliable, but the limitations of the human
visual system will also help: In this kind of complex scenes the HVS will not
be able to track all the motions and thus we might ’get away’ with producing
suboptimal outputs. Still optimal results require precise and reliable flows. Even
if there is only one or a few motions in the sequence, but one of them is of a
type that is not included in our motion modelling and handled in a way that
artifacts will appear, the HVS will most likely spot the problems. The non-
modelled motion could be transparent motion, whirls, some cases of accelerated
motion, and specific to block matching algorithms; anything not translational
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(a) (b)

(c) (d)

Figure 5.7: Variational optical flow with gradient constancy assumption. (a)
forward flow of frame 13 in the sequence School Yard shown in (b). (c) forward
flow of frame 2 in the sequence Street shown in (d). Both sequences are from
movies telecined anamorphically to (widescreen) PAL DVDs.

at block size resolution.

A problem not handled very well in our variational flow algorithms both with
and without GCA, is fast dynamic changes; flows with large accelerations. An
example is the sequence Keyboard where the fast up-and-down motion of the
typing hands causes problems. Four of the twenty frames in Keyboard are shown
in Figure 5.8 and when we compute the flow (still with GCA as in the previous
examples) of the full sequence as one volume, we get a flow that changes very
little over the duration of the sequence, the true optical flow of the hands is not
found. This is most likely due to the fact that we use local 3D spatiotemporal
regularization on the flow,

∫
Ω

(
ψ(|∇v1|2) + ψ(|∇v2|2)

)
dx. This regularization

term will fill in information from local temporal neighbors and in theory switch
off the temporal diffusion if there are edges in time (the moving object has
moved away). But for several sequences we have tested on, the flows stay the
same over time in a given spatial location even though the object causing the
motion is only present in that location in part of the sequence. Keyboard is
one of these sequences, but School Yard where the correct motion fields nicely
follow the objects over time, is not. We have used the 3D regularization on the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Optical flows with GCA on the 20 frame sequence Keyboard pro-
cessed in 4 bites of 5 frame each. (a)-(d) forward flows of the second frame of
each bite corresponding to frames 2, 7, 12 and 17 of the full sequence, the frames
shown in (e)-(h). The flows are a somewhat oversegmented as the weight of the
flow prior/regularization was set very low in this experiment (λ3 = 30).

flow as it was reported to give better result than pure spatial 2D regularization
by Brox et al. in [9] and by Bruhn et al. in [12].

To solve the problem of handling accelerated motion one could process the
sequence in shorter bites. We tried to do so with Keyboard, we cut it into four
bites of five frames each and the resulting flows are show in Figure 5.8. As the
figure shows we now have dynamically changing flows and the problem is solved.
Internally in each bite the flow is still close to constant over time, but this can
be handled by making shorter bites, maybe even processing frame in pairs.

Solving the acceleration problem by bite wise flow processing in very short
bites will give a loss of temporal long distance information propagation and
time consistency achieved by processing longer bites iteratively. Using a sliding
windowing function in time processing in overlapping bites might prevent some
of this loss, but to get a sound solution to the problem, the solution should be
formulated theoretically and from there implemented.

The 3D regularization (prior) we use, will in a multiresolution setting give an
advantage with temporally slowly changing motions like zooms, exemplified by
results on the Yosemite sequence given in [9] by Brox et al. where the variational
optical flow algorithm using 3D regularization has lower angular errors than
when using 2D regularization (and also outperforms any other algorithms tested
on Yosemite). We have in our work on motion adaptive deinterlacing in [55] and
[57] tested a 3D total variation regularization on intensities, but due to a lack
of shutdown of temporal diffusion across temporal edges in case of motion, we
abandoned it and used the split 2D and 1D prior instead as reported in Chapter 3
of this thesis. The assumption that a spatiotemporal volume is 3D seems to
hold only in limited cases and image sequence volumes should be defined as
2+1D, separating space and time and using optical flow as the link holding them
together (the ’+’). Taking variational optical flow beyond Yosemite and other
artificially generated test sequences and using it in general applicable motion
compensated algorithms (e.g. temporal super resolution and other upscalings)
we believe using 2D regularization will help solve the accelerations problem
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encountered with when using 3D regularization and we intend to test that in
the future. We would also like to do the in-between of 3D and 2D priors, a
local 2D+1D prior with a stronger temporal shutdown than the 3D prior or
a 2D+1D prior including a £~V

~V derivative along the flow. The latter might
– depending on its exact formulation – actually prevent motion acceleration,
in that case some specific acceleration prior should be employed instead. Any
improvement of our model keeping us from using bite wise flow processing to
handle accelerations is welcome as it will improve temporal consistency.

5.5.2 Pointers to Generic Variational Frame Rate Conversion

Doubling the frame rate or doing any other integer multiplication of the frame
rate is relatively straightforward, but any odd conversion like 25 to 24 fps, 25 to
72 fps or 24 to 60 fps is more requiring. Our framework allows arbitrary frame
rate conversions, but instead of keeping old frame as every other new frame,
the data term will have to specify a mapping from input temporal resolution
to output temporal resolution, similar to the spatial super resolution constraint
used in Chapter 4 of this thesis. Since the temporal point spread function
would have to model the aperture time of the camera, one would always need to
now the shutter speed used by the photographer for every recording. It would
be more practical to let the data term map the nearest original frame in each
direction to know where to find reliable data when creating the new frames.
Lets us leave the more theoretical discussion and look at the implementation
issues involved in doing generic (in frame rates) temporal super resolution.

To get TSR algorithm with arbitrary frame rate conversion, first the initial-
izations need to be changed, which should be rather simple to do. Multireso-
lution schemes are a great help here, since we can always build a pyramid that
downscales the image to a size where |~v| ≈ 0 or at least |~v| < 1 and thus get a
good initialization of our basic data.

Secondly we would have to change the nice, regular spaced temporal grid
with grid size ∆t = 1, to a more irregular grid, which mainly affects the calcu-
lations of temporal derivatives in the numerical implementation of the energy
minimizations.

Thirdly, in the frame doubler we are in the fortunate situation to have two
original frames close by as nearest neighbors to each new frame. When doing
arbitrary frame rate TSR we might have more than one new frame between each
pair of original frames and the question is to what degree should we ignore data
in a neighboring new frame to get more reliable information from a further away
original frame. Iteratively solving our problem, data in new frames become more
and more reliable and neighboring new frames represents reliable information
transported there from known input frames. With a good initialization from
the level above in the multiresolution pyramid when using a small scale factor
between levels, we can also gradually improve quality as we go down through
the pyramid.

Finally one could consider if any original frame close to the position (±∆t)
of a new frame should be used directly as that new frame. The maximum
∆tmax we can allow depends on the maximum projected displacement ∆xmax

on the retina, which does not annoy the HVS by creating jumpy/jerky motion.
∆tmax depends on ∆xmax thought the maximum projected velocity ∆vmax

in the depicted scene: The larger the velocity, the smaller ∆tmax. ∆xmax is
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however not fixed, but depends on many factors such as contrast, brightness,
viewing angle and so on.

5.6 Conclusion

In this chapter we have discussed the requirements put on the design of temporal
super resolution algorithms by the human visual system, we have presented a
novel idea of simultaneous flow and intensity calculation in new frames of an
image sequence, and we have introduced a novel variational temporal super
resolution method and implemented and tested a variational frame rate doubler
in two versions.

Even though we do not always create perfect new frames, variational mo-
tion compensated temporal super resolution does provide high quality 50 fps
video from 25 fps video without noticeable artifacts during video playback, thus
reestablishing the pi-effect for the problem case of high contrast edges in motion.
The framework presented also has the potential to be used for other frame rate
conversion than frame rate doubling.



Chapter 6

Detecting Interlaced or
Progressive Source of Video

This chapter is a collaboration with Kim Steenstrup Pedersen and my co-
supervisor François Lauze and was originally published as [56]. Minor cor-
rections have been done from [56] to improve readability.

In this chapter we introduce an algorithm – commonly known as a film mode
detector – for separating progressive source video from interlaced source video.
Due to interlacing artifacts in the presence of motion, a difference in isophote
curvature can be measured and a threshold for effective classification can be set.
This can be used in a video converter to ensure high quality output. We study
two approaches.

6.1 Introduction

Many elements are needed to make a full video converter. Some of the most
important elements are a deinterlacer, a spatial resolution up-converter (video
super resolution) and a frame rate converter (temporal super resolution). The
input video can be either interlaced or progressive [82]. In an interlaced video
signal (broadcast or stored on e.g. DVD discs) one can have progressive video
embedded, e.g. when the signal is of film source telecined to interlaced [82].
By doing a pull-down – that is recreating the original progressive frames from
the interlaced fields – before further processing, interlacing artifacts can be
avoided in progressive material as a deinterlacing would not necessarily remove
all interlacing artifacts [55], [4]. The quality of interlaced material will in the
presence of motion also suffer from just being merged to frames instead of being
properly deinterlaced.

Thus determining the scan format of the input is vital for the further pro-
cessing and the output quality. Hence another key element in a video converter
is the input scan format detector. This element is often called film mode de-
tection as film was earlier the only source of progressive material, but today
progressive material can also originate from video and television cameras.

If the input source is DVD, the MPEG-2-codec facilitates flagging of video
as either interlaced or progressive, which could make source detection obsolete.
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Figure 6.1: Interlacing artifacts: Serration, none (progressive) and line crawl

Unfortunately, it is far from sure that the flagging has been done correctly [76]
and if the source is standard broadcast there is no flagging.

Some material like documentaries mixing video and film material and ’behind
the camera’ shows on movies mix progressive and interlaced material... Therefor
it is important to have a film mode detection, that can switch from one format
to the other relatively fast.

6.2 Theory

6.2.1 The Difference Between Interlaced and Progressive

To develop an effective algorithm for separating progressive source video from
interlaced source video we need to establish exactly what the difference between
the two formats is and how to measure this difference. The key to this lies in
the motion of the image sequence.

Ideally one can just merge two consecutive interlaced fields to a frame, but
this only works when there is no motion in the sequence. When motion is
present it will give rise to the two types of artifact shown in Figure 6.1 and
explained in [55] and Chapter 3 of this thesis. These artifacts are exactly what
gave rise to the idea of the algorithm presented in this chapter.

Three topics have to be considered to get to the final algorithm and they
are given in the following three sections.

6.2.2 The Measurement – Isophote Curvature

As can be seen directly from Figure 6.1, a lot of crenellation and serration
appears in the merging of two interlaced fields in the presence of motion, whereas
no artifacts arise from when merging two fields to their original progressive
frame. We therefore suggest that isophote curvature of the image is a good
measure of the difference between interlaced and progressive source video, as
interlaced video will on average have a higher curvature. The equation for the
curvature, κ, using image derivatives is

κ =
I2
xIyy + I2

yIxx − 2IxIyIxy

(I2
x + I2

y )3/2
(6.1)

The image derivatives are computed using scale-space derivatives [61].
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6.2.3 Measuring the Statistical Difference

To measure the difference between the curvature of interlaced and progressive
video we build histograms of the curvature for sequences of a certain number
of frames. To measure the actual difference, we use the Kullback-Leibler Diver-
gence [34]

DKL(P (κ), Q(κ)) =
∑

κ

P (κ)(log P (κ)− log Q(κ))

as it puts weight on differences in the tail of a distribution. In our case that is
where the high curvatures are represented and as can be seen in Figure 6.1, where
we expect the major difference in curvature between interlaced and progressive
source video. The histogram bins cover |κ| ∈ [0, 100]. To avoid 0-bins we use
the Laplace-estimator of the probabilities and initialize all of the 101 equally
sized bins with one sample each [25]. All |κ| >= 100 goes in the top bin.

6.2.4 Edges

From Figure 6.1 we see that the most significant information about the difference
between interlaced and progressive can be found at edges in the frames. 5-10%
of all pixels are on average detected as edges using a standard Canny edge
detector, so if the edge detector takes less than 90-95% of the time a full frame
curvature calculation takes, it lowers the computational cost of the algorithm.

6.2.5 Two Approaches to a Solution

The use of Kullback-Leibler Divergence (DKL) as our measure implies the first
idea for our algorithm, namely to build a distribution of curvatures from a lot
of progressive material and then compare unknowns to it, thus we do classic
classification with comparison to a learned distribution. We denote the known
distribution of ’all’ progressive material P . To measure the divergence from P
using DKL we take smaller bites of an interlaced stream of video and build a
distribution and denote it Q. We also make distributions from bites of progres-
sive video embedded in an interlaced stream and this is denoted Q′. For testing
purposes ’the unknown’ is of course known and thus also how to distinguish
between Q and Q′.

To get directly comparable results, Q and Q′ are generated in pairs from a
progressive original. Interlaced is made by artificially removing every second line
from the original and progressive embedded in interlaced is made by a process
corresponding to telecine in the PAL standard [82]. Then each field i in each
of these sequences is merged with its neighboring field i + 1. Q is made from
the interlaced sequence with every frame having artifacts. Q′ is made from the
embedded progressive and will only have artifacts in every second frame, as
every other second frame is a merge of a progressive original frame. Starting
with n progressive frames we get n interlaced fields and n − 1 merged frames
for building Q and 2n progressive-embedded-in-interlaced fields and thus 2n−1
frames for Q′.

Method One is detection by comparing Q and Q′ distributions of short
sequences to the archetype of progressive video, P . Thus, naturally, we in
general expect DKL(P, Q) to be larger than DKL(P,Q′), but in case of no



126 Detecting Interlaced or Progressive Source of Video

or little difference they would approximately the same and make the correct
classification as interlaced difficult.

Method Two is called Zigzag as it takes the distribution of every second
frame, the subset X = (1, 3, 5...), of a short sequence and compares it to the
distribution of every other second frame, the subset Y = (2, 4, 6...), of the same
sequence. If the sequence is interlaced, DKL(QX , QY ) should be very small as
both subsets have interlaced frames. But for progressive video embedded in
interlaced, DKL(Q′

X , Q′
Y ) should be large as you compare the distribution of

the interlaced subset to the distribution of the progressive subset. In case there
is no or very little motion in the sequence, DKL(Q′X , Q′Y ) will be small and the
correct classification as progressive will be hard to do.

6.2.6 Comparing the Two Approaches

DKL is an asymmetric measure, making it well suited for the asymmetric data in
method one, but not so good for the symmetric data ( [QX , QY ] and [Q′X , Q′Y ])
in method two. As it turned out the use of DKL in method two worked well in
pratice, but the risk of problems could otherwise have been avoided by using a
symmetric measure like the Jensen-Shannon divergence [41].

Building P for method one might give a very general distribution, maybe
causing the difference between sequences to appear larger than the difference
between interlaced and progressive. Method two does not have this problem as
it measures locally on a given sequence, which then on the other hand could
cause a loss of generality and uniformity over sequences.

Both methods fails to distinguish between the two scan formats in sequence
parts without any motion. We do not consider this to be a problem, as this kind
of video is also where a good motion adaptive or motion compensated deinter-
lacer will not harm a progressive sequence, just as frame merging intended to
rejoin the two fields making up a progressive frame will not deteriorate inter-
laced video when there is no motion present – it will actually produce the best
deinterlacing possible. Motion is the source of difference between interlaced and
progressive video.

6.3 Other Work

The subject of scan format detection seems to have limited focus in academia,
but it is a key element in actually building a video converter as can be seen in
the patents [36] and [72]. Some industrial research has made it into academia,
as can be seen in the papers [29] and [91]. They both use motion vector based
film mode detection. None of the papers give any test results stating the quality
of the methods.

A major reason for the lack of interest in scan format detection in academia
is that with NTSC (the interlaced broadcast standard in USA and most of Asia)
a 3:2 pull-down is used for telecine leading to a given cadence at which a number
of field will be shown twice (see [72], [82]) simplifying the matter significantly
[72]. The simplification does not apply to PAL telecine and the presence of noise
will also complicate the NTSC case.

Nobody seems to have applied image geometry to the problem before us.
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Figure 6.2: Method one: Threshold (horizontal line) in ’leave one out’ test.

6.4 Results

For the testing we have used 8-bit gray-scale video corresponding to the lu-
minance component of almost any TV or video signal. We have taken single
chapters of 6,000-12,000 frames each from five different movies on DVD. They
are processed in chunks of 480 frames each, the chunks subdivided into bites of
10-160 frames. The curvature is computed at different fixed scales in scale-space.
If the ratio between extrema1 values in DKL for interlaced and progressive is
larger than 1, then a gap exists and a threshold can be set to determine the
scan format (see Figure 6.4). In classification terms that is: We have have to
be able to draw a (1D) decision boundary that 100% (or as close to as possible)
separates the two. The correctness can be measured by recall = correct/(correct
+ missed).

6.4.1 Initial Testing

Following the philosophy of keeping it simple, we started by doing some small
tests. First we took two 40 frame bites (denoted a and b) from movie A and
did a comparison of Q and Q′ with P , first on a and then on b. Initial tests
at scale 1.0 show that the DKL(P, Q) on both were a factor of four bigger
than the DKL(P, Q′) (ratio 4:1) thereby proving that interlacing introduces a
difference in curvature distributions. Unfortunately the difference between the
two different sequences, a and b, measured as DKL(Qa, Qb) and DKL(Q′a, Q′

b)
are a lot larger than the difference internally in each sequence between interlaced
and progressive. This indicated that the scale might be wrong and that we would
have to limit the measures to regions where the difference between interlaced
and progressive is large, namely at edges.

Lowering the scale helped, but it was using edge detection and limiting
ourselves to measuring curvature at pixels marked as edges that made it possible
to separate interlaced and progressive at scale 0.5 (using a P made from both
a and b). This showed that distribution of curvature at edges can be used to
detect the scan format of a video sequence.

1The minimum of the top one and the maximum of the bottom one as in any of the figures
in this section.
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Figure 6.3: Method two: min. DKL(Q′) and max. DKL(Q) for each chunk in
movie A. A threshold would appear as a horizontal line in the plot. As can be
seen, chunk 7 causes some problems.

6.4.2 Method One – Comparison with P

The last result presented above was promising and then we wanted to determine
if it could be generalized to larger data sets and whether a general threshold to
separate interlaced and progressive video could be set using method one. We
use 8000 original progressive frames from movie A to build the distribution P
at scales 0.2, 0.3, 0.5 and 1.1. Then we measured DKL(P, Q) and DKL(P, Q′)
using bites of 20, 40, 80, 160 and 240 frames.

First we did a ’leave one out’ test by taking one chunk from movie A not
used in building P. At bite length 240 and scales 0.5, 0.3 and 0.2, a narrow gap
in which to set a threshold was present (see Figure 6.2). The ratios between
extrema in DKL were 1.33:1, 1.26:1 and 1.04:1 at the three scale respectively.

As a next step, measuring of DKL on five chunks from the 8000 frames used
to build P was done. Gaps were obtained for three of the chunks at low scales
and for long bites. But the gaps were at different DKL-values such that no
common threshold could be set. Trying to use only the frames in Q′ that are
progressive did not help either.

To conclude, using method one – comparison to P – leaves the problem of
separating interlaced and progressive unsolved.

6.4.3 Method Two – The Zigzag Solution

Movie A. Initial testing for method two was also done on the two bites, a and
b, from movie A. using scale 0.5 and edge detection separation ratios of 439:1
and 52:1 between Q and Q′ for each of the two bites where obtained comparing
the worst DKL values for Q and Q′ respectively. As DKL is asymmetric we get
two DKL measures for both interlaced and progressive as seen in Figure 6.5.
All ratios will be given using the worst of the two choices of DKL. As seen in
Figure 6.5 the curves for the best and worse seem to meet whenever the gap
between interlaced and progressive narrows.

Increasing the size of the test, a chunk of movie A was tested at scale 0.5
in bites of 40 frames and gave a ratio of separation of 6:1 for the full chunk.
Lowering the scale (0.4, 0.3, 0.2 and 0.1) gave better ratios, the best being 10:1
at scale 0.3. Higher scales (0.9 and 1.1) gave no separation.
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Figure 6.4: Method two: Excellent separation in movie B, which gives a rather
free choice of the threshold value.

The effect of using different bite lengths was tested on the same chunk using
scale 0.3. For the bite lengths 10, 20, 40, 50, 80 and 100 separation ratios were
< 1, 2, 10, 7, 29 and 27. So the longer the bite, the better the separation – as
expected.

We continued by testing the scales 0.5, 0.4, 0.3 and 0.2 at bite lengths 20, 40,
60 and 80 on two more chunks. From these tests scales 0.2 and 0.3 seemed the
best with bite length 80. On the remaining 13 chunks from movie A processed
at bite length 80, scale 0.2 performed better than scale 0.3 at the crucial parts
where the gap between interlaced and progressive is small (Figure 6.5). Chunk 7
(Figure 6.3) makes it impossible to set a global threshold. As Figure 6.3 shows,
changing the bite length to 160 eliminates this problem, allowing a threshold in
DKL to be set between 0.0030 and 0.0036.

Movie B. 19 chunks were tested and as Figure 6.4 shows we get an excellent
separation at scale 0.2 and bite length 80 and the threshold can be set in the
interval 0.00017 to 0.075. The good results for movie B could be caused by
the fact, that the test sequence is set in daylight whereas the one from movie
A is set at nighttime. But it is actually only for chunk 7 where the camera is
stationary that movie A causes critical problems and thus we could used bite
length 80 without deteriorating the quality of movie A by wrong processing.

Movie C consists of 12 chunks yielding an interval for thresholding ranging
from 0.0027 to 0.0062 at scale 0.2 with bite length 80. Figure 6.5 illustrates how
it is parts with a stationary camera (and only little object motion) that causes
low values in DKL for Q′. Thus wrong processing due to wrong classification
would not cause a major loss of quality as problems mainly occur in bites with
little or no motion.

Movie D. 22 chunks were tested at scale 0.2 and bite length 160 and gave
the interval 0.0020 to 0.059 for thresholding, except for one 160 frame bite,
which gave a unexplainable bump for the interlaced Q with a DKL value of
0.0036. By visual inspection the bite did not distinguish itself in any way from
its neighboring bites.

Using a threshold in the interval 0.0030 to 0.0036 would so far misclassify
nothing progressive and only 160 interlaced fields, giving an interlaced recall of
31520/(31520+160) = 0.9949. A way of getting a recall of 1 could be detecting
cuts (like in [104]) and only allow changes between the scan formats when a cut
within the bite is also detected as a change from interlaced to progressive would
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Figure 6.5: Method two: Parts with stationary camera corresponds exactly to
parts with small differences between DKL of interlaced and DKL of progressive.
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Figure 6.6: Method two: Problems in movie E, all though not as bad as this
figure implies.

require a cut or possibly some type of softer transition. If the change is not a
cut, one could then switch after a certain number of bites (or chunks) indicated
a change.

Movie E. All tests so far has been conducted on natural image sequences,
that is camera recordings of the real world, but movie E is computer animated
and thus might give different results.

And so it did: Some of the 14 chunks processed at scale 0.2 and bite length
160 gave rise to problems as can be seen in Figure 6.6. However, of the total 84
bites of Q′ in movie E, only six gave too low a DKL to be classified correctly
as progressive with a threshold between 0.0030 and 0.0036, yielding a recall for
progressive detection in this sequence of 0.9286. Four of the troublemakers are
in stationary parts of the main titles in chunks 1 and 2 (Figure 6.6) and the
remaining two are in a part of chunk 9 where the camera is 100% stationary
– as it can only be in computer animated films – and this part is also very
dark, meaning that a wrongful deinterlacing would do no harm. At bite length
80 frames the six errors persists and, of course, doubles in numbers. Also new
problems appear in seven bites at other places, but all in similar harmless scenes
as for the previous ones mentioned.
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6.5 Conclusion

Two methods to detect scan format has been set forth, only one of them solving
the problem satisfyingly, namely method two – Zigzag. We recommend using
scale 0.2 with a bite length of 80-160 frames. At these settings method two
detects the correct scan format with recall 0.9875 for progressive and 0.9958
for interlaced. The interlaced miss of one bite in movie D is inexplicable. The
progressive misses in movie E are all in parts with a stationary camera, little or
no object motion and low-key lighting. In such scenes a wrong detection will
not lead to significant creation of artifacts. Our method has sufficiently low
complexity to be implemented in real-time hardware/software and thus used in
a video converter.

6.6 Future Work

Some further work could be done to improve our scan format detector.
We have not tested material where each frame is a mix of the two scan for-

mats, e.g. interlaced video with progressive graphics (news, MTV, etc.), film
source TV broadcasts with interlaced generated subtitles, or some other mix.
In these cases the gap between the scan formats narrows and some segmenta-
tion of the image plane is most likely needed to solve these problems properly.
But in some cases (e.g. stationary progressive graphics in interlaced video)
our algorithm combined with a good motion adaptive or motion compensated
compensated deinterlacer will most likely yield acceptable results.

Bite lengths of 80-160 frames corresponds to 1.6-3.2 seconds of switching
time in PAL, which is clearly acceptable. Trimming our algorithm to use shorter
bites will make switches between interlaced and progressive faster in programs
mixing the formats inter-frame (documentaries and movie featurettes). One way
of doing this could be combining edge detection with (simple) motion detection
to get fewer but more significant data points for processing.



Chapter 7

Summary and Future Work

In this chapter we will summarize the main contributions of this thesis and
discuss some important possibilities for future development of our methods.
Most of the development possibilities are on improving the visual output quality,
but the most interesting one is on speed-ups and it gives the main directions
towards realtime implementations of variational upscaling methods. But first a
summary of the work already done.

7.1 Summary of Contributions

The main contribution of this thesis has been to investigate the usability of
variational methods in an general applicable upscaling video processor. Bayesian
inference has been used to impose regularity of the ill-posed problems of image
sequence restoration and enhancement. We have not tested a wide range of
different probability functions, but focussed on the use of total variation, which
composes a nice balance between on one side mathematical tractability and
computational cost and on the other side fidelity in modelling and produced
output quality. Since our Bayesian framework and the derivation of variational
methods from it was used earlier for inpainting by Lauze and Nielsen in [65],
and since variational optical flow methods are well-known in literature, it has
mainly been the application and adaption of methods to the upscaling problems
that has been new. We will now summarize the contributions in detail chapter
by chapter.

Chapter 2: Background

We have discussed how properties of the human visual system dictate the need
of high quality upscaling to improve the viewing experience (if no high definition
source material is available). High quality image sequences enables the viewer to
focus on the journalistic, artistic and entertainment aspects of watching motion
pictures, video and television to a degree where technology becomes invisible.

The use of state of the art variational optical flow methods in motion com-
pensated upscaling is introduced, and the optical flow methods are integrated in
our Bayesian framework for simultaneous optical flow and intensity calculations,
from which a variational energy minimization formulation is derived.
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Chapter 3: Deinterlacing

We show that no motion adaptive deinterlacer including our variational one can
solve The Interlacing Problem of highly detailed regions in motion. The Inter-
lacing Problem can only be solved by motion compensated methods gathering
information temporally along the optical flow field.

We analyze and discuss the problem of computing optical flows on interlaced
video for motion compensated deinterlacing. We chose a strategy computing the
flow from the interlaced data alone and use that as input for variational motion
compensated deinterlacing.

The Interlacing Problem is in all test cases solved by our variational mo-
tion compensated deinterlacer, which yields high quality results with hardly
any artifacts present and close to the ground truth. Still, there is room for im-
provements in quality, the biggest improvement most likely to come from doing
simultaneous calculation of flow and intensities.

Chapter 4: Video Super Resolution

The variational motion compensated video super resolution method presented
in Chapter 4 does do simultaneous flow and intensity calculations, producing
better results than our earlier non-simultaneous variational video super reso-
lution method presented in [54]. Since the latter non-simultaneous method do
not compute precise high resolution flow, it does not benefit from temporal
information to the same degree as the simultaneous method.

As data term in our model we use the super resolution constraint, which is
derived from the image acquisition model, and controls the diffusion process by
projecting the suggested energy updates back onto the true solution hyperplane.

Our simultaneous video super resolution method is in terms of output quality
clearly better than bicubic and bilinear interpolation (the latter widely used
in video processing devices today) and is also shown to outperform the super
resolution methods of highly expensive film post production and editing systems
(but only on one test example so far).

There are super resolution methods in literature that are likely to perform
better than our simultaneous variational video super resolution, but due to
limitations in what types of depicted objects (e.g. faces only) or flows (e.g.
parametric flow only) the applied models allow – or the need for multiple camera
recordings of the scenes – these methods are not applicable to general video with
arbitrary (natural) content and motion as our method is.

Chapter 5: Temporal Super Resolution

The presented variational motion compensated temporal super resolution meth-
od derived from our Bayesian framework simultaneously computes flows and
intensities in a multiresolution setting. No other TSR method has computed
flow and intensities of nonexisting frames simultaneously, but just estimated
flow fields in new frames as a preprocessing step to the intensity calculations.

In Chapter 5 we went into more details about the human visual system than
in the background chapter (Chapter 2) to find out what requirements are put
on frame rates in modern cinemas and video display systems.

Derived from our variational temporal super resolution framework two ver-
sions of variational frame rate doubling are implemented and tested. In the first
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version we used the gradient constancy assumption in the flow energy minimiza-
tion as done by Brox et al. in [9], but to get a theoretically consistent and less
complex algorithm, we leave out the GCA in the other version. The latter is
expected to give smoother and less precise flows.

We do not always create perfect new frames, still both versions of variational
motion compensated temporal super resolution do produce high quality 50 fps
video from 25 fps video without noticeable artifacts during video playback and
thus reestablish the pi-effect and the illusion of motion pictures for the problem
case of high contrast edges in motion. The version using GCA in the flow
energy minimization does give a sharper output in case of object motion, but
the difference is not perceived when playing back the frame doubled results as
video.

Although we have only implemented and tested a frame rate doubler, imple-
mentation of a generic frame rate converter from our variational formulation of
the temporal super resolution problem is straightforward.

To truly prove the quality of our results, both for TSR and our two other
upscaling methods, we need to compare our outputs with those obtained using
other motion compensated upscaling methods. The problems of doing bench-
marks is discussed in Chapter 5.

We also discuss the general problem of handling certain types of complex
flows with our current implementation of variational optical flow. Suggestions
on how to solve the problems are given.

Chapter 6: Detecting Interlaced or Progressive Source of Video

We have designed, implemented and tested of a method for detecting input
scan formats. This is a crucial preprocessing step to any video upscaling system
as it decides on whether or not to deinterlace the input video signal. Wrong
interlaced/progressive classification of the input could have severe consequences
to the final output quality of the upscaling system. Our method was shown
to classify correctly in more than 98% of all cases, only failing in cases where
the image content and motion were of a character that would not lead to bad
output quality in case of wrong processing.

7.2 Possible Future Developments

The variational methods for deinterlacing, video super resolution and temporal
super resolution presented in this thesis all produce high quality results and are
ready for ’real’ use in software or hardware products. There is however some
remaining problems, that we would like to (try to) solve in the future. We
devote separate sections to each problem, but first a short introduction of each
of them.

• The Modelling Problem. Currently we use total variation as the prob-
ability function in all terms of our framework and although it is a good
model of image sequences we should be able to do better.

• The Flow Problem. We have found that the use of state of the art vari-
ational optical flow methods (see [12] by Bruhn et al.), helps produce high
quality motion compensated upscaling results, but the flow computation
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is in our opinion the element of variational upscaling methods with the
greatest potential for improvements.

• Speedup. It is no secret that our current implementations are slow and
to achieve realtime running times speedups are required.

• Integrated Upscaling Systems. We now do upscaling in three separate
steps even though all three build on the same basic technology. When
two or all three steps are applied to a video throughput integrations are
possible.

• Streamed Processing. When taking our methods out in the real world,
we are no longer processing short test sequences but have to process con-
tinuous streams of video throughput.

• Benchmarking. To give non-repudiable documentation of the perfor-
mance of any method for video processing, one needs to benchmark against
what is otherwise considered state of the art within a field. We will not
discuss this topic further as it was thoroughly covered in Section 5.2.8 of
the temporal super resolution chapter.

7.2.1 The Modelling Problem: Priors and Data Terms

Total variation is widely used in image (sequence) content modelling; its pref-
erence for smooth regions – a property shared with the Gaussian – combined
with its preservation of edges is closely related to how the lower level vision
works. Humans lower level vision perceives mainly edges and then fill in the
colors of smooth regions from there – just as information is transported along
and away but not across edges in total variation diffusion. Still total variation
is not state of the art in salient image content preservation as e.g. structure
tensor based models have shown higher degrees of edge preservation and bet-
ter handling of corners. The problem of using structure tensors is their high
computational complexity, but the same was said about the nonlinear total
variation back when linear Gaussians where the most widely applied model.
Thus one day variational, or more broadly PDE-based, video upscaling is likely
to be done using structure tensors. Structure tensors have been used exten-
sively in 2D image plane space (in e.g. the works by Roussos/Maragos [86]
and Tschumperlé/Deriche [103] but spatiotemporal structure tensors has been
introduced, e.g. in optical flow computations by Brox et al. in [10].

A family of models that might be tried as an alternative to structure tensors
is the family of models learned from doing statistics of natural images (and image
sequences). By building distributions from a large data set of natural images,
models that at a glance look like total variation with high kurtosis at the mean
and heavy tails, are typically obtained, an ikonic example being the work by
Zhu and Mumford in [110]. These models are different from total variation,
but the differences are subtle and the resulting images from different processing
with the Grade algorithm from [110] look very cartoon-like and could from their
appearance be guessed to be the results of diffusions using total variation. But
the Grade algorithms is known to be able to build structures total variation is
unable to build, thus making models based on statistically learning interesting
for video upscaling. An overview of the field of building models from statistics of
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natural images can be found in [96] wherein Srivastava et al. conclude that with
the sample based models of today, ”we are still quite far from a full probability
model” (p. 29). The paper was published in 2003 but the argument still holds.
What would really be of interest to us is any extension of the models reviewed
in [96] to also model images sequences, that is adding the temporal coherence
and correlation to the already existing spatial model. Some examples of work
pointing in this direction are [39] by Fitzgibbon focussing on image registration
in time sequences and [30] by Doretto et al. on dynamic (in time) textures,
which brings into focus the whole field of texture modelling to create details not
possible with probability models such as total variation. Also of interest are the
disciplines of exemplar-based inpainting (see for instance [26] by Criminisi et
al.) and patch-based image modelling and reconstruction, see for instance the
paper [44] by Griffin and Lillholm and references therein.

The idea of reconstructing, repairing or enhancing images from the (visually)
prominent features in the image is well-known (see for instance [68] by Lillholm
et al.). Features (edges, ridges, corners etc.) are in image analysis often seen
as carriers of salient image information in parallel to how the lower level vision
in humans perceive visual input. Small patches can also be considered to carry
salient image information and thus be a good representation of images. These
patches are often learned as in e.g. [40] by Freeman et al. and often they
are found to have structures similar to the salient features. The set of pathes
representing the features salient to the lower level human vision is know as
textons (see e.g. [44]). 3D spatiotemporal patches as representation of image
sequences are presented under the name of video epitomes (as already discussed
in Chapter 5).

Before introducing structure tensors, statistically learned priors or any other
modelling to video upscaling, there is a more likely addition to be tested thor-
oughly, and that is use of the gradient constancy assumption in the intensity
part of our energy minimization. Its use has been rejected by logical arguments
and the fact that it is computationally heavy, but it needs to be given the chance
to prove its worth before being discarded permanently.

7.2.2 Improving Flow Quality

As indicated several times throughout this thesis there is a need of improved
(variational) optical flow computations on real world image sequences to lift
motion compensated upscaling to the next level in terms of perceived output
quality. Results are already good, but more reliable and precise flows would
lift the quality further. Additional improvements in quality could be found in
increasing the robustness against unreliable flow vectors in the motion compen-
sated part of our upscaling algorithms. A discussion of the main problems with
flow computations and handling plus suggestion on how to solve them has been
given in Section 5.5.1 of the temporal super resolution chapter.

7.2.3 Speedups

It is no secret that the code used to generate the results of this thesis is not
exactly fast, still we claim to be able to do realtime applications at reasonable
costs. The running times reported on video super resolution in Section 4.4.5
are representative for all three upscalings. We see that it is the initial low
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resolution flow computations in the multiresolution pyramid that takes up most
of the running time, but we know this step can be run in realtime for simpler
variational flows (again we refer to the paper [11] by Bruhn et al.). To get
a precise but computationally cheaper flow calculation, one could run such a
simpler (linear) variational optical flow method or a block matching algorithm
to get an initial estimate of the flow and then refine it with the computationally
more expensive and accurate method on only a few of the finest scale levels of
the pyramid used in our current upscalers. Alternatively one could also run the
cheaper method and then only do very few iterations of the expensive method
on each level of the pyramid.

No matter if we bring in an additional flow algorithm or not, we can also
make our current variational flow method faster. And the same goes for the in-
tensity calculations. We have used Gauss-Seidel solvers in our implementations,
but switching to solving the systems using the faster successive over-relaxation
(SOR) is just a matter of adding a very few lines of code. However, it will take
quite some time to test and tune the altered code and the new SOR weight
parameter. Further speedups could be gained switching to multigrid solvers,
which have been used to successively speed up variational flow calculations, e.g.
in [11], but this requires a larger and not straightforward restructuring of our
implementations. General optimizations of the code the use of faster solvers
will be beneficial to the performance of both software and hardware implemen-
tations. Our variational methods runs the same filter on all pixels, making
them highly parallelizable, which is an advantage in hardware implementations
but also in software implementations since the growth in CPU speed is being
replaced by a similar growth in the number of cores in CPUs.1 Still we do not
find it highly likely that we will reach realtime performance in software in the
near future without using dedicated and specially developed hardware. We do
not consider the high level variational parallelization presented by Kohlberger
et al. in [62] as something we want to apply to our upscaling algorithms since it
is not very efficient. We believe a direct parallelization splitting the frames into
spatial regions with a small overlap between them and optimizing each region
on its own processor with a shared memory for boundary data is the way to
reach realtime performance in hardware. The hardware we have our minds set
on using are HDTV FPGAs able to run just under 100 mathematical operations
per pixel on a 1080× 1920 HD sequence in realtime.

A very obvious way to gain a huge speedup is through integration of forward
and backward flow calculations. So far we have ignored the fact that the forward
flow from frame n to frame n+1 and the backward flow from frame n+1 to frame
n should be practically the same, they are just the direction specific warps or
mappings from one frame to the other. The two might not be exactly the same,
which is mainly do to numerical imprecision and (dis)occlusions, but when one
of them is done at any given level of the multiresolution pyramid, the reverse of
it will with a very few extra iterations be the other, and we can then save a lot
of processing time. Similar improvements are possible with warping from input
sequence flow to output sequence flow in variational temporal super resolution.

We have so far processed all pixels equally, but as some types of image

1The classic Moore’s law predicts a doubling in the number of transistors in CPUs every
18 months, but since cooling of single core processors is becoming a problem, the doubling in
processing power every 18 months is now predicted to be obtained by growth in the number
of cores in CPUs.
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(sequence) content is very simple we could use very simple processing on these
types of content. There is a tendency in our work as well as in many other works
in the field of image (sequence) processing and analysis to focus on the difficult
cases in a given data set, but for large portions (mainly the smooth regions)
of the data very simple processing would do. The problem lies in identifying
the troublesome regions; methods for edge detection, motion detection on inter-
laced (and progressive) video, general segmentation, etc. are not fail safe and
often rather complex in them selves, and thus saving advanced and expensive
processing might come at a high price of either other expensive processing or
drops in output quality.

7.2.4 Towards an Integrated Variational Upscaling System

The complexity and running times of our algorithms in a system setup could
be lowered by integrating deinterlacing, video super resolution and temporal
super resolution into one variational upscaler. Although a complete integration,
exists in theory as formulated by our Bayesian framework, we can only do little
in practice to fully integrate our three components, but many minor integrations
can be done.

An obvious place to integrate is in the filters applied: They are the same for
all three algorithms except for the intensity data term (E0/P0) in each algorithm
as we use the same regularization and flow data terms.2 Therefore we can reuse
(at least the design of) the filters.

Since the basic flow of a hardware upscaler is cascaded processing, one should
of course reuse what can be reused, there is for instance no reason to recalculate
the low resolution flows from scratch. If it has been computed for the deinter-
lacing step which is normally placed early in the processing pipeline, one can
just reiterate the flow a few times before using it for VSR and/or TSR.

Integrating the flow calculations for deinterlacing and the full TSR part
could also be done. After a downscaling of a factor of two in the height, the
data we work on for DI and TSR (for the initial, original sequence flow) is the
same, and thus most of the TSR calculations of flows and intensities could be
done in parallel with multiresolution flow calculations for deinterlacing. Thus
TSR should be place early in the pipeline.

In [92] Shechtman et al. presents a method for integrated spatiotemporal
video SR (TSR integrated with VSR). Without going into details of how this
methods is construed, its core idea is a multi-camera approach requiring that a)
the recorded scene is planar with intraplane action only, or b) all the cameras
are placed in practically the same position, both a) and b) giving an abundance
of information easily realigned in a common spatiotemporal coordinate system.
This, in combination with the following limitations in the modelling (e.g. no
motion estimation making it motion adaptive spatiotemporal SR) makes their
idea of how to integrate TSR and VSR non-transferable to our single-camera,
general video problem. Logically, with just one camera available and using mul-
tiresolution for spatiotemporal super resolution, one would start by doing TSR
and when reaching the finest spatial resolution (that of the input) switch to VSR
with a low resolution flow already available. Doing VSR followed by TSR is also
possible, but would mean some extra work traversing the pyramid twice (once

2The flow computation without GCA in TSR ignored for now.
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for flow only calculations and then for both flow and intensity calculations).
Integrating deinterlacing and VSR is similar to integrating TSR and VSR

with deinterlacing simply supplying the LR flow and intensity input to VSR. In
some sense the deinterlacing is just the first level of VSR, but the ’up-and-down-
bobbing’ interlaced sampling grid complicates matters, making deinterlacing a
bit more than ’just’ VSR with a vertical magnification factor of two. (Doing
VSR followed by deinterlacing would be plain stupid as VSR logically follows
deinterlacing.) Integrating the interlaced sampling grid into the SR constraint
is possible, although it would be more difficult do the back projection when
lines of LR pixels are missing and one thus has to decide how to control the
diffusion when there is no reliable anchor point to bind the new high resolution
data to. The problem is basically that the subsampling of the interlaced grid
is a spatiotemporal problem whereas the SR problem and our SR constraint
derived from it are purely spatial.

Integrating either TSR or deinterlacing with VSR is difficult due to the fact
that the spatiotemporal space is – as we have discussed several times – not just
a 3D space, but a 2D + 1D space. (Also illustrating the problems of doing high
quality deinterlacing as it is a spatiotemporal problem at birth.) On the other
hand interlacing was in its days of glory a nice trick taking advantage of spatial
and temporal characteristics of the human visual system. Truly integrating VSR
with TSR and/or deinterlacing is a challenging and (thus) interesting problem,
but in practice it would not change a lot: We already used the same filters, and
the number of pixels needed to be processed in total stays the same.

Returning to integrating ’only’ deinterlacing and VSR, we will always need
at least two processing options in our system as we have two possible input
types, interlaced and progressive. Either we will have to be able to do inte-
grated or cascaded deinterlacing and VSR or pure VSR. From a practical and
quality focussed point of view (overlooking for a moment the greater good of
basic research), instead of trying to integrate the different types of upscaling,
resources is better spend improving image (sequence) modelling. Increasing si-
multaneousness in intensity and flow calculations would also help, but as the
multiresolution low resolution flow calculation in general is the heavy part, faster
methods there would be more appreciated.

As we – hopefully – dig into the hardware development, more integration
and speedup possibilities are likely to present them selves, but we might also
have to compromise the output quality here and there to keep the cost of the
product down, maybe produce both a basic and a high end version.

7.2.5 Streamed Video Processing: Temporal Sliding Windows

So far we have processed smaller sequences (5-20 frames) as single volumes as
limited by PC memory. When our methods are to be applied to thousands and
thousands of frames of video in a constant stream, some kind of sliding temporal
window processing would be the obvious way to process the video. We could
still process in separate volumes, but the sliding window has several advantages.

First, it is costly both in memory and cut detection to process scenes in one
go and separating scenes internally might no be desirable due to boundary issues.
For promotional reasons we did an experiment with our non-simultaneous VSR
algorithm from [54] on two long sequences, one of 290 frame and one of 610
frames. They were processed in volumes of 14 and 16 frames respectively, but in
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both cases cut to a length of 10 frames to discard the purely spatially processed
first and last frame (see discussion on VSR boundary issues in Chapter 4) and
one or two of their neighboring frames to make 100% sure that we avoided any
side effects from having temporally ’bad’ information at the ends of the volumes.
This is in terms of speed the downside of processing in separate volumes. On
the positive side, we found in this experiment that our VSR algorithm handle
the many cuts in the two test sequences just fine: Minor drops in sharpness was
seen at cuts, but this was only noticeable when viewing stills, not during normal
playback.

The second advantage of windowing is that we can warp information for-
ward using the flows computed on the video stream, thus obtaining good initial
approximations in each frame speeding up the processing. However boundaries
meet when warping at (dis)occlusions, scene cuts and at spatial borders of the
video frames should be handled carefully.

That’s all Folks!





Appendix A

Large Size Video Super
Resolution Figures

To give a better impression of the output quality obtained in video super res-
olution we give the result figures of Chapter 4 here at more appropriate sizes.
In many of the figures in Chapter 4 a zoom percentage is given. It is the sug-
gested zoom we have used here as far as the page layout allows for it. (Two
empty pages are inserted amongst the figures to ensure that paired figures can
be viewed on the same spread in case of two sided printing.) We still recommend
electronic viewing as the printing process might smear and smooth out details
in the figures.
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(a) LR input (70 x 160 cutout)

(b) HR 2x2 initialization

(c) Bilinear 2x2 SR

Figure A.1: 2x2 VSR on the sequence Truck. 200% zoom of Figure 4.4. Con-
tinued in Figure A.2.
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(a) Bicubic 2x2 SR

(b) Nonsimultaneous 2x2 VSR from [54]

(c) Simultaneous 2x2 VSR (S-VSR)

Figure A.2: 2x2 VSR on the sequence Truck. 200% zoom of Figure 4.4. Con-
tinued from Figure A.1.
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(a) LR (b) 720p S-VSR

(c) 2x2 Bilinear (d) 2x2 Bicubic

(e) 2x2 VSR [54] (f) 2x2 S-VSR

Figure A.3: VSR on the sequence Bullets. 200% zoom of Figure 4.6.
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(a) LR (b) S-VSR (c) Bilinear

(d) LR

(e) 720p simultaneous VSR

Figure A.4: 720p VSR on the sequences Boardwalk and Straw Hat. 150% zoom
of Figure 4.7.
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(a) 720p simultaneous VSR

(b) Corresponding flow

Figure A.5: 720p VSR on the sequence Manhattan Flyby. 250% zoom of Fig-
ures 4.8(a) and 4.8(b).
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(a) Flow error handling

Figure A.6: 720p VSR on the sequence Manhattan Flyby. 200% zoom of Fig-
ure 4.8(c).
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(a) Original (b) 2x2 bicubic

(c) 2x2 simultaneous VSR

Figure A.7: Down- and up-scaling of the sequence Truck. 150% zoom of Fig-
ures 4.10(a)-(c).
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(a) Original

Figure A.8: Down- and up-scaling of the sequence Street. 200% zoom of
Figure 4.10(d).
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(a) 2x2 bicubic

(b) 2x2 simultaneous VSR

Figure A.9: Down- and up-scaling of the sequence Street. 200% zoom of
Figures 4.10(e) and 4.10(f).
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(a) 4x4 bicubic

(b) 4x4 S-VSR

Figure A.10: 4x4 VSR on Straw Hat. 300% zoom of Figures 4.11(a) and 4.11(b).
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(a) 8x8 bilinear

(b) 8x8 bicubic

Figure A.11: 8x8 VSR on Straw Hat. 200% zoom of Figures 4.11(c) and 4.11(d).
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(a) 8x8 S-VSR

Figure A.12: 8x8 VSR on Straw Hat. 200% zoom of Figure 4.11(e).
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(a) 4x4 bicubic

(b) 4x4 S-VSR

Figure A.13: 4x4 VSR on Truck. 300% zoom of Figures 4.12(a) and 4.12(b).
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(a) 8x8 bilinear

(b) 8x8 bicubic

(c) 8x8 S-VSR

Figure A.14: 8x8 VSR on Truck. 200% of Figures 4.12(c)-(e). Due to the very
large size of these frames (800 × 1600) an additional zoom of 125-150% might
give a slightly better view.
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[103] D. Tschumperlé and R. Deriche, “Vector-Valued Image Regularization
with PDEs: A Common Framework for Different Applications,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 4,
pp. 506 – 517, 2005.

[104] A. Vadivel, M. Mohan, S. Surel, and A. K. Majumdar, “Object Level
Frame Camparison for Video Shot Detection,” in Proceedings of IEEE
Workshop on Motion and Video Computing, Motion 2005, vol. 2, 2005,
pp. 235–240.

[105] S. Vedula, S. Baker, and T. Kanade, “Image-Based Spatio-Temporal Mod-
eling and View Interpolation of Dynamic Events,” ACM Transactions on
Graphics, vol. 24, no. 2, pp. 240 – 261, April 2005.

[106] VQEG. (2000, 3) Final report of the Video Quality Experts
Group on the validation of objective models of video quality
assessment. [Online]. Available: ftp://ftp.its.bldrdoc.gov/dist/ituvidq/
old2/Final Report April00.doc

[107] Y. Wang, J. Ostermann, and Y. Zhang, Video Processing and Communi-
cations. Prentice-Hall, 2002.



BIBLIOGRAPHY 167

[108] J. Whitaker, DTV: The Revolution in Electronic Imaging. New York:
McGraw-Hill, 1998.

[109] M. Zhao and G. de Haan, “Subjective evaluation of de-interlacing tech-
niques,” in Proceedings of SPIE – Image and Video Communications and
Processing 2005, A. Said and J. G. Apostolopoulos, Eds., vol. 5685, March
2005, pp. 683–691.

[110] S. C. Zhu and D. Mumford, “Prior Learning and Gibbs Reaction-
Diffusion,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 19, no. 11, pp. 1236 – 1250, Nov. 1997.


	07-03.pdf
	07-03.pdf
	Afh_Title_Manual.pdf
	afhandling.pdf





