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Abstract. We are faced with three major challenges when dealing with
the problem of de novo protein structure prediction. One is to determine
a suitable energy function having a global minimum near the native
structure of the protein. The second challenge is to sample the confor-
mational space such that some of the sampled decoys are near the native
structure. The third challenge is to identify the native-like structures
among the sampled decoys. Here we present a novel method for decoy
generation and therefore attack the second of these challenges.
We propose a new discrete protein structure model (using a modified
face-centered cubic lattice). A novel branch and bound algorithm for
finding global minimum structures in this model is suggested. The ob-
jective energy function is very simple as it depends on the predicted
half-sphere exposure numbers of Cα-atoms. Bounding and branching also
exploit predicted secondary structures and expected radius of gyration.
The algorithm is fast and is able to generate the decoy set in less than
48 hours on all proteins tested.
Despite the simplicity of the model and the energy function, many of
the lowest energy structures, using exact measures, are near the native
structures (in terms of RMSD). As expected, when using predicted mea-
sures, the fraction of good decoys decreases, but in all cases tested, we
obtained structures within 6 Å RMSD in a set of low-energy decoys. To
the best of our knowledge, this is the first de novo branch and bound
algorithm for protein decoy generation that only depends on such one-
dimensional predictable measures. Another important advantage of the
branch and bound approach is that the algorithm searches through the
entire conformational space. Contrary to search heuristics, like Monte
Carlo simulation or tabu search, the problem of escaping local minima
is indirectly solved by the branch and bound algorithm when good lower
bounds can be obtained.

1 Background

Here we present our approach for protein decoy generation using the branch and
bound paradigm. A shorter version of this paper appeared in [1]. The contact
number (CN) is a very simple solvent exposure measure that only depends on the
positions of Cα-atoms. Given a fixed backbone structure, the CN of a residue Ai

is the number of other Cα-atoms in a sphere of radius r centered at the Cα-atom
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of Ai. The CN of all residues of a given structure is called the CN-vector. A more
information rich measure is called the half-sphere-exposure (HSE) measure [2].
Here, the sphere is divided into an upper and a lower hemisphere as illustrated
in Figure 1. The up and down numbers of a residue therefore refer to the number
of other Cα-atoms in the upper and lower hemispheres respectively. For a given
fixed structure, the up and down numbers for all residues is called the HSE-
vector. CN- and HSE-vectors therefore only depend on the radius of the spheres
and the coordinates of Cα-atoms, which is very convenient when using simplified
models.

HSE−vector−up
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HSE−vector−down

b

down

up
CB

B

C

A

AB

V

Fig. 1. Given the positions of 3 consecutive Cα-atoms (A, B, C), the approximate side-
chain direction V̄b can be computed as the sum of ĀB and C̄B. The plane perpendicular
to V̄b cuts the sphere centered at B in an upper and a lower hemisphere.

Recently it was shown that it is possible to approximately reconstruct small
protein structures from CN-vectors or HSE-vectors only [3]. These results showed
that HSE-optimized structures in general have better coordinate RMSD with the
native structure and more accurate orientations of the side-chains compared to
CN-optimized structures. This is very interesting in regards to de novo protein
structure prediction, because CN- and HSE-vectors can be predicted with rea-
sonable accuracy [4, 5]. To use these results for de novo structure prediction,
one could therefore first predict the HSE-vector from the amino acid sequence
and then reconstruct the protein backbone from this vector. However, the re-
sults in [3] were only based on small proteins with up to 35 amino acids and it
was conjectured that the reconstruction of larger proteins would require more
information than what is contained in an HSE-vector [3]. Another difficulty is
that HSE-based energy functions appear to have many local minima in the con-
formational space. This is often a problem for search heuristics like Monte Carlo
simulation or tabu search, since they get trapped in these minima and must
spend much time escaping them.
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The problem of reconstructing protein structure from vectors of one-dimen-
sional structural information has also been studied by Kinjo et al. [6]. They used
exact vectors of secondary structure, CN and residuewise contact order (RWCO)
together with refinement using the AMBER force field to reconstruct native-like
structures. Their results indicated that secondary structure information and CN
without the use of RWCO is not enough to reconstruct native-like structures.
Unfortunately, RWCO is difficult to predict compared to CN, HSE and secondary
structure [6] and it would therefore be difficult to use their method directly for
de novo structure prediction.

Here we attack these problems by adding more predicted information to our
model and use a thorough branch and bound algorithm for finding minimum en-
ergy structures. By adding more predicted information we expect to increase the
probability of the energy function to have global minimum near the native struc-
ture. Furthermore, using a branch and bound approach we are able to implicitly
search the whole conformational space and therefore avoid getting trapped in
local minima. Besides using HSE vectors, we also use secondary structure (SS)
and radius of gyration (Rg). These three measures, (HSE, SS and Rg), can all be
predicted from the amino acid sequence only [4, 7, 8], and can therefore be used
for de novo protein structure prediction. The energy function is simple, and we
show how a good lower bound of the energy for a subset of the conformational
space can be computed in polynomial time. This lower bound enables the branch
and bound algorithm to bound large conformational subspaces and to find global
minimum energy structures in a reasonable amount of time. Throughout the text
our branch and bound algorithm is referred to as EBBA (Efficient Branch and
Bound Algorithm).

The idea of using secondary structure elements in a discrete model has been
suggested by others, i.e., Fain et al. [9] and Levitt et al. [10]. However, their mod-
els have a relatively small conformational space and it is therefore possible to
completely enumerate all structures allowed by the model. Branch and bound al-
gorithms and other algorithms for determining global minimum structures have
been used for protein structure prediction earlier. Some of these algorithms work
on very simplified models like the HP-lattice model [11, 12]. Even though these
algorithms can solve most problems to optimality, the global minimum struc-
tures are often very far from the native structure. Another branch and bound
algorithms, called αBB[13] uses more detailed potential energy functions which
depend on several physical terms. In [13], the αBB is shown to be successful on
small molecules. In [14], the αBB was improved and was used for prediction of
real protein structures. Dal Palu et al.[15] use a constraint logic programming
approach for protein structure prediction. They also use secondary structure
segments in a simplified model. However, in their model, all Cα-atoms must be
placed in a lattice (FCC). This differs from our approach, where we only demand
lattice directions of the secondary structure segments. Dal Palu et al. use a stan-
dard solver (SICStus Prolog) which makes use of standard bounding techniques,
while we have developed a much more efficient bounding algorithm specialized
for this particular problem. Furthermore, the results published in [15, 14] are not
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true de novo - the secondary structures are all derived from the native structure
of the proteins. On the contrary, the results presented here are true de novo.
All parts of the energy function are predicted from amino acid sequences only.
EBBA is, to our knowledge, the first de novo branch and bound algorithm that
only use one-dimensional predictable measures.

We use 6 benchmark proteins for evaluating EBBA. Our results show that
EBBA is able to find global minimum energy structures for most of these proteins
in less than 48 hours. We have evalutated EBBA using both exact values and
predicted values to estimate the importance of prediction quality. The results
show that predicted structures having global minimum energy are not always
native-like, however among the 10.000 lowest energy structures we typically find
many good decoys (less than 6 Å RMSD). Our algorithm therefore reduces the
protein structure prediction problem to the problem of identifying a near-native
structure in a relatively small set of decoys.

2 Methods

Each amino acid of a protein can be classified as belonging to a unique secondary
structure. Here we consider three classes of secondary structures; helix, sheet
and coil. Helices and sheets are distinguished by the unique geometric shape of
the Cα atoms in their tertiary structure. Coil is the class of all other shapes
that are neither helices nor sheets. Cα-atoms of a coil therefore have a large
degree of freedom, compared to helices and sheets, since there are few geometric
constraints on the tertiary structure of a coil.

A sequence of residues of the same secondary structure class is called a seg-
ment. Segments can be considered as rigid rods that describe the overall path
of Cα-atoms belonging to the segment. Segments always have a start coordinate
and a direction, and for helices and sheets their end coordinate can also be deter-
mined because of their constrained geometry. A segment is therefore an abstract
representation of a sequence of residues and it does not explicitly contain the
coordinates of internal Cα-atoms. We therefore define a segment structure to be
the coordinates of all Cα-atoms of a segment. Note that a segment in princi-
ple allows for infinitely many different segment structures even though they are
restricted to be of a specific secondary structure class. However, this model is
discrete and therefore only a finite representative set of segment structures are
generated. This is described in detail in Section Segment structures.

Any tertiary structure of a protein can be described in these terms; a list
of segments and a segment structure for each segment. We call such a list of
segments a super structure and a super structure with a segment structure for
each segment is called a complete structure.

The tertiary structure of any protein can always be described by a complete
structure. However, to discretize and reduce the conformational space of this
model, we reduce the degree of freedom for segments. Segments are therefore only
allowed to have a discrete set of predefined directions between the first and last
Cα-atoms. Obviously, the more directions allowed, the more super structures can
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be described by the model. This of course also increases the chance of describing
a super structure similar to the native structure. Therefore, there is a trade-off
between the number of directions allowed and the computational feasibility of
the model. Ad-hoc experiments show that the 12 uniformly distributed directions
acquired from the face-centered cubic (FCC) lattice is a good tradeoff (see the
results section for further discussion). The direction of a segment therefore has
one of the following 12 direction vectors: [1,1,0], [1,0,1], [1,-1,0], [1,0,-1], [-1,1,0],
[-1,0,1], [-1,-1,0], [-1,0,-1], [0,1,1], [0,1,-1], [0,-1,1], [0,-1,-1]. Figure 2 shows an
example of a super structure and a corresponding complete structure.

To further discretize the model, we set an upper limit (u) on the number of
possible segment structures allowed by a segment. Given an amino acid sequence
with m segments and u possible segment structures for each segment, the total
number of complete structures, N, allowed by this model is

N = 4× 11m−2 × um (1)

One might think that this should be N = 12m × um (a segment has 12
possible directions and u possible segment structures), but because of rotational
symmetry of the energy function, many complete structures can be disregarded
and therefore the first segment direction can be fixed. Also, the angle between
two FCC vectors is 0◦, 60◦, 90◦ or 120◦. Therefore, only 4 directions of the second
segment need to be considered. The factors (4 × 11m−2) therefore describe the
possible directions of segments in the super structure. Note that a segment only
has 11 (not 12) possible directions, since a segment is not allowed to clash with
the previous segment.

2.1 Segment Structures

Here we describe how the allowed segment structures of a given segment are
computed. This computation depends on the secondary structure class of the
segment.

Helix and Sheet Structures The right-handed helix is the most commonly
observed secondary structure in proteins. In helices, the most observed angle
between three consecutive Cα-atoms is φ ' 91◦ and the most observed dihe-
dral angle of four consecutive Cα-atoms is τ ' 49◦. Given a helix segment, we
generate one segment structure having these angle properties. Then the other
u− 1 segment structures are generated by rotating the first structure uniformly
around the axis going through the first and last Cα-atoms (Figure 3).

Sheet structures are constructed in the same way as helices, but with other
angle values. For sheets, the most observed angle between three consecutive Cα-
atoms is φ ' 120◦ and the dihedral angle τ ' 163◦. The angle values were found
by using P-SEA [16] to compute secondary structure of 3080 proteins from PDB
Select (25) [17].
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CCCHHHHHHHCCCCHHHHHCCCHHHHHHHHCCCCCC

MLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF
Amino acid sequence

Secondary structure assignment

Segments

Complete structure

Fig. 2. The Figure shows an example of how an amino acid sequence (from Villin
headpiece) can be described as a list of segments based on the secondary structure
(H: helix, C: coil). The Figure also shows an example of a super structure and a
corresponding complete structure (coordinates of internal Cα-atoms).
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(a) (b) (c)
Fig. 3. (a) The first helix with angles φ ' 91◦ and τ ' 49◦. (b) and (c) Two other
helices are generated (when u = 3) by uniformly rotating the first helix around the
axis of the segment.

Coil Structures There are no simple geometric constraints that describe coil
structures. However, experiments show that short sequences with similar amino
acid sequences, so-called homologous sequences, often have similar tertiary struc-
tures [18]. Given a coil segment, we therefore query PDB Select (25) with protein
sequences and their known structures and find the

√
u best fragment matches

in terms of amino acid similarity. Each of these structures is also rotated uni-
formly

√
u times as for helices and sheets such that a total of u structures are

obtained. The fragment database does of course not contain the proteins used
in the experiments.

2.2 Energy

The structures allowed by the model always have the desired secondary struc-
ture (from a prediction), however the HSE-vector and radius of gyration of the
structures varies. Therefore, we want to identify those structures having cor-
rect radius of gyration and HSE-vectors similar to the predicted HSE-vectors.
The radius of gyration can be predicted from the number of residues n of the
protein [8]:

Rg = 2.2n0.38 (2)

This prediction is often accurate for globular proteins. We therefore assign
infinite energy to structures having radius of gyration more than 5% away from
the predicted Rg. We assign infinite energy to structures if their subchain of
amino acids from the first amino acid to the l’th (l < n) amino acid is more than
5% away from the predicted Rg.

A structure is said to be clashing if the distance between two Cα-atoms is
less than 3.5 Å. We also assign infinite energy to clashing structures.
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Let P denote the conformational space of a protein with n residuesA1, A2, ..., An.
Let P ∈ P. The total energy Q(P ) of P is defined as the sum of the residue
energy contributions QP (Ai), i.e.,

Q(P ) =
n∑

i=1

QP (Ai) (3)

with

QP (Ai) =

∆CN(Ai)2 if Ai is the first resi-
due of a segment.

∆HD(Ai)2 +∆HU(Ai)2 otherwise.
(4)

where

– ∆CN(Ai) is the difference between the contact number of the i-th residue
Ai in P and the desired (i.e., predicted) contact number of Ai.

– ∆HD(Ai) is the difference between the down half sphere exposure number
of Ai in P and the desired down half sphere exposure number of Ai.

– ∆HU(Ai) is the similar difference for the up half sphere exposure.

The reason why CN instead of HSE is used for the first residue of a segment
is that the HSE value depends on the position of the two neighbour residues
as illustrated in Figure 1. For all residues of a segment structure except the
first residue, the neighbour positions are always fixed and the upper and lower
hemispheres can be computed. In the branch and bound algorithm we want
to evaluate the energy of structures where not all segment structures are fixed
which is described in detail in the next section. Instead of using HSE for these
residues, we use CN which ultimately gives tighter bounds.

The radius of the contact sphere is set to 15 Å. This is known to give a good
prediction quality [4] and it seems to capture both local and non-local contacts.
The optimal radius has yet to be determined, both in terms of predictability and
information content.

2.3 Branch and Bound

Searching for a structure with minimum global energy can be done by evaluating
all structures allowed by the model. However, the number of allowed complete
structures grows exponentially in terms of the number of segments m and the
number of segment structures u (Equation 1). An explicit evaluation of all al-
lowed structures is therefore only feasible for proteins with very few segments
and segment structures. A standard approach for overcoming such combinatorial
explosion is to use the branch and bound technique [19].

Branching The root of the branch and bound tree represents all complete
structures allowed by the model. This is done by only fixing the direction of
the first segment. Every other node s represents a smaller subset of complete
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structures Ps than its parent. This is done by either fixing a segment direction
or by fixing a segment structure. Therefore, when branching on a node, either
11 children with fixed segment directions are created or u children with fixed
segment structures are created. A node at level 2×m has all segment directions
and segment structures fixed and therefore represents a complete super structure.
Nodes at level 2×m cannot be branched on further and are called leaves.

We branch the directions of segments in the order they occur in the protein.
Experiments show that the total running time of the algorithm depends much on
the order of how the segment directions and segment structures are fixed. The
best performance is when the segment directions are fixed as early as possible
and the segment structures are fixed as late as possible. The ideal case would
therefore be to fix the directions in the first m levels and the segment structures
in the next m levels. However, if a protein contains coil segments, it is not
possible to fix all segment directions in the first m levels. This is because the
end point of a coil segment depends on which coil structure is eventually chosen
from the fragment database. Note that this is only a problem for coils, since all
helix and sheet structures of a segment share the same end point once the start
point and direction are fixed. An example of a branch and bound tree is shown
in Figure 4. In the first two levels, the helix and coil segment directions are
fixed. In the third level, the structure of the coil segment is fixed. This decision
cannot be postponed, because the positions of the following segments depend on
the chosen coil structure. At level 4 the direction of the last helix is fixed and
at levels 5 and 6 the segment structures of the helices are fixed. In level 6 all
directions and segment structures are fixed and the leaves therefore represent
complete structures.

4 5 632Level: 1

Fig. 4. The super structure consists of three segments: helix, coil, helix. For simplicity,
in each level, only two nodes are shown and only one node is branched on.
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Bounding In theory, one could simply construct the full tree, evaluate the en-
ergy function on all leaves and return the lowest energy structure. Unfortunately,
because of the exponential number of leaves, this approach is computationally
infeasible. Instead, we describe here a method for computing a lower bound of
a non-leaf node. A lower bound is a value that is less than, or equal to the
lowest energy of any leaf in the subtree of the node. Such a value can be used
to disregard, or bound, the subtree of a node if the lower bound is larger than
some observed energy (an upper bound). An upper bound of the energy can be
found using some advanced heuristic or a simple depth first search as described
in section Searching. Here we present a reasonable tight lower bound that can
be computed fast. The use of this lower bound makes it possible to solve large
problems as described in the results section.

Let PS denote the subset of the conformational space P at any node of the
branch and bound tree where some segments have fixed directions while others
might have fixed segment structures (i.e., fixed coordinates of all Cα-atoms) as
explained in the description of the branching strategy above. We are looking for
a lower bound for minP∈PS

{Q(P )}.
Consider the j-th segment Sj , 1 ≤ j ≤ m, wherem is the number of segments.

Let

QP (Sj) =
∑

Ai∈Sj

QP (Ai)

where QP (Ai) is defined in Equation 4. Then the energy of a structure can be
written as

Q(P ) =
∑

1≤j≤m

QP (Sj)

Suppose that a lower bound for minP∈PS
{QP (Sj)} can be determined. Sum-

ming up these lower bounds for all m segments will therefore yield a lower bound
for the energy of all conformations in PS . To compute such a lower bound for a
segment Sj , the following problem is solved for all segment structures of Sj . For
simplicity we only describe how a lower bound using CN vectors can be com-
puted, however it is straightforward to use a similar approach for HSE vectors.

Given a segment structure for Sj , we determine for each of it’s Cα-atom
all possible values of CN when the super structure is fixed. This problem can
clearly be solved in exponential time by complete enumeration (see Figure 5).
However, using the following dynamic programming approach, this problem can
be solved in polynomial time. The input to the dynamic programming algorithm
is the table constructed as described in Figure 5(c). This table is in the following
called ca,b.

Let ca,b(i, r) where (1 ≤ i ≤ m) and (1 ≤ r ≤ u) be the number of contacts
of residue a in segment b contributed by residues in segment i having segment
structure r. Let (i, j) be an entry in the dynamic programming table and let
qa,b(i, j) ∈ {0, 1} represent whether or not residue a in segment b can have a
total of j contacts contributed by residues in segments Sl, (l < i). Then the
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recursive equation of the dynamic programming algorithm is:

qa,b(i, j) =

1 if i = 1 and ca,b(1, r) = j for some r
1 if i > 1 and q(i− 1, k) = 1 and ca,b(i, r) = j − k for some r
0 otherwise

(5)
Each row can be computed inO(n×u) time using the values from the previous

row, so the total running time of the algorithm is O(m×n×u). The last row in
the table represents all possible contact numbers for residue a in segment b. The
last row can therefore easily be used to find the minimum difference between the
desired CN and one of the possible CNs. The dynamic programming problem is
solved for all residues of the segment and the sum of the minimum differences
for each residue is the lower bound of the segment energy.

In the above discussion, it was assumed that all Cα-atoms in Sj have their
coordinates fixed in PS . Lower bounds can also be computed if only the segment
structure has not been fixed. The above lower bound computation is then merely
repeated for each of the u possible segment structures, and the smallest one is
selected as the overall lower bound of the segment.

Lower bounds can also be computed for nodes where a number of the last
segment directions have not yet been fixed. Here, the input to the dynamic
programming algorithm is only the first fixed segments. Then, the CN row for
the last fixed segment is augmented by checking whether each Cα-atom on the
free segments can possibly be in contact with the Cα-atom in question.

We also bound structures where two succeding segment structures have un-
likely angle properties. Figure 7 shows a plot of (θ, τ) pairs from proteins in
PDB. The regular angle between 3 consecutive Cα positions is θ and τ is the
dihedral angle between 4 consecute Cα positions as illustrated in Figure 8. The
plot shows that some regions in the (θ, τ)-plane are much more likely than oth-
ers. We have marked what we think is a reasonable seperation between likely
and unlikely points. Therefore structures with one ore more (θ, τ) points in the
unlikely region are bounded.

2.4 Searching

Searching the branch and bound tree is done using a combination of cost first
and depth first search. The cost of a non-leaf node is the lower bound of the
energy and the cost of a leaf node is the energy of the corresponding structure.
We search the branch and bound tree by keeping a set of nodes for which the
lower bound has been computed but not bounded. Initially the set contains only
the root of the branch and bound tree. Iteratively the algorithm chooses the
lowest cost node and replaces it with the children obtained by branching. When
using this strategy, an optimal solution is found when the lowest cost node in
the set is a leaf node. In practice the set of unbranched nodes becomes very
large and difficult to store in memory. We therefore combine it with a depth first
search, such that when the node set contains more than 50.000 nodes we shift
to depth first search until the set is less than 50.000 again. This approach gives
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Fig. 5. (a) shows the directions of three segments (a super structure). In this example
we want to compute all possible CN values for residue A4 which is the first residue of
segment S2. The contact radius of residue A4 is illustrated by the circle in (b). S1 and
S3 both have two choices of segment structures (red and black), so u = 2. The table
in Figure (c) shows the contribution of contacts to residue A4 if either red or black
segment structure is chosen. If the black structure of S1 is chosen, S1 only contributes
with 1 contact to A4 and if the red structure is chosen, S1 contributes with 2 contacts.
Computing all possible CN values for A4 can be done by considering all combinations
of segment structures for the other segments which is exponential. (d) shows one of
these combinations which gives a CN value of 2 for A4.
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Fig. 6. (a) shows the input to the dynamic programming algorithm as constructed in
Figure 5. (b) shows Table qa,b where empty entries correspond to 0 and x correspond to
1. In the first row, only 1 or 2 contacts can be contributed to residue A4 if either black
or red structure of segment S1 is chosen. Segment S2 has a fixed segment structure
and therefore always contributes with one contact as shown in row 2 and finally row
3 shows that segment S3 does not contribute with any contacts to A4. The last row
is also the solution to the problem. It shows that from all combinations of segment
structures, the CN value of residue A4 can only be 2 or 3.

Fig. 7. A plot of (θ, τ) pairs from PDB
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θ

τ

Fig. 8. θ is the normal angle between 3 consecutive Cα positions and τ is the dihedral
angle between 4 consecute Cα positions.

a more memory efficient algorithm, but we might end up computing more lower
bounds than in a pure cost first search.

3 Experiments

Here we predict the tertiary structures of 6 proteins. The tertiary structures of
the proteins are known and we can therefore evaluate the quality of our results.
These proteins have previously been used for benchmarks in the literature [20,
21].

The input to EBBA is a secondary structure assignment, HSE-vector and
the radius of gyration. For each protein we obtain these values using prediction
tools. Based on the amino acid sequence, we predict the secondary structure
using PSIPRED [7] and we predict HSE-vectors using LAKI [4]. Note that
PSIPRED and LAKI are neural networks trained on a selection of proteins from
PDB. The 6 benchmark proteins used here also exist in PDB, so there is a slight
chance that the training sets for PSIPRED and LAKI contain some of these
proteins. However, the prediction quality of the 6 benchmark proteins is close
to what should be expected from PSIPRED and LAKI. Here, the average Q3

score of secondary structure prediction is 80.7% (compared to an average score
of 80.6% on CASP targets). The average correlation of the HSE up and down
values are respectively 0.74 and 0.66 (compared to the reported up and down
correlations of 0.713 and 0.696 respectively). We do therefore not consider it to
be a problem that the benchmark proteins exist in PDB. We predict the radius
of gyration using Equation 2.

Branch and bound algorithms are typically used to find the global minimum
solutions. However, our experiments show that the global minimum solutions in
our models are not always native-like. Therefore, EBBA is modified such that
the 10.000 best structures in terms of energy are found and not just the global
minimum. This can be done by maintaining a queue fo 10.000 structures during
the search. This number is still very small compared to the exponential size of
the conformational space. For comparison and evaluation of the model and pre-
diction quality, all experiments are also done using the exact secondary structure
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and exact HSE-vectors obtained from the native structure of the proteins. All
experiments were initially run with u = 8 (the number of segment structures).
Some did not finish in 48 hours, and they were run with the highest value of u
that could be solved in less than 48 hours. All computations were performed on
a 2.4 GHz P4 with 512 RAM.

4 Results and Discussion

Table 1 shows the complexity of the model for different proteins and the running
time of EBBA. Table 1 also shows the results of running EBBA on the 6 bench-
mark proteins. Figures 9 and 10 show 2D histograms of the energy vs. RMSD
distribution for the 10.000 structures. For better comparison of the energies for
the different proteins, the root-mean of the energies are reported in this section.

The maximum number of segment structures (u) that could be solved in less
than 48 hours depend much on the number of segments of the protein. For the
smallest proteins (1FC2 and 1ENH) the algorithm terminated in less than 48
hours using u = 8. Even though 2GB1 has relatively many segments the algo-
rithm also terminated in less than 48 hours using u = 8. This is because of the
efficiency of the bounding algorithm. In Figure 11 it is shown that for 2GB1 a
large fraction of the search space can be bounded early. The most difficult pro-
tein in terms of bounding efficiency is 4ICB (predict), where it turns out that
significant bounding first occurs in level 5 of the branch and bound tree. In all
instances the conformational space is huge, and it clear that finding global min-
imum structures could not have been done in reasonable time without efficient
bounding.

Figures 9 and 10 show that the exact energy vs. RMSD is well correlated
for the three smallest proteins while this is not the case for the larger proteins.
The larger proteins have a higher degree of freedom, and it therefore seems
that secondary structure, radius of gyration and HSE do not contain enough
information to identify the native structure of proteins with more than ∼ 60
residues. However, among the 10.000 best structures, structures close to the
native structure exists for the longer proteins also.

Table 4 shows that the set of 10.000 low energy structures for all 6 proteins
contains good decoys (RMSD less than 6 Å). Also, for all proteins the lowest
RMSD is smallest when using exact values compared to the predicted values.
This is expected since the energy landscape should have a global minimum closer
to the native structure when using exact values. However, it is surprising that
for two of the proteins (1FC2 and 2GB1) the fraction of good decoys (< 6
Å RMSD) is better when using predicted values compared to exact values. The
plots in Figures 10 show that for these two proteins, the structures are much
more clustered when using the predicted values. This indicates that the energy
landscapes described using the predicted values have fewer local minima and for
1FC2 and 2GB1 they are clustered closer to the native structure.

In Table 2 the energy span of the 10.000 structures is shown. The table also
shows the energy of the native structure of the protein using the predicted energy
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Type m u SS N T < 6 Å < 5 Å < 4 Å lowest Q(P ∗) P ∗

segments hours RMSD RMSD RMSD RMSD RMSD

Protein A (1FC2), 43 residues
Exact 5 8 CHCHC 1.7× 108 0.1 18.1 7.0 0.7 2.8 4.34 6.6
Predicted 7 8 CHCHCHC 1.4× 1012 6.9 33.0 13.8 0.0 4.5 5.26 8.4

Homeodomain (1ENH), 54 residues
Exact 6 8 CHCHCH 1.5× 1010 0.6 21.6 13.2 1.8 3.1 4.36 3.5
Predicted 7 8 CHCHCHC 1.4× 1012 6.1 4.1 0.8 0.0 4.1 5.70 10.2

Protein G (2GB1), 56 residues
Exact 9 8 SCSCHCSCS 1.0× 1016 18.2 60.8 36.6 13.7 3.4 4.22 4.3
Predicted 10 8 SCSCHCSCSC 9.2× 1017 4.7 73.1 0.0 0.0 5.3 6.22 7.8

Cro repressor (2CRO), 65 residues
Exact 11 4 CHCHCHCHCHC 4.0× 1016 24.1 5.7 1.4 0.0 4.3 6.49 9.2
Predicted 10 3 HCHCHCHCHC 5.1× 1013 7.4 1.5 0.0 0.0 5.3 5.89 9.4

Protein L7/L12 (1CTF), 68 residues
Exact 8 8 SCHCHCHC 1.2× 1014 5.6 5.1 1.9 0.0 4.6 7.19 11.0
Predicted 11 3 SCHSHCHCHCS 1.7× 1015 19.2 0.1 0.0 0.0 5.4 5.84 11.3

Calbindin (4ICB), 76 residues
Exact 11 2 CHCSHCHCHCH 1.9× 1013 3.56 4.5 0.7 0.0 4.4 6.18 7.4
Predicted 8 7 CHCHCHCH 4.1× 1013 31.4 0.5 0.0 0.0 5.1 6.79 6.4

Table 1. Column 2 shows the number of segments m and column 3 shows the number
of segment structures u. Column 4 shows the order of helix, sheet and coil segments.
Column 5 shows the size of the conformational space given by Equation 1 and column 6
shows the number of hours spent by the algorithm. Column 7 to 9 show the percentage
of the 10.000 structures that fall below the given threshold. Column 10 shows the
lowest RMSD of the 10.000 structures. Column 11 shows the energy of P ∗ which is
the lowest energy structure. The last column shows the coordinate RMSD between the
native structure and P ∗. For each protein, there is an exact and a predicted row. Exact
refers to HSE-vectors, radius of gyration and secondary structure obtained from the
native structure. In the predicted rows, all input values are predicted from the amino
acid sequence and the results can therefore be considered as de novo.
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Fig. 9. Energy vs. RMSD histograms of 1FC2, 1ENH and 2GB1.
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Fig. 10. Energy vs. RMSD histograms of 2CRO, 1CTF and 4ICB.



19

4ICB, predicted

1FC2, exact

1ENH, exact

2GB1, exact

2CRO, exact

1CTF, exact

4ICB, exact

1FC2, predicted

1ENH, predicted

2GB1, predicted

2CRO, predicted

1CTF, predicted

Fig. 11. The histograms show the bounding efficiency for each of the 12 runs of EBBA.
The bars show the percentage of nodes in each level that was bounded. Level 1 is
omitted, since the node in level 1 is never bounded (this would cause the whole search
space to be bounded)
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function. The values indicate that for most of the proteins (except 4ICB), the
model is able to represent structures with lower energy than the native structure.
Adding more degree of freedom in terms of segment directions and using more
segment structures could consequently lower the energy of the 10.000 structures.
However, since the energies of these structures are already comparable to the
energy of the native structure, it should not be expected that more degree of
freedom would improve the RMSD of the structures. Instead, improvements
should come from adding more predictable information to the model or energy
function or using more accurate predictions of HSE and secondary structure.

PDB Q(P ∗) Q(P 10.000) Qnative

1FC2 5.26 6.28 6.46
1ENH 5.70 7.06 6.63
2GB1 6.22 7.34 7.53
2CRO 5.89 7.71 8.40
1CTF 5.84 7.96 7.58
4ICB 6.79 9.05 6.67

Table 2. For each protein the lowest energy of the 10.000 structures is Q(P ∗). The
highest energy of the 10.000 structures is Q(P 10.000) and the energy of the native

structure is Qnative.

The results have been compared directly with FB5-HMM [21] in Table 3.
FB5-HMM is a successful method for conformational sampling. The method is
based on a Hidden Markov Model and generates a large set of structures which
usually contains many good decoys (< 6 Å RMSD) when enforcing compactness.
The major difference between FB5-HMM and EBBA is that FB5-HMM does not
use an energy function. FB5-HMM can also benefit from the secondary structure
prediction and radius of gyration prediction. The results we have shown for FB5-
HMM are therefore obtained using predicted secondary structure and using a
greedy collapse scheme. The results for FB5-HMM are from [21] where 100.000
structures are generated. For all proteins, except 2GB1, FB5-HMM finds at least
one structure with lower RMSD than EBBA. However, EBBA finds a better per-
centage of good decoys for most of the proteins (1FC2, 2GB1, 2CRO and 4ICB).
Another advantage of the EBBA generated structures, is that the geometry of
the secondary structure segments is perfect because they are constructed using
the correct secondary structure geometry.

5 Conclusions

We have presented a branch and bound algorithm for finding the lowest energy
structures in a large conformational search space. The energy function is based
on HSE which is a simple predictable measure. This algorithm is the first ab initio
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Protein FB5-HMM EBBA
< 6 Å Min. RMSD < 6 Å Min. RMSD

Protein A (1FC2) 17.1 2.6 33.0 4.5
Homeodomain (1ENH) 12.2 3.8 4.1 4.1
Protein G (2GB1) 0.001 5.9 73.1 5.3
Cro repressor (2CRO) 1.0 4.1 1.5 5.3
Protein L7/L12 (1CTF) 0.3 4.1 0.1 5.4
Calbindin (4ICB) 0.4 4.5 0.5 5.1

Table 3. Comparison between FB5-HMM and EBBA. Column 2 and column 4 show
the percentage of good decoys for FB5-HMM and EBBA respectively. Column 3 and
column 5 show the lowest RMSD of a structure found by FB5-HMM and EBBA respec-
tively. Both algorithms uses predicted secondary structure information and predicted
radius of gyration.

branch and bound algorithm for prediction of protein structure using only one-
dimensional predictable information. We have shown experimentally that good
decoys always exist among the 10.000 lowest energy structures for the proteins
used here. However, the energy function is not accurate enough to pinpoint
the lowest RSMD structure in this set. An important future research direction is
therefore to examine this set of low energy structures with a more detailed energy
function and to identify the native-like structures. The largest protein considered
have 76 residues. There is a problem using the branch and bound algorithm on
larger proteins since then only a small fraction of the conformational space can
be searched in reasonable time. However, we believe that exploiting how super
secondary structures [22, 23] arrange in nature, might be a way to solve this
problem. Better search heuristics for finding upper bounds on the energy can
also be relevant since a good upper bound on the energy also improves the
performance of the branch and bound algorithm. Using a more probabilistic
approach might also improve the quality of the results. One idea is to compute
probabilities from the (φ, ψ)-plot in Figure 7 instead of a simple threshold bound
used here. It might also be possible to train a Bayesian network to predict the
probability of a given HSE-vector given the amino acid sequence. This would be
a more detailed usage of the HSE-vector compared to the simple energy function
used here.
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