

Dept. of Computer Science
University of Copenhagen • Universitetsparken 1

DK-2100 Copenhagen • Denmark

uFLIP: Understanding Flash IO Patterns

Luc Bouganim

Björn Þór Jónsson
Philippe Bonnet

Technical Report no. 08-13
ISSN: 0107-8283

uFLIP: Understanding Flash IO Patterns

Luc Bouganim

INRIA Rocquencourt
Le Chesnay, FRANCE
Luc.Bouganim@inria.fr

Björn Þór Jónsson
Reykjavík University
Reykjavík, ICELAND

bjorn@ru.is

Philippe Bonnet
University of Copenhagen
Copenhagen, DENMARK

bonnet@diku.dk

The advent of flash devices constitutes a radical change for
secondary storage. For instance, writes are mapped onto
program and erase operations at different granularities, and as a
result the performance of writes is not uniform in time. How
should database systems adapt to this new form of secondary
storage? Before we can answer this question, we need to fully
understand the performance characteristics of flash devices.
More specifically, we want to establish what kind of IOs should
be favored (or avoided) when designing algorithms and
architectures for flash-based systems. In this paper, our goal is to
quantify the performance of IO patterns, defined as the
distribution of IOs in space and time. We define uFLIP, a
component benchmark for measuring the response time
distribution of flash IO patterns. We also present a benchmarking
methodology which takes into account the particular
characteristics of flash devices. Finally, we present the results
obtained by measuring 12 flash devices, and derive a set of design
hints that should drive the development of flash-based systems.

1. INTRODUCTION
Tape is dead, disk is tape, flash is disk [5]. The flash devices that
now emerge as a replacement for mechanical disks are complex
devices composed of flash chip(s), controller hardware, and
proprietary software that together provide a block device
interface via a standard interconnect (USB, IDE, or SATA). Does
the advent of such flash devices constitute a radical departure
from hard drives? Should the design of database systems be
revisited to accommodate flash devices? Must new systems be
designed differently to take full advantage of the flash devices
characteristics?

In trying to answer these questions, an easy short-cut is to
assume that flash devices behave as the flash chips they contain.
Flash chips are indeed very precisely specified, they have
interesting properties (e.g., read/program/erase operations, no
updates in place, random reads equivalent to sequential reads),
and many papers use their characteristics to design new
algorithms [8][12][15]. The problem is that commercially
available flash devices do not behave as flash chips. They
provide a block interface, where data is read and written in fixed
sized blocks. They integrate layers of software that manage block
mapping, wear-leveling and error correction. As a consequence,
there is a priori no reason to avoid updates-in-place on flash
devices. In terms of performance, flash devices are much more
complex than flash chips. For instance, block writes directed to
the flash devices are mapped to program and erase operations at
different granularities and as a result the performance of writes is
not uniform in time. It would therefore be a mistake to model
flash devices as flash chips.

So, how can we model flash devices? The answer is not
straightforward because flash devices are both complex and
undocumented. They are black boxes from a system's point of view.

A first step towards the modeling of flash devices is to have a
clear and comprehensive understanding of their performance.
The key issue is to determine the kind of IOs that should be
favored (or avoided) when designing algorithms and architectures
for flash-based systems.

To study this issue, we need a component benchmark that
quantifies the performance of flash devices. By applying such a
benchmark to a large set of current and future devices, we can
start making progress towards a comprehensive understanding.
While individual devices are likely to differ to some extent, the
benchmark should reveal common behaviors that will form a
solid foundation for algorithm and system design. In this paper,
we propose such a benchmark.

So far, only a handful of papers have attempted to understand
the overall performance of flash devices. Moon et al. focused on
benchmarking SSD performance for typical database access
patterns, but used only a single device for their measurements
[9]. Myers measured the performance of database workloads over
two flash devices [11]. In comparison, our benchmark is not
specific to database systems. We study a variety of IO patterns,
defined as the distribution of IOs in time and space. Ajwani et al.
analyzed the performance of a large number of flash devices, but
using ad-hoc methodology [1]. By contrast, we identify
benchmarking methodology as a major challenge. It is indeed
amazingly easy to get meaningless results when measuring a
flash device because of the non-uniform nature of writes. Huang
et al. attempted an analysis of flash device behavior, but neither
proposed a complete methodology nor made any
measurements [7]. Many benchmarks aim to measure disk
performance (see [14] for an excellent survey and critique), but
those benchmarks do not account for the non-uniform
performance of writes that characterizes flash devices.

This paper makes three major contributions:
1. We define the uFLIP benchmark; a component benchmark

for understanding flash device performance. uFLIP is a
collection of micro-benchmarks defined over IO patterns.

2. We define a benchmarking methodology that accounts for the
non-uniform performance of flash devices.

3. We apply the uFLIP benchmark to a set of 12 flash devices,
ranging from low-end to high-end devices. Based on our
results, we discuss a set of design hints that should drive the
development of flash-based systems on current devices.
We believe that the investigation of flash device behavior

deserves strong and continuous effort from the research
community; an effort that we instigate in this paper. Therefore,
the uFLIP software and the detailed results (more than 16 million
data points) are available on a web site (www.uflip.org) that we
expect to be used and completed by the community.

2. FLASH DEVICES
The uFLIP benchmark is focused on flash devices—such as solid
state disks (SSDs), USB keys, or SD cards—which are packaged
as block devices. While the details of flash devices vary
significantly, there are certain common traits in the architecture
of the flash chips and the block manager, which provides the
block device abstraction, that impact their performance [3]. In
this section we review those common traits.

2.1 Flash Chips
A flash chip is a form of EEPROM (Electrically Erasable
Programmable Read-Only Memory), where data is stored in
independent arrays of memory cells. Each array is a flash block,
and rows of memory cells are flash pages. Flash pages may
furthermore be broken up into flash sectors.

Each memory cell stores 1 bit in single-level cell (SLC)
chips, or 2 or more bits in multi-level cell (MLC) chips. MLC
chips are both smaller and cheaper, but they are slower and have
a shorter expected life span. By default each bit has the value 1. It
must be programmed to take the value 0 and erased to go back to
value 1. Thus, the basic operations on a flash chip are read,
program and erase, rather than read and write.

Flash devices designed for secondary storage are all based on
NAND flash, where the rows of cells are coupled serially,
meaning that data can only be read and programmed at the
granularity of flash pages (or flash sectors).Writes are performed
one page (or sector) at a time, and sequentially within a flash
block in order to minimize write errors resulting from the
electrical side effects of writing a series of cells.

Erase operations are only performed at the granularity of a
flash block (typically 64 flash pages). This is a major constraint
that the block manager must take into account when mapping
writes onto program and erase commands. Most flash chips can
only support up to 105 erase operations per flash block for MLC
chips, and up to 106 in the case of SLC chips. As a result, the
block manager must implement some form of wear-leveling to
distribute the erase operations across blocks and increase the life
span of the device. To maintain data integrity, bad cells and
worn-out cells are tracked and accounted for. Typically, flash
pages contain 2KB of data and a 64 byte area for error correcting
code and other bookkeeping information.

Modern flash chips can be composed of two planes, one for
even blocks, the other for odd blocks. Each flash chip may
contain a page cache. The block manager should leverage these
forms of parallelism to improve performance.

2.2 Block Manager
In all flash devices, the core data structures of the block manager
are two maps between blocks, represented by their logical block
addresses (LBAs), and flash pages. A direct map from LBAs to
flash pages is stored on flash and in RAM to speed up reads, and an
inverse map is stored on flash, to re-build the direct map during
recovery. There is a trade-off between the improved read
performance due to the direct map and degraded write performance
due to the update of the inverse map (updates of bookkeeping
information for a page may cause an erase of an entire block).

The software layer responsible for managing these maps both
in RAM (inside the micro-controller that runs the block manager)
and on flash is called flash translation layer (FTL). Using the
direct map, the FTL introduces a level of indirection that allows
the trading expensive writes-in-place (with the erase they incur)
for cheaper writes onto free flash pages.

Each update on a free flash page, however, leaves an obsolete
flash page (that contains the before image). Over time such
obsolete flash pages accumulate, and must subsequently be
reclaimed synchronously or asynchronously. As a result, we must
assume that the cost of writes is not homogeneous in time
(regardless of the actual reclamation policy). Some block writes
will result in flash page writes with a minimum bookkeeping
overhead, while other block writes will trigger some form of page
reclamation and the associated erase. Assuming a flash device
contains enough RAM and autonomous power, the flash
translation layer might be able to cache and destage both data and
bookkeeping information.

While the principles of the flash translation layer described
above are well known, the details of its implementation and the
associated trade-offs for a given flash device are not documented.
Flash devices are thus black-boxes. The goal of the uFLIP
benchmark is to characterize their performance.

3. THE uFLIP BENCHMARK
In this section we propose uFLIP, a new benchmark for
observing and understanding the performance of flash devices.
The benchmark is a set of 11 micro-benchmarks, defined in
Section 3.1, which together capture the characteristics of flash
devices. Benchmarking flash devices is difficult, as their
performance is not uniform in time. We therefore present a
benchmarking methodology in Section 3.2.

3.1 The uFLIP Micro-Benchmarks
The basic construct of uFLIP is an IO pattern, which is simply a
sequence of IOs with particular characteristics. In each pattern,
we refer to the ith submitted IO as IOi, and define IOi by (a) the
time at which it is submitted t(IOi), (b) its logical block address
LBA(IOi), (c) its size IOSize and (d) a mode (read or write). We
only consider direct, synchronous IO in order to bypass the host
file system and to avoid interferences from the device drivers.1

Each micro-benchmark specifies a set of reference patterns,
typically through formulas that define t(IOi,) and LBA(IOi,) with a
single varying parameter. An execution of a reference pattern
against a device is called a run; a collection of runs of the same
reference pattern is called an experiment. We measure and record
the response time for individual IOs.2

Note that for each pattern, we must also specify its location
on the flash device (TargetOffset), the size of its target space
(TargetSize), and its length (IOCount). Setting these parameters
is part of the methodology discussed in Section 3.2.

In theory, IO patterns can be arbitrarily complex. In uFLIP,
however, we focus on relatively simple reference patterns that
together capture the performance of flash devices. Indeed, we
observed that more complex patterns just cloud the picture.

We now define the eleven uFLIP micro-benchmarks by
describing informally the sets of reference patterns and the
parameter that is varied. Note that due to space constraints, we

1 The lowest layer of the file system is the disk scheduler, which actually

submits IO operations. The disk scheduler is, as its name indicates,
designed to optimize submission of IOs to disk. Whether disk
schedulers should be redesigned for flash devices is an open question;
the FLIP benchmark should help in determining the answer.

2 One could consider other metrics such as space occupation or aging.
Given the block abstraction the only way to measure space occupation
is indirectly through write performance measurements. Measuring
aging is difficult since reaching the erase limit (with wear leveling)
may take years. Measuring power consumption, however, should be
considered in future work.

cannot fully specify every micro-benchmark in this paper. The
complete specification of all the IO patterns and parameter
settings can be found at www.uflip.org/benchmark/.
1. Granularity: The flash translation layer manages a direct
map between blocks and flash pages, but the granularity at which
this mapping takes place is not documented. The IOSize
parameter allows determining whether a flash device favours a
given granularity of IOs. The reference patterns used for this
micro-benchmark are sequential reads, sequential writes, random
reads, and random writes that are aligned to IOSize blocks; we
refer to these patterns as baseline patterns in the remainder of this
section. For the baseline patterns, IOs are contiguous in time, i.e.,
t(IOi+1) = t(IOi) + rt(IOi),.where rt(IOi) is the response time for IOi.

Random: LBA(IOi) = TargetOffset +
Random(TargetSize/IOSize) × IOSize

Sequential: LBA(IOi) = TargetOffset + i × IOSize
2. Alignment: Using a fixed IOSize (e.g., chosen based on the
first micro-benchmark), we study the impact of alignment on the
baseline patterns by introducing the IOShift parameter and
varying it from 0 to IOSize.

Random: LBA(IOi) = TargetOffset +
Random(TargetSize/IOSize) × IOSize + IOShift

Sequential: LBA(IOi) = TargetOffset + i × IOSize + IOShift
3. Locality: We study the impact of locality on the random
baseline patterns, by varying TargetSize down to IOSize.
4. Circularity: We study the impact of circularity on the
sequential baseline patterns by varying TargetSize from IOSize to
IOCount × IOSize / 2.

LBA(IOi) = TargetOffset + (i × IOSize) mod TargetSize
5. Partitioning: The partitioned patterns are a variation of the
sequential baseline patterns. We divide the target space into P
partitions which are considered in a round robin fashion; within
each partition IOs are performed sequentially. This pattern
represents, for instance, a merge operation of several buckets
during external sort. If we denote the partition size by PS =
TargetSize/P, the partition written to at step i as Pi = i mod P, and
the offset within the partition as Oi = ⎣i/P⎦ mod PS, then:

LBA(IOi) = TargetOffset + (PS × Pi + Oi) × IOSize
6. Order: The order patterns are another variation on the
sequential patterns, where logical blocks are addressed in a given
order. For the sake of simplicity, we consider a linear increase (or
decrease) in the LBAs addressed in the pattern, determined by a
linear coefficient k. We can thus define a) patterns with
increasing LBAs (k > 1) or decreasing LBAs (k < 0), or b) in-
place patterns (k = 0) where the LBA remains the same
throughout the pattern. These mapping are simple, yet important
and representative of different algorithmic choices: for example,
a reverse pattern (k = –1) represents a data structure accessed in
reverse order when reading or writing, the in place pattern is a
pathological pattern for flash chips, while an increasing LBA
pattern represents the manipulation of a pre-allocated array, filled
by columns or lines.

LBA(IOi) = TargetOffset + i × k × IOSize
7. Parallelism: Since flash devices include many flash chips
(even most USB keys contain two flash chips), we want to study
how they support overlapping IOs. We divide the target space into
D (possibly overlapping) subsets, each one accessed by a process
executing the same baseline pattern. We vary the parameter D to
study how a flash device supports parallelism and thus how

asynchronous IO should be scheduled, and how parallelism should
be managed. We omit details due to lack of space.
8. Mix Read/Write: We compose two baseline patterns, one
with reads and the other with writes. Both patterns are either
sequential or random. We vary the ratio of reads to writes to
study how such mixes vary from the baselines. We omit details
due to lack of space.
9. Mix Sequential/Random: We compose two baseline
patterns, one with sequential IOs and the other with random IOs.
Both patterns consist either of reads or writes. We vary the ratio
of sequential to random IOs to study how such mixes vary from
the baselines. We omit details due to lack of space.
10. Pause: This is a variation of the baseline patterns, where IOs
are not contiguous in time. We introduce a parameter Pause,
expressed in msec., and vary the Pause parameter to observe
whether potential asynchronous operations from the flash device
block manager impact performance.

t(IOi+1) = t(IOi) + rt(IOi) + Pause
11. Bursts: This is a variation of the previous micro-benchmark,
where a single pause of a fixed length is introduced after a fixed
number of IOs, rather than every IO. The Pause parameter is then
varied to study how potential asynchronous overhead
accumulates in time. We omit details due to lack of space.

Even though uFLIP is not a domain-specific benchmark, it
should still fulfill the four key criteria defined in the
Benchmarking Handbook: portability, scalability, relevance and
simplicity [6]. Because uFLIP defines how IOs should be
submitted, uFLIP has no adherence to any machine architecture,
operating system or programming language: uFLIP is portable.
Also, uFLIP does not depend on the form of flash device being
studied, we have indeed run uFLIP on USB keys, SD cards, IDE
flashes and SSD drives: uFLIP is scalable. We believe uFLIP is
relevant to algorithm, system and flash designers because the 11
micro-benchmarks are based on flash characteristics as well as on
the characteristics of the software that generates IOs. It is neither
designed to support decision making nor to reverse engineer flash
devices. Whether uFLIP satisfies the criteria of simplicity is a bit
trickier. The benchmark definition itself is quite simple. Indeed,
we reduced an infinite space of IO patterns down to 11 micro-
benchmarks that define how IOs are submitted using very simple
formulas. Benchmarking flash devices, however, is far from
simple because their performance is not uniform in time. The
methodology we present in the next section addresses this issue.
Furthermore, our decision to measure response time for each
submitted IO means that the benchmark results are very large and
analysing those results is not straightforward. In the
Demonstration Section, we present a visualization tool that
facilitates result analysis.

3.2 Benchmarking Methodology
The fact that response time is non-uniform in time is a real
challenge when measuring flash performance. First, the initial
state of the device matters. Second, each micro-benchmark
should be large enough to capture the variations representative of
the device under study. Third, consecutive micro-benchmark runs
should not interfere with each other.

Initial State: Ignoring the initial state of a flash device leads to
meaningless performance measurements. Out-of-the-box, the
Samsung SSD had excellent random write performance (around
1 msec for a 16KB random write, compared to around 8 msec for
other SSDs). After we randomly wrote the entire 32GB of flash,

however, the performance decreased by almost an order of
magnitude.

In order to obtain repeatable results, we need to run the
micro-benchmarks from a well-defined initial state, independent
from the complete IO history. Since flash devices only expose a
block device API, we cannot erase all blocks and get back to
factory settings. Because flash devices are black boxes, we
cannot know their exact state. We thus make the following
assumption: Writing the whole flash device completely defines its
state. The rationale is that the direct and indirect maps managed
by the FTL are filled and well-defined.

We propose to enforce an initial state for the benchmark, by
performing random IOs of random size (ranging from 0.5KB to
the flash block size) on the whole device. This method is quite
slow, but stable since only sequential writes disturb the state
significantly. We alleviate this problem by grouping sequential
writes to distinct target spaces (specified by TargetOffset) when
running the micro-benchmarks. The alternative—performing a
complete rewrite of the device using sequential IOs of a given
size—is faster but less stable, as random writes, badly aligned
IOs, or IOs of different sizes, modify the initial state.

Start-up and Running Phases: Consider a device where the
first 128 random writes are very cheap (400 µsec), and where the
subsequent random writes oscillate between very cheap
(400 µsec) and very expensive (27 msec). If we run the Mix
Read/Write micro-benchmark with an IOCount of 1024, we will
get meaningless results when the ratio of random writes is lower
than 1/8 (because then our measurements only capture the initial,
very cheap random writes). If we are not careful, we might even
conclude that mixing reads with a few writes has an excellent
impact on performance.

We propose a two-phase model to capture response time
variations within the course of a micro-benchmark run. In the
first phase, that we call start-up phase, response time is cheap
(because expensive operations are delayed). In the second phase,
that we call running phase, response time is oscillating between
two or more values. We characterize each device by two
parameters: start-up, which defines the number of IOs for the
start-up phase, and period, which defines the number of IOs in
one oscillation in the running phase. In order to measure start-up
and period, we run all four baseline patterns (SR, RR, SW and
RW) with a very large IOCount. We can then identify the two
phases for each pattern (the start-up phase may not be present) and
derive upper bounds across the patterns for start-up and period.

The impact of this two-phase model on the benchmarking
methodology is twofold. First, for each experiment we must
adjust IOCount to capture both the start-up phase and the running
phase. Second, we must ignore the start-up phase when
summarizing the results of each run, so that we can use a
statistical representation (min, max, mean, standard variation) to
represent the response times obtained during the running phase.

No interference: Consecutive benchmark runs should not
interfere with each other. Consider a device that implements an
asynchronous page reclamation policy. Its effects should be
captured in the running phase defined above. We must make
sure, however, that the effect of the page reclamation triggered
by a given run has no impact on subsequent, unrelated runs.

To evaluate the length of the pause between runs, we rely on
the following experiment. We submit sequential reads, followed
by a batch of random writes, and sequential reads again. We
count the number of sequential reads in the second batch which
are affected by the random writes. We use this value as an upper
bound on the pause between consecutive runs.

4. FLASH DEVICE EVALUATION
In this section, we report on our experimental evaluation of a
range of flash devices, using the uFLIP benchmark. It was quite
difficult to select a representative and diverse set of flash devices,
as a) the flash device market is very active, b) products are not
well documented (typically, random write performance is not
provided!), and c) in fact, several products differ only by their
packaging. We eventually selected 13 different devices3, from
low-end USB keys or SD cards to high-end SSDs. While we ran
the entire uFLIP benchmark for all the devices, we only present
results for six representative devices listed in Table 1. Detailed
information and measurements for all the devices can be found at
http://www.uflip.org/results.html.

We ran the uFLIP benchmark on an Intel Celeron 2.5GHz
processor with 2GB of RAM running Windows XP. We ran each
micro-benchmark using our own software package, FlashIO
available at http://www.uflip.org/flashio.html). We ran uFLIP
three times on each device; the differences in performance were
typically within 5%.

4.1 Benchmark Results
Due to space limitations, we only present highlights of our results.

As mentioned in Section 3.2, we first filled each device with
random writes of random size, and then ran the baseline patterns
with large IOCount to measure startup and period for each
device. Figures 1 and 2 show the most interesting traces obtained
on the MTRON SSD and on the Kingston USB key, for RW and
SW respectively. The x-axis shows the time in units of IO
operations, while the y-axis shows the cost of each operation in
msec (note the logarithmic scale). In Figure 1, we can easily
distinguish between the startup phase and the running phase,
while in Figure 2 there is no startup phase. In Figure 1, the
dashed line represents the running average of response time,
including the startup phase measurements, while the solid line
represents the running average of response time, excluding the
start-up phase measurements. As expected, excluding the startup
phase measurements results in a faster and more accurate
representation of response time.

With respect to startup and running phases, we can basically
divide the set of tested devices in two classes. The Memo GT,
and MTRON SSDs both have a startup phase for random writes
followed by oscillations with very small period. They do not
show startup or oscillations for SR, RR and SW. For these
devices, care should be taken when running experiments that
involves a small number of RW, typically Mix Read/Write since
the startup phase should be scaled-up according to the number of
RW. The other 10 devices have no startup phase but show small
oscillations for RR, larger one for SW and sometimes remarkable
oscillations for RW (with some impressive variations between
0.25 and 300 msec!). For simplicity, we fixed IOCount to 1024
for all the tested devices and checked manually the stability in the
running phase.4

Let us now study the performance of the Granularity micro-
benchmark where IOSize is varied. We generally expect reads to
be cheaper than writes because some writes will generate erase
operations, and we also expect random writes to be more

3 At the time of submission, we were still waiting for the recently

released Flash PCI card from Fusion-IO, advertised as reaching
throughput of 600MB/s for random writes. We plan to publish the
benchmarking results on our web-site before the end of October.

4 The automatic determination of the smallest correct IOCount is left for
future work.

expensive than sequential writes as they should generate more
erases. Figure 3 shows the response time (in msec) of each IO
operation for the MemoGT SSD. Three observations can be made
about this figure. First, all reads and sequential writes are very
efficient; their response time is linear with a small latency (about
70 µsec for SR/SW and 115 µsec for RR). Second, for rather
large random writes, the response time is much higher, at least 5
msec; note that, similar to Figure 1, the cost of random writes
alternates between cheap writes (of similar cost to sequential
writes) and extremely expensive erase operations. Third, small
random writes are serviced much faster; apparently due to
caching as four writes of 4KB take about as much time as two
writes of 8KB and one write of 16KB. In comparison, Figure 4
shows the response time for the Kingston DT USB key. In this
figure, the response time of random writes is omitted, as it is
more than 200 msec. As the figure shows, for this device the cost
of sequential writes is affected strongly by the IO granularity, as
smaller writes incur a significantly higher cost than writes of
32KB. Comparing the two devices, we observe that while
random writes are up to a factor of five times slower than the
other operations on the MemoGT, they are one or two orders of
magnitude slower for the Kingston DT USB key. This is
undoubtedly due to more advanced hardware and FTL on the
MemoGT SSD. The remainder of these experiments was run with
IO sizes of 32KB.

To give a short outline of the results of the micro-benchmarks
that we do not cover in detail (typically because their results were
predictable), we observed the following. Using IO granularities
that were not aligned with flash page sizes resulted in most cases
in performance degradation, as did unaligned IO requests.
Composite patterns of random reads and writes, or sequential and
random writes, did not affect the overall cost of the workloads.
Circularity does not affect performance, until the area written to
is so small that the writes become in-place writes (see below for

the effect of in-place writes). Finally, we did not notice any
significant improvement while submitting IOs in parallel.

Moving on to the more interesting results, we first consider
the effect of locality on random writes. Figure 5 shows the
response time of random writes (relative to sequential writes) as
the target size grows from very small (local) to very large (note
the logarithmic x-axis). Our expectation was that doing random
writes within a small area might improve their performance. The
figure verifies this intuition, as random writes within a small area
have nearly the same response time as sequential writes. The
figure shows, however, that the exact effect of locality varies
between devices, both in terms of the area that the random writes
can cover, and in terms of their relative performance.

Table 1 succinctly summarizes the remainder of the
experiments; we will discuss the result columns from left to right.
First, SR, RR, SW, RW indicate the cost of a corresponding IO
operation of 32KB. These columns show that there is a large
difference in performance between the USB keys and the other
devices, but also between low-end and high-end SSDs. For the
high-end SSDs, even the random write performance is quite
good. In fact, as we explore more results, the high-end SSDs
distinguish themselves further from the rest.

The fifth column of Table 1 indicates the effect of inserting
pauses into a random write workload. No value indicates that this
had no effect, which in turn indicates that no asynchronous page
reclamation is taking place. For the high-end SSDs, however,
inserting a pause improves the performance of the random writes
to the point where they behave like sequential writes.
Interestingly, the length of the pause when that happens is roughly
the time required on average for a random write. Thus, no true
response time savings are seen by inserting this pause, as the total
workload takes the same overall time regardless of the length of the
pause. A similar effect is seen with the Burst micro-benchmark.

Fig. 1: Starting and running phase for Memo GT Fig. 2: Running phase for Kington DT Fig. 3: Granularity for Mtron Fig. 4: Granularity for Kingston DT

Fig. 5: Locality for four devices

Table 1: Results summary

0,1

1

10

100

0 100 200 300
IO number

R
es

po
ns

e
tim

e
(m

s)

rt
Avg(rt) incl.
Avg(rt) excl.

1

10

100

1000

0 100 200 300
IO number

R
es

po
ns

e
tim

e
(m

s)

rt
Avg(rt)

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500

IO size (KB)

R
es

po
ns

e
tim

e
(m

s)

SR
RR
SW
RW

0

5

10

15

20

25

30

35

0 100 200 300 400 500
IO Size (KB)

R
es

po
ns

e
tim

e
(m

s)

SR
RR
SW

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16 32 64 128
TargetSize (MB)

R
es

po
ns

e
tim

e
(re

la
tiv

e
to

 S
W

)

SAMSUNG
MEMO
KING
MTRON Startup Period SR RR SW RW Pause Reverse InPlace

(k=-1) (k=0)

MemoGT 32GB SSD ($943) 50 20 0,3 0,4 0,3 5 5 8 (=) 8 (=) = =

Mtron 32GB SSD ($407) 130 20 0,4 0,5 0,4 8 8 8 (x2) 2 (x2) = =

Samsung 32GB SSD ($517) 0 100 0,5 0,7 0,4 18 64 (x2) 32 (x2) x2 x0.6

Transcend 4GB IDE Module ($61) 0 30 0,8 0,8 1,1 18 4 (x3) 16 (x2) x2 x11

Kingston DTHX 8GB USB ($153) 0 150 1,7 1,8 2,0 270 8 (=) 4 (=) x3 x3

Kingston DT 4GB USB ($17) 0 280 1,9 2,2 2,9 219 8 (=) 4 (=) = =

(IOs) (ms) (P)

PartitioningLocality

(MB)

Fig. 1: Starting and running phase for Memo GT Fig. 2: Running phase for Kington DT Fig. 3: Granularity for Mtron Fig. 4: Granularity for Kingston DT

Fig. 5: Locality for four devices

Table 1: Results summary

0,1

1

10

100

0 100 200 300
IO number

R
es

po
ns

e
tim

e
(m

s)

rt
Avg(rt) incl.
Avg(rt) excl.

0,1

1

10

100

0 100 200 300
IO number

R
es

po
ns

e
tim

e
(m

s)

rt
Avg(rt) incl.
Avg(rt) excl.

1

10

100

1000

0 100 200 300
IO number

R
es

po
ns

e
tim

e
(m

s)

rt
Avg(rt)

1

10

100

1000

0 100 200 300
IO number

R
es

po
ns

e
tim

e
(m

s)

rt
Avg(rt)

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500

IO size (KB)

R
es

po
ns

e
tim

e
(m

s)

SR
RR
SW
RW

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500

IO size (KB)

R
es

po
ns

e
tim

e
(m

s)

SR
RR
SW
RW

0

5

10

15

20

25

30

35

0 100 200 300 400 500
IO Size (KB)

R
es

po
ns

e
tim

e
(m

s)

SR
RR
SW

0

5

10

15

20

25

30

35

0 100 200 300 400 500
IO Size (KB)

R
es

po
ns

e
tim

e
(m

s)

SR
RR
SW

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16 32 64 128
TargetSize (MB)

R
es

po
ns

e
tim

e
(re

la
tiv

e
to

 S
W

)

SAMSUNG
MEMO
KING
MTRON Startup Period SR RR SW RW Pause Reverse InPlace

(k=-1) (k=0)

MemoGT 32GB SSD ($943) 50 20 0,3 0,4 0,3 5 5 8 (=) 8 (=) = =

Mtron 32GB SSD ($407) 130 20 0,4 0,5 0,4 8 8 8 (x2) 2 (x2) = =

Samsung 32GB SSD ($517) 0 100 0,5 0,7 0,4 18 64 (x2) 32 (x2) x2 x0.6

Transcend 4GB IDE Module ($61) 0 30 0,8 0,8 1,1 18 4 (x3) 16 (x2) x2 x11

Kingston DTHX 8GB USB ($153) 0 150 1,7 1,8 2,0 270 8 (=) 4 (=) x3 x3

Kingston DT 4GB USB ($17) 0 280 1,9 2,2 2,9 219 8 (=) 4 (=) = =

(IOs) (ms) (P)

PartitioningLocality

(MB)

The sixth column of Table 1 summarizes the effect on
locality, which we already explored with Figure 5; it shows the
size of “locality area” in MB and, in parentheses, the cost of
random writes within that area relative to sequential writes.

The seventh column of Table 1 summarizes a similar effect
for the Partitioning micro-benchmark. The goal of that
experiment was to study whether concurrent sequential write
patterns to many partitions degrade the performance of the
sequential writes. The column shows the number of concurrent
partitions that can be written to without significant degradation of
the performance, as well as the cost of the writes relative to
sequential writes to a single partition. Note that when writing to
more partitions than indicated in this column, the write
performance degrades significantly.

Finally, the last two columns show the cost of the reverse and
in-place patterns, compared to the cost of sequential writes. As the
columns show, the effect of the in-place pattern, in particular,
varies significantly between devices, ranging from time savings of
about 40% for the Samsung SSD, to a performance degradation of
an order of magnitude for the Transcend IDE module.

4.2 Discussion
The goal of the uFLIP benchmark is to facilitate understanding of
the behavior of flash devices, in order to improve algorithm and
system design against such devices. In this section we have used
the uFLIP benchmark to explore the characteristics of a large set
of representative devices (although we have presented a limited
set of results due to space constraints). From our results, we draw
three major conclusions.

First, we have found that with the current crop of flash
devices, their performance characteristics can be captured quite
succinctly with a small number of performance indicators (the
ones shown in Table 1 and a few more).

Second, we observe that the performance difference between
the high-end SSDs and the remainder of the devices, including
low-end SSDs, is very significant. Not only is their performance
better with the basic IO patterns, but they also cope better with
unusual patterns, such as the reverse and in-place patterns.
Unfortunately, the price label is not always indicative of relative
performance, and therefore designers of high-performance
systems should carefully choose their flash devices.

Finally, based on our results, we are able give the following
design hints for algorithm and system designers:
Hint 1: Flash devices do incur latency. Therefore, larger IOs are
generally beneficial, even for read operations.
Hint 2: Block size should (currently) be 32KB. Based on the first
hint, large block sizes are beneficial for writes, while an
application of the famed five minute rule [4] says 4KB pages are
beneficial for reads, based on prices and capacities of the high-
end devices we studied. We therefore believe that 32BK is a
good trade-off for those high-end devices.
Hint 3: Blocks should be aligned to flash pages. This is not
unexpected, based on flash characteristics, but we have observed
that the penalty paid for lack of alignment is quite severe.
Hint 4: Random writes should be limited to a focused area. Our
experiments show that random writes to an area of 4–16MB
perform nearly as well as sequential writes.
Hint 5: Sequential writes should be limited to a few partitions.
Concurrent sequential writes to 4–8 different partitions are
acceptable; beyond that performance degrades to random writes.
Hint 6: Neither concurrent nor delayed IOs improve the
performance. Due to the absence of mechanical components, IO

scheduling is not improved through abundance of pending
asynchronous IOs. Furthermore, introducing a pause does not
affect total response time.

5. CONCLUSION
The design of algorithms and systems using flash devices as
secondary storage should be grounded in a comprehensive
understanding of their performance characteristics. We believe
that the investigation of flash device behavior deserves strong
and continuous effort from the community: uFlip and its
associated benchmarking methodology should help define a
stable foundation for measuring flash device performance. By
making available online (at www.uflip.org) the benchmark
specification, the software we developed to run the benchmark,
and the results we obtained on 12 devices, our plan is to gather
comments and feedback from researchers and practitioners
interested in the potential of flash devices. Future work includes
automatic tuning each run's length, to ensure that the start-up
period is omitted and the running phase captured sufficiently well
to guarantee given bounds for the confidence interval, while
minimizing .the number of IOs issued.

6. REFERENCES
[1] Ajwani, D., Malinger, I., Meyer, U., Toledo, S. Characterizing

the performance of flash memory storage devices and its impact
on algorithm design. Proc. Workshop on Experimental
Algorithms (WEA), Provincetown, MA, USA, 2008.

[2] Anderson, E., Kallahalla, M., Uysal, M., Swaminathan, R.
Buttress: A toolkit for flexible and high fidelity I/O
benchmarking. Proc. USENIX Conf. on File and Storage
Technologies, San Francisco, CA, USA, 2004.

[3] Gal, E., Toledo, S. Algorithms and data structures for flash
memories. ACM Computing Surveys, 37(2), 2005.

[4] Graefe, G. The five-minute rules twenty years later, and how
flash memory changes the rules. Proc. Data Management on
New Hardware (DaMoN), Beijing, China, 2007.

[5] Gray, J. Tape is dead, disk is tape, flash is disk, RAM locality is
king. Pres. at the CIDR Gong Show, Asilomar, CA, USA, 2007.

[6] Gray, J. The Benchmark Handbook for Database and
Transaction Systems (2nd Edition). Morgan Kaufmann, 1993.

[7] Huang, P.-C., Chang, Y.-H., Kuo, T.-W., Hsieh, J.-W., Lin, M.
The behavior analysis of flash-memory storage systems. Proc.
IEEE Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC), Orlando, FL, USA, 2008.

[8] Lee, S.-W., Moon, B. Design of flash-based DBMS: An in-page
logging approach. Proc. ACM SIGMOD, Beijing, China, 2007.

[9] Lee, S.-W., Moon, B., Park, C., Kim, J.-M., Kim, S.-W. A case
for flash memory SSD in enterprise database applications. Proc.
ACM SIGMOD, Vancouver, BC, Canada, 2008.

[10] Leventhal, A. Flash storage memory. Communications of the
ACM, 51(7), 2008.

[11] Myers, D. On the use of NAND flash memory in high-
performance relational databases. Master's thesis, MIT, 2008.

[12] Nath, S., Kansal, A. FlashDB: Dynamic self-tuning database for
NAND flash. Proc. Information Processing in Sensor Networks,
Cambridge, MA, USA, 2007.

[13] Open Source Development Lab. IOmeter. www.iometer.org.
[14] Trayger, A., Zadok, E., Joukov, N., Wright, C. P. A nine year

study of file system and storage benchmarking. ACM
Transactions on Storage, 4(2), 2008.

[15] Wu, C.-H., Kuo, T.-W. An efficient B-tree layer implementation
for flash-memory storage systems. ACM Transactions on
Embedded Computing Systems, 6(3), 2007.

7. DEMONSTRATION
In the interest of the research community, we will make our open
source software package available, as well as our complete
database of measurements. The web-site is hosted at
www.uflip.org. In this section, we propose a demonstration of
our software package and the measurement database.

7.1 Software Architecture
The uFLIP benchmark software consists of four components.
• The uFLIP Interface, which allows the user to choose

settings for individual micro-benchmarks, and to configure
the initial state of the flash device.

• The FlashIO workload generator, which executes the micro-
benchmarks defined by the uFLIP Interface, and stores the
results into a database.

• The uFLIP Database, which is divided into two parts: a core
area for verified benchmark results, and a holding area for
transient or non-verified results.

• The uFLIP Visualizer, which presents results from the
uFLIP Database.

The first three components are rather straightforward. We now
describe the uFLIP Visualizer in more detail.

The interface of the uFLIP Visualizer prototype is shown in
Figure 6. Once a device has been selected, a “dashboard” is
shown, which is a matrix of micro-benchmarks and IO modes
(random reads, sequential reads, random writes, sequential

writes) is displayed. For each such combination, interesting
results are indicated with a red color.

From this dashboard, individual results can then be explored
by viewing graphs similar to Figure 3. Furthermore, when more
detail is desired, graphs such as that in Figure 1 can be viewed.
Through this navigation, results for individual devices can be
interactively explored.

7.2 Demonstration Presentation
During the 10 minute presentation, we propose to demonstrate
the use of the uFLIP Interface and the uFLIP Visualizer (running
the uFLIP benchmark is too time consuming). First, we will show
how to manipulate the settings of the interface, in order to run the
benchmark and facilitate exploration of the flash device's
properties. Second, we will demonstrate the navigation of the
results database, using one of the high-end devices reported on in
this paper.

7.3 Off-line Demonstration
Off-line demonstration to individual conference attendees is
always most entertaining and informative. In order to facilitate
discussions and explorations, the uFLIP Interface will include a
“demo” button, which can be used to select settings that allow
running the benchmark in a reasonable time-frame, even for USB
keys of conference attendees. Once the results have been stored
to the holding area, they can be explored interactively using the
uFLIP Visualizer.

Micro Benchmark Sequential Random Sequential Random
Granularity
Alignment
Locality
Circularity
Partitioning
Order
Parallelism
Mix Read/Write
Mix Sequential/Random
Pause
Bursts

Read Writes

Fig 6. Demonstration prototype screenshots

Run traces

Color analysis

Micro benchmark results

Benchmark
overview

uFLIP database

Micro Benchmark Sequential Random Sequential Random
Granularity
Alignment
Locality
Circularity
Partitioning
Order
Parallelism
Mix Read/Write
Mix Sequential/Random
Pause
Bursts

Read Writes

Fig 6. Demonstration prototype screenshots

Run traces

Color analysis

Micro benchmark results

Benchmark
overview

uFLIP database

