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Abstract

This note introduces an extension to the 0-1 knapsack cogquilities to be used in a branch-
and-cut algorithm for the elementary shortest path problétma capacity constraint. The exten-
sion leads to a set of valid inequalities that takes both taetibnal usage of the edges and the
capacity into account and are denoted the flow extended @&idatk cover inequalities. Compu-
tational experiments indicate that although these newuakties improve the lower bound they
also results in more fractional LP solutions which resuita iarger number of branch nodes and
eventually slower running times.

Keywords: Branch-and-Cut, Elementary Shortest Path Problem witloires Constraints, Capac-
itated Vehicle Routing Problem

1 Introduction

This note introduces the flow extended 0-1 knapsack coveualies for the elementary shortest
path problem with a capacity constraints (ESPPCC). Thisisptimentary work to the branch-and-
cut (BAC) algorithm presented by Jepsen et al. (2008). Hdocéurther literature review and details
on the BAC algorithm we refer to the above paper. In this nadacus solely on the flow extended
0-1 knapsack cover inequalities.

The ESPPCC can be stated as: Given an undirected @api) with nodesv and edge£, a
costce associated to each edge E, a loadd; associated to each node V, an upper limit on the
amount of accumulated lod@, a source nods eV, and a target nodec V; find the path betwees
andt with minimum cost satisfying that the sum of the loads from ¥isited nodes is not more than
Q.

In the following, variabley; indicate the use of nodec V \ {s,t}, and variablex indicate the
use of edgee € E wheree(i, j) denotes the end nodeand j of e. When describing the model some
shorthand notation will be used. For the set of edDést

x(T) :e;)(e
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Furthermore, for a set of nod&s_ V let the set of edgeX(S) = {e(i, j) : i € SA j € V \ S} denote the
edges betweeSandV \ Swith d({i}) = &(i) for a node € V. Also, for a set of nodeS et

(S = Igsy(i)

and letE(S) = {e(i, ]) :i € SA j € S} be the set of edges between the nodeS in
The mathematical model of ESPPCC is then:

min Z;cexe (1)
s.t.x(8(s)) =1 2
X(9(t)) =1 3)
Xe =2y VieV\{st} (4)

<8l
2 dyi<Q (5)
X(E(S) <y(9) - Vie SYSCV,|§>2 (6)
Xe € {0,1} vec E (7)
yi € {0,1} VieV\{st} (8)

The objective function (1) minimizes the overall edge cdsbonstraints (2) and (3) ensure that the
path starts in the source node and and ends in the targettr@aots (4) map the andy variables.
Constraint (5) imposes the capacity. Constraints (6) @g#meralized subtour elimination constraints
and impose connectivity of the path. Finally, constraifffisgnd (8) bounds the variables indicating
the use of edges and nodes.

This model hasE| + |V — 2| variables and an exponential number of constraints due)tdr{éa
BAC algorithm these constraints will be disregarded anésepd when violated to ensure feasibility.
The separation of the generalized subtour elimination tcaimss (6) can be done by solving— 2
s—t-minimum cut problems, see Jepsen et al. (2008), Wolse\8)199

2 Combining Flow and Capacity
The 0-1 knapsack cover inequality for a set of no8€sV wherey;.sd; > Q are given as:
¥y <|§-1 9)

The inequality state that if a set of nodes violates the dgp#ten not all nodes in the set can be
visited by the path. The separation problem is a minimizaesirsion of the well known 0-1 knapsack
problem, see Kellerer et al. (2004), Wolsey (1998).

By exploiting the fact that sincg < 1 for alli € V \ {s,t} then the flow through a set of nodes
Scan be less than 2 in an LP solution. Hence, scaling the highti-side of (9) with half the flow
X(8(9)) yields the flow extended 0-1 knapsack cover inequality

VS < 518~ 1xX(E() 10)



Jepsen and Spoorendonk

Whenx(3(S)) < 2 there are cases where the inequality (10) is violated amddhmal 0-1 knapsack
cover inequality (9) is not.

For now it is unknown whether an efficient separation rouérists for (10), therefor a heuristic
separation routine is presented. The separation problémfisd a coverS, i.e., yi.sth > Q, where
X(8(S)) < 2 in an induced grapl®’ containing only nodes and edges with fractional value inLtRe
solution. It is assumed that the graph is connected, e.gre thre no violated generalized subtour
elimination constraints (6). Noting that, the number ofesl;d(S) for a connected s&is generally
smaller than in a disconnected set we will only consider eoted sets of nodes. By performing a
breadth-first search rooted at each of the nodes in the iddyegh the connected candidate sets are
build iteratively and stored if a violation of (10) occursh@heuristic is summarized in the pseudocode
below where the induced grai is taken as input and the st violating (10) is returned. 15=0
then no violating inequalities were found.

SEPARATE-FLOW-EXTENDED-0-1-KNAPSACK-COVERS(G')

1 S0

2 for each node e G’
3 doS«+ 0

4 N — BFS(G,i)

5 for each nodg € N

6 do S— SUj

7 if Sicstdi > QAX(d(9)) < 2
8 doS S

9 return S

The capacity of§ i.e., ¥icsdi, can be calculated using accumulation during the execufidhe for

loop in line 5 while the calculation of(3(S)) in line 7 takeO(E) time in worst case. The BFS in line

4 performs the breath first search and returns dlistf reachable nodes sorted such that the nodes
closest to the start node are first. Each iteration offtindoop starting at line 2 take®(V + E) for

the BFS, see Cormen et al. (2001) anQ/ E) for calculatingx(d(S)) for all nodes. This adds up to a
worst case running time @(V2E). In practice the number of nodes and edges in the induced ggap
expected to much smaller than in the original graph so theingrtime is expected to be much faster.

3 Computational Results

The computational experiments are run on 10 instances lmaséte CVRP instances froimt t p:

/ I www. br anchandcut . or g. The instances are divided in series A, B, E, and F accordirget
authors. The ESPPCC instances are pricing problems gdthwren solving the CVRP with column
generation, see Fukasawa et al. (2006), Jepsen et al. (4087dual values have been subtracted
from the edge costs resulting in instances with negative edgghts. All experiments are run on an
AMD(R) Athlon(R) XP2400+ 2.0 GHz processor with 512 MB memor

For the computational experiments three different cut isgjoen settings are used:
e GSEConly separates the generalized subtour inequalities r@onist (6).
e 0-1 KPCas above adding the 0-1 knapsack cover inequalities (9).

e FLOWas above adding the flow extended knapsack cover ineqeglit(.
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Table 1 is a comparison of the number of branch nodes (B&B)raatlower bounds (root) with the
different cut separation settings. In the right most colysuiution) the optimal solution is reported.

GSEC 0-1 KPC FLOW
Name B&B root B&B root B&B root solution

A-n32-k5-i35 51 -70.56 25 -70.56 37 -62.24 -12.18
A-n53-k7-i10 51 -82.17 23  -82.17 31 -81.91 -63.45
A-n53-k7-i36 307 -63.86 185 -63.86 203  -58.90 -22.68

B-n31-k5-i17 291  -29.55 141 -29.55 143  -27.76 -6.00
B-n50-k8-i28 207 -115.62 265 -115.62 163 -100.08 -10.12

E-n22-k4-i10 99  -27.29 45  -27.29 51 -26.24 0.00
E-n23-k3-i27 133 -37.86 49  -37.86 43  -36.59 0.00
E-n76-k10-i50 443 -35.68 191 -3568 231 -31.92 -10.29

F-n45-k4-i53 59 -34.84 93 -34.84 191 -34.37 -13.30
F-n72-k4-i81 53 -14.61 55 -14.53 55  -14.53 -14.04

Table 1: Comparison of the number of branch nodes and lowands

Setting0- 1 KPCwhere the 0-1 knapsack cover inequalities (9) are added rimiémprove the
root lower bound compared to the baSi8EC setting. However, in almost all cases the smallest
branch tree is obtained. This indicates an improvement @fidiver bounds deeper in the branch
tree where more node variablgsare integer valued due to branching and fixing, hence rattiag
left-hand-side of (9) resulting in more violated inequat

The separation of the flow extended 0-1 knapsack cover ifiégaa(10) given by theFLOW
setting results in an improvement of the lower bounds witld2 26 on average when compared to
the0- 1 KPC setting. However, the number of branch nodes increasesawithverage of 7.1 %.
The reason is that the LP solutions become more fractiondl the FLONsetting compared to the

0-1 KPCsetting. Figure 1 on the following page illustrates the tica@l solution for the two cut
separation settings.
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0-1 KPCsetting giving 22 nodes and 22 edges. FLOWsetting giving 25 nodes and 35 edges.

Figure 1:Root Solution of A-n32-k5-i35 using the- 1 KPC and theFLOWsettings. Only nodes and edges
with non-zero flow are shown. The square nodes are the enédnode

Table 2 is a comparison of the running times with differerttsgparation settings. The time (time
(s)) is given in seconds for each of the three cut separatitiimgs.
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GSEC 0-1 KPC FLOW
Name time (s) time (s) time (s)

A-n32-k5-i35 5.09 3.92 9.72
A-n53-k7-i10 24.74 20.27 27.90
A-n53-k7-i36 161.02 13846  215.33

B-n31-k5-i17 12.10 16.13 21.38
B-n50-k8-i28 240.73 389.62 600.02
E-n22-k4-i10 1.43 1.25 1.86
E-n23-k3-i27 2.52 1.35 1.76
E-n76-k10-i50 1082.61 702.97 1365.85
F-n45-k4-i53 17.79 25.22 54.90
F-n72-k4-i81 52.55 52.98 53.34
Best 4 6 0

Table 2:Time comparison of the BAC algorithm.

The two cut separation settin@SECand0- 1 KPCcompete to be the most successful. It appears
that the specifications of the instances matters, sincedberbnning times are split between the B
and F instances for th@SEC setting and the A and E instances for thhel KPC setting. For the
B and F instances this suggest that a lon@f-Hard 0-1 knapsack problems are solve for no gain.
On the other hand the running times of the A and E instancasatas$ that the 0-1 knapsack cover
inequalities (9) are worth the effort.

The running times clearly indicates that theOWsetting is the least successful. The more frac-
tional LP solutions leads to more branch nodes hence the Bé&itom converges slower after
adding the flow extended 0-1 knapsack cover inequalities (10

4 Concluding Remarks

In this note we have introduced the flow extended 0-1 knapsaekr inequalities (10) for the ESP-
PCC and performed computational experiments using the Bg@ithm presented in the companion
paper by Jepsen et al. (2008).

The flow extended 0-1 knapsack cover inequalities did imgtbe root lower bound when com-
pared to the cut separation settings using only generambtbur elimination constraints and 0-1
knapsack cover inequalities. However, the LP solutionseapmd to become much more fractional
after adding the flow extended 0-1 knapsack cover inegeslitihich lead to an increase of branch
nodes. It is possible that the flow extended 0-1 knapsackrdongqualities would be favored more
by other branching rules, e.g., considering an integral 8atnof a set of nodes rather than branching
on fractional variables. That is, the flow extended 0-1 kaak<over inequalities appears to have a

negative effect on the convergence of the BAC algorithm tvisicould be taken into account in any
future implementations.

References

Cormen, T. H., C. E. Leiserson, R. L. Rivest, C. Stein. 20afroduction to AlgorithmsAddison.



Jepsen and Spoorendonk

106(3) 491-511.

Fukasawa, R., H. Longo, J. Lysgaard, M. Poggi de Aragao, ®sRE. Uchoa, R.F. Werneck. 2006. Ro-
bust branch-and-cut-and-price for the capacitated vehaziting problem Mathematical Programming

Jepsen, M., B. Petersen, S. Spoorendonk. 2008. A branclotanalgorithm for the elementary short-
est path problem with a capacity constraint. Tech. Rep. 8Ekpartment of Computer Science
(DIKU),University of Copenhagen, Denmark, Universitetdgen 1, DK-2100 Copenhagen &, Denmark.

Jepsen, M., B. Petersen, S. Spoorendonk, D. Pisinger. 280Bset-row inequalities applied to the vehicle
routing problem with time windowsOperations Researatoi:10.1287/opre.1070.0449.

Kellerer, H., U. Pferschy, D. Pisinger. 200dnapsack ProblemsSpringer, Berlin, Germany.
Wolsey, L. A. 1998.Integer ProgrammingJohn Wiley & Sons, Inc.



	forside0802.pdf
	forside0802.doc

	flowknapsack.pdf

