Datalogisk Tostiturt

HogthrobV0 Users Manual

Martin Leopold

Technical Report no. 07/05
ISSN: 0107-8283

Dept. of Computer Science

University of Copenhagen e Universitetsparken 1
DK-2100 Copenhagen e Denmark

HogthrobV0

Users Manual

version 0.3
September 24, 2007

Martin Leopold

Department of Computer science, University of Copenhagen
Technical Report no. 07/05

ISSN: 0107-8283

Revision History

0.1 Apr. 2006 | Initial version
0.2 Oct. 2006 | Pin definitions
0.3 Sep.2007 | Restructured

Contents

The Hogthrob Prototype Platform
1.1 Further Information L e

HogthrobV0 Overview

2.1 External Connectionsand Cables
211 Power e e e e
212 Programming
2.1.3 UART . . . e e e

22 PinConnections e e e e e
221 ATMega-FPGA
222 AlMega-Radio,
223 BusSwitches e
224 FPGAIO e e e

Xilinx FPGA

31 HardwareSetup
3.1.1 ConfigurationFlash
3.1.2 Program Flash and ATMega interface
3.1.3 ClockSource o i e e e e e
3.1.4 FPGAI/O . . . e e

3.2 Softwareinstallation
321 ISE81forLinux e
322 ModelSim e e

3.3 BuildingaProject
331 Oregano e

ATMega

41 HardwareSetup
411 Fuses e
412 ATMegal/O
413 RadioControl e

42 FPGA Interface e
421 FPGAPowerControl. e
422 FPGAControlLines e

43 RadiolInterface e
431 MasteringSPI
432 SPIMaster Modeand PBO
433 ShockBurstMode

434 DirectMode 24

44 TinyOS e 24
441 PortingTinyOS 24
442 FPGA, ATMega Interconnect 25
443 nRESPL e 25
Testing 27
51 AVRTesting e 27
511 Fuseprogramming 28
512 Programupload o 28
513 ATMega UARTL 28
514 ATMegaLED 28
515 ATMegapush-buttons 29
51.6 ATMega radio connection and bus switches 29
517 ATMegasensor connector 29
52 FPGATesting e 29
52.1 PROM Programming (Upload) 30
522 FPGA Boot (FPGA control-lines) 30
523 FPGA—LED,Push-Button. 30

524 FPGA—Sensor Board (Digital Connectors), FPGA—nRF, FPGA—UART
(Serial Interface) 30
525 AVR—FPGA e 31
52,6 FPGA—FLASH 31
Schematics 32
A1l Mother Board 32
A2 nRF2401RadioBoard 42
Errata 43
B.1 Post Delivery Modifications 43
B.2 Billof Components 44
B.3 Schematics 44
C FPGA _control.c 45
example.ucf 50
FPGA Makefile 54

Chapter 1

The Hogthrob Prototype Platform

The Hogthrob prototype platform (HogthrobV0) must serve as a development platform through-
out the Hogthrob project. It must be general enough to allow a large variety of configurations
and robust enough to allow lab and field experiments.

The platform was defined by the Hogthrob partners and was implemented by I/O Technolo-
gies delivering practical expertise in embedded systems design, PCB! layout and assembly. The
PCB was manufactured and assembled in a foundry before delivery. In total 50 boards are pro-
duced.

The platform was delivered in two stages. First a few boards were delivered for testing
and evaluation. The testing involved developing the software to be run on the platform testing
every feature of the platform. In a second stage the 50 boards are produced.

The design goals of the Hogthrob prototype platform are different from that of the sensor
node we are trying to build. It must be functionally equivalent of our sensor node on a chip,
and we must be able map the design to the performance of a sensor node on a chip.

The two major goal of HogthrobVO0 are
o to allow software/hardware co-design

e to provide a prototype platform for further exploration of the design space.

The platform must be flexible enough to let us change any of the givens of the sensor node
design: radio, sensors, microprocessor, hardware accelerators, etc. This allows us to explore a
broad spectrum of design choices: hardware/software boundary, radio protocol design, duty
cycling, sensor sampling frequencies, etc.

To achieve these objectives we adapt a modular design strategy so that we can swap sensors
or radio transceivers with ones resulting in more efficient energy and system performance. To
experiment with microprocessor designs and/or hardware accelerators, we need some form of
reconfigurable logic on the prototype platform. To sum up our strategy for building a platform
with no constraints:

o Configurable logic (FPGA) to develop hardware

e A/D? converter (rarely included in configurable logic blocks)

IPrinted Circuitry Board
2 Analog to digital

A low-power timer

Add on-board with wireless communication

Add on-board with sensors

The ability be battery powered

We choose to implement these goals using a Xilinx Spartan III FPGA with external FLASH
for the FPGA configuration and for the program running on the FPGA. In addition we placed an
ATMega 1821 MCU that provides A/D as well as housekeeping for the FPGA power up/down
procedure.

The following Section describes the platform design, pin connections and the general proce-
dure to setup the platform eg. cables, power source, etc. Programming the FPGA is described
in Section 3. Programming the ATMega is described in Section 4.

1.1 Further Information

Apart from this manual the following documents provide further information about the plat-
form:

o Martin Hansen: System Design Specification for 1087_Hogthrob (unpublished)
o Kashif Virk: Testing FPGA Interfaces on Hogthrob Development Platform[4]

Chapter 2

HogthrobV0 Overview

The functionality of the platform can be divided into four closely interacting subsystems: com-
puting, sensing, communication, and power supply (see Figure 2.1). We will look into the de-
tails of each of these subsystems in the following, fist let us sum up the contents of this division:

Computing an FPGA for hardware development and an MCU with A /D converter for external
peripherals

Communication an add on-board with a flexible radio with low level access
Sensing an add on-board with sensors
Power a power supply allowing battery powered operation while maintaining a steady supply.

Figure 2.1 depicts each of these subsystems and their interconnection, Figure 2.2 depicts the
layout on the board and external connections.

2.1 External Connections and Cables

HoghtrobV0 has 6 pin headers for external connections:

J1 Combined programming of ATMega and JTAG bus (FPGA, PROMs)
J2 16 general 1/O pins for FPGA

J3 ATMega analog input and digital I/O

J4 15 general I/O pins for FPGA

J5 Radio power

J6 RadioI/O

J7 External 5V power supply (see below for polarity).

2.1.1 Power

The board is powered through a common power connector (see figure 2.3(a)). The input power
may not exceed 5.5 V and it is essential that polarity is not reversed (positive connected to gnd).
If in doubt insert a diode in the power cable to avoid glitches.

Mother Board
Flash Memory
LP2989 4M x 16 bit
LED's Fﬁ Spartan3 XC3S400 [
y S
A
NT
o~ | "
Serial [N Radio Board
PROM2 N J L
FPGA Core
wiN T .
T A U nRF2401
) |G
Serial LN A _
PROM1 N R (L=
~ NT
—~ T S
LT] =P
- Cﬁck T2V 2+5v mtck band
— - — | Baseban
V) 48MHz MAX 192R‘ ‘ MAX 192R ‘ AMHz ‘ Bus Processing S':yrs?hu(ees?;gr
——= Exchange — Logic
J— Switches u
N—T UART2 Program Flash A
S5 128 KB s FHE RN
L N p N N T N
[’C T 1
AVR L —
7Y Z 4
(=) Processor - ‘ ‘
Core V]
Sonsrs [———— =
AID (Sh——— NR{"N
\ T NT
SRAM Lowpass Filter
I H
*D’ JTAG
Sensor -~ 3y 25V
senso A Theqa 1261
‘ CIockSMHz‘ ‘ PB ‘ ‘ LED ‘ ‘ 3.0V ‘

Figure 2.1 HogthrobV0 interconnections (figure by Kashif Virk))

-

i’

. .a
- -

XC3S400
FPGA

U SR S

T

RF Antenna

om0 o'tan

PI3B
16213A
204240C

(a) Motherboard (Picture and annotation by Kashif Virk)

® 37 e00000000OOOOOOO 000000000 OOOOOOO
INe00000000000000 HOOGOGOGOGOGOGOGOIOIOIOIOOO
[) J2 o Ja o
C43
E tss r17] [r18] [r22] [R21] [r23] [R2¢]
o
= cat ¢ N[cos 5 g
R31 3@2& R63 u13 ? ut2 S8
[L] = cot Heoooooo
st Ca6 by
m = @)
| || C49 w7
82 C30 R4B .
|
.|i|. N
8 (3] 0
. :
u10
- u (=]
Rl c14 c27 C26 T T T T T TV N T T T T T T T
T
[| Juaanninm, . ®
[L == ££ = ;
b =
_ = = NIRRT I
[| d o= =
| - uis - uz us
N= =
: : IE . ~nE NI o
= =
oo e
::q 00000000000COCOCOCODO
HO000000000000000
o (] =] J2E
oo ||| | ¢ m| = afs|s
om L 1 @ " g
= XXX XXXX)
® un Ty Yy Yy o

(b) Layout

rr 1 I T

1 ¢

T T

Y1 1. Y TN

21

] STAILS JTAGO RST
VCe (3.0 V)

SCK

0.1inch 2mm

(a) J5 power connector (b) J1 programming connector

Figure 2.3 Power and programming cables

21.2 Programming

Connector J1 combines programming interfaces for the ATMega, FPGA and configuration PROMs
(see figure 2.3(b)). Pin 16 has been cut and pin 16 has been blocked to provide a key for the cor-
rect placement of the connector. The two cables are combined into one that is connected to the
appropriated programmers when programming either device.

As depicted in Figure 2.3(b) the FPGA is connected to a Xilinx! programming dongle, such
as Platform Cable USB or Parallel Cable IV. The ATMega is connected to an Atmel? programming
dongle such as the STK-500 or AVR-ISP. connected to

JTAG HTV0]J1 STK-500 (ISP)
1: RESET RST
TDO | 2: FPGA_TDO (JTAGO)
3:3.0V
TDI 4: TDI (JTAG1)
5: SCK SCK
TMS 6: TMS (JTAG2)
7: RXD0/DPI MOSI
TCK 8: TCK (JTAG3)
9: TXD0/DPO MISO
V_ref 10: 3.0V
11: FPGA_RX
Gnd 12: GND
13: FPGA_TX
14: GND GND
15: PEN (only for SPI protramming)
16: GND (Pin cut)

2.1.3 UART

The ATMega and FPGA have a UART connection to the J1 pin header. The voltage levels of
these connections are different to those of a PC-RS232 UART and requires level conversion to

1http: / /www.xilinx.com
2h’c’cp: / /www.atmel.com

10

be connected to a PC.

Some programmer boards such as the Atmel STK-500° feature built in level conversion,
however using a USB-RS232 converter can be convenient. Such a converter is usually built
using a general purpose serial conversion chip such as Prolific PL-2303* or FTDI FT-232, the
inputs on the chip can be connected to the UART output of the platform.

2.2 Pin Connections

End point | AVR Line
J1 PDO SCL

J1 PD1 SDA

J1 PD2 RXD1

J1 PD3 RXD1
LED PD7 LED

Button PE7 BOTTON
PB4 | DONE (FPGA booted)

2.2.1 ATMega-FPGA

Line AVR FPGA
Power_on PD6 High means FPGA on
DONE PB4 B14 (VCCAUX_DONE)
FPGA_CS PC7 P7 (B5_10)
FPGA_INT6 PE6 N5 (B510)
ALE PG2 T5 (B5_10
RD_N (PROM_SEL) PG1 T4 (B510_L01P_5/CS_B)
WE_N PGO T3 (B5_JO_LOIN_5/RDWR_B)
DAO-DA7 PAO-PA7 | P5,N6, M6, B6, N7, M7, T7, B7

2.2.2 ATMega-Radio

RADIO_IO11 used to select RX/TX direction if RXD1 and TXD1 is used as a combined single-
wire UART.

3ht’rp: //www.atmel.com
4ht’rp: / /www.prolific.com.tw
5 http:/ /www.ftdichip.com

11

2.2.3

Line Radio Board AVR FPGA
RXD1 J1, pin 31 PD2 (RXD1/INT2) FPGA_1017
TXD1 J1, pin 32 PD3 (TXD1/INT3) FPGA_1018

CLK (SCK) CLK1 PB1 (CLK) FPGA_IO13
MOSI+MISO DATA PB2+DPB3 FPGA _1014+FPGA 1015
INTO DR2 PE4 (INT4) FPGA 101
. PE5 (INT5) FPGA_104
Radio 100 DRI + (by mistake) PBO (3S)
Radio 101 DOUT2 PB5 FPGA_102
Radio 102 CS PB6 FPGA_103
Radio 103 PWR_UP PB7 FPGA_105
J1, pin 13 FPGA 106
Radio 104 J1, pin 15 PD4 FPGA 107
Radio 105 | DEVICE.CODEO PD5 FPGA_108
Radio 106 | DEVICE_CODE1 PG3 FPGA_109
Radio 107 LEDO PG4 FPGA_1010
Radio 108 LEDI1 PC3 FPGA_IO11
Radio 109 CLK2 PC2 FPGA 1012
Radio 1010 CE PC1 FPGA_100
Radio 1011 NC75Z125 PCO FPGA 1016
Bus Switches
RADIO_MUXS2 | RADIO_MUXS1 | RADIO_MUXSO0
PI13B16213 S2 S1 S0
RADIO_MUXx 2 1 0
AVR - pin PC6 PC5 PC4

12

224 FPGAIO

Line Bank | Pin | Connector Line Bank | Pin | Connector

FPGA_AIOO B6 K1 J2,pin5 FPGA _BIO B7 G2 J4, pin 5

FPGA_AIO1 B6 R1 J2,pin7 FPGA _BIO1 B7 C1 J4, pin7

FPGA_AIO2 B6 P1 J2,pin9 FPGA_BIO2 B7 R1 J4, pin 9

FPGA_AIO3 B6 P2 | J2,pin1l FPGA_BIO3 B7 C2 | J4, pinll

FPGA_AIO4 B6 N3 | J2,pin15 FPGA_BIO4 B7 C3 | J4,pin15

FPGA_AIO5 B6 N2 | J2,pin17 FPGA_BIO5 B7 D1 | J4,pin17

FPGA_AIO6 B6 N1 | J2,pin19 FPGA_BIO6 B7 D2 | J4, pin19

FPGA_AIO7 B6 M4 |]J2,pin 21 FPGA_BIO7 B7 F3 | J4,pin21

FPGA_AIO8 B6 M3 | J2,pin25 FPGA_BIOS8 B7 D3 | J4, pin25

FPGA_AIO9 B6 M2 | J2,pin27 FPGA_BIO9 B7 F1 | J4,pin27

FPGA_AIO10 B6 M1 | J2,pin29 FPGA_BIO10 B7 F2 | J4,pin29

FPGA_AIO11 B6 L5 | J2,pin31 FPGA _BIO11 B7 F4 | J4,pin31

FPGA_AIO12 B6 L4 |]J2,pin 32 FPGA_BIO12 B7 F4 | J4, pin 32

FPGA_AIO13 B6 L3 | J2,pin30 FPGA _BIO13 B7 F2 | J4, pin 30

FPGA_AIO14 B6 L2 |]J2,pin28 FPGA_BIO14 B7 F3 | J4, pin 28

FPGA_AIO15 B6 K6 | J2,pin 26 FPGA _BIO15 B7 G5 | J4,pin26

FPGA_AIO16 B6 K4 | J2,pin22 FPGA_BIO16 B7 F5 | J4,pin22

FPGA_AIO17 B6 K3 | J2,pin20 FPGA_BIO17 B7 G3 | J4,pin20

FPGA_AIO18 B6 K2 | J2,pin18 FPGA_BIO18 B7 G4 | J4,pin18

FPGA_AIO19 B6 J4 J2, pin 16 FPGA _BIO19 B7 H3 | J4,pinl6

FPGA_AIO20 B6 J3 J2, pin 12 FPGA _BIO20 B7 H4 | J4,pin12

FPGA_AIO21 B6 J2 J2, pin 10 FPGA_AIO21 B7 H1 | J4,pin 10

13

Chapter 3

Xilinx FPGA

The FPGA portion of the platform is controlled by the ATMega in a number of ways. The AT-
Mega powers the FPGA on and off and points the radio interface to either the ATMega of FPGA.
The FPGA boot procedure and ATMega dependence is described in Section 4.2 on page 20, the
following describes the features that are independent of the ATMega.

In order to program the FPGA the appropriate compiler must be installed see Section 3.2.

3.1 Hardware Setup

Once the FPGA has been booted it operates independently of the ATMega. It features a large
number of digital I/O lines, buttons, leds, external UART connection and is connected to an
external FLASH. See schematics in Appendix A.

3.1.1 Configuration Flash

On boot the FPGA loads a configuration from the configuration FLASH. The board has one

flash chip mounted and solder pads for an optional additional FLASH chip. Chip selection is

performed by the ATMega (described in Section 4) and is required before booting the FPGA.
The FLASH chip is programmed using Xilinx Impact using the JTAG connector.

3.1.2 Program Flash and ATMega interface

The FPGA is connected to the program flash and ATMega using elaborate interfaces. Using
these interfaces requires including an appropriate controller in the FPGA logic, that we will not
cover here. The detailed FPGA testing procedure?? describes an example of such controllers.

The FGPA is connected to the ATMega by a set of pins that can be treated as either general
purpose 1/O pins or as external memory to the ATMega. This interface uses a set of pins to
alternate between address and data, this is controlled automatically by the ATMega, but must
be programmed accordingly on the FPGA.

Programs for the CPU running on the FPGA can be stored either in block-memory or via
the external FLASH. This requires that the FPGA implements a FLASH controller for storing an
retrieving data from the FLASH.

14

3.1.3 Clock Source

The FPGA has two external crystal clock sources: a 4 MHz and a 48 MHz source. The 4 MHz
clock is always enabled, but the 48 MHz must be enabled by pulling I/O pin R10 high.

3.14 FPGAT/O

A large number of the FPGA I/0 pins have been connected to external connectors either with
a dedicated purpose of as general purpose I/O. An example constrains file with appropriate
naming for the external I/O pins is given in Appendix D on page 50, as well as [4].

Each of the FPGA 1/0 blocks must be supplied with an external power source. The blocks
B0, B1, B2, B3, B4 and B5 (that are used internally on the board) are all supplied on the board
while B6 and B7 must be feed through the connectors]2 and J4 respectively using a jumper.

Block Power Connection
BO Internal (3.0 V) FLASH
Bl Internal (3.0 V) FLASH
B2 Internal (3.0 V) FLASH + FPGA UART (connector J1)
B3 Internal (3.0 V) Radio via J6
B4 Internal (2.5 V) Buttons + LEDs
B5 Internal (3.0 V) ATMega
B6 External through pin 3 of]2 J2
B7 External through pin 3 of J4 J4
B8 Grounded

Buttons and Leds

The FPGA is connected to 3 buttons and 3 leds, the LEDs are active high, while the buttons are
low when pressed. Please note this is a different semantics than other buttons and leds found
on the board. See Chapter 4.

FPGA UART

The FPGA has two pins connected to the common programming connector J1 intended for use
as a UART. The two pins are F14 and F15, these pins are part of the I/O block B2 resulting in an
3.0 V level on these two pins.

3.2 Software installation

To program the FPGA the ISE tool-suit from Xilinx is required. A full version supporting all
Xilinx devices or a limited “WebPack” version only supporting smaller devices can be down-
loaded. The WebPack should be sufficient for our device.

ISE WebPack is free of charge, but you are required to register with Xilinx in order to down-
load it. At the time of writing the latest version (8.1i) is available for Windows, Linux and
Solaris. The Windows is self explanatory, while the Linux installtion can be a bit tricky.

3.2.1 ISE 8.1 for Linux

Use the provided installer (either web-install or full download), this will provide you with a
Xilinx directory containing the tools. The installer also compiles and installs drivers, which

15

requires you to run the installer as root.

The installer is provided for Red Hat Linux, but it should work perfectly on most other
distributions, except for the driver setup scripts. The installer contains scripts to setup the
drivers at boot time and these are unlikely to be setup correctly outside of Red Hat.

The installation script will also prepare an environment settings that you will need to load
to start the tools. Depending on your shell this will look something like this:

source ~/Xilinx/setting.sh

USB Cable Drivers
The drivers provided by Xilinx at the time of writing only support Linux kernel version prior
to 2.6.13. For more recent kernel versions you need to obtain one driver from from Jungo.com
directly and one from the Xilinx distribution.

For recent kernel versions get the “driver development kit” and compile this. For gcc ver-
sions 4.0 and up find the macro “KBUILD_STR” in the Makefile and remove it.

tar zxfv WD8021ln.tgz

cd WinDriver/redist

./configure —-—-with-kernel-source=/usr/src/linux-headers-2.6.15-26-386
make

For udev enabled platforms a udev rule must be created for the driver to be loaded. Create
audevrulein /etc/udev/rules.d for example 10-xilinx.rules

BUS=="usb", SYSFS{idVendor}=="03fd", SYSFS{idProduct}=="0007",\\
RUN+="/sbin/fxload -v -t fx2 -I /usr/local/Xilinx/bin/lin/xusbdfwu.hex

Parallel Cable Drivers
The drivers for the parallel and USB cables are installed as part of the installation procedure.
If this should fail or if you upgrade your kernel you can download the drivers from one of the
following locations depending on your kernel version. Unpack theses archives and build the
drivers with make:

ftp://ftp.xilinx.com/pub/utilities/fpga/linuxdrivers.tar.gz
For Linux 2.6
ftp://ftp.xilinx.com/pub/utilities/M1_workstation/linuxdrivers.2.6.tar.gz

The driver installation creates two scripts to load the drivers and setup the required device
nodes. However the permissions of these device nodes are set such that only root can access the
cables.

/lib/modules/misc/install_windrvr6 windrvré
/lib/modules/misc/install_xpc4drvr
chmod 777 /dev/xpcd* /dev/windrvr6

Pace
Pace (the constraints editor) as of version 8.1i unfortunately suffers from a few quirks that need
to be taken into account. First of all make sure that the library 1ibmoti£3 is install, secondly
make sure to setup your DISPLAY DISPLAY=:0

16

3.2.2 ModelSim

In addition to ISE it might be useful to simulate a project for debugging. For this purpose Xilinx
provides ModelSim Xilinx Edition-III free of charge!.

Don’t forget to select the free ”Starter” version when installing. And be sure to select VHHDL
and not Verilog. The license file is then requested with a web link in the start menu.

3.3 Building a Project

Building the project can be built using the Xilinx ISE graphical environment or it can be built
using the corresponding command line tools. Either way the two methods go through the same
steps. An example make file has been provided as Appendix E.

Along with the platform two example projects have been provided: An 8051 core Oregano
and an AVR core Nimbus

3.3.1 Oregano

Oregano is an open source, freely available 8051 core? adapted to the Xilinx environment. It is
a straight forward 8051 implementation with a few external peripherals such as UART.

Boot Loading Programs

Provided with the Oregano 8051 is a boot loader example design (RAMLOAD) this program
accepts programs from the UART and stores them in the code memory space of the 8051. This
boot loader resides in the internal memory (ROM) of the 8051 and is booted as the first program.
At start-up the boot loader emits a “=" and expects a program to be uploaded once the
upload is complete it emits a “:” and waits for a command to start executing further[1].
Send a “/2000” to start the program at address 2000

If the address is accepted it sends a “@” before jumping to the address

Uploading Programs

Building programs for oregano is the same as for any other 8051 core. Compile the program
using an 8051 compiler such as Keil PK51% and upload the program to the FPGA board using
the UART:

cat hathat.hex > /dev/ttyUSBO
echo —en "/2000\r" > /dev/ttyUSBO

1http: / /www.xilinx.com/ise/optional_prod /mxe.htm
2http: //www.oregano.at/
Shttp:/ /www.keil.com

17

Chapter 4

ATMega

In this section we will concern our selves with programming the features of the HTVO0 board
dealing with the ATMega. We will present programs them in C (see Appendix C) and construct
TinyOS interface to control the features (see Section 4.4).

4.1 Hardware Setup

The ATMega is powered on and boots a program from FLASH as soon as the board is powered
up. It is then up to the ATMega program to turn on a, power up the FPGA and so forth.

The ATMega execution is controlled by a set of fuses before booting the first program these
fuses must be set to match the configuration of the chip.

4.1.1 Fuses

The internal fuses of the ATMega change certain properties of the ATMega: available clock
sources, external interfaces (ISP, JTAG, etc.), and more. These settings are pre-programmed and
cannot be altered by the ATMega. Besides controlling the functionality of the ATMega, the
fuse settings can affect power consumption. In our case the FPGA is by far going to be the
dominating factor, making this aspect less important. Consider for example the JTAG interface
(on port-F) - this peripheral could be disabled to make sure that is does not consume any power,
on the other hand we are not sure how this platform is going to be used, so disabling JTAG
might be a problem.

A set of fuse settings is provided in Table 4.1 that enables most features, sets up clock sources,
brownout detection, etc. The setting are programmed using AVR Studio for Windows or using
uisp:

uisp -dserial=/dev/ttyUSB0O -dpart=ATmegal28 -dprog=stk500

——wr_fuse_1=0x8e —-wr_fuse_h=0x00 --wr_fuse_e=0xff

4.1.2 ATMegal/O

In addition to the control pins for the FPGA, the A/D pins of the ATMega are connected to the
J3 pin header. Furthermore the ATMega is connected to a LED and a button.
See schematic in Appendix A for further information.

18

Extended fuse O0xFF M103C OFF, WDTON OFF
High fuse 0x00 OCDEN ON, JTAGEN ON, SPIEN ON, CKOPT ON,
EESAVE ON, BOOTSZ1 ON, BOOTSZ0 ON, BOOTRST OFF
Low fuse 0x8E BODLEVEL OFF, BODEN ON, SUT1 ON, SUT0 ON
CKSEL3 OFF, CKSEL2 OFF, CKSEL1 OFF, CKSEL0 ON

Table 4.1 ATMega fuse settings (see [2, p.289] for further). The semantics of the fuse settings are
reversed, meaning that a logical 1 corresponds to “off” and 0 to “on”.

Location Component | AVR pin Active
Radio D1 PC3 Low
Radio D2 PG4 Low

Motherboard D1 PD7 High
Motherboard B4 PE7 High = pressed

Table 4.2 LEDs on the motherboard and radioboard

Button and LED Interface

The platform provides 3 LEDs connected to the ATMega: one on the motherboard and two on
the radio-board. The semantics of the LEDs on the radio and motherboard are different (see
Table 4.2). In addition the B4 button is connected to the external interrupt 7.

External Interfaces

Analog, UART1/UART?2, ISP

4.1.3 Radio Control

Selecting whether the FPGA or the ATMega uses the radio is done by two bus switches. These
connect the radio either to the ATMega or to the FPGA. The two switches act as a cross-bar
switch interconnecting either of 4 buses (see Figure 4.1):

Al reset-value
A2 the radio (RF)
B1 FPGA

B2 ATMega

The relevant states of the MUX interconnect the buses as follows:

RESET VALUE FPGA
Al O/ O Bl
O—
00
RADIO AVR
A2 O/ O B2

Figure 4.1 Bus switches (Figqure by Martin Hansen)

19

AC‘ I

S |1)C-|_4|°°

o e -
ATMega % FPGA

Figure 4.2 FPGA to ATMega interconnect. Each I/O pin of the FPGA is connected with two diodes
for Electro-Static Discharge protection[5].

RF-AVR (1): | A2-B2, A1-B1 RF(A2) to AVR (B2),
Reset(A1) to FPGA(B1)

RF-FPGA (2): | A2-B1, A1-B2 RF(A2) to FPGA(B1),
Reset(Al) to AVR(B2)

The bus switches are controlled using 3 lines (RADIO_MUXO0/1/2) connected to AVR pins
PC4/PC5/PC6. The two states are selected are selected as follows:

AVR pin PC6 | PC5 | PC4
RADIO_MUX_Sx 2 1 0
RF-AVR (1): 1 1 0
RF-FPGA (2): 1 1 1

4.2 FPGA Interface

The ATMega and FPGA are interconnected with the external memory interface of the ATMega
and a few control signals. The external memory interface must be configured and enabled from
the ATMega in order to be functional (see below).

As described earlier the ATMega is responsible for booting and selecting a configuration
ROM for the FPGA. Let’s go over the steps to boot the FPGA.

4.2.1 FPGA Power Control

The power supply to the FPGA is controlled by the ATMega. This means that in order to be
functional it must first be powered up. Furthermore great care must be employed regarding the
state of the interconnect-signals when the FPGA is powered off in order to prevent the FPGA
from shorting the pins of the FPGA to ATMega interface to ground.

The internal circuitry of the FPGA requires that all pins connecting the FPGA and ATMega
must be tri-stated (configured as input) when powering the FPGA off (see Figure 4.2).

When the On signal is disabled the supply voltage of the FPGA is connected to ground. If any
of the pins of the ATMega are driving the line (that is configured as output) a direct connection
from supply to ground has been created. This connection will draw a current and in worst case
overloading and destroying the FPGA. It is thus essential that the pins of the ATMega is put
into a state where they are unable to drive a current over the line (tri-stated).

4.2.2 FPGA Control Lines

The FPGA control is performed by the following lines, in short the FPGA has to be supplied
with power and a prom in order to boot. The prom selection logic is probably broken and even

20

MCUCR &= "_BV(SRW10); // No wait-states

XMCRA = 0; // No wait-states

XMCRB = _BV (XMBK) | _BV(XMMO) | _BV(XMM1l) |_BV(XMM2) ;
// 32 kB address space w. bus-keeper

MCUCR |= _BV(SRE); // Enable external mem

Figure 4.3 Configure and enable external memory

if two proms are mounted it will probably not be possible to select the 2nd prom. In any case
the line will be controlled by a pull-up resistor and leaving it will select the available PROM. In
the following we will describe how to turn the FPGA on and off see Appendix C for examples
in C.

In addition to the control lines below the interface also contain the data and address (DA)
lines:

ALE, RD.N, WEN External memory interface of the ATMega. This must be enabled to be
functional (see above).

PROM_SEL RD_N (on the ATMega) doubles as PROM_SEL which selects which PROM to use
during start-up of the FPGA. This signal should be pulled low to enable the PROM that is
mounted on all boards. Even if the other PROM is mounted it might still not be possible
to select it (see Appendix B).

FPGA_CS is general purpose I/O pin despite the name.

FPGA_DONE reports the successful start-up and loading of a configuration from a PROM. If
the PROMS are empty the DONE signal will not be generated. Meaning that the ATMega
cannot wait for the DONE signal if the PROM is empty!

power_on Powers up the FPGA by turning on the voltage converters for the FPGA.

FPGA Power On Procedure

Booting the FPGA is done by: (optionally) pulling PROM_SEL high, i) pulling power_on high.
This causes the FPGA to turn on and load a configuration from the selected PROM. If this is
successful the FPGA will set FPGA_DONE high.

FPGA Power On Procedure

Turning off the FPGA is done by first setting the interface pins to input and then powering off
the device. If the external memory interface is enabled the pin direction is controlled by this
unit and external memory must be disabled.

To power off: i) disable external memory ii) set all lines as input iii) set power_on low.

Enabling External Memory

The external memory of the ATMega must be configured and enabled for this peripheral unit
within the ATMega to be operational. In addition the FPGA must contain a corresponding logic
block. See Figure 4.3) for a C example.

21

typedef struct \{

unsigned int rx_en 1; // RX or TX operation
unsigned int rf_ch 7; // Channel frequency
unsigned int rf_pwr 2; // RF output power
unsigned int xo_f 3; // Crystal frequency
unsigned int rfdr_sb 1; // RF data rate (1Mbps requires 16 MHz crystal)
unsigned int cm 1; // Communicaton mode (Direct or ShockBurst)
unsigned int rx2_en 1; // Enable two channel receive mode
//high order bits
\} __attribute__ ((packed)) gen_config_t;

typedef struct
gen_config_t general_config;

unsigned int crc_en:1; // Enable on-chip CRC generation/checking
unsigned int crc_1:1; // 8 or 16 bit CRC
unsigned int addr_w:6; // Number of address bits (both RX channels)
uint8_t addrl[5]; // Up to 5 byte address for RX channel 1
uint8_t addr2[5]; // Up to 5 byte address for RX channel 2
uint8_t datal_w; // Length of data payload RX channel 1 (bits)
uint8_t data2_w; // Length of data payload RX channel 2 (bits)
//uint8_t test[3]; // reserved for testing — no need to send
// High order bits

__attribute__ ((packed)) shock_conf_t;

Figure 4.4 Configuration words for nRF2401. The upper part show the general configuration word
the lower shows the additional options for shockburst mode.

4.3 Radio Interface

The radio is connected to ATMega through a digital bus (SPI) that is used both when using the
built in MAC layer of the radio (burst mode) or when transmitting bits directly (direct mode).

In either mode the configuration details of the nRF2401 is setup by uploading a configuration
(or control word) to the device (see Figure 4.4). The configuration sets parameters such as
receive/transmit mode, data-rate, etc. The control word is split in two parts one common part
for direct-mode and ShockBurst and one only required for ShockBurst.

In the following we describe how to control the bus and how to setup the various modes of
operation.

4.3.1 Mastering SPI

Communicating with the nRF2401 takes place over a three-wire serial interface not unlike SPI.
The ATMegal28] does not have such a peripheral, but the SPI unit is close enough to be useful.

In order to use the SPI peripheral of the ATMegal28l it has to be misused slightly. The
SPI interface is a four wire interface consisting of: chip select (CS), clock (CLK), master send
(MOSI') and slave send (MISO?). At each clock tick on the CLK line 2 bits are exchanged: one
on the MOSI line and one on the MISO line. The ATMega128] has one register for each of these

IMaster Output Slave Input
ZMaster Input Slave Output

22

lines — one outbound register and one inbound register. A transmission is initiated by putting
a byte in the outbound register, starting the clock generator. Once the transmission is over the
received data will reside in the inbound register.

In our case, the MOSI and MISO lines are combined since we never receive data from and
transmit data to the nRF2401 the same time. However it is still possible to utilize the SPI inter-
face of the ATMegal28l. Sending works as described above, but in order to receive data from
the nRF2401 we need the ATMegal28l to start generating a clock without interfering with the
signal from nRF2401. To do this we start the transmission of the byte “0x00”. Once the trans-
mission of the “0x00” byte is completed, the value from the nRF2401 has been shifted into the
inbound register.

The SPI peripheral can be operated either in a polling mode or using interrupts. Using the
method above complicates the interrupt handling. Usually an interrupt is generated when a
transmission is complete, however when we are trying to clock data out of the nRF2401 this
must be handled properly.

The nRFSPI abstracts the bit level operations of communicating with the nRF2401, but al-
lows full flexibility. ShockBurst and direct-mode operations communication is possible using
this component.

4.3.2 SPI Master Mode and PB0

By mistake, PBO (SS not slave select) is connected to DR1 in the final platform, PBO will be lifted
off the board and, thus, be completely irrelevant, however in the following we describe the
consequences of this mistake.

The DR1 signal is driven by the nRF2401 and the SPI peripheral of the ATMega is influenced
by the state of this signal - particularly in SPI master mode. When communicating over the SPI
bus the master shall generate a clock signal. The nRF2401 does not have a clock generator for
this signal, thus the ATMega will always be designated as the master.

For the short burst mode, DR1 will toggle when data is ready. In direct mode, DR1 will be
pulled low. For master mode of SPI peripheral, both of these are wrong. In the master mode,
55 is disregarded only if this is set to output (see [2, p.166]) - in this case both the ATMega and
nRF2401 will attempt to drive the line. If PBO is set as input (still, while the SPI is in the master
mode) PBO must be held high by an external source for the SPI bus to operate, which we cannot
guarantee is performed by the nRF2401.

It is, thus, important that we are able to ignore the §S value.

4.3.3 ShockBurst Mode

The Shock Burst mode provides a built in CRC check, MAC protocol, etc.The radio control data
and data packet are sent via SP1.

Shock burst is enabled by uploading a special configuration word to the device (see Fig-
ure 4.4). From here on the radio handles the address match and CRC check and only returns
valid packets. A shock burst TX could look like this:

1. AVR enbles the SPI bus as a master

2. AVR powers up the radio and waits for it to be ready

3. AVR sends a shock burst mode configuration to the nRF2401
4. AVR sends a packet with packet header to nRF2401

23

sendDone

FPGASelProm :M

FPGAPowerDown %
= FPGAPowerOn sendShockConfig ('7/1)
= radioMuxToAVR rxMode lav]
S [T rdioMuxToFPGA | 3> [txMode ~
A | enableButtonInt g sendPkt
g disableButtonInt ,{_.':‘
= FPGAFlashBootOK
3 : 2. |L samplePort

buttonInterrupt g dataReady -HPLADC

FPGAlnterrupt set
get oet On

Figure 4.5 TinyOS components

4.3.4 Direct Mode

It should be possible to use the SPI unit to clock data in or out of the nRF2401. In order to do this
the bit stream must be constant and without jitter. Any holes in the stream would be directly
translated to the air. Eg. if the SPI unit is waiting for more bit the radio would stall. A direct
mode session would look something like the following:

1. AVR enbles the SPI bus as a master
2. AVR sends a direct mode configuration to the nRF2401

3. AVR flips CE, CS appropriately and the nRF2401 enters the active mode
The PBO line will now be driven low constantly by the nRF2401 and has to be ignored.
For both Tx and RX

4. Tt should be possible to clock data in and out of the nRF.

44 TinyOS

To span across multiple platforms easily TinyOS introduces the concept of platforms. For each
platform implementations are provided for certain low-level interfaces used by higher level
applications (one can think of these as drivers in a traditional operating system). By sharing
interfaces across platforms an application can easily be compiled for multiple platforms. In
our case we have implemented the HogthrobV0 platform, but for testing we are also using the
BTnode2 platform.

4.4.1 Porting TinyOS

The core of TinyOS is very slim — it contains the simple thread model of TinyOS and little more.
Subsequently, porting TinyOS is trivial, but in order to access the peripherals of the HogthrobV0
platform we must implement corresponding software components.

We implement nRFSPI and htV0Control to access the radio transceiver, the FPGA, the
bus-exchange switches, and the push-buttons. For compatibility with existing TinyOS compo-
nents (such as IntOutput, IntDebug, etc.) the LEDs are controlled through the Leds com-
ponent. The component htVOControl provides control of the remaining components of the
HogthrobVO0 platform: FPGA, buttons.

24

In addition to this the ATMegal28] based Mica variants and BTNode2 share the common
meta platform avrmote — this platform provides only functionality related to the ATMega128l.
The HogthrobVO0 shares the same processor and we reuse as many components as possible.

4.4.2 FPGA, ATMega Interconnect

The FPGA is connected to the ATMegal28l through the external memory interface — from the
ATMega the FPGA is merely memory mapped to a special portion of memory.

The htv0Control components contains abstractions to enable and disable the external
memory interface. In addition to the memory interface the two are connected with an inter-
rupt line from the FPGA to the ATMegal28l, ht VOControl provides a TinyOS event for this
interrupt.

This component alone does not provide the means for communicating between a proces-
sor core in the FPGA and the ATMegal28l. This will have to be constructed as an additional
component.

4.4.3 nRFSPI

The nRFSPI component work as a wrapper for the functionality of the nRF2401 and provides
a packet level interface to the byte level SPI peripheral of the ATMegal28l. The component is
shared among the platforms that we are working with (BTNode2 and HogthrobV0). The nRF-
SPI component is not a MAC, it assists in communicating with the nRF2401, but does not han-
dle collisions and retransmissions or any other facilities that one would expect from a MAC.
Furthermore, it does not handle the timing required when switching operation mode of the
nRF2401, this will have to be implemented in an additional component.

The interface of nRFSPI abstracts the access of the nRF2401 by providing events and com-
mands for common operations and providing data structures with human readable field names.
The interface is shown in Figure 4.6 and the two data structures used by the interface is shown
in Figure 4.7.

TinyOS does not provide any form of memory management. This means that the programs
will have to keep track of the used and available space. The two common approaches to this in
TinyOS are transfer of ownership and buffer trading[3]. Transfer of ownership implicitly transfers
the ownership of a buffer when it is passed from component to component. It is up to the com-
ponents to ensure that only the right one modifies it at the right time. Buffer trading denotes the
process of giving a buffer to a component and getting one back. Using the data structures en-
ables the buffer trading type of memory management — trading chunks of equal size. The two
types of memory management are not mutually exclusive and can be used to the convenience
of the programmer.

In the nRFSPI interface the event dat aReady is an example of buffer trading while rxMode
is an example of transfer of ownership.

25

interface nRFSPI {
command void enableSPIMaster () ;

/% Set up the nRF2401 in rx mode and provide a buffer for reception
+ The buffer must be atleast as big as ADDR_LEN and PAYLOAD_LEN
*
* The buffer is given back when the radio is set to txMode
*/
command void rxMode (nRF_pkt_t= pkt);

/* Set the nRF2401 in tx mode and give back a buffer given in rxMode
* of NULL if no buffer was given.
*/

command nRF_pkt_t=* txMode () ;

/* Send a payload of "pkt" to the recipent in "pkt".
*
* @return SUCCESS if no byte were in transit or a buffer
* was available.
*/
command result_t sendPkt (nRF_pkt_t =xpkt);

command result_t sendShockConf (shock_conf_t =*conf);
command result_t sendBytesRev(uint8_t «first, uint8_t =xlast);
async event result_t sendDone();

/* Propagates data from the air to an application.
* channel dennotes the transmission channel (1 or 2)
« last signals the end of the current packet (DR1/DR2 low)
*/
async event nRF_pkt_tx dataReady (uint8_t channel, nRF_pkt_tx pkt);

/% Non-interrupt controlled interface x/
command void send_sync (uint8_t data);

Figure 4.6 The TinyOS interface of nRESPI

typedef struct {

unsigned int rx_en 1; // RX or TX operation
unsigned int rf_ch 7; // Channel frequency
unsigned int rf_pwr 2; // RF output power
unsigned int xo_f : 3; // Crystal frequency
unsigned int rfdr_sb 1; // RF data rate
typedef struct { unsigned int cm 1; // Direct/ShockBurst
uint8_t payload[PAYLOAD_LEN]; unsigned int rx2_en 1; // Two channel receive
uint8_t addr [ADDR_LEN]; //high order bits
}__attribute__ ((packed))nRF_pkt_t; } __attribute__ ((packed)) gen_config_t;
(a) Data packet structure (b) Common configuration structure

Figure 4.7 Two data structures for the nRFSPI interface.

26

Chapter 5

Testing

The goal of the following tests is to ensure that all the external interfaces (pin headers) and the
on-board connections to the LED’s, Push Buttons, and all the chip-to-chip interfaces are work-
ing properly. The tests are to be performed one time only for each board ensuring a uniform
assurance for each board. We will focus on the chip-to-chip interfaces and assume that unless
we detect errors with the following tests the components are working.

We will be assuming that no X-ray of the board will be performed meaning that there might
be short circuits on the boards that we need to detect. However, such a short could be on the
pins not connected to the pin headers or other chips. We will not be able to detect such errors
and they will not influence the functionality of the platform.

Furthermore the tests are going to ensure that component mounting was accurate, and that
no mistakes were made during post production modifications.

In the following we will describe the ATMega tests in detail and briefly cover the FPGA
testing (FPGA testing is covered in detail in [4]).

5.1 AVR Testing

The test programs for the AVR will be written in the TinyOS and shared via the subversion
repository at: https://svn.hogthrob.dk. If possible, the tests will be carried out using the on-
board LED’s and Push-Buttons. Before the test is started, the fuses MUST be programmed.

The upload port of the AVR will be tested first by uploading and downloading test patterns
to the flash. Each of the following tests will be carried out by a single program uploaded to the
AVR. The tests are carried out by connecting the board to a terminal emulator on a PC via the
serial interface and an RS232 level-converter.

The tests are:

Echo Echo the typed character back to the user.

LED Turn the LEDs on motherboard and radio-board.
Button Notify a Push-Button press to the UART

ADC Print the value of the ADC to the UART

FPGA—AVR Write patterns to the entire address space of the interface and report status via
the UART

27

nRF2400 Set one node as RX and one as TX and try to make them communicate

The tests should be performed in the following order:
The test sets the Bus-Switches (MUX) to point towards the AVR at boot-up. If this fails, the
UART1 LED’s will not function.

5.1.1 Fuse programming

The fuse setup particular features of the ATMega (see section 4.1.1).

1. Use UISP to program fuses

5.1.2 Program upload
Test the program upload port (AVR-UARTO0, AVR—PEN).

1. Test that the PEN (program enable) and the UARTO0 (RXD0/RXD1) pins are connected and
working.

2. Connect the HoghthrobV0 comm _port to the STK500 ISP.

3. Upload anything to the Flash and read it back using USIP (on Linux) The test patterns are:
0’s, 1’s and alternating 1's and 0’s.

4. The uploaded and the downloaded programs should be the same.

A simple way to test this is simply to test this is to supply uisp with the “—verify” option:
uisp --verify -dprog=stk500 -dserial=/dev/ttyUSB0 -dpart=ATmegal28 -v=2 --erase
—-upload if=build/hogthrobV0/main.srecb

5.1.3 ATMega UART1
Test the connection to the secondary UART (AVR-UART1)

1. Test that the Rx and the Tx lines are connected to the Pin Header (Radio_IO). Test the
buffer (NC75X125) and the control line (Radio 1011 — PC11)

2. Connect RXD1/TXD1 on the Radio Connector to the PC via RS232 level- converter (on
STK500). Upload the test program to the AVR. Start MiniCom terminal emulator on PC
(with Linux) or a similar program with Windows (Hyperterminal). Local echo should be
disabled in the terminal emulator. The control line for NC75X125 is set "High’ and the
resistor R37 is unmounted (if mounted).

3. Each typed character should be echoed back immediately.

514 ATMega LED
Test connection to LEDs (D0 on motherboard and D0/D1 on radio board)

1. Testthatthe LED’s on the MB (LED — PD?7) and on the Radio Board (RADIO_107/RADIO_108
— PC3/PG4) are working

2. Start the blink test in the test program
3. See the LED’s blinking

28

5.1.5 ATMega push-buttons
Test the ATMega push button (AVR - Push-Button).
1. Test that the on-board Push-Button is connected to the AVR (PE7)
2. Upload the test program (the Push-Button test is enabled by default)

3. For each Push-Button press, the UART should report this.

5.1.6 ATMega radio connection and bus switches

Test connection to the radio, this connection goes through the bus switches (AVR-nRF). Test that
the Radio Transceiver is able to communicate through the connector to the Radio Board. Test
the MUX and the MUX-control lines (RADIO_MUX0/1/2 — PC4/PC5/PC6).

1. Use 2 nodes. Connect the Radio Boards to the MB. Upload the test program.

2. The test program has a one-way test (the receiver tests the CRC). It sets the the MUX to
connect the radio and the AVR. Start by enabling one as an RX, and then enable the other
asaTX

3. Assoon as the TX-node is enabled, the RX-node should start blinking the LED’s and print
status on the terminal.

5.1.7 ATMega sensor connector

Test the external sensor connections. These connection can function either as analog or digital,
we only test their analog mode.

1. Test that the ADCO-ADC? connections to J3 are working properly.

2. Connect all the sensors to ground (pin 1-8 to pin 15) and to AREF reference voltage (pin
1-8 to pin 9), respectively.

3. Start the ADC printer on the node

4. With ADC input grounded, all should be 0 and with all set to AREV they should be
OxFFFE.

5.2 FPGA Testing

The FPGA will be tested using a simple VHDL state machine. This state machine will input
and output some registers - continuously stimulating the inputs and the outputs. The tests
will be carried out using the on-board LED’s and connecting a logic-analyzer and capturing the
waveforms. The Logic Analyzer can be replaced with the Xilinx ChipScope. FPGA testing is
further documented in [4].

Required Programs:

AVR FPGA-bootup-and-MUX-selector, memory write-read-back-test
FPGA Xilinx ChipScope core, AVR-SRAM interface, FPGA—FLASH interface

29

5.2.1 PROM Programming (Upload)
Test JTAG and PROM-lines.

1. Connect JTAG and upload a configuration.

2. Read it back and see that the two are the same.

5.2.2 FPGA Boot (FPGA control-lines)
Test that the FPGA < AVR control-lines are correct and that the FPGA boots.

1. Upload the AVR program.

2. AVR sets the correct PROM () and powers up the FPGA (power_on) - FPGA loads the
program from the PROM. Set PROM_SEL (It will be pulled-up now) AVR wait for the
DONE Signal. Turn on the LED’s.

3. After applying power, the AVR-connected LED (on the MB) should turn on after “a while”.

5.2.3 FPGA—LED, Push-Button
1. Test the LED and the Push-Button connections using the Xilinx ChipScope

2. Upload FPGA configuration and set the LED values in the ChipScope. Toggle the Push
Buttons and see the changes.

5.2.4 FPGA—Sensor Board (Digital Connectors), FPGA—nRE FPGA—UART
(Serial Interface)

All of the following tests can be performed either manually using the Xilinx ChipScope or by
writing a simple FPGA configuration that automates the procedure.

1. Test that the connections to the pin headers are working correctly using the Xilinx Chip-
Scope.

Connect both the Digital Connectors with each other (J4 to J5).

If the Radio Transceiver is working with the AVR, we just need to test that the FPGA con-
nections to the Radio Connector are working. Connect the pinson]1: 1,3,5,7,9,11,13,15—17,19,21,23,25,27,2
After booting the FPGA, the AVR sets the MUX and the Tri-State Buffer.

Short circuit Rx and Tx. Use the Xilinx ChipScope such that whatever you send, you get
back.

2. Upload FPGA configuration with the Xilinx ChipScope. Generate test patterns on each of
the I/O pin groups and check that they show up at the inputs. The patterns include 0’s,
1’s and alternating 1 and 0.

See that the pattern from J4 shows up at J4, Rx—Tx and the J1 pin groups.
To test the LED’s, toggle the values in the Xilinx ChipScope

30

5.2.5 AVR—FPGA
Test that all the data and the control lines are working and that the FPGA can interrupt the AVR.

The FPGA is connected to the AVR using the external SRAM interface (p. 26 in the AVR data
sheet). Reading and writing to a register in the FPGA will test all the pins (AD, ALE, RD_N,
WE_N). The latch and the register are implemented in the FPGA and the AVR writes and reads
this register.

Since only the lower 8 bits of the address are connected, the high bits of the address space
must be disabled by setting XMM0=XMM1=XMM2=1. The XMEM interface will be configured
to no wait-states, XMCRA=S5RW10=0. The bus-keeper is enabled by setting XMBK=1.The exter-
nal memory interface is enabled by setting SRE in MCUCR.

The FPGA is memory-mapped to the addresses 0x1100-0x90FF (both inclusive). The test
program will write and read back a series of patterns (0’s, 1’s and alternating '1” and '0’).

FPGA_CS is untested!!

1. Upload the test program.
2. Boot the FPGA and wait for the DONE signal.

3. Start the test program and wait for it to report success or failure.

52.6 FPGA—FLASH

Make sure that the connection to the on-board flash is working. We don’t need to test that the
FLASH is working. The FPGA implements a simple serial interface to the flash and uploads
some data and tries to read it back.

1. Try all 1’s and all 0’s, and alternating 1’s and 0’s.

31

Appendix A

Schematics

32

6 o | weus ETRTECTTRY

002 01 dunr ‘Aepsinyl_:sjeq

L uasueH uep uasueH ue <00a> | ev
Aoy £q umeig Je0uIBuUT Jaquiny Juewnoog | ezis

anpow olpes qoyiBoH NN I
0,08€Y.8 Gv+ 0018819€ Sp+ BuUOUd

spewusq spewusq
63 05z8-Ma Aalea 00sz-va
9 lensebeasen £'9l [oA sussqooer ey

S/V salbojouyod] Ol

10}08UU0)OlpeY

[z:olxn”olavy

1amod

uo semod

uo Jemod

1amod

[1L:0lor olavy LR

=}
=z
O
o
4
O

oy

ww 'L HA
ELHN

ww gL HN

ww 'L HA
CLHA

ww gL HN

=)
I
=

ww gL HA
LLHW

ww gL HN

5

©
I
=

5

ww L HN

~
I
=

5

wwe HN

©
I
=

ww gL HN

5

0
I
=

WS'Z dN

5

3
I
=

WS'Z dN

5

®
I
=

WS'Z dN

pod wwod

5

N
I
=

WS'Z dN

3

[81:0l01"vOd4

- _0 [81:0l01"vOd4
[81:0l01 ¥Od4

10}03UU0DOlpEY

— [1z:0lolv vodd
[1z:0lolY vOdd

[Lz:0loig vod4

[Lz:0loig vod4

SO_VOdd
9LNI VO

[s:0]a31"NoLLO®

LHI

=

T8ziebow]y

10J08UL00” [RWIBIXT

[1z:0lov vodd
[Lz:0loig vod4

Uepeds xuli

[2:0lva

[2:0loav

uo ™ semod

N3d
0da/oax.L
1da/oaxy

NoLLOg
aIl

1383y

T8ziebewly

10}03UU0O” [ewaIXg

0da/axLl 13s3y
Ida/oaxy

pod” wwod

[s:0]a37 NoLLOg

aoepau|

[s:0la31"NOLLOE

ooepRIU|

0 dNOdHINWOD

v

6 07 jeeus LR E Y 7002 0L SUn{ Repsiny]_1eq
L uasueH uniep uasuey uiep <%0Q> ev
AOY Aq umeig Jeauibug Jaquin juswnooq | azis
onewyos|pIEOGejOW\GIEMPIRY (BWENSIIS
sinpow olpes qo1BoH WA Em
0L0BEVL8 Sh+ 0018819E b+ -auoud
Hewueq ewusq
b3 052840 Aalen 0052-3a
9 feniabeasen £'94 oA)
anov ano
S/V selbojouyoa] Ol °
4uoo} 4ugol dnzz
4ugo} anzz 60 8€0 €0
9£0 [3)
AOEV A0
[11:0loi"olavy
ane ano
4dg) 4dg)
(] €0
ZHI 00008
Ovsg-I8ziebeuly
N_3m| e 09d (M) ZIVIX (7 X
N ay | 19d (@) LVLY (7
ERl w5 22d (37V)
37 £9d (20SOL) (21) LQd (- an
ww" w_m__«w 51 ¥od (1/10S0L) (f“ 9ad (¢ o semod
150X) Sad _
- - OF
[z:olXnW~olavy > SO ¥Od4 > £0d (S1v) (10) vad SOOIV
2 190d (r1v) (ELNILAXL) £0d [1axy YOl olavd
cXO_OIQV: o7 S9d (ELv) (ZLNI/LOXY) 2ad Laxy
LXON_OIdy se—| ¥0d (21 (LINIVas) 1ad (g7 ? vas
OXON_OIaY g £0d (1Y) (0LNI119S) 0ad [108
w w « v 20d Mo_w: P)
10d (6Y) 0100/200) L8d
0101 0IQy e 09d (8v) (8100) 98d [T £0[OIQva
LLOI-olavy (¥120) 58d [or 0I_0IQVY N ML
] Lvd (2av) (020) vad [1Ol 0IqvY < Janog 4 954
LY <5 9vd (9av) (0SIN) €8d osIn
oY 55 Svd (sav) (ISOW) z8d (T ISON
SV 3 vvd (vaV) (408) 1ad (7 MOS
o'l g £vd (eav) (sS) 08d |7
£V 7] 2vd (eav) 001 olavy =
——0 e 1vd (1aV) (ZLINIEON) £3d | NOLLOS
|DB|H| ovd (0av) (9LNI/E1) 93d [9LNI VOd4
[£:01VQ S ova (SLNI/OE00) S3d
3 /dd (1IQ1/£0aV) (7LNI/8EQ0) ¥3d | U
QY. <z 94d (001/90AV) (INIV/VEQO0) £3d = < [L:01LNI
00y g5 S4d (SWL/S0aV) (ONIV/0X0X) 23d |+
elei2 o v4d (IoLryoav) (0ad/oaxy) 13d | 0da/oax.L [L:0INIY
QY €4d (€00v) (lad/oaxy) 03d 1da/oaxy
20y e 24d (zoav)
20y 05 t3d (1oav) N3d | N3d
oWn« Tg— 04d (00av) 1353 [1353y
[z:0loav| >
2 000 Z<<
m Z2Z2Z2 000
m OO0 000
vin
ano anzz ane A0
260 AOEY
EENY

T dNOdHINOD

uasueH upeny
g umesg

uosuel upeny
00ubu3

aInpou 0ipe: qoIBOH WINI

0L0BEVZ8 Gvr

wewusq
63 05280
9 loniebease

00788196 Sv+ 2uoud
wewueq

Aaien 005z-4a

£'91 107 suesqooer peg

[S3901083L 0]

Sy
Y

v
v

T omsoE— P 135 Wowd
T T
; SN0 D0Nd L Fa
g ©0dd 90dd I
_ -~
100 90¥d »
Vv soss @ 100

o
<]

i) 035718

ane

001 Lr T £ \F ETrn Lr o001

0o oo ==k 710 €19

TH 120i8 Vo

Eo

7 02018 Vo

30001 _
00

e}

EEREE
<
&)

O0OA 18

)

By

|
3|

3
Lz
B

Hu00L 30001
60 pie}

I

0GOA 98

Liz:oloig vodd

OTOA 08

iz:olow vod4

ane ano

0
)

[zolva

Nay ZHIN 000

NTam

00

_ 3w
SO y9dd
SINIVOdd

T3S WOud 90dd

H 1IN D0Nd

NOLLO®

NOLLOS

s
wy

ano o

NOLIOS

FeEN)

0037

NOLLOS

SWI Vo —
aee sou
oaL vodd
wee vy
Tar Vo
HEE e S30952L4-005SEOX
I - E————
ano
ee 25w fivg
ano
] Xvoon ano
T Xvoon ano
T Xnwoon ano
e
nowd ave ane ano ane o] Soon ane
e Xvoon ano
v xnvoon ano
fm - ano
o] SHIXNVO0A ano
0 0 w0 | fosomn T e e
s L] osy ovd el o S xnvoon ano
ano
— o 8 008d Xnvo0A ano
890Md O0Nd T anoxvoon ano
T twxnvoon ano
T onxnvoon ano
73| N3-GSt X0voon ane
_ 3INOT XNVOOA an:
J INOT 5084 T 5100 xnwoon ano
oL ano
e | AL 0 INIDOA aNo
01— LUL L HEE INIOOA aNo
oaL 1OV e INDOA ano
INDOA ano
- 105 9084 INDOA ano
ond INDOA ano
INDOA ano
INDOA -
fealovar 8]
= o0oonTee 020N 18
020N t8 000N 18
000n 58
o aororss
€ dov or'ca
5
Wotd i
5
o
W\m Ldizror e
o INizTor 8
. LdozTor e
avoa>— . INoza
_ e
NG
i
N
SO
INoLTOr 28
— LNYNZdL0T Ol 28
Vodd] L duNLNLOT O 28
JOLL:E v] orze
81001 vod4 s oi'es B
L 000K 08
Zooonze 000K 08
2000 e8 090K 08
2000 28 R
G4BT d0vT
NTFYIS 52 a3une doviorea 9 NOVT
T e o'z
vﬁqz 974349 NVZT O 58
Al 9" dezT Ol 08
X vod s
XL vodd kL)
ZNoeT oI 28
Zdsi1 0 ca
e N6l T Ol 28
Seora Tazne divTorzs
T
X &
oo 28
ST T aune wioT o e
S oi'ea
T 000N Tsa
100N 18 0%0nsE
m 17000A 18 0208 S8
1"000N 18
ETo00 Hev JOT sy grogsTazeTorss
#1000 dzeTOr 1
5109/ NEET OF b8
133900 NisTOME
\doeT o te
STOG SV et
\—rire Ierona
\—rrs Heriorta
N 1100 HSv
N
N 500 HSV]
900 HSV]
\——zogmsv 1SN NO o 18
N_—soqhsy L NAVL 10T OF 18
S0Q_HSVY LA NIOT O 18
o «.Mm “ L 43¥NOI 18
ano Em 00
Eeg i o 000N Tv8
JELS R 000008 000N 18
200 m 0000 08 00N +8
i B ¢ ooon e onoonaze
g v
i o1y [0 AOT RSV P109/076ZE 008 X100/ NEsT Ol
- 0ov awv [or 109/0 NZET OI 08 ASNGLNOGH diET
e - ny [or | SN0 a1 0108 8 LY NLET Ol v
aiy
+ stoa sy [T
7 vioa iy il
7 cioa e >
7 200 av ¢ g
L Ly]
7 ooa o [5 kL
600 ov o
00 av g
100 w
900 ov il
soa v
00 w
£0a v T o X
200 v 0 334N 08
%1 ioa v [F oo
HSY T ooa ov
TR
wn

VIva 508d

[s:0la3T NoLLO®

nsz

¢ dNOYIDIWOD

I

Z

6 10 v 198us SIP YOSIOT MMM %002 ‘0 ounr ‘Aepsinyi :ejeq
L uasueH uiep ussueH uiLepn <20Q> Y
Ay Aq umelqg J93u1bug Jaquinp juswnooq | 9zIS
:oweNa|l4
a|npouw oipes qoIyBoH NI BIL
0.08€¥.8 Gh+ 0018819€ G+ BUOUd
yewuaq Jlewusqg
eb3 0gz8-Ma AaleA 00sz-a
9 lonsabeases €9l o/ suasqooer l1en
S/V saibojouyos] Q| ®
S2040X
ON ON
% ON ON HW
- ON ON
o1 039 SN (— SINL
ML 4 MOL
_ 14l 1aL
g o0dd[__> 7132 0alL
o7 | 22 ano
g 13S34/30
) .
100> o RS FOOA 7
O00A 7
Lnoa > — od LNIDOA fr
an
AOE HSV1d AST AOE HSV1d
) ano
€ ko
135 Word[_> —
S2040X
[]
aNoa > T oon =N
80SLON 9K ON ON
kn oF ON ON &
P ON ON I,
MY AST
E ano ano o 030 SL |
MOL
L ano axo 40 a1 [< oaL
GC 4 A ER) I1
A Sor—r)7 7 Bsawao
7\ SOSEON W10 ﬂw% |S|I_|
ooA € 0c
#0ZSLON OO00A &t
n Y — oa LNIOOA |7
N
NeT AOE HSV1d4 ASZ A0 HSV1d
g LINI >

€ dNOIdOdNOD

v

6 oG jeeus LR E Y 7002 0L SUn{ Repsiny]_1eq
1 uasueH uep uasueH unJep <%0Q> ev AaNo Hee
AOY Aq umeig Jeauibug Jaquin juswnooq | azis
—
ojewYs\pIBOGISYIOW\BIEMpIEY BWENBII
8|npow oipes qosyiboH NI oML 4u00L 4u00} 4uo0L ey
. 90 [} 2]
0£08EVZ8 S+ 0018819E b+ -auoud T T T
sewusq ewusq
63 052830 Aalen 00sz-%a aNo
9 loniabeasen €91 foA (L] _
AT
S/V salbojouyds] Ol 0
uee ¥0
— —
(4 v L — 1T
SZLZSLON 8ey o4
ano on
€lzolgeld see
ano Zvel
ano 2viL —
aNo 2v0l oSt
ane 296 |7 oey
o 28e i [
T zan 2vo [o7
e b
Laxy 50
Lax1| a8 2ve (7
_ zaL ove
o7 S
Lror olavy mwxw mmw EV R uee
zay vzl —
308 i 4 VLl M TS0 -
zae V0L | ey
601 01V 12 lzar hvs
Ive WNF €HIVA 13539
LazL V2
ﬁ L8t woldr
WI = 1vg [¥F eV vA 1353y
186 vy
8L0Ly o 188 e [
Lz 1ve .
9LOL V¢ o 1189 i Hw ALy
SLO| M« L85 rey
7101 ¥odd
- el e e =l
€10l ¥Odd 051 1az 0s &% AOE
[AXGEE] MWT =N OXNIN-0lIavY
Q0A
woloq Z X 9| pJeoq o} pJeoq Iapesy
sn A0E
ON 1AYSn 133 £ e [43
6z 0
AR} 1dS B¢ 1z 8z 0%
ATD A0S MM sz 9z MM Hq . 353
1D € IVA_L3S3H
adT 4 \z o4 4 ERER]
qdT 1T 3 ERED
14000 EDIAEA 513 6t oc 0C AM 353y
04000 _FDIAEd IT it 8t k13 TYA 353y
ON ST St ot or -
€l vl 3s3y
VINI oK A e s ERED
e - ﬂwm PINT 56 o Ior .
e1zoLgeld b 8 g L1353
[L:olLNI OINI 59 s s lg 353y
ano V2L | gz L1009 — € v YA_LISIY
ano 291l (o7 <5 Sl — 7 |—LIVALISTY
ano V0L [E VA 1353
ane 296 [or
2v8 (o7
zazl [
e lzan 2vo [o7 of otpey
cr— 280} 295 o7 o ,
e 286 29y (o1 i |
zas 2v8 |7 ! I
o zas = ! !
FOWoIT, o 289 [1 !
s 1 ool oy ki 1wzl i |
201 0IqV 7 1 zae w128 LLIYA_13S3Y I ans |
Lor o1avy e 2z ol [DLTA L3578 ! !
0LOI ol1avy T e8 ”«W 124 YA_L3ST: 1 X8 19008 ”
ot LIVA_L3STN
LazL Lv2 . ! [T i
YOd] 143 L 9IYA_L3S3Y i 9 ane ano I
(oo Vo3 T raor Tve [T SIVA IS ! 122 LA !
Li:oloi"olavy <> L2dd 7 120 2 N | o A . ez 1
YOd o] ree e [5 WVA_L353 | 12 PO €) !
YO o] var e 3 IVA_LISTY | AST LA !
044 o 189 Wi [/NI | v 9 H !
¥Odd iZN = 4 WA 13534 1 71z V ST A0E !
YOdd Ci pt=re zs | T 4 !
vOdd 71 rae Is ¢ | 70T 3T !
¥Odd o ez 0s ¢ ! i
YOdd ww =N OXNIN-01avY 1 !
“olor™ 001 vOd3
[81:0l0I vod4 oo>|~.l_._ e |
m A0E

[z:olxnw olavy [_>

6 09 19dUs

P 402} MMM

¥00Z "0L dunr "Aepsinyl :ajeq

L uasueH Ulep uasueH uep <%0(Q> v
Aoy Aq umeiq Joaulbug Jaquinp Juswnoo(| oz
:aweNa|l4

aInpow olpeJ goIyIBoH NI oL

0,08€Y.8 G¥+ 0018819¢ S+ duoyd

Yewuaq Yewuaq
eb3 05z8-Ma AqleA 005z-Ma ano
9 [eniabeasen ¢‘91 [o suasqooer 1en
S/V saibojouyos] Q| ®
10—
youms
ano
{ M w m Nr 1 <_]13s3d
s ano
MO0k
eey
MLy
zey NOE€
I . . NoLLOg
— leam — <
ano ano ano ano
NOE
08l 08l 08l 08l
ey ogd 624 82y
X X X x
o o o =
a a a
¥a €a za 1a
< aIl
Q31 NoLLod
ano Q37 NOLLOdg
€037 NOLLOdg
4 [4 2d3aT NoLLog
q|n|&|n_|&l_|a
€S
4 4 1d37 NOLLOog
q|n|&|n_|&l_|a
ZS
4 [4 ! 0437 NOLLOg s -
§:0la31 NOLLOg
rqpm_wl{ <
MLy MLy MLy
l2d 92y fera¥
ST 5T NGT m, dNOEDHJINOD

6 _Jo 7 esus P US10T M %002 0L 8unf "Aepsiny] o1eq
L ussueH UlLep uasueH uep <00Q> ey
Aoy Aq umeig J08uIBUT Jequiny juswnoog | ezig

8|npow oipeJ n_OF_«mOI WINI epL
0L08EVL8 S+ 0018819€ Sh+ -ouold
spewuaq spewuaq
63 0528-3a Aalen 0osz-a

9 fonsabeasen €91 [0/ suasqooer pen

S/V salbojouyod] Ol °
ane
AR S =17 1ogvodd
Tl — |9 v] — 0L0I8_VOdJ
cl— 17 — | ¢ 0l8_VOdd
PL—1¢® T — 17 018 vOd4
ved 1t €2
ZUNOOLD000L (40 [Py ZUNOOLD000L
— OF 1oz 1z |52 —
olgvodd V| — [T BT 7 T — [V I Vodd
% Wb_m vodd €| —[T9 _ _ 9¢ ww mw S¢ _ T =TT 50ia vodd N\
V 018_VOdd Z ve X4 4 YOdd
L z Iz —dola_
Olgvodi ¥ L —] _ oz el s _ L 0l vOd4
zed 0 o),y [BF T2d
ZUN00L D000} L2 P A2 ZUN00LD000L
kL 13
[
VT €T
= — [t — _
id G [43 123 S — i2 0lg_YOdd
/" 1z018 vodd,__E]_“ m cm o m w Y — 2 o% vOdd
— — 018 v9d4
v g J e T —171 0lg VOdA
] i2 m 7rd -
ane 4 o8l ZUNO0L D000k
ZUNO0L D000k Zx 9T Jopeay
or
9y
AT HSV14 ST 00DA 28
ano
OIV_¥9 Tl =17 Sl =17 LLOIY_V!
£LOIV_VO. T —1° ST — 1% 0LOIV)
7LOIY_ YO cl =17z IT—1¢ OlY V!
SOV vodd P [—— |8 BL— 17 0IV VOdd
€1y R zid
ZYNOOLD000k Tl 6z ZUNQOLD000L
— 0% 1oz 1z |52 —
90V vodd Vv | —— [T 8 Ic s =1L LOIY_v¥9dd
IOV Vodd T — '[9 Kl ww mw 5C 9 90IY_VYOdd
8101V VOd4 — 24 i2 g \z (34 A — 14 7y
6lOV vod1 v [— (228 PR 14 T YOIV ¥Od3
oLy 0o,y [BF 6
ZUN00LD000L “" o ol ”” ZUNOOLD000L
v €l
i3 1413
— [— _
0OV vodd 7| — |7 T TT e A
L1201V vodi, m — 17 cm W_ m 1 w — M Z0IV_Y
— LOIY_Y
[i e :a H: T— 1% oo vodd
ZUNOOTD000} LY 71z L [E 9
ano o8t ZUNO0L D000k
Z X9l Jlspesy
or
1]
NOE HSV4 ST OJDA 98

<

ans
AEEY
ano
S QANV X
Q z
8 & oUfg—x
o LV vas (-
ov 108
€XWIOLLNT
on
ano
ZUN00L®000L @ 10pES)
:“az_iHVIﬂ 8 19PeoH
— 9l sl —
LNIV. S — 17 o1 EL2 v — 5%
ONIY T =TT a4 i) T =17 <_Jvas
T[> 7T — ¢t M A
i) — 13 (3 m— m 6 T — g
(2 _ N ° = _ ZYN00LB000L g
AEEY voay S — [V __ qm mr __ "I — 15 eoav EENT
SOav__ 9| —— [€ _Jl Jl_ T =9 oy
90Qv = e T = Y
oay S — 7 T — % ooav
Siy ZUNOOL@O00F 41y
ZUNOOLD000L
iz:oloig vod4
aNovY.
3054
— g 00y
— 1z SOQV
Tt =173 900y
TL—1°% 10aY
L
0S4
S| — 17 0ay
S — QY
— 1 20V
¥ v 0av
2y
[Lz:0lov vod4 < [z:0l0av

9 dNOIDINOD

L [

Z

6 J0 8 19dys AP Yosjormmm ¥00Z ‘01 aunr "Aepsinyl :ajed
L uasueH upep uasueH umpep <00(Q> v
=N Aq umeuq J99u1bug Jaquinp juswnooq | 8z1s

:oweNa|l4

aInpouw olpes qolyBoH NINI BpL

0.,08€Y.8 G+ 0018819€ G+ :ououd
ylewuaq ylewuaq
eb3 0gz8-Ma AqieA 0oge-Ma
9 [onisbessen ¢‘gl o suasqooer 1)
S/V salbojouydd] Ol ®
aNo
X8 JopesH
g 9 Sty — < N3d
e R XL vodA
1 ¢ Ll Xy VOdd
oL 6 0da/oax.L
913
1 o 8 L Ida/oaxy .
NOE €OvIr 9 G YIS MLy
ZOvIr w e ¢ N vy
LOVIL z X <] 1353
. 09V1r 4 2
[e:0lovir<_> n

™

L dNO0IDdNOD

6 0 6 aus P OS10T M %002 0L Sun "Aepsiny] o1eq
M uasueH uiLepy uasueH uiep <9%0(Q> v
Aoy Aq umeig J08UIBUT Jequiny Juewnoog | ezig
; “oweNal! Hne'e
8|npow oipes n_O._—._«mOI WINI oL
0208EVL8 G+ 0018819€ Sh+ -ouold \AAAS
spewuaqg spewuag A el
€63 0528-Ma AqreA 00gz-Ma
9 lonabeasen €'9l lop suasqooer pen
saibojouydd
S/v seibojouyos Q| °
ans ans 4uo}
686241 810
%—— ON OND |
4nzz 4nze
e e Houu3 SSVdAg
0 €090 N 3sNas NMOALNHS
69y g i
—} 5 LNd1no LNdNI |
20y 3N
ND
ano ane 4uol
6862d1 [Vis)
%—— ON ane ano
4nze 4nze
T & Houu3 SSYdAS
o £090 WN
o _|m| 3sN3s NMOQLNHS (5
—} 5 Lnd1no LNdNI | s
_ 90y 7in 59
NOEHEV TS
< uo ™ semod
ane ans
ano. NO
u:oE ddzz u:mr
52aN38T6LXVIN €90 290
-1 aNO umm
ano ano 7| ONod M2z vod
50d ans ans
dWOD [
4nze 4nze
190 850 a4
o 4 4uooL anzz
NGHS [950 S50
—} 7 X1
coy Hy 21 ans
s I_I|_I WM LLVE o .
on ans ans
ans
ans
ane 4dzz 4dozy
250 150
4uooL
HIZOIXYN e
396 MS1 Zod
ans ans z
50d ane ans ane
dNOD |
4nzz 4nze
6v0 90 G'9E a4
0 094 v 4nzz ansy dnzg
NGHS €v0 WO ¥ 0y aNo 020-L0v68
— NS g
 E— AANS g X7 0 .
65y HZY 11 ane
43 —
I_I|_I WMd 11v8 . . . 2
sin 85y i

8 dNOIHINWOD

| 2z

T 10 |__1994s SIP"UOSI0T MMM %002 _I¢ I1dy "Aepsaupsp_-oreq A A
L USsUBH UIepy UasueH ulepy <00Q> Py
Ay Aq umeiqg Jo9ulbug JaquinN uawnoo(| ezis 1dzz
OlBWYOS\S|Npowolpenasempiey -OWENS|!I4 4dzz Lo ——
ainpow o1pes GoIyIBoH INIAII I 00 ——
0£08€¥/8 G¥+ 0018819¢ Gp+ :8uoyd
yewusq Yewusaq ZHINO0O'9 -
eb3 0528-Md Aarea oose-Ma n
9 loniabeasen €91 oA suasqooer [ien Jx
saibojouyos N
S/v selbojouyoe] O ®
60 — 80
L0ve44du WL ey
RW EES] +OX dJuee
18 cT ae]
_ SOX [
Huzz S| Ve aan
anosyv EC €1 €T
aand
° _ _ 51| HLNV ®
CINV
ans o PZAN L eleq g
A M1
er 4dg Hug'¢ 3 Mm> _‘IM Z
L0 == a1 Mﬂ SSA 39 m
Jdo't 2z SSA N._.N@_@_m T |
€ i ON 0%(
aan cdd |
_ _ 21 aan 30 [| M 00,
_ TObzagu IXQ
[%e) iz4 aaa dn dMd €¢ ,r ASD OU (X(
Gan n Spoo s0TARq
19S020e-YM 2d
v_\.\. —
T
4095 8Y ALY
v_\.\. — as)
—J
[| 19s0208-vy ta H09S 9H
! | MEONEP moN e o o> N o 1
” ! aana
I ! 1
|
, , PaN
I
" | 9 ofofofo [ofofofe ofofofe
| dnee dui Juge 4not 4n0t ! 1dl . N N
, 90 I %0 €10 0 o= 9 — ! s PPTTPP m PP
” | YOS109v9leevda
| |
! I_l ! 1
| aan ”) S|
” | H09G 1Y
|
| |
| ! PP E R N ko
| | O N P KON O
I
| “FEMPERR LRNBRREIGBTONT@"
|
| —WOIN© = ! WoN0qg g X 91 p4eOq 0} pJeoq 1800s
! w o I WWNNNNN = = =
| ! I POSddRERNvNSodENODO AN
| 2X8 19008 |
” |veowsnza | | A u%wwww@wa JINS A
, 8y Y P
| (= PR o) |
| 4not HNE€4noL | —
[40] 10 | —
” I ! H09G &Y
| - " 1 1
| aan B | [I 1
” 10308UUOD I8MOJ | 409G Y H09S td
|l ol o o__________________________1/! — —1
H09S 2d H09G €4

S

Appendix B

Errata

This chapter contains an errata from the HogthrobV0 Platform and Associated Documentation.

LED on MB and comm. board have different semantics

e 5SS connected wrongly (should be unconnected)

Sensing and radio boards are connected to different sides of the MB PCB

J3 - 3.3 V measures as unconnected

e built in battery-voltage tester missing

On-MB Temperature Sensor missing

The signals PROM_SEL, FPGA _CS and PROG_PROM_SEL are confusing FPGA_CS is con-
nected from AVR—FPGA (is this a general purpose pin??) PROM_SEL is depicted in com-
group 3, but not connected to AVR (could be multiplexed with RD_N - PG1) PROG_PROM_SEL
is only shown in comgroup 2 nowhere else PROG_PROM_SEL is connected to RD_N
(AVR)

Possibly RD_N acts as PROM_SEL during FPGA boot and laters as ext. mem interface
meaning that FPGA_CS is just an I/O pin between AVR/FPGA

o The 2nd UART has been routed to the radioboard with no purpose. Furthermore a cris-
crossing cuircuit has been placed in front of it making it useless as a debug port for the
ATMega.

B.1 Post Delivery Modifications

In order to make the platform boot the following modifications have been made:

e Removed (Comgroup 2) R41, R47 (on some boards), R48

Removed (Comgroup 3) R3
Removed (Comgroup 4) R34, R37
Removed (Comgroup 8): R67, R69

On some boards R36 (comgruop 4) has been removed. This should be replaced.

43

B.2 Bill of Components

o L3 might be changed to Murata LQH32CH15M111 (check index.htm)

e The actual FLASH memory for the FPGA is unclear (stykliste and index.html are incon-
sistent)

B.3 Schematics

The schematic is out of date with the actual layout in several places. These mistakes refer to the
schematic dated June 10 2004.

e - C37, C77 missing

Commgroup Group 1:

— ATALL1 is named XTAL1
— BUTTON misspelled BOTTON

o Commgroup Group 2:

— “Done” is an output

- FPGA_INT6 is output

— Ul1is depicted as a different chip than the one that is mounted,

- VCCO3-VCCO_7 are not named consistently with VCCO_0-VCCO_2

e Comgroup 3:

— U3 and U4 are not designated on the schematic (U3 is the NC75S08 on the top and U4
is the one on the bottom).

o Comgroup 4:
— INT4/INT5 on Datasheet wrong

44

Appendix C
FPGA control.c

#define __AVR_ATmegal28__ 1

#define FALSE 0
#define TRUE 1

#include <avr/io.h>
#include <avr/signal.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>

void FPGA_ on();
void toggleFPGA ();
void setMuxToAVR();

int FPGA_running, muxToAVR, ledsOn;

#define TOSH_ASSIGN_PIN (name, port, bit) \

static inline void TOSH_SET_##name## PIN () {PORT##port |= _BV(bit);}\
static inline void TOSH_CLR_##name## PIN () {PORT##port &= ~_BV(bit);}\
static inline void TOSHMAKE ##name## OUTPUT () {DDR##port |= _BV(bit);}\

static inline void TOSHMAKE ##name## INPUT () {DDR##port &= ~“_BV(bit);}\
static inline char TOSH-READ_##name##_PIN () {return 0x01 & (PIN##port >> bit);}

// Setup the nRF mux control lines
TOSH_ASSIGN _PIN (nRFMUXs0, C, 4);
TOSH_ASSIGN _PIN (nRFMUXs1, C, 5);
TOSH_ASSIGN_PIN (nREMUXs2, C, 6);

/x The wuart. Uart0 is connected to the bluetooth module
via pe0 and pel. Uartl is external , via pd2 and pd3. x/
TOSH_ASSIGN_PIN (UART RXDO, E, 0);

45

TOSH_ASSIGN_PIN (UART.TXDO, E, 1);

TOSH_ASSIGN_PIN (UARTRXD1, D, 2);
TOSH_ASSIGN _PIN (UART_TXD1, D, 3);

/+* The FPGA is connected to the AVR via the external memory
interface (only the lower address pins) and an interrupt
pin x/

TOSH_ASSIGN_PIN(WEN, G, 0);

TOSH_ASSIGN_PIN(RDN, G, 1);

TOSH_ASSIGN_PIN(ALE, G, 2);

TOSH_ASSIGN_PIN (FPGA_CS, C, 7);
TOSH_ASSIGN_PIN (FPGA ON, D, 6);
TOSH_ASSIGN_PIN (FPGA DONE, B, 4);

/* FIXME: REMEBER TO SET DDR AS INPUT!!! x/

//TOSH_ALIAS_INT(BUTTON, INT7); // Dosn’t compile!? INT7 is a macro!?
TOSH_ASSIGN _PIN (BUTTON PIN, E, 7);

#define SIG.BUTTON SIG_INTERRUPT7

#define BUTTONINT_ENABLE EIMSK |= _BV(INT7?)

#define BUTTON_INT_DISABLE EIMSK &= ~_BV (INT7)

#define BUTTONINT.CLR EIFR |= _BV(INT7) // Clear any leftover ints

#define BUTTON.INT.SETUP EICRB |= _BV(ISC71) | _BV(ISC70) // Int on rising edge

// Setup LED names, for compatibility we use the same names as Mica
// LedDebug (and IntOutput) uses the bitorder (MSB—>LSB)
// EXTRA_LED LED_YELLOW LED_GREEN LED_RED

// 0x8 Ox4 0x2 Ox1

//

// The LEDs on the radio board have reverse semeantics

// TOSH_-CLR means on TOSH_SET means off (LedC handles this)
/]

// Remember that LedDebug reverses the code!
TOSH_ASSIGN_PIN(MB_LED, D, 7); // D1 on mother board
TOSH_ASSIGN_PIN (RadioD1_LED, C, 3); // DI on radio board
TOSH_ASSIGN_PIN (RadioD2_LED, G, 4); // D2 on radio board

/**

* *
* Boot FPGA *
* *
* *

**/

void FPGA_on(){
TOSH.MAKE_FPGA_ ON_OUTPUT () ;
TOSH MAKE FPGA CS.OUTPUT () ;
TOSH_SET_FPGA_ ON_PIN (); // Actually boot

46

TOSH_CLR_FPGA_CSPIN(); // Doesn’'t matter
while(! TOSHREAD_FPGA DONEPIN()){};

}

void FPGA _off (){
TOSH.MAKE FPGA ON.OUTPUT () ;
TOSH.MAKE FPGA_CS.OUTPUT () ;
TOSH_CLR FPGA_ON_PIN () ;
TOSH_CLR_FPGA_CS_PIN () ;

}

void toggleFPGA (){
if (FPGA_running) {
FPGA_running = FALSE;
FPGA_off ();
} else {
FPGA _running = TRUE;
FPGA_ on ();

}
}

void setMuxToAVR() {
DDRC |= BV (2);

DDRC |= BV (3);
DDRC |= BV (4);
DDRC |= BV (5);
DDRC |= BV (6);
DDRC |= BV (7);
PORTC &= ~_BV(4); //cbi(PORTC, 4);
PORIC |= _BV(5); //sbi(PORTC, 5);
PORTC |= _BV(6); //sbi(PORTC, 6);
PORTC |= _BV(7); //sbi(PORTC, 7);
PORTC |= _BV(8); //sbi(PORIC, 8);

}

void setMuxToFPGA () {

//sbi (PORTC, 4);

//sbi (PORTC, 5);

//sbi (PORTC, 6);

PORTC |= BV (4); //sbi(PORTC, 4);
}

void togglenRFMUX() {
if (muxToAVR) {
setMuxToFPGA () ;
muxToAVR=FALSE ;
1 else {

47

setMuxToAVR () ;
muxToAVR=TRUE;
}
}

/**

* *
* LED TEST *
* *
* *

**/

// Remeber .debug reverses the code so 0 means all on!
void toggleLeds (){
if (ledsOn) {
ledsOn = FALSE;
TOSH_CLR.MB_LED_PIN () ;
TOSH _SET _RadioD1_LED _PIN ();
TOSH_SET_RadioD2_LED_PIN ();

} else {
ledsOn = TRUE;
TOSH_SET_MB_LED_PIN () ;
TOSH_CLR_RadioD1_LED_PIN ();
TOSH_CLR_RadioD2_LED_PIN ();

/**

* *
* Pin direction setup *
* *
* *

sk sk ok ok ok sk ok ok ok sk ok kK sk sk ok ook sk ok ok sk sk ok ok ok ok sk ok sk ok ok ok sk sk ok ok sk ok sk ok sk ko ook skok ok sk ok ok ok /

void TOSH_SET_PIN_DIRECTIONS(void)
{
DDRC=0x0; // PortC out
PORIC & BV (4); // Mux to AVR
PORTC |= _BV(5);
PORTC |= BV (6);

TOSH-MAKE nREMUX_s0_-OUTPUT () ;

TOSH-MAKE nREMUX_s1 OUTPUT () ;
TOSH-MAKE nREMUX s2 OUTPUT () ;

48

TOSH.MAKE MB_LED.OUTPUT () ;
TOSH.MAKE_RadioD1 LED_OUTPUT () ;
TOSH.MAKE_RadioD2_LED_OUTPUT () ;

// Start with LEDs on
ledsOn=TRUE;
TOSH_SET_MB_LED_PIN () ;
TOSH_CLR_RadioD1_LED_PIN ();
TOSH_CLR_RadioD2_LED_PIN ();

// It is extremely important that the pins going to the FPGA
// are "tristated” while the FPGA is off or we risk connecting
// an outputpin driving the line directly to ground

// All of the directions will be taken over by the memory
// interface when enabled

DDRA = OxFF; // All in

TOSH-MAKE_ALE INPUT () ;

TOSH MAKE-WENINPUT () ;

TOSH-MAKE RD_N_INPUT () ;

// Turn FPGA off

TOSH MAKE_FPGA ON.OUTPUT () ;
TOSH MAKE FPGA CS_OUTPUT () ;
TOSH MAKE_FPGA_DONEINPUT () ;
TOSH.CLR FPGA.ONPIN(); // Off

TOSH.MAKE BUTTON_PIN_INPUT () ;
}

int main(void) {
TOSH_SET_PIN_DIRECTIONS () ;

FPGA_running = TRUE;
FPGA on();

muxToAVR = FALSE;
setMuxToFPGA () ;

return 0;

49

Appendix D

example.ucf

Clock interfaces

NET ”clk_40_en\”
NET “clk_40mhz”

NET

FPGA UART interface (]J?)
NET ”all_rxd_i<0>"
NET ”all_txd_o <0>"

Button interface

NET

NET "btn<0>"
NET "btn<1>"
NET "btn<2>"

/lclk//

"reset”

LOC

LOC =

LOC

Led interface
LOC =

NET ”led <0>"
NET ”led <1>"
NET “led <2>"

ATMega <—>

" AD<0>"
"AD<1>"
" AD<2>"
"AD<3>"
" AD<4>"
" AD<5>"
" AD<6>"
"AD<7>"
”ALE”

”"RDI”

LOC
LOC

FPGA

interface

LOC =
LOC =
LOC =

LOC =
LOC =

LOC

//plzu
//t13/r
//r13 ”

//mloﬂ
//rll ”
//plllr

”

mo6”
” r6 ”
//n7 ”
//m7//
” t7 ”
” r7 ”
” t5 ”
” t4 ”

7

"R10” ; # Clock enable for 40 MHz clock
"r9” ;, # 40 MHz clock
”t9” , # Slow clock

rlf15// I_
//f14// ;
I/p—lz// ;

50

NET “WRI” LOC = "t3”

NET "FPGA_INT6” LOC = "N5”
NET "FPGA_CS” LOC = "P7”
NET “"DONE” LOC = ”B14”

FPGA<—>Flash Interface

NET ”Aout<0>" LOC = "A5”
NET ”Aout<1>” LOC = "A7”
NET ”Aout<2>” LOC = ”A3”
NET ”Aout<3>” LOC = "D5”
NET ”Aout<4>” LOC = ”B4”
NET ”Aout<5>” LOC = ”A4”
NET ”Aout<6>" LOC = ”C5”
NET ”Aout<7>” LOC = ”B5”
NET ”Aout<8>” LOC = "E6”
NET ”Aout<9>” LOC = "D6”
NET ”Aout<10>” LOC = "C6”
NET ”Aout<11>” LOC = ”B6”
NET ”Aout<12>” LOC = "E7”
NET ”Aout<13>” LOC = "D7”
NET ”Aout<14>” LOC = ”C7”
NET ”Aout<15>” LOC = ”B7”
NET ”Aout<16>” LOC = "D8§”
NET ”Aout<17>” LOC = ”C8”
NET ”Aout<18>” LOC = ”B8”
NET ”Aout<19>” LOC = ”C9”
NET ”Aout<20>” LOC = ”B10”
NET “DQ<0>" LOC = "A9”
NET "DQ<1>" LOC = "Al12”
NET "DQ<2>" LOC = ”C10”
NET "DQ<3>" LOC = ”"D12”
NET "DQ<4>" LOC = "Al4”
NET "DQ<5>" LOC = "B14”
NET "DQ<6>" LOC = "Al13”
NET "DQ<7>" LOC = ”B13”
NET "DQ<8>" LOC = ”B12”
NET "DQ<9>" LOC = "C12”
NET “DQ<10>" LOC = "D11”
NET “DQ<11>" LOC = "E11”
NET “DQ<12>" LOC = "B11”
NET "DQ<13>" LOC = "Cl11”
NET "DQ<14>" LOC = ”D10”
NET "DQ<15>" LOC = "E10”
NET “MEM RESET” LOC = ”D15”
NET "CE” LOC = "E14”
NET ”OE” LOC = "E15”
NET "WE” LOC = "E16”
NET "WP” LOC = "F12”

51

FPGA<—>Radio

NET

"FPGA_I00”
"FPGA_IO1”
"FPGA_102”
"FPGA_103”
"FPGA_104”
"FPGA_I05”
"FPGA_106”
"FPGA_107”
"FPGA_108”
"FPGA_109”
"FPGA_1010”
"FPGA_1011”
"FPGA _1012”
"FPGA_1013”
"FPGA_1014”
"FPGA_1015”
"FPGA_1016”
"FPGA_1017”
"FPGA_1018”

Interface
LOC ="P15”
LOC ="P14”
LOC ="N16"
LOC ="N15"
LOC ="M14"
LOC ="N14"
LOC ="M16"
LOC ="M15"
LOC ="L13”
LOC ="M13"
LOC ="L15"
LOC ="L14"
LOC ="K12”
LOC ="L12"
LOC ="K14”
LOC ="K13”
LOC ="]J14”
LOC ="]J13”
LOC ="]J16”

FPGA <—> Sensor Interface
AIO is connected to connector

”AIO_0”
”AlO_1”
”AIO2”
”AIO3”
"AIO 4"
"AIO5”
”AlO_6”
”"AIO.7”
”AIO_8”
”AIO9”
”AIO_10”
”AIO_11”
”AIO_12”
”AIO_13”
”AIO_14”
”AIO_15”
”AIO_16”
”AIO_17”
”AIO_18”
”AIO_19”
7 AIO_20”
”AIO_21”

LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC

="K1"
="R1”
="P1”
="pP2”
="N3"
="N2"
="N1"
="M4"
="M3"”
="M
="M1"
="15"
="14"
="1.3"
="12"
="K5"
="K4"
="K3"
="K2"
="7J4"
="13"
="]2"

Fod o o o H o O o o R H O HHHHEHHHHE

BIO is connected to connector

52

pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin

5

7

9

11
15
17
19
21
25
27
29
31
32
30
28
26
22
20
18
16
12
10

”BIO_0"
”"BIO_1”
”"BIO_2”
”BIO_3”
”"BIO_4”
”"BIO_.5"
"BIO_6”
"BIO_7”
”"BIO_8”
”BIO_9”
”BIO_10"
”BIO_11"
”"BIO_12"
”"BIO_13”
”B1O_14"
”BIO_15"
”"BIO_16"
”"BIO_17"
”"BIO_18"
”BI1O_19”
”B10_20"
”BI1O_21"

LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC

="G2"
="C1"
="B1”
="C2"
="C3"
="D1”
="D2"
="E3"
="D3"
="E1"
="E2”
="F4"
="E4"
="F2"
="F3"
="G5"
="F5"
="G3"
="G4"
="H3"
="H4"
="H1"

o o o o H o o o o R H O H H H KR HHH

53

pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin

5

7

9

11
15
17
19
21
25
27
29
31
32
30
28
26
22
20
18
16
12
10

Appendix E

FPGA Makefile

Xilinx fpga tool flow

TOPDIR
XDIR

SRC_DIR
SOURCES
PROJECT
TOP

/

:= $(shell if [—x ”/usr/cad/Xilinx”]; then echo ”/usr/cad/Xilinx";\

else if [—x ”/usr/local/Xilinx/”

src
$(SRC.DIR)/ *
mc8051_top
mc8051_top

I

then echo ”/usr/local/Xilinx/”;

HHHHHAHHHHH R HAHHFHH AR H S HH AR H A HH AR H S HH AR H SR H AR RS HH AR SRS SRS RS H S HHH
tools
HHHHHEHHAHHH B R HH R R B R R R A R R R A R A R A R R A R RS

Xilinx

XST_DEFAULT-OPT_MODE = Speed
XST_DEFAULT_OPT_LEVEL = 1
DEFAULT ARCH = spartan3
DEFAULT PART = xc3s400—ft256 —4

XBIN

$(XDIR)/bin/lin

XENV = XILINX=$ (XDIR) LD_LIBRARY_PATH=$ (XBIN)

XST

NGDBUILD

MAP

PAR
BITGEN
PROMGEN

FLOORPLAN

IMPACT

XSITWORK

$(XENV) $(XBIN)/ xst
$ (XENV) $(XBIN)/ngdbuild

= $(XENV) $(XBIN)/map

$ (XENV) $(XBIN)/ par

$(XENV) $(XBIN)/bitgen

$ (XENV) $(XBIN)/promgen

$ (XENV) $(XBIN)/ floorplanner

= $(XENV) $(XBIN)/impact

$ (PROJECT) . work

54

XSTSCRIPT = $(PROJECT). xst

default:
echo $ (XSIWORK)
echo $(SOURCES)

.PRECIOUS: %.ngc %.ngc %.ngd %.map.ncd %.bit %.par.ncd %cmd

ifndef XST_-OPT_MODE

XST.OPTMODE = $(XST_-DEFAULT_-OPT-MODE)
endif

ifndef XST_OPT_LEVEL

XST_OPT_LEVEL = $(XST_DEFAULT_.OPT_LEVEL)
endif

ifndef ARCH

ARCH = $(DEFAULT_ARCH)

endif

ifndef PART

PART = $(DEFAULT_PART)

endif

$ (XSTWORK)) : $ (SOURCES)
> 5@
for a in $(SOURCES); do echo ”“vhdl.work.$%a” >> $@; done

$ (XSTSCRIPT): $ (XSTWORK)
> $@
echo —n "run_—ifn .$(XSTWORK) .—ifmt_mixed _—top_$ (TOP) .—ofn .$ (PROJECT).ngc” >> $@
echo ”_—ofmt NGC.—p._$ (PART) .—opt-mode_$ (XST-OPT_.MODE) .—opt_level .$ (XST_-OPT_LEVEL)” >

Synthesis step
%.ngc: $(XSTSCRIPT)
$(XST) —ifn $<

Requieres that $(PROJECT).ucf fails otherwise the rule will not match
%.ngd: %.ngc $(PROJECT). ucf
$(NGDBUILD) —intstyle ise —dd _ngo —uc $(PROJECT).ucf —p $(PART) $*.ngc $*.ngd

%.map.ncd: %.ngd
$(MAP) —o $@ $< $x*.pcf

%.par.ncd: %.map.ncd
$(PAR) —w —ol high $< $@ $x.pcf

%.bit: %.par.ncd
$(BITGEN) —w —g UnusedPin:PullNone $< $@ $x.pcf

Y%.prm: %.bit
$(PROMGEN) —0 $@ —w —u 0 $<

55

%.mcs: %.bit
$ (PROMGEN) —0 $@ —w —p mcs —u 0 $<

Y%.cmd: %.bit
> $@
echo ”setMode_—bs” >> $@
echo ”“setCable_—p._parport0.” >> $@
echo ”“adddevice_.—p.l.—part_xcf02s._—file _$ (PROJECT).mcs.” >> $@
echo ”“adddevice.—p.2.—file .$(PROJECT). bit."” >> $@
echo "program.—e_—p.2." >> $@
echo "exit.” >> $@
echo "program —e —p 1 7 >> $@
echo "identify 7 >> $@

program: $(PROJECT).cmd

$ (IMPACT) —batch $(PROJECT).cmd
impact:

$ (IMPACT) —batch clean.cmd

PHONY: bclean

bclean:
rm —fR _ngo xst
rm —f x.work x.xst
rm —f x.ngc *.ngd *.bld *.srp *.lso x.prj
rm —f x.map.mrp *.map.ncd *.map.ngm x.mcs x.par.ncd *.par.pad
rm —f s.pcf x.prm *.bgn =*.drc
rm —f x.par_pad.csv x.par_pad.txt =.par.par *.par.xpi =*.par.unroutes
rm —f x.bit
rm —f *.cmd
rm —f x.ved *.vvp
rm —f _impactbatch.log

56

Bibliography

[1] Bootstrap demo design - users manual. URL http://www.oregano.at/ip/mc8051/
mc8051_bootstrap_ug.pdf.

[2] Atmel. Atmegal28(l) complete. URL http://www.atmel.com.

[3] Martin Leopold, Mads Dydensborg, and Philippe Bonnet. Bluetooth and sensor networks:
A reality check. In Proceedings of the First International Conference on Embedded Networked
Sensor Systems, pages 103-113, November 2003. ISBN 1-58113-707-9. URL http://www.
distlab.dk/public/distsys/publications.php?id=38.

[4] Kashif Virk. Testing fpga interfaces on hogthrob development platform. Technical Report
Hogthrob-SoC-CSE-IMM-DTU-001, Informatics & Mathematical Modeling (IMM), Techni-
cal University of Denmark (DTU), 2004.

[5] Xilinx. Spartan-3 complete data sheet. Datasheet, 2004.

57

http://www.oregano.at/ip/mc8051/mc8051_bootstrap_ug.pdf
http://www.oregano.at/ip/mc8051/mc8051_bootstrap_ug.pdf
http://www.atmel.com
http://www.distlab.dk/public/distsys/publications.php?id=38
http://www.distlab.dk/public/distsys/publications.php?id=38

	Forside0705.pdf
	Forside0705.doc

	UsersManual0.3.pdf
	1 The Hogthrob Prototype Platform
	1.1 Further Information

	2 HogthrobV0 Overview
	2.1 External Connections and Cables
	2.1.1 Power
	2.1.2 Programming
	2.1.3 UART

	2.2 Pin Connections
	2.2.1 ATMega-FPGA
	2.2.2 ATMega-Radio
	2.2.3 Bus Switches
	2.2.4 FPGA IO

	3 Xilinx FPGA
	3.1 Hardware Setup
	3.1.1 Configuration Flash
	3.1.2 Program Flash and ATMega interface
	3.1.3 Clock Source
	3.1.4 FPGA I/O

	3.2 Software installation
	3.2.1 ISE 8.1 for Linux
	3.2.2 ModelSim

	3.3 Building a Project
	3.3.1 Oregano

	4 ATMega
	4.1 Hardware Setup
	4.1.1 Fuses
	4.1.2 ATMega I/O
	4.1.3 Radio Control

	4.2 FPGA Interface
	4.2.1 FPGA Power Control
	4.2.2 FPGA Control Lines

	4.3 Radio Interface
	4.3.1 Mastering SPI
	4.3.2 SPI Master Mode and PB0
	4.3.3 ShockBurst Mode
	4.3.4 Direct Mode

	4.4 TinyOS
	4.4.1 Porting TinyOS
	4.4.2 FPGA, ATMega Interconnect
	4.4.3 nRFSPI

	5 Testing
	5.1 AVR Testing
	5.1.1 Fuse programming
	5.1.2 Program upload
	5.1.3 ATMega UART1
	5.1.4 ATMega LED
	5.1.5 ATMega push-buttons
	5.1.6 ATMega radio connection and bus switches
	5.1.7 ATMega sensor connector

	5.2 FPGA Testing
	5.2.1 PROM Programming (Upload)
	5.2.2 FPGA Boot (FPGA control-lines)
	5.2.3 FPGALED, Push-Button
	5.2.4 FPGASensor Board (Digital Connectors), FPGAnRF, FPGAUART (Serial Interface)
	5.2.5 AVRFPGA
	5.2.6 FPGAFLASH

	A Schematics
	A.1 Mother Board
	A.2 nRF2401 Radio Board

	B Errata
	B.1 Post Delivery Modifications
	B.2 Bill of Components
	B.3 Schematics

	C FPGA_control.c
	D example.ucf
	E FPGA Makefile

