

Shortest Paths in Planar Graphs with Real
Lengths in O(n log2 n/ log log n) Time

Christian Wulff-Nilsen ∗

March 26, 2009

Abstract

Given an n-vertex planar directed graph with real edge lengths and with
no negative cycles, we show how to compute single-source shortest path dis-
tances in the graph in O(n log2 n/ log log n) time with O(n) space. This is an
improvement of a recent time bound of O(n log2 n) by Klein et al.

1 Introduction

Computing shortest paths in graphs is one of the most fundamental problems in
combinatorial optimization with a rich history. Classical shortest path algorithms
are the Bellman-Ford algorithm and Dijkstra’s algorithm which both find distances
from a given source vertex to all other vertices in the graph. The Bellman-Ford
algorithm works for general graphs and has running time O(mn) where m resp.
n is the number of edges resp. vertices of the graph. Dijkstra’s algorithm runs in
O(m + n log n) time when implemented with Fibonacci heaps but it only works for
graphs with non-negative edge lengths.

We are interested in the single-source shortest path (SSSP) problem for planar
directed graphs. There is an optimal O(n) time algorithm for this problem when all
edge lengths are non-negative [2]. For planar graphs with arbitrary real edge lengths
and with no negative cycles, Lipton, Rose, and Tarjan [6] gave an O(n3/2) time
algorithm. Henzinger, Klein, Rao, and Subramanian [2] obtained a (not strongly)
polynomial bound of Õ(n4/3). Later, Fakcharoenphol and Rao [1] showed how to
solve the problem in O(n log3 n) time and O(n log n) space. Recently, Klein, Mozes,
and Weimann [5] presented a linear space O(n log2 n) time algorithm.

In this paper, we improve the result in [5] by exhibiting a linear space algorithm
with O(n log2 n/ log log n) running time.

From the observations in [5], our algorithm can be used to solve bipartite pla-
nar perfect matching, feasible flow, and feasible circulation in planar graphs in
O(n log2 n/ log log n) time.

∗Department of Computer Science, University of Copenhagen, koolooz@diku.dk,
http://www.diku.dk/~koolooz/

1

The organization of the paper is as follows. In Section 2, we give some definitions
and some basic results, most of them related to planar graphs. Our algorithm is
very similar to that of Klein et al. so in Section 3, we give an overview of some of
their ideas. We then show how to improve the running time in Section 4. Finally,
we make some concluding remarks in Section 5.

2 Definitions and Basic Results

In the following, G = (V, E) denotes an n-vertex planar directed graph with real edge
lengths and with no negative cycles. For vertices u, v ∈ V , we let dG(u, v) ∈ R∪{∞}
denote the length of a shortest path in G from u to v. We extend this notation to
subgraphs of G. We will assume that G is triangulated such that there is a path of
finite length between each ordered pair of vertices of G. The new edges added have
sufficiently large lengths so that shortest path distances in G will not be affected.

Given a graph H , we let VH and EH denote its vertex set and edge set, respec-
tively. For an edge e ∈ EH , we let l(e) denote the length of e (we omit H in the
definition but this should not cause any confusion). Let P = u1, . . . , um be a path
in H . We let |P | = m. For 1 ≤ i ≤ j ≤ m, P [ui, uj] denotes the subpath ui, . . . , uj.
A path P ′ is said to intersect P if VP ∩VP ′ 6= ∅. If P ′ = um, . . . , um′ is another path,
we define PP ′ = u1, . . . , um−1, um, um+1, . . . , um′.

Define a region R (of G) to be the subgraph of a subset of V induced by G. In G,
the vertices of VR that are adjacent to vertices in V \VR are called boundary vertices
(of R) and the set of boundary vertices of R is called the boundary of R. Vertices
of VR that are not boundary vertices of R are called interior vertices (of R).

The cycle separator theorem of Miller [7] states that, given an m-vertex plane
graph, there is a Jordan curve C intersecting O(

√
m) vertices and no edges such

that between m/3 and 2m/3 vertices are enclosed by C. Furthermore, this Jordan
curve can be found in linear time.

Let r ∈ (0, n) be a parameter. Fakcharoenphol and Rao [1] showed how to
recursively apply the cycle separator theorem such that in O(n logn) time, G is
divided into O(n/r) regions with some nice properties:

1. each region contains at most r vertices and O(
√

r) boundary vertices,

2. no two regions share interior vertices,

3. each region has a boundary contained in a constant number of faces, defined
by simple cycles.

We refer to such a division as an r-division of G. The bounded faces of a region are
its holes. To simplify the description of our algorithm, we will refer to all vertices of
the cycles containing the boundary of a region as boundary vertices of that region.
Furthermore, we will assume that for each region R in an r-division, R is contained
in the bounded region defined by one of the cycles C in the boundary of R. Clearly,
this can always be achieved by adding a new cycle if needed. We refer to C as the
external face of R.

2

For a graph H , a price function is a function p : VH → R. The reduced cost
function induced by p is the function wp : EH → R, defined by

wp(u, v) = p(u) + l(u, v)− p(v).

We say that p is a feasible price function for H if for all e ∈ EH , wp(e) ≥ 0.
It is well known that reduced cost functions preserve shortest paths, meaning that

we can find shortest paths in H by finding shortest paths in H with edge lengths
defined by the reduced cost function wp. Furthermore, given φ and the distance in
H w.r.t. wp from a u ∈ VH to a v ∈ VH , we can extract the original distance in H
from u to v in constant time [5].

Observe that if p is feasible, Dijkstra’s algorithm can be applied to find shortest
path distances since then wp(e) ≥ 0 for all e ∈ EH . An example of a feasible price
function is u 7→ dH(s, u) for any s ∈ VH . This assumes that dH(s, u) < ∞ for
all u ∈ VH which can always be achieved by, say, triangulating H with edges of
sufficiently large length so that shortest paths in H will not be affected.

3 The Algorithm of Klein et al.

In this section, we give an overview of the algorithm of [5] before describing our
improved algorithm in Section 4.

Let s be a vertex of G. To find SSSP distances in G with source s, the algorithm
starts by applying the cycle separator theorem to G. This gives a Jordan curve C
which separates G into two subgraphs, G0 and G1.

Let r ∈ C be any boundary vertex. The algorithm consists of five stages:

Recursive call: SSSP distances in Gi with source r are computed recursively for
i = 0, 1.

Intra-part boundary distances: The distances in Gi between each pair of bound-
ary vertices of Gi are computed using the algorithm of [4] for i = 0, 1. This stage
takes O(n logn) time.

Single-source inter-part boundary distances: A variant of Bellman-Ford is
used to compute SSSP distances in G from r to all boundary vertices. The algorithm
consists of O(

√
n) iterations and each iteration runs in O(

√
nα(n)) time using a result

of Klawe and Kleitman [3]. This stage therefore runs in O(nα(n)) time.

Single-source inter-part distances: Distances in the previous stage are used to
modify G such that all edge lengths are non-negative without changing the shortest
paths. Dijkstra’s algorithm is then used in the modified graph to obtain SSSP
distances in G with source r. Total running time for this stage is O(n log n).

Rerooting single-source distances: A price function is obtained from the com-
puted distances from r in G. This price function is feasible for G and Dijkstra’s
algorithm is applied to obtain SSSP distances in G with source s in O(n log n) time.

3

4 Improved Algorithm

As can be seen above, the last four stages of the algorithm in [5] run in a total of
O(n logn) time. Since there are O(log n) recursion levels, the total running time is
O(n log2 n). We now describe how to improve this time bound.

The idea is to reduce the number of recursion levels by applying the cycle sepa-
rator theorem of Miller not once but several times at each level. More precisely, for
a suitable p, we obtain an n/p-division of G in O(n logn) time. For each region Ri in
this n/p-division, we pick an arbitrary boundary vertex ri and recursively compute
SSSP distances in Ri with source ri. This is similar to stage one in the original
algorithm except that we recurse on O(p) regions instead of just two.

We will show how all these recursively computed distances can be used to com-
pute SSSP distances in G with source s in O(n log n + npα(n)) additional time.
This bound is no better than the O(n log n) bound of the original algorithm but
the speed-up comes from the reduced number of recursion levels. Since the size of
regions is reduced by a factor of at least p for each recursion level, the depth of the
recursion tree is only O(logn/ log p). It follows that the total running time of our
algorithm is

O

(

log n

log p
(n log n + npα(n))

)

.

To minimize this expression, we set n log n = npα(n). Solving this, we get p =
log n/α(n) which gives a running time of O(n log2 n/ log log n) as requested.

What remains is to show how to compute SSSP distances in G with source s in
O(n logn + npα(n)) = O(n log n) time, excluding the time for recursive calls.

So assume that we are given an n/p-division of G and that for each region R,
we are given SSSP distances in R with some boundary vertex of R as source. Note
that the number of regions is O(p) and each region contains at most n/p vertices
and O(

√

n/p) boundary vertices.
We will assume in the following that no region has holes. Then all its boundary

vertices are cyclically ordered on its external face. We consider holes in Section 4.4.
The remaining part of the algorithm consists of four stages very similar to the

algorithm of Klein et al. We give an overview of them here and describe them in
greater detail in the subsections below. Each stage takes O(n logn) time.

Intra-region boundary distances: For each region R, distances in R between
each pair of boundary vertices of R are computed.

Single-source inter-region boundary distances: Distances in G from an arbi-
trary boundary vertex r of an arbitrary region to all boundary vertices of all regions
are computed.

Single-source inter-region distances: Using the distances obtained in the pre-
vious stage to obtain a modified graph, distances in G from r to all vertices of G
are computed using Dijkstra’s algorithm on the modified graph.

4

1. initialize vector ej[v] for j = 0, . . . , b and v ∈ B
2. e0[v] :=∞ for all v ∈ B
3. e0[r] := 0
4. for j = 1, . . . , b
5. for each region R ∈ R
6. let C be the cycle defining the boundary of R
7. ej [v] := min{ej [v], minw∈VC

{ej−1[w] + dR(w, v)}} for all v ∈ VC

8. D[v] := eb[v] for all v ∈ B

Figure 1: Pseudocode for single-source inter-region boundary distances algorithm.

Rerooting single-source distances: Identical to the final stage of the original
algorithm.

4.1 Intra-region Boundary Distances

Let R be a region. Since R has no holes, we can apply the multiple-source shortest
path algorithm of [4] to R since we have a feasible price function from the recur-
sively computed distances in R. Total time for this is O(|VR| log |VR|) time which is
O(n logn) over all regions.

4.2 Single-source Inter-region Boundary Distances

Let r be some boundary vertex of some region. We need to find distances in G from
r to all boundary vertices of all regions. To do this, we use a variant of Bellman-Ford
similar to that in stage three of the original algorithm.

Let R be the set of O(p) regions, let B ⊆ V be the set of boundary vertices over
all regions, and let b = |B| = O(p

√

n/p) = O(
√

np). Note that a vertex in B may
belong to several regions.

Pseudocode of the algorithm is shown in Figure 1. Notice the similarity with
the algorithm in [5] but also an important difference: in [5], each table entry ej [v] is
updated only once. Here, it may be updated several times in iteration j since more
than one region may have v as a boundary vertex. For j ≥ 1, the final value of ej[v]
will be

ej [v] = min
w∈Bv

{ej−1[w] + dR(w, v)}, (1)

where Bv is the set of boundary vertices of regions having v as boundary vertex.
To show the correctness of the algorithm, we need the following two lemmas.

Lemma 1. Let P be a simple r-to-v shortest path in G where v ∈ B. Then P can
be decomposed into at most b subpaths P = P1P2P3 . . ., where the endpoints of each
subpath Pi are boundary vertices and Pi is a shortest path in some region of R.

Proof. P is simple so it can use a boundary vertex at most once. There are b bound-
ary vertices in total. A path can only enter and leave a region through boundary
vertices of that region.

5

Lemma 2. After iteration j of the algorithm in Figure 1, ej[v] is the length of
a shortest path in G from r to v that can be decomposed into at most j subpaths
P = P1P2P3 . . . Pj, where the endpoints of each subpath Pi are boundary vertices and
Pi is a shortest path in a region of R.

Proof. The proof is by induction on j. We omit it since it is similar to that in [5].

It follows from (1) and Lemmas 1 and 2 that after b iterations, D[v] holds the
distance in G from r to v for all v ∈ B. This shows the correctness of our algorithm.

As for running time, note that line 7 can be implemented to run in O(|VC|α(|VC|))
time using ideas from [5]. This follows from the assumption that R has no holes
so its boundary vertices are cyclically ordered on its external face C. Thus, each
iteration of lines 4–7 takes O(bα(n)) time, giving a total running time for this stage
of O(b2α(n)) = O(npα(n)). Recalling that p = log n/α(n), this bound is O(n log n),
as requested.

4.3 Single-source Inter-region Distances

To compute distances in G from boundary vertex r to all vertices of G we consider
one region at a time. So let R be a region. We need to compute distances in G from
r to each vertex of R.

Let R′ be the graph obtained from R by adding an edge from r to each boundary
vertex of R; the length of this edge is equal to the distance in G from r to the
boundary vertex. Note that dG(r, v) = dR′(r, v) for all v ∈ VR′ . Also note that
R′ has O(|VR|) vertices and edges and can be computed in O(|VR|) time, given the
distances computed in the previous stage.

Let rR be the boundary vertex of R for which distances in R from rR to all vertices
of R have been recursively computed. We define a price function φ for R′ as follows.
Let BR be the set of boundary vertices of R and let D = max{dR(rR, b)−dG(r, b)|b ∈
BR}. Then for all v ∈ VR′ ,

φ(v) =

{

dR(rR, v) if v 6= r
D if v = r.

Lemma 3. Function φ defined above is a feasible price function for R′.

Proof. Let e = (u, v) be an edge of R′. If e ∈ ER then φ(u) + l(e) − φ(v) =
dR(rR, u) + l(u, v) − dR(rR, v) ≥ 0 by the triangle inequality. If e /∈ R then u = r
and v = b for some b ∈ BR so φ(u) + l(e)− φ(v) = D + dG(r, b)− dR(rR, b) ≥ 0 by
definition of D. This shows that φ is a feasible price function for R′.

Price function φ can be computed in time linear in the size of R and Lemma 3
implies that Dijkstra’s algorithm can be applied to compute distances in R′ (and
hence in G) from r to all vertices of VR in O(|VR| log |VR|) time. Over all regions,
this is O(n log n), as requested.

We omit the description of the last stage where single-source distances are re-
rooted to source s since it is identical to the last stage of the original algorithm.
We have shown that all stages run in O(n log n) time and it follows that the total
running time of our algorithm is O(n log2 n/ log log n). It remains to deal with holes
in regions.

6

4.4 Dealing with Holes

In Sections 4.1 and 4.2, we needed the assumption that no region has holes. In
this section, we remove this restriction. As mentioned in Section 2, we may assume
w.l.o.g. that each region of R has at most a constant h number of holes.

Intra-region boundary distances: Let us first show how to compute intra-
region boundary distances when regions have holes. The reason why it works in
O(n logn) time in Section 4.1 is that all boundary vertices of each region are on
the external face, allowing us to apply the multiple-source shortest path algorithm
of [4].

Now, consider a region R. If we apply [4] to R we get distances from boundary
vertices on the external face of R to all boundary vertices of R. This is not enough.
We also need distances from boundary vertices belonging to the holes of R.

So consider one of the holes of R. We can transform R in linear time such
that this hole becomes the external face of R. Having done this transformation, we
can apply the algorithm of [4] to get distances from boundary vertices of this hole
to all boundary vertices of R. If we repeat this for all holes, we get distances in R
between all pairs of boundary vertices of R in time O(|VR| log |VR|+h|VR| log |VR|) =
O(|VR| log |VR|) time. Thus, the time bound in Section 4.1 still holds when regions
have holes.

Single-source inter-region boundary distances: What remains is the problem
of computing single-source inter-region boundary distances when regions have holes.
Let C be the external face of region R. Line 7 in Figure 1 only relaxes edges with
both endpoints on C. We need to relax all edges having boundary vertices of R as
endpoints.

To do this, we consider each pair of cycles (C1, C2), where C1 and C2 are C or
a hole, and we relax all edges starting in C1 and ending in C2. This will cover all
edges we need to relax.

Since the number of choices of (C1, C2) is O(h2) = O(1), it suffices to show that
in a single iteration, the time to relax all edges starting in C1 and ending in C2 is
O((|VC1

|+ |VC2
|)α(|VC1

|+ |VC2
|)), with O(|VR| log |VR|) preprocessing time.

We may assume that C1 6= C2, for otherwise we can relax edges as described in
Section 4.2.

We transform R in such a way that C1 is the external face of R and C2 is a hole of
R. We may assume that there is a shortest path in R between every ordered pair of
vertices, say, by adding a pair of oppositely directed edges between each consecutive
pair of vertices of Ci in some simple walk of Ci, i = 1, 2 (if an edge already exists, a
new edge is not added). The lengths of the new edges are chosen sufficiently large
so that shortest paths in R and their lengths will not change. Where appropriate,
we will regard R as some fixed planar embedding of that region.

Let r1 ∈ VC1
and let T be a shortest path tree in R from r1 to all vertices of C2.

Let P be the simple path in T from r1 to an r2 ∈ VC2
. Define

←−
E resp.

−→
E as the set

of edges e of R with exactly one endpoint on P such that when e is directed away
from P it is to the left resp. right of P in the direction of P .

7

P

r1

−→
P

←−
P

R RP

C1 P1

P2C2

u′1

v′|C2|+1v′1

u′|C1|+1

r2

Figure 2: Region RP is obtained from R essentially by cutting open at P the “ring”
bounded by C1 and C2.

Now, take a copy RP of R and remove P and all edges incident to P in RP . Add

two copies,
←−
P and

−→
P , of P to RP . Connect path

←−
P resp.

−→
P to RP by attaching

the edges of
←−
E resp.

−→
E to the path, see Figure 2. If (u, v) ∈ ER, where (v, u) ∈ EP ,

we add (u, v) to
←−
P and

−→
P in RP .

In order to relax edges from boundary vertices of C1 to boundary vertices of C2

in R, the first step is to relax edges in RP , defined in the following.
Note that a simple, say counter-clockwise, walk (u1 = r1), u2, . . . , u|C1|, (u|C1|+1 =

r1) of C1 in R starting and ending in r1 corresponds to a simple path P1 = u′1, . . . , u
′
|C1|+1

in RP . In the following, we identify ui with u′i for i = 2, . . . , |C1|. Vertex u1 = r1 in
R corresponds to two vertices in RP , namely u′1 and u|C1|+1. We will identify both
of these vertices with r1.

A simple, say clockwise, walk of C2 in R from r2 to r2 corresponds to a simple
path P2 = v′1, . . . , v

′
|C2|+1

in RP . We make a similar identification between vertices
of C2 and P2.

In the following, when we e.g. say that we relax all edges of RP starting in
vertices of C1 and ending in vertices of C2, we really refer to edges starting in the
corresponding vertices of P1 and ending in the corresponding vertices of P2. More
precisely, suppose we are in iteration j. Then relaxing an edge from a u ∈ VC1

\{r1}
to a v ∈ VC2

\ {r2} in RP means updating

ej [v] := min{ej[v], ej−1[u] + dRP
(u′, v′)}.

If u = r1, we relax w.r.t. both u′1 and u′|C1|+1
and if v = r2, we relax w.r.t. both v′1

and v′|C2|+1
. We extend these definitions to graphs with a structure similar to RP .

As the following lemma shows, relaxing edges in RP can be done efficiently by
exploiting the cyclic order of boundary vertices of RP as we did above for regions
with no holes.

Lemma 4. Relaxing all edges from VC1
to VC2

in RP can be done in O((|VC1
| +

|VC2
|)α(|VC1

|+ |VC2
|)) time in any iteration of Bellman-Ford.

Proof. Let paths P1 and P2 in RP be defined as above. Consider iteration j. Define
a |P1| × |P2| matrix A with elements Akl = ej−1[uk] + dRP

(u′k, v
′
l). Observe that

relaxing all edges from VC1
to VC2

in RP is equivalent to finding all column-minima
of A (compare this to [5]).

8

Now, since P1

←−
P P2

−→
P is a cycle, it follows easily from results of [5] that for

1 ≤ k ≤ k′ ≤ |P1| and 1 ≤ l ≤ l′ ≤ |P2|,

Akl + Ak′l′ ≥ Akl′ + Ak′l.

From [5], this suffices to show that A is a so called falling staircase matrix and by [3],
its column-minima can thus be found in O((|VC1

|+ |VC2
|)α(|VC1

|+ |VC2
|)) time.

Unfortunately, relaxing edges between boundary vertices in RP will not suffice
since some shortest paths in R may not exist in RP . In the following, we show how
to obtain from R two other graphs (due to symmetry, we only focus on one of them)
with a structure similar to that of RP such that relaxing all edges of these graphs
will cover the remaining edges.

First, we need some more definitions. Define graphs
←−
RP ,
−→
RP , and

←→
RP as follows.

Graph
←−
RP is obtained from RP by adding an edge of length zero from each vertex of−→

P to the corresponding vertex of
←−
P . Similarly,

−→
RP is obtained from RP by adding

an edge of length zero from each vertex of
←−
P to the corresponding vertex of

−→
P .

Finally,
←→
RP is obtained from RP by adding the union of the edges added to

←−
RP

and
−→
RP . Paths in these three graphs correspond to paths of the same length in R

when “contracting”
←−
P and

−→
P . Also, distances between vertices of R are the same

as distances in
←→
RP .

We say that a path in R from a u ∈ VC1
to a v ∈ VC2

crosses P from the left

resp. right if a corresponding path in
←→
RP uses one of the added zero-length edges in←−

RP resp.
−→
RP (in Figure 3(a), path Pv from u to v crosses P from the left and path

Pv′ from u to v′ crosses P from the right). We say that a path crosses P if it does
so from the left or right. Since we deal with shortest paths, we will assume that any
path that crosses P uses exactly one of the added zero-length edges. We extend the
definitions to other paths than P .

Note that for any u ∈ VC1
and v ∈ VC2

, dR(u, v) ≤ dRP
(u, v), with equality

if and only if some shortest path in R from u to v does not cross P . Similarly,
dR(u, v) ≤ d←−

RP
(u, v) resp. dR(u, v) ≤ d−→

RP
(u, v) with equality if and only if some

shortest path in R from u to v does not cross P from the right resp. left.

Let
←−
V1 be the set of vertices u ∈ VC1

for which dR(u, v) < d←−
RP

(u, v) for some

v ∈ VC2
. Similarly, let

−→
V1 be the set of vertices u ∈ VC1

for which dR(u, v) < d−→
RP

(u, v)
for some v ∈ VC2

.

Lemma 5.
←−
V1 ∩

−→
V1 = ∅.

Proof. Suppose for the sake of contradiction that u is a vertex in
←−
V1 ∩

−→
V1. Let v

and v′ be vertices of VC2
such that dR(u, v) < d←−

RP
(u, v) and dR(u, v′) < d−→

RP
(u, v′).

Then there is a shortest path Pv in R from u to v that crosses P from the left and a
shortest path Pv′ in R from u to v′ that crosses P from the right, see Figure 3(a).

Let w ∈ VP ∩VPv
and w′ ∈ VP ∩VPv′

. There are two possible cases: either Pv[u, w]
intersects Pv′ [w

′, v′] or Pv[w, v] intersects Pv′ [u, w′]. Let x be a vertex of intersection.
In the first case, Pv[u, x]Pv′ [x, v′] is a shortest path in R from u to v′ that does not
cross P , implying dR(u, v′) = d−→

RP
(u, v′). In the second case, Pv′ [u, x]Pv[x, v] is a

9

(a) (b)

uj

P

r1

uv′

v

P
w′

Pv

Pv′
w

u3

ui

w

Puj ,v

v

u|C1|
u2u1 = r1

w′

Pui,v

u|C1|−1

x

r2r2

Figure 3: (a): The situation in the proof of Lemma 5. Either Pv[u, w] intersects
Pv′ [w

′, v′] or Pv[w, v] intersects Pv′ [u, w′].(b): The situation in the proof of Lemma 6.
If path Puj ,v does not cross P from the right, it has to intersect Pui,v[ui, w] in a vertex
w′.

shortest path in R from u to v that does not cross P , implying dR(u, v) = d←−
RP

(u, v).
In both cases, we have a contradiction.

We may restrict our attention to relaxing edges starting in vertices of
←−
V1 ∪

−→
V1

since all other edges can be relaxed in RP . Symmetry allows us to further restrict

our attention to edges starting in vertices of
−→
V1. The following lemma shows how

these vertices occur on C1.

Lemma 6. Let (r1 = u1), u2, . . . , u|C1|, u1 be a counter-clockwise walk of C1. Then
−→
V1 = {u2, . . . , ui} for some i ∈ {1, . . . , |C1|} (this includes the case

−→
V1 = ∅).

Proof. For any v ∈ VC2
, the simple path from r1 to v in shortest path tree T can be

regarded as a shortest path in R that does not cross P . Hence, u1 /∈ −→V1. Pick the

largest i ∈ {2, . . . , |C1|} such that ui ∈
−→
V1 (if no such i exists, u1 /∈ −→V1 implies that−→

V1 = ∅ and the lemma is satisfied with i = 1). Let j ∈ {2, . . . , i}. We need to show

uj ∈
−→
V1.

Since ui ∈
−→
V1, there is a v ∈ VC2

such that dR(ui, v) < d−→
RP

(ui, v), implying that

any shortest path in R from ui to v crosses P from the right, see Figure 3(b). Let
Puj ,v be a simple shortest path in R from uj to v. It suffices to show that this path
crosses P from the right.

Let Pui,v be a simple shortest path from ui to v in R and let w be the first vertex
of Pui,v ∩ P when traversing Pui,v. Suppose for the sake of contradiction that Puj ,v

does not cross P from the right. Then it has to intersect Pui,v[ui, w] in some vertex
w′ and Pui,v[ui, w

′]Puj ,v[w
′, v] is a shortest path in R from ui to v not crossing P

from the right, a contradiction.

Let r′1 be the vertex ui satisfying Lemma 6, see Figure 4. Let
−→
V2 be the set of

vertices v ∈ VC2
such that v = r2 or the simple path in T from r1 to v is to the right

of P , i.e. it uses no edges of
←−
E . Let r′2 be the last vertex of

−→
V2 in a counter-clockwise

10

r1

uv

P ′

P

−→
V2

Pr1,v

w

P ′′

r′1

r′2

r2

Figure 4: The situation in the proof of Lemma 7. If P ′′ crosses P from the right, it
must intersect Pr1,v in a vertex w before crossing P .

walk of C2 starting in r2. By planarity of T , it easily follows that the vertices from

r2 to r′2 in this counter-clockwise walk are exactly the vertices of
−→
V2.

Let P ′ be a simple shortest path in R from r′1 to r′2. We can assume that P ′ does

not cross P . For suppose otherwise. Since r′1 ∈
−→
V1, Lemma 5 implies r′1 /∈ ←−V1 so we

may assume that P ′ crosses P from the right. Since the simple path P ′′ in T from
r1 to r′2 is not to the left of P , part of P ′ and part of P ′′ together give a shortest
path from r′1 to r′2 not crossing P , as requested.

Now, define graph RP ′ as RP with P replaced by P ′ in the definition. The
following lemma implies that after relaxing edges of RP in any iteration, all remaining

edges in R starting in vertices of VC1
\←−V1 can be relaxed in RP ′. Clearly, Lemma 4

applies to RP ′, implying that in R, all edges starting in VC1
\ ←−V1 can be relaxed

efficiently.

Lemma 7. For any u ∈ VC1
\←−V1, v ∈ VC2

, there is a simple shortest path in R from
u to v which does not cross both P and P ′.

Proof. We may assume that u ∈ −→V1, u 6= r1, r
′
1, and v 6= r2, r

′
2. Let P ′′ be a simple

shortest path in R from u to v and suppose it crosses both P and P ′. Then v ∈ −→V2,
see Figure 4.

Let Pr1,v be the simple path in T from r1 to v. Since v ∈ −→V2, Pr1,v is not to the
left of P .

By Lemma 5, u ∈ −→V1 ⇒ u /∈ ←−V1 so there is a shortest path in R from u to v that
crosses P from the right. Hence, we may assume that P ′′ crosses P before P ′ (or
both simultaneously). But then P ′′ must intersect Pr1,v in a vertex w before crossing
P so P ′′[u, w]Pr1,v[w, v] is a shortest path in R from u to v which does not cross P ,
as requested.

The algorithm: We can now describe our Bellman-Ford algorithm to relax all
edges from vertices of C1 to vertices of C2. Pseudocode is shown in Figure 5.

Assume that RP and RP ′ and distances between pairs of boundary vertices in
these graphs have been precomputed.

In each iteration j, we relax edges from vertices of VC1
\ ←−V1 to all v ∈ VC2

in
RP and RP ′ (lines 9 and 10). Lemma 7 implies that this corresponds to relaxing all

11

1. initialize vector ej [v] for j = 0, . . . , b and v ∈ B
2. e0[v] :=∞ for all v ∈ B
3. e0[r] := 0
4. for j = 1, . . . , b
5. for each region R ∈ R
6. for each pair of cycles, C1 and C2, defining the boundary of R
7. if C1 = C2, relax edges from C1 to C2 as in [5]
8. else (assume C1 is external and that dRP

and dRP ′
have been precomputed)

9. ej[v] := min{ej [v], min
w∈VC1

\
←−
V1

{ej−1[w] + dRP
(w, v)}} for all v ∈ VC2

10. ej[v] := min{ej [v], min
w∈VC1

\
←−
V1

{ej−1[w] + dRP ′
(w, v)}} for all v ∈ VC2

11. update ej similarly for w ∈ ←−V1

12. D[v] := eb[v] for all v ∈ B

Figure 5: Pseudocode for the Bellman-Ford variant that handles regions with holes.

edges in R from vertices of VC1
\ ←−V1 to vertices of VC2

. Similarly, executing line 11

corresponds to relaxing all edges in R from vertices of
←−
V1 to vertices of VC2

. By the
results in Section 4.2, this suffices to show the correctness of the algorithm.

Lemma 4 shows that line 9 can be implemented to run in O((|VC1
|+|VC2

|)α(|VC1
|+

|VC2
|)) time (actually, in Lemma 4 we relax all edges from VC1

to VC2
in RP , not

just those starting in VC1
\←−V1 but this does not change the correctness) and by sym-

metry, we can also execute lines 10 and 11 within the same time bound. Thus, each
iteration of lines 6–11 takes O((|VC1

|+ |VC2
|)α(|VC1

|+ |VC2
|)) time, as requested.

It remains to show that RP and RP ′ and distances between boundary vertices in
these graphs can be precomputed in O(|VR| log |VR|) time (we also need to construct
a graph RP ′′ similar to RP ′ and to compute distances between boundary vertices in
RP ′′ in order to relax edges in line 11. Due to symmetry, we omit the analysis for
RP ′′).

Shortest path tree T in R with source r1 can be found in O(|VR| log |VR|) time
with Dijkstra using the feasible price function φ obtained from the recursively com-
puted distances in R. Given T , we can find P and RP in O(|VR|) time. We can
then apply Klein’s algorithm [4] to compute distances between all pairs of boundary
vertices in RP in O(|VR| log |VR|) time (here, we use the non-negative edge lengths
in R defined by the reduced cost function induced by φ).

All of these ideas also apply to RP ′ so the only remaining problem is how to
obtain P ′. If we are given endpoints r′1 and r′2, we can find P ′ in O(|VR| log |VR|)
time using Dijkstra so let us show how to find r′1 and r′2 within this time bound.

Since we are given T , we can traverse it to find r′2 in O(|VR|) time. As for r′1, let
u ∈ VC1

. Using Klein’s algorithm and price function φ, we can compute distances

between boundary vertices in
−→
RP in O(|VR| log |VR|) time. Given these distances and

the distances between boundary vertices in R, we can determine whether u ∈ −→V1, in
O(|VC2

|) time. Thus, r′1 can be found in O(|VC1
||VC2

|) = O(|VR|) time.
We can now state our result.

Theorem 1. Given a planar directed graph G with real edge lengths and no negative

12

cycles and given a source vertex s, we can find SSSP distances in G with source s
in O(n log2 n/ log log n) time and linear space.

Proof. We gave the bound on running time above. To bound the space, first note
that finding an n/p-division of G using the algorithm of [1] requires O(n) space.
Klein’s algorithm [4] and Dijkstra also has linear space requirement. The recur-
sively computed distances take up a total of O(pn

p
) = O(n) space. In the intra-

region boundary distances stage, the total memory spent on storing distances is
O(p(

√

n/p)2) = O(n).
In the single-source inter-region boundary distances stage, we need to bound the

space for our Bellman-Ford variant. The size of each table is O(b) = O(n). Since
we only need to keep tables from the current and previous iteration in memory,
Bellman-Ford uses O(n) space.

It is easy to see that the last two stages use O(n) space. Hence the entire
algorithm has linear space requirement.

5 Concluding Remarks

We gave a linear space algorithm for single-source shortest path distances in a planar
directed graph with arbitrary real edge lengths and no negative cycles. Running
time is O(n log2 n/ log log n), an improvement of a previous bound by a factor of
log log n. As corollaries, bipartite planar perfect matching, feasible flow, and feasible
circulation in planar graphs can be solved in O(n log2 n/ log log n) time.

References

[1] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest
paths, and near linear time. Available from the authors’ webpages. Preliminary
version in FOCS’01.

[2] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster shortest-
path algorithms for planar graphs. Journal of Computer and System Sciences,
55(1):3–23, 1997.

[3] M. M. Klawe and D. J. Kleitman. An almost linear time algorithm for general-
ized matrix searching. SIAM Journal On Discrete Math, 3(1):81–97, 1990.

[4] P. N. Klein. Multiple-source shortest paths in planar graphs. Proceedings, 16th
ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 146–155.

[5] P. N. Klein, S. Mozes, and O. Weimann. Shortest Paths in Directed Planar
Graphs with Negative Lengths: a Linear-Space O(n log2 n)-Time Algorithm.
Proc. 19th Ann. ACM-SIAM Symp. Discrete Algorithms, p. 236–245, 2009.

[6] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
Journal on Numerical Analysis, 16:346–358, 1979.

13

[7] G. L. Miller. Finding small simple cycle separators for 2-connected planar
graphs. J. Comput. Syst. Sci., 32:265–279, 1986.

14

