

Dept. of Computer Science
University of Copenhagen • Universitetsparken 1

DK-2100 Copenhagen • Denmark

Proceedings of the 3rd DIKU-IST Joint
Workshop on Foundations of Software

Robert Glück and Masami Hagiya (Eds.)

Technical Report no. 07/07
ISSN: 0107-8283

Preface

These proceedings contain the contributions presented at the 3rd DIKU-IST Joint
Workshop on Foundations of Software held at Roskilde, Denmark, October 5-6,
2007. The workshop featured talks and discussions on domain-specific languages,
logic and model checking, program complexity and optimization, reversible and
bidirectional computing, and demonstrations of software prototypes.

After the success of the first two joint workshops, which took place at Dragør,
Copenhagen (2005) and Shonan Village, Japan (2006), the 3rd DIKU-IST work-
shop took again place in Denmark. It aimed to provide a forum for presenting
the latest research and promoting the research collaboration between the Depart-
ment of Computer Science (DIKU), University of Copenhagen, and the Graduate
School of Information Science and Technology (IST), University of Tokyo. In 2004,
IST and the Faculty of Science at the University of Copenhagen entered a Five-
Year Academic and Student Exchange Agreement during the State Visit of Queen
Margrethe II to Japan. Today, both universities are partners in the International
Alliance of Research Universities (IARU).

Computer science provides one of the keys to the technologies of the 21st century.
Its applications have found their way into all areas of daily life, often unnoticed
by their users, and software has become a decisive factor for commercial success in
many areas of modern business and society. This series of workshops between DIKU
and IST is devoted to the scientific foundations of software. Theory and practice
of programming languages are very important and visible research fields at both
research institutions in Copenhagen and Tokyo. The objective of these workshops
is to give researchers and graduate students at both institutions the opportunity to
exchange the latest research ideas and to jointly engage in outstanding international
research.

The workshop had about 45 participants from Japan and Denmark. The orga-
nizers would like to thank all speakers, participants, and the local organizers for
making this meeting both a successful and enjoyable event. Special thanks to John
Andersen, Director of International Affairs at the University of Copenhagen, His
Excellency Masaki Okada, Ambassador of Japan in Denmark, as well as Masato
Takeichi, Professor at IST and Member of the Science Council Japan, for opening
the 3rd DIKU-IST workshop and giving it this special attention.

Copenhagen and Tokyo, November 2007 Robert Glück
Masami Hagiya

Organization

The DIKU-IST Joint Workshop on Foundations of Software was organized by the
Department of Computer Science, University of Copenhagen, together with the
Graduate School of Information Science and Technology, University of Tokyo.

Meeting

Program committee: Jørgen Bansler
Andrzej Filinski
Robert Glück (Co-Chair)
Masami Hagiya (Co-Chair)
Fritz Henglein
Zhenjiang Hu
Neil Jones
Julia Lawall
Masato Takeichi

Local arrangements: Holger Bock Axelsen
Poul Clementsen
Marianne Henriksen
Kenji Moriyama
Michael Kirkedal Thomsen

Proceedings: Morten Fjord-Larsen

Website: Jesper Andersen

Sponsoring Institutions

This workshop was sponsored by The Danish Natural Science Research Council
(FNU) and The International Alliance of Research Universities (IARU) fund of
the University of Copenhagen. We gratefully acknowledge the local support of the
Department of Computer Science, University of Copenhagen.

Table of Contents

Introduction

Opening Address . 1
John E. Andersen

Opening Address . 3
Masaki Okada

DIKU-IST Collaboration and Joint Workshops on Foundations of Software . . 4
Masato Takeichi

Domain-Specific Languages

A Language for Optimal Path Queries . 7
Akimasa Morihata

Troll: A Language for Dice-Rolls . 13
Torben Mogensen

Logic and Model Checking

Modal µ-calculus on min-plus Algebra N∞ and its Applications 18
Masami Hagiya, Yoshinori Tanabe, Koki Nishizawa, and Dai Ikarashi

Practical Program Transformation using Temporal Logic and Model Checking 28
Julia Lawall, René Rydhof Hansen, Jesper Andersen, Yoann Padioleau,
and Gilles Muller

Relationship between Single and Multi Context Formulations of Modal Calculi 40
Tatsuya Abe

Reversible and Bidirectional Computing

ArchX: A Synchronization Framework for Tree-Structured Data 47
Izumi Mihashi

Reversible Machine Code and Its Abstract Processor Architecture 56
Holger Bock Axelsen, Robert Glück, and Tetsuo Yokoyama

Bidirectionalizing Folds (Ongoing Work) . 61
Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana,
and Masato Takeichi

Program Analysis

Relational Reasoning for Recursive Types and References 68
Nina Bohr and Lars Birkedal

Associativity for Parallel Tree Computation . 76
Kiminori Matsuzaki

Logic-Based Modelling and Analysis of Embedded Systems 85
Gourinath Banda and John Gallagher

Applications

Architecture-aware Partial-order Reduction to Accelerate Model Checking
of Networked Programs . 93

Cyrille Artho, Yoshinori Tanabe, Etsuya Shibayama, Watcharin
Leungwattanakit, and Masami Hagiya

Tutorial on Modeling VAT rules using OWL-DL . 94
Morten Ib Nielsen, Jakob Grue Simonsen, and Ken Friis Larsen

Semantics and Complexity

The Semantics of “Semantic Patches” in Coccinelle . 110
Neil D. Jones and René Rydhof Hansen

Vu-X: A Website Updating System based on Bidirectional Transformation . . 116
Keisuke Nakano

Complexity Analysis of Programs: Methods and Challenges 126
Lars Kristiansen

Debugging and Termination

Hunting Bugs with Coccinelle . 137
Henrik Stuart, Julia Lawall, and René Rydhof Hansen

Ranking Functions for Size-Change Termination II . 146
Amir M. Ben-Amram and Chin Soon Lee

Optimization

Hiding Backtracking Operations in Software Model Checking from the
Environment . 150

Cyrille Artho, Etsuya Shibayama, Yoshinori Tanabe, Masami Hagiya,
and Watcharin Leungwattanakit

Making Operations on Standard-Library Containers Strongly Exception Safe 158
Jyrki Katajainen

Author Index . 171

!
"
#$
%&
'
()
*+
(,
-
./
$
*0
1
23
"
4
(/
*5
6
6
7
8

Opening Address
John E. Andersen

Director of International Affairs
University of Copenhagen

Dear Ambassador and participants of the Third Joint Workshop on Foundations of
Software, organised by DIKU, the Department of Computer Science, University of
Copenhagen, and the Graduate School of Information Science and Technology at the
University of Tokyo. On behalf of the Rector of the University of Copenhagen, I
hereby warmly welcome you to the third – and hopefully not the last – Joint
Workshop on Foundations of Software.
Our wish to enhance cooperation between the University of Copenhagen and the
University of Tokyo has been at the top of our agenda for some time here in
Copenhagen – and it goes without saying that the Rector welcomes this initiative to
bring researchers together to exchange ideas and promote joint research in your field.
As a linguist and a Nordic philologist, I must say that I cannot fully understand the
topics to be discussed here in the next couple of days – but some of the presentations
do have very catchy titles, at least for me: for example, “A Language for Dice Rolls”,
“Hunting Bugs with Cocinelle” and last but not least “Hiding Backtracking
Operations”. I would imagine that in every field it could be useful to hide your
backtracking operations.
In terms of enhancing collaboration between the University of Copenhagen and the
University of Tokyo, there has been absolutely no backtracking. I actually just came
back last week from a conference at the University of Tokyo, Hongo Campus, also
attended by our Pro-rector Lykke Friis. During our stay, we met with your president
Professor Komiyami – and when he learned that I would have the privilege of
addressing you today, he asked me to convey his best regards, and he wishes you
fruitful and pleasant encounters during the workshop.

You might ask what took us to Japan and the University of Tokyo – and the answer is
IARU – The International Alliance of Research Universities – comprising 10 major
universities worldwide.
As the Director of International Affairs, I am also the contact person for IARU at the
University of Copenhagen. Since its inauguration early in 2006, cooperation between
the ten partners has been very intense compared to most other alliances – we work
together on a number of research projects. The project led by Tokyo is on “Energy,
Resources and Environment”. Sustainable cities with Tokyo as a model. By the way,
just having come from Tokyo, I fully realise what a difference our colleagues from
the University of Tokyo must experience being here in the middle of the Danish
province – on top of the jet lag.
The IARU has also created joint programmes in the educational field – for example,
summer schools led by Yale University and the National University of Singapore, a
programme called Global Summer Programme (GSP), to be fully developed starting
in 2009, where students and young researchers can come together for intensive
educational programmes. I understand that you are looking for ways to continue your

1

joint workshops; one possibility might be to hoist the IARU sail and seek funding
from that programme.

It is well known that Japanese universities are extremely hard to get into – and the
University of Tokyo might be the hardest – but it is also said that once you are in, you
do not have to do anything more. However, this was not what we witnessed. At your
campus, the Japanese students seemed to have three hobbies: studying, studying and
studying. And the Tokyo students not only know how to earn the top grades and get
into the most prestigious university, they are also very concerned about climate
change, sustainability and carbon footprints, they know martial arts – at least they can
do a couple of deterrent kicks – they can use chopsticks to eat their soup, and their
hairstyles are always low maintenance. Quite hard to compete with!
Although we are not at a University of Copenhagen campus, please allow me to say a
few words about our University.
Our classical European university was founded in 1479 by permission of the Pope in
Rome to the Danish King. At that time, there were sixty students and six professors –
today there are about 38,000 students, 7,500 employees and eight faculties – the last
two of which came on board this year by a merger with our agricultural university and
our pharmaceutical university. If you have a chance to visit our main building, you
will see high above the main gate a sculpture of an eagle. Below the eagle – written in
the university lingua franca of the 19th century – are the words “Coelestem Adspicit
Lucem”, meaning “it sees the heavenly light”. And this can be translated as: we are
not in it for the money – here, we stick to the ivory tower and do blue sky research. Or
at least those were the core values of a major university in the last century.
In the 21st century, this is not how we see ourselves. We value partnerships between
public institutions and private companies and industries. We make the eagle
occasionally look at the bottom-line without forgetting freedom – the truth-seeking
research of the blue skies.
Thank you once more to the organisers of this conference, who have created the
opportunity for many more interactions and increased cooperation between our two
universities. At my office we have had, in particular, very fruitful cooperation with
Associate Professor Robert Glück, who relentlessly pursues international action and
contacts for DIKU. And may I take this opportunity to thank His Excellency, the
Japanese Ambassador to Denmark, Mr. Masaki Okada, whom we consider a good
friend of the University of Copenhagen, for showing such a keen interest in
promoting cooperation between Denmark and Japan in the field of higher education
and research.

The world has become flat – at least this is what they say about the global world and
the global market – I hope that you will have a chance to see for yourself that
Denmark has been flat for many thousands of years. You will probably not find the
fish market in Roskilde as colourful, big or busy as the famous Tsukiji fish market in
Tokyo, but the ships here – the Viking ships – are second to none. Take a look, and
try to imagine how it would have been to cross the oceans on board one of these giant
warships.
Enjoy your stay here – and enjoy the workshop!

2

Opening Address
Ambassador Masaki Okada

Embassy of Japan in Denmark

I am very happy to be able to witness the cooperation activities that are going on
between Japanese and Danish researchers in the most advanced area of computer
science. Both Japan and Denmark need to enhance their scientific capabilities and
strengthen their status in high-tech fields in order to cope with the severe competition in
the globalized world. Seen from Japan’s side, in the past we have tended to concentrate
our efforts on contact with American researchers, and this has probably meant that we
have not paid due attention to the possibilities of cooperation with European scientists.

It was therefore very timely that, during his visit to Japan in November last year, the
Danish Prime Minister, Mr. Rasmussen, proposed strengthening the exchange between
universities and research institutions of the two countries. The exchange between the
University of Tokyo and the University of Copenhagen in the area of computer science
is a very good example of the new cooperation, and I hope that this case will become a
precedent for numerous cooperation projects between Japan and Denmark in the years
to come.

I sincerely hope that the workshop will deepen the friendship between Japanese and
Danish scientists and expand cooperation in the field of science and technology in the
future.

3

Professor Masato Takeichi
School of Information Science and Technology(IST)

University of Tokyo

DIKU-IST Collaboration
and

Joint Workshops on
Foundations of Software

DIKU-IST (October 5-6, 2007) 3

November 15, 2004

Academic Exchange Agreement Ceremony
between Faculty of Science, University of Copenhagen

and Graduate School of IST, University of Tokyo

DIKU-IST (October 5-6, 2007) 4

Her Majesty the Queen meets the researchers in Tokyo

November 17, 2004

4

DIKU-IST (October 5-6, 2007) 5

Works after the 1st DIKU-IST Workshop at Copenhagen

September 24, 2005

DIKU-IST (October 5-6, 2007) 6

Participants of the 2nd DIKU-IST Workshop
at Shonan-Village

April 21-22, 2006

DIKU-IST (October 5-6, 2007) 7

View from Comwell Conference Site
of the 3rd DIKU-IST Workshop

at Roskilde, Denmark

October 5-6, 2007

5

DIKU-IST (October 5-6, 2007) 8

President Komiyama of the University of Tokyo and
Rector Hemmingsen of the University of Copenhagen

at IARU Presidents’ meeting, Singapore, January 2006

International Alliance of Research Universities
The Australian National University, ETH Zurich,
National University of Singapore , Peking University,
University of California, Berkeley, University of Cambridge,
University of Copenhagen, University of Oxford,
The University of Tokyo, Yale University

Opening -
3rd DIKU-IST Joint Workshop on

Foundations of Software
Fri & Sat, 5-6 October 2007, Comwell Hotel, Roskilde, Denmark

John Andersen
(Director of International Affairs,
University of Copenhagen)

Masaki Okada
(Ambassador of Japan
In Denmark)

40+ participants
(11 from IST, University of Tokyo)

6

1

A Language
for Optimal Path Queries

Akimasa Morihata
(IST, University of Tokyo)

3rd DIKU-IST Joint Workshop on Foundations of Software,
October 2007, Roskilde, Denmark

2

You are planning a trip.
You want to visit some temples and museums.
You may go by walking, train, bus, etc...
Find the shortest route of the tour.

You are planning a trip.
You want to visit some temples and museums.
You may go by walking, train, bus, etc...
Your budget is fixed.
Find the shortest route of the tour.

You are planning a trip.
You want to visit some temples and museums.
You may go by walking, train, bus, etc...
Your budget is fixed.
Traffic jam may trouble you in afternoon.
Find the shortest route of the tour.

You are planning a trip.
You want to visit some temples and museums.
You may go by walking, train, bus, etc...
Your budget is fixed.
Traffic jam may trouble you in afternoon.
Climbing a temple will make you tired.
Find the shortest route of the tour.

Can you solve this problem?

3

Optimal paths are asked everywhere!

Optimal path query:
Finding one of the minimum-weighted
paths subject to some constraints

Optimal path queries are important
• to plan trips
• to arrange schedules
• to design networks
• to extract data from databases [Flesca et al. 06]

7

4

From theories to a language

Status: rich theoretical results
• resource constrained SP [Handler & Zang 80]
• regular-language constrained SP [Romeuf 88]
• SP in time-dependent networks [Orda & Rom 90]

Non-specialists hardly enjoy these results

Proposal:
a language for optimal path queries

5

Graphs and paths

• Directed graph
– Weight functions
– Label functions

• Path = sequence of edges
–

6

Definition of our language

must not call other functions
outside logical expressions

8

7

Example 1:
Shortest path from to via .

8

Example 2:
We will get tired after walking a lot

9

Lemma: for all

We want to obtain a function such that

Properties of the language

99

•
• : max values distinguished by “!”

destination

9

10

Branch-and-bound algorithm
for optimal path query

Note: this algorithm always terminates

11

Optimizations: memoizaion and
unnecessary-candidate removal

• Memoization
– memoizing each result of functions/predicates

• Unnecessary-candidate removal
e.g. find a path from to
" paths not starting from are unnecessary

– constructing a predicate to check necessity
• Reachablity checking on the transition

graph of

12

Implementation

Specification

Code generator
(Haskell)

Branch-and-bound procedure
(C++)

Graph

Result

Generated code

optimizations

10

13

Related works

• Variants of shortest path problems (quite many)

• Route planner of TRANSIMS project
[Barrett et al., 2000#2007]
– regular-language constrained,

time-dependent shortest path queries

• Derivation of dynamic programming algorithm
[Sasano et al., 2000#2006]

14

Conclusion and future works

A language for optimal path queries
– expressive
– an efficient algorithm with optimizations

• Implementation and experiment
– expressive/efficient enough for practical uses?

• Good external language
• Further optimizations

15

1

Small demo

1. Shortest path from s to t via c
2. ...etc? (if time is left)

s

e

a

t

d
c

g

54
2

3

6
4 3

7

5

11

16

Time Complexity

V = (number of verties)
E = (number of edges)
kV = (size of the range of s)
k is exponential to the size of the specification

O(kE log(kV)) :
current implementation (by binary heap)

O(kV log(kV) + kE) :
theoretical complexity (by Fibonacci heap)

12

Troll: A Language for Dice-Rolls

Torben Mogensen, DIKU

DIKU-IST 2007

Why have a DSL for dice-rolls?

Concise and unambiguous descriptions for communicating
betwen people.

Internet dice servers.

Probability calculations for

Figuring your chances (player).
Deciding difficulty level (GM).
Design space exploration (game designer).

Notation for dice-rolls – from D&D to Troll

The role-playing game “Dungeons & Drag-
ons” from 1974 introduced use of non-cubical
dice

. . . and notation such as 3d10+2. This notation has been used in
many later games.
Many games use dice-rolls that can’t be described by the notation
from D&D.
In 2002 I designed Roll as an attempt at a universal notation for
dice-rolls and made programs for rolling and analysing rolls
described in Roll.
Roll was used in the design of the latest version
of the game “World of Darkness” from 2004.

Some dice-rolls were not easy to describe in Roll, so in 2006 I
made the successor Troll.

13

Elements of Troll

A roll is a collection (multiset) of numbers:

Order is irrelevant
Number of occurences is significant.

A collection with one element can be used as a number.
Some operations require this.

Collections can be combined, filtered, counted, summed and in
other ways manipulated to find a final result.

Two different semantics:

Random rolling
Calculation of probability distribution

Basic Troll operations

dN rolls a single N-sided die.

MdN rolls M N-sided dice and makes a collection of the results.

sum C adds the elements in the collection C.

counts C counts the elements in the collection C.

+, -, *, / do arithmetic on numbers.

@ finds the union of two collections.

M < C returns the elements of C that are greater than M. Also
for =, >, <=, >=, =/=.

min and max find the smallest or largest element in a collection,
respectively.

least N and largest N find the least or largest N elements
of a collection.

Simple Troll definitions

sum 2d10 + 3
Adds two ten-sided dice and adds 3 to the result.

sum largest 3 4d6
adds the largest 3 of 4 six-sided dice.

count >7 6d10
counts how many out of six d10s are greater than 7.

max 3d20
finds the largest of three d20.

14

Advanced features

M # e makes M independent samples of expression e and
combines the results using @.

if C then e1 else e2 If C is non-empty, do e2, otherwise do
e3.

x := e1; e2 defines x to be the value of e1 inside e2. Note:
Only one sample of e1.

repeat x := e1 until e2 repeats rolling e1 until the
expression e2 evaluates to non-empty, then returns last value of
e1.

accumulate x := e1 until e2 repeats rolling e1 until the
expression e2 evaluates to non-empty, then returns the union of
all values of e1.

foreach x in e1 do e2 calculates e1, and for each number in
the result evaluates s e2 with x bound to that number, then unions
the results of e2.

Advanced examples

b := 2d6; if min b = max b then b@b else b
Backgammon dice.

count 7< N#(accumulate x:=d10 while x=10)
Die roll for World of Darkness.

repeat x := 2d6 until (min x) < (max x)
Roll two d6 until you don’t have a double.

x := 7d10; max foreach i in 1..10 do sum i= x
Largest sum of identical dice.

Implementation

Implemented in Moscow ML.

The two semantics:

Random rolls is implemented fairly straightforwardly using a
PRNG.

Probability distribution implemented by enumerating all possible
rolls (with optimisations) and counting results.

15

Optimizations

Exploits linear and homomorphic functions:

Linear: f (C1@C2) = f (C1)@f (C2)
Examples: M<, M=, foreach

Homomorphic: Exists ⊕ so f (C1@C2) = f (C1)⊕ f (C2)
Examples: sum, count, min, least N, if,
different

Uses unnormalized representation of probability distributions:

datatype dist = VAL of value
| CHOICE of real * dist * dist
| UNION of dist * dist
| TWICE of dist

Exploiting unnormalized distribution

Linear f:
fun linear f (VAL v) = VAl (f v)

| linear f (CHOICE (p,d1,d2)) = CHOICE (p, linear f d1, linear f d2)
| linear f (UNION (d1,d2)) = UNION (linear f d1, linear f d2)
| linear f (TWICE d) = TWICE (linear f d)

Homomorphic h:
fun hm h g (VAL v) = VAL(h v)

| hm h g (CHOICE (p,d1,d2)) = CHOICE (p, hm h g d1, hm h g d2)
| hm h g (UNION (d1,d2)) = up g (hm h g d1) (hm h g d2)
| hm h g (TWICE d) = up2 g (hm h g d)

and up g (VAL v) (VAL w) = VAL(g v w)
| up g (CHOICE (p,d1,d2)) d3 = CHOICE (p,up g d1 d3, up g d2 d3)
| up g d1 (CHOICE (p,d2,d3)) = CHOICE (p,up g d1 d2, up g d1 d3)

and up2 g (VAL v) = VAL (g v v)
| up2 g (CHOICE (p,d1,d2)) = CHOICE (p*p,up2 g d1,

CHOICE ((1-p)*(1-p)/(1-p*p),
up2 g d2,
up g d1 d2))

Other optimizations

Exploit that repeat and accumulate have unchanged conditions in all
iterations:

Distribution of body calculated once, then rewritten into the form

CHOICE(pfail , dfail , dsucc)

where the values in dfail fail the condition and values in dsucc

succeed.

For repeat-until, the resulting distribution is dsucc .

For accumulate-while, the resulting distribution d is given by
the equation

d = CHOICE(pfail , dfail , UNION(dsucc, d))

Solution is infinite, but cut off after specified limit.

16

Experiences with Troll

Non-programmers can write simple definitions.

While optimisations help a lot, sometimes Troll needs to
enumerate all combinations, which may be slow.

New features added occasionally by request from users (latest:
text and recursive function definitions).

Download from www.diku.dk/~torbenm/Troll
(Requires Moscow ML).

17

Modal !-calculus on
min-plus algebra N" and

its applications

Masami Hagiya
Joint work with

Yoshinori Tanabe
Koki Nishizawa

Dai Ikarashi

Contents

• Background! modal !-calculus,
min-plus algebra, etc.

• Interpretation of formulas on
min-plus algebra and examples

• Algorithm for model checking
(current status report)

• Application to shape analysis
• Related work and future work

Modal !-calculus: For what?

• Used to describe properties to be
verified in model checking (a kind of
modal/temporal logic)

• Model checking: regard software or
hardware as a state transition system
and verify its properties by exhaustive
state exploration

• Examples of model checkers: SPIN,
NuSMV, JavaPathFinder

18

What is modal !-calculus?

• Modal logic: logical system obtained by
adding [] and #$% to propositional logic

[f]P --- Necessarily P w.r.t. modality f
#f%P --- Possibly P w.r.t. modality f

• Modal !-calculus: logical system
obtained by adding the least fixed point
operator ! and the greatest fixed point
operator &

Kripke Structure
• Assume a fixed set of “atomic propositions”
• Kripke structure: state transition system

where each state has atomic propositions
that are true at the state

Q

Q Q

Q

P

Example of a Kripke structure
P and Q are atomic propositions
Only true formulas are shown
The initial state is in light blue
Arrows denote transitions by modality f

Examples of Formulas
• Formula !X(P ' #f%X)

– A state where P is true is reachable via
transitions by f

• Formula &X(P '(Q)[f]X))
– In all transition sequences by f, Q always

holds while P is not

Q

Q Q

Q

P

19

What is min-plus algebra?

• Also known as min-plus dioid
• Used to analyze and optimize discrete event

systems
Definition of a dioid
• min is associative and commutative, has zero

element ", and is idempotent
• Zero element is absorptive w.r.t. plus
• plus is associative, communative, has unit

element 0, and distributes over min
!min corresponds to addition, plus to

multiplication of rings or fields

Why min-plus algebra?

• Not only truth values, but numerical
measures become available by
introducing plus

• Applications:
– Verification of liveness in shape analysis
– Flow analysis in compilers
– …

Why min-plus? --- Shape Analysis

• Shape analysis: verification of
algorithms operating on data structures
in heap, such as lists, trees, DAGs, etc.

• Directed graphs can be regarded as
Kripke structures if atomic propositions
true on each state are defined
– Shape analysis using modal logic

(Tanabe et al. 2005)

20

Shape Analysis (cont.)
Size-change principle

• Size-change termination principle:
– If some measure decreases in each

iteration of a loop, it eventually terminates
in a finite number of steps

• By introducing plus, numerical
measures can be defined and computed
– Measures before and after an operation on

heap are compared and the size-change
principle is applied (later in the talk)

Semantics

• plus !)
• min ! '
• For formula *

[*$] : S +$N ,$-".
S : the set of all sates in a Kripke structure

N = {0, 1, 2, ... }
N ,$-".$($/$N"0 1$min-plus algebra

[P]x = 0 if x |= P (x 2$S)
= " otherwise
P : atomic proposition

[*$'$3]x = min([*$]x, [3$]x)
[*$)$3]x = [*$]x + [3$]x
[4*]x = " if [*]x < "

= 0 if [*]x = "
[#f%*]x = min{ [*$]y | Rf(x, y) }

[[f]*]x = 5{ [*$]y | Rf(x, y) }
Rf(x, y) : state y is reachable from x by modality f

[1]x = 1 for any x 2$S
[!$X *$] = max{ F : S +$N" | F = [*$][X]:=F }

X : propositional variable

21

Example
• Formula !X(P ' #f%(6$)$X))

– The length of the shortest path from a state to some
state satisfying P

On contrary: in the ordinary modal !-calculus
• Formula !X(P ' #f%X)

– Whether there exists a path from a state to some
state satisfying P

• Formula [o](4Q '$60
– The number of states

satisfying Q
(o denotes the global modality:
Any state is reachable from any sate)

Q

Q Q

Q

P2

1

0

12

(Local) Model Checking

• In the ordinary semantics, check
whether * holds at x (true or false) for
formula * and state x in the Kripke
structure

• In the min-plus algebra semantics,
compute the value of [*$]x 2 N"

• According to the construction of *
– Easy except for fixed points

Computation of Fixed Points
• The traditional iterative computation of fixed

points assumes a finite complete lattice (e.g.,
finite-state and ordinary truth values)

• Even if the domain is not finite, if it is well-
founded (no infinite decreasing sequences),
the traditional approach can be directly
applied to greatest fixed points
– Since min-plus algebra semantics is well-founded

for a finite-state Kripke structure, the !-operator
(greatest fixed point) can be computed

• However, the &-operator may produce infinite
increasing sequences and the computation
may not terminate in a finite number of steps
– New algorithm required!

22

Computing the &-operator

• We have developed an algorithm for
computing the &-operator (least fixed point)
under the restriction that !, &, 7, 4 do not
occur in the scope of the &-operator
– We are now extending the algorithm for the

unrestricted case
– After the workshop, we have already shown

the decidability of model checking
including 7, 4

Standard Form of Semantics

• Consider a formula * without !, & , 48$7
– In this case, the semantics of *, [*]x,

contains only min and plus

• Since plus distributes over min, which
can be pulled out of plus, [*]x can be
expressed in the form

min 5(9990

Idea on &-operator Computation
• Consider &$X *

– X is the only propositional variable in *
– Let L = S + N" and S = -s18$999$8 sn.
– X ranges over L
– Formula * is interpreted as a function1$L +$L
– Write *X for the interpretation of * with X

• By the previous slide

(*X)si = minj:k(AijkXsk+Cij)
• Let mi = min{Cij |"k . Aijk = 0}
• Proposition: If F is the least fixed point of * and

Fsj ; < for each sj, then minj mj = mi implies Fsi = mi
– The least fixed point is obtained by iterative computation

23

Fsj ; 0 ??

• In the previous slide, it was assumed that
Fsj ; 0 for each sj

• For this assumption to be true, those sj s.t.
Fsj = 0 should be obtained in advance
– Fixed point computation using abstraction
– 0 ! 0
– 1, 2, …, " ! "
– Ordinary fixed point computation determines

whether Fsj is 0 or not

Example
• Formula &X (#f%(6$)$X0$'$#g%X)

– *X = [#f%(6$)$X0$'$#g%X]

• Assume the Kripke structure on the right
– S = {1, 2, 3}

• *X1 = min(X2, X3 + 1)
*X2 = X2 + 1
*X3 = X3

Step1: abstraction
• *=X1 = min(X2, X3 + ") /$"

*=X2 = X2 + " /$"
*=X3 = X3 /$0 (least fixed point)

F3 = 0 is determined
Step2 starts with F1 = ", F2 = "
• Equations for F1, F2

*F1 = min(F2, F3 + 1) = 6
*F2 = F2 + 1 = "

F1 = 1 is determined
• Equations for F2

*F2 = F2 + 1 = "
Stop since the least value is "
F2 = " is determined

Example

24

Functional Kripke Structure,
Nominal

• Functional Kripke structure: Modalities
(other than the global modality) relate
exactly one target state for each state in
transition

• Nominal: atomic proposition that is true at
exactly one state
– x, y denote nominals

(each corresponding to a state)
– @x.* abbreviates @x.* > [o](x 7$*) > #o%(x)$*0$

• Five kinds of primitive statements
x := y
x := y.f
x.b := true
x.b := false
x.f := y

• Primitive statement ? is interpreted as a function:
[?] : K + K

– K denotes the set of all functional Kripke structures

Shape Analysis:
Primitive Statements

x

y

f

f

f

Kripke str. K

y

f

f

f

x

[x := y.f]K

[x := y.f]

Weakest Precondition and
Comparison of Formulas

• In order to apply the size-change principle,
one has to show

[3]K s > [3][?]K s
– Different Kripke structures (K and [?]K) on the left

and right sides

• The weakest precondition of 3 for ? is a
formula wp(?, 3) satisfying

[3][?]K s = [wp(?, 3)]K s
• Using wp, the above inequality becomes

[3]K s > [wp(?, 3)]K s
– The same Kripke structure on both sides

• wp(?, 3) can be computed as in the next slide

25

Example

• * = @x.!X(a ' #f% (1) X)), ? =(x := x.f)
– We obtain wp(?, *) = @x. #f%!X(a ' #f% (1) X))

• Compare * before and after ?
– Assume that a does not hold at state x
– Also assume [*]K s < " for s 2$S
– We can then show [*]K s > [*][?@K s

by showing [*]K s > [wp(?, *)]K s
according to the semantics

Related Work

• Nishizawa et al. used ordinary complete
Heyting algebra for truth values
(Nishizawa et al. 2007)
– Although min-max algebra is complete

Heyting algebra, it cannot be directly
compared with min-plus algebra

• Needs to be compared with more
related work

26

Future Work

• Fixed point computation in general case
• Implementation of model checking

algorithm
• Application of the&-operator
• Application to shape analysis
• Application to flow analysis
• Extension to algebra with max

Future Work

• Fixed point computation in general case
• Implementation of model checking

algorithm
• Application of the&-operator
• Application to shape analysis
• Application to flow analysis
• Extension to algebra with max

– In N", max(*, 3) = ((* '$3) 7 *)) 3
– [*$7 3]x = the smallest n s.t. [*]x + n A$[3]x

27

Practical Program Transformation
using Temporal Logic and Model Checking

Julia Lawall

Joint work with René Rydhof Hansen, Jesper Andersen (DIKU),

Yoann Padioleau, and Gilles Muller (EMN)

October 5, 2007

1

Device drivers: a notorious weak point in OS code

Developed by device-experts, not core kernel experts.

! Protocols and coding conventions not always understood.

! Drivers can fall behind the rest of the kernel.

! Errors in driver code lead to system crash.

Previous (and ongoing) work:

! Verification and bug detection [Ball, Engler, Foster, etc.]

! Protocol detection [Engler, Zhou, etc.]

! Safe or domain-specific languages [SPIN, Cyclone, Devil, etc.]

Our focus: automating device driver collateral evolution.

2

Collateral evolution

Collateral evolution: an update required in a library client in
response to an evolution affecting the interface of a library.

In the case of Linux:

! Drivers rely heavily on internal Linux libraries.

! These libraries and their usage protocols are evolving rapidly.

! Updating the drivers that rely on these libraries
(collateral evolution) is time-consuming and error prone.

! Updating drivers outside the Linux source tree additionally
requires a transfer of expertise.

3

28

Examples

Yoann arrives at UIUC and wants to use their VPN:

! Drop #include <config.h>

! Drop the second argument of skb checksum help.

! Replace CHECKSUM HW by either CHECKSUM PARTIAL or
CHECKSUM COMPLETE (which? when?)

To access Scsi Host information:

Old protocol: call get, check the result, process, call put.

New protocol: receive the information as an argument.

Used by 19 scsi drivers in the Linux source tree.

4

Examples

Yoann arrives at UIUC and wants to use their VPN:

! Drop #include <config.h>

! Drop the second argument of skb checksum help.

! Replace CHECKSUM HW by either CHECKSUM PARTIAL or
CHECKSUM COMPLETE (which? when?)

To access Scsi Host information:

Old protocol: call get, check the result, process, call put.

! New protocol: receive the information as an argument.

! Used by 19 scsi drivers in the Linux source tree.

5

Goals

Document and automate collateral evolutions.

Need a notation that:

! Is easy to write, easy to read. WYSIWYG approach.

! Expresses code-level transformations.

! Provides confidence in the result.

! Is acceptable to driver maintainers.

! Focuses on device-driver relevant issues
(eg, simple structure, wide use of copy-paste).

6

29

Example: The Scsi Host protocol in more detail

scsi host hn get and scsi host put:

! Access and release a Scsi Host typed structure.

! Manage a reference count. Dangerous.

Linux 2.5.71:

! scsi host hn get and scsi host put no longer exported.

! Functions using them get Scsi Host value as an argument.

! In practice, only affects proc info functions.

7

A scsi driver: scsiglue.c (simplified proc info function)

static int usb_storage_proc_info (
char *buffer, char **start, off_t offset,
int length, int hostno, int inout)

{
struct us_data *us;
struct Scsi_Host *hostptr;

hostptr = scsi_host_hn_get(hostno);
if (!hostptr) { return -ESRCH; }

us = (struct us_data*)hostptr->hostdata[0];
if (!us) {

scsi_host_put(hostptr);
return -ESRCH;

}

SPRINTF(" Host scsi%d: usb-storage\n", hostno);
scsi_host_put(hostptr);
return length;

}

8

A scsi driver: scsiglue.c (simplified proc info function)

static int usb_storage_proc_info (
char *buffer, char **start, off_t offset,
int length, int hostno, int inout)

{
struct us_data *us;
struct Scsi_Host *hostptr;

hostptr = scsi_host_hn_get(hostno);
if (!hostptr) { return -ESRCH; }

us = (struct us_data*)hostptr->hostdata[0];
if (!us) {

scsi_host_put(hostptr);
return -ESRCH;

}

SPRINTF(" Host scsi%d: usb-storage\n", hostno);
scsi_host_put(hostptr);
return length;

}

9

30

A scsi driver: scsiglue.c (simplified proc info function)

static int usb_storage_proc_info (struct Scsi_Host *hostptr,
char *buffer, char **start, off_t offset,
int length, int hostno, int inout)

{
struct us_data *us;

us = (struct us_data*)hostptr->hostdata[0];
if (!us) {

return -ESRCH;
}

SPRINTF(" Host scsi%d: usb-storage\n", hostno);

return length;
}

10

scsiglue patch file

--- scsiglue_old.c Tue Feb 13 13:31:56 2007
+++ scsiglue_new.c Tue Feb 13 13:31:49 2007
@@ -1,20 +1,14 @@
-static int usb_storage_proc_info (
+static int usb_storage_proc_info (struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
int length, int hostno, int inout)

{
struct us_data *us;

- struct Scsi_Host *hostptr;
-
- hostptr = scsi_host_hn_get(hostno);
- if (!hostptr) { return -ESRCH; }

us = (struct us_data*)hostptr->hostdata[0];
if (!us) {

- scsi_host_put(hostptr);
return -ESRCH;

}

SPRINTF(" Host scsi%d: usb-storage\n", hostno);
- scsi_host_put(hostptr);

return length;
}

11

Another scsi driver: sym53c8xx.c

static int sym53c8xx_proc_info(
char *buffer, char **start, off_t offset,
int length, int hostno, int func) {

struct Scsi_Host *host;
struct host_data *host_data;
ncb_p ncb = 0;
int retv;

printk("sym53c8xx_proc_info: hostno=%d, func=%d\n", hostno, func);
host = scsi_host_hn_get(hostno);
if (!host) return -EINVAL;
host_data = (struct host_data *) host->hostdata;
ncb = host_data->ncb;
retv = -EINVAL;
if (!ncb) goto out;
if (func) {

retv = ncr_user_command(ncb, buffer, length);
} else {

if (start) *start = buffer;
retv = ncr_host_info(ncb, buffer, offset, length);

}
out: scsi_host_put(host);

return retv;
}

12

31

Another scsi driver: sym53c8xx.c

static int sym53c8xx_proc_info(struct Scsi_Host *host,
char *buffer, char **start, off_t offset,
int length, int hostno, int func) {

struct Scsi_Host *host;
struct host_data *host_data;
ncb_p ncb = 0;
int retv;

printk("sym53c8xx_proc_info: hostno=%d, func=%d\n", hostno, func);
host = scsi_host_hn_get(hostno);
if (!host) return -EINVAL;
host_data = (struct host_data *) host->hostdata;
ncb = host_data->ncb;
retv = -EINVAL;
if (!ncb) goto out;
if (func) {

retv = ncr_user_command(ncb, buffer, length);
} else {

if (start) *start = buffer;
retv = ncr_host_info(ncb, buffer, offset, length);

}
out: scsi_host_put(host);

return retv;
}

13

sym53c8xx.c patch file

@@ -1,14 +1,11 @@
-static int sym53c8xx_proc_info(
+static int sym53c8xx_proc_info(struct Scsi_Host *host,

char *buffer, char **start, off_t offset,
int length, int hostno, int func) {

- struct Scsi_Host *host;
struct host_data *host_data;
ncb_p ncb = 0;
int retv;

printk("sym53c8xx_proc_info: hostno=%d, func=%d\n", hostno, func);
- host = scsi_host_hn_get(hostno);
- if (!host) return -EINVAL;

host_data = (struct host_data *) host->hostdata;
ncb = host_data->ncb;
retv = -EINVAL;

@@ -20,6 +17,5 @@
*start = buffer;

retv = ncr_host_info(ncb, buffer, offset, length);
}

-out: scsi_host_put(host);
- return retv;
+out: return retv;
}

14

Observations

Code must be added and removed.

The context of the API usage can be affected as well.

Affected code may be scattered.

Need to be able to abstract over local variable names,
device-specific computations, etc.

– hostptr vs. host, etc.

Need to be precise.

Need to describe execution paths, not abstract syntax trees.

15

32

Comparing the two functions

static int usb_storage_proc_info (
char *buffer,char **start,
off_t offset,
int length,int hostno,int inout) {
struct us_data *us;
struct Scsi_Host *hostptr;

hostptr = scsi_host_hn_get(hostno);
if (!hostptr) { return -ESRCH; }

us=(struct us_data*)
hostptr->hostdata[0];

if (!us) {
scsi_host_put(hostptr);
return -ESRCH;

}

SPRINTF("...", hostno);
scsi_host_put(hostptr);
return length;

}

static int sym53c8xx_proc_info (
char *buffer,char **start,
off_t offset,
int length,int hostno,int func) {
struct Scsi_Host *host;
struct host_data *host_data;
ncb_p ncb = 0; int retv;

printk("...", hostno, func);
host = scsi_host_hn_get(hostno);
if (!host) return -EINVAL;
host_data =
(struct host_data *) host->hostdata;

ncb = host_data->ncb;
retv = -EINVAL;
if (!ncb) goto out;
...

out: scsi_host_put(host);
return retv;

}

16

Comparing the control flow of the two functions

scsiglue.c sym53c8xx.c

!!
get

!!

!!!!!!

!!!!!!!! err

put

put

!!

err

ret

xxxxxx
!!

get

!!

!!!!!!

err

"" ##

!!
put

!!
ret

Each path does a get, then a put.

17

Observations

Code must be added and removed.

The context of the API usage can be affected as well.

Affected code may be scattered.

Need to be able to abstract over local variable names,
device-specific computations, etc.

– hostptr vs. host, etc.

Need to be precise.

Need to describe control-flow paths, not abstract syntax trees.

18

33

Ideas
Follow the patch syntax!

– - for removed code.

– + for added code.

– context code.

Metavariables and “...” for irrelevant code fragments.

At the statement level, “...” represents a control-flow path, not
an abstract syntax tree.

SmPL: a language for writing semantic patches

f();
...

- g();
+ h();

19

Creating a proc info semantic patch

Drop the uninteresting parts

static int sym53c8xx_proc_info(

char *buffer, char **start, off_t offset,
int length, int hostno, int func) {

struct Scsi_Host *host;
struct host_data *host_data;
ncb_p ncb = 0; int retv;

printk("sym53c8xx_proc_info: hostno=%d, func=%d\n", hostno, func);
host = scsi_host_hn_get(hostno);
if (!host) return -EINVAL;
host_data = (struct host_data *) host->hostdata;
ncb = host_data->ncb;
retv = -EINVAL;
if (!ncb) goto out;
if (func) { retv = ncr_user_command(ncb, buffer, length); }
else { if (start) *start = buffer;

retv = ncr_host_info(ncb, buffer, offset, length); }
out: scsi_host_put(host);

return retv;
}

20

Creating a proc info semantic patch

Drop the uninteresting parts

static int sym53c8xx_proc_info(

char *buffer, char **start, off_t offset,
int length, int hostno, int func) {

struct Scsi_Host *host;
...

host = scsi_host_hn_get(hostno);
if (!host) return -EINVAL;
...

scsi_host_put(host);
...

}

21

34

Creating a proc info semantic patch

Indicate code to add and removep

static int sym53c8xx_proc_info(
+ struct Scsi_Host *host,

char *buffer, char **start, off_t offset,
int length, int hostno, int func) {

- struct Scsi_Host *host;
...

- host = scsi_host_hn_get(hostno);
- if (!host) return -EINVAL;

...

- scsi_host_put(host);
...

}

22

Creating a proc info semantic patch

Abstract over variable names, arbitrary expressions, etc.

@@
identifier proc_info_fn;
identifier host, buffer, start, offset, length, hostno, func;
@@

static int proc_info_fn(
+ struct Scsi_Host *host,

char *buffer, char **start, off_t offset,
int length, int hostno, int func) {

- struct Scsi_Host *host;
...

- host = scsi_host_hn_get(hostno);
- if (!host) return ...;

...
- scsi_host_put(host);

...
}

Function prototypes updated automatically.

23

Overview of the Coccinelle implementation

parse C file

!!

parse a SmPL rule

!!
expand isomorphisms

!!
translate to CFG

$$!!!!!!! translate to CTL

%%""""""""

...
match the CTL against the CFG
using a model-checking algorithm

!!
modify matched code

!!
unparse

!"
more rules

#$ &&

%&
more rules

'(''

done!!

24

35

Implementation issues

Parse C file

! Maintain spacing, comments, preprocessor code.

Parse a SmPL rule

! Arbitrary interleaving of − and + code.

! Expansion according to isomorphisms:

X != NULL <=> NULL != X => X

Match and modify:

! A rule is matched against each function once
(termination guaranteed).

! Transformation is only performed for a complete match.

25

The matching process

Ideas:

! Properties of paths are naturally expressed using temporal
logic (CTL) [Lacey and de Moor].

! CTL has an efficient, easy-to-implement decision procedure:
model checking.

@@ @@
f();
...

- g();
+ h();

int main () {
f();
x();
if (a < b) { g(); p(a); }
else { p(b); g(); }

}

f() ∧
AX(A [¬(f() ∨ g()) U

g()])

26

Adding metavariables
Introduce predicates, with finite domain

@@
expression E1, E2;
@@

f(E1);
...

- g(E1,E2);
+ h(E1,E2);

1.int main()

!!
2.f(3);

!!
3.x();

!!
4.if (a < b)

5.g(3,4);

((###
#

)) $$$
6.g(3,4);

**%%%
%

$$
&&&

return;

f(E1) ∧ AX(A [¬(f(E1) ∨ g(E1,E2)) U g(E1,E2)])

! f(E1) matches at (2, [E1 $→ 3])
! g(E1,E2) matches at

(5, [E1 $→ 3,E2 $→ 4]), (6, [E1 $→ 3,E2 $→ 4])

These environments are compatible.
Negated bindings also allowed: constructive negation.

27

36

Finer-grained matching of metavariables

@@
expression E1, E2;
@@

f(E1);
...

- g(E1,E2);
+ h(E1,E2);

1.int main()
!!

2.f(3);
!!

3.x();
!!

4.if (a < b)

5.g(3,a);

$$!!!

++ ''
6.g(3,b);

))(((

,,))

return;

f(E1) ∧ AX(A [¬(f(E1) ∨ g(E1,E2)) U g(E1,E2)])

! f(E1) matches at (2, [E1 $→ 3])
! g(E1,E2) matches at

(5, [E1 $→ 3,E2 $→ a]), (6, [E1 $→ 3,E2 $→ b])

These environments are not compatible.

Solution: Add quantifiers:

∃E1.f(E1) ∧ AX(A [¬(f(E1) ∨ ∃E2.g(E1,E2)) U∃E2.g(E1,E2)])
28

Collecting the match information

Traditionally, model checking says yes or no

! CTL model checking internally collects all states where a
formula holds.

We need to know:

! Where to transform?

! With respect to what environment?

Solution:

! Collect witnesses for quantified metavariables.

! Introduce quantified metavariables for information we want to
collect.

29

Matching with witnesses

∃E1.f(E1) ∧ AX(A [¬(f(E1) ∨ ∃E2.g(E1,E2)) U∃E2.g(E1,E2)])

1.int main()
!!

2.f(3);
!!

3.x();
!!

4.if (a < b)

5.g(3,a);

$$****

))
((((

6.g(3,b);

))++++

$$
!!!!

return;

! f(E1) matches at (2, [E1 $→ 3], ∅)

! g(E1,E2) matches at
(5, [E1 $→ 3,E2 $→ a], ∅),
(6, [E1 $→ 3,E2 $→ b], ∅)

! ∃E2.g(E1,E2) matches at
(5, [E1 $→ 3], {(5, [E2 $→ a], ∅)}),
(6, [E1 $→ 3], {(6, [E2 $→ b], ∅)})

30

37

Collecting extra information

∃E1.f(E1)∧AX(A [¬(f(E1)∨∃E2.g(E1,E2)) U∃E2.∃v .g(E1,E2)v])

1.int main()
!!

2.f(3);
!!

3.x();
!!

4.if (a < b)

5.g(3,a);

$$!!!

++ ''
6.g(3,b);

))(((

,,))

return;

! f(E1) matches at (2, [E1 $→ 3], ∅)

! ∃E2.∃v .g(E1,E2)v matches at
(5,[E1 $→ 3],

{(5,[E2 $→ a],
{(5, [v $→ g(E1,E2)], ∅)})),

(6, . . . , . . .)

Final answer:

(2, [], {(2, [E1 $→ 3], {(5, [E2 $→ a], {(5, [v $→ g(E1,E2)], ∅)}), (6, ...)})})
Interpretation:

! Transform at node 5 according to the transformation
associated with g(E1,E2), where E1 is 3 and E2 is a.

! Similarly for node 6.
31

Benefits of our approach

CTL algorithm is easy to implement.

! Efficient enough for individual driver functions.

Flexible logic encoding:

! (Mostly) universal path quantification for transformation.

! Existential path quantification for searching.

! Either encoding can be extended to collect partial matches.

32

Current status

! SmPL compiler and CTL algorithm implemented.

! Semantic patches written for over 70 Linux collateral
evolutions.

! Semantic patches applied to over 6000 relevant driver files,
from recent Linux versions.

– Often less than one second per relevant file.

! Some patches contributed to Linux (reaction: “Cool”,
“Great”).

! Soundness and completeness proofs well underway.

33

38

Conclusion

! Transformation of multiple program points related by
control-flow relationships is interesting in practice.

! CTL with some extensions is a convenient target language for
expressing such transformations.

! CTL model checking is efficient enough for performing the
matching required by such transformations in practice.

! Perhaps our approach is not restricted to device drivers or to
collateral evolutions, but we make no promises...

34

35

39

Relationship between Single and Multi Context
Formulations of Modal Calculi

Tatsuya Abe
CVS, AIST

(IST until September 30, 2007)

Third DIKU-IST
October 5, 2007

Motivation for Construction of Modal Calculi (1/2)
Fact. 1. Modal logic is an extension of propositional logic.
2. Simply typed λ-calculus corresponds to (intuitionistic)
propositional logic via Curry-Howard isomorphism.

modal logic ?

propositional logic

!!

simply typed λ-calculus

In this study, we construct λ-calculi corresponding to modal
logic via Curry-Howard isomorphism for modal logic.

Motivation for Construction of Modal Calculi (2/2)
Why do we want to construct typed λ-calculi corresponding to
modal logic?
By extending logic and Curry-Howard isomorphism, we have
obtained new typed λ-calculi and new types.
E.g. 1. second-order propositional logic, λ2 (system F),

polymorphic types
2. first-order predicate logic, λP, dependent types
Similarly, we expect to find new typed λ-calculi (called modal
calculi) and a new kind of type (called modal types).

40

Brief History of Modal Calculi
Martini and Masini 1994 IK
Pfenning and Wong 1995 IS4
Bierman and de Paiva 2000 IS4 λS4

Alechina, Mendler, de Paiva, and Ritter 2001 IS4
Bellin, de Paiva, and Ritter 2001 IK
Pfenning and Davies 2001 IS4 λ→!e

Kakutani and Abe 2007 IK
We will refer to λS4 and λ→!e later.

Modal Logic
The set of types in modal propositional logic is as follows,

A! p | A ⊃ A | ! A

where p ranges over the set of propositional variables.
A set of types is written as Γ,∆,
A set of types Γ is said to be a context.
A judgment is written as Γ # A.
Γ # A means that A is true under∧{ B | B ∈ Γ }.
Γ # ! A means that A is necessarily true under∧{ B | B ∈ Γ }.

Context Formulations
We focus on difference in context formulations.
Usually, judgments are of the form Γ # A.
Judgments of the form ∆ | Γ # A are also used.
∆ | Γ # A denotes that A is true under

∧
{! B | B ∈ ∆ } ∧

∧
{C | C ∈ Γ } .

Terminology. Γ # A single context formulation
∆ | Γ # A multi context formulation

41

Modal Calculus of Single Contexts
λSS4: IS4, single contexts, similar to Bierman and de Paiva’s λS4

Γ, x : A # x : A

Γ, x : A # M : B
Γ # λxA.M : A ⊃ B

Γ # M : A ⊃ B Γ # N : A
Γ # MN : B

Γ # Ni : ! Ai (1 ≤ i ≤ n) x1 : ! A1, . . . , xn : ! An # M : B
Γ # boxM withN1 · · ·Nn for x1! A1 · · · xn! An : ! B

Γ # M : ! A
Γ # unbox(M) : A

Multi (Simultaneous) Bindings in λSS4
Γ # Ni : ! Ai (1 ≤ i ≤ n) x1 : ! A1, . . . , xn : ! An # M : B

Γ # boxM withN1 · · ·Nn for x1! A1 · · · xn! An : ! B

box M with N1 N2 for x1! A1
binds

""
x2! A2

binds
##

Such multi (simultaneous) bindings are not popular in the
theory of λ-calculi.

Modal Calculus of Multi Contexts
λMS4: IS4, multi contexts, similar to Pfenning and Davies’s λ→!e

∆ | Γ, x : A # x : A ∆, x : A | Γ # x : A

∆ | Γ, x : A # M : B
∆ | Γ # λxA.M : A ⊃ B

∆ | Γ # M : A ⊃ B ∆ | Γ # N : A
∆ | Γ # MN : B

∆ | ∅ # M : A
∆ | Γ # !M : ! A

∆ | Γ # N : ! A ∆, x : A | Γ # M : B
∆ | Γ # let! xA beN inM : B

Proposition. λSS4 and λMS4 are equivalent w.r.t. derivability of
types, i.e., ∃M.!∆,Γ # M : A if and only if ∃M.∆ | Γ # M : A.

42

Let-terms in λMS4
A λ-term of the form

let x
binds

$$
be N in M

is adopted in λMS4. Such single bindings are popular in the
theory of λ-calculi (e.g., ML, Scheme).
Summary

context binding
λSS4 and λS4 single (popular) multi (not popular)
λMS4 and λ→!e multi (not popular) single (popular)

Natural Question for Construction of Modal Calculi
Question. Which context formulation should we choose in
constructing modal calculi?
Answer. We can choose whichever we like. It makes no
essential difference.
When we construct a modal calculus (e.g., λSS4) based on
single context formulation, we can also construct another
modal calculus (e.g., λMS4) based on multi context formulation,
and vice versa (e.g., we can construct λMS4 from λSS4.)

Main Result in This Talk (1/4)
Derivability of types (provability) of calculi corresponding to
IS4 are the same by definition (i.e., correspondence to IS4).
How about relationship between λSS4-terms and λMS4-terms?
There exists a one-to-one correspondence between terms.
Formally,
Theorem. There exist functions (·)• and (·)◦ such that
1. if Γ #λSS4 M : A, then ∅ | Γ #λMS4 M• : A.
2. If ∆ | Γ #λMS4 M : A, then !∆,Γ #λSS4 M◦ : A.

43

We define a function (·)• from λSS4 to λMS4 as follows,

(boxM with−→N for
−−→
x! A)

•
= let!

−→
yA be−→N• in!−−−−−→[! y/x]M• where −→y s are fresh

(unbox(M))• = let! xA beM• in x where x is fresh

where let!−→yA be−→N inM denotes let! y1A1 beN1 in · · · let! ynAn beNn inM. We define a
function (·)◦ from λMS4 to λSS4. In order to emphasize that we define (·)◦ on λMS4-judgments,
we index λMS4-terms by their multi contexts (written as M under ∆ | Γ):

(x under ∆ | Γ, x : A)◦ = x
(x under ∆, x : A | Γ)◦ = unbox(x)
(λxA.M under ∆ | Γ)◦ = λxA.(M under ∆ | Γ, x : A)◦
(MN under ∆ | Γ)◦ = (M under ∆ | Γ)◦(N under ∆ | Γ)◦

(!M under −−−→z : B | Γ)◦ = box−−−→[y/z](M under −−−→z : B | ∅)◦ with−→z for
−−→
y! B

(let! xA beN inM : B under ∆ | Γ)◦ = [(N under ∆ | Γ)◦/x](M under ∆, x : A | Γ)◦ .

where −→y s are fresh. In the following, (M under ∆ | Γ)◦ is simply written as M◦.

Main Result in This Talk (2/4)
The equations between λSS4-terms are

(λx.M)N = [N/x]M
λx.Mx = M if x " fvM
unbox(boxM with−→N for−→x) = −−−−→[N/x]M
box unbox(M)with−→N for−→x = −−−−→[N/x]M
boxM withN1, . . . ,Ni−1,Ni,Ni+1, . . . ,Nn for x1, . . . , xi−1, xi, xi+1, . . . , xn
= boxM withN1, . . . ,Ni−1,Ni+1, . . . ,Nn for x1, . . . , xi−1, xi+1, . . . , xn if xi " fvM
boxM withN1, . . . ,Nj−1,Ni,Nj+1, . . . ,Nn for x1, . . . , x j−1, x j, x j+1, . . . , xn
= box[xi/x j]M withN1, . . . ,Nj−1,Nj+1, . . . ,Nn for x1, . . . , x j−1, x j+1, . . . , xn
boxM withN1, . . . ,Ni, . . . ,Nj, . . . ,Nn for x1, . . . , xi, . . . , x j, . . . , xn
= boxM withN1, . . . ,Nj, . . . ,Ni, . . . ,Nn for x1, . . . , x j, . . . , xi, . . . , xn .

Main Result in This Talk (3/4)
The equations of λMS4-terms are

(λx.M)N = [N/x]M
λx.Mx = M if x " fvM

let! x be!N inM = [N/x]M
let! x beM in! x = M

L(let! x beN inM) = let! x beN in LM if x " fv L
(let! x beN inM)L = let! x beN inML if x " fv L
λy. let! x beN inM = let! x beN in λy.M if y " fvN

let! x be let! y beN inM in L = let! y beN in let! x beM in L if y " fv L
! let! x beN inM = let! x beN in!M

let! y beN in let! x beM in L = let! x beM in let! y beN in L if x " fvN and y " fvM.

44

Main Result in This Talk (4/4)
The correspondence preserves equations of λSS4-terms
conservatively. Formally,
Theorem. 1. Assume Γ #λSS4 M : A, Γ #λSS4 N : A. Then,

M =λSS4 N if and only if M• =λMS4 N•.
2. Assume ∆ | Γ #λMS4 M : C, ∆ | Γ #λMS4 N : C. Then,

M =λMS4 N if and only if M◦ =λSS4 N◦.
Contribution (1/3)
1. We gave translations between two modal calculi based
single and multi context formulations.

2. We found appropriate equations for IS4 (→ next slide).

Contribution (2/3)
λS4: Bierman and de Paiva’s calculus

the set of λSS4-terms = the set of λS4-terms
the set of λSS4-equations ⊇ the set of λS4-equations

λ→!e : Pfenning and Davies’s calculus

the set of λMS4-terms = the set of λ→!e -terms
the set of λMS4-equations ⊇ the set of λ→!e -equations

Contribution (3/3)
The calculi λS4 and λ→!e do not have enough equations since
their calculi do not have one-to-one correspondence.
On the other hand, our calculi λSS4 and λMS4 have one-to-one
correspondence since our calculi have appropriate equations
for IS4.
Contributions of this study:
1. We gave translations between two modal calculi based on
single and multi context formulations.

2. We found appropriate equations for IS4.

45

Future Work: On Other Modalities
Why have we discussed IS4? On other modalities (e.g., IK)?
In IS4, ! A ⊃ A and ! A ⊃ !! A are admissible while A ⊃ ! A
is not admissible.
Therefore, ! A and ! · · ·! A are logically equivalent while A
and ! A are not.
For IS4, contexts are divided into two, i.e., ∆ | Γ # M : A.
For IK, we must adopt ∆n | · · · | ∆1 | Γ # M : A since A, ! A,
!! A, . . . are not equivalent in IK. Such a calculus seems
complex and difficult to handle. We dealt with IS4 only, for
simplicity. The question on IK (and so on) is left open.

46

ArchX: A Synchronization
Framework for Tree-Structured Data

Izumi MIHASHI
Information Processing Laboratory

The University of Tokyo

1

Synchronization of XML Documents Stored
in Different Formats
• Bookmarks of web browsers
• Calendars used on PC and PDA
• Address books

2

How to define the status that documents are
synchronized

• Harmony

• ArchX

XML
Document

XML
Document

Common
Data

Common
Data=

XML
Document

XML
Document

bidirectional
transformation

bidirectional
transformation

relations of
the program

47

3

Outline

• Introduction
• Description of the Correspondence

between Documents
• Demo
• Formal Definition of the Synchronization
• Synchronization Algorithm
• Conclusion and Future Work

4

Description of the Correspondence between
Documents

5

Description of the Correspondence between
Documents
relation top =

lists[note[String], (var item)*]
<->

book[note[String], (var entry)*]
where ie(item, entry)

relation ie =
item[n[var nm as String],

(mail[var ml as String])*]
<->
entry[var nm as String,

adds[(add[var ml as String])*]]

top

ie

top ie

From biXid[Kawanaka and Hosoya 2007]

48

6

Outline

• Introduction
• Description of the Correspondence

between Formats
• Demo
• Formal Definition of the Synchronization
• Synchronization Algorithm
• Conclusion and Future Work

7

Outline

• Introduction
• Description of the Correspondence

between Formats
• Demo
• Formal Definition of the

Synchronization
– Binding Tree
– Definition of the Synchronization

• Synchronization Algorithm
• Conclusion and Future Work

8

Binding Tree

Binding Tree of Address Book A

Address Book A

49

9

Equivalent Binding Trees

Binding Tree of
Address Book A

Binding Tree of
Address Book B

item entry

where ie(item, entry)

10

Definition of the Status that Documents are
Synchronized

XML Document Binding Tree XML DocumentBinding Tree

Equivalent
under relations

<item>
<n>John</n>
</item>

<entry>
John
<adds></adds>
</entry>

11

Required Property of Synchronized
Documents

Binding TreeBinding Tree XML DocumentXML Document

Edit

<item>
<n>John</n>
</item>

<entry>
John
<adds></adds>
</entry>

Tom

50

12

Required Property of Synchronized
Documents

Binding TreeBinding Tree XML DocumentXML Document

EditCorresponding
Update

<item>
<n>John</n>
</item>

<entry>
John
<adds></adds>
</entry>

TomTom

13

Required Property of Synchronization

Binding TreeBinding Tree XML DocumentXML Document

editCorresponding
Update

Equivalent
under relations

<item>
<n>John</n>
</item>

<entry>
John
<adds></adds>
</entry>

TomTom
Tom Tom

14

Outline

• Introduction
• Description of the Correspondence

between Formats
• Demo
• Formal Definition of the Synchronization
• Synchronization Algorithm

– Marked Tree
– Overview of Synchronization Algorithm

• Conclusion and Future Work

51

15

Marked Tree

• A data structure that shows how an XML
document is matched to patterns.

• A number attached to a node of a marked tree
shows which symbol it corresponds to.

5

relation item =
item5[n6[var nm7 as String8],

(mail9[var ml10 as String11])*]
<->

...

<item>
<n>Ginger</n>
<mail>mgm.com</mail>
<mail>mac.com</mail>

</item>

16

Restoring a XML Document from a Marked Tree

<lists>
<note>address book A</note>
<item><n>Ginger</n>...</item>
<item><n>John</n></item>

</lists>

The XML Document is obtained by removing
numbers and variables.

17

Restoring a Binding Tree from a Marked Tree

The Binding tree is obtained by binding the
part enclosed by braces to variables.

52

18

XML Document
XML Document

1. The original documents

Overview of Synchronization Algorithm

19

XML Document
XML Document

Marked Tree Marked Tree

Binding Tree Binding Tree

2. Checks if the documents are synchronized

Overview of Synchronization Algorithm

20

XML Document
XML Document

Marked Tree Marked Tree

XML Document

Edited

3. One of the original documents is edited

Overview of Synchronization Algorithm

53

21

XML Document
XML Document

Marked Tree Marked Tree

XML Document

Edited

4. Propagate the Edits to Marked Trees

Marked Tree

Overview of Synchronization Algorithm

22

XML Document
XML Document

Marked Tree Marked Tree

XML Document

Edited

5. Propagate the Edits to the Other Side

Marked Tree
Marked Tree

Binding Tree Binding Tree

Overview of Synchronization Algorithm

23

XML Document
XML Document

Marked Tree Marked Tree

XML Document

Edited

6. Propagate Edits to the Other XML Document.

Marked Tree
Marked Tree

XML Document

Overview of Synchronization Algorithm

54

24

Outline

• Introduction
• Description of the Correspondence

between Formats
• Demo

• Synchronization Algorithm
• Conclusion and Future Work

25

Conclusion and Future Work

We have designed a new framework for
synchronizing XML documents in different
formats called ArchX.

Future Work
• More than Two Documents
• Edits in Multiple Documents

55

Reversible Machine Code
and Its Abstract Processor Architecture

Extended Abstract!

Holger Bock Axelsen, Robert Glück, and Tetsuo Yokoyama

DIKU, Department of Computer Science,
University of Copenhagen, DK-2100 Copenhagen, Denmark,

1 Introduction

This paper presents the principles behind a reversible processor architecture.
We are interested in a reversible version of the von Neumann architecture, a
classic computer design for sequential computation with a single processing unit
and random access memory, instead of more theoretical models, such as Turing
machines. One of the first reversible programmable processors fabricated is of
this type [15, 16, 7]. We shall define an abstract machine and prove that all in-
struction sets for this machine that satisfy certain formal conditions, identified
and presented in this paper, are reversible; i.e., their semantics are forward and
backward deterministic. A unique feature of the reversible abstract machine is a
control logic that allows to change the direction of execution by flipping the di-
rection bit. It is noteworthy that any program written in reversible machine code
is guaranteed to be reversible; no programming error can break the reversibility.

The purpose of this work is to provide a clear specification of the interplay
between the physical and software levels. Understanding this interface is impor-
tant, as a challenge of reversible computing is that the entire computing system
must be reversible, from the physical bottom to the abstract top.

We believe that reversible computation models have properties that are note-
worthy in their own right (e.g., forward and backward computation takes the
same number of execution steps) and have interesting applications in other ar-
eas. For example, unconventional physical computation models, such as quantum
computing, require that all computations are organized reversibly [6].

2 Reversible Abstract Machine

The design of the control logic is based on work by Vieri [15], Frank [7], Hall [11],
and Cezzar [4]. Our contribution is a clear formalization of a reversible abstract
machine for which we prove that any instruction set that satisfies certain con-
ditions is reversible. A standard abstract machine performs one-directional exe-
cution of machine code, while a reversible abstract machine allows bidirectional
(forward and backward) execution of reversible machine code.
! Extended abstract of publication [2].

56

!"

dirbrpc

registers

memory

control logic

processor

data +
reversible
instructions

Fig. 1. Reversible abstract machine

The challenge of reversibility for an abstract machine is two-fold. First, the
instruction execution must be reversible. This places restrictions on the instruc-
tions possible in such a reversible architecture. Specifically, they must be injective
when considered as functions on machine states. Second, the control logic must
be reversible. With control logic, we refer to the part of the processing unit con-
trolling the program counter, including any interaction from the instructions. To
ensure reversibility, this must also be an injective function on machine states.

Control Logic. The most difficult of these challenges is good design for control.
At any point of program execution, the computation direction of a reversible
machine can be switched (forward, backward). In a standard machine model, we
constantly face the orthogonality problem. In general, we cannot know whether
we have arrived at the current state by a jump or by sequential execution. Thus,
we cannot reverse program execution and return to exactly the state that led
to the current state. A classic solution to this problem is the generation of a
trace [12, 3, 4]. For practical purposes, however, this is unsatisfactory, as the
trace grows proportionally to the length of the computation.

A good design for a reversible processor has to take a trace-free approach. This
can be accomplished in an architecture that has three special-purpose registers
involved in the control logic (Fig. 1):

– A program counter (pc) for pointing to the current instruction.
– A branch register (br) for jumps.
– A direction bit (dir) for specifying execution direction.

Between instruction executions, we update the control state by the following
two rules: (1) If the branch register is zero, add the direction bit to the program
counter. The direction bit has the value 1 or −1, and thus the program counter is
either incremented or decremented. This achieves sequential forward or backward
execution of a program. (2) If the branch register is non-zero, add that (times
the direction bit) to the program counter. A non-zero branch register indicates
that a jump is to be performed. Instructions that require jumps will thus modify

57

the branch register and not the program counter directly. The effect of this
is to make the control logic reversible by solving the orthogonality problem:
the branch register is preserved after modifying the program counter. This is
sufficient to determine where a jump came from. We will come back to this
important point after formalizing the state model and the execution semantics.

State Model. We model the set of machine states, Σ = M ×R × C, as follows.
A machine state σ ∈ Σ is a triple σ = (M, R, C) such that

Memory: M $ M : Z32 → Z32

Registers: R $ R : RegNames → Z32

Control: C $ C : Z32 × Z32 × {1,−1}

where Z32 is the set of 32-bit integers (or any set of n-bit integers) and RegNames
is the set of register names reg0 to reg31 (written $0 to $31 in machine code). In
a state, M and R describe the contents of the memory and the registers (each
is a function from addresses or register names to 32-bit integers), respectively,
and tuple C = (pc, br , dir) encapsulates the control registers. We do not model
input/output facilities. It is assumed that program and data are entered into
memory before the machine starts and that the results are read from mem-
ory after the machine stops (if it stops). Before loading program and data, all
registers and the entire memory are zero-cleared.

Instructions. The design of the abstract machine is closely tied to the design of
its reversible instruction set. The instructions fall into the two general classes of
data modification and control flow instructions. As an example of a reversible
data modification instruction, consider the addition instruction

ADD $3 $4 .

The effect of executing this instruction is to add to the value in register $3 the
value in register $4. This instruction has an inverse interpretation: subtract the
value of $4 from $3. A standard instruction usually has the effect of overwriting
the destination register irreversibly: the original value of the register cannot be
recovered from the resulting state. Such irreversible instructions are not allowed
in a reversible architecture. A reversible architecture must provide two inter-
pretations of the same instruction depending on the direction bit: the standard
semantics and the inverse semantics.

Depending on dir , the current instruction M(pc) is mapped into an instruc-
tion implementing its standard or its inverse semantics. This mapping is called
local program inversion and performed on-the-fly at execution time [9]. It is
important that the inversion of an instruction depends only on the local con-
text (‘peephole’) and, unlike other program inversion methods [10, 13], does not
require global analysis of a program. This is key to efficient reversible execution.

As outlined above, control flow instructions interact with the control state
in non-trivial ways. The unconditional jump instruction

BRA 15

58

has the effect of adding 15 · dir to the branch register br . It is important that
branch instructions use relative offsets for jumps, and not absolute addresses.
If br &= 0, the control logic adds br · dir to the program counter pc, instead of
irreversibly overwriting the value of pc with an absolute address.

Formal Properties. The main theorems regarding the abstract machine and its
instruction set can be summarized as follows (more details can be found in pub-
lication [17]). The first theorem states that the semantics of an execution step
is forward and backward deterministic if every instruction in the machine’s in-
struction set satisfies certain conditions (every instruction is a reversible update).
The second theorem states that an execution step can be reversed in a particular
simple way.

Both theorems together guarantee some surprising properties for programs
written in reversible machine code. No matter what the program does, regard-
less of the programmer’s intent, execution of the program is guaranteed to be
reversible. Furthermore, if the state space is finite, programs either terminate or
eventually return to the precise starting state, looping forever.

3 Related Work

A great deal of the previous work on reversible machine code suffered from defi-
ciencies. In [4], a history trace was used for reversibility as suggested earlier [12];
in [11] data modification was reversible, but the control logic was unclear and
quite probably irreversible. We stress that even if each instruction is reversible,
this is not sufficient to ensure reversibility of the complete architecture.

In contrast, PISA is the newest and most complete design of a reversible
instruction set architecture [15]. The description of the instruction set is infor-
mal [7], but our formalization has been shown to be reversible as described[2].
This makes PISA the only truly reversible practical programmable architecture.
Reversible logic gates and reversible logic circuits have been studied [8, 6, 5].

A high-level imperative language for reversible programming, Janus, has re-
cently been formalized and confirmed to be reversible [17]. One of the earliest
works considering reversible subroutines was [14]. Reversible languages, such as
Janus and PISA, allow efficient standard and inverse computation. A general
method for inverse computation is the Universal Resolving algorithm [1], which
also allows inverse computation of programs that do not implement injective
functions, but is less efficient due to the search space.

4 Conclusions

We formalized an abstract machine suitable for reversible computing. We clari-
fied that for machine code to be fully reversible both the underlying control logic
as well as each instruction must be reversible, and that forward and backward
code can be shared if the machine allows a program to switch between stan-
dard (forward) and inverse (backward) computation. We have shown a general

59

class of instruction sets that are reversible, building on our concept of reversible
updates [2] and that PISA, as a member of this class, is reversible.

We posit that reversible computing is sufficiently different from irreversible
computing to warrant consideration as a separate paradigm. As such, we sug-
gest a “principles first” approach to reversible machine architectures. Work on
a translator from the structured high-level reversible programming language
Janus [17] to PISA is currently in progress.

References

1. S. M. Abramov, R. Glück. The universal resolving algorithm and its correctness:
inverse computation in a functional language. Science of Computer Programming,
43(2-3):193–229, 2002.

2. H. B. Axelsen, R. Glück, T. Yokoyama. Reversible machine code and its ab-
stract processor architecture. In V. Diekert, M. V. Volkov, A. Voronkov (eds.),
Computer Science – Theory and Applications. Proceedings, LNCS 4649, 56–69.
Springer-Verlag, 2007.

3. C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17(6):525–532, 1973.

4. R. Cezzar. Design of a processor architecture capable of forward and reverse
execution. In Proceeding of IEEE SOUTHEASTCON‘91, Vol. 2, 885–890, 1991.

5. A. De Vos, Y. Van Rentergem, K. De Keyser. The decomposition of an arbi-
trary reversible logic circuit. Journal of Physics A: Mathematical and General,
39(18):5015–5035, 2006.

6. R. P. Feynman. Reversible computation and the thermodynamics of computing
(chapter 5). In A. J. G. Hey, R. W. Allen (eds.), Feynman Lectures on Computation,
137–184. Addison-Wesley, 1996.

7. M. P. Frank. Reversibility for Efficient Computing. PhD thesis, MIT, 1999.
8. E. Fredkin, T. Toffoli. Conservative logic. Intl. J. Theor. Phy., 21:219–253, 1982.
9. R. Glück, M. Kawabe. A program inverter for a functional language with equal-

ity and constructors. In A. Ohori (ed.), Programming Languages and Systems.
Proceedings, LNCS 2895, 246–264. Springer-Verlag, 2003.

10. R. Glück, M. Kawabe. A method for automatic program inversion based on LR(0)
parsing. Fundamenta Informaticae, 66(4):367–395, 2005.

11. J. S. Hall. A reversible instruction set architecture and algorithms. In Workshop
on Physics and Computation. Proceedings, 128–134. IEEE Press, 1994.

12. R. Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 5(3):183–191, 1961.

13. T. Æ. Mogensen. Semi-inversion of guarded equations. In R. Glück, M. Lowry
(eds.), Generative Programming and Component Engineering. Proceedings, LNCS
3676, 189–204. Springer-Verlag, 2005.

14. E. D. Reilly, F. D. Federighi. On reversible subroutines and computers that run
backwards. Communications of the ACM, 8(9):557–558, 578, 1965.

15. C. J. Vieri. Reversible Computer Engineering and Architecture. PhD thesis, MIT,
1999.

16. C. J. Vieri, M. J. Ammer, M. P. Frank, N. Magoulis, T. Knight. A fully reversible
asymptotically zero energy processor. In Proceedings of the ISCA workshop, 1998.

17. T. Yokoyama, R. Glück. A reversible programming language and its invertible
self-interpreter. In Partial Evaluation and Program Manipulation. Proceedings,
144–153. ACM Press, 2007.

60

1

Bidirectionalizing folds
(Ongoing Work)

Kazutaka Matsuda*
Zhenjiang Hu*, Keisuke Nakano*

Makoto Hamana**, Masato Takeichi*

*The University of Tokyo
**Gunma University

2

Bidirectional Transformation

• !Bidirectional Transformation"
=!View Function" + !Backward Transformation"

S V

Source View

f : S# V

r : (S$V) # S

[Hegner 90] and so on.

3

Our Previous Work
• Bidirectionalization Transformation [ICFP 07]

– Derivation of a backward transformation from a
view function

• Based on Constant Complement Bidirectionalization
[Bancilhon & Spyratos 1981]

– Treeless and Affine language

Restricted Language
• Unable to write “fold” functions

61

4

Computation Pattern fold
• Widely used computation pattern

– Many useful fold functions
•maximum = foldr max Z
•sort = foldr ins []
•unzip =

foldr (¥(a,b) (x,y)->(a:x,b:y)) ([],[])

foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

5

Today’s Talk

• Bidirectionalization of folds
– in a simple way

• Report of results
– maximum, sort and unzip

6

r(s,v) = %f, g&-1(v,g(s))
Backward Transformation

Bidirectionalization
Based on Constant-Complement

f
g

%f, g&-1

g is a complement function of f
if %f, g& is injective.

Complement Function

'%f, g&(x) = (f(x),g(x))

g preserves lost information
through transformation by f

Constant

[Bancilhon & Spyratos 81]

62

7

Backward Transformations
using Complements

• A complement yields a backward transformation.

Complements of fst(Pair(x,y)) = x

snd(Pair(x,y)) = y

id(Pair(x,y)) = Pair(x,y)

(1,2) 1

(4,2)

2

24

(1,2) 1 (1,2)

(1,2)4

with snd with id

8

Complement of foldr
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

e

f
f

f

(foldr f e)c [] = []
(foldr f e)c (x:xs) = fc x r:(foldr f e)c xs

where r = foldr f e xs

e

f
f

f

fc
fc

fc

Focus on Recursion Shape Gather as List

Given fc

9

Example: maximum (1/3)

maximum = foldr max Z

max (S x) (S y) = S (max x y)
max (S x) Z = S y
max Z y = x

maxc (S x) (S y) = (min x y, x > y)

63

10

Example: maximum (2/3)

Note: maxc x y = (min x y, x > y)

Observation:
• Remembered all the non-maximum values
• index of maximum (history of comparison

4
2

3 0

max
max

max

maxc

maxc

maxc
1

max
maxc

(0, T)
(2, F)

(3, T)
(1, F)

11

Example: maximum (3/3)
• Intuitively

– maximumc [1,4,2,3] ([1,),2,3]
hole for !maximum"

Updated value will be inserted here.

Let “r” be the backward transformation with maximumc

maximum [1,4,2,3] = 4
r([1,4,2,3], 5) = [1,5,2,3]
r([1,4,2,3], 2) = undefined

Updating 4 to 2 is prohibited because
the index of the hole changes for [1,2,2,3].

12

Example: sort (1/2)
sort = foldr ins []
ins a (b:x) = if a <= b then a:b:x

else b:ins a x
ins a [] = [a]

insc a (b:x) = if a <= b then BLE
else BGT(insc a x)

insc a [] = BEND

Observation:
insc remembers histories of comparisons
* Original Indices

64

13

Example: sort (2/2)
• Intuitively

– sortc [1,4,2,3] ([0,2,3,1]
Original Indices

Let “r” be the backward transformation with sortc

sort [1,4,2,3] = [1,2,3,4]
r([1,4,2,3], [5,6,7,8]) = [5,8,6,7]
r([3,4,2,1], [5,6,7,8]) = [7,8,6,5]
r([1,4,2,3], [1,2,3]) = undefined
r([1,4,2,3], [1,2,3,4,5]) = undefined
r([1,4,2,3], [5,8,7,6]) = undefined

14

Property of Derived Complements

• Insertions and deletions are prohibited.

e

f
f

f

fc
fc

fc

(foldr f e)c [] = []
(foldr f e)c (x:xs) = fc x r:(foldr f e)c

where r = foldr f e xs

List length must be equal
through backward transformation

15

Sufficient Condition
for Insertions and Deletions

• Sufficient condition for insertion and deletions
Sufficient condition for injectivity of foldr

– “f” is injective
– Range of “f” and “e” do not overlap

e

f
f

f

(foldr f e)c xs = C

Nothing to be record
oblivious recursion shape

Computable
if “f” and “e” are written in
the language in our previous work

[ICFP 07]

Constant Function

+

65

16

Example: unzip
• unzip xs =

foldr (¥(a,b) (x,y)->(a:x,b:y))
([],[]) xs

– The sufficient condition for injectivity holds.
• Complement is a constant function.

Let “r” be the backward transformation with unzipc

s = [(1,2), (3,4)]
unzip s = ([1,3],[2,4])
r(s,([9,7],[8,6])) = [(9,8),(7,6)]
r(s,([1],[2,4])) = undefined

([1],[2,4]) is not in the range of unzip.

17

Summary for foldr
• Bidirectionalization of foldrs

– in a simple way
– Presented results

•maximum, sort and unzip

e

f
f

f

fc
fc

fc

18

Computation Pattern foldl

e
f

f
f

fc
fc

fc

e

f
f

f

fc
fc

fc

cf.

foldl f e [] = e
foldl f e (x:xs) = foldl f (f x e) xs

(foldl f)c (e,e,) [] = e,
(foldl f)c (e,e,) (x:xs) = (foldl f)c (s,t) xs

where (s,t) = (f x e, fc x e:e,)

Given fc

66

19

Computation Pattern foldBIN
foldBIN f g (L x) = g x
foldBIN f g (N n l r) =

f n (foldBIN f g l) (foldBIN f g r)

(foldBIN f g)c (L x) = gc x
(foldBIN f g)c (N n l r) = N (fc n s t) fl fr

where s = foldBIN f g l
t = foldBIN f g r
fl = (foldBIN f g)c l
fr = (foldBIN f g)c r

Given fc,gc

f fc

f f

g

fc fc

gc

20

Conclusion & Future Work
• Conclusion

– Bidirectionalization of folds
• in a simple way
• also foldl and more generic folds

• Future work
– Formalization

• Categories
– Checking the effectiveness of this strategy

67

Nina Bohr & Lars Birkedal, ITU

Relational Reasoning for
Recursive Types and References

Nina Bohr
joint work with Lars Birkedal

IT University of Copenhagen (ITU)

Diku-Ist 07 – p.1/22

Nina Bohr & Lars Birkedal, ITU

Overview

Proof method for contextual equivalence of expressions

in a λ-calculus with recursive types and generel references.

Uses a parameterized logical relation

over a denotational semantics.

Supports local reasoning.

Extends and builds on work of:
Nick Benton and Benjamin Leperchey, Andrew Pitts, Ian Strak, Mark Shinwell.

Diku-Ist 07 – p.2/22

Nina Bohr & Lars Birkedal, ITU

Technical development

1. Language definiton.
Operational semantics given by termination judgements.

2. Denotational semantics in a recursive domain.

3. Definition of local parameters expressing properties of finite parts
of stores.
Definition of parameters as finite sets of local parameters together
with a finite visible area of stores.

4. Definition of a parameterized logical relation ∇ over the recursive
domain.

5. Definition of a binary relation between denotations of open terms.
Relatedness in ∇Γ under a "minimal" parameter implies
contextual equivalence.

Diku-Ist 07 – p.3/22

68

Nina Bohr & Lars Birkedal, ITU

Language. Types and Terms

Types
Value types τ ::= α | unit | int | τ × τ | τ + τ | τ ref | τ → T τ | µα.τ

Computation types T τ .

Terms
Values V ::= x | n | l | () | (V, V ′) | iniV | rec f(x : τ) = M | fold V

Computations M ::= V V ′ | let x ⇐ M in M ′ | val V | πiV |
ref V | !V | V := V ′ | case V of in1x1 ⇒ M1; in2x2 ⇒ M2 | V = V ′

V + V ′ | iszero V | unfold V

store store type

Σ ∈ (⇀fin closed V alues), ∆ ∈ (⇀fin closed V alue types)

Diku-Ist 07 – p.4/22

Nina Bohr & Lars Birkedal, ITU

Operational semantics

Continuation terms in x

val x ∈ Contx

fv(M) ⊆ {x} K ∈ Conty

let y ⇐ M in K ∈ Contx

Termination judgements:

Σ, let x ⇐ M in K ↓

Σ is a store
M is a closed computation
K is a continuation.

Diku-Ist 07 – p.5/22

Nina Bohr & Lars Birkedal, ITU

Contextual equivalence

Typed Contexts

C[.] : (∆; Γ) γ) ⇒ (∆;−) T τ)

means that whenever ∆; Γ) G : γ then ∆;−) C[G] : T τ .

Definition: Contextual equivalence

If ∆; Γ) G1 : γ and ∆; Γ) G2 : γ then
∆; Γ) G1 =ctx G2 means

∀τ.∀C[.] : (∆; Γ) γ) ⇒ (∆;−) T τ).∀Σ : ∆.
Σ, let x ⇐ C[G1] in val x ↓ ⇐⇒ Σ, let x ⇐ C[G2] in val x ↓

Diku-Ist 07 – p.6/22

69

Nina Bohr & Lars Birkedal, ITU

Denotational Semantics

There exists a minimal invariant recursive domain

= (, , ,) ∈ (FM − Cpo⊥)4

and isomorphism i : F (,) ∼= as
∼= 11⊥ ⊕ ⊥ ⊕ ⊥ ⊕ (⊕) ⊕ (⊗) ⊕ ()⊥ ⊕
∼= (({/}⊥))
∼= (({/}⊥))
∼= (⊥)

Existence of :
proof adapted from Andrew Pitts and Mark Shinwell.
Category FM-Cpo⊥. Atom set . Objects: pointed FM-cpos.
Morphisms: strict empty-supported FM-continous functions.
Function Space: strict finitely supported FM-continous functions.

Diku-Ist 07 – p.7/22

Nina Bohr & Lars Birkedal, ITU

Soundness and Adequacy

Soundness:

(Σ, let x ⇐ M in K ↓) =⇒ ([[∆;) M : T τ]]{}[[∆;) K : (x : τ)#]]S = /)

Proof by induction on termination judgement.

Adequacy:

([[∆;) M : T τ]]{}[[∆;) K : (x : τ)#]]S = /) =⇒ (Σ, let x ⇐ M in K ↓)

Proof by a logical relation between denotational and operational semantics.

Existence of the relation is proved by methods adapted from Pitts/Shinwell.

Diku-Ist 07 – p.8/22

Nina Bohr & Lars Birkedal, ITU

Proving more contextual equivalences

Aim:

Definition of a parameterized logical relation

between denotations of terms

which implies contextual equivalence

in the operational semantics

and supports modular reasoning

Diku-Ist 07 – p.9/22

70

Nina Bohr & Lars Birkedal, ITU

Definitions preparing for Local Reasoning

An accessibility map A is a function from states to finite sets of locations.
A : → Pfin()

such that, if two states S1, S2 are identical on A(S1), then A(S1) = A(S2).

A simple state relation P can only "take into consideration"
some finite parts of the states, given by a pair of accessibility maps.

P = (p̂, Ap1, Ap2)

where p̂ is a binary relation of states.

Diku-Ist 07 – p.10/22

Nina Bohr & Lars Birkedal, ITU

Local Parameter

A a local parameter will be used to express a hidden invariant of stores.
A local parameter "owns" a finite set of locations in each side.

• Ordinary local vm-parameter r = q =
(

〈P11, LL11〉 . . . 〈P1m1
, LL1m1

〉
)

Pij is a simple state relation. LLij is a finite set of location pairs and closed value types.

Local vm-parameter r = q1 . . . qk =
(

〈P11, LL11〉 . . . 〈P1m1
, LL1m1

〉
)

.
(

〈Pk1, LLk1〉 . . . 〈Pkmk
, LLkmk

〉
)

• Local k-parameter (rk) = (r|qi) is a local vm-parameter together with a
choiche of one qi from r.

• Local s-parameter (rks) = (r|qi|〈Pij, LLij〉) is a local k-parameter together
with a choiche of one Pij from qi.

Diku-Ist 07 – p.11/22

Nina Bohr & Lars Birkedal, ITU

Parameters

∆ is a store type r = {r1, .., rn} is a finite set of local parameters.

vm-parameter ∆r = ∆{r1, .., rn}

k-parameter ∆(rk) = ∆{(r1|q1), .., (rn|qn)}

s-parameter ∆(rks) = {(r1|q1|〈P1, LL1〉), .., (rn|qn|〈Pn, LLn〉)}

Diku-Ist 07 – p.12/22

71

Nina Bohr & Lars Birkedal, ITU

Orders on parameters

• ∆′r′ ∆r
def

⇐⇒

∆′ ⊇ ∆ and r′ = r 3 {rn+1 . . . rn+m} and rn+1 . . . rn+m are ordinary.

− ∆′(rk′) ∆(rk)
def

⇐⇒ (rk′) ⊇ (rk) and ∆′r′ ∆r.

• ∆′r′ ∆r
def

⇐⇒ ∆′ ⊇ ∆ and
r′ = {r′1 . . . r′n, r′n+1 . . . r′n+m} and r = {r1, .., rn} and ∀i ∈ {1..n}.r′i 4 ri.

where

Order 4 on local parameters is defined by removal of q′s:
(q1 . . . qk) 4 (q1 . . . qk . . . qk+m)

Diku-Ist 07 – p.13/22

Nina Bohr & Lars Birkedal, ITU

Invariant relation∇

Theorem :

There exists a relational lifting of the domain constructing functor F

to R()op ×R() → R(F (,))

and
an admissible relation ∇ = (∇V ,∇K ,∇M ,∇S) ∈ Radm()

satisfying the equations on the following slides
and (i, i) : F (∇,∇) ⊂ ∇ ∧ (i−1, i−1) : ∇ ⊂ F (∇,∇).

Diku-Ist 07 – p.14/22

Nina Bohr & Lars Birkedal, ITU

Invariant relation∇. Computations

∇M = {(m′
1, m1, m′

2, m2, T τ, ∆r) |

m′
1 7 m1 ∧ m′

2 7 m2 ∧

∀∆′r′ ∆r. ∀(rk′) ∈ (r′)K . ∀(rks′) ∈ (rk′)S .

∀(k′
1, k1, k′

2, k2, (x : τ)#, ∆′(rk′)) ∈ ∇K .

∀(S′
1, S1, S′

2, S2, ∆′(rks′)) ∈ ∇S .

(m′
1k

′
1S

′
1 = / ⇒ m2k2S2 = /) ∧

(m′
2k

′
2S

′
2 = / ⇒ m1k1S1 = /) }

∇K = {(k′
1, k1, k′

2, k2, (x : τ)#, ∆(rk)) |

k′
1 7 k1 ∧ k′

2 7 k2 ∧

∀∆′(rk′) ∆(rk). ∀(rks′) ∈ (rk′)S .

∀(S′
1, S1, S′

2, S2, ∆′(rks′)) ∈ ∇S .

∀(v′1, v1, v′2, v2, τ, ∆′r′) ∈ ∇V .

(k′
1S

′
1v

′
1 = / ⇒ k2S2v2 = /) ∧

(k′
2S

′
2v

′
2 = / ⇒ k1S1v1 = /) }

Diku-Ist 07 – p.15/22

72

Nina Bohr & Lars Birkedal, ITU

The invariant relation∇. (Values)

∇V = {(⊥, v1, ⊥, v2, τ, ∆r) } ∪

{(v′1, v1, v′2, v2, τ, ∆r) | v′1 7 v1 := ⊥ ∧ v′2 7 v2 := ⊥ } ∩

(

{(v′1, n, v′2, n, int, ∆r) } ∪

.

{(f ′
1, f1, f ′

2, f2, τ → Tτ ′, ∆r) |

∀∆′r′ ∆r, (v′1 , v1, v′2, v2, τ, ∆′r′) ∈ ∇V .

(f ′
1v

′
1, f1v1, f ′

2v
′
2, f2v2, Tτ ′, ∆′r′) ∈ ∇M }

)

Diku-Ist 07 – p.16/22

Nina Bohr & Lars Birkedal, ITU

The invariant relation∇. (States)

∇S = {(⊥, S1, ⊥, S2, ∆(rks)) } ∪

{(S′
1, S1, S′

2, S2, ∆(rks)) | (rks) = {(1|q1|(P1, LL1)), . . . , (n|qn|(Pn, LLn)} ∧

S′
1 7 S1 := ⊥ ∧ S′

2 7 S2 := ⊥ ∧

∀l ∈ dom(∆).(S′
1l, S1l, S′

2l, S2l, ∆l, ∆r) ∈ ∇V ∧

dom(∆) ∩ Ar1(S1) = ∅ ∧ dom(∆) ∩ Ar2(S2) = ∅ ∧

∀i := j ∈ {1..n}. A i1(S1) ∩ A j1(S1) = ∅ ∧ A i2(S2) ∩ A j2(S2) = ∅ ∧

∀(P, LL) ∈ (pks).

(S1, S2) ∈ P ∧ ∀(l1, l2, τ) ∈ LL.(S′
1l1, S1l1, S

′
2l2, S2l2, τ, ∆r) ∈ ∇V }

Diku-Ist 07 – p.17/22

Nina Bohr & Lars Birkedal, ITU

Relating denotations of open expressions

Binary relation ∇Γ between denotations of terms.
Used for proofs of contextual equivalence.

For ordinary parameter ∆r:

• (v1, v2, τ, ∆r) ∈ ∇Γ
V

def
⇐⇒

∀∆′r′ ∆r.∀(v′1i, v1i, v
′
2i, v2i, τi, ∆′r′) ∈ ∇V , i = 1 , ..,n..

(v1(v′1i), v1(v1i), v2(v′2i), v2(v2i), τ, ∆′r′) ∈ ∇V .

• (m1, m2, T τ, ∆r) ∈ ∇Γ
M

def
⇐⇒

∀∆′r′ ∆r.∀(v′1i, v1i, v
′
2i, v2i, τi, ∆′r′) ∈ ∇V , i = 1 , ..,n.

(m1(v′1i), m1(v1i), m2(v′2i), m2(v2i), T τ, ∆′r′) ∈ ∇M .

If (m1, m2, T τ, ∆r) ∈ ∇∅
M and

(k1, k1, k2, k2, (x : τ)#, ∆r) ∈ ∇K and (S1, S1, S2, S2, ∆r) ∈ ∇S

then m1k1S1 = / ⇐⇒ m2k2S2 = /

Diku-Ist 07 – p.18/22

73

Nina Bohr & Lars Birkedal, ITU

Fundamental Theorem

Theorem :

• Typing rules preserve the ∇Γ relation.

• For all ordinary parameters ∆r it holds that

◦ ([[∆; Γ) V : τ]], [[∆; Γ) V : τ]], τ, ∆r) ∈ ∇Γ
V ,

◦ ([[∆; Γ) M : T τ]], [[∆; Γ) M : T τ]], T τ, ∆r) ∈ ∇Γ
M .

Diku-Ist 07 – p.19/22

Nina Bohr & Lars Birkedal, ITU

Contextual Equivalence

Theorem :

Let C[·] : (∆; Γ) γ) ⇒ (∆;) T τ ′) be a context, (γ = τ or γ = T τ)

If ([[∆; Γ) G1 : γ]], [[∆; Γ) G2 : γ]], γ, ∆id∅) ∈ ∇Γ
X , (X=V ,M)

then ∀Σ : ∆. (Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓).

Diku-Ist 07 – p.20/22

Nina Bohr & Lars Birkedal, ITU

Conclusion
• A local relational proof method for establishing contextual equivalence of

expressions in a language with recursive types and general references,
extending earlier work of Benton and Leperchey.

• The proof of existence of the logical relation is quite intricate because of the
interplay between recursive types and local parameters for reasoning about
higher-order store.

• The method is easy to use on examples: the only non-trivial steps are to guess
the right local parameters — but since the local parameters express the intuitive
reason for contextual equivalence, the non-trivial steps are really fairly
straightforward.

Diku-Ist 07 – p.21/22

74

Nina Bohr & Lars Birkedal, ITU

References

Selected references.

• Nina Bohr and Lars Birkedal: Relational Reasoning for Recursive Types and
References. APLAS 06 Lecture Notes in Computer Science 4279

• Nick Benton and Benjamin Leperchey: Relational Reasoning in a Nominal
Semantics for Storage. TLCA’05 Lecture Notes in Computer Science 3461

• Andrew Pitts: Relational Properties of Domains. Information and Computation
127, 1996,

• Mark Shinwell: The Fresh Approach: Functional Programming with Names and
Binders. Computer Laboratory, Cambridge University, Phd Thesis 2004

Diku-Ist 07 – p.22/22

75

Associativity for
Parallel Tree Computation

Kiminori Matsuzaki

University of Tokyo

2

Target Computation

! Input: a huge binary tree
! Its shape is fixed before computation

" Non-example: dynamically generated trees
(e.g. game trees)

! Output: a value or another tree
! Examples:

" Computing height of binary tree
" Several optimization problems on trees
" Queries on tree-structured data

3

(Naive) Divide and Conquer

! Divide a tree into two subtrees at the root

Obvious parallelism
Easy to develop parallel programs
$ Inefficient if trees are ill-balanced

76

4

Parallel Tree Contraction [Miller and Reif 85]

! Apply local contractions in parallel
! Shunt contraction algorithm [Abrahamson et al. 89]

• Algorithms are defined by procedures

• No formalization based on data structure

5

This Talk

! A formalization of parallel tree computation
from the viewpoint of data structures
! Flexible division of binary trees

% Ternary-tree representation
! “Associativity” on ternary-tree representation

! Several results & Open problems

Analogy to parallel list computation
Idea

Formalization of
Parallel List Computation

77

7

Two definitions of Lists

! Cons list

! Element is added/consumed to/from the head

! Join list

! A list can be divided at any point
& Associativity of ++
" E.g. [1, 5, 2, 3, 6] = [1] ++ [5, 2, 3, 6]

= [1, 5, 2] ++ [3, 6]

data CList a = [] | a : (CList a)

data JList a = [a] | (JList a) ++ (JList a)

8

Binary-Tree Representation

! Recursive division of a join list
% Binary-tree representation

! Divide-and-conquer on binary-tree representation
% A parallel algorithm on join lists
! Associativity is required

[1, 5, 2, 3, 6]

[1, 5, 2] [3, 6]

1 5

2 3 6

9

Parallel Prefix-Sums [Stone 73]

! Prefix-sums (scan)

! Two-pass algorithm on binary-tree representation

1 5

2 3 61

6

8

3

17

98

6

1 5

2 3 6

scan (+) [1, 5, 2, 3, 6] = [1, 6, 8, 11, 17]

1 6

8 11 171

6

8

3

0

80

0

0 1

6 8 11

78

10

Three Key Points in Parallelism

! Flexible division
and its representation

! Associativity
! For correctness

! Implementation along the representation

Formalization of
Parallel Tree Computation

12

Flexible Division of Binary Tree

! Divide at any internal node
! Terminal node (x)

! Segment (dashed line)

! The only condition:
! A segment has at most

one terminal node
% To keep global structure binary tree

79

13

! Represent recursive division of a tree
! Single division % Thee segments

! Introduce labels to restore the original tree
" N: No terminal node exists
" L: Terminal node exists in the left subtree.
" R: Terminal node exists in the right subtree

Ternary-Tree Representation

a

b c

d e

f g

a

b c

d e

f g ab cd

e

f g

N

N L

N

14

Multiple Representations for Single Tree

! Different order of divisions yields different
ternary-tree representation

! 6 equations for two successive divisions
! In fact, the following 2 equations are essential!

15

Tree Associativity

! The 2 equations define the equivalence
of two ternary-tree representations

! Generalize labels into three functions
Definition (Tree Associativity): Functions gn, gl, gr are
said tree associative if the following two equations hold.

gn (gn (a, b, c), d, e) = gn (a, gl (b, d, e), c)
gn (a, b, gn (c, d, e)) = gn (c, gr (a, b, d), e)

80

Obtained Results

17

Balanced Ternary-Tree Representation

Binary tree of N nodes

' Ternary tree of height h = 1.71 log (N+1) – 1.42

Binary-tree
N = 31
h = 10

Ternary-tree representation
h = 6

18

Existence of Tree Associative Functions

! Tree associative functions always exist
unless we mind the efficiency
! Use functions (closures) for local results
! Assume two children of the terminal node as holes

! Condition of tree contraction [Abrahamson et al. 89]
= Tree associative functions in a fixed form

gn (l, fn, r) = fn (l, r)
gl (fl, fn, r) =!x y. fn (fl (x, y), r)
gr (l, fn, fr) =!x y. fn (l, fr (x, y))

n

x y
' fn =!x y. …

81

19

Tree Accumulations [Skillicorn 96]

! Upwards Accumulation

! Downwards Accumulation

If there exist tree associative functions,
we can implement overall computation in parallel.

20

Upwards Accumulation on Ternary Tree

! Bottom-up sweep

! Top-down sweep

(Shown for internal nodes N and L only)

If there exist tree associative functions,
we can implement overall computation in parallel

Open Problems

82

22

Framework of “Parallel Data Structures”

! How can we formalize a unified framework?

??General Tree

Ternary-tree representation
+ Tree associativity

Binary Tree

Binary-tree representation
+ Abide property

[Bird 96], [Emoto et al. 06]

Matrix

Binary-tree representation
+ Associativity

List

Abide Property:
A B

C D

A B
C D

A B

C D
= =

23

Dynamic Balancing Algorithm

! Equations can be considered “Rotations”

! Dynamic balancing like AVL tree/red-black tree
'A new scheduling for parallel tree computation

24

Related Work

! Decomposition tree [Fujiwara et al. 00]

! Dividing a binary tree at edges
! Insufficient information for restoring original tree

% Limited applications

! Parallelism on other data structures
! Lists: Binary-tree representation

+ associativity
! Matrices: Binary-tree representation

+ abide property [Bird 96], [Emoto et al. 06]

83

25

Conclusion

! Flexible division of
binary trees

' Ternary-tree
representation

! Tree associativity

! Several known results and open problems

A Formalization of Parallel Tree Computation

84

Computer Science, building 42.2
Roskilde University

Universitetsvej 1
P.O. Box 260

DK-4000 Roskilde
Denmark

Phone: +45 4674 2000
Fax: +45 4674 3072

www.dat.ruc.dk

Logic-Based Modelling and Analysis of
Embedded Systems

Gourinath Banda
John Gallagher

Programming, Logic and Intelligent Systems Group
University of Roskilde, Denmark

Supported by EU framework 5 project ASAP (2002-2006)
and Danish Research Council project SAFT (from 2007)

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 2

From Embedded System Design to CLP

• Constraint logic programs (CLP) used as a modelling
language

• building on work by Jaffar et al. Delzano & Podelski, Gupta et
al., Flanagan, Leuschel, Ramakrishnan et al., ...

• discrete/continuous state variables

• deterministic/non-deterministic

• finite/infinite state space

• finite/infinite traces

• structure/functionality of systems

• reasoning backwards/forwards

• safety/liveness

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 3

CLP transformation and analysis

• CLP transformations are applied to bring
the model to the form of a transition system

• from component-based to transition system form

• from generic schema to application-specific
program

• transformations to modify the transition system
(e.g. from forwards to backwards)

• transformations to instrument the transition
system, make dependencies explicit, show
traces,...

• CLP analysis tools applied
• primarily abstract interpretation of the declarative

semantics

85

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 4

CLP declarative semantics

• We consider primarily the declarative
semantics of CLP programs

• The least model of a program P
• can be obtained as the least fixed point of an

immediate consequences operator TP

• given a set of atomic formulae I,

TP(I) is the set of all atomic formulae derivable in P
by one bottom-up inference step.

• M[P] = lfp(TP)

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 5

Transition Systems as CLP programs

state(S2) :-
transition(S1,S2),
state(S1).

state(S0) :-
init(S0).

Given a set of transitions,
least model contains the
reachable states.

An inverted program
(query-answer program,
"magic set" program)

Least model contains states
that "lead to" a given
query state.

qstate(S1) :-
transition(S1,S2),
qstate(S2).

qstate(S) :-
queryState(S).

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 6

Representing traces

state([S2,S1|Trace]) :-
transition(S1,S2),
state([S1|Trace]).

state([S0]) :-
init(S0).

least model contains the
finite traces (sequences
of states) starting from an
initial state.

least model contains finite
traces that "end with" a
given query state.

qstate([S1,S2|Trace]) :-
transition(S1,S2),
qstate([S2|Trace]).

qstate([S]) :-
queryState(S).

86

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 7

Representing dependencies

state(S2,S0) :-
transition(S1,S2),
state(S1,S0).

state(S0,S0) :-
init(S0).

Least model contains the
pairs of states <Sk,S0>
such that Sk is reachable
from S0.

Dependencies of a state
on the initial state
variables can be analysed.

qstate(S1,S) :-
transition(S1,S2),
qstate(S2,S).

qstate(S,S) :-
queryState(S,S).

Least model contains the
pairs of states <Sm,Sn>
such that a given state Sn

is reached from Sm.

Pre-conditions on a given
state can be analysed.

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 8

Program specialisation

• The above schemata are specialised w.r.t.
given transition relations.

• Polyvariant specialisation can also yield a
different state predicate for each location.

• We use Leuschel's Logen off-line
specialisation tool.

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 9

Motivating Example

(0) while (i < n) {
(1) i++; (2)
 } (3)

init([0,I,N]) :-
 I=0,
 N >=0.

transition([0,I,N],[1,I,N]) :-
I < N.

transition([2,I,N],[1,I,N]) :-
I < N.

transition([1,I,N],[2,I1,N]) :-
I1 = I+1.

transition([0,I,N],[3,I,N]) :-
I >= N.

transition([2,I,N],[3,I,N]) :-
I >= N.

87

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 10

Specialisations

state__1__1(A,B) :-
 A=0,
 B>=0.

state__1__2(A,B) :-
 A<B,
 state__1__1(A,B).
state__1__2(A,B) :-
 A<B,
 state__1__3(A,B).

state__1__3(A,B) :-
 A=C+1,
 state__1__2(C,B).

state__1__4(A,B) :-
 A>=B,
 state__1__1(A,B).
state__1__4(A,B) :-
 A>=B,
 state__1__3(A,B).

qstate__2__5(A,B) :-
 A<B,
 qstate__2__6(A,B).
qstate__2__5(A,B) :-
 A>=B,
 qstate__2__8(A,B).

qstate__2__6(A,B) :-
 C=A+1,
 qstate__2__7(C,B).

qstate__2__7(A,B) :-
 A<B,
 qstate__2__6(A,B).
qstate__2__7(A,B) :-
 A>=B,
 qstate__2__8(A,B).

qstate__2__8(A,B) :-
 A<B.

state2__3__9(A,B,0,A,B) :-
 A=0,
 B>=0.

state2__3__10(A,B,C,D,E) :-
 A<B,
 state2__3__9(A,B,C,D,E).
state2__3__10(A,B,C,D,E) :-
 A<B,
 state2__3__11(A,B,C,D,E).

state2__3__11(A,B,C,D,E) :-
 A=F+1,
 state2__3__10(F,B,C,D,E).

state2__3__12(A,B,C,D,E) :-
 A>=B,
 state2__3__9(A,B,C,D,E).
state2__3__12(A,B,C,D,E) :-
 A>=B,
 state2__3__11(A,B,C,D,E).

qstate2__4__13(A,B,C,D,E) :-
 A<B,
 qstate2__4__14(A,B,C,D,E).
qstate2__4__13(A,B,C,D,E) :-
 A>=B,
 qstate2__4__16(A,B,C,D,E).

qstate2__4__14(A,B,C,D,E) :-
 F=A+1,
 qstate2__4__15(F,B,C,D,E).

qstate2__4__15(A,B,C,D,E) :-
 A<B,
 qstate2__4__14(A,B,C,D,E).
qstate2__4__15(A,B,C,D,E) :-
 A>=B,
 qstate2__4__16(A,B,C,D,E).

qstate2__4__16(A,B,3,A,B) :-
 A<B.

forwards backwards forwards dependencies backwards dependencies

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 11

Analysis with a convex polyhedral tool

• Approximation of states at (3) (initial state
n >= 0).

state__1__4(A,B) :- [1*B>=0,-1*A+1*B> -1,1*A+ -1*B>=0]

• Approximation of states at (1) (reaching
point (3) with i<n.

qstate__2__5(A,B) :- [empty]

I.e. the given state cannot be reached from point (0)

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 12

Embedded Systems Specification

• Quest to develop correct safety critical systems resulted
in

• Formal specification languages: Timed Automata, Linear
Hybrid Automata

• Generative programming: SIGNAL, Rhapsody, Visual
State,................

• Correct by construction engineering practices:
Component Frameworks like CORBA, EJB, COMDES,.......

• Idea is to capture the semantics of these specifications as
a Logic Program (LP)

System
Model

LP
safety
and
liveness

code

prog
transformation

AI/CHA
/LRA

88

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 13

Linear Hybrid Automata (LHA)

• Hybrid Model: State Machine + Continuous
Dynamics

• It has:

• locations and transitions (like state machine)

• invariants on locations: linear (AX<= b)

• guards on transitions : also linear

• continuous dynamics: time invariant (dx/dt = k)

x>30

x<29

ON:
dx/dt= 4

x<32

OFF:
dx/dt= -4

x>26

x:=1
8

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 14

LHA Semantics

• A Linear Hybrid Automata H = {Loc, Var, Init,
Trans,D,Inv} where:

• Loc: set of locations

• Var: set of Variables

• Init: assigns to each location 'l' a linear system init(l)

• Trans: set of transitions, where

• !!= (l,",#,l')

• ": guard, which is a linear system over Var

• #: action, which is a linear assignment to Var

• A transition is enabled in (l,X), if and only if "(X)) holds,
and the state (l,#(X)) is then the successor of (l,X) via !.

• A labelling function D which assigns to each location l a
linear system D(l) constraining variable derivatives

• A labelling function Inv, which assigns to each
location l a linear system Inv(l) constraining
variables

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 15

LHA Semantics.. (2)

• State of the automaton (l,X)
l:current location X:valuation of the variables

• State can change in two ways:

• an enabled discrete transition changing both the
control location and current valuation as imposed by ##

!

• a time delay, as per the variables' dynamics defined by
the derivative vector X' = X + $.dx/dt, X' satisfies the
invariant associated with the location

• A run of the automaton is an infinite sequence of
states si:

s
1

s
0

s
2

. .

.

t
0

X
0

. .
t
1

X
1

.
t
2

X
2

s
i
= (l

i
,X

i
) t

i
>=0 t%(0,t

i
) (X

i
+t.X

i
) satisfying Inv(l

i
)

.

transition successor of s
i
'= (l

i
,X

i
+t

i
.X

i
) is s

i+1

.

89

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 16

• State in LHA s
i
= (l

i
,X) is modelled as a list

[l
i
,x

1
,x

2
,...,x

n
], where x

1
,x

2
,...,x

n
 are

components of the state vector X

• Evolution and transition behaviours are
encoded a LP/driver:

Translation into a Logic Program

rState(S2) :-
transition(S1,S2),
rState(S1).

rState(S0) :-
init(S0).

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 17

General structure of transitions

transition(Xs0,Xs1) :- % delay
locationOf(Xs0,L0),
before(Xs0,Xs1),
d(Xs0,Xs1), %rate of change constraint
invariant(L0,Xs1), %invariant constraint
d(Xs0,Xs2), % rate of change constraint

before(Xs1,Xs2),
gamma(L0,Xs2).

transition(Xs0,Xs3) :- % discrete
locationOf(Xs0,L0),
before(Xs0,Xs1),
d(Xs0,Xs1), % rate of change constraint
invariant(L0,Xs1), % invariant
before(Xs1,Xs2),
d(Xs0,Xs2), % rate of change constraint
gamma(L0,Xs2), % transition constraint
alpha(L0,Xs2,Xs3). % action constraint

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 18

LHA Specification of a Control System

• init([l0,_,1,0]).
invariant(l0,[l0,_,W1,_]) :- W1 < 10.
invariant(l1,[l1,X1,_,_]) :- X1 < 2.
invariant(l2,[l2,_,W1,_]) :- W1 > 5.
invariant(l3,[l3,X1,_,_]) :- X1 < 2.

• gamma(l0,[l1,_,W1,_]) :- W1 = 10.
gamma(l1,[l2,X1,_,_]) :- X1 = 2.

gamma(l2,[l3,_,W1,_]) :- W1 = 5.
gamma(l3,[l0,X1,_,_]) :- X1 = 2.

• d([l0,X,W,T],[_,X1,W1,T1]) :- W1 is W+T1-T, X1 is X+T1-T.
d([l1,X,W,T],[_,X1,W1,T1]) :- W1 is W+T1-T, X1 is X+T1-T.
d([l2,X,W,T],[_,X1,W1,T1]) :- W1 is W-2*(T1-T), X1 is X+T1-T.
d([l3,X,W,T],[_,X1,W1,T1]) :- W1 is W-2*(T1-T), X1 is X+T1-T.

• alpha(l0,[l1,_,W1,_],[l1,X2,W2,0]) :- X2 is 0, W2 = W1.
alpha(l1,[l2,X1,W1,_],[l2,X2,W2,0]) :- X2 is X1, W2 = W1.

alpha(l2,[l3,_,W1,_],[l3,X2,W2,0]) :- X2 is 0, W2 = W1.
alpha(l3,[l0,X1,W1,_],[l0,X2,W2,0]) :- X2 is X1, W2 = W1.

• before([_,_,_,T],[_,_,_,T1]) :-T < T1.

90

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 19

LHA
driver

Specialization of LHA Driver

Control
System

Specializer

System.Spec

/* portion of specialised system */

/* rState__1(A,B,C,l0) :- rState__1__1(A,B,C). */
rState__1__1(A,B,C) :-
 D<A,
 B is E+A-D,
 C is F+A-D,
 B<10,
 G is E+H-D,
 _ is F+H-D,
 A<H,
 G=10,
 rState__1__1(D,E,F).
rState__1__1(0,A,B) :-
 C<D,
 _ is E-2*(D-C),
 F is G+D-C,
 F<2,
 D<H,
 I is E-2*(H-C),
 J is G+H-C,
 J=2,
 B is J,
 A=I,
 rState__1__4(C,E,G).
rState__1__1(0,1,_).

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 20

Analysis of the Models

• Convex polyhedron analysis [Cousot & Halbwachs
78]: An abstract interpretation technique

• Each n-ary predicate is approximated by n-dimensional
polyhedron deriving linear relationships between the
arguments

• Safety properties boil down to proving invariants on
certain system variables

• Subjecting system.spec program to Convex Hull Analysis
we get constraints on the predicate variables

• whose solutions gives the invariants necessary for safety
analysis

• Can generate inputs for existing model checkers

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 21

Waterlevel monitor example

Convex polyhedral tool for CLP programs (available online
at http://wagner.ruc.dk/CHA/)

In this example, standard widening, and two narrowing interations.

w__2__5(A) :- [-1*A> -10,1*A>=1] % level at location 0
w__3__6(A) :- [-1*A> -12,1*A>=10] % level at location 1
w__4__7(A) :- [-1*A>= -12,1*A>5] % level at location 2
w__5__8(A) :- [-1*A>= -5,1*A>1] % level at location 3

91

3rd DIKU-IST workshop, Roskilde, 5-6 October 2007 22

Work in progress

• Build a tool - multiple interfaces for different
formalisms
• enabling automated translation to LP

• single internal logic representation

• Multiple back-ends for different LP-based
analyses
• other backend possibilities

• abstractions based on regular types

• analysis using a greatest fixpoint model
interpretation (using a proof procedure developed
by Gupta)

• a model checker

92

Architecture-aware Partial-order Reduction to Accelerate
Model Checking of Networked Programs

Cyrille Artho, Yoshinori Tanabe, Etsuya Shibayama
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Watcharin Leungwattanakit, Masami Hagiya
University of Tokyo, Tokyo, Japan

Programs are often structured into a main thread
that delegates incoming requests, and worker threads.
A similar structure also exists in applications where
several processes have been merged (“centralized”)
into a single application. Such a transformation wraps
processes as threads. and is used to model check net-
worked programs. A direct implementation of wrap-
ping allows for interleavings between initialization and
execution of client threads. We present a partial-order
reduction which, when applies to such programs, elim-
inates exploration of such interleavings. —
Most software model checkers [4] cannot handle

multiple processes. To model checkmultiple processes
in a single-process model checker, centralization has
been proposed [3]. Centralization wraps several pro-
cesses in a single process. Using a TCP/IP model
library, networked applications can then be model
checked [1]. However, the large number of thread in-
terleavings limits scalability. Therefore, it is useful to
optimize state space search as far as possible.
After centralization of an application, wrapper code

runs as the main thread. The wrapper first starts the
server process as a separate thread, and waits for its
initialization to complete. After that, initialization and
execution of each client is performed. This creates
possible interleavings: After the first client is ready,
it may already execute, even though the main (wrap-
per) thread is still initializing other clients. The model
checker may analyze such interleavings, even though
initialization of clients (in the main thread) does not in-
terfere with execution of other clients. In simple pro-
grams, the model checker recognizes the redundancy
in these interleavings. For more complex cases, the
built-in partial order reduction fails. This observation
led to a custom partial-order reduction. It takes this
architectural property into account by only allowing

schedules where the main (wrapper) thread finishes be-
fore client threads execute.
Using JPF version 3 [4] on small centralized pro-

grams [1], the gains achieved were not significant, be-
cause few client threads are used. However, in a more
recent case study based on a different approach to ana-
lyzing networked software [2], a more complex client
was analyzed. In that case, our manual optimization
resulted in a significant speed-up. More work remains
to be done whether centralized applications can be ac-
celerated as well in some cases.
In the talk, reachability-based partial-order reduc-

tion in JPF is introduced first. It works on top of
garbage collection. Second, custom partial-order re-
ductions will be explained. They can be implemented
either through program instrumentation or by extend-
ing the default search algorithm.

References

[1] C. Artho and P. Garoche. Accurate centralization
for applying model checking on networked appli-
cations. In Proc. ASE 2006, Tokyo, Japan, 2006.

[2] C. Artho, B. Zweimüller, A. Biere, E. Shibayama,
and S. Honiden. Efficient model checking of ap-
plications with input/output. Post-proceedings of
Eurocast 2007, 2007. To be published.

[3] S. Stoller and Y. Liu. Transformations for model
checking distributed Java programs. In Proc.
SPIN 2001, volume 2057 of LNCS. Springer, 2001.

[4] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Auto-
mated Software Engineering Journal, 10(2):203–
232, 2003.

93

Tutorial on Modeling VAT rules using OWL-DL

Morten Ib Nielsen, Jakob Grue Simonsen and Ken Friis Larsen
Department of Computer Science

University of Copenhagen
Email: {mortenib|simonsen|kflarsen}@diku.dk

August 28, 2007

Total number of pages: 16

Abstract

This paper reports on work in progress. We present a methodology for constructing
an OWL-DL model of a subset of Danish VAT rules. It is our intention that domain
experts without training in formal modeling or computer science should be able to create
and maintain the model using our methodology. In an ERP setting such a model could
reduce the Total Cost of Ownership (TCO) and increase the quality of the system. We
have selected OWL-DL because we believe that description logic is suited for modeling
VAT rules due to the decidability of important inference problems that are key to the way
we plan to use the model and because OWL-DL is relatively intuitive to use.

1 Introduction

Imagine an ERP system where domain experts can create and implement changes in e.g. VAT
rules without the help of programmers. The benefits would be shorter development time and
fewer mistakes due to misinterpretation of specifications which lead to reduced TCO and
increased quality of the software. On a coarse-grained scale such a system consists of three
parts: A model of the rules, a tool to edit the model and the core ERP system using the
model. In this paper we focus on the first part - the model. A priori two requirements
exist. First the modeling language must be strong enough to express the rules in question
and second it must be easy to use without training in formal modeling or computer science.
In a more general setting the model can be used as a VAT knowledge system which external
programs can query through an interface. In the long run we envision that authorities such
as SKAT (Danish tax administration) can provide online access to the model e.g. using web
services such that applications always use the newest version of the model.

In this paper we describe a methodology we have used to develop a model of a subset of
Danish VAT rules using the general purpose Web Ontology Language (OWL) editor Protégé-
OWL1 and we report on our experiences in doing so. We selected a subset of Danish VAT
rules consisting of flat VAT (25%) plus a set of exceptions where goods and services are free of
VAT, chosen because they seem representative. Further the rules are accessible to us by way of
an official guideline by the Danish tax administration. Our study is focusing on the feasibility

1http://protege.stanford.edu/overview/protege-owl.html.

1

94

1.1 Motivation 2 DESCRIPTION LOGIC AND OWL

of using OWL to model VAT rules and not on the usability of the Protégé-OWL tool itself.
By feasibility we mean how easy or difficult it is (for a human) to express and understand
VAT rules in OWL, in particular this does not cover issues such as modularization. The
methodology presented here is inspired by the article [1] together with our own experience.
Readers of this guide are assumed to have user experience of Protégé-OWL corresponding to
[2] but not of computer science nor of modeling in general.

1.1 Motivation

One of the overall goals of the strategic research project 3gERP is to reduce the TCO of
Enterprise Resource Planning (ERP) systems. We believe that a VAT model helps to this
end in two ways. First we envision that domain experts create and update the model thus
eliminating a layer of interpretation (the programmer) where errors can be introduced. Second
a VAT model can change handling of VAT from being a customization task into being a
configuration task, meaning that no code needs to be changed when the model is updated.

VAT and legal rules in general deal with frequent transactions between legal entities.
Transactions are typically triggered when certain conditions are fulfilled and therefore dy-
namic checks on these conditions are needed. The idea is to use the model to automatically
infer what actions should be taken based on the conditions. In the case of VAT rules we
can ask the model whether a delivery is subject to VAT or not based on the information we
know about the delivery. The answer from the model will be Yes, No or Maybe2 and can be
used to trigger an appropriate transaction. In a broader perspective the model is supposed to
work as a VAT knowledge system that given a context and a question can tell other systems
what to do, e.g. guide accounting systems and if required indicate that authorities should be
contacted etc.

1.2 Roadmap

The remainder of this paper is structured as follows. In Section 2 we give a short account
of description logic and OWL. In Section 3, 4 and 5 we present our methodology by giving
examples. Finally we outline future work in Section 6 and we conclude in Section 7.

2 Description Logic and OWL

In this section we give a short introduction to description logic (DL) and OWL. This intro-
duction can be skipped, if you are already familiar with the concepts. Description logics are
knowledge representation languages that can be used to structure terminological knowledge
in knowledge systems which are formally well-understood. A knowledge system typically con-
sists of a knowledge base together with a reasoning service. The knowledge base is often split
into a set of concept axioms the TBox, a set of assertions the Abox and a Role hierarchy.
These constitute the explicit knowledge in the knowledge system. The reasoning service is
a program that can check the consistency of the knowledge base and make implicit knowl-
edge explicit, e.g. decide equivalence of concepts. Since the reasoning service is a pluggable
component knowledge systems separate the technical task of reasoning from the problem of
constructing the knowledge base.

2In the case where insufficient information is provided in order to answer the question.

2

95

2.1 OWL 3 VAT EXEMPTION 1: SALES OUTSIDE EU

2.1 OWL

OWL which is short for Web Ontology Language is an ontology language designed to be com-
patible with the World Wide Web and the Semantic Web. The most important abstraction in
OWL is concept axioms which are called classes. Each class has a list of necessary conditions
and zero or more equivalent lists of necessary and sufficient conditions [2]. A list of necessary
conditions is a list of conditions that every member of the class must satisfy. In the same way
a list of necessary and sufficient conditions is a list of conditions that must be satisfied by
every member of the class and if satisfied guarantees membership in the class. OWL is based
on XML, RDF and RDF-S and can be used to represent information in a way that is more
accessible to applications than traditional web pages. In addition OWL has a formal seman-
tics, which enables logic reasoning. OWL comes in three variants: OWL-Lite ⊆ OWL-DL ⊆
OWL-Full of increasing expressive power. The variants OWL-Lite and OWL-DL are based on
the description logics SHIF(D) and SHOIN (D) respectively [3], which guarantees that im-
portant inference problems such as satisfiability and subsumption are decidable. Since OWL
is XML based we need an editor to create OWL ontologies. We have used the general purpose
OWL editor Protégé developed by Stanford Medical Informatics at the Stanford University
School of Medicine.

3 VAT Exemption 1: Sales outside EU

Our methodology is aimed at modeling VAT rules as described in guidelines instead of the raw
law text itself. This choice was made because guidelines are more accessible to us, and because
these are the rules that small companies adhere to in practice. Further the investigation of
the feasibility of using OWL to model VAT rules concerns the ease with which rules can be
formalized and not so much from where the rules are extracted3. In what follows we refer to
the guideline as the legal source.

In order to ease reading we have used the word concept only when we speak about the
legal source. The corresponding concept in the model (OWL) is called a class. A concept in
the legal source is modeled as one or more classes in the model.

Here we present the steps we took in order to make our model of Danish VAT rules.

3.1 Pre-modeling

1. Download Protégé-OWL from http://protege.stanford.edu/download/release/full/
and install. Make sure you can start Protégé in OWL-mode (logic view). When started
and if you select the Class tab it should look like Figure 1.

2. Download [2] and read it. This is important because many of the constructions we
use are explained herein.

3.2 Modeling

First you must decide which legal source(s) you want to model.
3Since we have used the official guidelines by SKAT (Danish tax administration) we believe that the content

of the guidelines is in accordance with the law.

3

96

3.2 Modeling 3 VAT EXEMPTION 1: SALES OUTSIDE EU

Figure 1: Protégé-OWL class-tab, logic view.

4

97

3.2 Modeling 3 VAT EXEMPTION 1: SALES OUTSIDE EU

In our case we used the official guideline Moms - fakturering, regnskab mv, E nr.
27, Version 5.2 digital, 19. januar 2005.

3.2.1 Overall framework

Modeling should start with a read through of the legal source. Based on this general (to
be refined later) classes such as Location, Goods, Services and FreeOfVAT together with
attributes such as hasDeliveryType and hasSalesPrice can be created as subclasses of the
built-in top-level class owl:Thing. An attribute can usually take on at most a finite number of
values. In that case we use value partitions to model them as described in [2][p. 73-76]4. If the
domain is not finite we use data type properties instead. Deciding on the overall framework
helps to structure the capturing of rules in a homogeneous way and enables working in parallel
(which can be needed if the legal source is large). After our read through of the legal source
we arrived at the overall framework in Figure 2.

Figure 2: Overall framework.

Naming Convention. All classes, properties, individuals etc. should be given names
picked from or inspired of the legal source. All names should be in the same language as the
legal source (in our case Danish). Using the naming convention supported by Protégé-OWL
class and individual names should be written in Pascal Notation, e.g. InternationalOrganiza-
tion not internationalOrganization or International Organization, while property names are
written in Camel Hump Notation, e.g. someProperty. Typically a property is used to assign
an attribute to a class. In this case we prefix the name of the property with a verb describing
the kind of relation the class has along that property, e.g. hasNumberOfSides or isFragile.

3.2.2 Rule modeling - step I

Having modeled the overall framework it is time to go through the legal source one section
at a time looking for rules that should be modeled. Here we give an elaborate description of
how to model a single rule from the legal source starting from the overall framework in Figure

4An exception is the domain of truth values, which is built-in as a data type.

5

98

3.2 Modeling 3 VAT EXEMPTION 1: SALES OUTSIDE EU

Table 1 Extract from the legal source and its translation into English.
Salg til lande uden for EU (3. lande). Du skal ikke beregne moms af varer, du

leverer til steder udenfor EU eller til Færøerne og Grønland. Det samme gælder
normalt ogs̊a for ydelser, men du skal dog opkræve moms af visse ydelser.

[4][p. 9]

And translated into English:

Sales outside EU (3rd countries). No VAT should be added to goods delivered to
destinations outside the European Union, or to the Faroe Islands or Greenland.
This fact ordinarily also applies to services, but VAT should be added to certain
services.

Translated from [4][p. 9]

Table 2 Necessary & sufficient conditions for application of the rule in Table 1.
• The rule concerns sales.

• The rule concerns both goods and services.

• The place of delivery must be outside the European Union, or the Faroe Islands or
Greenland.

2. In Section 4 and 5 we give a brief description of how to model other rules. Together the
modeling of these rules cover all the constructions we have used in our VAT model. Since our
legal source is in Danish we present the rules in their original Danish phrasing together with
a translation into English. Now let us consider the rule shown in Table 1.

Since our model is only a prototype we make a slight simplification and assume that
the rule also applies to all services. With this simplification we can identify the necessary
and sufficient conditions for application of the rule. These are shown in Table 2. In order
to model the necessary and sufficient conditions in Table 2 we must add some attributes
to VarerOgYdelser. The first and second condition in Table 2 tell us that we must be
able to model that goods and services are sold5. We do that by adding an attribute to
the class VarerOgYdelser (translates into GoodsAndServices) which already exists in our
overall framework. Attributes are modeled using functional properties. In accordance with our
naming convention we select the name harLeveranceType (translates into hasDeliveryType).
Since there is a finite number of delivery types we model this attribute as a value partition,
i.e. an enumeration. Value partitions can be created using a built-in wizard6. Just as in
[2] we store value partitions as subclasses of the class ValuePartitions. The reason plain
enumerations are not used is that they cannot be sub-partitioned. Using value partitions we
retain the possibility of further refining the concepts the value partitions model.

5Instead of being sold goods can also be used as e.g. a trade sample. See [4][p. 8-9] for other examples.
6Menu!Tools!Patterns!Value Partition....

6

99

4 VAT EXEMPTION 2: SALES TO EMBASSIES

Remark. Technically enumerations are constructed by defining a class in terms of a finite
set of individuals plus a functional property that has this class as its range. Since individuals
are atoms they cannot be subdivided. On the other hand a value partition is defined using
a functional property having as its range a class defined as the union of its subclasses all of
which are distinct. These subclasses can (because they are classes) be partitioned into more
subclasses if needed.

Having created the value partition harLeveranceType which can have Salg (translates
into Sale) as a value we need to add it as an attribute to the class VarerOgYdelser. This is
done by adding to the necessary conditions an existential quantification over the corresponding
property having the value partition (or data type in case of data type attribute) as its range.
Thus we add ∃ harLeveranceType some LeveranceType to VarerOgYdelser. The third
condition tells us that we must be able to model that goods and services have a place of
delivery. A read through of the legal source tells us that only three places are needed namely
Denmark, EU and non-EU. Thus this attribute which we name harLeveranceSted (translates
into hasPlaceOfDelivery) must be modeled as a value partition.

Having modeled these attributes the class VarerOgYdelser looks as shown in Figure 3.

3.2.3 Rule modeling - step II

Now we are ready to model the rule itself. Since the rule describes a situation where you do not
have to pay VAT we model it as a subclass of Momsfritaget (translates into FreeOfVAT). Fol-
lowing our naming convention we name the class MomsfritagetSalgAfVarerOgYdelserTilIkke-EU
(translates into VATFreeSalesOfGoodsAndServicesInNon-EU). Then we add a textual de-
scription of the rule and a reference to where in the legal source the rule stems from to the
rdfs:comment field. Next we must specify necessary and sufficient conditions on membership
in MomsfritagetSalgAfVarerOgYdelserTilIkke-EU. It is important to remember that if a
class has two sets of necessary and sufficient conditions then they must imply each other, see
[2][p. 98]. Based on the necessary and sufficient conditions captured in Table 2 we add the fol-
lowing necessary and sufficient conditions to MomsfritagetSalgAfVarerOgYdelserTilIkke-EU:

• VarerOgYdelser

• ∃ harLeveranceSted some Ikke-EU

• ∃ harLeveranceType some Salg

The result is shown in Figure 4.

4 VAT Exemption 2: Sales to Embassies

In this section and onwards we will not mention when to add references to the legal source in
rdfs:comment fields of classes and properties. The rule of thumb is that this should always
be done. Now let us consider the rule in Table 3. We identify the necessary and sufficient
conditions for application of the rule. These are shown in Table 4.

7

100

4 VAT EXEMPTION 2: SALES TO EMBASSIES

Figure 3: Class and property view after adding attributes.

8

101

4 VAT EXEMPTION 2: SALES TO EMBASSIES

Figure 4: Asserted Conditions of our model of the legal rule in Table 1.

Table 3 Extract from the legal source and its translation into English.
Salg til ambassader. Du skal ikke beregne moms af varer og transportydelser, som
du leverer til ambassader og internationale organisationer i andre EU-lande.

[4][p. 9]

And translated into English:

Sales to embassies. VAT should not be added to goods and transport services deliv-
ered to embassies and international organizations in countries within the European
Union.

Translated from [4][p. 9]

Table 4 Necessary & Sufficient conditions for application of the rule in Table 3.
• The rule concerns sales.

• The rule concerns goods and transport services.

• The place of delivery must be in the European Union.

• The buyer must be an embassy or an international organization.

9

102

4.1 Rule modeling - step I5 VAT EXEMPTION 3: SALES IN OTHER EU COUNTRIES

4.1 Rule modeling - step I

We are already able to model that the rule concerns sale and that the place of delivery must
be in EU. We cannot model the specific service transportation yet. Therefore we must add it
to our model. Since it is a service it should be modeled as a subclass of Services. We name
the class modeling the service transportation Transport (translates into Transportation).
Now we can model that something belongs to the set of goods and transport services by
requiring membership of Varer # Transport. Finally we must be able to model that the
buyer is an embassy or an international organization. Since there are only finitely many
different kinds of buyers we model this as a value partition, and because this attribute applies
to both Varer and Transport we add it to their most specific common super-class which is
VarerOgYdelser. We name this attribute harKøberType (translates into hasKindOfBuyer).
After having done all this the model looks as shown in Figure 5.

4.2 Rule modeling - step II

Having added all the necessary classes and attributes to the model we are ready to model
the rule itself. Since the rule describes a situation where you do not have to pay VAT we
model it as a subclass of Momsfritaget. Following our naming convention we name the class
MomsfritagetSalgTilAmbassaderOgInternationaleOrganisationerIEU (translates into
VATFreeSalesToEmbassiesAndInternationalOrganizationsInEU). Based on the necessary
and sufficient conditions captured in Table 4 we add the following necessary and sufficient
conditions to MomsfritagetSalgTilAmbassaderOgInternationaleOrganisationerIEU:

• harLeveranceType some Salg

• Varer # Transport

• harLeveranceSted some EU

• harKøberType some AmbassadeOgPersonaleMedDiplomatiskeRettigheder

The result is shown in Figure 6.

5 VAT Exemption 3: Sales in other EU countries

In this section we consider one final rule, the rule in Table 5. We identify the necessary and
sufficient conditions for application of the rule. These are shown in Table 6.

5.1 Rule modeling - step I

We are already able to model that the rule concerns sale of goods delivered inside the European
Union. The new thing is that we must be able to indicate whether a buyer is registered for VAT
and if so, we must register the buyers VAT registration number. We use a functional data type
property named erKøberMomsregistreret (translates into isTheBuyerRegisteredForVAT)
with the data type xsd:boolean as its range to model whether the buyer is registered for VAT.
Similarly we use a functional data type property named erKøbersMomsnummer (translates into
isBuyersVATRegistrationNumber) with the data type xsd:string as its range to register
the buyers VAT registration number if he has one.

10

103

5.1 Rule modeling - step I5 VAT EXEMPTION 3: SALES IN OTHER EU COUNTRIES

Figure 5: The model after adding classes and attributes as described in Section 4.1.

11

104

5.1 Rule modeling - step I5 VAT EXEMPTION 3: SALES IN OTHER EU COUNTRIES

Figure 6: Asserted Conditions of our model of the legal rule in Table 3.

Table 5 Extract from the legal source and its translation into English.
Salg til andre EU-lande. Du skal ikke beregne dansk moms, n̊ar du sælger varer

til momsregistrerede virksomheder i andre EU-lande. Du skal derfor sørge for at
f̊a virksomhedens momsnummer.

[4][p. 8]

And translated into English:

Sales in other EU countries. No VAT should be added to goods delivered to
companies in other EU countries, provided that the companies are registered for
VAT. In this case you must acquire the VAT registration number of the company.

Translated from [4][p. 8]

Table 6 Necessary & Sufficient conditions for application of the rule in Table 5.
• The rule concerns sales.

• The rule concerns goods.

• The place of delivery must be in the European Union.

• The buyer must be registered for VAT.

• You must acquire the VAT registration number of the company.

12

105

5.2 Rule modeling - step II 6 FUTURE WORK

Figure 7: Asserted Conditions of VarerOgYdelser after adding the requirement for registering
VAT registration numbers.

A read through of [4] will reveal that you must register the VAT registration number of
the buyer exactly when the buyer is registered for VAT. Thus we model this as a property
of VarerOgYdelser and not of Varer (as indicated by the rule). The requirement can be
modeled as follows:

• ((erKøberMomsregistreret has true) $ (erKøbersMomsnummer exactly 1)) #
((erKøberMomsregistreret has false) $ (erKøbersMomsnummer exactly 0))

The result is shown in Figure 7.

5.2 Rule modeling - step II

Having added the necessary attributes to the model we are ready to model the rule it-
self. Since the rule describes a situation where you do not have to pay VAT we model
it as a subclass of Momsfritaget. Following our naming convention we name the class
MomsfritagetSalgTilAndreEU-lande (translates into VATFreeSalesToOtherEUCountries).
Based on the necessary and sufficient conditions captured in Table 6 we add the following
necessary and sufficient conditions to MomsfritagetSalgTilAndreEU-lande:

• harLeveranceType some Salg

• Varer

• harLeveranceSted some EU

• erKøberMomsregistreret has true

We note that the obligation to register the buyers VAT registration number is modeled indi-
rectly, see Section 5.1. The result is shown in Figure 8.

6 Future work

Since this is work in progress there are a lot of areas we need to address. In the near future
we plan to integrate our model in a prototype ERP system as described in the introduction.
This opens the posibility for modeling the parts of the Danish VAT legislation concerning
depreciation and VAT reporting (since they are intertwined and contain a lot of technical

13

106

7 CONCLUSION

Figure 8: Asserted Conditions of our model of the legal rule in Table 5.

requirements on the financial reports). We also need to model other countries VAT rules
in order to confirm that Danish VAT rules are indeed representative with respect to the
constructions that are needed in the modeling language. Based on this we need to refine our
overall framework such that it captures the common structure and we need to identify what
kinds of questions a model must be able to answer. The synthesized knowledge from modeling
the VAT rules of other countries should also result in a more detailed analysis of what we can
and cannot model.

Based on all this we should design a minimal description logic extended with the needed
functionality identified in the analysis just mentioned, such as predicates like x < 100 which
are needed in some rules. We should also provide a reasoner for the logic together with an
editor such that the above process can be repeated.

Finally in order to compare our OWL model with a different approach we want to make
a model using Datalog, which is the de facto standard language used to express rules in
deductive databases, of the rules we have formalized in OWL already. It would also be
interesting to try a hybrid solution e.g. OWL plus a rule language like SWRL. This work is
independent of the tasks mentioned above and can be carried out in parallel.

7 Conclusion

We have shown how to model a subset of Danish VAT rules concerning exemption from
VAT using Protégé-OWL. First we created an overall framework for the VAT model with
the property that legal rules and the concepts they involve can be modeled as subclasses of
existing classes in the framework. This helps to ensure that related concepts are modeled
in the same way and that a single concept is not modeled twice. The second step was an
iterative process consisting of two steps repeated for each rule. The first step is to extend the
model such that the rule in question can be modeled. This is done by modeling concepts from
the legal source as classes in the model and by adding attributes to the necessary conditions
of such classes. The second step is to model the rule itself. This is done by adding specific
requirements for application of the rule to the necessary and sufficient conditions of the class
modeling the rule.

The step by step iterative modeling has been working fine in practice and an extension to
cover several different VAT and duty rates does not seem to be problematic as long as they do
not require us to model restrictions such as x < 100 which is not supported directly in OWL 7.

7Whether this is a weakness of OWL, or just us trying to use OWL for something it was not designed to

14

107

7 CONCLUSION

Apart from modeling inequalities we have not had modeling problems. One problem though
is that reasoning about individuals in OWL models is not supported very well. Therefore we
have tried to avoid the use of individuals wherever possible (using value partitions).

do is not clear at the moment.

15

108

REFERENCES REFERENCES

References

[1] T.J.M. Bench-Capon, F.C.: Isomorphism and legal knowledge based systems. Artificial
Intelligence and Law 1(1) (1992) 65–86

[2] M. Horridge, H. Knublauch, A.R.R.S., Wroe, C.: A practical guide to building owl
ontologies using the protégé-owl plugin and co-ode tools edition 1.0. (2004)

[3] Horrocks, I., Patel-Schneider, P.F.: Reducing owl entailment to description logic satisfia-
bility. Lecture Notes in Computer Science 2870/2003 (2003) 17–29

[4] ToldSkat: Moms - fakturering, regnskab mv. (Vejledning E nr. 27) Version 5.2. (2005)

16

109

THE SEMANTICS OF “SEMANTIC PATCHES” IN
COCCINELLE

Neil D. Jones and René Rydhof Hansen
DIKU, University of Copenhagen

WHAT IS COCCINELLE?

! A ladybug (a bug that eats other bugs)

! A system to automate and document collateral evolutions in Linux device
drivers

! A research project (DIKU: Julia Lawall. . . ; Nantes: Gilles Muller. . .)

! Practical motivation: as in Julia Lawall’s and Henrik Stuart’s talks.

— 2 —

CONTRIBUTION OF THIS WORK

! Rational reconstruction of the semantics of the core of Coccinelle’s trans-
formation language SmPL

• Clarify some points in the semantics

• Compactly and explicitly describes core of a practical system

• Executable: implemented as a functional program

! A Coccinelle novelty: to use temporal logic CTL as an intermediate
language to implement SmPL.

• (As with compiler intermediate languages,

users need not know of or be aware of CTL.)

! A theoretical bridge: prove

– the natural pattern-matching way to read SmPL

– is equivalent to its CTL implementation.

— 3 —

110

SEMANTIC PATCHES

! Semantic Patch notation SmPL abstracts and generalises the Linux ker-
nel community’s “patch notation”

! Patches are (in effect a sort of) inverse to the diff utility

! Coccinelle is an executable program transformer:

Coccinelle : Semantic patch × Source text → Target text

! Example of a semantic patch:

@@ expression E; @@ [declare pattern variable E]

cli();

... WHEN != (sti(); | restore flags(...);)

- usb submit urb(E)

+ usb submit urb(E, GFP ATOMIC)

! Effect: adds GFP ATOMIC as the second argument to usb submit urb when
a lock cli() is held.

— 4 —

CONTEXT

! Coccinelle focus is not compiler optimisation, but software updating.

! Coccinelle is intentionally not semantics-preserving, in contrast to com-
pilers or program transformers.

! The reason: Coccinelle may be used to change program functionality, or
to fix or to detect bugs (Henrik Stuart’s talk!).

! Coccinelle does not require familiarity with (sometimes rather subtle)
temporal logic.

– A reason: usability by a broad software engineering community,

! Instead, Coccinelle uses patterns with variables and the “...” operator
to localise transformation sites.

— 5 —

A CORE LANGUAGE FOR SEMANTIC PATCHES

A ground term is a tree structure built from operators.

At first, a source program = a straight-line sequence of ground terms.

Later: extend to include an arbitrary control flow graph with branches,
divergence, convergence and loops.

— 6 —

111

SYNTAX OF CORE-SMPL SEMANTIC PATCHES

P ::= ε Pattern that matches the empty sequence of terms
| EP A match for E followed by a match for P

E ::= T Matches a term T
| (P1

′|′ P2) Match P1 or P2

| ... Match sequence of zero, one, or more terms
| −T Delete one T : match it, but do not copy it to the outp
| +T Insert T in the output sequence (no matching occurs)

T ::= x A term is like a ground term, but may contain variables
| op(T1, . . . , Tk)

x ::= variable A pattern variable

— 7 —

EXAMPLE TRANSFORMATIONS (NO VARIABLES)

1. T [[...abab...]] (abcd) = ∅

2. T [[...abab...]] (cababababd) = {cababababd}

3. T [[...a-ba-b+e+f...]] (cababd) = {caaefd}

4. T [[...a-ba-b+e+f...]] (cababgababd) = {caaefgaaefd}

5. T [[...a-ba-b+e+f...]] (cababababd) = {caaefababd, cabaaefabd,

cababaaefd}
Example 4:

transforms in two places

Example 5: Coccinelle system rejects this, since

multi-valued transformations are not allowed

— 8 —

SEMANTIC RULES (continuation c : in → 2out)

I :

T [[P]] = P[[P]] c0 where c0 in = {in}

II : Sequences of things

P[[ε]] c in = (c in)

P[[E P]] c = E[[E]] (P[[P]] c)

III : Single things

E[[G]] c [] = ∅
E[[G]] c (G′ :: in) = if G = G′ then {G :: out | out ∈ (c in)} else ∅

E[[P1 | P2]] c in = (P[[P1]] c in) ∪ (P[[P2]] c in)

E[[...]] c in = (c in) ∪ {G :: out | G :: in ′ = in and out ∈ (E[[...]] c in ′)}

IV : Deletion, insertion

E[[−G]] c [] = {}
E[[−G]] c (G′ :: in) = if G = G′ then (c in) else ∅
E[[+G]] c in = {G :: out | out ∈ (c in)}

— 9 —

112

REMARKS ON THE SEMANTICS

1. Semantics simple, similar to regular expression matching

2. In essence a higher-order functional program (has been programmed in
Haskell)

3. Easy extension to pattern variables (add environment argument)

4. A less easy extension: in practice

a source program = a control-flow graph

and not a straight-line sequence of terms

Matching usually extended ad hoc in the literature

5. Also, an efficiency problem — with this implementation —

non-linear use of continuation c to implement |, ...

6. To solve both problems: CTL comes to the rescue!

— 10 —

A TWO-STEP APPROACH: COMPILING SmPL TO CTL

Coccinelle uses CTL as a compiler intermediate language.
(This happens “under the hood”:

users don’t have to know CTL, model checking, etc.)

! Natural extension from sequences to program control flow graphs (CFGs)

! Interaction between universal and existential quantification is well-defined
in temporal logic;

no extra work to generalise to patterns with

alternating computation path quantifiers.

! Performance advantage: model checking is fast, well-engineered

! Flexibility advantage: same CTL can be used with different translation
schemes for other Coccinelle applications, e.g., bug finding.

— 11 —

CTL FORMULAS AND PROGRAM MODELS

Let AP be a set of atomic propositions ap. CTL formula syntax:

φ ::= ap | ¬φ | φ ∧ φ | φ ∨ φ | AXφ | EXφ | A(φUφ) | AF (φ)

Model satisfaction relation:
M, s |= φ

Model (if the source program is a straight-line term sequence G1 . . . Gn) :

în = !"#$%&'(1 !! !"#$%&'(2 !! . . . !! !"#$%&'(n !!)*+,-./0n + 1
""

(S = states)

G1 G2 · · · Gn exit (L = atomic

properties)

More generally: the program’s flow chart is a Kripke model

M = (S, →, L)

— 12 —

113

COMPILING FROM SmPL INTO CTL

k : K = tail | after CTL The “compiler’s continuation” (as first-order data)

Tctl[[P]] = Pctl[[P]] tail

Pctl[[ε]] tail = true

Pctl[[ε]] (after φ) = φ

Pctl[[E P]]k = Ectl[[E]](after(Pctl[[P]]k))

Ectl[[G]] tail = G ground term G is atomic proposition

Ectl[[G]] (after φ) = G ∧ AXφ

Ectl[[P1 | P2]]k = (Pctl[[P1]]k) ∨ (Pctl[[P2]]k)

Ectl[[...]] tail = AF exit end of the input

Ectl[[...]] (after φ) = AF φ eventually a future state must satisfy φ

— 13 —

AN EXAMPLE: COMPILING FROM SmPL INTO CTL

Tctl[[...aba...]] = AF (a ∧ AX(b ∧ AX(a ∧ AF exit)))

Correctness of translation from Smpl to CTL

Theorem For straight-line source program in and pattern P without +, −
or variables:

T [[P]] in = {in}
if and only if

în , 1 |= Tctl[[P]]

Proof by induction on pattern syntax. Relates the
– match-time continuation (a function) to the corresponding
– compile-time continuation (a data structure).

— 14 —

REMARKS

! Top-down matching of a pattern against a straight-line sequence

is equivalent to

Bottom-up model checking of the pattern’s CTL translation

! Omitted: how to extend CTL to do transformations (+ and - in patterns).

Coccinelle does it during post-processing, after model checking.

! There’s a close correspondence between

• CTL’s path quantifiers A, E

• compiler practice re. “must” and “may” flow analyses

(they just amount to “all-path” and “some-path” properties)

! Extensible to patterns containing variables, using CTL-V

(CTL with variables)

— 15 —

114

CTL-V = CTL WITH PATTERN VARIABLES

CTL-V syntax: has both path and pattern quantification:

φ ::= T | ¬φ | . . . | EXφ | . . . | ∃xφ

where

! “atomic” proposition T may contain pattern variables x

! p ranges over fragments of the source program P being analysed

Extended satisfaction relation:
s |=θ T iff some θ = MGU (T, v) where L(s) = {v}
s |=θ ¬φ iff not s |=θ φ
. . .
s |=θ EXφ iff ∃σ ∈ P(s) . σ[1] |=θ φ
. . .
s |=θ ∃xφ iff s |=θ[x +→v1] φ or . . . or s |=θ[x+→vm]

where

Val = {v1, . . . , vm}
is the (finite!) set of all fragments of progam P .

— 16 —

CUTTING TO THE FINISH. . .

! We’ve seen a rational reconstruction.

! Not the whole truth; it abstracts a working system down to a not-too-big
set of core concepts.

! Coccinelle has satisfactory expressiveness, efficiency, user-friendliness

! The CTL-V extension is enough for Coccinelle’s program transformations

! An extended CTL model checker is used (described in the full paper)

! The semantics of CTL-V with variables, transformation and quantifiers
is complex (current work)

— 17 —

RELATED WORK

Software updating: university groups at

! Nantes (Muller, Padioleau, . . .),

! Copenhagen (Lawall, Hansen, Jones, . . .);

! Oxford (De Moor, Lacey, . . .); and

! Stony Brook (Liu, Stoller, . . .).

De Moor and Liu: apply regular expressions to program transformation.

Lacey, Jones,. . . : compiler optimisation (semantics-preserving) by condi-
tional rewrites

C ⇒ C′ if φ

where C is a pattern, C′ its replacement. Enabling condition φ may refer
to the computational past or future, relative to C.

Powerful but. . . the user must know temporal logic.

Stratego: less semantics-based but more powerful as a rewriting engine.

— 18 —

115

! ! ! !

! ! !

! ! ! !

! ! ! ! ! !

! ! ! ! ! !

! !

! ! ! ! !

!

! ! !

! ! ! ! ! !

! ! ! ! ! ! !

! ! ! ! !

! ! ! !

116

! ! ! !

! ! ! ! !

! ! ! ! ! !

! ! ! ! ! !

! ! ! ! ! ! !

!

!

! ! !

! ! ! ! !

! !

! ! ! ! ! !

! !

!

!

!

!

! ! ! !

!

! ! ! ! !

! ! !

! ! ! !

! ! ! ! !

! ! ! !

! ! ! ! ! !

! ! ! ! ! ! ! !

! ! ! ! ! ! !

117

!

! ! !

! ! ! ! ! ! !

! ! ! ! ! ! !

! ! ! !

! ! ! !

! ! ! ! ! !

! ! ! !

! ! ! ! !

! ! ! ! !

!

!

!

! ! ! !

!

! ! ! ! !

! ! !

! ! ! !

! ! ! ! !

! ! ! !

! ! ! ! ! !

! ! ! ! ! ! ! !

! ! ! ! ! ! !

!

!

! !

! ! ! !

! ! !

! ! ! ! !

! ! ! ! !

! ! ! ! ! ! ! !

!

! !

118

!

!

! ! ! !

!

! ! ! ! !

! ! !

! ! ! !

! ! ! ! !

! ! ! !

! ! ! ! ! !

! ! ! ! ! ! ! !

! ! ! ! ! ! !

!

!

!

!

! !

!

!

!

!

! !

! ! ! ! !

! !

! ! ! !

! ! ! !

! ! ! !

! ! !

! ! !

119

!

!

!

!

! !

!

! !

! !

!

!

!

!

! !

!

! !

! !

!

!

!

!

! !

! !

! !

120

!

!

!

!

! !

! !

! !

!

!

!

!

! !

!

!

!

!

! !

!

! !

! !

!

121

!

!

!

!

! !

!

! !

! !

!

!

!

!

!

!

! !

! !

! !

!

!

!

!

!

!

! !

! !

! !

!

122

!

!

!

!

! !

! !

! !

!

!

!

! ! ! !

!

! ! ! ! !

! ! !

! ! ! !

! ! ! ! !

! ! ! !

! ! ! ! ! !

! ! ! ! ! ! ! !

! ! ! ! ! ! !

! ! !

! ! !

! ! !

! ! ! !

!

123

! ! !

! !

! ! ! ! ! !

! ! ! !

! ! ! ! ! ! !

! ! !

! ! ! !

! ! ! ! !

! ! ! !

! !

! ! !

! ! ! !

! ! ! ! !

! ! ! !

! ! ! ! ! !

! ! !

124

! ! ! ! ! !

! ! !

! ! ! ! !

! ! ! ! !

! !

! ! ! ! ! ! ! !

! !

125

126

127

128

129

130

131

132

133

134

135

136

Bug Hunting with Coccinelle

Henrik Stuart

Joint work with

Julia Lawall (DIKU)
René Rydhof Hansen (University of Aalborg)

Department of Computer Science, University of Copenhagen

3rd DIKU-IST Joint Workshop on Foundations of Software

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 1 / 14

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 2 / 14

Linux memory allocation bugs

Problem:

Deadlocking the kernel with kmalloc(e, GFP_KERNEL) when

interrupts are disabled

Goal:

Use kmalloc(e, GFP_ATOMIC) when interrupts are disabled

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 3 / 14

137

Linux memory allocation bugfix for foo()

--- a/foo.c 2007-09-26 21:02:34.000000000 +0200
+++ b/foo.c 2007-09-26 21:02:51.000000000 +0200
@@ -1,7 +1,7 @@
void foo() {
cli(); /* disables interrupts */
bar();

- buf = kmalloc(size, GFP_KERNEL);
+ buf = kmalloc(size, GFP_ATOMIC);

baz();
sti(); /* re-enables interrupts */

}

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 4 / 14

Linux memory allocation bugfix (SmPL version)

@@ expression size; @@

cli();
... WHEN != sti();

- kmalloc(size, GFP_KERNEL)
+ kmalloc(size, GFP_ATOMIC)

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 5 / 14

Why Coccinelle and searching for bugs?

Good at searching for patterns based on syntax

Efficient on large code-bases (the Linux kernel)

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 6 / 14

138

Use-after-free

kfree(data->ptr);

if (foo) {
warn("Data corruption at %x", data->ptr);
return E_FAIL;

}

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 7 / 14

Use-after-free

kfree(data->ptr);

if (foo) {
warn("Data corruption at %x", data->ptr);
return E_FAIL;

}

@@ expression E; @@
kfree(E)
...
E

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 7 / 14

Use-after-free

kfree(data->ptr);

data->ptr = kmalloc(size, GFP_KERNEL);

if (foo) {
warn("Data corruption at %x", data->ptr);
return E_FAIL;

}

@@ expression E; @@
kfree(E)
...
E

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 7 / 14

139

Use-after-free

kfree(data->ptr);

reassign(&data->ptr, some_value);

if (foo) {
warn("Data corruption at %x", data->ptr);
return E_FAIL;

}

@@ expression E; @@
kfree(E)
...
E

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 7 / 14

Buffer overflows

int buf[20];
int i;

for (i = 0; i <= 20; ++i)
buf[i] = i;

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 8 / 14

Buffer overflows

int buf[20];
int i;

for (i = 0; i <= 20; ++i)
buf[i] = i;

@@ type T; identifier I; constant C; expression E; @@
T I[C];
<... I[E] ...>

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 8 / 14

140

Buffer overflows

int buf[20];
int i;

for (i = 0; i < 20; ++i)
buf[i] = i;

@@ type T; identifier I; constant C; expression E; @@
T I[C];
<... I[E] ...>

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 8 / 14

Finding bugs

Problem:

We can only find things based on its syntax

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 9 / 14

Finding bugs

Problem:

We can only find things based on its syntax

Solution:

Make it possible to use data flow information

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 9 / 14

141

Extending Coccinelle

Requirements:

Easy for experimentation

Familiar to Linux developers

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 10 / 14

Extending Coccinelle

Requirements:

Easy for experimentation

Familiar to Linux developers

Possible solution:

Perl

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 10 / 14

Extending Coccinelle

Requirements:

Easy for experimentation

Familiar to Linux developers

Possible solution:

Perl

Python

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 10 / 14

142

Revisiting use-after-free

kfree(data->ptr);

if (foo) {
warn("Data corruption at %x", data->ptr);
return E_FAIL;

}

@@ expression E; @@
kfree(E)
...
E

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 11 / 14

Revisiting use-after-free

kfree(data->ptr);

if (foo) {
warn("Data corruption at %x", data->ptr);
return E_FAIL;

}

@ rule1 @ expression E, E2; @@
kfree(E)
...
E2

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 11 / 14

Revisiting use-after-free

kfree(data->ptr);

if (foo) {
warn("Data corruption at %x", data->ptr);
return E_FAIL;

}

@ rule1 @ expression E, E2; @@
kfree(E)
...
E2
@ script:python @ rule1.E as x, rule1.E2 as y @@
cocci.include_match(x.ast = y.ast and

cocci.dfa.usedef(x) = cocci.dfa.usedef(y))

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 11 / 14

143

Revisiting use-after-free

kfree(data->ptr);

data->ptr = kmalloc(size, GFP_KERNEL);

if (foo) {
warn("Data corruption at %x", data->ptr);
return E_FAIL;

}

@ rule1 @ expression E, E2; @@
kfree(E)
...
E2
@ script:python @ rule1.E as x, rule1.E2 as y @@
cocci.include_match(x.ast = y.ast and

cocci.dfa.usedef(x) = cocci.dfa.usedef(y))

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 11 / 14

Finding buffer overflows

int buf[20];
int i;

for (i = 0; i <= 20; ++i)
buf[i] = i;

@ rule1 @ type T; identifier I; constant C; expression E; @@
T I[C];
<... I[E] ...>

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 12 / 14

Finding buffer overflows

int buf[20];
int i;

for (i = 0; i <= 20; ++i)
buf[i] = i;

@ rule1 @ type T; identifier I; constant C; expression E; @@
T I[C];
<... I[E] ...>
@ script:python @ rule1.C as x, rule1.E as y @@
buffer_size = cocci.dfa.eval(x)[0]
index_values = cocci.dfa.eval(y)
cocci.include_match(max(index_values) >= buffer_size)

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 12 / 14

144

Finding buffer overflows

int buf[20];
int i;

for (i = 0; i < 20; ++i)
buf[i] = i;

@ rule1 @ type T; identifier I; constant C; expression E; @@
T I[C];
<... I[E] ...>
@ script:python @ rule1.C as x, rule1.E as y @@
buffer_size = cocci.dfa.eval(x)[0]
index_values = cocci.dfa.eval(y)
cocci.include_match(max(index_values) >= buffer_size)

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 12 / 14

Future work

Expressing bug patterns concisely and understandably

Experimenting with more categories of bugs

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 13 / 14

Preliminary conclusions

Use of scripting languages allow easier experimentation

Coccinelle can actually find bugs

Several patches derived from its use has been accepted into the Linux kernel

Henrik Stuart (DIKU) Bug Hunting with Coccinelle DIKU-IST ’07 14 / 14

145

Ranking Functions for Size-Change Termination II
(extended abstract)

Amir M. Ben-Amram and Chin Soon Lee!

Abstract. The Size-Change Termination technique is based on a program
abstraction for which termination is decidable. Termination is verified by a set
of local termination proofs that account for all cycles in a control-flow graph.
We present algorithms that construct a global ranking function for an SCT
instance. Such functions serve as easy-to-check witnesses for termination, and
are therefore interesting for purposes of program certification. Their particular
form and complexity shed light on the theory of SCT termination proofs.
Our constructions are simpler and more transparent than previously known.
They improve the upper bound on the size of the ranking expression from
triply exponential to singly exponential. Another contribution is a set of lower-
bound results, proving that our constructions are optimal in a certain sense.
An interesting point that arises from our constructions is the usefulness of
multisets of data in ranking expression construction.

1 SCT and Ranking Functions in a Nutshell

Let Val be a well-ordered set of data values. A control-flow graph (CFG) is a directed
multigraph (F,C). The nodes are called flow-chart points or just flow-points. The set
of arcs from f ∈ F to g ∈ F is Cfg. One of the nodes, f0, is initial or starting point.
All nodes are reachable from f0. For each f ∈ F , we have a distinct set of parameters
Par(f), representing data pertinent to describing the program state at this point. For
simplicity, all such sets have the same size n. Formally, the set of (abstract) program
states is

S t = {(f,σ) | f ∈ F,σ : Par(f) → Val} .

For f, g ∈ F , a size-change graph (SCG) with source f and target g is a bipartite
directed graph with source nodes corresponding to Par(f) and target nodes to Par(g).
We write this fact as G : f → g. Arcs of G represent constraints on transitions
(f,σ) → (g,σ′). In the ordinary SCT formulation, there are just two types of arcs: a
strict arc x

↓→ y represents strict descent, i.e., σ(x) > σ′(y). A non-strict arc x → y
represents the constraint σ(x) ≥ σ′(y). We write G |= (f,σ) $→ (g,σ′) if all constraints
are satisfied. An SCT instance, or abstract program, also known as annotated control-
flow graph (ACG), is a CFG where every arc c ∈ Cfg is annotated with a SCG
Gc : f → g.

Let G be an SCT instance (formally we view G as just the set of SCG’s, implicitly
specifying the CFG). A G-multipath is a (finite or infinite) sequence M = G1G2 . . .
of elements of G that label a corresponding directed path in the CFG, often denoted
! benamram.amir@gmail.com, cslee sg@hotmail.com

146

by cs (for computation sequence, or call sequence—for functional programmers). We
also view a multipath as the (finite or infinite) layered directed graph obtained by
identifying the target nodes of Gi with the source nodes of Gi+1. A thread in M is a
(finite or infinite) directed path in this graph. A thread is descending if it includes a
strict arc; it is infinitely descending if it includes infinitely many strict arcs.

G is said to satisfy SCT (or “terminate”) if every infinite multipath contains
an infinitely-descending thread. This is a sufficient condition for termination of any
program modelled by G (in fact, the most precise condition). In the rest of this paper,
we only consider terminating instances.

Let P (s, s′) be any predicate defined over pairs of states. We write G |= P (s, s′)
if G |= s $→ s′ ⇒ P (s, s′). A (global) ranking function for G is a function ρ : S t → W ,
where W is a well-ordered set, such that G |= ρ(s) > ρ(s′) for every G ∈ G1. It is
often convenient to write ρ(f, [x1 → v1, . . . , xn → vn]) as ρf (v1, . . . , vn).

Constructing a ranking function for an SCT instance is sometimes a way to un-
derstand the type of “behaviour” that the instance expresses. Examples found in
previous publications on SCT include programs where the maximum of parameters
decreases (consider a standard recursive gcd function), programs where the minimum
decreases and programs with a lexicographic descent in a tuple of parameters. It has
recently been shown [4] that a ranking function can be constructed for any given SCT
instance. It has the following form:

ρ(s) = min(maxS1,max S2, . . .)

where max Si represents the maximum element among a set Si of vectors of parameter
values and constants, where vectors are lexicographically ordered. We refer to the
above form of expressions as min[max[V]] where V refers to the type of vectors.

Here is an example: Consider an SCT instance consisting of the graphs G1, G2, G3 :
f0 → f0 drawn below; the heavy arcs are strict.

x

y

z

!
!!"

!
!!"##

x

y

z

x

y

z

##
!

!!"
x

y

z

x

y

z ##

!
!!"

!
!!"
#

x

y

z

A ranking function for G is ρf0(x, y, z) = max{〈y, 0, z〉, 〈x, 1, z〉}. To verify this,
check each graph in turn, considering each possibility among y > x, y = x and y < x
for the state before and after the transition (plus the constraints expressed in the
graph). In this example the min operator is unnecessary, so the expression has type
max[V], with V = Par(f0)× {0, 1}× Par(f0).

The above graph set is also an example of a fan-in free SCT instance (no two arcs
enter the same node). Fan-in free graphs have been identified as an interesting class in
previous work [5, 2, 1]. We will also consider the class of fan-out free instances—mostly
because they are similar to fan-in free ones but easier to work with.
1 We may omit explicit references to s, s′ for convenience, and use variable names for their

values, e.g., writing G |= x > x′ instead of the more precise G |= σs(x) > σs′(x).

147

2 Statement of Results

Unfortunately, the size limit on this abstract precludes a presentation of our construc-
tion techniques. In this section, we state the results with a bit of commentary. The
proofs will be published in the full paper.

Definition 2.1 (Tree Expressions). For a class E of expressions, a tree expression
over E is either an expression e ∈ E or a conditional if x<y then e1 else e2,
where x, y are parameter names and e1, e2 are tree expressions over E.

Definition 2.2 (Simple Multiset Ordering, SMO). Let A,B be finite multisets
over Val. We write A > B if |A| > |B| (the cardinality of A is larger) or if |A| = |B|
and the sets can be listed as A = {a1, a2, . . .} and B = {b1, b2, . . .} with ai ≥ bi for all
i and ai > bi for at least one i. We write A ≥ B for the non-strict variant.

Let k > 0. When |A| = |B| = k, A > B means that a sorted listing of A is
lexicographically greater than a sorted listing of B. This is true for both descending
sort and ascending sort; which gives two ways of completing it to a total order over
k-element multisets. The first gives the multiset order of [3]; the second, the dual
multiset order of [2]. Both are useful in our work. In fact, we need a total order in
order to have well-defined min and max operators. We define the min operator to use
the dual order, while the max operator is defined by the Dershowitz-Manna order.

Definition 2.3 (vectors). For f ∈ F and B > 0, V B
f is the set of vectors v =

〈v1, v2, . . .〉, of even length, where for every odd i, vi is a non-empty subset of Par(f),
such that all odd positions constitute a partition of Par(f); while for even i, vi is an
integer between 0 and B. If B = ω, i is any nonnegative integer.

The value of v ∈ Vf in a given program state is obtained by substituting values
for parameters. The odd positions thus become multisets over Val. Such vectors are
ordered lexicographically, where multisets are ordered by some extension of SMO, and
numbers by the natural order. We use the convention that the value is meant whenever
v is referred to in a context that requires a value, e.g., when making statements about
order; the state is supposed to be understood from context.

Theorem 2.4. Let G be a terminating SCT instance, with m flow-points and n pa-
rameters per point.

1. Let B = (1+m)(n!)(n2)2
n

. There is a ranking function for G of the form ρf (σ) =
minS∈Sf max S, where Sf ⊆ ℘(V B

f), |S| ≤ n! for all S ∈ Sf , and |Sf | ≤ (Bnn!)n!.
There is also a ranking function where ρf (σ) is a tree expression over V B

f at the
leaves; the size of the expression is O(nn).

2. If G is fan-out free, let B = m · 2n. There is a ranking function for G of the form
ρf (σ) = minv∈Sf v where Sf ⊆ V B

f and |Sf | ≤ n!. For fan-in free graphs we have
the same result with max instead of min.

148

All the results are given by explicit constructions. In all of them, it is possible to
restrict the set components of the vectors to singletons, thus avoiding the use of
multiset orders. However, the constructions make use of multisets; we also observe
that the use of multisets may help in getting a smaller expression for ρf . For a tiny
example, consider the size-change graph {x ↓→ y, y → x}; we have the set-valued
ranking function ρ(x, y) = {x, y}. Without multisets, we need a bigger expression.

The size of our ranking functions is a vast improvement over the triply-exponential
upper bound of [4]. Is it optimal? Already for the fan-out free case, there is a
complexity-theoretic argument against the existence of a polynomially-computable
family of ranking functions. More interestingly perhaps, we have explicit construc-
tions that provide tight lower bounds on the size of ranking expressions from a class
that generalizes the expressions described in Theorem 2.4.

Definition 2.5. For a state s = (f,σ), let Order(s) be the ordering of the parameter
values in s (represented, for example, as a graph on Par(f)).

Definition 2.6. A VSO function (for Vectors Selected by Order) is a function ρf (s)
that can be described by assigning to any order τ on Par(f) a vector ρ∗f (τ) ∈ V ω

f ,
such that ρf (s) is given by evaluating ρ∗f (Order(s)).

If vectors contain entries that are sets of parameters, one has to specify in which
sense they are meant to descend. Our first result refers to SMO, which is the way our
ranking functions (Theorem 2.4) work.

Theorem 2.7. There is a fan-out free, terminating SCT instance H with a single
flow-point f , n + 1 parameters and 2n − 1 size-change graphs, such that any VSO
ranking function ρf for H (based on SMO) must use at least n! different vectors.

The following result concerns the (more flexible) Dual Multiset Order [2].

Theorem 2.8. There is a fan-out free, terminating SCT instance K with a single
flow-point f , 2n + 1 parameters and n + 1 size-change graphs, such that any VSO
ranking function ρf for K (based on DMO) must use at least 2n different vectors.

Note that the lower bound dropped from 2Θ(n log n) to 2n. It is an intriguing open
problem to find out whether such use of multiset ordering can actually improve the
upper bound.

References

[1] Amir M. Ben-Amram. Size-change termination with difference constraints.
ACM Transactions on Programming Languages and Systems, 2007. To appear.

[2] Amir M. Ben-Amram and Chin Soon Lee. Size-change analysis in polynomial time. ACM
Transactions on Programming Languages and Systems, 29(1), 2007.

[3] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings.
Communications of the ACM, 22(8):465–476, August 1979.

[4] Chin Soon Lee. ranking functions for size-change termination. Submitted.
[5] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for

program termination. 28th ACM Symposium on Principles of Programming Languages,
pages 81–92. 2001.

149

!!"# "$%&'()*+,()*"$%&-./,(+"0 $1&"$ &203+4(,/&
50#/6& 78/)*"$%&3, 09&+8/&: $;", 0$9/$+

&&7<,"66/&=,+80>&:+1?<(&28"@(<(9(>&A018"$0,"&B($(@/
C(+"0$(6&D$1+"+?+/&03&=#;($)/#&D$#?1+,"(6&2)"/$)/&

($#&B/)8$060%<&E=D2BF>&B0*<0>&G(.($

5(1(9"&!(%"<(>&H(+)8(,"$&I/?$%4(++($(*"+
J/.(,+9/$+&03&709.?+/,&2)"/$)/

K,(#?(+/&2)8006&03&D$30,9(+"0$&2)"/$)/&($#&B/)8$060%<

B8/&L$";/,1"+<&03&B0*<0

M,#N&JDOLPD2B&G0"$+&H0,*180.&0$&Q0?$#(+"0$1&03&203+4(,/

R&-)+0@/,&STTU

! "

##$%&'(%&$)

! *+&,&)(--./!0$1%2(+3!4$53-!673683+0!6$9-5!)$%!
7()5-3!49-%&:;+$6300!)3%2$+835!(;;-&6(%&$)0<

! *)3!(;;+$(67!6(--35!63)%+(-&=(%&$)!0$-'35!%7&0!
;+$>-34!>.!,(%73+&),!(--!;33+0!&)!(!%(+,3%!0.0%34!
()5!3)6(;09-(%3!%734!&)!$)3!;+$6300<

! !

""#$%&'$%#()*+ #($, -

! .//)01123)453$)61)72%$$1()
%()$81)3'41)02#92'44%(9)
/'(95'91,

! :81)4#;1/)+81+<12)8'3)$#)
3%45/'$1)%($12/1'&%(9)
'4#(9)'//)02#+13313,

! :8%3)+1($2'/%='$%#()
'002#'+8)35>>123)>2#4)
3$'$1)1?0/#3%#()02#6/14,

150

& !

""# $% &'" (%

!)*#%+&&,%&-&.&/"$%+%&0%%1&/%0.1.'%+23

! !*4*%%$%*5/&+.$%5.%%&"/&$*'&1%65"1%#3

! 7&.+.#+%&8"',&1%/0%&'&'*&',%&$54#%1&*9&',1%.#/3

: !

""#$ %&'()*+,+' ('-+

! .$-/'-+#,+')$-),00&1/,+1$-*)+2,+)/$((3-1/,+')
41+2)$+2'#)0''#*5

! 6&&)$+2'#)0''#*),#')$3+*17')+2')($7'&)/2'/8'#5

! 9,/8+#,/81-:)$//3#*)#'0',+'7&;)1-)+2')($7'&)
/2'/81-:)0#$/'**5

) <

==2# !"#$%&'('# $#)'% *+,)'- .

! /(+0%!1()+0%
1#21#&#)'&%(%'1()&3'3,)%
&#)43)5%(%$#&&(5#%',%
'0#%#1-

! 78%!(+9'1(+93)5%,++:1&;%
'0#%&($#%$#&&(5#%3&%
&#)'%$,1#%'0()%,)+#-

151

% <

!!"#$ %&"'

! ()*"+$#,)%-.%)/"'%0"#1)/"**$'&/.%&"')2,%3,,')
%-,)*"+,#)/-,/4,+).55#&/.%&"').'+)&%1)5,,016

! 7,,01).0,)'"%).3.0,)%-.%)%-,&0)/"$'%,05.0%)&1)
2,&'8)*"+,#)/-,/4,+6

! 9-,)*"+,#)/-,/4,0):,0&;&,1)%-,)%.08,%).55#&/.%&"')
,<-.$1%&:,#=6

; =

!!"# $"%# &

! '()$*+,-)%*(.)*./0"0.10)23%(+#$

! '()$*+,-)%*(.)*.40-2#.506#$.

! !7#$0)%*(.+#8*(9)$0)%*(

! :%8%)0)%*(

! ;<7#$%8#()9

! 4*(-5,9%*(

) =

!!" #$ %& '(#)%" *#%* +,-,* ., #/ 0)" &1 $

! 2*3%&14*(/1(51$*6%$*+,-,*78#1(%&19

! +,-,*:)$#',4*;,(/)"1*<+:;=*)">)&1*+.0*(/1(5>*6%$*
-)%4,#)%"*%6*?$%?1$#)1>*78*1@1('#)"A*,*?$%A$,3*)"*
1661(#)-148*,44*?%>>)741*?,#/>*%6*1@1('#)%"9

152

* >?

!!" #$ %& '(#)%" *#%* .,(-1*>,= 1$

! .,(-1*>,=1$*)>*?4,(1&*71#411"*#-1**%&14*(-1(51&*
,??4)(,#)%"*,"&*#-1*1":)$%"*1"#9

! B1@'1>#AB1>?%">1*B1(%$&*<BB.=*)>*'>1&*6%$*
>#%$)"A*?,)$>*%6**1>>,A1>9

. !!

""#$ %&'($') #(

! *+,-%./-&'/-012-.3/'#.$'-4&3#.#56

! 7%(-4&/'(2(#-4&28/-'%(-*+,-$0#(-.29-'%(-$.$%(-
4.5(#6

! 7%(-$.$%(-4.5(#-.3/'#.$'/-/0:(-2('10#8-4&3#.#5-
$4.//(/6

- ;!

""#$%&'(#$%)'*$+%,-$+'./,0%
1$2,03.+'./,0

! 4+/.$+%.#+$'1%3$013%565%'01%575%.,%'%-$$+8

! 9$'1$+%.#+$'1%+$'13%+$-:/$1%:$..$+3%;+,2%.#$%-$$+%
<3$+=$+>8

153

% !"

##$%&'()$%&*(+%,&-.%,(/0-1&
2%3-14/,(/0-1&5)-1/67

& !!

""#$%&'(#$%)'*$+%,-$+'./,0%
1$2,03.+'./,0%4(,0.56

% 7!

""#$%&'(#$%)'*$+%,-$+'./,0%
1$2,03.+'./,0%4(,0.56

154

% 7!

""#$%&'(#$%)'*$+%,-$+'./,0%
1$2,03.+'./,0%4(,0.56

% 7!

""#$%&'(#$%)'*$+%,-$+'./,0%
1$2,03.+'./,0%4(,0.56

% 7!

""#$%&'(#$%)'*$+%,-$+'./,0%
1$2,03.+'./,0%4(,0.56

155

% 7!

""#$%&'(#$%)'*$+%,-$+'./,0%
1$2,03.+'./,0%4(,0.56

& 78

99:0' # "!"$#$

! %&'(()"#&$"*+"*,)&""$#

! !--.&$"*+"*,)&""$#

! /((#&$"*+"*,)&""$#

/0$1 "%2* (#"0 $ 32!)"*&01&$# (#"$ 42$$"$%& #"!"&5! "$ 6$")7
%&'(()"#&)&""$#&58&#(*"(#$9&8&)((*()#"*$7 ::;<= >6:;
%&'(()"#&$"*+"*&58&#(*"(#$9&8&)((*()#"*$7 88= >6><
!--.&)&""$#&58&#(*"(#$9&?@)A#"&1"&"7 <:= :6>B
!--.&$"*+"*&5:&#(*"(#9&B8@)A#"&1"&"7 :; >6>8
/((#&)&""$#&5:&#(*"(#9&:&!"$$(%"7 ::= >6>:
/((#&$"*+"*&5:&)&""$#9&:&!"$$(%"7 C;< >6>=

42$$"$%&0$&D$#"&&/"$#*"$0&E20&-8?>>&F"#(&C:8&G'&!"!0*A

H ;<

!!"# "$%$ "&'

! ()"*+%,,-&%.)+"*+/"#"$01+$&+*2*$0#*+3)&*0+
#0**%40+*0560'.0+"*+"'10,0'10'$+&7+$)-0%1+
*.)016/"'48

! ()0+-0560*$9-0*,&'*0+-0.&-1+*$-6.$6-0+10,0'1*+
&'+$)0+10/%2+&7+-0*,&'*0+#0**%40*8+

156

+ ::

!!"#$ %& '("#

!)*+,!-$./,(',0/'(1#/0,2",/32/#0,4&#$2("#-%(25,"4,
6"0/%,$./$7/8',4"8,9/8(45(#1,#/2:"87/0,
-;;%($-2("#'<

!)2,;%-5',2./,";;"#/#2='(0/,8"%/,"4,2./,6"0/%=
$./$7/0,-;;%($-2("#<

!)2',6/$.-#('6,8/%(/',"#,6-2$.(#1,>/2://#,8/?&/'2,
-#0,8/';"#'/,6/''-1/',28-#'4/88/0,"9/8,2./,%(#7<

, ;@

<<I2I 81 ,4%8 7

! A14-B,2/1,81>28($2(%#,%#,31>>-11,>1CI1#$1>=

! A16(#1,2/1,-??8%-$/,2%,01-4,4(2/,014-=10,81>?%#>1,
31>>-11>=

! !"#$%&'#($')**+,)-('#,'-,.$+'/,+$'0%+$12)31$'
*+,#,-,14'40-(')4'567'854$+'6)#)9+)/'7+,#,-,1:;''
'

157

Making operations on standard-library containers
strongly exception safe∗

Jyrki Katajainen

Department of Computing, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen East, Denmark

Abstract. An operation on an element container is said to provide a strong guar-
antee of exception safety if, in case an exception is thrown, the operation leaves the
container in the state in which it was before the operation. In this paper, we explore
how to adjust operations on C++ standard-library containers to provide the strong
guarantee of exception safety, instead of the default guarantee, without violating
the stringent performance requirements specified in the C++ standard. In partic-
ular, we show that every strongly exception-safe operation on dynamic arrays and
ordered dictionaries is only a constant factor slower than the corresponding default-
guarantee operation. In terms of the amount of space, the overhead introduced is
linear in the number of elements stored.

Keywords. C++ standard library, standard template library, data structures, con-
tainers, exception safety, commit-or-rollback semantics

1. Introduction

In the C++ community, it has been well-known for a long time that program-
ming with exceptions can be problematic and that the issue of exception
safety must be taken seriously (see, for example, [5]). In computer applica-
tions, which are supposed to run forever, it is important to catch exceptions
whenever these are thrown and to care for proper exception handling. In
particular, when an exception is thrown, it must be ensured that the data
structures manipulated are not corrupted so that a proper recovery is pos-
sible and the execution of an application program can continue after the
recovery—without human intervention.

The notion of exception safety is defined as follows (see, e.g. [1, 18]). An
operation on a container is said to be exception safe if the operation leaves
the container in a valid state when the operation is terminated by throwing
an exception. In addition, the operation should ensure that every resource

∗Presented at the “3rd DIKU-IST Joint Workshop on Foundations of Software” held
in Roskilde in October 2007.

Partially supported by the Danish Natural Science Research Council under contract
272-05-0272 (project “Generic programming—algorithms and tools”).

CPH STL Report 2007-5, August 2006. Revised October 2007.

158

2 Jyrki Katajainen

that is acquired is (eventually) released. A valid state means a state that
allows the container to be accessed and destroyed without causing undefined
behaviour or an exception to be thrown from a destructor.

A successful completion of a container operation means that the operation
performs its intended actions correctly without leaking any resources. In
C++, operations on standard-library containers are defined to provide the
following three kinds of exception safety [1, 18]:
Default guarantee: The operation completes successfully, or throws an ex-

ception and maintains the basic invariants of the manipulated container
(i.e. keeps the container in a valid state) and leaks no resources.

Strong guarantee: The operation completes successfully (commit), or throws
an exception and makes no changes to the manipulated container and
leaks no resources (rollback).

No-throw guarantee: The operation always completes successfully and never
throws an exception.

All operations on standard-library containers provide the default guarantee,
but some key operations also provide the stronger forms of exception safety.

This work is part of the CPH STL project [15], where the goal is to
implement an enhanced edition of the STL (Standard Template Library).
The CPH STL provides several alternative realizations for various standard-
library containers (singly-linked lists, doubly-linked lists, dynamic arrays,
double-ended dynamic arrays, ordered dictionaries, unordered dictionaries,
priority queues, and double-ended priority queues). In the current form,
none of the implementations provide the strong guarantee of exception safety
for all operations, but the plan is that in future releases there will exist an
implementation of each container class that provides the strong guarantee
of exception safety for all operations.

The motivation of writing this paper arose from the project assignments
handed out to our graduate students in the last two years in our “Generic
programming” course. Students were asked to program a generic library
component (priority queue [10] or ordered dictionary [11]) which provides
stronger guarantees with respect to runtime performance, space efficiency,
iterator validity, and exception safety than those provided by existing real-
izations available at the Internet. Of the issues considered, exception safety
turned out to be the most difficult part of the assignments. Namely, only one
group of students, of 30 groups completing their work, succeeded in provid-
ing a strongly exception-safe library component. Hence, we must agree with
the earlier authors (see, for example, [5, 16]) that it requires extraordinary
care to write exception-safe code.

In this paper, advice is given for implementers of the CPH STL, and
other generic libraries, how all operations on standard-library containers
can be adjusted to provide the strong guarantee of exception safety without
violating the performance requirements specified in the C++ standard. The
surveys [1, 16, 18, 19], where guidelines for exception-safe programming are
given, were the starting point of this research. As summarized in [2] and [18,
Table on p. 956], several operations on standard-library containers are only

159

Making operations on standard-library containers strongly exception safe 3

required to provide the default guarantee of exception safety, or possibly the
strong and no-throw guarantees under some specific conditions. Here the
aim is to provide the strong guarantee of exception safety efficiently without
any conditions.

The rest of this paper is structured as follows. In Section 2, we describe
a general technique for converting a program into a form that provides the
strong guarantee of exception safety. This technique can be applied in cases
where the modifications made by a container operation are easily reversible.
In Sections 4 and 5, we consider dynamic arrays and ordered dictionaries,
respectively. Our strategy is to show how to implement some decisive oper-
ations in an exception-safe manner in the strong sense, and then analyse the
efficiency of the proposed implementations. In Section 6, we offer a few con-
cluding remarks. A longer version of this paper is under preparation where
we will discuss the issue in greater detail and report experimental results
comparing the practical efficiency of various exception-safe implementations
of standard-library operations.

2. Techniques for writing exception-safe code

In many of the earlier papers (see, e.g. [16, 18]), guidelines for writing
exception-safe code are given. Two of the techniques seem to be more fun-
damental than others:

T1: “Never let go a piece of information before its replacement can be
stored.” When updating an object, one should not destroy its old
representation before a new representation is completely constructed
and can replace the old version without any risk of exceptions.

T2: “Resource acquisition is initialization.” One can rely on the C++ lan-
guage rule that when an exception is thrown in the body of a con-
structor, objects (including bases) already constructed by an initializer
will be properly destroyed. (Recall that in constructors objects can be
initialized using the initializer list which is a comma-separated list of
expressions enclosed in braces.)

Often when a container operation is adjusted to provide the strong guar-
antee of exception safety, e.g. using the above-mentioned techniques, the
program code becomes longer. Next we prove a fundamental theorem which
says that this increase cannot be large, provided that the operations per-
formed are easily reversible. In particular, operations that are not reversible
introduce the main difficulty when attempting to achieve the strong guar-
antee of exception safety. For example, element copying is not necessarily
reversible since the copy constructor or copy assignment can throw an ex-
ception when a rollback of the copy operation is tried.

Given a sequence S of operations, let undo(S) denote the sequence of
operations that reverse the effects caused by S, and let !(S) denote the
length of S measured, for example, in the number of bytes used for its
description.

160

4 Jyrki Katajainen

Theorem 1. Let k ≥ 0 be an integer. Assume that Si, i ∈ {1, 2, . . . , k + 1},
is a sequence of operations that do not throw any exceptions, and that ui,
i ∈ {1, 2, . . . , k}, is an operation that can throw an exception and is strongly

exception safe. Consider now program P
def
= S1;u1;S2;u2; . . . Sk;uk;Sk+1;

and let P ′ be a program that is strongly exception safe and has the same
effect as P . Provided that every sequence Si and operation ui are easily
reversible, e.g. undo(Si) and undo(ui) exist, P ′ can be constructed using the
primitives of P and their reversals, and the length of P ′ is proportional to

k∑

i=1

[1 + !(ui) + !(undo(ui))] +
k+1∑

i=1

[1 + !(Si) + !(undo(Si))] .

If !(undo(Si)) = O(!(Si)) for all i ∈ {1, 2, , . . . , k + 1} and !(undo(ui)) =
O(!(ui)) for all i ∈ {1, 2, , . . . , k}, the length of P ′ is linear in the length of
P .
Proof. It is straightforward to verify that the following program fulfils the
requirements set for program P ′.

S1;
try {

u1;
S2;
try {

u2;
S3;
. . .

}
catch(. . .) {

undo(S2);
undo(u1);
throw;

}
catch(. . .) {

undo(S1);
throw;

}
It is important to note that, since operations ui are tried, they should not
have any unexpected side-effects so it is necessary that they satisfy the strong
guarantee of exception safety. !

The proof of the theorem provides a general technique for crafting excep-
tion-safe container operations. However, in the form described it can only be
applied for straight-line programs. To give the technique wider applicability,
we borrow a technique from the database literature:
T3: “Maintain a log of the structural changes made to facilitate a rollback.”

It is important that the structural changes made are reversible so that
the log can be used to restore the original state of the data structure,
if a recovery turns out be necessary.

161

Making operations on standard-library containers strongly exception safe 5

Now the main concern is how to keep the size of the log reasonable so that
the log would not unnecessarily slow down the operation under considera-
tion. Therefore, when technique T3 is used, some space optimization may
be necessary. For example, we keep the log compact by storing there small
integers (a few bits) instead of complete full-word integers.

One problem with the techniques discussed is that they often affect the
readability of programs and can make maintenance work less attractive.
For example, when the resource-acquisition-is-initialization technique (T2)
is used, it may be necessary to create several artificial classes and place
the definition of these classes far away from the place where they are used.
Similarly, when the technique provided by Theorem 1 is used, there can be
a large separation between the code for operation sequence S and that for
undo(S). These are the main reasons why the D programming language
offers new language constructs to support exception-safe programming (for
more details, see [7]).

3. Unsafe and safe operations

All the container classes in the C++ standard library [3] are generic and
take several template parameters which make the containers flexible and
applicable for many different scenarios. The following set of types may be
used for the customization of a container:

E : the type of the elements (or values) manipulated;

C: the type of the comparator which is a function object used in element
comparisons;

A: the type of the allocator which provides an interface to allocate, con-
struct, destroy, and deallocate objects;

N : the type of the compartments (or nodes) used for storing the elements
and any related data like pointers to other compartments;

I: the type of the iterators used for referring to the compartments; and

S: the type of the data structure used for storing the compartments.

In the CPH STL, all container classes are bridge classes (for more about
the bridge pattern, consult [8]) that take the template parameter S which
can be used to modify the implementation strategy of a container. Often,
parameters N , I, and S are only used for configuration purposes so hereafter
we assume that the library, not the user, supplies them.

In general, all user-supplied operations passed via function arguments or
template arguments can throw exceptions so these can be problematic when
writing exception-safe code. To make the discussion more concrete, consider
a binary-heap class that can be used for the realization of a priority queue.
According to the declaration [10], the binary-heap class takes four template
parameters E , C, A, and N . Of the user-supplied operations, the following
five can throw exceptions:

O1: copy constructor of an allocator (of type A),

162

6 Jyrki Katajainen

O2: function allocate() of an allocator (indicating that no memory is avail-
able),

O3: copy constructor of an element (of type E) (used by function construct()

of an allocator),
O4: copy constructor of a comparator (of type C), and
O5: operator() of a comparator, or comparator itself if it is a function.
As will be seen, the same set of operations is critical when manipulating the
other containers, too.

Basically, all classes with operations that do not throw exceptions are
friendly for library implementers. Especially, operations on the following
types do not throw exceptions:

– built-in types including pointers,
– types without user-defined operations, and
– functions from the C library (unless they take a function argument that

can throw).
In addition, the C++ standard [3] guarantees that no copy constructor or
copy assignment of an iterator defined for a standard container throw ex-
ceptions.

It is the responsibility of library users to ensure that
– user-defined operations leave container elements in valid states,
– user-defined operations leak no resources, and
– user-defined destructors do not throw exceptions.

Technically, user-defined operations can leave container elements in invalid
states and can leak resources, and destructors can throw exceptions, but in
normal circumstances the only way to recover from these type of errors is
to terminate the program. Especially, operations on the standard-library
containers only give their exception-safety guarantees under the assumption
that destructors do not throw exceptions.

4. Dynamic arrays

In C++, dynamic (extensible, flexible, or resizable) arrays are called vectors.
In the CPH STL, the vector class takes three template parameters:

template <

typename E ,
typename A = std::allocator<E>,
typename S = cphstl::contiguous vector<E , A>

>

class vector;

The user-supplied operations that can throw exceptions include operations
O1, O2, and O3 defined in Section 3. All member functions of the vector
class that use these three operations must be programmed carefully. In [18],
several alternative ways of implementing the constructor, the assignment,
push back() in an exception-safe manner are described.

163

Making operations on standard-library containers strongly exception safe 7

Let us, for example, consider the constructor of the vector class. The
representation of a vector consists of an allocator and a handle to an ar-
ray of elements. A copy of the allocator (O1) given as a parameter for the
constructor can be created as part of the initializer list (T2). If an excep-
tion is thrown during the copying or later on, the language guarantees that
the copy of the allocator is properly destroyed. The potential problems
caused by function construct() of the allocator (O2) can be handled by
allocating a memory segment for new elements, constructing the elements
(O3), and first after a successful construction updating the handle to point
to the appropriate memory segment (T1). If any of the element construc-
tions fails, the created copies can be easily destroyed since this only involves
element destructions. However, in connection with other operations the po-
tential exceptions thrown by the copy constructor of an element (O3) are
more difficult to handle. The main problem is that element copy operations
are not necessarily reversible. Therefore, for some operations a standard
vector provides its stronger-than-default exception-safety guarantees only
when element copy operations do not throw exceptions.

If the standard doubling strategy is used to implement a dynamic array,
element copying is necessary in connection with each reorganization. A real-
ization based on piecewise-allocated piles, described in [12], is less vulnera-
ble to exceptions thrown during element copying since reorganizations are
known not to move elements. In such a realization the only operations that
invoke the copy constructor of an element (O3) in an irreversible manner
are insert() and erase(), which insert elements into or remove elements
from the middle of a sequence. In a sense these operations are unnatural
for a dynamic array; if these operations were not allowed, a dynamic array
could provide the strong guarantee of exception safety without much loss in
efficiency.

To get a dynamic array that provides the strong guarantee of excep-
tion safety for all the operations specified in the C++ standard—including
insert() and erase()—we have to revert to a less efficient realization. We
just use an extra level of indirection: instead of storing elements in an array
we store pointers to elements. Now it is easy to insert or remove elements
since pointer operations cannot fail and pointer moves are reversible. In case
of single-element and multiple-element insert(), the construction of new
elements is to be tried before any changes are made to the data structure.
If element construction fails or if memory allocation fails when reserving
additional space for pointers, already constructed elements are destroyed
and the temporary array used for storing pointers to elements is released.
Single-element and multiple-element erase() are even simpler since element
destructors are assumed not to throw exceptions and pointer operations are
known not to throw exceptions. Copy construction and copy assignment are
equally easy since a rollback only involves element destruction and memory
disposal.

The above-mentioned implementation strategy relying on an extra level of
indirection works for all the current realizations of a dynamic array avail-

164

8 Jyrki Katajainen

able in the CPH STL (see [12, 13]). The main drawback is that element
access becomes a constant factor slower. Especially, the usage of pointers
may deteriorate the cache behaviour since neighbouring elements are not
necessarily stored close to each others in memory.

It should be emphasized that, due to a recent addition made to the C++
standard [3, Clause 23.2.4], neither of the realizations discussed in this sec-
tion cannot fully replace the standard realization relying on doubling (and
halving) since the standard requires that the elements of a vector are be
to stored contiguously. It seems that with this requirement many vector
operations cannot be realized in a strongly exception-safe manner with rea-
sonable efficiency.

5. Ordered dictionaries

In C++ terminology, an ordered dictionary is called an associative container.
Each realization of the C++ standard library should provide four kinds of
associative containers: set (elements atomic, no duplicates allowed), map
(elements pairs, no duplicates allowed, ordering based on keys), multiset
(element atomic, duplicates allowed), and multimap (elements pairs, dupli-
cates allowed, ordering based on keys). In the design of the C++ standard
library, the main reason to support these four different variants is to al-
low a direct modification of satellite data, instead of forcing users to invoke
erase() followed by insert() to make such an update. This feature is
frequently employed in applications.

An economic way of implementing associative containers is to provide
a single search-tree core and then implement set, map, multiset, and
multimap using the same core—as done in the SGI STL [17]. At the cur-
rent point, the same strategy is followed in the CPH STL even though in
later releases we may go away from this strategy to enhance the efficiency of
multiset and multimap [4]. For the sake of simplicity, let us only consider
the set class which takes four template parameters:

template <

typename E ,
typename C = std::less<E>,
typename A = std::allocator<E>,
typename S = cphstl::red black tree<E , C, A>

>

class set;

Now the user-supplied operations that can throw exceptions include oper-
ations O1, O2, O3, O4, and O5 defined in Section 3.

Of the search trees available at the CPH STL [4, 9, 14], only red-black
trees fulfil the strict complexity requirements stated in the C++ standard.
Therefore, we will restrict our discussion on them. Since a red-black tree
stores the elements in nodes, one element per node, it is relatively easy to
make most member functions exception safe. Operations O1 and O4 can be

165

Making operations on standard-library containers strongly exception safe 9

handled using technique T2 as was done for a dynamic array. Operation O2

can be handled using technique T1 by allocating a new node before making
any changes to the representation. Similarly, operation O3 can be tried
before making any changes to the old representation. Luckily, the failure in
element comparisons (O5) can also be handled smoothly since the algorithms
used for the manipulation of a red-black tree can be partitioned into two
phases: a search phase and a rebalancing phase. Element comparisons are
only necessary in the search phase and these are done before any changes
are made to the representation. All structural changes are done in the
rebalancing phase which only involves pointer manipulation and therefore
cannot fail.

As pointed out in [18], even if for single-element insert() it is easy to pro-
vide the strong guarantee of exception safety, for multiple-element insert()
it is more difficult to provide that guarantee. The reason is that for a näıve
implementation based on repeated insertions there is no simple way of re-
versing the previous successful insertions if an element construction (O3)
or an element comparison (O5) fails. For red-black trees, in general, one
cannot use erase() to reverse the effect of insert(). As the outcome the
container would contain the same elements, but the pointer structure can
be much different from that it was before the operations. In many cases for
practical purposes such an implementation strategy may be sufficient, but
in a strict sense it does not provide the strong guarantee of exception safety.

To provide exception safety in the strong sense, the first thing to do is
to perform all node allocations (O2) and element constructions (O3) before
any updates in the data structure. To keep track of the nodes, a tempo-
rary dynamic array is used for storing pointers to the nodes constructed.
This can still be seen as an application of technique T1. The log is main-
tained for each multiple-element insert() separately. As the outcome of the
node-construction phase, we have calculated the number of elements being
inserted (if the given sequence of elements only provides input iterators, this
calculation would not have been possible without any temporary storage).
When the number of elements being inserted is known, this can used to
allocate space for the log. The space reserved for the log is again freed after
completing the multiple-element insert() operation under consideration.

Let n denote the number of elements stored in a red-black tree and m
the number of elements being inserted as calculated before. Since each
insertion on a red-black tree can cause Θ(lg n) structural changes, for a
näıve implementation the size of the log could be proportional to m lg n. Of
course, it is undesirable to have a log of that size. For example, if m = n,
the size of the log could be Θ(n lg n), whereas the data structure itself only
uses Θ(n) space.

To get a more compact representation of the log, we have to look at the
structural changes made by a single insert() a bit more carefully. There
are four types of changes: new nodes are created, nodes are recoloured,
left rotations are performed, and right rotations are performed. All these
operations are reversible. As observed in [20] (see also [6]), if insertions

166

10 Jyrki Katajainen

are implemented in a bottom-up manner, each insertion performs at most
O(lg n) colour changes followed by at most two rotations. In the log, the
ith change can be recorded as a pair (ti, ci), where ti gives the type of the
structural change and ci describes the change itself. If ti indicates a creation
of a new node, ci can just be a pointer to that node; if ti indicates a sequence
of colour changes, ci can be the number of levels at which recolourings
are necessary (starting from the newly created node); and if ti indicates a
rotation, ci can be a pointer to the node where the rotation was done. For
instance, the reversal of a left rotation is a right rotation at the parent,
so the operation is fully reversible when the location of this single node is
known. This compaction would reduce the size of the log to O(m) words.

6. Conclusions

We showed how operations on dynamic arrays (C++ standard-library vector)
and ordered dictionary (C++ standard-library set, multiset, map, and
multimap) can be adjusted to provide the strong guarantee of exception
safety. The techniques used could be applied to all standard-library con-
tainers in order to make all operations on them strongly exception safe! Of
course, this cannot be achieved without an overhead, but the performance
loss caused by the provision of the strong guarantee does not appear to be
as high as insinuated in earlier papers. For example, both in [1] and [16],
the technique of making a complete copy is offered as an option to achieve
the strong guarantee of exception safety. The running time of operations
using this approach becomes linear, which is prohibitive for most applica-
tions. In sharp contrast our solutions only cause the running time to increase
by a constant factor compared to an implementation providing the default
guarantee.

The combination of two or more strongly exception-safe operations is not
necessarily strongly exception safe (even though the combined operation can
be made strongly exception safe using the technique introduced in the proof
of Theorem 1). For example, if an element is removed from a dynamic array
and inserted into an ordered dictionary, the second operation could fail and
the element deleted would be lost even if both operations were strongly ex-
ception safe. To simplify the development of exception-safe code, it would
be relevant to provide general transaction support in a general-purpose pro-
gramming language. Such support would be useful in other contexts as well,
e.g. when dealing with concurrency. In the programming-language com-
munity the issue has been studied under the name “software transactional
memory”, and there exists systems that can provide transaction support in
C++ (see the references mentioned in [21]). It would be interesting to known
how efficiently such a general system can provide the strong guarantee of
exception safety compared to the direct approach discussed in this paper.

Testing, whether one’s code is exception safe or not, is tedious. So far we
have done this by visual code inspection. To simplify the testing of error-

167

Making operations on standard-library containers strongly exception safe 11

handling code, we would need a tool which provides automatic support for
reasoning about exception safety. The automated testing framework for
verifying exception safety discussed in [1] could be used as a starting point
when developing such a tool.

Acknowledgements

I thank Amr Elmasry and Peter Bro Miltersen for discussions that clarified
my thoughts on exception safety, and Torben Mogensen for communicating
me the idea of nested try-catch blocks used in the proof of the fundamental
theorem on exception safety.

References

[1] D. Abrahams. Exception-safety in generic components: Lessons learned from speci-
fying exception-safety for the C++ standard library. Selected Papers from the Interna-
tional Seminar on Generic Programming, Lecture Notes in Computer Science 1766.
Springer-Verlag (2000), 69–79.

[2] D. Abrahams and G. Colvin. Making the C++ standard library exception safe. C++
Standards Committee Papers WG21/N1086R1. Worldwide Web document avail-
able at http://www.open-std.org/jtc1/sc22/wg21/docs/papers/ (1997).

[3] British Standards Institute. The C++ Standard: Incorporating Technical Corrigen-
dum 1, BS ISO/IEC 14882:2003, 2nd Edition. John Wiley and Sons, Ltd. (2003).

[4] H. Brönnimann and J. Katajainen. Efficiency of various forms of red-black trees.
CPH STL Report 2006-2. Worldwide Web document available at http://cphstl.dk
(2006).

[5] T. Cargill. Exception handling: A false sense of security. C++ Report 6,9 (1994).
[6] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,

2nd Edition. The MIT Press (2001).
[7] Digital Mars. D programming language. Website accessible at http://www.

digitalmars.com (1999–2007).
[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley (1995).
[9] J.G. Hansen and A.K. Henriksen. The (multi)?(map|set) of the Copenhagen STL.

CPH STL Report 2001-6. Worldwide Web document available at http://cphstl.dk
(2001).

[10] J. Katajainen. A meldable, iterator-valid priority queue. CPH STL Report 2005-1.
Worldwide Web document available at http://cphstl.dk (2005–2006).

[11] J. Katajainen. Project proposal: Associative containers with strong guarantees CPH
STL Report 2007-4. Worldwide Web document available at http://cphstl.dk
(2007).

[12] J. Katajainen and B.B. Mortensen. Experiences with the design and implementation
of space-efficient deques. Proceedings of the 5th Workshop on Algorithm Engineering,
Lecture Notes in Computer Science 2141. Springer-Verlag (2001), 39–50.

[13] M.D. Kristensen. Vector implementation for the CPH STL. CPH STL Report 2004-
2. Worldwide Web document available at http://cphstl.dk (2004).

[14] S. Lynge. Implementing the AVL-trees for the CPH STL. CPH STL Report 2004-1.
Worldwide Web document available at http://cphstl.dk (2004).

[15] Performance Engineering Laboratory, University of Copenhagen. The CPH STL.
Website accessible at http://cphstl.dk (2000–2007).

[16] J.W. Reeves. Using exceptions effectively: Part I—Coping with exceptions. World-
wide Web document available at http://www.bleading-edge.com/Publications/C+
+Report/v9603/Article2a.htm (1998).

168

12 Jyrki Katajainen

[17] Silicon Graphics, Inc. Standard template library programmer’s guide. Website acces-
sible at http://www.sgi.com/tech/stl (1993–2006).

[18] B. Stroustrup. Appendix E: Standard-library exception safety. The C++ Programming
Language, Special Edition. Addison-Wesley (2000).

[19] B. Stroustrup. Exception safety: Concepts and techniques. Advances in Exception
Handling Techniques, Lecture Notes in Computer Science 2022. Springer-Verlag
(2001), 60–76.

[20] R.E. Tarjan. Updating a balanced search tree in O(1) rotations. Information Pro-
cessing Letters 16 (1983), 253–257.

[21] Wikipedia. Software transactional memory. Worldwide Web document available at
http://en.wikipedia.org (2007).

169

170

Author Index

Abe, Tatsuya, 40
Andersen, Jesper, 28
Andersen, John E., 1
Artho, Cyrille, 93, 150
Axelsen, Holger Bock, 56

Banda, Gourinath, 85
Ben-Amram, Amir M., 146
Birkedal, Lars, 68
Bohr, Nina, 68

Gallagher, John, 85
Glück, Robert, 56

Hagiya, Masami, 18, 93, 150
Hamana, Makoto, 61
Hansen, René Rydhof, 28, 110, 137
Hu, Zhenjiang, 61

Ikarashi, Dai, 18

Jones, Neil D., 110

Katajainen, Jyrki, 158
Kristiansen, Lars, 126

Larsen, Ken Friis, 94

Lawall, Julia, 28, 137
Lee, Chin Soon, 146
Leungwattanakit, Watcharin, 93, 150

Matsuda, Kazutaka, 61
Matsuzaki, Kiminori, 76
Mihashi, Izumi, 47
Mogensen, Torben, 13
Morihata, Akimasa, 7
Muller, Gilles, 28

Nakano, Keisuke, 61, 116
Nielsen, Morten Ib, 94
Nishizawa, Koki, 18

Okada, Masaki, 3

Padioleau, Yoann, 28

Shibayama, Etsuya, 93, 150
Simonsen, Jakob Grue, 94
Stuart, Henrik, 137

Takeichi, Masato, 4, 61
Tanabe, Yoshinori, 18, 93, 150

Yokoyama, Tetsuo, 56

171

After Work
Sunset at Roskilde Fjord

172

	00 A Front Page.pdf
	Forside0707.doc

	00 B Blank.pdf
	00 C preface-toc.pdf
	00 D preface-photo-2007.pdf
	00 E Blank.pdf
	01 Andersen-speech-(5).pdf
	02 Okada-speech.pdf
	03 Masato Takeichi.pdf
	04 Akimasa Morihata.pdf
	05 Torben Ægidius Mogensen.pdf
	06 Masami Hagiya.pdf
	07 Julia Lawall.pdf
	08 Tatsuya Abe.pdf
	09 Izumi Mihashi.pdf
	10 Holger Bock Axelsen.pdf
	11 Kazutaka Matsuda.pdf
	12 Nina Bohr.pdf
	13 Kiminori Matsuzaki.pdf
	14 John Gallagher.pdf
	15 Cyrille Artho II.pdf
	16 Morten Ib Nielsen.pdf
	17 Neil Jones.pdf
	18 Keisuke Nakano.pdf
	19 Kristiansen-slides.pdf
	20 Henrik Stuart 2.pdf
	21 Amir ben-Amram.pdf
	22 Watcharin Leungwattanakit.pdf
	23 Jyrki Katajainen.pdf
	AA E Blank.pdf
	BB index.pdf
	CC Endphoto.pdf

