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Abstract

We develop in this paper a generic Bayesian framework fojdimt estimation of motion and
recovery of missing data in a damaged video sequence. Utndard maximum a posteriori to
variational formulation rationale, we derive generic mnom energy formulations for the estimation
of a reconstructed sequence as well as motion recovery. Stfmitiate these energy formulations and
from their Euler-Lagrange Equations, we propose a full magdblution algorithms in order to com-
pute good local minimizers for our energies and discuss thenerical implementations, focusing
on the missing data recovery part, i.e. inpainting. Expenital results for synthetic as well as real
sequences are presented.

Keywords. Image Sequences Restoration, Bayesian Inference, Optma) Image Inpainting,
Variational Methods.

1 Introduction

Since the birth, more than a century ago, of the cinema, amdpbparition of video in the 50's, a huge
amount of Motion Picture material has been recorded onrdiffietypes of media, including celluloid
reels, magnetic tapes, hard disks, DVDs, flash disks...

Unfortunately, this type of material is subject to artiga@lready atimage acquisition, or, for instance,
degradations of the storage medium, especially for reelsapes, caused by bad manipulation, incorrect
storage conditions, or simply the “patina of time”. Thesgrdeations can be of extremely many differ-
ent types. For films, some of the problems encountered iecludt are far from limited to, image flicker,
noise, dust, real dust or a deterioration caused by the ugseafect chemicals when developing a neg-
ative, for instance, missing regions and vertical line etras, usually due to mechanical failures in the
cameras of projectors, degradation of the chemicals, ¢atbing, and even the degradation/destruction
of the support, as it is the case for triacetate films, wheoessive storage temperature and humidity
causes the formation of acetic acid (vinegar), and thisga®ds auto-catalytic: once started, it cannot
be stopped. Nitrate cellulose based films are highly flamenadidlany movie theaters were burnt down
because of that, and their storage is critical because ¢bgrp risks. Video also is not exempt of prob-
lems. The Telecine, a device used to convert a film to video,jrtoduce artifacts such as distortions
or Moiré patterns. Repeated playbacks may damage theitdapeucing for instance noise, the lost of
synchronization information produces a disturbing jittgreffect. The digital medium has also its own
problems, such as the block artifact due to lossy compnessa&thods, and during network transmission,
some blocks can be lost.
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Among these degradationblotches— i.e, following Kokaram ([30] “regions of high contrast tha
appear at random position in the frame (...)". In these megithe original data is usually entirely lost and
this paper focuses on recovering the missing data. Digitaihting is the name that is commonly given
to the process of filling-in regions of missing data in an imaand although the term was first coined
for spatial images in [9], Image Sequence or Video Inpagtsinow widely used. A main difference
resides in the fact that information missing in one frameujgo®sed to exist in adjacent frames, this is
used to restrict the search space, via interframe motiamatsbn.

With the increasing computational power of modern compmtarore and more sophisticated algo-
rithms are developed for inpainting of still frames as weslaleo sequences. They are often divided into
stochastic and deterministic methods, although the twooaghes often share many modeling aspects.

Spatial Image Inpainting techniques were pioneered by Blasmd Morel [34], location were data
is missing is treated as an object occluding the backgromaddazElastica based variational model for
the completion of broken level lines is proposed. Bertalgti@l. [9] proposed a Partial Differential
Equations (PDE) based method for filling-in regions by a ebgmoothness transport. They proposed
then a variational technique for recovery of level lines amtdnsity in [7]. Chan and Shen proposed in
[15] approaches based on Total Variation as well as Elasticimization. Using a different, discrete
approach, inspired by work on texture generation [21, 2@imiisi et al. proposed a simple and elegant
patch based method in [18].

Apart from the deterministic/non deterministic divisi@mother one the level of modeling, One might
talk of lower analysis level approach for a direct study @& tmage geometry in the spatial case, or
a “simple” 2D+time model, while amigher analysis levedpproach will attempt to model/infer key
descriptions of the underlying 3D scene and/or its dynamgisg for instance tracking, hypotheses of
(quasi)-repetitive motion , and use them for sequence staartion.

In the latter category, Irani and Peleg in [28] proposed ehotkthat can among others remove fore-
ground objects from a scene. From a multilayer parametricameoepresentation, foreground occluded
objects can be detected and removed thanks to the motiomgesity information available for the
other layers.

Extending the spatial exemplar based inpainting work ofr@risi et al. in, Patwardharet al. have
proposed techniques for video inpainting, in the case titdtackground [40] and extended to relatively
simple camera motion [41].

In the other hand, a series of more “lower level” methods Haeen able to produced high quality
results. Kokaram, in his seminal work [31, 30] explored aibstic “2D+1" based approaches for joint
detection and reconstruction of missing data. Chanass PHD dissertation ([16]) introduced an energy
based method using explicitly motion, via a energy formatabn pairs of image sequence and motion
field. Minimising the corresponding energy is done by savits associated pair of Euler-Lagrange
equations. This method can be seen as a particular ingtant@f our. Grossauer in [27] uses optical
flow in order to detect serious violations which might theririierpreted as blotches, and then performs
a simple transport from neighbor frames. In a similar wayAmoreet al. [19]) also developed methods
for detection and removal of blotches based on variatior@lan estimation. In a different way, Wexler
et al. [45] proposed a patch based method for filling in holes, withstrains enforcing spatial en
temporal coherence.

The work we present here can be seen as a deterministic “lewat approach to the blotch restora-
tion problem, where we are given a damaged image sequeneellass the location of the damages,
assumed to have been obtained by specific means, the redsod ivés the well known difficulty in the
precise detection of large blotches, where semi-autorpaticedures are very often applied.

Starting from a general Bayesian Inference approach, dng tecent developments in motion recov-
ery, we derive a generic variational formulation for joistimation of motion and recovery of missing
data, we then instantiate this generic class into seveejggrfunctionals, we propose to solve them
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via their Euler-Lagrange Equation in a fully multiscalenfrawork. This work builds upon a conference
article [32] of the same authors. Some of these ideas appedse in the monograph of Aubert and
Kornprobst [6], as a contribution from the first author ofstipaper. We have also used variations over
this framework for Video Deinterlacing in [29].

This paper is organized as follows. After having introdusedne notations in the first section, a
probabilistic model is discussed in section 2, modelindiltbe purely spatial behavior for a still frame
extracted from a video sequence, as well the temporal edioalwhich is expected between the frames,
correlation coming from thapparent motionMore precisely, what the model describes is the joint prob-
ability of an image sequence and a vector field describinguagp motion, knowing that they should
agree with a given degraded image sequence. Using Bayedearrice, an expression for a posterior
probability distribution is worked out. Then following Mdord in [37], a generic family of variational
formulations is deduced for the problems of simultaneousanawecovery and inpainting, as well as si-
multaneous motion recovery, inpainting and denoising.iMirzations for these variational formulations
provide ourvariational motion compensated inpaintiaggorithms.

2 Bayesian Framework for Inpainting and Motion Recovery

In this section we introduce a generic probabilistic fraragwfor the missing data problem, via Bayesian
inference. We first provide a general rationale for writ tangosterior probability and via maximum a
posteriori, we derive a generic energy minimization foritipainting problem.

2.1 A Posterior for missing data

We use discrete settings in order to easily give a sense tdiffieeent probability computations used.
Given the degraded sequengg we assume that a degradation procBsshich results inug, this can
be the loss of every second line in a frame alternating waiy,igghe case in video interlacing, a spatial
or spatiotemporal downsampling or as a less structuredatah of missing blocks of pixels, described
by their location(2. Our goal is to reconstruct a sequencen D and to compute a motion fietdlfor that
sequence. We introduce therefore the conditigrial #]ug, P). Using The Bayes rule of retrodiction,
we can write this conditional as a product dflelihood and aprior divided by arevidence

p(u0|u7 177 P) p(u7 Z7|’P)
p(uo|P)

The evidence corresponding to the known data plays the foéermrmalizing constant and will be
neglected in the sequel. We assume thds a degraded version of with for instance noise added in the
acquisition process or because of aging, and missing datangdrom film abrasion due to a mechanical
failure or a bad manipulation. Therefore the observed dkgtémage sequeneg is assumed to depend
only onw and not on the apparent motiohso that the likelihood term(ug|u, ¥, P) is justp(ug|u, P).
Because of the nature of the causes for missing data, we samaghe independence (f, ) and P
and the prior is simply

p(u, Ulug, P) = : (1)

p(u, ¥|P) = p(u, v) = p(ulv) p(v).

We will now decompose this prior. For that, let’'s imagine thowing common situation. Using a
DVD player, a person is watching a video on a TV set. He/shégrighe “pause” button of the DVD
player’s remote control. There could be motion blur due tgdanotion and finite aperture times at image
acquisition, but our spectator expects to see a meaninijfuhsge displayed on the TV screen. When
the “play” button is pushed again, the animation resumed,this person expects to see an animation
which is coherent with the content of the still, at least fosudficiently small amount of time, this
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coherence corresponding of course to d@pparent motion This leads us to assume thdu|v) has the
form p(us, u¢|¥') whereu, andu; denote local spatial (still frame) and temporal (anim3tidistributions
for u, and we factor it as

P(us, w|V) = p(ui|us, 0) p(us|V). )

As we see, the first term of this factorization is a directgtation of this expected temporal coherence.
For sake of simplicity, we assume the independence; @ndv. This is not necessarily true, as motion
edges and image edges have a tendency to be correlated, exfémited by several motion recovery
algorithms, starting with the work of Nagel and Enkelmange($or instance [38, 3, 2]). In the other
hand, many optical flow algorithms do not use this potentggehdency and provide very accurate
motion estimations, in fact often better as approacheddkatexplicitly into account spatial edges have
a tendency to produce over-segmented flows (see [35] farins). Putting all these elements together,
we finally obtain the following posterior distribution

p(u, Tlug, P) o p(uo|u, P) plus) plui|us, v) p(0) ®3)
———— o —
Py Py P3 Py

where () is the likelihood ofu, () is the spatial prior for the sequendé,) is the motion prior, and
(Ps) is a coupling term that acts both as a temporal prior for #uygience and a likelihood for the motion
— as is the gray level constancy assumption along appardianmtoajectories seen from either image or
motion point of view.

3 Variational Formulation

Among others, a standard way to compute a paii) from (3) is to seek for thenaximum a posteriori
(MAP) of this expression. The kind of probability functiongich are normally used ag@ibbsian i.e.
of the form(1/2)e~F whereE is expressed as a sum over cliques, ([25]) and stochastiithlgs can
be used, as for instance Markov Random Field techniques.

From this point we will assume that the degradation procgggven as a known missing data locus
Q C D, the spatiotemporal domain of the sequence, and the reaotish will be though as blotch
removal, although much of what is presented below will &ilinally be valid for deinterlacing or super-
resolution. Before discussing this, we introduce sometinots and concepts that will be used in the
sequel.

3.1 Notations

The approach for sequence modeling taken in this work fal@eas of ordinary differential equations
and dynamical systems. The spatial domain of a sequencenillibe taken to be the unity square
D, = (0,1) € R2. The spatial coordinates will be denoted= (z,y), the temporal coordinate by
t and spatiotemporal coordinate= (x,t¢). Given A C B the complement ofA in B will be denoted
by B\A or just A° (when B is clear from the context).D, = [0,T], D; = [0,T), D} = (0,1].
D~ := Dy x D;, D" := Dy x D;". As used above will denote the subset ab of missing data of
a sequence, i.e. a map: D — R". We assume thab is made of “planar particlesk(¢) that move
smoothly, at least locally, out of some codimension 2 regjivith velocitiesix /dt = v(x(t)) = v(x,t)
the instantaneous spatial velocity vector field. To eackiapeelocity fieldv = (v1,v2)!, we associate a
spatiotemporal velocity fieltt = (v?, 1),

In this setting we consider instantaneous vector fieldsD — R2. They will not a priori a displace-
ment, but a velocity, i.e. the spatial part of the time-datixe of a particle trajectory.
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Given a smooth vector field : D — R3 smooth enough, The directional or Lie derivative of a
function f in the directionX atr is simply

Lxf(r)=X(r) Vsfu

(V3 denotes thespatio-temporal gradieft. Standard results on ordinary differential equations show
that X has alocal flow ¢, i.e. a local solution of the differential equatiof = X o ¢* and that for

h small enough the ma@y*, h — c*(r, h) is a local diffeomorphism from an open subsetidfnto D
(see [24] for a detailed exposure). Then on has

Ly f(r) = Tim F(67(h) — f(r)

h—0 h

(4)

It makes clear that if. > 0,

X — T
£§(+f(7‘) — f(er (h;l) f( ) (5)

is a forward differences approximation 6fx, and it we will use when developing discretizations for
numerical solvers, as well as we will uselitackward differencapproximation

r)— X(—
$lr) = SOF) ©

£ 1) =

Given a “particle’x at timet, under the velocity field, its position at time + h is given bye& t)(h),

whereV is as above the spatio-temporal extension,cénd this position has the forfy,¢ + h) and
thus induces apatial displacement field

v(x,h,t) =y — x, (7)

obtained by integrating the valuesw®fn the intervalt, ¢ + h].
For a spatial velocity field, we will denote, abusively, by, what should beCy-, and similarly for
£+ and£h~. Denoting byV thespatial gradient operator, one has

Lof =V -Vsf=v-Vf+f.

We will use spatial and spatio-temporal divergence opesatespectively denote¥- and V3, al-
though, we will generally drop the subscript in the last hiotg as the dimension of the vectorial argu-
ment of V- should remove ambiguity. For a mgp D — R*, J(f) will denote the Jacobian of with
respect to its spatial variables and for a mapD — R, H(g) will denote its Hessian with respect to
spatial variables.

To end this section, we will denote by, the characteristic function of a set A:

(2) 1 ifzecA
Xr) = .
XA 0 ifzgA

3.2 From MAP to Minimization

The MAP problem is first transformed into a discrete energyimization problem

E(u,v) = —log(p(u, Uluo,Q)) = Ey(u) + Ea(us)
+E3(u87 Ut, 6) + E4(17) (8)

Ywhenf is vector-valuedVs f can be taken to beJ f)*, the transpose of the Jacobian matrixf@dndVf - X := Jf X
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with E; = —log(P;), and our goal is thus to find a minimizét, v) of E(u, %), E being a function of
the image pixel locations and flow locations throughnd . When image and motion field spaces are
provided Euclidean structures, amdis reasonably smooth, a necessary (but not sufficient) tondi
for (@,v) to be a minimizer is to be a zero of the energy gradients wispeet tou andv, gradients
that represent the corresponding differentials for theesponding Euclidean structures, and denoted by

V.E andV,FE in the sequel:
{qu(a, 7) =0

VsE(u,v) = 0.

Note however that expression (8) makes sense only when wakarhelog of each of theP; distribu-
tions. An important situation where this is clearly not tlzse when the likelihood term has the form of
a Dirac distribution:

(9)

1 if Ru=wuponD\Q

, (120)
0 otherwise

P(uplu) = 6(Ru — uo) = {

whereR is an operator such as a spatial or spatiotemporal blurngolgithe identity. In that situation,
we simply seek for &, v) satisfying

(4,?) = Argmin Es(us) + Es(us, ug, ) + E4(7)
() (11)
Ru=wy onD\Q.

In that case, a minimiz€i, v) should satisfy the following conditions

Vu.E(@,7) =0 ong
Ru = uyg on D\Q (12)
VsE(u, 5) =0

At that point, the formulation we have obtained so far is @ige in its nature. Using the Bayesian to
variational formulation proposed by Mumford in [37], linmty expressions for the probability distribu-
tions/energy involved give rise tocntinuousenergy formulation, treated at least at a formal level, and
deterministic algorithms can be used to carry out the mixestion problem. The continuous expressions
will also be denoted?;. The “game” is therefore to choose meaningful expressiongdch of theF;,
which are also computationalligasonable Variational 2-dimensional formulations of inpaintingnca
provide the spatial termis and variational optical flow algorithms can be “plugged-iof termsE5 and
E4, and really many of them have been proposed in the two lastdgsc We will extend upon these
choices.

In the following paragraphs we argue on the instantiatidnthe different termsZ (u; ug), Ea2(u),
Es(u,v) and E4(v), they should present a good trade-off between accuracy délimg and simplicity
in order to result in computationally tractable algorithms

3.3 Image data term

The data term provides a measure of deviation between amveblssequence and a candidate recon-
struction. As mentioned above, this term is relevant in tpainting-denoising case, and has generally
the form

El(u;uo):/ L(Ru,up) dz dt
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For an additive noisel(z,y) = ¢(z — y), for a multiplicative one,L(z,y) = ¢(y/xz). Noise can

be very complicated to apprehend, and generally a simplehi@éssumed, such as additive Gaussian
white noise with a fixed variance or a more general Laplacemaind)(x —y) = A\ |z —y|P forap > 1.

In this work we have restricted ourselves to the Gaussiatewltise casep(z — y) = A1 (z — y)?.

3.4 Spatial regularization terms

Such a term would generally have the form
Esy(u) = / L(Vu,V?u,...)dzdt
D

although derivatives of order 1 are rarely used in practice (although see [33]). Tichongulaization
corresponds to the cagdw) = ¢(|w|?) with ¢(x) = z, but is to be avoided in general, as it blurs edges.
One of the most popular choiced$xz) = /x which corresponds to the Total Variation of Rudin, Oscher
and Fatemi [42]. Because of its non-differentaibility0ats is often replaced by(z) = vz + €2 where

e > 0is small. Othek, even non convex, have been reported to behave very well [6].

3.5 Motion likelihood — Temporal regularization

As our little story illustrated it, some form of coherence the sequence content must be present. It
is expressed as the requirement that some derived quamatitythe sequence is conserved across time,
guantities that depend on scene illumination, the imagedtion process, etc. .. Inthe temporal discrete
setting, this conservation can be written as

LEF(u)(r) =0, Vr (13)
and in the continuous temporal setting, the Lie-derivative

OF (u)
ot

The continuous equation is generally derived as an appadiom of the discrete one. In this work we
used a view point a bit different: integrating along fixeddimnges the continuous equation will provide
the discrete one.

Conservation equations (13)—(14) do not generally holdepty, due to a series of factors: among
others, occlusions / disocclusion. Noise can also be a safrerror, although presmoothing can be
built into F'. F' can be vectorial in order to express that several elemeqgtaangtities are expected to be
conserved, and will always be assumed to be a linear diffietdr integro-differential) operator.

In order to cope with conservation equation failure, theseowation properties are enforced in a least
square or generalized least square sense via terms

Ly(F(u)) =v-VF(u)+ = 0. (14)

Es(u,v) = /DL(,CUF(U(’I"))) dr.

For anz seen as a "'collection of featuré’y, . . ., z;) where ther;’s can themselves be vectors, we will
always assume thdt(z) = ¢(>, |zi?) or L(z) = >, ¢i(|xi|*) where|z;| is the standard Euclidean
norm ofzx;.

The most commonly used operatbris simply the identity: the intensities should match alohg t
motion trajectories. Although clearly limited in validif¢3], it works well in many cases. Higher order
differential operators have been used, such as the spadidiegt, spatial Laplacian, spatial Hessian ...
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They can be potentially attractive to enforce specific priogee for motion recovery. The spatial gradient
will prefer local translational motion. The Laplacian, bgirotationally invariant might be better suited
for rotational motion... However one must keep in mind thdifferential operator of degree will give
rise to terms of degree up to and includi?wgin the Gateaux derivative df5 wrt u. For that reason, we
have limited our investigations to the identity and spajiadients.

3.6 Motion regularization

A large amount of work has been devoted to regularizer teamgdtical flow algorithms to accommodate
the different situations encountered in practice, rangiog natural image sequences, medical image
sequences, fluid dynamics data... Having Film/Video resitim as our goal, we focus here on natural
image sequences. They are generally composed of movirdysegni-rigid objects projected on the
camera plane, resulting mostly in locally translationatiom

Thus a regularizing term should enforce this behavior, oeoto recover essentially smooth small
varying regions with in general 1D discontinuities betwélese regions. We will limit ourselves to
terms that depend on the spatial or spatiotemporal Jacabidre motion field. More details will be
provided in the next paragraph.

3.7 Proposed variational formulations

From the discussion above, we propose several actual isaaatormulations for the joint motion re-
covery / image sequence inpainting. For each formulatiencensider the inpainting/denoising problem
and the pure inpainting formulation. In each case, we chébseld. For inpainting denoising we place
ourselves in the additive Gaussian noise situation digclissSubsection 3.3:

Bxfuiug) = 3 [ (= uo)?dr. (15)

The spatial regularization term used in this study is a regzdtion of the Total Variation term:
_ N 2
Bafu) = 3 | o(1vul’)dr (16)

whereg(x?) = /o2 + €2 for a certaine > 0. From now,¢ will always denotes this function. This type
of regularization in the spatial case is known to generatecaising effects artifacts [39]. Experiments
in Section 6 orinpainting/Denoisingshow clearly these artifacts. In pure inpainting, howetles, term
merely acts as brightness regularization and the aboveionedtartifacts are much less stronger.

We present the remaining two terms in the following two tablEable 1 deals with the motion likeli-
hood/temporal regularization part while Table 2 deals wmitbtion regularization terms. All these terms
are “borrowed” from well-known variational optical flow fmulations,A\; and A4 being some reals 0.

In the sequel, we will refer to one of these termsZfswhere EF is thek-term (¢-row) of the E; array
(i = 3,4) presented below.

TermsE3 and E} are regularizations of the-norm terms proposed by Aubeet al. ([4, 5]). To the
authors’ knowledge, the first variational motion compeeganpainting algorithm was using these terms
ant the above spatial regularization term in the work of Gisdii6, 17].

TermsE3 andE3, in their time discrete version whety’ is used instead of,,, have been respectively
proposed by Broet al. [11] (that also proposed regularizEf) and Bruhn and Weickert [12] and proved
to provide highly accurate flow. The time-continuous versi&? was used in the authors’ conference
paper [32].E7 was proposed by Weickert and Schnorr in [44].
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E3( 7U)
1 % Jp 745((516 ?) dr
5 [p- ¢ (Low) + 1L, Vul?) dr
314 [p ¢ ((Low)?) +76 (I£,Vul?) dr

Table 1: Terms coupling intensity and motion.

Ey(v)

128 [0 [ (IVui]?) + 6 ([Ve2]?)] ar
2 [ ¢ ([Vui]? + [Voe]?) dr

3 %ID,(ﬁ(‘Vg’Ul‘Q—F ‘ngg‘Q) dr

Table 2: Terms for motion field regularization

All the combinations were implemented, although we presaht some of them in our experiments,
for obvious space reasons.
We have not yet discussed the fact that image sequences cattoe-valued. For a sequenge=

(ui,...,u,): D — R™ n > 1, the same energy terms are used, where we then set
Vul> = [Vu?,  (Lou)® =D (Low)?,. .. (17)
i=1 i=1

4 Resolution Methodologies

Minimizing the energies presented in the previous secsaiione via solving their corresponding flow
and image Euler-Lagrange equations. Motion estimationires normally a multiresolution / multiscale
approach in order to be able to handle large displacemengsadlypt a multiresolution approach here
and we propose to interleave the images inpainting stepsthét flow recovery ones at each resolution
level. In this section we describe in more details this nesmh approach and we introduce tools for
computing the image Euler-Lagrange equations associaitidowr formulations. We then process to
the computation of the different energy gradients, at leasthe image related terms. Indeed, the steps
for solving motion recovery are well studied and we follove tleferences we have mentioned in the
previous section, we won'’t provide the details of their dations.

4.1 Multiresolution framework

Motion computation depends critically on the range of thiéedent discrete filters supports used for
the estimation of the differential / finite differences qtits in the optical flow equation, and/or the
smoothness of the input image data. For that reason mutiscanultiresolution techniques are needed
in order to avoid meaningless local minima. In the other handood approximation of the motion
field at a given resolution should allow a precise recostittnf image information at that resolution
by motion compensated diffusion. Therefore we present hemethodology that aims at producing
algorithms converging to a reasonable minimizer by soliamatively for the image and the flow, in a
completespatial multiresolution setting. We implicitly build pyramids fohe image sequence and the
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flow. In the sequel we assume that we haver- 1 resolution levels, leveN being the coarsest, level
being the finest, original one. We do not requir§ gpatial scaling factor between consecutive levels.

We are seemingly in presence of an hen and egg problem, sirareleér to compute a flow with our
methods we need image values, that are a priori unknowneiribiel degradation locus, and we need a
flow in order to inpaint inside the degradation locus. Thik e handled by using a degenerated form of
the inpainting algorithm at coarsest resolution, thatveslais to recreate a starting image sequente
At coarsest resolution, the interframe motion is assumdzkteery small, and we inpaint the sequence
by computing a minimizer of the corresponding energy foatiah where we have assumed= 0 — no
motion is present. The non-linearity of the image equatimviples a form for motion adaptivity.

Once we have a coarsest resolution inpainted sequencenseactour multiresolution process. What
we do is to modify the motion field recovery algorithm by rumgpithe inpainter after the interpolation
of the lower resolution flow, and before updating the flow ait tiesolution level. Figure 1 illustrates a
typical iteration. At a given pyramid levél+ 1, let us assume that we have an inpainted sequefice
It is then used, together with an interpolated version’gfto compute a motion field at that resolution,
to producev® 1. Then at resolution level, we first interpolate the flow, using for instance a bilinear o
bicubic interpolation, to produce antermediaryflow field v¥. This flow is used in order to reconstruct
the sequence” at levelk.

uk+l vk+l
1) Flow computation

\

2) Flow interpolation
ik

3) Inpainting

Figure 1: Multiresolution inpainting. From a sequendée! at resolution levek + 1, 1) the optical flow
is computed, 2) it is interpolated at resolution lekelnd 3) used to inpaint the sequence at lévelhis
process is then iterated at lower pyramid levels.

A general algorithm (not tied up to our particular formubaj is given in table 3. As it can be seen from
this sketchy algorithm, the difference between a generiltirasolution optical flow algorithm and our
inpainter are simply thanterleavedinpainting steps.

4.2 Derivation of Euler-Lagrange equations

In this subsection we compute the different energy devigatwith respect to image variables for the
terms proposed in Subsection 3.7. The velocity relatedrakires will be provided without calcula-
tion as they have been derived by authors mentioned in Stidnse®:7, at the exception of the new
flow smoothing term. We first provide the general methodoltmggompute these derivatives and some
elementary results used in the sequel. We restrict ourdelgealar valued images and will indicate
extension to the vector valued cases.
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1. ComputeuV by spatial TV and motion adaptive diffusions.
2. Fork =N — 1 downto 1

(a) Computer**! from v~
(b) Compute intermediary flow* by interpolation of*+1
(c) Inpaintu® usingv¥

3. Computey” from u°

4. Output(u®, v°).

Table 3: Generic Motion Recovery and Inpainting Algorithm,

4.2.1 Computing functionals differentials

In order to obtain the Euler-Lagrange equations, we usedtlentque of directional derivatives for
computing differentialglE,, of u — E(u):

E—dEE=10(0), {(1)= E(u+7E) (18)

and use of adjunction/ integration by part will allow to tséorm dE,,£, which generally appears as an
inner product/, L; (u)L2(§) dz of a termL; involving derivatives ofu and a termL; linear in¢ and
some of its derivatives on the domdin into an equivalent expression

dE,E = / Fiede+ | €Gu(v)ds
D oD

wheredD is the boundary oD, v its exterior normal field, and under proper conditions oregtable
deformations or onu on the boundary® making this boundary integral vanish, is thegradientof £
atw for this inner product. We will perform computations on eaciergy part and keep track of resulting
boundary integrals.

We will present integration by part formulas for the spatjeddient operato¥ as well asCy . They
all result from the standard integration by part / Stokesida [22].

Proposition 4.1 LetD c R?x [0, T'] the domain of a spatiotemporal sequentehe thespatialgradient,
V- thespatialdivergence orD andv, the spatial component of the exterior unit normal to the lutzaurg
0D of D. Assume that Let : D — R andv : D — R? beC! onD. Then

/Vu-fudx:—/uv'vdx—i—/ U - Vg ds.
D D oD

wheres is the area me sure avD.

Proposition 4.2 LetD c R? x [0, 7] the domain of a spatiotemporal sequengey : D — R, k > 1,
v:D — R?DbeC'. LetV the “spatiotemporal” velocity field associated t9V = (v’ 1)7, then

[ewrvar = = [o9a-@vyars [ ouwovas

= —/gp-[ﬁmﬁ—ﬂbV-v]dr—i—/ - (V-v)ds
D

oD
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wherev is the exterior unit normal to the oriented bound&® of D and s is the measure oD and
— . — is used to denote inner products bothlRfiandR? .

The actual velocity field may present discontinuities, all agefunctionsy and«. The simple formula
above must then be replaced by a more complex one, as songertaersh be considered as measures [6],
but we will not consider it in that work, the problem becomthgoretically very difficult.

In the following gradient computations, we will for legiiyl reasons, omit the different; weights
from the energy components.
4.2.2 Dataterm

If one wants to use the inpainting/denoising formulati@rm £ (u; ug) defined in formula (15) must
be differentiated with respect toand using (18), one finds immediately that

dFE1,€ = /Q (u—wup)&dr, VuE1 = xqe(u—up). (19)
Whenug = (ug;)i—1..r andu = (u;);—1.., have values ilR*, equations above are simply replaced by
Vuz-El :XQc(uZ——um), iZl,...,k.

4.2.3 Spatial regularity term

For the spatial regularizer terfy, given in formula (16), a straightforward computation usitigctional
derivatives and Prop. 4.1 leads to

dE2y¢ = — / V- (AVu) dr (20a)
D
+ EAVU - vgds (20b)
oD
where we have set
A= A(u) == ¢'(|Vul?). (21)

In the pure inpainting cas& = 2, and we restrict to deformatiogsthat have compact support i@y it
means that the boundary term (20b) vanishes here and thiemfragdgiven by

VEs = —xaV- (AVu). (22)

Whenuw is vector-valued, by using squared-gradient magnitudeséiatl in formula (17), one obtains
thek terms
VuiEQ = —XQV' (AV’LLZ), 1= 1,...,k‘

which are coupled via their common diffusivit.

4.2.4 Temporal prior / motion likelihood term

TermsE}, couple intensity and motion. We need to compute their grasli@ith respect to intensity and
with respect to motion, and the novel part is really the istigngradient. For that reason we present
computations forZ} and E2 as well as the result faE3. Here too, integration domains depend on the
type of problem we are interested in, it will 2 = Q for pure inpainting, and® = D for inpainting
denoising. Gradients with respect to motion fields are plediwithout any computation and we won't
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detail their adaptation in the multiresolution setting,iethis standard and properly explained in the ref-
erences on optical flow that we provide.

The term Ei. We start with termE3 as defined in Table 1: a straightforward calculation using fo
mula (18) and Prop 4.2 gives

dE%uf = —/ [Ly(B1Lyu) + B1L,uV-v] € dr (23a)
D
+ EB1Lyu (V- v) ds (23b)
oD
where we have set
By := Bi(u,v) = ¢/(|Loul®). (24)

Here too, in the pure inpainting casg¢,has compact support o and the boundary integral (23b)
vanishes, the sought gradient is

VuEY = —xaLly[BiLyu]
—xoB1L,uV-v. (25)

Whenu is vector valuedB; couples the different channels via formula (17) and oneiabfaterms:
Vo, Es = —xa (Ly[B1Lyu;] + BiLyw;V-v), i=1,... k.

The termV, E3 has been computed by several authors, see for instancea¥lfor the general vector-
valued setting, is given, with our notations, by the veetioexpression:

k
VoEj =B ) LouiVu;.
1=1

The term E2. The additional gradient magnitude term in enefgj will induce higher order terms in
the differential. Once the directional derivative is congal) the, in order to transform it as a sum of an
integral on the domain and a boundary one, we need to apply. B2 and Prop. 4.1. A careful but
nevertheless straightforward computation provides

dE3 .6 = — /D € [Ly(BoLoyu) + BoLyuV-v] dr (26a)
+ /D EV- [Ly(B2LyVu) + Bo L, VuV-v] dr (26b)
— - € [Ly(BoLyVu) + BoL,VuV-v] - vgds (26¢)
+ /8 . By [€Lyu~+ yVE - L,Vu] (V- v)ds (26d)

where we have set
By == By := ¢ (|Loul* +7[L,Vul?). (27)

Once again, for the pure inpainting case, boundary intedt@t and 26d vanish and the corresponding
gradient is

VuE2 = —xqlLo(BaLou) — 4V (Lo(B2LyVu))]
—xq [B2LyuV-v — 4V (B2L,VuV-v)]. (28)
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In the vector valued case, each component is given by thedlarabove, replacing by u;, the compo-
nents coupling provides froms.
The gradient with respect to the motion fielaf this term is, in the general vector valued case, given

by
k

VoES = By Y [Lou;Vu; + H(ui) Lo (V)]

i=1

The term E3. Similar computations can be performed for the tetthand similar complex boundary
integral terms appear in the computations. We set

Bs := Bs(u,v) := ¢'(|L,Vul?) (29)

and together wittB; that was defined in formula (24), we get

dE3 6 = — /D E[Ly(B1Lyu) + B1L,uV-v] dr (30a)
+7 /D EV-[Ly(B3L,Vu) + B3L,VuV-v] dr (30b)
— - € [Ly(BsL,Vu) + BsL,VuV-v] - vgds (30c)
- /B . [€B1Lyu+ yBsVE - L,Vu] (V- v)ds (30d)

In the pure inpainting case, boundary integrals vanishumecaf conditions og and the sought gradient
is

VES, = —xollo(BiLyu) =3V (Ly(BsLyVu))]
—xq [B1LyuV-v — V- (B3sL,VuV-v)]. (31)

4.2.5 Boundary terms for minimization with respect to image

So far we have not discussed boundary conditions for theritipg/denoising problem where the in-
tegration domain isD and we cannot assume that a deformation direction vanidbeg &D. The
resulting boundary integrals are rather complex. We cendite case arising from combining spatial
regularity termFE, and temporal regularity terivi. The resulting boundary integral comes from (20b)
and (23b):
E[MVu-vs+ A3B1Lyu(V - v)] ds

oD

and a natural boundary condition is thus to impose that

MVu v+ A3B1Lyu(V -v) =0.

On domainD exterior normals are respectively= +(1,0,0), £(0, 1,0)T and+(0,0, 1) correspond-
ing to “vertical”, “horizontal” and “temporal” faces of thdomain. With these vectors, the conditions
become

UyV2 + Uy UV + Ut

= -3 B resp.u, = —A\3v,Bj ———————
te 30121 Ao + Azv1 By’ Pty 30y Ao + A3vo By’

resp.u; = —(ugv1 + uyv2)

if one uses the expansiab,u = u,v1 + u,ve + u,. However, such an expansion is problematic nu-
merically. It is classical in optical flow literature thatréquires sufficient smoothness om@mnd/or small
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motion, and when these requirements are not fulfilled, orsethaise approximations such as the one
given in formulas (5) and (6) in the previous section.

A stronger requirement can be imposed, that bbth andVw - v vanish simultaneously. If it holds,
then the boundary integral vanishes, but imposing such @irsgent may lead to an overdetermined
system: for instance, on the “vertical” face, using the &bole derivative expansion, it becomes

Uy =0
Uyvo + up = 0
and while the first equation expresses the absence of wariatiross the boundary, the second is prob-
lematic asu,, u; andv, are generally estimated fromandw from already known values of the image.
We will nevertheless assume thatu = Vu - v, = 0 as, the use of standard schemes for computing
gradient and the schemes that come from (5) and (6) for cangpyt,« provide a simple and efficient
numericaltreatment of these boundary conditions. These can also teaded to the term#&s;? and
E3 by requiring also that’,Vu = 0 on dD. In fact, without such an assumption, it seems difficult
to get rid of boundary terms appearing in the computationdiftérentials for £32 and E3, where not
only a deformatiort appears, but also its spatial gradi&{. What makes the difference with the pure
inpainting formulation is that it appears extremely difftdd control what happens at scene boundary.
If one could assume null camera motion and moving objecta@nyg in the image domain, boundary
difficulties would vanish, but this may seem a very severgiotion.
With these assumptions, the three gradient t&vm&3, vV, E3, andV, E3 are easily computed in the
inpainting-denoising formulation and are given by

VuEé = —Ly[B1Lyu]
—Blﬁtu‘U,
VuE; = —[Ly(B2Lyt) = V- (Lo(BaLyVu))]

— [B2LyuV-v — V- (B2 L, VuV-v)],

VES, = —[Lo(BiLou) — V- (Lo(B3L,Vu))]
— [B1LyuV-v — V- (B3L,VuV-v)].

Two important remarks regarding the structure of theseddatso valid for their pure inpainting coun-
terpart):

e First, we observe that these three gradient teWip&}, vV, F3, andV, E3 are each decomposed
in two parts, a part containing a double differentiationnalahe flow field viaZ, (), which cor-
responds to diffusion along a flow line, and a term wh®ra appears, which corrects for the
non parallelism of the motion field. These terms are non linear transport along trajectories of
the velocity field and are controled by the flow divergenceis heans that not only the punctual
value ofv must be taken into account but also its variations. This isresequence of Prop. 4.2
and is to be put in parallel with duality ideas of Floraatkal. in [23], but see also [46, 8, 35].

e The second remark concerns the assumptions made on cahsgretities in order to build the
different termsE?. The corresponding image gradients make clear that thesenations should
be enforced for the image minimizers of these energies, imigmsity diffusion for intensity con-
servation and spatial gradient diffusion for spatial geatliconservation.
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4.2.6 Flow regularity terms

As mentioned already, their regularizel, i = 1,2, 3, are borrowed from existing motion recovery
algorithms, and their gradient calculations, with its nma#folution adaptation, have been presented in
the papers already mentioned. We just briefly recall theltesu

The term E}. The two gradient components are independent, and if ose set
C1( ) = (Wvl‘ ) Cl( ) = (’VU ‘ )

1_ V (C%Vvl)

one gets

The term E2. The two gradient components are coupled via the commousiliity
02( ) (|V’Ul|2 + |V’U2| )

and ( )
2 V- CQV’Ul
va4 - <V (CQV'UQ)) ’

The term E3. This term is a simple spatio-temporal extension of the iptessone, the new diffusiv-
ity is
C3(v) = ¢ (|Vsv1|* +|Vsva|?)

3 _ V- (Cng’Ul)
Vol = (V' (C3V3v2)

where the divergences are spatio-temporal here since wheispatio-temporal gradients of the

We note that these gradients formulations are naturallgcésted to Neumann boundary conditions
on the components af, the main derivation mechanism being used is given by Prdp. 4

and

The term E}. This term decomposes infe? (v) + o&(v) where

/¢ww

and we need only to compute the gradienf oRecall that/(v) denotes thepatial Jacobian of), where
v is interpreted as a map fro to R?, then, for a vector field : D — R2, £,& = J(v)¢ and a
straightforward computation provides the derivative6f) in the directions:

4.6 = [ Callon) - (L, +T08) dr. o= Calo) = (Lol
Thanks to Prop. 4.2, one gets, after a few computations,
Qe = — /D Lo(Caluv) + CalatV-v] - € dr
+/DC4 ((Jv)' Lyv) - Edr

— Cy(Lyv- &) (V -v) ds.
oD
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If one introduces the tensor

T = Cy ((Jv)t = (V-v) Id) = C4 ( Y2y _“M)

—V1y Vig

then, if the boundary integral above vanishes, the gradigitis
Vo€ = —Ly(CyLyv) + TLyv. (32)

The natural boundary condition coming from that computat&(V" - v)£,v = 0 on9D.

5 Discretization

For optical flow recovery parts, we use discretizations kizae been proposed in the papers where we
“borrowed” this terms. We will thus exclusively concengain the inpainting equations.

We need to discretize the different image gradient partsderao obtain a numerical algorithm. The
spatial regularity ternv,, E, as well as the flow regularity termig, £, (at the notable exception of term
V. E{ have been studied in the literature and several discrigtimabave been proposed. They all have in
common that we must deal with a term of the fo¥fn (AV f), well studied in most diffusions problems
as they appear naturally in energies that penalize a funofi® f. These discretizations will be needed
also for termsv,, E3 andV, E3. These terms as well &8, F3 are much less studied and we will espe-
cially focus on them. Because, in the numerics we need toimsediscretized sequences, displacement
fields must be used instead of velocity fields, we modify in aurg way our formulations to handle
them, with classical warping techniques. These displacérfiredds do usually provide subpixel accu-
racy, making necessary the use of some form of spatial iolgipn, which in turn make cumbersome
the direct development of completely discrete schemesrdardo avoid that, we use an intermediary
formulation where only the time part is discretized.

We will first study the semi-discrete schemes, then disdusgsliscretization of spatial terms of the
form V- (aVu) that appear both in the spatial regularizer term and the tgteh orderv, E%, i = 2, 3.
the spatial discretization. In the inpainting denoisingisgs, we need to discretize the gradient of the
term E; as given by (19), this almost trivial, once one has taken o&raultiresolution discretization
for xqo. We thus discuss briefly points related to the multiresotusetting. We end by discussing the
approaches we have used to implement the final numericai@mof the algebraic equations obtained
from discretization.

In the sequel we will assume that we have a spatio-tempoi@lvgth spatial grid spacing:; (we
assume the spatial grid to be squared, for simplicity) anmtpteral grid spacing:;. Given a function
f:R2 x R — R, its temporal discretization will give rise to a family

(fidkez, fo= f(— — kh)) : R? - R".

We will not consider explicitly the full discretization, #ise general need to estimate several quantities
at non-grid point locations would make it very cumbersome.

5.1 Atime-discrete scheme.

In order to discretize the terrrEvEg, we start with a temporal-only discretization of them, amid for
two main reasons. First, displacement fields have genesalipixel accuracy, necessitating some spatial
interpolation. Second: temporal discrete sequence mugldiat the heart of multiresolution / warping
handling of motion recovery and most of these warping basetibmrecovery methods all use at some
point the Lie Derivative semi-discrete approximation imfala (5).
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We will indicate some of the differences that naturally app@ the gradient terms with respect to
flow in this setting.

In order to develop schemes, we start from the continuouggrerms that we discretize in time and
derive analogues of Prop 4.2, using the Lie derivative fodwdifference expression defined in formula
(5). To get rid of the boundary conditions difficulties thasa from boundary integral in Prop 4.2, they
would be much worse in the semi-discrete case, we exterfitiaity the spatial domain to the whole
of R? and the temporal range to the whole®f while we will assume that both the sequence and the
velocity field have compact support.

Letg, 1 : R2 x R — RF be sequencepy )kez and (V) kez their temporal discretizations. Denote
by vi : R? — R? the displacement fiel&(—, kh;, h;) Wherev(x, ¢, h) was defined in formula (7).
Following (5) and (6), we set, with some abuse of notatiod,@opping the subscriptfrom the temporal
spacinghy,

h Pr1(x + vig(x)) — Pr(x) h— Pr(x) — Pr—1(x — vi(x))
(E"Jr(b)k = h ’ ('CV ¢)k = h , keZ

Fork ¢ Z, setH;,, = I + v}, wherel is the identity map ofR2. For h small enough, this is a local
diffeomorphism if the velocity fields is smooth. Because of the compact support assumptios,
bounded in norm, implying that far small enoughH, is a diffeomorphism.

Proposition 5.1 Assume that thél};'s are global diffeomorphisms. Defit& ), by K11 = Hk‘l, and
setwy = [ — K. If |JK}| is the Jacobian determinant &, |JK;| = 1 — V-wy + |Jwy| and the
following holds:

> /R (Lhre) Gl dx ==Y /R K ((ﬁ&—w)k -V, Kk> dx.
keZ

keZ

The proof is straightforward via the change of variable®tem and renaming of summation and inte-
gration variables. Thbackward displacement fielt,, is given by

h
wi(x) = —/O v(x(kh —7),kh — T) dT.

and passing to the limit — 0, kh — t¢ in the above proposition, one easily gets Prop. 4.2 (it iy &as
check that in the [imivV-wy/h — —V-v and|Jwy|/h — 0) with the same problems in term of mod-
eling: v is generally not smooth, but should present some discatiisudue to occlusion/disocclusion.
Here too, theoretical and practical difficulties appead a® do not consider this case, a practical so-
lution is partially provided by the use of non quadratic datal regularizing terms in the variational
formulations.

Note that the result stated in Prop. 5.1 is essentially annatipn result for the Hilbert space of
functions families with inner product

() =3 /R Guedx

keZ

with the associated notion of gradient that we use in theedequ

We will use the displacement fields and warp notations froopPb.1 and as we had introduced in
Subsection 4.2.4, the spatio-temporal coefficient funsti®;, i = 1, 2, 3, we introduce their counterparts
sequenceBii, i =1,2,3, respectively defined by:

B =¢ <(cg+u>i> , B =¢ ((cﬁ;@i) ,
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B;;C = ¢ ((C?,Jru)i + v ‘Ef,JrVu‘i) s By = ¢’ <<££L"_u>i +7 ‘Eﬁ(VU‘i) , and

Bf =¢ < £@+vu( ) , By =¢ ((cﬁ;wi) .

2
k

We will also set
V-wy — ’JWM

h

We look at the simplest terfvi and detail the derivation of its semi-discrete gradient.b&an the
assumptions of the above proposition, we extend the shtiahin to the whole aR? and assume that
the both the image sequence and velocity fields have compppbd. Letu = (uy), the family of
image frames. Using forward difference approximation @ terivative, the semi-discretization 6%

IS
Ei(u,v) = %é/w ) <<£ﬁ+u>i> dx.

In order to compute its gradient with respectupwe use the directional derivative approach, and for
¢ = (&), we computelEL.¢ = ¢/(0) wherel(7) = Ei(u + 7€, v) to obtain

Pl g + ( ph+ h+
dE3,€ = I;EZ /]R2 By} (Ev u)k (L'V f)k dx.
Applying the above proposition, one gets

atie =3 [ o leh (57 (cra)) - m (B (erw), ) omi)| ax
rez ' B?

from which thek-component of the sought gradient can be written as

(VuE?), = £l (87 (chu)) + B ((Bf;_l (wu)k_l) o Kk>

But, by a straightforward calculation, sinég, = Hk‘_ll, one gets that

Fy = (33)

h h— -
(Ev+u>k_1 oKy = <£W u)k, B} o Ky=Bj.
For a givenx € R?, setx; = Hj(x) = x + vi(x), x,, = Ki(x) = x — wy(x). Then we can write

_ B up_1(x;) — (By, + By, B}, -
(VuEg{)k(X) _ _Bulk 1(Xk) ( 1k+h21k)uk(x)+ 1kuk+1(xk) (34a)

Fy,. (34b)

(x) —up—1(x)
h

The spatial grid of the problem is usually imposed, and aiap@terpolation technique is necessary
to compute theu(x;") and theB;". In this work, we have used bilinear and bicubic interpolasi A
natural question, when implementing schemes based on the giartial discretization is what to do
whenx,f falls out of the numerical domain. The easiest solution énthse the value at instead, this
means that we impose*tu), = 0 (resp. (£ u), = 0) which are the numerical translations of the

u
+ B~
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boundary conditions we discussed in Paragraph 4.2.5. Trhe gge of operations are applied for the
semi-discrete version of enerds?

Z/RQ ( (£htu) +7(<£@+vu)k(2> dx.

This lead to the following gradient

(VuEgZ,)k _ _Bicuk—l(xl;) — (B, + fggﬁ)uk(x) + B w1 (X)) (35a)
r B u(x) — Zk—l(xi ), (35b)
- <B;kVuk_1(x,;) — (B, + B}%)Wk(X) + BZCV“'@H(X;)) (35¢)
_ v <B2_k Vg (x) — hvuk—l(X];)Fk> (35d)
while, for energy
Z Lo (b)) a0 (| (eva), )] ax
the gradient is given by
(VB - - Butmel) - Byt gk)uk(x) + B (%)) (362)
L B ug(x) — Zk_l(xl;)Fk (36b)
. v <B§kVuk_1(x;) — (By, + B}%)Vuk(x) + Bg?cvukﬂ(x:)) (36¢)
_ v (Bg_k Vg (x) — hVuk—l(X;;)Fk> . (36d)

In the three cases care must be taken when dealing with thepwe-like terms that appear in the dif-
ferent expressions above. While schemes resulting froma@drelatively easy to implement, modulo
of course transport-like term, care is to be taken for sclse(®®) and (36) due to the presence of spatial
divergence. When properly dealt with, a numerical schentleeis available.

Before continuing, important points regarding the abovergies and schemes must be addressed.

e The use of the forward difference approximations in the giesrhave also an effect on their
gradients with respect to the displacement field variable ekmentary computation for the case
of £} gives

(VVES), = Bik* (Lhu) Vusso Hy

where the warpingd;. appears naturally and corresponds precisely to the typeropuatations
performed in multiresolution motion recovery. Remark thially /;, is used there and that there is
no assumption on its inversibility.
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e Being coherent with Lie derivatives approximations abawa; motion recovery algorithm will
normally return only the forward displacement field= (vy); of the sequence, and thus we
have only directly access to the forward wdtp. How to compute the backward displacement
field w? Inversion of theH;, is generally not an option: even in the case whHiewas a true
diffeomorphism, this would extremely complex. Moreoveclosion and disocclusion phenomena
make it impossible. However, a simple solution consistoimjguting this backward flow from the
image sequence itself. This should provide a reasonahléi@olfor at least a good reason: Given
an imageu : R? x [0, 7] — R, let us denote byi the “time-reversed” sequence obtained as

a(x,t) == u(x,T —t).

Assume that: is smooth Then, taking the flow related part of our energy, £&; = \3 E, + A\ F
an elementary computation shows that hinimizesE;;, so is—v for the image sequende We
could replace the optical flow estimation by a symmetrizegioa, in the spirit of the work of
Alvarezet al. in [1], but this would deeply modify the formulations above.

¢ All the above gradients have some transport-like termstregerm (34b) in the expression of
VuE3. Such a term may be difficult to handle numerically. One c&wesether it is necessary.
In an informal way, we do expect that the diffusion term (3dimne will smooth variations of
along the flow lines, and thus decrease the energy, i.e.\teatvehen forgetting the transport term,
the resulting expression would still be a descent diredtiothe energy, so should be consider for
both explicit gradient descent resolution as well as sorfaxaion schemes. This however no
so simple, as (34a) involves not only forward Lie derivativmit also backward ones while only
forward ones are present in the semi-discrete energy. lmottier hand, our flow regularizers
generally favor displacement fields with small divergerbas generally reducing the influence of
the transport part.

5.2 Gradient and divergence discretizations

We use standard finite difference operators for discrétizadf spatial gradient and divergence terms.
As all divergence operators appear in our formulas as (ivegatdjoints of gradients (via Prop 4.1) we
use this adjunction principle to develop divergence schlemdjunction mechanisms naturally appear in
the derivations of gradients for the discretized energies.

Finite difference operators are often directly introduoedgrid points, but because of motion terms
we often need to use them at points not on the grid. We use tklighaly more general presentation.
For a givenh > 0, we define

i flay) = LR ZTE0)
5ﬁ_f(l’,y) _ f(l‘,y)—i(l‘—h,y)’

and similar definitions hold fofj_, 5, _ anddj . In order to alleviate the notations we set for a planar
functiong, goo = 9(2,4), 9+0 = 9(x +1,y), 90 = 9(x = 1, y), Gor = 9(x,y +h), go = g(x,y = h),

911, = 9(x £ h/2,y)andg,. 1 = g(z,y £ h/2).
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Spatial gradient magnitude terms can approximated by fahaad backward differences
17,0 2 c 2
VI~ 5 [0+ )]
1 2 2
+ 50N+’
Terms of the fornV- (aV f) wherea is scalar valued, are then naturally discretized as

O (aé,erf) + 0y (aé;"{_f) n 5%— (a5§i+f) + 5%+ (a5§i_f) n

V- (aVf) = 5 5

Developing this expression gives

(a+o + aoo)f—l—o - (a+o + 2aoo + a—o) foo + (aoo + a—o)f—o
2h?2

(ao—i- + aoo)fo+ - (ao—i- + 2a00 + ao—) foo + (aoo + ao—)fo—
2h? '

V- (avf)oo

_|_

We may use instead central differences at half-grid pomtgpproximate the square gradient magnitude
[Vf?of f:

IV flo0 & [(%%f >2 + (ot ﬂ 00

The resulting discretization 6F- (aV f) is then

a%of-l-o - <a%0 + a_%o> foo + a_%of—o
h2

oy for = (03 +py) foo t 0y fo-
h? ’

Interpolation is needed to compute diffusivities at halfigpoints. An arithmetic averaging of closest

neighbors leads to the same scheme as above. Another fomtegbdlation used in the literature is,
using for instancecéo, given by

Ve (aVf),, ~

+ (37)

2

@1, ™ T 1 (38)

a4o Qoo

While averaging may favor too large diffusivities, this aewill better respect small ones and may be
interesting to limit diffusion across edges. An other cdesition is the form of the diffusivity function.
In the spatial regularization term,is the discrete counterpart of the functidn= ¢'(|Vu|?) that was
introduced in formula (21). Using the central differenc@mximation of the gradient magnitude we
define the coefficientsl, (x, y) as the values of’(|Vuy|) at positions: = {(£30), (0 + 2)}.

In flow line diffusion/transportg is one of theBi, 1 = 2,3, defined in the previous subsection. They
may involve a large amount of interpolations.

We deal with Neumann-like boundary conditions by repla@ng of the expressions above evaluated
outside the grid by the nearest value in the numerical domain

5.3 Multiresolution details

As mentioned in Section 4.1, we solve the equations in a regtilution framework. A few points should
be mentioned. When building the multiresolution pyrammdage coarsening is necessary, and is in fact
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already handled by the motion estimation solver. What ishaotled is the coarsening of the inpainting
mask, i.e the numeric characteristic function of the mggata locudq). Coarsening of the image is
usually performed by smoothing ans subsampling or any kinche&thod that has a proper low pass
property. Coarsening ofg may be problematic when the same method is used. It blursoinedary of
2, and while this blurring may seem coherent, as it may inditilaat a given pixel at coarse resolution
contains some known partial information, we have constttatlit often slows convergence down. We
have used instead the somehow rough but simple nearesboeigiproach that guaranties that the mask
remains binary valued and not become “too large” when coarge

In the other hand, one also need to interpolate the inpgimsult from a given level to the next
finer level, while interpolation of the motion is performelleady by the flow recovery algorithm. In
this work, image interpolation has been performed usingrgls bilinear interpolation for inpainting
denoising, while for pure inpainting, values obtained bdinbar interpolation and not in the missing data
locus have been replaced by original image values downsahgplthat resolution.

5.4 Solving the equations

Inpainting equations involving termi3 and E3 are 4th-orders partial differential equations, with diffu
sion of gradients. This type of higher order diffusion may abey the minimum-maximum principle,
see for instance [26]. We rely therefore on a gradient déswmdmeme in these cases. For each resolution
level we do the following. Having chosen an evolution sfepwe create the family™ = (u})x, n > 0

and write a standard Eulerian step

W () — up(x)

dr
whereF is either of the form\; £ + Ao E» + A3 EY in the inpainting-denoising case, witk, k) running
over the full spatio-temporal grid in that case, while in fhge inpainting casé& has the form\, £y +
A3EL and(x, k) runs only on the missing data locus, i.e the discretized amchdampled copy dof.

In the implementation, we choose once for all the evolutitap g7 as well as the numbei of
evolution steps we perform. As in most explicit schem&smust be chosen small enough, and this has
a drastic impact on the running-time, particularly in theecaf inpainting denoising.

In the case where we ugél, we may consider, in a fixed point approach, linearizing #euliting
equations and solvers such as Gauss-Seidel could be userteinto be able to compare the different
methods, we have however in that work only used the explicid{&nt Descent approach.

=~ (VwE(x)),

6 Experimental Evaluation

We present results for several of the algorithms we haveusisd, on synthetic and real sequences. We
follow the nomenclature of energy terms presented in Se@jolables 1 and 2. To accommodate the
variety of intensity ranges in the different sequence®nsities have been linearly normalized to range
[0, 1]. This imply that numerical partial derivatives are boundtedbsolute value, by bounds of the same
order of magnitude, which in turns influences the practiaage of: values ing(z?) = v22 + 2, we
have takerr = 10~3. In all gradient descents, we have used an algorithmic tbeyed# = 10~3. This

in turns influences the choices of the different weight$or the corresponding energies.

Although flow regularization terni} has been used, we only report results for téfinin the exper-
iments we present here, as it has been argued [11, 12] thpbtahregularity prior generally improves
motion estimation.

We present a series of stills in this section, the readerldhadso look at the companion sequences,
they are available at the locatidri t p: / /i mage. di ku. dk/ f rancoi s/ seqi np. Some previous
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versions were available at the the companion welhsitep: / / wwww- sop. i nri a. fr/ books/i mat h
for the monograph of Aubert and Kornprobst [6].

The first one is the well knowiYosem t e sequence, created by Lynn Quam, very often used for
optical flow evaluation. The sequence is artificial and theugd truth is known for the flow. It was
degraded by removing large polygonal patches, three of therlapping consecutiveiy time, on 6 of
the 15 frames.

Figure 2 shows frames 2, 3, and 4 of the original sequenceesgnding degraded frames, and the
noisy degraded ones where Gaussian noise of standardide\b& of the intensity range was added.

riginal frame 5

7 ~ (d) degraded frame 5

#
gl '
L e

(d) degraded frame 3 _

sl oM L' Y, .
g

(e) degraded frame 4

Sk

Figure 2:Yosem t e sequence. Original and degraded frames. The degradaticanie 3 is very large
and one can notice that the 3 holes overlap around the franterse

We first run a simplified experiment where only the pure infiagnequation derived from terms,
and E3 is solved and then the inpainting/denoising using the sgmaéia and trajectory smoothness
terms. We use the ground truth forward flay. We deal with the absence of ground truth for the
backward optical flowecv, by computing it from the optical flow PDE derived from terdi$ and E3,
having reversed time in the sequence and using as startesgige> —v (7 —t) whereT' is the forward
flow sequence last time/frame.

Figure 3 present the results of these two experiments onhifee tdegraded frames show in Fig.
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2. For pure Inpainting, parameters where= 0.1 (spatial regularization weight)s = 1 (flow lines
regularization weight). For inpainting / denoising, théedaeight)\; has been setto 20, while = A3 =

1. Results of pure inpainting presented in (a), (b) and (cyarerally very good, one may however notice
a lack on sharpness in the center of frames (a) and (b). Unsitigly, inpainted/denoised results present
characteristics of Total Variation regularized imagesnsdow scale details have been lost. Boulanger
et al. [10] as well as Buadest al. [14] have shown that image sequence denoising is best achieith
patch based / non local means methods. Nevertheless, thegtazope as is with large missing data. It
may be worth investigating developing an hybrid method ati tase.

$ ~ : . : o ! ;
(d) inpainted/denoised frame 3  (e) inpainted/dencisetidrd  (f) inpainted/denoised frame 5

Figure 3: Pure Inpainting and Inpainting/Denoising basedmund truth motion. While pure inpainted
sequence is of excellent quality, the inpainted/denoiseavs the usual patterns of Total-Variation like
regularization with loss of fine scale details.

In the second set of experiments, we abandon the groundanathrun full recovery algorithms on
theYosemni t e sequence. In the first one, we run the pure inpainting alyoritorresponding to energy
Mo FEy + )\3E§ + A4E? with A2 = 0.1, A3 = 1 and\4 = 0.2, four pyramid levels where the number of
pixels is roughly divided by 2 from one level to the next ceamsne. Then Energy, Es + A3 E3 + A\ E?
has been used, withe the gradient weight= 0.1, andthese parameters, as well as pyramid sizes,
have been used in all the remaining experiments presentidisimvork, except for thtanon sequence
Results are shown in Figure 4. Spotting visually differenbetween the two sequences is difficult,
although computing the differences, as illustrated on #s¢ tow of Figure 4 shows some, covering
about 7% of the intensity range, while a plot of histogramgmifdient magnitudes for the two results
seems to indicate that this difference is in fact hardly i§icative. These histograms are shown in figure
5.

The second example is taken from the companion CD ROM of Koka&rbook [30]. We start with the
Mobi | e and Cal endar sequence, that have been extensively used for MPEG codéngedacing
and so on. Itis a real one with 25 frames and with complex mogiatterns. It is then artificially
degraded to simulate blotches. (approximately 6% of thegeria degraded with blocthes of multiple
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(9) (h) (i)

Figure 4: Full Image and Motion recovery in the case of pupainting. The first row from minimization
of low-order energy; + EX + E3, the second from higher order enerBy + E3 + E7 and the last row
shows the differences.
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Figure 5: Comparisons of gradient magnitudes in inpainégibns. (a) when using energy tef, (b)
when using energy ter3. They are almost identical.

size, they may overlap in time. Here too the enefgy+ E3 + E7 was used, with the same parameters
as above. Figure 6 presents four frames of the degradedrgagjube inpainting results using energy
(B9, E3, E%), and a solver where the optical flow is computed with this gyevhile for the inpainting
we use the lower order equation (equivalently setting tlaglignt parametey to 0 in E3). Differences
are non significative. This too substantiates the idea teatdwer order inpainting equation is a good
descent direction.

The third sequencé/anon is a realcolor sequence acquired by the first author with a mobile device,
featuring the author’s daughter. The original sequence emasded with the 3G format, a simplified
MPEG format for third generation mobile devices. It has basificially degraded with red blotches
and inpainted with theectorial formof the energy(Es, E2, E7) with Ay = 0.1,\3 = 1,7 = 0.1 and
Ay = 0.02 a value 5 times smaller than in the other experiments, becauso large values caused
problems in the recovery of hair motion among others. Byiiisoeling and its nature, a face with non
rigid motion, it presents some challenges. Three origirahgs, 7, 8 and 9, the corresponding degraded
sequences as well as the inpainted ones are presented ae FigThe result is visually very good.
Nevertheless, some serious problems were encounterelestlotations of the sequence and Figure 8
presents some of the encountered problems at the 5th frathe séquence, where a portion of the hair
and of an eye are wrongly interpolated.

The fourth and last sequence, calledankenst ei n, also taken from Kokaram'’s book, is a real
degraded one, with 64 frames, for which no ground truth isakmoln our experimentations we used
only a subsequence of 21 frames, with frame 8 presentingngrathers, a relatively large blotch on
Frankenstein’s hair. In figure 9 we show this frame, the detkblotch and its reconstruction. In figure 10
we show a close-up of the damaged hair of the character wathékected blotch and the reconstruction.
Blotches were detected using the so called Rank Order RetROD), as described in [30], modified
for the optical flow algorithm. Fine texture details wereywplausibly recreated.

7 Conclusion

In this paper we have introduced a generic variational fdatian for joint recovery of motion and inten-
sity in degraded image sequences, dealing both with nosenigsing data. This generic formulation has
been instantiated in several energy formulations, mostged on known motion recovery approached.
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Figure 6: On the first column, frames 10, 11, 12 and 13 of theatlegiMobi | e and Cal endar
sequence. The second column shows the results of minimizatienergyEs, + E3 + E3 while the last
column shows the results when the corresponding inpaietijuztion is replaced by the low order one.
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Figure 7: On the first column, frames 7,8 and 9 of the origiahon sequence. The second column
shows the corresponding degraded frames and the last cahemesults of the color inpainting using
Energy(E, E3, E3).

Figure 8: Original, degraded and inpainted frame 5 ofita@on sequence. Problems can be observed
in the reconstruction of the left eye as well as part of the albdve it.



7 CONCLUSION 30

Figure 9: TheFr ankenst ei n sequence. From left to right: Frame 8, ROD detected defects and
inpainting. by minimizing energys + E3 + E3?

Figure 10: ThéFr ankenst ei n sequence: Close-up of the hair blotch, its detection and its inpaint-
ing



REFERENCES 31

They give rise to system of partial differential equatioias,motion and intensity. We have focused on
the intensity ones and developed schemes to handle thenrioahlye We have validated our approach
on a series of experiments. While they provide often exoehesults, they are generally computationally
demanding, especially due to higher order equations tedolvinpainting. Is such complex equation
necessary? We discussed that a simpler equation mighgretdide a good descent direction when min-
imizing a higher order energy, and we presented an expetithah substantiate this idea: there is a
difference, but the result obtained with lower order edqurais visually good. The possibility of using
a lower order equation opens the door for much more efficielvess: multigrid solvers where devel-
oped for optical flow by [36] as well as [13] and we are curngmibrking on developing fast multigrid
schemes for lower order inpainting equations. The geneudtinesolution optimization framework that
we have used, decouples, at each pyramid level, the corutatthe flows and the images. We are
also investigating more coupled methods, also within th&igrid framework.
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