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Abstract

We consider ray bundles emanating from a source such as a camera or light source. We derive
the full spatial and temporal structure to first order of the intersection of ray bundles with scene
geometry, where scene geometry given as any implicit function. Further, we present the full details
of 2 often used geometrical representations. The first order structure may be used as the linear
approximation of the change of photons as the camera, objects, and light source change as function
of space and time. Our work generalises previous work on ray differentials [Igehy, 1999] and photon
differentials [Schjøth et al., 2007].

1 Ray differential

In this work we consider reflection and refraction of light rays off and through surfaces as illustrated
in Figure 1. We will derive the spatial-temporal first order structure of these processes without any
simplifying assumptions. Consider a point on a ray and its direction P ,V ∈ R3, and a simple 2
dimensional surface such as a plane or a sphere embedded in 3-space, x ∈ R3, such that

v = x− P , (1a)

V =
v

‖v‖
. (1b)

We use column vectors, hence ‖v‖ =
√
vTv. Following [Igehy, 1999, Schjøth et al., 2007] we cal-

culate the partial derivative of P and V w.r.t. x, and we will use the notation of differentials
[Magnus and Neudecker, 1988]. Differentials are rooted in Taylor series, i.e. consider an analytical
function f : R→ R, and write its Taylor series as, f(x+ ∆x) = f(x) + f ′(x)∆x+O(∆x2), where O is
the remainder in Landau notation, and f ′ is the first order derivative of f . We may reorder, assume
infinitesimal small values of ∆x’s and ignore the even smaller remainder and define,

df = f ′(x)dx. (2)

The extension to vector and matrix equations is straight forward, since their Taylor series are element
wise Taylor series. We use the same notation except the derivative now is the Jacobian matrix, e.g. for
vector equations such as V ∈ Rn → Rm and x ∈ Rn, the Jacobian of V w.r.t. the variable x is DxV
who’s ij’th entry is ∂Vi

∂xj
. Hence, the j’th column is the change vector of V when only considering the

j’th coordinate direction. The Jacobian w.r.t. the full space of parameters is often just written as DV
for convenience. The differential embodies the full first order structure of a function, and a first order
estimate of the change is obtained by replacing the infinitesimals with finite values, i.e. dx with ∆x.
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Figure 1: Transfer, Reflection, and Refraction by a flat surface. Black arrows are ray directions from
origin, through reflection and refraction, green arrow is the normal for the green surface patch.

From (1) we may calculate the differential of V as,

dV =
(dv)(vTv)1/2 − v(vTv)−1/2vT dv

vTv
(3a)

=
vTvI3 − vvT

(vTv)3/2
dv (3b)

=
vTvI3 − vvT

(vTv)3/2
(dx− dP ), (3c)

where I3 is the 3×3 identity matrix. We are now able to calculate the complete first order structure of
V given the first order structure of P and x, and with that, we are able to make linear approximation
of the changes in V given the changes in P and x. E.g. if P is constant, then dP = 0, and

dV =
vTvI3 − vvT

(vTv)3/2
dx, (4)

From this form, we can easily identify the matrix of partial derivatives as

dV

dx
=
vTvI3 − vvT

(vTv)3/2
. (5)

The partial derivative of V w.r.t. P is similarly found as −dVdx .
If x is a plane, then a natural parametrization will be a set of orthogonal axes spanning the plane,

and to continue the example assume that the plane is orthogonal to the third axis, then

dx =

1 0
0 1
0 0

[dx1

dx2

]
(6)
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Assuming that we are currently viewing in direction v∗ which passes through coordinate
[
x1 x2

]T and

corresponding to V ∗, then the first order approximation to V ∗ + ∆V when
[
x1 + ∆x1 x2 + ∆x2

]T
is calculated by evaluating ∆V using dx1 = ∆x1 and dx2 = ∆x2, i.e.

∆V =
vTvI3 − vvT

(vTv)3/2

1 0
0 1
0 0

[∆x1

∆x2

]
. (7)

If x instead is a sphere of radius 1, we may more naturally use the spherical parametrization,

x =

xy
z

 =

cosφ sin θ
sinφ sin θ

cos θ

 , (8)

such that

dx =

− sinφ sin θ dφ+ cosφ cos θ dθ
cosφ sin θ dφ+ sinφ cos θ dθ

− sin θ dθ

 (9a)

=

− sinφ sin θ cosφ cos θ
cosφ sin θ sinφ cos θ

0 − sin θ

[dφ
dθ

]
(9b)

= A dθ, (9c)

whereA and θ are defined as indicated above. As a note, parallel rays can be implemented by enforcing
dV = 0.

The differentials are in no way limited to static scenes and cameras. In (6) we may add a time
derivative as

dx =
[
Dx1x Dx2x Dtx

] dx1

dx2

dt

 , (10)

where Dix are vectors of partial derivatives as indicated. I.e. if the plane moves with a unit speed
along the third coordinate axis, then Dtx =

[
0 0 1

]T , and if we wish to estimate the change in V
as after 1 unit of time, then we evaluate using dt = 1.

2 Transfer, Reflection, and Refraction

In the following we will investigate light’s interaction with dielectric material, i.e. reflection and
refraction. We consider a ray from a source at point P with direction V , which intersection a surface
at position Q and is reflection and refraction in directions Wreflect and Wrefract respectively. The
normal at Q will be denoted N , and the refraction ration at Q will be denoted η. Our main goal will
be to calculate the differentials, dQ, dWreflect, and dWrefract as a function of relevant parametrizations
e.g.

dQ = DVQ dV +DPQ dP +DNQ dN +DηQ dη (11a)
dWreflect = DVWreflect dV +DPWreflect dP +DNWreflect dN +DηWreflect dη (11b)
dWrefract = DVWrefract dV +DPWrefract dP +DNWrefract dN +DηWrefract dη (11c)

and subsequently identify the respective Jacobians.
Following [Igehy, 1999] we sketch an iterative process, where in each iteration: 1) The ray is trans-

fered to the point of intersecting geometry, Q, 2) the directions of reflection and refraction,Wreflect

and Wrefract, are calculated simultaneously. The pairs (Q,Wreflect) and (Q,Wrefract) are used as two
new source points and directions for following iterations.
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2.1 Transfer

The transfer of a ray onto a surface at distance s is,

Q = P + sV . (12)

We will assume that the surface is given implicitly as a scalar function F : R3 → R, where

0 = F (Q), (13)

and we will assume that there exists a method for solving for the smallest s∗ > 0, where

0 = F (P + s∗V ). (14)

We require that the surface unit normal, N , exists at Q, and when F is smooth, then N is parallel to
the spatial gradient of F . The differentialis found to be

dQ = dP + V ds+ s∗ dV . (15)

If the differential ds depends on dN , then ds will depend on the curvature of the surface at s∗. For
convenience we will in the remainder of this article use the symbol s to denote s∗.

2.2 Reflection

Given a ray transferred to a surface, reflection is given by

Wreflect = V − 2(V TN)N . (16)

Hence,

dWreflect = dV − 2
(
(dV T N + V T dN)N + (V TN)dN

)
(17a)

=
(
I3 − 2NNT

)
dV − 2

(
V TNI3 +NV T

)
dN . (17b)

2.3 Refraction

Given a ray transferred to a surface, refraction is given by Snell’s law [Watt and Watt, 1992, Igehy, 1999],

Wrefract = ηV − µN , (18)

where

µ = ηV TN +
√
ξ, (19a)

ξ = 1− η2
(

1−
(
V TN

)2)
, (19b)

and η is the ratio of refraction indices of the material between the interfaced media. The refraction
ratio between water and air is typically η = 1.33, which is why an often use approximation near η = 1
is ξ '

(
V TN

)2, nevertheless, we will derive the full structure to facilitate a greater range of η’s.
The differential is found to be,

dWrefract = dηV + ηdV − dµN − µdN (20a)
= V dη + ηdV −Ndµ− µdN . (20b)
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using dξ = −2η
(

1−
(
V TN

)2)
dη + 2η2

(
V TN

) (
dV T N + V T dN

)
, we see that

dµ = V TNdη + η(dV TN + V T dN) +
dξ

2
√
ξ

(21a)

= V TNdη + η(dV TN + V T dN) +
−η
(

1−
(
V TN

)2)
dη + η2V TN(dV TN + V T dN)

√
ξ

(21b)

=

V TN −
η
(

1−
(
V TN

)2)
√
ξ

 dη + η(NT dV + V T dN) +
η2V TN(NT dV + V T dN)√

ξ
(21c)

=
(
V TN − 1− ξ

η
√
ξ

)
dη + η

(
1 +

ηV TN√
ξ

)
NT dV + η

(
1 +

ηV TN√
ξ

)
V T dN . (21d)

Gathering terms we find that

dWrefract =
(
V −

(
V TN − 1− ξ

η
√
ξ

)
N

)
dη

+
(
ηI3 − η

(
1 +

ηV TN√
ξ

)
NNT

)
dV

−
(
µI3 + η

(
1 +

ηV TN√
ξ

)
NV T

)
dN . (22)

3 Examples: Triangular Surface Models

A number of differentials described above depend on the surface of intersection. We will now evaluate
the differentials to full depth for two popular and practical surface models based on triangles. The
implicit function of the interior of a triangle is identical to that of a plane, and the implicit function
of a plane with normal Nflat, and where Q0 is a point in the plane, is given as

F (Q) = (Q0 −Q)TNflat. (23)

The models we will investigate originates from flat and Phong shading. The cumbersome “flat” sub-
script is used to distinguish the geometry normal from the interpolated normal in Phong shading.
Further, we will assume that the media is homogeneous, i.e. dη = 0.

3.1 Flat Surface

Assuming that we have identified a triangle intersecting the ray, where NTV 6= 0, then we combine
(12) and (23) and seek the zero point,

0 = (Q0 − P − sV )TNflat, (24)

and

s =
(Q0 − P )TNflat

V TNflat
. (25)
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The full differential of ds is found as follows,

ds =

(
d
(

(Q0 − P )T Nflat

)) (
V TNflat

)
−
(

(Q0 − P )T Nflat

)
d
(
V TNflat

)
(V TNflat)

2 (26a)

=

(
(dQ0 − dP )T Nflat + (Q0 − P )T dNflat

)
− s

((
dV T

)
Nflat + V T dNflat

)
V TNflat

(26b)

=

(
NT

flat (dQ0 − dP ) + (Q0 − P )T dNflat

)
− s

(
NT

flat dV + V T dNflat

)
V TNflat

(26c)

=
NT

flat

V TNflat
dQ0 −

NT
flat

V TNflat
dP +

(Q0 − P )T − sV T

V TNflat
dNflat −

sNT
flat

V TNflat
dV . (26d)

Combining (15), (17), (22), and (26) we find,

dQ = KdP + sKdV + (I3 −K) dQ0 +LdNflat, (27a)

dWreflect =
(
I3 − 2NflatN

T
flat

)
dV − 2

(
V TNflatI3 +NflatV

T
)
dNflat, (27b)

dWrefract =
(
ηI3 − η

(
1 +

ηV TNflat√
ξ

)
NflatN

T
flat

)
dV −

(
µI3 + η

(
1 +

ηV TNflat√
ξ

)
NflatV

T

)
dNflat

(27c)

where

K = I3 −
V NT

flat

V TNflat
, (28a)

L =
V (Q0 − P )T − sV V T

V TNflat
. (28b)

Although the surface is flat, and the spatial part of dNflat is zero, we cannot disregard terms involving
dNflat, since the temporal part need not be zero.

Typically, a triangle will be parametrized by its 3 vertices, Q0, Q1 and Q2, and a more natural
parametrization of changes is in terms of the vertices. Such a parametrization allows us to further
develop dNflat. Assume that,

nflat = (Q2 −Q0)× (Q1 −Q0), (29)

To be consistent w.r.t. models for reflection and refraction, we will assume that nTV < 0, otherwise
we will interchange Q1 and Q2. For nTV < 0 we find,

Nflat =
nflat

‖nflat‖
, (30a)

dNflat =
nTflatnflatI3 − nflatn

T
flat

(nTflatnflat)3/2
dnflat, (30b)

dn = (dQ2× − dQ0×)(Q1 −Q0) + (Q2× −Q0×)(dQ1 − dQ0) (30c)
= (Q2× −Q0×)(dQ1 − dQ0)− (Q1× −Q0×)(dQ2 − dQ0) (30d)
= (Q0× −Q1×)dQ2 + (Q2× −Q0×)dQ1 + (Q1× −Q2×)dQ0. (30e)

For simplicity we have used the matrix form of cross products, a× b = a×b = bT×a = −b×a, where

c =

c1c2
c3

⇒ c× =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

 , (31)
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(a) (b) (c)

(d)

Figure 2: Transfer, Reflection, and Refraction for Flat surfaces. Black arrows are ray directions, green
is triangle normal, blue and red arrow illustrate the row vectors of dP /dθ, dQ/dθ, dV /dθ, and dW /dθ
as relevant. Subfigures (a)-(c) show orthographic projections of (d).

Using

J =
nTflatnflatI3 − nflatn

T
flat

(nTflatnflat)3/2
, (32)

we find that

dQ = KdP + sKdV + (I3 −K +LJ(Q1× −Q2×)) dQ0 +LJ(Q2× −Q0×)dQ1 +LJ(Q0× −Q1×)dQ2,
(33)

For stationary, flat surfaces dNflat = 0 and dQi = 0, i = 0 . . . 2, and we may write dQ = KdP +
sKdV in agreement with [Igehy, 1999]. The rays and spatial differentials are illustrated in Figure 2.
In Figure 3 are examples of time differentials shown. The yellow arrows denote velocity vectors, and
in Figures 3(a)-(c) it should be noted, that a velocity of P in different directions implies a velocity of
Q in the plane of the triangle. In Figures 3(d)-(e) we see, that a rotational velocity of V implies both
a velocity of Q in the plane of the triangle as well as a rotation of Wreflect and Wrefract. Finally but
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(a) (b) (c)

(d) (e)

Figure 3: Time differentials for Flat surfaces. Yellow arrows denote imposed and resulting time
derivatives. Subfigures (a)-(c) shows imposed velocities in three orthogonal directions on the origin,
P , (d)-(e) shows imposed rotational velocities in viewing direction V , and (f)-(h) shows imposed
velocities in three orthogonal directions on one of the vertices.
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(a) (b) (c)

Figure 4: Phong shading assumes fish scale geometry. A triangle, 4(a), shaded with Phong’s model,
4(b), expresses a complexity not supported by the real geometry. One way of conceptualizing this
model is to think of the triangle as consisting of fish scales, 4(c); in this mindset every point on the
surface of the triangle is associated with an independent local plane or fish scale whose normal is
interpolated from the corners of the triangle.

not shown, motion of the triangle normal to the triangle normal does not imply any velocity on any
parameters, and a rotation of the triangle normal implies a velocity on Q along the ray.

3.2 Phong Shaded Surface

Phong shading uses a triangle as a base geometry but imposes varying normals across it. Since the
flatness of the triangle contradicts the changing normals, we prefer to think of this as a fish scale model
as illustrated in Figure 4.

Phong shading assumes a plane represented by the 3 vertices of a triangle, Q0, Q1, and Q2, and
corresponding vertex normals N0, N1, and N2. To calculate the intersection of the view ray with the
triangle we use the Flat surface model (23), calculate the flat normal, Nflat, by (29), and we find the
point of intersection by solving (25). For reflection and refraction we construct an linearly interpolated
normal from the three vertex normals. The flat normal and interpolated vertex normal most often will
not coincide, and as a consequence dQ/dNphong will not span the triangle. Therefore, we calculate
dQ by (33).

To interpolate the vertex normals at the point of intersection, Q, we calculate the Barycentric
coordinates,

Q = λ0Q0 + λ1Q1 + λ2Q2, (34)

where λi ≥ 0 are homogeneous Barycentric coordinates such that λ0 + λ1 + λ2 = 1. The Barycentric
coordinates are then used to interpolate the vertex normals as,

n = λ0N0 + λ1N1 + λ2N2, (35a)

N =
n

‖n‖
. (35b)

Note that the Barycentric coordinates are local to the triangle, and their differentials dλi may be used
to estimate the change in Q in terms of the triangle. However, this requires algorithmic care near the
border of the triangle, where λi + ∆λi may fall outside the triangle.

Assuming a ray passing through P with direction V , which intersects a triangle within vertices
Q0, Q1, and Q2, then 0 ≤ λi ≤ 1, and we may find the Barycentric coordinates using Möller and
Trumbore’s algorithm [Möller and Trumbore, 1997]: Let

E0 = Q1 −Q0, (36a)
E1 = Q2 −Q0, (36b)
T = P −Q0 (36c)
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then

λ1 =
(V × T )TE1

(V ×E0)TE1
(37a)

=
τTE1

γTE1
(37b)

λ2 =
(V × T )TE0

(V ×E1)TE0
(37c)

=
τTE0

ζTE0
, (37d)

where τ = V × T , γ = V × E0, ζ = V × E1, and λ0 = 1 − λ1 − λ2. The differential, dN , is now
found to be,

dN =
nTnI3 − nnT

(nTn)3/2
dn, (38a)

dn = N0dλ0 + λ0dN0 +N1dλ1 + λ1dN1 +N2dλ2 + λ2dN2. (38b)

Since,

dλ0 = −dλ1 − dλ2, (39a)

dλ1 =
(dτTE1 + τT dE1)γTE1 − τTE1(dγTE1 + γT dE1)

(γTE1)2

=
γTE1(ET

1 dτ + τT dE1)− τTE1(ET
1 dγ + γT dE1)

(γTE1)2

=
γTS1dτ − τTS1dγ +ET

1

(
γτT − τγT

)
dE1

γTS1γ
, (39b)

dλ2 =
(dτTE0 + τT dE0)ζTE0 − τTE0(dζTE0 + ζT dE0)

(ζTE0)2

=
ζTE0(ET

0 dτ + τT dE0)− τTE0(ET
0 dζ + ζT dE0)

(ζTE0)2

=
ζTS0dτ − τTS0dζ +ET

0

(
ζτT − τζT

)
dE0

ζTS0ζ
, (39c)

where S1 = E1E
T
1 , and S0 = E0E

T
0 . Thus we find that

dN = J

(
λ0dN0 + λ1dN1 + λ2dN2

+ (N1 −N0)

(
γTS1dτ − τTS1dγ +ET

1

(
γτT − τγT

)
dE1

γTS1γ

)

+ (N2 −N0)

(
ζTS0dτ − τTS0dζ +ET

0

(
ζτT − τζT

)
dE0

ζTS0ζ

))
(40a)

= J

(
λ0dN0 + λ1dN1 + λ2dN2

+
(
∆1γ

TS1 + ∆2ζ
TS0

)
dτ −∆1τ

TS1dγ −∆2τ
TS0dζ

+ ∆2E
T
0

(
ζτT − τζT

)
dE0 + ∆1E

T
1

(
γτT − τγT

)
dE1

)
(40b)
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where J = nTnI3−nnT

(nTn)3/2 , ∆1 = (N1−N0)
γTS1γ

, and ∆2 = (N2−N0)
ζTS0ζ

. For simplicity we convert cross products
into matrix form, a× b = a×b = bT×a = −b×a, where

c =

c1c2
c3

⇒ c× =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

 , (41)

hence,

dτ = dV×T + V×dT = V×dT − T×dV , (42a)
dγ = dV×E0 + V×dE0 = V×dE0 −E0×dV , (42b)
dζ = dV×E1 + V×dE1 = V×dE1 −E1×dV , (42c)

implying that

dN = J

(
λ0dN0 + λ1dN1 + λ2dN2

+
(
∆1

(
τTS1E0× − γTS1T×

)
+ ∆2

(
τTS0E1× − ζTS0T×

))
dV

+
(
∆1γ

TS1 + ∆2ζ
TS0

)
V×dT

+
(
∆2E

T
0

(
ζτT − τζT

)
−∆1τ

TS1V×
)
dE0

+
(
∆1E

T
1

(
γτT − τγT

)
−∆2τ

TS0V×
)
dE1

)
. (43)

Since dE0 = dQ1 − dQ0, dE1 = dQ2 − dQ0, dT = dP − dQ0, we find that

dN = J

(
λ0dN0 + λ1dN1 + λ2dN2

+
(
∆1

(
τTS1E0× − γTS1T×

)
+ ∆2

(
τTS0E1× − ζTS0T×

))
dV

+
(
∆1γ

TS1 + ∆2ζ
TS0

)
V×dP

+
(
∆1

(
τT − γT

)
S1V× + ∆2

(
τT − ζT

)
S0V× + ∆2Ξ0 + ∆1Ξ1

)
dQ0

−
(
∆2Ξ0 + ∆1τ

TS1V×
)
dQ1

−
(
∆1Ξ1 + ∆2τ

TS0V×
)
dQ2

)
(44)

where Ξ0 = ET
0

(
τζT − ζτT

)
, and Ξ1 = ET

1

(
τγT − γτT

)
. Gathering terms for reflection and refrac-
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tion we find that

dWreflect =
(
I3 − 2NNT

)
dV − 2

(
V TNI3 +NV T

)
dN (45a)

=
(
I3 − 2NNT

)
dV

+M
(
λ0dN0 + λ1dN1 + λ2dN2

+
(
∆1

(
τTS1E0× − γTS1T×

)
+ ∆2

(
τTS0E1× − ζTS0T×

))
dV

+
(
∆1γ

TS1 + ∆2ζ
TS0

)
V×dP

+
(
∆1

(
τT − γT

)
S1V× + ∆2

(
τT − ζT

)
S0V× + ∆2Ξ0 + ∆1Ξ1

)
dQ0

−
(
∆2Ξ0 + ∆1τ

TS1V×
)
dQ1

−
(
∆1Ξ1 + ∆2τ

TS0V×
)
dQ2

)
. (45b)

=
(
I3 − 2NNT +M

(
∆1

(
τTS1E0× − γTS1T×

)
+ ∆2

(
τTS0E1× − ζTS0T×

)))
dV

+Mλ0dN0 +Mλ1dN1 +Mλ2dN2

+M
(
∆1γ

TS1 + ∆2ζ
TS0

)
V×dP

+M
(
∆1

(
τT − γT

)
S1V× + ∆2

(
τT − ζT

)
S0V× + ∆2Ξ0 + ∆1Ξ1

)
dQ0

−M
(
∆2Ξ0 + ∆1τ

TS1V×
)
dQ1

−M
(
∆1Ξ1 + ∆2τ

TS0V×
)
dQ2. (45c)

where M = −2
(
V TNI3 +NV T

)
J , and

dWrefract =
(
ηI3 − η

(
1 +

ηV TN√
ξ

)
NNT

)
dV −

(
µI3 + η

(
1 +

ηV TN√
ξ

)
NV T

)
dN (46)

=
(
ηI3 − η

(
1 +

ηV TN√
ξ

)
NNT

)
dV

+H
(
λ0dN0 + λ1dN1 + λ2dN2

+
(
∆1

(
τTS1E0× − γTS1T×

)
+ ∆2

(
τTS0E1× − ζTS0T×

))
dV

+
(
∆1γ

TS1 + ∆2ζ
TS0

)
V×dP

+
(
∆1

(
τT − γT

)
S1V× + ∆2

(
τT − ζT

)
S0V× + ∆2Ξ0 + ∆1Ξ1

)
dQ0

−
(
∆2Ξ0 + ∆1τ

TS1V×
)
dQ1

−
(
∆1Ξ1 + ∆2τ

TS0V×
)
dQ2

)
(47)

=
(

(ηI3 − η
(

1 +
ηV TN√

ξ

)
NNTV

+H∆1

(
τTS1E0× − γTS1T×

)
+H∆2

(
τTS0E1× − ζTS0T×

))
dV

+Hλ0dN0 +Hλ1dN1 +Hλ2dN2

+H
(
∆1γ

TS1 + ∆2ζ
TS0

)
V×dP

+H
(
∆1

(
τT − γT

)
S1V× + ∆2

(
τT − ζT

)
S0V× + ∆2Ξ0 + ∆1Ξ1

)
dQ0

−H
(
∆2Ξ0 + ∆1τ

TS1V×
)
dQ1

−H
(
∆1Ξ1 + ∆2τ

TS0V×
)
dQ2, (48)

where H = −
(
µI3 + η

(
1 + ηV TN√

ξ

)
NV T

)
J .
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4 Conclusion

In this work we have evaluated the full first order spatiotemporal structure of light’s interaction with di-
electric materials as reflection and refraction. In contrast to earlier work, [Igehy, 1999, Schjøth et al., 2007],
we make only assume that the geometry is given as a piecewise smooth surface. The derivation allows
for easy extension to other parameters than viewing directions, and parallel rays are briefly treated as
a special case as well as velocities on both the view point, direction and surfaces. Finally, we give two
examples of common shading models, flat and Phong, in full detail.

Conceptually, we model ray bundles instead of rays and obvious applications are ray tracing and
photon splatting, but the methodology is naturally and easily extended to all phenomena well approx-
imated by first order Taylor series. Our generalization offer more accurate and faithful reconstruction
of ray bundles in space and time.
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