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Preface

A large part of research is a search through a maze built of existing literature. Numerous
journal papers, conference proceedings, technical reports and books are read in order to figure
out what has been done and what has (probably) not been done within a certain research
field. Occasionally one thinks of a new idea and a new search begins in the relevant part of
the maze to answer the question: Did someone have the same or a similar idea? Working on
the idea might reveal that it is a bad idea — a blind alley in the maze — or it may just seem
like the path goes on forever and eventually one decides to go back.

At some point, one reaches a level of understanding of the research field which makes it
easier to separate good ideas from bad ideas. In a sense, one rises above the maze. The
maze is still there, but it is much easier to find a successful path. This thesis contains two
major research fields; nesting problems and Steiner tree problems. In the analogy of the
research maze, I managed to rise above the maze for some parts of these research fields
and I stayed firmly on the ground for other parts. Many blind or seemingly endless alleys
were attempted. One of these seemingly endless (and maybe blind) alleys deserves special
mentioning. In cooperation with Marco E. Lübbecke1, Martin Zachariasen and Pawel Winter,
it was attempted to solve the “rectilinear Steiner tree problem with obstacles” using integer
programming and column generation. A major implementation was done by Marco and I
which included an increasing number of advanced strategies in order to improve the results.
We never reached the end of the alley, but Marco deserves my thanks for his great efforts,
especially since I never had the pleasure of co-authoring any other papers with him.

Also, a special thank you to each of my co-authors in this thesis. They are, in alphabetical
order, Marcus Brazil, Jens Egeblad, Stinus Lindgreen, Allan Odgaard, Doreen A. Thomas,
Pawel Winter, Christian Wulff-Nilsen, and Martin Zachariasen. In particular, I am very grate-
ful for the guidance of my supervisor, Martin, and for the very inspiring lunch conversations
with Marcus in the Lygon Street cafés in Melbourne — especially since this was in a time
where every alley seemed to be blind.

Benny Kjær Nielsen
November, 2007

1Technische Universität Berlin, Institut für Mathematik
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Introduction

Introduction
Two major subjects are treated in this thesis; nesting problems and Steiner tree problems.
In short, nesting problems are packing problems in which the utilization of some material (or
space) is to be maximized, and Steiner tree problems are tree construction problems in which
the length of a tree connecting a set of points/vertices is to be minimized. These subjects
are introduced separately in this thesis since they have little in common, but both nesting
problems and Steiner tree problems are, in general, NP-hard. Exceptions do exist, e.g.,
the design of microprocessors involves packing submodules while minimizing wiring length.
Each of the introductions is followed by four papers on the subject. The following is a short
overview of the two subjects and the related papers.

The emphasis in this thesis is on efficient algorithms and problem specific heuristics which
can help solve hard optimization problems. The nesting papers are mainly concerned with
variations of a translation algorithm which has proven to be a very useful geometric tool
for solving nesting problems. Given some placement of the shapes (represented as polygons
in 2D), the translation algorithm solves the problem of moving a shape in an axis-aligned
direction to a position which minimizes its overlap with all other shapes.

The first paper by Egeblad et al. [4]A introduces the translation algorithm and shows that
state-of-the-art results can be obtained when it is applied to two-dimensional packing prob-
lems with irregular shapes. They also generalize the translation algorithm to efficiently handle
three-dimensional packing problems, but they give no proof of its correctness. Nielsen [5]B

showed that the translation algorithm can be modified to handle packing problems in which
the solution is going to be repeated (like a tiling), and Egeblad et al. [3]C formally proved
the correctness of the translation algorithm in three dimensions while also generalizing it to
an arbitrary number of dimensions. Finally, Nielsen et al. [6]D described how the translation
algorithm can be implemented efficiently for translations in non-axis-aligned directions. This
is then utilized for a novel approach for solving nesting problems in which free orientation of
the shapes is allowed. The introduction to nesting problems contains additional material on
the subject of measures of overlap. An extended version of this material is under preparation
for a future nesting related paper. The introduction also discusses other geometric techniques
used for solving nesting problems in the existing literature.

In all of the nesting papers, the same meta-heuristic technique is applied (guided local
search). This works well, but it does not mean that it is the only possible choice. It emphasizes
the fact that all of the papers are concerned with algorithms and heuristics which are closely
related to the geometric challenges of the problem. The subject of optimizing the parameters
of a sophisticated meta-heuristic has not been addressed in any of the papers. This is partly
motivated by the belief that the choice of meta-heuristic is much less important than the
development of good problem specific algorithms and heuristics.

The Steiner tree related papers treat more diverse problems. The first paper by Nielsen
et al. [7]E is the only paper in this thesis which does not contain any computational ex-
periments. The paper is concerned with the location of so-called Steiner points in uniform
orientation metrics. In short, the problem is to construct a minimum length tree connecting a
set of points in the plane with the restriction that all edges adhere to a finite set of uniformly
distributed orientations. The results in this and other papers were later used to implement
an exact algorithm for solving very large problem instances, see Nielsen et al. [8]. The length
of such minimum length Steiner trees change when the given set of points is rotated. Finding
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the optimal orientation of a given set of points is the subject of the paper by Brazil et al. [2]F.
The motivation of studying Steiner trees in uniform orientation metrics is an application in
VLSI design, i.e., the design of integrated circuits for which the routing wires are restricted
to some small set of orientations.

Another application of Steiner trees can be found in the area of computational biology.
Given a set of species, the problem is to construct a tree describing their evolutionary history.
This is most often described as a phylogenetic tree. It is not necessarily a Steiner tree
problem, because the exact problem definition depends on the model of evolution assumed.
Nevertheless, it can be stated as a Steiner tree problem. Based on DNA sequences from
the species, Nielsen et al. [9]G assume that the problem can be modeled as the problem of
finding a Steiner tree in a very large graph. The nodes of the graph represent all possible
DNA sequences up to some fixed length and the edges represent possible mutations of DNA
sequences. The problem is then to find the shortest tree connecting the nodes in the graph
which represent the species. Brazil et al. [1]H approach the problem in a completely different
manner, but they also end up with a Steiner tree problem. Based on some measure of pairwise
distances between the species, a transformation is done to represent the species by points in
a high-dimensional Euclidean space. The problem is then to find a minimum length Steiner
tree connecting all of the points.

Eight papers are included in the thesis; four nesting related papers and four Steiner tree
related papers. Six of these papers are either published or in press and two papers have been
submitted recently. The papers have been adapted to follow a uniform style for this thesis.
This includes changes to the size of figures, the layout of tables and the style of the references.
Some obvious textual corrections have also been done such as corrections of spelling errors.
Note that whenever a paper included in this thesis is cited, the index number of the citation
is followed by a superscript capital letter, e.g., [3]C. This can be used to identify the paper
in the table of contents.
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Nesting Problems

Nesting Problems
1 Introduction

1.1 The problem

Cutting and packing problems are classic subjects in computer science research — literally
thousands of papers [31] have been written on this subject. The problems range from the
relatively simple one-dimensional cutting stock problem to high-dimensional packing problems
involving arbitrary shapes. The word “simple” should be taken with a grain of salt since even
the one-dimensional cutting stock problem is NP-hard. Applications of the cutting stock
problem can be found in, e.g., the paper industry. In this case, stock items could be rolls
of paper with identical lengths. Given a number of orders of various lengths, the problem
is then to decide how to cut pieces from the stock items matching the lengths of the orders.
Most often the optimization goal is to minimize the number of stock items needed to satisfy
all orders, i.e., the goal is to minimize the waste (or maximize the utilization) of the stock
items. A small example is given in Figure 1a.

There are numerous variations of the cutting stock problem, e.g., the lengths of the stock
items might not be identical or some maximum of different cutting patterns is desired. These
variations are relatively simple when compared to generalizations of the cutting stock prob-
lem to higher dimensions. In higher dimensions, geometry is often the most important part
of the problem description. Simple problems only involve rectangular items to be cut from
a rectangular material. Most often the items are then also required to being oriented such
that their sides are parallel with the borders of the material (see Figure 1b). Geometri-
cally, problems with non-rectangular shaped items are much harder to handle. The word
“irregular” is often used to described such shapes although this word does not really mean
non-rectangular. A regular polygon is a polygon with congruent angles and sides with identi-
cal lengths; this definition does not even include rectangles (except squares). Problems which
allow free orientation of shapes are much harder to handle even if the shapes are rectangular.

Applications in two dimensions include cutting problems in the textile, animal hide, glass
and metal industries. In three dimensions, applications include packing problems related
to container shipping and truck loading. Note that the terminology suddenly changed from
cutting to packing. This is because three dimensional problems most often involve solid
objects which are to be packed within the boundaries of some container. Although the
wording changed, the problem is the same — instead of maximizing the utilization of some
material, one maximizes the utilization of space. That said, three dimensional problems in
the field of rapid prototyping [33] does actually involve the utilization of a material. Two-
dimensional problems with irregular shapes are often referred to as nesting problems and this
is the term used in this introduction. This emphasizes the fact that we are dealing with
irregular shapes.

A very general definition of a nesting problem can be stated as follows.

Nesting Decision Problem. Given a set of shapes S and a container C in d-dimensional
space, determine whether the shapes can be placed (possibly including orientation) such that
there is no overlap between the shapes and they are all inside the container.

The container can be thought of as a shape which is inside-out.
We also define the following optimization problem.
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Figure 1: (a) A one-dimensional cutting stock problem and a solution. (b) A solution to a two-
dimensional cutting stock problem with rectangular items and a single piece of rectangular
material. (c) A solution to a two-dimensional cutting stock problem with non-rectangular
shapes (a nesting problem).
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Nesting Problems

Strip Nesting Problem. Given a set of shapes S and a rectangular axis-aligned paral-
lelepiped C in d-dimensional space, determine the smallest length of C for which the shapes
can be placed (possibly including orientation) such that there is no overlap between the shapes
and they are all inside the parallelepiped.

Here, the length of the container is its size with respect to the x-coordinate. The other
coordinates are assumed to be fixed. The two-dimensional variant of this problem is the one
that is most often addressed in the literature when the subject is on nesting irregular shapes.
This is partly due to the fact that this problem matches the problem most often faced in the
textile industry where the “infinite” strip is a roll of fabric. The glass industry and parts of the
metal industry are closer to a bin-packing variant of the problem, but this has received little
attention in the existing literature. The one-dimensional variant of the strip nesting problem
is trivially solved. The same is not true for the nesting decision problem since we have not
yet specified any restrictions on the shape of a container. It could be several disconnected
parts and thus be equivalent to the one-dimensional cutting stock problem.

The quality of a given non-overlapping placement is measured by the utilization of the
volume (area in 2D) of the container, i.e., if ν(S) denotes the volume of a shape S and this
is generalized for sets such that ν(S) =

∑
S∈S ν(S) then a non-overlapping placement has a

utilization (of the container) of ν(S)/ν(C).
In this introduction, the focus is primarily on two-dimensional nesting problems. Nev-

ertheless, most of the discussions in this introduction and the solution methods presented
in the following four papers can be generalized to three and even more dimensions. This is
described in detail in the paper by Egeblad et al. [13]C and in a subsection of the paper by
Nielsen et al. [27]D.

1.2 The shapes

In two dimensions, a shape can be described as a set of points in the plane (R2). It is
convenient to require that this set of points is an open set, i.e., every point in the set must
be an interior point. Arbitrary shapes can be very difficult to handle and some kind of
approximation is often used. Imamichi and Nagamochi [20] discuss an interesting approach
in which they approximate two-dimensional shapes by sets of circles and three-dimensional
shapes by sets of spheres. A large number of circles or spheres may be necessary, but they
should then be easier to handle than the original shapes. This is a quite unique approach
to the problem of approximating shapes and most papers in the literature about the nesting
problem simply use polygons to approximate shapes (illustrated in Figure 2). This is also
the case in this introduction and for the following papers on the nesting problem — with a
generalization to higher-dimensional variants of polygons (polytopes) in the paper by Egeblad
et al. [13]C.

Some solution methods for the nesting problem can handle more complicated shapes than
polygons, for example, Burke et al. [5] can handle polygons with circular arcs and Stoyan
et al. [29] construct objects from a set of primary objects which includes circles.

1.3 The solution methods

The definition of the nesting decision problem, as it is presented above, is easy to understand,
but it lacked a lot of details. Even when the shapes have been defined more precisely, it is not
defined what is meant by “no overlap” or “inside the container”. It can be defined formally
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Figure 2: Any shape can be approximated by a polygon. In this case, the approximation is
very crude. Using a sufficient number of edges, an approximation can be arbitrarily close to
the original shape.

by, e.g., stating that no point must be inside more than one shape (no overlap) and that no
point must be inside some shape and outside the container shape (inside the container), but
this does not really improve the intuition of the problem. Humans are quite comfortable with
the notions of “no overlap” and “inside the container” — even with very complicated shapes
because this is a natural part of the world we live in.

Most people handle three-dimensional packing problems on a daily basis. For example,
when we try to pack groceries in as few bags as possible or when we try to pack all of the
groceries into a refrigerator. The problem also arises when packing as much as possible into
a suitcase or when packing suitcases into the trunk of a car.

In general, humans are very good at solving these problems. Intuitively, we rotate items
to improve packings and we easily handle restrictions, such as not turning an open milk
carton upside down. We consider the consequences of gravity and we can make sure that
fragile objects are not put below heavy objects. Faced with difficult packing problems we
try different heuristic approaches, e.g., placing similar objects close to each other. We can
even squeeze or bend soft objects to make more room for other objects. The list of problem
variations, we encounter, is endless, and so is the list of (heuristic) techniques we apply to
solve them.

Computer scientists often find inspiration in human problem solving. For nesting problems
this is especially interesting, because these problems (in two and three dimensions) have
very physical counter parts in the real world. For example, in the textile industry, manual
nesting is done by having a set of stencils representing the shapes on a large table. The
goal is then to find a non-overlapping placement of the stencils with as little waste of fabric
as possible. Most humans would probably use one of two techniques (or a combination);
placing one stencil at a time without ever introducing overlap or place all stencils randomly
with overlap and then move (and swap) them until a non-overlapping solution has been
found. In the computer science literature these approaches are represented by the bottom-
left placement heuristics [12, 16, 28] and the heuristics which focus on minimizing overlap by
moving one shape or swapping two shapes until a non-overlapping solution is found [4, 14, 32].
Other approaches exist though, e.g., solution methods in which all shapes are moved in each
iteration [17, 21] — a less likely approach to be taken by a human.

Humans are also very good at handling three dimensional shapes, but they loose the
ability to handle intermediate overlapping placements since the physical world does not allow
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such a degree of freedom. A computer program is not concerned with the physical world and
some heuristics minimizing overlap can actually be generalized to higher dimensions [13]C.
In other words, it is hard for a computer program to compete with the packing skills of a
human in three dimensions, but interestingly this changes completely when moving beyond
three dimensions. Such objects have no obvious representation in the physical world and it
is even hard for a human to grasp what, e.g., a four dimensional shape is. Packing boxes in
four dimensions is an almost impossible task for a human, while (at least for some solution
methods) it is just another coordinate to handle for a computer program.

Still, in two and three dimensions, the nesting problem is a very intuitive and visual
problem. It has many applications and numerous commercial nesting applications exist —
especially for the two-dimensional case. Unfortunately, benchmarks for these applications do
not exist and it is an open question how well the solution methods in the literature compare to
the commercial applications. It is known though that some solution methods in the literature,
e.g., the one by Heckmann and Lengauer [19], are now used in commercial nesting libraries.

The above is a short introduction to the subject of nesting problems. In the remaining
part of this introduction, the focus is mainly on the geometrical challenges faced when trying
to solve these problems. In Section 2, various techniques are discussed with references to
some of the solution methods using these techniques. All four papers about the nesting
problem in this thesis are based on the same geometric technique; a translation algorithm
which can move a shape to a position with “less” overlap in a given direction. In all four
papers, area (or volume) is used to measure overlap. Other measures are possible, but these
are not discussed in any of the papers. This is an important subject for future research and
a discussion of overlap measures is therefore given in Section 3, especially in relation to the
translation algorithm.

Heuristic and meta-heuristic techniques used for the nesting problem which are not re-
lated to the geometric aspect of the problem are not discussed in this introduction. For a
discussion of complete solution methods for the two-dimensional nesting problem, we refer
to the introductions of the papers by Egeblad et al. [14]A, Burke et al. [5], and Gomes and
Oliveira [17]. For three-dimensional nesting problems, we refer to Egeblad et al. [13]C and
Stoyan et al. [30].

The computational experiments by Egeblad et al. [14]A have been repeated with the latest
version of our nesting program Nest2D. The new results are compared with the old results
in Section 4. They are also compared with some of the latest results from the literature.

2 Geometric Techniques

One of the greatest challenges for nesting solution methods is to handle the geometric aspects
efficiently. This can, e.g., be in the form of efficient methods for determining if and how much
two shapes overlap, but the specific needs depend on the heuristic approach to the problem.
In this section we present the relatively few techniques used in the existing literature to handle
the problems related to the geometry of nesting problems.

2.1 No-Fit-Polygons

Most solution methods can be put into one of two groups. Either it is a legal placement
method or it is a relaxed placement method [14]A. The end result of any solution method
should be a non-overlapping placement of the shapes. The difference between the two groups
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2. Geometric Techniques

Reference point

Q

P

Figure 3: Two polygons, P and Q, and their corresponding no-fit-polygon (dark area). Note
the reference point of P in its lower left corner. Copies of P are drawn with dashed lines at
various positions. When the reference point is inside the no-fit-polygon, the polygons overlap
and when it is outside the no-fit-polygon, the polygons do not overlap. Given a no-fit-polygon,
a test for intersection can be reduced to a point-in-“polygon” test.

is whether overlap is allowed in intermediate steps of the solution process — in other words,
whether the non-overlap constraint is relaxed.

The majority of solution methods which construct placements without allowing overlap
are based on the geometric concept of a Minkowski sum. At least this is the term most often
used for it in the mathematical literature. It is also known as hodograph, configuration space,
convolution and envelope, but in the nesting literature it is primarily known as the no-fit-
polygon (Adamowicz and Albano [1]). In the following, no-fit-polygon (NFP) is preferred
even though it is not always a polygon with respect to any standard definitions. Given two
polygons P and Q and a reference point on P , an NFP describes the set of locations of the
reference point for which P and Q overlaps. A simple example with two non-convex polygons
is shown in Figure 3.

Given two convex polygons in R2 with n and m edges, the NFP can be computed in
time O(n + m) [18]. Given two star-shaped polygons, an algorithm exists which can solve
it in time O(nm log(nm)) [23]. In the general case of two non-convex polygons, the NFP
is not necessarily a polygon since it can include singular points and other degeneracies. Its
complexity is bounded by O(n2m2) and this bound is tight [7]. Construction algorithms are,
e.g., described by Dean et al. [8], Burke et al. [6], and Bennell and Song [3]. No running
times for these algorithms are stated, but worst case running time cannot be better than the
worst case size of the output. These papers also contain comprehensive surveys of existing
techniques for the construction of NFPs.

The NFP is often used in solution methods which use some placement heuristic to place
the shapes one by one. These methods differ with regard to the order of the shapes placed and
where the shapes are placed. The order of the shapes can then be changed using some meta-
heuristic method [5, 16, 24]. Another usage of NFPs is described in the following subsection.
Usually, NFPs are preprocessed for all pairs of polygons and if some set of rotation angles
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is allowed then any combinations of these are also needed. This is a problem for problem
instances with a large number of different shapes. Burke et al. [6] give an efficient algorithm
for computing NFPs and one of their examples has 75 shapes where multiples of 90◦ rotations
are allowed. Even though they can compute 634 NFPs per second for this problem instance,
it takes 141.9 seconds to do it.

2.2 Compaction and separation

Li and Milenkovic [23] were the first to use linear programming to solve the nesting problem.
Based on a non-overlapping placement, a set of translation vectors for the polygons are
computed using linear programming such that the new placement of the polygons is more
compact than before — without introducing any overlap. After some number of iterations
(claimed to be less than 5 in practice [23]), a solution to the translational compaction problem
is found. This problem is defined as a motion planning problem for which the goal is to
minimize the area of the container. The container has fixed left, top and bottom borders while
the right border is allowed to move inwards (thereby decreasing the area of the container).
The polygons are moved simultaneously towards their new positions and they are not allowed
to overlap each other or the boundary of the container during this movement.

The linear programs are based on NFPs for all pairs of polygons. A very similar prob-
lem, the translational separation problem, is solved almost identically. For this problem it
is assumed that some overlap exists in a given placement and the goal is to find a set of
translations vectors which eliminates all overlaps while minimizing the increase of the area of
the container. Li and Milenkovic [23] use compaction and separation for a database oriented
solution method. Using a database of known nestings of good quality, an initial placement
is created which can contain overlaps. A separation algorithm is then used to eliminate the
overlaps and subsequently compaction is used to improve this solution.

Bennell and Dowsland [2] and Gomes and Oliveira [17] use compaction and separation
combined with a bottom-left placement heuristic. Results from the latter are included in
the comparison of results in Section 4 and they show that this strategy can produce very
good results. The results reported by Imamichi et al. [21] in a technical report are even
better. They use a separation algorithm based on nonlinear programming combined with an
algorithm which swaps two polygons such that their overlap with the other polygons is as
small as possible (with respect to penetration depth, see Section 3.2).

All of the above methods make extensive use of preprocessed NFPs.

2.3 Translations

The four papers about nesting problems in this thesis are all related to an alternative to the
use of NFPs; overlap minimizing translations. The measure of overlap is area (or volume in
higher dimensions), but as noted in the introduction there are alternatives to this measure
which are described in Section 3. For now the focus is on the area measure only.

The basic idea is to solve the following problem:

Horizontal Translation Problem. Given a polygon Q with a fixed position, a fixed polygo-
nal container C, and a polygon P with fixed y-coordinate, find an offset x′ for P such that the
(area of) overlap between P and Q is minimized (and P is within the bounds of the container
C).
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2. Geometric Techniques

Figure 4: A very general definition of polygons is allowed. The above can be interpreted as
one polygon and it can be described by a set of cycles of edges. Necessary requirements are
that the cycles do not intersect each other (but they can touch) and that each cycle has no
self-intersections.

Very few assumptions about the polygons P and Q are needed. They can, e.g., be in
multiple separate parts and contain holes as illustrated in Figure 4 — thus they are not
really polygons in the standard sense (similar to no-fit-polygons). When solving the nesting
problem, a translation algorithm solving the problem above can be used to repeatedly move
polygons to positions which reduces the total sum of overlap. In this setting, the polygon Q
in the problem definition is actually the union of all other polygons than P .

A detailed description of an algorithm which can solve the translation problem and a proof
of correctness is given by Egeblad et al. [14]A. The following is a short informal description
of this algorithm.

First, assume that the container is a rectangle and thus we are looking for a value x′ within
an interval [a, b]. This makes the algorithm a bit simpler to state and understand. The basic
idea of the translation algorithm is to initially place P to the left of Q and then move it
through Q while iteratively maintaining a function which describes the overlap of P and Q
with respect to the horizontal offset of P . This is similar to standard sweep-line algorithms,
but we are sweeping with a polygon instead of a line. Initially the overlap function is simply
0 corresponding to no overlap.

The efficiency of the algorithm is based on the following fact; the area of the overlap of
two polygons can be computed as a sum of signed areas based on pairs of edges, i.e., one does
not need to explicitly compute the intersection of polygons. This is presented and proven by
Egeblad et al. [14]A as the Intersection Area Theorem. Now, finding the minimum area of
overlap under translation, is a question of computing how much each pair of edges, one from
P and one from Q, contribute to the overlap while translating the edge from P . This can
be expressed as a simple function which — in the worst case — is a quadratic polynomial.
Initially such a function is always 0. When the two edges start intersecting, the function is
growing quadratically and when they stop intersecting it changes to a linear function. The
algorithm generates a breakpoint whenever this function changes. Each breakpoint contains
information about the distance traveled so far for the edge from P and a function describing
the change in the contribution to the overlap function. The various states of the area function
of two edges is illustrated in Figure 5. Note that some areas contribute negatively to the
overlap function. This depends on the orientation of the edges involved [14]A.

All of the breakpoints are then sorted according to the distances and the final step is to
iterate through all of the breakpoints while adding the functions. At each breakpoint the
overlap function is analyzed in order to find the minimum overlap within the interval [a, b].
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Figure 5: Two edges, f and g, where f is from the moving polygon and g is from a static
polygon. Each drawing illustrates the (signed) area contributed to the sum specified in
the Intersection Area Theorem [14]A. The sign depends on the orientation of the edges.
The double arrows illustrate the translation distance. (a) When f is to the left of g, the
contribution is 0. (b-c) When f and g intersects, the contribution is the area of a triangle.
As f moves to the right, this area grows quadratically. (d) When f is to the right of g the
contribution is the area of a quadrilateral. As f moves to the right, this area grows linearly.
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The functions needed to make the translation algorithm work for the area measure are
presented by Egeblad et al. [14]A. It is generalized to higher dimensions by Egeblad et al. [13]C;
here the functions are polynomials of a degree matching the dimension of the problem.

If P has n edges and Q has m edges then the running time of the algorithm is O(nm log nm).
Faster variants are possible if P and Q are convex, but for the solution method described for
the nesting problem, Q is not going to be convex even if all of the polygons to be nested are
convex. This is due to the fact that Q is the union of all other polygons than P .

Naturally, an algorithm which can solve this horizontal translation problem can also be
changed to solve the symmetric vertical translation problem. A non-trivial generalization to
arbitrary directions is given by Nielsen et al. [27]D.

Unlike other solution methods, no preprocessing (such as NFPs) is necessary for a solution
method using the translation algorithm. This is a major advantage if handling a large number
of unique shapes and/or a number of rotation angles.

It is interesting to note that there exists an algorithm to solve the more general problem
of finding any position (not just in a given direction) for a given polygon which minimizes its
overlap with other polygons (Mount et al. [25]) Given polygons with n and m edges, the worst
case running time is O((mn)2). Their approach is based on an arrangement of line segments
which is used to compute a two-dimensional area of overlap function which is very similar
to the functions described above. Mount et al. [25] did not use this to minimize overlap,
but rather to maximize overlap. Nevertheless, their approach works for both problems. No
solution methods for the nesting problem have used this algorithm and it is an open question
if it would be an efficient approach. It would probably require that the arrangement of line
segments used could somehow be updated dynamically.

2.4 Other techniques

For the sake of completeness, it should be mentioned that other approaches to nesting prob-
lems exist which do not utilize any of the geometric techniques described above. Heckmann
and Lengauer [19] compute the area of intersections between pairs of polygons directly —
after moving or swapping polygons and they even considered using raster models (a pixel
representation) of the shapes instead for polygons, but experiments showed that betters so-
lutions were found using the polygons. Rasterization has also been applied to the container,
i.e., only a grid of possible placements are considered. In recent work, Burke et al. [5] use a
discrete set of horizontal positions while the vertical positions are continuous.

Techniques which also work in three dimensions include Φ-functions [29] and the point
space metric [9]. The Φ-functions are used to describe the state of a pair of shapes, i.e,
whether they overlap, touch or are separated. They are also defined for more general shapes
than polygons/polyhedra. The theory of Φ-functions is used to pack convex polyhedra by
Stoyan et al. [30]. The point space metric is a measure of the compactness of unused space
in a container. This is used to guide a sequential placement of shapes [10].

The best results obtained for nesting problems in the literature are currently based on the
translation technique or on compaction/separation (and thus indirectly NFPs).

3 Overlap measures

The straightforward measure of an overlap is area (volume in 3D) and this has been used
successfully by Egeblad et al. [13, 14]A,C to solve nesting problems in both 2D and 3D. As
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Figure 6: The area of the overlap of two polygons is often a good indication of how far one of
the polygons must be translated in order to remove the overlap, but it does not always work.
Here two polygons are placed such that the area of overlap between them is very small, but
it does not indicate that it is close to a non-overlapping placement. The dashed line indicates
the minimum distance required to translate the triangle to a position with no overlap (the
penetration depth).

previously mentioned this was done by employing a succession of 1D (axis oriented) trans-
lations. For some shapes, however, this strategy can be problematic since the goal is to not
only minimize overlap, but to eliminate overlap completely. Positions of a pair of shapes
with a small area of overlap may not represent a good intermediate step in the search of a
non-overlapping placement as illustrated in Figure 6.

In this case a better measure of the overlap is the so-called penetration depth, which is the
minimum distance in any direction a given shape needs to be translated in order to eliminate
the overlap with another shape (also illustrated in Figure 6). The principal disadvantage of
using penetration depth is that it cannot be computed as efficiently as the area of overlap.

Part of the exercise in this section is to try to formalize the notion of an overlap measure.
This is a subject which has received very little attention in the nesting literature; including
the papers in this thesis.

In standard mathematical terms, a measure is a non-negative real function µ defined on
a set S with two requirements. First, the empty set must have measure zero, i.e., µ(∅) = 0.
Second, given any countable collection of pairwise disjoint sets S1, . . . , Sn in S, the measure
of the union of the sets must be equal to the sum of the measures of each Si, i.e., µ(∪n

i=1Si) =∑n
i=1 µ(Si).
The above definition of a measure includes the trivial measure which simply assigns the

value 0 to any set. Clearly, the trivial measure is not useful when measuring the size of an
overlap and this is one of the reasons that the following definition of an overlap measure is
different than the standard definition of a measure. Furthermore, even though the second
requirement above is true for most of the overlap measures described in this paper, it is not
a necessary requirement to obtain a useful measure of an overlap.

Definition 1 (Overlap Measure). An overlap measure is a real-valued function µ which given
any pair of polygons, P and Q, has the following properties:

• µ(P,Q) = 0 if int(P ∩Q) is empty and

• µ(P,Q) > 0 if int(P ∩Q) is non-empty,

where int(P ∩Q) is the interior of the intersection of P ∩Q.
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3. Overlap measures

Note that in order to obtain an intuitive measure for the size of an intersection of two
polygons, one needs to consider the interior of the intersection. This is necessary to ensure
that an overlap measure does not take on a positive value for polygons which are only touching.
Also note that the overlap measure is based on two polygons instead of simply being a function
that could be applied to the result of the intersection of the two polygons (more precisely,
the closure of the interior of the intersection which is also a polygon). This distinction is
important when considering penetration depth measures.

A range of overlap measures are discussed in the following subsections. Each overlap
measure has its own strengths and weaknesses and typically there is a trade-off between how
well an overlap measure describes intersections and how fast it can be computed. In general,
we assume that the application of each overlap measure is the minimization of overlap used
for solving the nesting problem as described by Egeblad et al. [14]A, i.e., the overlap measure
is used to determine the best position (minimum overlap with respect to the overlap measure)
for a given polygon when given a fixed translation direction. Without loss of generality, we
continue to assume that this is a horizontal direction, i.e., only the x-coordinate of the position
of the polygon is to be changed.

Some overlap measures have the property that they can be calculated by simply con-
sidering pairs of edges of the given polygons. Such a decomposition is useful for efficiently
computing these overlap measures as briefly discussed in Section 2.3. This is very similar
to the standard computation of the area of a polygon or the volume of a convex polytope
(Lawrence [22]). A formal definition of such overlap measures can be given as follows.

Definition 2 (Decomposable Overlap Measure). A decomposable overlap measure µ is an
overlap measure which given any pair of polygons, P and Q, with sets of edges F and G, for
which there exists a real-valued function µ′ such that

µ(P,Q) =
∑

f∈F,g∈G

µ′(f, g). (1)

Most of the overlap measures discussed in this section are illustrated in Figure 7 and vari-
ous special cases useful for illustrating strengths and weaknesses are shown in Figure 8. Based
on these special cases, a comparison of the overlap measures is also presented in Section 3.5.

3.1 Indicator Measure

In some cases, the only desired information is whether two shapes overlap or, in the context
of translation problems, when they overlap. For this purpose a very simple indicator measure
is needed which is 1 when the shapes are overlapping and 0 when they are not overlapping.
Any other overlap measure can be used to provide an indicator measure by mapping any
positive value of the overlap measure to 1. We return to this subject in some of the following
subsections with respect to both the use of an indicator measure and efficient algorithms to
obtain it.

3.2 Penetration Depth Measures

Given two overlapping polygons, the penetration depth is the minimum translation distance
(in any direction) required in order to separate them. An example is given in Figure 7a.
In the context of nesting problems and the overlap minimization approach described in the
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Height

Boundary width

(a) (b)

Figure 7: Examples of various overlap measures for a pair of polygons. (a) The length of
the shortest double arrow is the penetration depth and the length of the longer horizontal
double arrow is the more restricted horizontal (1D) penetration depth. (b) The size of the
area with a dark grey color is the area measure of the overlap. The length of the bold lines
is the boundary measure of the overlap. The height of the overlap is the height measure of
the overlap. The sum of lengths of all vertical projections of boundary line segments is the
boundary width measure of the overlap (the sum of the lengths of the horizontal intervals in
the drawing).

introduction, the penetration depth is a very intuitive measure of how bad a given overlap
is. It can even handle difficult overlap situations such as the one shown in Figure 8g. More
formally, penetration depth can be stated as follows.

Definition 3 (Penetration Depth). Given two polygons P and Q in R2, the penetration depth
is the smallest possible length of a vector v ∈ R2 such that P v∩Q = ∅ where P v is P translated
by v.

Given two convex polygons with n and m edges, the penetration depth can be calculated
in time O(log(n+m)) [11]. In general, the main problem with the penetration depth measure
is that it is not easily computed. The standard approach for computing the penetration
depth of two polygons P and Q is to first compute their NFP in a preprocessing phase. The
penetration depth is then equal to the shortest distance from the reference point of P to a
boundary point of the NFP. For non-convex polygons the situation is more complicated as
illustrated by some of the construction algorithms mentioned in Section 2.1, but the number
of edges in the NFP is naturally an upper bound, i.e., O(n2m2).

In this and the following subsections we describe a range of alternatives to the penetration
depth measure. They can all be computed more efficiently than penetration depth and the
algorithms described do not rely on any preprocessing. The disadvantage of these alternative
overlap measures is that they can fail to describe some overlaps appropriately, especially when
given highly non-convex shapes. The descriptions of the alternative overlap measures include
a comparison with penetration depth. We say that an overlap measure underestimates an
overlap whenever it has a relatively smaller value than the penetration depth of the overlap.
Similarly, we say that it overestimates an overlap whenever it has a relatively larger value.
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ε

ε

ε
ε

(a) (b) (c) (d)

ε
ε

(e) (f) (g) (h)

Figure 8: Examples of overlapping polygons. (a) A simple overlap handled well by most
overlap measures. (b)-(f) If ε is small then various overlap measures might underestimate
or overestimate the overlap. (g) This kind of overlap is only handled well by penetration
depth measures. (h) The middle rectangle has a constant sum of penetration depths with the
neighboring rectangles for any short translation in any direction.
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0
1

0

Figure 9: A triangle translated through a polygon. The reference point of the triangle is the
bottom-left corner. Two functions are illustrated: The indicator function which is always 0
or 1 corresponding to whether the triangle overlaps with the polygon and the 1D penetration
depth function which can easily be derived from the indicator function.

These definitions are of an intuitive nature and quite informal, but it is still useful when
discussing the advantages and disadvantages of each overlap measure.

A closely related alternative to penetration depth is a simplification in which one only
considers the penetration depth in a given direction (1D penetration depth). In Figure 7a this
is illustrated with a horizontal direction. Using the NFP this can quite easily be calculated.
This is the overlap measure used by Umetani et al. [32] to solve the nesting problem in 2D;
they repeatedly perform axis-aligned translations with 1D penetration depth as the objective
value. Further below, it is shown how this can be also be done without using NFPs.

An important feature of 1D penetration depth is that it never underestimates an over-
lap. The downside is that it can easily overestimate an overlap. For example, a horizontal
penetration depth measure overestimates the overlap in Figures 8c and 8f.

Not all overlap measures are decomposable. In particular, penetration depth measures
are not decomposable. No formal proof is given here, but consider the example in Figure 8g;
the horizontal penetration depth of the triangle depends on edges that are not involved in
the overlap itself. It seems highly unlikely that the penetration depth can be expressed as a
sum of (signed) values based on pairs of edges.

The information needed to compute 1D penetration depth is a by-product of the com-
putation of any other overlap measure. What is basically needed is best described by the
indicator measure since a penetration depth measure is only concerned about the distance to
a non-overlapping position. In Figure 9, the value of the indicator measure during a horizontal
translation is illustrated. Given that this information is described by a piece-wise constant (0
or 1) function I, a piece-wise linear function, h, describing the horizontal penetration depth
can easily be constructed (also shown in Figure 9).

h(x) = min
x′∈R,I(x′)=0

|x− x′|. (2)

In practice, the penetration depth function can easily be computed by adding a second
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phase to the standard translation algorithm. Assume that P is the polygon to be translated
and that the other polygons are Q1, . . . , Qk. Note that until now we have just used Q to
denote the union of these polygons, but here we need to handle the static polygons more
carefully. In the first phase, some indicator measure is used to generate the usual breakpoints
for each Qi. In the second phase, a new set of breakpoints is generated based on when overlap
begins and ends with each of these polygons. When an overlap begins, the 1D penetration
depth increases linearly. When an overlap ends, the horizontal penetration depth changes to
0 and in retrospect one knows that half way between the start and the end of the overlap,
the function should have changed from linearly increasing to linearly decreasing.

Now all there is left to do, is to sort the breakpoints from the second phase (although the
sorting can almost be avoided) and find the minimum of the sum of the penetration depth
functions. This is done exactly as it is done for the area measure. Clearly, the running time
is not worse than what was obtained for the decomposable overlap measures and the number
of phase two breakpoints is less than or equal to the number of phase one breakpoints.

Since any overlap measure can be used as an indicator measure, it would be sensible to
choose an overlap measure which is easy to compute. This is where some of the less promising
overlap measures described in the following subsections suddenly become very interesting. In
this context, it does not matter how bad a given overlap measure behaves in a comparison
with other overlap measures with respect to over- and underestimation. All that matters is
how easily it can be computed.

A viable alternative to the approach described here is to use the previously described
NFPs to determine when overlaps begin and end when translating in a given direction [32].
Depending on NFPs can be a problem though, e.g., if one wants to handle free orientation of
shapes or generalize the solution method to higher dimensions.

3.3 Area Measure

A natural measure of the overlap of two polygons is the area of the overlap as illustrated in
Figure 7b. In contrast to 1D penetration depth, the area measure never overestimates an
overlap, but it can easily underestimate it. This is illustrated in Figure 8g, but Figures 8b-d
are also very problematic when ε is small. The main advantage is that the area measure can
be computed very efficiently as already discussed in Section 2.3.

For the sake of completion, it should be mentioned that projections of the area measure
are also overlap measures, e.g., the height of an overlap as illustrated in Figure 7b. It is
an open question how these overlap measures can be calculated efficiently for non-convex
polygons, but with respect to convex polygons these projections are essentially identical to
the projections described in the following section for which an efficient algorithm do exist.

3.4 Boundary Measures

Instead of measuring the area of an overlap, one could measure the boundary of the overlap.
This would simply be the sum of the lengths of the boundary edges of the overlap as illustrated
in Figure 7b. Interesting generalizations to higher dimensions are also possible, e.g., in 3D
one could measure the area of the faces of the overlap or measure the lengths of the edges of
the faces of the overlap. One could even count the end-points of the edges of the overlap (in
any dimension). This last option is a promising indicator measure although one should be
careful with respect to precision issues with floating point computations.
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We use the term boundary measure to describe the lengths of the boundary edges of an
overlap. The boundary measure can both overestimate and underestimate an overlap. In
Figures 8b and g, measuring the boundary of the overlap is a serious underestimation while it
is a serious overestimation in Figures 8e and 8f. It could even be seen as a slight overestimation
in Figures 8c and 8d.

The boundary measure is also a decomposable overlap measure and it is somewhat easier
to understand the translation algorithm when using this measure. We do not provide all
details here, but the boundary measure is part of the implementation described in Section 4.
It is illustrated in Figure 10a-d for two simple triangles. Whether the length of a line segment
is added or subtracted from the objective function depends on its orientation. In the figure,
this is illustrated with bold (added) and dashed (subtracted) line styles. As required, the
overlap function in the end becomes 0 because all lines are added and subtracted once. In
the intermediate steps the signed sum of lengths is exactly the length of the boundary of the
intersection. Preliminary computational experiments show that the boundary measure works
as expected, but they do not indicate that it (in general) provides better solutions to standard
benchmark nesting problems.

As with the area measure, the boundary measure has projective variants. This is illus-
trated in Figure 7b for two overlapping polygons and a vertical projection (a projection onto
a horizontal line). In the following, it is referred to as the boundary width measure. Similarly
the boundary height measure refers to a horizontal projection. It is important to note that,
e.g., boundary width is not just the width of an overlap, but the accumulated width of all
boundary segments in the overlap. Given a convex overlap area this is exactly two times the
width of the overlap; for non-convex overlaps it may be more.

The boundary height measure is illustrated in Figure 10e-h in order to emphasize an impor-
tant fact. For this overlap measure, fewer pairs of edges need to be considered when computing
its value. The illustration does not explicitly include the projection of the boundary, but it
does emphasize that fewer breakpoints are needed to compute it correctly. Breakpoints are
only needed for pairs of edges (line segments) with opposite orientations. Adding the height
of the bold lines and subtracting the height of the dashed lines corresponds to measuring the
height of all the line segments of the boundary of intersection.

The advantages of a projected boundary measure are not immediately obvious, but it turns
out to be a really good candidate if an indicator measure is needed. There are three reasons
for this. First, it requires fewer breakpoints. Second, the functions are linear expressions.
Third, if used as an indicator measure, the linear expressions can be avoided and replaced
by a set of current overlap intervals. This can be implemented (and we have done this) to
provide an indicator measure which is robust with respect to floating point calculations.

3.5 Comparison

A crude comparison of most of the overlap measures described is presented in Table 1. The
comparison is based on the assumption that penetration depth is the ideal overlap measure.
For some applications of overlap measures this might not be the case. The overlap examples
in Figure 8 are used for the comparison. Note that these examples do not cover all possible
overlap situations and they could make some of the measures look better or worse than they
would be in practice. For example, the advantage of the penetration depth measures depend
strongly on non-convex shapes or stick-like shapes like those in Figures 8c-e. Also remember
that the definitions of over- and under-estimation are very informal.
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Figure 10: Two examples of the translation of a polygon with edges f1, f2 and f3 through a
polygon with edges g1, g2 and g3. a-d) Boundary measure: The length of bold lines are added
to the value of the overlap and the length of dashed lines are subtracted. e-h) Boundary height
measure: The length of the projection of bold lines onto the y-axis are added to the value of
the overlap and the length of the projection of dashed lines onto the y-axis are subtracted.
Note that the projections are not shown, i.e., one must be careful and only consider the length
of the projections of the bold (added) and the dashed (subtracted) line segments.

Overlap measure a b c d e f g
Penetration depth = = = = = = =
Horizontal depth = = > = = >> =
Volume = << << << = = <<
Boundary = << < < >> >> <<
Boundary height = << << < >> = <<

Table 1: A comparison of a range of different overlap measures where penetration depth is
considered as being the ideal overlap measure. The letters a-g refer to the overlap examples
shown in Figure 8. An equality symbol means that the overlap is (relatively) correctly mea-
sured. A less than symbol means that the overlap is underestimated and a greater than sign
means that the overlap is overestimated. Double less/greater than symbols means that the
overlap is severely under/over-estimated. Note that the area measure never overestimates an
overlap and that the horizontal penetration depth measure never underestimates an overlap.
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3.6 Combined Overlap Measures

Eisenbrand et al. [15] use a combination of volume and penetration depth in three dimensions
to solve a problem with packing rectangular boxes in the trunk of a car. The basic solution
method is relatively simple. Given a placement, a potential function is used to determine its
validity. Trial moves are then made iteratively, either translating or rotating a box, and the
potential of the new placements are calculated. Simulated annealing then controls which trial
moves are accepted. The potential function includes both the volume and the penetration
depth of all intersections in a given placement. This combination of overlap measures is
motivated by the fact that some intersections are not handled well by volume and others are
not handled well by penetration depth. The latter deserves an explanation since we have so
far treated penetration depth as the ideal overlap measure. The problem for Eisenbrand et al.
is that they only make small moves and in some cases the penetration depth is a constant for
the local neighborhood which means that it can be difficult to get out of this local plateau.
An example in 2D of this problem is given in Figure 8h. Three rectangles are placed next to
each other with small overlaps. For any small local translation, the rectangle in the middle
has a locally constant sum of penetration depths with the two neighboring rectangles. In
this case, it would be handled better by an area or a boundary measure since they would
not be locally constant under horizontal translations. Using larger neighboring rectangles one
could construct an example for which all three overlap measures would be constant, but for
Eisenbrand et al. this cannot occur since all boxes are identical.

The main problem with penetration depth is that it can be difficult to compute, especially
when dealing with non-convex shapes. We have already stated that all other measures de-
scribed here can be computed efficiently when solving the horizontal translation problem, but
all of these alternatives to penetration depth clearly also have disadvantages as illustrated in
Figure 8.

In general, one could combine k different overlap measures with assigned weights. Each
weight should somehow depend on how well the corresponding overlap measure has performed
during the solution process. A problem with this approach could be that some overlap mea-
sures are not of the same order of magnitude, e.g., the area measure has a quadratic growth
while the 1D penetration depth has a linear growth. An alternative to combining overlap mea-
sures using weights is to dynamically shift between different overlap measures. This could
be controlled by some meta-heuristic which attempts to use the overlap measure that works
best for the given problem instance at a given time. Combining overlap measures as briefly
sketched here is a very promising venue for future research.

4 Computational Experiments

The first paper in this thesis (Egeblad et al. [14]A) describes and reports results for an
implementation which was done 5 years ago (a few improvements were done 3 years ago).
The current implementation is based on the original work, but only few lines of code have
survived (somewhere along the way the name changed from 2DNest to Nest2D). The most
significant change is that the current implementation can be compiled such that it only uses
rational numbers. This makes the solution method very slow, but it also makes it much
easier to implement new features — and to debug any problems. Precision problems when
using floating point numbers are more easily identified and handled more efficiently. The end
result is that the implementation is now simpler and more robust — and naturally also more
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Current Nest2D Old 2DNest
Initial 10 60 300 600 Worst Best 600 Max.

Albano 69.68 85.47 86.59 87.34 87.50 (0.2) 87.11 87.90 86.96 87.44
Dagli 60.38 83.08 84.76 85.89 86.17 (0.5) 85.51 87.51 85.31 85.98
Dighe1 39.37 81.57 87.79 98.49 99.99 (0.0) 99.99 100.00 93.93 99.86
Dighe2 49.26 88.44 99.91 99.91 99.99 (0.0) 99.99 100.00 93.11 99.95
Fu 59.38 88.81 89.79 90.43 91.03 (0.7) 89.92 91.94 90.93 91.84
Jakobs1 54.44 84.51 87.80 88.86 89.05 (0.1) 88.92 89.09 88.90 89.07
Jakobs2 53.61 78.10 80.20 80.67 80.71 (0.7) 80.30 82.44 80.28 80.41
Mao 50.20 79.34 81.41 82.76 83.08 (0.6) 82.03 84.23 82.67 85.15
Marques 68.49 87.12 88.46 88.91 89.12 (0.4) 88.53 89.85 88.73 89.17
Shapes0 44.83 63.14 64.95 65.75 66.07 (0.5) 65.16 66.74 65.42 67.09
Shapes1 44.83 69.53 71.25 72.04 72.35 (0.9) 71.15 73.83 71.74 73.84
Shapes2 60.00 77.99 79.51 80.22 80.69 (0.6) 79.92 82.32 79.89 81.21
Shirts 71.05 83.54 85.37 86.17 86.61 (0.3) 85.83 87.35 85.73 86.33
Swim 44.16 64.83 69.63 71.38 72.00 (0.5) 71.16 73.04 70.27 71.53
Trousers 66.61 87.31 88.74 89.35 89.64 (0.2) 89.14 90.04 89.29 89.84

55.75 80.19 83.08 84.55 84.93 (9.2) 84.31 85.75 83.54 85.25

Table 2: Utilization percentages after 0, 10, 60, 300 and 600 seconds for the current imple-
mentation of the solution method by Egeblad et al. [14]A. All of these values are averages of
20 runs. Columns 7 and 8 state the worst and best result in these 20 runs. Columns 9 and
10 state the average and the best results as reported by Egeblad et al. [14]A for the original
implementation. The best average results and the best of the best results are underlined.

versatile since it supports repeated patterns, aligned translations, free orientation of shapes
and various overlap measures as described in the papers in this thesis.

The (essentially) new implementation was used for the 3D experiments in the paper han-
dling nesting problems in higher dimensions (Egeblad et al. [13]C). None of the papers repeat
the experiments in the first paper for the two-dimensional case, but it would be interesting
to see how well the new implementation performs compared to the old implementation and
other new results from the literature. This is the main purpose of the following experiment.

The problem instances have been selected from the literature and can be downloaded from
the ESICUP homepage1. There are 15 problem instances and various degrees of freedom
regarding orientation are allowed (0, 90◦or 180◦) as shown in the third column of Table 3.
Illustrations of the problem instances can be found in the paper by Egeblad et al. [14]A.

A comparison of the old and the new implementation can be seen in Table 2. The uti-
lization of the initial solution (same algorithm as in the original implementation) and the
utilization after 10, 60 and 600 seconds (10 minutes) are reported. All of these values are
averages of 20 runs. The worst and the best of the results are reported for the 10 minute
runs, and the rightmost two columns contain the average and the best results from Egeblad
et al. [14]A. The new experiments were conducted on a 2.16 GHz Intel Core Duo processor.
The old experiments were conducted on a 3GHz Pentium 4.

The first thing to notice is that the average (of the averages) utilization after 300 seconds

1http://www.fe.up.pt/esicup
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Average results Best results
Size Deg. Nest2D ILSQN SAHA Nest2D ILSQN SAHA

Albano 24 180◦ 87.50 87.14 84.70 87.90 88.16 87.43
Dagli 30 180◦ 86.17 85.80 85.38 87.51 87.40 87.15
Dighe1 16 99.99 90.49 82.13 100.00 99.89 100.00
Dighe2 10 99.99 84.21 84.17 100.00 99.99 100.00
Fu 12 90◦ 91.03 87.57 87.17 91.94 90.67 90.96
Jakobs1 25 90◦ 89.05 84.78 75.79 89.09 86.89 78.89
Jakobs2 25 90◦ 80.71 80.50 74.66 82.44 82.51 77.28
Mao 20 90◦ 83.08 81.31 80.72 84.23 83.44 82.54
Marques 24 90◦ 89.12 86.81 86.88 89.85 89.03 88.14
Shapes0 43 66.07 66.49 63.20 66.74 68.44 66.50
Shapes1 43 180◦ 72.35 72.83 68.63 73.83 73.84 71.25
Shapes2 28 180◦ 80.69 81.72 81.41 82.32 84.25 83.60
Shirts 99 180◦ 86.61 88.12 85.67 87.35 88.78 86.79
Swim 48 180◦ 72.00 74.62 72.28 73.04 75.29 74.37
Trousers 64 180◦ 89.64 88.69 89.02 90.04 89.79 89.96

84.93 82.74 80.12 85.75 85.89 84.32

Table 3: Average and best results are compared for three different solution methods. The
highest utilization values are underlined. The number of shapes and the degree of rotation
allowed are also reported. Processors are 2.16 GHz Intel Core Duo (Nest2D), 2.8GHz Intel
Xeon (ILSQN), and 2.4GHz Pentium IV (SAHA).

(final row of the table) is about 1 percentage point better than the average for the old
experiments. The gain from running another 300 seconds is just 0.38 percentage points,
but then each of the averages of the problems instances are also better than for the old
experiments. With respect to the best placements found, the new implementation is in general
better, but there are 3 exceptions; Mao, Shapes0 and Shapes1. The average utilization values
of the best placements is on average 0.5 percentage points better. Considering that the two
implementations are basically equivalent, small differences in the implementations and better
handling of precision issues have a remarkable effect.

We also compare the results with existing competing solution methods in Table 3. The
best of these are currently ILSQN by Imamichi et al. [21] and Gomes and Oliveira [17]. Best
results are obtained by ILSQN and Nest2D, but SAHA often obtains a second place and
is therefore included in this comparison. Running times vary for SAHA (also see Egeblad
et al. [14]A) while the results by Imamichi et al. [21] are based on 10 runs of 600 or 1200
seconds depending on the size of the problem. Other recent results from the literature are
reported by Burke et al. [5] and Umetani et al. [32], but they were not competitive with the
above.

The basic solution method in Nest2D is relatively simple and it is mainly based on a
simple algorithm for translating a polygon. The initial solution constructed is not very good,
but this seems to only have a minor effect on the final results since few seconds are needed to
improve the solutions considerably. The number of translations per second ranges from about
1000 to about 26000 and it would seem that these translations could be used more efficiently;
if not to obtain better solutions then to obtain them faster. This could, e.g., involve an
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efficient use of the directed translations (Nielsen et al. [27]D), overlap measures such as 1D
penetration depth or swapping shapes as done by Imamichi et al. [21]. The full potential of
using translations to solve nesting problems has most likely not yet been achieved.

5 Conclusions and Future Directions

The two-dimensional nesting problem is a very difficult problem and in order to create a
state-of-the-art solution method, a great amount of work has to be done. The translation
algorithm — more or less the main subject of all the nesting papers in this thesis — is a
relatively simple tool for solving nesting problems and it can be implemented in just a few
hundred lines of code. Using an appropriate overlap measure such as boundary height, it also
handles floating point precision issues extremely well. We show how it can also be adapted
to handle repeated patterns [26]B and free orientation of shapes [27]D, and we also show how
it can be generalized to higher dimensions [13]C.

When comparing solution methods, it is always important to remember the effect of
many parameters, e.g., efficiency of the code, tuning of meta-heuristic techniques and the
use of strategies such as multi-level approximations of shapes and dynamic clustering. A
comparison of geometric techniques is therefore very difficult and it is not possible to con-
clude that translations are better or worse than NFP bottom-left construction algorithms
or compaction/separation strategies. NFPs provide a better measure of overlap (for nesting
problems), but they are also primarily useful if they can be preprocessed. Furthermore, it is
not clear whether NFPs can be efficiently generalized to three or more dimensions.

In this introduction to the nesting problem, we have introduced a simple definition of
an overlap measure for geometric shapes, and in particular, polygons. We have shown that
existing overlap measures such as penetration depth and area are members of a much larger
family of overlap measures. We think of this family of overlap measures as a toolbox of tech-
niques which can help solve various optimization problems. Our application for these overlap
measures has been an existing solution method for the nesting problem which repeatedly
translates shapes to positions with less overlap. Other optimization problems and solution
techniques might also benefit from this toolbox. This could, e.g, be problems for which special
kinds of maximum overlap are desired.

The various overlap measures do not only differ with regard to how overlap is measured.
More importantly they differ with regard to ease of implementation (especially in higher
dimensions) and running time for the computation. The translation algorithms presented
can handle arbitrary polygons and cover a wide range of overlap measures including 1D
penetration depth, decomposable overlap measures such as area and boundary and projections
of these measures. Although we have not discussed it in detail, all of this can be generalized
to higher dimensions. At least in two dimensions, more general shapes than polygons could
probably also be handled efficiently by using boundary height (and thus also 1D penetration
depth). After splitting the shapes into y-monotone curves the only serious geometric problem
would be how to compute the distance between two such curves.

Our focus has primarily been on the translation algorithm itself and how variations of it
can handle different problems. The remaining parts of the solution method, as implemented
in Nest2D, has not changed considerably since the initial implementation. Two subjects
which are especially interesting for future research are as follows.

• Dynamically clustering/pairing shapes in the solution process.
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• Variations of the local search neighborhood, especially introducing swaps of shapes
similar to the work of Imamichi et al. [21].

Another very interesting subject would be a generalization to three dimensions of the free
orientation strategy used for two-dimensional polygons by Nielsen et al. [27]D.
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Abstract

In this paper we present a new heuristic solution method for two-dimensional nesting
problems. It is based on a simple local search scheme in which the neighborhood is any
horizontal or vertical translation of a given polygon from its current position. To escape
local minima we apply the meta-heuristic method Guided Local Search.

The strength of our solution method comes from a new algorithm which is capable of
searching the neighborhood in polynomial time. More precisely, given a single polygon
with m edges and a set of polygons with n edges the algorithm can find a translation
with minimum overlap in time O(mn log(mn)). Solutions for standard test instances are
generated by an implementation and a comparison is done with recent results from the
literature. The solution method is very robust and most of the best solutions found are
also the currently best results published.

Our approach to the problem is very flexible regarding problem variations and special
constraints, and as an example we describe how it can handle materials with quality
regions.

Finally, we generalize the algorithm for the fast neighborhood search and present a
solution method for three-dimensional nesting problems.

Keywords: Cutting, packing, nesting, 3D nesting, guided local search

1 Introduction

Nesting is a term used for many related problems. The most common problem is strip-packing
where a number of irregular shapes must be placed within a rectangular strip such that the
strip-length is minimized and no shapes overlap. The clothing industry is a classical example
of an application for this problem. Normally, pieces of clothes are cut from a roll of fabric.
A high utilization is desirable and it requires that as little of the roll is used as possible. The
width of the roll is fixed, hence the problem is to minimize the length of the fabric. Other
nesting problem variations exist, but in the following the focus is on the strip-packing variant.
Using the typology of Wäscher et al. [36] this is a two-dimensional irregular open dimension
problem (ODP).

In the textile industry the shapes of the pieces of clothes are usually referred to as markers
or stencils. In the following we will use the latter term except when the pieces need to be
defined more precisely e.g. as polygons.

In order to state the problem formally we first define the associated decision problem:

∗Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark. E-mail:
{jegeblad, benny, duff}@diku.dk.
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w

l

Figure 1: The Strip Nesting Problem. Place a number of stencils on a strip with width w
such that no two stencils overlap and the length l of the strip is minimized.

Nesting Decision Problem Given a set of stencils S and a piece of material, position the
stencils S such that

• No two stencils overlap.

• All stencils are contained within the boundaries of the material.

The strip-packing variant can now be stated as:

Strip Nesting Problem. Given a set of stencils S and a strip (the material) with width w
find the minimal length l for which the Nesting Decision Problem can be solved (Figure 1).

The Strip Nesting Problem is NP-hard [e.g. 28].
In this paper we present a new solution method for the Strip Nesting Problem. After

a short analysis of some of the existing approaches to the problem (Section 2) we present
a short outline of the new solution method in Section 3. In short, the approach is a local
search method (Section 4) using the meta-heuristic Guided Local Search (Section 5) to escape
local minima. A very efficient search of the neighborhood in the local search is the subject of
Section 6.

In the definitions above we have ignored the additional constraints which are often given for
a nesting problem e.g. whether rotating and/or flipping the stencils is allowed. In Section 7 a
discussion on how we handle such problem variations emphasizes the flexibility of our solution
method.

Experiments show that our solution method is very efficient compared with other published
methods. Results are presented in Section 8. Finally, in Section 9, it is shown that our solution
method is quite easily generalized to three-dimensional nesting problems.

2 Existing Approaches to Nesting Problems

There exists numerous solution methods for nesting problems. A thorough survey by Dowsland
and Dowsland [15] exists, but a more recent survey has also been done by Nielsen and
Odgaard [28]. Meta-heuristics are one of the most popular tools for solving nesting prob-
lems. A detailed discussion of these can be found in the introductory sections of Bennell and
Dowsland [6].
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The following is a brief discussion of some of the most interesting approaches to nesting
problems previously presented in the literature. The discussion is divided into three subsec-
tions concerning three different aspects of finding solutions for the problem: The basic solution
method, the geometric approach and the use of a meta-heuristic to escape local minima.

2.1 Basic solution methods

Solution methods handling nesting problems generally belong to one of two groups. Those
only considering legal placements in the solution process and those allowing overlap to occur
during the solution process.

Legal placement methods

These methods never violate the overlap constraint. An immediate consequence is that place-
ment of a stencil must always be done in an empty part of the material.

Most methods for strip packing follow the basic steps below.

1. Determine a sequence of stencils. This can be done randomly or by sorting the stencils
according to some measure e.g. the area or the degree of convexity [30].

2. Place the stencils with some first/best fit algorithm. Typically a stencil is placed at the
contour of the stencils already placed. Some algorithms also allow hole-filling i.e. placing
a stencil in an empty area between already placed stencils [16, 17, 19].

3. Evaluate the length of the solution. Exit with this solution [3] or repeat at step 2 after
changing the sequence of stencils [16, 19].

Unfortunately the second step is quite expensive and if repeated these algorithms can
easily end up spending time on making almost identical placements.

Legal placement methods not doing a sequential placement do exist. These methods
typically construct a legal initial solution and then introduce some set of moves (e.g. swapping
two stencils) that can be controlled by a meta-heuristic to e.g. minimize the length of a
strip [8–11, 20].

Relaxed placement methods

The obvious alternative is to allow overlaps to occur as part of the solution process. The
objective is then to minimize the amount of overlap. A legal placement has been found when
the amount of overlap reaches 0. Numerous papers applying such a scheme exist with varying
degrees of success [5, 6, 21, 24, 25, 27, 29, 33]. Especially noteworthy is the work of Heckmann
and Lengauer [21].

In this context it is very easy to construct an initial placement. It can simply be a random
placement of all of the stencils, although it might be better to start with a better placement.

Searching for a solution can be done by iteratively improving the placement i.e. decrease
the total overlap and maybe also the strip-length. This is typically done by moving/rotating
stencils.
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Figure 2: The raster model requires all stencils to be defined by a set of grid squares. The
drawing above is an example of a polygon and its equivalent in a raster model.

(a) (b)

Figure 3: The degree of overlap can be measured in various ways. Here are two examples:
(a) The precise area of the overlap. (b) The horizontal intersection depth.

2.2 Geometric approaches

The first problem encountered when handling nesting problems is how to represent the stencils.
If the stencils are not already given as polygons then they can quite easily be approximated
by polygons which is also what is done in most cases. A more crude approximation can be
done using a raster model [12, 21, 27, 29]. This is a discrete model of the stencils created by
introducing a grid of some size to represent the material i.e. each stencil covers some set of
raster squares. The stencils can then be represented by matrices. An example of a simple
polygon and its raster model equivalent is given in Figure 2. A low granularity of the raster
model provides fast calculations at the expense of limited precision. Better precision requires
higher granularity, but it will also result in slower calculations.

Comparisons between the raster model and the polygonal model were done by Heckmann
and Lengauer [21] and they concluded that the polygonal model was the better choice for
their purposes.

Assuming polygons are preferred then we need some geometric tools to construct solutions
without any overlaps. In the existing literature two basic tools have been the most popular.

Overlap calculations

The area of an overlap between two polygons (see Figure 3a) can be used to determine whether
polygons overlap and how much they overlap. This can be an expensive calculation and thus
quite a few alternatives have been suggested such as intersection depth [6, 14] (see Figure 3b)
and the Φ-function [32] which can differentiate between three states of polygon interference:
Intersection, disjunction and touching.

Solution methods using overlap calculations most often apply some kind of trial-and-error
scheme i.e. they try to place or move a polygon to various positions to see if or how much
it overlaps. This can then be used to improve some intermediate solution which might be
allowed to contain overlap [5–7, 21].
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Reference point

Q

P

Figure 4: Example of the No-Fit-Polygon (thick border) of stencil P in relation to stencil Q.
The reference point of P is not allowed inside the NFP if overlap is to be avoided.

No-Fit-Polygons (NFP)

Legal placement methods very often use the concept of the No-Fit-Polygon (NFP) [1–3, 16,
17, 19, 20, 30], although it can also be used in relaxed placement methods as done by Bennell
and Dowsland [5].

The NFP is a polygon which describes the legal/illegal placements of one polygon in
relation to another polygon, and it was introduced by Art, Jr. [3] (although named envelope).

Given two polygons P and Q the construction of the NFP of P in relation to Q can be
found in the following way: Choose a reference point for P . Slide P around Q as closely as
possible without intersecting. The trace of the reference point is the contour of the NFP. An
example can be seen in Figure 4. To determine whether P and Q intersect it is only necessary
to determine whether the reference point of P is inside or outside their NFP. Placing polygons
closely together can be done by placing the reference point of P at one of the edges of the
NFP. If P and Q have s and t edges, respectively, then the number of edges in their NFP will
be O(s2t2) [4].

The NFP has one major weakness. It has to be constructed for all pairs of polygons. If
the polygons are not allowed to be rotated it is feasible to do this in a preprocessing step in
a reasonable time given that the number of differently shaped polygons is not too large.

2.3 Meta-heuristics

Both legal and relaxed placement methods can make use of meta-heuristics. The most popular
one for nesting problems is Simulated Annealing (SA) [9, 20, 21, 27, 29, 33]. The most
advanced use of it is by Heckmann and Lengauer [21] who implemented SA in 4 stages. The
first stage is a rough placement, the second stage eliminates overlaps, the third stage is a fine
placement with approximated stencils and the last stage is a fine placement with the original
stencils.

Gomes and Oliveira [20] very successfully combine SA with the ideas for compaction and
separation by Li and Milenkovic [26]. A very similar approach had previously been attempted
by Bennell and Dowsland, Bennell and Dowsland [5, 6], but they combined it with a Tabu
Search variant.

More exotic approaches are genetic, ant and evolutionary algorithms [10, 11, 25] — all
with very limited success.
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3 Solution Method Outline

In this section we will give a brief outline of our solution method. Our method is a relaxed
placement method and it can handle irregular polygons with holes. A new geometric approach
is utilized and the Guided Local Search meta-heuristic is used to escape local minima. This
approach is inspired by a paper by Faroe et al. [18] which presented a similar approach for
the two-dimensional Bin Packing Problem for rectangles.

The following describes the basic algorithm for the Strip Nesting Problem.

1. Finding an initial strip length
An initial strip length is found by using some fast heuristic e.g. a bottom-left bounding
box placement algorithm.

2. Reducing the strip length
The strip length is reduced by some value. This value could e.g. be based on some
percentage of the current length. After reducing the strip length any polygons no
longer contained within the strip are translated appropriately. This potentially causes
overlap which is removed during the subsequent optimization.

3. Applying local search to reduce overlap
The strip length is fixed now and the search for a solution without overlap can begin.
The overlap is iteratively reduced by applying local search. More precisely, in each step
of the local search a polygon is moved to decrease the total amount of overlap. The
local search and its neighborhood are described in Section 4, and a very efficient search
of the neighborhood is the focus of Section 6.

If a placement without overlap is found for the current fixed strip length then we have
found a solution, and step 2 can be repeated to find even better solutions. This might
not happen though since the local search can be caught in local minima.

4. Escaping local minima
To escape local minima we have applied the meta-heuristic Guided Local Search. In
short, it alters the objective function used in step 3 and then repeats the local search.
It will be described in more detail in Section 5.

4 Local Search

4.1 Placement

First we define a placement formally. Let S = {s1, . . . , sn} be a set of polygons. A placement
of s ∈ S can be described by the tuple (sx, sy, sθ, sf ) ∈ R×R× [0, 2π)× {false, true} where
(sx, sy) is the position, sθ is the rotation angle and sf states whether s is flipped. Now the
map p : S → R× R× [0, 2π)× {false, true} is a placement of the polygons S.
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4.2 Objective function

Given a set of polygons S = {s1, . . . , sn} and a fixed-length strip with length l and width w,
let P be the space of possible placements. We now wish to minimize the objective function,

g(p) =
n∑

i=1

i−1∑
j=1

overlapij(p), p ∈ P,

where overlapij(p) is a measure of the overlap between polygons si and sj . A placement p
such that g(p) = 0 implies that p contains no overlap i.e. p solves the decision problem. We
have chosen overlapij(p) to be the area of intersection of polygons si and sj with respect to
the placement described by p.

4.3 Neighborhood

Given a placement p the local search may alter p to create a new placement p′ by changing
the placement of one polygon si ∈ S. In each iteration the local search may apply one of the
following four changes (depending on what is allowed for the given problem instance):

• Horizontal translation. Translate si horizontally within the strip.

• Vertical translation. Translate si vertically within the strip.

• Rotation. Select a new angle of rotation for si.

• Flipping. Choose a new flipping state for si.

The new position, angle or flipping state is chosen such that the overlap with all other polygons∑
j 6=i overlapij(p′) is minimized. In other words p′ is created from p by reducing the total

overlap in a greedy fashion. An example of a local search is shown on Figure 5.
Let N : P → 2P be the neighborhood function such that N(p) is the set of all neighboring

placements of p. We say that the placement p′ is a local minimum if:

∀p ∈ N(p′) : g(p′) ≤ g(p),

i.e. there exists no neighboring solution with less overlap.
Now the local search proceeds by iteratively creating a new placement p′ from the current

placement p until p′ is a local minimum.

5 Guided Local Search

To escape local minima encountered during local search we apply the meta-heuristic Guided
Local Search (GLS). GLS was introduced by Voudouris and Tsang [34] and has previously
been successfully applied to e.g. the Traveling Salesman Problem [35] and two- and three-
dimensional Bin-Packing Problems [18].
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Figure 5: Example of a local search. (a) One polygon overlaps with several other polygons
and is selected for optimization. In the top row we have drawn the amount of overlap as a
function of the leftmost x-coordinate of the polygon. The positions beyond the dashed line
are illegal since the polygon would lie partially beyond the right limit of the strip. Local
search translates the polygon to a position with least overlap. (b) In the next iteration the
local search may continue with vertical translation. The graph of overlap as a function of
y-coordinate is shown and again the polygon is translated to the position with least overlap.
(c) Local search has reached a legal solution.
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5.1 Features and penalties

Features are unwanted characteristics of a solution or in our case a placement. We let the
features express pairwise overlap of polygons in the placement and define the indicator func-
tion:

Iij(p) =
{

0 if overlapij(p) = 0
1 otherwise

i, j ∈ 1, . . . , n, p ∈ P,

which determines whether polygon si and sj overlap in the placement p.
The key element of GLS is the penalties. For each feature we define a penalty count φij

which is initially set to 0. We also define the utility function:

µij(p) = Iij(p)
overlapij(p)

1 + φij
.

Whenever local search reaches a local minimum p, the feature(s) with highest utility µij(p)
are “penalized” by increasing φij .

5.2 Augmented objective function

The features and penalties are used in an augmented objective function,

h(p) = g(p) + λ ·
n∑

i=1

i−1∑
j=1

φijIij(p),

where λ ∈]0,∞[ is a constant used to fine-tune the behavior of the meta-heuristic. Early
experiments have shown that a good value for λ is around 1 − 4% of the area of the largest
polygon.

Instead of simply minimizing g(p) we let the local search of Section 4 minimize h(p). An
outline of the meta-heuristic and the associated local search is described in Algorithm 1.

5.3 Improvements

The efficiency of GLS can be greatly improved by using Fast Local Search (FLS) [34]. FLS
divides the local search neighborhood into sub-neighborhoods which are active or inactive
depending on whether they should be considered during local search. In our context we let
the moves of each polygon be a sub-neighborhood resulting in n sub-neighborhoods. Now
it is the responsibility of the GLS algorithm to activate each sub-neighborhood and the
responsibility of FLS to inactivate them.

For the nesting problem we have chosen to let GLS activate neighborhoods of polygons
involved in penalty increments. When a polygon s is moved we activate all polygons overlap-
ping with s before and after the move. FLS inactivates a neighborhood if it has been searched
and no improvement has been found.

If GLS runs for a long time then the penalties will at some point have grown to a level
where the augmented objective function no longer makes any sense in relation to the cur-
rent placement. Therefore we also need to reset the penalties at some point e.g. after some
maximum number of iterations which depends on the number of polygons.
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6. Fast Neighborhood Search

Algorithm 1: Guided Local Search for Nesting Decision Problem
Input: A set of polygons S
Generate initial placement p
foreach pair of polygons si, sj ∈ S do

Set φij = 0
while p contains overlap do

// Local search:
while p is not local minimum do

Select polygon si

Create p′ from p using the best neighborhood
move of si, i.e., such that h(p′) is minimized
Set p = p′.

// Penalize:
foreach pair of polygons si, sj ∈ S do

Compute µij(p)
foreach pair of polygons si, sj ∈ S such that µij is maximal do

Set φij = φij + 1
return p

6 Fast Neighborhood Search

To determine a translation of a single polygon which minimizes overlap we have developed
a new polynomial-time algorithm. The algorithm itself is very simple and it is presented in
Section 6.2, but the correctness of the algorithm is not trivial and a proof is required. The core
of the proof is the Intersection Area Theorem which is the subject of the following section.

6.1 Intersection Area Theorem

In this section we will present a special way to determine the area of intersection of two
polygons. Nielsen and Odgaard [28] have presented a more general version of the Intersection
Area Theorem which dealt with rotation and arbitrary shapes. In this text however we have
decided to limit the theory to polygons and horizontal translation since this is all we need for
our algorithm to work. It will also make the proof shorter and easier to understand.

In order to state the proof we need to define precisely which polygons we are able to
handle. First some definitions of edges and polygons.

Definition 4 (Edges). An edge e is defined by its end points ea, eb ∈ R2. Parametrically an
edge is denoted e(t) = ea + t(eb − ea) where t ∈ [0, 1]. For a point p = (px, py) ∈ R2 and an
edge e we say p ∈ e if and only if p = e(t0) for some t0 ∈ [0, 1] and py 6= min(eay , eby).

The condition, py 6= min(eay , eby), is needed to handle some special cases (see Lemma 1).

Definition 5 (Edge Count Functions). Given a set of edges E we define two edge count
functions,

←−
fE(p),

−→
fE(p) : R2 → N0,

←−
fE(p) = |{e ∈ E | ∃ x′ < px : (x′, py) ∈ e}|,
−→
fE(p) = |{e ∈ E | ∃ x′ ≥ px : (x′, py) ∈ e}|.
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Positive edges Negative edges

Figure 6: Positive and negative edges of a polygon according to Definition 7.

Definition 6 (Polygon). A polygon P is defined by a set of edges E. The edges must form
one or more cycles and no pair of edges from E are allowed to intersect. The interior of the
polygon is defined by the set

P̃ = {p ∈ R2|
←−
fE(p) ≡ 1 ( mod 2)}.

For a point p ∈ R2 we write p ∈ P if and only if p ∈ P̃ .

Note that this is an extremely general definition of polygons. The polygons are allowed
to consist of several unconnected components and cycles can be contained within each other
to produce holes in the polygon.

Now, we will also need to divide the edges of a polygon into three groups.

Definition 7 (Sign of Edge). Given a polygon P defined by an edge set E we say an edge
e ∈ E is positive if

∀t, 0 < t < 1 : ∃ε > 0 : ∀δ, 0 < δ < ε : e(t) + (δ, 0) ∈ P. (1)

Similarly we say e is negative if Equation 1 is true with the points e(t) − (δ, 0). Finally we
say e is neutral if e is neither positive nor negative.

The sets of positive and negative edges from an edge set E are denoted E+ and E−,
respectively.

Although we will not prove it here it is true that any non-horizontal edge is either positive
or negative, and that any horizontal edge is neutral. Notice that the positive edges are the
“left” edges and the negative edges are the “right” edges with respect to the interior of a
polygon (see Figure 6).

The following lemma states some important properties of polygons and their positive/negative
edges.

Lemma 1. Given a vertical coordinate y and some interval I, we say that the horizontal line
ly(t) = (t, y), t ∈ I, crosses an edge e if there exist t0 such that ly(t0) ∈ e. Now assume that
P is a polygon defined by an edge set E then all of the following holds.

1. If I =] −∞,∞[ and we traverse the line from −∞ towards ∞ then the edges crossed
alternate between being positive and negative.

2. If I =]−∞,∞[ then the line crosses an even number of edges.
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6. Fast Neighborhood Search

3. Assume p /∈ P then the infinite half-line lpy(t) for I = [px,∞[ will cross an equal number
of positive and negative edges. The same is true for I =]∞, px[.

4. Assume p ∈ P . If I = [px,∞[ and if the line crosses n positive edges then it will also
cross precisely n + 1 negative edges. Similarly, if I =]−∞, px[ and if the line crosses n
negative edges then it will also cross precisely n + 1 positive edges.

Proof. We only sketch the proof. First note that some special cases concerning horizontal
edges and the points where edges meet are handled by the inequality in Definition 4.

The first statement easily follows from the definition of positive and negative edges since
clearly any positive edge can only be followed by a negative edge and vice-versa when we
traverse from left to right. The other statements follow from the first statement and the
observation that the first edge must be positive and the last edge must be negative.

The following definitions are unrelated to polygons. Their purpose is to introduce a precise
definition of the area between two edges. Afterwards this will be used to calculate the area
of intersection of two polygons based purely on pairs of edges.

Definition 8 (Containment Function). Given two edges e1 and e2 and a point p ∈ R2 define
the containment function

C(e1, e2, p) =
{

1 if ∃x1, x2 : x2 < px ≤ x1, (x2, py) ∈ e2, and (x1, py) ∈ e1

0 otherwise.

Given two sets of edges, E and F , we generalize the containment function by summing over
all pairs of edges,

C(E,F, p) =
∑
e1∈E

∑
e2∈F

C(e1, e2, p).

Note that given two edges e1 and e2 and a point p then C(e1, e2, p) = 1⇒ C(e2, e1, p) = 0.

Definition 9 (Edge Region and Edge Region Area). Given two edges e1 and e2 we define
the edge region R(e1, e2) = {p ∈ R2 | C(e1, e2, p) = 1} and the area of R(e1, e2) as

A(e1, e2) =
∫ ∫

R(e1,e2)
1dA =

∫ ∫
p∈R2

C(e1, e2, p)dA,

Given two sets of edges, E and F , we will again generalize by summing over all pairs of
edges,

A(E,F ) =
∑
e1∈E

∑
e2∈F

A(e1, e2).

The edge region of two edges R(e1, e2) is the set of points in the plane for which the
containment function is 1. This is exactly the points which are both to the right of e2 and to
the left of e1 (see Figure 7).

We will postpone evaluation of A(e1, e2) to Section 6.2 since we do not need it to prove
the main theorem of this section. Instead we need to prove a theorem which we can use to
break down the intersection of two polygons into regions.
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e2

e1

Figure 7: The edge region R(e1, e2) of two edges e1 and e2 (see Definition 9).

Containment Theorem Given polygons P and Q defined by edge sets E and F , respectively,
then for any point p ∈ R2 the following holds:

p ∈ P ∩Q ⇒ w(p) = 1
p /∈ P ∩Q ⇒ w(p) = 0,

where

w(p) = C(E+, F−, p) + C(E−, F+, p)−C(E+, F+, p)−C(E−, F−, p) (2)

Proof. First we note that from the definition of the containment function C it is immediately
obvious that the only edges affecting w(p) are the edges which intersect with the line lpy(t), t ∈
]−∞,∞[, and only the edges from E which are to the right of p and the edges from F which
are to the left of p will contribute to w(p).

Now let m =
−−→
fE+(p) and n =

←−−
fF−(p). By using Lemma 1 we can prove this theorem by

counting.
First assume p ∈ P ∩ Q which implies p ∈ P and p ∈ Q. From Lemma 1 we know that−−→

fE−(p) = m + 1 and
←−−
fF+(p) = n + 1. Inserting this into Equation 2 reveals:

w(p) = (n + 1)(m + 1) + nm− (n + 1)m− n(m + 1)
= nm + n + m + 1 + nm− nm−m− nm− n

= 1.

Now for n /∈ P ∩Q there are three cases for which we get:

p /∈ P ∧ p /∈ Q : w(p) = nm + nm− nm− nm = 0,
p ∈ P ∧ p /∈ Q : w(p) = n(m + 1)− nm + nm− n(m + 1) = 0,
p /∈ P ∧ p ∈ Q : w(p) = (n + 1)m− nm + (n + 1)m− nm = 0.
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6. Fast Neighborhood Search

We are now ready to prove the main theorem of this section.

Intersection Area Theorem Given polygons P and Q defined by edge sets E and F ,
respectively, then the area of their intersection (denoted α) is

α = A(E+, F−) + A(E−, F+)−A(E+, F+)−A(E−, F−). (3)

Proof. From the Containment Theorem we know:

α =
∫ ∫

p∈R2

w(p)dA.

Using Equation 2 we get:∫ ∫
p∈R2

w(p)dA =
∫ ∫

p∈R2

C(E+, F−, p)dA +
∫ ∫

p∈R2

C(E−, F+, p)dA

−
∫ ∫

p∈R2

C(E+, F+, p)dA−
∫ ∫

p∈R2

C(E−, F−, p)dA

Let us only consider
∫ ∫

p∈R2 C(E+, F−, p)dA which can be rewritten:∫ ∫
p∈R2

C(E+, F−, p)dA =
∫ ∫

p∈R2

∑
e∈E+

∑
f∈F−

C(e, f, p)dA

=
∑

e∈E+

∑
f∈F−

∫ ∫
p∈R2

C(e, f, p)dA

=
∑

e∈E+

∑
f∈F−

A(e, f)

= A(E+, F−).

The other integrals can clearly be rewritten as well and we achieve the required result.

Note that this theorem implies a very simple algorithm to calculate the area of an inter-
section without explicitly calculating the intersection itself.

6.2 Translational overlap

The idea behind the fast neighborhood search algorithm is to express the overlap of one poly-
gon P with all other polygons as a function of the horizontal position of P . The key element
of this approach is to consider the value of A(e, f) for each edge-pair in the Intersection Area
Theorem and to see how it changes when one of the edges is translated.

Calculating the area of edge regions

Fortunately it is very easy to calculate A(e, f) for two edges e and f . We only need to
consider three different cases.

1. Edge e is completely to the left of edge f (Figure 8a).
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Figure 8: The edge region R(e, f) of two edges as e is translated t units from left to right.
(a) e is completely left of f . (b) e adjoins f . (c) e crosses f . (d) e and f are adjoined again.
(e) e is to the right of f . Notice that R(e, f) is either ∅, a triangle or a triangle combined
with a parallelogram.

2. Edge e intersects edge f (Figure 8c).

3. Edge e is completely to the right of edge f (Figure 8e).

For the first case the region between the two edges is ∅. For the second case the region is
a triangle and for the third case it is a union of a triangle and a parallelogram.

Now, let the edge et be the horizontal translation of e by t units and define the function
a(t) = A(et, f). Assume et intersects f only when t ∈ [t4, t�] for appropriate t4 and t� and
let us take a closer look at how the area of the region behaves when translating e.

1) Clearly for t < t4 we have a(t) = 0. 2) It is also easy to see that for t ∈ [t4, t�] the
intersection of the two edges occurs at some point which is linearly depending on t thus the
height of the triangle is linearly depending on t. The same goes for the width of the triangle
and thereby a(t) must be a quadratic function for this interval. 3) Finally for t > t�, a(t) is
the area of the triangle at t = t� which is a(t�) and the area of some parallelogram. Since
the height of the parallelogram is constant and the width is t− t�, a(t) for t > t� is a linear
function.

In other words, a(t) is a piecewise quadratic function.
The next step is to extend the Intersection Area Theorem to edge sets Et and F where Et

is every edge from E translated by t units, i.e we want to define the function α(t) = A(Et, F ).
For each pair of edges et ∈ Et and f ∈ F the interval of intersection is determined and

the function ae,f (t) = A(et, f) is formulated as previously described. All functions ae,f (t) are
piecewise quadratic and have the form:

ae,f (t) =


0 for t < t4e,f
A4

e,f t2 + B4
e,f t + C4

e,f for t ∈ [t4e,f , t�e,f ]
B�

e,f t + C�
e,f for t > t�e,f

(4)

We denote the constants t4e,f and t�e,f the breakpoints of the edge pair e and f , the values A4
e,f ,

B4
e,f , C4

e,f the triangle coefficients of ae,f (t), and the values B�
e,f and C�

e,f the parallelogram
coefficients of ae,f (t).

The total area of intersection between two polygons as a function of the translation of one
of the polygons can now be expressed as in Equation 3:

α(t) = A(E+
t , F−) + A(E−

t , F+)−A(E+
t , F+)−A(E−

t , F−). (5)
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The functions ae,f (t) are all piecewise quadratic functions, and thus any sum of these, specif-
ically Equation 5, is also a piecewise quadratic function. In the next section we are going to
utilize this result in our algorithm by iteratively constructing α(t) for increasing values of t.

Determining the minimum overlap translation

Given a polygon P defined by an edge set E and a set of polygons S (P /∈ S) defined by an
edge set F the local search of Section 4 looks for a translation of P such that the total area
of intersection with polygons from S is minimized. In this section we present an algorithm
capable of determining such a translation.

The outline of the algorithm is as follows: For each pair of edges (e, f) ∈ E × F use the
signs of the edges to evaluate whether ae,f (t) contributes positively or negatively to the sum
of Equation 5. Then determine the breakpoints for e and f and compute the triangle and
parallelogram coefficients of ae,f (t). Finally traverse the breakpoints of all edge pairs from
left to right and at each breakpoint maintain the function

α(t) = Ãt2 + B̃t + C̃,

where all of the coefficients are initially set to zero. Each breakpoint corresponds to a change
for one of the functions ae,f (t). Either we enter the triangle phase at t4e,f or the parallelogram

phase at t�e,f of ae,f (t). Upon entry of the triangle phase at t4e,f we add the triangle coefficients
to α(t)’s coefficients. Upon entry of the parallelogram phase at t�e,f we subtract the triangle
coefficients and add the parallelogram coefficients to α(t)’s coefficients.

To find the minimal value of α(t) we consider the value of α(t) within each interval
between subsequent breakpoints. Since α(t) on such an interval is quadratic, determining the
minimum of each interval is trivial using second order calculus. The overall minimum can
easily be found by considering all interval-minima.

The algorithm is sketched in Algorithm 2. The running time of the algorithm is dominated
by the sorting of the breakpoints since the remaining parts of the algorithm runs in time
O(|E|·|F |). Thus the algorithm has a worst case running time of O(|E|·|F | log(|E|·|F |)) which
in practice can be reduced by only considering polygons from S which overlap horizontally
with P .

Theoretically every pair of edges in E×F could give rise to a new edge in the intersection
P ∩ Q. Thus a lower bound for the running time of an algorithm which can compute such
an intersection must be Ω(|E||F |). In other words, Algorithm 2 is only a logarithmic factor
slower than the lower bound for determining the intersection for simply one position of P .

7 Problem Variations

The solution method presented in the previous sections can also be applied to a range of
variations of nesting problems. Two of the most interesting are discussed in the following
subsections. More details and other variations are described by Nielsen and Odgaard [28].

7.1 Rotation

We have efficiently solved the problem of finding an optimal translation of a polygon. A very
similar problem is to find the optimal rotation of a polygon, i.e. how much is a polygon to be
rotated to overlap the least with other polygons.
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Algorithm 2: Determine Horizontal Translation with Minimal Overlap
Input: A set S of polygons and a polygon P /∈ S
foreach edge e from polygons S \ {P} do

foreach edge f from P do
Create breakpoints for edge pair (e, f)

Let B = breakpoints sorted
Define area-function α(t) = Ãt2 + B̃t + C̃
Set Ã = B̃ = C̃ = 0
foreach breakpoint b ∈ B do

Modify α(t) by changing Ã, B̃ and C̃
Look for minimum on the next interval of α(t)

return t with smallest α(t)

It has been shown by Nielsen and Odgaard [28] that a rotational variant of the Intersection
Area Theorem is also possible. They also showed how to calculate the breakpoints needed for
an iterative algorithm. It is an open question though whether an efficient iterative algorithm
can be constructed.

Nevertheless the breakpoints can be used to limit the number of rotation angles needed
to be examined to determine the existence of a rotation resulting in no overlap. This is still
quite good since free rotation in existing solution methods is usually handled in a brute-force
discrete manner i.e. by calculating overlap for a large set of rotation angles and then select a
minimum.

7.2 Quality regions

In e.g. the leather industry the raw material can be divided into regions of quality [22]. Some
polygons may be required to be of specific quality and should therefore be confined to these
regions. This is easily dealt with by representing each region by a polygon and mark each
region-polygon with a positive value describing its quality. Now if an element is required to be
of a specific quality, region-polygons of poorer quality are included during overlap calculation
with the element, thus disallowing placements with the element within a region with less-
than-required quality. Note that the complexity of the translation algorithm is not affected
by the number of quality levels.

8 Results

The solution method described in the previous sections has been implemented in C++, and
we call the implementation 2DNest. A good description of the data instances used can
be found in Gomes and Oliveira [20]. These data instances are all available on the ESICUP
homepage1. Some of their characteristica are included in Table 1. For some instances rotation
is not allowed and for others 180◦ rotation or even 90◦ rotation is allowed. In 2DNest this
is handled by extending the neighborhood to include translations of rotated variants of the
stencils. Note that the data instances Dighe1 and Dighe2 are jigsaw puzzles for which other
solution methods would clearly be more efficient, but it is still interesting to see how well they
are handled since we know the optimal solution.

1http://www-apdio-pt/esicup
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9. Three-dimensional Nesting

Most of the data instances have frequently been used in the literature, but with regard to
quality the best results are reported by Gomes and Oliveira [20]. They also report average
results found when doing 20 runs for each instance. Gomes and Oliveira implemented two
variations of their solution method (GLSHA and SAHA) and results for the latter can
be found in Table 1 (2-4GHz Pentium 4). Average computation times are included in the
table since they vary between instances. More precisely they vary between 22 seconds and
173 minutes. When considering all instances the average computation time is more than 74
minutes. In total it would have taken more than 15 days to do all of the experiments on a
single processor.

SAHA is an abbreviation of “simulated annealing hybrid algorithm”. A greedy bottom-
left placement heuristic is used to generate an initial solution, and afterwards simulated
annealing is used to guide the search of a simple neighborhood (pairwise exchanges of stencils).
Linear programming models are used for local optimizations including removing any overlap.

We have chosen to run 2DNest on each instance 20 times using 10 minutes for each run
(3GHz Pentium 4). In Table 1 the quality of the average solution is compared to SAHA
followed by comparisons of the standard deviation, the worst solution found and the best
solution found. We have also done a single 6 hour long run for each instance. It would take
less than 6 days to do these experiments on a single processor.

The best average results, the best standard deviations and the largest minimum results
are underlined in the table. Disregarding the 6 hour runs the best of the maximum results
are also underlined in the table. Note that the varying computation times of SAHA makes
it difficult to compare results, but most of the results (10 out of 15) are obtained using more
than the 600 seconds used by 2DNest.

The quality of a solution is given as a utilization percentage, that is, the percentage of
area covered by the stencils in the resulting rectangular strip. Average results by 2DNest
are in general better. The exceptions are Dagli, Shapes2 and Swim for which the average is
better for SAHA. The best solutions for these instances are also found by SAHA and this is
also the case for Dighe1, Dighe2, Shirts and Trousers. The two latter ones are beaten by the
single 6 hour run though. The jigsaw puzzles (Dighe1 and Dighe2) are actually also handled
quite well by 2DNest, but it is not quite able to achieve 100% utilization. Disregarding the
jigsaw puzzles we have found the best known solutions for 10 out of 13 instances.

The standard deviations and the minimum results are clearly better for 2DNest with
the exception of Shapes2 and Swim which are instances that are in general handled badly
by 2DNest compared to SAHA. At least for Swim this is likely to be related to the fact
that this instance is very complicated with an average of almost 22 vertices per stencil. It
probably requires more time or some multilevel approach e-g- using approximated stencils or
leaving out small stencils early in the solution process. The latter is the approach taken by
SAHA in their multi-stage scheme which is used for the last 3 instances in the table (Shirts,
Swim and Trousers).

The best solutions produced by 2DNest (including 6 hour runs) are presented in Figure 9.

9 Three-dimensional Nesting

Our fast translation method is not restricted to two dimensions. In this section we will
describe how the method can be used for three-dimensional nesting, but we will not generalize
the proofs from Section 6. Solutions for such problems have applications in the area of Rapid
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9. Three-dimensional Nesting

Jakobs1∗ Jakobs2∗ Mao∗ Marques∗

Fu∗ Shapes2 Dighe1 Dighe2

Shapes0∗ Shapes1∗ Dagli

Albano∗ Trousers∗

Shirts∗ Swim

Figure 9: The best solutions found by 2DNest easily comparable with the ones shown
in Gomes and Oliveira [20].
∗These solutions are also the currently best known solutions in the literature.
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Translation direction

Figure 10: An illustration of the face region between two faces. The faces are not necessarily
parallel, but the sides of the face region are parallel with the translation direction. The face
region would be more complicated if the two faces were intersecting.

f
g

(a)

f
g

(b)

f
g

(c)

f
g

(d)
x

y

z

Figure 11: Translation of a triangle f through another triangle g along the x-axis, where the
triangles have the same projection onto the yz-plane. The face region R(f, g) changes shape
each time two corner points meet.

Prototyping [37], and Osogami [31] has done a small survey of existing solution methods.

9.1 Generalization to three dimensions

It is straightforward to design algorithms to translate polyhedra in three dimensions. Edges
are replaced by faces, edge regions (areas) are replaced by face regions (volumes) and so forth.
Positive and negative faces are also just a natural generalization of their edge counterparts.
The only real problem is to efficiently calculate the face region R(f, g) between two faces f
and g.

Assume that translation is done along the direction of the x-axis. An illustration of a face
region is given in Figure 10. Note that the volume will not change if we simplify the two
faces to the end faces of the face region. This can be done by projecting the faces onto the
yz-plane, find and triangulate the intersection polygon and project this back onto the faces.
This reduces the problem to the calculation of the volume of the face region between two
triangles in three-dimensional space. We know that the three pairs of corner points will meet
under translation. Sorted according to when they meet we will denote these the first, second
and third breakpoint.

An illustration of the translation of two such triangles is given in Figure 11. Such a
translation will almost always go through the following 4 phases.
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9. Three-dimensional Nesting

a = (x, 0, 0)

xc
xb

Figure 12: The volume of the above tetrahedron can be calculated from the three vectors a,
b and c. In our case b and c are linearly dependent on x which is the length of a (and the
translation distance since the tetrahedron started growing).

1. No volume (Figure 11a).

2. After the first breakpoint the volume becomes a growing tetrahedron (Figure 11b).

3. The second breakpoint stops the tetrahedron (Figure 11c). The growing volume is now
a bit harder to describe (Figure 11d) and we will take care of it in a moment.

4. After the third breakpoint the volume is growing linearly. It can be calculated as a
constant plus the area of the projected triangle multiplied with the translation distance
since the corner points met.

We have ignored 3 special cases of pairs of corner points meeting at the same time. 1) If
the faces are parallel then we can simply skip to phase 4 and use a zero constant. 2) If the
two last pairs of corner points meet at the same time then we can simply skip phase 3. 3)
Finally, if the first two pairs of corner points meet at the same time we can skip phase 1. The
reasoning for this is simple. Figure 11c illustrates that it is possible to cut a triangle into
two parts which are easier to handle than the original triangle. The upper triangle is still
a growing tetrahedron, but the lower triangle is a bit different. It is a tetrahedron growing
from an edge instead of a corner and it can be calculated as a constant minus the area of a
shrinking tetrahedron.

The basic function needed is therefore the volume V (x) of a growing tetrahedron (a
shrinking tetrahedron then follows easily). This can be done in several different ways, but
one of them is especially suited for our purpose. Given three directional vectors a,b, c from
one of the corner points of the tetrahedron, the following general formula can be used

V =
1
3!
|a · (b× c)|. (6)

In our case one of the vectors is parallel to the x-axis corresponding to the translation direction.
An example of three vectors is given in Figure 12.

Since the angles of the tetrahedron are unchanged during translation, the vectors b and
c do not change direction and can simply be scaled to match the current translation by the
value x where x is the distance translated. This is indicated in the drawing. Using Equation 6,
we can derive the following formula for the change of volume when translating:
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V (x) =
1
3!
|a · (xb× xc)|

=
1
3!

∣∣∣∣∣∣x3

 1
0
0

 ·
 bx

by

bz

×
 cx

cy

cz

∣∣∣∣∣∣
=

1
6

∣∣(bycz − bzcy)x3
∣∣ .

However, this function is inadequate for our purpose since it is based on the assumption that
the translation is 0 when x = 0. We need a translation offset t and by replacing x with x− t
we get:

V (x) =
1
6

∣∣(bycz − bzcy)(x3 − 3tx2 + 3t2x− t3)
∣∣ . (7)

Now it is a simple matter to use Algorithm 2 in Section 6 for translating polyhedra with
Equation 7 as breakpoint polynomials.

The volume function is a cubic polynomial for which addition and finding minimum are
constant time operations. Assume we are given two polyhedra with m and n faces respectively
(with an upper limit on the number of vertices for each face), then the running time of the
three-dimensional variant of Algorithm 2 is exactly the same as for the two-dimensional
variant: O(mn log(mn)). However, the constants involved are larger.

9.2 Results for three dimensions

A prototype has been implemented, 3DNest, and its performance has been compared with
the very limited existing results. In the literature only one set of simple data instances
has been used. They were originally created by Ilkka Ikonen and later used by Dickinson
and Knopf [13] to compare their solution method with Ikonen et al. [23]. Eight objects are
available in the set and they are presented in Table 2 and Figure 13. Some of them have
holes, but they are generally quite simple. They can all be drawn in two dimensions and then
just extended in the third dimension. They have no relation to real-world data instances.

Name # Faces Volume Bounding box
Block1 12 4.00 1.00 × 2.00 × 2.00
Part2 24 2.88 1.43 × 1.70 × 2.50
Part3 28 0.30 1.42 × 0.62 × 1.00
Part4 52 2.22 1.63 × 2.00 × 2.00
Part5 20 0.16 2.81 × 0.56 × 0.20
Part6 20 0.24 0.45 × 0.51 × 2.50
Stick2 12 0.18 2.00 × 0.30 × 0.30
Thin 48 1.25 1.00 × 3.00 × 3.50

Table 2: The Ikonen data set.

Based on these objects two test cases were created by Dickinson and Knopf for their
experiments.
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10. Conclusion

Part2 Part3 Part4

Part5 Part6 Stick2

Block1 Thin

Figure 13: The Ikonen data set.

• Case 1
Pack 10 objects into a cylinder of radius 3.4 and height 3.0. The 10 objects were chosen
as follows: 3 × Part2, 1 Part4 and 2 × Part3, Part5 and Part6. Total number of faces
is 260 and 11.3% of the total volume is filled.

• Case 2
Pack 15 objects into a cylinder of radius 3.5 and height 5.5. The 15 objects were chosen
as in case 1, but with 5 more Part2. Total number of faces is 380 and 12.6% of the total
volume is filled.

Dickinson and Knopf report execution times for both their own solution method (serial
packing) and the one by Ikonen et al. (genetic algorithm) and they ran the benchmarks on a
200 MHz AMD K6 processor. The results are presented in Table 3 in which results from our
algorithm are included.

Our initial placement is a random placement which could be a problem since it would
quite likely contain almost no overlap and then it would not say much about our algorithm
— especially the GLS part. To make the two cases a bit harder we doubled the number of
objects. Our tests were run on a 733MHz G4. Even considering the difference in processor
speeds there is no doubt that our method is the fastest for these instances. Illustrations of
the resulting placements can be seen in Figure 14.

Test Ikonen et al. Dickinson and Knopf 3DNest

Case 1 22.13 min. 45.55 sec. 3.2 sec. (162 translations)
Case 2 26.00 min. 81.65 sec. 8.1 sec. (379 translations)

Table 3: Execution times for 3 different heuristic approaches. Note that the number of objects
is doubled for 3DNest.

10 Conclusion

We have presented a new solution method for nesting problems. The solution method uses lo-
cal search to reduce the amount of overlap in a greedy fashion and it uses Guided Local Search
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Case 1 Case 2

Figure 14: The above illustrations contain twice as many objects as originally intended in
Ikonens Case 1 and 2. They only took a few seconds to find.

to escape local minima. To find new positions for stencils which decrease the total overlap,
we have developed a new algorithm which determines a horizontal or vertical translation of
a polygon with least overlap. Furthermore, our solution method can easily be extended to
handle otherwise complicated requirements such as free rotation and quality regions.

The solution method has also been implemented and is in most cases able to produce
better solutions than those previously published. It is also robust with very good average
solutions and small standard deviations compared to previously published solutions methods,
and this is within a reasonable time limit of 10 minutes per run.

Finally we have generalized the method to three dimensions which enables us to also solve
three-dimensional nesting problems.
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An efficient solution method

for relaxed variants of the nesting problem

Benny K. Nielsen∗

Abstract

Given a set of irregular shapes, the strip nesting problem is the problem of packing
the shapes within a rectangular strip of material such that the strip length is minimized,
or equivalently the utilization of material is maximized. If the packing found is to be
repeated, e.g., on a roll of fabric or a coil of metal, then the separation between repeats
is going to be a straight line. This constraint can be relaxed by only requiring that the
packing produced can be repeated without overlap. Instead of minimizing strip length
one minimizes the periodicity of these repeats.

We describe how to extend a previously published solution method [6]A for the nesting
problem such that it can also handle the relaxation above. Furthermore, we examine the
potential of the relaxed variant of the strip packing problem by making computational ex-
periments on a set of benchmark instances from the garment industry. These experiments
show that considerable improvements in utilization can be obtained.

Keywords: Cutting, packing, irregular strip packing, lattice packing, nesting

1 Introduction

The nesting problem generally refers to the problem of placing a number of shapes within
in the bounds of some material, typically rectangular, such that no pair of shapes overlap.
Most often, it is also an objective to minimize the size of the material which is equivalent to
maximizing the utilization of the material. This problem is also known as the strip nesting
problem or the irregular strip packing problem. Both two- and three-dimensional applications
of the nesting problem can be found within a large number of industries. For example, the
two-dimensional problem arises when cutting parts of clothes from a roll of fabric. In this
case one needs to maximize the utilization of the fabric or equivalently minimize the waste
of fabric. This is done by finding the shortest strip of fabric necessary to cut all involved
parts of clothes. An example of a solution to such a nesting problem is given in Figure 1.
Other two-dimensional applications include sheet metal, glass and animal hide cutting. An
example of an application of three-dimensional nesting can be found in the industry of rapid
prototyping.

Knapsack or bin packing variants of the nesting problem can also be formulated, but in
this paper as well as in the majority of related publications, the strip packing variant is the
main focus. We are also going to focus on the two-dimensional problem although the problems
and the solution method described can be generalized to three dimensions. In the typology of

∗Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark. E-mail:
benny@diku.dk.
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2. Problem descriptions

Figure 1: A nesting example of clothing parts for trousers.

Wäscher et al. [20] for cutting and packing problems, we are dealing with a two-dimensional
irregular open dimension problem (ODP). The problem is NP-hard even when the shapes
and the material involved are rectangles.

In recent years, the strip nesting problem has received a considerable amount of interest.
A multitude of solution methods which use various different geometric, heuristic and meta
heuristic techniques have been described. Recent surveys are given in the introductions of
the papers by Burke et al. [3], Gomes and Oliveira [7], and Egeblad et al. [6]A, and these
papers also represent some of the most recent efforts to obtain good solutions for the nesting
problem.

This paper concerns a simple variant of the nesting problem based on the following obser-
vation. In some cases the solution to a nesting problem is going to be repeated continuously
on the material used. For example, consider a nesting solution for a subset of the shapes in
Figure 1. If this solution is repeated continuously on a roll of fabric as illustrated in Figure 2a
then it becomes clear that the vertical bounds of the rectangles are not really necessary con-
straints. Relaxing this constraint enlarges the search space and it might be possible to find
solutions with better utilization. An example is given in Figure 2b. Relaxing both the vertical
and horizontal bounds of the material (see Figure 3) makes the search space even larger. We
label these relaxed problem variants repeated nesting problems. Note that we picked a subset
of the shapes in Figure 1 to better illustrate the idea of repeated patterns, but it might also
be a good idea in practice if the nesting problem contains duplicates.

A formal description of repeated nesting problems is given in Section 2 and this is followed
by Section 3 which reviews related existing literature. In Sections 4 and 5 we describe our
approach to the problem which is an extension of the solution method described by Ege-
blad et al. [6]A. Computational experiments on benchmark problems from the literature are
presented in Section 6. Finally, some concluding remarks are given in Section 7.

2 Problem descriptions

The decision variant of the nesting problem can be formulated as follows.

Nesting Decision Problem. Given a set of shapes and a piece of material with fixed size,
determine whether a non-overlapping placement of the shapes within the bounds of the material
exists.

Now, assuming that the material has a rectangular shape with fixed width and variable
length then we can state the following problem.
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(a)

(b)

Figure 2: (a) A solution to a strip nesting problem might be repeated continuously on a long
strip, e.g., a roll of fabric. (b) A better solution could be obtained if the straight vertical
bounds between repeats are relaxed. In this example utilization went up from 88.68% to
89.74% (based on 10 minute runs with the implementation described in Section 6).

Strip Nesting Problem. Given a set of shapes and a strip of material with width w, find
the minimum length l of the material for which the nesting decision problem has a positive
solution.

If the sum of areas of all shapes is denoted A then the utilization of material for a given
solution is A/(l · w). Of course, one is not only interested in the minimum value of l (or the
maximum utilization value), but also in a corresponding placement of the shapes.

Note that the use of the words width and length is based on the tradition in the (strip)
nesting literature. In some cases it can be confusing, e.g., in the drawings, the visual width
of a solution is its length and the visual height of a solution is its width.

The problem definitions above use very general terms. Numerous additional constraints
can often be added depending on the specific application of the nesting problem. This includes
the type of shapes allowed and to what extent rotation or flipping of shapes is allowed. Note
that the decision problem is NP-hard even for rectangular shapes (and material) with no
rotation allowed. Thus in most cases one has to settle for heuristic solutions.

In this paper, the shapes are polygons with no self intersections. Holes in the polygons are
allowed and although in theory rotation could also be allowed [6]A, the current implementation
of the solution method presented cannot handle more than a few fixed rotation angles.

The problems dealt with in this paper can be viewed as relaxations of the strip nesting
problem. The first relaxation is illustrated in Figure 2b. Here a nesting solution is repeated
in one orientation assuming an infinite length of the strip of material. A formal definition of
a more general decision problem is as follows.

Repeated Nesting Decision Problem. Given a set of shapes, a width w and a length l, de-
termine whether a non-overlapping placement of the shapes exists for which any translational
copy with offset (il, jw), i, j ∈ Z, (i, j) 6= (0, 0), can be made without introducing overlap.

The values w and l now describe the periods of an infinitely repeated nesting. It is easy
to see that such a nesting also has a utilization of A/(l · w). We denote the problem of
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Figure 3: Six polygonal shapes are nested such that they can be efficiently repeated both
horizontally and vertically.

minimizing w · l, the repeated (pattern) nesting problem, and if w is a fixed value and repeats
in the orientation of w is not allowed, we denote it the repeated strip nesting problem (as in
Figure 2b).

An interesting alternative visual interpretation of the repeated strip nesting problem is as
follows. Given a set of polygons and a cylinder with fixed height, find the minimum diameter
for the cylinder such that a non-overlapping placement of the polygons on the cylinder wall
exists.

3 Related work

To the best of our knowledge, the problems described above have not previously been de-
scribed or solved in the existing literature. Therefore, the following is a survey of papers
describing solution methods for problems involving some kind of repeated patterns. Note
that this includes a more general problem, known as the densest translational lattice packing
of k polygons, which is described at the end of this section.

Existing literature on nesting problems with repeated patterns has mainly been focused
on point lattice packings with only one or very few polygons involved. A (point) lattice in two
dimensions is the infinite set of points au + bv, a, b ∈ Z for two linearly independent vectors
u and v. The parallelogram spanned by the vectors u and v is denoted the fundamental
parallelogram. Now, the densest translational lattice packing of a given polygon is defined by
a lattice in which a given polygon P can be repeated at every point of the lattice such that
no overlap occurs and the area of the fundamental parallelogram, |u× v|, is minimized. This
corresponds to maximum utilization of an infinite material.

Given an n-sided convex polygon, Mount and Silverman [14] showed that this problem can
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be solved to optimality by an algorithm with linear running time. Note that a solution to this
problem is also a densest translational packing since Rogers [17] has shown that such a packing
is always a lattice packing. Given a non-convex polygon, Stoyan and Patsuk [19] solved the
problem using a mathematical model, but the result is an algorithm which runs in O(n6) time
(reduced to O(n3) given a convex polygon). A mathematical model including the constraints
of a fixed size rectangular material is presented by Stoyan and Pankratov [18], but it is a
simplified mathematical model and the solutions found for this model are not guaranteed to
be optimal. Other heuristic approaches for a non-convex polygon which include the constraints
of a rectangular material are described by Cheng and Rao [4] and Gomes et al. [8].

A slightly more general problem is to find the densest double-lattice packing. A double-
lattice packing is the union of two lattice packings where one lattice is used for the polygon
P and the other one is used for a 180 degree rotation of P . Kuperberg and Kuperberg [10]
showed that a densest double-lattice packing of a convex polygon can be constructed by finding
a minimum area extensive parallelogram within P . Mount [13] then used this fact to describe
an algorithm which can solve the problem in linear time. Kuperberg and Kuperberg [10] also
proved that such a packing would have a density of at least

√
3/2 ≈ 86.6%. Double-lattice

packings for a non-convex polygon are also handled by the mathematical model presented
by Stoyan and Pankratov [18] (which includes a rectangular material), but again, optimal
solutions are not guaranteed. Gomes et al. [8] handle double-lattice packings by first pairing
P and a 180 degree copy, and then use their lattice packing heuristic on the merged polygon.

Much earlier work by Dori and Ben-Bassat [5] represents an interesting heuristic approach
to the problem of packing a single convex polygon in the plane. They search for a small convex
polygon which can both be used to pave the plane and to circumscribe P . Numerous possible
pavers exist (corresponding to tilings of the plane) and they could include various rotations
of P — unfortunately the authors restrict their search to a single type of paver which would
make any solution found equivalent to a double-lattice packing. For this problem, the linear
time algorithm by Mount [13] is guaranteed to find optimal solutions. An approach allowing
several rotation angles of a non-convex polygon is described by Jain et al. [9]. A fixed number
of copies are rotated and translated in a stepwise search of good solutions which can be
repeated in one direction (packing on a strip). During the search, overlap is allowed and to
avoid local minima the search is guided by the meta heuristic technique simulated annealing.
Experiments are only done with 2 and 3 copies of the given polygon. The best solution is with
2 copies where one is a 180 degree variant of the other. This is equivalent to a one-dimensional
double-lattice.

Few papers handle problems (with repeated patterns) which include several different poly-
gons and some handle such problems by reducing them to problems only involving one poly-
gon, e.g., Cheng and Rao [4]. The first problem is then to cluster the polygons and to
describe this cluster by a single polygon. Afterwards any of the solution methods described
above (handling a non-convex polygon) can be used. The hard part is to make a cluster which
is both tightly packed and well-suited for repetition.

Milenkovic [12] has a more direct approach to the problem of handling several polygons in
which a mathematical model is used to search for the densest translational lattice packing of k
polygons. A solution to this problem can be described as the union of k lattice packings, one
for each polygon, all using the same fundamental parallelogram. Note that unlike translational
double-lattice packing, no rotation is involved. Milenkovic first reduces the problem by fixing
the area of the fundamental parallelogram. A series of decision problems with decreasing area
is then solved when trying to minimize the area. A decision problem can then be stated as
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follows. Given a fixed area α, find a lattice defined by vectors u and v and a set of translation
vectors for all polygons, such that |u×v| = α and no polygons overlap when copied according
to the lattice. Milenkovic has also implemented his algorithm and results are presented which
handle up to 4 polygons.

The densest translational lattice packing of k polygons [12] is the problem that best
resembles the problems examined in this paper. The repeated nesting problem as described
in the previous section requires the two vectors u and v to be parallel to the x- and y-axes
and the repeated strip nesting problem fixes the length of one of the vectors, i.e., the one
corresponding to the strip width.

4 Solution method

Some of the best results obtained for the nesting problem have been reported by Egeblad
et al. [6]A. In the following we give an outline of their approach and discuss how to extend it
such that it can also handle repeated patterns.

First of all, the problem of minimizing the strip length is handled separately from the
problem of nesting the shapes given a fixed strip length. An initial strip length is found by
using a fast placement heuristic of the shapes. The length is then reduced such that the
remaining area of the strip is reduced by some fixed percentage. Now the search for a nesting
solution is initiated, and if one is found, the strip length is again reduced. If it takes too long
to find a solution then a smaller reduction is attempted.

The strip nesting problem has now been reduced to a nesting decision problem. The
shapes are either given as polygons or alternatively approximated by polygons and thus,
geometrically, the problem is to nest (or pack) a set of polygons within the bounds of a
rectangle.

Initially, all polygons are simply placed within the bounds of the rectangle. Most likely,
several pairs of polygons overlap and thus the goal is to reduce this overlap iteratively until no
overlap exists — corresponding to a solution to the nesting decision problem. The objective
function value for this minimization problem is the total amount of overlap in the placement.
A local search scheme is used with a neighborhood consisting of horizontal and vertical trans-
lations of each polygon. Now, the major strength of this approach is the existence of a very
efficient algorithm for finding a minimum overlap horizontal or vertical translation of a given
polygon.

The local search reaches a local minimum when no polygon can be translated vertically
or horizontally with a decrease in the total amount of overlap. Whenever such a minimum is
not zero (which is the known global minimum that we are looking for) the search needs to
be diversified. The meta-heuristic guided local search is very well suited for this purpose. In
short, the strategy is as follows. Given a local minimum placement of polygons, the “worst”
overlap between a pair of polygons is punished (possibly more than one pair is punished) by
adding a penalty to the objective function whenever these polygons overlap. This increases
the value of the objective function at the local minimum. At some point it is no longer going
to be a local minimum and the local search can continue. More details are described by
Egeblad et al. [6]A.

To be able to handle repeated patterns we have to extend this solution method. It turns
out that the only major change needed is a generalization of the translation algorithm. It
needs to be able to take into account that the current placement wraps around at the ends.
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l

w

(a)

(b)

(c)

Figure 4: Translation of a polygon (triangle) in a bounded rectangle. (a) The triangle has
been selected for translation and should be moved horizontally to minimize its overlap with
the other polygons. (b) The triangle is moved outside the container. The dashed curve
illustrates the area of overlap function for which we need to find the minimum. (c) Finally,
the triangle is moved to the position corresponding to minimum overlap.

This is the subject of the following section.

5 Polygon translation with repeats

We need to extend the bounded translation algorithm given by Egeblad et al. [6]A to handle
repeated patterns. Without loss of generality we can assume that we are looking for a mini-
mum overlap horizontal translation of a given polygon. In the following, we first describe the
bounded translation algorithm (with a high-level view) and afterwards we show how it can
easily be extended to handle repeated patterns. Note that no changes are needed concerning
the low-level details of the algorithm.

In the following we use a very general notion of a polygon. Shortly, it can be described as
a union of non-intersecting simple polygons for which holes are allowed.

Formally, the bounded (horizontal) translation algorithm solves the following problem.

Bounded Horizontal Translation Problem. Given a polygon P with a fixed vertical offset
y and a polygon Q with a fixed position, find a horizontal offset x for P within some given
range [x1, x2], such that the area of overlap between P and Q is minimized.
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An example is given in Figure 4a. The emphasized triangle is the polygon P and the union
of the remaining polygons is Q. The goal is to find a horizontal position of P which minimizes
its area of overlap with all of the other polygons. The lower left corner of a bounding box
for P is the reference point when offsetting the polygon, thus the left-most position of P is
x = 0. If wP is the width of the polygon P then the range of values for x, that places P
inside the rectangle, is [x1, x2] = [0, l − wP ].

Intuitively, the translation algorithm first places P to the left of Q (see Figure 4b) and
then iteratively moves it to the right while calculating a function which measures the overlap
between P and Q. This is a piecewise quadratic function and it is drawn in Figure 4b where
the x-coordinate is the position of the reference point of P and the y-coordinate is the amount
of overlap. The latter value is scaled such that the maximum is at the top of the rectangle.
In Figure 4c the triangle has been moved horizontally to its minimum overlap position.

If P contains n edges and Q contains m edges then this problem can be solved in
O(nm log nm) time [6]A. Note that most often n � m. If the number of edges in P is
bounded by some constant then the running time is O(m log m).

The problems examined in this paper are slightly different and we need to solve a slight
variation of the bounded translation problem.

Periodic Horizontal Translation Problem. Given a polygon P with a fixed vertical offset
y and an infinite set of copies of a polygon Q at offsets (i · l, y), i ∈ Z, find a horizontal
offset x within the range [0, l[ such that the area of overlap between P and the copies of Q is
minimized.

The range given is just one period of the repeated polygon Q. Given a solution x∗,
identical solutions are given at any offset x∗ + i · l, i ∈ Z. Note that P is also going to be
repeated at each x∗+ i · l and thus it is important that it cannot overlap itself. A simple check
can ensure this (proof not given): If there is no overlap between P at offset 0 and a copy at
horizontal offset l then no pair of copies of P at offsets i · l and j · l, i 6= j, can overlap.

Now, the key observation to be able to extend our bounded translation algorithm is that
to correctly evaluate the overlap between P and the copies of Q we only need a finite subset
of the copies. In most cases only one or two copies. Assume that the width of Q is wQ and
that its minimum positive offset is at oQ (horizontally). Given that the width of P is wP then
the following copies of Q are sufficient (maybe not necessary) to guarantee correct overlap
calculations in the range [0, l[.

(i · l, y) for all i < 0 : i · l + oQ + wQ > 0 (1)
for all i ≥ 0 : l + wP > i · l + oQ (2)

Condition (1) includes any copies of Q which has an offset to the left of the range [0, l[
while still overlapping the range and condition (2) includes any copies of Q with a positive
offset which P might overlap with an offset inside the range. Clearly, the copy of Q with an
offset within the range [0, l[ is always included by condition (2).

In the above, only one fixed polygon was handled, but if it represents a set of polygons
then they could be handled individually when checking the conditions. An example of the
periodic translation problem is given in Figure 5a. Again the triangle is moved to the left
of the fixed polygons, but it is also moved to the left of any copies of the fixed polygons
which can affect overlap calculations while inside the interval [0, l] (condition (1) above). The
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w

(a)

(b)

(c)

Figure 5: Illustration of the translation of a polygon within a horizontally repeated pattern.
(a) The triangle has been selected for translation. (b) The triangle is moved to the left of the
material and to the left of any polygons needed to get correct overlap calculations inside the
material. Polygons are also included to the right of the container. (c) The triangle is moved
to the position corresponding to minimum overlap

67



6. Computational experiments

Figure 6: An example showing that a large number of copies of a given polygon can be
necessary. Note the single large polygon which stretches four repeats.

overlap area function is also calculated for the full range which can require extra copies to
the right of the maximum x-coordinate l (condition (2) above). Ensuring these copies is more
or less all that is required to handle repeated patterns. In Figure 5b the triangle is moved
to the left and the area of overlap function is calculated as before (and drawn in the figure).
Finally, in Figure 5c, the polygon is moved to its new minimum overlap position.

The conditions for copies of Q may look overly complicated, but it is necessary since one
could be dealing with horizontally very long (and tilted) polygons both regarding P and Q.
An extreme example is given in Figure 6 in which a single polygon stretches four repeats.

A few issues remain to be discussed. 1) The description above does not include the penal-
ties used by the guided local search. These are constants which are added to the quadratic
overlap function whenever penalized pairs of polygons overlap. This requires some bookkeep-
ing, but it does not affect the worst case running time and no special changes are needed
to handle repeated patterns. 2) If both horizontal and vertical repeats are allowed then the
copies of Q described are not sufficient since a horizontally translated polygon could overlap
with several vertical copies of Q. This is simply handled by adding more copies of Q before
translation using conditions similar to those already described. 3) We have not considered
what to do with the ends of a roll (or the borders of a plate). It is assumed that the number of
repetitions makes this additional waste negligible, but it is possible to solve a special nesting
problem to minimize this additional waste. For example, one could treat the final placement
as one big polygon (possibly simplifying it) and then solve the normal strip nesting problem
using this polygon and all of the original polygons. The big polygon would only be able to
move horizontally and the rest would be placed to its left and to its right side within the
bounds of the rectangular material.

6 Computational experiments

The changes needed to handle repeated patterns have been implemented in C++ and incor-
porated in the nesting program 2DNest [6]A. All experiments are done on a machine with a
3GHz Pentium 4 processor.

A set of problem instances has been selected from the literature and downloaded from the
ESICUP homepage1. All of these instances are taken from the garment industry and thus

1http://www.fe.up.pt/esicup
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Problem Number Number Average Strip Width Origin
instance of shapes of unique number of width ratio

shapes vertices
Albano 24 8 7.25 4900 0.56 Albano and Sappupo [1]
Dagli 30 10 6.30 60 1.18 Ratanapan and Dagli [16]
Mao 20 9 9.22 2550 1.73 Bounsaythip and Maouche [2]
Marques 24 8 7.37 104 1.50 Marques et al. [11]
Shirts 99 8 6.63 40 0.74 Oliveira et al. [15]
Trousers 48 17 5.06 79 0.36 Oliveira et al. [15]

Table 1: Problem instances used in the experiments. The width ratio is the ratio between
the width of the problem instance and the length of a solution with 100% utilization.

Waste
Problem No repeats 1D repeat 2D repeat reduction
instance Average Max Average Impr Max Average Impr Max. 1D 2D
Albano 85.02 (0.6) 86.43 85.80 (0.4) 0.78 86.48 86.20 (0.4) 1.18 86.73 5.2 7.9
Dagli 82.05 (0.5) 82.88 83.04 (0.6) 0.99 84.13 83.06 (0.3) 1.01 83.56 5.5 5.6
Mao 78.91 (0.6) 79.54 80.11 (0.5) 1.20 81.02 80.73 (0.4) 1.82 81.54 5.7 8.6
Marques 86.90 (0.4) 87.51 87.05 (0.4) 0.15 87.50 87.38 (0.2) 0.48 87.50 1.1 3.7
Shirts 84.21 (0.3) 84.88 84.94 (0.1) 0.73 85.14 85.19 (0.2) 0.98 85.74 4.6 6.2
Trousers 85.21 (0.3) 85.84 85.60 (0.2) 0.39 86.02 85.98 (0.3) 0.77 86.26 2.6 5.2

Table 2: Results of experiments with three different problems. All values are based on 10
runs of 10 minutes with different seeds. The three problems are strip nesting with no repeats,
strip nesting with horizontal repeats (1D) and strip nesting with both horizontal and vertical
repeats (2D). Average utilization and maximum utilization are reported for all problems. The
improvement in percentage is reported for the two latter problems in comparison with the
first problem. The two rightmost columns are the waste reduction in percent (based on the
same comparison).

the results presented should indicate the potential of repeated patterns in realistic settings.
Characteristics of these instances can be seen in Table 1. The number of polygons vary
between 20 and 99, but the number of unique polygons only vary between 8 and 17. The
width ratio is the ratio between the width and the length of a solution with 100% utilization
(which most likely does not exist). This value indicates how the rectangle of a solution is
going to be shaped. Note that one could easily construct problem instances which would see
considerable improvements when allowed to repeat patterns. The problem shown in Figure 6
is one example.

Although 2DNest can work with rotation angles of 90, 180 and 270 degrees, all exper-
iments have been done without rotation. This also means that the results are not directly
comparable with results from papers on the strip nesting problem. For this purpose, see
the results of 2DNest reported by Egeblad et al. [6]A. Here we focus on the improvements
obtained by repeated patterns only.

The main results are presented in Table 2. Each instance has first been solved as a standard
nesting problem. The average utilization of 10 runs with random seeds are given and these
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are supplemented with the standard deviation and the maximum utilization found. The
same instances have then been solved allowing either horizontal repeats only or allowing both
horizontal and vertical repeats. Again, average utilization, standard deviation and maximum
utilization are presented in the table. Furthermore, the improvement in percentage points is
given. In all cases only the strip length is minimized, i.e., even when allowing both horizontal
and vertical repeats the width is still fixed. The best solutions found for the problem with
horizontal repeats are shown in Figure 7.

Focusing on the results for horizontal repeats, the improvements vary from only 0.15 up
to 1.20 percentage points. This may not seem like a lot, but if one considers the amount of
waste in the solutions then these numbers correspond to a 1.1% and 5.7% decrease in waste
(second to last column in Table 2). Note also that the best improvements are obtained for the
instances with the lowest utilization and vice versa. This indicates that the effect of repeated
patterns is greater for “hard” instances. When repeating the pattern both horizontally and
vertically the waste reduction is between 3.7% and 8.6%. It would be a reasonably conjecture
that small problem instances are better candidates for improvements. This conjecture is
supported by the large improvements for the small instances, Albano (24), Mao (30) and
Dagli (20), but it is not supported by Marques (24) which is not really improved and Shirts
(99) which is more or less improved just as much as the small instances. Nevertheless, given
instances that are sufficiently large in the number of polygons involved, the advantage of
repeated patterns should decrease.

Since we do not find the optimal solutions we cannot really know if the improvements
are caused by the existence of better solutions in the larger search spaces, or are caused by a
more efficient search for good solutions. It is worth noting though that the search for repeated
patterns involves fewer steps than it does for non-repeated patterns. The worst case running
time of the translation algorithm did not change when applied to repeated patterns, but it is
slower by some constant factor. This is emphasized by the results presented in Table 3. The
average number of translations performed per second is given for all three nesting problems.
Small instances are punished more than large instances (most likely because relatively more
copies of polygons are needed in each translation), but the results are quite similar. On average
the number of translations performed decreases by 21% when making horizontal repeats only
and by 33% when also making vertical repeats. This decrease in the number of translations
is important to consider when analyzing the results in Table 2.

7 Conclusion

We have presented an efficient heuristic solution method which can construct very good
solutions for strip nesting problems in which the solution is going to be repeated either
horizontally or both horizontally and vertically. Results are given for fairly large instances
and they strongly indicate that this can give a considerable reduction of waste for problem
instances in the garment industry. The solution method is an extension of the work of
Egeblad et al. [6]A and the main difference is an altered algorithm for finding a minimum
overlap horizontal or vertical position of a given polygon.

Numerous problems remain for future research including free rotation, border filling and a
generalization to three dimensions. It should also be possible to alter the solution method such
that it applies to the more general translational lattice packing problem for k polygons [12].
This would involve varying both width and length of the solution, but more importantly it
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Albano (util.: 86.48%, length: 10066.06)

Dagli (util.: 84.13%, length: 60.28) Mao (util.: 81.02%, length: 1819.20)

Marques (util.: 87.50%, length: 79.05) Shirts (util.: 85.14%, length: 63.42)

Trousers (util.: 86.02%, length: 253.19)

Figure 7: Best results for the repeated strip nesting problem.
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Problem Translations Decrease
instance per second in percent

No 1D 2D 1D 2D
Albano 2847 2178 1891 23% 34%
Dagli 2808 2235 1856 20% 34%
Mao 1622 1218 982 25% 39%
Marques 2957 2213 1882 25% 36%
Shirts 1613 1385 1223 14% 24%
Trousers 2010 1658 1443 18% 28%
Average 2310 1815 1546 21% 33%

Table 3: The average number of translations performed within the running time of 10 minutes.
Fewer translations are done when searching for solutions with repeated patterns. The two
rightmost columns describe the decrease in percent.

would be necessary to repeat the solution in arbitrary directions. Another interesting idea is
to extend the problem to other pavers than the parallelogram used in lattice packings. For
example, it might be possible to produce solutions using a hexagonal paver.
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Translational packing of arbitrary polytopes
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Abstract

We present an efficient solution method for packing d-dimensional polytopes within
the bounds of a polytope container. The central geometric operation of the method is an
exact one-dimensional translation of a given polytope to a position which minimizes its
volume of overlap with all other polytopes. We give a detailed description and a proof of
a simple algorithm for this operation in which one only needs to know the set of (d− 1)-
dimensional facets in each polytope. Handling non-convex polytopes or even interior holes
is a natural part of this algorithm. The translation algorithm is used as part of a local
search heuristic and a meta-heuristic technique, guided local search, is used to escape
local minima. Additional details are given for the three-dimensional case and results are
reported for the problem of packing polyhedra in a rectangular parallelepiped. Utilization
of container space is improved by an average of more than 14 percentage points compared
to previous methods.

The translation algorithm can also be used to solve the problem of maximizing the
volume of intersection of two polytopes given a fixed translation direction. For polytopes
with n and m facets and a fixed dimension, the running time is O(nm log(nm)) for both
the minimization and maximization variants of the translation algorithm.

Keywords: Packing, heuristics, translational packing, packing polytopes, minimizing
overlap, maximizing overlap, strip-packing, guided local search

1 Introduction

Three-dimensional packing problems have applications in various industries, e.g., when items
must be loaded and transported in shipping containers. The three main problems are bin-
packing, knapsack packing and container loading. In bin-packing the minimum number of
equally-sized containers sufficient to pack a set of items must be determined. In knapsack
packing one is given a container with fixed dimensions and a set of items each with a profit
value; one must select a maximum profit subset of the items which may be packed within the
container. Container loading is generally a special case of the knapsack problem where the
profit value of each item is set to its volume. Bin-packing, knapsack packing and container
loading problems involving boxes are classified as orthogonal packing problems and are well-
studied in the literature.

In general three-dimensional packing problems can also involve more complicated shapes;
it is not only boxes that are packed in shipping containers. An interesting example is rapid
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Scanning mirrorLaser

Levelling roller

Powder cartridge
Powder

Figure 1: An illustration of a typical machine for rapid prototyping. The powder is added
one layer at a time and the laser is used to sinter what should be solidified to produce the
desired objects.

prototyping which is a term originally used for the production of physical prototypes of 3D
computer aided design (CAD) models needed in the early design or test phases of new prod-
ucts. Nowadays, rapid prototyping technologies are also used for manufacturing purposes.
One of these technologies, selective laser sintering process, is depicted in Figure 1. The idea
is to build up the object(s) by adding one very thin layer at a time. This is done by rolling out
a thin layer of powder and then sintering (heating) the areas/lines which should be solid by
the use of a laser. The unsintered powder supports the objects built and therefore no pillars
or bridges have to be made to account for gravitational effects. This procedure takes hours
(“rapid” when related to weeks) and since the time required for the laser is significantly less
than the time required for preparing a layer of powder, it will be an advantage to pack as
many objects as possible into one run. A survey of rapid prototyping technologies is given by
Yan and Gu [29].

In order to minimize the time used by the rapid prototype machine items must be placed as
densely as possible and the number of layers must be minimized. The problem of minimizing
layers may therefore be formulated as a strip-packing problem: A number of items must be
placed within a container such that the container height is minimized.

In this paper we present a solution method for the multidimensional strip-packing problem,
however, our techniques may be applied to some of the other problem variants, e.g., bin-
packing. Specifically, for three dimensions, we pack a number of arbitrary (both convex and
non-convex) polyhedra in a parallelepiped such that one of the parallelepiped’s dimensions is
minimized. No rotation is allowed and gravity is not considered. A formal description of the
problem is given in Section 2 and a review of related work is given in Section 3.
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The solution method described in this paper generalizes previous work by Egeblad et al. [11]A.
This earlier paper focused on the two-dimensional variant of this problem which is generally
known as the nesting problem (packing polygons in a rectangle), but also included a short
description and some results for a three-dimensional generalization. In both cases overlap is
iteratively reduced by a central algorithm which determines a one-dimensional translation of
a given polygon/polyhedra to a minimum overlap position.

Egeblad et al. only prove the correctness of the two-dimensional variant. In this paper, we
prove the correctness of the translation algorithm in three and higher dimensions (Section 4),
essentially describing a solution method for packing polytopes in d-dimensional space. We
also give a more detailed description of the translation algorithm in three dimensions. The
complete solution method is described in Section 5.

Because applications for d > 3 are not obvious, an implementation has only been done for
the three-dimensional case. Experimental results are presented in Section 6 and compared
with existing results from the literature. Finally, some concluding remarks are given in
Section 7.

2 Problem description

The main problem considered in this paper is as follows:

The 3D Decision Packing Problem (3DDPP). Given a set of polyhedra S and a poly-
hedral container C, determine whether a non-overlapping translational placement of the poly-
hedra within the bounds of the container exists.

This problem is NP-complete even if all polyhedra in S are cubes [15]. If ν(P ) denotes the
volume of a polyhedron P and this is generalized for sets such that ν(S) =

∑
P∈S ν(P ) then a

non-overlapping placement for the 3DDPP has a utilization (of the container) of ν(S)/ν(C).
Based on the decision problem we can define the following optimization problem.

The 3D Strip Packing Problem (3DSPP). Given a set of polyhedra S and a rectangular
parallelepiped C (the container) with fixed width w and length l, find the minimum height h
of the container for which the answer to the 3D decision packing problem is positive.

An optimal solution to 3DSPP has a utilization of ν(S)/ν(C) = ν(S)/(w · l · h), i.e., the
utilization only depends on the height of the parallelepiped and not a particular placement
corresponding to this height. The word strip is based on the terminology used for the 2-
dimensional variant of the problem.

While the solution method discussed in the following sections could be applied to the
bin-packing problem or other variants of multi-dimensional packing problems, we will limit
our description here to the strip-packing problem. The strip-packing variant has been chosen
mainly because it allows a comparison with results from the existing literature. In the typology
of Wäscher et al. [28], the problem we consider, 3DSPP, is a three-dimensional irregular open
dimension problem (ODP) with fixed orientations of the polyhedra.

The polyhedra handled in this paper are very general. Informally, a polyhedron can be
described as a solid whose boundary consists of a finite number of polygonal faces. Note that
every face must separate the exterior and the interior of the polyhedron, but convexity is not
required and holes and interior voids are allowed. A polyhedron is even allowed to consist of
several disconnected parts and holes may contain smaller individual parts.
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The problem formulations above are easily generalized to higher dimensions. Simply
replace polyhedron with polytope and consider a rectangular d-dimensional parallelepiped
for the strip-packing problem. We denote the corresponding problems dDDPP and dDSPP,
where d is the number of dimensions. For simplicity, the faces are required to be convex,
but this is not a restriction on the types of polytopes allowed, as a non-convex face can be
partitioned into a finite number of convex faces. The polytopes themselves can be non-convex
and contain holes.

Since dDDPP is NP-complete dDSPP is an NP-hard problem. Our solution method for
dDSPP is heuristic and therefore not guaranteed to find the optimal solution of dDSPP.

When solving a problem in 3D for physical applications such as rapid prototyping, one
should be aware that some feasible solutions to the problem are not very useful in practice
since objects may be interlocked. Avoiding this is a very difficult constraint which is not
considered in this paper.

3 Related work

Cutting and packing problems have received a lot of attention in the literature, but focus has
mainly been on one or two dimensions and also often restricted to simple shapes such as boxes.
A survey of the extensive 2D packing literature is given by Sweeney and Paternoster [26] and a
survey of the 2D packing literature concerning irregular shapes (nesting) is given by Dowsland
and Dowsland [10]. Recent heuristic methods for orthogonal packing problems include the
work of Lodi et al. [21] and Faroe et al. [14] for the bin-packing problem and Bortfeldt et al. [3]
and Eley [13] for the container loading problem. The meta-heuristic approach utilized in this
paper is based on the ideas presented by Faroe et al.

In the following, we review solution methods presented for packing problems in more than
two dimensions which also involve shapes more general than boxes. A survey is given by Ca-
gan et al. [5] in the broader context of three-dimensional layout problems for which maximum
utilization may not be the only objective. Their focus is mainly on various meta-heuristic
approaches to the problems, but a section is also dedicated to approaches to determine in-
tersections of shapes. A survey on 3D free form packing and cutting problems is given by
Osogami [24]. This covers applications in both rapid prototyping in which maximum utiliza-
tion is the primary objective and applications in product layout in which other objectives,
e.g., involving electrical wire routing length and gravity are more important.

Ikonen et al. [19] have developed one of the earliest approaches to a non-rectangular 3D
packing problem. Using a genetic algorithm they can handle non-convex shapes with holes
and a fixed number of orientations (45◦ increments on all three axes). To evaluate if two
shapes overlap, their bounding boxes (the smallest axis-aligned circumscribing box) are first
tested for intersection and, if they intersect, triangles are subsequently tested for intersection.
For each pair of intersecting triangles it is calculated how much each edge of each triangle
intersects the opposite triangle.

Cagan et al. [4] use the meta-heuristic simulated annealing and they also allow rotation.
They can also handle various additional optimization objectives such as routing lengths.
Intersection checks are done using octree decompositions of shapes. An octree is a hierarchical
tree data structure commonly used to partition three-dimensional space. Each level of an
octree divides the previous level uniformly into 8 cubes. Each cube is marked depending on
whether the cube is completely inside (black), partially inside (gray) or completely outside

78



Translational packing of arbitrary polytopes

the shape (white). At the top level the octree consists of one cube circumscribing the entire
shape. This means that level n uses up-to 8n−1 cubes. Only gray cubes are sub-divided. To
check overlap of two shapes one can test the cubes of the associated octrees. If two black
cubes overlap then the shapes overlap. If gray cubes overlap one may recursively consider
their higher resolution sub-cubes until the highest resolution is reached or until only white
cubes overlap, in which case the actual shapes do not overlap. As the annealing progresses the
highest resolution is increased to improve accuracy. Improvements of this work using variants
of the meta-heuristic pattern search instead of simulated annealing are later described by Yin
and Cagan, Yin and Cagan [30, 31].

Dickinson and Knopf [8] focus on maximizing utilization, but they introduce an alter-
native metric to determine the compactness of a given placement of shapes. In short, this
metric measures the compactness of the remaining free space. The best free space, in three
dimensions, is in the form of a sphere. The metric is later used by Dickinson and Knopf [9]
with a sequential placement algorithm for three-dimensional shapes. Items are placed one-
by-one according to a predetermined sequence and each item is placed at the best position as
determined by the free-space metric. To evaluate if two shapes overlap they use depth-maps.
For each of the six sides of the bounding box of each shape, they divide the box-side into a
uniform two-dimensional grid and store the distance perpendicular to the box-side from each
grid cell to the shape’s surface. Determining if two shapes overlap now amounts to testing the
distance at all overlapping grid points of bounding box sides, when the sides are projected to
two dimensions. For each shape up to 10 orientations around each of its rotational axes are
allowed. Note that the free-space metric is also generalized for higher dimensions and thus
the packing algorithm could potentially work in higher dimensions.

Hur et al. [18] use voxels, a three-dimensional uniform grid structure, to represent shapes.
As for the octree decomposition technique, each grid-cell is marked as full if a part of the
associated shape is contained within the cell. The use of voxels allows for simple evaluation
of overlap of two shapes since overlap only occurs if one or more overlapping grid cells from
both shapes are marked as full. Hur et al. [18] also use a sequential placement algorithm and
a modified bottom-left strategy which always tries to place the next item of the sequence close
to the center of the container. A genetic algorithm is used to iteratively modify the sequence
and reposition the shapes.

Eisenbrand et al. [12] investigate a special packing problem where the maximum number
of uniform boxes that can be placed in the trunk of a car must be determined. This includes
free orientation of the boxes. For any placement of boxes they define a potential function that
describes the total overlap and penetration depth between boxes and trunk sides and of pairs
of boxes. Boxes are now created, destroyed and moved randomly, and simulated annealing is
used to decide if new placements should be accepted.

Recently, Stoyan et al. [25] presented a solution method for 3DSPP handling convex
polyhedra only (without rotation). The solution method is based on a mathematical model
and it is shown how locally optimal solutions can be found. Stoyan et al. [25] use Φ-functions
to model non-intersection requirements. A Φ-function for a pair of shapes is defined as a real-
value calculated from their relative placement. If the shapes overlap, abut or do not overlap
the value of the Φ-function is larger than, equal or less than 0, respectively. A tree-search is
proposed to solve the problem to optimality but due to the size of the solution space Stoyan
et al. opt for a method that finds locally optimal solutions instead. Computational results
are presented for three problem instances with up to 25 polyhedra. A comparison with the
results of the solution method presented in this paper can be found in Section 6.
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4 Axis-Aligned Translation

As mentioned in the introduction, our solution method for packing polytopes is based on an
algorithm for translating a given polytope to a minimum volume of overlap position in an
axis-aligned direction. Although our solution method is heuristic, this problem is polynomial-
time solvable and we present an efficient algorithm for it here. The algorithm can easily
be modified to determine a maximum overlap translation instead. Note that position of a
polytope is specified by the position of a given reference point on the polytope; hence its
position corresponds to a single point.

Without loss of generality, we assume that the translation under consideration is an x-
axis-aligned translation. In three dimensions, the problem we are solving can be stated as
follows:

1-Dimensional Translation Problem in 3D (1D3DTP). Given a fixed polyhedral con-
tainer C, a polyhedron Q with fixed position, and a polyhedron P with fixed position with
respect to its y and z coordinates, find a horizontal offset x for P such that the volume of
overlap between P and Q is minimized (and P is within the bounds of the container C).

By replacing the term polyhedron with polytope this definition can easily be generalized
to higher dimensions, in which case we denote it 1DdDTP. In Section 4.1 we give a more
formal definition and present a number of properties of polytopes which we use in Section 4.2
to prove the correctness of an algorithm for 1DdDTP. Since the algorithm solves the problem
of finding a minimum overlap position of P we refer to it in the following as the translation
algorithm. In Section 4.3 we provide additional details for the three dimensional case.

Egeblad et al. [11]A have proved the correctness of the two-dimensional special case of
the algorithm described in the following and they have also sketched how the ideas can be
generalized to 3D. Here we flesh out the approach sketched by Egeblad et al., and generalize
it to d dimensions.

4.1 Polytopes and their Intersections

In the literature, the term polytope is usually synonymous with convex polytope, which can be
thought of as the convex hull of a finite set of points in d-dimensional space, or, equivalently, a
bounded intersection of a finite number of half-spaces. In this paper we use the term polytope
to refer to a more general class of regions in d-dimensional space, which may be non-convex
and can be formed from a finite union of convex polytopes.

By definition, we assume that the boundary of a polytope P is composed of faces, each of
which is a convex polytope of dimension less than d, satisfying the following properties:

1. The (d− 1)-dimensional faces of P (which we refer to as facets) have the property that
two facets do not intersect in their interiors.

2. The facets must be simple, i.e., on the boundary of a facet each vertex must be adjacent
to exactly d− 1 edges. Note that this only affects polytopes of dimension 4 or more.

3. Each face of P of dimension k < d − 1 lies on the boundary of at least two faces of P
of dimension k + 1 (and hence, by induction, on the boundary of at least two facets).

Following standard notation, we refer to a one-dimensional face of P as an edge, and a
zero-dimensional face as a vertex. Note that our definition of a polytope differs from some
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Figure 2: (a) A polygon with three positive (green) edges, (v1, v7), (v2, v3) and (v5, v6), three
negative (red) edges, (v3, v4), (v4, v5) and (v6, v7), and one neutral (yellow) edge, (v1, v2). Also
note that the end-points v1, v3, v5, v6 and v7 are neutral, v2 is positive and v4 is negative.
(b) A polyhedron for which only positive (green) and neutral (yellow) faces are visible. Most
of the edges are neutral since the interior of the polyhedron is neither to the left nor the right
of the edges. Two edges are positive since the interior is only to the right of them.

other definitions in the literature, in that we allow two adjacent facets to lie in the same
hyperplane. As mentioned earlier, this allows our polytopes to be as general as possible,
while imposing the condition that all faces are convex (by partitioning any non-convex facets
into convex (d− 1)-dimensional polytopes).

Given a polytope P , we write p ∈ P if and only if p is a point of P including the
boundary. More importantly, we write p ∈ int(P ) if and only if p is an interior point of P ,
i.e., ∃ε > 0 : ∀p′ ∈ Rd, where ||p− p′|| < ε, p′ ∈ P .

We next introduce some new definitions and concepts required to prove the correctness of
the translation algorithm in d dimensions.

Let ei be the ith coordinate system basis vector, e.g., e1 = (1, 0, . . . , 0)T . As stated earlier
we only consider translations in the direction of the x-axis (that is, with direction ±e1). This
helps to simplify the definitions and theorems of this section without loss of generality since
translations along other axes work in a similar fashion. In the remainder of this section it is
convenient to refer to the direction −e1 as left and e1 as right.

Given a polytope P , we divide the points of the boundary of P into three groups, positive,
negative and neutral.

Definition 10 (Signs of a Boundary Point). Suppose p is a point of the boundary of a polytope
P . We say that the sign of p is

• positive if ∃ε > 0 : ∀δ ∈ (0, ε) : p + δ · e1 ∈ int(P ) and p− δ · e1 /∈ int(P ),

• negative if ∃ε > 0 : ∀δ ∈ (0, ε) : p− δ · e1 ∈ int(P ) and p + δ · e1 /∈ int(P ),

• and neutral, if it is neither positive nor negative.
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In other words a point is positive if the interior of the polytope is only on the right side
of the point, it is negative if the interior of the polytope is only on the left side of the point,
and it is neutral if the interior of the polytope is on both the left and the right side of the
point or on neither the left nor the right side.

Clearly, each point on the boundary is covered by one and only one of the above cases.
Furthermore, all points in the interior of a given face have the same sign. Therefore, given a
set of facets F we can divide them into sets of positive facets, F+, negative facets, F− and
neutral facets, F 0. Examples in two and three dimensions are given in Figure 2.

In order to handle some special cases in the proofs, we need to be very specific as to which
facet a given boundary point belongs. Every positive or negative point p on the boundary is
assigned to exactly one facet as follows. If p belongs to the interior of a facet then it cannot
belong to the interior of any other facet and thus it is simply assigned to this facet. If p does
not belong to the interior of a facet then it must be on the boundary of two or more facets.
If p is positive then it follows easily that this set of facets contains at least one positive facet
to which it can be assigned. Analogously, if p is negative it is assigned to a negative facet.
Such an assignment of the boundary will be referred to as a balanced assignment. Neutral
points are not assigned to any facets. Given a (positive or negative) facet f , we write p ∈ f if
and only if p is a point assigned to f . Note that since all points in the interior of a face have
the same sign, it follows that the assignment of all boundary points can be done in bounded
time; one only needs to determine the sign of one interior point of a face (of dimension 1 or
more) to assign the whole interior of the face to a facet.

It follows from the definition of balanced assignment that a point moving in the direction
of e1 that passes through an assigned point of a facet of P either moves from the exterior of
P to the interior of P or vice versa. To determine when a point is inside a polytope we need
the following definition.

Definition 11 (Facet Count Functions). Given a set of facets F we define the facet count
functions for all points p ∈ Rd as follows:

←−
C F+(p) = |{f ∈ F+ | ∃t > 0 : p− te1 ∈ f}|,
←−
C F−(p) = |{f ∈ F− | ∃t ≥ 0 : p− te1 ∈ f}|,
−→
C F+(p) = |{f ∈ F+ | ∃t ≥ 0 : p + te1 ∈ f}|,
−→
C F−(p) = |{f ∈ F− | ∃t > 0 : p + te1 ∈ f}|.

The facet count functions,
←−
C F+(p) and

←−
C F−(p), represent the number of times the ray

from p with directional vector −e1 intersects a facet from F+ and F−, respectively. Equiv-
alently,

−→
C F+(p) and

−→
C F−(p) represent the number of times the ray from p with directional

vector e1 intersects a facet from F+ and F−, respectively.
The following lemma states some other important properties of polytopes and their posi-

tive/negative facets based on the facet count functions above.

Lemma 2. Let P be a polytope with facet set F . Given a point p and interval I ⊆ R, we say
that the line segment lp(t) = p+ t · e1, t ∈ I, intersects a facet f ∈ F if there exist t0 ∈ I such
that lp(t0) ∈ f .

Given a balanced assignment of the boundary points of P then all of the following state-
ments hold.
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1. If I = (−∞,∞) then, as t increases from −∞, the facets intersected by lp(t) alternate
between positive and negative.

2. If p /∈ int(P ) then
−→
C F+(p) =

−→
C F−(p), i.e, the ray from p in direction e1 intersects an

equal number of positive and negative facets. Similarly,
←−
C F+(p) =

←−
C F−(p).

3. If p ∈ int(P ) then
−→
C F−(p)−

−→
C F+(p) = 1, i.e, the number of positive facets intersected

by the ray from p in direction e1 is one less than the number of negative facets. Similarly,←−
C F+(p)−

←−
C F−(p) = 1.

The proof is straightforward, and is omitted.
As a corollary, the facet count functions provide an easy way of determining whether or

not a given point is in the interior of P . We do not need this to prove the main theorems of
this section, but it illustrates the intuitive purpose of the facet count functions.

Corollary 1. Let P be a polytope with facet set F . Given a balanced assignment of the
boundary points then for every point p ∈ Rd we have that p lies in the interior of P if
and only if

−→
C F−(p) −

−→
C F+(p) = 1. Similarly, p lies in the interior of P if and only if

←−
C F+(p)−

←−
C F−(p) = 1.

Proof. Follows directly from Lemma 2.

The following definitions relate only to facets. Their purpose is to introduce a precise
definition of the overlap between two polytopes in terms of their facets.

Definition 12 (Containment Function, Inter-Facet Region). Given two facets f and g and
a point p′ ∈ Rd define the containment function

C(f, g, p′) =
{

1 if ∃ t1, t2 ∈ R : t2 < 0 < t1, p′ + t2e1 ∈ g, and p′ + t1e1 ∈ f
0 otherwise.

Also define the inter-facet region R(f, g) as the set of points which are both to the right of
g and to the left of f ; that is, R(f, g) = {p ∈ Rd | C(f, g, p) = 1}.

Given two facet sets F and G, we generalize the containment function by summing over
all pairs of facets (one from each set):

C(F,G, p) =
∑
f∈F

∑
g∈G

C(f, g, p).

If f and g do not intersect and f lies to the right of g then in three dimensions the
inter-facet region R(f, g) is a tube, with the projection (in direction e1) of f onto g and the
projection of g onto f as ends. A simple example is given in Figure 3.

We now state a theorem which uses the containment function to determine whether or
not a given point lies in the intersection of two polytopes.

Theorem 1. Let P and Q be polytopes with facet sets F and G, respectively. Then for any
point p ∈ Rd the following holds:

p ∈ int(P ) ∩Q ⇔ w(p) = 1
p /∈ int(P ) ∩Q ⇔ w(p) = 0,

where

w(p) = C(F+, G−, p) + C(F−, G+, p)−C(F+, G+, p)−C(F−, G−, p) (1)
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g f

Figure 3: A simple example of the inter-facet region, R(f, g), of two vertical faces f and g in
R3. The dashed lines delimit the region. Note that the inter-facet region R(g, f) is empty.

Proof. Using the facet count functions and Lemma 2, we can, in each special case, verify
Equation 1 by counting. If p ∈ int(P ∩Q) then the following calculations are needed:

w(p) =
←−
C F+(p) ·

−→
C G−(p) +

←−
C F−(p) ·

−→
C G+(p)−

←−
C F+(p) ·

−→
C G+(p)−

←−
C F−(p) ·

−→
C G−(p)

=
←−
C F+(p) · (

−→
C G−(p)−

−→
C G+(p))−

←−
C F−(p) · (

−→
C G−(p)−

−→
C G+(p))

=
←−
C F+(p)−

←−
C F−(p) = 1.

When p /∈ int(P ∩Q) the counting depend on whether p /∈ P and/or p /∈ Q. The above and
the rest of the proof is similar to the proof given for two dimensions by Egeblad et al. [11]A.
Replace edge with facet and polygon with polytope.

In order to solve 1DdDTP we need to define a measure of the overlap between two poly-
topes.

Definition 13 (Overlap Measures). An overlap measure is a real-valued function µ such
that, for any bounded region R0, µ(R0) = 0 if int(R0) = ∅ and µ(R0) > 0 otherwise.

We would like an overlap measure which is computationally efficient and give a reasonable
estimate of the degree of overlap of a polytope P with another fixed polytope, as P undergoes a
translation in direction e1. A general study of overlap measures in the context of translational
packing algorithms will appear in a forthcoming paper.

For the remainder of this paper we restrict our attention to the standard Euclidean volume
measure V d. Given a bounded region of space, R, we write V d(R) for its volume:

V d(R) =
∫

R
dV d.

In particular V d(R(f, g)) is the volume of the inter-facet region of facets f and g. For
convenience, we let V d(f, g) = V d(R(f, g)) and for sets of facets we use

V d(F,G) =
∑
f∈F

∑
g∈G

V d(f, g).

The following theorem states that V d is an overlap measure with a simple decomposition
into volumes of inter-facet regions.
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Theorem 2. Let R0 be a bounded region in Rd, and let P and Q be polytopes in Rd, with
facet sets F and G respectively, such that R0 = P ∩ Q. Then V d is a decomposable overlap
measure, and satisfies the following relation:

V d(R0) = V d(F+, G−) + V d(F−, G+)− V d(F+, G+)− V d(F−, G−).

Proof. The theorem essentially follows from Theorem 1 and the proof given for the Intersection
Area Theorem in Egeblad et al. [11]A, with area integrals replaced by d-dimensional volume
integrals.

Note that a balanced assignment is not required in order to get the correct overlap value
using the facet decomposition of Theorem 2. This is due to the fact that the d-dimensional
volume of all points in P ∩ Q which require the balanced assignment of boundary points to
get the correct value in Theorem 1 is 0 and therefore will have no impact on the resulting
volume. However, this does not apply to decomposable overlap measures in general.

In order to simplify notation in the following sections, for a d-dimensional region R we
will write V (R) for V d(R); and for given facets f and g we will write V (f, g) for V d(f, g).

4.2 Minimum area translations

In the following we describe an efficient algorithm for solving 1DdDTP with respect to volume
measure, using Theorem 2. We continue to assume that the translation direction is e1, i.e.,
parallel to the x-axis, and we will use terms such as left, right and horizontal as natural
references to this direction.

4.2.1 Volume Calculations

Here we describe a method for computing the volume of overlap between two polytopes by
expressing it in terms of the volumes of a collection of inter-facet regions, and then using the
decomposition of volume measure given in Theorem 2.

First we introduce some basic notation. Given a point p ∈ Rd and a translation value
t ∈ R, we use p(t) to denote the point p translated by t units to the right, i.e., p(t) = p + te1.
Similarly, given a facet f ∈ F , we use f(t) to denote the facet translated t units to the right,
i.e., f(t) = {p(t) ∈ Rd|p ∈ f}. Finally, given a polytope P with facet set F , we let P (t)
denote P translated t units to the right, i.e., P (t) has facet set {f(t)|f ∈ F}.

Now, consider two polytopes P and Q with facet sets F and G, respectively. For any
two facets f ∈ F and g ∈ G, we will show how to express the volume function V (f(t), g)
as a piecewise polynomial function in t with degree d. Combined with Theorem 2, this will
allow us to express the full overlap of P (t) and Q as a function in t by iteratively adding and
subtracting volume functions of inter-facet regions.

Before describing how to calculate V (f(t), g), we first make a few general observations on
R(f(t), g); recall that V (f(t), g) = V (R(f(t), g)).

Definition 14 (Hyperplanes and Projections). Let f and g be facets of polytopes in Rd. We
denote by f the unique hyperplane of Rd containing f . Also, we define the projection of g
onto f as

projf (g) = {p ∈ f |∃t ∈ R : p(t) ∈ g} (2)
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Figure 4: An example of the inter-facet region R(f, g) between two faces, f and g, in three
dimensions, where g is in front of f in the x-axis direction. In general the two facets are not
necessarily in parallel planes and they can also intersect. (a) The dashed lines indicate the
boundary of the projections of f on g and g on f . The projections are denoted f ′ and g′.
(b) The region R(f, g) which is identical to R(f ′, g′). (c) To simplify matters, the projections
can be triangulated. (d) One of the resulting regions with triangular faces.

In other words, projf (g) is the horizontal projection of the points of g onto f .
Using these definitions, there are a number of different ways to express the inter-facet

region R(f(t), g). Let f ′ = projg(f) and g′ = projf (g); then it is easy to see that R(f(t), g) =
R(f ′(t), g′) = R(f ′(t), g) = R(f(t), g′) for any value of t. Clearly, the corresponding volumes
are also all identical. To compute f ′ and g′, it is useful to first project f and g onto a
hyperplane h orthogonal to the translation direction. For a horizontal translation this can be
done by simply setting the first coordinate to 0 (which, in 3D, corresponds to a projection
onto the yz-plane). We denote the d − 1 dimensional intersection of these two projections
by h = projh(f) ∩ projh(g). The region h can then be projected back onto f and g (or their
hyperplanes) to obtain f ′ and g′. This also means that the projections of f ′ and g′ onto h
are identical. In the case of three dimensions, when f ′ is to the right of g′, h is a polygonal
cross-section of the tube R(f, g) (perpendicular to e1) and f ′ and g′ are the end-faces of this
tube. See Figures 4a and 4b for an example.

In order to express volumes in higher dimensions, we use the concept of a simplex. A
simplex is the d-dimensional analogue of a triangle and it can be defined as the convex hull
of a set of d + 1 affinely independent points. Furthermore, in d-dimensional space, we denote
a lower dimensional simplex of dimension d′ < d as a d′-simplex.
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Translational packing of arbitrary polytopes

Finding the intersection of the projections of f and g is relatively straightforward. Since
we require the facets to be convex, the projections are also convex and can therefore be repre-
sented using half-spaces. The intersection can then easily be represented by the intersection of
all of the half-spaces from the two sets and the main problem is then to find the corresponding
vertex representation.

If the intersection h is empty or has dimension smaller than d−1 then the volume V (f(t), g)
is 0 for any t value. So, assume we have a (d− 1)-dimensional intersection h, i.e., a non-trivial
intersection. Let p1, . . . , pn be the vertices of g′. For each point pi there exists a translation
value ti such that pi(−ti) ∈ f . Each point pi(−ti) is a vertex of f ′, and each ti value represents
the horizontal distance of pi from the hyperplane f . Assume that the points pi are sorted
such that t1 ≤ · · · ≤ tn. We refer to these points as breakpoints and the ti values as their
corresponding distances.

We now consider how to compute V (f(t), g). If t ≤ t1 then the region R(f(t), g) is clearly
empty since f ′(t) is entirely to the left of g′. It follows in this case that V (f(t), g) = 0.
A bit less trivially, if t ≥ tn then V (f(t), g) = V (f(tn), g) + (t − tn) · V (d−1)(h) which is a
linear function in t. In this case f ′(t) is to the right of g′ in its entirety. Note that V (d−1)(h)
is the volume of h in (d− 1)-dimensional space. In R3, V 2(h) is the area of the polygonal
cross-section of the tube between f ′ and g′. The volume V (d−1)(h) can be computed by
partitioning h into simplices. Hence the only remaining difficulty lies in determining V (f(t), g)
for t ∈ (t1, tn]. For any value of t in this interval, f ′(t) and g′ intersect in at least one point.

Figure 5 is an illustration of what happens when a face in 3D is translated through another
face. This is a useful reference when reading the following. First note that the illustration
emphasizes that we can also view this as the face f ′ passing through the plane g.

An easy special case, for computing V (f(t), g), occurs when t1 = tn. This corresponds to
the two facets being parallel and thus V (f(tn), g) = 0.

Now, assume all the ti are distinct. The case where two or more ti are equal is discussed
in Section 4.3. Each facet is required to be simple by definition and thus each vertex of g′,
pi, has exactly d− 1 neighboring points, i.e., vertices of g′ connected to pi by edges. Denote
these points p1

i , . . . , p
d−1
i and denote the corresponding breakpoint distances t1i , . . . , t

d−1
i .

Consider the value of V (f(t), g) in the first interval (t1, t2]. To simplify matters, we change
this to the equivalent problem of determining the function V0(f(t), g) = V (f(t + t1), g) for
t ∈ (0, t2−t1]. V0(f(t), g) can be described as the volume of a growing simplex in t with vertex
set {tvj |j = 0, . . . , d} where v0 = (0, . . . , 0), vd = (1, 0, . . . , 0) and vj = (pj

1 − p1)/(tj1 − t1) for
1 ≤ j ≤ d− 1. The volume of this simplex is:

V0(f(t), g) =
1
d!
|det([tv1, ..., tvd])|.

This is illustrated in Figure 6.
Since vd = (1, 0, . . . , 0), we can simplify the above expression to

V0(f(t), g) =
1
d!
|det([v1, v2, ..., vd])td| =

1
d!
|det([v′1, v

′
2, ..., v

′
d−1])t

d|,

where v′i is vi without the first coordinate. This results in very simple expressions in low
dimensions:

2D : 1
2 |det(v′2)t

2| = 1
2 |v

y
2t2|

3D : 1
6 |det([v′2v

′
3])t

3| = 1
6 |(v

y
2vz

3 − vz
2v

y
3)t3|
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Figure 5: An illustration of the growing tetrahedron volumes needed when a face f ′ passes
through a face g, or equivalently its plane g, in order to calculate the volume of R(f ′, g′). (a)
The initial growing tetrahedron after the first breakpoint. (b) After the second breakpoint,
at growing tetrahedral volume based on the red area needs to be subtracted. (c) After the
third breakpoint, a second growing tetrahedral needs to be subtracted.

v0 = (0, 0, 0) v3 = (t, 0, 0)

tv1
tv2

g′
f ′

Figure 6: In 3D, it is necessary to calculate the volume function for a growing tetrahedron
based on two points, v1 and v2, and an overlap distance t. The coordinates of the points
change linearly with respect to a change of the distance t. In d dimensions d− 1 neighboring
points are used.
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Translational packing of arbitrary polytopes

In general V0(f(t), g) is a degree d polynomial in t.
To calculate the original volume V (f(t), g) we offset the function by setting V (f(t), g) =
V0(f(t− t1), g) for t ∈ (t1, t2] .

The above accounts for the interval between the two first breakpoints. To handle the
remaining breakpoints we utilize a result of Lawrence [20] concerning the calculation of the
volume of a convex polytope. Lawrence shows that the volume can be calculated as the sum
of volumes of a set of simplices. Each simplex is based on the neighboring edges of each vertex
of the polytope.

Given t ∈ (t1, tn], we are interested in the polytope R(f(t), g). It can be constructed by
taking the part of f ′ which is to the right of the hyperplane g, then projecting this back onto
g and connecting the corresponding vertices horizontally. See Figure 5 for some examples.
This is a convex polytope, and its volume can be calculated as follows.

Let ∆(p1, t) denote the initial growing simplex described above, that is V (∆(p1, t)) =
V0(f(t1 − t), g). Similarly, let ∆(pi, t), i ∈ {2, ..., n − 1} denote simplices based on the other
points pi and their neighboring points (we do not need to include pn). For each such simplex,
the vertices are given by tvj where vj = (pj

i − pi)/(tji − ti). Note that whenever tji < ti the
direction of the vector from pi to pj

i is reversed. By an argument of Lawrence [20], we then
have

V (f(t), g) = V (∆(p1, t))−
k∑

i=2

V (∆(pi, t)) where k = max
1≤i≤n

{i|ti < t}. (3)

In other words, the volume can be calculated by taking the growing volume of the first simplex
and then subtracting a simplex for each of the remaining breakpoints with a breakpoint
distance less than t. The volume of each simplex can be described as a degree d polynomial
in t similar to the description of V0 of the previous paragraph. In Figure 5a, there is only the
first growing simplex (tetrahedron). After that, in Figure 5b, another growing simplex needs
to be subtracted from the first, and finally, in Figure 5c, a third growing simplex needs to be
subtracted. Between each pair of breakpoints, the total volume between g′ and f ′(t) in the
horizontal direction can therefore be described as a sum of polynomials in t of degree d which
itself is a polynomial of degree d.

4.2.2 The Main Algorithm

An algorithm for determining a minimum overlap translation in d dimensions can now be
established. Pseudo-code is given in Algorithm 3. Given polytopes P and Q and a polytope
container C, we begin by determining all breakpoints between facets from P and facets from
polytopes Q and C and the coefficients of their d-dimensional volume polynomials. Signs of
all volume polynomials calculated with regard to the container C should be negated. This
corresponds to viewing the container as an infinite polytope with an internal cavity.

The breakpoints are sorted such that their distances are t1 ≤ t2 ≤ . . . ≤ tn. The algorithm
traverses the breakpoints in this order while maintaining a total volume function ν(t) which
describes the volume of the total overlap between P and Q∪C. The volume function ν(t) is a
linear combination of the volumes of simplices for each breakpoint encountered so far (based
on Equation 3) and may be represented as a degree d polynomial in t.

Initially ν(t) = ν(P ) for t ≤ t1, corresponding to P being completely outside the container
(overlapping C). As each breakpoint ti is reached, the algorithm adds an appropriate volume
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4. Axis-Aligned Translation

Algorithm 3: Determine minimum overlap translation along x-axis in d dimensions
Input: Polytopes P and Q and a container C

foreach facet f from P do
foreach facet g from Q ∪ C do

Create all breakpoints for the facet pair (f, g).
Each breakpoint (f, g) has a distance tf,g and a volume polynomial Vf,g(t)
(negate the sign of Vf,g(t) if g ∈ C).

Let B be all breakpoints sorted in ascending order with respect to t.
Let ν(t) and νC(t) be polynomials with maximum degree d and initial value ν(P ).

for i = 1 to |B| − 1 do
Let ti be the distance value of breakpoint i.
Let f and g be the facets of breakpoint i.
Let Vi(t) be the volume function of breakpoint i.
Modify ν(t) by adding the coefficients of Vi(t).
if g ∈ C then

Modify νC(t) by adding the coefficients of Vi(t).
if νC(t) = 0 for t ∈ (ti, ti+1 then

Find the minimum value, t′i, for which ν(t) is minimized in [ti, ti+1].
return t′i with smallest ν(t′i)

polynomial to ν(t). Since ν(t) is a sum of polynomials of at most degree d, ν(t) can itself be
represented as d + 1 coefficients of a polynomial with degree at most d. When a breakpoint
is encountered its volume polynomial is added to ν(t) by simply adding its coefficients to the
coefficients of ν(t).

The subset of volume polynomials which comes from breakpoints related to the container
may also be added to a volume polynomial νC(t). Whenever this function is 0 for a given
t-value, it means that P (t) is inside the container.

For each interval between succeeding breakpoints, (ti, ti+1] for which νC(t) = 0, ν(t) can
be analyzed to determine local minima. Among all these local minima, we select the smallest
distance value tmin for which ν(tmin) is a global minimum value. This minimum corresponds
to the leftmost x-translation where the overlap between P and Q ∪C is as small as possible.
Therefore tmin is a solution to 1DdDTP.

Analyzing each interval amounts to determining the minimum value of a polynomial of
degree d. This is done by finding the roots of the derivative of the polynomial and checking
interval end-points.

While finding the exact minimum for d ≤ 5 is easy, it is problematic for higher dimensions,
due to the Abel-Ruffini Theorem, since one must find the roots of the derivative which itself is
polynomial of degree 5 or higher. However, it is possible to find the minimum to any desired
degree of accuracy, e.g., using the Newton-Raphson method. Approximations are needed in
any case when using floating point arithmetics.

The following lemma is a simple but important observation.

Lemma 3. Given two polytopes, P and Q, assume that the 1-dimensional translation problem
in n dimensions has a solution (a translation distance t′) where P does not overlap Q then
there also exists a breakpoint distance tb for which P does not overlap Q.
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Translational packing of arbitrary polytopes

Proof. Assume that t′ is not a breakpoint distance. First assume t′ is in an interval of
breakpoint distances, (t1b , t

2
b). Assume that it is the smallest such interval. Since the overlap

value, ν(t′), is 0 and t′ is not a breakpoint distance then specifically no facets from P and Q
can intersect for t = t′. Since there are no other breakpoint distances in this interval, and
facets can only begin to intersect at a breakpoint distance, no facets can intersect in the entire
interval (t1b , t

2
b). From the discussion in Section 4.2.1 ν(t) must be a sum of constants or linear

functions for t ∈ (t1b , t
2
b) since no facets intersect in this interval. ν(t) cannot be linear since

t′ is not an interval end-point and this would imply a negative overlap at one of the interval
end-points which is impossible. Therefore ν(t) = 0 for t ∈ (t1b , t

2
b). Therefore by continuity

ν(t1b) = 0 and ν(t2b) = 0 and we may choose either of these breakpoints as tb.
Now assume t′ is within the half-open infinite interval either before the first breakpoint or

after the last breakpoint. Again, since ν(t) is linear on that entire interval and ν(t) cannot
be negative, one can select the breakpoint of the infinite interval as tb.

If a non-overlapping position of P exists for a given translation direction, then P is non-
overlapping at one of the breakpoint distances. Our solution method for dDDPP, as described
in Section 5, repeatedly solves 1DdDTP problems using Algorithm 3. Since our aim is to find
a non-overlapping position for each polytope we may actually limit our analysis in each
translation to testing the interval end-points. This way one may avoid the computationally
inefficient task of finding roots even though one does not find the true minimum for 1DdDTP
(though it might be at the expense of increasing the number of translations required to find
a solution).

To analyze the asymptotic running time of Algorithm 3, we assume that either one does
not find minima between breakpoints or one considers this a constant time operation (which
is true for 5 dimensions or less). Given a fixed dimension d, the time needed for finding the
intersection of (d− 1)-simplices can also be considered a constant and the same is true for the
calculation of the determinants used in the volume functions. Given polytopes with n and m
facets, the number of breakpoints generated is at most a constant times nm. Computing the
volume function takes constant time and thus the running time is dominated by the sorting
of breakpoints revealing a running time of O(nm log(nm)). In most cases, the number of
breakpoints is likely to be much smaller than O(nm) since the worst case scenario requires
very unusual non-convex polytopes — the vertical extents must overlap for all pairs of edges.

In some settings it may be desirable to allow for overlap with the region outside the con-
tainer. This is easily accommodated by ignoring the condition that νC(t) = 0 in Algorithm 3.

4.3 Special cases in three dimensions

In the previous subsection, it was assumed that either all breakpoints had unique distance
values or that all breakpoints had the same distance value. Here we describe how to handle
a subset of breakpoints with the same distance value for the case where d = 3. In particular,
we focus on the special case of the two first breakpoint distances being equal (and different
than the subsequent ones).

Given two convex faces f and g, we know that h, the intersection of their 2D projections
onto the yz-plane, is also a convex polygon. As before, let f ′ and g′ denote the projections
of h onto the given faces. When f and g are not parallel, then it is easy to see that for any
given translation of f ′, the intersection between f ′ and g′ contains at most two corner points.
Furthermore, Equation 3 still applies if these two corner points are not neighbors; and they
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5. Solution method for dDSPP

can only be neighbors if they are the two first breakpoints or the two last breakpoints. The
latter case is not a problem since at that point, the volume function can be changed to a
linear expression based on the area of h.

The important special case is when the two first breakpoint distances are equal. This
problem varies depending on the shape of h, but in each case the solution is almost the same.
Figure 7a illustrates the standard case with only a single initial breakpoint while Figures 7b-d
illustrate three possible variants of having two initial breakpoints. They differ with respect
to the direction of the neighboring edges, but in all three cases it is possible to introduce a
third point p′ which emulates the standard case in Figure 7a. Essentially, the calculations
need to be based on a tetrahedron with fixed size, a linearly increasing volume and the usual
cubic volume function of a growing tetrahedron. A more detailed illustration and description
of the situation in Figure 7b is given in Figure 8, where v′2 corresponds to p1, v′3 to p2, and
v0 to p0.

Note that quite often polyhedrons have triangulated surfaces. Given triangular faces, the
special case in Figure 7d cannot occur. The special case in Figure 7b can also be avoided if the
intersection polygon is triangulated and each triangle is handled separately (see Figure 4d).

It is still an open question how to handle identical breakpoint distances in higher dimen-
sions. Perturbation techniques could be applied, but it would be more gratifying if the above
approach could be generalized to higher dimensions.

5 Solution method for dDSPP

In this section we describe our solution method for the d-dimensional strip packing problem
(dDSPP), i.e., the problem of packing a set S of n given polytopes inside a d-dimensional
rectangular parallelepiped C with minimal height. In short, we do this by solving the decision
problem dDDPP for repeatedly smaller heights using a local search and a meta-heuristic tech-
nique. This stops when a fixed time limit is reached. The height of the last solved dDDPP
is reported as a solution to the dDSPP. Each instance of dDSPP in turn is solved by reposi-
tioning polytopes to minimal overlapping positions using Algorithm 3. In the following, we
first review the local search and the meta-heuristic technique used and described by Egeblad
et al. [11]A. We then describe how one can obtain an initial height (Section 5.2) for which a
non-overlapping placement is known to exist.

5.1 Local search and guided local search

To solve dDDPP (for a container with given height) we apply a local search method in con-
junction with guided local search (GLS); a meta-heuristic technique introduced by Voudouris
and Tsang [27]. Given a set of polytopes S = {Q1, . . . , Qn}, the local search starts with a
placement of the polytopes which may contain overlap. Overlap is then iteratively reduced
by translating one polytope at a time in axis-aligned directions to a minimum overlap posi-
tion. When overlap can no longer be reduced by translating a single polytope the local search
stops. If overlap is still present in the placement then GLS is used to escape this constrained
local minimum. Otherwise a non-overlapping placement has been found for dDDPP and the
strip-height is decreased and all polyhedrons are moved inside the smaller container.

Minimum overlap translations are found using the axis-aligned translation algorithm de-
scribed in the previous section. For each polytope each of the possible d axis-aligned trans-
lations are used and the direction which reveals the position with least overlap is chosen.
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Figure 7: Various special cases can occur when the two first breakpoint distances are equal.
Here it is illustrated in 2D using a dashed line to illustrate the intersection line of the two
faces during the translation. (a) The standard case in which the first breakpoint distance
is unique. (b) The two first breakpoint distances are equal (points p1 and p2) which also
means that the dashed line is parallel to the line between p1 and p2. The sum of the angles
at p1 and p2 is greater than 180◦. This can be handled by introducing a third point p′ at
the intersection of the lines through the edges from p1 and p2. This point is going to have a
smaller breakpoint distance and it almost reduces the problem to be identical with the first
case. More details can be seen in Figure 8. (c) The sum of the angles at p1 and p2 is less
than 180◦, but we can still find a natural candidate for the additional point p′ based on the
edges from p1 and p2. (d) The sum of angles is exactly 180◦. In this case p′ is just chosen
at an appropriate distance from p2, e.g., such that the angle at p′ is 45◦. This case does not
occur if the input polyhedra have triangulated faces.
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Figure 8: To calculate the volume between the faces f ′ and g′, one can base the calculations
on the extended faces illustrated with dashed lines. The volume is a growing tetrahedron
(v0, v1, v2, v3) subtracted by a constant volume (the tetrahedron (v0, v

′
1, v

′
2, v

′
3)) and subtracted

by a linearly growing volume based on the triangle (v′1, v
′
2, v

′
3) and the translation distance t.
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Note that if P = Qi is the polytope undergoing translation then the polytope Q (in the
translation algorithm in the previous section) is actually the union of all other polytopes,
i.e., Q = ∪n

j=1, j 6=iQj . The container C in the previous section is assumed to be a simple
rectangular parallelepiped with some initial height h. (The solution method can, however, be
adapted to other containers.)

Let Vi∩j(P) be the volume of the pairwise overlap of Qi and Qj in a placement P. The
local search minimizes the objective function

f(P) =
∑

1≤i<j≤n

Vi∩j(P). (4)

In other words, f(P) is the total sum of volumes of pairwise overlaps in placement P. If
f(P) = 0 then P is a solution to the current instance of dDDPP.

The local search uses the axis-aligned translation algorithm from the previous section to
iteratively decrease the amount of overlap in the current placement. A local minimum is
reached if no polytope can be translated in an axis-aligned direction to a position with less
overlap. To escape local minima the objective function is augmented using the principles of
GLS to give

g(P) = f(P) + λ
∑

1≤i<j≤n

φi,jIi,j(P), (5)

where λ is a penalty constant used to fine-tune the heuristic, φi,j is a penalty term associated
with Qi and Qj (which is described in more detail below) and Ii,j(P) ∈ {0, 1} is 1 if and
only if the interiors of polytopes Qi and Qj overlap in placement P. Due to the fact that
the augmented terms are larger than zero if and only if P contains overlap, the augmented
objective function, g(P), retains the property that a value of 0 is reached if and only if there
is no overlap in the placement P. Therefore a placement P, is a solution to the dDDPP if
and only if g(P) = 0.

Initially φi,j = 0 for 1 ≤ i < j ≤ n. Whenever the search reaches a local minimum
with g(P) > 0, the value of φi,j increases for the pair Qi and Qj with highest µi,j(P) where
µi,j(P) = Vi∩j(P)

1+φi,j
. We refer to this as penalizing the pair Qi and Qj . Intuitively, this change of

the objective function g(P) (if large enough), allows the local search to move Qi and Qj away
from each other, even if it results in greater overlap. Ideally, this move causes the local search
to reach a different part of the solution space. To avoid large discrepancy between the real
and penalized solution space, the penalties are reset from time to time. To avoid searching
the entire neighborhood in each iteration of GLS, we also apply fast local search [27].

The translation algorithm in the previous section needs to be able to handle the penalties
introduced here. This subject was not fully covered by Egeblad et al. [11]A although it is
quite straightforward. First of all an augmented volume polynomial ν ′(t) is defined by adding
the penalties between the polytope P = Qi to be translated and all other polytopes. This
is done by maintaining an array of volume functions νQj (t), Qj ∈ S \ Qi. Whenever the
overlap between P and a given polytope Qj changes from 0 or to 0, the penalty for the
pair of polytopes P,Qj is, respectively, added to or subtracted from the augmented volume
function ν ′(t). Note that this does not increase the asymptotic running time, since the volume
polynomial of a breakpoint arising from a face of Qj is only added to ν ′(t) and νQj (t) and
only νQj (t) needs to be checked for a change to or from 0.
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5. Solution method for dDSPP

With regard to the usefulness of the local search neighborhood in relation to the number
of dimensions d, we note that a 1-dimensional translation becomes a less efficient move as d
increases, since up to d axis-aligned translations may be required to move a polytope from one
arbitrary point to another. However, it should also be noted that in general fewer polytopes
would be involved in each translation. If the polytopes are placed compactly in a grid-like
fashion with little overlap, then there are likely to be in the order of d

√
|(S)| polytopes to be

considered in each of the coordinate system axes directions.

5.2 Initial solution

The solution method described above can start with a parallelepiped of any height since the
initial placement is allowed to contain overlaps. However, it makes more sense set the initial
height to one for which a solution is known to exist.

In any dimension, a naive initial height can be based on the sum of heights of all polytopes,
but in the following, we describe a more ambitious strategy. In short, we use a greedy bounding
box based algorithm in which the polytopes are placed one by one inside the container in
an order of decreasing bounding box volume. This algorithm is based on residual volumes
and is related to the approach used by Eley [13] for the container loading problem in three
dimensions. Although the algorithm could be generalized to higher dimensions, we are only
going to describe its three-dimensional variant.

The algorithm maintains a set of empty box-spaces. Each box-space s consists of the
volume [xs, xs]× [y

s
, ys]× [zs, zs]. Initially the entire container is the only empty space.

Whenever a new shape i with bounding box Bi = [xi, xi]× [y
i
, yi]× [zi, zi] is to be placed

inside the container, the list of empty spaces is searched. Let s′ be the empty space with
lexicographical least z′s, y′

s
and x′s (lower-left-back corner), which is large enough to contain

Bi. Shape i is now positioned in s with offset (xi, yi, zi)T such that Bi’s lower-left-back corner
is coincident with the lower-left-back corner of s; (xi, yi

, zi)T + (xi, yi, zi)T = (x′s, y
′
s
, z′s)

T .
Next all residual spaces that overlap with the bounding box of the positioned shape i,

B′
i = [xi + xi, xi + xi] × [y

i
+ yi, yi + yi] × [zi + zi, zi + zi], are split into six new box-spaces

and removed from the list of empty box-spaces. For each overlapping space s we generate the
following six new box-spaces:

[xs, xi + xi]× [y
s
, ys]× [zs, zs], [xs, xs]× [y

s
, y

i
+ yi]× [zs, zs], [xs, xs]× [y

s
, ys]× [zs, zi + zi]

[xi + xi, xs]× [y
s
, ys]× [zs, zs], [xs, xs]× [yi + yi, ys]× [zs, zs], [xs, xs]× [y

s
, ys]× [zi + zi, zs],

representing the volumes left, below, behind, right, above and in-front of Bi, respectively. If
any of the intervals are empty the new space is empty. Each of the new non-empty spaces
are added to the list of empty spaces and may be used for the remaining bounding boxes.
To reduce the number of empty spaces generated throughout this process, spaces which are
contained within or are equal to other empty spaces are discarded whenever a new bounding
box is placed.

The resulting placement is a non-overlapping placement and the maximum z value of
any placed bounding box B′

i may be used as a basis for the initial strip-height. To diversify
solutions to 3DSPP we place shapes randomly within a container with this strip-height. This
is the only random element of the solution method.
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6 Computational experiments

The solution method described in this paper was implemented for the three dimensional
problem using the C++ programming language and the GNU C++ 4.0 compiler. We denote
this implementation 3DNest. Although similar in functionality, this implementation is not
identical to the one used by Egeblad et al. [11]A. In particular, the new implementation can
handle convex faces without triangulating them and it can handle the strip packing problem.
Another noteworthy feature of the new implementation is that it is possible to do almost
all calculations with rational numbers — the only exception is the computation of minimum
values between breakpoints in the translation algorithm since this requires solving quadratic
equations. This is primarily convenient for debugging purposes, and is currently not very
useful in practice since it is much slower than using standard floating point precision.

Due to the limited precision of floating point calculations, the correctness of all solutions
found are verified using Cgal [16], i.e., it is verified that no polyhedron is involved in any
significant overlap with other polyhedra or the container. In the experiments presented in
this section, the largest total volume of overlap allowed in a solution corresponds to 0.01% of
the total volume of all polyhedrons for the given problem.

All experiments were performed on a system with a 2.16 GHz Intel Core Duo processor
with 2 MB of level 2 cache and 1 GB of RAM.

6.1 Problem instances

The literature on the subject of three-dimensional packing contains only few useful problem
instances with regard to a comparison of results. We have found two appropriate data sets
for our experiments. The first one was introduced by Ikonen et al. [19] and the second one
was introduced by Stoyan et al. [25]. The sets contain 8 and 7 polyhedra, respectively. Char-
acteristics of these data sets are presented in Table 1. The Stoyan polyhedra are all convex
and relatively simple with a maximum of 18 faces, while some of the Ikonen polyhedra are
non-convex and feature up to 52 faces. Real world instances, e.g., from the rapid prototyping
industry, could easily contain more than 100,000 faces, but in most cases it would also be
possible to simplify these polyhedra considerably without making substantial changes to the
basic shape, e.g., Cohen et al. [6] has an example of a model of a phone handset which is
reduced from 165,936 to 412 triangles without changing its basic shape.

6.2 Puzzles

To further test the capabilities of our solution method, we devised and implemented a gen-
erator for random problem instances. The generator creates a problem instance by splitting
a three-dimensional cube into smaller pieces. The pieces along with container dimensions
matching the width and height of the cube constitute a problem instance for which the opti-
mal utilization is known to be 100%.

A set of half-spaces H can be used to define a convex polyhedron as the set of points
which is contained in all of the half-spaces. In practice, this polyhedron can be found by
generating the set, I, of all intersection points of distinct planes p, q, r with p, q, r ∈ H, and
then generate the convex hull of the subset of points from I which are contained in all of the
half-spaces. The convex hull of a set of points can be found by using the algorithm of Barber
et al. [2].
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Ikonen Stoyan
Name Faces Volume Bounding box Type 1 2 1 2 3
Block1 12 4.00 1.00 × 2.00 × 2.00 Convex
Part2 24 2.88 1.43 × 1.70 × 2.50 Non-convex 3 8
Part3 28 0.30 1.42 × 0.62 × 1.00 Non-convex 2 2
Part4 52 2.22 1.63 × 2.00 × 2.00 Non-convex 1 1
Part5 20 0.16 2.81 × 0.56 × 0.20 Non-convex 2 2
Part6 20 0.24 0.45 × 0.51 × 2.50 Non-convex 2 2
Stick2 12 0.18 2.00 × 0.30 × 0.30 Convex
Thin 48 1.25 1.00 × 3.00 × 3.50 Non-convex
Convex1 14 176.00 5.00 × 6.00 × 8.00 Convex 1 1 2
Convex2 4 74.67 11.00 × 4.00 × 14.00 Convex 1 1 4
Convex3 10 120.00 3.00 × 4.00 × 12.00 Convex 1 1 6
Convex4 16 124.67 3.00 × 4.00 × 16.00 Convex 1 1 4
Convex5 18 133.33 4.00 × 8.00 × 10.00 Convex 1 3 4
Convex6 8 147.00 6.00 × 7.00 × 7.00 Convex 1 2 3
Convex7 16 192.50 6.00 × 10.00 × 9.00 Convex 1 3 2

Number of polyhedra: 10 15 7 12 25

Table 1: Characteristics of the three-dimensional polyhedra from the literature used in the
experiments.The rightmost 5 columns describe the sets of polyhedra used in the problems
presented in the originating papers. A number in one of these columns is the number of
copies of the polyhedra in the corresponding problem instance, e.g., 6 copies of the polyhedron
named Convex3 is present in the problem instance Stoyan3.

Given a positive integer n, the construction of an n-piece puzzle commences as follows.
Initially, a set of 6 half-spaces, H0, is generated such that they correspond to a cube. Now
let P1 = {H0} then we will iteratively construct a sequence of half-space sets Pi. To do
this, we select the smallest cardinality half-space set H ∈ Pi for each i and generate a
random plane which can be used to split H into two new sets H ′ and H ′′. We then let
Pi+1 = (Pi \H)∪H ′ ∪H ′′, i.e., the set of half-space sets containing H ′ and H ′′ as well as all
sets from Pi except H. Since the cardinality |Pi| = i, it follows that |Pn| = n. If the random
plane used to split each half-space set has been selected appropriately we may generate n
non-empty convex polyhedrons from the half-space sets in Pn. In Figure 9, three examples
of various sizes are visualized including the cutting planes used to generate them.

It is important to emphasize that a solution method specifically designed with this type
of instances in mind may be able to find better solutions more efficiently than our general
method. However, since the optimal utilization for these instances is 100%, we may use them
to evaluate the quality of the solutions produced by the heuristic. It is interesting to see if
we can actually solve some of them even though the solution method is obviously not ideal
for puzzle-solving.

6.3 Benchmarks

The two problems given by Ikonen et al. [19] (see Table 1) are decision problems with a cylin-
drical container and they have already been shown to be easily solved by Egeblad et al. [11]A.
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(a) (b) (c) (d)

Figure 9: Examples of three different puzzles and the cutting planes used to generate them.
(a) Three convex polyhedra. (b) The corresponding cube and cutting planes. (c) A puzzle
with 5 pieces. (d) A puzzle with 10 pieces.

The only previous results and thus also the best results for the Stoyan instances are reported
by Stoyan et al. [25] and their results are repeated in the first two columns of Table 2.

Stoyan Bounding box 3DNest
Problem Height Util. (%) Height Util. (%) Height Util. (%) Improvement
Stoyan1 27.0 29.88 46 17.54 19.31 42.05 (3.4) 12.17
Stoyan2 30.92 27.21 34 24.75 19.83 42.45 (1.0) 15.24
Stoyan3 45.86 29.33 45 29.90 29.82 45.12 (0.8) 15.79

Table 2: The results from Stoyan et al. [25] are compared to the average results of 10 runs of
10 minutes with 3DNest. Results for the initial solution found by 3DNest is also reported.
The second last column includes the standard deviation over the 10 runs. The last column
emphasizes the difference between 3DNest and the approach by Stoyan et al.

In Table 2, we also report the results of the initial solution found using the algorithm
described in Section 5.2 and the average results found by running 3DNest with 10 different
random seeds and 10 minutes for each seed. Note that the initial solution found is actually
slightly better than the solution found by Stoyan et al. [25] for the largest problem instance.
The last column of Table 2 emphasizes the percentage of material saved (on average) when
3DNest is compared to the results from Stoyan et al. The utilization of 3DNest is on
an average about 14 percentage points higher than that of Stoyan et al. and the average
improvement over the utilization of Stoyan et al. is 50.2%. This demonstrates that 3DNest
performs very well in comparison to existing methods.

In order to make some additional experiments, a new problem instance, Merged1, was
created by combining the polyhedra from Stoyan and Ikonen. It contains one copy of each of
the polyhedra in Table 1 and the Ikonen polyhedra have been scaled with a factor of 4 to better
match the size of the Stoyan polyhedra. Larger versions of this problem instance, Mergedi,
are simply created by making i number of copies of each polyhedron. The dimensions of the
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container for these instances are chosen such that a solution with 50% utilization is a cube.
Furthermore, we have used the puzzle generator described above to generate 40 puzzles with
5, 10, 20 and 40 pieces. Rather than testing each puzzle with 10 different random seeds,
10 different puzzles are tested for each of the four cardinalities. The purpose of this is to
illustrate the heuristic’s capabilities independently of the input data. Each shape of these
puzzles has an average of about 11-13 facets which is very similar to the Stoyan instances.

Results are presented in Table 3. The utilization of the initial solution (0 seconds) and
the utilization after 10, 60, 300 and 600 seconds are reported. All values are averages over 10
runs with different seeds for 3DNest, except in the case of the puzzles where the seed is used
to vary the problem instance. The best solution after 10 minutes and the standard deviation
is also reported and so is the average number of translations done per second.

Utilization after number of seconds Max. Std. Translations
Problem Size 0 10 60 300 600 util. dev. per second
Stoyan1 7 17.54 39.76 41.60 42.05 42.05 46.38 3.4 1468
Stoyan2 12 24.75 38.25 39.90 41.79 42.45 44.27 1.0 887
Stoyan3 25 29.90 39.19 42.49 44.58 45.12 46.67 0.8 756
Merged1 15 23.44 37.29 39.68 42.38 42.97 44.12 1.0 462
Merged2 30 23.62 30.23 39.77 42.80 42.92 42.99 0.1 295
Merged3 45 24.58 27.02 35.49 42.23 43.32 44.99 1.0 265
Merged4 60 24.80 26.09 31.61 40.06 41.99 42.81 0.5 233
Merged5 75 26.17 26.66 29.63 37.99 40.96 42.56 0.7 199
Puzzle5 5 28.85 98.30 98.89 98.89 99.22 100.00 2.2 -
Puzzle10 10 20.90 72.68 84.96 93.74 94.30 100.00 14.4 353
Puzzle20 20 15.77 42.27 50.05 72.20 82.54 95.16 12.2 205
Puzzle40 40 13.62 26.40 34.56 45.68 49.59 70.85 7.8 145

Table 3: Average results obtained by running 3DNest 10 times for at most 10 minutes in
each run. Results include the utilization obtained with the initial solution, within 10 seconds
and within 1, 5 and 10 minutes. The maximum utilization and standard deviation is also
included for the results after 10 minutes. Finally, the average number of translations per
second is presented except in the case of Puzzle5 for which an optimal solution was often
found within a second. Note that the results for the Puzzle problems are on 10 different
instances rather than with 10 different random seeds.

After 10 seconds the results are already better than those of Stoyan et al. for all of the
Stoyan instances with an average utilization close to 40%. The heuristic continues to improve
solutions but utilization is only improved by less than 1 percentage point after 300 seconds.
Solutions for the Merged instances appear to be quite good with utilizations matching the
smaller Stoyan instances even with as many as 60 and 75 shapes. Also here, solutions are
generally only improved by one percentage point after the first 300 seconds with the ex-
ception of Merged5. The optimal utilization for Merged5 is probably higher than it is for
Merged1 which is also indicated by the initial solutions, but the slow decline in the number
of translations performed is also a strong indication that large problem instances are solved
efficiently by 3DNest. Puzzles with 5 or 10 pieces are most often solved to optimality and
even puzzles with 20 pieces are handled quite well within the time limit of 10 minutes. It is
also clear though that puzzles with 40 pieces is more than our solution strategy can handle.
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Figure 10: The best solution found for Stoyan3 without using rotation (from two different
angles). The utilization is 46.67%.

The average utilization of these instances is only 50% after 10 minutes and the best found
utilization is less than 71% which is far from the optimal 100%. The best solutions found for
Stoyan3 and Merged5 are shown in Figure 10 and Figure 11.

A simple strategy for handling rotation has also been implemented in 3DNest. The
local search neighborhood was expanded, so that in addition to trying translations in three
directions, 24 different orientations (90◦ increments for each axis) are also tried. In each
iteration the translation or orientation which results in least overlap is chosen. This was
mainly done to get an indication of the improvement possible in the utilization when allowing
rotation. The results are presented in Table 4 and better results are indeed obtained for the
Stoyan instances while some of the large Merged instances are not handled very well, most
likely because of the increased amount of computations needed and the increased size of the
solution space.

A lower bound on the height of the Stoyan instances and Merged1 is 16 since these
instances contain a shape (see Convex4 in Table 1) with height 16 which cannot be rotated
and still be within the bounds of the container. In all runs on Stoyan1 and Merged1 as well
as most runs on Stoyan2, 3DNest is able to find solutions matching this bound and therefore
these solutions are optimal.
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Figure 11: The best solution found for Merged5 without using rotation (from two different
angles). The utilization is 42.12%.

7 Conclusion

In this paper we have presented a solution method for the multi-dimensional strip-packing
problem. An earlier version of this method was previously tested by Egeblad et al. [11]A and
proved very successful for two dimensions. Three problem instances in three dimensions, by
Stoyan et al. [25], were used to show that the presented solution method is able to reach
far better results than those by Stoyan et al. [25]. The heuristic has also been tested on
problems where the optimal value is known, and has proven able to find the optimal solution
for instances with 10 items and close to optimal solutions for instances with 20 items. A simple
rotation scheme shows that increased utilization may be achieved by allowing rotation, and
optimal solutions are found for instances with 7 and even 15 items.

The translation algorithm presented in Section 4 is strongly connected to packing prob-
lems, but it is important to emphasize that the algorithm could also be used to maximize the
volume of intersection of polytopes with an axis-aligned translation. Also, the restriction to
axis-aligned translations is imposed only in order to keep the mathematical details as simple
as possible. It is, of course, possible to alter the algorithm for translation in an arbitrary
direction: a trivial approach would be to rotate the input data.

It is also important to note the simplicity of the translation algorithm which is able to
work directly with the faces of the polyhedrons. Unlike many other methods, as presented in
Section 3, we do not rely on additional approximating data-structures such as octrees, depth
maps or voxels. Even though intersection volumes of non-convex polytopes are calculated,
the intersections are never explicitly constructed. Non-convex polytopes are handled as easily
as the convex ones and even holes are handled without any changes to the algorithm. Other
problem variants might include non-rectangular containers [17], quality regions [17], repeated
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Average Utilization Translations
Problem Size Height Avg. Min. Max. per second
Stoyan1 7 16.00 50.42 (0.0) 50.42 50.43 1325.21
Stoyan2 12 16.13 52.17 (0.5) 51.15 52.58 682.27
Stoyan3 25 25.60 52.57 (1.2) 50.41 54.02 673.50
Merged1 15 16.00 46.87 (0.0) 46.87 46.87 440.18
Merged2 30 20.97 45.09 (1.3) 43.50 47.72 305.21
Merged3 45 26.50 40.83 (0.9) 39.75 42.95 299.31
Merged4 60 32.93 36.25 (1.9) 33.44 39.26 275.15
Merged5 75 40.27 31.89 (1.2) 29.31 33.52 242.22

Table 4: Results obtained when allowing rotation.Average utilization, standard deviation,
minimum and maximum utilization are reported. The last column is the average number of
translations per second.

patterns [23]B and more. Although these references are for the 2D problem, the generalized
constraints can be handled by our solution method in any dimension, essentially without
affecting the running time.

If one does not calculate the minimum between each set of breakpoints in the translation
algorithm, then only rational numbers are needed for the solution method described (given
that the input problem only uses rational numbers). This property permits the use of the
method if exact calculations are needed for some reason. In two dimensions, a minimum
between breakpoints can also be found using rational numbers since one only needs to solve
linear equations.

Mount et al. [22] described what is essentially a 2D translation algorithm in 2D space
(solving 2D2DTP). Given polygons with n and m edges, the worst case running time is
O((mn)2). Their approach is based on an arrangement of line segments. A 3D arrangement
of polygons could be used for solving 3D3DTP, but as far as we know an algorithm for
constructing a 3D arrangement of polygons does not currently exist. It is also an open
question how to make an algorithm for 2D3DTP or more generally d′DdDTP for any d ≥ 3
and d′ ∈ {2, . . . , d− 1}. For the sake of completion, de Berg et al. [7] solve the maximization
variant of 2D2DTP with two convex polygons in time O((n + m) log(n + m)); Ahn et al. [1]
consider a generalization of the same problem in which they allow rotation.

Free orientation of shapes is one of the most important directions for future research.
Especially when considering that most applications of packing 3D shapes, e.g., rapid proto-
typing, do allow free orientation. Another important direction for future research is how to
also handle some of the constraints which are typically part of more general layout problems,
e.g., constraints concerning gravity or wire length [5].
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nesting problem with free orientation of shapes

Benny K. Nielsen∗ Marcus Brazil† Martin Zachariasen∗

Abstract

The nesting problem is the problem of packing a set of shapes within the boundaries
of some container. An existing efficient solution method for this problem is based on
the following strategy. Construct a random initial placement of the shapes and then
repeatedly move one of the shapes to a position where the total area of overlap between
pairs of shapes is decreased. Previously, only axis-aligned translation directions have been
used for this approach and only a fixed number of shape orientations could be handled.
We demonstrate how to efficiently translate in arbitrary directions and how to use this to
handle free orientation of shapes. Computational experiments show that this approach is
an improvement when compared with existing results in the literature. Finally, it is shown
how all of the techniques discussed can be generalized to three or even more dimensions.

Keywords: Translation algorithm, minimizing overlap, free orientation, packing, nesting

1 Introduction

Nesting is a term traditionally used to describe the process of designing a layout of shapes to
be manufactured from some flat raw material, e.g., for cutting pieces of clothes from a roll of
fabric. The nesting problem is the problem of doing this as efficiently as possible, i.e., wasting
as little of the material as possible. The problem comes in numerous variations depending
on the specific application. In particular, the material can impose some constraints on the
freedom of orientation of the parts to be cut, e.g., parts to be cut from a roll of fabric are often
not allowed to be rotated with the exception of a 180◦ rotation. Such constraints are less
likely when dealing with materials such as glass or metal. In the existing literature, problems
with no rotation allowed or just a few rotation angles have received much more attention
than the nesting problem with free orientation of shapes. This may partly be because of
the application of the problem in the textile industry, but it is also because of the greater
intrinsic difficulty of solving the problem with free orientation. In this paper, we present a
new solution method for solving nesting problems with free orientation of shapes. Although
most of the paper is oriented towards the two-dimensional problem, the techniques described
also work for generalizations to higher dimensions. Therefore, in the typology of Wäscher
et al. [21], the problem handled in this paper is the d-dimensional irregular open dimension
problem (ODP) with free orientation of shapes.
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†Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria 3010, Aus-
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2. Related Work

We assume that the shapes to be nested are polygons; the container is usually assumed to
be a rectangle, though it could also be an arbitrary polygon. The shapes may be non-convex
and contain holes. The simplest version of the problem is a straightforward decision problem
which can be described as follows:

Nesting Decision Problem. Given a set of polygons P and a polygonal container C, deter-
mine whether the polygons can be placed (allowing free orientation) such that no two polygons
overlap — and all polygons are within the bounds of the container.

Depending on the application, the related optimization problem to be solved could, e.g.,
be a knapsack problem, a bin packing problem or a strip packing problem. Most of the
existing literature is focused on the strip packing problem and this is also the case in this
paper. For this problem, it is assumed that the width w of the material is fixed and the
problem is then to minimize the length of the material (the strip). The quality of a solution
is most often given in terms of the utilization of the material. If the sum of the areas of all
polygons in P is denoted A and the container has area AC , then the utilization is A/AC .
Hence, the utilization at a given length l is then A/(w · l).

It is important to note that most of this paper is actually only concerned with the decision
problem described above. The only exception is that the computational experiments are
concerned with the strip packing problem. Existing work on this or similar problems is
described in Section 2.

The solution method described in this paper is based on an existing solution method first
described by Egeblad et al. [8]A. Their solution method is based on the repeated use of a
translation algorithm which can find the minimum area overlap for a given polygon under
translation in an axis-aligned direction (horizontally or vertically). We first describe how
to generalize this translation algorithm such that it can be used to translate polygons in
directions which are not axis-aligned (Section 3). This might seem trivial at first, but we
show how to do it efficiently with regard to both speed and precision. The use of arbitrary
translation directions encourages a new movement strategy in which short local moves are
done based on the location of neighboring polygons (Section 4). Using this technique, it is
straightforward to handle free orientation of shapes as well (Section 5), but we do not know of
any existing solution methods which handle it in a similar manner. It is especially important
to note that no fixed set of rotation angles is used. Instead the rotation angles used depend
on the problem instance itself, e.g., if rectangles are packed in a rectangular container then
our scheme would never attempt a rotation angle which is not a multiple of 90◦.

As mentioned above, we use these techniques to extend the solution method described by
Egeblad et al. [8]A. In Section 6 we present some computational experiments which mainly
show how much our techniques improve utilization when compared to solutions found without
free rotation. A comparison with results from the literature is also presented and this generally
favors the approach described in this paper.

All of the techniques described can be generalized to higher dimensions. A discussion of
the issues involved in such a generalization is given in Section 7. Concluding remarks and
future directions are given in Section 8.

2 Related Work

Nesting problems and a wide range of solution methods have been discussed extensively in
the existing literature. A survey is given by Dowsland and Dowsland [6] for 2D problems.
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Using directed local translations to solve the nesting problem with free orientation of shapes

Recent work is described in the introductions of the papers by Egeblad et al. [8]A, Burke
et al. [1], and Gomes and Oliveira [10]. Note that most of the existing literature is focused
on the nesting problem with only few or no rotation angles allowed. In this section, we only
describe solution methods which (to some extent) can handle free orientation of the shapes
to be nested. Interestingly, the literature about 3D nesting/packing problems with irregular
shapes is most often focused on free orientation. This is most likely due to the fact that
problems with restrictions on freedom of orientation are less common in three dimensions. A
survey of 3D layout problems (a broader context) was given by Cagan et al. [2].

Solution methods which use iterative improvements of some initial placement are relatively
easy to extend to the handling of free orientation. Typically, these methods have some
neighborhood of possible short translations of individual shapes; this neighborhood can simply
be extended with some set of rotation angles or some small change of the current orientation.
This approach is, e.g., exemplified by Jain et al. [14] for the problem of nesting blanks on a
coil of metal. More recent work in 3D includes Hur et al. [13] and Eisenbrand et al. [9].

An alternative and popular solution approach to nesting problems is a serial placement
algorithm in which the shapes are placed one by one. This is, e.g., the approach used by
Heistermann and Lengauer [12] and Crispin et al. [4] for a problem in the leather manufac-
turing industry where the container is an (irregular) animal hide. Crispin et al. [4] simply use
a neighborhood with 20 possible angles while Heistermann and Lengauer [12] use compaction
techniques as, e.g., described by Li and Milenkovic [15]. They determine the orientation of
the next shape to be placed on the basis of the orientation of any neighboring shapes in the
current placement. This often means that neighboring edges are aligned. A serial placement
algorithm by Dickinson and Knopf [5] uses simulated annealing to place each shape in a po-
sition which leaves the remaining free space as compact as possible. Finally, Liu and He [16]
use a lowest-gravity-center principle to place shapes. They find the orientation of each shape
by recursively dividing a range of possible angles into a number of fixed angles. The angle
which results in the lowest gravity center is used as the center of the next range which simply
extends to the neighboring fixed angles. This is the only paper in which results have been
found which can be compared to our new solution method (see Section 6).

The work of Milenkovic [18] is in a class of its own. Using mathematical programming
he shows how to obtain optimal solutions for problems involving free orientation of shapes.
Although the method is only practical for at most 2 or 3 shapes, it is an important step
in a research field which is mostly dominated by heuristic and meta-heuristic techniques.
Milenkovic [17] also shows how to do rotational compaction. Given a placement (without
overlap), mathematical programming is used to translate and rotate the shapes to a local
minimum. Experimental results show that rotational compaction improves the utilization
when compared to only doing translational compaction.

3 Directional Translations

The most important part of the solution method for the nesting problem by Egeblad et al. [8]A

is an efficient translation algorithm which is used to repeatedly move polygons horizontally
or vertically to positions which minimize the area of overlap (see Figure 1a). Formally, the
horizontal translation algorithm solves the following problem.

Horizontal Translation Problem in 2D. Given a fixed polygonal container C, a polygon
P with fixed position with respect to its y coordinate, and a polygon Q with fixed position, find
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3. Directional Translations

(a) (b) (c)

Figure 1: Intermediate placements in the search for a non-overlapping solution. (a) In the
solution method by Egeblad et al. [8]A, the box can only be moved horizontally or vertically.
In this it would have been better with a different direction as indicated by the dashed arrow.
(b) Another example of a non-axis-aligned translation direction. In this case the direction is
based on an edge of a neighboring triangle. (c) Any translation direction can be handled by
first rotating the problem and then making a horizontal translation.

a horizontal offset x for P such that the area of overlap between P and Q is minimized (and
P is within the bounds of the container C).

The translation algorithm by Egeblad et al. [8]A works even for very general definitions of
a polygon. Self-intersections are not allowed (and make no sense in this context), but multiple
disjoint components and holes are allowed. Naturally, the algorithm is very easily changed to
provide an answer for a vertical direction instead of a horizontal direction.

In this paper, we examine how we can most easily handle translations in any non-axis-
aligned direction as illustrated in Figure 1b. Although the problem definition above is only
for a horizontal direction, a solution to the problem would also be applicable for any other
direction. Naively, it would simply be a matter of rotating all polygons (including the con-
tainer) such that the desired direction becomes horizontal. The resulting position can then
be rotated back to provide a solution to the original problem. It turns out that one can do
much better than resorting to using a large number of trigonometric calculations. Mathemat-
ically — and with respect to standard use of theoretical running time — these trigonometric
calculations are not a problem. In practice, they are slow and they can cause problems with
the precision of floating point calculations.

Let us state the more general problem of directional translations without reducing it to
the special case of horizontal translation.

1-Dimensional Translation Problem in 2D (1D2DTP). Given a fixed polygonal con-
tainer C, a polygon P , a direction vector v, and a polygon Q with fixed position, find a position
for P in the direction of v or −v, such that the area of overlap between P and Q is minimized
(and P is within the bounds of the container C).
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Using directed local translations to solve the nesting problem with free orientation of shapes

It would be possible to adapt the translation algorithm by Egeblad et al. [8]A to work in
arbitrary directions by simply changing all calculations such that they no longer assume an
axis-aligned direction. This would make most calculations more complicated and in particular,
the distances computed would require square root calculations. Again, theoretical running
time would not suffer and mathematically it would work correctly, but in practice it would
be slower and it could increase problems with precision.

One of the important properties of the horizontal translation algorithm is that it can
be implemented using rational numbers only [7]C, under the assumption that all vertices of
the problem have rational coordinates. It is not immediately clear that the same property
can be obtained for arbitrary directions since either trigonometric calculations are needed to
transform the problem or square roots are needed for distance calculations. In this section,
we show how the horizontal translation algorithm can be generalized to arbitrary directions
with just a few simple changes — both theoretically and in terms of lines of code. At the
same time we preserve the property of being able to do it exactly using only rational numbers,
for any vector v with rational gradient.

First, we briefly review the horizontal translation algorithm. Full details and a proof
of correctness can be found in the original paper by Egeblad et al. [8]A. The horizontal
translation algorithm is based on a theorem which states that the area of the overlap of two
polygons, P and Q, can be computed as a sum of (signed) areas horizontally between pairs of
edges, one from P and one from Q. Not surprisingly, this theorem also works if an arbitrary
direction is used instead of a horizontal one. It is not surprising since one could simply rotate
the problem to make it equivalent to the horizontal case. Nevertheless, we are going to state
the theorem explicitly for arbitrary directions since we do not want to rotate the problem.
For this purpose we first need a definition of the area between two edges in a given direction.

Definition 15 (Edge Region). Given an edge f , we say that a point p ∈ f if and only if p is
a point on the edge f . Given two edges f and g and a translation direction represented by a
vector v, we define the edge region Rv(f, g) as follows.

Rv(f, g) = {p ∈ R | p + sfv ∈ f, p− sgv ∈ g, sf , sg ∈ R+}.

In other words, the edge region Rv(f, g) of two edges, f and g, is the set of points that are in
between f and g, but in such a way that g is in the direction of −v and f is in the direction
of v from each such point. If we informally think of v as pointing to the right, then note that
for two edges, f and g, where g is completely to the right of f the edge region Rv(f, g) is
empty. Also note that Rv(f, g) = Rv(g, f) if and only if both edge regions are empty.

It is useful to divide the edges of a polygon into three different classes.

Definition 16 (Signs of Edges). Given a polygon P with edge set F and a translation direction
represented by a vector v, we say that an edge f ∈ F is

• positive, if the interior of P is in the direction of v relative to f ,

• negative, if the interior of P is in the direction of −v relative to f ,

• and neutral, if it is neither positive nor negative.

The set of all positive edges in F is denoted F+ and the set of all negative edges is denoted
F−.
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Figure 2: (a) Two overlapping triangles. (b) The area of the overlap can be computed based
on areas horizontally between pairs of edges. More precisely, based on Equation 1, the area
is A(R(f1, g3)) + A(R(f1, g2)) + A(R(f2, g2)) − A(R(f1, g1)) − A(R(f2, g1)). Bold edges are
positive and non-bold edges are negative. (c) This works in other directions as well. In this
case, it is the same edge pairs as before, but this could be different for other directions.

We now state the main theorem needed for generalizing the translation algorithm to
arbitrary directions.

Theorem 3. Given two polygons P and Q with edge sets F and G, respectively, and a
translation direction represented by a vector v, let R0 = P ∩ Q. For any region R, let A(R)
denote the area of R. Then:

A(R0) =
∑

f∈F+

g∈G−

A(Rv(f, g)) +
∑

f∈F−

g∈G+

A(Rv(f, g))−
∑

f∈F+

g∈G+

A(Rv(f, g))−
∑

f∈F−

g∈G−

A(Rv(f, g)). (1)

The theorem stated by Egeblad et al. [8]A is identical to the theorem above except that
a horizontal vector v is assumed. The proof there generalizes easily to an arbitrary direction
vector v, and there is no need to repeat it here. An illustration of a simple overlap between
two triangles and the edge regions which can be used to compute its area, can be seen in
Figure 2. Note that the theorem applies to non-convex polygons as well as convex ones.

Given a horizontal positive direction, the situation for two given edges f and g from
polygons P and Q respectively, is illustrated in Figure 3. Assume that initially f is to the left
of g. The two edges can only contribute to the overlap of P and Q after translation if their
vertical extents overlap (Figure 3a). The parts of the edges outside this vertical overlap can
be ignored as illustrated in Figure 3b. When P is translated to the right a sufficiently large
distance, f passes through g. Before they intersect (with f to the left of g), the edge region
between them is empty. While the two edges intersect, the area of the edge region is the area
of a triangle (see Figure 3c) and when f is entirely to the right of g, the area of the edge region
is a simple linearly growing area based on a constant height (Figure 3d). The computations
needed to derive the area of the growing triangle are trivial, but also constitute a special case
of the computations needed for handling arbitrary translation directions described later in
this section.

Now the translation algorithm by Egeblad et al. [8]A can be sketched as follows. For
each pair of edges, f and g (with g fixed and f moving), two breakpoints are generated,
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f
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f g
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fg
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Figure 3: Examples of the edge region Rv(f, g) for a horizontal vector v and various horizontal
positions of f . (a) Some parts of f and g are irrelevant for their edge region and they can be
ignored. (b) When f is completely to the left of g, the edge region is empty. (c) When the
edges intersect, the edge region is triangular. (d) When f is to the right of g the edge region
is a quadrilateral with two opposite parallel sides.

corresponding to the horizontal position of a reference point of P (the polygon containing
f) at the beginning and the end of the intersection of f and g, since these events mark the
non-differentiable changes in the area-function. Each breakpoint is provided with a quadratic
function describing the new area function to the right of that point (in terms of the distance
from the initial position), and a distance value describing how far f has been moved. When
breakpoints have been generated for all pairs of edges, one of which belongs to the moving
polygon P and the other to one of the fixed polygons, the breakpoints are sorted according
to distance, and are visited one by one while searching for a minimum of the function. For a
more detailed description we refer to the original description [8]A.

We now turn to the problem of area computations for arbitrary directions, other than the
vertical direction. This more general problem is illustrated in Figure 4a. The dashed lines
indicate the translation direction and they also show the projection of all four end-points
onto the y-axis. Using these projections it is easy to determine whether the two edges, f
and g, can contribute to the overlap of P and Q when P is translated. It is also easy to see
that finding the relevant parts of the edges can be done using very simple calculations. The
result is illustrated in Figure 4b. Now, it would be natural to use the distances between the
end-points of the edges to measure when the two edges begin and complete their intersection,
as in the horizontal case. A solution to the translation problem would then be given as the
distance traveled by P in order to obtain the minimum area of overlap. As previously noted
this would require square root calculations.

Square root calculations can be avoided if one does not measure the distances, but instead
only measure the distance traveled in the horizontal direction. The solution to the problem
is then the x-coordinate of the optimal position. Given a pair of edges, f and g, we want
to compute the area of their edge region in terms of the horizontal distance traveled by
f . As illustrated in Figure 4b, the important distances are the distance traveled when the
intersection of f and g starts (t1) and the distance traveled when the intersection of f and g
stops (t2). For any value t ≤ t1, the area of the edge region is zero.

Assuming t1 6= t2 then the main problem is to obtain a function describing the area of
the region Rv(f, g) illustrated in Figure 4c during translation (t ∈ [t1, t2]), i.e., the area of a
growing triangle. Also assume that t1 = 0. Now, it is convenient to describe two sides of the
triangle using two parameterized vectors, f(t) = (fx(t), fy(t)) and g(t) = (fx(t), fy(t)), rooted
at the intersection of f ′ and g′, as illustrated in Figure 4c. For t = t2, these vectors exactly
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Figure 4: (a) To determine whether two edges, f and g, intersect when one of them is
translated in a given direction, one can project them using the same (or opposite) direction
onto the y-axis. (b) The edges are now shortened such that only the relevant parts are
considered. These edges are denoted f ′ and g′. The values t1 and t2 are the distances needed
for translation of f ′ with respect to the x-axis before the edges start and stop intersecting,
respectively. (c) To compute the area of the region between f ′ and g′, it is useful to use
vectors rooted at the intersection. These vectors are denoted f(t) and g(t) where t is the
distance traveled by f .

overlap f ′ and g′. A function, α0(t), to describe the area of the triangle delimited by these
vectors can now be stated as follows.

α0(t) = |fx(t)gy(t)− fy(t)gx(t)|/2.

The lengths the vectors change linearly with respect to the horizontal distance traveled.
Since we have assumed that t1 = 0, we can rewrite the expression to obtain a polynomial.

α0(t) =
1
2
|tfx(1)tgy(1)− tfy(1)tgx(1)| = 1

2
|fx(1)gy(1)− fy(1)gx(1)|t2

Now, if we let A = α0(1) then the general function α(t) for any value of t1 easily follows:

α(t) = α0(t− t1) = A · (t− t1)2 = A · (t2 − 2t1t + t21) = At2 − 2At1t + t21.

In the horizontal case we have fy(1) = gy(1) = h1 where h1 is the height of the triangle
when |fx(1)−gx(1)| = 1. This means that A = h1/2 which is exactly what one would expect.

The remaining small problem is for t > t2. In this case the area of the edge region is the
value of α(t2) plus a simple linearly growing area (the area of a parallelogram based on the
value t− t2 and the height h as illustrated in Figure 4a). This is also the only case to handle
if t1 = t2; in this case α(t2) is defined as zero.

The end result is that in order to handle translations in arbitrary directions, one only
needs to do the projections slightly different than in the horizontal case. This methodology
then includes horizontal translation as a special case. However, note that it is also neces-
sary to compute the y-coordinate corresponding to the x-coordinate found as a result of the
translation algorithm.
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Using directed local translations to solve the nesting problem with free orientation of shapes

This algorithmic method essentially equates a translation in any arbitrary direction (ex-
cept vertical) with a horizontal translation. Depending on the direction, it could be better
instead to use a vertical translation with respect to floating point precision of the calculations.
A natural choice — and our choice for the implementation used in Section 6 — would be to
choose the closest of these two directions in terms of angle.

The functions described are for the problem of minimizing the area of an overlap. Other
overlap measures such as those described by Nielsen and Brazil [20] can also be adapted to
work nicely with arbitrary directions. The same is true for higher dimensional translation
problems as described by Egeblad et al. [7]C. We return to the subject of higher dimensions
in Section 7.

4 Movement Strategy

4.1 Local search neighborhood

So far, we have shown that directional translations can be easily implemented with a small
constant overhead in running time. Now we address the question of whether they are really
useful. Clearly some problems, e.g., with appropriately shaped containers or polygons, would
benefit from translations in other directions than those which are axis-aligned, but the direc-
tional translations also open up some new movement strategies. For this discussion we first
need a few standard definitions.

The search space is all possible placements of the polygons within the boundaries of the
container; the majority of these placements contain overlapping polygons. A set of moves
define which placements can be reached from a given placement. These placements constitute
the neighborhood of a given placement. A local search iteratively perform moves in the
neighborhood of the current placement as long as the value of the objective function can
be decreased; otherwise a local minimum has been found. The solution method by Egeblad
et al. [8]A for the nesting problem uses a local search neighborhood containing horizontal and
vertical translations of polygons. These translations are repeated until all overlap is gone
or until no polygon can be moved horizontally or vertically to a position with less overlap.
The local minima are then handled by a meta-heuristic method, guided local search, which
penalizes features of the placement such that it is no longer a locally optimal placement.

In this section we focus on alternatives to repeated horizontal/vertical translations. This
is a subject that has received only cursory attention in previous papers, such as Egeblad
et al. [8]A and Egeblad et al. [7]C. The following is a discussion of some of the alternatives
for a local search neighborhood when translations in arbitrary directions are available. In the
case of Egeblad et al. [8]A, the neighborhood only contained horizontal translation moves and
vertical translation moves (for every polygon). Two such neighborhoods are illustrated for a
single polygon (a square) with the double arrows in Figures 5a and 5b.

The directional translations introduced in the previous section comprise a useful alterna-
tive to the horizontal and vertical moves. The straightforward alternative is to extend the
neighborhood with a fixed set of extra directions, e.g, diagonal translations. Another alter-
native is to employ random directions. This makes the neighborhood infinitely large, but can
be handled by deciding that if an improvement cannot be obtained for some fixed number
of random directions then it is assumed that the polygon cannot be translated to a position
with less overlap in any direction.
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(a) (b)

(c) (d)

Figure 5: Examples of local search neighborhoods for a single shape (the square). (a) A neigh-
borhood of horizontal and vertical translations. The dashed square indicates the best possible
position of the square in this neighborhood. (b) The subsequent neighborhood after trans-
lating the square. (c) Alternatively, the neighborhood can contain the aligned translations
available corresponding to contact points. Only one contact point and thus one translation
direction is available in this case. (d) Two directions are available in the following placement
of the square. Note that the possible translations are limited in such a way that at least
one of the contact points is preserved. The dotted squares are the extreme positions in the
neighborhood.
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P Q P Q P Q P Q

(a) (b) (c) (d)

Figure 6: Two non-overlapping polygons P and Q can be in contact with each other in four
different ways. (a-b) A vertex of on polygon is on the interior of an edge on the other polygon.
(c) Vertex-to-vertex contact point. (d) Similar to the first case except with two contact points,
which are the endpoints of the boundary edge segment shared by P and Q.

4.2 Aligned translations

Here we describe a promising alternative strategy based on translations in arbitrary directions.
Given two polygons P and Q (one of which may be the container), we say that the point p is
a contact point for P and Q if p lies on the boundaries of both polygons and p is a vertex of
either P or Q. It is easy to see that given any placement without overlap, it can always be
compacted such that each polygon has a least one contact point with another polygon. This
suggests that contact points are an important feature of non-overlapping placements. There
are four different types of contact points come in four variations as illustrated in Figure 6. In
all four cases, we can represent the contact point by a vertex from one of the polygons and an
edge from the other polygon (there may be more than one candidate for the choice of vertex
or edge, as in Figure 6c).

Given a vertex and an edge which constitute a contact point, we can find a directed finite-
length translation of one of the polytopes such that this vertex stays on the edge over the
course of the translation. In Figure 5b, the upper right corner of the small box is a contact
point as it is also on an edge of the triangle in the upper right corner of the placement. This
suggests a translation of the box aligned with the edge of the triangle as illustrated by the
double arrow in Figure 5c. If the box is translated to the position indicated by the box with
dashed edges then the box now has two contact points that should be considered before the
next move. This is illustrated by the neighborhood in Figure 5d. We refer to such local
vertex-edge moves as aligned translations.

Aligned translations are inherently local (short) moves as opposed to the horizontal and
vertical translations of Egeblad et al. [8]A which are global (long) moves in the sense that
they can move a an arbitrarily large distance within the container. In the small example used
in Figure 5, this difference is not obvious, but for larger problem instances, the difference
is important. The example in Figure 5 also suggests a strategy which involves both global
and local moves: When a polygon has been selected as a candidate for translation then first
use a global move to find its optimal placement in a horizontal or vertical direction and then
use a series of local translations to optimize its placement locally (aligned with neighboring
polygons). This is the approach chosen for the implementation used for the experiments in
Section 6. When multiple contact points (or associated vertex/edge pairs) are available, the
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corresponding aligned translations are attempted in a random order and the first one which
improves the placement (if any) is performed.

4.3 Implementation details

Ultimately, the most important aspect of the movement strategy is what works best in prac-
tice, which may depend strongly on the problem instance. In the remaining part of this
section, we focus on how the aligned translations can be implemented efficiently. We have
already seen that the translation algorithm itself can be implemented efficiently, but we have
not yet discussed how to find the available contact points and their corresponding vertices
and edges. Given a polygon P , the naive approach is to simply make a series of tests for
each of its vertices and edges in relation to the edges and vertices, respectively, of all other
polygons. This could work quite well, but given the combination of global and local moves
sketched above, there is a much better approach to this problem.

As previously described, each translation involves the generation of a set of breakpoints
corresponding to the changes in the quadratic function describing the area of overlap between
P and the other polygons. If the minimum of this function is found at a breakpoint then
it must correspond to a contact point, since breakpoints are only generated for translation
distances that bring a vertex and an edge in contact. On the other hand, if a minimum is
found between breakpoints then no such contact point can exist. Now, if the breakpoints are
reported (cached) as part of the result of a translation then a following aligned translation
can be based on the information provided by these breakpoints. If the minimum was found
between breakpoints then we already know that no contact points are available, but if the
minimum is at a breakpoint then all breakpoints with the same distance value represent all the
contact points. The origin of each breakpoint (vertex and edge) must be stored temporarily,
but this does not affect the asymptotic running time. In other words, we get the information
required for aligned translations at no extra overhead. The only condition is that we must
begin with a non-aligned translation to obtain the first set of candidate contact points.

Some problem instances may only involve very short edges, especially if they are approxi-
mations of curved shapes. This can be handled with one or both of the following approaches.
Firstly, it would in general be an advantage to make the approximations cruder since the
running time already depends heavily on the number of edges involved. Secondly, any aligned
translations based on very short edges could be extended to some minimum distance — after
all it is not required that the shapes are in contact after the translation and it can be thought
of as moving in a direction that is tangent to the shape. This could also be thought of as an
emulation of approximating the shape using fewer edges. The implementation used for the
experiments presented in Section 6 does not extend the translations.

5 Free Orientation

In general, it can be quite difficult to create a solution method which can handle free orien-
tation in nesting problems, but here we describe a very simple way to incorporate it into the
solution method described so far. Consider the aligned translations in the previous section
and observe the types of contact points illustrated in Figure 6. In each of the first three cases
(6a-c) it is possible to rotate P to create a situation similar to the last case (6d), essentially
by aligning edges of neighboring polygons. This is basically all that is needed to handle free
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Figure 7: Aligned translations can easily be used to handle free orientation of shapes as well.
After an initial axis-aligned translation of the small box, it has obtained a contact point with
a neighboring triangle. Based on this contact point, the box is rotated such that it is aligned
with the corresponding edges of the triangle before it is translated to its final position.

orientation. In Figure 7 we illustrate how this could affect the example from Figure 5 (involv-
ing translations of a small box). The initial horizontal translation works as usual, but before
the following aligned translation, the box is rotated around the contact point such that it is
aligned with the triangle in the upper right corner. Whenever a polygon is to be rotated as
described here, there is a choice to be made, since it can be rotated in two opposite directions.
The most obvious strategy (and our choice) is simply to choose the smallest angle since this
seems most likely to succeed.

The first interesting observation to be made is that (at least theoretically) this approach to
free orientation works in a relatively small search space when compared to the full search space
of all possible orientations (and positions) of the polygons. This is due to the fact that the
available orientations are based on the angles of edges of all polygons in the initial placement
— including combinations of these angles as explained further below. The extreme case is
to pack equilateral triangles inside a larger equilateral triangle as container. If the initial
orientations of all triangles are identical then the orientations of the triangles are limited to
multiples of 60◦. Similarly, packing rectangles inside a larger rectangle limits all orientations
to multiples of 90◦. This is both a useful property (in terms of restricting the size of the
search space) and a limitation of this approach. Consider, for example, the situation with
initial placement as shown in Figure 8a. No matter what happens during the solution process
when using rotation combined with aligned translations, one can never find a non-overlapping
placement such as the one shown in Figure 8b. In general, given a problem instance with
edges with orientations {α1, . . . , αn} then through an appropriate finite number of steps, any
edge can obtain any orientation that can be constructed as a scalar combination of the input
orientations, i.e., any orientation α = s1α1 + . . . + snαn mod 2π for si ∈ Z. Clearly, even a
small number of orientations in the input problem can allow a very large (possibly infinite)
number of possible orientations during the solution process.

Note that it is also possible to “lose” possible orientations during the solution process. For
example, assume we are given a problem with rectangular shapes and a rectangular container,
but with initial orientations such that the rectangles are not aligned with the container. These
orientations can then disappear if all rectangles are aligned with the container (directly or
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5. Free Orientation

(a) (b)

Figure 8: (a) Two identical equilateral triangles placed inside a square shaped container.
(b) This non-overlapping placement cannot be found if only doing rotations in conjunction
with aligned translations.

indirectly) during the solution process. When all rectangles are aligned with the boundaries
of the container then there is no way of recovering the original orientations. In this case and
many other cases, however, this is most likely an advantage. The described approach to free
orientation can be interpreted as a dynamic set of discrete orientations which can both grow
and shrink during the solution process.

Early experiments with this solution method show that it is important that the edges
of the container polygon are included when considering contact points for rotation. This
helps keep the polygons aligned with the boundary instead of drifting towards less promising
orientations. Another early observation has been that rectangular (or close to rectangular)
shapes are best kept close to an orientation aligned with the edges of the container given that
the container is also a rectangle which is the case for most benchmark problem instances.
These are examples of small changes to the solution method which have a great impact on
the results produced, but which are also closely related to the problem instances at hand.

In the previous sections, it has been noted that both the original axis-aligned translation
algorithm and the directional translation algorithm can work using rational numbers only.
In general this is not true when also using rotation. However, given the right set of initial
conditions, it is still possible to use rational numbers only. We have already assumed that the
vertices of the polygons have rational vertex coordinates. In order to make rotation work with
rational numbers, the lengths of the edges of the polygons must also be rational numbers.

Any polygon can be arbitrarily closely approximated by a polygon with rational coor-
dinates for its vertices and rational edge lengths, by the construction of rational Heronian
triangles. A rational Heronian triangle is a triangle whose edge lengths and area are both
rational. This implies that the triangle can be positioned so that its vertices have rational
coordinates. By finding solutions to a suitable Diophantine equation, any triangle can be
approximated arbitrarily closely by a rational Heronian triangle. This is demonstrated by
Murasaki [19] for an equilateral triangle, and the method can be easily generalized. See also
Campbell and Goins [3] for more details.

This approach can easily be extended to polygons, by triangulating the polygon, and
successively replacing the component triangles by rational Heronian triangles. Again this
allows one to construct a polygon whose vertices have rational coordinates and whose edge
lengths are rational, that closely approximates the original polygon in the problem.

Starting with such polygons means that one can run the algorithm without having to use
floating point approximations of real numbers, and hence with no floating point errors. This
is particularly valuable for testing and debugging the program.
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6 Computational Experiments

The two-dimensional aligned translation algorithm and the corresponding rotation technique
described in this paper has been incorporated with the existing nesting program, Nest2D,
described by Egeblad et al. [7, 8]. Initial experiments with this implementation are presented
in this section, but they are not to be considered conclusive as to determining the full potential
of the techniques described. The main purpose is to show that this approach is competitive
with existing solution methods although results from the literature is very limited with respect
to free orientation. All experiments are with the strip packing variant of the nesting problem,
i.e., the goal is to minimize the length of a rectangular strip. This is done by repeatedly
solving the decision problem, each time making the strip a bit shorter [8]A.

All experiments were conducted on a system with a 2.16 GHz Intel Core Duo processor
with 2 MB of level 2 cache and 1 GB of RAM. The problem instances can be found on the
ESICUP homepage1. All solutions found are verified using Cgal [11], that is, it is verified
that no polygon is involved in overlap with other polygons or the container. Due to the
limited precision of floating point calculations, very small overlaps can occur, but Nest2D
has proven to be very robust. For the experiments done for the results presented in this
section, the largest total area of overlap in a solution corresponds to 1 × 10−13 of the total
area of all polygons for the given problem.

Using a large number of problem instances, we have conducted a series of experiments
with and without free orientation. Experiments without free orientation have been conducted
both with and without shape aligned translations. Preliminary experiments have shown that
the initial orientations of the shapes in the problem instances used are most often very good
orientations for finding compact solutions — especially for the problem instances with shapes
that are close to being rectangular. Therefore, experiments have also been conducted where all
shapes are initially randomly oriented. Each combination of problem instance and parameters
has been run 10 times and the average utilization and the standard deviation is reported in
Table 1.

The results vary between problem instances, but the variations are quite small. For
fixed orientations of shapes, there is (on average) no difference between using axis aligned
translations and also using shape aligned translations. The results when using random initial
orientations of the shapes show a considerable decrease in utilization. On average it is 7.6%
percentage points worse. Again, there is no difference between using axis aligned translations
and also using shape aligned translations. Both have an average utilization of 70.2%.

In Table 2 results with and without free orientation allowed are compared. Interestingly,
some results with free orientation of shapes are worse than when using fixed orientations
(without initial random orientations). Again, this is most likely because some of these problem
instances are best suited for a limited set of rotation angles and allowing anything else is a
waste of time. On average, the results obtained with free orientation is 2.1% percentage
points better than for fixed orientation. When comparing the results for initial random
orientations with and without free orientation in the solution method, the difference is almost
10 percentage points on average. This could be a good indication of what results can be
obtained for problem instances which really benefit from free orientation.

The last two columns of the table describes the best results from the literature where 90◦

or 180◦ rotations are allowed for most of the problem instances [1, 8]. These results are on

1http://paginas.fe.up.pt/∼esicup/
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Random initial orientation
Size Axis Shape Axis Shape

Albano 14 85.4 (0.3) 85.1 (0.2) 74.3 (0.8) 74.2 (1.0)
Dagli 30 82.6 (0.4) 83.0 (0.3) 77.1 (0.5) 77.2 (0.6)
Jakobs1 25 83.3 (0.9) 82.9 (1.0) 72.6 (1.2) 72.5 (1.5)
Jakobs2 25 76.5 (0.5) 76.5 (0.7) 67.9 (0.6) 68.2 (0.6)
Mao 20 79.4 (0.1) 79.4 (0.2) 72.0 (1.2) 72.2 (1.9)
Marques 24 87.4 (0.1) 87.2 (0.4) 75.4 (0.6) 75.1 (0.7)
Poly5b 75 72.3 (0.3) 72.7 (0.6) 72.3 (0.7) 72.4 (0.5)
Profiles6 65 73.4 (0.9) 73.2 (0.8) 57.7 (0.6) 57.5 (0.7)
Profiles10 91 66.7 (0.4) 67.0 (0.7) 63.4 (0.6) 64.0 (0.6)
Shapes0 43 66.0 (0.5) 65.9 (0.5) 60.5 (0.8) 60.7 (0.4)
Shirts 99 84.5 (0.3) 84.2 (0.4) 77.5 (0.5) 77.1 (0.6)
Swim 48 69.0 (0.5) 69.0 (0.7) 65.7 (0.8) 65.2 (0.5)
Trousers 64 85.3 (0.4) 85.3 (0.3) 75.4 (1.5) 75.8 (1.6)

77.8 (7.4) 77.8 (7.3) 70.2 (6.3) 70.2 (6.3)

Table 1: Experimental results from Nest2D showing the utilization percentages (average of
10 runs) obtained for a range of different problem instances from the existing literature. The
number of shapes are reported for each problem instance in the second column. Column 3 and
5 are the results when using axis-aligned translations only. Column 4 and 6 are the results
when also using shape-aligned translations. Column 6 and 7 are the results when the shapes
are initially randomly oriented. The final row is an average over all problem instances.

122



Using directed local translations to solve the nesting problem with free orientation of shapes

Random initial Best from
orientation literature

Orientation: Fixed Fixed Free
Albano 85.1 (0.2) 74.2 (1.0) 85.1 (0.3) 86.9 (0.3) 180◦

Dagli 83.0 (0.3) 77.2 (0.6) 85.0 (0.5) 85.3 (1.1) 180◦

Jakobs1 82.9 (1.0) 72.5 (1.5) 85.0 (0.8) 88.9 (0.4) 90◦

Jakobs2 76.5 (0.7) 68.2 (0.6) 79.5 (0.6) 80.2 (0.2) 90◦

Mao 79.4 (0.2) 72.2 (1.9) 81.0 (0.8) 82.6 (0.9) 90◦

Marques 87.2 (0.4) 75.1 (0.7) 86.3 (0.6) 88.7 (0.3) 90◦

Poly5b 72.7 (0.6) 72.4 (0.5) 77.2 (0.5) 75.8 (-) 90◦

Profiles6 73.2 (0.8) 57.5 (0.7) 74.8 (1.1) 75.6 (-) 0◦

Profiles10 67.0 (0.7) 64.0 (0.6) 69.4 (0.5) 66.2 (-) 0◦

Shapes0/1 65.9 (0.5) 60.7 (0.4) 73.8 (0.8) 71.7 (0.8) 180◦

Shirts 84.2 (0.4) 77.1 (0.6) 84.3 (0.7) 85.7 (0.4) 180◦

Swim 69.0 (0.7) 65.2 (0.5) 69.1 (0.8) 72.2 (1.0) 180◦

Trousers 85.3 (0.3) 75.8 (1.6) 87.8 (0.5) 89.2 (0.3) 180◦

77.8 (7.3) 70.2 (6.3) 79.9 (6.2) 80.7

Table 2: Experimental results from Nest2D showing the utilization percentages (average of 10
runs) obtained for a range of different problem instances from the existing literature. Standard
deviations in parenthesis. Parameters have been varied in order to show the difference in
results with/without free orientation and with/without a random initial orientation of shapes.
The final two columns are the best results found in the literature where 90◦ or 180◦ rotations
are allowed (no rotation is allowed for two of the problem instances). The final row is an
average over all problem instances.
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Liu and He [16] Nest2D
Problem Length Utilization (%) Seconds Length Utilization (%) Seconds
Poly5b 60.12 76.3 37.6 59.40 77.2 600
Shapes0 56.9 70.1 4082.0 54.02 73.8 600
Swim 6320.7 69.9 156.5 6398.9 69.1 600

Table 3: Results by Liu and He [16] compared with results produced by Nest2D (averages of
10 runs). Both solution methods allow free orientation of shapes. When comparing running
times, it should be taken into consideration that Liu and He conducted their experiments on
a 1.5 GHz Pentium IV processor.

average better than those with free orientation, but there are a few exceptions. This is a
strong indication that even though the solution method presented in this paper can handle
free orientation of shapes, it might be better for some problem instances to use a restricted
set of rotation angles. It would of course be better if the solution method could be improved
in such a way that it performed at least as well as a solution method specialized for a small
number of rotation angles.

The existing literature only contains few computational results with respect to free ori-
entation of shapes, but a small comparison is possible with the results reported by Liu and
He [16] for their solution method. They report both the lengths of their solutions and the
utilization of material. Unfortunately, the utilization values do not match with the definition
of utilization used in this paper and it is unclear what their method is. Therefore, we have
computed utilization values based on the lengths reported by Liu and He. Their results are
compared with the average results produced by Nest2D of 10 runs of 10 minutes each (see
Table 3). Liu and He handle the Swim problem instance slightly better with a difference of
0.7 percentage points while the opposite is the case for the Poly5b problem instance which
is 0.9 percentage points better with Nest2D. The largest difference is Nest2D being 3.7
percentage points better on the Shapes0 problem instance. Although the comparison with
Liu and He is very limited, it does indicate that Nest2D works at least as well as other
solution methods in the existing literature.

7 Generalization to higher dimensions

The implementation used in the previous section currently only applies to problems in two
dimensions. However, theoretically the techniques described can be generalized to three
and more dimensions. The following is a short discussion of some of the details of such a
generalization, but it is still an open question as to how well this would work in practice.

Egeblad et al. [8]A generalizes the axis-aligned translation algorithm to three dimensions,
and a more detailed description (and proof) of this generalization is given in Egeblad et al. [7]C.
The latter paper also generalizes the result to arbitrary higher dimensions. It is therefore
interesting to discuss the applicability of the techniques described in this paper to problems
in three or more dimensions.

The d-dimensional generalization of a polygon is a polytope. Often in the literature it is
assumed that a polytope is a convex region of d-dimensional space, defined, e.g., by a finite
set of halfspaces, but here we allow a broader definition. We define a polytope as any shape
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that can be described as the finite union of a set of convex polytopes. The boundary of a
polytope is composed of convex faces of varying dimensions (< d); the (d − 1)-dimensional
faces are called facets, the 1-dimensional faces edges, and the 0-dimensional faces vertices.
The details are given in Egeblad et al. [7]C.

A generalization of the directional translations is straightforward. As in the two-dimensional
case, basically only three changes are needed which can be briefly sketched as follows:

1. Given a direction, one must find an axis-aligned translation direction with which to
equate this direction (via projection). A good choice, with respect to precision, is the
axis-aligned direction which is closest to the given direction.

2. When determining the overlap of two (d − 1)-dimensional facets in the translation di-
rection, the projections needed are no longer axis-aligned. Fortunately, as in the two
dimensional case, projections in arbitrary directions are straightforward to compute.

3. The result of the translation algorithm only provides a single coordinate (on the corre-
sponding chosen translation axis) of the optimal position for the polytope. Using the
previous position of the polytope and the translation direction, the other coordinates
are easily derived.

The difficult question is that of how to choose good translation directions, or more pre-
cisely: what is a good local search neighborhood for the movement strategy. To answer this
question, we return to the concept of contact points. A contact point generalizes nicely to
higher dimensions. We say that the point p is a contact point for P and Q if p lies on the
boundaries of both polygons and p lies on a face of dimension ≤ d− 2 of either P or Q. More
types of contact points exist in higher dimensions, but they can all be represented by a pair
of faces: the facet f containing p for one polytope, and the face f ′ with smallest dimension
(no greater than d − 2) containing all contact points in a small neighborhood around p for
the other polytope. In relation to aligned translations, this limits the translation direction
to directions that keep all contact points belonging to the face f ′ on the facet f . If only one
contact point exists (in other words, f ′ is a vertex) then any one of these directions could be
chosen, but a natural choice might be one that keeps the direction as axis-aligned as possible.
If, on the other hand, there are exactly two discrete contact points available and the facets
corresponding to these contact points are not in the same hyperplane, then, d ≥ 3, it is possi-
ble to move the shape in a direction which respects both contact points. In three dimensions
this direction is unique, but in higher dimensions there is some choice, and we could again
choose the direction that is closest to being axis-aligned. If there are infinitely many contact
points (for example, an edge lying across a 2-dimensional facet in 3-dimensional space) then
again we can choose a translation direction closest to being axis aligned that respects all
contact points.

To summarize, a good local search neighborhood in d-dimensional space would contain all
translation directions obtained from contact pairs (f, f ′), where a contact pair consists of a
facet from one polygon and a lower dimensional face from the other corresponding to one or
more contact points.

The final question to answer is how to handle rotation in arbitrary dimensions. In this
case, we limit the discussion to the three-dimensional case. First, assume that a single isolated
contact point p is available corresponding to a vertex f ′ of one polytope and lying on a facet
f of the other. As usual we denote these polytopes P and Q, where P is to be translated, but
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p
f p1 p2f

(a) (b)

Figure 9: (a) A tetrahedron with a single contact point given by a point p on the tetrahedron
and a face f from some other polytope. There are numerous ways to rotate the tetrahedron
such that the contact point is fixed and one of three faces of the tetrahedron is aligned with
f . (b) A continuum of contact points (corresponding to the edge (p1, p2) which is in contact
with facet f) limits the freedom of the rotation such that only two options are available if the
edge (p1, p2) is fixed.

we do not know which polytopes contain of f ′ and f respectively. The vertex f ′ is a corner
point of a set of faces of its corresponding polytope. Each of these faces is a candidate for a
rotation of P such that the face is aligned with f (see Figure 9a). A natural choice would be
the candidate which requires the smallest rotation angle. If, on the other hand, a continuum
of contact points are available for the same facet f them we can assume that f ′ is an edge
bounding exactly two faces of the polytope. Rotations that keep this edge fixed on the face
f are obvious candidates and again it seems most natural to try the one which requires the
smallest rotation angle to align the face with f (see Figure 9b). A third possibility is that
there are two or more isolated contact points on f that do not belong to the same edge of
the other polytope, but even in this case, this pair of contact points can often still help to
identify a useful axis of rotation.

8 Conclusion

We have presented a new approach to solving the nesting problem with free orientation of
arbitrary polygonal shapes. This solution method is based on a translation algorithm which
can find the minimum area of overlap position in a given direction. Such translations are
done repeatedly until the total overlap has been reduced to zero and thus a non-overlapping
solutions has been found. The direction and the orientation used for each translation is based
on contact points with neighboring shapes. This makes the solution method biased towards
parts of the search space with a large number of contact points and a large number of aligned
edges of neighboring polygons. This is at least a well suited approach for solving jigsaw
puzzles, but it can also be a limitation since other parts of the search space are ignored.

Computational experiments have shown that this solution method works very well in prac-
tice. Without free orientation, the aligned translations work almost as well as the alternative
of using simple axis-aligned translations. With free orientation, the utilization of many prob-
lem instances is improved although it is not always the case. This is mainly due to the fact
that some of the problem instances in the literature have irregular polygonal shapes which
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are really close to being rectangular. The implementation of aligned translations (and free
orientation) has not been optimized to the same degree as the basic axis-aligned translation
method. It is therefore not unlikely that the full potential of this approach has not been fully
illustrated by the computational experiments.

Each of the techniques described in this paper could most likely also be used for other
solution methods for the nesting problem and even help solve completely different problems.
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Steiner Tree Problems

Steiner Tree Problems
1 Introduction

In the introduction to nesting problems it was stated that cutting and packing problems are
classic subjects in computer science. More precisely, the first papers were written on the
subject in the 1950’s [15]. Steiner tree problems are classic subjects in mathematics, but this
is in a completely different time frame.

The first stated Steiner tree problem was the Euclidean Steiner tree problem for an input
of 3 points. It was stated by Fermat (1601-1665) and is also known as the Fermat problem.
In short, this problem asks for a point in the plane that minimizes the sum of the distances
to three given points. This problem can, in a natural way, be generalized to finding a point
that minimizes the sum of distances to n given points. Although the mathematician Steiner
(1796-1863) was interested in this problem, it is not the problem that is generally known as
the Steiner tree problem. The Steiner tree problem is actually due to Jarńık and Kössler,
who in 1934 stated the following problem in a Czechoslovakian journal: For a given set of
points, find the shortest network in the plane that connects them. This was later referred to
as the Steiner tree problem by mistake and it has since become the standard name [7].

Steiner tree problems come in numerous variants and a good introduction to solution
methods (both exact and heuristic) is given by Hwang et al. [7]. The practical applications
of Euclidean Steiner trees are quite obvious. A network with, e.g., pipelines, electricity wires
or telephone cables, is going to be cheaper if it is shorter. Here, we first give a general
introduction to the subject of Steiner trees which is then followed by a discussion of the
problem variants relevant for the four Steiner tree related papers in this thesis. These problem
variants are based on two unrelated applications; VLSI design (Section 2) and construction of
phylogenetic trees (Section 3). Finally, a short comparison and discussion of these applications
is given in Section 4.

Steiner trees are closely related to the (also classic) subject of spanning trees; in both cases
the standard problem is to find a tree with minimum length. A minimum length tree is known
as a Steiner minimum tree (SMT) and a minimum spanning tree (MST) for the respective
variants. The abbreviations are slightly confusing, but they are the de-facto standard in the
existing literature. These problems come in two basic variations; graph problems and metric
problems.

Consider a graph G with vertices V and undirected edges E where the edges have positive
weights. Also assume that the graph is connected, i.e., there is a path between any pair of
vertices. A minimum spanning tree problem can now be defined as the problem of finding a
set of edges in G with minimum sum of weights such that the edges connect all vertices in the
graph. Obviously such a set of edges is a tree. This is a polynomially solvable problem. Now,
consider a subset of vertices, P ⊂ V , and consider the problem of finding a tree with minimum
sum of weights connecting the vertices in P (denoted terminals). The vertices in such a tree
which are not terminals are denoted Steiner vertices. This is the Steiner tree problem for
graphs and this small change in problem definition makes it an NP-hard problem.

The classic metric problem definitions are for the Euclidean plane. Given a set of points,
again denoted terminals, in the Euclidean plane, a minimum spanning tree is a shortest tree
spanning all of the terminals where each edge in the tree connects pairs of terminals. This
is illustrated in Figure 1a. If additional points, denoted Steiner points, are permitted in the
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(a) (b)

(c) (d)

Figure 1: Various tree construction solutions for 6 points in the plane. (a) Euclidean min-
imum spanning tree (EMST). (b) Euclidean minimum Steiner tree (ESMT). (c) Rectilinear
minimum spanning tree (RMST). (d) Rectilinear minimum Steiner tree (RSMT).

construction of the tree then the problem, again, becomes NP-hard. Such as tree is known
as the Euclidean Steiner minimum tree which is most often abbreviated SMT (Figure 1b).
Here we need to distinguish it from similar problems and thus we denote it ESMT.

2 VLSI

The rectilinear minimum Steiner tree is a problem variation for the rectilinear metric (Man-
hattan distance). Such a tree is always at least as long as the Euclidean variant. A rectilinear
MST and a rectilinear SMT are illustrated in Figure 1c-d. They problems are abbreviated
RMST and RSMT, respectively. Applications and a further generalization is part of Section 2.

Note that the metric MST problems can also be formulated as graph problems by first
constructing a complete graph with edge weights corresponding to the distances between pairs
of terminals. Something similar is possible for the RSMT problem using a so-called Hanan-
grid which is a grid obtained by having horizontal and vertical lines through all vertices. The
intersections of these lines are then a sufficient set of potential Steiner points for an optimal
solution. The ESMT problem is special in the sense that it is not possible to (easily) predict
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Figure 2: A rectilinear Steiner minimum tree which contains 3 FSTs. Each FST is a tree
with only Steiner points as interior nodes.

a set of potential locations of Steiner points in an optimal solution.
Interestingly, the last paper in this thesis (Brazil et al. [1]H) is an attempt to solve what is

essentially a Steiner graph problem by using a heuristic method for a Euclidean Steiner tree
problem.

Even though both ESMT and RSMT are NP-hard problems they can often be solved
exactly even for very large problem instances — including some problem instances with more
than 10000 terminals [16]. The current state-of-the-art solution method is based on a two-
phase model. In the generation phase a small set F of so-called full Steiner trees (FSTs) are
generated while ensuring that some union of a subset of F is an ESMT/RSMT for the entire
set of terminals. Finding this subset of FSTs is called the concatenation phase. While the
concatenation phase is essentially the same in the Euclidean and the rectilinear Steiner tree
problems, the generation phases are quite different. Figure 2 is an example of an RSMT with
three FSTs.

The standard application of rectilinear Steiner trees is in the industry of VLSI (very-
large-scale integration) design. The term VLSI was originally used in the 1970s to describe
integrated circuits created by combining thousands of transistor-based circuits on a single
chip; e.g., a microprocessor. Today chips are produced with more than a billion transistors.
In relation to Steiner trees, the interesting part is the wiring on the chip. Traditionally, routing
has been restricted to horizontal and vertical directions, but in recent years there has been
an increasing interest in using more directions, in particular, diagonal directions. Diagonal
routing can reduce wire length with an average of 20% and thus make chips considerably
faster1. At the same time the space taken by the wiring is reduced. Each direction is in its
own layer on a chip which explains why a large number of directions is not feasible.

The above motivates a generalization of the Steiner tree problem. Suppose that we are
given a set P of n points in the plane. We are interested in finding a λ-Steiner minimum tree
(λ-SMT) for P which is an SMT with the restriction that the edges are permitted to have
only a limited number λ ≥ 2 of equally-spaced orientations. We assume that the permissible
orientations are defined by straight lines making angles iω, i = 0, 1, . . . , λ−1, with the positive
x-axis, where ω = π/λ. Examples of the edge orientations available for various values of λ
are illustrated in Figure 3.

1X Initiative Home Page: http://www.xinitiative.com
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λ = 2 λ = 3 λ = 4

λ = 5 λ = 8 λ =∞

Figure 3: The unit disks corresponding to various values of λ. Here, ∞ is used to symbolize
the Euclidean metric which can be interpreted as an infinite number of available orientations.
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The rectilinear Steiner tree problem is the problem of finding a 2-SMT, i.e., λ = 2. We
also say that we want to solve SMT problems in uniform orientation metrics. Examples of
λ-SMTs for three different values of lambda for the same set of points are shown in Figure 4.

λ=2 λ=4 λ=8
6 FSTs. Length: 28094.00 7 FSTs. Length: 25724.63 9 FSTs. Length: 24952.03

Figure 4: λ-SMTs with varying λ for the same set of 15 points. Note that the topologies are
not identical.

Brazil et al. [2]F presented an important result on the location of Steiner points for Steiner
minimum trees in uniform orientation metrics for λ = 3m for an integer m ≥ 1; they show
that the Steiner points can be placed in the exact same positions as in the Euclidean case.
Using this result one easily obtains a linear time algorithm for constructing a λ-SMT when
given a full topology by applying the corresponding algorithm for the Euclidean case [6]
and then replace the edges with the shortest connections possible in the uniform orientation
metric. This result was later extended to arbitrary values of λ by Brazil et al. [3]. When not
given the topology, the problem can be solved with the same two-phase strategy as for the
rectilinear and Euclidean cases. Again, the concatenation phase is the same while there are
major differences in the construction phase. Details and experimental results are reported by
Nielsen et al. [9].

Increasing the number of orientations is one way to obtain shorter wire lengths in VLSI
design. Another interesting technique is presented in the paper by Nielsen et al. [8]E which
is based on the observation that the length of a λ-SMT changes if the set of terminals is
rotated; or equivalently if the set of allowed orientations is rotated. A small example is shown
in Figure 5. The main problem is to find the rotation angle resulting in the shortest λ-SMT.
They show that a finite set of candidate angles can be found and computational experiments
are done showing what the gain is for RMST and RSMT problems.

3 Phylogenetic Trees

A completely different application of Steiner trees can be found in computational biology.
Given a set of (existing) species, an important problem is to determine how the species are
related. The relationships are often described by a tree in which the species are located in
the leaves. Interior nodes represent hypothesized ancestors and in some cases the branch
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t1

t2

t3

t1

t2

t3

(a) (b)

Figure 5: Three terminals in the rectilinear metric. (a) Non-optimal orientation for the length
of the RSMT. (b) Orientation minimizing the length of the RSMT.

lengths correspond to some measure of evolutionary distance. Such a tree is known as a
phylogenetic tree. In a sense, a shortest tree can be assumed to be a very likely tree to
explain the relationships among a set of species. Further below, we show how this can be
stated as a Steiner tree problem for a graph.

The whole idea of species being related to each other through evolution was first described
by Charles Darwin in the 19th century [4]. As mentioned such relationships can conveniently
be represented by trees as also suggested by Darwin (at the end of this introduction we discuss
some limitations of this approach).

Historically, various kinds of input has been used in order to construct phylogenetic trees,
e.g., physical characteristics such as the number of legs or the ability to fly. Today, most
kinds of analyses of the interrelationship of species are based on their DNA (or RNA). For
the purposes here, we are simply going to assume that a species is represented by a sequence
of the letters (nucleotides) A, T, C and G.

Solution methods for obtaining a phylogenetic tree based on a set of sequences come in
many variations. Books on the subject include the work of Felsenstein [5] and Semple and
Steel [13]. In this introduction, we are only going to discuss the approaches relevant for the
subsequent papers.

Some of the most simple solution methods are the so-called distance-based approaches. A
prerequisite of this approach is a matrix of distance values. This can be obtained from DNA
sequences by computing an edit distance between pairs of sequences, i.e., it is measured how
many steps (or mutations) which are most likely to have occurred in the evolution from one
sequence to another sequence. Given two equal length sequences, the simplest way to calculate
a distance is to calculate the Hamming distance; counting the number of differences. More
sophisticated evolutionary models are needed in order to more closely emulate the mutations
occurring in nature (and to handle sequences of differing length).

One of the classic and very simple methods for deriving an unrooted phylogenetic tree
from a distance matrix is the neighbor joining (NJ) algorithm [11]. A description can be
found in Brazil et al. [1]H. In short, the algorithm repeatedly merges two species which
are characterized by being close to each other while being far away from the other species.
Each pair is, in subsequent iterations, represented as a species itself by computing averages
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AGTT

AGT ATT GTTCGTT ACTT AGCT

CGTACT CTT GCTCCTT CGCTACCT

CCT

Figure 6: Two DNA sequences, AGTT and CTT, and the possible three step mutation sequences
possible to explain their relationship.

of distances to the other species.
Brazil et al. [1]H suggest an approach for constructing phylogenetic trees which transforms

a distance matrix into a problem which can be solved using Euclidean Steiner trees. This
is done by using multi-dimensional scaling to place the points in d-dimensional Euclidean
space such that the distances in the distance matrix match the Euclidean distances as closely
as possible. After this transformation a heuristic is used to approximate the d-dimensional
ESMT and the resulting topology is then used to construct a phylogenetic tree.

Multi-dimensional scaling is an example of how to use a metric Steiner tree problem for the
construction of a phylogenetic tree. Alternatively, the DNA sequences can be handled more
directly. The distances discussed above are an attempt to measure the number of mutations
which has occurred when one DNA sequence has changed into another DNA sequence. For
simplicity, assume that only three kinds of mutations can occur. A nucleotide can change,
e.g., from A to G, a nucleotide can be deleted or a nucleotide can be inserted. Given two
simple sequences, AGTT and CTT, numerous explanations of the series of mutations necessary
to change one in to the other exist. Examples of all possible variations with three mutations
are shown in Figure 6. In general, it is reasonable to assume that a short path is more likely
to be closer to the correct explanation than a long path (maximum parsimony). Although
that does not mean that the shortest path is necessarily the correct explanation.

Now, consider a graph in which the nodes are all possible DNA sequences and the edges
are all possible single event mutations. Weights on the edges can be used to make some
mutations more or less likely than other mutations. This is an infinite graph (an upper limit
on the length of the DNA sequences makes it finite). An example of a small neighborhood of
a short DNA sequence is shown in Figure 7. Given DNA sequences from a set of species, each
of them correspond to a node in the graph. The conjecture then is that a shortest Steiner
tree in the graph — connecting all the species — is also a good phylogenetic tree.

In practice, the DNA graph is too big to construct explicitly for realistic problem instances.
An alternative heuristic approach is described by Nielsen et al. [10]G. Note that the heuristic
was originally suggested by Schwikowski and Vingron [12] and it is known as the deferred path
heuristic (DPH). It is similar to the distance based methods with respect to the sequence of
merges, but instead of calculating a new set of distances after merging a pair of species, a
sequence graph representing a large set of possible ancestor sequences is constructed. When all
sequences have been merged, one can select a sequence in the final sequence graph and then go
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AGG

GGG

AAG

AGA

AG

GG

AGGG

GAGG
AAGG

AGAG

AGGA

Figure 7: A sequence AGG and all its neighbors if only simple mutations are allowed (single
change, deletion or insertion of a nucleotide). The alphabet has been limited to A and G for
simplicity.

back through the intermediate sequence graphs in order to construct an alignment of all the
initial sequences, i.e, insert gaps to make all sequences of equal length. This is a (heuristic)
solution to the generalized tree alignment problem. If the phylogenetic tree is already known
then one can also use this solution method for just constructing a tree alignment based on
the phylogenetic tree. These problems are also illustrated in Figure 8.

Nielsen et al. [10]G show how to obtain good solutions for generalized tree alignment
problems, but they do not compare the resulting trees with other solution methods for con-
structing phylogenetic trees. After publication of their work, some additional work on the
heuristic allowed the following small experiments to be conducted. First, a simple comparison
with neighbor joining (NJ) could be done as follows:

1. Artificially generate a phylogenetic tree and sequences for the leaves in the tree [14].

2. Compute pairwise distances and apply NJ to reconstruct the phylogenetic tree.

3. Based on the sequences, reconstruct the phylogenetic tree using DPH.

4. Compare the reconstructed trees (by NJ and DPH) with the original (correct) tree.

The experiment above was done for 10, 20 and 40 sequences with relatedness values of 10
and 50 [14]. The latter is a value describing how similar the sequences are. The results can be
seen in Table 1. All results are averages of 10 runs. The basic version of DPH simply makes
a greedy choice when selecting the pair to be merged, i.e., the choice is based on the shortest
distance between a pair of sequence graphs. It is also possible to integrate the strategy of
NJ. Results for this approach is also included in Table 1. The main conclusion is that the
phylogenetic trees produced by DPH are not very good when the simple greedy choice is
used while the integration of NJ almost works as well as using NJ on pairwise distances. The
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Figure 8: Illustration of two alignment problems: The tree alignment problem and the gener-
alized tree alignment problem. The two problems differ with respect to whether the topology
of the tree is known.

interesting question is now which of the methods actually produce the best tree alignments.
This turns out to be the integration of NJ in DPH (also shown in Table 1).

4 Conclusions

In this introduction two very different applications of Steiner trees have been illustrated. For
a computer scientist, the VLSI application has the nice feature of being straightforward and
the link between short trees and fast computer chips is immediate. In practice, there are
many other parameters than the wiring length which need to be considered in VLSI design,
but that does not change the fact that the shortest tree is always better if all other objectives
are ignored.

Phylogenetic trees are not obvious Steiner trees — or any other kind of mathematically
well defined trees. They are just similar to Steiner trees and it might or might not be a good
idea to construct phylogenetic trees based on algorithms for the construction of Steiner trees.
The best approach to evaluate the usefulness of Steiner tress is to make comparisons with
other solution methods. But the comparison of phylogenetic tree reconstruction methods is
one of the major problems of doing research in the area of computational biology. The best
phylogenetic tree is the one that describes the true evolutionary history of species, but there
are several major problems with finding such a tree. First of all, it is impossible to define a
perfect model of evolution. There are simply too many factors involved. Worse is the fact
that the data provided by living species is incomplete. Part of the evolutionary process is
the loss of information (deleted nucleotides), so one is actually working on incomplete data.
Furthermore, the correct trees are very rarely known which means that it is not even possible
to compare solution methods experimentally. Artificial problem instances can be constructed
to obtain the knowledge of “correct” trees, but this again requires assumptions about the
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Number of species
Similarity Tree alignment cost

10 20 40 10 20 40
Relatedness 10
DPH 2.40 7.60 18.00 382.30 420.15 863.48
NJ 0.00 1.11 0.53 375.07 397.32 809.05
DPH+NJ 0.00 0.37 0.53 373.68 396.98 809.65
Relatedness 50
DPH 2.60 8.00 20.40 1096.05 1910.08 3556.22
NJ 0.00 0.00 0.70 1085.92 1875.65 3437.78
DPH+NJ 0.83 0.74 0.88 1079.00 1868.83 3430.85

Table 1: Experiment with reconstructions of phylogenetic trees done by three different heuris-
tics; DPH, NJ and a combination. Sequences of varying length and relatedness are used in
the experiment and all entries are averages of 10 runs. Three columns show the similarity
with the known correct tree. This value ranges from 0 to 100 where 0 is a perfect match.
Three columns show the average tree alignment cost for the same experiments. The number
is relative to the number of mutations needed to describe the changes necessary to explain the
relations in the tree. Note that the tree alignment costs shown for NJ are the ones obtained
by solving the tree alignment problem using DPH.

model of evolution which are most likely not accurate. Finally, the assumption that the
evolution of a set of species can be described as a tree is not even necessarily correct. To
describe horizontal gene transfers and other phenomena, a data structure more sophisticated
than trees is required.
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On the location of Steiner points

in uniformly-oriented Steiner trees∗

Benny K. Nielsen† Pawel Winter† Martin Zachariasen†

Abstract

We give a fundamental result on the location of Steiner points for Steiner minimum
trees in uniform orientation metrics. As a corollary we obtain a linear time algorithm
for constructing a Steiner minimum tree for a given full topology when the number of
uniform orientations is λ = 3m, m ≥ 1.

Keywords: Computational geometry, interconnection networks, Steiner trees

1 Introduction

The Steiner tree problem asks for a shortest possible network interconnecting a given set of
points. Unlike the minimum spanning tree problem, three or more edges of Steiner minimum
trees (SMTs) can meet anywhere and not only at the given points. These additional junctions
are usually referred to as Steiner points.

There are two important variants of the geometric Steiner tree problem in the plane:
Euclidean and rectilinear. The Euclidean Steiner tree problem is one of the oldest optimization
problems dating back to Fermat. In this variant, distances are measured by the standard L2-
metric. In the rectilinear version, the edges of the SMT are allowed to have horizontal and
vertical directions only. This variant has important practical applications in VLSI design. We
consider a generalization of the rectilinear Steiner tree problem where the edges are permitted
to have any fixed number λ of orientations. More specifically, given λ, the orientations are
represented by the lines making iω angles with the x-axis, where ω = π/λ and i = 1, 2, ..., λ.
Clearly, the rectilinear Steiner tree problem is a special case of the Steiner tree problem with
uniform orientations where λ = 2. In the last few years there has been an increasing interest
in the Steiner tree problem with uniform orientations due to potential applications in VLSI
design. Some very important structural properties of SMTs with uniform orientations, also
referred to as λ-SMTs, were proved by Brazil et al. [1, 2].

Suppose that apart from the coordinates of the points that are to be interconnected, we are
also told how to interconnect given points and Steiner points (their locations are unknown).
We say that the topology T of the tree is given. More specifically, we consider full topologies
in which all terminals are leaves. Let S = {s1, . . . , sk} denote the set of k Steiner points in
T . Note that an assignment of coordinates to the Steiner points in S is a point in R2k. Let

∗The research was partially supported by the Danish Natural Science Research Council (contract number
56648).

†Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark. E-mail:
{benny,pawel,martinz}@diku.dk.
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lλ(S) denote the length of the λ-tree when the Steiner points are located in S ∈ R2k: Our
task is now to minimize lλ(S), that is, to construct a λ-SMT having topology T .

We may restrict our attention to full topologies for which every λ-SMT has only positive
length edges (i.e., no Steiner points overlap with other Steiner points or with terminals); also,
it may be assumed that all Steiner points have degree three [2]. Such topologies will in the
following be denoted full Steiner topologies.

The construction of λ-SMTs for full Steiner topologies can be performed in linear time
for λ = 2, 3 and ∞, but for other values of λ the complexity is unknown [1, 2]. In this
paper we partially answer this open question by showing that the problem can be solved in
linear time when λ = 3m, m ≥ 1. We prove that the locations of Steiner points for the
corresponding Euclidean SMT problem provide possible optimal locations of Steiner points in
the λ-tree. Due to the result of Hwang [3], the construction of the Euclidean SMT for a given
full Steiner topology — or deciding that it does not exist — can be performed in linear time.
Consequently, the construction of a λ-SMT for a given full Steiner topology and λ = 3m can
also be performed in linear time. Finally, we show that for λ 6= 3m, the locations of Steiner
points in a λ-SMT never coincide with the locations of the Euclidean Steiner points.

Preliminary results [5, 6] indicate that our prototype implementation of an exact algorithm
for the problem is much slower for λ = 3m than for other values of λ. We therefore expect
that the result obtained in this paper can be incorporated into new algorithms for the Steiner
tree problem with uniform orientations so that a substantial speed-up for λ = 3m can be
obtained.

2 Basic definitions and results

A λ-edge is a shortest path between two points u and v consisting of at most two line segments
that have legal directions. If a λ-edge has only one line segment it is said to be straight; if
it has two line segments it is said to be non-straight. Note that there are two different non-
straight λ-edges connecting two points (Figure 1). A Euclidean edge is a line segment between
two points, not necessarily in a legal direction.

Consider two λ-edges uv and uw meeting at a node u. If both λ-edges are non-straight
they can make three different angles at u, depending on which lines segments form the λ-edges.
If φmin

λ and φmax
λ denote the minimum and maximum angle at which λ-edges uv and uw can

meet at u, the angle φ between the Euclidean edges uv and uw is clearly φmin
λ ≤ φ ≤ φmax

λ

(Figure 1).
The main results in this paper will be obtained from the following known result on λ-SMT

angles:

Theorem 4. [2] Let λ = 3m + i, where i ∈ {0, 1, 2}. Let kω be the angle between two
neighbouring λ-edges meeting at a Steiner point in a λ-SMT (k is a positive integer). Then,

k ∈ {2m− 1, 2m, 2m + 1} if i = 0,
k ∈ {2m, 2m + 1} if i = 1,
k ∈ {2m + 1, 2m + 2} if i = 2.

Informally, the minimum angle is the largest multiple of ω that is strictly less than 2π/3;
similarly, the maximum angle is the smallest multiple of ω that is strictly larger than 2π/3.
For neighbouring λ-edges meeting at terminals the lower bound still holds.
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Figure 1: Two λ-edges uv and uw incident to the same node u. The corresponding Euclidean
edges are drawn as dashed line segments.

Lemma 4. [2] Let u be a node in a λ-SMT (λ = 3m) having two incident λ-edges making
an angle of (2m−1)ω with each other. Consider any of the two rays from u that make angles
(m− 1)ω and mω with the edges incident at u. Then we may insert a Steiner point s on the
ray, sufficiently close1 to u, without changing the length of the λ-SMT (Figure 2a).

This lemma implies that a Steiner point having two incident λ-edges making an angle of
(2m− 1)ω with each other can be moved — without changing the length of the tree — along
a direction that approximately is a bisector of this (minimum) angle. For λ-edges meeting at
a terminal, this means that a Steiner point can be created along the same direction. Brazil et
al. [2] used this so-called variational argument to prove that for λ = 3m there exists a λ-SMT
in which all edges meeting at a node make an angle of at least 2π/3 with each other (as in
the Euclidean Steiner tree problem).

Consider two λ-edges of a λ-SMT making an angle (2m − 1)ω. The λ-bisector wedge is
defined as the area given by the two rays making (m− 1)ω and mω with the two edges; the
bounding rays are assumed to belong to the λ-bisector wedge (Figure 2a). We can now prove
the following straightforward generalization of Lemma 4.

Lemma 5. Let u be a node in a λ-SMT (λ = 3m) having two incident edges making an angle
of (2m − 1)ω with each other. Then a Steiner point s may be inserted at any point in the
λ-bisector wedge, sufficiently close to u, without changing the length of the λ-SMT.

Proof. A Steiner point s in the λ-bisector wedge can be reached by performing two Steiner
point insertions along the rays defining the wedge (Figure 2b). First the Steiner point s′ is
inserted. The incident λ-edges can always be made to make an angle of (2m− 1)ω with each
other — in fact to be parallel with the original edges incident at u. Then Steiner point s is
inserted along the second ray.

3 Steiner points for λ = 3m

Let T be a full Steiner topology with k Steiner points. Let Tλ(S∗) be the λ-tree for topology
T when the Steiner points are located in S∗ ∈ R2k. Assume that Tλ(S∗) is a λ-SMT for
topology T ; as noted in Section 1, no Steiner point in S∗ overlaps with a terminal or another

1The distance from u to s is always positive, but it depends on the length of the two incident line segments
(up and uq in Figure 2a).
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Figure 2: Inserting a Steiner point. (a) Ray insertion: Steiner point s is inserted on a ray
making angles (m− 1)ω and mω with the edges incident at u. (b) Wedge insertion: Steiner
point s is inserted at a point in the λ-bisector wedge by two ray insertions. Note how one of
the edges incident at s′ is flipped in order to obtain a (2m− 1)ω angle so that the second ray
insertion can be performed.
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Steiner point. Now, let T (S∗) be the Euclidean tree having the same topology and the same
location for all terminals and Steiner points as Tλ(S∗), the so-called “underlying” Euclidean
tree; all λ-edges have been straightened out in this Euclidean tree.

Lemma 6. The Steiner points for Tλ(S∗) (λ = 3m) can be located such that T (S∗), the
underlying Euclidean tree, is a Euclidean SMT for the same topology.

Proof. Select the λ-SMT Tλ(S∗) such that the underlying Euclidean tree T (S∗) has the small-
est possible length. First we prove that such a set of Steiner points S∗ actually exists.

Let lλ(S) denote the length of the λ-tree when the Steiner points are located in S; similarly,
let l(S) denote the length of the Euclidean tree for the same set of Steiner points. Let
L = minS∈R2k lλ(S) denote the length of a λ-SMT. Consider the set C = l−1

λ ({L}) ⊂ R2k,
that is, the set of optimal Steiner point configurations. Since {L} is a closed set and lλ(S)
is a continuous function, the set C is closed, too. Furthermore, the set C is clearly bounded.
Thus the continuous function l(S) attains a minimum S∗ ∈ C.

Assume that T (S∗) is not a Euclidean SMT. Then there exists a Steiner point u such that
at least one pair of the incident (Euclidean) edges makes angle φ < 2π/3 with each other.
It is well-known [4] that the Euclidean tree can be shortened by inserting a Steiner point s
along the bisector of this angle (Figure 3a).

Since (2m − 1)ω ≤ φ < 2π/3 = 2mω, the incident λ-edges can be assumed to make
(2m− 1)ω with each other. We will now show that the (Euclidean) Steiner point s is in fact
in the λ-bisector wedge.

Let α and β be the residual angles as shown in Figure 3b, such that φ = (2m−1)ω+α+β,
where 0 ≤ α < ω, 0 ≤ β < ω. The bisector angle is φ/2 = (m− 1/2)ω + α/2 + β/2. We have
mω + α > mω − ω/2 + β/2 + α ≥ φ/2 and mω + β > mω − ω/2 + α/2 + β ≥ φ/2. Thus s
is in the λ-bisector wedge. Lemma 5 shows that inserting s into the λ-tree will not change
its length (assuming that s is sufficiently close to u). We have constructed a new λ-SMT
for which the underlying Euclidean tree has strictly smaller length, a contradiction to the
minimality of T (S∗) over the set C.

It follows that the Steiner points in a λ-SMT having a given full Steiner topology can be
assumed to be identical to the Euclidean Steiner points for the same topology. Therefore, we
may use Hwang’s linear time algorithm [3] to compute the Steiner points; the terminals and
Steiner points are then connected using λ-edges.

Theorem 5. A λ-SMT for a full Steiner topology can be constructed in linear time for
λ = 3m.

4 Conclusions

In Theorem 5 we gave a partial answer to the open question stated in [1, 2]. For λ 6= 3m
the complexity of the problem remains unknown, and it should be noted that the Euclidean
Steiner points are never optimal for a λ-SMT when λ 6= 3m:

Lemma 7. Let s be a Steiner point in a λ-SMT (λ 6= 3m). Then s cannot be identical to the
Euclidean Steiner point for its neighbours.
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u
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φ/2

(m−1) (m−1)
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u

ω
ω ω

a)
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α
β

φ/2

Figure 3: Inserting a Euclidean Steiner point. (a) Steiner point s can be inserted in order
to shorten the Euclidean tree when φ < 2π/3. (b) Steiner point u can be moved to point
s without changing the length of the λ-tree. (The Euclidean tree is drawn with dashed line
segments.)
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On the location of Steiner points in uniformly-oriented Steiner trees

Proof. Assume that the Steiner point s in the λ-SMT is identical to the Euclidean Steiner
point, such that the Euclidean edges make angle 2π/3 with each other. There are at least
two non-straight incident λ-edges in the λ-tree since otherwise there would be an angle of
2π/3 between the two straight λ-edges and this is not possible when λ 6= 3m. However,
the two non-straight λ-edges can meet in three different angles, and by Theorem 4 this is a
contradiction to the optimality of the λ-SMT.
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Rotationally optimal spanning and Steiner trees in

uniform orientation metrics∗

Marcus Brazil† Benny K. Nielsen‡ Pawel Winter‡ Martin Zachariasen‡

Abstract

We consider the problem of finding a minimum spanning and Steiner tree for a set of n
points in the plane where the orientations of edge segments are restricted to λ uniformly
distributed orientations, λ = 2, 3, 4, . . ., and where the coordinate system can be rotated
around the origin by an arbitrary angle. The most important cases with applications
in VLSI design arise when λ = 2 or λ = 4. In the former, so-called rectilinear case,
the edge segments have to be parallel to one of the coordinate axes, and in the latter,
so-called octilinear case, the edge segments have to be parallel to one of the coordinate
axes or to one of the lines making 45◦ with the coordinate axes (so-called diagonals).
As the coordinate system is rotated — while the points remain stationary — the length
and indeed the topology of the minimum spanning or Steiner tree changes. We suggest
a straightforward polynomial-time algorithm to solve the rotational minimum spanning
tree problem. We also give a simple algorithm to solve the rectilinear Steiner tree problem
in the rotational setting, and a finite time algorithm for the general Steiner tree problem
with λ uniform orientations. Finally, we provide some computational results indicating
the average savings for different values of n and λ both for spanning and Steiner trees.

Keywords: Steiner trees in uniform orientation metrics, rotational problems, VLSI design

1 Introduction

Suppose that we are given a set P of n points in the plane. We are interested in finding a
minimum spanning tree (MST) or a Steiner minimum tree (SMT) for P under the assumption
that the edge segments are permitted to have a limited number of orientations. In fact, we will
assume that these orientations are evenly spaced. More specifically, let λ be a non-negative
integer, λ ≥ 2. Let ω = π/λ. Legal orientations are then defined by the straight lines passing
through the origin and making angles iω, i = 0, 1, ..., λ− 1 with the x-axis. Finding an MST
in this so-called λ-geometry is not a challenging problem since it can be defined as a minimum
spanning tree problem in a complete graph with appropriate edge lengths. On the other hand,
computing an SMT in this setting is known to be an NP-hard problem [1].

Suppose that we are permitted to rotate the coordinate system, that is, to rotate all legal
orientations simultaneously. Rotation by ω (or a multiple of ω) will have no impact on the
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2. Length of a Segment

lengths of the edges. But for any angle α ∈ [0, ω[, the edge lengths will change. What is the
value of α minimizing the length of an MST or SMT for P? Once α is fixed, finding an MST
is straightforward, while determining similar SMTs clearly remains NP-hard.

Our interest in rotated MSTs and SMTs with bounded orientations was motivated by
recent developments in VLSI technology. Chips with λ = 4 have already been produced [15]
while there are several VLSI-papers addressing the design of chips for λ = 3 [3, 4]. Fur-
thermore, additional length savings seem to be available when the coordinate system can be
rotated. This is in particular useful for small values of λ and for nets with limited number of
terminals.

In this paper we give a straightforward polynomial-time algorithm for the rotational MST
problem. Also, we give a finite time algorithm for the rotational SMT problem. In particular,
for the most important rectilinear case (λ = 2), we show that no more than O(n2) rotation
angles need to be considered in order to compute a rotationally optimal rectilinear SMT.

Our results on the structure of rotationally optimal MSTs and SMTs appear to give insight
into the problem of determining the Steiner ratio in λ-geometry for all values of λ (consult
the book by Cieslik [5] for a comprehensive survey).

The paper is organized as follows. As a warm up, in Section 2 we determine how the
length of a single edge changes under rotation. In Section 3 we present our polynomial-time
algorithm for the MST problem and in Section 4 a finite time algorithm for the SMT problem
is given. Computational results for both randomly generated instances and instances from
VLSI design are presented in Section 5. Finally, in Section 6 we give some concluding remarks
and discuss related and open problems.

2 Length of a Segment

Consider a given λ and rotation angle α ∈ [0, ω[. In this section we examine the situation
where there are only two points u = (ux, uy) and v = (vx, vy). We let |uv|α denote the length
of the shortest connection between u and v with the restriction that the straight line segments
of the connection only use one of the λ legal orientations. We may restrict our attention to
the cases where this connection consists of either one or two line segments [13]. In the former
case we say that the edge between u and v is straight (and |uv|α is equal to the Euclidean
distance ‖uv‖ between u and v); otherwise the edge is bent and the two line segments form
the half-edges of the edge between u and v. The two half-edges meet at the corner point of
the bent edge, and the smaller meeting angle is π − ω [13].

The shortest MST or SMT for u and v is obtained when the coordinate system is rotated
so that the orientation of the line segment uv overlaps with one of the legal orientations, i.e.,
the edge between u and v is straight. So our problem is trivial. However, it is still interesting
to determine how the length of the edge uv changes as the coordinate system is rotated.

Assume that u and v are on the horizontal x-axis and ux < vx. When the coordinate
system is rotated by increasing angle α, 0 ≤ α ≤ ω, the length of uv increases until α = ω/2,
and then decreases until α = ω (Figure 1). More specifically,

|uv|α = ‖uv‖sinα + sin(ω − α)
sin(ω)

In particular, if λ = 2 and ω = π/2, then

|uv|α = ‖uv‖(sinα + cos α)
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It is obvious that the function fuv(α) = |uv|α is periodically strictly concave (for α ∈ [0, 2π[
and with period ω = π/λ). Furthermore, the minimum is attained when the orientation of
the line segment uv overlaps with one of the legal orientations.

1

1.1

1.2

1.3

1.4

1.5

0 π/2π/4 π/3π/5

λ = 2

λ = 3

λ = 4
λ = 5

Figure 1: fuv(α) = |uv|α for ‖uv‖ = 1 and α ∈ [0, π
λ ], λ = 2, 3, 4, 5.

3 Minimum Spanning Tree

Consider a collection S of m edges u1v1, . . . , umvm. Their total length as a function of the
rotation angle α is |S|α =

∑m
i=1 |uivi|α.

Lemma 3.1. The total length |S|α of the edges in S is minimized when one of the edges uivi

is straight, i.e., when the orientation of the line segment from ui to vi overlaps with one of
the legal orientations.

Proof. Since |S|α is a sum of piecewise strictly concave functions, |S|α is also piecewise strictly
concave. Therefore, the minimum is attained at one of the non-concave points (or break-
points), that is, when one of the edges is straight.

Consider a set P of n points in the plane. Assume that the coordinate system has been
rotated in such a way that an MST T for P is shortest possible.

Theorem 3.2. One of the edges in a rotationally optimal MST T overlaps with one of the
legal orientations.

Proof. Follows immediately from Lemma 3.1.

The algorithm to determine T is therefore straightforward. For each pair of points u and
v of P , consider the edge uv. Rotate the coordinate system so that the orientation of one
of the legal orientations overlaps with the line segment from u to v. Compute an MST for
P and store it provided that it is shorter than any MST found so far. Figure 2 shows how
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4. Steiner Minimum Tree

the lengths of MSTs for a set of 10 points and λ = 4 changes when the coordinate system
is rotated. The histogram was generated by computing 1000 MSTs for values of α evenly
distributed in the interval [0, π

4 ]. The vertical dashed lines indicate a subset (see Section 5)
of the MSTs computed by the algorithm, corresponding to those for which the MST length
might not be a strictly concave function of the rotation angle. The optimum is on the x-axis.

0.0 %

0.5 %

1.0 %

1.5 %

2.0 %

2.5 %

0 π/16 π/8 3π/16 π/4Optimum

MST length variation
Checkpoints

Figure 2: MST length variation as a function of rotation angle.

For a fixed rotation of the coordinate system, an MST can be computed in O(n log n)
time [13]. Since it is only necessary to consider O(n2) different rotation angles, the total
running time for computing a rotationally optimal MST is O(n3 log n). In Section 5 we will
address the issue of making this algorithm much more efficient in practice.

4 Steiner Minimum Tree

Consider the problem of interconnecting the set P of points by a tree of minimum total length,
but allowing additional junctions, so-called Steiner points. When a set of λ uniformly spaced
legal orientations is given, this is denoted the Steiner tree problem in uniform orientation
metrics [1, 10].

A Steiner minimum tree (SMT) is a union of full Steiner trees (FSTs) in which all terminals
are leaves (and all interior nodes are Steiner points). In λ-geometry FSTs are denoted λ-FSTs.
Our aim in this section is to prove that for a rotationally optimal SMT there exists a λ-FST
with no bent edges. We first prove this for the case where λ is a multiple of 3. The proof
relies on an elegant theorem showing the relationship between the lengths of such λ-FSTs and
equivalent FSTs in Euclidean geometry. This theorem is likely to be of independent interest.

We then prove the result for general λ. Note that a separate proof for the rectilinear case
(λ = 2) appears in [9].
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4.1 The case where λ is a multiple of 3

A Simpson line for a Euclidean FST F is a line segment extending one of the edges of F
such that the Euclidean distance between the endpoints equals ‖F‖, the total (Euclidean)
length of edges in F . It is well known that a Simpson line for F can be constructed in linear
time [6, 7]. For λ being a multiple of 3 it turns out that the λ-geometry distance between the
endpoints of the Simpson line also equals the length of the corresponding λ-FST:

Theorem 4.1. Suppose that λ is a multiple of 3. Let F be a Euclidean FST with terminal set
N and topology T , and let Fλ be a λ-FST, also with terminal set N and topology T . Let s1s2

be a Simpson line of F of length ‖s1s2‖ = ‖F‖, and let |s1s2| be the distance in λ-geometry
between s1 and s2, the endpoints of the Simpson line. Then the length of Fλ is |s1s2|.

Proof. The result is clearly true if |N | = 2; in this case the endpoints of the Simpson line
coincide with the two terminals in N . So we may assume that |N | ≥ 3 and that T contains
at least one Steiner point. By Nielsen et al. [8]E, we can choose Fλ so that the Steiner points
of Fλ exactly coincide with the Steiner points of F (Figure 3).

Consider an edge uv of F and the corresponding λ-edge uvλ in Fλ. Let θ1, θ2 ∈ [0, ω[ be
the smaller angles that the two half-edges of uvλ make with the straight edge between u and
v. Since λ is a multiple of 3 and the edges of the Euclidean FST F use exactly 3 equally
spaced orientations (separated by angles which are multiples of π/3), the angles θ1 and θ2 will
be the same for all edges in Fλ. Furthermore, if an edge uv is rotated through any multiple
of π/3, the rotated half-edges still overlap with legal orientations.

u v
Θ1 Θ2

FFλ

Figure 3: Illustration of Theorem 4.1. Straight edges between terminals and/or Steiner points
belong to F while half-edges belong to Fλ.

Consider a transformation of the edges of F , composed of rotations and translations, such
that they are placed end-to-end along the Simpson line. Since ‖F‖ = ‖s1s2‖, the edges

153



4. Steiner Minimum Tree

will exactly cover the Simpson line. Now, consider the corresponding transformation of λ-
edges. In view of the above, all transformed edges will use the same two (neighbouring) legal
orientations. Therefore, their total length will be exactly |s1s2|, the λ-geometry distance
between the endpoints of the Simpson line.

Theorem 4.2. Suppose λ is a multiple of 3. A rotationally optimal SMT in λ-geometry is a
union of λ-FSTs, at least one of which contains no bent edges.

Proof. Replace each λ-FST in the SMT by a geodesic in λ-geometry between the endpoints
of a Simpson line for the corresponding Euclidean FST. (Note that this replaces each λ-FST
by a simple λ-edge between two fixed points.) By Theorem 4.1, for any fixed rotation angle,
the sum of the lengths of these geodesics in λ-geometry equals the length of the SMT. Hence,
we can apply exactly the same argument as in the MST case.

4.2 The case for general λ

In this subsection we show that Theorem 4.2 holds for arbitrary λ. First, assume that the
coordinate system is rotated by a fixed angle α ∈ [0, ω[. In this case the problem to be solved
is the Steiner tree problem in uniform orientation metrics [1, 10]. Brazil et al. [1] proved that
for any given instance of this problem, there exists an SMT for which every λ-FST has at
most one bent edge.

Now let us assume that the rotational λ-geometry Steiner tree problem has an optimal
solution for a given rotation angle α∗ ∈ [0, ω[. We wish to show that at least one of the
λ-FSTs in the SMT contains no bent edge. First we note that if an SMT contains a Steiner
point s with degree more than 3, then the λ-FST for which s is an internal node contains no
bent edges [1]. Thus we may restrict our attention to SMTs for which all Steiner points have
degree 3. (For a more systematic coverage of degrees of Steiner points in λ-geometries and in
normed planes in general, the reader is referred to [11].)

Let F be a λ-FST with a single bent edge. Consider a rotation of the coordinate system
through an angle α. We define Fα to be a λ-FST under this rotated coordinate system on the
same terminals as F such that 1) the topology of Fα is the same as the topology of F , and
2) the angles between edges at every Steiner point of Fα are the same as the corresponding
angles of F . It is clear that Fα always exists for a sufficiently small angle α (i.e., until the
length of some edge or half edge goes to 0). In fact, below we give a construction that proves
the existence of Fα. Let |uv|α be the length of some straight edge or a half-edge uv in Fα as
a function of α (for α ∈ Iε =]α∗ − ε, α∗ + ε[ where ε > 0 is sufficiently small). We will show
that |uv|α is a strictly concave function of α in a sufficiently small neighbourhood Iε of α∗.
But first we need the following result.

Lemma 4.3. Let C and D be two distinct circles intersecting in a point q. Let Φα, α ∈ Iε,
be a ray from q with polar angle α intersecting C in s and intersecting D in v, s 6= v. Then
|sv|α is a strictly concave function for α ∈ Iε.

Proof. By rescaling, translating and rotating, we can assume, without loss of generality, that
D is a unit circle, centered at (1, 0), such that the point q is at the origin (Figure 4). In terms
of polar coordinates, the equation of D is r = 2 cos α. If the centre of C in polar coordinates
is (R,φ) then C has the polar equation r = 2R cos(α − φ), since q also lies on C. Hence

154



Rotationally optimal spanning and Steiner trees in uniform orientation metrics

|sv|α = 2 cos α− 2R cos(α− φ), and

d2|sv|
dα2

= −2 cos α + 2R cos(α− φ) = −|sv|α

which is strictly negative whenever sv exists. It immediately follows that |sv|α is strictly
concave over a sufficiently small interval Iε. Note that the lemma holds when C degenerates
to a point.

φ α

R

C

D

1

v

q = (0, 0)

s

Figure 4: Computing the length of edge uv using polar coordinates.

The following lemma makes use of Thales theorem, from elementary geometry, which
states that for any circle the angle subtended by an arc at the circumference of the circle is
half the angle at the centre of the circle (and hence is fixed for a given arc).

Lemma 4.4. Let F be a λ-FST with a single bent edge. As the coordinate system is contin-
uously rotated by α ∈ Iε, the length of each straight edge and half-edge of F defines a strictly
concave function of α.

Proof. We will show that, for every straight edge or half-edge sv of F , there exist circles C
and D such that the conditions of Lemma 4.3 are satisfied. Furthermore, we will show that
if sv is incident with a terminal, then we have the degenerate case, where one of the circles is
a single point. This clearly suffices to prove the lemma.

The proof is by induction on the number of Steiner points in F . For the base case, if F
has no Steiner points, it consists of a bent edge connecting two terminals t1 and t2. As the
coordinate system is rotated by α ∈ Iε, terminals t1 and t2 remain in their positions while half
edges change directions (following legal orientations). But the angle at which the half edges
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4. Steiner Minimum Tree

meet at the corner point v remains the same. By Thales theorem, v moves along the circle
through t1 and t2 (and v). Hence, for each of the half edges the conditions of Lemma 4.3 are
satisfied (where C is a single point). This is equivalent to the discussion in Section 2.

Suppose that F contains at least one Steiner point. Then clearly, F has a Steiner point
s adjacent to two terminals t1 and t2 such that t1s and t2s are straight edges. Let C be
the circle through t1, s, and t2. Let sv denote the third straight edge or half edge in F
incident with s (i.e., v is either a Steiner point or corner point). Let e1 be the point on C
intersected by the line extending the line segment sv (Figure 5). As the coordinate system
is continuously rotated by α ∈ Iε, t1 and t2 remain in their positions. The edges t1s and
t2s change directions (following legal orientations) but they meet at (moving) s at the same
angle. Hence, by Thales theorem, s moves continuously on C, and t1s and t2s again satisfy
the conditions of Lemma 4.3 (where the other circle has degenerated to a point). The location
of v also changes during the rotation. However, the angles ∠t1sv and ∠vst2 remain the same.
As a consequence, ∠e1st1 and ∠t2se1 remain the same. But this implies that e1 remains fixed
as the coordinate system rotates within Iε.

Consider now an FST F ′ obtained from F by deleting t1, t2 and s (together with their
incident edges) and by adding e1 as a terminal adjacent to v. By the inductive hypothesis,
in F ′, v moves on a circle passing through e1, say D, as the coordinate system is rotated
by α ∈ Iε (Figure 5). Hence, in F sv satisfies the conditions of Lemma 4.3. Furthermore,
apart from the edge e1v, all other edges of F ′ are the same as in F . As a consequence, the
remaining straight edges and half edges of F all satisfy the conditions of Lemma 4.3 by the
inductive hypothesis.

C
D

t1

t2

t3

s

e1

v

Figure 5: Replacing a pair of terminals with a pseudo-terminal.

Theorem 4.5. A rotationally optimal SMT in λ-geometry is a union of λ-FSTs, at least one
of which contains no bent edges.

Proof. Assume that every λ-FST of an SMT contains a bent edge. Lemma 4.4 shows that the
length of every edge in the SMT is strictly concave under sufficiently small rotations. Hence,
the same holds for the sum of all edge lengths. Therefore, the SMT can in fact be shortened,
which is a contradiction.
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A consequence of Theorem 4.5 is that there exists a finite time algorithm for the rotational
SMT problem in λ-geometry. For every subset N ⊆ P of terminals, every topology T on N ,
and every legal angle distribution around Steiner points in T , a λ-FST without bent edges
is constructed (if it exists). For a given terminal set N , topology T and angle distribution,
a bottom-up construction similar to the one given in the proof of Lemma 4.4 can be used.
Whenever such a tree exists, the orientations used by the edges in the tree give a feasible
rotation angle α for which the SMT problem in uniform orientation problems is solved in
finite time [1].

For general λ a super-exponential number of rotation angles must be tried. However, for
λ = 2 only O(n2) rotation angles need to be considered — namely those given by the lines
through each pair of terminals. This follows from the fact that for λ = 2 an SMT can be
assumed to consist of Hwang-topology FSTs. When no bent edge is present in such an FST,
it will contain a straight line segment between a pair of terminals [9].

It is possible to give a stronger version of Theorem 4.5 using some powerful characteriza-
tions of λ-FSTs from [2].

Theorem 4.6. A rotationally optimal SMT in λ-geometry is a union of λ-FSTs, at least one
of which uses at most 3 edge orientations.

Proof. First we may assume by Theorem 4.5 that a rotationally optimal SMT has some λ-FST
with no bent edges. Assume that all FSTs with no bent edges use 4 or more edge orientations.
Let F be one of these λ-FSTs. Since the edges of F use 4 or more orientations, there exists
a length-preserving perturbation of the Steiner points (a so-called zero-shift) in F such that
exactly two bent edges are created [2].

Consider the connection between the two bent edges in F . Let h be one of the half-edges
that is closest to the other bent edge. Pick an interior point on h and fix it (i.e., make it into a
pseudo-terminal). Now we have divided F into two (pseudo) FSTs, each with one bent edge.
From Lemma 4.4 it follows that the length of each (pseudo) FST is strictly concave under
sufficiently small rotations. As a consequence, the length of every λ-FST in the optimal SMT
(with as well as without bent edges) is strictly concave under sufficiently small rotations.
But this means that the sum of their lengths is also strictly concave under sufficiently small
rotations. Therefore the SMT can be shortened, which is a contradiction.

It should be noted that another consequence of the results in [2] is that there in fact must
be a λ-FST that uses 3 edge orientations that have a certain well-defined distribution. For λ
being a multiple of 3 this means that there must exist a λ-FST in a rotationally optimal SMT
that uses 3 edge orientations separated by an angle of π/3; such a λ-FST will be identical to
the Euclidean FST spanning the same set of terminals and having the same topology.

5 Computational Results

In this section we give some computational results indicating the effect of allowing rotations
of the coordinate system when computing MSTs and rectilinear SMTs. We used two sets
of problem instances: VLSI design instances and randomly generated instances (uniformly
distributed in a square). The VLSI instances were made available by courtesy of IBM and
Research Institute for Discrete Mathematics, University of Bonn. In this study we have
focused on one particular chip from 1996.
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5. Computational Results

5.1 Minimum Spanning Tree

Generally most of the edges for a given point set will not be part of a MST for any rotation
angle. It is a waste of time to consider the rotation angle given by such pairs of points (or
edges). Fortunately, most of these edges can be pruned by using so-called bottleneck Steiner
distances.

Consider the complete graph Kn where the vertices represent the points in the plane.
Define the weight of the edge between vertices u and v to be the maximum distance between
u and v in λ-geometry under any rotation angle. Compute bottleneck (Steiner) distances in
Kn. It is defined as the minimum over the largest-weight edges in all paths between u and v
in Kn, and can be computed in time O(n2) for all pairs of points; see [7, 14] for details. Let
Buv denote the bottleneck (Steiner) distance between u and v. Whenever ‖uv‖ > Buv, then
the edge uv cannot be in any minimum spanning tree generated during the rotation of the
coordinate system. Figure 6 indicates how many edges survive the pruning for n = 50 and
λ = 2, 3, 4, 5.

λ = 2 λ = 3

λ = 4 λ = 5

Figure 6: Edges surviving pruning of K50 for λ = 2, 3, 4, 5.

This pruning turns out to be extremely efficient in general. Table 1 shows the number of
edges that survive for different values of λ and n. Each entry is an average over 100 instances.

The extraordinary efficiency of pruning makes it possible to solve the problem of finding
the best rotated MST much faster (especially for higher values of λ). It will on average
require O(n2 log n) time. However, it should be noted that it is possible to construct problem
instances of any size where the number of edges after pruning is Ω(n2). Consider for example
a rectangle where sides have lengths a and b, a << b (a much smaller than b). Place n/2
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λ n=3 n=4 n=5 n=10 n=20 n=50 n=100
2 2.76 4.86 7.38 20.12 44.77 122.09 253.84
3 2.34 3.84 5.50 12.62 26.77 71.43 146.81
4 2.22 3.44 4.77 10.77 23.05 60.51 123.05
5 2.13 3.34 4.54 10.17 21.28 56.11 113.59
6 2.07 3.27 4.38 9.83 20.54 53.89 108.57
7 2.06 3.21 4.28 9.54 20.05 52.50 105.88
8 2.03 3.12 4.18 9.36 19.76 51.74 104.49
9 2.02 3.09 4.14 9.32 19.64 51.09 103.29

10 2.02 3.07 4.10 9.29 19.56 50.69 102.49
16 2.01 3.03 4.03 9.08 19.17 49.73 100.33
32 2.00 3.00 4.00 9.01 19.03 49.14 99.41

Table 1: Number of surviving edges after pruning for randomly generated instances (averages
over 100 instances).

terminals on one of the shorter sides such that two consecutive terminals are 2a/(n − 1)
apart. Place the remaining n/2 terminals in the same manner on the other shorter side. It
is obvious that for every of n2/4 pairs of terminals, one terminal from each side, the pruning
test described in this section will not apply.

Table 2 shows the MST improvement for various values of n and λ where each entry is
an average over 100 random instances. The table contains two measures of improvement.
The first one is calculated as 1 − |Tmin|

|Tmax| in percent. Tmin is the shortest MST while Tmax is
the longest MST taken over 600 uniformly distributed values of the rotation angle α in the
interval [0, ω[ where ω = λ/π. In the second measure of improvement the value Tmax has been
replaced by the length of the MST without rotating the points (α = 0); a natural alternative.

5.2 Rectilinear Steiner Tree

We used GeoSteiner [12] to compute RSMTs for each of the O(n2) orientations given by the
pairs of terminals (where n is the number of terminals). The RSMT improvement for nets
of given size obtained by rotating the coordinate system can be seen in Table 3. The values
are percentages which express the improvement compared to not rotating at all. Results for
both random and VLSI instances are given. For small problem instances the improvements
are highest for randomly generated instances, while for large instances, the VLSI problems
result in a higher improvement.

6 Concluding Remarks

We addressed the problem of determining MSTs and SMTs when edge segment orientations
are limited to a set of uniformly distributed orientations and where the coordinate system
is permitted to rotate by any angle. We suggested a simple polynomial-time algorithm to
solve the MST problem. We also provided some computational results indicating how big the
savings can be. As it could be expected, the savings become negligible when λ and n grows.
On the other hand, for all practical applications, λ is very small. Nets occurring in VLSI
design are also rather small (in terms of the number of terminals involved). However, when
many nets are to be routed, the overall savings will not be as impressive as for small isolated
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6. Concluding Remarks

n = 3 n = 4 n = 5 n = 10
λ Tmax α = 0 Tmax α = 0 Tmax α = 0 Tmax α = 0
2 21.86 14.48 17.42 9.67 15.86 8.38 10.29 4.89
3 8.86 5.34 7.38 4.34 6.37 3.69 4.31 2.52
4 5.55 3.48 4.32 2.50 3.81 2.14 2.37 1.31
5 3.40 2.10 2.85 1.66 2.42 1.39 1.59 0.89
6 2.36 1.46 1.88 1.17 1.55 0.97 1.05 0.67
7 1.76 1.12 1.41 0.86 1.21 0.74 0.78 0.42
8 1.36 0.85 1.11 0.66 0.94 0.53 0.61 0.33
9 1.04 0.66 0.80 0.49 0.73 0.43 0.49 0.28

10 0.88 0.52 0.70 0.40 0.58 0.31 0.40 0.21
16 0.32 0.20 0.26 0.16 0.22 0.14 0.16 0.10
32 0.08 0.05 0.07 0.04 0.06 0.04 0.04 0.02

n = 20 n = 50 n = 100
λ Tmax α = 0 Tmax α = 0 Tmax α = 0
2 7.47 3.19 5.03 2.12 3.46 1.51
3 3.01 1.47 1.70 0.78 1.23 0.61
4 1.72 0.93 1.02 0.51 0.72 0.39
5 1.09 0.58 0.72 0.39 0.47 0.25
6 0.73 0.39 0.44 0.21 0.30 0.16
7 0.57 0.32 0.35 0.19 0.24 0.14
8 0.44 0.24 0.25 0.13 0.18 0.09
9 0.30 0.16 0.20 0.11 0.15 0.08

10 0.26 0.13 0.18 0.09 0.11 0.05
16 0.11 0.06 0.07 0.03 0.04 0.02
32 0.03 0.01 0.02 0.01 0.01 0.01

Table 2: MST improvement in percent in relation to two values: The first one is the length of
the worst case MST (Tmax) which is the longest MST found among 600 uniformly distributed
values of α. The second one is the length of the MST when there is no rotation at all (α = 0).
All values are averages on 100 random instances.

nets. For λ = 2, the majority of 2-pin nets might be aligned along the horizontal and vertical
lines already in the placement phase. If this is the case, the rotation will probably make no
sense. If the rotation possibility is known during the placement phase and especially when λ
is greater than 2, the need of placing 2-pin nets along horizontal or vertical lines will no longer
be of the same importance as in the traditional Manhattan VLSI design. This can lead to
fewer congestion problems and lower number of vias. However, it should be emphasized that
such rotation is not applicable to current placements which places adjacent pins on the same
vertical or horizontal line. In order to use rotation during routing it is necessary to develop
new placement techniques taking in account possible postplacement rotations.

There are several other geometric combinatorial optimization problems which require a
selection of a subset of edges and can in the rotational setting be approached in the same way
as the MST problem. The travelling salesman problem and the matching problem are probably
the most well-known. Another straightforward generalization occurs when the orientations are
fixed but not necessarily evenly spaced. Determination of rotated MSTs in higher dimensions
seems also to require a straightforward generalization of the 2-dimensional case.
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Rotationally optimal spanning and Steiner trees in uniform orientation metrics

n=2 n=3 n=4 n=5 n=10 n=20 n=50 n=100
Random 21.21 11.46 8.19 7.00 3.17 2.17 1.28 0.92
VLSI 14.61 7.01 5.96 7.62 4.88 2.90 - -

Table 3: RSMT improvement in percent obtained by rotating as compared to not rotating
at all. Random: Randomly generated instances (averages over 100 instances). VLSI: VLSI
design instances (averages over 100 instances).

Computing rotationally optimal SMTs for any fixed, but not necessarily uniform set of
orientations is still partially an open research problem. However, if we may limit our attention
to FSTs with at most one bent edge and having Steiner points with degree 3 only, Lemma 4.4
can immediately be applied — resulting in a finite time algorithm.
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Benny K. Nielsen∗ Stinus Lindgreen† Pawel Winter∗ Martin Zachariasen∗

Abstract

We reexamine the deferred path heuristic originally developed by Schwikowski and
Vingron in the late 1990s. Given a set of sequences, e.g. DNA, this heuristic simultaneously
finds a multiple alignment and a phylogenetic tree. We give a unified description of the
heuristic where such intermediate constructs as fork alignment graphs are made obsolete.
Based on this description an efficient implementation is straightforward. We discuss two
improvements of which one is intended to provide better quality solutions and one is
intended to provide a substantial speed-up. This is confirmed by experiments on several
real-life problem instances.

1 Introduction

One of the most important problems in biology is to explain how a group of species has
evolved over time and how they are related to one another. This is usually done by means
of phylogenetic trees where leaves represent the species while the interior nodes represent
their hypothetical ancestors. The major problem that faces biologists when constructing
phylogenetic trees is that the information about ancestors is very limited or indeed non-
existent. So the problem is to infer the interior nodes and their relationship with each other
and with the studied species.

Several models for the determination of phylogenetic trees have been considered over the
years (see for example some of the monographs addressing mathematical and computational
aspects of phylogenetic trees that appeared in recent years [1, 11]). From a computational
point of view, most models are intractable as they lead to NP-hard problems. In order to
obtain reasonable solutions even for relatively small problem instances, one therefore has to
turn to heuristics where solutions can be obtained efficiently (but solutions are not necessarily
optimal).

Many sequence based heuristics for finding phylogenetic trees are based on multiple align-
ments. Ideally, such an alignment should be based on the true evolutionary tree. This is
not available, and instead some multiple alignment heuristics (such as ClustalW [13]) use
a guide tree constructed by using pairwise alignment distances. This has the drawback of
making the multiple alignment and subsequently the sought phylogenetic tree biased towards

∗Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark. E-mail:
{benny, pawel, martinz}@diku.dk.

†Bioinformatics Centre, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark. E-mail:
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2. Phylogenetic Trees and Sequence Alignment

the guide tree. Alternatively, one can attempt to simultaneously find a multiple alignment
and a phylogenetic tree. This is known as the problem of generalized tree alignment.

In this paper we reexamine the deferred path heuristic for generalized tree alignment. It
was originally developed by Schwikowski and Vingron in the late 1990s [8–10] and their work
was based on the idea of using sequence graphs introduced by Hein [3]. We give a unified
description of the heuristic where such intermediate constructs as fork alignment graphs used
in [9] are made obsolete. We discuss improvements of the heuristic which either result in
better quality solutions or in a substantial speed-up. Finally, we test the heuristic on several
real-life problem instances.

The paper is organized as follows. In Section 2 we give a general introduction to the
concepts of tree alignment and generalized tree alignment. We also discuss how these concepts
are related to pairwise and multiple alignment. Sequence graphs — which form the backbone
of the deferred path heuristic — and the heuristic itself are described in Section 3. Some
new improvements are discussed in Section 4. Computational experience with some real-life
problem instances are covered in Section 5. Conclusions and ideas for further research are
discussed in the closing Section 6.

2 Phylogenetic Trees and Sequence Alignment

Construction of phylogenetic trees for a set of species represented by DNA, RNA- or protein
sequences is intimately related to the alignments of such sequences. In this section we briefly
discuss these alignment problems and their relation to the construction of phylogenetic trees.

2.1 Tree Alignment

Consider a phylogenetic tree T = (V,E) with n leaves where V denotes the set of nodes and
E denotes the set of edges. Each leaf of T corresponds to a sequence Sj over a finite alphabet
Σ (for example nucleotides in DNA or amino acids in a protein). In this paper we address the
problem of determining unrooted phylogenetic trees. Identifying a root of a phylogenetic tree
is non-trivial (and in fact it is a controversial issue in the “evolutionary” community). Neither
do we address evolutionary time issues which often are associated with the construction of
phylogenetic trees.

The internal nodes of the phylogenetic tree T are assumed to have degree 3 (realistic
assumption for most practical applications). T has therefore n−2 internal nodes. If sequences
are assigned to all internal nodes, the cost of the tree can be defined as the sum of costs
of optimal pairwise alignments (see below) between sequences in adjacent nodes. The tree
alignment problem for a given tree T is therefore to assign sequences to the internal nodes
such that the cost of the tree is minimized.

2.2 Pairwise Alignment

In pairwise alignment one considers two sequences Si and Sj over a finite alphabet Σ. The
gap symbol “−” is a special character not in Σ. Σ extended with the gap symbol is denoted
by Σ′. An alignment of sequences Si and Sj is a pair of equal-length sequences S′

i and S′
j over

Σ′ such that the removal of gaps would yield Si and Sj , respectively. The sequences S′
i and

S′
j can be placed in an alignment matrix A (with two rows) such that each column identifies

a pair of symbols from Σ′ aligned with each other. A column of A that consists of two gaps is
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Deferred path heuristic for phylogenetic trees revisited

called a gap column. Gap columns are normally irrelevant in pairwise alignment and can be
removed from consideration. Alignments without gap columns are called reduced alignments.
All alignments discussed in this paper are reduced alignments.

In this paper, we consider alignments in a minimization framework. In order to measure
the quality of a given pairwise alignment, cost values are defined for all pairs of symbols in Σ′.
Given s1, s2 ∈ Σ′, we denote the corresponding cost value δ(s1, s2). It is also assumed that
δ(s1, s2) = 0 if s1 = s2. In the simplest version, the cost of a pairwise alignment is the sum
of costs taken over all columns of A. An optimal pairwise alignment is a pairwise alignment
with the lowest possible cost. More than one optimal pairwise alignment can exist for the
same pair of sequences.

More sophisticated measures incorporate the observation that contiguous gaps of length
k are more likely to occur in sequences than k isolated gaps. So the cost of a pairwise
alignment consists of two components. The cost of columns with no gaps is still the sum of
their individual costs. A maximal gap in either S′

i or S′
j is a maximal contiguous sequence of

gaps. Each maximal gap in a pairwise alignment contributes to the total cost of the pairwise
alignment by the affine gap penalty g(k) = a + b · k, where k is the length of the gap, and a
and b are the gap open and gap extension penalties, respectively.

Optimal pairwise alignment is a well-understood optimization problem which can be solved
in quadratic time by standard dynamic programming techniques [5].

2.3 Multiple Alignment

In multiple alignment the problem is to find an optimal alignment of n sequences, n > 2. In
this case, the alignment matrix A has n rows. Most cost functions for multiple alignment
are based on column costs and affine gap penalties. Tree alignment has also been suggested
as a possible method of evaluating multiple alignments. Unfortunately, this approach is
intractable unless the tree has a very simple topology (for example a star topology with one
internal node adjacent to all leaf nodes). Even for trees with internal nodes of degree 3, the
tree alignment problem is NP-hard. The cost scheme used in the proof of this result was
a metric cost scheme with values 0, 1, and 2 and a 4-letter alphabet [4]. Hence, using tree
alignment to determine the cost of a multiple alignment seems practically infeasible even for
relatively short sequences.

2.4 Generalized Tree Alignment

Generalized tree alignment is an important and non-trivial extension of the tree alignment
problem. Furthermore, it can be used to find good quality multiple alignments. Given n
sequences S1, S2, . . . , Sn, the problem is to find a tree T such that its tree alignment cost
is smallest possible (for some appropriately defined pairwise alignment cost function). Once
the tree and the sequences in internal nodes are determined, optimal pairwise alignments
on adjacent nodes in the tree can be used to obtain a good quality multiple alignment.
Unfortunately, the generalized tree alignment problem is not only NP-hard but in fact it
is MAX SNP-hard [14]. As a consequence, neither efficient exact algorithms nor polynomial
approximation algorithms with arbitrarily small error ratio are likely to exist. Use of heuristics
seems therefore to be the only feasible way to solve this problem computationally.

The generalized tree alignment problem is closely related to the Steiner tree problem in
graphs: Given a graph N = (W,F) with positive edge costs and a subset S of the vertices,
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the problem is to find a minimum-cost connected subnetwork of N spanning S. It is obvious
that a solution must be a tree. It may contain other vertices of W than those in S. These
additional vertices are usually referred to as Steiner vertices. It is straightforward to see
that the generalized tree alignment can be formulated as the Steiner tree problem in a (very
big) graph. More specifically, let W represent the set of all sequences over the alphabet
Σ. If the lengths of sequences are not bounded, the graph will have an infinite number of
vertices. But in practical applications the lengths can be bounded by a small multiple of
the longest sequence among S1, S2, . . . , Sn. Two vertices in N are connected by an edge
if the corresponding sequences can be obtained from one another by a substitution of one
letter, or by insertion or deletion of one or several contiguous letters. The cost of such an
edge is of course the cost of the corresponding substitution, insertion or deletion. If we let
S = {S1, S2, . . . , Sn} be the sequences of the set of the given species, the generalized tree
alignment is exactly the Steiner tree problem in the Steiner graph N = (W,F).

3 Deferred Path Heuristic

The main purpose of this section is to give a description of the basic heuristic. The description
is fairly detailed and for the sake of clarity, the initial description does not include so-called
detours or affine gap penalties. The use of detours is instead postponed to Section 3.4 in
which affine gap penalties are also briefly discussed.

3.1 Tree Construction

A sequence graph G = (U,A) is a connected directed acyclic graph with a unique source vertex
s (no incoming arcs) and a unique sink vertex t (no outgoing arcs). Each arc a ∈ A has a label
sa taken from a finite alphabet Σ′. The set of all source-sink paths defines a set of sequences,
each consisting of the consecutive labels of the arcs on a path. Our interest in sequence graphs
stems from the fact that they are extremely well-suited to represent sets of related sequences
in a compact manner. Sequence graphs were originally suggested by Hein [3].

Note that the vertices in a sequence graph can be sorted topologically, i.e., if given a graph
with m + 1 vertices we can make a numbering of the vertices using the integers from 0 to m
such that if we refer to an arc a by its end-vertices, (i, j), we can safely assume that i < j.
Furthermore, we can also assume that the source is assigned 0 and the sink is assigned m.

Suppose that n sequences S1, S2, . . . , Sn over a finite alphabet Σ are given. The objective
is to find a phylogenetic tree T = (V,E) with as low tree alignment cost as possible. The basic
idea of the heuristic is to represent these n sequences by linear sequence graphs with labels on
their unique paths from the source to the sink corresponding to the symbols in the sequences.
These sequence graphs will correspond to leaf nodes in the phylogenetic tree T = (V,E) that
we want to construct. The heuristic then selects two sequence graphs G = (UG, AG) and
H = (UH , AH) that are “closest” to each other. These two sequence graphs are replaced by
another appropriately defined sequence graph G⊗H. An internal node is added to T and it
is connected by edges to the nodes corresponding to G and H. This process is repeated until
only two sequence graphs remain. The corresponding nodes in T are connected by an edge
and the construction of T is completed.

As already pointed out, during each iteration of the heuristic a pair of sequence graphs G
and H is replaced by a new sequence graph G⊗H. This new sequence graph can be defined in
several ways. In the simplest approach, G⊗H would be a linear sequence graph representing
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exactly one sequence S such that the sum of costs of optimal pairwise alignments between S
and the two sequences represented by G and H is minimized.

The problem with such an approach is of course that the choice of S can prove to be
very bad in subsequent iterations of the heuristic. Sequence graphs are fortunately capable of
representing several sequences in a compact way. The idea is therefore to let G⊗H represent
several sequences and to defer the selection of a particular sequence. Suppose that SG and
SH are sequences from G and H such that the cost of their optimal pairwise alignment is the
smallest possible among all pairs of sequences, one from G and one from H. The cost of such
an alignment is called the distance between G and H and we refer to the corresponding pair of
sequences as an optimal pair. We can interpret such a pairwise alignment as a shortest path
in the Steiner graph N where intermediate vertices correspond to sequences that all could
act as S. Hence, it is natural to let G⊗H contain them all (including SG and SH). In fact,
there could be several optimal pairs of sequences, one sequence of such a pair in G and the
other sequence in H. So G⊗H can be extended to contain all sequences on the corresponding
shortest paths in the Steiner graph N . The problem of finding all such alignments can be
solved, as we will see, by a straightforward dynamic programming algorithm.

Once the number of active sequence graphs has been reduced to two, a single optimal
pair of sequences can be selected for the remaining pair of graphs. These sequences together
with the tree T can be used to backtrack through preceding sequence graphs and to select
appropriate sequences in each of them (using optimal pairs).

When sequence graphs represent several sequences and the choice of a particular sequence
can be deferred as explained above, the heuristic will normally produce better solutions than
the simple method using linear sequence graphs (representing one sequence only).

3.2 Distances between Sequences Graphs

To be able to select the closest pair of sequence graphs we naturally need to be able to compute
the distance between two sequence graphs as defined above. The classic approach for finding
the distance between two simple sequences of symbols is a dynamic programming algorithm.
Such an algorithm uses the fact that the distance between two sequences can be based on
the distances between the immediate prefixes of the sequences, i.e. the problem exhibits the
optimal substructure property. This is also true for sequence graphs.

Given two sequence graphs G and H of length m and n, respectively, we denote the
distance between them δ(G, H). Let G/(i) denote the prefix subgraph of G consisting of all
paths from the source 0 to a given vertex i and let H/(k) denote a similar prefix subgraph of
H. Now δ(G/(i),H/(k)) is the distance between prefix graphs G/(i) and H/(k).

The distance between G and H can be found by iteratively filling out the values of a matrix
D of size (m + 1)× (n + 1) as shown in Algorithm 4. Each entry in the matrix corresponds
to a pair of vertices from G and H. Starting from the pair of sources, matrix values are
updated by calculating the cost of aligning all outgoing arcs from the current vertices, i and
k, with each other and with gaps. The calculations in the inner loops are based on the value
of D[i, k]. Due to the topological sorting of the vertices we know that all paths to i and k
have been handled earlier in the algorithm and thus D[i, k] must be equal to δ(G/(i),H/(k)).
In particular, D[m,n] = δ(G/(m),H/(n)) = δ(G, H).

As previously noted, a sequence of symbols can be represented by a simple linear sequence
graph. Note that in this case Algorithm 4 reduces to a standard dynamic programming
algorithm for aligning two sequences. An example of the use of Algorithm 4 for two linear
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Algorithm 4: Graph variation of the classic pairwise alignment algorithm.
Given graphs G and H with vertices 0 to m and 0 to n;
Allocate matrix D[m + 1, n + 1] with all entries set to ∞;
D[0, 0] = 0;
for i = 0 to m do

for k = 0 to n do
foreach arc a = (i, j) in G do

foreach arc b = (k, l) in H do
D[j, l]← min(D[j, l], D[i, k] + δ(sa, sb));

foreach arc a = (i, j) in G do
D[j, k]← min(D[j, k], D[i, k] + δ(sa,−));

foreach arcs b = (k, l) in H do
D[i, l]← min(D[i, l], D[i, k] + δ(−, sb));

return D[m,n]

sequence graphs can be seen in Figure 1 where the final values of the D-matrix are given.
Figure 1 also illustrates that one could easily store the origins of each entry in the D-matrix
and thus generate all possible optimal alignments.

Each pair of edges is compared exactly once in Algorithm 4 thus the running time is
O(|AG| · |AH |). The space requirement is dominated by the D-matrix and is O(|UG| · |UH |).

3.3 All Shortest Paths Sequence Graph

When a pair of sequence graphs, G = (UG, AG) and H = (UH , AH), has been selected the
next step is to create a new sequence graph G ⊗H representing all sequences which are on
shortest paths between G and H in the Steiner graph N .

As noted the D-matrix used in Algorithm 4 could easily be extended to save the paths
corresponding to all possible optimal alignments (Figure 1). Any combination of the symbols
aligned on these paths are then among the sequences we would like to include in the new
sequence graph. In the following we describe how to do this efficiently.

Given a vertex i in G and a vertex k in H we have already defined the prefix distance
δ(G/(i),H/(k)) and we have also seen that it is implicitly computed in Algorithm 4. Another
set of values has to be computed before the combined sequence graph G ⊗ H can be con-
structed. Let G.(j) denote the suffix subgraph of G consisting of all paths from j to the sink
m and let H.(l) denote a similar suffix subgraph of H. It should be clear that the distance
values δ(G.(j),H.(l)) for all pairs (j, l) can be computed by Algorithm 4 simply by reversing
the directions of all arcs in the graphs.

Now, the vertices of G⊗H will belong to the set UG⊗H ⊆ UG×UH . More precisely, vertices
are added to G ⊗ H for all vertex pairs i⊗k for which δ(G/(i),H/(k)) + δ(G.(i),H.(k)) =
δ(G, H). In particular, the source of G ⊗ H will be the vertex 0⊗0 (the pair of sources in
G and H) and the sink of G ⊗ H is the vertex m⊗n (the pair of sinks in G and H). An
example of such a vertex set can be seen in Figure 2a in which the values of δ(G/(i),H/(k))
and δ(G.(i),H.(k)) are included.

The arcs of G⊗H are constructed as follows. Given two vertices i⊗k and j⊗l in G⊗H,
consider an arc a = (i, j) from G and an arc b = (k, l) from H. Let sa denote the label
associated with a and let sb denote the label associated with b. An arc between i⊗k and j⊗l
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Figure 1: Example of the D-matrix of Algorithm 4 for a simple unit cost scheme i.e. δ(s1, s2) =
1 for all s1 6= s2. The value in the lower right corner of the matrix (3) is the cost of an optimal
alignment. The arrows show all the possible ways back through the matrix corresponding to
all possible optimal alignments, e.g. the rightmost path corresponds to aligning CGCGA with
--CGT.

labeled s, s ∈ Σ′, is added to G ⊗ H if there is a sequence SG in G and a sequence SH in
H which can be aligned with each other such that labels of a and b are in the same column
and the cost of the alignment is exactly δ(G, H). Any such lowest cost alignment requires
that the portion of SG in the prefix graph G/(i) is (optimally) aligned with the portion of
SH in the prefix graph H/(k), the label of a is aligned with the label of b and the portion of
SG in the suffix graph G.(j) is optimally aligned with the portion of SH in the suffix graph
H.(l). A necessary and sufficient requirement for such a bounded cost alignment to exist is
that δ(G/(i),H/(k)) + δ(s, sa) + δ(s, sb) + δ(G.(j),H.(l)) is equal to δ(G, H).

When constructing G⊗H, one also has to decide if there are optimal alignments such that
the arc a = (i, j) is aligned with a gap while a subsequence of the prefix graph G/(i) is aligned
with a subsequence of the prefix graph H/(k) for some vertex k of H and a subsequence of the
suffix graph G.(j) is aligned with a subsequence of the suffix graph H.(k). If δ(G/(i),H/(k))+
δ(s, sa)+δ(s,−)+δ(G.(j),H.(k)) is equal to δ(G, H), then an arc between i⊗k and j⊗k with
label s is added to G⊗H. Note that in the case of affine gap penalties, the situation becomes
more complicated as one has to take into account that several symbols can be aligned with
contiguous gap symbols.

The symmetric situation where an arc from H is to be aligned with a gap symbol is dealt
with in a similar manner. This and more details can be seen in Algorithm 5. The running
example is completed in Figure 2b in which the vertices found in Figure 2a are supplemented
by the arcs described above. Both running time and space requirement is easily seen to be
O(|AG| · |AH |).

3.4 Detours

As described by Schwikowski and Vingron [9], it is still possible to further improve the flexi-
bility of the heuristic by letting sequence graphs include suboptimal sequences. To facilitate
this, weighted sequence graphs are introduced. A weighted sequence graph is a sequence graph
G = (U,A) where each arc a also has a weight wa. This weight is a measure of the minimum
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Figure 2: Continuation of the example in Figure 1 showing the use of Algorithm 5. (a) The 12
vertices used in a sequence graph representing all sequences on all shortest paths between the
two original sequences in the Steiner graph N . Upper left corner values are prefix distances
and lower right corner values are suffix distances. For each vertex the sum of the corner values
is equal to 3. (b) The final sequence graph. Note that only one arc is drawn for a connected
pair of vertices, but in some cases with multiple symbols. Algorithm 5 would create an arc
for each symbol.
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Algorithm 5: Construction of a sequence graph containing all sequences on shortest
paths between two given sequence graphs

Given graphs G = (UG, AG) and H = (UH , AH) with vertices 0 to m and 0 to n;
Initialize an empty graph G⊗H. Vertices will be a subset of UG × UH ;
Add vertices to G⊗H for all pairs i⊗k for which δ(G/(i),H/(k)) + δ(G.(i),H.(k)) =
δ(G, H);
foreach vertex pair i⊗k in G⊗H do

δ/ ← δ(G/(i),H/(k));
// Symbols on arcs from both graphs aligned;
foreach arc a = (i, j) in G do

foreach arc b = (k, l) in H do
foreach symbol s ∈ Σ′ do

if δ/ + δ(s, sa) + δ(s, sb) + δ(G.(j),H.(l)) = δ(G, H) then
Add/update arc with symbol s from i⊗k to j⊗l in G⊗H;

// Symbols on arcs from one graph aligned with gaps;
foreach arc a = (i, j) in G do

foreach symbol s ∈ Σ′ do
if δ/ + δ(s, sa) + δ(l,−) + δ(G.(j),H.(k)) = δ(G, H) then

Add/update arc with symbol s from i⊗k to j⊗k in G⊗H;
foreach arc b = (k, l) in H do

foreach symbol s ∈ Σ′ do
if δ/ + δ(l,−) + δ(s, sb) + δ(G.(i),H.(l)) = δ(G, H) then

Add/update arc with symbol s from i⊗k to i⊗l in G⊗H;
return G⊗H
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additional cost caused by using this arc in a path from source to sink compared to an optimal
path. The weight of a source-sink path in G is defined as the sum of weights of its arcs. In
particular, an optimal path only contains 0-weight arcs.

The weighted distance between a pair of sequences, one in a weighted sequence graph
G and the other in a weighted sequence graph H is defined as the distance between them
supplemented by the weights of their paths. The weighted distance between G and H is
defined as the smallest weighted distance between pairs of sequences, one in G and one in H.
This is also denoted by δ(G, H).

Let ∆ be a nonnegative real number. In the deferred path heuristic with detours, the
weighted sequence graph G⊗H will contain all sequences S where the sum of the weighted
distances from S to a sequence SG in G and a sequence SH in H is at most ∆ away from the
weighted distance between G and H. In other words, G⊗H will contain all sequences which
are at most ∆ away from the shortest paths between sequences of an optimal pair from G
and H in the Steiner graph N .

The algorithms presented so far need surprisingly few changes to be able to handle the ∆
parameter. The distance algorithm simply includes the arc weights introduced when calculat-
ing the values of the matrix entries. The changes to the construction algorithm are also quite
simple. Some of the changes needed are given in Algorithm 6. Especially note the calculation
of the arc weight. When adding an arc a from i⊗k to j⊗l, the weight is computed by adding
the costs of the arc to the cost δ(G.(j),H.(l)) of an optimal path from the sink to j⊗l, and
then subtracting the cost δ(G.(i),H.(k)) of an optimal path from the sink to i⊗k.

Algorithm 6: Some of the changes needed when constructing a sequence graph including
detours.

... Add vertices to G ⊗ H for all pairs i ⊗ k for which δ(G/(i),H/(k)) +
δ(G.(i),H.(k))6 δ(G, H) + ∆;
foreach arc a = (i, j) in G do

foreach arc b = (k, l) in H do
foreach symbol s ∈ Σ′ do

if δ/ + δ(s, sa) + δ(s, sb) + δ(G.(j),H.(l))6 δ(G, H) + ∆ then
w ← δ(G.(j),H.(l)) + δ(s, sa) + wa + δ(s, sb) + wb − δ(G.(i),H.(k))
Add/update arc with symbol s and weight w from i⊗k to j⊗l in G⊗H;

...

It it obvious that as ∆ increases, so does the number of sequences (represented by paths)
in weighted sequence graphs. So the choice of an appropriate ∆ is crucial. If chosen too low,
the quality of the solution can be poor. If chosen too high, the sizes of weighted sequence
graphs can explode. It should also be noted that increasing ∆ can also result in worse results
for the deferred path heuristic with detours — even for a fixed tree topology. This is due to
the fact that a ∆1 sequence graph in an internal node of such a fixed tree is not guaranteed
to be a subgraph of the corresponding ∆2 sequence graph even if ∆2 > ∆1.

It is possible to extend all of the algorithms described to also work for affine gap penalties
without changing the running time with more than a constant factor [8]. The idea is basically
the same as for making basic pairwise alignments with affine gap penalties [2]. In short, one
needs three values in each entry of the matrix corresponding to each of the possible gap-
insertions (a gap in one of the sequences or no gap at all). When building a new sequence
graph each of these values can cause a vertex to be created.
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AGTGAGTCATG
TGCAGTAGGT
TCTTCAGTGCC

(a)

A-GTGAGTCATG-
T-G-CAGT-AGGT
TCTTCAGT--GCC

(b)

AGTG | AGT | CATG
TGC | AGT | AGGT
TCTTC | AGT | GCC

(c)

Figure 3: Segmentation example.

4 Improvements

In the following we suggest two improvements to the deferred path heuristic with detours.
The first one focuses on decreasing the amount of space and time used by the heuristic with
limited sacrifice of solution quality and the second one focuses on increasing solution quality
at the cost of time.

4.1 Segmentation

The rapidly increasing size of sequence graphs with increasing ∆ can be limited by pruning
edges and nodes. Schwikowski and Vingron [9] enforces a limit of 1000 edges by randomly
removing edges from any sequence graphs generated. In the following we suggest an alterna-
tive approach which we call segmentation. The basic idea is to heuristically split the set of
input sequences into a series of sets and then work on each set in the series individually when
measuring distances and creating new sequence graphs.

Consider the example given in Figure 3a. Three input sequences are given. If solving this
problem without using detours (∆ = 0) we get the alignment in Figure 3b. In the middle
of the sequences we notice a no-cost alignment of 3 consecutive symbols. When solving the
problem with detours these symbols are not likely to be aligned differently and therefore we
could fix the location of this segment and instead solve the problem for three smaller sets of
sequences as indicated in Figure 3c.

In the example above, a sequence of 3 consecutive perfect columns was used to fix a
segment. In general this approach could be parameterized by requiring a minimum of σ
consecutive perfect columns. A large value of σ would cause less segments to be found, but
also decrease the risk of missing good solutions.

Using perfect columns is not the only possible strategy. Numerous other strategies could
be used and one could even use some fast multiple alignment method such as ClustalW [13]
to get the initial alignment and then use this to also fix segments when solving the problem
for ∆ = 0.

4.2 Tree Construction Strategies

As previously described, the basic tree construction heuristic simply makes a greedy choice in
each iteration, selecting the sequence graphs which are “closest” in terms of distance. This is
also the only strategy considered by Schwikowski and Vingron [9]. The greedy choice is not
necessarily the best choice. This is illustrated with a small example in Figure 4 in which the
best solution is based on a non-greedy initial choice.

An exhaustive search of all tree topologies is not a viable alternative for most problem
instances, but other approaches could be considered. Here we suggest a simple look ahead
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Figure 4: Example with the two possible topologies when solving a problem with four se-
quences. (a) Using a unit cost scheme an initial greedy choice is to join CGG and CTG at a
cost of 1. The final solution then has a total cost of 6. (b) A non-greedy choice at a cost of
2 results in a better final solution with a total cost of 5.

Size Length Origin
Min. Max. Avg.

Sankoff 9 118 122 120.1 [7]
rRNA 602 96 122 116.6 [12]
SRP euk 71 256 317 295.3 [6]

Table 1: Data instances used in the experiments.

scheme in which we improve the greedy choice by extending the search in both width and
depth. The idea is to make several choices and then continue the heuristic for each of them
comparing the choices at a later stage. Three parameters can be used to describe this scheme.
The number of levels to look ahead (the depth), λd, before comparing the choices made, the
number of (best) pairs of sequence graphs to consider at each level (the width), λw, and the
number of steps, λs, to actually take when the best sequence of choices has been found. The
normal greedy choice would correspond to λd = 0, λw = 1 and λs = 1.

5 Computational Experiments

An implementation of the deferred path heuristic with detours has been done in C++ and
the experiments have been executed on a 3GHz Pentium with 1 MB level 2 cache and 3.5 GB
of main memory. The source code is available on request.

The main purpose of the computational experiments is to see if the segmentation scheme
and the look ahead scheme behave as expected. Three data instances are used in the ex-
periments (Table 1), all containing sequences with nucleotides. The classic Sankoff instance
only contains 9 sequences and it is included to verify that we obtain the same solution as
Schwikowski and Vingron [9]. The other instances contain far too many sequences to be han-
dled by our implementation since the sequence graphs would quickly become too big. Instead
we select 10 random sets of 10 sequences from each instance and report average results. This
should also ensure that we get results which to some extent indicate the general behaviour of
the heuristic and the new improvements.

The cost matrix used for all experiments is the same as the one originally used for the
Sankoff instance, i.e., δ(A, G) = δ(C, T) = 1, δ(A, C) = δ(A, T) = δ(C, G) = δ(G, T) = 1.75
and linear gap cost g(k) = 2.25k. All experiments are done with ∆ ranging from 0 to

174



Deferred path heuristic for phylogenetic trees revisited

3 and segmentation with σ ∈ 2, 3, 6,∞, where ∞ means no segmentation. Only two tree
construction schemes are tested. The standard greedy approach and a lookahead scheme
with λw = 3, λd = 3 and λs = 1.

The results are presented in Table 2. The best known result for the Sankoff instance [9]
is found in all cases when ∆ > 2. In general, results are not becoming worse when using
segmentation, but these instances also only allow few segments. An average of 9 segments
for the rRNA instance when σ = 2 reveals a considerable decrease in running time which is
an indication of the potential of segmentation, but other segmentation strategies should be
considered to increase the number of segments. The look ahead scheme works as expected
finding better solutions in most cases, but the cost in running time is large compared to the
results obtained using large ∆ values. More experiments are needed to further analyze this
time/quality tradeoff.

6 Conclusions

We have given a short and concise description of the deferred path heuristic with detours and
we have shown that there is still room for improving both computation speed and quality
of solutions. We have also taken the first steps to further examine the potential of using
sequence graphs for generalized tree alignment and it is our intention to continue this work
and to improve the implementation to make it of practical use. Most interesting is to find
new ways of limiting the size of the sequence graphs without sacrificing solution quality.

More experiments are needed, especially a comparison of the quality of our phylogenetic
trees with the trees constructed by the best existing solution methods.
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consecutive no-cost columns.
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Abstract

We suggest a novel distance-based method for the determination of phylogenetic trees.
It is based on multidimensional scaling and Euclidean Steiner trees in high-dimensional
spaces. Preliminary computational experience shows that the use of Euclidean Steiner
trees for finding phylogenetic trees is a viable approach. Experiments also indicate that
the new method is comparable with results produced by Neighbor Joining [20].

Keywords: Phylogeny, Steiner tree, multidimensional scaling

1 Introduction

One of the most important problems of modern biology is to explain how species have evolved
over time and how they are related to each other. Such relationships are represented by
phylogenetic trees where the leaf nodes represent the species while the interior nodes represent
their ancestors. Usually, vertices of a phylogenetic tree represent sequences that identify the
species, such as DNA or protein sequences, while edges represent changes (such as mutations,
deletions and insertions) that have occurred to obtain one sequence from another. The major
problem that faces biologists when constructing such phylogenetic trees is that the information
about ancestors is very limited or is in fact non-existent. So the problem is to infer the interior
nodes and their relationships with each other and with the studied species while asserting
some particular model of evolution.

Several methods for the determination of phylogenetic trees have been considered over the
years (see for example some of the monographs addressing mathematical and computational
aspects of phylogenetic trees that appeared in recent years: Felsenstein [8]; Semple and
Steel [22]). From a computational point of view, these methods are intractable as they
lead to NP-hard optimization problems. In order to obtain reasonable solutions even for
relatively small problem instances, one therefore has to turn to heuristics where solutions can
be obtained efficiently. These solutions may not be optimal with respect to the asserted model
of evolution. Figure 1 shows some very small examples of phylogenetic trees. Figure 1a is an
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Figure 1: (a) An unrooted phylogenetic tree of a group of great apes. (b) A rooted phylogenetic
tree of the same group. The large dot represents a hypothetical common ancestor for all of
the species in the group.

example of an unrooted phylogenetic tree while Figure 1b shows a rooted phylogenetic tree.
In some cases, edge lengths are used to indicate the time spans between “evolutionary events”
(this is not the case for the examples in Figure 1). This example is taken from the Tree of
Life website: http://www.tolweb.org/ where many other, much bigger, phylogenetic trees
can be found.

Computational approaches to phylogenetic trees can be divided into at least four cate-
gories: distance-based methods, maximum parsimony methods, maximum likelihood meth-
ods and tree merging methods. Distance-based methods, which are the focus of this paper,
calculate the distances between all pairs of sequences using appropriately defined pairwise
alignment, and then determine a tree based on these distances. Several distance-based meth-
ods have been suggested in the literature: Unweighted Pair Group Method using Arithmetic
mean (UPGMA) suggested by Sneath and Sokal [24], Neighbor Joining (NJ) suggested by
Saitou and Nei [20], BioNJ suggested by Gascuel [10], and FastME suggested by Desper and
Gascuel [7]. The idea underlying all these methods is to merge pairs of nodes (beginning with
the nodes representing the species), recompute distances from each merged node to the re-
maining nodes and repeat. UPGMA is very fast but implicitly assumes a molecular clock, i.e.,
it assumes uniform mutation rates along the edges. NJ generates unrooted trees and assumes
additive distances in the tree. BioNJ and FastME are both based on the NJ method. BioNJ
tries to improve the merging choices of NJ and FastME creates a quick initial phylogeny and
then tries to improve it by doing nearest neighbor interchanges.

The purpose of this paper is to suggest a novel heuristic method to determine phylogenetic
trees. It differs from other methods by exploiting Euclidean geometry to efficiently construct
good phylogenetic trees. The use of Euclidean geometry for phylogeny reconstruction was
originally proposed by Cavalli-Sforza and Edwards [3]. More recently, Kitazoe et al [15]
presented an alternative geometry-based approach. The current prototype implementation of
our approach is a proof of concept, but the long term goal is to provide a fast heuristic for
generating good phylogenies for very large problem instances. While our method is clearly
distance-based and similar to methods based on minimum evolution [19], it takes a more global
view of the distances between species by generating a low-cost Steiner tree for appropriately
located species in a d-dimensional space. This tree is an approximate solution to the d-
dimensional Euclidean Steiner tree problem to determine the shortest tree interconnecting n
given points in a d-dimensional space. Additional junctions, called Steiner points can be used
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in such a tree.
Our approach for determining phylogenetic trees is quite straightforward. We use pair-

wise alignment to compute costs of optimal pairwise alignments between the species. Once an
n × n symmetric dissimilarity matrix ∆ of all involved species has been determined, we use
multidimensional scaling to represent the species as points in a higher dimensional Euclidean
space such that their Euclidean distances match the dissimilarity matrix ∆ as closely as possi-
ble. We apply only classical multidimensional scaling although more advanced improvements
do exist. The running time of this approach is O(n2). Once the points in d-dimensional
space have been determined, for a given d, we find a heuristic solution to the d-dimensional
Euclidean Steiner tree problem, i.e., we approximate a shortest tree spanning the points in
d-dimensional space. The Steiner tree problem is an NP-hard optimization problem, hence
our main interest is not in the optimal solution but in a Steiner tree obtained by a straight-
forward heuristic (described in Section 3) which is a generalization of a well-known heuristic
for the case d = 2. The exact locations of the Steiner points are not so important in this
context. In fact, we are only interested in the topology of a low-cost Steiner tree. We do
not provide a running time bound for the Steiner tree heuristic described in this paper, but
it is not unlikely that a sufficiently efficient heuristic could be devised with a running time
somewhere between O(n2) and O(n3). This emphasizes the long term goal of our approach
to be able to handle large problem instances.

The paper is organized as follows. Multidimensional scaling is discussed in Section 2. Our
methods to obtain good quality Steiner trees in d-dimensional Euclidean space are discussed
in Section 3. Our method of determining phylogenetic trees is validated in several ways. This
is discussed in Section 4. Section 5 presents our computational results. Concluding remarks
and suggestions for further research are discussed in Section 6.

2 Multidimensional Scaling

Multidimensional scaling (MDS) is a method of representing a given collection of dissimilari-
ties between pairs of objects as distances between points in a multidimensional metric space.
The most well-known application of MDS is as a method of producing approximate visual
representations of dissimilarities between objects. This is done by representing the objects as
points in 2 or 3 dimensional Euclidean space such that the distances between points in the
space match the original dissimilarities as closely as possible.

Our use of MDS in this paper is somewhat different. Here the reason for representing the
objects as points in Euclidean space is to exploit geometric properties of the space in order
to construct an approximate solution to the Steiner tree problem. Our heuristic methods
for solving the Steiner tree problem are efficient even in relatively high dimensions, meaning
there is no need to restrict our attention to low-dimensional space. The effectiveness of this
approach, however, is dependent on being able to match the dissimilarity matrix for the given
species and the distance matrix for the embedded points as closely as possible.

In this section we review classical MDS methods [4] for positive semi-definite dissimilarity
matrices and then discuss how they can be adapted to more general dissimilarity matrices.

2.1 Classical Multidimensional Scaling

The techniques of classical multidimensional scaling are based around the assumption that
the dissimilarities are actually distances in some higher dimensional Euclidean space. Hence
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the aim is to reconstruct an embedding in a suitable space that preserves the set of distances.
The first practical method for doing this was developed by Torgerson [28]. The steps in the
classical method are as follows.

1. Suppose there are n objects in our set. Let ∆ be the n × n symmetric matrix of
dissimilarities. Square each term in this matrix to compute ∆(2), the matrix of squared
dissimilarities.

2. Let H = In − n−111T be the centering matrix (where 1 denotes a vector of n ones).
Apply the operation of double centering to ∆(2) to obtain the inner product matrix
B = −1

2 H∆(2)H.

3. Compute the spectral decomposition of B: B = VΛVT where Λ is the diagonal matrix
of eigenvalues {λi} and V is the corresponding matrix of normalized eigenvectors {vi}.
Under the assumption that ∆ is actually a set of Euclidean distances, it can be shown
that B is positive semi-definite, or equivalently that the eigenvalues in Λ are non-
negative real numbers. Hence we can assume that the spectral decomposition satisfies
λ1 > λ2 > . . . > λn > 0.

4. Let d (<n) denote the dimensionality of the solution, which is the same as the number of
non-zero eigenvalues in Λ. Let Λd denote the diagonal matrix of the first d eigenvalues,
and let Vd denote the first d columns of V. Then the coordinate matrix of classical
scaling for the n objects in Euclidean d-space is X = VdΛ

1/2
d .

If ∆ is a Euclidean distance matrix, then X recovers the original coordinates up to reflec-
tion, rotation and translation. To obtain good embeddings of the objects in smaller dimensions
we reduce the size of d in the classical method, effectively discarding the smallest eigenvalues
and their corresponding eigenvectors. This minimizes the loss function ‖XXT − B‖ for the
given dimension d.

For the cases we are interested in ∆ is a metric matrix (but not a Euclidean distance
matrix) based on appropriately defined distances between sequences. Here again the classical
method can be applied, but now the spectral decomposition for B may include negative eigen-
values, as B may not be positive semi-definite. The coordinate matrix X can be computed
using the method above, where the Euclidean dimension d is chosen so that the discarded
eigenvalues include all λi 6 0. If the negative eigenvalues are small in magnitude then X rep-
resents an embedding whose distances are close to the original dissimilarities. If the negative
eigenvalues are large, then X is less accurate.

3 Euclidean Steiner Trees in Higher Dimensions

The d-dimensional Euclidean Steiner tree problem is as follows. We are given a set of n
points x1, . . . ,xn, also denoted terminals, in d-dimensional space. (In our application, the
coordinates of point xi are given by the i’th row of the matrix X, as computed by the
multidimensional scaling.) The problem is to compute a tree of minimum Euclidean length
that interconnects the terminals; such a tree is called a Steiner minimum tree (SMT). The
SMT may contain junctions, so-called Steiner points, that are not among the given terminals.

A number of nice properties are known about SMTs in higher dimensions [14]. There are
at most n − 2 Steiner points, and each of these has exactly three neighbours in the SMT.
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Moreover, for a Steiner point s with neighbours u, v and w (which can be terminals or Steiner
points), the edges {su, sv, sw}must be co-planar, and make 120◦ angles at the Steiner point s.
Edges meeting at terminals must make angles that are at least 120◦.

A Euclidean minimum spanning tree (MST) for the terminals is a tree with minimum
Euclidean length where only direct connections between the terminals are allowed. The
MST problem is — in contrast to the Steiner tree problem — solvable in polynomial time.
However, we are interested in Steiner trees rather than in MSTs for two reasons. The first is
that Steiner trees are usually substantially shorter than spanning trees. The second, and even
more important, reason is that the topology of a Steiner tree with its Steiner points yields a
natural candidate for a phylogenetic tree.

For this paper we have designed a simple Steiner tree heuristic to evaluate our general
approach to computing phylogenetic trees. In a forthcoming paper we will present a more
sophisticated and general heuristic for approximating Steiner trees in higher dimensions for
arbitrary metrics [2].

For the first phase of the heuristic we construct an MST T for the set of terminals
x1, . . . ,xn. We then perform local improvements as originally suggested by Cavalli-Sforza
and Edwards [3]: Let uv and uw be two edges meeting at a node u, where the meeting angle
is minimum over all such pairs of edges in T . If the meeting angle is less than 120◦, the edges
uv and uw are deleted, and the three vertices u, v and w are reconnected by the SMT for
u, v and w; this tree will be a star with a Steiner point s as its center. The optimal location
of this Steiner point (with respect to the tree neighboring vertices) can be exactly computed
in constant time. This operation is called a Steiner point insertion, and it will decrease the
length of the tree. Steiner point insertions are iteratively performed until the decrease in tree
length becomes marginal. As a final step in this phase, we apply the iterative approach by
Smith [23] which improves the positioning of the Steiner points.

In the second phase of the heuristic we perform shortcutting. We iteratively pick a pair
of nonadjacent vertices u and v in T . Consider the longest edge u′v′ on the path between
u and v in T . Let T ′ be the tree obtained from T by deleting the edge u′v′ and adding the
edge uv followed by local improvements. If the new tree T ′ is shorter than T , then we set
T = T ′ and iterate. The algorithm stops when no shortcutting improves the length of the
tree within some small threshold value.

In order to use a Steiner tree as a phylogenetic tree, a postprocessing step is needed which
ensures that all terminals are of degree 1 and all Steiner points are of degree 3. A terminal of
degree higher than 1 can be replaced by a new Steiner point with the same coordinates and
then the terminal can be connected to this Steiner point. A Steiner point of degree higher
than 3 can be split into more Steiner points, but an exponentially growing number of different
topologies are possible when applying such splitting. In practice this postprocessing step is
rarely needed in high-dimensional Euclidean spaces.

4 Validation Methods

The best method to validate any phylogenetic tree method would of course be that it could re-
construct known phylogenies. Unfortunately known phylogenies are rare. One such “known”
phylogeny was determined by Hillis et al. [11] for the cultures of bacteriophage T7. Unfortu-
nately, the tree obtained was well-balanced and its nodes representing the phages had many
restriction site differences. Reconstruction of such a tree by any reasonable phylogenetic
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method is fairly easy.
The second best choice of “known” trees is computational simulation. A computer pro-

gram is provided with a tree and sequences evolve along the edges of this tree according to an
accurate probabilistic model of evolution. The resulting leaf sequences can then be used as
input to some phylogenetic tree building method. A good method should generate the tree
that was used in the simulation.

In our experiments we use the program Rose [26] to generate artificial protein sequences.
Rose is also used to generate a random tree and a random root sequence. Multiple substi-
tutions, insertions and deletions are allowed. Since Rose can also supply us with the correct
multiple alignment there is not going to be any bias (in the alignment) to any particular tree
reconstruction method [16]. In other words we do not need to use any form of pairwise or
multiple alignment to be able to calculate distances. To keep everything as simple as possible
we base the distances on simple percent differences (Hamming distance), i.e., no so-called
distance corrections are made. Default parameters in Rose are used when nothing else is
specified for our experiments, and, in general, root sequences are of length 500. One of the
most important parameters is the relatedness of a set of sequences. The value of this param-
eter expresses the average relatedness of the sequences measured in point accepted mutation
(PAM). This is a measure of the number of point mutations or changes per 100 amino acids.
The default parameters of Rose include a mutation matrix, based on the work of Dayhoff et
al. [6], which is used to determine the relative likelihood of each possible mutation.

Trees are compared using the partition metric which was originally proposed by Bourque [1].
It is also known as the Robinson-Foulds metric [18], the splits metric [22], and the symmetric
difference metric. In short, the partition metric measures how many bi-partitions (induced by
removing single edges) are in one tree and not in the other tree, that is, a distance of 0 reflects
identical tree topologies. The main properties of the metric are that distances can be found
in linear time [5] and that it is sensitive when applied to very similar trees [25]. Given a pair
of binary trees with n leaves their maximum distance is 2n − 6, but in the experiments we
are using a normalized version of this metric such that the maximum distance is 1. For pairs
of random binary trees the mean value of their distances approach the maximum distance as
n→∞ [25].

In addition to our new solution method we also use the classic Neighbor Joining (NJ)
algorithm [20] in our experiments. According to Hollich et al. [13] it does very well compared
to some of the currently best known tree building methods such as BioNJ [10] and FastME [7].

The first description of the NJ algorithm does not include a running time analysis, but
Studier and Keppler [27] described an algorithm with identical behavior and showed that it
had a running time of O(n3) for n species. Their description of the NJ algorithm is as follows.
Given a distance (or dissimilarity) matrix for n species with entries dij for each pair i and j,
compute the values

Sij = (n− 2)dij −
∑

k

dik −
∑

k

djk.

A pair (x, y) with minimum Sxy is selected and a new “species” z is introduced to replace them.
The columns/rows of x and y are deleted and a new row and a new column with distances
from z to all remaining species are added. The distance from z to one of the remaining species
u is based on the distances from x and y, such that dzu = (dxu +dyu−dxy)/2. This procedure
is repeated until only 3 species are left in the matrix. An unrooted tree then follows from
the sequence of merging choices. Essentially, the NJ algorithm iteratively selects two species
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which are close to each other and far away from the remaining species. The distance from a
new species to a species u is simply based on an average of the distances from the replaced
species to u.

We use a partition distance implementation and an NJ implementation from PHYLIP [9]
in our experiments.1 The d-dimensional Steiner minimum tree heuristic (dSMT) was imple-
mented in C++.

5 Computational Experiments

In the experiments we are going to examine three basic questions. First, described in Sec-
tion 5.1, we examine how well MDS retains the information needed to be able to obtain
good phylogenies. Second, in Section 5.2, we examine whether short Euclidean Steiner trees
are equivalent with good phylogenies. And finally, in Section 5.3, we examine how good
phylogenies based on short Euclidean Steiner trees are compared to existing methods.

5.1 Evaluation of MDS

NJ can be applied to the original distance matrix, but it can also be applied to the distance
matrix based on the Euclidean points found by MDS. Consider the following experiment.
Using various problem sizes (number of sequences) and average relatedness values of the
sequences in these problems, compare (using the partition metric) the trees found using
NJ on the original distance matrix and the MDS matrices using an increasing number of
dimensions. Results for an average relatedness value of 20 and 250 PAM for instances of size
20 and 50 and sequence lengths 10, 20, 100, and 500 are given in Figure 2.

The experiment shows that increasing the number of dimensions yields better results. The
results of applying NJ to the original distance matrix are not shown, but they are all matched
when permitting sufficiently high dimensions (the original trees are almost always found for
sequence lengths of 500). Applying NJ to the points embedded in very few dimensions is
clearly too crude an approximation. On the other hand, the number of dimensions required
to obtain good approximations is bounded, e.g., only about 20 dimensions are needed for
the instances of size 50 and length 500. Also note that the number of dimensions required
seems to depend more on the number of sequences and sequence lengths than on the degree
of average relatedness of the sequences. Observe that instances with short sequence lengths
are harder to solve. This is due to the fact that NJ has less information available when
reconstructing the trees. Most importantly, the results indicate that the information needed
to obtain good phylogenies is preserved when using MDS.

5.2 Euclidean Steiner trees as phylogenies

Our method searches for a good Steiner tree in a greedy fashion starting with a minimum
spanning tree. During the search a range of different topologies is found and we can use these
to examine the relationship between Steiner tree length and phylogenetic tree quality. The
graph in Figure 3a presents the results of such an experiment. The Euclidean lengths have
been normalized, as a percentage of the MST length, and collected in intervals (by rounding
to the nearest integer) such that they can be averaged. The graph clearly indicates that

1The code for MDS was found at http://odur.let.rug.nl/kleiweg/L04/Manuals/mds.html.
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Figure 2: Results of applying Neighbor Joining to the distance matrices obtained by MDS
with an increasing number of dimensions. The partition metric distances between NJ trees
and the trees supplied by Rose for four different sequence lengths are shown. Values are
averaged over 100 runs.

shorter trees are also better phylogenies. The irregular behavior for longer trees is caused
by the fact that the heuristic generates very few trees with length close to the length of the
MST, i.e., only a few trees contribute to these average values. Conversely, the behavior for
shorter trees is based on large numbers of trees (> 100).

A similar experiment can be used to analyze the importance of the number of dimensions
included. Results for using various numbers of dimensions on 100 instances of size 100 are
shown in Figure 3b. When using a very small number of dimensions, SMTs show no improve-
ment when compared to MSTs with respect to the phylogenies found. This clearly changes
when using an increasing number of dimensions. The quality of the phylogenies found is very
similar when using 40 dimensions or more although the SMTs get relatively shorter than
MSTs with an increasing number of dimensions.

To determine whether the topologies given by Rose induce short Euclidean Steiner trees,
we have compared the relative maximum and average difference in Euclidean length of trees
obtained by dSMT and trees obtained by dSMT when fixing the topology to that given by
Rose. Figure 4 shows the result of such an experiment. The graphs clearly suggest that for
larger dimensions, the Rose phylogenetic trees are to be found among short Euclidean Steiner
trees.

5.3 Comparison with existing methods

A direct comparison between the phylogenies generated by NJ and the ones generated by our
Steiner tree approach is given in Figure 5.

Using Rose, 100 times 50 sequences are generated with relatedness values of 20 and 250
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(a) (b)

Figure 3: Relationship between Euclidean Steiner tree lengths and partition metric distances
to the tree generated by Rose. (a) All trees were found in 100 runs using an average relatedness
of 100 PAM. The maximum number of dimensions is used for each instance (equal to the
number of positive eigenvalues). (b) A fixed problem size of 100 is used while the choice of
the upper dimension bound is varied.

(a) (b)

Figure 4: The difference in Euclidean length between Steiner trees obtained by dSMT and
Steiner trees obtained by dSMT with the topology from Rose fixed, for various dimensions,
problem sizes and relatedness values. All sequences have length 100. (a) The relative maxi-
mum length difference (in percent) over 100 instances. (b) The relative average length differ-
ence over 100 instances.
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Figure 5: Average results of applying NJ and dSMT to 100 generated data instances with 50
sequences each. The primary axis is the number of dimensions used when using MDS and the
secondary axis is the distance to the correct tree. Results for two different average relatedness
values and four different sequence lengths are shown.

and sequence lengths 10, 20, 100, and 500. These are then used as input to both methods
and the distances to the correct trees are averaged and presented for each number of pos-
sible dimensions. For sequence length 500, the results are quite similar since both methods
eventually find all correct trees (note that dimensions 31-49 are not included). The Steiner
approach seems to need a couple of extra dimensions compared to NJ to find solutions of the
same quality. For shorter sequence lengths, NJ seems to find slightly better solutions than
dSMT. Results of running NJ on the original distance matrices are not included in Figure 5
but the partition metric distances for this experiment are only marginally better than those
obtained by NJ for dimension 30.

We have compared dSMT and NJ on an instance consisting of 143 sequences. The instance
has an associated candidate tree [12] describing their relationships2. Applying NJ to this
instance gives a solution with partition metric distance 0.1 to the given tree.

The result of applying dSMT to the same instance for various dimensions is shown in
Figure 6. Observe that in smaller dimensions, the initial solutions found by dSMT are of
better quality than in higher dimensions but that the final solutions are not. The best
solutions are found in dimensions 80 and 142 with a distance of about 0.171 to the given
tree. Hence, dSMT is unable to find solutions of equal or better quality than NJ. This can be
explained by the fact that the given tree was generated using the Clustal-W package, which
makes use of NJ.

2The tree and a multiple alignment of the sequences can be found at
http://www.mrc-lmb.cam.ac.uk/myosin/trees/trees.html.
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Figure 6: For an instance consisting of 143 sequences, the above graph shows the relationship
between Euclidean Steiner tree length and partition metric distance to the given tree for
the intermediate trees obtained by dSMT during the iterative search. Euclidean lengths are
collected in intervals by rounding to the nearest integer and the minimum distance in each
interval is shown. Dimensions considered are 40, 60, 80, and 142.

6 Concluding Remarks and Future Research

We have presented a new method for finding phylogenetic trees using a geometric Steiner tree
approach. It is not an easy task to experimentally analyze the quality of such an approach,
but the results are promising and we have verified that there is a strong correspondence
between short Euclidean Steiner trees and good phylogenies.

The results could be affected, for better or for worse, by a range of possible variations
of both the experiments and the solution methods. The experiments could, e.g., be affected
by the use of distance correction or simply by other choices of relatedness, problem sizes
or other Rose parameters. The major weakness of using Rose is that it is only a model
of the evolutionary process. Some phylogenetic methods might be more or less tuned to
handle this model and thus one should be careful when comparing methods using only Rose
generated data. Rose and the partition metric distance could be replaced by the use of real
data instances and some other means of comparison such as the tree alignment score. In
fact, in preliminary experiments using a variation of the Deferred Path Heuristic [17, 21] to
heuristically assess the tree alignment score, MDS/dSMT performed marginally better than
NJ.

Note that the current implementation of our approach is an initial prototype. We have
already shown that the trees constructed are comparable with NJ trees, but there is still
considerable potential for improvement, both regarding quality of trees and speed.

Classical MDS can be improved with various techniques not discussed in this paper and
these improvements could in turn improve the results of dSMT. The heuristic method for
finding short Euclidean Steiner trees could also be improved and whenever such improve-
ments in length also involve topology changes, it could potentially result in better phyloge-
nies. Improvements regarding the running time would enable the heuristic to handle larger
phylogenies. No running time bound is given for the current implementation, but based on
experience with geometric Steiner problems in two dimensions, it is likely possible to create
an efficient heuristic with a running time below O(n3) and maybe even close to O(n2), i.e.,
asymptotically faster than NJ.

When using a heuristic to obtain a phylogeny, one is often interested in phylogenies which
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are similar in quality. In Euclidean space it is easy to define a neighborhood of such phylo-
genies by simply looking at those which are near by in the sense of Steiner tree length. Such
phylogenies could differ a lot topologically and this could be a very interesting approach for
generating a set of phylogenies or a phylogenetic network.

Although our experiments show that minimizing the Euclidean tree length gives phylo-
genetic trees of relatively high quality, the power of the simple NJ algorithm suggests that
other cost functions may be more suitable. Experimenting with some hybrid between the NJ
algorithm and our algorithm could be a fruitful area of future research.
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