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Preface 

Breast cancer affects many women: In the western world about 12% of 

women are diagnosed with breast cancer during their lifetime. Therefore, 

breast imaging, with applications in risk assessment, screening, diagnosis, and 

treatment, is an important topic. In modern breast imaging, traditional 

imaging modalities such as mammography and handheld ultrasound are 

complemented by dynamic contrast-enhanced MRI, whole breast ultrasound, 

and breast tomosynthesis. To make optimal use of these technologies, there is 

a strong need for the development of effective image analysis methods. 

Examples are extraction and combination of information from multimodal 

imaging, temporal change assessment in screening, and relating image 

characteristics to risk factors. Development of such methods is highly 

challenging due to large deformations of the breast and subtlety of the 

abnormalities to be detected and diagnosed. 

 

The first Workshop on Breast Image Analysis was held on 18
th
 of September 

2011 in Toronto, Canada, in conjunction with the 14
th
 International 

Conference on Medical Image Computing and Computer Assisted 

Intervention (MICCAI 2011). It was jointly organised by the groups at 

Chicago, Copenhagen, London, Nijmegen, Oxford, and Zürich, with an 

external scientific committee of 22 reviewers from 4 continents and 9 

countries, all experts in the field. Full-length paper submissions (8 pages, 

LNCS style) were invited, and a total of 33 submissions from 22 international 

research institutions, 6 continents and 13 countries, were received. Each 

submitted paper was reviewed double-blinded by 3 reviewers from the 

Scientific Committee and the Organising Committee. Based on the reviews, a 

total of 23 papers were accepted and are included in these workshop 

proceedings. From these, 12 papers were selected for oral presentations, 

grouped into four themed sessions: Motion Analysis and Reconstruction; 

Segmentation; CAD and Quantitative Analysis; Biomechanical Modelling. 

The remaining 11 papers were selected for poster presentation. Authors were 

asked to take reviewers’ comments into account for their final version. 

Proceedings were made available as a PDF file on the MICCAI Workshop 

USB stick, as well as ISBN Online proceedings. 

 

The purpose of this first MICCAI Workshop on Breast Image Analysis was to 

bring together researchers in the field of breast imaging to discuss and 

exchange new ideas and applications, and to provide a platform for breast 

image analysis methodology across all imaging modalities. Substantial 

discussion time for posters was provided to allow for a stimulating exchange 



of ideas. The invited keynote lecture by Professor Martin Yaffe, Sunnybrook 

Health Sciences Centre, Toronto on "Breast imaging with tomosynthesis and 

CT" was inspiring and very well received. A special journal issue based on 

topics of this workshop, as well as future Breast Image Analysis workshops, 

are under discussion. 

 

On behalf of the Organising Committee, we would like to thank all members 

of the Scientific Review Committee, workshop presenters and contributing 

authors, as well as all workshop participants for making this first Workshop 

on Breast Image Analysis an inspiring and successful event! 

 

Christine Tanner and Julia Schnabel 
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Generating Coefficients for Regularization Terms in
Nonrigid Registration of Contrast-Enhanced MRI

Xi Liang1,2, Ramamohanarao Kotagiri1, Qing Yang3, Marius Staring4, and Alexander
Pitman2

1 National ICT Australia (NICTA)
2 Department of Computer Science and Software Engineering, University of Melbourne

3 Apollo Medical Imaging Technology L.t.d
4 Department of Radiology, Leiden University Medical Center

Abstract. Nonrigid registration is a technique to recover spatial deformations
between images. It can be formulated as an optimization problem to minimize
the image dissimilarity. A regularization term is used to reduce undesirable de-
formations which are usually employed in a homogeneous or spatial-variant fash-
ion. When spatial-variant regularization is used in nonrigid registration of dy-
namic contrast-enhanced magnetic resonance imaging (DCE-MRI), the local co-
efficients have been determined by manual segmentation of tissues of interest.
We propose a framework to generate regularization coefficients for nonrigid reg-
istration in DCE-MRI, where tumor locations are to be transformed in a rigid
fashion. The coefficients are obtained by applying a sigmoid function on sub-
traction images from a pre-registration. All parameters in the function are auto-
matically determined using k-means clustering. The validation study compares
three regularization weighting schemes in nonrigid registrations: a constant coef-
ficient for a volume-preserving term, binary coefficients obtained by manual seg-
mentation and a real-value coefficients using the proposed method on a rigidity
term. Evaluation is performed using displacements, intensity changes and volume
changes of tumors on synthetic and clinical DCE-MR breast images. As a result,
the registration using spatial-variant rigidity terms performs better than using ho-
mogeneous volume-preserving terms. For the coefficient generation methods of
a rigidity term, the proposed method can replace the binary coefficients requiring
manual tumor segmentation.

1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to differ-
entiate between malignant and benign lesions in cancer diagnosis. A sequence of 3D
MRI scans before and after the injection of a paramagnetic contrast agent is acquired to
form a 4D (3D+time) DCE-MR image. The 4D imaging technique allows an analysis
of the variation of the magnetic resonance (MR) signal intensity, before and after the
injection of contrast enhancement. The time-intensity curve patterns can be used in the
detection of tumors. However, the motion in between the image acquisitions can com-
plicate the analysis. Image registration is used in DCE-MR image analysis to achieve
alignment between images. Image registration is an optimization problem aiming to
minimize the image dissimilarity. In registration of DCE-MRI, free-form deformation



(FFD) based nonrigid registration is widely used to remove motions in between image
acquisition of the pre- and post-contrast images [1]. All post-contrast images at differ-
ent time steps are registered to the baseline pre-contrast image such that the same tissue
is located at the same position in all images.

There are two reasons that lead to an intensity difference. One is motion occurred
in between image acquisitions and the other is intensity enhancement caused by the
injection of contrast agent. Therefore, minimizing the image dissimilarity during the
image registration can reduce the occurred motion but also change the volume of the
enhanced region [2]. This can be countered through the use of regularization.

An incompressibility constraint was proposed to preserve tumor volumes [ 2], which
is applied on the whole breast region with the same weight for all types of tissues. The
assumption is that the tissue volume does not change over a short period of time. How-
ever, most DCE-MR images require several minutes’ acquisition time and the breath or
body gesture changes of a patient might change the volume of soft breast tissues.

Spatial-variant rigidity constraints [3,4,5] were proposed to preserve the rigidity
of tissues. When applying a rigidity term in the registration of DCE-MR images, it
requires a coefficient or stiffness map on each post-contrast image to determine the
penalty weight on various types of tissue. Tumors are usually assumed to be rigid while
other tissue (e.g. fat) is relatively soft. Therefore a segmentation of the enhanced tumors
on the post-contrast image can be used to build a binary stiffness map. Manual segmen-
tation is usually regarded as the most accurate method but can be time consuming; and
automatic enhanced tumor segmentation on subtraction images usually requires a pre-
liminary successful registration to remove motion artifacts. Therefore, it is important
to build a robust and reliable method to compute the regularization coefficients for the
registration in DCE-MR images.

We propose a framework to compute the rigidity registration coefficients in appli-
cation to 4D DCE-MR images. A pre-registration is performed that registers the pre-
contrast image to each post-contrast image. A subtraction image is obtained, identify-
ing corresponding tissue enhancement information. We subsequently apply a sigmoid
function to map the voxel intensity in the smoothed subtraction image to form the reg-
ularization coefficients. All parameters of the sigmoid function are determined by a
k-means clustering method.

In our validation study on synthetic and clinical DCE-MR breast images, we com-
pare registration schemes with various methods to compute the coefficients of the rigid-
ity regularization term: a constant term, a binary function that requires an explicit seg-
mentation, and the proposed mapping method.

2 Image registration

Image registration is defined as a problem of finding a spatial transformation T relating
two images of dimension d, one of which is fixed (IF ) and the other moving (IM ). In
this paper, we employ intensity-based image registration, formulated as an optimization
problem in which the cost function C is minimized with respect to the spatial transfor-
mation T . The cost function defines the quality of the match, in combination with a



regularization of the transformation. The optimization problem can be formulated as:

µ̂ = argmin
µ

Csim(Tµ; IF , IM ) + wCreg(Tµ), (1)

where the subscript µ indicate the transformation parameters, C sim denotes the image
similarity, which is mutual information [6] in this paper, and Creg is used to penalize
nonrigid deformations as a soft constraint weighted by a scalar w. A rigidity regu-
larization term proposed by Staring et al. [5] is employed in the registration package
elastix[7]. We adopt a B-splines based transformation model [1] in this paper, called
free-form deformation (FFD).

3 Method

LetF be a regularization term that can be applied on transformationT with a coefficient
map function γ : R → R. A general form of this term can be represented as:

Creg(T ) =

∫
x∈Ω

γ(x)F (T ;x)2∫
x∈Ω

γ(x)
(2)

The coefficient mapping function γ maps each voxel in a moving image to a value
that suggest the weight of the regularization term applied on it. The simplest mapping
function is a constant number where all voxels x in an image are equally weighted,
γ(x) = α. For instance, Rohlfing [2] applied a uniformly weighed incompressibility
term on all breast regions.

Another commonly used function is a binary function that requires a preliminary
segmentation of various tissues. For instance by performing a tumor segmentation on
the DCE-MR images, the weight on tumor tissue is 1 and non-tumor tissue is 0.

Another kind of function is to map the intensity of an image to another range when
the intensity can imply the tissue types. Ruan et al. [4] maps a CT image into a new
range where most of voxels have either value 1 (bone tissues) or 0. The assumption is
the voxel intensity value that falls in a certain range in a CT image suggests the bone
tissues.

In DCE-MR images, the intensity does not always link to tissue types. However,
most tumors are more rigid than healthy tissue and are usually enhanced in post-contrast
images. Subtraction images of pre- from post-contrast image show enhancement of
tissues provided there is no motion in between. Based on the assumption that tumors
get enhanced in post-contrast images, we obtain regularization coefficients by applying
a sigmoid mapping function on subtraction images from a pre-registration.

Given a pre-contrast image f and post-contrast image g, f is registered to g using a
rigid and then nonrigid (FFD) registration algorithm, obtaining a registered pre-contrast
image f ′. A subtraction image denoted as h shown in Figure 1(a) is obtained by sub-
tracting f ′ from g and then smoothed by a Gaussian filter (σ = 2) shown in Figure1(b).
A non-linear mapping function, sigmoid function, is then applied on the subtraction
image h, resulting in the coefficient image (Figure1(c)).

In the pre-registration, the tumor volume in pre-contrast might have changed, but
the intensity of post-contrast image will dominate the intensity in subtraction image,



(a) Subtraction
image

(b) After
smoothed

(c) Coefficients

Fig. 1: Central slices of image volume of a subtraction image, after being smoothed and
after applying sigmoid function on the subtract image.

therefore, the tumor volume change in pre-contrast image will not effect the resulting
coefficient image.

Let I(x) be the intensity value at voxel x in subtraction image h, the mapping
function γ(x) transform I(x) to a new range with a center α and scale β:

γ(x) =
max−min(

1 + e
−
(

I(x)−β
α

)) +min, (3)

where max and min are maximum and minimum intensity of the image, α and β are
determined by performing a k-means clustering method on the smoothed subtraction
image h and partitioning it into k groups with various intensity means. The highest in-
tensity mean value is assigned to β and the standard deviation of that cluster is assigned
to α. Therefore, the only user-defined parameter is the number of clusters k. The per-
formance of the registration is demonstrated to be insensitive to the value of k in the
range of 2 to 5.

4 Validation

All DCE-MR breast images were acquired with a Siemens 1.5 MR system, where
TR = 5.11ms, TE = 2.7ms, field of view = 340mm. The voxel dimensions were
around 0.68×0.68×1mm. The slice orientations were axial and reformatted to identity
orientation for visualization convenience. The total acquisition time was 6.24 minutes,
including 6 time steps in a four-dimensional DCE-MR breast image (1 before and 5
after injection of contrast agent).

4.1 Synthetic datasets

We select 3 clinical DCE-MR breast images without obvious motions to generate 3×10
synthetic images with simulated deformations. The three images show various tumor
volumes (1.5cm3, 11.8cm3, 22.3cm3) or enhancement patterns (homogeneous, hetero-
geneous). The subtraction images of the pre- from post-contrast images are shown in
Figure 2. Two image volumes in each clinical DCE-MR breast image series are used in



Fig. 2: Selected slices of subtraction image of pre- from post-contrast images in the
three clinical image series, which are used to generate synthetic images.

building a synthetic image set: a pre- and a post-contrast image volumes at the second
time point after injection of contrast agent (f0, g0). We manually segment the enhanced
tumors s0 from the post-contrast images, which will be used in the validation study as
a ground truth of tumor volume, location and intensity.

For the deformation simulation, we randomly generate two rigid transformations
(Tr1 ,Tr2), and two B-spline transformations with a grid point space of 10mm and
20mm. We later update these B-spline transformations to Tb1 ,Tb2 such that the tu-
mors are rigidly deformed by enforcing the related control points to be zero. We subse-
quently compose all transformations to Tgt(x) = Tb1 ◦Tr1 ◦Tb2 ◦Tr2 , which are used
to construct synthetic pre- and post-contrast images f1,m1 and tumor mask s1, where
f1 = f0, g1 = Tgt(g0), and s1 = Tgt(s0).

4.2 Evaluation method

The Target Registration Error (TRE) [8] is used to evaluate the degree of alignment
between two corresponding voxels in terms of deformations:

TRE =
∑
x∈Ω

||Test ◦ Tgt(x)− x||, (4)

where Tgt is the simulated deformation, Test is the estimated transformation obtained
from various registration schemes. A smaller TRE value suggests a registration can
better recover the simulated motion.

We also measure the recovery of the motion in synthetic post-contrast images by
measuring the intensity similarity with the corresponding original post-contrast images,
using root mean squared error (RMS) and normalized correlation (NC):

RMS(A,B) =

√√√√ 1

N

N∑
i=1

(Ai −Bi)2, NC(A,B) =

∑N
i=1(Ai ·Bi)√∑N

i=1 A
2
i ·

∑N
i=1 B

2
i

where Ai, Bi is the intensity of i-th voxel of images A and B, andN is the total number
of voxels considered. Smaller RMS values and higher NC values suggest higher image
similarity and hence better registration performance.

We also compute the tumor volume changes by applying the estimated transforma-
tion Test on the tumor mask s1.
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Fig. 3: TRE over the breast region is shown on left y-axis and volume change over
the tumor region is on the right y-axis. (a) shows VPC registration scheme results for
α ∈ [0.1, 7]. The tumor volume change decreases as the weight α increase. TRE for
breast region increases fast for α > 5. (b) shows ARC(k=5) results for α ∈ [0.1, 1.5].
The running time for α > 1.5 are more than 15 minutes. Note the axes scales of (a) and
(b) are different

4.3 Experiment and results

We perform registrations using three methods to compute regularization coefficients:
constant number γ(x) = 0 for unconstrained FFD (denoted as UC) and γ(x) = 1 for
volume-preserving constraint (VPC) [2], binary function based on manual segmenta-
tion of tumors (MRC) and our proposed automatic method (ARC(k)) for rigidity con-
straint [5]. We evaluate the robustness of the proposed method to the number of clusters
k of range 2 to 5, used in determining the parameters of sigmoid function. Each regis-
tration scheme is tested on 30 synthetic and 5 clinical images and the performance is
evaluated on the whole breast and tumor regions. Initial rigid registrations are employed
in all tests. A multi-resolution scheme using 4 resolutions is employed for all nonrigid
registrations, from 8, 16, 32 to 64mm. This is designed to be different from the resolu-
tion and grid space in the deformation simulation in order to reduce the evaluation bias.
The breast regions are selected by performing a thresholding segmentation on cropped
one-side breast images and followed by a morphology closing to remove holes. The pa-
rameter α in equation (1) is determined by finding the value that can best preserve the
tumor volume while maintaining comparable or better result than unconstrained FFD
scheme and the computation time is less than 15 minutes. Figure 3 shows an example
of registration results on a synthetic image set using a range of α value.

Table 1 shows the registration results on synthetic images with ground-truth. Volume-
preserving constrained scheme (VPC), with higher RMS and lower NC value on breast
region, shows worse result than UC. However, VPC has smaller TRE than UC and
the difference could come from distortion of tumors. Rigidity constrained schemes
(ARC(k) for k = 3, 4, 5 and MRC) perform better than volume-preserving constrained
(VPC) schemes in terms of smaller mean TRE and RMS, higher NC over the whole
breast and tumor regions and less tumor volume loss. It demonstrates that using spatial



Breast regions Tumor regions

TRE RMS NC TRE RMS NC Vol change

UC 3.42±3.11 36.20±4.56 0.90±0.01 1.09±0.79 53.11±2.15 0.79±0.03 0.20±0.11
VPC 2.40±1.36 37.30±4.50 0.89±0.02 0.33±0.19 49.32±3.36 0.82±0.03 0.04±0.02
ARC(2) 1.32±1.04 35.61±4.67 0.90±0.01 0.16±0.15 45.35±6.22 0.85±0.04 0.04±0.04
ARC(3) 1.55±0.95 34.91±3.56 0.90±0.01 0.13±0.11 45.22±5.97 0.85±0.03 0.03±0.02
ARC(4) 1.60±0.97 34.62±3.87 0.91±0.01 0.10±0.07 44.59±5.41 0.85±0.03 0.01±0.01
ARC(5) 1.60±0.71 34.75±3.94 0.91±0.01 0.10±0.07 44.72±5.07 0.85±0.02 0.01±0.01
MRC 1.50±0.86 34.40±3.87 0.91±0.01 0.10±0.06 44.76±4.88 0.85±0.02 0.01±0.01

Table 1: Evaluation result for 30 synthetic images.

variant rigidity constraint can achieve better overall and local registration performance.
Within rigidity constrained registration schemes, ARC(4,5) shows similar performance
on both breast and tumor regions. As k increases from 2 to 4, the registration perfor-
mance improves, except for the TRE getting larger over the breast regions. The reason
could be ARC(2) apply penalty on larger enhanced regions, and preserve the deforma-
tion of these enhanced regions as well in addition to enhanced tumors.

Table 2 shows registration results on 5 clinical images. Only NC is used to com-
pute the image similarity between the registered post- to the pre-contrast images due
to their different intensity levels. Note this is different from the tests on synthetic data
where ground-truth is available. All registrations schemes show similar performance
over breast regions in terms of NC value. ARC(2,3,4,5) and MRC preserved the vol-
ume of the tumors to an accuracy of 100%, compared to 2% ± 2% volume change in
VPC schemes. All registration schemes with constraints show significantly better than
the unconstrained method (UC) of 32% ± 33% tumor volume change. The global and
local registration results obtained from clinical data are roughtly consistent with the
synthetic data.

5 Discussion and conclusions

We proposed a framework to compute regularization coefficients in nonrigid registra-
tion using a sigmoid mapping method on a subtraction image obtained from a pre-
registration. The evaluation results show that using a homogeneous volume-preserving
constraint in nonrigid registration of DCE-MR beast images can reduce the tumor vol-
ume changes. Spatial variant rigidity constraint can further improve the volume preser-
vation performance while showing better overall performance on the whole breast re-
gions. The proposed method can replace the manual segmentation method to compute
the rigidity term coefficients by showing comparable local and global registration per-
formance. Note that our focus is not to create a better tumor segmentation method, but
a framework that can replace the manual segmentation in computing the rigidity term
coefficients.

In this framework, unconstrained FFD is used in pre-registration to remove enhance-
ment artifact caused by motion in subtraction image, where the tumor volume in pre-



Breast regions tumor regions

NC Vol change

UC 0.81±0.04 0.32±0.33
VPC 0.81±0.04 0.02±0.02
ARC(2) 0.81±0.04 0.00±0.00
ARC(3) 0.81±0.05 0.00±0.00
ARC(4) 0.81±0.04 0.00±0.00
ARC(5) 0.81±0.04 0.00±0.00
MRC 0.81±0.04 0.00±0.00

Table 2: Evaluation results for the 5 clinical data.

contrast image may change. Since the intensity of tumor region in subtraction image is
dominated by post-contrast image, in our study we observed that the effect of volume
change in pre-contrast image on the sigmoid mapping on the subtraction image is shown
to be very limited. A possible future work is to evaluate the effect of pre-registration on
the rigidity coefficients generation.
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Validation of breast MRI motion correction
effectiveness using a quantitative indicator
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Abstract. Motion compensation of dynamic images is essential for di-
agnostic magnetic resonance (MR) imaging of the breast. Indication of
registration quality, especially in case of registration failure, allows a re-
view of the affected cases. In this article, we introduce a novel, automated
indicator method for quantitative assessment of breast MRI motion cor-
rection in workstation software. The indicator estimates a relative im-
provement and supports the detection of displacement field distortions.
Effectiveness of this method was verified in a validation based on artifi-
cially deformed images and clinical cases, demonstrating its applicability.

1 Introduction

The issue of patient motion during acquisition of dynamic contrast-enhanced
(DCE) breast MR images has received considerable attention. Movement be-
tween two consecutive scans adds motion artifacts to the pair-wise difference
images, as anatomical structures are no longer aligned. These artifacts appear
as bright structures, invalidating the analysis of contrast agent kinetics.

Lateral compression plates built into the bilateral breast coil allow a fixation
of the breast, supporting the fibrotic tissue during scanning. However, these me-
chanical devices do not suppress motion caused by pectoral muscle contractions
and breathing. Image artifacts are therefore commonly corrected by registration
software during acquisition post-processing [5]. The flexibility and variability of
breast tissue requires application of deformable, contrast-invariant registration
methods such as the free-form deformation proposed by Rueckert et al. [10].

A validation of the accuracy of non-linear registration is challenging, as no
reference deformation is available. Landmark-based correspondence estimation
requires tedious annotation work and provides no dense displacement informa-
tion. For breast MRI, deformations simulated from patient-specific finite-element
models have been suggested as references [11]. An elasticity simulation emulates
bilateral breast compressions and contraction of the pectoral muscle. Compari-
son of simulated and registration-estimated displacements allows an assessment
of mean distances between both. Such techniques are limited to algorithm ver-
ification prior to an integration into clinical software. Once integrated, regis-
tration algorithms provide few information about the achieved quality of align-
ment. Apart from a visual comparison, registration performance is assessable
only through computed displacements and images.
? tobias.boehler@mevis.fraunhofer.de



An appropriate “confidence” measure must allow an identification of displace-
ment field perturbations, support an automated execution as part of the diag-
nostic workflow, and provide a quantitative value of registration performance.
To the best of our knowledge, no such method has been proposed. Interactive
validation was suggested by Mehnert et al. [7], estimating the alignment ac-
curacy based on closest-distances of skin surfaces and manual correspondence
inspection. However, only in-plane displacements are considered, limiting its us-
age for the inherently three-dimensional breast deformations. Another method
performs a detection of motion artifact candidates based on machine learning
methods guided by user interaction [14]. Both techniques require manual input.

In this article, we introduce a novel method for the automated computation
of a quality value for motion correction and discuss its validation on artificial and
clinical images. The method estimates a relative improvement of image alignment
and detects displacement field irregularities. It allows an on-line evaluation of
registration accuracy, independent from the applied registration algorithm.

2 Methods

The subtraction of a contrast-enhanced MR image from a non-enhanced, refer-
ence image produces high intensity values in regions affected by either contrast-
enhancement or motion. Contrast-induced intensity variations permit an assess-
ment of the relative contrast-agent uptake behavior of breast tissue. Distinction
between motion artifacts and contrast enhancement is difficult. However, mo-
tion artifacts are most prominent at the skin surface. In a 3-D rendering of
absolute subtraction images, distinct “rim”-like artifacts appear, particularly
in a maximum-intensity projection (MIP). Motion artifacts may also occur at
other tissue boundaries, e.g., between glandular and adipose tissue. Pectoral
muscle contraction, for example, causes a local shifting of tissues, forming wider
artifacts. Consequently, an estimation of motion only at the breast surface is
generally insufficient. In our approach, the following steps are performed:

1. temporal maximum-intensity projections of pair-wise difference images,
2. delineation of motion artifacts using an analysis of Hessian images,
3. entropy-based relative quantification of artifact reduction, and
4. analysis of the displacement field to detect perturbations thereof.

2.1 Temporal maximum-intensity projection

Maximum-intensity projections of the DCE image as temporal MIPs provide
an overview of the spatio-temporal contrast enhancement distribution. Initially,
voxel-wise absolute differences are computed for all non-reference images, with
images reformatted to transversal orientation. Given N images, N −1 difference
images are calculated and projected onto one single three-dimensional image
volume, assigning the maximum intensity over time at each voxel (cf. Figure 1).
Unlike the conventional MIP, the temporal MIP creates 3-D images of intensity
changes over time. Figure 2 shows examples for temporal MIP images.



Fig. 1. Temporal MIP scheme. Initially, difference images Dk = |Tj−Ti|, k = 0 . . . N−
2, i = 0 . . . N − 1, i 6= j are computed, where j denotes the desired reference image
(dark), forming the MIP image (j = 1, N = 6 in this illustration).

Fig. 2. Exemplary slices of temporal MIP images. Note the prominent, rim-like motion
artifacts, particularly at the skin surface, before (left) and after registration (right).

2.2 Multi-scale Hessian analysis

Differentiation between contrast-enhanced and motion-affected tissue is based on
an analysis of Hessian images [15]. To delineate rim-like artifacts, a vesselness
measure is parameterized for a detection of sheet-like objects [3]. The method is
integrated into a multi-scale analysis based on Gaussian kernels, using normal
distributions around zero mean and standard deviations of 1 to 4 voxels. For
all scale levels, Hessian images are computed separately. To suppress contrast-
enhanced image regions, two thresholding techniques are applied. First, the car-
diac region is excluded, using a dedicated breast MRI cropping technique [6].
Subsequently, automatic thresholding is applied to the masked temporal MIP
of the original image [8]. The resulting segmentation mask is processed by mor-
phological operations to account for local motion variation. The mask image is
finally applied to the Hessian image on each scale level, and the four level images
are accumulated through addition, as illustrated in Fig. 3.

2.3 Indicator quantification

From the two accumulated Hessian images, quantitative values for the reduction
of artifacts are estimated. Under the assumption that the thresholded Hessian
images contain predominantly artifact information, the change in information



Fig. 3. Accumulated, corresponding Hessian images for the MIPs of figure 2.

Fig. 4. Scheme of the indicator value computation (left to right): temporal MIP, coarse
segmentation, Hessian analysis and thresholding, and final entropy change calculation.

content is measured. The Shannon entropy is computed from normalized image
histograms, using per gray-value binning [4]. Its relative change is determined as
a percentage of the pre-registration value. The scheme is illustrated in Fig. 4.

2.4 Deformation analysis

Independent from the registration method, a detection of mis-registration and
flaws of the deformation is performed, as the registration method is not nec-
essarily diffeomorphic or volume-preserving. Given the displacement field, two
characteristics are computed. The amount of shrinkage or expansion, e.g., of
present vessels and lesions, is measured using the Jacobian determinant, which
has been introduced for volume-preserving registration [9]. Mean and extremal
values are estimated over the entire image domain.

Complementary, foldings of the displacement field are detected by exami-
nation of geometric regularity, similar to the method suggested by Thirion for
regularization [13]. Defined by the deformation grid, a volume mesh is generated,
where each grid cell is triangulated into six tetrahedra. For each tetrahedron,
the volume before and after displacement of its nodes is computed. Folding dis-
torts the regularity of this grid, leading to an intersection of neighboring cells and
sign changes of tetrahedral volumes. For such locations, the original and mapped



Table 1. Entropy reductions in percentage of the original entropy value. Due to inten-
sity interpolation, a complete elimination of the residual error is impossible.

Image 1 2 3 4 5 6 7 8 9 10

Red. (%) 84.57 91.85 93.16 97.27 87.77 82.56 83.27 85.15 89.69 88.24

positions are marked. Correctness of this analysis was verified on artificial and
random foldings.

3 Results

Using synthetic deformations, effectiveness and reliability of the indicator were
assessed. Subsequently, the method was applied to 65 clinical cases. The motion
correction used explicit regularization and the local cross-correlation measure [1].

3.1 Synthetic deformations

For an initial assessment, artificial deformations were generated using a homoge-
nous, isotropic, linear-elastic continuum model, discretized by tetrahedral finite
elements [2]. We simulated lateral plate compression of the breast, as well as pos-
terior deformations caused by pectoral muscle contraction, as proposed by other
authors [11, 12]. Models for ten selected T1-weighted patient images were built
and deformed. Motion correction was applied to the original dataset, which was
registered to its simulation-deformed pendant. Averaged over all ten images, the
mean displacement distance, estimated from voxel-wise displacement differences,
was 0.11 ± 0.02mm. Results for the indicator are summarized in Table 1. All
entropy improvements exceeded an reduction of 80% of their original values. On
average, changes of 88.35% were achieved, with a standard deviation of 4.72%
and maximum and minimum values of 97.27% and 82.56%, respectively. No de-
formation perturbations were detected. Improvements were confirmed by image
inspection, where the indicator values were consistent with the visual impression.

Reliability. Apart from improvement measurement, the indicator has to detect
invariance or degradation of the image alignment. To verify this, the displace-
ment field was multiplied with constants, where ×1 denotes the original magni-
tude. Seven displacement pairs (×0,×1), (×0.25,×1), . . . were formed: four pairs
with reduced magnitudes of ×0,×0.25,×0.5 and ×0.75, one pair with equal mag-
nitude ×1, and two “increased” pairs with factors ×1.25 and ×1.5. Deformations
of factor ×1 simulate invariance, factor ×0 perfect matchings, and reduced and
increased factors under- and mis-registration, respectively. Correspondingly, 70
deformed images were generated (cf. Fig. 5). Indicator values for these datasets
are listed in Table 2. Removal of the deformation produced 99% improvement, or
complete “motion” elimination. Improved alignment led to increased changes val-
ues, and to an immeasurable change of 0% for the identity ×1. “Mis-alignment”
caused negative changes, allowing an identification of such cases.



×0 ×0.25 ×0.5 ×0.75 ×1 ×1.25 ×1.5

Fig. 5. Artificial deformations for the indicator assessment. Top row, left to right:
corresponding transformed images. Bottom row, left to right: difference images w.r.t.
the original configuration. Bright image regions indicate large intensity differences.

Table 2. Average indicator values for the 10 images with all deformation configurations
applied. Note the decreasing values accompanying increasing deformation magnitudes.

Deformation factors

×0 ×0.25 ×0.5 ×0.75 ×1 ×1.25 ×1.5

Mean 99.56 52.75 23.97 9.33 0.0 -6.7 -11.97

Std.dev. 0.13 11.51 7.41 2.96 0.0 1.6 2.71

Min. 99.33 36.71 16.2 6.36 0.0 -10.26 -18.15

Max. 99.75 76.95 40.81 15.94 0.0 -4.59 -8.49

Deformation analysis. To evaluate the folding detection, the simulated defor-
mations were augmented with three-dimensional foldings. Similar to the initial
evaluation, ten deformed images were generated and analyzed. On average, the
indicator estimated 62.73%±7.67% improvement, with 46.46% and 72.78% min-
imum and maximum reductions, respectively. Present foldings were recognized:
on average 0.71% ± 0.14% of image voxels were affected by overlaps; minimum
and maximum percentages were recorded as 0.49% and 0.91%. These values re-
flect the small percentage of affected voxels w.r.t. the entire image. Still, any
non-zero percentage is sufficient to indicate the presence of perturbations.

3.2 Patient data

An initial assessment of the indicator function on clinical data was conducted
on 65 DCE MRI cases from different clinical sites and MRI vendors. The images
consisted of 4 to 10 time points, with voxel resolutions ranging from 256×256×36
to 700×512×148 voxels. For these images, the average estimated indicator value
was 8.76%±8.73%. The largest improvement was rated at 60.2% (for the example
image of Figures 2 and 3), while the smallest was 1.24%. No negative indicator
values were estimated. The indicator value exceeded 10% for 22 datasets, and
20% for three data sets. Distortions of the vector field were not present, as was



confirmed by visual inspection of deformations and transformed images. The
six cases with least improvement showed a negligible amount of motion, with
indicator values ranging from 1.24% to 1.92%. With increasing values, motion
artifacts become more evident, particularly in the MIP images. The six cases
with highest change values range from 16.92% to 60.2%.

4 Discussion

For artificial deformations, the indicator estimated large improvements, which
were confirmed through error assessment and image reviews. To rule out im-
provements through mis-registration, a “negative” test was conducted, over-
amplifiying the deformation magnitude. For these cases, the indicator was able
to distinguish between error reduction, invariance and increase. Notably, the
standard deviation for the ×0-deformation is almost negligible, showing that
intensity interpolation has marginal influence. The negative sign accompanying
“error”-increase is particularly remarkable, as it may allow automatic notifica-
tion of mis-registration. Furthermore, the accuracy of the folding detector was
verified in corresponding tests. The evaluation on clinical data confirmed the
observations made on synthetic data: “improvement” values were positive, and
no foldings or Jacobian distortions were detected. For small registration changes
or minor motion artifacts, indicator values are also generally small. Contrary,
the elimination of pronounced motion artifacts led to high indicator values.

5 Conclusion

A novel quantitative validation method for breast MRI motion correction ac-
curacy was proposed, targeted at integration into clinical workstation software.
Verification of its performance was carried out on artificial deformations, sim-
ulated by bio-mechanical elasticity models, as well as 65 clinical patient cases.
The method successfully detected deformation distortions, in particularly fold-
ings of the displacement field. The independency of the method from image
registration algorithms allows a comparison of different registration approaches.
Primarily, however, the indicator’s main purpose is to support the radiologist
with confidence about registration failure and, to a limited degree, success.

In summary, the conducted initial evaluation demonstrated the potential
of the indicator method, although it needs to be explored more thoroughly in
future work. Particularly, the breast models have to be extended by simulation
of tissue contrast enhancement to further verify the robustness of the indicator.
Additionally, to account for the variation of image resolutions, the usage of
an adaptive number of scale levels for the Hessian analysis will be evaluated.
Finally, we will investigate the applicability of assigning levels of registration
“quality”, e.g., user-defined quality ranges such as “improvement over 20%” or
“improvement under 5%”, on large and heterogenous collectives of patient cases.
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Abstract. Matching features on MLO and CC mammograms has shown
to improve performance of computer aided detection systems. False-
positive rates can be lowered by reducing the search space during match-
ing. Various methods have been proposed to define the search space.
These do either not explicitly compensate for the breast deformation
or simulate the whole process. In this study, we investigated the bene-
fit of extending the common approaches by some basic compensations
for breast deformations and compare several methods. Performance was
tested on 50 pairs of mammograms with corresponding masses annotated
by a radiologist. No clear advantage of straight strips or annular bands
was observed for the common methods. Extensions to remove the pec-
toral muscle by shearing, compensating for gravity on MLO views by
shearing and a volume-preserving transformation to get similar breast
shapes in both views worked well when breast shapes were elliptical
(mean (maximum) error of 5.3 (18.6) mm for 25 pairs). Using this strat-
egy for elliptical breast shapes and straight strips after pectoral shearing
for the rest resulted in lowest mean errors (6.7 mm) for the whole dataset.

1 Introduction

Matching mammogram masses on medial-lateral-oblique (MLO) and cranio-
caudal (CC) views and incorporating their joined features into a multi-view
computer aided detection (CAD) systems has shown to significantly improve
performance over a single-view CAD [1, 11]. The matching across views is based
on extracting single-view candidates and searching for similar candidates across
views. Reduction of the search space can help to lower false-positive rates while
maintaining sensitivity [11]. Definition of the search space is complicated by the
projective nature of the images, the different compression direction of the breast
for each view and the manual positioning of the breast for imaging.

Various methods have been proposed to restrict the search region [2, 1, 7,
11]. Most common are annular bands [6, 1] and straight strips [7, 11]. Annular
bands are formed by assuming that the lesion is at the same distance to the

? We acknowledge funding from the EU 7th Framework Program, HAMAM, ICT-
2007.5.3 and thank the Radboud University Nijmegen Medical Centre for the images.



nipple in both views and allowing for some deviation in the radial direction.
Straight strips are created by defining a line passing through the nipple and
being oriented orthogonal to the anterior-posterior (AP) direction. Preservation
of the distance in AP direction to this line is then assumed. Methods vary in
the way the nipple location and the anatomic orientations are defined. Annular
bands needed a diameter between 48 mm and 68 mm to cover 100% of the
matches [2, 6, 11] while straight strips required for the 100% coverage a width of
28 mm to 47 mm [11, 7]. Comparisons of the methods on the same datasets are
rare. The straight strips outperformed the annular search region in [11] (100%
coverage with a diameter of 28 mm vs. 68 mm for 200 cases). Less clear was the
difference in [9], where the mean distance to the centerline of the straight strip
was 7.3 mm and to the annular band center was 6.9 mm for 35 cases.

More involved methods aim to simulate the deformation process (back pro-
jection, uncompression, rotation, compression, projection) in order to determine
the 3D location of matched features from both views [5, 9, 10, 8]. A 3D model
deduced from two views and heuristics regarding the deformation process (e.g.
no deformation in the mid-plane, uniform deformation along lines, cross-section
deforms only in the plane, straight lines map to quadratic curves due to compres-
sion) were employed in [5, 9]. Search regions can then be defined with respect to
the resulting epipolar curves. The mean (maximum) distance of the mass center
to the epipolar curves ranged from 4.1 mm (12.4 mm) (MLO angle known, 11
cases) to 6.8 mm (27.8 mm) (MLO angle unknown, 37 cases) [5]. Mean perfor-
mance was 0.5 mm better than for an annular band (6.5 mm vs. 6.9 mm) [9].
Another 3D localization method requires the acquisition of an MRI for creat-
ing a patient-specific biomechanical breast model [8], which is clearly an extra
requirement outside the scope of multi-view CAD for mammography.

Few studies have compared the different search area methods and little is
known what the individual steps contribute to the overall performance. Further-
more, only rather simplistic or rather involved methods have been proposed.
Therefore we investigate in this study if the common methods can be improved
by compensation for some of the breast deformation without simulating the
whole deformation process.

2 Method

Several steps are required for defining the search region. These are described
below and include segmentation of the image, definition of the breast contour,
determination of the local coordinate system, approximation of breast deforma-
tions and volume preserving matching of the breast shape.

2.1 Preprocessing

Segmentation Each mammogram was segmented into breast and background
region by using global thresholding. The pectoral muscle boundary in the MLO
views was first detected as a straight line by a Hough transform based method [4].



Thereafter this boundary was refined into a curve that fits the pectoral muscle
boundary more precisely by means of a dynamic programming method.

Breast Contour from Convex Hull We used the convex hull method of Pu et
al. [7] for extracting the relevant part of the breast contour. The method exploits
that the breast generally forms the largest concave region within the background
region. First the convex hull of the background was computed. Second the region
with the largest convexity was extracted by comparing the contour and the
convex hull outline. Finally the closing line was parallely moved by 2 mm to
avoid inclusion of chest wall parts in the breast contour [7].

General Ellipse Fitting Pu et al. [7] fitted an arbitrarily oriented ellipse to the
breast contour and used the result for defining the coordinate system. Briefly, the
fitting is based on a general ellipse being implicitly defined by the polynomial
equation F (xj) = vT c when satisfying constraint c22 − 4c1c3 < 0, where c =
[c1 c2 ... c6]T are the ellipse coefficients, xj = [xj yj ] are the coordinates of
the jth points on the ellipse and vj = [x2

j xj yj y2
j xj yj 1]T . An ellipse is

fitted to a set of N points by minimizing the sum of squared differences, ie.
D =

∑N
j=1 F (xj)2. As recommended by Fitzgibbon et al. [3], minimization of

D is achieved by solving the generalized eigenvalue system AT Ac = λCc where
A = [v1 v2 ... vN ]T and C is the matrix that expresses constraint c22−4c1c3 < 0.
This method has the advantage of always providing a unique solution which is
an ellipse.

2.2 Coordinate System

The straight strip methods require the identification of the orthogonal-to-AP
axis, which can be uniquely defined by its slope k and origin o = [ox oy]. Or-
thogonality implies that this also uniquely determines the AP axis by using slope
−1/k and the same origin. Note that x̄ and ȳ will denote coordinates of these
axes for the AP and orthogonal-to-AP direction respectively. We employed 4
methods to determine slope k and called them general ellipse (GE), convex-hull
(CH), principle directions (PD) and pectoral edge (PE), see Fig. 1. For GE,
the minor and major axis from the fitted general ellipse define the local coor-
dinate system. The more vertical axis (with abs(k)>1) defined the slope of the
orthogonal-to-AP axis. For CH, the closing line of the convex hull was used to
determine the slope of the orthogonal-to-AP axis. For PD, a principle component
analysis was performed of the positions of the breast contour points. The slope
of the more vertical principle axis (abs(k)>1) was chosen for the orthogonal-to-
AP axis. For PE, a line was fitted to the pectoral muscle segmentation in the
MLO view. This line provided the slope of the orthogonal-to-AP axis. The AP
direction for the CC view was assumed to be align with the image axis. For all
methods, origin o was set to be at the point of the fitted general ellipse which
was most anterior to the extracted line.



Fig. 1. Illustration of definition of coordinate system for general ellipse (GE), convex
hull (CH), principle direction (PD) and pectoral edge (PE).

Fig. 2. Illustration of pectoral and gravity shearing. (a) original MLO image with
pectoral muscle segmentation (pink contour) and superior region (blue dashed lines).
(b) MLO image after local pectoral shearing in the superior region. (c) MLO image
after pectoral and gravity shearing and fitted axes-oriented ellipse (yellow outline). The
red contours show the mass outline.

2.3 Pectoral and Gravity Shearing

To compensate for some breast deformations, two shearing transformations were
considered, namely pectoral-shearing (PS) and gravity-shearing (GS).

For PS, the MLO image was locally sheared to account for the displacement
of the superior breast region by the compressed pectoral muscle [9], see Fig. 2.
First, the intersection of the line fitted to the pectoral muscle segmentation with
the posterior image edge was used to horizontally split the image into a superior
and an inferior part. Second, the shear values was deduced from the slope of the
pectoral muscle line. Finally, the superior image region was sheared while the
inferior part remained unchanged. After this area-preserving transformation, the
AP direction was assumed to be aligned with the image axis.

For GS, a shear transformation in inferior-to-superior direction was applied
to the MLO image to counteract the deformation of the breast due to gravity
before the compression, which was not compensated by the radiographer. The
shear values was optimized to provide the lowest error when fitting an axes-
oriented ellipse to the breast outline after the shear transformation.



2.4 Volume Preservation

The fact that breast tissue is nearly incompressible can be exploited for further
adjustment of the search region. Assuming that the breast has the shape of a
half elliptical cylinder after compression, then the breast volume is given by

Vv =
π

2
avbvhv (1)

where ab and bv are the radii of the in-plane ellipse and hv is the breast thick-
ness for view v ∈ {CC,MLO}. The ratio between the volumes is therefore
VCC/VMLO = (aCCbCChCC)/(aMLObMLOhMLO). Note that the same relation-
ship holds for other shapes as long as the cross-sectional shape has the same
function for the CC and MLO compressions, e.g. half ellipsoid.

A fact often forgotten is that the breast region captured by the CC and MLO
view are likely to be of unequal volume due to differences in breast positioning.
Therefore, we first aim to define equally sized breast regions. For this, we set
the origin in AP direction (ox̄) to the posterior end of the breast region (e.g.
on the convex hull closing line or the line fitted to the pectoral edge). Then
we fitted axes-oriented ellipses to the CC and MLO view (free parameters a, b,
oȳ) and calculate VCC and VMLO using Equ. (1), the ellipse parameters (a, b)
and the recorded breast thicknesses h. For the view which provided the smaller
volume, the origin ox̄ is then iteratively moved in the posterior direction until
the fitted ellipse results in a similar volume as for the other view. Second, having
equally sized breast regions, we transform one of the images such that the fitted
in-plane ellipses have the same shape. For example the scale transformation for
the MLO image would be x̂MLO = aCC/aMLO(x̄MLO − ox̄) + ox̄ and ŷMLO =
bCC/bMLO(ȳMLO − oȳ) + oȳ.

2.5 Evaluation

The methods were evaluated based on corresponding masses, which were man-
ually annotated on 50 pairs of CC and MLO mammograms by a radiologist.
Mammograms with annotated masses were randomly selected from a mixed co-
hort of patients, resulting in 30% high-risk screening, 28% symptomatic, 20%
recall, 12% control, 8% unknown, 2% screening cases. Microcalcifications were
also present in 44% of the cases and 78% of the masses were malignant. On av-
erage, the annotated mass had an area of 4735±4678 mm2. For each MLO view,
the distance between the center of the annotated mass and the centerline of the
search region, derived from the CC view, was calculated. Results for all cases
were summarized by the mean and the maximum of the 50 distance measure.
Paired t-test was employed for testing for statistical significance at the 0.05 level.

3 Results

First we compared the performance of standard search regions, see Table 1.
Defining the coordinate system by the axes of the fitted ellipses resulted in very



large errors. One reason for this poor performance is that the position of the
axes is not well defined for circular shapes. Another might be an suboptimal
selection of the AP-axis. Similar results of straight strips and annular bands
can be observed for the coordinate systems defined by the convex-hull closing
line and PCA. Annular bands provided slight lower errors when the pectoral
edge was employed to define the image orientation. The maximum error, which
defined the half-width to cover 100% of all masses, was as expected more variable.
Results below 26.1 mm were achieved with straight strips based on the convex-
hull and with annular bands based on the pectoral edge. The first extension to
the common approaches, where the pectoral muscle was removed from the MLO
view by shearing (PS), seemed on average to be beneficial for straight strips.

Table 2 shows the results when adding volume-preservation and shearing
in SI-direction to the straight strip methods. The lowest mean error (7.5 mm)
was achieved when incorporating all 3 extensions (pectoral-shear, gravity-shear,
volume-preservation). However, the performance depended on how well the el-
lipse fitted the breast shape. Mean errors reduced to 5.3 mm for the 25 cases
with the most elliptical breast shapes (maximum of mean fitting error <7.0 mm).
Using this strategy for this subset of most elliptical shaped breasts and PS-SS
for the rest resulted in the lowest mean error (6.7 mm) for the whole dataset.
However, the dataset was not large enough to show statistical significance in
comparison to the results from Table 1 apart for GE-SS, GE-AB and PS-AB.
Mean performance degraded (range 9.9-18.0 mm) when employing annular bands
for the methods in Table 2. Example results for the convex-hull and pectoral-
shearing method using gravity-shearing and volume-preservation can be seen in
Fig. 3. Note that the cases in column one and four belong to the subset of breasts
with less elliptical shapes (mean fitting error on MLO view was 9.6 and 9.5 mm
respectively).

4 Conclusion

In this study we compared the performance of several common methods to define
the search region for matching masses in CC and MLO mammograms. Further-
more we extended these common methods to account for some of the breast
deformations by relative simple and easy to apply transformations.

On average, the best result of 6.7 mm was achieved with a hybrid method
using all three extensions (removing the pectoral muscle on the MLO view by
shearing, compensating for gravity deformation on the MLO view by shearing
and volume-preserving scaling to provide similar shapes) for the most elliptical
breast shapes and pectoral shearing (PS-SS) for the rest.

Most common approaches provided statistically not significantly different re-
sults. Their mean performance ranged from 7.2 mm to 8.7 mm. No clear advan-
tage of either straight strips or annular bands could be observed for the common
approaches. Results were within the range of previously reported performances.
The ellipse fitting method performed substantially worse than previously re-
ported [7].



Straight strips (SS) Annular bands (AB)

Ellipse (GE) 17.7 (55.0) 24.3 (65.2)
Convex-hull (CH) 8.4 (26.1) 8.3 (30.0)
PCA (PD) 8.1 (31.0) 8.6 (38.0)
Pectoral (PE) 8.7 (31.2) 7.7 (25.8)

Pectoral-shear (PS) 7.2 (31.4) 12.9 (36.3)

Table 1. Mean (maximum) error (in mm) of the straight strip and the annular band
methods for 50 paired mammograms for common approaches and first extension (PS).

VP GS-VP GS-VP (25 cases) GS-VP or PS-SS

Convex-hull (CH) 11.9 (80.4) 10.8 (80.4) 8.3 (17.6) 8.4 (31.4)
PCA (PD) 10.8 (33.6) 11.2 (33.0) 10.0 (28.1) 9.2 (31.4)
Pectoral (PE) 12.8 (72.8) 11.7 (73.8) 9.2 (22.9) 9.0 (31.4)
Pectoral-shear (PS) 8.8 (35.6) 7.5 (35.7) 5.3 (18.6) 6.7 (31.4)

Table 2. Mean (maximum) error (in mm) of the straight strip methods for 50 paired
mammograms employing volume-preservation (VP) and gravity-shearing (GS).
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Fig. 3. Example images for 5 patients (columns) showing (a) original MLO view with
pectoral muscle segmentation (pink contour); (b,c) MLO and CC results for convex-
hull, gravity-shear & volume-preservation; (d,e) MLO and CC results for pectoral-
shear, gravity-shear & volume-preservation. Red contour: annotated mass; green dot:
center of mass; yellow contour: fitted ellipse; blue line: alignment using most anterior
point; green line: (b,d) center of straight strip search area based on CC view (c,e).
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Abstract. Digital breast tomosynthesis (DBT) provides a pseudo-3D
reconstruction which addresses the limitation of superimposition of dense
fibro-glandular tissue associated with conventional mammography. Reg-
istration of temporal DBT volumes searches for the optimum deforma-
tion to transform two observed images of the same object into a common
reference frame. This aligns the two images via minimising an objective
function that calculates the similarity between the two datasets.

In this paper, we present a novel algorithm which combines recon-
struction of a pair of temporal DBT acquisitions with their simultaneous
registration. We approach this nonlinear inverse problem using a generic
unconstrained optimisation scheme. To evaluate the performance of our
method we use 2D and 3D software phantoms and demonstrate that this
simultaneous approach has comparable results to performing these tasks
sequentially or iteratively w.r.t both the reconstruction fidelity and the
registration accuracy.

1 Introduction

DBT is an X-ray modality using a small number of low dose X-ray images, which
are acquired over a limited angle and reconstructed into a 3D volume. Although
reconstructed 3D DBT images possess a high in-plane resolution, they exhibit a
lower out-of-plane resolution [1]. The premise is that this coarse depth resolution
is sufficient to alleviate some of the problems of overlapping tissue structures that
degrades the sensitivity and specificity of cancer detection and characterisation
using conventional mammography. One significant aspect of DBT is the perfor-
mance of the reconstruction algorithms, which have been extensively investigated
over the last decade. Comprehensive reviews on the comparison of various ap-
proaches have been published by Dobbins III, Godfrey [2] and Zhang et al. [3]. A
recent investigation by Candès, Romberg and Tao [4] into compressed sensing,
indicates that it is possible to recover the original signal exactly, using a linear
measurement model with incomplete data. This theoretical derivation is appli-
cable to DBT reconstructions which are computed given incomplete forward
projections. Therefore, mathematically, we can solve the DBT reconstruction
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problem perfectly, with a limited-angle set of projections, given judicious choice
of appropriate constraints such as regularisation.

Early breast cancer detection requires the recognition of subtle pathological
changes, such as those due to tumour growth, over time. These abnormal changes
and deformations of the breast tissue must be distinguished from normal defor-
mations caused by differences in breast position, compression and other imaging
acquisition parameters between the two time-points. In the high throughput
breast screening context [5], the additional depth information provided by DBT
must be integrated into the workflow in a way that enhances performance but
does not increase the workload of the clinicians involved. In this respect, image
registration could play an important role in eliminating differences between the
temporal DBT datasets due to patient position, allowing the observer to focus
on identifying those changes which might be indicative of disease.

Previous work on DBT image registration is limited. Sinha et al. [6] describe
application of a thin-plate spline registration of corresponding manually selected
control points, using mutual information as the cost function. They applied this
method to seven subjects’ datasets which were acquired between one year and
a few minutes apart and estimate the registration accuracy to be 1.8mm ±1.4.
Zhang and Brady [7] describe a method for feature point extraction and use the
resulting landmarks to drive a polyaffine registration of a single pair of DBT
datasets.

Whilst combined registration and reconstruction algorithms have been ap-
plied to other modalities (e.g. PET and MRI), little has been published on ap-
plying these techniques to DBT. Yang et al. [8] [9] proposed an iterative method,
which partially coupled the two tasks by alternating between optimising image in-
tensity and deformation parameters to obtain a reduced cost functional. Rather
than registering the images after reconstruction or partially coupling them, we
advocate a method which combines the two tasks simultaneously (fully coupled)
in order to avoid the assumptions of missing data being equal to zero (implicit
in algorithms such as FBP). The aim of this work is to show that reconstruc-
tion and registration are not independent, and that combining these tasks will
enhance the performance of each process as a result.

2 Methods

Based on the motivation and hypothesis above, we have developed an algorithm,
which outputs one unified result for the reconstruction and registration. However,
the introduction of registration introduces nonlinearity of the transformation pa-
rameters making solution of the inverse problem more complex. Although the
following experiments were performed using an affine transformation and sum of
squared differences, as the cost function, other higher order non-rigid transfor-
mations and alternative similarity measurements can naturally be substituted
into our simultaneous framework. Before presenting our simultaneous method,
we first describe the conventional method of performing registration after both
volumes have been successfully reconstructed. Then we paraphrase the itera-



tive method proposed by Yang et al. [8] [9], and subsequently we propose our
simultaneous algorithm.

2.1 Conventional Sequential Method

A 3D object, x ∈ RN3 , two sets of (in our case simulated) temporal data,
y1, y2 ∈ Rκ·N2 , (acquired using limited angle DBT geometry with κ = 11
projections covering ±25◦), the parametric transformation matrix, Rζp , and the
system matrix, A ∈ Rκ·N2×N3 : RN3 7→ RN2 , can be related via

y1 = Ax, (1)

and
y2 = Ax∗ = ARζpx. (2)

A describes the forward model to mimic the X-ray attenuation, scattering or
absorption properties. The reconstruction of equations 1 and 2 can be solved by
minimising

x1
† = arg min

x1

(
ΦRec1 =

1

2

∥∥Ax1 − y1
∥∥2
2

)
; (3)

x2
† = arg min

x2

(
ΦRec2 =

1

2

∥∥Ax2 − y2
∥∥2
2

)
. (4)

Following reconstruction, volumes x1
† and x2

†, i.e. the fixed and moving images,
are registered w.r.t the registration parameters ζp:

ζp
† = arg min

ζp

(
ΦReg =

1

2

∥∥Rζpx2
† − x1

†∥∥2
2

)
. (5)

2.2 Partially Coupled Iterative Method

According to the previous investigations of the partially coupled iterative method [8,
9], the equations 1 and 2 can be solved by alternating an incomplete optimisa-
tion, i.e. n iterations, of the reconstructed volumes x1 and x2

x1
‡ = arg min

x1

(
ΦRec1 =

1

2

∥∥Ax1 − y1
∥∥2
2

)
(6)

x2
‡ = arg min

x2

(
ΦRec2 =

1

2

∥∥Ax2 − y2
∥∥2
2

)
(7)

with registration of the current estimates x1
‡ and x2

‡ w.r.t the registration
parameters ζp:

ζp
‡ = arg min

ζp

(
ΦReg =

1

2

∥∥Rζpx2
‡ − x1

‡∥∥2
2

)
. (8)

This method is summarised in Algorithm 1. The reconstruction-registration loop
repeats m times and outputs x1 = x1

‡, x2 = x2
‡ and Rζpx2

‡



Algorithm 1: Partially Coupled Iterative Reconstruction and Registration

Input: y1, y2.
Output: x1, x2, Rζpx2.

begin
% Initialization of x1 and x2

x1
0,0 := 0; x2

0,0 := 0; ζp
0 := 0;

% Outer loop for the registration
for (i = 0; i < m; i+ +) do

% Inner loop for the reconstruction
for (j = 0; j < n; j + +) do

% Ψx is the analytical gradient of the x
% for the CG or L-BFGS solver
Ψx1

i,j := AT (Ax1
i,j − y1);

Ψx2
i,j := AT (Ax2

i,j − y2);
x1

i,j+1 := x1
i,j + (ATA)−1Ψx1

i,j ;
x2

i,j+1 := x2
i,j + (ATA)−1Ψx2

i,j ;

% Run a simple hill-climbing optimisation

ζp
i+1 := arg minζpi

1
2

∥∥Rζpixi,j+1
2 − xi,j+1

1

∥∥2
2
;

x1
i+1,j+1 := Rζpi+1xi,j+1

2 ;

x2
i+1,j+1 := xi,j+1

2 ;

% Output x1, x2, and Rζpx2

x1 := xi,j+1
1 ;

x2 := x2
i+1,j+1;

Rζpx2 := x1
i+1,j+1 := Rζpi+1xi,j+1

2 .

end

2.3 Our Simultaneous Method

The ultimate goal of our simultaneous method is to obtain an enhanced recon-
struction and more accurate registration of both volumes, to aid the reading
process and improve the detection of malignant tissue change. Therefore, we
propose a simultaneous method using an unconstrained reconstruction and reg-
istration framework expressed mathematically as in Algorithm 2. Firstly, the
objective function is described as

min
x,ζp∈Rn

ΦRR =
1

2

(
||Ax− y1||2 + ||ARζpx− y2||2

)
, (9)

in which, y1 and y2 are the two input X-ray acquisitions, and x denotes the
unknown estimated volume. We combine the two sets of reconstructions ||Ax−
y1||2 and ||ARζpx−y2||2 with an affine registration with 12 degrees of freedom
ζp, (p = 1, 2, . . . , 12), which globally describes the translation, scaling, rotation
and shearing in 3D, or ζp, (p = 1, 2, . . . , 6) denotes 6 degrees of freedom in 2D.

A minimiser x, ζp ∈ Rn of ΦRR is characterised by the necessary condition
that the partial derivative w.r.t x and ζp equals 0, denoted by ∇ΦRR = 0. The
partial derivative w.r.t x is straightforward, and is given by

gx =
∂ΦRR
∂x

= AT (Ax− y1) +RTζpA
T (ARζpx− y2), (10)



in which, ∂ΦRR

∂x is the gradient. Similarly the Hessian can be expressed as

Hx =
∂ΦRR
∂2x

= ATA+RTζpA
TARζp . (11)

To derive the partial derivative w.r.t ζp, we apply a small perturbation to
the objective function,

ΦRR

(
x, ζp +∆ζp

)
=

1

2

(
||Ax− y1||2 + ||ARζp+∆ζpx− y2||2

)
(12)

≈ 1

2

(
||Ax− y1||2 + ||ARζpx+A

∂Rζp
∂ζp

x∆ζp − y2||2
)
.

(13)

By taking the derivative w.r.t ∆ζp, we obtain that(
A
∂Rζp
∂ζp

x
)T(

ARζpx+A
∂Rζp
∂ζp

x∆ζp − y2
)

= 0; (14)

and if gζp and Hζp denote the gradient and Hessian respectively then we have,(
A
∂Rζp
∂ζp

x
)T(

A
∂Rζp
∂ζp

x
)
∆ζp = −

(
A
∂Rζp
∂ζp

x
)T(

ARζpx− y2
)
, (15)

and therefore,

∆ζp = −

[(
A
∂Rζp
∂ζp

x
)T(

A
∂Rζp
∂ζp

x
)

+ λI

]−1(
A
∂Rζp
∂ζp

x
)T(

ARζpx− y2
)
, (16)

in which,

gζp =
∂ΦRR
∂ζp

=
(
A
∂Rζp
∂ζp

x
)T(

ARζpx−y2
)

=
(
AR

′

ζpx
)T(

ARζpx−y2
)
, (17)

and

Hζp =
(
A
∂Rζp
∂ζp

x
)T(

A
∂Rζp
∂ζp

x
)

=
(
AR

′

ζpx
)T(

AR
′

ζpx
)
. (18)

In order to apply a generic non-linear conjugate gradient optimiser, we ex-
tract the gradients of the objective function w.r.t x and ζp below

∇ΦRR =

(
∂ΦRR

∂x
∂ΦRR

∂ζp

)
=

AT (Ax− y1) +RTζpA
T (ARζpx− y2)(

AR
′

ζp
x
)T(

ARζpx− y2
)  . (19)

3 Experiments and Results

3.1 2D Shepp-Logan Phantom

For a first test, a 2D Shepp-Logan phantom is used to demonstrate the feasibility
and performance of our new simultaneous approach. The fixed and moving im-
ages are of size 642 pixel, with a simulated affine transformation between them.



We test with 10 different sets of deformations, which contain 6 affine parame-
ters p1 to p6 as seen in Table 1, and we calculate the mean error and standard
deviation between the recovered parameters and the ground truth. Fig. 1 shows
the result of the test case number 5 using our simultaneous method.

Algorithm 2: Simultaneous Reconstruction and Registration

Input: y1, y2.
Output: x, ζp.

begin
% Initialization of x and ζp
x 0 := 0; ζp

0 := 0;

% Simultaneous registration and reconstruction
for (i = 0; i < m; i+ +) do

% Ψx and Ψζp are the analytical gradients
% of the x and ζp for the CG or L-BFGS solver

Ψxi1 := AT (Axi − y1);
Ψxi2 := RTζpA

T (ARζpx
i − y2);

Ψxi := Ψxi1 + Ψxi2;

Ψζpi := (AR′ζpx
i)T (ARζpx

i − y2);

xi+1 := xi + (ATA)−1Ψxi1 + (ATRTζpRζpA)−1Ψxi2;

ζp
i+1 := ζp

i + (xTATAx)−1Ψζpi ;

% Output the x and ζp
x := xi+1;
ζp := ζp

i+1.
end

Table 1. Deformation parameters scenarios for 2D experiments. Column 2-4: Ground
truth; Column 5: Initial guess; Column 6-8: Recovered parameters; Column 9: Mean
error & standard deviation of 10 tests. Only the results of test no. 1, 5 and 8 are shown.

G1 G5 G8 Initial R1 R5 R8 Mean Error and S.D.
p1 1.0677 1.1885 0.7794 1 1.0791 1.1872 0.9132 0.1287±0.1102
p2 0.2796 0.1843 -0.4500 0 0.2482 0.1841 -0.2650 0.2157±0.2388

p3(tx) 2.0000 2.0000 3.0000 0 1.9753 1.9890 2.8537 0.1847±0.2114
p4 -0.0480 0.1694 0.4779 0 -0.0057 0.1680 0.1068 0.3140±0.2278
p5 0.9054 0.8179 0.6478 1 0.9031 0.8173 1.1935 0.4062±0.5178

p6(ty) -1.0000 -4.0000 -1.0000 0 -1.0502 -3.9546 -0.8106 0.8050±1.1044

3.2 3D Toroid Phantom (Comparing outputs of the three methods)

In this second experiment we compare the performance of (a) the sequential
reconstruction and registration, in which n = 100 iterations of the reconstruction
of projection images, y1 and y2, are followed by a single registration of the
reconstructed volumes x1 and x2 (m = 1); (b) the partially coupled iterative
approach, in which n = 10 iterations of the reconstruction are followed by a
registration and the process repeated m = 10 times and (c) our simultaneous
method. A 70 × 70 × 70mm3 3D toroid phantom image (resolution 1mm) is
created for this purpose. Fig. 2 shows the comparison results using these three
different methods.



Fig. 1. Column 1-3: The fixed image (a) and the moving image (b); the result of the
simultaneous method (c), and transformation of the moving image using the recovered
parameters (d); Error image (e) by subtracting (c) from (a), and error image (f) by
subtracting (d) from (b).

Fig. 2. Column 1-4: Original test volume (fixed image); Its affine transformations
(moving image); Reconstruction of the fixed image without registration; Reconstruc-
tion of the moving image without registration; Column 5-7: Sequential method result
(transformed moving image reconstruction); Iterative method result (transformed mov-
ing image reconstruction); Our simultaneous method result (no cutting-off artefacts as
shown in the colored boxes).

4 Discussion

We have found for the first time to our knowledge that the simultaneous recon-
struction and registration of DBT datasets using a generic optimisation frame-
work is feasible. The approach jointly considers the registration and reconstruc-
tion components of the breast cancer CAD problem, and is capable of recovering
both the deformation parameters, and an enhanced, reconstructed image. The
performance of the new approach is demonstrated using a numerical phantom in
2D followed by a simple 3D test case. The 2D result is shown in Fig. 1, and indi-
cates that significant reconstruction artifacts are still present. We attribute this
to the fact that the unconstrained optimisation is a näıve approach, and could
be improved by the addition of regularization and nonnegativity constraints.



However, the results in Table 1 demonstrate that we have obtained reasonable
recovery of the deformation parameters. These parameters are initialised using
an identical transformation, in which, p3 and p6 are the translations tx and ty
along each 2D direction. The mean error in ty is relatively large because in test
case no. 10 we give a large translation which translates the moving image outside
of the field of view. Furthermore, the 3D test results in Fig. 2 also show that our
simultaneous method is promising, and the result of our approach is compact
and there is no cutting-off artefacts) when compared to the other two methods.

5 Conclusion and Perspectives

In this paper, we have presented a novel simultaneous method to fully couple
reconstruction and registration for DBT, which is inspired by the motivation
of detecting changes between the two sets of temporal data. SSD is employed
as the registration metric, which formulates the cost criterion by the compari-
son between the volume estimation x and the original two sets of acquisitions
y1 and y2. From the results on the 3D toroidal phantom images, this approach
is found to reduce the misregistration artifacts with comparable reconstruction
fidelity when compared to the sequential or iterative methods. There are nu-
merous points to explore in future work. First, we would like to apply GPU
acceleration for some components of our implementation, e.g. forward and back-
ward projectors. Second, we also intend to extend the registration to incorporate
non-rigid transformations. Finally, we would like to perform experiments on real
DBT data, and tackle the large data size problem using multi-scale and multi-
resolution techniques.
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Abstract. During breast density assessment using MRI it is necessary to seg-
ment the breast in order to calculate total breast volume and exclude non-breast
surrounding tissues. In this paper we describe an automatic 3D breast volume
segmentation approach based on 3D local edge detection using phase congru-
ency and Poisson surface reconstruction to extract the total breast volume in 3D.
Furthermore, our breast boundary localization framework can be integrated as
the starting point for a subsequent model-based segmentation by mapping model
points into the initialization surface using a Laplacian framework. Our approach
achieves breast-air and breast-chest wall boundary localization errors with a me-
dian of 1.36 mm and 2.68 mm respectively when tested with a breast MRI dataset
from 409 women. 89.7% of the cases were correctly segmented using our ap-
proach.

1 Introduction

Breast cancer is currently the most common diagnosed cancer among women and a
significant cause of death. Breast density, a representation of the amount of dense
parenchyma present in the breast has been identified as a significant risk factor [1].
Although the majority of epidemiological evidence on breast density as a risk factor
comes from X-ray mammography screening data, some researchers have acknowledged
the advantages of studying breast density with different imaging modalities such as MRI
[2]. MRI is a very versatile imaging modality that provides a 3D view of the breast for
volumetric breast density assessment without the risks from exposure to ionizing radia-
tion. As a result, ongoing epidemiological studies are looking at quantitative assessment
of breast density in young women using MRI as an important biomarker influencing the
later risk of breast cancer [3].

However, it is known that quantitative evaluation of breast density using MRI suf-
fers from several limitations including inconsistent breast boundary segmentation and
lack of standardized algorithms to accurately measure breast density. It is ideal to have
consistent and robust computer-aided analysis tools to segment the breast and to extract
the total volume of the breast in 3D. For quantitative assessment of breast density using
MRI, separate images of breast water and fat can be obtained and breast water can be
measured as a surrogate for fibroglandular tissue and stroma as shown in Fig. 1. Breast
segmentation is further necessary to remove background noise artifacts and exclude sur-
rounding muscle tissues in the chest wall. Robust and reliable automatic segmentation
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(a) (b)

Fig. 1: Sagittal MRI slices of breast water/fat imaging. a) Fat image. b) Water image. Green
contours represent the expert annotated outline of the breast region excluding surrounding chest
wall and air background.

is ideal even though it is affected by a number of challenges. In breast MRI, image in-
tensity distributions are dependent on MR protocols and acquisition parameters so that
segmentation based on separation of greylevel intensities (e.g. selective thresholding)
is inadequate and lacks generalization when used with different protocols. In addition,
the contrast between the breast and adjacent structures such as pectoral muscles is not
distinctively defined.

This work proposes a Poisson-Laplacian framework for 3D automatic segmentation
of the breast in MRI. We exploit phase congruency for breast boundary edge detec-
tion as an invariant feature to intensity variations and inhomogeneities. Our approach
consists on a Poisson surface reconstruction followed by a Laplacian surface mapping
framework, which can be optimally applied to 3D statistical shape model (SSM) ini-
tialization. The aforementioned method is presented in two main steps: 1) Estimating
an initial surface of the breast by detecting breast tissue boundaries to gain a target sur-
face optimal for initialization, and 2) Initializing a 3D SSM model to the target surface.
We demonstrate the feasibility of our approach by measuring error distances from the
resulting initialization surfaces to the manually segmented volumes.

2 Materials and Methods

Sagittal breast images were acquired from a previous cross-sectional study by Boyd et
al. [4]. Briefly, a modified version of the GE FSE Dixon sequence was used consisting
on a 28 cm field of view, with a 256 x 128 acquisition matrix. The slice thickness was 7
mm interleaved with TE 14x8 ms, ETL 8 and TR 2500. The total imaging time for both
breasts was about 13 min to obtain 45 slices covering the entire volume of both breasts.
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Each scan consists of three images of water and fat signals with phase shifts of 0, π
and 2π, according to the three-point Dixon method [5]. The image corresponding to the
zero degree phase shift corresponds to an image were both the fat and water signals are
in phase. This in-phase image of the right breast was used for further segmentations.

Each breast was semi-automatically segmented by 3 observers (inter-reader and
intra-reader agreement was more than 0.94) using an active contour approach with man-
ual correction [4]. 2D delineated contours for each breast were stacked together in ad-
jacent cross-sections and resampled to isotropic voxel size of 2.56 mm. Surface meshes
representing the 3D volume of the breast were finally obtained and these surfaces were
used as the gold-standard to measure our segmentation accuracy.

2.1 3D phase congruency edge detector

Kovesi [6] described how phase congruency can be calculated in 2D via a bank of
oriented filters to obtain local phase information at a given spatial location. Computing
phase congruency in 3D using a bank of filters imposes the complexity of defining
a number of appropriate filter orientations and their angular spread to evenly cover the
image spectrum. As an alternative, points of maximal phase congruency can be detected
as points of maximal local energy [7]. In this work we estimate maximal local energy
via the monogenic signal. The monogenic signal is an isotropic extension of the 1D
analytic signal to higher dimensions via vector-value odd filters [8]. By convolving the
3D image with the Riesz transform, the monogenic signal is obtained. In practice, the
infinite impulse response of the Riezs transform is reduced by convolving the image
first with a bandpass filter such as the log-Gabor function:

G(w) = exp

[
− log (w/wo)

2

2 log (k/wo)
2

]
(1)

where wo is the center frequency of the filter and k/wo is the ratio of the spread of
the Gaussian describing the Log Gabor transfer function in the frequency domain to the
filter center frequency. k/wo was kept constant to achieve filters with equal bandwidths
at different scales. The log-Gabor response and the log-Gabor filtered Riezs kernel re-
sponses are quadrature pair of filters that were applied to different scales and the results
were summed over all scales. In contrast to the bank of oriented filters approach, there
is no need for an additional summation along different orientations. The filter’s center
frequency at a given scale is determined by the following equation:

ws =
1

λmin(δ)
s−1 , s = 1, 2, ..., n (2)

here λmin is the smallest wavelength of the Log-Gabor filter and δ is a scaling factor
between successive scales. λmin is scaled up to the total number of scales n. A noise
threshold T , is applied to the computation of phase congruency. T is calculated as the
mean noise response plus some multiple k of the standard deviation of the distribution
at the smallest as T = µ + kσ, k = 2 where µ is the mean and σ is the standard
deviation of the local energy distribution.
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2.2 Estimation of initial breast boundary surface

Points of maximal phase congruency coincide with features of high edge strength and
therefore can be thought as sample points from a field of edge potential. In this work, we
propose to sample points of maximal phase congruency with the purpose of estimating
a breast boundary isosurface using Poisson surface reconstruction [9]. The idea behind
this approach is to infer the topology of an unknown surface given oriented points lo-
cated on or near the surface. In order to estimate the orientation of points corresponding
to maximal phase congruency we propose to sample the gradient of the image at the
point locations. Kazhdan et al. [9] proposed to consider these oriented points as sam-
ples of an implicit indicator function χ whose gradient best approximates a vector field
−→
V defined by the point normals (i.e minχ‖∇χ −

−→
V ‖). This variational problem can

be transformed into a Poisson problem: finding the best solution involves computing
a least-squared approximate solution of the scalar function χ whose Laplacian (diver-
gence of the gradient) equals the divergence of the vector field

−→
V :

∆χ ≡ ∇.∇χ = ∇.
−→
V (3)

The scalar function is represented in an adaptive octree and the Poisson equation is
solved in successive well conditioned sparse linear systems at multiple octree depths,
as in [9]. Once the scalar function is found, the surface corresponding to the breast
boundary can be extracted as an iso-contour of χ using an adaptive marching cubes
algorithm [10]. The reconstruction algorithm performs best with sufficient dense point
samples and copes well with missing data by filling small holes.

2.3 Initializing the 3D model to the target surface

The output of the Poisson breast surface reconstruction can serve as the starting point for
a subsequent model-based segmentation. We explored the feasibility of initializing the
mean of a population of 3D landmarked shapes (Smean) to the found breast boundary
iso-surface (Siso). First, we bring both surfaces into the same reference frame using a
landarmk-based rigid registration that starts by aligning the centroids of the atlas and the
Poisson reconstructed iso-surface. Then, mapping 3D landmarks from the mean surface
to the initialization surface can be treated as a correspondence problem. In this work,
we formulate this problem using a Laplacian equation:

∇2ψ =
δ2ψ

δx2
+
δ2ψ

δy2
+
δ2ψ

δz2
= 0 (4)

with boundary conditions: ψ = ψ1 on Smean and ψ = ψ2 on Siso, where (ψ1, ψ2)
are two different fixed potentials. The solution to the Laplace equation is a scalar field
ψ that provides a transition from surface Smean to Siso as defined by set of nested
surfaces [11]. Furthermore, given the geometric properties of the Laplace equation, by
computing the normalized negative gradient of the Laplace solution:

N = − ∇ψ
‖ ∇ψ ‖

(5)
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we obtain a unit vector field that defines field lines connecting both surfaces also known
as streamlines. The path between two corresponding points (i.e p1 on Smean to p2 on
Siso) can be found by following the streamline in a ray casting approach, starting at the
mean surface in the direction of N.

3 Results

Fig. 2 shows our phase congruency results using 3 different minimum wavelengths. We
investigate the effect of different parameters on edge detection results and found that
values of λmin = 3, k/wo = 0.65, and δ = 2.1 over a total of 6 scales gave good
edge localization results (see fig 2-b). The effect of decreasing λmin can be appreciated

   (a)                                (b)                                (c)                

Fig. 2: Phase congruency detection examples with different filter parameters. a) λmin = 1, b)
λmin = 3, c) λmin = 6.

           (a)                                 (b)                                  (c)             

Fig. 3: Breast boundary reconstruction via Poisson framework. a) mask of maximal phase con-
gruency points, b) Image gradient for sampling orientation of points. c) Output breast surface
iso-contouring after solving Poisson system.

in fig 2-a, where the filter enhances local features at relatively higher frequencies. In
contrast, increasing λmin (fig 2-c) appears to blur out some features and local structure
is detected at lower frequencies.
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Figure 3 shows a surface reconstruction example using an octree depth of 8, which
corresponds to an octree resolution of 2563. In some cases, spurious clusters of surface
elements are captured on the chest region where edge features are also detected. These
elements however not necessarily interfere with the estimation of the complete breast
surface and can be removed with an additional connected-component filter. To evalu-

         (a)                       (b)                        (c)                        (d)               

         (e)                       (f)                         (g)                        (h)               

Fig. 4: Representative results of 2 breast boundary reconstructions (top and bottom): a) and e)
Breast iso-surface (output of Poisson reconstruction). b) and f) Aligned mean of population show-
ing initial position of landmark points before Laplacian mapping. c) and g) Mapping results to
target surface. d) and h) Color-coded closest distances from manual annotated surfaces.

ate the feasibility of this reconstruction approach we measured target distances to the
manually annotated surfaces, using a population of (n=409) landmarked shapes [12].
Distances were measured from the mean shape in the population to the breast boundary
iso-surface, after finding corresponding points according to equation 6 (see fig. 4). By
labelling the relative position of each individual landmark in the mean shape, we can
discriminate the mapping accuracy among specific regions of the breast boundary, such
as the chest-wall or the air-breast boundary regions. Figure 5 summarizes the mapping
accuracy of landmark points by our algorithm as well as some standard overlap metrics
of agreement and error. In addition to distance errors, we also compared total volumes
between manually annotated volumes and the total volume enclosed by our segmenta-
tion boundaries according to [13]. We compared a total of 367 breast volumes, since 42
cases were excluded due to failures in the initial surface alignment (steps b) and f) in
fig. 4).

For the total breast volumes measured in cm3, the median of the absolute percent
measurement error was 6.75%. Fig. 6 presents the Bland-Altman plot that compares the
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Fig. 6: Bland-Altman plot showing the difference between automatic and manual measurements
of total breast volume (in cm3) against the average of the two methods.

volumes obtained automatically with the volumes measured from the manual segmen-
tations. The magnitude of the disagreement (in terms of bias and limits of agreement)
was 29.8 cm3 (-141.5 to 201.1) cm3. The scatter of the values tends to increase for
larger volumes. The fact that some values are more scattered on the negative side of the
plot (with respect to zero difference line), indicates that in some cases the automatic
segmentation tends to underestimate the true volume of large breast volumes (<900
cm3). A possible fix for this is to build an volume-specific shape atlas that can account
for differences between large and small breasts.

4 Conclusion

We described an automatic breast volume segmentation approach based on 3D local
edge detection. Our boundary localization results demonstrate error distances from
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manual surfaces with an IQR of 2.15 mm for the air-breast boundary and 3.7 mm for
the breast-chest wall boundary. This indicates that the error for localizing the breast-air
boundary is within sub-resolution accuracy. Errors are relatively higher for localizing
the chest-wall boundary, probably due to the low contrast between adjacent tissues to
the breast in this region. However, the results obtained are encouraging for using phase
congruency edge detection and Poisson surface estimation to segment the total volume
of the breast. Furthermore, incorporating a manual override to our automatic segmen-
tation framework will be a feasible approach for computing total breast volume during
breast density assessment using MRI. We are currently working on adapting this work
to initialize a statistical shape model (SSM) of the breast during model-based segmen-
tation. Future work is needed to improve breast volume assessment on large breast
volumes.
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Abstract. This paper addresses the problem of identifying the pectoral
muscle in medio-lateral oblique (MLO) view digital mammograms (DM).
Different from most previous work, the prior-knowledge of tissues’ geo-
metric layout (e.g. the muscle is a triangular region at the upper-posterior
part of the image) in mammogram is incorporated in the segmentation
process. Specifically, we pose this problem as a Markov Random Field
(MRF) equipped with various constraints to encourage/enforce tissues’
spatial relationships to be consistent with this prior-knowledge. Theo-
retical analysis and experimental results on 80 DM images show the su-
perior accuracy and robustness of our algorithm compared with several
standard previous methods.

1 Introduction

Breast cancer ranks second among cancer related mortality rates in women in
the United States. It is reported that breast cancer mortality rates have de-
clined somewhat in recent years and current thinking appears to lend more
weight to mammography screening and earlier diagnosis as the primary cause
[1]. Computer-Aided Diagnosis (CAD) systems in the diagnosis of breast cancer
with mammography potentially provide a consistent and reproducible second
opinion to radiologist. They can help to reduce the misdiagnosis caused by the
large variabilities of human diagnosis.

Automatic identification of pectoral muscle is an essential step of a breast
cancer CAD system with digital mammograms (DM). The pectoral muscle, being
typically visible in medio-lateral oblique (MLO) view mammograms [2], appears
as a triangular region of high density at the upper-posterior part of the image (as
shown in Fig. 1). Due to its x-ray attenuation, it may have similar appearances
to some abnormalities [3], introducing additional source of complexity in auto-
mated analysis of DM and biasing cancer detection and diagnosing procedures.
Exclusion of the pectoral muscle has thus been taken as an important prepro-
cessing procedure in many mammographic processing methods [4, 5]. Moreover,
muscle identification enables the analysis of image information at muscle’s edge
and inside its region for identifying abnormal axillary lymph nodes [3], etc.

However, automatic identification of pectoral muscle is not a trivial for a va-
riety of reasons. First, it suffers from the appearance similarity between pectoral



muscle and dense tissues of the breast [3]. This similarity introduces ambiguities
and renders the accurate segmentation extremely hard. Second, contour’s po-
sition, shape, and intensity contrast of pectoral muscle on the MLO-view have
wide variabilities [6, 4]. For example, pectoral muscle could occupy as much as
half of the breast region, or as little as a few percent of it [4]. These variations
are caused by the differences in individual patient variables and positioning tech-
niques [2], specifically including variations in body habitus, length of the thorax,
the presence of a pacemaker or a prominent sternum, and ability of the radiogra-
pher to relax the woman, etc. Third, although the muscle boundary is perceived
to be visually continuous, there may be large variations in edge strength and
obscured parts by artifacts of DM [4].

As to be detailed in Sec. 2, there is extensive work on handling the challenges
in automatic identification of pectoral muscle from DM images. However, their
performances are limited because they are founded either on the hypothesis that
pectoral muscle boundary is a straight line or on a direct application of certain
general image segmentation techniques in the image processing field to detecting
a curved boundary. The assumption of straight line on muscle boundary is too
simple to be always correct in practice [3]. Direct application of certain general
segmentation techniques (e.g. graph-cut [5]) is not optimal because they are
originally designed for a more general purpose and some unique properties (e.g.
the geometric layout of breast tissues) in DM can not be combined.

In this paper, we propose a new algorithm for pectoral muscle segmenta-
tion using a Markov Random Field (MRF) model [7] equipped with various
constraints on geometric relations of tissues. These constraints help to encour-
age/enforce the consistence between the segmentation results and the prior-
knowledge on geometric layout of breast tissues in DM (as shown in Fig. 1).
This geometric layout property guides the optimization in a more restricted but
reasonable search space and therefore leads to higher accuracies and better ro-
bustness. Moreover, the MRF model itself brings in noise resistance and smooth
segmentation boundaries. Experimental results on 40 bilateral DMs, a total of 80
images, show that our technique outperforms some state-of-the-art techniques
in both accuracy and robustness.

2 Previous Work

There is extensive work [6, 5, 4, 8, 9] on pectoral muscle identification in MLO-
view DM images. They can basically be classified as learning based, straight line
detection based, curved line detection based, or MRF model based, respectively.
Learning based methods rely on neural networks [5] or SVM [6] to decompose
the DM image into several components (including pectoral muscle) or detect
endpoints of muscle-breast curve. Straight line detection based approaches treat
the muscle-breast boundary as a straight line and then detect it with the Hough
transform or any line fitting technique. Curved line detection techniques extend
the straight line of muscle-breast boundary to a curve [4]. The curve can be
obtained by adjusting the straight line in its neighboring area according to image



(a) DM image (b) Tissue label

Fig. 1. Breast tissues’ geometric layout in DM is characterized by several facts (as
shown in the right annotation image). First, pectoral muscle appears at the upper-
posterior part of the DM image. Second, breast (“Fatty”+“Density”) is anterior to the
pectoral muscle and air is anterior to breast. Finally, pectoral muscle is characterized
as a triangular region with a curved diagonal edge (muscle-breast boundary) slanted
up to anterior.

gradients, using active contour models, or fitting a curve [3]. MRF model based
methods [5, 8] perform image clustering while considering the consistency of
neighboring pixels. Most previous methods make no use of the geometric layout
(as shown in Fig. 1) and therefore their performances are limited in practice,
e.g. when the density area is spatially connected to muscle (a shown in Fig. 3).

MRF model [7] based image segmentation has attracted intensive research
interest for more than two decades due to its superior effectiveness and noise-
resistance compared with the clustering based methods. It performs data clus-
tering while enforcing spatial smoothness on the resulting labels. To release the
computational burden, many previous works [7, 10, 11] assume the label smooth-
ness term in the energy function to be metric or semi-metric. Recent papers [12,
13] try to relax this constraint and incorporate an arbitrary form which can be
asymmetric or repulsive. This enables the incorporation of certain restrictions
on geometric relations between labels. We will show that this relaxation also
enables the incorporation of the pre-known tissues’ geometric layout (as shown
in Fig. 1) in the identification process of pectoral muscle in DM images.

3 MRF Model

MRF for 2-D image segmentation is a 2-dimensional random process defined on
a finite discrete lattice. Given a 2-D DM image I with pixels denoted by set
P, MRF can be used to infer a label lp ∈ L for each pixel p ∈ P. Labels in
L may include “pectoral muscle” (“muscle” for abbreviation), “air”, “breast”,
“fatty”, “density” (fibro-glandular tissue) [14] and others if necessary, as shown
in Fig. 1(b). MRF inference amounts to minimizing the following energy function

E(l) =
∑
p∈P

Dp(lp) +
∑

(p,q)∈N

Vpq(lp, lq) (1)

where Dp is the data term measuring the disagreement between the observation
of p and its assigned label lp, Vp,q is the smoothness term specifying the cost



(a) horizontal (b) vertical

Fig. 2. Values of fpq in Eq. (2) set for enforcing/encouraging the pre-known tissues’
geometric layout (as shown in Fig. 1). The left table is for a pair of horizontal neighbors
while the right is for vertical.

for assigning lp to pixel p and lq to q, and N is a set of pairs of adjacent pixels.
We use the standard 4-connected N and assume p is left to q when they are
horizontally neighboring and is above q when they are vertically neighboring.

The data term Dp can be computed based on the intensity value of the
original image I or certain features (e.g. texture) extracted from I. The rep-
resentative intensity/feature value of each label can be specified manually or
learned with certain algorithms. In our experiments, we computed Dp as the
absolute difference between each pixel’s intensity and the manually set repre-
sentative intensity value for each label (0, 240,210, and 50 for “air”, “muscle”,
“density”, and “fatty”, respectively).

The smoothness term Vpq encourages label’s spatial consistency by penalizing
neighboring pixels that are not assigned the same label. It is computed with

Vpq = wpqfpq(lp, lq). (2)

We specify wpq in Eq. (2) as being inversely proportional to image gradient with
the method in [13]. That can render the boundaries of segmented regions to
appear where the image bears abrupt changes. Value of fpq relies only on the
two labels lp and lq and not on the locations of the involved pixels. In many
previous works [7, 10, 11], fpq is required to be metric or semi-metric in order
for a computational efficiency, e.g. the Potts model [10]. Recent papers [12, 13]
tried to relax it to an arbitrary form, which enables the enforcement of certain
geometric layout properties of the segmented objects.

4 Constraints

The pre-known geometric layout of tissues (as shown in Fig. 1) can be en-
forced/encouraged by setting an appropriate value for each fpq in Eq. (2). For
example, we know that muscle is left to breast in the left MLO-view DM image
in Fig. 1. To enforce this prior-knowledge, we set Vp,q of the horizontal neighbors
{p, q} a small value when lp takes “muscle” while lq taking “fatty” but a large
value for the reverse. For right MLO-view DM images in which breast appears
on the right side, we can just flip them left-to-right.



Specifically, we specify the value of fpq when {p, q} are horizontal and vertical
neighbors as shown in Fig. 2. With these settings, several geometric properties
of the tissues’ layout can be enforced/encouraged in the segmentation process.
First, muscle is left to fatty, enforced by a small fpq value of horizontal “muscle”-
“fatty” neighbors and a very large value of horizontal “fatty”-“muscle” neigh-
bors. Second, the muscle-breast boundary is steeply slanted up to right. This
is accomplished by a smaller fpq value of horizontal “muscle”-“fatty” neighbors
than vertical. Third, air is right to breast, enforced by small fpq values of hori-
zontal “breast”-“air” neighbors and very large values of horizontal “air”-“breast”
neighbors. Fourth, air can appear both upper and lower of breast, guaranteed by
the relatively small values of vertical “air”-“breast” and “breast”-“air” neigh-
bors. Finally, spatial label consistency inside and smoothness of boundaries be-
tween the segmented regions are encouraged by the zero fpq value when {p, q}
take the same label in contrast to larger values when they take different labels.

5 Optimization

Optimization of Eq. (1) is easy to get stuck in a local minimum using many
previous methods such as the well-known α-expansion optimization technique
[10]. It is because the smoothness term Vp,q in Eq. (1) is asymmetric considering
the asymmetric fpq as shown in Fig. 2. Fortunately, a series of new optimization
techniques [12, 13] appeared recently to solve this hard task.

We employ the dynamic programming (DP) based optimization technique
in [13] and tailor it to this special case of pectoral muscle identification in DM
images. This technique reduces a 2D image labeling problem to a 1D optimization
problem and is equivalent to finding a shortest path in a large state space. It
can attain a global optimization under certain constraints.

With the DP based optimization technique [13], we try to partition a DM
image (as shown in Fig. 1) into 3 regions: “muscle”, “breast” and “air” corre-
sponding to left, middle and right parts of the image, respectively. This requires
the breast to appear always on the left hand side of the image.

Supposing the given image I is of size M×N , we try to search simultaneously
M optimal triples {(ik, jk, lk)|k = 1, 2, · · · ,M}, each corresponding to one row of
the image. Here, 1 ≤ ik ≤ jk ≤ N and lk takes a label of “fatty” or “density”. For
the row k of the image, we hope pixels in columns 1, 2, · · · , ik − 1 are “muscle”,
pixels in columns jk + 1 · · · , N are “air”, and pixels in columns ik, · · · , jk are
“fatty” or “density” specified by lk. The resulting sequences of (i1, i2, · · · , iN )
and (j1, j2, · · · , jN ) define the muscle-breast boundary and breast-air boundary,
respectively. The energy in Eq. (1) is then reformulated as

E(l) =
M∑
k=1

Uk(ik, jk, lk) +
M−1∑
k=1

Hk(ik+1, jk+1, lk+1, ik, jk, lk) (3)

where Uk is formed by putting together all data terms and horizontal smooth-
ness terms (in Eq. (1)) within row k, and Hk is the summation of all vertical
smoothness terms between rows k and k + 1.
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Fig. 3. Identification of the pectoral muscle is extremely difficult especially when the
abnormality is spatially connected to muscle. Our method produced superior results
due to the incorporation of prior-knowledge of the geometric layout (detailed in Fig. 1).

A global optimum can be obtained in O(4M2N) time for the minimization
of Eq. (3) with the fast DP algorithm proposed in [13]. We omit the details of
this algorithm for brevity. Interested readers are referred to the paper [13].

6 Results

Test data set is composed of 40 bilateral MLO-view post-processed digital mam-
mograms, a total of 80 images, acquired using a standard screening protocol on a
Senograph DS (GE Healthcare) full-field digital mammography system with an
isotropic 100µm resolution. For each image, a trained-radiologist manually delin-
eated the pectoral muscle with the Cumulus software (Ver. 4.0, Univ. Toronto)
[14], for which the muscle-breast boundary appears as a curve composed of line
segments and is treated as the ground-truth. A trained rater then adjusted the
radiologist’s line segments to neighboring places with a locally maximum image
gradient. Although the latter can not be treated as ground-truth, manually lo-
cated boundaries at places with a high image gradient have been widely used in
evaluating segmentation algorithms.

With these data sets, we compared the performances of the proposed method
with three previous typical methods: the Hough transform, the k-means algo-
rithm, and the graph-cut algorithm [5]. For qualitative evaluations, we assessed
each algorithm-segmented result by visually comparing with the corresponding
radiologist-delineation. If they are very different (e.g. a large area of density was
treated wrongly as muscle or a dominated area of muscle was missed), we as-
signed it as a failed case, and otherwise as a successful case, as shown in Fig. 3.
Through the results, we found that the percent of successful cases is 90.0% for
the proposed method, 83.7% for the Hough transform, 76.3% for the k-means
algorithm, and 80.0% for the graph-cut algorithm.
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Fig. 4. Error curves on our testing data sets when adding image noise in different
levels. Our method can produce a good muscle-breast boundary even when the DM
image bears sever noise as shown in a local patch of the image.

For quantitative evaluations, we computed the average of the shortest Eu-
clidean distance of each pixel on the muscle-breast boundary produced by an
algorithm to the corresponding manually delineated boundary. We found that
the mean/std of this error measurement (in pixel) when comparing with the ra-
diologist’s manual segmentation (rater’s refinement) are 4.4/3.6 (2.8/2.6) for our
algorithm, 7.7/6.8 (7.9/6.9) for the Hough transformation, 14.8/12.1 (13.2/11.9)
for the k-means algorithm, and 13.3/10.6 (10.7/9.3) for the graph-cut algorithm.

To evaluate the robustness to noise of our algorithm, we added in the testing
images Gaussian noise (using Matlab function imnoise) with variances 0.005,
0.05, 0.1, 0.15, respectively. Error statistics measured by the average of the dis-
tance between the algorithm-segmented curve and the rater-manually-refined
curve (as explained above) are shown in Fig. 4.

From the above results, we have at least three findings. First, our algorithm
produced a superior accuracy and robustness than other techniques. It validates
the high value of incorporating prior knowledge on the geometric layout for
muscle’s segmentation. Second, although the Hough transform is simple, it can
outperform the k-means and graph-cut algorithm. However, it deteriorates very
quickly when image bears noise. Finally, the MRF based algorithms, including
the graph cut algorithm and our method, are more robust to noise.

7 Conclusion and Future Work

Different from other images, digital mammograms (DM) on the medio-lateral
oblique (MLO) view have certain unique properties in the geometric layout of
breast tissues. This layout is characterized by the relative spatial relations be-
tween different tissues (pectoral muscle, fatty, dense tissues and air) and the
specific shape of the muscle or breast, as detailed in Fig. 1. This geometric lay-
out is inclined to be guaranteed in the imaging process [2] and pretty uniform
across different subjects.

We proposed a layout consistent MRF model to automatically identify pec-
toral muscle from DM images. Our method outperforms many previous tech-
niques because the prior-knowledge of geometric layout of mammograms can



be combined in the segmentation process. With our method, accurate muscle-
breast and breast-air boundaries can be obtained, but not for the fatty-density
boundary because lk in Eq. (3) can take only one label.

Our future work would include extensions to breast images in other modalities
(e.g. MRI) and to segmentations of other tissues.
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Chest Wall Segmentation in Automated 3D
Breast Ultrasound Using a Cylinder Model

Tao Tan1, Bram Platel2, Henkjan Huisman1, and Nico Karssemeijer1

1 Department of Radiology, Radboud University Nijmegen Medical Centre, the
Netherlands

2 Fraunhofer MEVIS, Bremen, Germany

Abstract. In this paper, we present an automatic method to segment
the chest wall in automated 3D breast ultrasound (ABUS) images. We
show that the visible part of the chest wall in a 3D breast ultrasound
image can be accurately modeled by a cylinder. We fit the surface of our
cylinder model to a set of automatically detected rib-surface points. The
detection of the rib-surface points is done by a classifier using features
representing local image intensity patterns and presence of rib shadows.
Due to attenuation of the ultrasound signal, a clear shadow is visible
behind the ribs. Evaluation of our segmentation method is done by com-
puting the distance of manually annotated rib points to the surface of the
automatically detected chest wall. In our database of 66 ABUS scans, the
average mean distance of the annotated points to the segmented chest
wall was 4.58 mm. By fitting the cylinder model to the manually an-
notated points an average distance of 1.93 mm was obtained, providing
evidence that reasonable accuracy can be obtained with this model.

Keywords: chest wall segmentation, automated 3D breast ultrasound, cylinder
fitting

1 Introduction

As a complementary modality to mammography, breast ultrasound has a high
specificity [1] and its sensitivity can surpass that of mammography for patients
with highly dense breast tissue[2]. Regular two dimensional breast ultrasound,
however, suffers from operator dependence, a limited capability to visualize the
entire breast and the whole procedure is time consuming.

Automated 3D breast ultrasound (ABUS) overcomes the drawbacks of 2D
hand-held ultrasound (US). ABUS provides 3D ultrasound images of the breast
from the skin line to the chest wall. The modality involves compression of the
breast using a dedicated membrane and a wide transducer mounted in a scanning
device. Fig. 1 shows a 3D breast image generated by ABUS.

For patients with dense breast tissue or for patients that are more suscepti-
ble to radiation induced breast carcinoma, ABUS might prove to be a suitable
screening modality for breast lesions. However, the reading of these 3D breast
ultrasound images is time consuming for radiologists. Therefore, computer-aided
detection (CAD) is expected to play an important role in the future, as it has
the potential to make reading more efficient and reduce reading errors.

Determining the location of the chest wall in ABUS images is necessary
to remove detected CAD-candidates beyond the chest wall. Furthermore, the
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(a) (b)

Fig. 1. Manually annotated points on the surface of the ribs on coronal view(a) and
sagittal view(b). The red cross are manually annotated points on rib surface, and the
annotated points on the current slice are highlighted.

accurate localization of the chest wall can be of great help for inter- and intra-
modal image registration algorithms[3].

In this paper we describe a novel method to accurately locate the chest wall.

2 Method

In previous related work, Huisman and Karssemeijer[4] investigated use of a
deformable volume model to determine the chest wall location in ABUS images.
The method was only partly validated by determining how well presence of a
chest wall in a ABUS scan could be detected using a sheet detector. However,
the performance of the method was limited.

In this paper we describe a new method to locate the chest wall. We use
multiple features and classifiers to automatically detect points on the surface
of the ribs. Subsequently a cylinder is fitted to the resulting point distribution.
This cylinder models the local shape of the chest wall.

For training and validation we manually marked 20 to 30 rib surface points
which are at the transition position between breast tissue and rib shadows for
each scan (Fig. 1) of a series of 66 ABUS scans. All the images are generated
using the automated breast ultrasound developed by U-systems, Inc. (SomoVu,
Sunnyvale, CA, USA). Images were resampled to obtain 0.6 mm cubic voxels.

2.1 The chest wall as a cylinder

Our method is based on the assumption that the partial chest wall visible in an
ABUS image can be modeled by the surface of a cylinder. To investigate if this
conjecture is correct we fit the cylinder model to our manually annotated point
sets for each of the 66 scans.

We use a non-linear optimization method [5] to fit a cylinder to the annotated
points in 3D space and evaluate the validity of our assumption by observing the
average distance of the annotated points to the fitted cylinder surface for each
ABUS scan.

A cylinder in 3D space is fully defined by its radius R and its axis (center
line). The axis in turn is defined by a point (xc, yc, zc) and an orientation vector
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(vx, vy, vz). To reduce the parameters of the cylinder, redundancy is removed by
setting zc = 0 and vz = 1[6]. The normalized direction vector with length equal
to 1 is denoted by (ux, uy, uz).

Thus the parameter vector p = {R, xc, yc, vx, vy} fully defines the cylinder.
For any point (x, y, z) in 3D space, the closest point on the axis of the cylinder

has coordinates (xa, ya, za) defined by
xa = xc +D ∗ ux
ya = yc +D ∗ uy
za = zc +D ∗ uz (1)

where D = (x − xc) ∗ ux + (y − yc) ∗ uy + (z − zc) ∗ uz which is the distance
between the point (xa, ya, za) and (xc, yc, zc) with zc = 0. Therefore, given a set
of annotated voxels (xn, yn, zn) (n = 1, 2, ..N) the averaged squared distance to
the cylinder surface ASD(p) can be computed by

ASD(p) =
1

N

n=N∑
n=1

(
√

(xn − xa)2 + (yn − ya)2 + (zn − za)2 −R)2 (2)

where N is the number of annotated points.
We constrain the fitted cylinder by introducing a penalty term P (p)

P (p) = w1 ∗ (
vx
vy

)2 + w2 ∗ (R−Rmean)2 (3)

in which the first term of P (p) ensures that the orientation of the cylinder
remains close to the body axis (y is directed towards to head). The second term
penalizes the deviation of the radius of the fitted cylinder from a predefined
average radius Rmean related to local curvature of the chest wall. The parameters
w1 and w2 define the weights for each term 1.

The total cost function C(p) is defined by

C(p) = ASD(p) + P (p) (4)

We use Powell’s optimization method [5] to find the minimum of the cost
function C(p).

The cylinder fitting method was applied to all 66 images. The average of the
mean distance of the annotated points (reference standard) in each image to the
fitted cylinder surface was 1.93 mm with standard deviation 0.66 mm. Given
this small error we conclude that the surface of the chest wall in an ABUS scan
can be approximated by the surface of a cylinder.

2.2 Chest Wall Segmentation
Our chest wall segmentation method consists of two stages: first, rib-surface
points are identified and second, the previously described fitting procedure is
used to fit a cylinder to these points. The extraction of rib-surface points involves
two steps: the detection of rib shadows and the detection of the rib surface.

1 In our work, we use Rmean = 70mm, which was an experimental estimate from our
dataset. w1 and w2 were experimentally set to 100 and 25 respectively.
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Detection of Rib Shadows Due to strong attenuation of the ultrasound signal
by the ribs, a shadow is cast behind them in the ABUS images (Fig. 1). The
detection of these dark sheets aids us in localizing the rib-surface points. We use
a set of features and a classifier to identify these rib shadows.

We apply a sheet detector to enhance the rib shadows in ABUS images. The
sheet detector utilizes the eigenvalues and eigenvectors of the Hessian matrix.

We compute the elements of the Hessian matrix by convolving image I(x)
with the appropriate second order Gaussian kernel.

L(x, σ) = I(x)⊗G(x, σ) (5)

where G(x, σ) is the Gaussian filter and L(x, σ) is the result of the convolution.
The normalized Hessian matrix is defined as

H(x) = σ2


∂L(x,σ)
∂x∂x

∂L(x,σ)
∂x∂y

∂L(x,σ)
∂x∂z

∂L(x,σ)
∂y∂x

∂L(x,σ)
∂y∂y

∂L(x,σ)
∂y∂z

∂L(x,σ)
∂z∂x

∂L(x,σ)
∂z∂y

∂L(x,σ)
∂z∂z

 (6)

where σ is normalization factor 1. The eigenvalues of H(x) are λ1,λ2 and λ3
which correspond eigenvectors V1, V2, V3 where |λ3| > |λ2| > |λ1|. The dark
sheet enhancement filter [7,4] is defined as:

DS(λ1, λ2, λ3) =

{
λ3 ∗ e−(λ2

1+λ
2
2) if λ3 > 0

0 if λ3 < 0
(7)

The first eigenvector V3 gives the direction of the greatest curvature. To
make the operator more sensitive to sheets perpendicular to body axis or vertical
direction, a weight factor F is calculated as the inner product between V3 and
body-axis vector (0, 1, 0)

Then, the directional dark shadow enhancement image (Fig. 2) is computed
as

SH(x) = DS(x) ∗ F (8)

The shadow enhancement alone, however, is not specific enough. Therefore
we use a number of additional features to further improve the detection of rib
shadows. We use a set of features chosen to differentiate between the rather
texture-less shadow region behind the ribs from the more texture rich region in
front of the ribs. These features are

– image intensity (I)
– (|Gz|), the absolute value of the first order Gaussian derivative of the ABUS

image in the depth direction (with scale 3 mm)
– the Laplacian (LP ) of the ABUS image (with scale 3 mm)
– variance, skewness, and kurtosis of the image intensities within a cube of 729

mm3 (15x15x15 voxels) centered at every voxel (V I, SI, KI)
– variance, skewness, and kurtosis of the image Laplacian values within the

same cube (V L, SL, KL).

1 σ is set to 3.6 mm which is estimated from average shadow width
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(a) (b)

Fig. 2. An ABUS image with dark shadow enhancement overlay (red). A coronal slice
(a) and a sagittal slice (b) are shown.

Resulting in ten features per voxel: SH, I, Gz, LP , V I, SI, KI, V L, SL,
and KL.

To compute the posterior probability that a voxel belongs to a rib shadow,
we apply a two-class soft classifier using the features described above as input
and using the manual annotations for training.

For the class of rib shadows we use the column of voxels below the annotated
rib surface points. For the other class, we use a set of regularly spaced samples
(2.4 mm in each direction) that are at least 10 mm above the chest wall (as
defined by a fitted cylinder on the manually annotated rib-surface points).

We use an ensemble of five neural networks to classify this data. Each network
consists of an input layer of n nodes representing the features, where n is the
number of features, and a hidden layer of 8 hidden nodes and an output layer
with one node. The final classifier output was computed by averaging the five
network outputs. This output, LS(x), is considered to represent the likelihood
that a voxel is part of a rib shadow (Fig. 3).

Fig. 3. A sagittal view image overlaid with the rib shadow likelihood LS. The proba-
bility ranges from blue (low) to red (high).

Detection of Rib Surface A second classifier is used to obtain the rib surface
points. We use a set of features based on the ABUS image intensity and the
previously described rib shadow likelihood image LS(x). These features are

– f1 : I(x, y, z) where z = 0, 1, ..., Nz − 1 and Nz is the number of voxels in
the depth direction of the image

– f2 : GzI(x, y, z) whereGzI(x, y, z) represents the first order Gaussian deriva-
tive in the depth direction on the original ABUS image (with scale 3 mm)
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– f3 : GzLS(x, y, z) where GzLS(x, y, z) represents the first order Gaussian
derivative in the depth direction on the rib shadow likelihood image LS(x)
(with scale 3 mm)

– f4 :
∑

k>z I(x,y,k)

Nz−z−1 which is the average intensity of voxels below the voxel

– f5 :
∑

k>z LS(x,y,k)

Nz−z−1

– f6 :
∑

k<z LS(x,y,k)

z −
∑

k>z LS(x,y,k)

Nz−z−1
– f7 : z which the depth of a voxel.
– f8 : disnp(x, y) where disnp(x, y) is the distance of voxel (x, y, z) to the

nipple in coronal view; the location of the nipple is automatically detected
by using the Hough Circle Transform. This works well as the nipple in ABUS
is visible as dark circle.

We use a classifier with the same settings as the classifier used in the previous
step except that the classifier in this step has a input layer of 8 nodes based on the
features computed above. For the class of rib-surface points we use the manually
annotated points. For the non-rib voxels we we use a set of regularly spaced
samples that are at least 10 mm away from the chest wall (as defined by a fitted
cylinder on the manually annotated rib-surface points).

This classification yields a likelihood for each voxel LI(x, y, z), representing
the probability that a voxel belongs to rib surface (see Fig. 4).

Fig. 4. An sagittal view image overlaid with the rib-surface likelihood LI. The proba-
bility ranges from blue (low) to red (high).

The rib-surface points are determined by thresholding image LI(x, y, z) with
threshold defined as the 98th percentile of all likelihood values in each image.

Cylinder Fitting to Detected Rib-Surface Points In this step, we fit our
cylinder model to the detected rib-surface points in a similar manner as described
in Sec. 2.1. However, this time we weight the contribution of each rib-surface
point by its likelihood LI:

F (p) =
1

N

n=N∑
n=1

w(xn, yn, zn)(
√

(xn − xa)2 + (yn − ya)2 + (zn − za)2−R)2 (9)

where w(xn, yn, zn) is defined as

w(xn, yn, zn) = LI(x, y, z)n (10)

n is chosen to enhance the weight difference of rib-surface points with different
likelihoods (n was experimentally set to 3).

Fig. 5 shows an example of chest wall segmentation using annotated points
and detected rib-surface points respectively.
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Classifier Training We use two fold cross validation in our experiments. For
each fold two classifiers are trained, one for the rib shadow detection and one
for the rib surface points. These classifiers are then applied to the other fold for
testing. Using this procedure bias is avoided.

3 Results

For the dataset of 66 ABUS scans, the average of the mean distance of the
annotated points (reference standard) in each image to the fitted cylinder surface
using detected rib-surface points was 4.58 mm with standard deviation 2.38
mm. Poor results were obtained in a few cases, as a result from too many false
positives detected as rib-surface points in the second stage of classification. The
worst case had a mean distance distance of 11.63 mm. Most false positives were
due to posterior shadowing behind regions of dense tissue. A boxplot summarizes
the result (Fig.6).

(a) (b) (c) (d)

Fig. 5. Example of chest wall segmentation. (a) and (b) show an ABUS image in
coronal and sagittal view with the fitted cylinder model (blue overlay) obtained using
manually annotated points. (c) and (d) show the result of the segmentation obtained
by fitting the cylinder model to automatically detected rib-surface points, in coronal
and sagittal view respectively.

4 Conclusion and Discussion

Our result in Section 2.1 demonstrate that the surface of the chest wall in an
ABUS scan can be well approximated by the surface of a cylinder. Therefore
we investigated an automated method to locate chest wall surface using this
model. Using this the average of the mean distance of the annotated points to
the segmented chest wall surface was 4.58 mm, which is promising for followup
processing, such as computer-aided detection and inter- and intra-modal image
registration. The result can also be used as a starting point for further refinement,
for instance based on graph search methods [8].

Results show that the cylinder fitting suffers from false positives generated
from rib surface detection. Therefore, for further improvement, false positives
must be reduced by incorporating more robust features or by post-processing.
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Fig. 6. Box plot of the mean distance of the annotated points (reference standard) in
each image to the fitted cylinder surface using detected rib-surface points of 66 scans
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Abstract. Purpose : Segmentation plays a central role in medical
imaging, though is not a trivial task to perform in some screening modal-
ities such as Ultra-Sound images. This paper addresses the role of auto-
matic seed placement when segmenting breast lesions in B-mode Ultra-
Sound images, and proposes a new algorithm to automatically locate
seed regions for further region growing expansion.
Methods : In this work some state-of-the-art methodologies for seed
placement are reviewed and a new method basing its region selection on
assigning a probability of belonging to a lesion for every pixel depending
on intensity, texture and geometrical constraints of the pixel is proposed.
Results : The proposed algorithm has been evaluated using a set of
sonographic breast images with accompanying expert-provided ground
truth, and successfully compared to other existing algorithms.
Conclusions : The experimental results show the performance and ro-
bustness of the method when placing seed regions in noisy environments.

Keywords: seed placement, ultra-sound, segmentation, breast cancer

1 Introduction

Breast cancer constitutes one of the leading causes of death for women in de-
veloped countries, and is most effectively treated when diagnosed at an early
stage [11].

Taking this into account, Digital Mammography is still the most powerful
screening tool for breast cancer [6]. However, some studies [12] have shown in
a recent past that Ultra-Sound (US) images of the breast can provide useful
complementary information in cases where the patients present dense glandular
breast tissue, and a tumor presence can be shielded when using mammogram
screening. In addition, US images is a non-expensive and non-invasive technique
with no side effects, thus rendering sonography an attractive complement to
? We gratefully acknowledge the help of Dr. Gururajan and Dr. Sari-Sarraf from Texas
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digital mammography and leading to a re-emergence of interest in image seg-
mentation applied to ultrasound data [7] due to the segmentation’s clinical value.
Despite this, performing automatic segmentation in US images is a challenge be-
cause they often suffer from poor quality. US imaging tends to generate artifacts
like weak edges produced by acoustic similarity between adjacent tissues, shad-
ows presence when the signal gets completely attenuated preventing to screen
any further, low contrast as a consequence of the US wave attenuation by the
tissue media, or, speckle which is an unwanted collateral artifact coming from
coherent interface of scatterers that appear as a granular structure superimposed
on the image.

Due to segmentation’s clinical value, the literature reports several techniques
proposals for both guided and automatic segmentation of lesions in US images
that try to overcome all the US screening inconveniences. Among those, region
growing procedures that expand a seed accordingly to some criteria, have been
reported to be suitable for US image segmentation [5, 4, 7]. However if seeds are
not properly selected, the final segmentation results would be definitely incorrect.

This work uses an already stated framework for segmenting breast lesions in
US images [5] in order to study the seed placement influence when segmenting
and compare several seed selection procedures that can be plugged within such
framework. This work also proposes a novel procedure combining texture and
intensity features with geometric constrains. The framework has been tested with
different seed selection procedures, against a data-set of sonographic images with
accompanying expert-provided ground truth.

2 Seed Placement Background

Determining seed points on an US image that lead to a proper segmentation
of breast lesion is not a trivial task, basically due to the noisy nature of the
US images and the presence of other structures rather than lesions with similar
acoustic properties (e.g. in some screening conditions, subcutaneous fat can be
mistaken as a lesion). To achieve a fully automatic procedure, seeded segmen-
tation methods require an automatic seed placement as well. The remaining of
this section reviews some of those automatic procedures for selecting good seeds.

Pixel Rewarding method to select seed points (PR) Madabushi and
Metaxas [4] proposed a method which rewards each pixel according to its posi-
tion, intensity and texture using an assessment function. The main advantage of
this pixel rewarding proposal remains in its spatially constrained seed reward-
ing along with the fact that the lesion’s appearance is obtained by means of a
learning step. On the other hand, its major disadvantage remains in choosing
an appropriated neighborhood for the term representing the probability mean of
the surrounding pixels when calculating the pixel reward. If the neighborhood
used is too small, it might incorrectly reward a noisy region; otherwise, if the
used neighborhood is too large, a proper seed can be hidden due to its neighbors’
low recall.

Gradient-Based method to select seed points (GB) Drukker et al.
[1] investigated the use of Radial Gradient Index (RGI) filtering technique to
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automatize Horsch et al. segmentation proposal [2] by adding automatic seed
placement. Such seed placement uses the gradient as the only feature to select
seeds by computing the maximum RGI [3] for all the pixels of the input image.
RGI is a measure similar to Average Radial Derivative (ARD) coefficient that
is used to drive the segmentation by Horsch et al. [2]. Summing up, every pixel
is proposed as a potential lesion in order to determine which pixel would have
the best reward, so the seed selection is deeply coupled to the segmentation pro-
cedure. Clearly, the main drawback of this seed selection is its computational
cost, which was partially solved by means of subsampling techniques. However,
due to the comprehensive nature of the seed determination, the method remains
unadvisable for anything but offine applications.

Intensity Binarized ranked Regions method to select seed points
(IBRR) Shan et al. [10] find candidate lesion regions based on intensity and
rank them using the region properties; once the region is chosen, a seed point is
determined within the selected region.

3 ITG: a novel seed region selection methodology

Both intensity and texture have been stated as a high specificity features when
charaterizing breast lesions in US images [12]. In addition, the tendency of cen-
tering the lesions when acquiring the images by the radiologists has also been
stated [4]. Figure 1 shows the proposed methodology which makes use of In-
tensity, Texture and Geometric constrains (ITG) and takes advantage of the
mentioned statements in order to select a seed region for further region growing
expansion. The proposal, combines the probability of a pixel being part of a
lesion depending on its intensity, texture and position to generate a joint proba-
bility or total probability plane. Then the selection criterium selects the largest
region of the connected pixels that satisfy a confidence level of being a lesion. So
for selecting the best candidate regions, the probability plane gets thresholded in
order to split the image with foreground and background. This thresholding has
been empirically set at 0.8 as a good tradeoff between large foreground regions
and low lesion belonging recall. Once determined the regions, the largest one
gets selected as seed region.

Equation 1 illustrates the Joint probability calculation, where τ(x, y) indi-
cates the total probability for a pixel (x, y) of being part of a lesion depending on
its intensity i, texture t and position (x, y). Since intensity, texture and location

 

Texture probabilityIntensity probability

Joint probability

Seed Region Selection

I(x, y)
T (x, y)

Γ(i) = P (Lesion|I) Γ(t) = P (Lesion|T )

R0(x, y)

Γ(x, y)
P (T (x, y)|Lesion)

P (I(x, y)|Lesion)

Fig. 1: Block diagram describing the seed region selection proposal.
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features can be assumed Independent and Identically Distributed (IID) [4], the
total probability corresponds to the three features’ probability product. The in-
tensity probability Γ (i) is computed from a Probability Density Function (PDF)
determined during a training step necessary to compute P (i|Lesion). Γ (i) can
be computed from the intensity PDF by the assumption of a Bayesian frame-
work. Γ (t) has the same nature as Γ (i) and the texture PDF also needs to be
determined during a training step. The seed location constrain Γ (x, y) corre-
sponds to a bivariate Gaussian function where the variances have been visually
assessed and fixed at 1

3 of the image size.
τ(x, y) = Γ (i) · Γ (t) · Γ (x, y) (1)

The texture measure used is given by equation 2 and corresponds to the
difference between the pixel intensity I(x, y) and the intensity mean of its N
nearest neighbors (here an eight pixel neighborhood is used).

T (x, y) = I(x, y)− 1
N

N−1∑
δ=0

Iδ(x, y) (2)

In summary, the proposed methodology uses five inputs to automatically
determine a seed region: the intensity image, the texture image, the intensity
and texture PDFs, and the seed location prior; along with a fixed parameter to
split the probability plane. Figure 2 illustrates all the steps involved during the
course of action, where the upper row represents the procedure inputs (intensity,
texture, geometrical constrains and learned PDFs), and the lower row shows the
probability image for the intensity feature (e), for the texture feature (f), the
total probability (g) and the final seed region selection (h). The final selected
region (the largest) is depicted in magenta and the region candidates obtained
when thresholding the probability plane are shown in cyan.

4 Experimental setup

The Gaussian Constraining Segmentation framework proposed by Massich et al.
[5] has been used to test and evaluate the seed placement approach. Although
such segmentation framework allows different user interation levels, as figure 3
depicts, only the fully automatic procedure has been used in this work. First,
an initial region R0(x, y) is determined and then grown into a preliminary le-
sion delineation R(x, y) that is used to obtain a multivariate Gaussian function
describing the shape, position and orientation of the lesion (GµΣ(x, y)). Finally
the Gaussian Constraining Segmentation (GCS) procedure refines the segmen-
tation by thresholding an intensity dependent function Ψ(x, y) constrained by
the multivariate Gaussian describing the lesion.

In order to evaluate the segmentations, Massich et al. [5] propose to use
Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm
[13] to obtain the Hidden Ground Truth (HGT) from multiple expert delin-
eations. Then use the µ-coefficient proposed as a variance of the True-Positive
Ratio (TPR) or Jaccard coefficient that takes into accound the experts agree-
ment by means of the HGT.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Seed region selection illustration. (a) pre-processed intensity image (b)
texture image (c) intensity and textureProbability Density Functions (d) seed
location prior colored as overlay (e) Γ (i) (f) Γ (t) (g) total joint probability τ(x, y)
(h) candidate regions (in cyan) and the final selected region (in magenta).

For evaluating purposes, a set of 25 sonograms were acquired in the Hospital
Dr. Josep Trueta of Girona. Each image has seven ground truth delineations
provided by different radiology experts. The training and testing of the data is
obtained using a leave-one-out methodology.

4.1 Seed region location

When evaluating the seed selection, a key issue is to determine what defines
a good seed in terms of the initial seed position. Figure 4a illustrates the ten
Areas-of-Interest used in this case of study to test the influence of the lesion
center distance and orientation. The Areas-of-Interest have been selected as: out

  GCS-based segmentation 

R(x, y)

R0(x, y)

Seed Placement

Region Growing

Determine the Best 
Fitting Gaussian

Gaussian Constraining 
Segmentation

I(x, y)

GµΣ(x, y)

St(x, y) ∈ [0, 1]

I(x, y)user defined
R0(x, y)

user defined
R(x, y)

Fig. 3: Methodology block diagram. When user interaction is used (only for semi-
automatic segmentation), it overwrites the previous input.
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Fig. 4: First experiment: (a) distribution of the seeds’ regions, and (b) segmen-
tation results in terms of µ-coefficient.

of the lesion (1), inside the lesion close to the boundaries (2-5), inside the lesion
slightly shifted from the central part (6-9) and, central part of the lesion (10).
Figure 4b shows the segmentation results for each Area-of-Interest according to
the µ value. Each of the ten Areas-of-Interest has been randomly sampled with
15 seed regions. The boxplots clearly shows that achieving good segmentation
results highly depends on locating the seed regions within the lesion (Areas-
of-Interest 2 to 10). The figure also shows that the regions can be clustered in
three main classes a to c: (a) Areas-of-Interest 6-10 that correspond to the inner
lesion area, (b) 2-5 boundary area, and, (c) 1 anything outside the lesion. The
results indicates that the better segmentation results are achieved when the seed
is placed in (a), but not necessarily in the most inner region.

4.2 Methodology evaluation

As well to determine the role of the seed region location in terms of segmentation
results, the proposed seed selection method has been evaluated by comparing to
the methods referred in section 2: PR, GB and IBRR. Figure 5 illustrates the
obtained results when comparing methodologies. The first plot (fig. 5a) shows
the location of the selected seed regions along three areas based on the first ex-
periment. The second plot (fig. 5b) illustrates the mean and variation of the final
segmentation results for each methodology and area. Finally, figure 5c illustrates
the performance distribution of each methodology regardless of which area the
seed regions are placed. Notice that figure 5a is expressed in terms of the seeds
distribution within the three groups of Areas-of-Interest while 5b and 5c refers
to the µ coefficient to assess the final segmentation results.

Altough the PR and IBRR methods place more seeds in the central area than
the proposed ITG method, the latter has the best performance in terms of final
segmentation results when the seed is placed in the central area (a). The GB
performance is not significant since its ability to place the seed regions within
the (a) area is quite low, and most of the seeds fall outside the lesion.
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Fig. 5: Second experiment: comparison between the proposed method (ITG) and
the PR, GB and IBRR methods. (a) seed region location (b) µ values depending
on the seed location (c) global µ values.

4.3 Noise degradation
This experiment has been devoted to observe the seed placement evolution in
challenging noisy scenario by repeating the segmentation on artificially degraded
US images. The noise in US images mainly comes from scattering and reflec-
tion [9]. The structures present on a sonogram produce an adaptative coherent
scatter comonly regarded as a Rician PDF [9], whereas the incoherent or diffuse
scattering normally modeled as a Rayleigh PDF [9] leads to speckle artifacts. In
order to obtain a fairly realistic US degradation, a percentage of the pixels from
the image have been modified by a random walk of aleatory number of steps. For
every step within the random walk, an amplitude and phase of the scatter have
been simulated. Finally in order to eliminate the impulse nature of the added
noise, a spacial correlation has been carried out [8]. From 0% to 100% of the
pixels within the images have been alterated following the mentioned scheme by
steps of 5%. Accordingly to the doctors, although some images have way more
noise than the acceptable for diagnose purposes, the images seem to have been
acquired with lower performing US imaging equipment. Figure 6e shows the ratio
of seed regions placed within the 75% of the most inner area of the lesion between
the ITG method and the PR and IBRR methods. Observe that for the proposed
ITG method, values are mainly higher than 0.6 as for the IBRR method. Notice
that previous experiments recalled that when the seed is properly placed ITG
performs better than IBRR.

5 Conclusions

In this work, the importance of a good seed selection for a region growing like
procedure has been stated. Some state-of-the-art seed placement procedures have
been implemented, discussed and compared to a novel seed region selection pro-
posal based on assessing the probability of belonging to a lesion for every pixel
in the image depending on its intensity, texture and location and selecting the
largest area obtained. The location of good seed regions on noisy environments
has also been addressed, thus validating the performance and robustness of the
methodology when placing seed regions in such noisy environments.
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Fig. 6: Third experiment: seed placement performance on noisy enviroment. (a-
d) same image with different amount {0, 20, 40, 80}% of added noise (e) ratio of
correctly placed seeds at different noise levels.
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Abstract. Segmentation of the glandular and adipose tissue in 3D fat
suppressed breast magnetic resonance images (MRI) is performed using
a graph-cut scheme. When based on intensity only, the segmentation re-
sults are affected by bright shimming artifacts, that occur frequently in
these images. To overcome this problem, this approach combines inten-
sity information with spatial information.
The segmentations are performed on clinical data and on volunteer fat-
suppressed 3D MRI scans. The clinical results are evaluated by compar-
ing them to manually constructed ground truth segmentations, whereas
the volunteer data are compared to fat-selective breast MRI scans.
The automatically generated results agree well with both manual delin-
eations and fat-selective scans, with a mean Dice coefficient of 80% and
88%, respectively. It is clear that graph-cuts are a suitable approach for
this segmentation task. By combining intensity information with spatial
information, the influence of artifacts on the result is greatly reduced.

Key words: breast MRI, segmentation, graph-cuts, glandular tissue,
adipose tissue

1 Introduction

The use of MRI for detecting breast cancer has been a relatively recent develop-
ment. It has excellent detection sensitivity due to its superior soft tissue contrast.
Segmentation of the inner breast structures (glandular and adipose tissue) on
MRI images is useful for a variety of purposes, e.g. elastic registration of breast
images, HIFU treatment of breast cancer and breast density analysis[1].

Separation of the glandular and adipose tissue has been done by using fuzzy
c-mean classification (FCM) [1, 2]. Li et al. [3] used localized adaptive thresh-
olding in every slice. In [4], a discriminant analysis method was used for this
classification problem. Bakic et al. [5] used region growing together with inter-
active reconstruction by ramification matrices, to segment the glandular tissue.
Unfortunately, in [1, 2, 5], user input is required and in [3–5], the segmentation
results are not evaluated quantitatively against a ground truth segmentation.

In this paper, inner breast structure segmentation is accomplished by means
of graph-cuts. Intensity information as well as spatial information is included,



such that the segmentation will not be affected by artifacts. The results are
evaluated using manually constructed ground truth segmentations as well as
fat-selective MRI scans.

2 Materials and Methods

2.1 Data

Clinical examinations of patients older than 35 years comprised both 1.5T and
3.0T data. The 1.5T data consisted of 3D T1-weighted gradient echo transverse
fat-suppressed MRI scans (Philips Achieva, TE/TR 2.2/4.6 ms, flip angle 10◦,
voxel size: 1 to 2 mm) of 20 patients. For each patient, one breast was selected
randomly, some containg tumors. A seven-element SENSE-Breast coil was used.

For another eight patients, 3.0T 3D T1-weighted fast gradient echo transverse
fat-suppressed MRI scans were available (Philips Achieva, (TE/TR 1.7/4.5 ms,
flip angle 10◦, voxel size: 0.65 x 0.65 x 0.80 mm3), yielding 16 breast images. A
four-element SENSE compatible phased-array bilateral breast coil is used.

In addition, for three young volunteers (± 25 years old), a 3D T1-weighted
gradient echo transverse anatomical scan (TE/TR 3.4/6.9 ms, flip angle 10◦,
voxel size: 0.97 x 0.97 x 1.00 mm3), with spectrally selective attenuated inversion
recovery for fat suppression, as well as a 3D T1-weighted gradient echo scan
(TE/TR 6.3/33.4 ms, flip angle 30◦, voxel size: 0.97 x 0.97 x 1.00 mm3), with
ProSet water suppression were acquired. These fat-selective scans were made for
evaluation only, and are not part of a standard clinical breast imaging protocol.

A volume of interest, roughly enclosing the breast, was selected automatically
in all scans. For the 1.5T data set, these masks were created using an in-house
toolkit, which is a combination of contour extraction and morphological oper-
ations. For the other data, masks were created by a combination of gaussian
smoothing, histogram analysis and iterative thresholding.

2.2 Preprocessing: Skin and Muscle Removal

To be able to separate the glandular tissue from the adipose tissue, the skin and
the breast muscle need to be removed from the image.

To extract the skin, an edge image is generated using a 3D Canny edge
detector, on which morphological closing is performed to fill the double skin
edge. For the final skin segmentation, a 3D Euclidean distance transform is
applied to the breast volume. Each layer of the distance transform of which
more than 50% of its voxels belong to the closing of the edge image, is labeled as
skin. A constant skin thickness is assumed. To make sure that the skin will not
contain holes, a one-layer gap is always filled. The adding of layers stops when
two subsequent layers do not fulfil the criterion anymore.

To separate the breast muscle from the breast tissue, a boundary surface
is found through the adipose tissue. Because the image is fat-suppressed, the
surface is expected to have minimal total intensity value.



The surface finding algorithm minimizes an energy term that consists of
a distance measure D, based on the voxel intensity values, and a curvature
penalizer S, depending on the second derivatives of the surface. Let (x, y, z)
span a coordinate system such that z runs in the AP direction. The surface is
then defined on the coronal grid (x, y), with z := f(x, y) describing the height
of the surface in AP direction. Let I be the 3D image, containing the intensity
values. The purpose is to minimize:

J [f ] = D+ρS =
1
2

∫∫
I(x, y, f(x, y))2 dxdy+ ρ

1
2

∫∫
(∆f(x, y))2 dxdy . (1)

The parameter ρ governs the smoothing, and it is desired that the surface
has minimal curvature. In practice, it was found that a value of ρ = 10 yielded
the best results.

After skin and muscle removal, a volume of interest is left, containing the
inner breast tissue. We will refer to this as the breast tissue VOI.

2.3 Separation of Glandular Tissue and Adipose Tissue

Graph-Cuts The image is represented by a graph, connected to a source and
a sink, in which the image voxels are associated to the nodes of the graph.
The nodes connected to the source/sink belong to the foreground/background,
respectively. There are two types of edges in the graph: t-links between a node
and the source or sink, and n-links between neighboring nodes. The strength
of the t-links reflects the probability of a voxel belonging to the foreground or
background, whereas the strength of the n-links is a measure of the similarity
between two neighboring voxels. It is possible to set hard constraints if some
voxels are known to be foreground or background.

The minimal cut through the graph is found by minimizing the energy func-
tion [6]:

E(A) = −λR(A) + B(A) . (2)

Here, A is a binary representation of a specific graph cut, R(A) is a regional
term, specified by the t-links that are cut by A, and B(A) is a boundary term,
specified by the n-links that are cut by A.

The implementation of Boykov et al. [7] is used for calculating the minimal
cut.

Segmentation of the Glandular and Adipose Tissue using Intensity
and Spatial Information In many breast MR images, shimming artifacts
arise from insufficient fat suppression. Fig. 1 shows an example of an artifact
occurring in a 1.5T image. These artifacts are very bright and often connected
to the glandular tissue, causing glandular tissue to be labeled wrongly as adipose
tissue. Therefore, the glandular tissue segmentation scheme consists of two steps.
In the first step, the artifacts are segmented. This artifact segmentation is then
used as a hard constraint in the second step to segment the glandular tissue.



Both steps use an intensity prior PI and a spatial prior PS , which indicate the
probability of a voxel being foreground or background, based on its intensity and
its position, respectively.

The t-links for a voxel p are given by:

t-link to source: = −α log (PI(Ip|bg))− (1− α) log (PS(p|bg))
t-link to sink: = −α log (PI(Ip|fg))− (1− α) log (PS(p|fg)) , (3)

where the parameter α governs the influence of the two priors.
For the intensity prior PI , intensity histograms are obtained by mixture of

Gaussians modeling. The mean intensity and the standard deviation have to be
specified for each structure.

The mean value and standard deviation of the glandular tissue and the adi-
pose tissue are estimated by iterative thresholding on the breast tissue VOI,
where the largest connected component of the foreground is taken as glandular
tissue. This is true in general, only in exceptional cases, where there are larger
regions of artifacts than glandular tissue, this could give a problem.

The mean value of the artifacts is estimated at 10% above the mean value
of the glandular tissue, with the same standard deviation. All probabilities (PI

and PS) have been normalized.

Fig. 1. Artifact in breast MRI image Fig. 2. Defining the spatial prior

In the first step (segmentation of the artifacts), the foreground intensity
probability for a voxel p, PI (Ip|fg), is modeled by the Gaussian model of the ar-
tifacts. The background intensity component PI (Ip|bg) is modeled by combining
the normalized Gaussians G (p, µ, σ) of the glandular and adipose tissue, assum-
ing the amount of adipose tissue is twice as large as the amount of glandular
tissue. This is not always the case, but works as a rough estimate.

PI (Ip|fg) = G (Ip, µart, σart)

PI (Ip|bg) = G (Ip, µfat, σfat) + 0.5 G
(
Ip, µgland, σgland

)
(4)

The artifacts are known to be found in the extreme cranial and caudal slices.
The spatial prior PS is therefore based on the normalized distance of a voxel to



the center in CC-direction in each coronal slice (x runs in CC-direction, y runs
in LR-direction):

PS (p|fg) =
(

x− xmid (y)
r(y)

)2

PS (p|bg) = 1− PS (p|fg) , (5)

with xmid = 1
2 (xend − xstart) and r(y) = xend(y)− xmid(y) (see Fig. 2).

The weights Bp,q for the n-links between neighboring voxels p and q are pre-
scribed by:

Bp,q = exp

(
− (Ip − Iq)

2

2σ2

)
. (6)

The constant λ in (2) is set to 1 and the constant α in (3) is set to 0.7.
In the second step, the result of the artifact segmentation is used for glandular

tissue segmentation. This time, the skin is given as a hard constraint, by setting
the t-links to 0 and infinity, to stimulate labeling of the artifacts as background.
The foreground is modeled by the Gaussian of the glandular tissue, while the
background is modeled by a weighted combination (determined experimentally)
of the Gaussians of the adipose tissue, skin and artifacts:

PI (Ip|fg) = G
(
Ip, µgland, σgland

)
PI (Ip|bg) = G (Ip, µfat, σfat) + 0.2 G (Ip, µskin, σskin) + 0.15 G(Ip, µart, σart) .(7)

A 3D distance transform D is calculated on the artifact segmentation. Its
values are made to range from 0 to 0.7, yielding a foreground probability of 0
for voxels belonging to the artifact, and a maximum probability of 0.7 for voxels
located far from the artifact. The values need to be limited to this range, to
make sure that the adipose tissue can still be labeled as background. The spatial
prior is calculated using this distance transform:

PS (p|fg) = (D (px, py, pz))
τ

PS (p|bg) = 1− PS (p|fg) . (8)

The distance transform is taken to the power of τ , which has to be very small
(e.g., 0.05), to yield a steep descent near the boundaries.

The t-links are given by (3), with α = 0.6. The n-links are given by (6). The
parameter λ in (2) is set to 1.5.

The largest connected component of the foreground is labeled as glandular
tissue and the background as adipose tissue (including the artifacts, which are
indeed adipose tissue, but not the skin, which had already been labeled).

Glandular Tissue Segmentation Based on Intensity only. For compari-
son, the glandular tissue is also segmented by taking only intensity information
into account (α=1 in (3)). This time, intensity histograms are obtained from
the initial estimate directly, since no assumptions need to be made about the
artifacts. The skin is used as a hard constraint.

To increase the weight of the hard constraint, the boundary term needs to
be of high influence. Therefore, the constant λ in (2) has to be small and is set
to 0.8. However, this can lead to an undersegmentation of the glandular tissue.



3 Results

For evaluation of the clinical data, 28 ground truth segmentations of the glandu-
lar tissue were created semi-automatically prior to method development by the
first author. The volunteer fat-selective scans were normalized and thresholded
at 0.2 to serve as ground truth segmentations for the volunteer data.

(a) (b)

(c) (d)

Fig. 3. Evaluation of the clinical glandular tissue segmentation by manually con-
structed ground truth segmentations (a and b), and evaluation of the volunteer adipose
tissue segmentation by fat-selective scans (c and d). Results are based on intensity and
spatial information (a and c), and on intensity only (b and d). The length of the
whiskers is maximally 3/2 interquartile range.

The evaluation of the glandular tissue segmentations by the manually con-
structed ground truth segmentations and the evaluation of the adipose tissue
segmentation by the fat-selective scans are shown in Fig. 3.

The performance on the clinical data is similar at 1.5T and 3.0T. Accuracy
and specificity are high for the clinical data (mean value of 80% and 98%, re-
spectively), mainly due to the relatively large background, consisting of adipose
tissue. However, the sensitivity measures are also high (mean value of 81%),
indicating that almost all true glandular tissue voxels are segmented correctly.
When parts of the artifacts are still included in the segmentation, the number
of false positives will be high, explaining the lower value for the precision when
only intensity is considered (mean of 72% vs 80%). The Dice coefficient serves as
an overlap measure. The glandular tissue contains many thin structures, which
are challenging to segment by hand. Therefore, it is likely that the manual seg-
mentation is not completely accurate. Taking this into account, the value of the
similarity index (mean of 80%) is good. Including a spatial prior is a benefit for
the precision, since it will lower the number of false positives. However, due to
undersegmentation, the sensitivity values will decrease (mean of 81% vs 88%).



(a) Based on intensity and spatial infor-
mation.

(b) Based on intensity only.

Fig. 4. Results of total segmentation on four 1.5T images with colored overlays (axial,
sagittal and coronal view): skin = green, glandular tissue = blue, adipose tissue =
orange, muscle = unlabeled)

Fig. 5. Segmentation results and fat-selective scans for volunteers (skin = blue, glan-
dular tissue = purple, adipose tissue = red)

The results on the volunteer data generally show a higher sensitivity (mean
value of 92%) than accuracy (87%) and specificity (82%), since the foreground
(adipose tissue) is large with respect to the background (glandular tissue). The
results do not depend on the use of a spatial prior, because the artifacts did not
occur in the volunteer data. Performance on the volunteer data is better than
on the clinical data, since the acquired scans were of higher quality.

It is shown that the method performs well on all scans. However, evaluation
by fat-selective scans is more objective than manual delineation. Therefore, this
evaluation method is more reliable.

In Fig. 4, a few typical results of the glandular and adipose tissue separation
on the clinical data are shown. In Fig. 5, segmentation results of the volunteer
data and the corresponding fat-selective scans are shown.



4 Conclusion

Segmentation of the inner breast structures was performed in 3D MRI images.
Glandular tissue and adipose tissue have been separated by means of a graph-
cuts scheme. The results indicate that this approach is suitable for this particular
segmentation task. Even though many parameters have been determined exper-
imentally, the method is robust for different subjects and scans.

The glandular tissue segmentations on clinical scans have been compared
against ground truth segmentations yielding succesful results. In addition, the
adipose tissue segmentations on volunteer scans have been evaluated by fat-
selective MRI scans, yielding even better results. Including a spatial prior helps
to avoid artifacts in the adipose tissue from being labeled as glandular tissue.

In the future, further research should be directed to obtaining better input
features (better estimation of the intensity distributions, a more accurate spa-
tial prior). In addition, adding more features (e.g., age, patient history, breast
volume) might improve the segmentation results, by using them to estimate the
parameters of the method.
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Abstract. Breast density measurement is becoming important due to
the relation of dense tissue and risk for developing breast cancer. In
this work we develop a fully automatic approach which segments all the
structures of the breast to achieve a final delineation of the fibroglandular
tissue in Breast Magnetic Resonance Imaging (MRI). The method con-
sists of a first step based on a Bayesian framework using atlas information
for the separation of the thoracic area and pectorals from the breast. A
second refinement stage by Linear Discriminant Classifier (LDA), which
uses intensity for a voxel classification, was applied improving the breast
tissues segmentations. The method was evaluated on 27 cases comparing
the obtained results to manual segmentations. A Dice Similarity Coeffi-
cient (DSC) of 0.75 was obtained for fibroglandular tissue.

Keywords: breast MRI, fibroglandular, segmentation, probabilistic at-
las

1 Introduction

Breast Magnetic Resonance Imaging (MRI) is becoming a widely used modality
for breast cancer management, providing good tissue contrast between fibrog-
landular (or dense) and fatty tissues and a three-dimensional characterization of
breast composition. Segmentation of the different structures that compose the
breast is essential in order to perform an automatic analysis of such images.
Related to the presented work, breast tissue density has been identified as an
important risk factor for developing breast cancer, being four times larger in
women with a breast density higher than 75%, compared to those with little
or no density [3]. So far, only a few studies have reported breast density mea-
surement or delineation using MRI [4, 8]. Most of these methods use a two-step
approach, first segmenting the breast from the body before performing the dense
and fatty tissue segmentation. It appears that segmenting the breast itself is not
very easy. Complicating factors are the variation between pectorals of different
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patients and the similar intensities between the mentioned muscles and the fi-
broglandular tissue. Other works have focused on such problems delineating the
whole breast [5] or finding the boundary between the pectoral muscles and the
breast [11].

In this work we present a fully automatic multi-class two-step segmentation
algorithm for breast MRI based on a probabilistic atlas to obtain an accurate
segmentation of the fibroglandular tissue. Atlas-based segmentation is a powerful
technique for automatic delineation of objects in volumetric images and it has
been extensively used for MR brain image segmentation [1]. In this study, the
atlas is used in a Bayesian framework to segment five classes: pectoral muscles,
fatty and fibroglandular breast tissues, heart and lungs. This initial step allows to
segment the breast from the rest of the body. In a second step, the segmentation
of voxels previously labeled as fatty and dense tissue is refined using a Linear
Discriminant Classifier (LDA) taking advantage of the high soft-tissue contrast
in MRI.

Next sections describe the material employed (2), the preprocessing applied
to the volumes (3.1), the development of the probabilistic atlas (3.2) and its
incorporation in a Bayesian voxel classification framework in order to obtain
the segmentation (3.3). Qualitative and quantitative results are shown in 4 and
finally conclusions are given and discussed in 5.

2 Material

The data set used to construct the atlas and to evaluate the segmentation results
consists of 27 pre-contrast T1-weighted MR breast scans obtained from different
patients. Breast MRI examinations were performed on a 1.5 T system (Siemens
1.5T, Magnetom Vision), with a dedicated breast coil (CP Breast Array, Siemens,
Erlangen). The pixel spacing differed between volumes with values ranging from
0.625 mm to 0.722 mm. The slice thickness was 1.3 mm and the volume size was
512 x 120 x 256 voxels. Patients were scanned in prone position.

In order to obtain ground truth, each MR volume was manually segmented
by an experienced observer into 7 classes: background, fatty tissue, glandular tis-
sue, pectoral muscles, lung area and the heart. The seventh class is the ”other”
class and refers the previous non-labeled voxels of the thorax. Annotations were
done every 5-10 slices and linear interpolation was applied to obtain the complete
labeling. When needed, and specially for heart, lungs and pectoral muscles, accu-
rate manual delineation was performed. For the manual segmentation of back-
ground, fatty and fibroglandular tissue, thresholding was applied over regions
of interest provided by the reader. Fig. 1 shows an example of a MRI slice on
an axial view and the manual delineation of the mentioned classes. One should
note the complexity of performing such ground truth annotations, where each
volume takes approximately 45 minutes in a dedicated breast MRI annotation
environment.
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Fig. 1. MR scan on an axial slice of a clinical breast MR T1 weighted volume with the
manual annotation of the different structures.

3 Methodology

3.1 Data preprocessing

Because of the inhomogeneity of the breast coil sensitivity, intensity values are
corrupted. Signal intensity homogeneity is required because image artifacts can
considerably affect registration and segmentation results. For this reason the first
step of the methodology consisted of correcting inhomogeneities and variability
between images. A bias field correction method using Mean-Shift [7] was applied
to each scan. In addition, an image normalization algorithm based on histogram
matching was applied to each volume in order to compensate for inter-patient
signal intensity variability.

3.2 Construction of the atlas

Since neither previous work in atlas-based segmentation for the delineation of
breast structures exists nor public breast MRI probabilistic atlases are avail-
able in the literature, a probabilistic atlas was built in this work. The main
challenge of this step was to obtain an accurate probability distribution for the
pectoral and the thoracic area to discriminate between the pectoral muscles and
the fibroglandular tissue, which have similar signal intensity values. Following
a leave-one-out evaluation strategy, for each patient segmentation, a full prob-
abilistic atlas was built with the 26 remaining patients. These 26 patients and
their segmentations were mapped into the same reference space and the proba-
bilistic atlas was created by computing the frequency with which each location
was labeled as a specific organ. A common reference space was used for all the
experiments by selecting an extra patient that was not included in the evalua-
tion data set. This extra image became the anatomical image of the atlas. The
final smooth probabilistic atlas was obtained using a 3D Gaussian convolution
with σ = 7 mm., which empirically appeared to be the best value to remove the
probability distributions irregularities.

The mapping is composed by three different stages: initially the sternum of
every patient is automatically localized and is used as a landmark to apply a
first translation transform. As it is shown in figure 2.a the sternum is localized
between both pectoral muscles. Hence, by accurately localizing the sternum,
the pectoral muscles can be aligned. For the sternum landmark detection, we
observed that the pectoral muscles border appears as the edge with maximum
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positive gradient in y direction. Taking advantage of this observation we im-
plemented a first-derivative-based filter to detect the landmark point. Given
an MR volume v, the first derivative volumes vx = δ

δx
Gσ1

(v), vy = δ
δy
Gσ2

(i),

vz = δ
δz
Gσ3

(v) were computed in each direction at different isotropic Gaussian
scales: σ1 = σ3 = 5 and σ2 = 1 mm. The final output s is given by the subtrac-
tion of vy − (vz + vx) in order to obtain higher values for the voxels that are on
a strong edge in y direction. Figure 2 shows an example of the output. Finally,
a search focused in a 3D region of interest (ROI) centralized on the volume was
done computing the average y-coordinates where the output s is maximum.

(a) (b)

Fig. 2. (a) MRI axial slice, with the sternum indicated with a cross, and (b) the output
obtained applying the filter to detect the sternum point with 3D ROI.

The second mapping step consists of an affine registration focused on a Vol-
ume of Interest (VOI) of the upper part of the volume delimited by the sternum
landmark to compensate for global differences of position and scale. The breast,
which is a structure with high shape variability, is not considered here because
it could mess up the thoracic cavity. Finally, a non-rigid registration based on
B-Splines [10] was performed to the whole volume to minimize inter-individual
variability in the shapes of the anatomical structures. The similarity measure
maximized by the framework was Mutual Information (MI) in a multi-resolution
scheme, using a stochastic gradient descent optimizer. For non-rigid registration,
B-spline grid spacing of 32, 16, 10 and 8 mm was used for each of the 4 resolutions
respectively. Elastix [6] was used for the implementation.

3.3 Segmentation

As we mentioned previously, the atlas is used to segment the anatomical struc-
tures of the breast MRI image in a first segmentation step based on a Bayesian
framework. The approach is based on the work of Park et al. [9]. Figure 3 shows
the general schema of the segmentation framework with Bayesian voxel classifi-
cation algorithm incorporating the use of the probabilistic atlas. Note that, in
order to reduce the number of voxels to be segmented, a region growing algorithm
was initially applied slice by slice for a first approximation of the background
segmentation. A morphological dilation filter with scale 5 x 5 mm was also per-
formed to remove the skin line between the background and the breast.

In the following the true label image (the segmentation or set of labels) is
denoted by X and the image (data set of intensity values) is denoted by Y .
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Fig. 3. Voxel classification algorithm overview: from top to bottom, the labels of the
probabilistic atlas are mapped onto target image space {T} using the anatomical image
of the atlas. The probabilistic atlas, the tissue models and the target are provided to
the Bayesian framework as a prior probability P (X), conditional probability P (Y |X)
and set of intensity values Y , respectively. The Bayesian framework estimates the
segmentation X that maximizes P (X)P (Y |X). Finally, LDA reclassification is done
into the breast area defined by the sternum landmark.

Elements of X and Y are arranged by a spatial position denoted by i ∈ I,
where I is the simple index (x, y, z) in a 3D rectangular grid. Sample space
of X is denoted Ωx where Ωx = {x : xi ∈ {1, 2, ..., 7},∀i ∈ I}. Labels 1-7 are
background, fatty tissue, glandular or dense tissue, heart, lungs, pectoral muscles
and ”other” label respectively.

Segmentation can be formulated as the problem of estimating the label X
that best explains the given observation Y according to some cost function. As
a decision rule, MAP (maximum a posteriori) was chosen. Using Bayes theorem,
the posterior probability to be maximized can be written as P (Y |X)P (X). The
probability distribution P (Y |X) of the image Y , given a particular segmentation
X, was specified by signal intensity tissue models directly built from the scans
and manual segmentations of the data set. For each structure, a histogram of
intensity values was computed from the corresponding voxels in the MRI vol-
umes, using the manual segmentations. The probability distribution P (X) is
given by the probabilistic atlas once it has been mapped onto the target space
using the same registration procedure used in its construction. A Markov Ran-
dom Field (MRF) regularization is included to smooth the segmentation taking
into account neighbourhood information.

In addition, a Linear Discriminant voxel Classification (LDA) based on in-
tensity is performed to refine the segmentation of the fibroglandular tissue. The
use of the atlas in the Bayesian approach gives reasonable segmentations for the
thoracic area (lungs and heart), for the pectorals and for fatty tissue near the
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axillas, where the bias field is still present. However, since the fibroglandular
tissue shows a high inter-patient variability which, in turn, induces larger regis-
tration errors in the breast area, the use of the probabilistic atlas framework for
fibroglandular tissue leads to poor results compared to other classes such as pec-
toral segmentation. Hence, the segmentation refinement using a LDA classifier is
performed focusing on the voxels located anterior to the sternum landmark and
is based on reclassifying the voxels that were labeled as fatty or fibroglandular
tissue in the first Bayesian step.

4 Results

In a leave-one-out experiment we evaluated the obtained segmentations with and
without using the second breast refinement step (LDA classifier). The quality
of the segmentation was measured by determining the similarity of the segmen-
tation with the ground truth. For all the cases manual annotations were done
in order to discard in the evaluation initial and last slices which do not contain
relevant information or are clearly affected by noise. As a performance measure
the Dice Similarity Coefficient (DSC) was chosen. Figure 4.a shows a box plot
with DSC values for the patient segmentations of each organ. Segmentation re-
sults for heart (H), lungs (L) and pectorals (P) (DSC medians of 0.76, 0.83 and
0.74) do not change in the second step and they are not shown. DSCs values
for segmentations of fatty and fibroglandular tissues (0.91 and 0.75 respectively)
show that adding the second step based on breast LDA reclassification to the
Bayesian framework (2) outperforms the first Bayesian step (p-values < 0.05,
two-sided paired t-test). Overall, final segmentation results can be considered
satisfactory for dense tissue and also for the other structures (normally a DSC
> 0.7 is considered to be an acceptable segmentation [2]), which is illustrated
by Fig. 4.b, where intermediate slices and their segmentations from 3 different
patients are shown.

Focusing on the breast tissue, the main goal of this work, another evaluation
criteria was used in order to analyze in detail where the misclassification errors
are. Confusion matrices are shown for each of the experiments (see Tables 1.a
and 1.b). Each cell (j, k), where j and k are the structures analyzed, shows the
percentage of j voxels of the ground truth labeled as k in the segmentation.
Background (B) and ”Other” (O) classes are also shown.

There are two important aspects related to the the fibroglandular tissue seg-
mentation: misclassification errors between dense and fatty tissue and errors
between the dense tissue and pectoral muscles. Referring to the former, an im-
provement is observed. In the first framework, 44% of the voxels labeled in the
ground truth as fibroglandular tissue are labeled as fatty. The LDA refinement
decreases this percentage until a more acceptable 17%. For the differentiation
between pectorals and dense tissue, both tables show that 7% of the voxels that
are dense (groundtruth), are classified as pectoral by our method. However, only
1% of pectoral voxels are classified as dense.
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Fig. 4. Segmentation results: (a) Box plot with segmentation DSC values for each tissue
after Bayesian approach step (1) and after the second LDA refinement step (2), and
(b) intermediate slices from 3 different patients and their segmentation using Bayesian
approach + LDA refinement.

Table 1. (a) Confusion matrices for Bayesian Classification approach using atlas and
(b) for Bayesian classification approach using atlas + LDA for Fatty (F), Dense (D),
Heart (H), Lungs (L), Pectoral (P), Background (B) and ”Other” (O) classes.

SEGM.
GROUND TRUTH
F D H L P

F 0.89 0.44 0.00 0.00 0.04

D 0.01 0.48 0.00 0.00 0.01

H 0.00 0.00 0.67 0.02 0.00

L 0.00 0.00 0.02 0.81 0.00

P 0.02 0.07 0.01 0.02 0.82

B 0.06 0.00 0.01 0.03 0.01

O 0.02 0.01 0.29 0.12 0.12

SEGM.
GROUND TRUTH
F D H L P

F 0.88 0.17 0.00 0.00 0.04

D 0.02 0.75 0.00 0.00 0.01

H 0.00 0.00 0.67 0.02 0.00

L 0.00 0.00 0.02 0.81 0.00

P 0.02 0.07 0.01 0.02 0.82

B 0.06 0.00 0.01 0.03 0.01

O 0.02 0.01 0.29 0.12 0.12

(a) (b)

5 Discussion and Conclusions

In this work we have presented a framework for fully automatic segmentation of
fibroglandular tissue, using atlas information for the separation of the breast and
the body. Firstly we constructed a probabilistic atlas by registering 26 patient
data sets onto a single patient. Thereupon, we integrated it into a Bayesian
framework with MRF regularization for segmentation of breast MRI structures,
including a second step to refine the dense tissue segmentation by LDA.

Reasonable DSC medians of 0.76, 0.83 and 0.74 for heart, lungs and pectoral
muscles were obtained respectively. For pectoral muscle segmentation, inter-
observer variability was assessed by computing DSC values for 3 viewers using
8 manual segmentations from different patients. Median of 0.77 was obtained,
close to the value given by our method. However, since the high variability of the
dense tissue between patients, almost half of this tissue was segmented as fatty
because the atlas-based method is not suitable to segment the fibroglandular



8 Albert Gubern-Mérida et al.

tissue, due to its highly variable spatial distribution. The second step refinement
on the breast area by LDA has been shown as important outperforming the fatty
and fibroglandular tissues segmentation given by the Bayesian classification ap-
proach.

Further research will be focused on solving the problems we found that af-
fect the pectorals and fibroglandular tissue segmentation results. We observed
that incorrect pectoral muscles segmentation are given by the probabilistic at-
las which does not overlap correctly with the pectoral area in cases which are
really different compared with the reference selected space. Other registration
algorithms and reference space selection methods will be studied. Concerning
the breast delineation, skin folds which contain air are also segmented as dense
tissue. This causes lower DSC values in fatty breasts since the number of false
positives are much higher than the true positives. Future approaches will also
take into account the segmentation of these areas separately.
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Abstract. The ability to predict response to neoadjuvant chemother-
apy for women diagnosed with breast cancer, either before or early on in
treatment, is critical to judicious patient selection and tailoring the treat-
ment regimen. In this paper we investigate the role of kinetic features
derived from breast DCE-MRI images for predicting treatment response.
We present a set of kinetic statistics that differ significantly (p < 0.05)
between complete responders and non-responders as assessed from imag-
ing exams done prior to the treatment. Based on these features we learn
a leave-one-out SVM classifier that performs with AUC=0.91 under the
ROC curve. These findings suggest that DCE-MRI kinetic statistics can
be used to improve candidate patient selection even before the start of
the neoadjuvant treatment.

Keywords: Breast DCE-MRI, kinetic features, classification, neoadju-
vant chemotherapy, therapy response prediction

1 Introduction
Use of neoadjuvant chemotherapy in women diagnosed with primary breast can-
cer is gaining considerable acceptance. It has been reported that neoadjuvant
chemotherapy gives high clinical response of up to 70-98%, and can result in a
pathologically complete response in 3-34% of patients, [1-4]. On the other hand,
it has also been reported that 2-30% of patients may not benefit clinically or
pathologically [5]. As a result, the ability to distinguish between highly respon-
sive and non-responsive patients is of critical importance for making treatment
choices. Particularly, non-responsive patients, if detected early on, can avoid un-
necessary side-effects and can be routed to alternative therapies that may be
more effective [5]. Traditionally, therapy response is evaluated by morphological,
clinical, and histopathological assessment. Imaging modalities such as computed
tomography (CT) and magnetic resonance imaging (MRI) are used to assess tu-
mor response primarily on the basis of tumor size reduction. A notable criterion
for therapy response assessment is the Response Evaluation Criterion in Solid
Tumors (RECIST) [6]. However, volumetric changes in the tumor due to therapy
tend to appear quite late in the course of the treatment. A response as assessed
by a reduction in tumor size can cause considerable delay in giving the appro-
priate treatment to non-responsive patients. As a result devising methods for
predicting early therapy response has been an active area of research in recent
years.
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Among the work on early prediction of therapy response, Ah-See et al. [7]
have reported correlations between changes in DCE-MRI kinetic parameters
(primarily the rate coefficient, Ktrans) and the final neoadjuvant chemotherapy
response. However, the changes in kinetic parameters in the study presented in
[7] had a predictive value after two cycles of neoadjuvant treatment. Moreover,
the estimation of Ktrans, that measures the degree of endothelial permeability,
involves a series of assumptions and models derived from the pharmacokinetics
of the contrast agent distribution [8]. This leads to different estimates of the
parameter due to different underlying assumptions [9], making its estimate less
robust. More recently Loo et al. [10] have explored the kinetics and morphology of
contrast uptake for predicting a patient’s response to neoadjuvant chemotherapy.
However, like [7] the approach in [10] also becomes predictive at least after
two cycles of chemotherapy treatment which, is also the case for other recent
research reports [11]. In this paper, to further investigate the role of imaging
as a biomarker for early response in treatment, we address the following two
important questions:

(a) Whether imaging biomarkers can help predict therapy response before the
commencement of the first cycle of neoadjuvant chemotherapy;

(b) Whether DCE-MRI kinetic features derived without modeling assumptions
have enough predictive power to predict a priori response.

In order to answer the above we explore the kinetic inhomogeneities of the tu-
mor. Specifically we suggest partitioning the tumor pixels into sets based on the
similarity of their kinetic behavior (Section 3). We show that within these pixel
partitions, the statistics of basic kinetic features (peak enhancement, wash-in-
slope, wash-out-slope) differ significantly (p < 0.05) between the categories of
complete responders and non-responders (Section 5). This analysis is based on
breast DCE-MRI images captured prior to the treatment. We demonstrate that
a support vector machine (SVM) classifier based on these kinetic statistics and
using leave-one-out cross validation can predict complete versus non-complete
responders with an AUC of 0.91 under the ROC curve (Section 5). These findings
suggest that non-model based DCE-MRI kinetic statistics could serve as poten-
tial imaging biomarkers for predicting response to neoadjuvant chemotherapy
even before the initiation of treatment.

We begin with a brief review of non-model based DCE-MRI kinetic features:

2 DCE-MRI kinetic features
Typically, DCE-MRI acquisition includes a pre-contrast image (captured prior to
the injection of a contrast agent) and a number of post contrast images, captured
at different time points after the injection of the agent. A usual way to quantify
the enhancement pattern is to compute percentage enhancements relative to
the pre-contrast image, [12]. By computing the relative enhancement on a pixel
by pixel basis we can achieve pixel-wise maps of the contrast enhancement.
For a particular pixel, the enhancement plotted as a function of time provides
the kinetic curve. As reported in the literature (e.g., [13]), a number of basic
features can be computed from this kinetic curve, inlcuding peak enhancement
(PE), time to peak (TTP), wash-in-slope (WIS), wash-out-slope (WOS). Figure
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1(a) illustrates these features for a single pixel. From these, we can derive a rich
kinetic feature set by computing the pixel-wise map for each feature as depicted
in Figure 1(b).

Fig. 1. (a) Illustration of basic kinetic features for a single pixel. (b) Pixel wise maps

Fig. 2. Illustration of kinetic pixel partitioning for two post contrast time points. (a)
Segmented lesion, (b) Set 1 pixels highlighted in yellow, (c) Set 2 pixels highlighted in
blue

3 Kinetic partitioning of feature maps
The feature maps shown in Figure 1(b) can be partitioned into different sets
based on their kinetic behavior. One way to better interpret the kinetic in-
homogeneity is to divide the feature maps into clusters of homogeneity. Here
we suggest partitioning the pixels based on their time-to-peak (TTP) value.
This step partitions the pixels into as many sets as the number of post-contrast
time points. As a result, set i consists of the pixels that achieve their peak en-
hancement at the i-th post contrast time point. In Figure 2, we illustrate these
partitions for two post contrast time points.

3.1 Partition-wise kinetic statistics

LetM be the pixel partitioning such thatMk represents the membership map-
ping of pixel k to its respective set. Based on this partition we may derive the
following set-wise statistics:
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• Posterior probability of observing Set i given the partition M:

P(Set = i|M) =
1

N

N∑
k=1

δ(Mk = i) . (1)

where δ(Mk = i) is an indicator function that equals 1 when Mk = i, and zero
otherwise. N is the total number of pixels. These N pixels may come from an
arbitrarily shaped segmentation mask specifying the lesion.

• Mean value of feature map j for Set i:

µ(i, j) =

∑N
k=1 fj(k).δ(Mk = i)∑N

k=1 δ(Mk = i)
. (2)

where fj(k) is the value of the j-th feature map for k-th pixel, and the feature
map can be any of those shown in Figure 1(b).

• Variance of feature map j for Set i:

σ2(i, j) =

∑N
k=1(fj(k)− µ(i, j))2.δ(Mk = i)∑N

k=1 δ(Mk = i)
. (3)

Based on the above definitions, m pixel partitions and n feature maps would
result into a total of m(2n+1) features. We aim to investigate the utility of these
partition-wise kinetic statistics for the task of predicting response to neoadjuvant
therapy.

4 Dataset
The study population consisted of a subset of patients enrolled in a multi-site
trial of imaging biomarkers in neoadjuvant breast cancer therapy. The subset
population consisted of 15 patients: 8 complete responders and 7 non-responders.
All patients presented with biopsy-proven T2-3 stage tumors. The patients un-
derwent standard neoadjuvant chemotherapy, which at the time of the study
consisted of four cycles of adriamycin/cytoxan, followed by four cycles of tax-
otere. Local IRB approval was obtained prior to the study, and signed informed
consent was obtained in all patients prior to enrollment. Core biopsy and serum
samples were collected at comparable times to the MRI scans and obtained
pre-treatment, (between 24 and 96 hours after the start of treatment), between
treatment regimens (optional) and pre-surgery. Only pre-treatment imaging was
used in the analysis presented in this paper. The treatment response and 3 year
disease free survival data were collected.

MRI was performed on a 1.5T scanner (Siemens, Sonata c©, Erlangen, Ger-
many). Imaging included sagittal T1-weighted 3D volumetric imaging before
and after administration of gadodiamide injection (Omniscan c©, GEHealthcare).
Imaging parameters were as follows: FOV 18-20 cm, matrix 512 × 256 (inter-
polated to 512 × 512), slice thickness 2mm, TR 27.0, TE 4.76, flip angle 45◦.
Pre-gadodiamide imaging was performed followed by immediate post-gadolinium
images (at 2 minutes) and delayed post-gadodiamide images (at 7 minutes).

For each patient we selected the DCE-MRI exam done prior to the com-
mencement of the treatment. Lesions were segmented in a semi-automated way
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by seeding an active contour snake [14]. For feature extraction the most repre-
sentative slice in an image sequence was chosen as a slice for which the lesion
area was maximized. Given a representative slice we computed the kinetic statis-
tics defined in Section 3. For this dataset we had two post-contrast time points
and based on the TTP values the pixels were partitioned into two sets (m = 2).
Within these partitions we computed statistics for three feature maps (n = 3)
i.e., PE, WIS, and WOS. This resulted in m(2n+ 1) = 14 kinetic statistics. We
also computed the following morphological features: tumor ellipticity [15], tumor
circularity [16] (both being measures of shape irregularity), tumor area, and tu-
mor perimeter. In all we had 14 kinetic features and 4 morphological features.

5 Classification experiments

Univariate feature analysis: To analyze the features described above we first
performed a t-test analysis using leave-one-out cross validation. For each cross
validation fold, we selected the features that differed significantly (p < 0.05)
between the categories of complete responders and non-responders. In total, 12
out of the 14 kinetic features were selected, which persisted through all leave-
one-out cycles. None of the morphological features was selected in any cross-
validation fold. Box-plots for the 12 significant kinetic features are given in Figure
3. The ROCs for individual feature classifiers with respective AUCs are given in
Figure 4 (AUCs range from 0.78 to 0.86). The univariate classification was based
on simple thresholding on individual feature values. This analysis suggests that
partition based kinetic statistics potentially possess univariate discriminatory
power to distinguish between responders and non-responders from their pre-
treatment images.

Multivariate classification: Based on the 12 significant kinetic features se-
lected as a result of the univariate analysis we trained a leave-one-out linear
SVM classifier. The SVM classifier was able to distinguish between responders
and non-responders with an AUC=0.91 under the ROC curve (Figure 5), im-
proving on the best univariate classifier reported above (AUC: 0.86).

6 Discussion
In this paper we have demonstrated that the statistics derived from the kinetic
partitioning of DCE-MRI feature maps (peak enhancement, wash-in-slope, and
wash-out-slope) are significant predictors of response to neoadjuvant chemother-
apy. We have shown that these statistics have predictive power even when derived
from a DCE-MRI exam done prior to the commencement of the treatment. This
ability can help in selecting the patients that are expected to benefit the most
from the treatment, while routing the anticipated non-responders to alternative
therapies without the unnecessary exposure to neoadjuvant treatment. More-
over the kinetic statistics presented here are computed without any modeling
assumptions.

Compared to the kinetic features, morphological descriptors demonstrated
poor performance. In this paper we have focused on images captured before the
treatment begins. As such our results suggest that those morphological features
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Fig. 3. Box plots for kinetic features that differed significantly (t-test, p < 0.05)
between the categories. The y-axis shows the respective feature following the nota-
tion of Equations 1–3. e.g. µ(1, PE) represents the mean feature map value of peak-
enhancement for Set 1 pixels.

Fig. 4. ROC curves for univariate classifiers.



7

Fig. 5. ROC curves for the multivariate classifier.

fail when presented with the task of predicting therapy response based on a
single snapshot of pre-treatment imaging. As the treatment progresses, changes
in the morphology during the actual treatment process, rather than the a priori
imaging on which we focus on this paper, can represent a measure of response
as has been explored in other studies.

Two limitations of the current work must be noted. First, although promis-
ing, our analysis has been done on a relatively small dataset (15 patients) and
therefore larger studies are warranted to confirm generalizability of our findings.
Second, the features are currently extracted from a representative 2D slice of the
primary lesion. Kinetic partitioning of the entire 3D volume of the lesion could
potentially lead to richer statistics that may further improve the prediction of
therapy response in the future.
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Abstract. To determine the benefits of a dual-temporal resolution dy-
namic contrast-enhanced MR protocol for the differentiation of mass-like
breast lesions we studied the added value of features derived from this
protocol in a computer aided diagnosis system. We developed a CADx
system based on an SVM classifier to differentiate benign and malignant
breast lesions. A cohort of 93 patients with 133 masses was included
in the study. We obtained two different dynamic contrast-enhanced MR
image series per study; one with high spatial and one with high tem-
poral resolution. Six morphological descriptors were determined from an
automatic segmentation of the lesion. Eight kinetic curve features were
derived from the high spatial resolution data and six pharmacokinetic
parameters were determined from the high temporal resolution data.
Our CADx system demonstrated a performance, measured by the area
under the ROC curve, of Az = 0.85 for the commonly used combina-
tion of kinetic curve features and morphology. A significant improve-
ment in performance is shown by adding the pharmacokinetic parame-
ters; Az = 0.88, p = 0.03.

1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the
breast has become an invaluable tool in the clinical work-up of patients sus-
pected of having breast carcinoma. The overall sensitivity of DCE-MRI is high,
0.90 (95% CI: 0.88–0.92), however the specificity of DCE-MRI is variable 0.72
(95% CI: 0.67–0.77) [13]. Therefore continued efforts are focused on identifying
distinguishing characteristics of malignant and benign lesions. These descrip-
tors include morphological features, kinetic features, and texture features [1, 5,
12, 17]. They form the basis of the development of computer-aided diagnosis
(CADx) systems that may improve diagnostic accuracy as well as reduce intra-
and inter-observer variability [4, 12, 2].

Current recommendations for the dynamic evaluation of breast lesions [10]
state that high spatial resolution T1 weighted MRI images should be obtained at
no less than three time points. The first volume is to be acquired before the ad-
ministration of the contrast agent. A second volume approximately two minutes



later to capture the maximum enhancement, and a last volume to observe the
late behavior of contrast agent uptake, i.e. increasing enhancement, a plateau,
or wash-out.

Accurate pharmacokinetic parameters have been shown to be very beneficial
for the classification of lesions [7, 14]. However, the sampling time needed to
obtain accurate pharmacokinetic parameters is much shorter than the currently
recommended sampling time [6]. The use of high temporal resolution sequences,
however, considerably reduces image resolution and SNR, deteriorating mor-
phological and texture features, which in turn may lead to a reduction of CADx
performance [9].

For our study we used a scanning protocol that acquired both high temporal
resolution, and high spatial resolution time sequence DCE-MRI images. The
high temporal resolution data is suitable for the derivation of pharmacokinetic
parameters, whereas the high spatial resolution data is needed for morphological
as well as texture descriptors [15].

In this article we present a CADx system based on an SVM classifier to
differentiate benign and malignant breast lesions. We computed a set of features
to describe the properties of each mass. Morphological descriptors are determined
from an automatic segmentation of the lesion. Kinetic curve features are derived
from the high spatial resolution volume and pharmacokinetic parameters are
determined from the high temporal resolution volume.

2 Image Acquisition

All patients included in this study were scanned using a Sonata or Symphony
1.5 Tesla Siemens MRI scanner in combination with a double breast coil. Before
the administration of the contrast agent, a T1-weighted FLASH 3D acquisition
at a high spatial resolution and a relatively low temporal resolution (TR 7.8 ms,
TE 4 ms, FA 20 ◦, rectangular FOV 340 mm, slice thickness 1.3 mm, orientation
coronal) was acquired. After obtaining this image the contrast agent followed
by a saline flush, was administered . At the moment of administration, a series
of 22 T1-weighted turboFLASH 3D acquisitions (TR 72 ms, TE 1.54 ms, FA
20 ◦, FOV 340 mm, slice thickness 4.5 mm, orientation transversal) at a high
temporal resolution (4.5 s) was started, followed by a high spatial resolution scan.
Additional scans were made at later time points to observe the late behavior of
the contrast agent uptake. The acquisition protocol is illustrated in Fig. 1.

Obtained from these measurements were a set of high spatial resolution im-
ages with signal intensity values St at T = 5 time points, (S0, S1, ..., S4), and a
set of high temporal resolution images with signal intensity values Ft at T = 31
time points, (F0, F1, ..., F30).

Included in this study were a total of 93 patients (mean age 50.4 years,
σ = 11.2, range 28–76 years), with 133 mass lesions (66 benign and 67 malignant
as revealed by biopsy). This database has retrospectively been collected from a
consecutive set of breast MR studies acquired by the radiology department of
the Radboud University Nijmegen Medical Centre, the Netherlands, from Feb.
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Fig. 1. Illustration of the timeline of the used MRI protocol

2008–Feb. 2010. The pathological classification of the lesions is presented in
Tab. 1. All lesions were annotated by an experienced reader. Each annotation
consists of a set of spheres, placed such that they cover the full lesion extent.

Pathology Occurrence Class

Invasive Ductal Carcinoma 49
Invasive Lobular Carcinoma 12 Malignant
Adenocarcinoma 6

Fibroadenoma 53
Fibrosis 5 Benign
Adenosis 8

Table 1. Our study set of 133 lesions, from which 67 are malignant and 66 benign.

2.1 Automatic Lesion Segmentation

To obtain an accurate lesion delineation an adapted version of the smart opening
algorithm was used. Smart opening was originally developed for nodule and
lesion segmentation in CT images [11]. For this study a modified version, which
accounts for the difference in lesion appearance between CT and DCE-MRI was
used (Fig. 2). The strength of smart opening is its ability to segment lesions that
are in contact with vessels and other structures of similar intensities as the lesion
itself. To obtain an accurate delineation of the lesion, the high spatial resolution
images were used for the segmentation. The enhancement at the first time point
(ES1

= S1−S0, where St is the DCE-MR image at time point t) is used as input
for the smart opening algorithm.

The main difference with the algorithm described in [11] is that instead of
using predefined Hounsfield units as an initial threshold for region growing, we
used statistics to automatically derive this threshold. In an early stage of the
algorithm, an estimate of the lesion extent is made by observing the gradient
along a set of rays (annotated as area A in Fig. 2a). We used the 5% quantile
of the enhancement values ES1

found inside this estimated lesion extent, as the
threshold value for the region growing step of the algorithm.



For further details about the smart opening algorithm the reader is referred
to [11]. The seed point required for the ray casting was taken as the center of the
most suspicious region (defined in Sec. 3.2) within the expert’s coarse annotation
of the lesion.

A

(a) (b) (c)

Fig. 2. a) The ray casting used to fit an initial ellipsoid, b) the segmentation resulting
from smart opening, c) 3D rendering of the lesion segmentation.

3 Feature Extraction

For this study we used a combination of morphological features derived from
the high spatial resolution data and kinetic features, obtained from both high
spatial and high temporal resolution data.

3.1 Morphological Features

We used a set of morphological features to describe the shape information of
each lesion [5]. These morphological features were calculated on the basis of the
lesion segmentation described in Sec. 2.1.
Circularity of Shape is defined as the percentage of the lesion’s volume cov-
ering the volume of a sphere with the same volume.
Irregularity is defined as

IR = 1−
πd2eff
A

, where deff = 2
3

√
3V

4π
, (1)

where A is the surface of the lesion and V the volume of the lesion.
Convexity was computed as the percentage of the lesion covering the convex
hull of the lesion.
The sharpness of the lesion boundary indicates how well the lesion is delimited.
We computed two features that describe this sharpness. For both features we
considered a set of voxels inside a margin M of three voxels thick at the boundary



of the segmented lesion. Let St(x) represent the intensity of a voxel x, at time
point t, where t runs from time point 0 (before the injection of the contrast)
until time point T − 1 (with T being the amount of time points recorded).
Margin sharpness is defined as

MS = max
t=0,...,T−1

{
meanx∈M ||∇ [St(x)− S0(x)] ||

meanx∈MSt(x)

}
, (2)

where ∇ [St(x)− S0(x)] denotes the gradient at location x, of the difference
image of time frame t and pre-contrast frame 0. The margin gradient feature is
recorded for time point t at which the response is maximal, and is normalized
with the mean gray-value of margin voxels at that time point.
Margin Gradient Variance is defined as

MV =
variancex∈M ||∇ [St(x)− S0(x)] ||

[meanx∈MSt(x)]
2 . (3)

This feature is calculated for time point t with maximum response in (2).
Radial Gradient Analysis measures how well the gradients of the lesion mar-
gin are pointing toward the lesion center. For a detailed description of this feature
the reader is referred to [5].

3.2 Kinetic Curve Features

Four kinetic features were extracted from the high spatial resolution volume [1]
(Tab. 2). These kinetic features were calculated from the signal intensity values
at T time points, (S0, S1, ..., ST−1). S∗ is defined as the maximum of the T signal
intensity values and ps as the time point of S∗.

Maximum enhancement ME = (S∗ − S0)/S0

Time to peak TTP = ps
Uptake rate UR = ME/TTP

Washout rate WR =

{
S∗−ST−1

S0·(T−1−S)
if ps 6= T − 1

0 if ps = T − 1.

Table 2. Kinetic curve features

These descriptors were averaged over the entire lesion, as well as over a small
region that is most suspicious. We calculated suspicion as SU = UR + w ·WR,
where w weights the contribution of the washout rate with respect to the uptake
rate (we have heuristically set w = 5). The most suspicious region (MSR) was
chosen as a 3× 3× 3 voxel region within the lesion, positioned at the location
of the maximum of SUav, where SUav is the result of a 3× 3× 3 averaging filter
on SU.



3.3 Pharmacokinetic Features

Pharmacokinetic parameters for each voxel within the lesion were derived from
the high temporal resolution data. The method described in [16] was used to
estimate these parameters. For each voxel inside the lesion, an exponential signal
enhancement model was fitted to the MR signal of the enhancement time curve.
This reduced the curve to a five parameter model: baseline (F0); start of signal
enhancement (t0); time to peak (τ), maximum enhancement (Fp, where p =
t0 + τ), and the washout rate. The resulting curve was converted to a reduced
tracer concentration [mmol/ml] time curve, effectively converting Fp to CGD,p

(the peak concentration of contrast agent). The concentration of contrast agent
in blood plasma is required to derive the pharmacokinetic parameters. We used
the reference tissue method [8] to determine the plasma profile. An automatic
method was used to select healthy breast parenchyma as reference tissue.

From the pharmacokinetic model three dynamic parameters were determined:

ve =
CGD,ptissue

CGD,pplasma

, kep =
1

τtissue − τplasma
, and Ktrans = ve · kep, (4)

where ve is an estimate of the extracellular volume [%], Ktrans the volume trans-
fer constant [l/min], and kep the rate constant [l/min] between extracellular ex-
travascular and plasma space. The subscript “tissue” denotes a measurement in
the voxel under investigation and subscript “plasma” the reference tissue plasma
estimates based on literature values [3]. These three features were calculated as
an average over the entire lesion, as well as an average over the MSR.

3.4 Results

A total of 20 features (6 morphological features, 8 kinetic curve features, 6 phar-
macokinetic model parameters) was used to train and test the classifier. Receiver
operating characteristic (ROC) analysis was applied to evaluate the performance
of each classification task. We used the area under the ROC curve, Az, as the
index of performance. A support vector machine (SVM) classifier with a radial
basis function kernel, was applied. A scheme with 10 fold cross validation was
executed 10 times resulting in 100 Az values per classification experiment. For
each fold the SVM parameters (cost and gamma) were optimized using a grid
search.

Six classification experiments with different combinations of the feature sets
were conducted. The classification performance results are shown in Tab. 3.

4 Discussion and Conclusion

Our results demonstrate the benefits of using dual-temporal resolution dynamic
contrast-enhanced MR images for the task of computerized differentiation be-
tween benign and malignant breast masses.



Morphological Feat. Kinetic Curve Feat. Pharmacokinetic Par.

Circularity of shape Maximum enhancement, WHL ve, WHL
Irregularity Time to peak, WHL kep, WHL
Convexity Uptake rate, WHL Ktrans, WHL
Margin sharpness Washout rate, WHL ve, MSR
Margin variance Maximum enhancement, MSR kep, MSR
Radial gradient analysis Time to peak, MSR Ktrans, MSR

Uptake rate, MSR
Washout rate, MSR

AZ= 0.74 AZ= 0.77 AZ=0.71
(95% CI = 0.71–0.77 ) (95% CI = 0.74–0.80 ) (95% CI = 0.68–0.74)

AZ= 0.85 (95% CI = 0.83–0.87)

AZ= 0.81 (95% CI = 0.78–0.84)

AZ=0.88 (95% CI = 0.86–0.90 )
Table 3. The feature sets used for the classification. The area under the ROC curve, Az,
and the 95% confidence intervals are given for the different classification results. The
kinetic features are averaged over the whole lesion (WHL) and for the most suspicious
region (MSR).

The results presented in Tab. 3 show a significant improvement in diagnostic
performance of our CADx system (Az = 0.85 to Az = 0.88, p = 0.03), when mor-
phological and kinetic curve features derived from high spatial resolution data,
were combined with pharmacokinetic parameters computed from high temporal
resolution data.

In line with findings presented in [7], the classification performance increased
when the kinetic curve features derived from high spatial resolution data, and
pharmacokinetic parameters from high temporal resolution images were com-
bined. The results show that the area under the ROC curve (Az) increases sig-
nificantly in this case (Az = 0.77 to Az = 0.81, p = 0.02). This implies that
pharmacokinetic parameters derived from high temporal resolution data contain
additional information over kinetic features obtained from high spatial resolution
data, and vice versa.

Additional features, such as texture features, have not been included in this
study. These features might further improve the diagnostic performance of the
CADx system, but would most likely not reduce the added value of the pharma-
cokinetic parameters derived from the high temporal resolution data.
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Abstract. The purpose of this research was to determine whether com-
puterized methods originally developed for other breast imaging modal-
ities could be successfully adapted for positron emission mammography
(PEM). Here, the focus was on lesion segmentation since that is the first
- and a very important - step in automated lesion characterization and
determination of response to therapy.
The database contained PEM exams of 17 breast cancer patients ob-
tained in a clinical trial at our institution. Five of these patients under-
went one or two follow-up scans over a time period of months. In order to
obtain the segmentation ‘truth‘, the lesions were outlined on a per-slice
basis by an experienced radiologist who was allowed to consult other
imaging data (such as magnetic resonance imaging) and clinical patient
reports. This resulted in 552 lesion outlines. We investigated two auto-
mated seeded lesion segmentation methods on a per-slice basis: radial
gradient index (RGI) segmentation and watershed segmentation.
The RGI segmentation method, originally developed for - and success-
fully applied to - X-ray mammography, obtained extremely poor results
when applied un-altered to the PEM images. After modification of the
lesion area criteria used in the search for lesion candidates, the seg-
mentation performance improved and satisfactory agreement with the
radiologist outlines was obtained for 63% of the outlines. The watershed
segmentation obtained similar performance with 62% of the segmenta-
tions being satisfactory or better. When the RGI method was further
modified to allow limited user-interaction in the determination of the
lesion contour (one click extra), the performance improved significantly
(p ∝ 10−11) and 80% of the segmentations were satisfactory or better.
After modification, the RGI method obtained lesion contours that were
of high enough quality to be used in further quantitative image analysis
of PEM images, e.g., in the assessment of response to therapy.

1 Introduction

Dedicated breast positron emission tomography (PET) is an emerging technol-
ogy. The Naviscan PEM Flex Solo II R© positron emission mammography (PEM)



Fig. 1. Examples of PEM slices: An ‘easy‘ case, (left), an ‘intermediate‘ case (middle),
and a ‘difficult‘ case (right). Slices were displayed for the radiologist in the manner
conventional for PET imaging (uptake is dark) with their colormaps/contrast aimed
at achieving optimal viewing conditions.

system[4] is currently being used in a clinical trial at our institution for the de-
termination of disease extent and response to therapy in breast cancer patients.
PEM is a 3-dimensional imaging modality in which patients are injected with 18-
Fluorodeoxyglucose (a glucose analog and positron emitter) which concentrates
in glucose metabolizing cells including malignancies.

The long-term aim of this study was to develop quantitative image analysis
(QIA) methods for this modality to ultimately help radiologists in their clinical
decision making. Here we discuss our initial experience.

2 Methods

The database consisted of PEM exams of 17 breast cancer patients. Three of
these patients underwent 3 exams about a month apart. Two patients underwent
two exams, while the remainder of the patients underwent a single exam. In this
initial study, all exams were considered separately. Each exam generally consisted
of 3 ‘views‘ of each breast (CC, MLO, and ML) and a single ‘view‘ of each axilla
(as well as a control ‘view‘ of the foot in which the radioactive material was
injected and an image of an arm). Only image data pertaining to the breast or
axilla were used in this study and breast lesions as well as lymph nodes were
analyzed. Each ‘view‘ consisted of 12 slices of image data where the in-slice
pixel size was 1.2 mm by 1.2 mm and the resolution in the orthogonal direction
ranged from 2.9 to 7.8 mm. Note that not only the overall spatial resolution was
very low but also highly anisotropic.

An expert radiologist provided lesion outlines (a total of 552) in all slices
where a lesion or lymph node was visible. The radiologist had access to all patient
reports and additional imaging data when available. For 7 of the patients, breast
magnetic resonance imaging (MRI) data was consulted prior to the outlining
because of ambiguity of the PEM data. For 3 of these patients, the PEM data



alone was so difficult to interpret that consultation of MRI was necessary to
determine the lesion location as well as its shape. Figure 1 depicts example
PEM slices with a subjective degree of difficulty.
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Fig. 2. Comparison of the segmentations of the original RGI method (top) and the
modified method (bottom) for an example PEM slice. Here, the PEM images are shown
in original form without any processing. The expert outline (light gray solid line) and
the computer outline (white solid line) are displayed. On the RGI ‘decision profiles‘,
the raw RGI profile (black solid line) is depicted along with a 5th-degree polynomial
fit (gray solid line). The roots of the polynomial are indicated with asterisks and the
automatically selected points determining the final segmentation contour are indicated
with a circle (original method) and an diamond (modified method).

We investigated two segmentation methods on a per-slice basis: the radial
gradient index (RGI) segmentation method[2] and watershed segmentation[3].
For the former, we investigated 3 different implementations.

For original implementations of both segmentation methods, the user only
needed to indicate a seed-point within the lesion. The RGI method[2] was ini-
tially developed for lesion segmentation on mammograms. This method relies



Fig. 3. Preprocessed image for watershed segmentation (left) and watershed segmen-
tation (right) of the same slice as in Figure 2. The candidate watershed regions are
indicated by different shades of gray with their centers marked by an ‘x‘. The radiologist
center (black ‘x‘) determined which candidate region yielded the lesion segmentation
(black solid line).

on gray level thresholding after image multiplication with a Gaussian constraint
function. Here, we used an isotropic 2D Gaussian with a width of 15 mm as
the constraining function. For all candidate lesion contours the RGI value is
calculated and used as a criterion to determine the best contour candidate for
each imaged lesion. RGI as a feature describes lesion shape as well as its margin
and it is by definition normalized between −1 and +1. Assuming that lesions
appear brighter than the background, RGI values close to +1 describe circular
well-circumscribed lesions. The RGI method employs gray value thresholding
based on increasing contrast intervals (of the lesion candidate with respect to
the background). For each gray value threshold, a candidate contour is obtained,
and the RGI is calculated and plotted as a function of the corresponding contrast
interval (Figure 2). Each point on this RGI ‘decision profile‘ corresponds to a
unique candidate contour, with contour size generally increasing with increas-
ing contrast interval. Local maxima in the RGI ‘decision profile‘ indicate locally
optimal lesion contours. Note that the RGI-value is on the y-axis (Figure 2) in
these ‘decision profiles‘ and that hence there may not be a single ’best’ contour
candidate, i.e., multiple contour candidates may have the same RGI-value. In
the original RGI method[2], the first local maximum in RGI as a function of the
contrast interval provided the best estimate for the lesion contour. To diminish
the effect of noise, a fifth degree polynomial was first fitted though the RGI
‘decision profile‘. The first root of this polynomial subsequently determined the
final lesion contour.

Our first implementation of the RGI method was the original method[2].
Our second implementation of the RGI method involved a modification in the
search for lesion contour candidates. The original implementation implicitly as-
sumed ‘well-behaved‘ lesions, i.e., that there are no disconnected regions in a
candidate segmentation and that the candidate segmentations always contain
the user-indicated seed-point. The low signal-to-noise ratio and low spatial res-
olution of PEM images, however, proved challenging. Hence, our modification



explicitly included only areas containing the user-indicated seed-points in the
search for lesion contour candidates. This second implementation will also be
referred to as the ‘automated modified‘ RGI method. Note that here we use the
term ‘automated‘ as pertaining to the methodology after the initial indication
of a seed-point.

In the third implementation of the RGI method, we allowed further user-
interaction in that the user was able to select the decision rule on the RGI
‘decision profile‘. This involved at a minimum a single extra mouse click by the
user (so two clicks total including indicating the initial seed-point), but allowed
multiple additional clicks until the user was satisfied that the resulting contour
was the best obtainable one with RGI. All mouse clicks were mapped on the RGI
‘decision profile‘ by the x-position of the click, i.e., mouse clicks determined the
contrast interval for the determination of the lesion contour candidate. This third
implementation will also be referred to as the ‘semi-automated‘ RGI method.
Note that the latter in principle allows the user to click multiple times in any
location along the x-axis (contrast interval) and doing so naively would be very
time consuming and would in principle be equivalent to iterative gray-value
thresholding and would not benefit from the RGI information. But obviously the
RGI values provide a guide for the user which value(s) for the contrast interval
to try, e.g., in instances where there are multiple RGI maxima of comparable
value in the ‘decision profile‘.

The watershed method[3] has been extensively used in many applications.
We preprocessed the images using standard image processing techniques - such
as image erosion, dilation, opening and closing - and determined foreground
and background markers. Our approach was based on the general example in
the matlab R© (MathWorks) documentation with some minor fine-tuning and
adaptation of the structuring elements for PEM. Subsequently we applied the
watershed method to the slices in their entirety. The watershed region containing
the radiologist-indicated seed-point determined the final lesion contour.

We used the overlap ratio of the computer segmentations and the radiol-
ogist segmentations as a performance criterion. The overlap ratio is given by
the intersection of two areas divided by the union of those areas and as such is
bound between 0 and 1. The threshold (lower-bound) for the overlap ratio indi-
cating acceptable computer performance was set at a value of 0.4. The statistical
significance of differences in performance was assessed with t-tests[1].

3 Results

Our first implementation of the RGI method obtained disappointingly poor re-
sults (Figure 5). In our second implementation of the RGI method, the explicit
constraint in the modified RGI method (to include only areas containing the
seed-point) changed the RGI ‘decision profile‘ in many instances (Figure 2). The
overall performance improved considerably after implementation of this con-
straint (Figure 5). The improvement in segmentation performance was statis-
tically significant with respect to our first implementation (p-value ∝ 10−22)



and the modified method obtained successful segmentation for 63% of the lesion
outlines.

The watershed method (Figure 3) obtained performance similar to that of
our second implementation of the RGI method (p-value > 0.5) (Figure 5).
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Fig. 4. Example in which the automated modified RGI method yielded a contour in
poor agreement with the radiologist outline, and semi-automated adjustment by click-
ing on the RGI ‘decision profile‘ increased the agreement between computer segmenta-
tion and manual outline to an overlap ratio of 0.9. The contrast intervals determining
the lesion contours are marked for the modified automated method (diamond) and the
semi-automated method (square).

In our third implementation of the RGI method, the additional (but still
limited) user-interaction (Figure 4) considerably improved performance. The
performance of the more interactive method was significantly better than that
of the automated modified RGI method (p ∝ 10−11). This third implementation
of the RGI method obtained adequate or better performance for 80% of the 552
lesion contours. Contours of this semi-automated method differed from those
obtained by the automated modified RGI method in slightly less than half of the
contours. In other words, the user only needed to modify the decision threshold



for the contrast interval in about half of the cases. In the majority of those
instances, the user-selected contrast interval corresponded to the second (rather
than first as in the original method) local maximum in the RGI ‘decision profile‘.
Although we did not explicitly record this, the additional time spent using the
more interactive method - by a user who did not provide (and was unaware of)
the ‘truth‘ for segmentation - was modest and comparable to the indication of
seed-points to initiate segmentation.
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Fig. 5. Overview of the segmentation performance of the methods investigated. Com-
puter segmentations with an overlap ratio larger than 0.4 were considered to be ac-
ceptable.

4 Discussion

We obtained encouraging results in this preliminary study on lesion segmenta-
tion for dedicated breast positron emission mammography (PEM) images. The
quality of the computer segmentations is expected to affect further image anal-
ysis such as the determination of tumor response to therapy. The computer
segmentation performed best for the semi-automated RGI method. Whether
the segmentations of two of the other investigated methods - the modified RGI
method and the watershed method - were of high enough quality to allow for ac-
curate further analysis remains to be seen. The semi-automated method required
a little extra time, which could be seen as a drawback, but since it resulted in a
significant increase in segmentation performance it may be worth the price.



One could argue that a limitation of the presented methodology is the per-
slice 2D nature. The poor spatial resolution, however, especially in between slices,
makes it a difficult problem to tackle with fully 3D methods. Future plans include
the investigation of 3D segmentation methods, and the calculation of volumetrics
as well as metabolic information to ultimately aid in the determination of tumor
response to therapy. The current study contained too few patients with multiple
exams over time to conduct a meaningful computational study of response to
therapy. Judging from the patient clinical reports and PEM images, however,
PEM seems to be well-suited for this task (as expected from the widespread
clinical use of ‘regular‘ PET).

One of the limitations of this study was the small dataset size in terms of
patients. Since the conclusion of the study reported here, a few more patients
underwent PEM exams as part of our clinical trial. But since it is not expected
that PEM will become ‘main-stream‘ any time soon, small dataset sizes will likely
continue to be an issue. Nevertheless, we expect to learn useful information from
PEM about breast cancer and its response to different therapies since its spatial
resolution (although admittedly poor compared to many other breast imaging
modalities) is considerably better than that of ‘regular‘ whole-body PET. We
hope that quantitative image analysis for PEM will find its niche and in the
future prove useful for breast cancer patients and their physicians.
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Abstract. As a new and promising imaging modality for breast cancer
diagnosis and screening, automated 3D breast ultrasound is finding its
way into clinical applications. In this study we compared the performance
of a computer-aided diagnosis (CAD) system and reader performance in
characterizing lesions from these images and investigated if the reader
performance improves with a CAD system. Our CAD system computes
a lesion malignancy score for each lesion. Features representing spicu-
lation, lesion shape, margin contrast, posterior enhancement, texture,
and echogenicity were calculated and combined using linear discrimi-
nant analysis (LDA). 88 patients were included for an observer study.
For each patient one ultrasound view with a lesion was selected. 47 le-
sions were malignant and 41 were benign. Seven readers (5 radiologists
and 2 residents) read the series of cases with and without CAD. To com-
pare performance, ROC analysis was used (DBM MRMC 2.3). With an
area under the curve (AUC) of 0.917 CAD performed as well as the best
reader (AUC = 0.918). Without CAD the average AUC of the read-
ers was 0.859 (0.876 for the radiologists, 0.818 for the residents). With
CAD the performance of the readers increased to 0.880 (0.884 for the
radiologists, 0.869 for the residents) non-significantly (p=0.19).

Keywords: Computer aided interpretation, automated 3D breast ultrasound

1 Introduction

Breast cancer is the leading cause of cancer death among women aged 20 to 59 in
the United States[1]. Mammography is currently the primary modality for breast
diagnosis and screening. However sensitivity of mammography is poor in dense
breasts. As a innovative modality, automated 3D breast ultrasound (ABUS) not
only inherits the merits of 2D ultrasound in detecting lesions in dense breasts,
but also provides a 3D view of a breast and makes the imaging less dependent on
the operator. Moreover, in ABUS, spiculation patterns associated with invasive
breast cancers are often observed on the coronal planes [2,3] which can not be
observed well or are completely absent in 2D ultrasound.
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To be able to provide fast and accurate diagnosis of breast lesions and help ra-
diologists interpret lesions as a second opinion, computer-aided diagnosis (CAD)
systems have been developed extensively for mammography[4,5,6] and 2D US[7].
Initial experience with ABUS indicates that CAD may be very useful in this
modality, considering that reading 3D volumetric images is time consuming for
readers.

Sahiner et al. [8] already showed that the use of CAD improved the radiol-
ogists’ accuracy of distinguishing malignant from benign breast masses on 3D
US volumetric images from an experimental system which is not automated. For
automated 3D breast ultrasound, our preliminary work[9] introduced a CAD
system for breast lesions.

The purpose of this work is to compare the performance of CAD stand-alone
and observers in classifying breast lesions into malignant and benign in ABUS
and to investigate how CAD will affect the performance of observers after using
CAD.

(a) (b)

Fig. 1. A benign lesion in ABUS (indicated by the arrow). Two slices through the
lesion are shown, a coronal slice (a) and a transversal slice (b). The latter is similar to
the traditional 2D ultrasound view

2 Materials and Methods

2.1 Dataset

All breast ultrasound images used in this study were obtained from Radboud
University Nijmegen Medical Centre (Nijmegen, The Netherlands), Falun Cen-
tral Hospital (Falun, Sweden), and The Jules Bordet Institute (Brussels, Bel-
gium). All the centers used the automated 3D breast ultrasound system devel-
oped by U-systems, Inc. (SomoVu, Sunnyvale, CA, USA). For all images a 8MHz
transducer with an width of 14.5 cm was used. During imaging, patients were
in supine position and the breast was compressed by a dedicated membrane.
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The scanning device automatically translated the transducer in the cross-plane
direction during acquisition. Each 3D volumetric view was generated with an
in-plane resolution 0.285 mm by 0.285 mm or 0.134 mm and a slice thickness
of 0.6 mm. We resampled the images to obtain 0.6 mm cubic voxels to develop
our CAD system. Fig. 1 shows a coronal view and a transversal view of a breast
with a benign lesion.

A dataset of 201 lesions (table 1) from 158 patients who underwent ABUS
Imaging between 2006 and 2010 was used. All malignant lesions were confirmed
by biopsies and benign lesions were either confirmed by biopsy, image interpre-
tation alone or by combining information from different imaging modalities.

Table 1. Number of lesions of different histology types in the complete dataset and
observer study dataset

Histology information The complete dataset Observer study dataset

Malignant lesions
Infiltrative ductal carcinoma 60 38

Ductal carcinoma in situ 3 1
Infiltrative lobular carcinoma 7 6

Other 15 2
Total 85 47

Benign
Cyst 47 9

Fibroadenoma 24 14
Fibrocystic change 24 11

Other 21 7
Total 116 41

2.2 Computer-Aided Diagnosis

Lesion segmentation is a prerequisite step that needs to be executed before
extracting lesions features for classification. Segmentation of breast lesions in
ABUS is challenging because of inherent image speckles and unclear lesion
boundaries, posterior acoustic behavior, and inhomogeneous lesions. We have
extended the dynamic programming approach based on a spiral scanning tech-
nique introduced by Wang et al.[10] for pulmonary nodule segmentation in CT.
The segmentation involves a cost function that deals with edge detection lo-
cally [11] and meanwhile prevents leakage of the segmentation by including a
smoothness term in the cost function.

Given the segmentation of a lesion Vl, features can be computed to represent
its shape, margin, intensities and texture. In our previous work [9], we computed
spiculation feature, volumetric height-to-width ratio, margin contrast, posterior
acoustic behavior feature, entropy of the lesion region, DICE coefficient between
a segmented lesion and a registered smooth object and echogenicity. Among
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(a) (b) (c) (d)

Fig. 2. Figures (a) and (b) show a malignant lesion in transversal and coronal views,
respectively. Spiculation can be observed well in the coronal view. Figures (c) and (d)
show the lesion with the spiculation feature map in color overlay. The spiculation value
of the overlay increase with the color changing from blue to red.

these features, margin contrast and spiculation feature appeared to be the best
features for the classification.

In this study, we replaced the spiculation feature in [9] with five features.
The spiculation values [12] present the amount of voxels pointing to the region
center and are normalized with respect to a random orientation pattern (Figure
2). We included the average spiculation value of the segmented lesion as a feature.
When spiculation patterns are visible in malignant lesions, the lesion centers of
2D coronal slices usually have higher spiculation values than the periphery. To
extract spiculation features near the center region we created a cylinder CR
with a radius of 3mm and with an axis through the center (in 3D) of the lesion
along the depth direction. The length of the cylinder was determined by the
depth of the lesion. The cylinder was divided evenly into three small segments
along the depth direction (see Fig. 3). To extract spiculation features at different
depths, we computed the average spciculation values of the three segments. We
also computed the maximum average spciulation among coronal slices of the
complete cylinder CR as another feature.

Fig. 3. In transversal view, a cylinder was created through the center of the lesion
along the depth direction and it is evenly divided into small segments.

To measure the irregularity of a lesion, we registered a sphere with the same
volume as the segmented lesion Vl to the segmented lesion with an affine trans-
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formation. Besides the Dice coefficient of the segmentation Vl and the registered
result Vr, we calculated volume difference (DF ) between Vl and Vr:

DF = |Vr|+ |Vl| − 2|Vl ∩ Vr| (1)

We also computed variance of intensities inside a lesion, variance of intensities
of its inner border (voxels within 1.2 mm of the boundary) and the volume of a
lesion as additional features. In total, combining the new features with those in
[9], 15 features were computed.

Linear discriminant analysis (LDA) was used to combine 15 extracted fea-
tures. To get an independent score indicating the malignancy of each lesion
between 0 (benign) and 1 (malignant), we performed 10-fold cross-validation on
the complete dataset of 201 lesions (table 1)

2.3 Observer Study Design

Seven readers, of which five were certified radiologists and two were residents
were invited for an observer study in which we aimed to compare the diagnostic
performance of our CAD system and observers and to investigate the effect of
CAD on observer performance. Two radiologists and one resident had extensive
experience with ABUS image interpretation. The remaining three radiologists
and one resident had no experience with ABUS but had extensive experience
with interpreting 2D ultrasound images.

For this observer study, a subset of the dataset including 88 patient was
included. For each patient one ABUS view with a lesion was selected. 47 were
malignant lesions and 41 were benign lesions (table 1). Another subset of 26
patients with 23 benign and 14 malignant lesions from the dataset were used to
train the readers before the experiment.

Images with original resolutions were displayed in a dedicated workstation
(HAMAM prototype, MeVis Medical Solutions, Bremen) on a color monitor with
a display resolution 2560 by 1200. The workstation allowed to scroll through
slices with synchronized viewing of coronal, transversal, and sagittal slices. The
synchronization could be disabled or enabled by the push of a button. The
window level could be automatically or manually adjusted. The lesion to be
assessed was identified by a yellow rectangle marker with a fixed size located
at the lesion center. The marker could easily be switched on and off to avoid
obscuring the lesion while reading. The workstation could be configured such
that it would or would not show the associated CAD score next to the marker.

The experiment consisted of two separate reading sessions. Before the exper-
iment, each reader started with a training program. Readers were presented a
series of 26 training cases with 23 benign and 14 malignant lesions. The training
cases served to acquaint the observers with the system, including synchronized
orthogonal views, interpreting CAD scores and the controls for adjusting win-
dow level of the displayed images. During the training program, CAD scores
were shown and the ground truth of all the marked lesions was supplied in a
printed document. After the training program, the first session continued with
the actual experiment. Readers were asked to first read a set of 45 cases (set
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A) with CAD scores shown and subsequently a second set of other 43 cases (set
B) without CAD scores. For each patient, a single lesion was shown and readers
were asked to rate this lesion on a scale between 0 (benign) and 100 (malignant).
After a break (few hours to several days), the experiment continued with the
second session. In this session readers were asked to rate the same lesions, but in
the second session they read set A without CAD and set B with CAD. Readers
were asked to rate these lesions again. Readers were reminded of the importance
of using the same scale to rate the lesions during the whole experiment and
they were informed that approximately half of all the lesions that were shown
in this experiment were malignant and the other half were benign. The order
of the cases within each subset was randomized in the two sessions to minimize
reading order effects. There was no limit on the reading time.

2.4 Data Analysis

Receiver operating characteristic (ROC) was used to analyze the diagnostic per-
formance without and with using CAD for individual readers, as well as for
the average reader and the CAD standalone. The area under the ROC curve
(AUC) was used to evaluate the performance. The AUC was obtained using
the proper binormal model[13] using DBM MRMC 2.3 developed by researchers
from the University of Iowa and the University of Chicago[14,15]. Using the same
software, the significance of differences in reader performance between reading
with and without using CAD was analyzed with the Dorfman-Berbaum-Metz
method[14,15], which performs an analysis of variance allowing to treat both
readers and cases as random samples.

3 Result

The AUC value of the performance of standalone CAD was 0.917 (Fig. 4) which
was not significant different than that of all readers (p=0.085), radiologists
(p=0.194), or residents (p=0.283) without using CAD. As shown in Table 2,
the AUC values of performances of readers without CAD ranges from 0.767 to
0.918 and with CAD the AUC values range from 0.821 to 0.927. By using CAD,
the average AUC value increased from 0.876 to 0.884 for radiologists, from 0.818
to 0.917 for residents, and from 0.859 to 0.880 for all readers. The difference was
not significant for radiologists (p=0.256) and for all readers (p=0.188), but the
difference was significant for residents (p=0.003). Fig. 4 shows the ROC curves
of the performance of the readers with and without CAD and CAD standalone.

4 Discussion and conclusion

Sahiner et al. [8] showed that the use of CAD improved radiologists’ accuracy
in distinguishing malignant from benign breast masses on 3D US volumetric
images. In our study, the accuracy of the performance of readers with CAD also
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Table 2. AUC Values of Performances of Readers without and with CAD

Reader: Without CAD With CAD

Radiologist 1. 0.906 0.896
Radiologist 2. 0.918 0.927
Radiologist 3. 0.827 0.864
Radiologist 4. 0.871 0.860
Radiologist 5. 0.855 0.876

Mean of Radiologists 0.876 0.884

Resident 1. 0.869 0.917
Resident 2. 0.767 0.821

Mean of Residents 0.818 0.869

Mean of all readers 0.859 0.880

(a) (b)

Fig. 4. (a) ROC curves of observers without CAD and CAD standalone. (b) ROC
curves of observers with CAD and CAD standalone.

increased in terms of AUC values, but the increase with CAD was not statistically
significant. This may be because the power of our study was lower and the
readers had limited experience with interpretation of lesions when using CAD
in ABUS. Average AUC value of residents increased more than average AUC
value of radiologists. For residents, the performance was significantly improved
using CAD (p = 0.003). This indicates that the CAD system is more helpful for
unexperienced readers (residents) when interpreting ABUS images.

In conclusion, a CAD system was developed for classifying lesions into ma-
lignant and benign lesions in ABUS. There are no significant difference between
performance of the CAD system and readers. Reader performance did not in-
crease significantly when working with CAD, which may be due to inexperience
with ABUS and CAD.



8 T. Tan et al.

References

1. A. Jemal, R. Siegel, J. Xu, and E. Ward. Cancer statistics, 2010. CA Cancer J
Clin, 60:277–300, 2010.

2. D. Rotten, J. M. Levaillant, and L. Zerat. Analysis of normal breast tissue and of
solid breast masses using three-dimensional ultrasound mammography. Ultrasound
Obstet Gynecol, 14(2):114–124, Aug 1999.

3. D. O. Watermann, M. Fldi, A. Hanjalic-Beck, A. Hasenburg, A. Lghausen, H. Prm-
peler, G. Gitsch, and E. Stickeler. Three-dimensional ultrasound for the assessment
of breast lesions. Ultrasound Obstet Gynecol, 25(6):592–598, Jun 2005.

4. H. P. Chan, B. Sahiner, M. A. Helvie, N. Petrick, M. A. Roubidoux, T. E. Wilson,
D. D. Adler, C. Paramagul, J. S. Newman, and S. Sanjay-Gopal. Improvement of
radiologists’ characterization of mammographic masses by using computer-aided
diagnosis: an ROC study. Radiology, 212(3):817–827, Sep 1999.

5. Lubomir Hadjiiski, Heang-Ping Chan, Berkman Sahiner, Mark A Helvie, Marilyn A
Roubidoux, Caroline Blane, Chintana Paramagul, Nicholas Petrick, Janet Bailey,
Katherine Klein, Michelle Foster, Stephanie Patterson, Dorit Adler, Alexis Nees,
and Joseph Shen. Improvement in radiologists’ characterization of malignant and
benign breast masses on serial mammograms with computer-aided diagnosis: an
roc study. Radiology, 233(1):255–265, Oct 2004.

6. Sheila Timp, Celia Varela, and Nico Karssemeijer. Computer-aided diagnosis with
temporal analysis to improve radiologists’ interpretation of mammographic mass
lesions. IEEE Trans Inf Technol Biomed, 14(3):803–808, May 2010.

7. Karla Horsch, Maryellen L Giger, Carl J Vyborny, and Luz A Venta. Performance
of computer-aided diagnosis in the interpretation of lesions on breast sonography.
Acad Radiol, 11(3):272–280, Mar 2004.

8. Berkman Sahiner, Heang-Ping Chan, Marilyn A Roubidoux, Lubomir M Hadjiiski,
Mark A Helvie, Chintana Paramagul, Janet Bailey, Alexis V Nees, and Caroline
Blane. Malignant and benign breast masses on 3D US volumetric images: effect of
computer-aided diagnosis on radiologist accuracy. Radiology, 242(3):716–724, Mar
2007.

9. T. Tan, H.J. Huisman, B. Platel, A. Grivignee, R. Mus, and N. Karssemeijer.
Classification of breast lesions in automated 3D breast ultrasound. In Medical
Imaging, volume 7963 of Proceedings of the SPIE, page 79630X, 2011.

10. Jiahui Wang, Roger Engelmann, and Qiang Li. Segmentation of pulmonary nodules
in three-dimensional CT images by use of a spiral-scanning technique. Med Phys,
34(12):4678–4689, 2007.

11. S. Timp and N. Karssemeijer. A new 2D segmentation method based on dynamic
programming applied to computer aided detection in mammography. Med Phys,
31(5):958–971, 2004.

12. N. Karssemeijer and G. M. te Brake. Detection of stellate distortions in mammo-
grams. IEEE Trans Med Imaging, 15(5):611–619, 1996.

13. Metz and Pan. ”proper” binormal ROC curves: Theory and maximum-likelihood
estimation. J Math Psychol, 43(1):1–33, Mar 1999.

14. D. D. Dorfman, K. S. Berbaum, and C. E. Metz. Receiver operating characteristic
rating analysis: Generalization to the population of readers and patients with the
jackknife method. Invest Radiol, 27:723–731, 1992.

15. Stephen L Hillis, Kevin S Berbaum, and Charles E Metz. Recent developments in
the dorfman-berbaum-metz procedure for multireader ROC study analysis. Acad
Radiol, 15(5):647–661, May 2008.



Fully-automatic breast density assessment
from full field digital mammograms

Harald Heese, Klaus Erhard, and André Gooßen
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Abstract. Mammographic breast density is associated with an increased
risk of developing breast cancer. However, the estimation of radiographic
breast density suffers from a high inter-observer variability. A fully auto-
mated solution for objective and consistent assessment of breast density
from full field digital mammography (FFDM) data is presented. For the
automatic computation of mammographic density, a region of interest
(ROI) is automatically extracted from the mammograms. Segmentation
into adipose and glandular tissue is performed within this ROI using
a Gaussian mixture model in combination with a histogram threshold
adjustment from calibration data. Breast density is finally computed as
fraction of glandular tissue area to overall area of the ROI. The fully au-
tomated approach provides breast density estimates that show good to
excellent correlation with the reference standard (r ∈ [0.72, 0.86]), with
deviations ranging between -37% (q=0.025) and +22% (q=0.975).

Keywords: mammographic breast density, breast cancer risk assess-
ment, mammography, FFDM

1 Introduction

Mammographic breast density is associated with an increased risk of develop-
ing breast cancer [1, 11, 15]. Moreover, detecting early stages of breast cancer in
women with dense breasts is more difficult than in women with mainly adipose
breast tissue. In [10], for example, it has been shown that breast density is a
major risk factor for interval breast cancer, i.e. women with dense breast tissue
have an increased risk that a developing breast cancer is missed during routine
screening. Recently, regulation authorities have acted by requiring the enlist-
ing of breast density in the mammographic report with a recommendation for
subsequent ultra-sound or MRI examinations for women with dense breasts [14].

The importance of breast density is increasing in its role as a personalized
risk indicator, whereas the definition of breast density and its measurement in
clinical practice requires some more attention. The two most common definitions
of breast density are the mammographic percent density relating to the area
fraction of the amount of glandular tissue in a mammographic projection image
of the breast and the volumetric breast density measuring the volume fraction of



glandular tissue within the physical breast volume. The first definition reflects
current clinical practice, whereas the latter provides radiologists with a new
physical quantity that may lead to new insights.

For measuring mammographic percent density a semi-automatic software,
Cumulus [2], is widely used in evaluation and comparison studies [7, 8]. Recently,
an automatic breast density segmentation tool has been proposed in [7], which
incorporates different approaches using feature extraction and analysis.

The assessment of volumetric breast density is based on a physical model
of the mammographic image formation process. Several methods for estimating
volumetric breast density have been proposed that either require the simultane-
ous acquisition of the breast with a calibration phantom [3] or try to estimate
the attenuation of an adipose pixel value directly from the image [5, 13].

In the following, we present a method for the fully-automatic assessment of
mammographic percent density that is based on a Gaussian mixture model for
tissue separation. A 3D breast model and calibration-based models for height
and voltage dependent effective linear attenuation coefficients of adipose and
glandular tissue are used to stabilize tissue separation with respect to imperfec-
tions such as visible skin folds or uncompressed peripheral breast tissue.

The proposed method has been validated against manual ground truth scor-
ings from 5 different readers on clinical data from 82 patients, revealing per-
formance almost comparable to inter-reader deviations. Thus, the presented ap-
proach is a major step towards routine use of fully-automated estimation of
mammography percent density in clinical practice.

2 Methods and Materials

The suggested approach has been developed using raw data (0.085× 0.085 mm2

resolution, 2084× 2800 pixel matrix) from Philips MammoDiagnost DR 1.0 X-
ray mammography systems (Philips Medical Systems DMC GmbH, Hamburg,
Germany) as input data.

2.1 Image and ground truth data

Image data of 100 patients (age: 29 - 84 years, median age: 50 years) has been
collected from 4 different diagnostic institutions between July 2007 and August
2009. For each patient, 4 standard views (i.e. cranio-caudal (CC) and medio-
lateral oblique (MLO), left and right) were acquired. Only patients that had
unsuspicious findings and no implants were included in the collection. Distri-
bution of clinical density classification was chosen to adequately represent all
categories (ACR 1: 24; ACR 2: 26; ACR 3: 38; ACR 4: 12).

After a first analysis of the data, 14 patients were excluded due to wrong
acquisition parameter settings (X-ray tube used with wrong power settings).
Additionally, for this study the results from 4 patients had to be excluded due
to incomplete visual readings.



Ground truth data was established as follows: Five experts, skilled in reading
digital mammograms, blindly graded mammographic percent density on the set
of collected image data (displayed using the vendor’s standard post-processing)
using an eleven-point-scale (0, 10, . . . , 100 %) on a per patient basis, i.e. all four
mammographic views were shown together.

2.2 System Calibration

Incorporation of physical quantities from the mammographic image formation
process requires system calibration, which has been performed on a lab system,
whereas the performance has been evaluated on clinical data. The linear atten-
uation coefficient µ and the measured intensity I are related via Beer’s law

I = I0 · e−µh , (1)

where I0 denotes the initial or non-attenuated intensity, h denotes the thickness
of the radiated object, and where the assumption has been made that µ is
constant along the beam path. As for larger breasts with high thickness the
intensity has to be higher, non-attenuated areas result in saturated detector
pixels, hampering an extraction of the initial intensity I0 directly from the image.

We performed calibration measurements of I0 against the exposure settings,
i.e. tube voltage U , tube current I, and exposure time t, observing a direct
proportional dependency between I0 and the exposure It, and moreover, a linear
dependency between detector sensitivity g and tube voltage, allowing to model

I0 = g It = (g0 + g1U) It . (2)

For calibration of attenuation coefficients of the mammography system a
set of dedicated step wedge phantoms composed of two materials with attenua-
tions equivalent to adipose and glandular breast tissue was used (CIRS Inc.,
Norfolk, Virginia), respectively (cf. Fig. 1 (a)). By help of these phantoms
effective linear attenuation coefficients µfat and µgland have been derived for
all combinations of specified tube voltages U ∈ 23, 24, . . . , 35 kV and tissue
heights h ∈ 10, 20, . . . , 120 mm. Using biquadratic regression allows to represent
µfat (U, h) and µgland (U, h) as polynomials,

µ(U, h) = a0 + a1U + a2U
2 + a3h+ a4h

2 . (3)

With an average deviation of 2.5 % from the measured attenuation, a precise and
compact model for the attenuation of breast tissue within the specified system
boundaries has been derived. Fig. 1 (b) depicts the models for µfat and µgland in
a combined plot.

2.3 Preprocessing

Typical mammograms contain four different major regions (background, uncom-
pressed breast tissue, compressed breast tissue, pectoral muscle – cf. Fig. 2 (a))
that need to be identified in preprocessing steps in order to extract a region of
interest (ROI) for mammographic percent density estimation.



(a) Calibration phantom (b) Regression polynomials

Fig. 1. System calibration. (a) A calibration phantom consisting of adipose and glan-
dular tissue equivalent material, assembled in a step wedge. With a constant height,
the phantom contains steps with 0, 10, . . . , 100 % of either tissue type. In order to
cover the full range of possible tissue heights the step wedges exist in different sizes,
and additional thin plates can be used to measure intermediate heights. (b) Results of
a biquadratic regression through the measured effective linear attenuation coefficients
for adipose and glandular tissue equivalent material plotted against tube voltage U and
tissue height h. The polynomials serve as model for fatty and glandular breast tissue
attenuation at a given voltage and tissue height.

Background detection: In the suggested approach, a Gauss-Deriche filter (kernel
size σ = 0.75 mm) is applied for downsampling the input image data to a resolu-
tion of 0.68× 0.68 mm2. Using a connected component analysis with an 8-point
neighbourhood on the filter result thresholded with respect to edge strength,
the skinline of the breast is identified as the strongest component with respect
to accumulated edge strength. The detected skinline divides the image into two
regions, and the background region is identified as the one with higher average
grey value.

Pectoral muscle segmentation: According to the BI-RADS atlas for mammogra-
phy [4], the pectoral muscle should not be included in the evaluation of mammo-
graphic percent density. The proposed approach therefore segments the pectoral
muscle in MLO views and excludes the resulting region from the ROI for mam-
mographic percent density estimation. In a first step, feature points for the pec-
toral muscle outline are extracted from downsampled and directional gradient
filtered image data [16] by row-wise selecting the first local minimum within the
tissue region. Orientation of the pectoral muscle outline is then determined from
the feature points via a Hough Transform for a range of plausible orientations
(110◦ − 175◦). The pectoral muscle is determined as the region between the up-
per right corner of the image and the contour given by tracing the local minima
between adjacent validated feature points (deviating less than 1 mm from the
result of the Hough Transform).



Breast height modelling: The detected skinline also serves as initialization for
breast height modelling. Similar to [12], the breast is modelled as a block of
compressed tissue with constant height in the interior, and by semi-circles of
matching diameter perpendicular to the skinline in the periphery. In order to
establish a corresponding height map for the breast, first a distance map to the
skinline is generated via a fast marching algorithm. The tissue height is computed
via

h(x, y) =

{
2
√
ds(x, y)(h0 − ds(x, y)), ds(x, y) < 0.5h0

h0, ds(x, y) ≥ 0.5h0
, (4)

where h0 is the compression height (i.e. distance between compression paddle and
detector cover) in millimetres, and ds is the distance to the extracted skinline.

Region of interest extraction: For the suggested approach, the ROI for mammo-
graphic percent density estimation is defined as the region of breast tissue with
h > 0.85h0 according to the breast height model, i.e. where at least 85 % of the
space between compression paddle and detector cover are filled by tissue. An
example result of the pre-processing is shown in Fig. 2 (b).

2.4 Mammographic percent density estimation

For mammographic percent density estimation, the measured raw image data is
transformed by inverting Beer’s law (1), where the non-attenuated intensity is
derived using (2). Normalization of the uncompressed breast tissue region within
the ROI for breast density estimation is carried out by computing the effective
linear attenuation coefficient for adipose tissue using (3), and by subsequently
padding the uncompressed breast tissue region artificially with adipose tissue up
to the compression height h0 by means of adding

(h0 − h(x, y))µfat (U, h) (5)

within the ROI analogously to [12].
Subsequently, a 3-class Gaussian Mixture Model (GMM) is fitted to the thus

normalized data, where the central class is merged to one of the remaining
classes, such that the in-class variance is minimized. The interface between the
two resulting classes serves as histogram threshold for separation into adipose
and glandular tissue regions.

As tissue separation into two classes may fail in extreme cases of completely
fatty or dense breasts, the histogram threshold selection from the GMM fit is
checked for plausibility against calibration data for µfat (U, h) and µgland (U, h),
and clamped to

h0 [µfat (U, h) + 0.2 (µgland (U, h)− µfat (U, h))] (6)

as the lowest acceptable histogram threshold. Finally, mammographic density
Dmam is computed as the area fraction of segmented glandular tissue within the
ROI. Thus, the presented method can also be seen as an extension to [6], in the
sense that the volumetric threshold is not fixed but data-driven from the GMM
fit.



Table 1. Observer Variability. Correlation of the presented approach to each reader’s
gradings is given in top row. First and second order statistics over deviation of reader’s
gradings and automated results versus all reader gradings is shown in bottom rows.

reader I reader II reader III reader IV reader V Dmam

corr. to Dmam 0.86 0.86 0.83 0.72 0.85 n/a

mean dev. 11.94 -0.83 -8.76 -1.36 -0.98 -9.21
stddev. of dev. 13.12 13.33 12.79 18.09 13.51 15.35

skinline

mamilla

glandular
tissue

compression
border

pectoralis
muscle

(a) MLO atlas (b) Pre-processing result (c) Segmentation result

Fig. 2. MLO atlas and example results. (a) Schematic drawing of mammogram char-
acteristics for an MLO view. (b) Example of preprocessing result. Pectoral muscle
segmentation in red, peripheral margin in yellow, ROI for percent density estimation
without color overlay. (c) Example segmentation of a breast with Dmam=59 %.

3 Results

Analysis of inter-observer variation revealed inter-reader correlations ranging
from r = 0.96 (Reader III vs. Reader V) to r = 0.76 (Reader IV vs. Reader
V) with deviations to the respective reference ranging from [−20,+30] (Reader
V) up to [−40,+40] (Reader I) for the 95 % confidence interval and min/max
deviations of [−60,+60]. Mean deviations ranged from −8.8 (Reader III) to
+11.9 (Reader I) with standard deviations ranging from σ = 12.8 (Reader III)
to σ = 18.1 (Reader IV). The automated approach shows good to excellent cor-
relation to the respective readers (Reader IV: r = 0.72; Reader I: r = 0.86) with
a deviation range of [−37,+22] for the 95 % confidence interval and [−57,+47]
for min/max deviations. Its average deviation is −9.2 with standard deviation
σ = 15.3 (cf. Fig. 3 and Table 1).

Consistency of the method was evaluated by correlating CC and MLO views
on a per breast basis resulting in excellent correlation (r=0.88). Runtime per-
formance is 1.5 s per image on a standard PC. An example result of the method
is shown in Fig. 2 (c).



(a) Box-and-whisker plot (b) Scatter plot

Fig. 3. Observer Variations and Algorithm Performance. (a) Box-and-whisker plot of
reader and algorithm deviations. Each box reflects the median and 95 % confidence in-
terval, whiskers indicate minimum and maximum. (b) Scatter plot of algorithm results
vs. averaged reader gradings.

4 Discussion

The proposed method shows performance similar to the approach recently pub-
lished by Kallenberg et al. [7], although the studies differ in various aspects.
While Kallenberg resorts to film screen image data focussing on MLO views
of the left breast, we developed our method for both CC and MLO views of
state-of-the-art FFDM data. Moreover, the patient population followed different
design aspects (screening vs. diagnostic, all diagnoses vs. unsuspicious findings
only, different distributions of clinical ACR classification).

Most notable is the validation scheme chosen in this study. The presented
approach displays the power of estimating mammographic percent density about
as well as a skilled human reader (cf. Table 1). Although Readers I, II, III and
V perform slightly better, one has to keep in mind that human reading was
done on a per patient basis reflecting clinical practice, whereas the presented
algorithm works on a per image basis. Additionally, readers were using a discrete
11-scale categorial assessment (workflow issues did not allow to use Cumulus [2]
as reference standard) as a compromise between routine ACR classifications
and the continuous scale, on which automated results are given. Both factors
contribute towards agreement being more easily achievable between two human
readers than between the automated approach and a human reader.

Fig. 3 (b) reveals that the automated breast density estimates do not exceed
80 % and consistently follow a less steep slope. This behaviour confirms the
general observation that humans tend to underestimate the size of peripheral
regions, and thus overestimate percent density especially in dense breasts [9].

Although the BI-RADS standard for mammography [4] requires the pectoral
muscle also to be visible on CC views, the requirement is not satisfied in the
majority of image data. As, moreover, the influence on breast density estimates
is reduced on CC views due to the visible portion being small compared to the
entire depicted tissue region, the current approach does not include pectoral
muscle segmentation on CC views.



Currently, a clinical acceptance study with experienced radiologists is ongo-
ing, demonstrating that our approach for fully-automated breast density assess-
ment seamlessly integrates into clinical routine for breast cancer screening.
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Abstract. We present a completely automated process of creating finite
element models of the breast for individual-specific biomechanical simu-
lations of patient re-positioning from the prone to other gravity-loading
orientations. Breast MRIs of 22 patients were automatically segmented
for the skin and rib surfaces. A training set of finite element models was
created from these datasets and principal component analysis was con-
ducted to quantify dimensions of shape variation. A novel method of us-
ing the results from principal component analysis to automatically create
a finite element mesh for an unseen dataset is presented. The final models
captured unseen breast shapes with mean ± SD root mean squared pro-
jection error (from surface data to model surface)of 1.52mm ± 0.33mm

compared to manually guided fitting procedures which create models
with average errors of 1.26mm ± 0.29mm. We also demonstrate the us-
ability of these models in performing completely automatic, unsupervised
biomechanics simulations of the prone to supine reorientation typically
required for breast biopsies or second-look ultrasound.

Keywords: breast biomechanics, principal component analysis, breast
image analysis, geometric fitting

1 Introduction

Finite element modelling of breast biomechanics has the potential to assist clin-
icians with the reliable diagnosis of breast cancer by using physics based me-
chanics simulations to fuse medical images of the breast across different imag-
ing modalities such as x-ray mammograms, magnetic resonanace images (MRI)
and ultrasound (US) [3, 10, 5]. A significant challenge that researchers face is
the translation of research-based software and expertise into reliable and user-
friendly applications that form part of routine analysis of breast cancer images
in the clinic.

Challenges facing adoption of finite element models into routine clinical prac-
tice include the laborious task of creating models, streamlined methods for iden-
tifying parameters necessary for modeling the breast of a specific individual and

⋆ The authors thank Dr. Nico Karssemeijer for providing the breast MRI datasets used
in this study. We thank Mr. Ju Zhang and Ms. Nancy Yan for valuable discussions.
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speed of computations. Statistical shape models [10] have recently been used as
a work around to these problems by establishing a database of patient breast
models from which a large set of simulated shapes can be pre-computed. The
pre-computed solutions of a specific model which is similar to an “unseen” pa-
tient’s breast shape is then chosen from the database to provide a prediction of
tissue movement for this specific individual.

Although such databases can provide fast predictions of breast deformation
for an individual, the accuracy of these model predictions is somewhat compro-
mised because the predictions are not based on a model specific to the individual.
Depending on the clinical application and accuracy requirements, patient-specific
modelling can further benefit clinical practice of breast cancer diagnosis. For ex-
ample, tumour tracking between different orientations such as prone and supine
must be of sufficient accuracy to ensure that biopsy procedures do not miss
cancerous lesions.

We present new methods for a completely automated process of model cre-
ation from prone MR images, to model simulation and image warping to create
a synthetic prediction of the supine MR image. Such methods remove the need
for any manual intervention or expert supervision, thus making it possible to
integrate biomechanical modelling into routine clinical practice. The following
sections describe the methods that have been developed and demonstrate the
automatic process with a database of 22 clinical MR images.

2 Methods

2.1 Data and Image Segmentation

T1-weighted prone MR images were acquired on a 1.5T Siemens Magnetom
Vision (TR=8.1, TE=4.0, Matrix 256 X 256 1.25 X 1.25 mm, 108 1.5 mm slices)
of 22 subjects from the NHL hospital, UMCN St Radboud, the Netherlands. We
corrected all images for non-uniformity using N3 [8].

We use a completely automated process for segmenting breast tissues from
MRI based on multi-atlas methods previously used in brain segmentation [1].
The multi-atlas method allows for automatic segmentation for any new MR
scan by using a database of manually labelled segmentations as a training set
from which a small subset of labelled data sets are selected by the algorithm
based on their similarity to the new MR scan (based on mutual information).
To create the manual segmentations, we used a thresholding approach combined
with manual tracing to outline the skin and chest wall. Once a subset of training
scans are selected, they are then automatically registered with the new MR scan
to find the optimum alignment and the results are combined using shape space
averaging [7] to produce a final segmentation of left and right breast in the new
MR scan. The resulting mask from the segmentation process were decimated
into a cloud of data points that cover the skin and rib surfaces. This technique
was tested on the 22 patient datasets by creating a database from these patient
datasets, and automatically segmenting each image stack via a leave one out
approach.
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2.2 Mesh Generation and Principal Component Analysis

Once a segmentation of breast images is acquired, there exist third-party soft-
ware that automatically create tetrahedral meshes as outlined by [9, 3]. However,
our aim is to develop a method for automatic mesh generation using principal
component analysis (PCA) for two main purposes: (i) To establish a framework
for automatic incorporation of new patient data and meshes into the PCA frame-
work for iterative improvement in our quantification of breast shape variation
and (ii) by performing PCA, we can establish node-to-node correspondence be-
tween all the patient models and breast anatomy. As will be shown in Section 3.3
this enables automation of defining kinematic constraints in mechanics simula-
tions because of the association of anatomical regions with specific nodes (such
as the nipple or ribs).

We model breast deformations using a cubic-Hermite interpolation based hex-
ahedral finite element representation of breast geometry [4]. Unlike traditional
finite element description schemes such as linear interpolation, cubic-Hermites
are favoured due to their superior solution convergence properties in mechanics
simulations [11]. However, critical to the successful use of these techniques is a
good initial mesh geometry. This is conventionally acquired by manual position-
ing of nodes of a generic mesh to capture the gross contours of the breast. This
is a tedious task that is compounded by the significant variation in breast shape
across the population. We propose a novel method of combining the knowledge
about breast shape variation with the least-squares fitting procedure to develop
a completely automated method for mesh generation.

The basis of this new method is a training set or database of breast shapes
that are used to quantify the variation in shape across the population via PCA
[2]. Let us define xi as the shape vector representing ith dataset in the population:
xi = {xiµ : µ = 1..d × nP } where d is the number of dimensions and nP is the
number of landmarks (be it anatomical, mathematical or pseudo landmarks)
used to describe the shape of the object. With the goal of performing PCA on
a significantly large training dataset, our aim was to identify landmarks that
are straightforward to distinguish from MR images. However, apart from the
nipple, there are typically few other readily identifiable anatomical landmarks.
Therefore, we manually created a finite element mesh for each training dataset
using the techniques in [4] together with a single template mesh in order to
establish an approximate point-to-point correspondence of the nodes. The node
representing the nipple on the template mesh was manually positioned and fixed
to match the position of the nipple in each of the 22 patient MR scans. Nodes
of the template mesh were manually adjusted to represent the interface between
the arm and the chest in each of the data sets that the model was fitted to. Most
other nodes in the template mesh were evenly distributed (manually) across the
breast surface for each scan, thus making them additional pseudo landmarks.
These nodes of each fitted mesh were then concatenated into a shape vector.

The shape vectors of each patient dataset were collated into a d × nP × ns

matrix, M, where ns is the size of the sample of breast shapes used to quantify
the shape variation. Principal component analysis using singular value decom-
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position on M provided the mean shape vector, x, and ns−1 singular values and
associated vectors (equivalent to eigenvectors and eigenvalues when performing
eigen analysis on the co-variance matrix of M) that quantify the orthonormal
directions and magnitudes of the principal modes of variation. An unseen shape
can thus be approximated by the mean and a weighted (wj) sum of the principal
components as xnew = x + wjNj j = 1..ns − 1 where Nj is the jth principal
vector. Hence, given a data set for a new patient, an optimal set of weights that
best approximate the new shape can be computed. The objective function of
this optimisation problem was set to be the minimum root-mean-squared error
of closest-approach projections from each data point onto the mesh surface.

The efficacy of this algorithm in automatically providing a good initial mesh
was determined by performing the complete series of leave-one-out tests. PCA
was conducted on 21 out of the 22 models repeatedly until every patient dataset
had been left out of the analysis once. The PCA results were then used in the
PCA-based fitting algorithm to fit the ”unseen” dataset that was left out of
the principal component analysis. Each of these fits was first done using all
21 modes of variation. The errors from these different fits were assessed for
the closeness of the initial model to the unseen dataset. The models were then
further fitted to completely match the unseen data using the nonlinear least
squares technique mentioned earlier. A select few models were also fitted using
14 modes (explaining 95% of the variation), 7 modes of variation (explaining
82% of variation) and 4 modes of variation (explaining 72% of the variation in
the population) to investigate the possibility of reducing the number of weights
that need to be identified.

2.3 Biomechanics Framework

We model breast deformations under gravity loading using the finite element im-
plementation of large deformation elasticity theory. Model simulations include
the calculation of an unloaded state of the breast without the effects of gravity
to ensure accuracy as stated by [6]. The breast constitutes fat and fibroglandu-
lar tissue enclosed by a layer of skin. While most recent studies [10] discuss the
need for anisotropic constitutive relations to describe the mechanical behaviour
of the breast, we use the neo-Hookean model, c1(I1 − 3), representing isotropic,
incompressible behaviour for demonstration of automaticity here. The methods
described in this study can readily be applied with other constitutive equations.
The stiffness value was set to 0.1kPa based on previous literature estimates [6].
We set a tissue density of 0.001g/mm3 based on the assumption that biological
tissues are predominantly composed of water. With regards to boundary condi-
tions for these illustrative simulations, we assumed that the breast tissue was
firmly fixed to the rib surface and let the displacements of all other degrees of
freedom be determined by solving the mechanics equations. Additionally, nodes
that formed part of the interface between the arm and chest as the person lies
prone on the bed for imaging were also fixed to represent the arms being held
straight and close to the body. Since a template mesh was used to fit each MR
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data scan and a few pseudo landmarks were positioned to represent the arm-
chest interface (as described in section 2.2), the node numbers for this region
were known a-priori and automatically selected in order to enforce displacement
boundary conditions in that region.

3 Results and Discussion

3.1 Principal Components of Breast Shape

A table of the proportion of variance captured by each principal component is
shown in Table 1. Table 2 shows the first three modes of shape variation. Princi-
pal component one accounts for overall size of the breast (i.e. scaling), principal
component two explains variations in chest width and principal component three
explains variations in breast cup size.

Table 1. Proportion of total variance described by each principal component

Mode 1 2 3 4 5 6 7 8 9 10 11-21

% of variation 48% 11% 7% 5% 4% 3.5% 3.1% 2.7% 2.3% 2.1% 11.3%

Table 2. First 3 principal components of breast shape.

+3σ µ −3σ

PC 1

PC 2

PC 3

3.2 PCA for Mesh Generation

Table 3 shows the performance of the PCA-based fitting method in creating a
suitable initial mesh in the leave-one-out tests when using all 21 principal modes
of variation. The first column presents the errors from a manual fit of the generic
model to each patient breast shape for comparison (µ = 1.26mm, σ = 0.29mm).



6 Rajagopal et.al.

The second column shows the errors from only optimising for the weights on
the principal components for each unseen dataset (µ = 3.36mm, σ = 0.33mm).
The final column shows the final errors after the PCA-based models were further
fitted to match the patient breast shape using a standard non-linear least squares
technique (µ = 1.52mm, σ = 0.41mm). These fits were conducted completely
automatically, without any manual intervention.

These results show that PCA-based fitting provides a good initial mesh for
further refinement. The higher average error at the end of a PCA-based fit is
primarily due to the availability of only 21 degrees of freedom (the 21 PC weights)
as opposed to the 2160 degrees of freedom (all the nodal degrees of freedom in
the mesh) during a standard non-linear least-squares fit. It is likely that this
error would also reduce when using a larger database of patient datasets. The
large error for patient 5 is due to the significant compression imposed on the
breast by the compression pads in the breast MR coil which makes this shape
significantly different from the rest of the shapes in the database. Nevertheless,
PCA-based fitting completely removes the need for manual guidance of model
creation. The last row of Table 3 shows that when a t-test is performed between
column 3 (PCA-based refined fit) and column 1 (individual mesh fits), the p-
value of 0.58 indicates there being no evidence of differences in error between
the two methods. The reported error magnitudes for our proposed method do
not preclude the method from being used in a clinical environment.

PCA-based fits were also conducted using only 14 modes, 7 modes and 4
modes for the first 4 patient datasets. These were conducted to determine if
fewer number of weights would suffice for the generation of an initial mesh and
it was indeed possible to even use as low as 4 principal components to generate
a suitable initial mesh.

3.3 Unsupervised Simulation of the Supine Breast

Once a finite element model has been automatically fitted to a specific patient’s
breast shape, it is then possible to establish a consistent set of loading and
boundary constraints to initiate a biomechanics simulation from the prone to the
supine configuration. We have the capability to embed medical images into these
models to then simulate clinical images in other orientations of interest. Here
we show (Fig. 1) the process of transforming the prone MRI of patient 19 into
synthetic MRIs depicting the breast shape and tissue configuration in the supine
orientation. Since the boundary and loading conditions on the breast under
gravity are the same across the entire population (only mechanical properties and
breast shape vary) this simulation can be conducted completely unsupervised.
We envision that with this power, simulations and generation of supine images
could be conducted on a dedicated server for a clinician to later download and
visualise during their diagnosis or surgical procedure.
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Table 3. Performance of PCA-based mesh fitting. RMS projection errors (in mm) are
presented.

Patient Individual-Fit 21 PC-Based-Fit Final Fit Error

1 1.73 3.0 1.33
2 1.8 3.3 1.26
3 1.87 2.94 1.67
4 1.5 3.29 1.02
5 1.45 3.52 2.77
6 1.4 3.9 1.73
7 1.74 3.4 2.00
8 1.68 2.62 1.35
9 1.66 3.12 1.27
10 1.69 3.18 1.98
11 1.31 2.94 1.14
12 0.84 3.36 1.57
13 1.56 3.1 1.28
14 0.83 3.19 1.82
15 1.53 3.49 1.03
16 1.48 3.61 1.67
17 1.66 3.69 1.32
18 1.56 3.65 1.15
19 1.32 3.84 1.93
20 1.21 3.47 1.41
21 1.2 3.9 1.42
22 0.99 3.3 1.26

mean±SD 1.26±0.29 3.36±0.33 1.52±0.41

t-test col1 vs col2 col2 vs col3 col3 vs col1

P-value 3.4869E-14 2.12457E-14 0.58

Fig. 1. Automatic creation and solution of a finite element model of the breast from
prone MR images to simulate the supine configuration. Top left: Prone MRI slice, top
right: MRI embedded in 3D model, bottom left: model predicted supine shape, bottom
right: synthetic supine MRI slice.
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4 Conclusions

We have presented a completely automated method for creating biomechanical
models of the breast from patient MR images and for simulating the supine
breast MRI. Model creation involves the use of principal component analysis on
a database of breast shapes. Any unseen patient breast shape can be expressed
as a weighted sum of the principal components. As such, a template model was
fitted to an unseen dataset by finding an optimal set of weights of the principal
components that minimise the error in capturing the patient’s breast skin and
rib surfaces. The complete procedure can produce meshes with µ = 1.52mm,
σ = 0.41mm root mean squared errors. We have also demonstrated the capability
to use these models to simulate the supine breast shape and produce synthetic
supine MRI. These methods demonstrate for the first time, the possibility of
using patient-specific biomechanical modelling in an unsupervised manner to
enable ready integration into routine clinical workflows.
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Abstract. We present a novel multi-modality image registration technique 

based on individual-specific biomechanical finite element (FE) models of 

the breasts. Information from 3D magnetic resonance (MR) images was 

aligned with X-ray mammographic images using non-linear FE models to 

simulate the large compressive deformations between the two modalities. A 

perspective ray-casting algorithm was used to generate 2D projections of 

the FE-warped 3D MR images. The clinical applicability of the method was 

demonstrated using X-ray and MR images of a breast cancer patient. This 

novel framework integrates modelling and image processing techniques, 

which allows us to iteratively improve the predictions of the biomechanical 

models by modifying modelling assumptions regarding the boundary 

conditions and mechanical properties of the breasts.  

1   Introduction 

X-ray mammography and magnetic resonance imaging (MRI) are two commonly 

used modalities to image the breast in the diagnosis and management of breast cancer. 

X-ray mammograms are useful for locating tumours and micro-calcifications, 

whereas contrast-enhanced MR images can indicate regions of angiogenesis, which 

may be associated with breast cancer. It would therefore be of clinical benefit to be 

able to collocate information from the 2D X-ray mammograms of the compressed 

breast with information from 3D MRI of the pendulous breast.  

In previous studies, the difference in the shape of the breast was accounted for 

during image registration using simple transformations of the breast MR images such 

as affine deformations [1], using geometric approaches [2], or thin plate splines to 

align projections of the MR image with mammograms [3]. Although these methods 

allow for simplified and fast calculations, they do not reliably reproduce the 

deformation of the breast tissues from the prone to compressed states and this may 

give rise to substantial registration errors. Further studies have shown that affine 

transformations were insufficient to recover the non-linear deformations between 

sequential prone MRI acquisitions [4]. Thus, for the much larger deformations of the 
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breast tissues during mammographic compressions, it is unlikely that such image 

transformations would be suitable for multi-modality data fusion.   

Small-strain finite element (FE) models derived from prone MRI have been 

proposed to simulate mammographic compressions [3]. However, no validation of 

these linear FE models for mammographic breast compressions was performed, and 

since the small-strain theory is not valid for large deformations (>1%), the mechanics 

predictions are likely to be questionable. Finite strain formulations have thus been 

used to model compressive deformations of the breasts [5, 6].  

In this paper, we describe a novel method for the multi-modal 3D-2D non-rigid 

registration of prone MRI to X-ray mammography using non-linear FE models. This 

method was systematically validated using images from compression experiments on 

a breast phantom, and then applied to clinical images from a breast cancer patient. 

The integration of individual-specific finite element models of the breast using finite 

deformation elasticity coupled with contact mechanics and a perspective ray-casting 

algorithm to generate realistic mammograms has not been previously investigated. 

The resulting pseudo-mammograms were compared with the clinical X-ray 

mammograms, and the results were used to assess the modelling assumptions and 

update the parameters of the FE models. This iterative approach of comparing clinical 

mammograms and FE model predictions as feedback to the modelling framework has 

not been previously explored.  

2   Methods 

2.1   Multi-modality imaging 

A CIRS triple modality breast shaped phantom was imaged before and during 46% 

and 49% compressions in its anterior-posterior (AP) and cranial-caudal (CC) axes, 

respectively, using a 1.5T Siemens MRI scanner and a GE Senograph DS 

mammography system. A T1 weighted FL3D pulse sequence was used for MR 

acquisition and the imaging parameters were: dimensions 512 x 512 pixels; field of 

view 350mm x 350mm; 176 slices; slice thickness 0.75mm. The breast phantom 

contained 12 distinct inclusions that were visible under MR and X-ray imaging. The 

same systems were used to acquire images from a breast cancer patient with two 

small tumours in order to illustrate the clinical utility of the proposed methods. 

2.2   FEM compression and MR image warping 

The MRI data for the uncompressed phantom and the prone breasts were 

segmented and used to create customised FE models [6]. Compression was modelled 

using finite deformation elasticity coupled with contact constraints based on the 

penalty method [7]. The biomechanics reference state was estimated by removing 

gravity from the uncompressed models [9]. The FE compression models were used to 

non-rigidly warp the MR images of the uncompressed bodies [Figure 1]. The breast 

phantom was modelled using the isotropic and incompressible neo-Hookean 

constitutive relation: W=C1(I1-3), where I1 is the first principal invariant of the 
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deformation tensor and C1 is the stiffness parameter, which was previously estimated 

as C1=1.07kPa [10]. The frictional coefficient between the breast phantom and our 

perspex compression device was determined experimentally to be 0.95. The penalty 

values for the normal (frictionless) and tangential (frictional) components of the 

contact between the breast phantom and the compression device were set to 50MPa/m 

and 60kPa/m, respectively. 

(a)                                   

(b)                                   

Figure 1: MR images of the uncompressed breast phantom were segmented to 

create FE models for simulating the AP (a) and CC (b) modes of compression.    

The breast tissues were modelled as isotropic, homogeneous, and incompressible 

solids. The biomechanical reference state for compression was determined by using 

the model to reverse the effect of gravity on the prone configuration. The initial 

stiffness value for the breast tissues was previously estimated to be 400Pa [6]. 

The breast tissues were allowed to slide over the surface of the ribs to mimic the 

loose attachment via Cooper’s ligaments. In several previous studies using 

biomechanical FE models of the breasts [3, 5], displacements of nodes on the skin 

surface were explicitly prescribed, however this gives rise to physically implausible 

reaction forces on the free (skin) surface of the breast. In contrast, the contact 

constraints between the plates and the chest wall [6, 11] used in this study more 

closely matches the physical situation. The final distances between the compression 

plates were recorded as 64mm, corresponding to 52% compression for the patient.   

2.3 Generating a pseudo-mammogram from FE-warped MRI  

X-rays in a mammography system emanate from a point source. To simulate this 

process, a perspective ray-casting algorithm was used to project the 3D images into 

2D [3, 7]. A pseudo mammogram image was then calculated using the Beer-Lambert 

law:     
       , where the transmitted,   and incident,    X-rays are related using 

the path length,    through material i, and its effective attenuation coefficient,   . 
Effective attenuation coefficients can be calculated from the energy spectrum that 

is emitted by the mammography machine and the attenuation coefficient spectrum 

using:     
 

 
    

  

  
       

    , where Ij is the number of photons at the energy 

value j, I0 is the incident energy beam (approximated as a sum of the photons at each 

energy level j),    is the mass attenuation coefficient at energy j, and   is an arbitrary 

thickness of tissue through which the beam passes [12]. The physical density and 

      

      



attenuation characteristics of the bulk of the breast phantom simulates that of an 

average 50% glandular breast [13]. The cystic and solid masses were represented as 

water and ductal infiltrating carcinoma, respectively [14]. Based on the polyenergetic 

X-ray spectrum for a rhodium anode and rhodium filtering at 31kVp [13], the 

effective attenuation parameters for the bulk, solid and cystic masses were estimated 

to be 0.79cm
-1

, 1.04cm
-1 

and 0.99cm
-1

, respectively. For the patient case, the peak 

voltage was 29kVp, so the monoenergetic equivalent attenuation coefficients for 

adipose, glandular, skeletal muscle, and infiltrating ductal carcinoma were calculated 

as: 0.73cm
-1

, 0.92cm
-1

, 1.10cm
-1

 and 1.09cm
-1

, respectively. 

The above methods provide an approximation of an initial “for processing” (raw) 

mammogram. However, the acquisition provided “for presentation” images, which 

involve certain image processing enhancements to allow the clinicians to better 

interpret the information. For the GE Senographe system, this involves unsharp 

masking, thickness equalisation and a negative logarithmic transform. Unsharp 

masking is used to sharpen an image (from y to y’) and can be expressed as      

          , where s is the smoothed image and c is a constant determining the 

level of enhancement [15]. The blurring was performed using Gaussian smoothing.  

Thickness equalisation compensates for the lower image intensities at the edge of 

the compressed breast by the addition of an image representing the tissue thickness. A 

2D image was generated by projecting through a 3D mask of the FE warped image. 

This image was then normalised and inverted, then multiplied with a correction factor 

representing the image intensity of the fatty tissue or bulk material (obtained from the 

X-ray image) to generate the thickness image.   

3   Results 

3.1 Validation using a breast-shaped phantom 

(a) (b) (c) (d)  

Figure 2: Experimental compressed (a) AP and (c) CC X-rays are compared 

against (b) AP and (d) CC pseudo X-rays generated from FE-warped 3D images.  

The FE model of the breast phantom was compressed and used to deform the 

segmented images of the phantom. A 2D projection image was then generated from 

the 3D FE-warped image via the Beer-Lambert law and compared with the 

experimental X-ray image [Figure 2]. Landmark based measures such as the area 

overlap (Dice coefficient); symmetric mean absolute surface distance (SMAD), and 

the centroid location were evaluated for each of the inclusions. The mean (±SE) errors 

between the experimental X-rays and the projected FE-warped pseudo X-rays were: 

Dice: 78.6% ± 0.9%; SMAD: 1.10mm ± 0.04mm; centroid error: 1.35mm ± 0.06mm.  
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where A is the target image, B is the simulated image, dk
ab

 is the minimum distance 

between the k
th

 surface voxel on A and the surface voxels on B, and na, nb are the 

number of surface voxels in A and B, respectively. 

3.2 Application to clinical images from breast cancer patients 

Having now developed and validated a modelling framework for 3D-2D 

multimodality image registration, the approach was demonstrated using clinical 

images from a breast cancer patient. This framework was then used to further improve 

biomechanical modelling of mammography.  

Two small tumours were identified by an expert radiologist on the X-ray 

mammograms and in the prone MR images of the right breast [Figure 6]. However, it 

was noted that the two tumours appeared connected in some MRI slices. Therefore in 

the 2D pseudo-mammogram, one continuous tumour was indicated. The accuracy of 

the approach was based on the localisation accuracy of this tumour.  

 
Figure 3: Framework for 3D-2D multimodal image registration to estimate 

FE-model parameters such as mechanical properties and boundary conditions 

The compression constraints have a significant impact on the modelling accuracy. 

However, the location of the compression plates with respect to the uncompressed 

breast is unknown. Furthermore, the angle of the compression plates with respect to 

the patient varies depending on the patient’s positions during mammography. For 

example, a patient can rotate about the vertical (yaw) axis, so that more axilla tissue is 

captured in the image [Figure 4]. In a previous study, this yaw angle was assumed to 

be 25º towards the axilla edge: this was based on a subjective visual assessment 

comparing the contours of the breast in the mammogram with the model [6]. Patients 

can also lean to the side resulting in rotation about longitudinal axis (roll). This 

rotational information is not captured during mammographic imaging, thus the intial 

roll angle was set to 0º. Novel methods were developed to automate the plate 

alignment based on the X-ray images, and hence reduce the subjectivity [Figure 3].  



 
Figure 4: The location of the compression plates was altered by updating the 

yaw and roll angles based on image similarity. 

As one of the few consistent landmarks in the breast, the nipple was used to set the 

translation of the compression plates. The yaw angle was then set by maximising the 

normalised cross correlation using a rigid rotation centered about the nipple location. 

The positioning of the compression plates was then updated and the FE simulation 

was repeated until the yaw rotation angle and translation parameters were converged 

[Figure 4]. This calculation of the yaw angle and translation substantially improved 

the accuracy of the tumour alignment (SMAD reduced from 16.4mm to 8.4mm).  

 
Figure 5: Sensitivity of the FE model deformations with respect to the roll 

angle of the compression plates and the mechanical stiffness of the breast model.  

The effects of breast roll and stiffness were also considered. In a previous study 

[5], the roll was assumed to deviate by ±30º. Here, the sensitivity to breast roll was 

assessed at 10º intervals from -40º to 20º using the SMAD of the tumour as an 

accuracy measure [Figure 5]. Note that the minimum error occurred at a roll angle of -

20º, but the error remained relatively stable between roll angles of -30º to -10º. This 

indicates that breast roll needs to be accounted for in simulating mammographic 

compressions; however it is sufficient to be accurate to within ± 10º.  

0 100 200 300 400 500 600

0

2

4

6

8

10

12

14

-50 -40 -30 -20 -10 0 10 20 30

Stiffness (Pa)

SM
A

D
 (

m
m

)

Roll angle (degrees)



7 

 

Figure 6, shows how modifying the location of the compression plates substantially 

improved the tumour alignment. It should be noted that for the case study considered 

here, the tumour was located near the sternum and close to the skin. The sensitivity of 

the localisation accuracy with respect to the roll angle is likely to be greater in this 

case compared to that with a tumour located more centrally within the breast.  

The sensitivity of the material stiffness (with C1 ranging from 90Pa to 500Pa) was 

also investigated using the tumour SMAD as an accuracy measure. In Figure 5, the 

SMAD for the tumour was approximately constant for stiffness values between 300-

500Pa, with the error ranging from 3.1mm to 3.3mm. Thus, the kinematics of 

compression may have a greater effect on the accuracy of the FE model deformations 

compared to the breast tissue stiffness. It is thus possible that customised estimation 

of the mechanical properties is not required for reliable compression simulations, 

although this needs to be verified using additional patient data.  

 
Figure 6: Prone MRI, mammogram (MG) and pseudo-mammograms (pMG) 

for a breast cancer patient. Tumours are outlined in yellow and the nipple 

location is highlighted in pink. Initially the plates were positioned by visual 

alignment (pMG1). Automatically updating the translation, yaw and roll of the 

compression plates substantially improved the alignment (pMG2).  

4 Discussion 

We have proposed a new method for non-rigid registration of 3D MR images to 2D 

X-ray mammograms using non-linear FE modelling of the breast to predict the tissue 

deformations from the prone gravity-loaded state to a compressed configuration. The 

method was validated using MR and X-ray images of a breast phantom under various 

levels of compression and the target registration error (based on the 12 inclusions) 

was less than the size of 2 MRI voxels (0.68mm x 0.68mm x 0.75mm).  

We have demonstrated the applicability of this approach to breast cancer imaging. 

The sensitivity of the material properties and boundary conditions on mammographic 

compression simulations was assessed for a breast cancer patient. A novel automated 

method for defining the location and orientation of the compression plates based on 

the clinical images of the breasts was proposed and demonstrated. Best localisation 



results were found with a roll between -10º and -30º, whereas the error was relatively 

insensitive to mechanical stiffness based on a single case study with one feature used 

for the error measure. Currently these techniques are being applied to other patient 

cases. In future work, heterogeneous mechanical properties of the internal structures 

will need to be incorporated into the mechanics simulations.  

The use of a biophysically-based modelling tool that can co-localise features across 

different breast imaging modalities, including MRI and X-ray mammography, will 

potentially help clinicians in the diagnosis and management of breast cancer.  
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Abstract. Localization of target structures in open surgical breast pro-
cedures relies on metal wire guides to give orientation hints, together with
radiological images. Patient positioning, however, is different for image
acquisition and surgery. We propose to simulate the breast deformation
between these positions to track and visualize the target position, while
acquiring the interventional breast shape to guide the deformation. In
the proposed setup, a structured light scanning system allows the scan
of the surface, and the display of information onto the patient skin. An
interactive update of the simulated deformation requires a fast scanning
procedure and a real-time capable, robust deformation simulation. In
this paper, besides the general system we propose specific extensions
of a highly efficient dynamic corotated finite element method (FEM)
to incorporate non-linear material properties while maintaining stability
and speed of the original simulation. We assess the prone-supine surface
distance after deformation of the prone data on a set of five volunteer
images.

(a) (b)

Fig. 1. The nipple position and a landmark position (cross) visualized in renderings of
the prone (a) and supine (b) breast.
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1 Introduction

Motivation and state of the art. Breast conserving breast cancer surgery, i.e.
lumpectomy and open biopsies, suffer a high recurrence rate (8% to 14%) and
high number of positive margins (17% to 59%, [3]) and often poor cosmetic
results, which is due to the way of indicating the target area with metal wire
guides most often inserted under mammographic image guidance.

Several attempts have been made to improve surgical outcomes, relying on
ultrasound imaging, on mammography, and on MRI. Methods employing robotic
approaches for the placement of biopsy needles may eventually become available
[10], but solve only a very constrained problem of placing a needle in a fixated
breast, while approaches that help the surgeon to navigate more safely are more
challenging and less developed. The study of Alderliesten et al. using MRI-based
navigation tackles the problem of tracking the breast surface from a supine MRI
scan to the surgery position [1], but neither support navigation in open breast
surgery nor account for deformations in the prone positioning. Support of open
surgery is attempted in the ultrasonography-based approach presented by Sato et
al. [15]. Their approach, however, requires a tracking equipment to be positioned
in the operating room, and will display the superimposed target area only in a
computer monitor.

Previous work tried to match prone and supine breast shapes by employing
finite element analysis using non-linear material laws [13].However, the compu-
tational complexity of this approach is high and thus difficult to be performed
in clinical routine. The fastest available implementations of dynamic non-linear
models [7] are based on explicit finite element approaches, which limit the mag-
intude of the largest possible time step in a dynamic simulation. Furthermore,
the deformation simulation has to be followed by a non-rigid registration step
to achieve the final result. The contribution of Carter et al. addresses intra-
interventional visualization of target structures with a technical setup that is
not feasible practically [2]. Most closely resembling the setup in our contribution
is the work of del Palomar [11], who matched the deformed mesh to a body scan
of the women standing upright. These scans require a technical setup not suited
to the situation in the operating room.

Contribution. We propose to use the pre-interventional MRI scans which are
routinely taken to assess disease extent and inspect the contralateral breast.
Based on these scans, we attempt to convey the target area to the breast surgeon
during intervention. A prerequisite is to model the deformation of the breast
from MRI in the prone position (using breast coils) to the supine position used
in surgery to provide the current lesion position, which can then be displayed
onto the breast using the scanner hardware that is employed to acquire the
breast surface. The central element in this setup is the lesion tracing from the
prone MRI scan into the current interventional position (see Figure 1).

Previous methods either lack speed or require extensive manual interaction as
well as a sophisticated technical setup. Therefore, we propose an approach that
combines automatic segmentation and meshing methods with a fast, real-time



capable deformation simulation. Our goal is to integrate an isotropic non-linear
material law by adjusting the per-element elastic modulus in every simulation
step. While anisotropic hyperelastic material laws further increase the physical
accuracy of the results, they increase the computational effort significantly, and
they require higher resolved meshes to represent the underlying biomechanical
structures. Therefore, for a clinical setting, a compromise has to be made between
fast calculations and highly realistic material behavior. We describe methods to
systematically adjust the per-element elastic modulus between single steps of
the simulation. Interactive speed of the simulation is maintained regardless of
this addition, making it feasible for peri-interventional application.

Computationally, our approach has several beneficial properties. It avoids
complicated measurements to determine non-linear material parameters, and
by being based on Hooke’s law, it can be integrated into existing linear elastic
code, thereby assuming non-linear or co-rotated strain formulations to enable
large deformations. We approximate microscopic material tissue properties on
a macroscopic scale by effectively stiffening the material under load to avoid
unnatural behavior, e.g. inverted finite elements. The API to call the simulation
code does not require to determine stress or strain values and therefore the
method is transparent to the strain formulation (co-rotated or Green strain).

2 Material and Methods

Our proposed system starts with MR images taken in the prone position that
are automatically segmented into deformable and fixed tissues using the methods
proposed by Wang et al. [17]. The segmentation is used to setup the FE model,
before the interactive deformation simulation starts in the operating room. A
highly efficient FEM-based breast deformation approach is used to simulate the
shape change from MRI to the current interventional positioning, even allowing
for real-time repositioning at moderate mesh resolutions.

In the operating room, a surface scan of the patient is obtained using struc-
tured light scanning [9]. From the acquired point cloud, a mesh is built up,
forming the target shape into which the MRI scan-based model is then fitted
by optimizing parameters of the simulation. Finally, the display of the lesion
position is achieved using the structured light projector.

MRI Data and Model Generation Standard non-fat-suppressed T2-weighted
breast MRI data were obtained from five volunteers with voxel sizes in the order
of 1 × 1 × 5 mm, once in prone (facing down) and once in supine (facing up)
position. All datasets were segmented into rigid and deformable tissue, where
the breast parenchyma and the adipose tissue were considered elastic, and the
thorax was considered fixed. A volumetric tetrahedral mesh was generated from
a downsampled version of this data, resulting in meshes consisting of between
50k and 300k elements.

Breast Deformation Simulation Our approach is based on a multigrid finite ele-
ment framework developed by Georgii and Westermann [5], which efficiently



simulates deformations of the breasts using the so-called co-rotated Cauchy
strain formulation from Rankin and Brogan [14]. One novel aspect of our work
is to update the per-element elastic modulus based on the shape change that
the element experiences in a given simulation step. By this explicit per-element
elasticity update, we effectively model a non-linear isotropic material law.

The deformation of a volumetric object is described by a displacement field
u(x), u : R3 → R3; x ∈ R3, which maps the reference configuration Ω to the
deformed configuration {x + u(x) | x ∈ Ω}. Driven by external forces f , a
deformed solid is governed by the well-known Lagrangian equation of motion,
Mü + Cu̇ + Ku = f , where M , C, and K are respectively known as the mass,
damping and stiffness matrices, u denotes the composition of the displacement
vectors of all vertices, and f consists of the force vectors applied to these ver-
tices. The stiffness matrix K is assembled from the so-called element stiffness
matrices Ke. Typically, every element in a finite element discretization has only
a very small number of neighbors, and thus the resulting stiffness matrix is very
sparse. The element matrices are precomputed with a fixed elastic modulus E0.
Due to the linearity of the underlying material law, the element matrix of a par-
ticular element can then be obtained by scaling Ke by the stiffness value of this
element relative to E0 ∈ R. Therefore, we can update the stiffness values within
the assembling process at nearly no additional computational costs and thus
achieve a fast update of stiffness values in the FE model analogously to previ-
ous approaches [4, 16]. To efficiently update the data structures of the numerical
multigrid solver, we make use of a fast approach to compute sparse-sparse matrix
products [6].

Non-linear Material Modeling We propose a novel measure of element deforma-
tion that is based on the change of element shapes. The shape of the element
is considered in undeformed and deformed state, and the two states are com-
pared. Note that the undeformed tetrahedra are dissimilar in shape, hence we
calculate for each vertex of one element the largest relative change of distance to
the three opposite edges, i.e. the maximum from twelve distances per element.
By only considering contracting distances, this yields relative shape change val-
ues s ∈ [0, 1], from which a stiffness update has to be derived. Here, the initial
hypothesis was that breast tissue is composed of lumps of stiff material that
can move about with little friction, which requires a small elastic modulus on
a macroscopic scale. However, under compression one observes a non-linear be-
havior, since now the stiff tissue parts determine the material behavior, i.e., the
stiffness increases when the stress increases in our macroscopic model. The ele-
ment relative elastic modulus is set to Er = 1 + α · s with α ∈ R a user-defined
scalar factor greater than zero that has been fixed at a value of 2.5 for all data
in our experiments, and s ∈ R the shape-based change value.

Explicit updates of the per-element elastic modulus in the simulation steps
have to be performed carefully to ensure stability of the approach. This is due
to the fact that internal forces in the body are mainly proportional to the elastic
modulus, and thus updating this value while keeping the deformation increases
the stored elastic energy. Therefore, we propose to use a dynamic simulation



model exhibiting damping and inertia, and to update the elastic modulus in small
steps. This is accomplished by an automatically set stiffness damping coefficient
proportional to the global average of element stiffness changes. In all our tests,
with a time step of 0.033 s we achieved stable behavior with this damping scheme.

Body Surface Scanning A robust and proven structured light scanning system
using binary reflected Gray code patterns was set up to allow for a setup 1 m from
the patient. From the point cloud, a mesh is reconstructed and later used as a ref-
erence state into which to deform the breast as acquired in the pre-interventional
MRI scan. This approach has been chosen over other technologies since it is easily
scalable in terms of speed, coverage, and resolution, transportable, and requires
minimal setup. To determine the orientation of the scanned surface in the world
coordinate system, an inertia measurement unit (IMU) is attached to the struc-
tured light scanner setup. After calibrating to the horizontal plane, it tracks the
orientation of the scanner and can thus provide the orientation of the camera
and hence the direction of the gravity with respect to the observed scene. Point
clouds were in this work simulated based on supine MRI.

MRI-to-Surface Matching and Target Area Display The intraoperative matching
of the deformed MRI scan to the body surface observed with the structured
light scanner is accomplished by adjusting the base elastic modulus and the
orientation of the patient, which has been approximated by the IMU sensor
data. The four degrees of freedom in this formulation may be optimized using
any optimization algorithm. To accelerate the simulation, we apply gravity in
the opposite supine direction to achieve a gravity-free state and simultaneously
apply gravity in the direction corresponding to the interventional setting. While
this process is generally not applicable in case of non-linear material laws, in
our setting it gives reasonable results which is due to the heuristic approach to
stiffen the material under compression.

In this contribution we assess only the performance of the deformation sim-
ulation in terms of the distance between the surface of the deformed prone MRI
scan and the surface derived from the supine MRI. We use the method of Quin-
lan et al. to assess the distances, whereby distances are always measured to the
closest point in the other mesh [12].

When the optimized breast deformation has been found, the surface of the
deformed tetrahedral mesh is used to calculate the projection of the target po-
sition onto this surface. Our intention is to use information of a tracked surgical
tool to define the viewing direction, and the intersection of this direction with
the scanned surface will be used to visualize the target position on the patient’s
skin.

3 Results

The shape-based stiffness update has been developed and evaluated on an arti-
ficial dataset prior to the application to breast MRI data. In these experiments,
the shape based update criterion was able to produce plausible deformations of



the model which where in line with the observed real-world behavior. Based on
literature values, a Poisson ratio of 0.43 and a base elastic modulus of 103 Pa
was chosen to characterize the breast tissue material (cf. [7]).

For specific combinations of base elastic modulus and the weight parameter α
in the update function, however, oscillations can be observed due to the discrete
update that causes jumps in the material modeling. This was addressed with
the implementation of a damping method for the stiffness updates. Curves were
plotted to track the average update of relative stiffness values from simulation
step to simulation step. From these plots it was observed that an update using the
shape-based distance metric yielded a more robust behavior than an analogous
approach based on the von Mises stress norm [8]. The reason for this difference
is the unboundedness of the von Mises stress, while the limit of the shape-based
update is determined by the update function, since the values derived from the
shape change are always in the interval [0..1].

Simple volume mesh phantoms (cf. [8]) also allowed us to compare the dif-
ferent metrics to elucidate the reasons for the oscillations. For this experiment,
the relative stiffness values were visualized for individual tetrahedra to assess
the smoothness of the relative stiffness map. The resulting maps exhibit smooth
transitions of relative stiffness values between neighboring tetrahedra, which is
beneficial since larger jumps are known to affect the stability of FEM solvers.

Four of the five volunteer data sets were evaluated regarding the average
distance of the meshes for the region encompassing the deformable part of the
breast. In one data set, the supine scan was not segmented by the automatic
algorithm. Fig. 2 shows pairs of images in undeformed and deformed state.

Fig. 2. Distance measurements between original prone and supine surfaces derived
from prone/supine MRI scans (top row) and simulated supine (from prone) and original
supine surfaces (bottom row) for different data sets (from left to right). A uniformly
scaled color map (green to red: 0 to 90 mm distance) was used for all images to visualize
the distances.

The performance of the implementation using a damped shape-based update
of the elastic modulus is summarized in Table 3. Datasets were sampled to
5× 5× 5 mm resolution. Note that by enlarging voxels to 10× 10× 10 mm one
can increase the speed by a factor of 8, thereby allowing real-time updates. For



the practical application, only the simulation of either the left or the right breast
is required, approximately doubling the speed in both cases.

Table 1. Timing statistics. 25 simulation time steps (sim.) were performed, and the
same number of per-element stiffness update operations (up.). Timings were measured
on an Intel Core i7 Quad 3.0GHz CPU.

ID #ele. time sim. [ms] time up. [ms] total 25 steps [sec]

4 47,895 189 48 5.9
2 99,390 400 98 12.5
0 158,340 644 149 19.8
3 158,340 628 149 19.4
1 313,335 1432 318 43.8

4 Conclusion

Physically convincing breast deformations can be handled with our efficient
framework. It is particularly beneficial for practical applicability, since after cal-
ibration and initialization no further parameters need to be adjusted. Also, the
fast, automatic segmentation of the data and the easy setup and execution of
the simulation will help to proceed with further pre-clinical tests of the setup.

There are a number of topics, however, that we wish to address in the fu-
ture. At the moment, we use a simple approach to determine the gravity-free
state, which does not account for non-linearities in the material behavior. We
plan to refine the process of generating a gravity-free state similar to previ-
ous approaches, where the reference state was iteratively approximated from a
loaded configuration [13]. In addition, we will have to consider the unknown
compression introduced by the breast coil. Unfortunately, this will also increase
the computational costs for the simulation.

Also, the simulation cannot adequately deal with deformations that are ob-
served in volunteers with large or fatty-replaced breasts. Our ongoing work there-
fore introduces contact surfaces with frictional forces to model the physical situ-
ation between soft tissue and the rib cage more accurately; also we are examining
a coupled simulation of a deformable body filled with a viscous fluid.

Last, the structured light scanning approach will have to prove its usability
in a clinical setting, both regarding field of view and achievable contrast and
speed. In case of a successful application, extensions can be made, for example
regarding a simultaneous scan-display mode using a real-time capable structured
light scanning approach [18].
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Abstract. Breast cancer is the most common cancer type among women.
Currently, the standard screening method is X-ray mammography. Ad-
ditionally MRI is used in clinical routine. A new imaging method in
development is 3D Ultrasound Computer Tomography (USCT). The cor-
relation of MRI and USCT with X-Ray mammography is challenging due
to the different image dimensionality, patient positioning and compres-
sion state. Image registration is likely to overcome these difficulties. Since
different imaging modalities have different registration requirements, a
parameterizable registration framework based on FEM modeling of the
mammographic compression was developed. First evaluations of the reg-
istration using clinical datasets show promising results with a clinically
applicable accuracy throughout all modalities. The effect of parameters
on the registration accuracy was successfully evaluated: 2D/3D regis-
tration of the breast is feasible and may help to improve multimodal
diagnosis in future.

Keywords: Registration, Breast Imaging, Multimodal Diagnosis

1 Introduction

Breast cancer is the most common cancer type among women in Europe and
North America [1]. For early diagnosis, medical imaging is essential. Currently,
X-ray mammography (XRM) is the established screening method to detect
breast cancer. It provides high resolution projection images of the breast, is
cheap and broadly available. However, the sensitivity of XRM in dense breasts
is limited [2].

Additionally to XRM, Magnetic Resonance Imaging (MRI) is used in clinical
routine. It offers three-dimensional volumes with high contrast of soft tissue and
high diagnostic accuracy [3]. Yet, the specitivity of contrast enhanced MRI is
discussed controversially.

A new approach for breast imaging is Ultrasound Computer Tomography
(USCT), which offers three-dimensional volumes of the breast in prone position
[4]. It provides three types of images: Reflection images display the morphol-
ogy of tissue. Attenuation and speed of sound (SoS) images provide a tissue
characterization.
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Fig. 1. Simplified architecture of the breast image registration framework.

MRI is usually read in combination with XRM for definite diagnosis. Since
USCT is still in development, comparison of images with the standard screening
method is of interest for quality measurement. Yet, the correlation of three-
dimensional images and XRM is challenging due to their different dimensionality,
patient positioning and deformation state of the breast. Image registration may
help radiologists in multimodal diagnosis by creating directly comparable images.
Since different modalities have different registration requirements, a more general
registration framework is required.

In this paper we present a parameterizable model-based framework based on
[5] to register volume datasets of different modalities with XRM. The results
of studies with clinical 1.5T MRI, 3T MRI and USCT datasets are presented.
Furthermore, the effect of various registration parameters on the registration
accuracy is evaluated.

2 Methodology

The challenge of the image registration is that XRM shows a two-dimensional
projection of a deformed breast, whereas MRI and USCT images render a three-
dimensional undeformed breast. The general idea of our registration is mimicking
the compression which is applied to the breast during XRM by a Finite Element
Method (FEM) simulation. The underlying patient specific biomechanical model
is built on the basis of the preprocessed volume image and parameterized using
information from the corresponding mammogram. The simulated deformation is
applied to the volume image in order to achieve a compressed configuration.

The goal of our registration framework is to provide a parameterizable soft-
ware, which can handle a wide variety of modalities and is capable of running
extensive parameter studies. For example it is of interest to study the behavior
of the registration using different material models. The proposed architecture is
illustrated in Fig. 1.

2.1 Preprocessing

Because of different physical basis and image acquisition, each modality has its
own characteristics. Hence, the preprocessing has to be done specifically for each
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modality. Our system provides a toolbox for commonly needed preprocessing
tasks. Images have to be rotated to fit the internally used coordinate system
and scaled to match the resolution of the contrary modality. An interpolation
is applied to the volume datasets in order to obtain isotropic voxels. Images
are segmented into background and object using thresholding, morphological
operations, active contours, de-islanding and three-dimensional smoothing. In
an automatic global alignment, the amount of breast tissue imaged in XRM and
the volume image is matched by estimating the breast volumes based on the
segmented images.

2.2 Registration

To simulate the compression, which is applied to the breast during XRM, a
biomechanical model is generated. FEM is used for numerical solution of the
deformation process. To describe the geometry of the biomechanical model, the
segmented volume image is passed to a surface-oriented meshing algorithm based
on Fang et al. [6] resulting in a tetrahedral mesh. Nodes at the back of the
model are held in position to model the fixation of the breast at the chest wall.
The model is assumed to be in an unloaded configuration, i.e. no mechanical
deformation is applied to the breast during the volume image acquisition.

The physical behavior of the model is described by the material model and
the boundary conditions of the compression simulation. We assume the breast
tissue to be an incompressible material. This is approximated using a Poisson’s
ratio near 0.5. The stress-strain relationship of the breast tissue is described by
a Neo-Hookean model. Material parameters can be chosen, e.g. Wellman’s [7]
parameters can be used. Isotropic behavior of the material is assumed. Homoge-
neous as well as heterogeneous models, i.e. fatty and glandular structures, can
be applied. Poission’s ratio and the applied material model can be changed by
the parameter settings.

The mammographic compression is mimicked by a two-step approach. In
the first step, compression plates are added to the simulation, which are moved
closer until a certain compression thickness is achieved. The thickness of the
breast during mammography is readout from the mammogram’s metadata. The
contact between compression plate and breast surface is modeled by a small-
sliding interaction.

Due to uncertainties and simplifications in the biomechanical model, the
circumferences of the deformed volume image and XRM usually do not over-
lay completely after the first simulation step. Therefore, in the second step,
a three-dimensional target model of the deformed configuration of the breast
during mammography is estimated on basis of the mammogram. This model
is compared to the deformed volume image derived from the first simulation
step. Displacement vectors between surface nodes of the FEM mesh and the
target model are defined by a nearest neighbor measure and used to describe
new boundary conditions for the second simulation step. It results in a config-
uration of the MRI volume which shows congruently overlaying circumferences
with the mammogram. All FEM simulations are solved using non linear solvers
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Fig. 2. (A) Three lesions marked in the XRM, (B) three lesions marked in the MRI
volume, (C) Registration result: X-ray like projection of the deformed MRI volume.

for large deformations in the FEM software Abaqus. A detailed description of
the registration algorithm can be found in [8].

2.3 Visualization

After registering the images, reasonable visualization methods had to be imple-
mented in order to present the combined information to radiologists. Due to
overlaying circumferences of the mammogram and the deformed volume image,
comparison and combination can be carried out intuitively. For example (semi)-
quantitative information obtained from the volume image can be projected on
the mammogram, like proposed in [8] or [9].

2.4 Accuracy Evaluation

The quality of the registration can be estimated by the accuracy of the regis-
tration of lesions visible in both modalities. Clinical datasets were reviewed by
experts and the circumference of the lesion was marked (Fig 2 (A) and (B)). Due
to the congruent overlap of the images after the registration, the lesion markings
can be compared directly. By measuring the displacement of the centers and the
overlap of the lesion marking between XRM and the projection of the deformed
volume image, the accuracy of the registration is estimated (Fig 2 (C)). The aim
for clinical applicability is a large overlap of the contours and a small deviation
between the center position.

3 Results

3.1 Quantitative results with clinical datasets

We evaluated the registration accuracy quantitatively with clinical datasets from
different modalities. The parameter set for the registration process was chosen
empirically. Exemplary resulting images are shown in Fig. 3.
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Fig. 3. Registration results with different modalities: XRM (each on the left) and
projection image of the registered volume image (each on the right) acquired by (A)
1.5T MRI, (B) 3T MRI, (C) USCT.

In a first study, 11 datasets from a 1.5T MRI provided by University Hospital
at Jena (UKJ), Germany, where registered with the corresponding craniocaudal
mammograms. Datasets were reviewed in terms of little predeformations to hold
the assumption of an unloaded initial configuration. The mean displacement of
the lesion markings was 11.8 mm ± 6.4 mm. Three datasets showed a displace-
ment of lesions greater than 15 mm. The mean overlap of lesions was 76% ±
34%.

Seven volume images acquired with a 3T MRI system were provided by UKJ.
The images have a higher resolution and different image contrast. Also a different
breast coil was used for acquisition, resulting in only little predeformations. The
mean displacement of the center of the lesion markings was 8.2 mm ± 6.7 mm,
the mean overlap was 79% ± 31%. Only one dataset showed a displacement
above 15 mm.

For 15 USCT SoS volumes provided by Karmanos Cancer Institute Detroit,
USA, the mean displacement was 12.8 mm ± 12.0 mm without and 7.1 mm ±
5.4 mm with manual corrections of the rotation due to patient positioning during
image acquisition of the SoS volume. The mean overlap of lesion markings was
83% ± 27% resp. 91% ± 10%.

3.2 Effect of parameterization

Due to approximations and simplifications during the registration, the accuracy
also depends on the parameterization of the process. To quantify the influence
of parameterization, we evaluated the effect of several parameters on the regis-
tration accuracy.

A MRI dataset from clinical routine provided by UKJ, and the according
XRM were chosen. They contain two clearly visible lateral lesions (lesion 1 and
3) and one clearly visible medial lesion (lesion 2, Fig. 2 (A) and (B)). Thus,
three landmarks can be used to estimate the spatial variance of the registration
accuracy. The aim of the parameter evaluation is to determine the relative effect
of parameters on the registration accuracy. Table 1 illustrates the results of seven
selected parameters.
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At first, the coronal slice cut near the chest wall within the MRI was varied,
resulting in different amounts of tissue to be registered. The mean standard
deviation (SD) of displacements for all three lesions was 5.6 mm. In comparison
to our automatic tissue matching, the estimated cut differs only 1 Pixel from
the optimal cut for this dataset.

Due to a uncertain mammographic projection angle and differences in patient
positioning, datasets might be rotated against each other around the sagittal
plane. We evaluated the effect of rotation by rotating the MRI volume between
-10◦ and +10◦ before registration. The mean SD was 1.4 mm. We found that the
registration accuracy can improve in using even greater rotation angles. Hence,
the projection angle was varied between -30◦ and +30◦. In this case, the mean
SD was 3.1 mm. The medial lesion is affected less by the rotation, since it is
positioned closer to the rotation center.

The FEM mesh density was varied from approx. 1,000 Finite Elements (FE)
to 100,000 FE in order to find a sufficient refinement regarding preferably low
processing time. The registration accuracy did not differ significantly in all reg-
istration runs: the mean SD was 1.3 mm. It tends to be preferable to use more
than 22,000 FE (mean SD: 0.7 mm against 1.5 mm for less than 22,000 FE).

In the next step, the model was tested with homogeneous against hetero-
geneous tissue modeling ’fat’ and ’gland’ differently. The model was built by
segmenting fatty and glandular structures within the MRI and applying Del-
Palomar’s material parameters [10]. The percentage of glandular structures was
varied from aprrox. 1% to 80% in order to account for under- and over-estimation
of the breast density due to segmentation errors. The mean SD within the density
variation registrations was 1.3 mm. No major difference against the homogeneous
model could be found (mean SD 1.2 mm).

We furthermore evaluated the effect caused by the selection of the stiffness
ratio between fatty and glandular tissue (1:0.5 to 1:15) in order to account for
the very diverse material models proposed in literature. The results tend to show
a slightly better registration accuracy using a higher ratio (e.g. 1:7.5). However,
the mean SD is relatively low: 2.4 mm assuming a realistic breast density of
approx. 25% for the given case.

Poisson’s ratio, which indicates the compressibility of the breast tissue, was
varied in a range of 0.3 to 0.495. The overall effect was accounted with a mean
SD of 2.2 mm showing slightly better results for a Poisson’s ratio near 0.45. The
medial lesion tends to be affected more than the lateral lesions, which might be
caused by non-linear effects of tissue movement.

At last, the shape of the 3D target model for the second simulation step was
varied in order to account for the uncertainties caused by the estimation of the
three-dimensional shape from the two-dimensional mammogram. Different cur-
vature estimations of the breast between the compression plates were used for
this experiment. The mean SD was 1.8 mm, which shows that the parameteri-
zation of our proposed second simulation step does not affect the registration
accuracy significantly.
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Table 1. Standard deviations of the registration accuracy caused by variation of se-
lected parameters.

Parameter SD of Displacement Mean of SD
Lesion 1 Lesion 2 Lesion 3

Coronal plane cut 2.5 mm 7.8 mm 6.4 mm 5.6 mm

Sagittal volume rotation 3.8 mm 1.3 mm 4.3 mm 3.1 mm

FEM mesh density 1.3 mm 1.3 mm 1.4 mm 1.3 mm

Breast density threshold 0.8 mm 1.7 mm 1.4 mm 1.3 mm

Fat-gland stiffness ratio 2.7 mm 2.5 mm 2.0 mm 2.4 mm

Poisson’s ratio 1.4 mm 3.4 mm 1.8 mm 2.2 mm

3D shape estimation from XRM 2.0 mm 1.7 mm 1.6 mm 1.8 mm

After all parameter variations, the biomechanical model was built with and
without chest wall as to evaluate the influence of boundary conditions on the
compression simulation. The experiment resulted in a similar registration accu-
racy. Yet, the displacement of the medial lesion was improved, while the lateral
lesions showed a slightly worse registration accuracy by including the chest wall.
This might again be due to non-linear effects of tissue movement in the medial
position tending to be less shifted anterior when modeling the chest wall. The
mean difference in displacement was 3.9 mm.

For the presented dataset, the registration was thereafter carried out with a
combination of the optimal values of the described parameters. In comparison
to the registration with empirically chosen parameters (lesion 1: 10.3 mm, lesion
2: 25.5 mm, lesion 3: 1.5 mm), the mean registration accuracy was improved by
4.6 mm (lesion 1: 8.6 mm, lesion 2: 11.5 mm, lesion 3: 3.2 mm). This shows the
potential in choosing optimal parameters specifically for each dataset.

4 Conclusion

We presented a parameterizable software framework, which allows to register
volume images of different modalities with the corresponding XRM patient-
specifically. It provides a more general approach to the challenging task of cor-
relating two modalities which differ in dimensionality, patient positioning and
deformation state of the breast. Configurability is achieved via a parameteriz-
able registration and modality specific preprocessing of images. The software can
easily be expanded for other upcoming 3D imaging modalities like breast CT.

In the present study, our approach has limited applicability for datasets show-
ing major predeformations. Yet, our research focuses on the evaluation and elim-
ination of the effect of predeformations to deal with a larger variety of clinical
datasets. Extensive parameter studies will be needed to complete this task, hence
our proposed framework provides a good basis for further investigation.

The evaluation of the registration approach with clinical images showed
promising result as for all modalities registration accuracy was in a clinically
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acceptable range in most cases. All registrations were carried out using an em-
pirically chosen set of parameters and completely automated preprocessing and
registration. Our investigation of the effect of parameters demonstrates that the
registration accuracy can be optimized further. Though only one datasets with
three lesions was used due to limitation by computing time, we could show first
trends of how the registration accuracy is affected by different parameters. A
high variance is caused by the preprocessing. Fewer variations tend to be caused
by the composition of the biomechanical model, while some parameters like the
density of the FEM mesh seem to have an insignificant influence.

On basis of our presented results we conclude that a 2D/3D registration of
breast images is feasible with clinical datasets, however the accuracy might also
be highly dependent on the selection of parameters. With an empirically chosen
set of parameters, clinically relevant registration accuracies can be achieved.

The comparability of images and implemented visualization techniques are
likely to enhance multimodal diganosis in a clinical setting. Radiologists might
benefit from the spatial correlation as well as from the combination of two diverse
modalities. Our ongoing studies with a higher number of datasets are likely to
validate the presented results. In a next step, the automatic patient-specific
estimation of optimal parameters, e.g. by using image similarity measures, will
be investigated.
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Abstract. Multimodality breast image registration requires recovering the
difference in deformation between two different image modalities, due to the
position change of a breast subjected to gravity loading. In this study, we
developed a patient-specific biomechanical model to simulate the breast
deformation under gravity by using an open-source Graphics Processing Unit
(GPU) based high performance nonlinear finite element (FE) solver. An
automated procedure has been implemented for generating FE models with a
heterogeneous tissue distribution from segmented MR volume images. The
developed model was used to simulate the deformation of a breast from prone
to supine, with an iteration process to optimize its material property parameters
and positions. It was found that either non-rigid intensity-based image
registration methods or biomechanical model based methods alone have limited
success. However, a hybrid FE-based image registration method, combining
biomechanical models and non-rigid intensity-based image registration
methods, showed a good performance.

Keywords: Finite Element Method, Graphics Processing Unit (GPU), Non-
rigid Image Registration, Biomechanical Modelling, Breast, MRI

1 Introduction

Multimodality imaging, such as X-ray mammography, dynamic contrast enhanced
MRI, digital breast tomosynthesis and 3D Ultrasound, has been increasingly
employed in the detection, diagnosis, treatment planning/delivery and surgery for
breast cancer. Each of these imaging modalities is often acquired with the breast in a
different position. For example, preoperative dynamic contrast MRI is performed with
the subject prone; while US images and intraoperative MR images are acquired with
the subject in the supine position. Due to gravity loading, there exists a large
difference in deformation between different image modalities. To align multimodality



breast images for assisting cancer diagnosis and therapy, it is critical to recover such a
deformation difference. Traditional non-rigid intensity-based image registration
methods used to correct the deformation of soft tissues are currently inadequate at
correcting these deformations [1-3]. In recent years, biomechanical modelling has
increasingly attracted attention because its ability to estimate physically realistic
deformations. Biomechanical models implemented with nonlinear finite element
methods have been employed to model the large deformation behavior of breasts such
as plate compression in X-ray mammography and breast biopsy [4, 5] and under
gravity loadings [6]. Previous studies [1-3] have also shown that the use of
biomechanical modeling as a prior to non-rigid intensity-based image registration
could be used for registering prone and supine MR images. However, in these studies,
the material parameters were fixed based on the in vitro values from the literature or
determined in a simplistic manner. Furthermore, the sliding between the chest wall
and breast tissues was either not considered or was modeled on a purely
phenomenological basis. Incorrect modelling assumptions can be expected to
significantly affect subsequent registration performance [1-3].

In this study, we developed a patient-specific biomechanical model to simulate the
breast deformation under gravity by using an open-source GPU-based high
performance nonlinear finite element (FE) solver1. The breast was considered as a
heterogeneous material consisting of glandular tissue, fat and muscle. The large
deformation and anisotropic behavior of breast tissues was simulated by using a
transversely isotropic hyperelastic model. A contact model was used to simulate the
sliding phenomenon between the rib cage and breast tissues. An automated procedure
to generate patient-specific FE models from segmented breast MR images was
implemented. The developed biomechanical models were combined with non-rigid
intensity-based image methods to predict the breast deformation under gravity
loadings for registering prone and supine MR breast images.

2 Materials and Methods

2.1 Constitutive Model of Breast Tissues

Like most biological soft tissues, breast tissues exhibit nonlinear, anisotropic, quasi-
incompressible and time-dependent response under large deformation. The
hyperelastic models are often used to describe the constitutive relations of these
materials, which are defined in terms of a strain energy potential. Several forms of
strain energy potentials have been proposed, such as the Neo-Hookean form, the
Arruda-Boyce form, the Mooney-Rivlin form, the Ogden form, the polynomial form
etc. Breast is composed of connective tissues (collagen and elastin) with the strength
enhancement by Cooper’s ligament and fiber-like structures etc, showing strong
anisotropic behavior. Commonly, biological tissues are considered as composite
materials where one or more family of (collagen) fibers are embedded in a solid

1 http://niftysim.sourceforge.net/



matrix. For simplicity, here we assume that breast tissues are reinforced by a single
family of fibers perfectly dispersed in a preferred direction. That is, a transversely
isotropic hyperelastic model was employed and its strain energy potential had the
following form [5]:
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The relative compressibility of a material can be expressed in terms of Poisson’s ratio,
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determine the model.

2.2 Patient-specific FE Model

To generate a patient-specific finite element model of a breast for biomechanical
modelling, four steps were followed: (1) Firstly, MR volume images of a breast were
segmented by using an automated method, integrating an intensity model, a spatial
regularization scheme and bias field inhomogeneity correction and small amount of
manual interaction [7], breast tissues are segmented as fat, glandular and muscle (Fig.
1b) and the rib cage was approximated with a cylinder and a flat-plate (Fig.1a) to
facilitate contact modelling; (2) Secondly, the marching cube algorithm was used to
construct the surface mesh of the whole breast; (3) Thirdly, TetGen2 , an open-source
mesh generator, was used to generate 3D 4-node tetrahedral elements based on the
surface mesh created in Step 2; (4) Fourthly, the tissue type of each element was
determined from the segmented MRI image (Fig. 1b) by calculating the volume ratio
of each tissue type within the element; (5) Finally, a contact pair between the rib cage
and the breast was defined, and material models, their material property parameters
and initial boundary conditions were configured.

In this study, tetrahedron elements are chosen to facilitate automatic mesh
generation and to yield more accurate shape and anatomical approximation for breasts
by using small size elements. Fig. 1b shows that when a fine mesh is used the tissue
distribution could be well represented by FE models.

2 http://tetgen.berlios.de/



Fig. 1. (a) Original MR prone image (b) Tissue type distribution map after segmentation (c)
Tissue type distribution map within an FE model with 191,934 tetrahedron elements.

Fig. 2. FE model of a breast (a) undeformed model with 191,934 4-node tetrahedron elements
(b) deformed model under gravity;

2.3 Fast GPU-based Explicit Finite Element Solver

An open-source CUDA-based high-performance nonlinear finite element package,
Niftysim3, has been developed at University College London. A key feature is the
option of GPU-based execution, which allows the solver to significantly out-perform
equivalent commercial packages [5]. The algorithm is based on the finite element
method using total Lagrangian formulation and explicit time integration. A full
description of the algorithm can be found in [8].

In the solver, both geometrical and material nonlinearity could be handled. Three
element types have been included: 8-node linear hexahedron element with reduced
integration, 4-node linear tetrahedron element and 4-node linear tetrahedral element
with an improved nodal-average pressure formulation for nearly incompressible
materials or incompressible materials. Six material constitutive models have been
implemented, including neo-Hookean hyperelastic, Arruda-Boyce hyperelastic,
polynomial hyperelastic, transversely isotropic hyperelastic, neo-Hookean visco-
hyperelastic and transversely isotropic visco-hyperelastic.

A kinetic type contact algorithm [9] between a deformable slave surface and a rigid
master surface was also implemented for modeling frictionless contact. In this



algorithm, slave nodes found to have penetrated the master surface are relocated to
the closest point on the latter, approximating a frictionless interface.

2.4 Deformation Prediction of Breast under Gravity Loading from Prone to
Supine

2.4.1 Biomechanical Modelling
Following the procedure described in Section 2.2, we created an FE model (Fig.2a)
from a prone DCE MR image (Fig. 1a), acquired by using a breast coil, according to
the standard clinical protocol. The breast sliding against the rib cage was simulated as
a frictionless contact. A transversely isotropic hyperelastic model described in Section
2.1 was chosen for all three breast tissues. Considering that glandular tissues are
connected to the nipple, we assumed that z direction (as shown in Fig.2a) is the
preferred direction of tissues. Thus three material parameters for each tissue type, 0 ,

v and 0 , are required to define the constitutive model. Since the in vivo mechanical

response of the breast varies significantly across individuals, in vitro measured results
are not reliable for in vivo breast deformation simulations. To more accurately predict
the deformation of a breast from prone to supine, rather than using fixed in vitro
material parameters, we adopted an iteration process [5, 10] to obtain optimised
material parameters.

The position of the breast is another critical parameter to affect breast
deformations. The position change of the breast from the prone position to the supine
position was defined by six degrees of freedom, three translation components and
three rotation components. However, only three rotation components will affect breast
deformation. The optimised deformation prediction from biomechanical modeling
was obtained by iteratively updating material parameters of each tissue type and the
position of the entire breast in an optimisation procedure. The objective function is to
maximise the image similarity within the region of the breast between the FE
computed supine MR image and the original supine MR image acquired on a Philips
1.5T MR system. Normalized mutual information [10] was used for image similarity
measure. A hybrid simulated annealing algorithm provided in the genetics algorithm
and direct search toolbox of Matlab4 was used to update three material parameters for
each tissue type. A stopping condition based on the change in similarity measure at
each iteration was used to terminate the registration when there was no further
improvement in image similarity or a specified maximum iteration number, 40, is
reached.

Typically less than 5 minutes were required in each FE simulation for an FE model
with 190k elements and 40k nodes, compared with more than five hours by using
commercial FE package, ABAQUS. 50 iterations are normally required for obtaining
an optimised deformation approximation from biomechanical modelling. The
computational time could be further reduced by using coarse mesh and optimisted
time steps.

4 www.mathworks.com



2.4.2 Non-rigid Intensity-based Image Registration Method
The large deformation of soft tissues could also be estimated by using Non-rigid
intensity-based image registration methods. The chosen open-source registration
algorithm here5 is a parallel version of B-spline based free form deformation (FFD)
image registration methods [12-13], implemented in the GPU. The registration uses
normalised mutual information as an image similarity measure.

3 Results

The proposed method is employed for prone-supine image registration The breast
deformation from prone to supine only under gravity loading was estimated by using
three different methods: Method A: affine registration followed by non-rigid B-spline
based FFD registration (Section 2.4.2); Method B: patient-specific biomechanical
modelling with both material parameter and position optimization (Section 2.4.1);
Method C: A hybrid method by combing Method A with Method B. In Method C,
after an approximation of breast deformation in the supine position was estimated
through a biomechanical modeling procedure, the non-rigid image registration
method in Method A was used to predict the remaining deformation [9]. In this case
study, it was observed that the rigid transformation operation had a very little effect
on simulations because the rib cage in the supine position was already aligned with
that in the prone position well. Figure 3 shows slices of breast MR images along the
sagittal, transverse and coronal planes before and after registration using the three
different methods. Visually, neither the non-rigid FFD registration method (Fig. 3b)
nor biomechanical modelling (Fig. 3c) alone achieves an accurate registration. The
hybrid FE-based image registration (Fig. 3d) produces the best alignment.

5 http://sourceforge.net/projects/niftyreg/



Fig. 3. MR image slices before and after registration (a) original prone MR image (b) supine
MR image registered using Affine+FFD (method A) (c) FE computed supine MR image
(method B) (d) supine MR image registered using hybrid FE-based method (method C) (e)
original supine MR image.

To further investigate the registration performance of the proposed method, the
nipple position and eight MR-visible fiduciary markers affixed to the breast surface
during imaging were selected to calculate a target registration error for the prone-
supine registration. In the FE model, the node closest to the centre of each fiduciary
marker on the prone MR image was identified as a fiducial node. Since both Method
A and Method B visually did not show good alignment, only the registration error
from Method C was calculated. With Method C, i.e. the hybrid FE-based image
registration method, the root mean square error of the nine selected positions was 5.6
mm and the maximum error was 12.2 mm.

4 Discussions and Conclusions

We have presented in this paper, an automated procedure to generate patient-specific
biomechanical models of breasts directly from segmented MR volume images. The
developed models were used to estimate the deformation of breasts under gravity
loading in prone-supine MR image registration. The deformation was also estimated
with non-rigid image registration. It was found neither the non-rigid FFD registration
method nor the biomechanical model based registration alone achieves an accurate
registration. The hybrid FE-based image registration by combining biomechanical
modelling with non-rigid image registration method produces the best alignment. In
this method, patient-specific biomechanical modelling, with an optimization of both
material parameter and patient positions, captured the major physically realistic
deformation and provided a good deformation approximation, while the non-rigid
intensity-based image registration was used to find the remaining difference of
deformation between the FE prediction and the experimental acquisition. After
registration, the surface of the breast in the prone position was well aligned with that
in the supine position, which was further confirmed by relatively small registration
mean errors of nine selected points on the breast surface (5.6 mm).

In our previous study [10], a similar method was employed to solve the same
problem addressed here. It used ABAQUS as an FE solver and took much longer
computational time. With a homogeneous material model, we obtained a smaller
mean error (2.8mm) for eight surface fiducial markers. It seemed that the registration
performance may not be improved by using a heterogeneous material model.
However, image similarity was used as an objective function to be maximized in
these studies. It is more suitable to track internal markers rather than surface fiducial
markers to evaluate how heterogeneous material models will affect the registration
performance on internal anatomical structures. Now, we are planning to use clinically
implanted fiducials to further validate and evaluate the proposed method. More
comparative investigations will be carried out on different patients. The sensitivity of
the registration on the accuracy of the segmentation and material parameters will also
be further investigated. The presented approach provides a general framework for FE-



based image registration and can be applied for other surgery applications (e.g. brain,
liver) and multi-modality registrations (e.g. MR-X-Ray, MR-3D ultrasound), where
large deformation estimations are required.

Acknowledgments. The work is funded by the European FP7 program, HAMAM.

References

1. Lee, A.W.C., Schnabel, J.A., Rajagopal, V., Nielsen, P.M.F. and Nash, M.P.: Breast Image
Registration by Combining Finite Elements and Free-form Deformations, IWDM 2010,
LNCS, vol. 6136, pp. 736--743, Springer, Heidelberg (2010)

2. Carter, T., Tanner, C., Beechey-Newman, W., Barratt, D. and Hawkes, D.: MR Navigated
Breast Surgery: Method and Initial Clinical Experience, MICCAI 2008, LNCS, vol. 5242,
pp. 356—363 (2008)

3. Carter, T., Tanner, C., Crum, W.R., Beechey-Newman, N. and Hawkes, D.J.: A Framework
for Image-Guided Breast Surgery. Medical Imaging and Augmented Reality, MIAR 2006,
LNCS, vol. 4091, pp. 203—210 (2006)

4. Azar, F.S., Metaxas, D.N. and Schnall, M.D.: A Deformable Finite Element Model of the
Breast for Predicting Mechanical Deformations under External Perturbations. Acad Radiol.
8, 965--975 (2001)

5. Han, L., Hipwell, J., Taylor, Z., Tanner, C., Ourselin, S. and Hawkes, D.: Fast Deformation
Simulation of Breasts Using GPU-Based Dynamic Explicit FEM, IWDM 2010, LNCS vol.
6136, pp. 728—735 (2010)

6. Rajagopal, V.: Modelling Breast Tissue Mechanics Under Gravity Loading. Ph.D. Thesis,
The University of Auckland (2007)

7. Mertzanidou, T., Hipwell, J., Cardoso, M., Tanner, C., Ourselin, S. and Hawkes, D.: X-ray
Mammography - MRI Registration Using a Volume-Preserving Affine Transformation and
an EM-MRF for Breast Tissue Classification. IWDM 2010, LNCS vol. 6136, pp23—30
(2010)

8. Taylor, Z.A., Comas, O., Cheng, M., Passenger, J., Hawkes, D.J., Atkinson, D., Ourselin, S.:
On Modelling of Anisotropic Viscoelasticity for Soft Tissue Simulation: Numerical Solution
and GPU Execution. Med. Image Anal. 13, 234--244 (2009)

9. Hallquist, J.O.: LS-DYNA Theory Manual. Livermore Software Technology Corporation,
Livermore, California (2006)

10.Han, L. Hipwell, J., Mertzanidou, T., Carter, T., Modat, M., Ourselin, S., and Hawkes, D.: A
Hybrid FEM-based Method for Aligning Prone and Supine Images for Image Guided Breast
Surgery, IEEE International Symposium on Biomedical Imaging, pp. 1239--1242 (2011)

11.Studholme, C. D., Hill, D. L. G., and Hawkes, D.J.: An Overlap Invariant Entropy Measure
of 3D Medical Image Alignment. Pattern Recognition, 32, pp. 71—86 (1999)

12.Modat, M., Ridgway, G. R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C.
and Ourselin, S.: Fast Free-form Deformation Using Graphics Processing Units. Comput.
Methods Prog. Biomed. 98, pp. 278--284 (2010)

13.Rueckert, D., Sonoda, L., Hayes, C., Hill, D.L.G., Leach, M., and Hawkes, D.J.: Nonrigid
Registration Using Free-form Deformations: Application to Breast MR Images, IEEE
Transactions on Medical Imaging, 18, pp. 712--721 (1996)



MRI to X-ray mammography registration using

an ellipsoidal breast model and biomechanically

simulated compressions

Thomy Mertzanidou1, John Hipwell1, Lianghao Han1, Henkjan Huisman2,
Nico Karssemeijer2, and David Hawkes1

1 Centre for Medical Image Computing, University College London, Gower Street,
WC1E 6BT, London, UK

2 Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre,
P.O. Box 9102, 6500 HC Nijmegen, The Netherlands

t.mertzanidou@cs.ucl.ac.uk

Abstract. This work presents a novel registration method between MR
breast images and X-ray mammograms. We propose the use of an ellip-
soidal breast model to approximate the average breast shape and we use
biomechanically simulated compressions to learn the deformation during
mammogram acquisition. By varying the parameters of the simulations,
we simulate a wide range of compressions and then use Principal Com-
ponent Analysis (PCA) to extract the main modes of variation. During
registration, we optimise the coefficients of these modes and the param-
eters that define the initial position of the breast before compression.
The proposed transformation captures the complex mammographic plate
compression in only eleven degrees of freedom. The method is automated,
does not require manual interaction and is targeted for clinical use. The
framework was tested on 10 patients with visible lesions and 8 of these
were successfully registered to a mean registration error of 9.8mm.

1 Introduction

Relating findings between an MRI and an X-ray mammogram is a difficult task
for radiologists, as one is a volume and the other a projection image. In addition,
the appearance of breast tissue structure varies significantly between them. Some
breast regions are often obscured in an X-ray, due to its projective nature and
the superimposition of normal glandular tissue. Moreover, the breast deforma-
tion between the two different image acquisitions is large; women are lying prone
in the MR scanner, while they are standing, with their breast compressed be-
tween two plates, to obtain an X-ray mammogram. Automatically determining
correspondences between the two modalities could assist radiologists in the de-
tection, diagnosis and surgical planning of breast cancer. Furthermore there has
been increased interest recently in developing multimodal Computer-Aided Di-
agnosis algorithms [1], where an automatic registration could aid in associating
features representing corresponding locations in the breast.



Authors have previously proposed feature-based techniques ([2], [3]) for regis-
tration, which can give good results when there are distinctive features available
in both modalities, but the feature selection and the 3D-2D matching process
are not trivial, can lead to lack of robustness and cannot be used in clinical
practice. In our previous work [4] we proposed an intensity-based method with
an affine transformation model to deform the 3D volume, which has limita-
tions regarding the range of deformations it can produce to approximate the
real breast compression. Ruiter et al. [5] used a patient-specific biomechanical
model of the breast. Although biomechanical simulations can produce more re-
alistic deformations, the manual steps involved in building a different model for
each patient and the variability in the results depending on the material prop-
erties, the meshing and the simulation techniques used, make this framework
less suitable for clinical use. Tanner et al. [7] used population-based Statistical
Deformation Modeling to overcome this problem. Nevertheless, the large varia-
tion between breast shapes can cause significant artifacts when mapping the MR
volumes to the same space. Patient-specific biomechanical simulations of large
breast compressions were also previously proposed ([8], [9]) but were not tested
for MRI/X-ray correspondences.

Validation tests using radiologist’s annotations were performed in two of the
above techniques. The method of Behrenbruch et al. [2] was successful in 12 out
of 14 cases tested, with an error in the range of 4 − 10mm, depending on the
MRI voxel resolution. Ruiter et al. [5] achieved a mean error of 4.3mm on 6
cases. However, in a more recent semi-automated version of this approach [6]
the authors report a mean error of 8.2 − 8.9mm on 7 patients. The benefit and
goal of our technique is to provide a computationally tractable, reproducible
and generic solution for clinical use, that will not depend on human interaction,
while providing accuracy that is clinically useful.

The 3D-2D matching process is a poorly constrained, ill-posed problem and
thus the optimisation is prone to terminate in local minima. Keeping the number
of degrees of freedom of the transformation to a minimum is therefore essential
to provide robustness. We propose learning the space of possible breast deforma-
tions by using an ellipsoidal shape of an average size and applying biomechani-
cally simulated compressions. To simulate the mammographic compression, we
use a contact model instead of applying displacements on the mesh nodes (as in
[5], [7]). This model produces realistic compressed shapes, whilst avoiding arti-
facts around the breast surface. The main modes of variation are then extracted
using PCA. The main advantage of using an ellipsoidal as opposed to a patient-
specific deformation model is that a single generic model is created once for all
patients, eliminating the need for model creation on a patient by patient basis.

2 Methodology

2.1 Ellipsoidal breast model and compression simulations

To learn the breast deformation between the MR and the X-ray image acquisi-
tions we use an ellipsoidal shape to approximate the average MR breast image



and apply biomechanically simulated compressions, similar to the ones applied
during mammogram acquisition. As a breast model, we use half an ellipsoid,
whose dimensions are calculated from a population of 20 MR breast images.
This is given by equation (x2/a2 +y2/b2 +z2/c2 = 1), where the equatorial radii
are a = b = 60mm and the polar radius c = 160mm.

For the biomechanical simulations, we use a homogeneous transversely isotropic
hyperelastic material and we include anisotropy to account for the reinforcement
of biomechanical properties from fiber-like connective tissues in preferred direc-
tions [10]. Therefore the breast can expand more in the Medial-Lateral (ML)
direction, than in the Anterior-Posterior (AP), for a Cranio-Caudal (CC) view
compression. This approach can be also justified by the fact that the breast is
already extended more in the AP direction due to gravity, as the MRI is acquired
in the prone position. For the boundary conditions, we constrain the nodes that
are close to the chest wall and allow unconstrained movement of the nodes within
that plane. To simulate the compressions, we apply displacements to two con-
tact plates and use a GPU implementation of an explicit Finite Element (FE)
solver [11]. To create a range of different deformations, we vary the amount of
compression, the ratio of tissue enhancement coefficient and the Poisson’s ratio,
that controls the amount of breast volume change. For each compression the
parameters are chosen randomly from the distributions shown in table 1.

Table 1. Parameters that vary between the different compressions and their distribu-
tions taken from the literature ([7], [10]).

Parameter Distribution

Amount of compression Normal (µ = 55%, std = 4%)

Poisson’s ratio Uniform [0.45, 0.498]

Ratio of tissue enhancement coefficient Uniform [1, 512]

2.2 Building a deformation model using PCA

After simulating a range of compressions, the next step is learning the breast
deformations using PCA. This method provides the benefit that results are less
dependent on the modeling and the FE solver that are used, than the patient-
specific modeling. The resulting displacement fields that represent the mean
deformation and the deviations from it can then be mapped to the new patient.

The mapping is done using a registration that includes scaling and transla-
tion between the space of the ellipsoid model and the patient’s MRI. Another
advantage of using the ellipsoid model is that this mapping process is only done
once, after performing the PCA and extracting the main components. When us-
ing a population model, all breast shapes need to be mapped to the same space
and given their large variability and the lack of anatomical correspondences, the
registrations of the deformation fields can cause significant artifacts. As a result,
these artifacts will then appear in the main PCA components, while they should



be excluded. Applying all the compressions on one shape instead, provides a
solution to this problem.

After simulating n different compressions, each deformation vector Di con-
sists of the concatenation of the displacements in the X, Y and Z directions
on a regular grid across the volume, that contains m points, so that Di =
(d1, ...,d3m). In a similar way to [12], PCA is used to extract the main modes
of variation and approximate any deformation field D by:

D = D̂ + P · b (1)

where D̂ is the mean deformation field, P is the matrix of the first t principal
components (eigenvectors) and b is a vector of weights for each one of the t
eigenvectors used. The eigenvectors ei and their corresponding eigen values λi

are extracted from the covariance matrix:

S =
1

n
Σn

i=1
(Di − D̂)(Di − D̂)T (2)

Figure 1 shows the effect of varying the first 3 principal components of the learnt
deformations.

original after mean def. −3σ1 +3σ1

−3σ2 +3σ2 −3σ3 +3σ3

Fig. 1. Coronal (top) and axial (bottom) views of the ellipsoid used, with a super-
imposed checkerboard pattern. The first component shows the effect of varying the
amount of compression, the second the anisotropy ratio (notice change in extension in
the axial view) and the third the breast shape under compression (coronal view).

2.3 Registration framework

An overview of the framework is given in table 2. Apart from the main regis-
tration process that is updated iteratively, it consists of two more parts that



are performed in advance, off-line. The first is the PCA analysis, explained in
section 2.2 that needs to be done only once.

Table 2. Overview of the proposed framework.

Once 1. Extract the mean dimensions of an ellipsoid, from a
before population of breast MRIs
registration 2. Simulate compressions on the ellipsoidal model

3. Extract the mean deformation and the main modes of variation
using PCA

Once 1. Map the PCA components to the new patient
for each 2. Segment the pre-contrast MR to fibro-glandular tissue & fat
patient 3. Simulate a volume corresponding to X-ray attenuation

Iterative X-ray mammogram: target, X-ray attenuation volume: moving

registration 1. Cast rays through the transformed moving image
process 2. Calculate the similarity measure in 2D between

the real and the simulated mammogram
3. Update the 3D transformation parameters, according to the
derivative of the similarity
4. Go to step (1) until convergence

The second part, also performed before registration, needs to be repeated
for each patient. Firstly, we map the PCA components to the new patient space
using a translation and scaling registration. Then, we need to transform the MR
intensities of the pre-contrast image to X-ray attenuation, so that the perspective
projection of the new volume will resemble an X-ray mammogram. For this, we
initially segment the volume into fibro-glandular tissue and fat and then acquire
the X-ray attenuation volume with the method described in [4]. This is the
moving image of the registration and the real mammogram is the target.

During the registration process, we use ray-casting from the 2D target space
through the 3D grid of the moving image and integrate the intensities of each
transformed intersection of the ray with the 3D grid. This way we avoid an extra
3D interpolation of the transformed 3D volume that would add computational
cost. As the transformation is defined from the compressed to the uncompressed

breast space, the transformation of each point is described by equation 3. The
total number of degrees of freedom is n + 5 + 3, where n is the number of com-
ponents used. The extra five parameters are three translations along each axis
and two rotations; one for the rotation about the AP axis the of the breast
(rolling) and one for the rotation about the superior-inferior axis (in-plane). Fi-
nally, the last 3 parameters are the scaling factors applied on the displacement
fields, when mapped from the ellipsoid to the new patient space. After trans-
forming and projecting the X-ray attenuation volume, we compute the similarity
between the real and the simulated mammogram and update the parameters of
the transformation T (x) iteratively. For a point xi the transformation is:

T (xi) = T3(T2(T1(xi))) (3)



where:

T1(xi) = Ttranslation(Rin−plane(xi)) (4)

T2(xi) = xi + D̂i + b1 · D
i
1

+ b2 · D
i
2

+ ... + bn · Di
n (5)

T3(xi) = Rrolling(xi) (6)

3 Experiments

For the experiments we used half an ellipsoid of resolution [1× 1× 1]mm3. The
surface mesh was extracted using the vtk marching cubes algorithm and the
tetrahedral elements were generated using an opensource software package3. The
final model consisted of 3, 535 nodes and 12, 056 elements. For the compression
simulations we used an opensource GPU implementation of an explicit FE solver4

to simulate 100 compressions. For the PCA, we have subsampled the deformation
fields by a factor of two to reduce the computational cost. In the registration
process, we used 3 PCA components (so 11 degrees of freedom); the similarity
measure was Normalised Cross Correlation.

For validation we used MRIs and CC view X-ray mammograms of 10 patients,
acquired approximately at the same time point. The patient group was different
to that used to extract the mean ellipsoid dimensions. The voxel resolution of
the MRIs was [0.9×0.9×1.0]mm3 for 3 cases and [0.6×0.6×1.3]mm3 for 7. The
resolution of the X-ray mammograms was [0.1×0.1]mm2; they were subsampled
to [1×1]mm2 for registration. The patients had a range of different pathologies.

Radiologists’ annotations were used as ground truth correspondences. The
MR lesions were marked using spheres, while the X-ray images using either a
circle, or a free-form shape defining the finding. As it is generally harder to
annotate the 3D images accurately, the spheres did not always represent the
finding’s actual volume, but were centred around it. As a result we have used as
error metric the distance between the centres of the annotated regions, rather
than an overlap measure. In all the results shown below, the registration error is
the 2D Euclidean distance between the centres of the X-ray annotation and the
projection of the MR annotation, after being deformed, in the first experiments
with our method and in the second with an affine transformation [4].

Table 3. Registration error (in mm) of our Ellipsoid SDM (E-SDM) method and
comparison with the affine transformation [4].

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

E-SDM 7.8 14.0 9.7 5.7 9.3 13.7 6.2 12.3 24.4 24.3

Affine 1.9 14.2 12.6 12.0 28.3 15.1 28.5 14.6 39.1 28.3

3 http://tetgen.berlios.de/
4 http://sourceforge.net/projects/niftysim/



A summary of the results is given in table 3. Overall our method outper-
formed the affine transformation by several mm in all cases, apart from one
(p1). Figure 2 illustrates the results on 4 cases. We can see that the projection
of the MR finding was close to the X-ray annotation and even in cases where
the distance was rather high (eg.p2 = 14mm), the projection was still inside
the annotated X-ray area, shown in green. Two of the cases that gave very high
errors are shown in figure 3 together with the MRI annotations, to illustrate the
difficulty in registering these findings. In all the other 8 cases the projected MR
annotation mask overlapped with the one of the X-ray and the mean registration
error was 9.8mm, as opposed to 15.9mm for the affine.

Fig. 2. Registration results on 4 patients. For each case, the left image shows the real
mammogram with the centre of mass of the MR annotation after alignment (red cross).
The right image in each pair shows again the real mammogram, but in addition to the
projected MR annotation, it is this time overlayed by the mask of the X-ray annotation,
shown in green.(a) p1 (7.8mm), (b) p2 (14mm), (c) p3 (9.7mm) and (d) p4 (5.7mm).

Fig. 3. Cases with high registration error. Patients p9 (left) and p10 (right).

4 Discussion

This study presented a novel framework for registering MRI to X-ray mammo-
grams. The main advantages include the reduced sensitivity to the approxima-
tions associated with individual patient-specific modeling and simulations, as
well as the improved accuracy compared to an affine transformation. Using a
non-rigid transformation learnt from simulated compressions has the benefit of
providing physically realistic deformations. Also, the small number of degrees of
freedom adds robustness to the 3D-2D matching process. Nevertheless, a poten-
tial limitation of the current approach concerns how well an ellipsoid shape can



approximate the shape and deformation of a real breast. To answer this question
future work includes testing against patient-specific modeling techniques, both
learnt before registration and updated inside the iterative registration process.
Another factor that can be tested is the removal of the effect of gravity before
compression. Finally, further work involves more validation tests on a larger
dataset and on the MLO mammographic view.
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Abstract. There is an association between mammographic parenchy-
mal patterns and breast cancer risk. We focus on approximately blob-like
dense tissue patterns (e.g. nodular, fibroglandular, and homogeneous tis-
sue) to model breast tissue density. These blob-like tissues are detected
based on the Laplacian scale-space representation of mammographic im-
ages at a range of scales. The findings are represented as a set of multi-
scale blobs. Qualitative relations among these blobs are incorporated in
order to capture the breast anatomical structure. The distribution of the
multi-scale blobs in scale space can be used as an overall model for breast
density classification. The results based on the MIAS database show 79%
correct classification according to four BIRADS denstiy classes, and 93%
correct classification for two (i.e. low/high) density classes, respectively.

1 Introduction

Parenchymal patterns play an important role in mammographic risk assess-
ment [1]. Parenchymal patterns are formed by the spatial distribution of rel-
atively dense tissues. In this work, we use a set of multi-scale blobs to represent
local salient tissue patterns. Effectively, we propose to model noludar and homo-
geneous tissue with relatively high density as described by Tabár et al. [2]. Some
example breast tissue patterns in Tabár’s tissue model are shown in Fig. 1.

Scale-space theory provides a framework for image representation at multiple
scales, which has been widely applied in describing objects. Blob-like structures
can be detected at the local extrema in the scale-space signature. The size of
the blobs can be estimated as the scale at which the extrema are obtained [3].
In mammographic image analysis, a number of scale-space based methods have
been developed, however, no previous publications have suggested modelling
breast tissue based on blob-like tissue patterns. A related method was described
in [4], which aimed to detect clustered microcalcifications.
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(a) (b) (c) (d) (e) (f)

Fig. 1. Example breast tissue patterns: (a), (b) nodular tissue; (c), (d) linear tissue;
(e), (f) homogeneous tissue.

Numerous methods for characterising mammographic parenchymal patterns
have been developed. Karssemeijer [5] calculated features based on greylevel his-
tograms. Oliver et al. [6] extracted a set of morphological and texture features
from fatty and dense tissue regions. Petroudi et al. [7] proposed a statistical
method for modelling parenchymal patterns. Subashini et al. [8] extracted sta-
tistical features from the suspicious region of the entire breast, eliminating the
artifacts, background and the pectoral muscle. Raundahl et al. [9] used the tex-
ture information at each pixel in the segmented breast to score heterogeneity of
mammographic patterns. He et al. [10] presented a novel texture signature based
mammographic image segmentation method.

It should be noted that there are two differences between our modelling of
mammographic parenchymal patterns and exsiting approaches [5–10]. We do not
apply an implicit intensity normalisation of the mammographic images to over-
come brightness and contrast variations in the acquisition process. In addition,
we do not assume that mammograms in the same mammographic risk class
have the same texture appearance. In our developed representation of breast
parenchymal patterns, multi-scale blobs are local salient features which can ac-
commodate large greylevel variations, and the distribution of these blobs and
their qualitative relations can describe the anatomical structures of breast tis-
sues, which have a strong correlation with mammographic risk. The modelling
can be considered as the simulation of the mammogram perception process by
radiologists, who are sensitive to salient tissue patterns and interpret mammo-
grams according to the distribution and topology of these salient aspects.

In addtion, the developed approach is supported by mammogram synthesis
methods. In [13], synthetic mammograms were generated by simulating breast
tissues with large and medium scale tissue structures comprising different sized
tissue elements (i.e. shells and blobs). The formation of breast parenchymal
patterns was modelled by the projection of these compartments. We aim to
reverse this generation process, and decompose breast tissues into a set of blobs
at different scales (inclusion of shell-like structures is seen as future work).

2 Multi-Scale Blob Representation

The approach used to detect blobs is based on the Laplacian operator. Blob de-
tection is performed by finding the extrema of the normalised Laplacian52

normL
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(a) (b)

Fig. 2. Blob detection: (a) detected blobs shown as circles in a mammographic im-
age; (b) three-dimensional view. (The original mammographic image is shown in the
horizontal plane, and the vertical dimension corresponds to scale.)

with respect to both space and scale:

52
normL = t(Lxx + Lyy) (1)

where L is the scale-space representation of image I(x, y), defined by convolution
with Gaussian kernels of various width t (t = σ2). See [3] for more details.
The scale range covers ten scales, where the first scale σ1 = 8, and the scale
factor k =

√
2. In order to detect the scale-space extrema, each sample point

in the breast area is compared with its neighbours within a local region in the
current scale-space image and the corresponding “neighbours” in other scale-
space images. Only spatial global extrema (either minima or maxima) over all
scales are retained [3]. We use 5 × 5 local regions at each scale (similar size
region indicated robustness of results), so the blobs are detected at the global
extrema of 5×5×10 blocks in the scale-space image representation. For efficiency
reasons, at each scale instead of increasing the local kernel by the factor k, we
downsample the image by the factor 1/k. We then upsample each result in the
hierarchical construction to the full size in order to find the extrema. We indicate
these blobs with circles, whose radii are the corresponding scales. To exclude the
effects caused by the image margins and the breast boundary, smaller blobs
of which the covering regions appear outside the breast area are ignored. The
tissue patterns of interest here are high-density regions, which are detected in
the form of bright blobs, so the positive extrema (i.e. dark blobs) are discarded.
In addition, the extrema with low contrast are also rejected (this step can be
regarded as contrast based thresholding taking spatial information into account).
The remaining extrema are the blob candidates.

In order to capture the true blob-like dense tissues, it is not sufficient to reject
the extrema with weak responses. At larger scales, some false blobs (non-dense
tissue) tend to appear along the breast boundary, due to the influence of the nat-
ural breast profile. The reduction of the false positives can be easily performed
by means of putting a threshold on the mean greylevel within the blob area. To
calculate the threshold, the fuzzy c-means based clustering algorithm is used to
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partition pixels within the breast area into nine clusters [12]. The difference be-
tween the mean intensity and the standard deviation of clusters from six to nine
(corresponding to dense tissue) is chosen as the threshold. Alternative number of
clusters and those selected to represent dense tissue provide similar results. The
candidates with the mean intensity below the threshold are removed. A mam-
mographic image with the detected blobs superimposed is shown in Fig. 2(a).
The three-dimensional view is shown in Fig. 2(b).

2.1 Merging Multi-Scale Blobs

The multi-scale blobs detected above mainly correspond to the visually blob-
like dense tissues. When two blobs are closely located, they will overlap with
each other. To generate an overall model of dense tissues, we merge the overlap-
ping blobs based on their qualitative relations. Here, we consider three types of
qualitative relations: external, intersection, and internal. The qualitative relation
between two blobs depends on their respective radii and the distance between
their centre points.

The merging procedure starts from the largest scale and proceeds to smaller
scales. The qualitative relations are inspected over all the blobs. To illustrate
the qualitative relations among all the blobs, a directed acyclic blob graph is
constructed, which can describe the topology of these blobs (see Fig. 3). The
hierarchy of the blob graph is from the coarse scale to the fine scale. There is
an edge between two blob nodes if they overlap with each other (intersection or
internal). The blob at the coarsest scale in a blob cluster is chosen as the root
of a subgraph. A virtual top root node (representing the whole breast) is used
to form a single rooted graph.

The blob merging is performed based on the following criteria. The external
blobs separately located in the image will be retained, while the internal blobs
contained by larger ones will be removed. When two blobs A (σA, rA) and B
(σB , rB) intersect with each other, if they are extremely closely located (d ≤ rA−
αrB , rA ≥ rB , 0.8 < α < 1), the integration of the Gaussian scale-space signature
over the blob area will be calculated by

∫
blob

g(x, y;σ2) ∗ I(x, y)dxdy. The blob
with the larger value will be retained. A simple example of blob merging is shown
in Fig. 3. The structural distribution of the blobs is simplified after merging,
moreover, the coarse appearance of dense tissues within the breast is preserved
by the remaining blobs. Alternative, scale-space cones based, approaches could
be considered for the merging of blobs.

2.2 Encoding Multi-Scale Blobs

The retained blobs after the blob merging can be used to model the breast
density. For quantitative analysis, we quantify the breast density by means of
encoding the multi-scale blobs. Specifically, the distribution of the blobs is rep-
resented by a vector N = (N1, N2, . . . , Nn). The dimensionality n corresponds
to the number of scales, where Ni (i = 1, 2, . . . , n) is the number of blobs at
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(a) (b) (c) (d)

Fig. 3. Blob merging: (a) detected blobs; (b) blob graph; (c) remaining blobs after blob
merging; and (d) blob graph after blob merging (α = 0.84).

scale i. Subsequently, the vector N is transformed into a unique number by:

BLOB =
n∑

i=1

Nik
2(i−1) (2)

where k =
√

2 is the scale factor as described previously. The resultant value
“BLOB” is defined as the density measurement of the breast, which can be used
for breast density classification.

3 Results and Discussion

To evaluate the proposed multi-scale blob based representation of mammo-
graphic parenchymal patterns, it has been tested using the Mammographic Im-
age Analysis Society (MIAS) database [11]. Three experts classified 321 mam-
mograms (mdb295ll was excluded for historical reasons) according to the Breast
Imaging Reporting and Data System (BIRADS) standard [1]. The consensus
result was considered as the classification ground truth.

Three-dimensional views of blobs at ten scales (after merging) detected for
example mammograms covering the four BIRADS classes are shown in Fig. 4.
For BIRADS I, the breast is almost entirely fatty, only a few small scale blobs
are detected; for BIRADS II, some small and medium scale blobs are located at
some fibroglandular tissue; for BIRADS III, the breast is heterogeneously dense,
the dense area is covered by a few relatively large scale blobs; while for BIRADS
IV, the breast is extremely dense, the whole breast is mainly covered by large
scale blobs. The distribution of multi-scale blobs is shown as bar charts in Fig. 4.
This shows that the number of blobs at larger scales increases with respect to
the increasing BIRADS classes. The corresponding value of “BLOB” computed
by equation (2) is 153, 378, 601, and 1992, respectively.

A leave-one-woman-out evaluation methodology was used for the classifica-
tion. When classifying one mammogram, the other mammogram from the same



Zhili Chen, Erika Denton, and Reyer Zwiggelaar

Fig. 4. Three-dimensional views of muiti-scale blobs detected for example mammo-
grams (top row) and the distribution of the blobs in forms of bar charts (bottom row).
From left to right, the mammograms are sorted from BIRADS I to BIRADS IV, and
the corresponding breast density is from low to high.

woman was excluded from the training samples to avoid bias. We used a K-
Nearest Neighbours (KNN) based classifier. A value of K=8 was selected, but
small variations in K produced similar results. To avoid bias caused by differ-
ent sizes of the breast, the density measurement “BLOB” was normalised by
BLOBnorm = (Ablob/Abreast)BLOB, where Ablob denotes the area of the blob
at the finest scale, and Abreast represents the area of the whole breast. After nor-
malisation, the density measurement can reflect the relative proportion of dense
tissues for the whole breast, which can be linked to the BIRADS criteria. To
cope with the multi-class classification (4 classes), initially, a classic KNN was
used, but when equal classes were indicated, we used a weighted KNN approach.

Table 1 shows the classification results based on 321 mammograms in the
MIAS database [11] according to the four BIRADS classes, where each row cor-
responds to the consensus truth, and each column corresponds to the automatic
classification. The classification accuracy (CA) for the four-class classification
is 79%, and increases to 93% when considering the two-class (i.e. low and high
density) classification. The relatively poor performance for BIRADS IV might
be explained by the lower number of samples for that class. Furthermore, it
should be noted that none of mammograms were mis-classified by more than
one BIRADS class. We compared the obtained results with some closely related
publications for breast density classification. A number of these publications
(e.g. [6, 10]) used the same database and the same ground truth, so a direct
comparison is possible. Table 2 shows a summary of the comparison.

For blob detection, the Laplacian of Gaussian based blob detector was used,
while a range of other blob detectors (e.g. the determinant of Hessian [3], the dif-
ference of Gaussian [14], Harris-Laplace [15], Hessian-Laplace [15], or SURF [16])
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Automatic
BIRADS I II III IV CA

T
ru

th

I 72 15 0 0 83%
II 7 85 11 0 83%
III 0 11 75 8 80%
IV 0 0 16 21 57%

Table 1. Confusion matrix of breast density classification, with overall classification
accuracy (CA) equal to 79%.

Method Database Standard Classifier CA

[7] Oxford BIRADS KNN 76%
[6] MIAS BIRADS KNN 77%
[10] MIAS BIRADS KNN 75%
Our MIAS BIRADS KNN 79%

Table 2. Comparison of the proposed method with the closely related work.

could be used. Moreover, we used a greylevel threshold to reduce the false posi-
tives. In future work, we will further investigate the aspects of both false positive
and false negative reduction. At the blob merging step, some overlapping blobs
were removed to simplify the topological structure of multi-scale blobs and fuse
them into a general blob representation of parenchymal patterns. The effects of
this merging step will be further investigated. In addition, the tissue appearance
within the individual blob region will be analysed. The texture signature of dif-
ferent sized blobs will be incorporated into the current blob distribution based
representation. We used a leave-one-woman-out methodology in our experiments,
where the distribution of training samples in the four classes was unbalanced.
BIRADS IV was not well represented in the training set, which might explain
the lower performance for this class. The unbalanced training sample problem
will be further investigated to optimise the classification. As future work, we
will also extend the evaluation into full field digital mammogram databases and
alternative (non-BIRADS) classification schemes. In addition, the incorporation
of shell-like structures will be investigated.

4 Conclusions

We have proposed a multi-scale blob based representation of mammographic
parenchymal patterns, based on the prior knowledge about the breast tissue
anatomical structure and the breast tissue elements. We focused on local extrema
in scale space, and used multi-scale blobs to represent the approximately blob-
like tissue patterns. The qualitative relations and the overall distribution of these
blobs were combined to define a density measurement of the breast. For breast
density classification, a high agreement has been achieved with the consensus
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result from three experts. The classification results are comparable with the
state of the art. To our knowledge, this work is a first attempt to model the
breast density based on the dense tissues with blob-like structures.
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Abstract. An objective and detailed description of a particular Region
of Interest (RoI) is at the base of the diagnosis process in mammogra-
phy. A successful automatic analysis starts by choosing discriminant des-
criptors, capable of capturing the essential tissue properties. This paper
presents a new multiscale feature representation for analyzing mammo-
graphic masses using the curvelet transform. The marginal curvelet sub-
band distribution and the interscale-orientation statistical dependences
are approximated with a generalized Gaussian density (GGD) and the
Kullback−Leibler divergence between the GGD statistical parameters
is used to measure the distance between images. The effectiveness of
the proposed descriptor was twofold evaluated: classifying masses using
a simple nearest neighbor classifier, resulting in an sensitivity rate of
96.4%, and retrieving similar images from a reference database, which
reports an average precision of 86% and recall of 75%.

Keywords: Breast Cancer, BI-RADS, Content-based Image Retrieval,
Curvelet transform

1 Introduction

Breast cancer is the most frequent cancer in women and is considered as a public
health problem in the female population. Early detection definitely improves the
disease prognosis, reason by which breast cancer screening programs have been
worldwide introduced as a diagnostic tool to detect subtle signs in asymptomatic
women [1]. Mammography, as part of these screening programs, is considered the
most cost-effective method [1]. One of the main signs associated with breast can-
cer is the presence of masses, coarsely classified as benign or malign. Although
the final diagnosis can be only achieved through a biopsied specimen, some spe-
cific visual features such as the particular shape and margin are used by the
radiologists to set a diagnosis. Mammography interpretation, and particularly
mass description, is really a difficult task that requires a lot of experience. Re-
cently, this radiologist’s work has been facilitated by the use of new computing
tools, known as Computer-Aided-Diagnosis systems (CAD).
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CAD systems have so far reported a high performance for micro-calcification
cluster detection [8]. However, these computational tools have shown relatively
low performance for mass detection. Recently, systems based on comparisons
with a reference diagnosed database have been proposed as a strategy for im-
proving the radiologist confidence in CAD systems, particularly to improve the
analysis performed on an user selected mass [13,9]. In this case, diagnoses ob-
tained from the CAD system should be consistent with the information stored
in a database since they must exploit the similarity between the image to ana-
lyze and a set of annotated images. Main challenges in such strategies are the
extraction of the most discriminative features and the selection of an adequate
similarity metrics. Different types of characteristics have been introduced to
capture discriminant tissues, for instance by using the Fourier transform, at-
tempting to separate frequential information that contains specific character-
istics. Nevertheless, these features are mostly variable and scale-dependent. In
contrast, multiresolution analysis allows to preserve image features. Liu et al.
[11] demonstrated that the use of a multiresolution wavelet analysis of mammo-
grams, improves the effectiveness of a CAD system. Murtagh and Stark [6] used
second, third and fourth order moments of multiresolution transforms (wavelet
and curvelet) coefficients as a feature descriptor for classifying mammograms
using a K-nearest neighbors as the supervised classifier. Eltoukhy et al.[4] pre-
sented a study of mammogram classification, based on the curvelet transform,
in which a subset of the largest coefficients from each decomposition level was
used as the feature vector. They proved in this case that multiresolution analysis
achieved promising results.

In this paper, a new feature extraction approach, based on a multiscale de-
composition using the curvelet transform, is assessed for analyzing breast masses.
Selected regions containing a mass are firstly preprocessed to enhance the diffe-
rences between patterns associated to mass and parenchyma tissue. A multiscale
curvelet decomposition allows to approach the image statistical properties and
a GGD approximates the subband data distribution, whereby any subband is
described by means of the GGD parameters, e.g., mean and variance. Finally,
the Kullback-Leibler divergence is used to estimate differences between several
orientation and scale subbands of the selected region and the images of a re-
ference database. This strategy was compared to a base line constructed with
a curvelet-based decomposition and a simple Euclidean distance, resulting our
proposal in a best performance for both classification and retrieval tasks.

2 Methodology

2.1 RoI Pre-processing

Mammography analysis is very likely one of the most difficult radiological exa-
minations since these images capture a very complicated anatomical object with
a limited spatial resolution. Every image was herein stretched to the maximum
and minimum gray level values ([0, 255]), adaptively equalizing the histogram so
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that structural details were preserved. Resultant images were smoothed out by
a median filter to remove the remaining noise.

2.2 The curvelet transform

The curvelet transform is a multiscale transform [2], developed to naturally
represent bidimensional objects, improving the wavelet 2D limitations. Curvelets
constitute an over complete basis which optimally represent 2D curves. While the
wavelet provides information about scale and location, the curvelet also yields
accurate information about orientation, restricted by the parabolic anisotropic
scaling law width ≈ length2, or in other words curves at different scale levels
preserve their geometrical relationships [2].

In the frequential curvelet plane, radial displacements correspond to different
scales, predominant orientation is given by the particular angle and the frequency
information is contained in each of the resulting sub-bands. This representation
is constructed as the product of two windows: the angular and the radial dyadic
frequential coronas. The angular window corresponds to a directional analysis,
i.e., a Radon transform, and the radial dyadic window is a bandpass filter, whose
cut frequencies which follow the parabolic anisotropic scaling law [2]. Curvelet
bases were designed to fully cover the frequency domain, in contrast to other di-
rectional multiscale representations such a the Gabor transform [2], from which
some information is always lost. Thanks to the anisotropic scale, curvelets adapt
much better to scaled curves than Gabor transform, improving the representa-
tion at different scales and noise robustness [12,5].

2.3 Statistical characterization

Mammogram masses may be seen as a complex mixture of multiple curves, that
depending on the degree of malignity, may exhibit different texture patterns,
from very loosen appearances to a dense object with very blurred boundaries
[10]. Recent evidence has demonstrated that the curvelet subband marginal dis-
tributions have a good characterization power for texture discrimination tasks
[12,5]. Our fundamental hypothesis is that the curvelet distribution information
may also provide enough characterization power to discriminate texture patterns
of benign or malign lesions. In particular, we are supposing that for the same de-
gree of malignity, corresponding curvelet subbands exhibit the same local curve
distribution.

As observed in figure 1, the curvelet subband coefficient distributions, ob-
tained from actual breast masses, are characterized by sharper peaks at zero
and heavy tails. In this case, usual Gaussian distribution assumptions proposed
in the literature [12] are not satisfied. In contrast, a Generalized Gaussian Den-
sity (GGD) distribution fully characterizes the subband curvelet distribution [5].
As observed in figure 1, GGD (red) provides a better adjustment to the marginal
density than the Gaussian distribution (green). This observation was quantita-
tively confirmed by comparing the Kullback-Leibler divergence (KLD) between
the empirical distribution (ED) and the fitted GGD, and the ED and the fitted
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Gaussian distribution. For the example, in figure 1 the KLD value for ED-GGD
comparison was 0.11 and 0.53 for ED-Gaussian. We extended this analysis to the
complete set of 66 subband curvelets for a randomly selected image, resulting in
a KLD value of 0.08±0.6 (mean ± std) for the ED-GGD and 0.44±0.15 for the
ED-Gaussian case. This analysis shows that GGD provides a better adjustment
to the curvelet subband distribution than the usual Gaussian characterization.

Fig. 1. Curvelet histogram example from a randomly selected subband. (a) RoI con-
taining a breast mass, (b) Curvelet subband corresponding to scale 4 and orientation
59, (c) coefficient distribution with Gaussian (green) and GGD (red) adjustments.

The GGD is defined as

p(x;α, β) =
β

2αΓ (1/β)
e−(|x|/α)

β
(1)

where Γ (z) =
∫∞
0
e−ttz−1dt, z > 0 is the Gamma function, α is the variance

and β is related to the decreasing rate of the GGD. The parameters α and β are
estimated from the subbband data through Maximum Likelihood [3]. According
to [5] the GGD parameters (α,β) may be used as descriptor of the probability
density function of the energy levels inside each curvelet subband.

2.4 Similarity measure

The similarity between subband curvelets is measured using the Kullback-Leibler
divergence (KLD) of the corresponding GGDs:

D(p(.;α1, β1)||p(.;α2;β2)) = log
(
β1α2Γ (1/β2)
β2α1Γ (1/β1)

)
+

(
α1

α2

)β2 Γ ((β2 + 1)/β1)

Γ ((1/β1)
− 1

β1

where (α1, β1) and (α2, β2) are the GGD parameters estimated for each sub-
band. This metric does not require additional normalization and has shown
good performance in other multiscale domains [3]. Finally, under the reasonable
assumption that curvelet coefficients in different subbands are independent, the
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similarity between two images I1 and I2 is measured as the sum of the distances
between corresponding subbands

D(I1, I2) =
∑
∀s

∑
∀θ

D(p(.;αs,θ1 ;βs,θ1 )||p(.;αs,θ2 ;βs,θ2 )) (2)

where (αs,θ1 , βs,θ1 ) and (αs,θ2 , βs,θ2 ), are the GGD parameters estimated for
corresponding subbands, i.e., subbands in the same scale s and orientation θ.

2.5 Experimental results

The proposed descriptor was twofold evaluated: first, a K nearest neighbor
(KNN) classification strategy was used to label masses as benign or malign, and
secondly, a content based image retrieval (CBIR) strategy [7] was used to find
similar masses in an annotated database, according to the BIRADS description.
In both, cases the proposed descriptor characterized regions containing breast
masses and the Kullback-Leibler divergence was the similarity measure. Results
were compared with other curvelet representation methods, namely: energy of
the curvelet subband plus Euclidian metric (EUCL 1)[12], mean and variance
plus Euclidian metric (EUCL 2) [12] and the proposed method GGD plus KLD
metric.

Regions of interest (RoIs) containing mass lesions, extracted from the Digital
Database for Screening Mammography (DDSM) were used for evaluation. A RoI
is herein a small image exclusively containing the mass so that the scenario is a
specialist selecting a suspicious mass in the mammogram and sending it to the
system. These images were previously annotated by a group of breast radiologists
following the BI-RADS specification, as shown in Table 1, in terms of mass
characterization. Each mass description includes shape, margin and pathology .

Table 1. Distribution of the reference data set used for evaluating the proposed ap-
proach

Shape Margin Benign Malignant

Lobulated Obscured 25 25
Irregular Spicular 19 31
Round Circumscribed 38 12
Irregular Ill − defined 14 36

Total 96 104

2.6 Breast mass classification evaluation

The classification task was evaluated on a set of 240 RoIs, 200 used as the refe-
rence image set annotated as shown the table 1, and the remaining40 (20 benign
and 20 malign) as the test set. Images were curvelet transformed, scale and ori-
entation parameters were set to 4 and 32 respectively, resulting in a descriptor
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with 66 subbands for each RoI. The discriminant power of the curvelet descrip-
tor was assessed using a very simple classifier, a k nearest neighbor. The best k
parameter was found from a 5-fold cross validation performed on the reference
set, thereby obtaining an accuracy of 89, 9% for k = 5. Results were compared
with other curvelet description methods, namely: energy of the curvelet subband
plus Euclidian metric [12], and mean and variance plus Euclidian metric [12].
Table 2 shows the sensitivity measure for the classification task. The proposed
approach outperforms the baseline curvelet representation methods in about a
20% for both benign and malign masses . The sensitivity rate for benign and ma-
lign masses are 96, 4%, and 85.4%, showing a high discriminant power provided
by the proposed curvelet representation with a very simple classifier.

Table 2. Classification performance of benign and malign classes

KLD EUCL 1 EUCL 2

Benign 85.4 63.2 71.4
Malignant 96.4 68.2 76.8

2.7 Content-based image retrieval evaluation

The retrieval performance was assessed by computing the relevance of the re-
covered images, according to the ground truth DDSM mammogram databases.
In contrast with previous works, shape and margin were herein taken into con-
sideration. We defined three levels to describe the degree of relevance , namely
Score = 1 when two correct labels were found, Score = 0, 5 for one, Score = 0
for null. The Precision-Recall graph was used for evaluating the performance
of the CBIR scheme. The precision (P ) was defined as the number of relevant
images that the system was able to find among all retrieved images, while recall
(R) was the number of relevant images that the system was able to find among
all the relevant images stored in the database (notice that recall amounts to the
sensitivity).

P =

∑k
i=1 Si
K

, R =

∑k
i=1 Si∑n
i=1 Si

(3)

where Si is the score assigned to the ith RoI, K is the number of retrieved images
and n is the total number of images in the reference database. Evaluation of the
CBIR strategy consisted in calculating the precision and recall of 50 different
random queries as follows: from the original dataset of 200 RoIs, a set of 50
randomly selected RoIs was firstly chosen and each was used as a query to retrieve
the most 50 similar RoIs. The obtained averaged precision and recall were 89%
and 62%, respectively. Figure 2 shows the Precision-Recall curve obtained with
incremental steps of 5. Note that in this task the proposed approach (blue line)
also outperforms the other curvelet representations.
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Fig. 2. Precision-Recall curve of content based information retrieval scheme for 50
image queries.

Table 3 shows the mean retrieval performance obtained by the proposed
approach for four mass descriptions. The Irregular-ill defined and Irregular-
Spicular classes are specially associated to malign masses, whilst the Round-
Circumscribed and Lobulated-Obscured classes are associated to benign masses.
Average performance was larger than 75%, a figure very acceptable for actual
clinical applications.

Table 3. Image retrieval performance of four BI-RADS descriptions

Precision Recall

Irregular − illdefined 0.91 0.64
Irregular − Spicular 0.89 0.76
Round− Circumscribed 0.83 0.93
Lobulated−Obscured 0.86 0.68

Average 0.86 0.75

3 Conclusion and future works

We have introduced a new descriptor for breast masses, based on the curvelet
transform and a statistical model of the curvelet coefficients. By applying the
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curvelet transform and approaching the subband energy with a generalized Gau-
ssian model, we obtained a robust representation which captures the edge dis-
tribution at different orientation and scales. Experimental results indicate that
the new feature improves the classification and retrieval performance for an re-
levant mammogram findings, namely mass shape, margin and malign or benign
pathology, when compared to other features, also based on curvelets. Future
works include improving the feature with invariance to rotation and scale and
extensive experimentation in larger mammogram databases.
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