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Abstract

This note introduces an extension to the 0-1 knapsack cover inequalities to be used in a branch-
and-cut algorithm for the elementary shortest path problemwith a capacity constraint. The exten-
sion leads to a set of valid inequalities that takes both the fractional usage of the edges and the
capacity into account and are denoted the flow extended 0-1 knapsack cover inequalities. Compu-
tational experiments indicate that although these new inequalities improve the lower bound they
also results in more fractional LP solutions which results in a larger number of branch nodes and
eventually slower running times.

Keywords: Branch-and-Cut, Elementary Shortest Path Problem with Resource Constraints, Capac-
itated Vehicle Routing Problem

1 Introduction

This note introduces the flow extended 0-1 knapsack cover inequalities for the elementary shortest
path problem with a capacity constraints (ESPPCC). This is complimentary work to the branch-and-
cut (BAC) algorithm presented by Jepsen et al. (2008). Hence, for further literature review and details
on the BAC algorithm we refer to the above paper. In this note we focus solely on the flow extended
0-1 knapsack cover inequalities.

The ESPPCC can be stated as: Given an undirected graphG(V,E) with nodesV and edgesE, a
costce associated to each edgee∈ E, a loaddi associated to each nodei ∈V, an upper limit on the
amount of accumulated loadQ, a source nodes∈V, and a target nodet ∈V; find the path betweens
andt with minimum cost satisfying that the sum of the loads from the visited nodes is not more than
Q.

In the following, variableyi indicate the use of nodei ∈ V \ {s, t}, and variablexe indicate the
use of edgee∈ E wheree(i, j) denotes the end nodesi and j of e. When describing the model some
shorthand notation will be used. For the set of edgesT let

x(T) = ∑
e∈T

xe
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Furthermore, for a set of nodesS⊆V let the set of edgesδ(S) = {e(i, j) : i ∈ S∧ j ∈V \S} denote the
edges betweenSandV \Swith δ({i}) = δ(i) for a nodei ∈V. Also, for a set of nodesS let

y(S) = ∑
i∈S

y(i)

and letE(S) = {e(i, j) : i ∈ S∧ j ∈ S} be the set of edges between the nodes inS.

The mathematical model of ESPPCC is then:

min ∑
e∈E

cexe (1)

s.t. x(δ(s)) = 1 (2)

x(δ(t)) = 1 (3)

∑
e∈δ(i)

xe = 2yi ∀i ∈V \{s, t} (4)

∑
i∈V

diyi ≤Q (5)

x(E(S))≤ y(S)−yi ∀i ∈ S,∀S⊆V, |S| ≥ 2 (6)

xe∈ {0,1} ∀e∈ E (7)

yi ∈ {0,1} ∀i ∈V \{s, t} (8)

The objective function (1) minimizes the overall edge cost.Constraints (2) and (3) ensure that the
path starts in the source node and and ends in the target. Constraints (4) map thex andy variables.
Constraint (5) imposes the capacity. Constraints (6) are the generalized subtour elimination constraints
and impose connectivity of the path. Finally, constraints (7) and (8) bounds the variables indicating
the use of edges and nodes.

This model has|E|+ |V−2| variables and an exponential number of constraints due to (6). In a
BAC algorithm these constraints will be disregarded and separated when violated to ensure feasibility.
The separation of the generalized subtour elimination constraints (6) can be done by solvingV − 2
s− t-minimum cut problems, see Jepsen et al. (2008), Wolsey (1998).

2 Combining Flow and Capacity

The 0-1 knapsack cover inequality for a set of nodesS⊆V where∑i∈Sdi > Q are given as:

y(S) ≤ |S|−1 (9)

The inequality state that if a set of nodes violates the capacity then not all nodes in the set can be
visited by the path. The separation problem is a minimization version of the well known 0-1 knapsack
problem, see Kellerer et al. (2004), Wolsey (1998).

By exploiting the fact that sinceyi ≤ 1 for all i ∈ V \{s, t} then the flow through a set of nodes
S can be less than 2 in an LP solution. Hence, scaling the right-hand-side of (9) with half the flow
x(δ(S)) yields the flow extended 0-1 knapsack cover inequality

y(S)≤
1
2
(|S|−1)x(δ(S)) (10)

2



Jepsen and Spoorendonk

Whenx(δ(S)) < 2 there are cases where the inequality (10) is violated and the normal 0-1 knapsack
cover inequality (9) is not.

For now it is unknown whether an efficient separation routineexists for (10), therefor a heuristic
separation routine is presented. The separation problem isto find a coverS, i.e., ∑i∈Sdi > Q, where
x(δ(S)) < 2 in an induced graphG′ containing only nodes and edges with fractional value in theLP
solution. It is assumed that the graph is connected, e.g., there are no violated generalized subtour
elimination constraints (6). Noting that, the number of edges inδ(S) for a connected setS is generally
smaller than in a disconnected set we will only consider connected sets of nodes. By performing a
breadth-first search rooted at each of the nodes in the induced graph the connected candidate sets are
build iteratively and stored if a violation of (10) occurs. The heuristic is summarized in the pseudocode
below where the induced graphG′ is taken as input and the setS⋆ violating (10) is returned. IfS= /0
then no violating inequalities were found.

SEPARATE-FLOW-EXTENDED-0-1-KNAPSACK-COVERS(G′)

1 S⋆← /0
2 for each nodei ∈G′

3 do S← /0
4 Π← BFS(G′, i)
5 for each nodej ∈Π
6 do S← S∪ j
7 if ∑i∈Sdi > Q∧x(δ(S)) < 2
8 do S⋆← S
9 return S⋆

The capacity ofS, i.e.,∑i∈Sdi , can be calculated using accumulation during the executionof the for
loop in line 5 while the calculation ofx(δ(S)) in line 7 takesO(E) time in worst case. The BFS in line
4 performs the breath first search and returns a listΠ of reachable nodes sorted such that the nodes
closest to the start node are first. Each iteration of thefor loop starting at line 2 takesO(V + E) for
the BFS, see Cormen et al. (2001) andO(VE) for calculatingx(δ(S)) for all nodes. This adds up to a
worst case running time ofO(V2E). In practice the number of nodes and edges in the induced graph is
expected to much smaller than in the original graph so the running time is expected to be much faster.

3 Computational Results

The computational experiments are run on 10 instances basedon the CVRP instances fromhttp:
//www.branchandcut.org. The instances are divided in series A, B, E, and F according to the
authors. The ESPPCC instances are pricing problems gathered when solving the CVRP with column
generation, see Fukasawa et al. (2006), Jepsen et al. (2007), i.e., dual values have been subtracted
from the edge costs resulting in instances with negative edge weights. All experiments are run on an
AMD(R) Athlon(R) XP2400+ 2.0 GHz processor with 512 MB memory.

For the computational experiments three different cut separation settings are used:

• GSEC only separates the generalized subtour inequalities constraints (6).

• 0-1 KPC as above adding the 0-1 knapsack cover inequalities (9).

• FLOW as above adding the flow extended knapsack cover inequalities (10).
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Table 1 is a comparison of the number of branch nodes (B&B) androot lower bounds (root) with the
different cut separation settings. In the right most column(solution) the optimal solution is reported.

GSEC 0-1 KPC FLOW

Name B&B root B&B root B&B root solution

A-n32-k5-i35 51 -70.56 25 -70.56 37 -62.24 -12.18
A-n53-k7-i10 51 -82.17 23 -82.17 31 -81.91 -63.45
A-n53-k7-i36 307 -63.86 185 -63.86 203 -58.90 -22.68

B-n31-k5-i17 291 -29.55 141 -29.55 143 -27.76 -6.00
B-n50-k8-i28 207 -115.62 265 -115.62 163 -100.08 -10.12

E-n22-k4-i10 99 -27.29 45 -27.29 51 -26.24 0.00
E-n23-k3-i27 133 -37.86 49 -37.86 43 -36.59 0.00
E-n76-k10-i50 443 -35.68 191 -35.68 231 -31.92 -10.29

F-n45-k4-i53 59 -34.84 93 -34.84 191 -34.37 -13.30
F-n72-k4-i81 53 -14.61 55 -14.53 55 -14.53 -14.04

Table 1: Comparison of the number of branch nodes and lower bounds.

Setting0-1 KPC where the 0-1 knapsack cover inequalities (9) are added doesnot improve the
root lower bound compared to the basicGSEC setting. However, in almost all cases the smallest
branch tree is obtained. This indicates an improvement of the lower bounds deeper in the branch
tree where more node variablesy are integer valued due to branching and fixing, hence raisingthe
left-hand-side of (9) resulting in more violated inequalities.

The separation of the flow extended 0-1 knapsack cover inequalities (10) given by theFLOW
setting results in an improvement of the lower bounds with a 10.2 % on average when compared to
the 0-1 KPC setting. However, the number of branch nodes increases withan average of 7.1 %.
The reason is that the LP solutions become more fractional with theFLOW setting compared to the
0-1 KPC setting. Figure 1 on the following page illustrates the fractional solution for the two cut
separation settings.
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0-1 KPC setting giving 22 nodes and 22 edges. FLOW setting giving 25 nodes and 35 edges.

Figure 1:Root Solution of A-n32-k5-i35 using the0-1 KPC and theFLOW settings. Only nodes and edges
with non-zero flow are shown. The square nodes are the end nodes.

Table 2 is a comparison of the running times with different cut separation settings. The time (time
(s)) is given in seconds for each of the three cut separation settings.
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GSEC 0-1 KPC FLOW
Name time (s) time (s) time (s)

A-n32-k5-i35 5.09 3.92 9.72
A-n53-k7-i10 24.74 20.27 27.90
A-n53-k7-i36 161.02 138.46 215.33

B-n31-k5-i17 12.10 16.13 21.38
B-n50-k8-i28 240.73 389.62 600.02

E-n22-k4-i10 1.43 1.25 1.86
E-n23-k3-i27 2.52 1.35 1.76
E-n76-k10-i50 1082.61 702.97 1365.85

F-n45-k4-i53 17.79 25.22 54.90
F-n72-k4-i81 52.55 52.98 53.34

Best 4 6 0

Table 2:Time comparison of the BAC algorithm.

The two cut separation settingsGSEC and0-1 KPC compete to be the most successful. It appears
that the specifications of the instances matters, since the best running times are split between the B
and F instances for theGSEC setting and the A and E instances for the0-1 KPC setting. For the
B and F instances this suggest that a lot ofNP -Hard 0-1 knapsack problems are solve for no gain.
On the other hand the running times of the A and E instances indicates that the 0-1 knapsack cover
inequalities (9) are worth the effort.

The running times clearly indicates that theFLOW setting is the least successful. The more frac-
tional LP solutions leads to more branch nodes hence the BAC algorithm converges slower after
adding the flow extended 0-1 knapsack cover inequalities (10).

4 Concluding Remarks

In this note we have introduced the flow extended 0-1 knapsackcover inequalities (10) for the ESP-
PCC and performed computational experiments using the BAC algorithm presented in the companion
paper by Jepsen et al. (2008).

The flow extended 0-1 knapsack cover inequalities did improve the root lower bound when com-
pared to the cut separation settings using only generalizedsubtour elimination constraints and 0-1
knapsack cover inequalities. However, the LP solutions appeared to become much more fractional
after adding the flow extended 0-1 knapsack cover inequalities which lead to an increase of branch
nodes. It is possible that the flow extended 0-1 knapsack cover inequalities would be favored more
by other branching rules, e.g., considering an integral flowout of a set of nodes rather than branching
on fractional variables. That is, the flow extended 0-1 knapsack cover inequalities appears to have a
negative effect on the convergence of the BAC algorithm which should be taken into account in any
future implementations.
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