

Dept. of Computer Science
University of Copenhagen • Universitetsparken 1

DK-2100 Copenhagen • Denmark

Solving the Replacement Paths Problem for
Planar Directed Graphs in O(n log n) Time

Christian Wulff-Nilsen

Technical Report no. 09/03
ISSN: 0107-8283

Solving the Replacement Paths Problem for
Planar Directed Graphs in O(n log n) Time

Christian Wulff-Nilsen ∗

June 14, 2009

Abstract

In a graph G with non-negative edge lengths, let P be a shortest
path from a vertex s to a vertex t. We consider the problem of com-
puting, for each edge e on P , the length of a shortest path in G from
s to t that avoids e. This is known as the replacement paths prob-

lem. We give a linear-space algorithm with O(n log n) running time
for n-vertex planar directed graphs. The previous best time bound
was O(n log2 n).

1 Introduction

Computing shortest paths in graphs is a classical problem in combinatorial
optimization with applications in numerous areas such as communication
networks. These networks are in general not static but may change due to
link failures. In such cases, alternative lines of communication need to be
established and it may be of interest to determine the “quality” of such lines.

This motivates the replacement paths problem (RPP): given two vertices
s and t in a graph G with non-negative edge lengths and given a shortest
path P (the line of communication) in G from s to t, compute, for each edge
e on P , the length of a shortest path in G from s to t that avoids e (if no
such path exists, the length is defined to be infinite). More motivation for
the RPP is given in [3].

∗Department of Computer Science, University of Copenhagen, koolooz@diku.dk,
http://www.diku.dk/hjemmesider/ansatte/koolooz/

1

The RPP is a well studied problem. For undirected graphs with m edges
and n vertices, algorithms are known with running time O(m + n log n) [7]
and O(mα(m, n)) [8], respectively (the latter applying to a stronger model
of computation).

The directed case is harder since it has an Ω(m
√

n) lower bound [4]. The
fastest known algorithm is the trivial one that removes each edge on shortest
path P in turn and applies Dijkstra’s algorithm to the resulting graph. This
gives a time bound of O(mn + n2 log n). Roditty and Zwick [9] present a
randomized algorithm with Õ(m

√
n) running time for unweighted, directed

graphs. See also [2].
For planar directed graphs, an O(n log3 n) time recursive algorithm is

given in [3]. Klein, Mozes, and Weimann [6] show how recursion can be
avoided and improve the time bound to O(n log2 n) using linear space.

Our contribution is to improve the time bound of [6] for planar graphs
by giving a linear space algorithm with O(n log n) running time. Our result
is obtained by a relatively simple adaptation of the O(n log n) time multiple-
source shortest path algorithm of Klein [5] to the RPP.

The organization of the paper is as follows. In Section 2, we give some
definitions, introduce some notation, and present some basic results that will
prove useful later on. A large part of this section is taken from [5]. In
Section 3, we show how the RPP can be split into two simpler sub-problems.
Before presenting our algorithm, we show how to efficiently solve a problem
related to the RPP in Section 4. The ideas introduced here will be a stepping
stone towards obtaining our main result. We then give the algorithm for the
first sub-problem in Section 5 and bound its time and space requirements
in Section 6. In Section 7, we present an efficient algorithm for the other
sub-problem. Finally, we make some concluding remarks in Section 8.

2 Definitions, Notation, and Toolbox

Let G = (V, E) be a graph with non-negative edge lengths. For an edge
e ∈ E, we let lG(e) denote its length in G. For two vertices, u, v ∈ V ,
dG(u, v) is the length of a shortest path in G from u to v w.r.t. lG. If there
is no such path, dG(u, v) =∞. We let VG resp. EG denote V resp. E.

We can assume w.l.o.g. that all shortest paths considered are simple.
For a simple path P = v1 → · · · → vm in a directed graph G, lG(P) =∑m−1

i=1
lG(vi, vi+1) denotes its length and for 1 ≤ i ≤ j ≤ m, P [vi, vj] is

2

the subpath vi → · · · → vj . We let fP be the flow in G assigning values
to edges and reverses of edges of G as follows: for each edge (u, v) of P ,
fP (u, v) = −fP (v, u) = 1 and for all other edges/reverses of edges, fP is
zero.

Let T be a spanning tree in a directed graph G = (V, E) and let T be
rooted at a vertex s. For a vertex v ∈ V , T [v] is the simple path from s to v in
T . We say that an edge (u, v) ∈ E is relaxed (w.r.t. T) if dT (s, u)+ lG(u, v) ≥
dT (s, v) and we say that (u, v) is unrelaxed (w.r.t. T) otherwise. Observe that
all edges of ET are relaxed. For an unrelaxed edge (u, v), removing the edge
in T ending in v and reconnecting T by adding (u, v) is called relaxing the
edge (u, v). It is well-known that if all edges of E are relaxed w.r.t. T , T is
a shortest path tree in G with source s.

Since T is a spanning tree of G, the edges of E \ ET define a spanning
tree T ∗ in the dual of G rooted at the external face of G (see [5]) and T ∗

contains all unrelaxed edges of G, where we identify each edge of G with its
corresponding edge in the dual of G. We call T ∗ the dual of T (in G). For
an edge (u, v) in T ∗, we define lT ∗(u, v) = dT (s, u) + lG(u, v) − dT (s, v). A
leafmost unrelaxed edge (in G w.r.t. T) is an unrelaxed edge in G (and hence
it belongs to T ∗) w.r.t. T none of whose proper descendant edges in T ∗ are
unrelaxed in G w.r.t. T .

Given a plane directed graph G = (V, E), let G∞ be a plane graph ob-
tained by adding a vertex v∞ to the interior of the external face of G and
an edge from v∞ to each vertex on the external face of G. For edges (u, v),
(v, x), and (v, y) in G∞, we say that (v, x) is left (right) of (v, y) w.r.t. (u, v)
if (v, x) occurs strictly between (v, y) and (u, v) in counter-clockwise (clock-
wise) order.

Given an edge (v, y) on a simple path P in G, we say that an edge (v, x)
emanates left (right) from P if either there is an edge (u, v) preceding (v, y)
on P and (v, x) is left (right) of (v, y) w.r.t. (u, v) or if v is the first vertex
of P and belongs to the external face of G and (v, x) is left (right) of (v, y)
w.r.t. the edge from v∞ to v in G∞.

Given another simple path Q in G and a vertex u ∈ VP ∩VQ, we say that
Q leaves P from the left (right) at u if there is an edge (u, v) of Q starting
in u which emanates left (right) from P . And we say that Q enters P from
the left (right) at u if there is an edge (v, u) of Q ending in u such that the
reverse edge (u, v) emanates left (right) from P .

If both P and Q start in the same vertex s and end in the same vertex t,
we say that Q is left (right) of P if the edges of positive flow in fQ−fP define

3

counter-clockwise (clockwise) cycles only (this definition is by Weihe [10] and
is specialized in [5]).

For two spanning trees T1 and T2 in G, T1 is left of T2 if for all v ∈ V ,
path T1[v] is left of T2[v]. If T is a shortest path tree in G with source s, we
call it a right-most shortest path tree if every other shortest path tree in G
with source s is left of T .

An s-rooted spanning tree T is right-short if the following holds for all
v ∈ V : if P is a simple path in G from s to v that is right of T [v] and
lG(P) ≤ lG(T [v]) then P = T [v]. A right-most shortest path tree is right-
short [5].

We will need two dynamic tree data structures which represent and main-
tain, respectively, a rooted spanning tree T and its dual T ∗ and which support
the following operations:

replace(e, e′): replaces edge e by edge e′.

sum(x): returns the sum of lengths of edges from the root to vertex x.

find(): returns a leafmost unrelaxed edge

change(x, ∆): for each edge e on the path between x and the root, the length
of e is increased by the real number ∆ if e points towards the root and
decreased by ∆ otherwise.

Top trees [1] support the above in logarithmic time per operation, see [5].
Note that the change-operation can be extended to subpaths of the path
between x and the root by applying the operation twice.

3 Simplifying the Problem

In the following, let G = (V, E) be an n-vertex planar directed graph with
non-negative edge lengths and let P = (v0 = s) → v1 → · · · → vm−1 →
(vm = t) be a shortest path in G from a vertex s to a vertex t. For i =
1, . . . , m, let ei denote the edge (vi−1, vi). By transforming G if necessary,
we may assume that s belongs to the external face of G. Since we are only
interested in shortest paths ending in t, we may assume that this vertex has
no outgoing edges.

Let ei ∈ EP and let us analyze the structure of a shortest path Q in G
from s to t avoiding ei. Since P is a shortest path in G, Q can be chosen such

4

Case 1

s

t

ei

vi1

vi2

Q

P

Case 2

s

t

ei

vi1

vi2

Q

P

Case 3

s

t

ei

vi1

P

Case 4

s

t

ei

vi1

vi2

P

Q

Q

vi2

Figure 1: The four possible cases for shortest path Q.

that it has a decomposition Q = Q1Q2Q3 where Q1 = P [s, vi1], Q3 = P [vi2 , t]
for some 0 ≤ i1 < i ≤ i2 ≤ m, and Q2 is a path in G from vi1 to vi2 containing
no vertices of P except vi1 and vi2 .

There are now four possible cases (see Figure 1):

Case 1: Q leaves P from the left at vi1 and enters P from the left at vi2

Case 2: Q leaves P from the left at vi1 and enters P from the right at vi2

Case 3: Q leaves P from the right at vi1 and enters P from the right at vi2

Case 4: Q leaves P from the right at vi1 and enters P from the left at vi2

Our algorithm for the RPP consists of four phases where in phase p,
p = 1, 2, 3, 4, shortest paths of the form Q above are restricted to having the
structure in case p. After these phases, we have four distance values for each
edge ei. The minimum of these four values is then the length of a shortest
path in G from s to t that avoids ei.

In the following, we consider each phase separately. Due to symmetry,
we may restrict our attention to phases 1 and 2. We start with phase 1 and
consider phase 2 in Section 7.

We remove from G edges (u, v), v 6= t, for which either (u, v) or (v, u)
emanates right from P since these edges will not be needed in phase 1. Note
that G may contain more than one connected component. If so, we remove
all components except the one containing P . Now, P belongs to the external
face of G and is part of a counter-clockwise walk of that face.

5

By adding edges to interior faces of G while keeping G planar, we may
assume that for each v ∈ V , there is a path in G from s to v sharing no edges
with P . We pick the lengths of these new edges sufficiently large so that
finite shortest path distances will not decrease. With this modification of G,
there is a shortest path tree in G rooted at s avoiding any given set of edges
of P . Furthermore, we can ensure that these edges are avoided by increasing
their lengths by a sufficiently large value (M+ defined below). Note that P
remains on the external face of G after these edges have been added.

Clearly, phase 1 corresponds to solving the RPP for the modified graph
G. The idea is to use a dynamic tree data structure to maintain a shortest
path tree in G that initially avoids em, then em−1, then em−2, and so on
until a shortest path tree avoiding e1 is obtained. During this process, the
distances in G from s to t in the intermediate trees are computed. This
is similar to the idea behind the multiple-source shortest path algorithm of
Klein [5]. Indeed, we rely heavily on many of the results from that paper.

4 Solving a Related Problem

To simplify the presentation of our algorithm, we first consider a related
problem. In this section, we show how to solve this problem in O(n logn)
time. The ideas involved will prove useful in Sections 5, 6, and 7 where we
present the RPP-algorithm.

The problem we consider is the following: for i = 0, . . . , m− 1, compute
the length of a shortest path in G from s to t avoiding every edge on P [vi, t].
We call it the Forbidden Suffix Paths Problem (FSPP).

In the following, let M+ <∞ be a value such that any simple path in G
has length strictly less than M+. Pick, say, M+ = 1 +

∑
e∈E lG(e).

We now present an O(n log n)-time algorithm for the FSPP. Pseudo-code
is given in Figure 2.

Theorem 1. The algorithm in Figure 2 solves the FSPP for G and can be
implemented to run in O(n logn) time with O(n) space requirement.

Proof. Clearly, the algorithm solves the FSPP for G by outputting the desired
distances in reverse order.

We maintain T and its dual T ∗ using top trees supporting the operations
of Section 2.

6

1. compute a rightmost shortest path tree T in G with source s
2. for i = m, . . . , 1
3. lG(ei) := lG(ei) + M+

4. while there exists an unrelaxed edge
5. relax a leafmost unrelaxed edge
6. output dT (s, t)

Figure 2: The FSPP algorithm.

Note that edge lengths change during the course of the algorithm. Instead
of explicitly making these changes in the underlying graph G, we choose an
implementation maintaining the correct edge lengths in T and its dual T ∗.
This works since ET ∪ ET ∗ = E so we still keep track of the lengths of all
edges in G.

Maintaining edge lengths in T : in line 3, we increase lT (ei) by M+ if
ei ∈ T . Otherwise, we do nothing.

Now, suppose a new edge (u, v) is about to be inserted into T in line 5.
The algorithm needs to compute lG(u, v), the length of the edge to be inserted
into T . Edge (u, v) is not already in T so (u, v) ∈ T ∗. Thus, its length in T ∗

can be obtained in O(log n) time since lT ∗(u, v) = |sum(v) − sum(u)| where
the sum-operation is applied to T ∗ . We can then use the following formula
to determine lG(u, v) in O(logn) time:

lG(u, v) = lT ∗(u, v) + dT (s, v)− dT (s, u) = lT ∗(u, v) + sum(v)− sum(u),

where the sum-operation is applied to T . We used the definition lT ∗(u, v) =
dT (s, u) + lG(u, v)− dT (s, v).

Maintaining edge lengths in T ∗: in line 3, either ei ∈ T or ei /∈ T . If
ei /∈ T then no distances from s in T change. Since lT ∗(u, v) = dT (s, u) +
lG(u, v) − dT (s, v) for all edges (u, v) ∈ T ∗, no edge lengths in T ∗ change
except for lT ∗(ei) which is increased by M+. This update can be performed
in O(logn) time with the change-operation.

If on the other hand ei ∈ T then dT (s, u) increases by M+ for all vertices
u in the subtree of T rooted at the vertex of ei furthest from s. For all other
vertices u of T , dT (s, u) does not change. Then observations from [5] give us

7

that the edges of T ∗ whose lengths change are all on the same path in T ∗ and
these lengths can be updated with the change-operation in O(log n) time.

When an edge is inserted into T ∗ in line 5, we can compute its length in
O(log n) time using ideas similar to those above for T .

Bounding the number of relaxations: we have now shown that each
execution of line 3 can be executed in O(log n) time. As observed in [5], each
relaxation can be performed within the same time bound and so can line 6
if we use the sum(t)-operation on T .

What remains therefore is to give an O(n) bound on the total number
of relaxations. By [5], this reduces to showing that all intermediate trees
constructed by the algorithm are right-short.

The initial tree is a rightmost shortest path tree and thus right-short. To
see that line 3 preserves right-shortness, consider iteration i and let l1 resp.
l2 be length function lG just before resp. after line 3 is executed. Assume
that T is right-short w.r.t. l1 and let v ∈ V be given. We need to show that
l2(Q) > l2(T [v]) for any simple path Q 6= T [v] in G from s to v that is right
of T [v].

So let Q be such a path. Suppose first that T [v] does not contain ei. If
ei ∈ Q then l2(Q) ≥M+ > l2(T [v]) where the last inequality follows from the
assumption that there is a path in G from s to v avoiding every edge of P . So
assume ei /∈ Q. Then l2(Q) = l1(Q) > l1(T [v]) = l2(T [v]) by right-shortness
of T w.r.t. l1.

Now, suppose that ei ∈ T [v]. Then also ei ∈ Q since ei is part of a
counter-clockwise walk of the external face of G and Q is simple and right of
T [v]. Then l2(Q) = l1(Q)+M+ > l1(T [v])+M+ = l2(T [v]) by right-shortness
of T w.r.t. l1.

We conclude that line 3 preserves right-shortness. Results from [5] imply
that lines 4 and 5 also preserve right-shortness. Hence, the total number
of relaxations performed by the algorithm is O(n) and the O(n logn) time
bound follows. The bound on space also follows from [5].

5 The Algorithm

In this section, we present our algorithm for phase 1 of the RPP. Define
graph G′ = (V ′, E ′) where V ′ = V and E ′ is obtained from E by adding edge
e′i = (vi−1, t) of length lG′(e′i) = dG(vi−1, t) + M+ for i = 2, . . . , m − 1. We

8

v8 = t

v2 v3
v4

v5

v6

v1

v7

e1

e2
e3

e8 = e′8

e′7

e′6e′5e′4
e′2

v0 = s e′3

e7

e6

e5
e4

Figure 3: Graph G′ is obtained from G by adding edges e′i for i = 2, . . . , m−1,
here shown for an instance with m = 8.

also define e′m = em. Note that G′ is planar with new interior faces defined
by triangles eie

′

ie
′

i+1 for i = 2, . . . , m− 1, see Figure 3. When convenient, we
regard G as a subgraph of G′.

Pseudo-code of our algorithm is shown in Figure 4. Notice the similarity
with the FSPP algorithm in Figure 2.

Theorem 2. The algorithm in Figure 4 solves the RPP for G.

Proof. First, observe that in any iteration i, lG′(ej) ≥ M+ for j = i, . . . , m
and lG′(e′j) ≥ M+ for j = 2, . . . , m when line 3 has just been executed. When
line 6 is reached, dT (s, vj) is thus the length of a shortest path in G from s
to vj that avoids edges ei, . . . , em, for j = 1, . . . , m. In particular, in lines 9
and 11, dT (s, t) is the length of a shortest path in G from s to t that avoids
edges ei, . . . , em.

Since i + 1 > m if and only if we are in iteration i = m, the correct value
for that iteration is thus output in line 11.

Now, assume that we are in iteration i < m so that lines 6 to 10 are
executed instead of line 11. In line 8, lG′(e′j) = dG(vj−1, t) + M+ −M+ =
lG(P [vj−1, t]) for j = i + 1, . . . , m. Hence, dT (s, vj−1) + lG′(e′j) is the length
of a shortest path in G from s to t that avoids edges ei, . . . , ej−1 and uses
edges ej , . . . , em.

There is a shortest path Q in G from s to t avoiding ei which can be
decomposed into Q1Q2Q3, where Q1 = P [s, vi1] and Q3 = P [vi2 , t] for some
0 ≤ i1 < i ≤ i2 ≤ m, and where Q2 is a shortest path in G from vi1 to

9

1. compute a rightmost shortest path tree T in G′ with source s
2. for i = m, . . . , 1
3. lG′(ei) := lG′(ei) + M+

4. while there exists an unrelaxed edge
5. relax a leafmost unrelaxed edge
6. if i + 1 ≤ m
7. for j = i + 1, . . . , m, lG′(e′j) := lG′(e′j)−M+

8. compute d = min{dT (s, vj−1) + lG′(e′j)|j = i + 1, . . . , m}
9. output min{dT (s, t), d}
10. for j = i + 1, . . . , m, lG′(e′j) := lG′(e′j) + M+

11. else output dT (s, t)

Figure 4: The RPP algorithm for phase 1.

vi2 sharing no vertices with P except vi1 and vi2 . Combining this with the
above observations, it follows that in line 9, min{dT (s, t), d} is the length of
a shortest path in G from s to t that avoids ei. This shows the correctness
of the algorithm.

6 Bounding Time and Space

We now give an implementation of the algorithm in Figure 4 and show that
it has O(n log n) running time and O(n) space requirement.

We maintain T , its dual T ∗ (in G′), and their edge lengths (and not the
edge lengths in G′ explicitly) as in the proof of Theorem 1. Since only edges
of G are relaxed in line 5 (all other edges of G′ have length at least M+), we
can use arguments similar to those in that proof to conclude that the total
number of relaxations performed in line 5 is O(n). Each execution of lines 9
and 11 takes O(log n) time with the sum-operation of Section 2.

We claim that each execution of lines 3, 7, and 10 also takes logarithmic
time. From the proof of Theorem 1, this is true for line 3 so let us consider
line 7 (line 10 is handled in a similar way).

Since lG′(e′j) ≥ M+ for j = i + 1, . . . , m when this line is reached, none
of these edges belong to T so no edge lengths in T are affected in this line.
It follows that e′i+1, . . . , e

′

m all belong to T ∗ and they all need to decrease in
length by M+. We can make this update with a change-operation in T ∗.

10

8.1. remove from T the edge e ending in t and reconnect by adding e′i+1

8.2 for all edges e′ ∈ E \ {em} adjacent to t, lG′(e′) := lG′(e′) + M+

8.3. while there exists an unrelaxed edge
8.4. relax a leafmost unrelaxed edge
8.5. let e′j be the edge of T ending in t
8.6. let d = dT (s, t)
8.7. if i + 1 ≤ j − 1
8.8. for j′ = i + 1, . . . , j − 1, lG′(e′j′) := lG′(e′j′) + M+

8.9 for all edges e′ ∈ E \ {em} adjacent to t, lG′(e′) := lG′(e′)−M+

8.10. remove e′j from T and reconnect by adding the edge e from line 8.1

Figure 5: Sub-routine of the RPP algorithm computing the value d in itera-
tion i.

The above shows that if we ignore line 8, the algorithm can be imple-
mented to run in O(n log n) time. In the following, we therefore focus on the
problem of efficiently computing the value d.

The idea is to relax leafmost unrelaxed edges as in line 5 while ensuring
that they all belong to {e′i+1, . . . , e

′

m}. To guarantee that only O(n) edges are
relaxed throughout the course of the algorithm, we increase, in each iteration,
the length of certain edges by M+ so that they will not be relaxed again. We
will show that these edges can be assumed not to belong to T in subsequent
iterations which ensures that the algorithm remains correct.

Line 8 is expanded to the sub-routine in Figure 5. We now prove its
correctness.

Looking at lines 4 to 7 in Figure 4, we see that just before line 8.1 is
executed, all edges of E ′ \ {e′i+1, . . . , e

′

m} are relaxed. Hence, just after the
execution of this line, only edges adjacent to t in G′ can be unrelaxed. Line
8.2 has the effect that no edges of E\{em} adjacent to t are relaxed during the
sub-routine. Combining this with the observation that in line 8.2, all edges
in {e′2, . . . , e′i} have length at least M+ whereas all edges in {e′i+1, . . . , e

′

m}
have length strictly less than M+ and e′i+1 ∈ T , it follows that when line 8.2
has just been executed, all unrelaxed edges of G′ belong to {e′i+2, . . . , e

′

m}
during the while-loop in lines 8.3 and 8.4.

Line 8.10 therefore ensures that T is the same at the beginning and end
of the sub-routine. And line 8.9 ensures that this also holds for edge lengths
of E ′ except those changed in line 8.8.

11

v0 = s

vm = t

vm−1

v1

eiei′

v
Q2

vi2

vi1

vj−1

vj′−1

e′je′j′

vi

Q′2

Figure 6: In the proof of Lemma 2, paths Q2 and Q′

2 must share a vertex v.

The above observations imply that if line 8.8 is omitted, the correct value
of d is computed in line 8.6 since in that line, edges {e′i+1, . . . , e

′

m} are all
relaxed w.r.t. T so dT (s, t) = min{dT (s, vj−1) + lG′(e′j)|j = i + 1, . . . , m}.
Theorem 2 then implies that the entire algorithm is correct. Lemma 2 below
shows that this is also true if we include line 8.8. First, we need the following
result.

Lemma 1. Just before an edge e′j ∈ {e′i+2, . . . , e
′

m} is relaxed in the sub-
routine in Figure 5, all edges in {e′i+1, . . . , e

′

j−1} are relaxed.

Proof. Since initially, e′i+1 ∈ T and since leafmost edges are relaxed, the
lemma follows.

Lemma 2. Let J = {i + 1, . . . , j − 1} be the set of indices j′ in line 8.8 of
iteration i in Figures 4 and 5 and let 1 ≤ i′ < i. Let Gi resp. Gi′ be the
graph G′ just after line 7 has been executed in iteration i resp. i′, but with
the length of edge e′j′ redefined as dG(vj′−1, t) for all j′ ∈ J . Then there is a
shortest path in Gi′ from s to t avoiding each such edge.

Proof. Let Q′ be a shortest path in Gi′ from s to t and suppose it contains
e′j′ for some j′ ∈ J . Let Q be the path from s to t in T in line 8.5 of iteration
i. Then Q is a shortest path in Gi from s to t avoiding ei and containing e′j.

Since the restriction of T to E is right-short, Q can be decomposed into
Q1Q2, where Q1 is a subpath P [s, vi1] of P and Q2 is a path from vi1 to t
containing no vertices of P except vi1 and vj−1 and containing e′j as the last
edge, see Figure 6.

12

We may also assume that Q′ can be decomposed into Q′

1Q
′

2, where Q′

1 is
a subpath P [s, vi2] of P and Q′

2 is a path from vi2 to t containing no vertices
of P except vi2 and vj′−1 and containing e′j′ as the last edge.

We claim that i1 ≥ i2, as shown in Figure 6. For suppose i1 < i2. Note
that i′ < i and i + 1 ≤ j′ < j. When traversing P from s to t, we thus
encounter vi1 , vi2 , ei′ , ei, vj′−1, and vj−1 in that order. Hence, Q and Q′ both
avoid ei and ei′ so these paths must be of equal length in Gi. We know that
the algorithm relaxes e′j in line 8.4 of iteration i. By Lemma 1, just before
this event occurs, e′j′ must be relaxed. But since lGi

(Q) = lGi
(Q′), e′j must

be relaxed as well at this point in time, a contradiction.
It follows that when traversing P from s to t, we encounter vi2 , vi1 , ei,

vj′−1, and vj−1 in that order. Due to planarity, this is only possible if Q2 and
Q′

2 share a vertex v, see Figure 6. Then Q2[v, t] and Q′

2[v, t] have the same
length in Gi′ , implying that Q′[s, v]Q[v, t] is a shortest path from s to t in
Gi′. Since this path avoids e′j′ for all j′ ∈ J , the lemma follows.

Theorem 3. The algorithm in Figures 4 and 5 solves the RPP for G and
can be implemented to run in O(n logn) time using O(n) space.

Proof. We have already argued that the algorithm is correct when line 8.8
in Figure 5 is omitted. And Lemma 2 states that even if an edge in line 8.8
was not increased in length by M+, the algorithm would not find a shorter
path from s to t in subsequent iterations. This shows that the full algorithm
is correct.

Proving the time bound is split into two parts: first, we ignore the time
for relaxations and give an O(n log n) time bound for the remaining algo-
rithm. Then we show that the total number of relaxations is O(n). Since
each relaxation can be performed in logarithmic time with our top tree data
structure, the claim will follow.

We now consider the first part. If we exclude line 8, we have previously
argued that the remaining lines can be executed in a total of O(n log n) time.
So let us consider the sub-routine in Figure 5.

In line 8.1, we need to update the graph structure of T and T ∗ as well
as edge lengths in these trees. The former can be accomplished with the
replace-operation. As for the latter, we need to compute the length of the
new edge e′i+1 in T . This can be achieved in O(log n) time as in the proof of
Theorem 1. Similarly, we can compute the length of the new edge e in T ∗ in
O(log n) time.

13

For every other edge (u, t) adjacent to t in G′, (u, t) belongs to T ∗. Its old
length (i.e., before the update) in T ∗ is dT (s, u)+ lG′(u, t)−(dT (s, v)+ lG′(e)),
where e = (v, t). Its new length is dT (s, u)+ lG′(u, t)− (dT (s, vi) + lG′(e′i+1)).
Hence, the length of (u, t) in T ∗ should increase by ∆ = dT (s, v) + lG′(e) −
(dT (s, vi) + lG′(e′i+1)).

Since ∆ is independent of the choice of (u, t), the lengths in T ∗ of all
edges adjacent to t except e and e′i+1 should increase by ∆. Since the set
of these edges form at most three simple paths in T ∗, a constant number of
change-operations suffice to make this update.

We have shown that line 8.1 can be executed in O(log n) time. A similar
argument shows the same bound for line 8.10.

Lines 8.2, 8.8, and 8.9 can also be executed in O(logn) time (since none of
the edges in those three lines belong to T , the argument for line 7 applies).
And line 8.6 also takes logarithmic time since dT (s, t) can be obtained as
sum(t) in T .

Now, let us focus on the second part of the proof: giving an O(n) bound
on the total number of relaxations. Previously, we showed this for line 5 so
we only need to consider the relaxations performed in line 8.4.

We first observe that when the length of an edge is increased in line 8.8,
it will never again drop below M+.

Now, consider some iteration i and suppose ki edges are relaxed in line 8.4.
Since leafmost unrelaxed edges are relaxed and since the edge e′i+1 initially
belonging to T has length lG′(e′i+1) < M+, there must be at least ki edges in
{e′i+2, . . . , e

′

j} of length strictly less than M+ in line 8.5. Since the lengths of
edges e′i+2, . . . , e

′

j−1 are increased by M+ in line 8.8, at least ki − 1 of these
lengths are increased from a value below to a value equal to or above M+.

By the above observation, we can use a charging scheme to obtain the
following bound on the total number of relaxations in line 8.4 over all m
iterations of the for-loop in lines 2 to 11:

m∑

i=1

ki = m +

m∑

i=1

(ki − 1) ≤ m + |{e′2, . . . , e′m}| = 2m− 1 < 2n.

It follows that the algorithm can be implemented to run in O(n logn) time.
Since the algorithm of Klein [5] has linear space requirement, it is easy to see
that this bound also holds for our algorithm.

14

←−e8

v3

←−v4

←−v5 ←−v6

←−v7

←−e1

←−e3

←−v0 =←−s

←−e7

←−e6

←−e5

←−e4

−→v1 −→v2
−→v3 −→v4

−→v5

−→v6

−→v7

−→e1

−→e2 −→e3
−→e4

−→e5

−→e6

−→e7

−→e8 = e′8

e′2

←−v1

←−v2←−e2

e′3
e′4

e′5

e′6
e′7

←−v8 = −→v8 = t

−→v0 = −→s

Figure 7: Graph G′, obtained from G in phase 2 by adding edges e′i for
i = 2, . . . , m− 1, here shown for an instance with m = 8.

7 Phase 2

Above, we showed how to solve the phase corresponding to case 1 in Section 3.
We now consider phase 2, i.e. we restrict our attention to shortest paths Q
in G from s to t avoiding an edge of P with Q leaving P from the left and
entering P from the right, see Figure 1.

The algorithm for phase 2 is similar to that of Section 5. The main
difference lies in the modification of G and the construction of G′ = (V ′, E ′).

We modify G essentially by making an incision in G from s to t along P
(see Figure 7) and removing edges not needed in phase 2.

More formally, we start by removing path P \ {t} and its incident edges.

Then two copies,
←−
P = (←−v0 = ←−s) → ←−v1 → · · · → (←−vm = t) and

−→
P = (−→v0 =

−→s) → −→v1 → · · · → (−→vm = t), of P are inserted. These paths share only the
last vertex t.

For i = 0, . . . , m − 1, we add to G the edge (←−vi , u) for each edge (vi, u)
emanating left from P at v in the original graph G. Similarly, we add to G
the edge (u,−→vi) for each edge (u, vi) in G entering P from the right in the
original graph G. The lengths of the inserted edges are identical to those in

the original graph. Note that
←−
P and

−→
P belong to the external face of G.

As in phase 1, we add edges to interior faces of G while keeping G planar
such that for each v ∈ V , there is a path in G from ←−s to v sharing no

edges with
←−
P ∪−→P . We pick the lengths of these new edges sufficiently large

15

1. compute a rightmost shortest path tree T in G′ with source ←−s
2. for i = m, . . . , 1
3. lG′(←−ei) := lG′(←−ei) + M+

4. while there exists an unrelaxed edge
5. relax a leafmost unrelaxed edge
6. if i + 1 ≤ m
7. for j = i + 1, . . . , m, lG′(e′j) := lG′(e′j)−M+

8. compute d = min{dT (s,−−→vj−1) + lG′(e′j)|j = i + 1, . . . , m}
9. output min{dT (s, t), d}
10. for j = i + 1, . . . , m, lG′(e′j) := lG′(e′j) + M+

11. else output dT (s, t)

Figure 8: The RPP algorithm for phase 2.

so that finite shortest path distances will not decrease. We can perform

this modification without having edges entering
←−
P or leaving

−→
P . With this

modification of G, there is a shortest path tree in G′ rooted at ←−s avoiding

any given set of edges of
←−
P ∪ −→P . And we can ensure that these edges are

avoided by increasing their lengths by M+. Note that
←−
P ∪−→P remains on the

external face of G after these edges have been added.
For i = 1, . . . , m, let ←−ei = (←−−vi−1,

←−vi) and −→ei = (−−→vi−1,
−→vi). Phase 2 cor-

responds to solving the following problem on the modified graph G: for
i = 1, . . . , m, compute the length of a shortest path in G from ←−s to t that
avoids edges ←−ei and −→ei . We will refer to this problem as the RPP for G.

Graph G′ = (V ′, E ′) is obtained from G by adding, for i = 2, . . . , m− 1,
the edge (−→vi , t) of length dG(vi, t)+M+, where M+ is defined as in Section 4.
We let e′i denote this edge, see Figure 7. We also define e′m = −→em. Note that
G′ is planar and of size O(n). In G′, we set the length lG′(−→ei) of −→ei equal to
M+. Where appropriate, we regard G as a subgraph of G′.

We now present the algorithm for phase 2. Pseudo-code is shown in
Figure 8. Notice the similarity with the code in Figure 4.

Theorem 4. The algorithm in Figure 8 solves the RPP for G.

We omit the proof since it is almost identical to that of Theorem 2.
We expand line 8 to the sub-routine in Figure 9. Using ideas from Sec-

tion 6, it follows that the entire algorithm is correct if line 8.8 is omitted.
And Lemma 4 below shows that this also holds with this line included.

16

8.1. remove from T the edge e ending in t and reconnect by adding e′m
8.2 for all edges e′ ∈ E \ {−→em} adjacent to t, lG′(e′) := lG′(e′) + M+

8.3. while there exists an unrelaxed edge
8.4. relax a leafmost unrelaxed edge
8.5. let e′j be the edge of T ending in t
8.6. let d = dT (s, t)
8.7. if j + 1 ≤ m
8.8. for j′ = j + 1, . . . , m, lG′(e′j′) := lG′(e′j′) + M+

8.9 for all edges e′ ∈ E \ {em} adjacent to t, lG′(e′) := lG′(e′)−M+

8.10. remove e′j from T and reconnect by adding the edge e from line 8.1

Figure 9: Sub-routine of the RPP algorithm for phase 2.

Lemma 3. Just before an edge e′j ∈ {e′i+1, . . . , e
′

m−1} is relaxed in the sub-
routine in Figure 9, all edges in {e′j+1, . . . , e

′

m} are relaxed.

Proof. Since initially, e′m ∈ T and since leafmost edges are relaxed, the lemma
follows.

Lemma 4. Let J = {j + 1, . . . , m} be the set of indices j′ in line 8.8 of
iteration i in Figures 8 and 9 and let 1 ≤ i′ < i. Let Gi resp. Gi′ be the
graph G′ just after line 7 has been executed in iteration i resp. i′, but with
the length of edge e′j′ redefined as dG(vj′−1, t) for all j′ ∈ J . Then there is a
shortest path in Gi′ from ←−s to t avoiding each such edge.

Proof. The proof is similar to that of Lemma 2.
Let Q′ be a shortest path in Gi′ from ←−s to t and suppose it contains e′j′

for some j′ ∈ J . Let Q be the path from ←−s to t in T in line 8.5 of iteration
i. Then Q is a shortest path in Gi from ←−s to t avoiding ei and containing
e′j .

Since the restriction of T to E is right-short, Q can be decomposed into

Q1Q2, where Q1 is a subpath
←−
P [←−s ,←−vi1] of

←−
P and Q2 is a path from ←−vi1 to

t containing no vertices of
←−
P ∪ −→P except ←−vi1 and −−→vj−1 and containing e′j as

the last edge, see Figure 10.
We may also assume that Q′ can be decomposed into Q′

1Q
′

2, where Q′

1

is a subpath
←−
P [←−s ,←−vi2] of

←−
P and Q′

2 is a path from ←−vi2 to t containing no

vertices of
←−
P ∪ −→P except ←−vi2 and −−→vj′−1 and containing e′j′ as the last edge.

17

←−vm = −→vm = t

Q2

←−−vm−1

−−→vm−1

−−→vj−1

e′j′

v

←−v i2

←−vi1

−−→vj′−1

Q′2

e′j
−→v0 = −→s

←−v0 =←−s

Q2Q′2

←−v1 ←−ei′
←−ei

Figure 10: In the proof of Lemma 4, paths Q2 and Q′

2 must share a vertex v.

We claim that i1 ≥ i2, as shown in Figure 10. For suppose i1 < i2. Note

that i′ < i and j + 1 ≤ j′ ≤ m. When traversing
←−
P from ←−s to t followed by−→

P backwards from t to −→s , we thus encounter ←−vi1 ,
←−vi2 ,
←−ei′ ,
←−ei ,
−−→vj′−1, and −−→vj−1

in that order. Hence, Q and Q′ both avoid ←−ei and←−ei′ so these paths must be
of equal length in Gi. We know that the algorithm relaxes e′j in line 8.4 of
iteration i. By Lemma 3, just before this event occurs, e′j′ must be relaxed.
But since lGi

(Q) = lGi
(Q′), e′j must be relaxed as well at this point in time,

a contradiction.
It follows that when traversing

←−
P from ←−s to t followed by

−→
P backwards

from t to −→s , we encounter ←−vi2 ,
←−vi1 ,
←−ei ,
−−→vj′−1, and −−→vj−1 in that order. Due

to planarity, this is only possible if Q2 and Q′

2 share a vertex v, see Fig-
ure 10. Then Q2[v, t] and Q′

2[v, t] have the same length in Gi′ , implying that
Q′[←−s , v]Q[v, t] is a shortest path from ←−s to t in Gi′. Since this path avoids
e′j′ for all j′ ∈ J , the lemma follows.

We can now bound the time and space used for phase 2.

Theorem 5. The algorithm in Figure 4 and Figure 5 can be implemented to
run in O(n log n) time using O(n) space.

Proof. Lemma 4 and observations above show the correctness of the algo-
rithm. To prove an O(n logn) time bound, it suffices to show that the total
number of relaxations performed in line 8.4 is O(n).

18

We first observe that when the length of an edge is increased in line 8.8,
it will never again drop below M+.

Now, consider some iteration i and suppose ki edges are relaxed in line
8.4. Since leafmost unrelaxed edges are relaxed, there must be at least ki

edges in {e′j+1, . . . , e
′

m−1} of length strictly less than M+ in line 8.5. Since
the lengths of edges e′j+1, . . . , e

′

m−1 are increased by M+ in line 8.8, at least
ki−1 of these lengths are increased from a value below to a value equal to or
above M+. The rest of the proof is identical to the proof of Theorem 3.

We have shown that phases 1 and 2 can be executed in O(n log n) time
and O(n) space. By symmetry, this also holds for phases 3 and 4. We can
therefore conclude with the following result.

Theorem 6. For a directed planar n-vertex graph with non-negative edge-
lengths, the replacement paths problem can be solved in O(n log n) time with
O(n) space.

8 Concluding Remarks

Given an n-vertex planar directed graph G with non-negative edge lengths
and given a shortest path P in G from a vertex s to a vertex t, we presented
a linear-space algorithm that computes, for each edge e ∈ P , the length of
a shortest path in G from s to t that avoids e. Running time is O(n logn),
improving on a bound of O(n log2 n) by Klein, Mozes, and Weimann.

References

[1] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Maintaining
information in fully-dynamic trees with top trees. ArXiv cs.DS/0310065.

[2] C. Demetrescu, M. Thorup, R. Alam Chaudhury, and V. Ramachan-
dran. Oracles for distances avoiding a link-failure. Preliminary version
of this paper appears in Proc. of 13th SODA, pages 838–843, 2002.

[3] Y. Emek, D. Peleg, and L. Roditty. A Near-Linear Time Algorithm for
Computing Replacement Paths in Planar Directed Graphs. In SODA’08:
Proceedings of the Nineteenth Annual ACM-SIAM symposium on Dis-
crete Algorithms, pages 428–435, Philadelphia, PA, USA, 2008, Society
for Industrial and Applied Mathematics.

19

[4] J. Hershberger, S. Suri, and A. Bhosle. On the difficulty of some shortest
path problems. In Proc. of the 20th STACS, pages 343–354, 2003.

[5] P. N. Klein. Multiple-source shortest paths in planar graphs. Proceed-
ings, 16th ACM-SIAM Symposium on Discrete Algorithms, 2005, pp.
146–155.

[6] P. N. Klein, S. Mozes, and O. Weimann. Shortest Paths in Directed
Planar Graphs with Negative Lengths: a Linear-Space O(n log2 n)-Time
Algorithm. Proc. 19th Ann. ACM-SIAM Symp. Discrete Algorithms, p.
236–245, 2009.

[7] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in
the shortest path problem. Operations Research Letters, 8(4):223–227,
1989.

[8] E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the
most vital edge of a shortest path. Information Processing Letters, 79
(2): 81–85, 2001.

[9] L. Roditty and U. Zwick. Replacement paths and k simple shortest
paths in unweighted directed graphs. In Proc. Automata, Languages
and Programming, 32nd International Colloquium, 249–260, 2005.

[10] K. Weihe. Maximum (s, t)-flows in planar networks in O(|V | log |V |)
time. JCSS 55 (1997), pp. 454–476.

20

	09-03 Forside
	09-03 Forside

	ChristianWulff

