

Dept. of Computer Science
University of Copenhagen • Universitetsparken 1

DK-2100 Copenhagen • Denmark

Wiener Index, Diameter, and Stretch Factor of
a Weighted Planar Graph in Subquadratic

Time

Christian Wulff - Nilsen

Technical Report no. 08-16
ISSN: 0107-8283

Wiener Index, Diameter, and Stretch Factor of

a Weighted Planar Graph in Subquadratic

Time

Christian Wulff-Nilsen ∗

November 12, 2008

Abstract

We solve three open problems: the existence of subquadratic time
algorithms for computing the Wiener index (sum of APSP distances)
and the diameter (maximum distance between any vertex pair) of a
planar graph with non-negative edge weights and the stretch factor of
a plane geometric graph (maximum over all pairs of distinct vertices
of the ratio between the graph distance and the Euclidean distance
between the two vertices). More specifically, we show that the Wiener
index and diameter can be found in O(n2(log log n)4/ log n) worst-case
time and that the stretch factor can be found in O(n2(log log n)4/ log n)
expected time, where n is the number of vertices. We also show how
to compute the Wiener index and diameter of an unweighted n-vertex
subgraph-closed

√
n-separable graph in O(n2 log log n/ log n) worst-

case time and with O(n) space.

1 Introduction

Computing all-pairs shortest paths (APSP) in a graph is a problem of both
theoretical and practical interest and it has consequently received a lot of at-
tention from the research community. Although solvable by repeated appli-
cations of a single-source shortest path (SSSP) algorithm, the APSP problem
can be solved more efficiently for many types of graphs.

∗Department of Computer Science, University of Copenhagen, koolooz@diku.dk,
http://www.diku.dk/~koolooz/

1

The Floyd-Warshall algorithm and Johnson’s algorithm are perhaps the
most well-known APSP algorithms. The former assumes absence of nega-
tively weighted cycles and has Θ(n3) running time whereas the latter has
O(n2 log n + mn) running time, where m resp. n is the number of edges
resp. vertices in the graph [6]. The fastest known APSP algorithm for dense
graphs has O(n3(log log n/ log n)5/4) running time [8]. For planar graphs
with non-negative edge weights, Frederickson [7] gave an optimal Θ(n2) time
algorithm.

Given a graph with non-negative edge weights, suppose we are interested
in finding the sum of distances between all vertex pairs (or equivalently, the
average distance) in the graph. This quantity is also known as the (weighted)
Wiener index of the graph. Can we obtain the Wiener index in time less
than what it takes to compute APSP distances? For simple graphs such as
cactii, benzenoid systems, and graphs of bounded treewidth, the answer is
yes [3, 4, 12, 15]. One of the main open problems in this context concerns
the existence of an o(n2) time algorithm for planar graphs [3].

Another open problem (Problem 6.2 in [5]) for planar graphs is that of
finding the diameter, i.e. the maximum distance between any two vertices,
in subquadratic time.

The stretch factor of a geometric graph is the maximum over all pairs of
distinct vertices of the ratio between the graph distance and the Euclidean
distance between the two vertices. Like the two problems above, the stretch
factor problem can be solved in Θ(n2) time for plane graphs using Freder-
ickson’s APSP algorithm but it is open whether there exists a subquadratic
time algorithm [1].

In this paper, we solve all three of the open problems mentioned above.
More precisely, we show that the Wiener index and the diameter of an n-
vertex planar graph with non-negative edge-weights can be computed in
O(n2(log log n)4/ log n) worst-case time and that the stretch factor of an n-
vertex plane geometric graph can be computed in O(n2(log log n)4/ log n)
expected time.

All three results follow from relatively simple modifications of the same
generic algorithm. It is our hope that this algorithm can be adapted to solve
other planar graph problems more efficiently.

We also generalize the result for unweighted graphs we obtained in [14].
More specifically, we show that the Wiener index and diameter of an un-
weighted n-vertex subgraph-closed

√
n-separable graph can be found in time

O(n2 log log n/ log n) with O(n) space.

2

The organization of the paper is as follows. In Section 2, we introduce
some notation and give some basic definitions and results. In Section 3, we
describe our generic algorithm. The description of the algorithm is split into
two subsections. In Subsection 3.1, we describe the preprocessing step and in
Subsection 3.2, we describe the main algorithm. We also bound the running
time of the entire algorithm. In Section 4, we apply the generic algorithm
to the three graph problems described above and show how this gives us
subquadratic time algorithms for these problems. In Section 5, we show our
results for unweighted graphs. Finally, we make some concluding remarks in
Section 6.

2 Definitions, Notation, and Basic Results

In this section, we introduce some notation and definitions, some of which
are similar or identical to those in [2]. We also give some basic results which
will prove useful.

For two vertices u and v in a graph G with non-negative edge-weights,
we let dG(u, v) denote the length of a shortest path in G between u and v.
If no such path exists, we define dG(u, v) = ∞.

Let G = (V, E) be a triangulated planar graph with a planar embedding.
For a subset S of the plane, the restriction of G to S consists of the vertices
and edges of (the embedding of) G that are fully contained in S.

When we refer to a cycle we implicitly assume that it is simple and
contained in G. A cycle C partitions the plane into a bounded region, called
the interior of C, and an unbounded region, called the exterior of C. We let
Int(C) resp. Ext(C) denote the restriction of G to the interior resp. exterior
of C, and we let Int(C) resp. Ext(C) denote the restriction of G to the closure
of the interior resp. exterior of C.

Two cycles C and C ′ do not cross if C is contained in Int(C ′) or in
Ext(C ′).

Given a collection C = {C1, . . . , Cp} of cycles that pairwise do not cross
and where C1 is the outer face of G, define, for i = 1, . . . , p, region Ri by

Ri = Int(Ci) −

⋃

j 6=i,Cj⊂Int(Ci)

Int(Cj)

 , (1)

see Figure 1. We refer to R1, . . . , Rp as the regions of G (induced by C).

3

C1

C2

C3

C4

C6
C7

C5

R2

Figure 1: Example with seven cycles C1, . . . , C7 and region R2 (coloured)
and its boundary vertices (contained in the bold curves). Also, CR2

=
{C2, C4, C5, C6}.

For i = 1, . . . , p, vertices of Ri that are adjacent to vertices in G−Ri are
boundary vertices of Ri and ∂Ri denotes the set of boundary vertices of Ri.
We have the following result (taken from [2]).

Lemma 1. Let G = (V, E) be defined as above, let n be the number of vertices
in G, and let r ∈ (0, n). We can find in O(n log n) time a collection of cycles
C = {C1, . . . , Cp} with p = O(n/r) and C1 the outer face of G such that no
two cycles cross. Each of the regions Ri ∈ {R1, . . . , Rp} of G induced by C
has at most r vertices and ∂Ri has O(

√
r) vertices.

We shall refer to the regions of G obtained by applying Lemma 1 as an
r-division (of G).

For each region Ri, define

CRi
= {Cj ∈ C|Cj ⊆ Int(Ci) and Cj * Int(Ck) ⊆ Int(Ci) for any k 6= i, j},

see Figure 1. We observe that ∂Ri is contained in the set of vertices of the
cycles of CRi

.
Given a region Ri and a cycle Cj ∈ CRi

, define

URi,Cj
=

{

Int(Cj) if i 6= j
Ext(Cj) if i = j

4

Lemma 2. With the above definitions, let i, j ∈ {1, . . . , p}. For any vertex
u ∈ URi,Cj

and any vertex v ∈ Ri, every shortest path in G from u to v
contains a boundary vertex of Ri belonging to Cj. Furthermore, the vertices
of ∪C∈CRi

URi,C are exactly the vertices of V not belonging to Ri.

Proof. If i 6= j then u ∈ Int(Cj) and v ∈ Ri ⊆ Ext(Cj). If i = j then
u ∈ Ext(Cj) and v ∈ Ri ⊆ Int(Cj). In both cases, the first part of the
lemma holds. The second part follows easily from the definitions above.

Given two paths P1 and P2 in a graph, if they share an end vertex we let
P1 ∪ P2 denote the path obtained by concatenating P1 and P2.

Suppose P1 is a shortest path between a vertex u and a vertex v1 and
that P2 is a shortest path between u and a vertex v2 in a graph G. Then P1

and P2 may be chosen so that when they split when walking from u they do
not meet again. In this case, we say that P1 and P2 are crossing-free (in G).
We also say that P1 ∪ P2 is crossing-free.

3 A Generic Algorithm

The algorithms in Section 4 are all variations of the same generic algorithm.
In this section, we describe this algorithm, not only to shorten the length of
the paper but also because we believe that it can be applied to other planar
graph problems involving, in some way, distances between vertex pairs.

In this section, G = (V, E) denotes an n-vertex planar graph. We assume
that G is triangulated (if not, we triangulate it by adding infinite weight-
edges) and we compute a planar embedding of G. From this we obtain an
r-division of G for some parameter r which we leave unspecified for now.

Let us start by describing the problem that the generic algorithm should
solve. In the following, let R be one of the regions in the r-division of G. Let
C be one of the cycles in CR and let p1, . . . , pt be the boundary vertices of R
belonging to C. Assume that in a simple walk of C, p1, . . . , pt are visited in
that order. Let U = UR,C .

For each C ′ ∈ CR \ {C}, add to R an edge between each pair of boundary
vertices of R belonging to C ′. The weight of this edge is equal to the length
of a shortest path between the two vertices where all interior vertices on this
path belong to UR,C′ . If no such path exists we omit the edge.

We refer to these extra edges as abstract edges since we do not specify
any embedding of them. With the abstract edges added to R, note that R is

5

connected and still has O(r) edges. Furthermore, for any vertex u ∈ U and
any vertex v ∈ R, dG(u, v) = dG(u, pi) + dR(pi, v) for some pi ∈ C.

Now, the problem is to find, for each vertex u ∈ U , a colouring of the
vertices of R using t colours which we denote by indices 1, . . . , t. For i =
1, . . . , t, a vertex v ∈ R should be assigned colour i if dG(u, v) = dG(u, pi) +
dR(pi, v). Ties may be resolved in any way. We refer to such a colouring as
a u-colouring (of R).

By the above, it follows that a u-colouring always exists. Furthermore,
if a vertex v ∈ R is given colour i in a u-colouring then there is a shortest
path in G from u to v through pi with the subpath from pi to v contained in
R. As we shall see, this information enables us to efficiently solve our three
problems of Section 4, given an efficient algorithm that finds u-colourings.

For performance reasons, a u-colouring should not be computed explicitly.
Instead, a key value should be efficiently calculated that uniquely identifies
that colouring. The idea is then to use this key as an index into a table in
which either precomputations have been made (in case of the Wiener index
and the diameter problem) or where vertices inducing identical colourings
can be grouped together to speed up subsequent computations (in case of
the stretch factor problem).

3.1 Preprocessing Step

The main algorithm is preceeded by a preprocessing step. In this subsection,
we describe this step. In the following, assume that R, C, U , and p1, . . . , pt

are defined as above. We make the assumption that C is a cycle such that
R is contained in Ext(C). The case where C is the cycle such that R is
contained in Int(C) is dealt with in a similar way.

The main algorithm needs to find a u-colouring of R w.r.t. each vertex
u ∈ U . The preprocessing step does not depend on u. However, to make
it more clear how the preprocessing can speed up computations in the main
algorithm, we assume in the following that we are given some unspecified
u ∈ U .

When convenient, we regard an abstract edge between two boundary
vertices of R belonging to a cycle C ′ as a shortest path between the vertices
having all its interior vertices in UR,C′ . By definition, the weight of the
abstract edge is equal to the length of this path. The following lemma will
prove useful as it allows us to obtain information about such paths without
explicitly knowing them (see Figure 2).

6

(b)(a) (c)

v′
1

v2

v1 v′
2

v′
1

v′
2

v1

v′
1

v2

v′
2

v1 = v2

Figure 2: In (a) and (b), paths represented by abstract edges e1 = (v1, v
′
1)

and e2 = (v2, v
′
2) can be chosen such that they do not cross. In (c) they have

to cross.

Lemma 3. Let C ′ ∈ CR \ {C} and let e1 = (v1, v
′
1) and e2 = (v2, v

′
2) be

abstract edges, where v1, v
′
1, v2, v

′
2 ∈ C ′. Then the paths represented by e1 and

e2 may be chosen such that they do not cross if and only if there is a cyclic
walk of C ′ that visits v1, v′

1, v2, and v′
2 in one of the following two orders:

1. v1, v
′
1, v2, v

′
2 (where possibly v′

1 = v2 or v1 = v′
2),

2. v1, v
′
1, v

′
2, v2 (where possibly v′

1 = v′
2 or v1 = v2).

Proof. This is an easy consequence of planarity and the fact that the interior
vertices of the shortest paths represented by e1 and e2 are all contained in
Int(C ′) or all contained in Ext(C ′).

Let It = {1, . . . , t}. For non-empty subset I ⊆ It, define an I-colouring
of R as a colouring of the vertices of R with colours i ∈ I. We extend
this definition to subgraphs of R and to subsets of vertices of R. When less
specific, we call an I-colouring of R an |I|-colouring of R. When convenient,
we will regard an I-colouring of a set A of vertices as a map c : A → I.

An I-colouring of R w.r.t. u is an I-colouring of R where a vertex v ∈ R
is given colour i only if dG(u, pi) + dR(pi, v) ≤ dG(u, pj) + dR(pj , v) for all
j ∈ I, with ties resolved in any way. Given a subset A of vertices of R,
an I-colouring of A w.r.t. u is defined as an I-colouring of A which can be
extended to an I-colouring of R w.r.t. u.

For an index set I = {i1, . . . , im} with i1 < i2 < . . . < im, define the
lower subset of I as the set {i1, . . . , i⌈m/2⌉} and define the upper subset of I
as the set {i⌈m/2⌉+1, . . . , im}.

The generic algorithm should find an It-colouring of R w.r.t. u. The
idea is to obtain this colouring recursively from an I1-colouring and an I2-
colouring of R w.r.t. u, where I1 (I2) is the lower (upper) subset of It.

7

T3

u
Drc(w)

Dw

Tw

Dlc(w)

iw

T2

T S

ilc

irc

Figure 3: Data structures Dlc(w) and Drc(w) are recursively queried with u,
giving two numbers ilc and irc , respectively. From these the tree set T S
and the level 2-table T2 associated with entry (ilc , irc) in level 1-table Tw

are obtained. Querying T S with u gives a binary tree which is mapped to
an entry in T2. Associated with this entry is a level 3-table T3. Querying
with u gives an entry in T3 which has an associated number iw defining an
Iw-colouring of R w.r.t. u.

In the preprocessing step of the algorithm, a balanced binary tree T is
constructed that reflects this recursion. We refer to this tree as the main
tree. Associated with each vertex w of T is a subset Iw of It.

Main tree T and these subsets are defined as follows. The root r of T is
associated with Ir = It. For each vertex w of T , if |Iw| = 1 then w is a leaf
of T . Otherwise, w has a left child which is associated with the lower subset
of Iw and has a right child which is associated with the upper subset of Iw.
We let Tw denote the subtree of T rooted at w.

For each non-leaf vertex w of T , we let lc(w) resp. rc(w) denote the left
resp. right child of w. With each such w we associate a data structure, called
Dw. When queried with u in the main algorithm, Dw returns an integer that
identifies an Iw-colouring of R w.r.t. u. We start by giving an overview of
this data structure. Below, we describe it in more detail.

Data structure Dw is illustrated in Figure 3. It consists of a two-dimensional
table Tw which we call the level 1-table (of w). Associated with each entry
Tw(i, j) of Tw is a data structure called a tree set. It represents a certain
set of binary trees and there is a one-to-one map from this set into a higher-
dimensional table, also associated with entry Tw(i, j). We call this table a

8

level 2-table. With each entry of this table, a higher-dimensional table called
a level 3-table is associated.

Each level 3-table entry associated with Dw corresponds to an Iw-colouring
of R. When Dw is queried with u in the main algorithm, this vertex will be
mapped to a level 3-table entry that corresponds to an Iw-colouring of R
w.r.t. u. A unique number is assigned to each level 3-table entry and if u
is mapped to an entry with number x then x is the key value that uniquely
identifies that Iw-colouring of R w.r.t. u. It is this key value that Dw returns
when queried with u.

In the preprocessing step, the actual colourings associated with level 3-
entries will be needed. These colourings will be computed bottom-up in main
tree T .

In the following, we consider a non-leaf vertex w of T and describe the
components of data structure Dw associated with w. We assume that colour-
ings of level 3-table entries associated with descendants of w in T have already
been computed.

3.1.1 Level 1-Table

The index of each row of level 1-table Tw is an integer representing an Ilc(w)-
colouring of R w.r.t. some vertex and the index of each column is an integer
representing an Irc(w)-colouring of R w.r.t. some vertex. There is a row resp.
column for each level 3-table entry associated with Dlc(w) resp. Drc(w) and
each entry of Tw is associated with the two colourings corresponding to the
entry’s row and column, respectively.

In the main algorithm, data structures Dlc(w) and Drc(w) are recursively
queried with vertex u. This gives two integers ilc and irc that identify, respec-
tively, an Ilc(w)-colouring and an Irc(w)-colouring of R w.r.t. u. These two
integers are then used as indices to obtain entry (ilc , irc) in Tw, see Figure 3.

In case lc(w) is a leaf of T then there is only one Ilc(w)-colouring of R
w.r.t. u so we define ilc = 1 and Tw has only one row. And similarly, if rc(w)
is a leaf of T then irc = 1 and Tw has only one column.

In the following, we describe the tree set and the level 2-table and level
3-tables associated with the entry (ilc , irc) of Tw that u is mapped to in the
main algorithm.

9

Q1

Q2

A2

A1

P

C1

pi pj

Figure 4: Crossing-free path P partitions C into two subpaths, Q1 and Q2,
and partitions A (coloured region) into two subsets, A1 and A2.

3.1.2 Tree Set

The tree set data structure is essentially a compact representation of a certain
set of binary trees and has a recursive definition. It is either a leaf or a non-
leaf. If it is a leaf it represents one binary tree which itself is a leaf.

If it is a non-leaf it consists of a pair of arrays and each entry of these
arrays represents a root of a set of binary trees. An entry corresponding to
a root r points to two recursively defined tree sets representing, respectively,
left and right subtrees of a binary tree with root r. Taking all combinations
of left and right subtrees that those two tree sets represent gives all binary
trees with root r.

Before describing the tree set in greater detail, we need some more defi-
nitions and results.

Consider a crossing-free path P in R (where each abstract edge is regarded
as a path) between two boundary vertices pi and pj of R belonging to C.
The two boundary vertices partition C into two subpaths, Q1 and Q2 (both
containing pi and pj), see Figure 4. Observe that C1 = Q1 ∪ P and C2 =
Q2∪P are cycles and that either C1 is contained in Int(C2) or C2 is contained
in Int(C1). Assume w.l.o.g. that C1 is contained in Int(C2).

Let A be a subset of vertices of R. Define A1 resp. A2 as the subset of
vertices of A belonging to Int(C1) resp. Ext(C1). We refer to A1 and A2 as
the subsets of A induced by P . For m = 1, 2, we say that the set of indices
of boundary vertices in Qm are associated with Am.

Now, assume we are given a subset A of vertices of R, two subsets I ⊆

10

Ilc(w) and I ′ ⊆ Irc(w), an I-colouring c of A w.r.t. u, and an I ′-colouring c′

of A w.r.t. u. For a vertex v ∈ A, we refer to (c(v), c′(v)) as the colour pair
of v (w.r.t. c and c′).

Let v be a vertex in A with colour pair (i, j). We call v a split vertex of A
(w.r.t. u and colourings c and c′) if there exists a shortest path Pi resp. Pj in
R from pi resp. pj to v with all its vertices in A, if Pi and Pj are crossing-free,
and if

1. dG(u, pi) + dR(pi, v) ≤ dG(u, pj) + dR(pj, v) and

2. dG(u, pj)+dR(pj, v
′) < dG(u, pk)+dR(pk, v

′) for any vertex v′ ∈ Pj \{v}
and any k ∈ I,

or if the same two conditions hold with i and j swapped and I replaced by
I ′. In this case, we refer to Pi and Pj as the split paths associated with v.

As we shall see, the following lemma will help us “merge” the given Ilc(w)-
colouring and the given Irc(w)-colouring into an Iw-colouring of R w.r.t. u.

Lemma 4. With the above definitions, suppose that v is a split vertex of
A with colour pair (i, j) w.r.t. colourings c and c′ and let Pi and Pj be split
paths associated with v. Let A1 and A2 be the subsets of A induced by Pi∪Pj.
For m = 1, 2, let Im be the index set associated with Am. Then there is an
I ∪ I ′-colouring of Am w.r.t. u where each colour k ∈ Im.

Proof. By symmetry, it suffices to show the lemma for m = 1. So let a ∈ A1

be given. We will show that in an I ∪ I ′-colouring of A1 w.r.t. u, a can be
assigned a colour k ∈ I1.

Since v is a split vertex of A, we may assume, again by symmetry, that
dG(u, pi) + dR(pi, v) ≤ dG(u, pj) + dR(pj, v) and that dG(u, pj) + dR(pj, v

′) <
dG(u, pk) + dR(pk, v

′) for any vertex v′ ∈ Pj \ {v} and any k ∈ I.
Pick k ∈ I ∪ I ′ such that dG(u, pk) + dR(pk, a) ≤ dG(u, pk′) + dR(pk′, a)

for all k′ ∈ I ∪ I ′. Suppose that k /∈ I1. Then a shortest path in R from pk

to a must contain some vertex v′ ∈ Pi ∪ Pj . Assume first that v′ ∈ Pi, see
Figure 5(a). Since dG(u, pi) + dR(pi, v) ≤ dG(u, pj) + dR(pj , v), any vertex
on Pi, and in particular v′, can be assigned colour i in an I ∪ I ′-colouring
of A1 w.r.t. u. This implies that a can be assigned colour i ∈ I1 in such a
colouring, as requested.

Now, suppose v′ ∈ Pj \ {v}, see Figure 5(b). Either k ∈ I or k ∈ I ′.
If k ∈ I ′ then we may assign colour j ∈ I1 to a in an I ∪ I ′-colouring so
assume that k ∈ I. Then dG(u, pj)+dR(pj, v

′) < dG(u, pk)+dR(pk, v
′) by the

11

v
Pi

Pj

v
Pi

Pja a

(a) (b)

v′

pk

pk

v′

uu

pi pi

pj pj

Figure 5: A shortest path in R from pk to a intersects either Pi or Pj \ {v}
in some vertex v′.

assumption that v is a split vertex of A. By the choice of k and the triangle
inequality,

dG(u, pk) + dR(pk, v
′) + dR(v′, a) = dG(u, pk) + dR(pk, a)

≤ dG(u, pj) + dR(pj, a)

≤ dG(u, pj) + dR(pj, v
′) + dR(v′, a),

implying that dG(u, pk) + dR(pk, v
′) ≤ dG(u, pj) + dR(pj, v

′). But this contra-
dicts the inequality above. Hence, the lemma holds in all cases.

Now, let us give a more detailed description of the tree set associated
with an entry of level 1-table Tw and how it is constructed. Let us denote it
by T S.

We use a recursive algorithm for the construction. Its input is a tuple
(A, I, I ′, c, c′) where A is a subset of vertices of R and c and c′ are colourings
of A. The following invariant will be maintained:

1. c is an I-colouring and c′ is an I ′-colouring of A w.r.t. u,

2. for any v ∈ A there is a shortest path P in R from pc(v) to v, and a
shortest path P ′ in R from pc′(v) to v such that all vertices on these
paths belong to A, and

12

3. the indices of I resp. I ′ are consecutive in the cyclic ordering induced
by C.

Let clc resp. crc be the Ilc(w)- resp. Irc(w)-colouring of R w.r.t. u associated
with the entry of Tw that we consider. To construct T S, we call this algorithm
with A the set of vertices of R, I = Ilc(w), I ′ = Irc(w), c = clc , and c′ = crc .
Note that the invariant of the algorithm holds trivially in this case.

Now, consider an invocation with input (A, I, I ′, c, c′) and let us describe
how a tree set T S ′ is constructed by the algorithm.

Let A′ be the subset of vertices v of A for which c(v) resp. c′(v) is neither
the first nor last index of I resp. I ′. If A′ = ∅, a leaf is returned.

Otherwise, we pick a vertex v ∈ A′. Let (i, j) be the colour pair of v
and let Pi and Pj be shortest paths in R from pi to v and from pj to v,
respectively. By the invariant, we may pick Pi and Pj such that all their
vertices belong to A and as observed in Section 2, we may pick them such
that Pi and Pj are crossing-free (when regarding each abstract edge as a
path). By Lemma 3, we can ensure that Pi and Pj are crossing-free without
knowing the paths represented by the abstract edges.

Next, we redefine colourings c and c′. More specifically, for each vertex
v′ ∈ Pi, set c(v′) := i and for each vertex v′ ∈ Pj , set c′(v′) := j. Since
(i, j) is the colour pair of v, this change does not violate the invariant of the
algorithm.

In the main algorithm, we will pick a split vertex in Pi∪Pj . Roughly, the
idea is to apply Lemma 4 on this vertex to divide the problem of finding an
I ∪ I ′-colouring of R w.r.t. u into two subproblems which are then recursed
on.

Let Ai and Aj be the two arrays associated with the top-level of T S ′. In
the preprocessing step, we do not know which will be the split vertex w.r.t.
u so we need to consider every possible vertex of Pi and of Pj. We therefore
define Ai to have an entry for each vertex of Pi and define Aj to have an
entry for each vertex of Pj. The entries of Ai are ordered according to how
the vertices occur when walking from pi to v in Pi. The entries of Aj are
ordered similarly for Pj.

The entry of Ai resp. Aj corresponding to a vertex v′ is called the v′-entry
of Ai resp. Aj. We also say that it is the v′-entry of T S ′.

With each vertex v′ ∈ Pi, two paths, Pi(v
′) and P ′

i (v
′), are associated,

see Figure 6. These paths will be chosen as the split paths if v′ is selected
as split vertex in the main algorithm. Path Pi(v

′) is the subpath of Pi from

13

v

Pj

pj

pi

u

pc′(v′)

v′

Pi(v
′) P ′

i (v
′)

Pi

Figure 6: Associated with each vertex v′ ∈ Pi are two paths, Pi(v
′) and P ′

i (v
′).

For this example, the dashed resp. dotted curve illustrates the portion of C
containing boundary vertices with indices in I resp. I ′.

pi to v′ and P ′
i (v

′) is a shortest path in R from pc′(v′) to v′ such that all
vertices on this path belong to A (here we use the invariant again) and such
that Pi(v

′) and P ′
i (v

′) are crossing-free. Similarly, associate paths Pj(v
′) and

P ′
j(v

′) with each vertex v′ ∈ Pj , where Pj(v
′) is the subpath of Pj from pj to

v′ and P ′
j(v

′) is a shortest path in R from pc(v′) to v′ such that all vertices on
this path belong to A and such that Pj(v

′) and P ′
j(v

′) are crossing-free.
Consider some v′-entry of Ai. We now describe how the two tree sets that

this entry points to are recursively constructed (Aj is dealt with in a similar
way).

Let A1 and A2 be the subsets of A induced by Pi(v
′) ∪ P ′

i (v
′) and let

j′ = c′(v′). For m = 1, 2, let Im = Jm ∩ I and I ′
m = Jm ∩ I ′, where Jm is

the index set associated with Am.
Next, we define two colourings of A1, c1 : A1 → I1 and c′1 : A1 → I ′

1. For
a vertex v1 ∈ A1, if c(v1) ∈ I1 then c1(v1) = c(v1) and otherwise, c1(v1) = i.
And if c′(v1) ∈ I ′

1 then c′1(v1) = c′(v1) and otherwise, c′1(v1) = j′. We define
colourings c2 : A2 → I2 and c′2 : A2 → I ′

2 of A2 in a similar manner.
If we go through the proof of Lemma 4, we see that, for m = 1, 2, cm

resp. c′m is an Im- resp. I ′
m-colouring of Am w.r.t. u.

To construct the two tree sets that the v′-entry points to, the algorithm
calls itself recursively with input tuples (A1, I1, I ′

1, c1, c
′
1) and (A2, I2, I ′

2, c2, c
′
2),

respectively. From the above, it follows that the invariant of the algorithm
holds for these two recursive calls.

The above is repeated for all entries of Ai and for all entries of Aj and the

14

algorithm returns the resulting tree set T S ′. This completes the description
of the algorithm as well as the definition of T S.

For a tree set T S ′ in the above recursive construction, we say that A, I,
I ′, picked vertex v and paths Pi and Pj are associated with T S ′. We also
say that the colourings c and c′ are associated with T S ′ after they have been
redefined in the algorithm as described above. Finally, we say that the colour
pairs in I × I ′ of vertices in A and the indices of I ∪ I ′ are associated with
T S ′.

In the main algorithm, when T S is queried with vertex u ∈ U , a certain
tree of T S is traversed. We refer to this traversal as a u-traversal of T S and
we say that u traverses T S.

For a tree set T S ′ in the above construction, a u-traversal of T S ′ is defined
as follows. If T S ′ represents a leaf then this leaf constitutes the u-traversal.

Otherwise, let A, v, I ⊆ Ilc(w), and I ′ ⊆ Irc(w) be associated with T S ′.
Let (i, j) be the colour pair of v w.r.t. the colourings associated with T S ′.

If dG(u, pi) + dR(pi, v) ≤ dG(u, pj) + dR(pj, v) then a split vertex v′ of
A is picked such that it corresponds to an entry in array Aj . Otherwise,
it is picked such that it corresponds to an entry in Ai. It follows from the
definition of split vertex that v′ must exist. The u-traversal of T S ′ consists
of v′ and recursive u-traversals of the tree sets that the v′-entry points to.

Lemma 8 below shows that Iw-colourings of R w.r.t. vertices traversing
the same binary tree are related in a sense. To prove this lemma, we need
the following three results.

Lemma 5. In the above construction, |I1 ∪I ′
1|+ |I2 ∪ I ′

2| = |I ∪ I ′|+ 2 and
|I1 ∪ I ′

1|, |I2 ∪ I ′
2| < |I ∪ I ′|.

Proof. With j′ defined as above, the first part follows from the observation
that I ∪I ′ = I1 ∪I ′

1 ∪I2 ∪I ′
2 and that i and j′ are the only indices of I ∪I ′

shared by I1 ∪ I ′
1 and I2 ∪ I ′

2.
To show the second part, suppose vertex v′ above corresponds to an entry

in array Ai. By the third part of the invariant of the algorithm, I1 contains
an index k which is either the first or the last index of I. Since v ∈ A′, i is
neither the first nor last index of I so k 6= i. The only index of I shared by
I1 and I2 is i so k /∈ I2. Hence, k /∈ I2∪I ′

2, implying that |I2∪I ′
2| < |I ∪I ′|.

A similar argument shows that |I1 ∪ I ′
1| < |I ∪ I ′|. The inequalities also

follow if v′ corresponds to an entry in Aj.

Lemma 6. Each binary tree represented by T S has O(|Iw|) vertices.

15

Proof. Consider a tree represented by T S. Lemma 5 implies that the number
of leaves in this tree is at most l(|Iw|), where l : N → N is defined by

l(k) =

{

max{l(k1) + l(k2)|k1 + k2 = k + 2, k1, k2 < k} if k > 4
1 if k ≤ 4,

where we used the observation that A′ = ∅ when |Iw| ≤ 4 in the algorithm
that constructs T S. Since the number of non-leaf nodes is one less than the
number of leaves, the lemma will follow if we can show that l(k) ≤ k − 2 for
k ≥ 3.

The proof is by induction on k ≥ 3. If k = 3, we have l(k) = 1 = k − 2
by definition so assume that k > 3 and that the induction hypothesis holds
for smaller values than k. Let k1, k2 be given where k1 + k2 = k + 2 and
k1, k2 < k. Then l(k1) + l(k2) ≤ k1 + k2 − 4 = k − 2. Hence,

l(k) = max{l(k1) + l(k2)|k1 + k2 = k + 2, k1, k2 < k} ≤ k − 2,

as requested.

Lemma 7. Given a binary tree T of T S, the total number of distinct colour
pairs associated with leaves of T is O(|Iw|).

Proof. Let T be a tree of T S. For any of its non-leaf vertices, if there are k
indices associated with this vertex then the total number of indices associated
with its two children is k + 2 by Lemma 5. Hence, if m is the number of
non-leaf vertices of T then the total number of indices associated with leaves
of T is 2m + |Iw| which is O(|Iw|) by Lemma 6.

Let I ⊆ Ilc(w) and I ′ ⊆ Irc(w) be the index sets and let A be the subset
of vertices associated with a leaf of T . By the above, the lemma will follow
if we can show that the number of distinct colour pairs in I × I ′ of vertices
in A is O(|I ∪ I ′|).

Since we are in a leaf of T , we have that for any such colour pair (i, j),
either i is the first or last index of I or j is the first or last index of I ′.
This implies that the number of distinct colour pairs is at most 2|I ∪ I ′|, as
requested.

Lemma 8. Let U ′ be a subset of vertices of U all traversing the same binary
tree in T S. Then there are O(|Iw|) sets V1, . . . , Vm of vertices whose union
is the set of vertices of R such that for k = 1, . . . , m and for each u′ ∈ U ′

there is a 2-colouring of Vk which is an Iw-colouring of Vk w.r.t. u′.

16

Proof. Let u ∈ U ′. Define A1, . . . , Ap as the subsets of vertices associated
with leaves of the binary tree traversed by u. From the construction of T S
and the definition of u-traversal, it follows that ∪p

k=1Ak is the set of vertices
of R.

Let k ∈ {1, . . . , p} be given and let lk denote the leaf with which Ak

is associated. Let c : Ak → I and c′ : Ak → I ′ be the colourings of Ak

associated with lk, where I ⊆ Ilc(w) and I ′ ⊆ Irc(w).
By the invariant of the algorithm that constructs T S, it follows that for

each v ∈ Ak, either c(v) or c′(v) is a colour of v in an Iw-colouring of R
w.r.t. u. The lemma follows from Lemma 7 by letting V1, . . . , Vm be sets
each containing vertices with identical colour pairs.

3.1.3 Level 2-Table

We now describe the level 2-tables associated with Dw. Recall that there is
a tree set associated with each entry of the level 1-table Tw. For each such
tree set T S there is a one-to-one map φ from the set of binary trees that T S
represents to entries of a level 2-table. In the following, we define this map
and table.

Let c ∈ N be a constant such that each tree represented by T S has
at most c|Iw| non-leaf vertices. Such a constant exists by Lemma 6. Let
nR = O(r) be the number of vertices of R. Arbitrarily assign a unique
number in {0, . . . , nR − 1} to each of these vertices.

Consider a tree T represented by T S. Its root corresponds to an entry
in one of the two arrays at the top-level of T S. This entry is uniquely
defined by the choice of array and the choice of split vertex. The array
is uniquely determined by the value of a single bit and the split vertex is
uniquely determined by its number in the above assignment.

It follows that the root of T is uniquely defined by a pair in {0, 1} ×
{0, . . . , nR − 1} which we may regard as a pair in {0, . . . , nR − 1}2.

Applying the above recursively to the subtrees of T , it follows that T is
uniquely defined by a vector in {0, . . . , nR − 1}2c|Iw|. We define φ(T) to be
this vector and with this definition, φ is one-to-one.

The level 2-table T2 corresponding to T S is the 2c|Iw|-dimensional table
with entries {0, . . . , nR − 1}2c|Iw|.

17

3.1.4 Level 3-Table

What remains in order to complete the description of data structure Dw is to
define the level 3-tables associated with this data structure. To understand
why we need these tables, we need the following observations.

Let U ′ be a set of vertices of U that traverse the same tree in T S. Then
φ(U ′) = {v} for some vector v corresponding to an entry in T2.

Let V1, . . . , Vm be defined as in Lemma 8. Then the same lemma implies
that for each u′ ∈ U ′ it is enough to specify 2-colourings of V1, . . . , Vm to
specify an Iw-colouring of R w.r.t. u′. The following lemma shows that each
of these 2-colourings can be specified by an integer in {0, . . . , nR} and that
this integer can be computed efficiently.

Lemma 9. Let i and j be distinct indices in Iw. With the above definitions,
there is a map f : U ′ → {0, . . . , nR} and {i, j}-colourings c0, . . . , cnR

of R
such that for each u ∈ U ′, cf(u) is an {i, j}-colouring of R w.r.t. u. Assuming
dG(u, pi) and dG(u, pj) are given, f(u) can be computed in O(log r) time for
any u ∈ U ′ with preprocessing time polynomial in r.

Proof. Assume first that D = dR(pi, pj) < ∞. For any u ∈ U ′, the triangle
inequality implies that |dG(u, pi)−dG(u, pj)| ≤ D. Observe that if dG(u, pi)−
dG(u, pj) = −D then there is an {i, j}-colouring of R w.r.t. u where all
vertices of R have colour ci. And if dG(u, pi) − dG(u, pj) = D then there is
an {i, j}-colouring where all vertices of R have colour cj .

Consider adding a new vertex u to G and edges ei = (u, pi) and ej =
(u, pj). Set the weights of ei and ej such that x = −D, where x = dG(u, pi)−
dG(u, pj). Now, consider adjusting the weights such that x is increased con-
tinuously from −D to D.

Initially, all vertices of R have colour ci in the {i, j}-colouring of R w.r.t.
u. There are event points in [−D, D], where the colouring changes. Such
changes occur exactly when dG(u, pi) + dR(pi, v) = dG(u, pj) + dR(pj, v), i.e.
when x = dR(pj, v) − dR(pi, v) for some v ∈ R.

Since there are nR vertices in R, we have shown that there are at most
nR + 1 distinct {i, j}-colourings and that each colouring corresponds to an
interval between two consecutive event points in [−D, D]. By ordering the
event points, we can apply binary search to find, in O(log r) time, the interval
corresponding to an {i, j}-colouring of R w.r.t. a vertex u ∈ U ′, assuming we
are given dG(u, pi) and dG(u, pj). This shows the lemma when D < ∞.

18

Now, assume that D = ∞ and let u be a vertex in U ′. Then for any v ∈ R,
if dR(pi, v) < ∞ then v can be assigned colour ci in an {i, j}-colouring of
R w.r.t. u. And if dR(pj, v) < ∞ then v can be assigned colour cj in an
{i, j}-colouring of R w.r.t. u. Finally, if dR(pi, v) = dR(pj , v) = ∞ then v
can be assigned either of the two colours ci and cj in an {i, j}-colouring of R
w.r.t. u. This shows the lemma when D = ∞.

We associate with T2-entry v a level 3-table T3. This table represents the
set {0, . . . , nR}m, where m is the number of sets in Lemma 8. Lemma 9 and
the above observations show that if the vertices in a subset of U are mapped
to the same T3-entry then we can associate a colouring with this entry which
is an Iw-colouring of R w.r.t. each vertex in that subset.

We enumerate all entries of level 3-tables associated with vertex w of main
tree T with integers 1, . . . , mw, where mw is the total number of entries. In
the main algorithm, when a query vertex u ∈ U is mapped to level 3-table
entry with integer k then k is the integer returned. By the above, this value
defines an Iw-colouring of R w.r.t. u.

3.1.5 Construction Time

Let us bound the time for the preprocessing step and the size of the data
structure obtained. We will assume that SSSP distances in G for each bound-
ary vertex have been precomputed, and that for each region R in the r-
division of G and for each cycle C ∈ CR, SSSP distances in UR,C have been
precomputed for each boundary vertex of R belonging to C. The latter al-
lows us to compute the length of all abstract edges in O(r) time. All these
SSSP distances can be computed in a total of O(n2/

√
r) using the linear time

SSSP algorithm of [9].
From the description and analysis of the preprocessing step, it is easy to

see that it has running time at most a factor polynomial in r larger than the
number of level 3-table entries, given the above precomputations. We will
show that the main tree T and its associated data structures contain a total
of O(rO(

√
r log r)) level 3-table entries. This will imply that the total running

time of the preprocessing step is O(rO(
√

r log r)) in addition to the O(n2/
√

r)
time above.

Let w be a vertex of T . We prove by induction on the height ≥ 0 of
subtree Tw that the total number of level 3-table entries associated with w is
at most rc1|Iw| log(|Iw|) for some constant c1. Since T has O(

√
r) vertices, this

19

will show our claim.
If the height is zero then Tw is a leaf. Since a leaf has no associated data

structure, our claim trivially holds in this case.
Now, suppose the height is at least one and that the induction hypoth-

esis holds for smaller heights. Since the level 1-table Tw associated with w
has a row resp. column for each level 3-table entry associated with lc(w)
resp. rc(w), it follows from the induction hypothesis that Tw has at most
rc1⌈|Iw|/2⌉ log(⌈|Iw|/2⌉) rows and at most rc1(|Iw|−⌈|Iw|/2⌉) log(|Iw|−⌈|Iw|/2⌉) columns.

Consider some entry of Tw. The associated level-2 table has at most rc2|Iw|

entries for some constant c2. The number of level 3-table entries associated
with each entry of that level-2 table is at most rc3|Iw| for some constant c3.
Hence, the total number of level 3-table entries associated with a single entry
of Tw is at most rc4|Iw| where c4 = c2c3.

Since the height is at least one, we have |Iw| > 1, implying that ⌈|Iw|/2⌉ <
3
4
|Iw|. From this and the above, it follows that the total number of level 3-

table entries associated with w is at most

rc1(⌈|Iw |/2⌉+|Iw|−⌈|Iw|/2⌉) log(⌈|Iw|/2⌉)+c4|Iw| = rc1|Iw| log(⌈|Iw |/2⌉)+c4|Iw|

< rc1|Iw| log(3

4
|Iw|)+c4|Iw|

= rc1|Iw| log(|Iw|)+c1 log(3

4
)|Iw|+c4|Iw|

Thus, if we choose c1 sufficiently large, i.e. such that c1 log(3
4
) ≤ −c4 then the

total number of level 3-table entries associated with w is at most rc1|Iw| log(|Iw|),
as requested. This gives the following result.

Theorem 1. The number of level 3-table entries associated with main tree T
and the total time spent in the preprocessing step are O(rO(

√
r log r)), assuming

SSSP distances for boundary vertices are given.

3.2 Main Algorithm

We are now ready to describe the main algorithm. We will show how the
precomputed main tree T and its associated data structures can be used
to efficiently find an integer representing a u-colouring of R for each vertex
u ∈ U .

So let u be one such vertex. We start at the root r of T and recursively
find two integers, ilc and irc , representing, respectively, an Ilc(r)-colouring and

20

an Irc(r)-colouring of R w.r.t. u. Using these integers as indices, we obtain
the tree set T S associated with entry (ilc , irc) in level 1-table Tr.

We perform a u-traversal in T S which gives us a binary tree and we map
this tree to a vector defining an entry in the level 2-table associated with
T S. Let T3 be the level 3-table associated with this entry.

Finally, we use the algorithm implicit in Lemma 9 to obtain the correct
entry of T3. The integer associated with this entry is then returned as that
representing a u-colouring of R.

The following theorem shows how the main algorithm can efficiently com-
pute the integer representing a u-colouring of R for any u ∈ U .

Lemma 10. Given main tree T with associated data structures and given
SSSP distances in G for each of the boundary vertices p1, . . . , pt of R in C,
the main algorithm obtains the integer representing a u-colouring of R in
time O(t log2 r) for any u ∈ U with preprocessing time polynomial in r.

Proof. Let u ∈ U be given. Let w be any non-leaf vertex of main tree
T and assume that we are given the two integers ilc and irc representing,
respectively, an Ilc(w)-colouring and an Irc(w)-colouring of R w.r.t. u. We
will show that we can obtain the integer representing an Iw-colouring of R
w.r.t. u in O(|Iw| log r) time. This will imply the theorem since T has height
O(log r), since the sum of the sizes of index sets associated with vertices of
the same depth in T is O(|Iw|), and since |Iw| = t when w is the root of T .

We can obtain the tree set T S associated with entry (ilc, irc) of the level
1-table of w in constant time. It suffices to show that the binary tree of
T S traversed by u can be found in O(|Iw| log r) time. For suppose this tree
is given. Then a depth-first traversal of it gives the vector mapping the
tree to an entry of the associated level 2-table in O(|Iw|) time by Lemma 6.
And given this entry, we can find the entry in the appropriate level 3-table
in O(|Iw| log r) time with preprocessing time polynomial in r by Lemma 8
and 9.

To show that the tree of T S traversed by u can be found in O(|Iw| log r)
time we will show that the appropriate entry in one of the two arrays Ai and
Aj at the top-level of a tree set T S ′ can be found in O(log r) time. This
will show our claim since the tree traversed by u has O(|Iw|) vertices by
Lemma 6.

Let subset A, index sets I ⊆ Ilc(w), I ′ ⊆ Irc(w), colourings c : A → I
and c′ : A → I ′, vertex v and paths Pi and Pj be associated with T S ′.
Deciding which of the two arrays Ai and Aj contains the entry we are looking

21

pj

pi

v1

pc(v1)

Pi Pj

v

v2

v3

Pj(v1)

u

Figure 7: The situation in the proof of Lemma 10.

for can be done in constant time since this involves determining whether
dG(u, pi) + dR(pi, v) ≤ dG(u, pj) + dR(pj, v) and since SSSP distances have
been precomputed for each boundary vertex.

Suppose w.l.o.g. that dG(u, pi)+dR(pi, v) ≤ dG(u, pj)+dR(pj, v), i.e. that
the entry belongs to Aj. Let us use the same notation as in the construction
of T S ′. Then we need to find in Pj a split vertex of A w.r.t. u and colourings
c and c′.

We observe that the redefinition of c′ in the construction of T S ′ ensures
that each vertex of Pj has colour j in the colouring c′. Hence, our claim will
follow if we can find in O(log r) time a vertex v1 ∈ Pj such that

1. dG(u, pc(v1)) + dR(pc(v1), v1) ≤ dG(u, pj) + dR(pj , v1) and

2. dG(u, pj)+dR(pj, v2) < dG(u, pk)+dR(pk, v2) for any vertex v2 ∈ Pj(v1)\
{v1} and any k ∈ I,

where Pj(v1) is the subpath of Pj from pj to v1.
The invariant in the construction of T S ′ ensures that every vertex of

Pj belongs to A. Since c is an I-colouring of A w.r.t. u, the second con-
dition above can thus be restated as the simpler condition that dG(u, pj) +
dR(pj , v2) < dG(u, pc(v2))+dR(pc(v2), v2) for any vertex v2 ∈ Pj(v1) \ {v1}. We
will show that we can apply binary search in Aj to find a vertex v1 satisfying
this condition and the first condition above.

So consider some v1-entry e of Aj and let (i1, j) be the colour pair of v1,
see Figure 7. If the first condition is not satisfied for v1 then it is not satisfied
for any vertex in Pj(v1). So in this case, we can disregard e and all entries
to one side of e in Aj when looking for a split vertex.

22

Now, assume that the first condition does hold for v1. Let v2 be the last
vertex of Pj(v1) \ {v1} when walking from pj (we assume that such a vertex
exists since otherwise, v1 must be a split vertex). Let (i2, j) be the colour
pair of v2.

If dG(u, pi2) + dR(pi2 , v2) ≤ dG(u, pj) + dR(pj, v2) then a split vertex must
belong to Pj(v1) \ {v1} and again we can disregard e and all entries to one
side of e in Aj when looking for a split vertex.

Finally, suppose the first condition is satisfied and dG(u, pi2)+dR(pi2 , v2) >
dG(u, pj) + dR(pj, v2). We claim that in this case, v1 is a split vertex.

To see this, we need to show that dG(u, pj) + dR(pj , v3) < dG(u, pi3) +
dR(pi3 , v3) for any v3 ∈ Pj(v1) \ {v1}, where (i3, j) is the colour pair of v3.
Suppose for the sake of contradiction that dG(u, pj)+dR(pj , v3) ≥ dG(u, pi3)+
dR(pi3 , v3) for one such vertex. Then

dG(u, pj) + dR(pj, v2) = dG(u, pj) + dR(pj, v3) + dR(v3, v2)

≥ dG(u, pi3) + dR(pi3 , v3) + dR(v3, v2)

≥ dG(u, pi3) + dR(pi3 , v2)

≥ dG(u, pi2) + dR(pi2 , v2),

contradicting the inequality dG(u, pi2) + dR(pi2 , v2) > dG(u, pj) + dR(pj, v2).
We have shown that binary search in Aj can be applied to find a split

vertex. Since SSSP distances for each boundary vertex have been precom-
puted and since Aj has O(r) entries, it follows that it takes O(log r) time
to find a split vertex. From the discussion above, this suffices to prove the
lemma.

We are now ready for our first main result. In the following theorem, we
state our generic algorithm and bound its running time.

Theorem 2. With the above definitions, suppose r = (c log n/(log log n)2)2

where c is a constant. If c is sufficiently small then there is a constant
ǫ < 1, an integer N = O(nǫ), a map f : U → {1, . . . , N}, and It-colourings
c1, . . . , cN of R where cf(u) is a u-colouring of R for all u ∈ U . The integers
f(u) for u ∈ U and colourings c1, . . . , cN can be computed in a total of O(nǫ+
|U | log n) time with O(n2(log log n)2/ log n) preprocessing time (independent
of U and R).

Proof. SSSP distances may be precomputed in O(n2/
√

r) time.

23

In the main algorithm, vertices of U are mapped to integers in the range
{1, . . . , N}, where N is the total number of level 3-table entries. By Theo-
rem 1 and Lemma 10 this takes a total of

O(rc′
√

r log r + |U |
√

r log2 r)

time for some constant c′. So to show one part of the theorem, that integers
f(u) for u ∈ U can be computed in a total of O(nǫ + |U | log n) time for some
constant ǫ < 1, we need to pick constant c such that

√
r log2 r = O(logn),

rc′
√

r log n = O(nǫ), and n2/
√

r = O(n2(log log n)2/ log n). This also shows
N = O(nǫ).

For sufficiently large n,

rc′
√

r log r = (c log n/(log log n)2)2c′(c log n/(log log n)2) log((c log n/(log log n)2)2)

≤ (c log n)(4c′c log n/(log log n)2) log(c log n)

≤ (c log n)(8c′c log n/(log log n)2) log log n

≤ (log n)16c′c log n/ log log n

= 216c′c log n

= n16c′c.

By setting c < 1/(16c′), we have rc′
√

r log n = O(nǫ) with ǫ < 1. Also,

√
r log2 r = O((logn/(log log n)2)(log log n)2) = O(log n).

And finally, n2/
√

r = O(n2(log log n)2/ log n), as requested.
To bound the time to compute the colourings, we observe that each

colouring can be obtained in time polynomial in r. Thus, the total time
to compute all colourings is O(NrO(1)) = O(rO(

√
r log r)). This is O(nǫ) for c

sufficiently small.

4 Applications of the Generic Algorithm

In this section, we show how the generic algorithm gives us, almost for free,
subquadratic time algorithms for computing the (weighted) Wiener index,
the diameter, and the stretch factor of a planar graph with non-negative
edge-weights.

24

We start with the problem of computing the Wiener index of a planar
graph G = (V, E) with non-negative edge-weights. For V1, V2 ⊆ V , define
∑

(V1, V2) =
∑

v1∈V1

∑

v2∈V2
dG(v1, v2). We extend this definition to sub-

graphs of G by summing over their vertex sets. The Wiener index of G is
defined as 1

2

∑

(V, V).

Theorem 3. The Wiener index of an n-vertex planar graph with non-negative
edge weights can be computed in O(n2(log log n)4/ log n) time.

Proof. Let G be an n-vertex planar graph with non-negative edge weights.
We start by computing an r-division of G in O(n log n) time with r =
(c log n/(log log n)2)2 for constant c satisfying Theorem 2. We also precom-
pute SSSP distances in G for each boundary vertex. As we saw earlier, this
can be done in O(n2(log log n)2/ log n) time.

By Lemma 2,

∑

G =
1

2

∑

R∈R

(

∑

(R, R) +
∑

C∈CR

∑

(UR,C , R)

)

.

Let R ∈ R be given. We will show how to compute
∑

(R, R) and
∑

C∈CR

∑

(UR,C , R) in O(|CR|nǫ + n log n) time for some constant ǫ < 1.
Since each cycle occurs in at most two regions and since there are O(n/r)
regions it will follow from this that

∑

G can be computed in time

O
(n

r
nǫ +

n

r
n log n

)

= O

(

n1+ǫ

r
+

n2 log n

(log n/(log log n)2)2

)

= O(n2(log log n)4/ log n).

To compute
∑

(R, R), let R′ be the graph obtained from R by adding
an edge between each pair of boundary vertices of R. The weight of each
edge is equal to the distance in G between the end vertices of the edge. We
compute APSP distances in R′ and obtain

∑

(R, R) by adding up all these
distances. The time it takes to add edges and compute their weights is O(r)
time, given the precomputed SSSP distances. It then takes O(r3) time to
compute APSP distances by using an algorithm like Floyd-Warshall. Thus,
∑

(R, R) can be computed in time polylogarithmic in n.
What remains is to show that

∑

C∈CR

∑

(UR,C , R) can be computed in
O(|CR|nǫ +n log n) time for some constant ǫ < 1 with O(n2(log log n)2/ log n)

25

preprocessing time. So let C ∈ CR be given and let p1, . . . , pt be the boundary
vertices of R belonging to C.

By Theorem 2, there is a constant ǫ′ < 1, an integer N = O(nǫ′), a map
f : UR,C → {1, . . . , N}, and It-colourings c1, . . . , cN of R such that cf(u) is
a u-colouring of R for all u ∈ UR,C . The integers f(u) for u ∈ UR,C and
colourings c1, . . . , cN can be computed in a total of O(nǫ′ + |UR,C | log n) time
with O(n2(log log n)2/ log n) preprocessing time.

Let M ∈ {1, . . . , N}. For the colouring cM of R corresponding to M , we
compute

∑

({pi}, Vi,M) for i = 1, . . . , t, where Vi,M is the set of vertices of R
with colour i. We also compute the number |Vi,M | of vertices in Vi,M . This
can clearly be done in time polynomial in r which is poly-logarithmic in n.
Over all i and M , this is Õ(nǫ′) = O(nǫ) time for some constant ǫ < 1.

Now, for a vertex u ∈ UR,C , let Mu = f(u). Then

∑

({u}, R) =

t
∑

i=1

dG(u, pi)|Vi,Mu
| +
∑

({pi}, Vi,Mu
). (2)

Given the above precomputations, it follows that
∑

({u}, R) can be computed
in O(t) time. Hence,

∑

(UR,C , R) can be computed in O(nǫ + |UR,C |t) =
O(nǫ + |UR,C |

√
r) time with O(n2(log log n)2/ log n) preprocessing time.

Adding this up over all C ∈ CR and using the fact that
∑

C∈CR
|UR,C | ≤ n,

it follows that
∑

C∈CR

∑

(UR,C , R) can be computed in

O(|CR|nǫ + n
√

r) = O(|CR|nǫ + n log n/(log log n)2)

time in addition to the O(|CR|nǫ′ +n log n) time spent in Theorem 2 and the
O(n2(log log n)2/ log n) preprocessing time.

Next, the diameter of a planar graph.

Theorem 4. The diameter of an n-vertex planar graph with non-negative
edge weights can be computed in O(n2(log log n)4/ log n) time.

Proof. The proof is similar to that of Theorem 3. The only essential difference
is that we compute maxv∈Vi,Mu

dG(pi, v) instead of
∑

({pi}, Vi,Mu
) and use the

identity

max
v∈R

dG(u, v) = max

{

dG(u, pi) + max
v∈Vi,Mu

dG(pi, v)|i = 1, . . . , t

}

instead of (2).

26

Finally, the stretch factor of a plane geometric graph G = (V, E). For
subsets V1, V2 ⊆ V , define

δG(V1, V2) = max
v1∈V1,v2∈V2,v1 6=v2

dG(v1, v2)

‖v1v2‖2
.

We extend this definition to subgraphs of G by taking the maximum over
their vertex sets. The stretch factor of G is defined as δG(V, V).

Theorem 5. The stretch factor of an n-vertex plane geometric graph can be
computed in O(n2(log log n)4/ log n) expected time.

Proof. Let G be an n-vertex plane geometric graph. We first compute an r-
division of a triangulation of G with r = (c log n/(log log n)2)2 for constant c
satisfying Theorem 3 and compute SSSP distances for all boundary vertices.

Let R be a region in this r-division. We will show how to compute
δG(UR,C , R) for all C ∈ CR using a total of O(|CR|nǫ + n log n) expected time
for some constant ǫ < 1 with O(n2(log log n)2/ log n) preprocessing time. As
in the proof of Theorem 3, it will follow from this that the stretch factor of
G can be computed in O(n2(log log n)4/ log n) expected time.

Let C ∈ CR and let p1, . . . , pt be the boundary vertices of R belonging
to C. By Theorem 2, there is a constant ǫ′ < 1, an integer N = O(nǫ′), a
map f : UR,C → {1, . . . , N}, and It-colourings c1, . . . , cN of R such that cf(u)

is a u-colouring of R for all u ∈ UR,C . The integers f(u) for u ∈ UR,C and
colourings c1, . . . , cN can be computed in a total of O(nǫ′ + |UR,C | log n) time
with O(n2(log log n)2/ log n) preprocessing time.

For M = 1, . . . , N , define the group UM as the set of vertices u ∈ UR,C

such that f(u) = M . All vertices in the same group induce identical colour-
ings of R.

Consider one such group UM . For i = 1, . . . , t, lift each vertex v ∈ Vi,M

to height dG(pi, v) on the z-axis, where Vi,M is the set of vertices of R with
colour i in the colouring cM associated with group UM . Furthermore, lower
each vertex u of UM to height −dG(u, pi). Each lifting/lowering of a vertex
takes constant time given the precomputed SSSP distances. The sets Vi,M

over all i and M can be computed in Õ(nǫ′) = O(nǫ) time for some ǫ > 0.
Observe that the height difference between any lowered vertex u and

any lifted vertex v is equal to dG(u, v). Now, arbitrarily divide UM into
O(|UM |/√r) subsets each containing O(

√
r) vertices. Applying the algorithm

27

of [1] to the (lowered) vertices in each of these subsets and to the (lifted)
vertices in Vi,M gives δG(UM , Vi,M) in expected time

O

(|UM |√
r

(
√

r + |Vi,M |) log(
√

r + |Vi,M |)
)

= O

(

|UM |
(

1 +
|Vi,M |√

r

)

log r

)

.

Summing over all i, we see that δG(UM , R) can be found in expected time

O(|UM |(t + r/
√

r) log r) = O(|UM |
√

r log r).

Hence, δG(UR,C , R) can be found in O(|UR,C|
√

r log r) expected time. Over
all C ∈ CR, this is O(n

√
r log r) = O(n log n/ log log n). This shows the

theorem.

Using parametric search as in [1], we can obtain δG(UR,C , R) in worst-case
time O(|UR,C |

√
r(log r)O(1)) in the proof of Theorem 5. Over all C ∈ CR,

this is O(n log n(log log n)O(1)), implying that the stretch factor of G can be
computed in O(n2(log log n)O(1)/ log n) worst-case time.

5 Unweighted Graphs

In [14], we showed that the Wiener index of an n-vertex planar unweighted
graph can be found in O(n2 log log n/ log n) time using O(n) space. We only
needed planarity to obtain an r-division (as defined in that paper) and to
find SSSP path distances in linear time. As noted in [9], both of these results
hold for any subgraph-closed

√
n-separable graph (see definition in [9]). And

by applying the same idea as in the proof of Theorem 4, it follows that
both the Wiener index and the diameter of such a graph can be found in
O(n2 log log n/ log n) time and O(n) space.

Theorem 6. The Wiener index and diameter of an unweighted n-vertex
subgraph-closed

√
n-separable graph can be found in O(n2 log log n/ log n) time

with O(n) space.

6 Concluding Remarks

We showed how to compute the Wiener index and the diameter of an n-vertex
planar graph with non-negative edge-weights in O(n2(log log n)4/ log n) worst-
case time and the stretch factor of an n-vertex plane geometric graph in

28

O(n2(log log n)4/ log n) expected time. Previously, it was open whether any
of these three problems could be solved in subquadratic time. We also showed
that the Wiener index and diameter of an unweighted n-vertex subgraph-
closed

√
n-separable graph can be found in O(n2 log log n/ log n) time with

O(n) space.
Our results for weighted graphs are obtained by applying the same generic

algorithm. We hope this algorithm may yield faster algorithms for other pla-
nar graph problems involving, in some way, shortest path distances between
all or some pairs of vertices.

We pose the following questions: is there a constant c < 2 such that any
of the above problems can be solved in O(nc) time? Are there subquadratic
time algorithms for computing the Wiener index, diameter, and stretch factor
of an even larger class of graphs, such as the class of subgraph-closed

√
n-

separable graphs with non-negative edge weights? What about lower bounds
on running time?

References

[1] P. K. Agarwal, R. Klein, C. Knauer, S. Langerman, P. Morin, M. Sharir,
and M. Soss. Computing the Detour and Spanning Ratio of Paths, Trees
and Cycles in 2D and 3D. Discrete and Computational Geometry, 39 (1):
17–37 (2008).

[2] S. Cabello. Many distances in planar graphs. In Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1213–
1220, New York, NY, USA, 2006. ACM Press.

[3] S. Cabello and C. Knauer. Algorithms for graphs of bounded treewidth
via orthogonal range searching. Manuscript, Berlin, 2007.

[4] V. Chepoi and S. Klavžar. The Wiener index and the Szeged index of
benzenoid systems in linear time. J. Chem. Inf. Comput. Sci., 37:752–
755, 1997.

[5] F. R. K. Chung. Diameters of Graphs: Old Problems and New Results.
Congressus Numerantium, 60:295–317, 1987.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. McGraw-Hill, 2nd ed., 2001.

29

[7] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM J. Comput., 16 (1987), pp. 1004–1022.

[8] Y. Han. An O(n3(log log n/ log n)5/4) Time Algorithm for All Pairs
Shortest Paths. In Proc. of ESA, Springer-Verlag LNCS 4168:411–417,
2006.

[9] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster Shortest-
Path Algorithms for Planar Graphs. Journal of Computer and System
Sciences volume 55, issue 1, August 1997, pages 3–23.

[10] R. J. Lipton and R. E. Tarjan. A Separator Theorem for Planar Graphs.
STAN-CS-77-627, October 1977.

[11] G. L. Miller. Finding small simple cycle separators for 2-connected pla-
nar graphs. J. Comput. Syst. Sci., 32:265–279, 1986.

[12] B. Mohar and T. Pisanski. How to compute the Wiener index of a graph.
J. Math. Chem., pages 267–277, 1988.

[13] H. Wiener. Structural determination of paraffin boiling points. J. Amer.
Chem. Sot., 69:17–20, 1947.

[14] C. Wulff-Nilsen. Sum of All-Pairs Shortest Path Distances in a Planar
Graph in Subquadratic Time. Technical Report 08/11, Department of
Computer Science, University of Copenhagen, 2008.

[15] B. Zmazek and J. Žerovnik. Computing the weighted Wiener and Szeged
number on weighted cactus graphs in linear time. Croatica Chemica
Acta, 76:137–143, 2003.

30

