
 

Dept. of Computer Science 
University of Copenhagen • Universitetsparken 1 

DK-2100 Copenhagen • Denmark 
 

 

 
 

Mote-based Online Anomaly Detection using 
Echo State Networks 

 
Marcus Chang, Andreas Terzis, Philippe Bonnet  
Joint technical report with Johns Hopkins 

University

Technical Report no. 09/01 
ISSN: 0107-8283 



Mote-based Online Anomaly Detection using

Echo State Networks

Marcus Chang1, Andreas Terzis2, and Philippe Bonnet1

1 Dept. of Computer Science, University of Copenhagen, Copenhagen, Denmark
2 Dept. of Computer Science, Johns Hopkins University, Baltimore MD, USA

Abstract. Sensor network deployments are plagued with measurement
faults due to hardware and software defects. At the same time, networks
should autonomously adapt to events they sense, for example by increas-
ing their sampling rate or raising alarms. In this work we unify fault and
event detection under a general anomaly detection framework in which
motes are trained to recognize data from a training set as normal and
measurements that significantly deviate from that set as anomalies. We
implement an anomaly detection algorithm using Echo State Networks
(ESN), a family of sparse neural networks, on a mote-class device and
show that its accuracy is comparable to a PC-based implementation.
Furthermore, we show that ESNs detect more faults and have fewer false
positives than threshold-based fault detection mechanisms. More impor-
tantly, while rule-based fault detection algorithms generate false nega-
tives and misclassifications when exposed to multiple faults and events,
ESNs are general, correctly identifying a wide variety of anomalies.
Keywords: Anomaly detection, Real-time, Wireless Sensor Networks

1 Introduction

Sensor networks deployed to collect scientific data (e.g., [1–3]) have shown that
field measurements are inherently noisy, due to a variety of hardware and soft-
ware faults. These faults must be detected to prevent polluting the experiment
and wasting the network’s resources. However, Gupchup et al. recently showed
that algorithms that classify measurements which deviate from the recent past as
faulty, tend to misclassify events as faults [4]. Events in this context, such as rain
events in the case of soil moisture, are measurements that deviate from “normal”
data patterns, yet they represent features of the underlying phenomenon. This
behavior is undesirable because, unlike faults which we want to discard, events
are the most important data that a mote collects, as they inform scientists
about the characteristics of the observed environment. Furthermore, detection
algorithms tailored to specific types of faults must run in parallel, leading to
false positives when exposed to multiple types of faults [4].

In this work we unify fault and event detection under a more general anomaly

detection framework, in which online algorithms classify measurements that sig-
nificantly deviate from a learned model of data as anomalies. By including dis-
tinct, yet infrequent events in the training set we avoid the misclassification



problem mentioned above thus allowing the system to distinguish faults from
interesting events.

Obviously anomaly detection can and should also be done on a gateway that
correlates data from multiple sensors. Nonetheless, we claim that online detection
on motes is also very much relevant. We motivate this need through an example
derived from one of our current projects [5]. Consider a set of motes equipped
with chlorophyll and temperature sensors deployed under the surface of a lake
and connected to a floating buoy via underwater modems. Furthermore, as the
lake is in North-East Greenland it is covered with ice from September to mid-
July, forbidding physical access to the motes. Finally, the communication links
between some of the motes and the floating buoy can be non-functional over long
time periods, either because the buoy is out of communication range, or due to
a hardware fault on the acoustic modem, or because the background noise in
the lake is elevated during a storm. Irrespective of the intermittent availability
of the communication links, the motes should collect data and temporarily store
them to their local flash memory. Furthermore, the motes should be able to
autonomously alter their sensing behavior depending on whether the collected
measurements are seemingly faulty or correspond to interesting events.

The general consensus so far has been that learning-based techniques are too
resource intensive to be implemented on mote-class devices. In this paper we
challenge this belief, showing instead that a neural network variant called Echo
State Network (ESN) [6], can indeed be implemented on a TelosB mote [7]. More
importantly, the ESN can effectively detect measurement sequences that contain
multiple categories of anomalies that do not exist in the training data.

In summary, the contributions of this paper are as follows: (1) we develop
an anomaly detection framework based on the Echo State Network. (2) We
implement this framework on a mote-class device. (3) We quantitatively compare
the ESN with two rule-based fault detection techniques. Specifically, we show
that an ESN small enough to function alongside a fully-functional environmental
monitoring mote application, is still more sensitive to subtler faults and generates
fewer false positives than the two rule-based fault detection techniques.

2 Related Work

Anomaly characterization and detection has received significant attention in the
sensor network community, yielding a broad range of algorithmic approaches.

Omitaomu et al. used probabilistic Principal Component Analysis to detect
suspicious trucks at weighing stations on US interstate highways [8]. Wu et al.
used geometric algorithms to detect outliers in precipitation data from South
America [9], while Kaplantzis et al. used Support Vector Machines to detect
network anomalies [10]. While differing on the specific mechanisms used, all
these algorithms partition the data into subsets and detect anomalies by identi-
fying the data points that do not belong to any subset. However, the temporal
relations among data points are lost in such outlier detection algorithms. We



seek a solution that not only considers each data point in isolation, but also the
context in which it appears.

This context aware detection can be recast as a pattern recognition problem.
Rashidi et al. built a framework for pattern mining and detection [11] and Römer
used conditional rules to define anomalies [12]. However, neither of these solu-
tions operate directly on raw sensor data; they rather assume that descriptive
labels already exist. This classification is supposed to be performed by apply-
ing simple rules and thresholds to the raw data. The accuracy of both methods
thereby depends on those rules.

Sensor networks have extensively used rule- and threshold-based anomaly de-
tection schemes due to their simplicity. For example, Hu et al. monitored Cane
toads by recording audio samples on Mica2 motes and used a simple threshold
technique to trigger data transmission [13]. Werner-Allen et al. used Exponen-
tially Weighted Moving Averages (EWMA) as a rule to detect seismological
events on TelosB motes [14]. Furthermore, Sharma et al. proposed two rules to
detect faults that are commonly observed in environmental monitoring: Short
faults and Noise faults. A Short fault is characterized by a drastic difference
between the current and the previous measurement, while a Noise fault is a pe-
riod during which the measurements exhibit larger than normal variations. To
detect the former, the Short rule compares two adjacent data points and flags
the more recent as faulty when the difference is above a certain threshold. To
detect the latter, the Noise rule considers a sliding window of measurements
and flags all measurements in the window as faulty if the standard deviation is
above a certain threshold [15]. Outside the field of environmental monitoring,
Pister et al. deployed Rene motes from a UAV to detect moving vehicles in one
of the first WSN field experiments [16]. They also used a simple threshold to
determine whether a vehicle was present or not. While these schemes are very
efficient, their effectiveness is limited. Werner-Allen et al. estimated the accuracy
of their detection technique to be as low as 5%-29% [14]. Moreover, Gupchup et
al. showed that these schemes suffer from inherent misclassification problems [4].
We thus seek a solution based on machine learning.

The use of machine learning as an anomaly detection tool has been proposed
in the context of WSNs. However, most efforts thus far have focused on post-
processing instead of online detection. In fact, Obst et al. also used Echo State
neural networks to track gas readings from coal mines [17], while Wang et al.
performed a similar study using Bayesian networks [18]. Bokareva et al. proposed
another neural network variant called Competitive Learning Neural Network
(CLNN) and used it to perform in-network classification [19]. However, their
algorithm was running on a Stargate gateway instead on mote-class devices. We
bridge the gap between online detection and machine learning by implementing
a sophisticated detection technique on a mote.
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Fig. 1. (a) Traditional Neural Network (top) and Echo State Network (bottom). (b)
tanh() and tanhlike neuron activation functions.

3 Machine Learning

We define anomalies as the measurements that significantly deviate from learned
data. We rely on machine learning techniques to define our classification model.
We focus on supervised learning because our scientific partners are able to pro-
vide training sets (i.e., data that were collected manually in the past, or synthe-
sized based on a analytical model). These sets correspond to the data scientists
expect: the valid data. The proposed classification mechanism should then ac-
cept measurements that match the model as valid and reject everything else as
anomalies. This mode of operation rules out learning techniques such as support
vector machines that assign measurements to one of the classes defined in the
training set.

Kalman filters can be used for online detection by applying a threshold to the
difference between the predicted and the measured values. However, they cannot
be used for predictions based on a compact model of learned data as each predic-
tion is based on a sliding window of observed values. On the other hand, Bayesian
networks can perform classifications based on learned models by using causality
graphs and probability functions to produce likelihood estimates of the observed
values (evidence). However, this inference requires a graph reduction operation
(which is NP-complete) and modeling of the probability function (typically a
Gaussian) which can also be expensive on resource constrained devices.

Consequently, we decided to use echo state networks, a form of neural net-
works that promises to meet our requirements in terms of classification efficiency
(i.e., minimize false classifications) and resource use (i.e., minimize CPU, RAM,
ROM, and energy usage).

3.1 Neural Networks

A neural network can be informally considered as an approximation function.
Specifically, when presented with a subset of the original function’s value pairs



during the training stage, the neural network generalizes over these data and
approximates the outcomes of the original function in the prediction stage.

Formally, a neural network is a weighted directed graph whose each vertex
is represented as a neuron. We consider discrete-time networks consisting of K

input neurons, N hidden neurons, and L output neurons (see Figure 1a). The
input neurons act as sources and the output neurons as sinks. At time step n,
the input neurons are given the signal u(n) and the output neurons provide the
signal y(n). The value of neuron j is given by: vj = A(

∑

wijvi), where vi is
the output of neuron i, wij is the weight of the edge connecting neuron i to j,
and A() is the activation function. This function is typically tanh() or a similar
function (see Figure 1b).

The training stage consists of adjusting the network’s weights to approximate
the output signal to the training signal. Training is done offline, leaving only the
weighted directed graph and the activation function to be implemented on a
mote. Thereby, resource efficiency depends on the graph’s representation and
the cost of evaluating the activation function.

3.2 Echo State Networks

We consider the special class of Echo State Networks (ESN) [6]. In a ESN, cy-
cles are allowed and thus all hidden neurons can be connected with each other
and themselves. Furthermore, output neurons can have back-propagating signals,
making them both input and output neurons. There are several subtle differences
between ESNs and the more traditionally-used Feed Forward networks. First, all
neurons are interconnected (but can have zero-weighted edges) removing the no-
tion of layers. Second, because cycles involving one or more neurons are allowed,
each neuron has the capability to remember, adding memory to the network as
a whole. Third, all neurons’ connections, directions, and weights are generated
randomly and do not change during training. The neurons thus act as a black
box referred to as the Dynamic Reservoir (DR). Fourth, the only weights that
change during training are the output weights. This last property reduces the
learning algorithm to a simple linear regression.

According to the Echo State property, the DR contains a set of basis states
and by adjusting the output weights it is possible to capture the ’echoes’ of real
states as linear combinations of these basis states. Although the DR is randomly
generated, Jaeger proved that it is possible to ensure that the DR indeed has the
Echo State property by enforcing certain conditions [6]. One such condition is
that the DR must be sparsely connected, whereas 10% of all possible connections
are actually active.

3.3 Anomaly Detection

We use ESNs to determine whether sensor readings are anomalous, by comparing
the ESN predictions to the actual measurements. Since the ESN is a learning
algorithm, we define all features in the training set as normal and all features
not part of this set as anomalies. We train this system using the same signal as



both input and teacher signal, except that we shift the teacher signal one step
forward in time, i.e., at time n = 0 the input signal u(0) will be associated with
the teacher signal d(0), whereas d(0) = u(1).

In order to quantify the prediction error we look at the numerical differences
between the measurements (M ) and the predictions (P ), i.e., δ = M −P . This
difference should ideally be close to zero for normal data, while anomalous data
should result in large differences (peaks). In other words, the ESN transforms
the original time series into one whose values are mostly ∼ 0, corresponding to
the expected data. Anomaly detection thus reduces to recognizing the peaks in
the transformed signal. We can then use pattern matching algorithms based on
simple thresholds that have been proven to be both efficient and effective for
such simple signals.

The peak recognition consists of three stages. The reason behind the stages
is that even single data point anomalies have a wide peak (spanning multiple
data points) in the prediction error. This is caused by the internal states of the
ESN being perturbed each time an anomaly is encountered resulting in a settling
time before the predictions stabilizes.

In the first stage we reduce the perturbations in the prediction error by
applying a moving average on two consecutive data points: δavg(i) = 1

2
(|δ(i −

1)| + |δ(i)|). We only consider two data points since more points will increase
the width of the peak. In the second stage we mark data points as anomalies by
applying two different thresholds to two consecutive data points: δavg(i) > ρi

and δavg(i − 1) > ρi−1, where the second condition is only applied if the first
is true. By using conditional thresholds we can decrease the number of false
positives by setting ρi conservatively high, while at the same time decrease the
number of false negatives by setting ρi−1 lower. I.e., the first threshold is to
detect the general location of the anomaly, while the second one is to ensure
we detect the correct starting point. This will, however, lead to over-counting
of anomalies. Thus, in the third stage we remove the extra marked data points
by assuming that single point anomalies will at most be marked as four data
points. Therefore, we remove the trailing marked data points for all anomalies
at most four data points wide. We only perform this final stage on single point
anomalies since the perturbations have varying effect on larger anomalies.

3.4 Discussion

The decoupling of the DR from the output weights enables several optimiza-
tions that fit WSNs particularly well. For instance, the same DR can be used for
multiple tasks by storing task-specific output weights. This also facilitates post-
deployment update since only the output weights need to be transmitted over
the network instead of the entire DR. The requirement that the DR is sparsely
connected is advantageous in the context of motes with limited storage. Further-
more, the use of sparse matrix algebra, allows the implementation on motes of
ESNs that are larger than regular Feed Forward networks.

A limitation that ESNs share with all learning algorithms is their dependence
on training data. In particular, if these data do not represent what domain



scientists deem as “normal”, the predictions will be useless. Therefore, the choice
of training sets, and more interestingly the choice of classification technique
based on the available training sets is a very interesting open problem, which
is beyond the scope of this paper. We just note that a key issue in successfully
deploying an ESN lies in the choice and availability of training data. For example,
adjusting the sampling rate in an adaptive sampling environment can change
the properties of the measurement time series and thus possibly invalidate the
training set. This issue can however be remedied, by storing different output
weights for each sampling rate, or by disregarding higher sampling rates when
applying the ESN detection. On the positive side, ESNs have the ability to
generalize over the training data. In other words, ESNs base their predictions
on the trends of the presented data rather than exact values. This feature allows
motes deployed in similar regions to share the same training data instead of
requiring mote-specific training sets.

4 ESN on a Mote

4.1 Implementation

While we create and train the ESNs offline, a complete ESN including the net-
work’s activation mechanism, weight matrices and the DR is included in the
application that runs on the mote, making it part of the program stored in
ROM. On the other hand, we store the output weights in RAM to facilitate
post-deployment updates of the ESN. We use TinyOS 2.x to ensure portability
to a broad range of mote class devices. Our implementation, publicly available for
download at [20], focuses on two issues: feasibility and efficiency. In other words,
the ESN algorithm and the DR must fit in ROM and the ESN algorithm must
be fast enough to maintain the desired sampling rate, while allowing the mote
to return to sleep. In the paragraphs that follow we present three optimizations
employed to improve performance along these two axes.

Sparse Matrix Algebra. The size of the DR’s weight matrix grows quadrati-
cally with the number of neurons in the reservoir n. However, only 10% of these
elements are non-zero because the DR must possess the Echo State property.
We leverage this feature by storing the matrix using Compressed Row Storage,
which only stores the non-zero elements and the layout of the matrix [21]. This
reduces the necessary storage from O(n2) to O(2nz + n + 1), where nz is the
number of non-zero elements. This technique also reduces the number of oper-
ations needed to perform matrix multiplications by a similar factor since only
non-zero elements are used.

Single Floating Point Precision. Most mote-class devices do not have hardware-
accelerated floating point operations which means that they have to be emulated
in software. This emulation contributes to both the storage overhead, since the
floating point libraries have to be stored on the mote and the runtime overhead,
as floating point operations in software are resource intensive. At the cost of
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Fig. 2. (a) Q-Q plot of δmote/tanh and δlab/tanh. (b) Q-Q plot of δmote/tl and δlab/tl.
The table above shows the normalized root-mean-squared deviation (NRMSD).

reduced floating point precision we select to store and compute all values using
single instead of double floating point precision. Doing so halves the size of all the
weight matrices and reduces the number of emulated floating point operations
needed. As we later show, the resulting loss of precision is tolerable.

Tanhlike Activation Function. Because the activation function has to be
applied to all the neurons and every iteration, it is important to choose an
efficient function. At the same time, choosing a suboptimal activation function
can significantly degrade the ESN’s output quality. The often used hyperbolic
tangent, tanh(), is a complex function requiring both large amounts of storage
and a significant processing time. Because of these shortcomings, Marra et al.
[22] proposed the approximation function:

TL(x) = sign(x)

[

1 +
1

2⌊2n|x|⌋

(

2n |x| − ⌊2n |x|⌋

2
− 1

)]

where n ∈ ZZ determines the steepness of the function. We use n = 1 since
this makes the function resemble tanh() the most (see Figure 1b). This tanhlike

function has properties similar to tanh() but with far lower complexity. However,
it is also a non-differentiable, piecewise-linear function because of the rounding
operations (⌊·⌋). Therefore, we expect the quality of the ESN’s output to be
lower than when using tanh(), because small changes in input will result in large
changes in output if these changes happen across a linear junction.

4.2 Evaluation

We verify that our ESN implementation indeed performs well on a mote-class
device by comparing its output to a reference ESN running on a PC. All mote
experiments are carried out on a TelosB mote [7], running TinyOS 2.x with
the clock frequency set to the default speed of 4 MHz [23]. All data sets are
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Fig. 3. (a) ROM footprints for the tanh() and tanhlike functions. (b) Total ROM
footprint for an ESN using the custom tanhlike activation function.

stored in ROM with measurements read with a fixed frequency to simulate sensor
sampling. We use Matlab R2007a with the Matlab toolbox for ESNs [24] as our
reference implementation.

Sanity Check. To evaluate our ESN implementation we use the Mackey-Glass
(MG) time series with a delay τ = 17 [25]. This system is commonly used to
benchmark time series prediction methods because of its chaotic nature. Jaeger
et al. showed that an ESN with a 1000 neuron reservoir can predict over 1000
steps of this time series, (depending on the accuracy) when trained and initialized
to a certain point in the MG time series [26]. Since we are primarily interested
in predicting the immediate next reading we consider smaller reservoirs. Specifi-
cally, we consider ESNs which consist of two input signals (with one of the input
signals held at a constant bias value in order to improve performance [27]), a
10-400 neuron reservoir, and one output signal (i.e., K = 2, N = 10 − 400, and
L = 1).

We created a MG time series with 4,000 samples and used the first 2,000
samples to train a 50 neuron ESN, the next 1,000 samples for initialization,
while the last 1,000 samples were used as the prediction vector MG. Both the
tanh() and tanhlike activation functions were used resulting in four different
predictions: P lab/tanh, P mote/tanh, P lab/tl, and P mote/tl.

We compute the four prediction errors and normalized root-mean-squared
deviations (NRMSD). We group the prediction errors by activation function
and show the Q-Q plots of the error distributions in Figure 2 together with the
NRMSDs. First, we notice that for each activation function both the NRMSDs
are almost identical and the points in the Q-Q plot lie on a straight line with
slope one (meaning the prediction errors belong to the same distribution). Based
on these results, we conclude that the TelosB ESN implementation has the same
accuracy as the one in Matlab. Second, the NRMSD values indicate that a 50-
neuron ESN is indeed capable of tracking the MG time series with an error less
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Fig. 4. Total execution cost of one ESN iteration divided to three components. (a)
using the GCC built-in tanh() activation function. (b) using the custom tanhlike
activation function.

than 1% for both the tanh() and tanhlike functions. Third, by comparing the
NRMSDs for the same platforms we note that the choice of activation function
has a significant impact on the accuracy of the predictions. In particular, tanh()
is four times more accurate than the tanhlike function. As argued above, this
discrepancy is probably caused by tanhlike being a piecewise-linear function.

To compare the single precision floating point on the TelosB with that of
the double precision floating point in Matlab, we look at the differences between
predictions from the latter with the former when using the same activation
function, i.e., δtanh = P lab/tanh − P mote/tanh and δtl = P lab/tl − P mote/tl. We
compute the NRMSDs for both error distributions: δtanh = 6.6·10−3 % and δtl =
1.3 · 10−4 %. First, we note that both NRMSD(δtanh) < NRMSD(δlab/tanh)
and NRMSD(δtl) < NRMSD(δlab/tl). This means that the prediction errors
are larger than the errors caused by using single precision floating point instead
of double. In other words, the use of single precision floating point operations
on the TelosB has no negative effect on the accuracy of the predictions. Second,
although the tanhlike activation function is less accurate than tanh() in terms of
prediction, the difference between Matlab and TelosB is two orders of magnitude
smaller when using tanhlike. The reason for this lies in the simplicity of the
tanhlike algorithm when compared to the more complex tanh(), since the former
uses fewer calculations which in turn causes fewer rounding errors.

Performance. Next, we explore the implementation’s storage and computation
requirements. The ROM usage can be divided into two components: (1) Frame-

work, that is the ESN algorithm used for prediction, the activation function, and
libraries needed for floating point emulation. (2) Weight Matrices, that is the
DR and output weights. Whereas (1) is constant, (2) depends on the number of
neurons in the reservoir. We thus vary the number of neurons when evaluating
ROM footprint, runtime speed, and accuracy.



Figure 3a presents the ROM size difference for the two activation functions
and Figure 3b shows the ROM footprint of the aforementioned components for a
selected number of reservoir sizes when the tanhlike activation function is used.
We observe the following: First, the memory contribution from the reservoir
grows linearly. This confirms the estimated storage requirement of the Com-
pressed Row Storage (O(2nz + n + 1)) mentioned in Section 4.1. Second, the
built-in tanh() function consumes five times more space than the custom tanhlike

activation function. Specifically, the ROM footprint is 1,806 bytes for tanh() and
368 bytes for tanhlike. Third, emulating floating point operations in software re-
quires 1,450 bytes, making it comparable to the size of the tanh() function, or a
third of a 50-neuron reservoir.

Next we measure the runtime cost of the ESN implementation. This is done
by reading the mote’s internal timer after each major set of operations and com-
puting the differences. For each iteration, the ESN prediction algorithm per-
forms the following sets of operations: (1) Matrix, matrix-vector multiplication
that transfers the ESN to the next state. (2) Activation Function, which updates
the state of each neuron by applying the tanh() or tanhlike activation functions.
(3) Output, vector-vector multiplication that returns the output by applying
the output weights. Figure 4 summarizes the execution time of one prediction
step and the contributions from each of the three operations. Surprisingly, the
tanh() activation function is the most expensive operation. It takes 28% longer
to run than the matrix-vector multiplication and 453% longer than the tanhlike

activation function.
Finally, we look at the prediction error as a function of reservoir size and acti-

vation function. We compare against the MG time series and find the NRMSD(δ)
for the six reservoirs and two activation functions used above. Figure 5 presents
the results of this comparison. As expected, the prediction error decreases as the
reservoir size increases and the tanh() activation function leads to more accurate
predictions in general. Upon closer inspection, there appear to be three distinct
regions relative to the reservoir size: small (10 neurons), medium (50-300 neu-
rons), and large (300-400 neurons). In the small region, the prediction error is
dominated by the small size of the reservoir and the choice of activation function
becomes less important. In the medium region there is a diminishing, yet clear
reduction of the prediction error as the reservoir size increases. Finally, in the
large region the prediction error does not decrease by adding neurons to the
reservoir. Interestingly, the largest contribution to the prediction error comes
from the activation function, with no overlap of prediction errors for the 50-400
neuron reservoirs. In fact, even the 50 neuron tanh() reservoir outperforms the
400 neuron tanhlike reservoir.

5 Evaluation

5.1 Experimental Design

The results from the previous section suggest that an ESN can be accurate, small,
and fast enough to be incorporated to an existing data collection application that
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has been actively deployed for the past three years [?]. Motes in these sensor
networks collect soil temperature and soil moisture readings every 20 minutes
and store them to their onboard flash memory. All measurements are periodically
offloaded over the network and persistently stored in a database.

This environmental sensing application uses 40,824 bytes of ROM and 3,928
bytes of RAM, leaving 8,328 bytes of available ROM and 6,312 bytes of free
RAM on the TelosB. From the previous section we know that a 50-neuron ESN
using the tanhlike activation function has a ROM footprint of 6,788 bytes and a
prediction time of 572 ms for each measurement. Thereby such an ESN complies
with both the storage and computation constraints of the application and will
be used for the remainder of this section.

Anomaly Types. We focus on two types of random anomalies and one sys-
tematic anomaly. Specifically, we use the random anomalies defined by Sharma
et al. [15] (i.e., Short and Noise faults) and presented in Section 2. Samples of
these faults can be seen in Figure 6.

We use two parameters to control the injection of Short faults: the sample
error rate and the amplification factor, β. For each anomalous measurement, m̃i,
we multiply the standard deviation of the original signal, σ, with β to obtain:
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m̃i = mi + βσ, where mi is the true measurement. Similarly, for the injection of
Noise faults we use three parameters: the sample error rate, the period length, w,
and the amplification factor, β. For each noisy period, we calculate the standard
deviation of the underlying signal and multiply it with β to create a random
normal distribution with zero mean and βσ standard deviation (i.e., N(0, βσ)).
We then add samples from this distribution to each of the true measurements
within that period.

Finally, we consider feature amplification as an example of systematic anoma-
lies (see Figure 7). A feature amplification anomaly is defined as an increase in
the amplitude of a set of measurements that constitute a feature (e.g. a rain event
in the case of moisture measurements). The amplification factor is selected in a
way that does not create discontinuities in the time series and makes the feature
appear larger, while maintaining its shape. We use this anomaly to simulate
extreme events, such as a severe rain event not present in the training set.

Detection Algorithms. We use the two rule-based anomaly detection algo-
rithms defined by Sharma et al. [15] and summarized in Section 2 to detect the
two anomalies mentioned above. We use these algorithms as reference as they are
directly related to the anomalies we inject and their complexity is comparable
to that of currently deployed fault detection algorithms. Our strategy for setting
the thresholds is to minimize the number of false positives when the detection
algorithms are applied to data sets with no anomalies.

Data Sets. For each of the soil temperature and soil moisture modalities that
we use, we obtain a training and a test data set from the [?] database. Each of
the four data sets consists of 1,000 data points. Figure 8 illustrates two such data
sets. The data have been sanitized by removing data points with value changes
beyond and below certain thresholds. This process is done automatically by the
database as a standard procedure for removing anomalies, following the methods
proposed by Sharma et al. [15]. By using this preprocessed data (instead of raw
data) our results will not be biased by any anomalies already present in the
data stream. Instead, we can assume that the only anomalies in the data are the
ones we explicitly inject, thereby establishing the ground truth for evaluation
purposes.
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Fig. 8. Environmental sensing data sets. (a) Soil temperature and (b) Soil moisture.
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Fig. 9. Relation between measurement sequences (middle plot), ESN prediction errors
(bottom plot), and detected anomalies (top markers). (a) Temperature measurements
with injected Short and Noise faults (β = 1, w = 20). (b) Moisture data with amplifi-
cation anomalies.

5.2 Results

Figure 9a illustrates the operation of the ESN anomaly detection algorithm
by presenting the relation between the injected anomalies, the measurements
– including the artificially added anomalies, the prediction error δavg, and the
detected anomalies. Notice that the prediction error is indeed an almost constant
signal overlaid with large peaks coinciding with the injected faults.

When not injected with anomalies we find that NRMSD(δTemp) = 2.4%
and NRMSD(δMoist) = 4.4% for the temperature and moisture data set re-
spectively. This accuracy is of the same order of magnitude as the one Obst et
al. [17] found when tracking gas measurements, meaning that our online imple-
mentation is indeed comparable to the offline counterpart.

We use a 5% sample error rate (i.e., 5% of the measurements are polluted
with errors) for each fault type and a period w = 10 for Noise faults. The
amplifications used for the evaluation are: 1 ≤ β ≤ 5. Figure 10 compares the
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Fig. 10. Short rule, Noise rule, and ESN detection applied to the moisture data set.

three algorithms in the case of moisture data when applied to the Short faults,
Noise faults, and a combination of both faults (5% Short and 5% Noise faults).
We only apply each rule to its own domain fault since this is the optimal scenario.
The challenge of this data set is the similarity between the onset of rain events
and Short faults. In order to avoid false positives the thresholds must be set high
enough to avoid triggering the Short rule during the rain events.

In the left column, Figure 10(a,d), we compare the Short rule with the ESN
detection when applied to Short faults. Not surprisingly the Short rule performs
well on this type of faults when β ≥ 3. However, for lower β values the Short
rule cannot distinguish between rain events and faults, and detects none of the
latter. The ESN is effective for β ≥ 2 but at the cost of more false positives at
higher βs.

In the middle column, Figure 10(b,e), we compare the Noise rule with the
ESN detection when applied to Noise faults. Interestingly, the Noise rule does
not perform well on its corresponding faults. At β ≥ 3 we see the same trend
as before with no false negatives, however, we also see a significant number of
false positives. This behavior is caused by the aggressiveness of the Noise rule,
marking the entire window as faulty rather than individual points. For low β

values we still see the ambiguity between events and faults, leading to no positive
detections. The ESN detector, however, has no false positives, and a significantly
lower number of false negatives for β ≤ 2. Finally, for higher β values the number
of false negatives is also significantly smaller than the number of false positives
of the rule-based algorithm.



1 2 3 4 5
0

20

40

60

80

100

β

%

(a) Short rule/Short fault

1 2 3 4 5
0

20

40

60

80

100

β

%

(b) Noise rule/Noise fault

1 2 3 4 5
0

20

40

60

80

100

β

%

(c) Both rules/Both faults

1 2 3 4 5
0

20

40

60

80

100

β

%

(d) ESN/Short fault

1 2 3 4 5
0

20

40

60

80

100

β

%

(e) ESN/Noise fault

1 2 3 4 5
0

20

40

60

80

100

β

%

(f) ESN/Both faults

Fig. 11. Short rule, Noise rule, and ESN detection applied to the temperature data
set.

Judging by these results, we conclude that the ESN can match up with the
rule based detectors. There is although a trade-off between false positives and
false negatives, since decreasing one often leads to the increase of the other.
However, in a real deployment it is not possible to choose what algorithm to use
on which faults and we must assume that all faults can appear at anytime. In
the right column, Figure 10(c,f), we thus compare a hybrid detector using both
the Short rule and the Noise rule at the same time on a data set injected with
both types of faults. We see that the hybrid detector has the same behavior as
the Noise rule, with either high number of false negatives or false positives. On
the other hand, the ESN detector is performing significantly better across all
β values, illustrating the strength of the learning algorithm’s ability to detect
what is not normal.

Next, we perform the same analysis on the temperature data set, using the
same parameters to inject errors. The challenge of this data set from the per-
spective of a detection algorithm is the high temperature variance, caused by
the diurnal pattern, that resembles noise faults. As before, the Short rule and
faults are in the left column (Figure 11(a,d)), Noise rule and faults in the middle
column (Figure 11(b,e)), and the hybrid detector on both types of faults in the
right column (Figure 11(c,f)). One can see that the overall accuracy improves
significantly, with more faults being detected. Also note that the Noise rule gen-
erates a large number of false positives, supporting the claim that the diurnal
temperature patterns in the data set can be misclassified as Noise faults. Again,



when used on both faults simultaneously we see that the false positives is the
biggest drawback with the hybrid detector. The ESN detector, however, does
not misclassify to the same extent, again clearly showing the ESN’s ability to
distinguish between normal and anomalous data.

Last, we apply the ESN detection to the amplification anomaly. Figure 9b
shows the injected anomaly and the measurements successfully marked as anoma-
lous. Although the ESN correctly reacts to the injected anomalies, only the lead-
ing part of the anomaly is marked. The reason for this behavior is that only the
leading edge of the anomaly is truly unique in the sense that after 30-50 mea-
surements the anomaly resembles features present in the training set. Since the
ESN has a neuron reservoir of only 50 nodes, the memory of the anomaly quickly
fades.

5.3 Discussion

We have shown that, for the modalities we tested, the ESN is capable of detecting
low-amplitude anomalies better than specific rule-based anomaly detectors. At
the same time, it is equally effective over multiple anomaly types, as it has
the ability to detect a wide range of features deviating from the training data.
There are, however, several factors that limit the applicability of ESNs. We
identify three key issues: (1) As we saw in Section 4.2 the prediction time for
each iteration is in the order of seconds. For environmental monitoring, where
changes happen on the scale of minutes, this prediction speed is acceptable.
However, this technique might not be feasible for high data rate applications. (2)
For deployments in which no historical data are available, the training data will
have to be constructed (e.g., from models, experience, etc.) or learned during the
deployment. Neither options are desirable, because an artificial training set will
lack the details encountered in the field. (3) Because the ESN is an approximation
function, its quality is highly dependent on the size of the dynamic reservoir
(DR). In the case of soil moisture and temperature a DR of 50 neurons suffices
for anomaly detection. However, given a different set of constraints the DR might
not be large enough to encode the dynamics of the underlying modality.

6 Conclusion

This paper unifies fault and event detection in sensor networks under the general
framework of anomaly detection. We show that online anomaly detection is fea-
sible on mote-class devices by implementing an Echo State Network (ESN) on a
TelosB mote. This network performs as well as a PC-based ESN of the same size,
proving that it is feasible to implement sophisticated pattern recognition algo-
rithms on motes. Indeed, the ESN is small and fast enough to function alongside
an environmental monitoring application, detecting measurement anomalies in
real-time. Depending on the amplitude of the injected anomalies, the ESN pro-
vides equivalent or higher detection accuracy compared to rule-based detectors
customized to specific faults. However, the most significant feature of the ESN



detector is its generality since it is capable of detecting all features not present
in the training set.

In our future work we will explore the feasibility of implementing other ma-
chine learning techniques, such as Bayesian networks, on mote-class devices and
compare their performance to ESNs. With different methods available, the chal-
lenge becomes how to choose the best supervised learning method for mote-based
online classification when given a particular training set from the domain scien-
tists.
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