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Abstract

Low count tetrahedral meshes is desirable for animating deformable

objects where accuracy is less important and to produce shell maps. This

report develops a new method for creating a thick shell tetrahedral mesh

from a triangular surface mesh. We propose to use signed distance fields

to implicit represent the medial surface representation of a surface mesh.

An iteratively algorithm is developed using line-stepping as the main in-

gredient. Line-stepping does not suffer from the convergence problems of

past work and is parallel in nature.

1 Introduction

Many graphical models of solid objects are given as surface meshes [22, 3], since
this is an economical representation for visualization and easily obtainable by
laser scanning of real objects or by hand-modeling using a 3 dimensional drawing
tool. However, animating deformations of solid objects requires a notion of inner
structure which is surprisingly difficult to obtain. Medical scanners such as MR
and CT, do offer a 3 dimensional volume measurement, but such apparatus are
expensive to operate and not commonly available for non-medical applications.
Existing algorithms such as [23] are difficult to implement and do not use the
natural, intrinsic representation of shape by symmetry sets [10, 27].

Existing tetrahedral mesh generation methods in the literature typically cre-
ate an initial, blocked tetrahedral mesh from a voxelization or signed distance
field. Afterward, nodes are iteratively repositioned, while tetrahedra are sub-
sampled in-order to improve mesh quality [24, 26, 23], or the variational gradient
of an energy functional is used to move vertices [1]. In contrast to these methods,
our is surface-based.

Shell meshes are attractive since they give a volume representation of a
surface mesh with a very low tetrahedral count, which is desirable for animation
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or similar purposes, where speed is preferred over accuracy of deformation. The
shell mesh finds applications in animating solid objects, for shell maps [28], and
for the calculation of signed distance field [14, 29]. Recently a thin-shell of rigid
prisms [4] have been used for shape deformation. Figure 1 shows examples of
volumetric shell meshes.

In this report we will present extensions of [13, 15, 16]. In order to show the
efficiency of our method, our main goal is to create the thickest possible shell
mesh with the lowest possible tetrahedral count. I.e. given a polygonal surface
mesh, we create a tetrahedra volume mesh representing a thick version of the
surface mesh, a shell mesh. In past work vertices of the polygonal surface mesh
are displaced inward, thereby creating a new version of the surface mesh. This
operation is in the literature termed inward extrusion or just simply extrusion,
although intrusion seems a better term. Following an inward extrusion the
original surface mesh is used to generate the outside of the shell and the extruded
surface mesh is used to generate the inside of the shell mesh. The two meshes
is then used to create a triangle prism shell mesh. Finally, the triangle prism
mesh are converted into a consistent tetrahedral mesh, also known as tetrahedral
tessellation.

The suggested prism generation is reminiscent of an erosion operation with
a spherical structural element on the polygonal model. The radius of the sphere
corresponds to the extrusion length. It is well known that working directly on
the boundary representation [30] is fast and simple, but topological problems
arises easily such as shocks [19]. The counter-part to shocks are degenerated
prisms, that is prisms with less than 6 vertices. These shocks turn out to be the
limit on the extrusions lengths.

A linear randomized tessellation algorithm, the ripple tessellation, was de-
veloped in [13]. The ripple method suffers from several problems. It is not de-
terministic, but relies on picking random ripple directions to fix inconsistencies.
Further, no proof has been given on existence of a consistent tetrahedral tessel-
lation of the triangle prism shell. A safe conservative, upper extrusion length
limit is used in [13] and later improved in [15]. Nevertheless, both algorithms
are very slow due to bad and unpredictable convergence of the bisection search
method. In present article we disregard the consistent tetrahedra tessellation
problem and present new extrusion approaches.

Throughout this report it is implicitly assumed that the reader is familiar
with signed distance fields [30, 25], medial axis/surface representations (MREPs),
or the more general concept of symmetry sets. It is assumed that the reader is
familiar with polygonal and tetrahedra meshes. It would be beneficial to read
our past work on the subject [13, 15, 16]

2 Line-Stepping in Signed Distance Field

Intuition dictates that we really want to take a surface point and hit the cor-
responding point on the medial surface, since it seems logical that this would
be the maximum extrusion length. However, obtaining the medial surface is
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(a) Cylinder (b) Pointy

(c) Star (d) Horn

(e) Cylinder with hole (f) Teapot

(g) Propeller

Figure 1: Cut-views showing the shell layers inside the volumetric meshes gener-
ated using our method: Force-following in a signed distance field from section 5.
Notice that even when only using a single shell layer almost no internal empty
space are present. This demonstrates the ability to achieve the maximum pos-
sible inward extrusion of the surface mesh.

3



difficult and notoriously error prone due to discretization errors. Instead we
will use a signed distance field of the surface mesh. The signed distance field of
the surface contains the medial surface implicitly, and this can be exploited to
result in a very simple solution as we will explain shortly.

In [16] line-stepping was shown to be more efficient than any root-search
approach. Here we will briefly explain the main idea behind line-stepping and
refer to [16] for details.

When doing line-stepping, we extrude a surface point ~p along a line. The
position at the i’th step along the line is denoted by ~qi. To obtain the position
~qi a fixed incremental step of length ∆ε is taken in the opposite direction of the
surface normal ~n. Given a signed distance field, φ, the surface normal is given
by the gradient of the signed distance field at the surface position,

~n = ∇φ(~p). (1)

The position ~qi can be seen as a function of the extrusion length εi. That is

~qi = ~q(εi) (2)

In the i’th step the extrusion length is updated by

εi = εi−1 + ∆ε (3)

and the current extrusion point, ~q(εi), is found by

~q(εi) = ~p − εi∇φ(~p) (4)

The stepping is performed as long as ∇φ(~qi) points in the same direction as
∇φ(~p). If the cell size of the regular sampled signed distance field is given by
∆x, ∆y, and ∆z then the increment is chosen as

∆ε =
min (∆x, ∆y, ∆z)

2
(5)

This ensures that we do not step along the extrusion line faster than the infor-
mation changes in the signed distance field. This works due to spatial coherence
of the values in the signed distance field. The value at a neighboring grid node
in the signed distance field is different by at most

√

∆x2 + ∆y2 + ∆z2 (6)

The stopping criteria we use is to keep on increasing εi while

∇φ(~p) · ∇φ(~qi) > ρ (7)

where ρ > 0 is a user specified threshold to control accuracy. We call this the
normal-test. The intuition behind the normal-test is that if we pass the medial
surface from one side of an object to the opposite side, then the gradients in the
signed distance field will flip directions. That is the sign of the normal-test will
flip from positive to negative.
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Figure 2: An extrusion line can cross over the symmetry set if the surface
angle a is less than the accepted angle difference between ∇φ(~q) and ~n. The
directional derivative of ∇φ(~q) · ~n is 1 until the symmetry line is hit. However,
the distance value is still decreasing while stepping along on the other side of
the symmetry line. To stop at the symmetry line we must detect the change in
the value of the directional derivative.

It is worth noting that the normal-test is in fact the directional derivative at
the position ~qi. The sign of the directional derivative therefore tell us something
about how φ changes, as we move in the opposite direction of the surface normal
vector ~n. In our specific case the following rules applies:

∇φ(~qi) · ~n











< 0 φ is increasing

> 0 φ is decreasing

= 0 φ is constant

. (8)

The actual value of the directional derivative tell us something about how fast φ
changes, while we step in the normal direction. Intuitively, we want to keep on
extruding inward as long as φ is decreasing. However, this is not quite enough,
because we do not want to pass over the symmetry set of the object.

An extrusion line may cross over a symmetry line, if we only require the
directional derivative to be positive. This is illustrated in Figure 2. To avoid
this problem we must require that the gradient of the signed distance field do
not differ from the surface normal by more than some specified angle.

∇φ(~qi) · ~n > ρ (9)

where ρ is the cosine of the accepted angle difference, α.

ρ = cos (α) (10)

In our test examples we used α = 0.4363 radians (approximately 25 degrees),
which means ρ ≈ 0.9. The cross-over can still occur and would cause overlapping
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regions of the resulting shell mesh. All we have achieved is to reduce the number
of cases, where a cross-over would occur. Depending on the resolution and
accuracy of the signed distance field, equation (9) can be extremely sensitive to
numerical errors. In such cases setting ρ too tight would result in almost no
extrusion.

In Figure 3 we have shown planar cross-intersections of a few shell meshes
generated using the line-stepping method. The more complex teapot shape
do suffer from a cross-over problem. However, aside from this it is clear that
the presented extrusion method is capable of filling the internal void inside the
surface meshes (shown as black wire-frame).

The time-complexity of the proposed method is govern by two parameters,
the signed distance field resolution, N , and the number of vertices, V . Each
extrusion line is treated independently of each other. Thus, the algorithm scales
linear in the number of vertices. The number of steps that can be taken along
an extrusion line is bounded above by the maximum number of grid nodes
encountered on the diagonal of the regular grid. Thus,

O(V
√

3 1
2N2) ≈ O(V N). (11)

This is extremely fast since the operations done during each step have very low
constants (computing the gradient of a scalar field sampled on a regular grid).
The major performance cost is the computation of the signed distance fields.
We refer to the paper [14] for details on the performance of signed distance field
computations.

2.1 Pre-processing

A simple pre-processing strategy has been adopted, where the surface mesh is
iteratively changed to closely approximate a constrained surface Delaunay trian-
gulation. Initially mesh faces with an area larger than a user specified threshold
is sub-divided using the edge mid-points to generate a new triangulation. This
has the benefit of sub-dividing non-planer edges. Hereafter edge-flipping is per-
formed on the planar edges of the sub-divided surface mesh. If an edge has two
triangular face neighbors then an edge flip is performed whenever a non-shared
triangle vertex of one of the triangle faces is outside the circumscribed sphere
of the vertices of the other triangle face. A dihedral angle threshold is used to
test edges for planarity.

It is a brute and simple approach for improving the surface mesh quality.
Results are shown in Figure 4. The method could be substantially improved by
using a priority queue to pick the next face/edge to subdivide/flip. However, it
serves our purpose of illustrating how sampling artifacts due to poor tessellation
can be improved.

2.2 Post-processing

After having build a tetrahedral shell mesh a post-processing step can be per-
formed to improve the mesh quality. It may well be that vertices are extruded
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(a) Box. Note all extrusions is
along symmetry lines.

(b) Cylinder.

(c) Pointy, suffering from void
sampling artifact.

(d) Tube.

(e) Sphere. (f) Teapot, suffering from cross-
over problem.

(g) Propeller 1. Quality of thin
regions are highly dependent of
signed distance field resolution.

(h) Propeller 2.

Figure 3: Results of the line-stepping method. Using signed distance field of
resolution 2563, and a normal-test with ρ = 0.9. Observe the overlapping shell
mesh of the teapot.
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Figure 4: Results of pre-processing surface meshes. Using two sub-division
iterations interleaved by three constrained Delaunay triangulations. Observe
that after pre-processing the surface triangles appear more regular. A needle
like surface triangle would result in a flat tetrahedra in the resulting shell mesh.
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from opposite sides of the original surface mesh are meeting along the symme-
try set, implying they have the same coordinates (within numerical precision).
That is to say we have redundant vertices in our shell mesh.

The redundant vertices can be eliminated quickly using optimal spatial hash-
ing [34]. Here we initially map all vertices into the hashtabel and then perform
box queries. For each vertex we construct an axis aligned bounding box by
adding and subtracting a small value from the coordinates of the vertex. In our
examples we used a value of the same order as the grid-spacing in the signed
distance fields.

During the queries a new tetrahedra mesh is built. While performing the
box queries, a vertex is inserted into the new mesh, only when the bounding
box of the vertex contains no other vertices. Finally the tetrahedra is inserted
in the new mesh after having inserted all the non-redundant vertices. Prior
to inserting a tetrahedra it is tested, whether its four vertices are all distinct.
This is because removable of redundant vertices will cause zero-sized (within
precision) tetrahedra to have non-distinct vertices.

3 Divergence of Signed Distance Field Gradient

As can be seen from our test results the line-stepping approach is not perfect.
The extrusion is not as aggressive as we hoped. This was due to the rather large
threshold on the directional derivative. Even worse the threshold value adds an
element of parameter tuning. There were other problems too, which caused
degenerated extrusions (tentacles) and sampling artifacts (voids and overlaps,
see [16] for details). In this section we will propose another approach to the
extrusion problem. Before doing so we will summarize, what we have learned
about line-stepping so far. The line-stepping stopping criteria can be summa-
rized in two simple rules

(1) If the initial surface point is lying on the medial surface, then inward ex-
trusion is performed until that point, where the extrusion line leaves the
medial surface or a junction (in case we are stepping along a seam) is
encountered, or where a seam is encountered (in case the extrusion line is
embedded in a sheet). In other words line-stepping is done until the point
where the medial surface “changes”.

(2) If the initial surface point is not part of the medial surface then line-stepping
is done until the extrusion line hits the medial surface.

Note that (1) means that the initial surface point is a strictly convex point or
a saddle-point of the surface and (2) means the point is either flat or strictly
concave. The rule that needs to be applied to a surface point can be determined
from the surface geometry only, the medial surface is in fact not needed for this
purpose.

The above two rules form a simple stopping criteria that is easy to under-
stand, but not easy to implement. Obtaining the medial surface is known to be
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a very difficult problem, and many settle for simplifications or approximations
of the medial surface, such as the simplified medial axis [32, 17, 31], the power
crust algorithm [2], or divergence based medial surfaces [5, 12, 11]. Thus getting
an exact representation of the medial surface is a problem in itself.

Even if we were able to obtain a perfect and exact medial surface of our
object, it would still be problematic to apply the first rule of the stopping crite-
ria, because it relies on testing, whether an infinite thin line is embedded in an
infinitely thin seam or sheet. Alone the numerical inaccuracy involved in updat-
ing the extrusion point would drive the extruded point off the medial surface.
Besides, we must expect some error in the initial estimation of the extrusion
direction, making the problem of unintentionally slipping off the medial surface
even more difficult. Thus, for a practical implementation we need a numerical
more robust approach. We reason as follows:

• A signed distance field is in a sense a dual representation of the medial
surface, since the medial surface can be found looking at extrema and
discontinuities in the signed distance field.

• A signed distance field is often sampled on a regular lattice. Thus, it
is difficult to reconstruct the exact position of the medial surface that is
implicitly represented by the signed distance field.

• However, it is fairly easy to build a new field telling us whether the medial
surface passes through a given voxel.

The θ-SMA algorithm [31] can compute such a field. However, we have instead
chosen to compute the divergence of the gradient field of the signed distance
field. I.e. the flux of the gradient field. This representation is often termed
the divergence based medial surface [5] or the average outward flux (AOF)
field [12, 11], and is defined mathematically as follows:

F (i, j, k) =

∫

S

∇φ · ~ds (12)

Numerically we evaluate F for each grid node as follows: the surface S is chosen
as a cubical surface, having the node (i, j, k) at its center. The cube has the
eight neighboring nodes (i−1, j−1, k−1), (i−1, j−1, k+1), (i−1, j+1, k−1),
..., (i+1, j +1, k+1) as it corner points. The surface integral is evaluated using
a summation approximation

F (i, j, k) =
∑

a∈N(i,j,k)

∇φ(a) · ~n(a) (13)

where N(i, j, k) is the index set of the 3×3×3 neighboring voxels (corners, face
mid-points, and edge-midpoints of the surface cube), and ~n(a) is the outward
cube surface normal. For ∇φ we used a first order central difference approxima-
tion. Thus the flux at a single node is based on a measure from a neighborhood
of 5×5×5 voxels. In our experience this adds a lot of robustness to our method.
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Once the flux field have been obtained it can be used as an indicator for where
the medial surface is located.

If F is zero it is a clear indication that the medial surface is not passing
through the cube surface. If the value is negative then we know that the cube
surface contains a discontinuous line originating from a concave surface point,
strictly speaking such lines are not part of the medial surface, thus we can
ignore them. The last possibility is if F is positive this means that the cube
surface contains part of the medial surface. Larger positive values indicate
greater discontinuity, thus a small value would imply a sheet, larger value a
seam, and even larger values a junction. We can think of this as a likelihood of
encountering the medial surface in a given voxel. The larger positive value the
more certain it is that we have the medial surface.

The cube surfaces of neighboring voxels overlap by one-voxel and the 5 ×
5 × 5 stencil adds a certain amount of smearing thus we will have a thicken
representation of the medial surface. From our viewpoint this is an advantage
since it helps avoid the line-stepping to unintentionally falling off the medial
surface in case of the first stopping criteria rule.

Our initial idea is simply to use F for the line-stepping, the value of F is
recorded at the initial surface point, during line-stepping it is tested if the value
of F at the extruded point deviates to much from the initial value. If this is the
case we halt the line-stepping. Otherwise we keep on stepping along. When a
non-medial surface vertex hits the medial surface then a sub-pixel accuracy can
be achieved by searching for the position between the old step position and the
new step position that maximizes the AOF value. Seams and sheets may have
higher order curves, therefore we may need to adjust the line-step direction
when we trace a vertex lying on the medial surface. The line-step direction
correction is treated in detail later in Section 3.1.

Having taken care of the possible curved nature of the medial surface, we
need to consider how to detect if we slipped off the medial surface or when we
hit something on the medial surface that should cause us to stop our search.
The first problem is dealt with easily by testing whether the AOF value dropped
below a certain value at the current step position. The other problem is non-
trivial, intuition tell us that we should test for when we hit a lower dimensional
feature of the medial surface. For instance if we are tracing along a seam we
want to stop the stepping at the end junction point. If we are tracing inside a
seam we would like to halt when we hit a seam or junction. These locations are
detected in the AOF field as discontinuities. We therefore apply a relative test
between the AOF value at the initial surface point and the current step-position.
It would be interesting to classify voxels in the AOF field as being junctions,
seams, and sheets. However, we have not seen any 3D extensions on the work
done in [12, 11] on flux invariants. This may be an interesting research problem
in itself, and we leave it for future work.

We have outlined the AOF line-step algorithm in Figure 5. Notice that traces
along the medial surface may curve. Therefore we perform a final correction of
the extrusion direction and the total extrusion length.
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Algorithm line-step-AOF

for each extrusion line l do
do

~qfake = ~q(l) − ~n(l)∆ε

if flux(~p(l)) < δ and flux(~qfake) > δ then

~qfake =maximum point from q to ~qfake

break // non MREP-vertex hits MREP

end if

if flux(~p(l)) ≥ δ and flux(~qfake) < δ then

~qfake = line-search-correction(l)
if flux(~qfake) < δ then

break // MREP-vertex slipped off MREP

end if

end if

if flux(~p(l)) ≥ δ and |flux(~qfake) − flux(~p(l))/flux(~p(l))| > ε then

break // MREP-vertex hit discontinuity in AOF

end if

while forever

~q = ~qfake

~n = unit(~q − ~p)
ε = ‖~q − ~p‖

next l

End algorithm

Figure 5: Line-stepping in AOF field

One major drawback of our method remains: fine detailed objects or objects
with thin structures need high resolution of the signed distance field. Figure 6
and 7 shows results of three simple surface meshes using different field resolutions
for the AOF computation. We did not perform any line-step direction correction
in any of these tests.

Examining the close-up views in Figure 7 it becomes evident that the di-
rection of the extrusion lines are misaligned with the medial surface. Implying
that we unintentionally slip off the medial surface while doing the line-stepping.
However, it is clear that the average outward flux (AOF) is a great way to
identify voxels containing the medial surface. To circumvent this problem we
propose to add a line-correction processing step, which we will explain in the
next section.

3.1 Correction of Line-Stepping Direction

Assume we are line-stepping along a extrusion line with initial vertex position
~p, surface normal ~n and an AOF value, θp = flux(~p), at ~p larger than some small
threshold, δ. If we during the line-stepping hits a position ~qi of the extrusion
line where the AOF value is below the threshold δ then this indicates that we
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have slipped off the medial surface. To remedy an unintentional slip-off we will
try to find a better ~qi-position and then afterward correct the ~n-normal which
indicates the line-stepping direction.

Here is how it works, when doing the line-stepping we first make a fake-
position update

~qfake = ~qi − ~n∆ε (14)

then we lookup the AOF value at the fake position, θq = flux(~qfake), If θq < δ
and θp > δ then we have a slip-off. In which case we compute

~t = ∇φ(~qfake) (15)

~qa = ~qfake (16)

~qb = ~qfake − ~t(2∆ε) (17)

That is we have created a small line segment originating from the fake position
and going sufficiently far in the opposite distance field gradient direction.

The reasoning being that we know that ~qi is lying within distance ∆ε of
the medial surface, thus ~qfake cannot have moved farther away from the medial
surface than ∆ε. To make sure we walk at most twice that distance toward the
medial surface. The opposite gradient direction will point in the direction of
the medial surface, but not necessary yielding the shortest direction.

A linear search can be done along the line segment from ~qa to ~qb looking
for the position that maximize the flux value θ. The linear search is illustrated
in Figure 8. A more elegant solution would use a binary search. This could
be done as shown in Figure 9. Once we have found a new better position ~qfake

we can correct the line-stepping direction by using a back-projection onto the
sphere centered at ~qi and having radius ∆ε

~n = −unit(~qfake − ~qi) (18)

~qfake = ~qi − ~n∆ε (19)

Now as a last test we verify whether the AOF value at the fake position, ~qfake,
is still less than the small threshold value δ. If this is the case we have truly
slipped-off the medial surface and should halt the line-stepping. On the other
hand if we pass the test we can simply continue our line-stepping.

3.2 Ignoring Medial Surface Vertices

The line-stepping correction improve results significantly, but unfortunately we
still have a problem. The problem is illustrated in Figure 10. The problem is
that line-stepping along the symmetry set do not respect the surface tessella-
tion. Ideally the resulting volume mesh should have the same shape at different
resolutions. However, as the figure shows this is no longer true.

This lead us to the following solution to the problem:

• Make sure flat surfaces of the object holds a sufficient number of vertices.
This can be achieved by using our pre-processing solution from Section 2.1.
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These types of vertices are easily dealt with by line-stepping. Thus, we
are guaranteed a fine extrusion length computation of such vertices.

• Drop the medial-surface line-stepping vertices. That is if an extrusion
line originates from a mesh vertex having positive AOF value then the
extrusion line is ignored. These vertices are problematic, so we simply
ignore them. The reasoning behind this is that we can just make the sub-
division in the pre-processing step as fine at we want. In the limiting case
the “missing” medial surface vertices will not be noticed.

To get sub-pixel accuracy we perform a line-search for the medial surface when
we hit it. If we went too far then we know our last position was valid, and so
we set up a binary search between the last good position and the current bad
position in order to find the optimal point.

From a mathematical viewpoint the AOF only have non-zero values on in-
finitely thin manifolds (sheets, seams, and junctions of the medial surface) in
space. We have sampled the AOF on a finite regular grid, due to this discretiza-
tion we have a smooth representation of the AOF. One could call it a thickening
or averaging. This implies that the true infinitely thin AOF is located at the
local maxima of the discrete AOF.

Due to our line-stepping we know that we have one point (the old position)
lying on one side of the maximum AOF value and another point (the current
position) lying on the other side of the maximum AOF value. Thus, we do a
binary search between the old and current positions where we try to maximize
the AOF value along the line-stepping direction. This should result in sub-
pixel accuracy (within numerical precision). We have listed the algorithm in
Figure 11.

We have shown our results using this algorithm in Figure 12. Observe that
the box-example looks perfect. However, the cylinder do not look as nice, there
seem to be something going wrong at the corners where extrusion lines are
ignored. This is because surface triangles with three convex or saddle-point
vertices will not be extruded. This results in a zero-length extruded prism and
causes an internal void inside the object. In fact if the box where not subdivided
none of the triangles would be extruded. Thus there are two major drawbacks
of this solution

• Internal voids may appear.

• Fine subdivision are needed to avoid too big internal voids.

One possible resolution to the internal void problem may be to displace
the triangle vertices toward their centers before doing the actual extrusion,
this would in our opinion correspond to cutting off the corners of the meshes.
However, since a vertex may be part of more than one triangle there is some
inherent ambiguity that need to be resolved. This could probably be resolved by
making a random choice. Another solution may be to simply add noise to the
medial surface vertices until they all are classified as non-medial surface vertices
according to their AOF field value. However, the extrusion length we would
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achieve would be of the same order as the noise displacement. Thus, we end
up with the too thin shell problem again. Our shell generation algorithm were
intended for computer graphics, therefore the second drawback with having fine
subdivision resolutions is totally un-acceptable. This will create a shell mesh
with a high number of tetrahedra elements. In conclusion, it is not advisable to
ignore medial surface vertices of the surface mesh, and subdivision only results in
a final shell that do not fulfill our wish for a low tetrahedra element count. Thus,
we are facing the problem of how to deal correctly with medial surface vertices.
In Section 4 and 5 we will propose different approaches for line-stepping.

4 The Junctions Method

It is evident that correct handling of medial surface vertices is extremely impor-
tant. It is also evident that line-stepping of non-medial surface vertices is very
robust using the AOF field. From earlier attempts it is clear that line-stepping
approaches for medial surface vertices is not very robust. Thus a slightly differ-
ent approach could be used:

• Do AOF line-stepping on non-medial surface vertices. Store all the ex-
truded positions in a point set E

• Find all internal junctions and store them in a point set, J .

• Create the point set
P = E ∪ J (20)

• For each non-medial surface vertex, v, find the closest point in P and use
this as the extrusion point for v.

Naturally, we need to decide how we can compute junctions in the medial surface
from the shape representations we have been working with so far.

Traditionally when working with AOF (or signed distance) fields [35, 33, 5]
junction detection is done by

• Obtaining voxels close to the medial surface, for instance all positive AOF
voxels.

• Perform a thinning operation of the voxels.

• Convert the voxels into a graph representation.

• Compute a minimum spanning tree (MST) of the graph representation.

• Merge “straight” edges of the MST.

• Finally analyze branches in the MST, to determine the junctions.
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This is a tedious approach, it requires many sub-steps and each sub-step is
dependent on a number of user-specified parameters. In our opinion the ap-
proach is more accurately classified as voxel manipulation on a higher level.
The amount of tweaking and tuning parameters immediately suggest that this
is a very bad approach. A similar technique exist using signed distance fields
instead of the AOF field [20, 35, 33].

We desire a different approach for junction detection which do not require
too many parameters or too much tweaking. Since an automated “tool-box” for
shell generation is wanted we favor simplicity and robustness.

As a first approach we tried to classify AOF voxels by placing a slightly
enlarged sphere at the AOF voxel center. The radius of the sphere were equal
to the signed distance field value at the voxel center. The idea was that if the
sphere made at least four intersections with the polygonal surface then the voxel
center would be classified as a junction candidate. Unfortunately this approach
did not work. Too many voxels where being classified as junctions, because a
planar surface consist of multiple triangles and sphere intersections are reported
with all of these.

Obviously local minima (also termed critical points) in the signed distance
field is related to the positions of a subset of the internal junctions in the medial
surface. Initially we searched for strict local minima. However, as seen in
Figure 13, some objects do not pose any strict local minima, but still have
internal junctions. In other cases one can find a strict local minima that would be
a useful extrusion point. In other cases such an strict local minima would cause
the shell to penetrate the surface mesh. Even more importantly in the latter case
we need other points than the junction points to ensure no surface penetration.
Figure 13 illustrate the cases in 2D. In 3D we may want to add points on the
medial surface seams as well. Points on the seams are also characterized by not
being strict local minima in the signed distance field.

To test our hypothesis we apply a simple strategy for junction detection in
a signed distance field. Initially we loop over all the voxels and for each voxel
we look at its 26 neighboring voxels to determine whether any of these have a
value less than the current voxel. If this is the case we know that the voxel we
are looking at can not be a local minima.

Results of local minima detection in signed distance field is shown in Fig-
ure 14. From the figure it is clearly seen that our method for detecting local
minima are too noisy. Basically it is not easy to see critical points with sub-pixel
accuracy. This is not very surprising as is stated in [9]:

Critical points are difficult to locate in a vector field, particularly
because they do not necessarily occur at the given sample locations,
but often occur in between sampling points. A good heuristic for
detecting critical points is described in [18]: a zero in the vector field
occurs when all three components of the force vector (x, y and z)
vanish, thus, if we can identify a region where each vector component
changes sign, the region is a candidate for containing a critical point.
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We could have applied a similar strategy to detect local maxima in the AOF
field, since these would indicate junctions. To add further robustness to our
method we could also have applied an analysis of the shape-matrix. That is
looking at the eigenvalues of the Hessian matrix.

Our approach for junction detection is flawed in more than one way. As
stated detecting extrema with sub-pixel accuracy is very hard when looking at
a voxel neighborhood. Thus, we need a completely different approach for such
a task. Another problem is also quite obvious, not all junctions are identified
by an extrema.

5 Force Following Approaches

We will now introduce a conceptual different approach to overcome the problems
of robust detection of extrema based on classifying voxels. The method will also
handle the cases where junctions are not defined by extrema. The basic idea
is to perform line-stepping of all the surface vertices in a signed distance field.
This type of method is also called path-following or force-following. The line-
stepping is halted when a critical-point is passed. This is detected by testing
whether the magnitude of the gradient of the signed distance drops below a
threshold-value. Due to discretization and interpolation errors the gradient of a
regular sampling of a signed distance field is not precisely one everywhere. The
regular sampling tends to smooth the signed distance field a little. Therefore,
in our implementation we used a fraction of 1000 of the gradient at the initial
surface position as the threshold value. To overcome further numerical problems
we have smoothed the signed distance field using a curvature flow.

This line-stepping approach is similar to what we did in Section 2. However,
this time we are really looking for when the line-traces are merging together
and for the critical points at which the line-traces stop. At these positions we
will find the “junctions” we are looking for.

In Figure 15 we have shown results for tracing all the surface vertices to the
strict local minima in the signed distance field. From the figure it is seen that
tracing signed distance fields looks nice, but it becomes difficult when sheets are
encountered. Line-traces in the medial surface sheets seems to lack robustness,
since the line-traces can merge unexpected or crawl towards another line-trace.
This is especially seen for the pointy object in Figure 15(a).

One observation can be made, our strategy for picking nearest junction as the
extrusion point is not correct. We need to trace vertices to the proper junction
point. This is seen in Figure 15(d). In conclusion we need to keep track of which
junction or critical point the line-trace of a surface vertex encounters first. This
is shown in Figure 1.

5.1 Curve-Skeletons

The curve-skeleton is defined by line-stepping all the medial-surface vertices
toward the critical points of a generalized energy potential field. The line-traces
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represent the curve-skeleton segments. When line-segments merge together a
junction of the curve-skeleton will have been detected.

In [8] several applications of curve-skeletons are surveyed and methods for
computing curve-skeletons are compared. In [6] a closed-form solution is pre-
sented for computing the generalized potential of a polygonal surface. It is used
to trace out the curve-skeleton by straightforward line-stepping along the gra-
dient direction. In [7] a different approach is taken, the generalized potential is
computed on a voxel grid using the method of [6]. Afterward critical points are
detected in the voxel grid and seed points are traced using the voxel grid, thus
generating the curve segments. A more detailed description of the method can
be found in [9], where the authors extend their work to include a hierarchical
representation based on curve-skeletons. In [21] another approach is presented
for computing the generalized potential field and the gradient hereof. It is also
our method of choice in this report. Here we will briefly describe our approach.

For given (user-specified) positive integer value m, the generalized energy
potential, E, in a point, ~q ∈ R

3, of space is defined as

E(~q) =

∫

S

dS

‖~p(s) − ~q‖
m (21)

where S denotes the surface of the object and ~p(s) ∈ R
3 is the point in space

corresponding to the “surface” point s ∈ S ∈ R
2. Straightforward computation

yields the gradient of the energy potential function.

∇E(~q) = ∇

∫

S

dS

‖~p(~s) − ~q‖
m (22)

=

∫

S

∇
dS

‖~p(~s) − ~q‖
m (23)

≈
∑

i∈N,qi∈S

∇
1

‖~pi − ~q‖m (24)

In the last step we have approximated the integral by an summation of “infinite”
set, N , of sample points. In practice we do of course not use a infinite number
of points, but merely pick a sufficiently high number (more on this later). The
approximation is somewhat strange. Notice that if N goes to infinity the gra-
dient magnitude can grow without limit. There should have been a ∆Si factor
or something similar in the approximation.

∇E(~q) ≈
∑

i∈N,qi∈S

∇
∆Si

‖~pi − ~q‖
m (25)

Here ∆Si represents the small “surface area” being hit by the i’th ray. However,
we can drop the ∆Si term since we normalize the gradient for the line-tracing.
We are currently only interested in the direction, not the magnitude of the
gradient. Now looking at ∇ 1

‖~pi−~q‖m we rewrite it as

∇‖~pi − ~q‖
−m

= ∇ (~pi − ~q)
T

(~pi − ~q)
−m

2 (26)
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Using the chain-rule we have

∇ (~pi − ~q)T (~pi − ~q)−
m

2 = −
m

2
(~pi − ~q)T (~pi − ~q)−

m

2
−1 ∇ (~pi − ~q)T (~pi − ~q)

(27)

= −
m

2
(~pi − ~q)T (~pi − ~q)−

m

2
−1 (

2qT∇q − 2pT
i ∇q

)

(28)

= −m (~pi − ~q)T (~pi − ~q)−
m

2
−1 (

qT − pT
i

)

(29)

= −m
1

‖~pi − ~q‖
m+2

(

~qT − ~pT
i

)

(30)

= m
(~pi − ~q)

‖~pi − ~q‖
m+2 (31)

Define the unit direction to the surface points as ~di = (~pi − ~q) / ‖~pi − ~q‖ then

∇ (~pi − ~q)T (~pi − ~q)−
m

2 = m
~di

‖~pi − ~q‖m+1 (32)

So we end up with having

∇E(~q) ≈
∑

i∈N,~pi∈S

m
~di

‖~pi − ~q‖
m+1 (33)

In a practical implementation the set N is chosen as a set of evenly scattered
direction vectors on the unit sphere. The ~pi’s are found by performing ray-
triangle intersections of the i’th ray emitted at the point ~q and in the direction
~di. Only the first penetration point is used, since according to [21] the best
result is obtained by thinking of the polygonal surface as an insulator. For the
i’th vertex point, ~qi, we update its position in the j’th step according to

~qj+1
i = ~qj

i − ∆t
∇E(~qj

i )
∥

∥

∥
∇E(~qj

i )
∥

∥

∥

(34)

where ∆t is a sufficiently small fixed step-size. We continue stepping like this
until the stopping criteria

∇E(~qj
i ) · ∇E(~qj−1

i ) < 0, (35)

is fulfilled. This criteria is a crude indicator that we have passed a critical point
in the generalized energy potential. The pseudo code in Figure 16 summarizes
the line-stepping approach we have used.

In Figure 17 we have shown results of line-stepping generating the ~di’s from
a unit sphere by subdividing an icosahedron three times (642 samples). This
creates a much more nice and even distribution of the ray samples. As seen
from the figure we now have nice smooth straight traces. Although there are
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still some problems left. Due to sampling artifacts and using a fixed step-size
some traces can escape the surface to the outside and get trapped outside. This
artifact is seen in the case of the teapot and the dragon object.

Line-stepping the generalized potential energy field looks extremely well. It
appears that all the deficiencies that appeared from line-stepping the signed
distance field have disappeared. One benefit we immediately gain from using
the generalized energy potential is that we no longer need to work on a regu-
lar sampling. Thus we are freed from the interpolation issues and from having
to consider the trade-off between sampling resolution and memory-usage etc..
Furthermore signed distance field computations often rely on the polygonal sur-
face mesh to be a watertight mesh. No such criteria is required for the energy
potential approach. In fact the energy potential approach could be applied to
general polygon soups.

However, it is also apparent that we need to look into methods that do
not have the sampling and fixed step-size artifacts. This calls for closed-form
methods for computing the energy potential and the gradient, and for adaptive
step-size algorithms. We leave this for future research.

5.2 The Algorithm

We propose the following algorithm for finding good extrusion points for shell
generation.

• Calculate line-traces for all surface vertices using closed-form solutions for
the generalized energy potential and an adaptive line-step algorithm.

• For all line-traces compute their intersection points, these are the junc-
tions!

• For each vertex assign the first junction point encountered along the corre-
sponding line trace as the extrusion point. If no such junction point exist
simply use the ending position of the line-trace as the extrusion point.

It should be noted that this is not the final saying, we obviously get a
center-line problem, which can be understood in terms of surface mesh sampling
artifacts. This is similar to the problems encountered in Section 2. Looking at
the bottom of Figure 17(d) it is seen that the line traces coming from the letters
will intersect the extruded triangles coming from the bottom faces of the box.
Thus, internal intersections may happen. As a solution to this problem we
propose the idea of applying a post-processing step.

In the post-processing, after having performed a glue-operation as described
in Section 2.2, one iterate over the extrusion lines one-by-one. For each extrusion
line it is tested if it intersects any of the extruded surface faces except the
extruded surface faces that the end-point of the current extrusion line is part
of. This will remove any internal intersections. It may be that after this final
step internal void-regions appear. These can be reduced by performing the
pre-processing step outlined in Section 2.1.
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6 Conclusion

Our work on using different shape representations and methods for computing
extrusion points have resulted in many discoveries. We have learned many
important properties of the shape representations and of the numerical methods
applied to these representations. We have also learned about and evolved our
understanding of what “defines” the inner structure, the extrusion points, of a
shell. Here follows a detailed summary of the main points of discoveries:

• Line-stepping for finding the “center-position” is the best solution over
any root search method.

• Extrusion based on signed distance fields is difficult, because:

– Thresholding on normal testing is a necessary evil due to fix-precision
floating point arithmetic. This leads to possible overlapping interior
regions of the resulting shell mesh. In practice this calls for parameter
tuning. The implication is that it is not always possible to find an
acceptable bound on the normal test which restrict internal overlaps
and allow for the most aggressive extrusion lengths.

– Shell quality depends on the resolution of the signed distance field.

– All extrusion lines can be computed in parallel.

– Obtaining a signed distance field is not trivial. For instance it requires
closed water tight surfaces.

In conclusion we find this approach problematic.

• An average outward flux (AOF) field is a very robust way to locate voxels
containing the medial surface.

– Surface normals are not necessarily aligned with the medial surface
structure. That is the seams having end-junctions at the surface
vertices are not aligned with the surface normal of these vertices.
Thus, one can not rely on surface normals to pick a line-step direction
in agreement with the medial surface structure.

– It is nearly impossible to perform line-stepping along the medial sur-
face. Essentially the medial surface consist of a piece-wise continuous
surface constructed from infinitely thin curved geometric surfaces.
Any lattice based method (distance field or AOF field) is a regu-
lar sampling. Discretization and interpolation errors mean that we
at best only have a smeared indication of the medial surface. It is
therefore quite difficult to detect when one slips off a smoothed ver-
sion of the medial surface or if it is just because the surface bends.
In conclusion we need methods to correct the line-step direction.

– Back-projection is a great way to correct line-step directions. The
idea of correcting a fake-position update by setting up a tangent
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search direction and search for a extrema position followed by a
back-projection onto a step-size sphere results in a more “implicit”
correction method.

– Ignoring medial surface vertices is down-right wrong. The conse-
quence is zero-length extrusion.

– Line-stepping medial surface vertices independent of the extrusion of
non-medial surface vertices will result in large internal overlaps in
the shell mesh. This implies that medial-surface vertices can not be
processed independently of other surface vertices.

• Local extrema detection in signed distance and AOF fields are difficult
to detect because extrema are unlikely to occur at nodal positions in a
regular sampling.

• Junctions are not defined by local extrema in the signed distance field or
the AOF field. Besides for 3D objects medial surface vertices could just
as easily be extruded to lie on a seam of the medial surface. This is true
for vertices having a positive first principal curvature and a zero second
principal curvature. That is vertices lying on a sharp edge of the surface
mesh.

• Force-following in a signed distance field is not numerical robust, since
there is too many degrees of freedom when hitting the medial surface
sheets. Thus, unexpected merges of the trace-lines may occur.

• Force-following in curve-skeletons appear to be numerical well-defined
compared to using signed distance fields. Besides the energy function
is defined independently of the resolution of a grid and can be applied to
general polygon soups.

• Connecting medial-surface vertices to nearest junction is not the correct
approach. Instead one must examine what junctions are paired with the
medial surface vertices by making a record of the traces.

Our next step in this project is to investigate better methods for computing
the curve-skeletons before evaluating the proposed algorithm in Section 5.2.
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Figure 6: AOF line-stepping on a few simple surface meshes using a coarse grid
from 163 to 643. Green arrows indicate extrusion lines.
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(a) Box extrusion stops
too early due to mis-
alignment.

(b) Cylinder almost
perfect.

(c) Cylinder extrusion
overlay ed on AOF field.

(d) Close-up of overlaid
cylinder extrusion lines.

(e) Extrusion lines over-
laid on cut-view of shell
mesh.

(f) Surface mesh over-
laid on cut-view of shell
mesh.

(g) Pointy extrusion
lines overlaid on AOF
field.

(h) Close-up of Pointy
Extrusion lines. Ob-
serve misalignment.

Figure 7: AOF line-stepping on a few simple surface meshes using a fine reso-
lution grid of 1283. Green arrows indicate extrusion lines. Note that the green
arrows are not running along the white lines representing the medial surface.
Thus, surface normals are “misaligned” with medial surface structures.

θmax = flux(~qa)
imax = 0
∆s = 2∆ε/N − 1
for i = 1 to N do

s = i∆s
θ = flux(~qa − ~ts)
if θ > θmax then

imax = i
θmax = θ

end if

next i
~qfake = ~qa − ~t(imax∆s)

Figure 8: Pseudo code for a linear search of a line-step direction correction.
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do

~qc = (~qa + ~qb)/2
if ‖~qa − ~qb‖ < εtoo small then

~qfake = ~qc

break;

end if

ρ = ~t · unit(∇φ(~qc)))
if |ρ| < δ then

~qfake = ~qc

break;

end if

if |ρ| > 0 then

~qa = ~qc

end if

if |ρ| < 0 then

~qb = ~qc

end if

while forever

Figure 9: Pseudo code for a binary search for a line-step direction correction.
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Figure 10: AOF line-stepping with line correction and finer tessellation. This
shows that line-stepping along the symmetry set completely degenerate the re-
sulting volume mesh if we refine the surface mesh.
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Algorithm line-step-AOF

for each extrusion line l do
if flux(p(l)) > δ then

continue

end if

do

q(l) = q(l) − n(l)∆ε
if flux(q(l)) > δ and n(l) · ∇flux(qfake) > 0 then

// binary search for maximum AOF

qa = q(l) + n(l)∆ε
qb = q(l)
do

~qc = (~qa + ~qb)/2
if ‖~qa − ~qb‖ < εtoo small then

~q(l) = ~qc

break

end if

ρ = ~n(l) · unit(∇flux(~qc)))
if |ρ| < δ then

~q(l) = ~qc

break

end if

if |ρ| < 0 then

~qa = ~qc

end if

if |ρ| > 0 then

~qb = ~qc

end if

while forever

end if

break

while forever

ε = ‖~q(l) − ~p(l)‖
next l

End algorithm

Figure 11: Pseudo code for line-stepping in AOF field ignoring initial medial
surface vertices.
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Figure 12: AOF line-stepping ignoring medial surface vertices. Notice the
strange artifacts at the top/bottom of the cylinder.
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(a) No
global
strict
minima
exist

(b) One global
strict minima
exist, but
bottom-most
junction is not
even a minima

(c) Connecting medial surface
vertex directly to junction
may cause surface penetration.
Correct solution is to use clos-
est non-medial surface vertex
extrusion point.

Figure 13: Various cases illustrating the usage of junctions and non-medial
surface vertex extrusion points.

Figure 14: Junction detection using local minima detection in a signed distance
field smoothed using curvature flow to reduce noise artifacts. Observe that too
many points are classified as local minima.
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(a) Pointy object.

(b) Simple convex objects. (c) Teapot line-traces.

(d) Resulting shell using closest junction as extrusion point.

Figure 15: Junction detection using a line-stepping method in a signed distance
field smoothed using curvature flow. Notice on the pointy object that if sheets
are hit the paths move in an unexpected way. Observe from the teapot object
that the closest junction is not always the correct extrusion point.

for i = 0 to Nmax seeds − 1
~Eold = ~0
~Ecur = ~0
for j = 0 to Nmax steps − 1

~Ecur = ∇E(~qj
i )

if ~Eold · ~Ecur < 0 then

break

qj+1
i = qj

i − (~Ecur/



 ~Ecur




)∆t

~Eold = ~Ecur

next j
next i

Figure 16: Pseudo code for line-stepping in generalized energy potential.
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(a) box (b) cylinder (c) pointy

(d) diku (e) cylinder w. hole (f) sphere

(g) teapot (h) propeller (i) funnel

(j) dragon

Figure 17: Examples when using subdivided icosahedron as sphere mesh for
the ray samples when tracing the curve-skeletons with m = 1. Notice the
added robustness of the pointy object compared to using the signed distance
field approach. Observe the path tracing problem of the teapot and the dragon
objects.
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