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Abstract

We develop in this paper a generic Bayesian framework for thejoint estimation of motion and
recovery of missing data in a damaged video sequence. Using standard maximum a posteriori to
variational formulation rationale, we derive generic minimum energy formulations for the estimation
of a reconstructed sequence as well as motion recovery. We instantiate these energy formulations and
from their Euler-Lagrange Equations, we propose a full multiresolution algorithms in order to com-
pute good local minimizers for our energies and discuss their numerical implementations, focusing
on the missing data recovery part, i.e. inpainting. Experimental results for synthetic as well as real
sequences are presented.

Keywords. Image Sequences Restoration, Bayesian Inference, OpticalFlow, Image Inpainting,
Variational Methods.

1 Introduction

Since the birth, more than a century ago, of the cinema, and the apparition of video in the 50’s, a huge
amount of Motion Picture material has been recorded on different types of media, including celluloid
reels, magnetic tapes, hard disks, DVDs, flash disks...

Unfortunately, this type of material is subject to artifacts, already at image acquisition, or, for instance,
degradations of the storage medium, especially for reels and tapes, caused by bad manipulation, incorrect
storage conditions, or simply the “patina of time”. These degradations can be of extremely many differ-
ent types. For films, some of the problems encountered include, but are far from limited to, image flicker,
noise, dust, real dust or a deterioration caused by the use ofincorrect chemicals when developing a neg-
ative, for instance, missing regions and vertical line scratches, usually due to mechanical failures in the
cameras of projectors, degradation of the chemicals, colorfading, and even the degradation/destruction
of the support, as it is the case for triacetate films, where excessive storage temperature and humidity
causes the formation of acetic acid (vinegar), and this process is auto-catalytic: once started, it cannot
be stopped. Nitrate cellulose based films are highly flammable. Many movie theaters were burnt down
because of that, and their storage is critical because of explosion risks. Video also is not exempt of prob-
lems. The Telecine, a device used to convert a film to video, can introduce artifacts such as distortions
or Moiré patterns. Repeated playbacks may damage the tape,introducing for instance noise, the lost of
synchronization information produces a disturbing jittering effect. The digital medium has also its own
problems, such as the block artifact due to lossy compression methods, and during network transmission,
some blocks can be lost.
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Among these degradations,blotches– i.e, following Kokaram ([30] “regions of high contrast that
appear at random position in the frame (...)”. In these regions, the original data is usually entirely lost and
this paper focuses on recovering the missing data. Digital Inpainting is the name that is commonly given
to the process of filling-in regions of missing data in an image, and although the term was first coined
for spatial images in [9], Image Sequence or Video Inpainting is now widely used. A main difference
resides in the fact that information missing in one frame is supposed to exist in adjacent frames, this is
used to restrict the search space, via interframe motion estimation.

With the increasing computational power of modern computers, more and more sophisticated algo-
rithms are developed for inpainting of still frames as well as video sequences. They are often divided into
stochastic and deterministic methods, although the two approaches often share many modeling aspects.

Spatial Image Inpainting techniques were pioneered by Masnou and Morel [34], location were data
is missing is treated as an object occluding the background and a Elastica based variational model for
the completion of broken level lines is proposed. Bertalmioet al. [9] proposed a Partial Differential
Equations (PDE) based method for filling-in regions by a sortof smoothness transport. They proposed
then a variational technique for recovery of level lines andintensity in [7]. Chan and Shen proposed in
[15] approaches based on Total Variation as well as Elasticaminimization. Using a different, discrete
approach, inspired by work on texture generation [21, 20], Criminisi et al. proposed a simple and elegant
patch based method in [18].

Apart from the deterministic/non deterministic division,another one the level of modeling, One might
talk of lower analysis level approach for a direct study of the image geometry in the spatial case, or
a “simple” 2D+time model, while anhigher analysis levelapproach will attempt to model/infer key
descriptions of the underlying 3D scene and/or its dynamicsusing for instance tracking, hypotheses of
(quasi)-repetitive motion , and use them for sequence reconstruction.

In the latter category, Irani and Peleg in [28] proposed a method that can among others remove fore-
ground objects from a scene. From a multilayer parametric motion representation, foreground occluded
objects can be detected and removed thanks to the motion and intensity information available for the
other layers.

Extending the spatial exemplar based inpainting work of Criminisi et al. in, Patwardhanet al. have
proposed techniques for video inpainting, in the case of static background [40] and extended to relatively
simple camera motion [41].

In the other hand, a series of more “lower level” methods havebeen able to produced high quality
results. Kokaram, in his seminal work [31, 30] explored probabilistic “2D+1” based approaches for joint
detection and reconstruction of missing data. Chanas, in its PhD dissertation ([16]) introduced an energy
based method using explicitly motion, via a energy formulation on pairs of image sequence and motion
field. Minimising the corresponding energy is done by solving its associated pair of Euler-Lagrange
equations. This method can be seen as a particular instantiation of our. Grossauer in [27] uses optical
flow in order to detect serious violations which might then beinterpreted as blotches, and then performs
a simple transport from neighbor frames. In a similar way, D’Amoreet al. [19]) also developed methods
for detection and removal of blotches based on variational motion estimation. In a different way, Wexler
et al. [45] proposed a patch based method for filling in holes, with constrains enforcing spatial en
temporal coherence.

The work we present here can be seen as a deterministic “lowerlevel” approach to the blotch restora-
tion problem, where we are given a damaged image sequence, aswell as the location of the damages,
assumed to have been obtained by specific means, the reason behind it is the well known difficulty in the
precise detection of large blotches, where semi-automaticprocedures are very often applied.

Starting from a general Bayesian Inference approach, and using recent developments in motion recov-
ery, we derive a generic variational formulation for joint estimation of motion and recovery of missing
data, we then instantiate this generic class into several energy functionals, we propose to solve them
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via their Euler-Lagrange Equation in a fully multiscale framework. This work builds upon a conference
article [32] of the same authors. Some of these ideas appeared also in the monograph of Aubert and
Kornprobst [6], as a contribution from the first author of this paper. We have also used variations over
this framework for Video Deinterlacing in [29].

This paper is organized as follows. After having introducedsome notations in the first section, a
probabilistic model is discussed in section 2, modeling both the purely spatial behavior for a still frame
extracted from a video sequence, as well the temporal correlation which is expected between the frames,
correlation coming from theapparent motion. More precisely, what the model describes is the joint prob-
ability of an image sequence and a vector field describing apparent motion, knowing that they should
agree with a given degraded image sequence. Using Bayesian inference, an expression for a posterior
probability distribution is worked out. Then following Mumford in [37], a generic family of variational
formulations is deduced for the problems of simultaneous motion recovery and inpainting, as well as si-
multaneous motion recovery, inpainting and denoising. Minimizations for these variational formulations
provide ourvariational motion compensated inpaintingalgorithms.

2 Bayesian Framework for Inpainting and Motion Recovery

In this section we introduce a generic probabilistic framework for the missing data problem, via Bayesian
inference. We first provide a general rationale for writ tinga posterior probability and via maximum a
posteriori, we derive a generic energy minimization for theinpainting problem.

2.1 A Posterior for missing data

We use discrete settings in order to easily give a sense to thedifferent probability computations used.
Given the degraded sequenceu0, we assume that a degradation processP which results inu0, this can
be the loss of every second line in a frame alternating way, asit is the case in video interlacing, a spatial
or spatiotemporal downsampling or as a less structured collection of missing blocks of pixels, described
by their locationΩ. Our goal is to reconstruct a sequenceu onD and to compute a motion field~v for that
sequence. We introduce therefore the conditionalp(u,~v|u0,P). Using The Bayes rule of retrodiction,
we can write this conditional as a product of alikelihood and aprior divided by anevidence

p(u,~v|u0,P) =
p(u0|u,~v,P) p(u,~v|P)

p(u0|P)
. (1)

The evidence corresponding to the known data plays the role of a normalizing constant and will be
neglected in the sequel. We assume thatu0 is a degraded version ofu, with for instance noise added in the
acquisition process or because of aging, and missing data coming from film abrasion due to a mechanical
failure or a bad manipulation. Therefore the observed degraded image sequenceu0 is assumed to depend
only onu and not on the apparent motion~v, so that the likelihood termp(u0|u,~v,P) is justp(u0|u,P).
Because of the nature of the causes for missing data, we can assume the independence of(u,~v) andP
and the prior is simply

p(u,~v|P) = p(u,~v) = p(u|~v) p(~v).
We will now decompose this prior. For that, let’s imagine thefollowing common situation. Using a
DVD player, a person is watching a video on a TV set. He/she pushes the “pause” button of the DVD
player’s remote control. There could be motion blur due to large motion and finite aperture times at image
acquisition, but our spectator expects to see a meaningful still image displayed on the TV screen. When
the “play” button is pushed again, the animation resumes, and this person expects to see an animation
which is coherent with the content of the still, at least for asufficiently small amount of time, this
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coherence corresponding of course to theapparent motion. This leads us to assume thatp(u|~v) has the
form p(us, ut|~v) whereus andut denote local spatial (still frame) and temporal (animation) distributions
for u, and we factor it as

p(us, ut|~v) = p(ut|us, ~v) p(us|~v). (2)

As we see, the first term of this factorization is a direct translation of this expected temporal coherence.
For sake of simplicity, we assume the independence ofus and~v. This is not necessarily true, as motion
edges and image edges have a tendency to be correlated, a factexploited by several motion recovery
algorithms, starting with the work of Nagel and Enkelmann (see for instance [38, 3, 2]). In the other
hand, many optical flow algorithms do not use this potential dependency and provide very accurate
motion estimations, in fact often better as approaches thattake explicitly into account spatial edges have
a tendency to produce over-segmented flows (see [35] for instance). Putting all these elements together,
we finally obtain the following posterior distribution

p(u,~v|u0,P) ∝ p(u0|u,P)
︸ ︷︷ ︸

P1

p(us)
︸ ︷︷ ︸

P2

p(ut|us, ~v)
︸ ︷︷ ︸

P3

p(~v)
︸︷︷︸

P4

(3)

where (P1) is the likelihood ofu, (P2) is the spatial prior for the sequence,(P4) is the motion prior, and
(P3) is a coupling term that acts both as a temporal prior for the sequence and a likelihood for the motion
– as is the gray level constancy assumption along apparent motion trajectories seen from either image or
motion point of view.

3 Variational Formulation

Among others, a standard way to compute a pair(ū, ~̄v) from (3) is to seek for themaximum a posteriori
(MAP) of this expression. The kind of probability functionswhich are normally used areGibbsian, i.e.
of the form(1/Z)e−E whereE is expressed as a sum over cliques, ([25]) and stochastic algorithms can
be used, as for instance Markov Random Field techniques.

From this point we will assume that the degradation process is given as a known missing data locus
Ω ⊂ D, the spatiotemporal domain of the sequence, and the reconstruction will be though as blotch
removal, although much of what is presented below will stillformally be valid for deinterlacing or super-
resolution. Before discussing this, we introduce some notations and concepts that will be used in the
sequel.

3.1 Notations

The approach for sequence modeling taken in this work follows ideas of ordinary differential equations
and dynamical systems. The spatial domain of a sequence willwill be taken to be the unity square
Ds := (0, 1)2 ∈ R

2. The spatial coordinates will be denotedx = (x, y), the temporal coordinate by
t and spatiotemporal coordinater = (x, t). GivenA ⊂ B the complement ofA in B will be denoted
by B\A or justAc (whenB is clear from the context).Dt = [0, T ], D−

t = [0, T ), D+
t = (0, 1].

D− := Ds ×D−
t , D+ := Ds ×D+

t . As used above,Ω will denote the subset ofD of missing data of
a sequence, i.e. a mapu : D → R

n. We assume thatD is made of “planar particles”x(t) that move
smoothly, at least locally, out of some codimension 2 regions, with velocitiesdx/dt = v(x(t)) = v(x, t)
the instantaneous spatial velocity vector field. To each spatial velocity fieldv = (v1, v2)

t, we associate a
spatiotemporal velocity fieldV = (vt, 1)t.

In this setting we consider instantaneous vector fieldsv : D → R
2. They will not a priori a displace-

ment, but a velocity, i.e. the spatial part of the time-derivative of a particle trajectory.
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Given a smooth vector fieldX : D → R
3 smooth enough, The directional or Lie derivative of a

functionf in the directionX at r is simply

LXf(r) = X(r) · ∇3f(r)

(∇3 denotes thespatio-temporal gradient)1. Standard results on ordinary differential equations show
thatX has alocal flow cX , i.e. a local solution of the differential equationċX = X ◦ cX and that for
h small enough the mapθX

r , h 7→ cX(r, h) is a local diffeomorphism from an open subset ofD into D
(see [24] for a detailed exposure). Then on has

LXf(r) = lim
h 7→0

f(θX
r (h)) − f(r)

h
. (4)

It makes clear that ifh > 0,

Lh+
X f(r) :=

f(θX
r (h)) − f(r)

h
(5)

is a forward differences approximation ofLX , and it we will use when developing discretizations for
numerical solvers, as well as we will use itsbackward differenceapproximation

Lh−
X f(r) :=

f(r) − f(θX
t (−h))

h
. (6)

Given a “particle”x at timet, under the velocity fieldv, its position at timet+ h is given byθV
(x,t)(h),

whereV is as above the spatio-temporal extension ofv, and this position has the form(y, t + h) and
thus induces aspatial displacement field

v(x, h, t) = y − x, (7)

obtained by integrating the values ofv in the interval[t, t+ h].
For a spatial velocity fieldv, we will denote, abusively, byLv what should beLV , and similarly for

Lh+
v

andLh−
v

. Denoting by∇ thespatialgradient operator, one has

Lvf = V · ∇3f = v · ∇f + ft.

We will use spatial and spatio-temporal divergence operators, respectively denoted∇· and∇3·, al-
though, we will generally drop the subscript in the last notation, as the dimension of the vectorial argu-
ment of∇· should remove ambiguity. For a mapf : D → R

k, J(f) will denote the Jacobian off with
respect to its spatial variables and for a mapg : D → R, H(g) will denote its Hessian with respect to
spatial variables.

To end this section, we will denote byχA the characteristic function of a set A:

χA(x) =

{

1 if x ∈ A

0 if x 6∈ A
.

3.2 From MAP to Minimization

The MAP problem is first transformed into a discrete energy minimization problem

E(u,~v) = − log(p(u,~v|u0,Ω)) = E1(u) + E2(us)

+E3(us, ut, ~v) + E4(~v) (8)

1whenf is vector-valued,∇3f can be taken to be(Jf)t, the transpose of the Jacobian matrix off and∇f · X := Jf X
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with Ei = − log(Pi), and our goal is thus to find a minimizer(ū, ~̄v) of E(u,~v), E being a function of
the image pixel locations and flow locations throughu and~v. When image and motion field spaces are
provided Euclidean structures, andE is reasonably smooth, a necessary (but not sufficient) condition
for (ū, ~̄v) to be a minimizer is to be a zero of the energy gradients with respect tou andv, gradients
that represent the corresponding differentials for the corresponding Euclidean structures, and denoted by
∇uE and∇vE in the sequel:

{

∇uE(ū, ~̄v) = 0

∇~vE(ū, ~̄v) = 0.
(9)

Note however that expression (8) makes sense only when we cantake thelog of each of thePi distribu-
tions. An important situation where this is clearly not the case when the likelihood term has the form of
a Dirac distribution:

P (u0|u) = δ(Ru− u0) =

{

1 if Ru = u0 onD\Ω
0 otherwise

(10)

whereR is an operator such as a spatial or spatiotemporal blur, or simply the identity. In that situation,
we simply seek for a(ū, ~̄v) satisfying







(ū, ~̄v) = Argmin
(u,~v)

E2(us) + E3(us, ut, ~v) + E4(~v)

Ru = u0 onD\Ω.
(11)

In that case, a minimizer(ū, ~̄v) should satisfy the following conditions







∇uE(ū, ~̄v) = 0 onΩ

Rū = u0 onD\Ω
∇~vE(ū, ~̄v) = 0

(12)

At that point, the formulation we have obtained so far is discrete in its nature. Using the Bayesian to
variational formulation proposed by Mumford in [37], limiting expressions for the probability distribu-
tions/energy involved give rise to acontinuousenergy formulation, treated at least at a formal level, and
deterministic algorithms can be used to carry out the minimization problem. The continuous expressions
will also be denotedEi. The “game” is therefore to choose meaningful expressions for each of theEi,
which are also computationallyreasonable. Variational 2-dimensional formulations of inpainting can
provide the spatial termE2 and variational optical flow algorithms can be “plugged-in”for termsE3 and
E4, and really many of them have been proposed in the two last decades. We will extend upon these
choices.

In the following paragraphs we argue on the instantiations of the different termsE1(u;u0), E2(u),
E3(u, v) andE4(v), they should present a good trade-off between accuracy of modeling and simplicity
in order to result in computationally tractable algorithms.

3.3 Image data term

The data term provides a measure of deviation between an observed sequence and a candidate recon-
struction. As mentioned above, this term is relevant in the inpainting-denoising case, and has generally
the form

E1(u;u0) =

∫

Ωc

L(Ru, u0) dx dt
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For an additive noise,L(x, y) = φ(x − y), for a multiplicative one,L(x, y) = φ(y/x). Noise can
be very complicated to apprehend, and generally a simple model is assumed, such as additive Gaussian
white noise with a fixed variance or a more general Laplace noise, andφ(x−y) = λ1|x−y|p for ap ≥ 1.
In this work we have restricted ourselves to the Gaussian white noise case:φ(x− y) = λ1(x− y)2.

3.4 Spatial regularization terms

Such a term would generally have the form

E2(u) =

∫

D
L(∇u,∇2u, . . . ) dx dt

although derivatives of order> 1 are rarely used in practice (although see [33]). Tichonov regularization
corresponds to the caseL(w) = φ(|w|2) with φ(x) = x, but is to be avoided in general, as it blurs edges.
One of the most popular choice isφ(x) =

√
x which corresponds to the Total Variation of Rudin, Oscher

and Fatemi [42]. Because of its non-differentaibility at0, is is often replaced byφ(x) =
√
x+ ǫ2 where

ǫ > 0 is small. Otherφ, even non convex, have been reported to behave very well [6].

3.5 Motion likelihood – Temporal regularization

As our little story illustrated it, some form of coherence onthe sequence content must be present. It
is expressed as the requirement that some derived quantity from the sequence is conserved across time,
quantities that depend on scene illumination, the image formation process, etc. . . In the temporal discrete
setting, this conservation can be written as

L+
V F (u)(r) = 0, ∀r (13)

and in the continuous temporal setting, the Lie-derivative

Lv(F (u)) = v · ∇F (u) +
∂F (u)

∂t
= 0. (14)

The continuous equation is generally derived as an approximation of the discrete one. In this work we
used a view point a bit different: integrating along fixed time ranges the continuous equation will provide
the discrete one.

Conservation equations (13)–(14) do not generally hold perfectly, due to a series of factors: among
others, occlusions / disocclusion. Noise can also be a source of error, although presmoothing can be
built into F . F can be vectorial in order to express that several elementaryquantities are expected to be
conserved, and will always be assumed to be a linear differential (or integro-differential) operator.

In order to cope with conservation equation failure, the conservation properties are enforced in a least
square or generalized least square sense via terms

E3(u, v) =

∫

D
L (LvF (u(r))) dr.

For anx seen as a ‘”collection of feature”(x1, . . . , xk) where thexi’s can themselves be vectors, we will
always assume thatL(x) = φ(

∑

i |xi|2) or L(x) =
∑

i φi(|xi|2) where|xi| is the standard Euclidean
norm ofxi.

The most commonly used operatorF is simply the identity: the intensities should match along the
motion trajectories. Although clearly limited in validity[43], it works well in many cases. Higher order
differential operators have been used, such as the spatial gradient, spatial Laplacian, spatial Hessian ...
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They can be potentially attractive to enforce specific properties for motion recovery. The spatial gradient
will prefer local translational motion. The Laplacian, being rotationally invariant might be better suited
for rotational motion... However one must keep in mind that adifferential operator of degreen will give
rise to terms of degree up to and including2n in the Gâteaux derivative ofE3 wrt u. For that reason, we
have limited our investigations to the identity and spatialgradients.

3.6 Motion regularization

A large amount of work has been devoted to regularizer terms for optical flow algorithms to accommodate
the different situations encountered in practice, rangingfrom natural image sequences, medical image
sequences, fluid dynamics data... Having Film/Video restoration as our goal, we focus here on natural
image sequences. They are generally composed of moving rigid/semi-rigid objects projected on the
camera plane, resulting mostly in locally translational motion.

Thus a regularizing term should enforce this behavior, in order to recover essentially smooth small
varying regions with in general 1D discontinuities betweenthese regions. We will limit ourselves to
terms that depend on the spatial or spatiotemporal Jacobianof the motion field. More details will be
provided in the next paragraph.

3.7 Proposed variational formulations

From the discussion above, we propose several actual variational formulations for the joint motion re-
covery / image sequence inpainting. For each formulation, we consider the inpainting/denoising problem
and the pure inpainting formulation. In each case, we chooseR = Id. For inpainting denoising we place
ourselves in the additive Gaussian noise situation discussed in Subsection 3.3:

E1(u;u0) =
λ1

2

∫

Ωc

(u− u0)
2 dr. (15)

The spatial regularization term used in this study is a regularization of the Total Variation term:

E2(u) =
λ2

2

∫

D
φ(|∇u|2) dr (16)

whereφ(x2) =
√
x2 + ǫ2 for a certainǫ > 0. From now,φ will always denotes this function. This type

of regularization in the spatial case is known to generate starcaising effects artifacts [39]. Experiments
in Section 6 onInpainting/Denoisingshow clearly these artifacts. In pure inpainting, however,this term
merely acts as brightness regularization and the above mentioned artifacts are much less stronger.

We present the remaining two terms in the following two tables. Table 1 deals with the motion likeli-
hood/temporal regularization part while Table 2 deals withmotion regularization terms. All these terms
are “borrowed” from well-known variational optical flow formulations,λ3 andλ4 being some reals> 0.
In the sequel, we will refer to one of these terms asEk

i whereEk
i is thek-term (k-row) of theEi array

(i = 3, 4) presented below.
TermsE1

3 andE1
4 are regularizations of the1-norm terms proposed by Aubertet al. ([4, 5]). To the

authors’ knowledge, the first variational motion compensated inpainting algorithm was using these terms
ant the above spatial regularization term in the work of Chanas [16, 17].

TermsE2
3 andE3

3 , in their time discrete version whereL+
V is used instead ofLv, have been respectively

proposed by Broxet al. [11] (that also proposed regularizerE3
4 ) and Bruhn and Weickert [12] and proved

to provide highly accurate flow. The time-continuous version E2
3 was used in the authors’ conference

paper [32].E2
4 was proposed by Weickert and Schnörr in [44].
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E3(u, v)

1 λ3

2

∫

D−
φ

(
(Lvu)

2
)
dr

2 λ3

2

∫

D−
φ

(
(Lvu)

2 + γ|Lv∇u|2
)
dr

3 λ3

2

∫

D−
φ

(
(Lvu)

2
)

+ γφ
(
|Lv∇u|2

)
dr

Table 1: Terms coupling intensity and motion.

E4(v)

1 λ4

2

∫

D−

[
φ

(
|∇v1|2

)
+ φ

(
|∇v22|2

)]
dr

2 λ4

2

∫

D−
φ

(
|∇v1|2 + |∇v2|2

)
dr

3 λ4

2

∫

D−
φ

(
|∇3v1|2 + |∇3v2|2

)
dr

Table 2: Terms for motion field regularization

All the combinations were implemented, although we presentonly some of them in our experiments,
for obvious space reasons.

We have not yet discussed the fact that image sequences can bevector-valued. For a sequenceu =
(u1, . . . , un) : D → R

n, n > 1, the same energy terms are used, where we then set

|∇u|2 =

n∑

i=1

|∇ui|2, (Lvu)
2 =

n∑

i=1

(Lvui)
2 , . . . (17)

4 Resolution Methodologies

Minimizing the energies presented in the previous section is done via solving their corresponding flow
and image Euler-Lagrange equations. Motion estimation requires normally a multiresolution / multiscale
approach in order to be able to handle large displacements. We adopt a multiresolution approach here
and we propose to interleave the images inpainting steps with the flow recovery ones at each resolution
level. In this section we describe in more details this resolution approach and we introduce tools for
computing the image Euler-Lagrange equations associated with our formulations. We then process to
the computation of the different energy gradients, at leastfor the image related terms. Indeed, the steps
for solving motion recovery are well studied and we follow the references we have mentioned in the
previous section, we won’t provide the details of their derivations.

4.1 Multiresolution framework

Motion computation depends critically on the range of the different discrete filters supports used for
the estimation of the differential / finite differences quantities in the optical flow equation, and/or the
smoothness of the input image data. For that reason multiscale or multiresolution techniques are needed
in order to avoid meaningless local minima. In the other hand, a good approximation of the motion
field at a given resolution should allow a precise recosntruction of image information at that resolution
by motion compensated diffusion. Therefore we present herea methodology that aims at producing
algorithms converging to a reasonable minimizer by solvingiteratively for the image and the flow, in a
completespatial multiresolution setting. We implicitly build pyramids forthe image sequence and the
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flow. In the sequel we assume that we haveN + 1 resolution levels, levelN being the coarsest, level0
being the finest, original one. We do not require a1

2 spatial scaling factor between consecutive levels.
We are seemingly in presence of an hen and egg problem, since in order to compute a flow with our

methods we need image values, that are a priori unknown inside the degradation locus, and we need a
flow in order to inpaint inside the degradation locus. This will be handled by using a degenerated form of
the inpainting algorithm at coarsest resolution, that allows us to recreate a starting image sequenceuN .
At coarsest resolution, the interframe motion is assumed tobe very small, and we inpaint the sequence
by computing a minimizer of the corresponding energy formulation where we have assumedv = 0 – no
motion is present. The non-linearity of the image equation provides a form for motion adaptivity.

Once we have a coarsest resolution inpainted sequence, we can start our multiresolution process. What
we do is to modify the motion field recovery algorithm by running the inpainter after the interpolation
of the lower resolution flow, and before updating the flow at that resolution level. Figure 1 illustrates a
typical iteration. At a given pyramid levelk+ 1, let us assume that we have an inpainted sequenceuk+1.
It is then used, together with an interpolated version ofvk, to compute a motion field at that resolution,
to producevk+1. Then at resolution levelk, we first interpolate the flow, using for instance a bilinear or
bicubic interpolation, to produce anintermediaryflow field vk

i . This flow is used in order to reconstruct
the sequenceuk at levelk.

uk

uk+1

3) Inpainting

k+1v

ivk

2) Flow interpolation

1) Flow computation

Figure 1: Multiresolution inpainting. From a sequenceuk+1 at resolution levelk+ 1, 1) the optical flow
is computed, 2) it is interpolated at resolution levelk and 3) used to inpaint the sequence at levelk. This
process is then iterated at lower pyramid levels.

A general algorithm (not tied up to our particular formulation) is given in table 3. As it can be seen from
this sketchy algorithm, the difference between a generic multiresolution optical flow algorithm and our
inpainter are simply theinterleavedinpainting steps.
4.2 Derivation of Euler-Lagrange equations

In this subsection we compute the different energy derivatives with respect to image variables for the
terms proposed in Subsection 3.7. The velocity related derivatives will be provided without calcula-
tion as they have been derived by authors mentioned in Subsection 3.7, at the exception of the new
flow smoothing term. We first provide the general methodologyto compute these derivatives and some
elementary results used in the sequel. We restrict ourselveto scalar valued images and will indicate
extension to the vector valued cases.



4 RESOLUTION METHODOLOGIES 11

1. ComputeuN by spatial TV and motion adaptive diffusions.

2. Fork = N − 1 downto 1

(a) Computevk+1 from uk+1

(b) Compute intermediary flowvk
i by interpolation ofvk+1

(c) Inpaintuk usingvk
i

3. Computev0 from u0

4. Output(u0, v0).

Table 3: Generic Motion Recovery and Inpainting Algorithm,

4.2.1 Computing functionals differentials

In order to obtain the Euler-Lagrange equations, we use the technique of directional derivatives for
computing differentialsdEu of u 7→ E(u):

ξ 7→ dEuξ = ℓ′(0), ℓ(τ) = E(u+ τξ) (18)

and use of adjunction/ integration by part will allow to transformdEuξ, which generally appears as an
inner product

∫

D
L1(u)L2(ξ) dx of a termL1 involving derivatives ofu and a termL2 linear in ξ and

some of its derivatives on the domainD, into an equivalent expression

dEuξ =

∫

D

Fuξ dx+

∫

∂D
ξGu(ν) ds

where∂D is the boundary ofD, ν its exterior normal field, and under proper conditions on acceptable
deformationsξ or onu on the boundaryD making this boundary integral vanish,Fu is thegradientof E
atu for this inner product. We will perform computations on eachenergy part and keep track of resulting
boundary integrals.

We will present integration by part formulas for the spatialgradient operator∇ as well asLV . They
all result from the standard integration by part / Stokes formula [22].

Proposition 4.1 LetD ⊂ R
2×[0, T ] the domain of a spatiotemporal sequence,∇ be thespatialgradient,

∇· thespatialdivergence onD andνs the spatial component of the exterior unit normal to the boundary
∂D ofD. Assume that Letu : D → R andv : D → R

2 beC1 onD. Then
∫

D

∇u · v dx = −
∫

D

u∇·v dx+

∫

∂D
u v · νs ds.

wheres is the area me sure on∂D.

Proposition 4.2 LetD ⊂ R
2 × [0, T ] the domain of a spatiotemporal sequence,ϕ, ψ : D → R

k, k ≥ 1,
v : D → R

2 beC1. LetV the “spatiotemporal” velocity field associated tov, V = (vT , 1)T , then
∫

D

(Lvϕ) · ψ dr = −
∫

D

φ∇3 · (ψV ) dr +

∫

∂D
ϕ · ψ (V · ν) ds

= −
∫

D

ϕ · [Lvψ + ψ∇ · v] dr +

∫

∂D
ϕ · ψ (V · ν) ds
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whereν is the exterior unit normal to the oriented boundary∂D of D ands is the measure on∂D and
− · − is used to denote inner products both onR

k andR
2 .

The actual velocity field may present discontinuities, as well as functionsϕ andψ. The simple formula
above must then be replaced by a more complex one, as some terms must be considered as measures [6],
but we will not consider it in that work, the problem becomingtheoretically very difficult.

In the following gradient computations, we will for legibility reasons, omit the differentλi weights
from the energy components.

4.2.2 Data term

If one wants to use the inpainting/denoising formulation, termE1(u;u0) defined in formula (15) must
be differentiated with respect tou and using (18), one finds immediately that

dE1uξ =

∫

Ωc

(u− u0) ξ dr, ∇uE1 = χΩc(u− u0). (19)

Whenu0 = (u0i)i=1...k andu = (ui)i=1...k have values inRk, equations above are simply replaced by

∇ui
E1 = χΩc(ui − u01), i = 1, . . . , k.

4.2.3 Spatial regularity term

For the spatial regularizer termE2 given in formula (16), a straightforward computation usingdirectional
derivatives and Prop. 4.1 leads to

dE2uξ = −
∫

D

ξ∇· (A∇u) dr (20a)

+

∫

∂D
ξA∇u · νs ds (20b)

where we have set
A := A(u) := φ′(|∇u|2). (21)

In the pure inpainting case,D = Ω, and we restrict to deformationsξ that have compact support inΩ, it
means that the boundary term (20b) vanishes here and the gradient is given by

∇E2u = −χΩ∇· (A∇u) . (22)

Whenu is vector-valued, by using squared-gradient magnitude as defined in formula (17), one obtains
thek terms

∇ui
E2 = −χΩ∇· (A∇ui) , i = 1, . . . , k

which are coupled via their common diffusivityA.

4.2.4 Temporal prior / motion likelihood term

TermsEi
3 couple intensity and motion. We need to compute their gradients with respect to intensity and

with respect to motion, and the novel part is really the intensity gradient. For that reason we present
computations forE1

3 andE2
3 as well as the result forE3

3 . Here too, integration domains depend on the
type of problem we are interested in, it will beD = Ω for pure inpainting, andD = D for inpainting
denoising. Gradients with respect to motion fields are provided without any computation and we won’t
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detail their adaptation in the multiresolution setting, which is standard and properly explained in the ref-
erences on optical flow that we provide.

The term E1
3 . We start with termE1

3 as defined in Table 1: a straightforward calculation using for-
mula (18) and Prop 4.2 gives

dE1
3uξ = −

∫

D

[Lv(B1Lvu) +B1Lvu∇· v] ξ dr (23a)

+

∫

∂D
ξB1Lvu (V · ν) ds (23b)

where we have set
B1 := B1(u, v) := φ′(|Lvu|2). (24)

Here too, in the pure inpainting case,ξ has compact support onΩ and the boundary integral (23b)
vanishes, the sought gradient is

∇uE
1
3 = −χΩLv[B1Lvu]

−χΩB1Lvu∇· v. (25)

Whenu is vector valued,B1 couples the different channels via formula (17) and one obtains k terms:

∇ui
E1

3 = −χΩ (Lv[B1Lvui] +B1Lvui∇· v) , i = 1, . . . , k.

The term∇vE
1
3 has been computed by several authors, see for instance [44],and, for the general vector-

valued setting, is given, with our notations, by the vectorial expression:

∇vE
1
3 = B1

k∑

i=1

Lvui∇ui.

The term E2
3 . The additional gradient magnitude term in energyE2

3 will induce higher order terms in
the differential. Once the directional derivative is computed, the, in order to transform it as a sum of an
integral on the domain and a boundary one, we need to apply Prop. 4.2 and Prop. 4.1. A careful but
nevertheless straightforward computation provides

dE2
3uξ = −

∫

D

ξ [Lv(B2Lvu) +B2Lvu∇· v] dr (26a)

+γ

∫

D

ξ∇· [Lv(B2Lv∇u) +B2Lv∇u∇· v] dr (26b)

−γ
∫

∂D
ξ [Lv(B2Lv∇u) +B2Lv∇u∇· v] · νs ds (26c)

+

∫

∂D
B2 [ξLvu+ γ∇ξ · Lv∇u] (V · ν) ds (26d)

where we have set
B2 := B2 := φ′

(
|Lvu|2 + γ|Lv∇u|2

)
. (27)

Once again, for the pure inpainting case, boundary integrals 26c and 26d vanish and the corresponding
gradient is

∇uE
2
3 = −χΩ [Lv(B2Lvu) − γ∇· (Lv(B2Lv∇u))]

−χΩ [B2Lvu∇·v − γ∇· (B2Lv∇u∇·v)] . (28)
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In the vector valued case, each component is given by the formula above, replacingu by ui, the compo-
nents coupling provides fromB2.

The gradient with respect to the motion fieldv of this term is, in the general vector valued case, given
by

∇vE
2
3 = B2

k∑

i=1

[Lvui∇ui + H(ui)Lv(∇ui)] .

The term E3
3 . Similar computations can be performed for the termE3

3 and similar complex boundary
integral terms appear in the computations. We set

B3 := B3(u, v) := φ′(|Lv∇u|2) (29)

and together withB1 that was defined in formula (24), we get

dE3
3uξ = −

∫

D

ξ [Lv(B1Lvu) +B1Lvu∇· v] dr (30a)

+γ

∫

D

ξ∇· [Lv(B3Lv∇u) +B3Lv∇u∇· v] dr (30b)

−γ
∫

∂D
ξ [Lv(B3Lv∇u) +B3Lv∇u∇· v] · νs ds (30c)

+

∫

∂D
[ξB1Lvu+ γB3∇ξ · Lv∇u] (V · ν) ds (30d)

In the pure inpainting case, boundary integrals vanish because of conditions onξ and the sought gradient
is

∇E3
3u = −χΩ [Lv(B1Lvu) − γ∇· (Lv(B3Lv∇u))]

−χΩ [B1Lvu∇· v − γ∇· (B3Lv∇u∇· v)] . (31)

4.2.5 Boundary terms for minimization with respect to image

So far we have not discussed boundary conditions for the inpainting/denoising problem where the in-
tegration domain isD and we cannot assume that a deformation direction vanishes along ∂D. The
resulting boundary integrals are rather complex. We consider the case arising from combining spatial
regularity termE2 and temporal regularity termE1

3 . The resulting boundary integral comes from (20b)
and (23b): ∫

∂D
ξ [λ1∇u · νs + λ3B1Lvu(V · ν)] ds

and a natural boundary condition is thus to impose that

λ1∇u · νs + λ3B1Lvu(V · ν) = 0.

On domainD exterior normals are respectivelyν = ±(1, 0, 0)T ,±(0, 1, 0)T and±(0, 0, 1)T correspond-
ing to “vertical”, “horizontal” and “temporal” faces of thedomain. With these vectors, the conditions
become

ux = −λ3v1B1
uyv2 + ut

λ2 + λ3v1B1
, resp.uy = −λ3vyB1

uxv1 + ut

λ2 + λ3v2B1
, resp.ut = −(uxv1 + uyv2)

if one uses the expansionLvu = uxv1 + uyv2 + ut. However, such an expansion is problematic nu-
merically. It is classical in optical flow literature that itrequires sufficient smoothness onu and/or small
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motion, and when these requirements are not fulfilled, one has to use approximations such as the one
given in formulas (5) and (6) in the previous section.

A stronger requirement can be imposed, that bothLvu and∇u · νs vanish simultaneously. If it holds,
then the boundary integral vanishes, but imposing such a requirement may lead to an overdetermined
system: for instance, on the “vertical” face, using the above Lie derivative expansion, it becomes

{

ux = 0

uyv2 + ut = 0

and while the first equation expresses the absence of variation across the boundary, the second is prob-
lematic asuy, ut andv2 are generally estimated fromv andu from already known values of the image.

We will nevertheless assume thatLvu = ∇u · νs = 0 as, the use of standard schemes for computing
gradient and the schemes that come from (5) and (6) for computing Lvu provide a simple and efficient
numerical treatment of these boundary conditions. These can also be extended to the termsE3

2 and
E3

3 by requiring also thatLv∇u = 0 on ∂D. In fact, without such an assumption, it seems difficult
to get rid of boundary terms appearing in the computations ofdifferentials forE3

2 andE3
3 , where not

only a deformationξ appears, but also its spatial gradient∇ξ. What makes the difference with the pure
inpainting formulation is that it appears extremely difficult to control what happens at scene boundary.
If one could assume null camera motion and moving objects remaining in the image domain, boundary
difficulties would vanish, but this may seem a very severe restriction.

With these assumptions, the three gradient terms∇uE
1
3 , ∇uE

2
3 , and∇uE

3
3 are easily computed in the

inpainting-denoising formulation and are given by

∇uE
1
3 = −Lv[B1Lvu]

−B1Lvu∇· v,

∇uE
2
3 = − [Lv(B2Lvu) − γ∇· (Lv(B2Lv∇u))]

− [B2Lvu∇·v − γ∇· (B2Lv∇u∇·v)] ,

∇E3
3u = − [Lv(B1Lvu) − γ∇· (Lv(B3Lv∇u))]

− [B1Lvu∇· v − γ∇· (B3Lv∇u∇· v)] .

Two important remarks regarding the structure of these terms (also valid for their pure inpainting coun-
terpart):

• First, we observe that these three gradient terms∇uE
1
3 , ∇uE

2
3 , and∇uE

3
3 are each decomposed

in two parts, a part containing a double differentiation along the flow field viaLv(), which cor-
responds to diffusion along a flow line, and a term where∇· v appears, which corrects for the
non parallelism of the motion fieldv. These terms are non linear transport along trajectories of
the velocity field and are controled by the flow divergence. This means that not only the punctual
value ofv must be taken into account but also its variations. This is a consequence of Prop. 4.2
and is to be put in parallel with duality ideas of Floracket al. in [23], but see also [46, 8, 35].

• The second remark concerns the assumptions made on conserved quantities in order to build the
different termsEi

3. The corresponding image gradients make clear that these conservations should
be enforced for the image minimizers of these energies, withintensity diffusion for intensity con-
servation and spatial gradient diffusion for spatial gradient conservation.
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4.2.6 Flow regularity terms

As mentioned already, their regularizersEi
4, i = 1, 2, 3, are borrowed from existing motion recovery

algorithms, and their gradient calculations, with its multiresolution adaptation, have been presented in
the papers already mentioned. We just briefly recall the results.

The term E1
4 . The two gradient components are independent, and if one sets

C1
1 (v) = φ′

(
|∇v1|2

)
, C2

1 (v) = φ′
(
|∇v2|2

)
,

one gets

∇vE
1
4 = −

(
∇·

(
C1

1∇v1
)

∇·
(
C2

1∇v2
)

)

.

The term E2
4 . The two gradient components are coupled via the common diffusivity

C2(v) = φ′
(
|∇v1|2 + |∇v2|2

)

and

∇vE
2
4 = −

(
∇· (C2∇v1)
∇· (C2∇v2)

)

.

The term E3
4 . This term is a simple spatio-temporal extension of the previous one, the new diffusiv-

ity is
C3(v) = φ′

(
|∇3v1|2 + |∇3v2|2

)

and

∇vE
3
4 = −

(
∇· (C3∇3v1)
∇· (C3∇3v2)

)

where the divergences are spatio-temporal here since we usethe spatio-temporal gradients of thevi.
We note that these gradients formulations are naturally associated to Neumann boundary conditions

on the components ofv, the main derivation mechanism being used is given by Prop. 4.1.

The term E4
4 . This term decomposes intoE2

4(v) + σE(v) where

E(v) =
1

2

∫

D
φ(|Lvv|2) dr

and we need only to compute the gradient ofE . Recall thatJ(v) denotes thespatialJacobian ofv, where
v is interpreted as a map fromD to R

2, then, for a vector fieldξ : D → R
2, Lvξ = J(v) ξ and a

straightforward computation provides the derivative ofE(v) in the directionξ:

dEvξ =

∫

D
C4 (Lvv) · (Lvξ + Jv ξ) dr, C4 := C4(v) = φ′(|Lvv|2).

Thanks to Prop. 4.2, one gets, after a few computations,

dEvξ = −
∫

D
[Lv(C4Lvv) + C4Lvv∇· v] · ξ dr

+

∫

D
C4

(
(Jv)t Lvv

)
· ξ dr

−
∫

∂D
C4 (Lvv · ξ) (V · ν) ds.
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If one introduces the tensor

T = C4

(
(Jv)t − (∇· v) Id

)
= C4

(
v2y −v2x

−v1y v1x

)

then, if the boundary integral above vanishes, the gradient∇vE is

∇vE = −Lv(C4Lvv) + TLvv. (32)

The natural boundary condition coming from that computation is (V · ν)Lvv = 0 on∂D.

5 Discretization

For optical flow recovery parts, we use discretizations thathave been proposed in the papers where we
“borrowed” this terms. We will thus exclusively concentrate on the inpainting equations.

We need to discretize the different image gradient parts in order to obtain a numerical algorithm. The
spatial regularity term∇uE2 as well as the flow regularity terms∇vE

i
4 (at the notable exception of term

∇vE
4
4 have been studied in the literature and several discretizations have been proposed. They all have in

common that we must deal with a term of the form∇· (A∇f), well studied in most diffusions problems
as they appear naturally in energies that penalize a function of ∇f . These discretizations will be needed
also for terms∇uE

2
3 and∇uE

3
3 . These terms as well as∇uE

1
3 are much less studied and we will espe-

cially focus on them. Because, in the numerics we need to use time discretized sequences, displacement
fields must be used instead of velocity fields, we modify in a natural way our formulations to handle
them, with classical warping techniques. These displacement fields do usually provide subpixel accu-
racy, making necessary the use of some form of spatial interpolation, which in turn make cumbersome
the direct development of completely discrete schemes. In order to avoid that, we use an intermediary
formulation where only the time part is discretized.

We will first study the semi-discrete schemes, then discuss the discretization of spatial terms of the
form ∇· (a∇u) that appear both in the spatial regularizer term and the tow higher order∇uE

i
3, i = 2, 3.

the spatial discretization. In the inpainting denoising settings, we need to discretize the gradient of the
termE1 as given by (19), this almost trivial, once one has taken careof multiresolution discretization
for χΩ. We thus discuss briefly points related to the multiresolution setting. We end by discussing the
approaches we have used to implement the final numerical solutions of the algebraic equations obtained
from discretization.

In the sequel we will assume that we have a spatio-temporal grid with spatial grid spacinghs (we
assume the spatial grid to be squared, for simplicity) and temporal grid spacinght. Given a function
f : R

2 × R → R
k, its temporal discretization will give rise to a family

(fk)k∈Z, fk = f(−,−, kht) : R
2 → R

k.

We will not consider explicitly the full discretization, asthe general need to estimate several quantities
at non-grid point locations would make it very cumbersome.

5.1 A time-discrete scheme.

In order to discretize the terms∇vE
i
3, we start with a temporal-only discretization of them, and this for

two main reasons. First, displacement fields have generallysubpixel accuracy, necessitating some spatial
interpolation. Second: temporal discrete sequence modeling is at the heart of multiresolution / warping
handling of motion recovery and most of these warping based motion recovery methods all use at some
point the Lie Derivative semi-discrete approximation in formula (5).
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We will indicate some of the differences that naturally appear in the gradient terms with respect to
flow in this setting.

In order to develop schemes, we start from the continuous energy terms that we discretize in time and
derive analogues of Prop 4.2, using the Lie derivative forward difference expression defined in formula
(5). To get rid of the boundary conditions difficulties that arise from boundary integral in Prop 4.2, they
would be much worse in the semi-discrete case, we extend artificially the spatial domain to the whole
of R

2 and the temporal range to the whole ofR, while we will assume that both the sequence and the
velocity field have compact support.

Let φ,ψ : R
2 × R → R

k be sequence,(φk)k∈Z and(ψk)k∈Z their temporal discretizations. Denote
by vk : R

2 → R
2 the displacement fieldv(−, kht, ht) wherev(x, t, h) was defined in formula (7).

Following (5) and (6), we set, with some abuse of notation, and dropping the subscriptt from the temporal
spacinght,

(

Lh+
v
φ
)

k
:=

φk+1(x + vk(x)) − φk(x)

h
,

(

Lh−
v
φ
)

k
:=

φk(x) − φk−1(x − vk(x))

h
, k ∈ Z.

For k ∈ Z, setHk = I + vk, whereI is the identity map ofR2. For h small enough, this is a local
diffeomorphism if the velocity fieldv is smooth. Because of the compact support assumption,v is
bounded in norm, implying that forh small enough,Hk is a diffeomorphism.

Proposition 5.1 Assume that theHk ’s are global diffeomorphisms. Define(Kk)k byKk+1 = H−1
k , and

setwk = I −Kk. If |JKk| is the Jacobian determinant ofKk, |JKk| = 1 − ∇·wk + |Jwk| and the
following holds:

∑

k∈Z

∫

R2

(

Lh+
v
φ
)

k
(x)ψk(x) dx = −

∑

k∈Z

∫

R2

φk

((

Lh−
w
ψ

)

k
− ∇·wk − |Jwk|

h
ψk−1 ◦Kk

)

dx.

The proof is straightforward via the change of variables theorem and renaming of summation and inte-
gration variables. Thebackward displacement fieldwk is given by

wk(x) = −
∫ h

0
v(x(kh − τ), kh − τ) dτ.

and passing to the limith→ 0, kh→ t0 in the above proposition, one easily gets Prop. 4.2 (it is easy to
check that in the limit∇·wk/h → −∇· v and|Jwk|/h → 0) with the same problems in term of mod-
eling: v is generally not smooth, but should present some discontinuities, due to occlusion/disocclusion.
Here too, theoretical and practical difficulties appear, and we do not consider this case, a practical so-
lution is partially provided by the use of non quadratic dataand regularizing terms in the variational
formulations.

Note that the result stated in Prop. 5.1 is essentially an adjunction result for the Hilbert space of
functions families with inner product

(φ|ψ) =
∑

k∈Z

∫

R2

φkψk dx

with the associated notion of gradient that we use in the sequel.
We will use the displacement fields and warp notations from Prop. 5.1 and as we had introduced in

Subsection 4.2.4, the spatio-temporal coefficient functionsBi, i = 1, 2, 3, we introduce their counterparts
sequencesB±

i , i = 1, 2, 3, respectively defined by:

B+
1k = φ′

((

Lh+
v
u
)2

k

)

, B−

1k = φ′
((

Lh−
w
u
)2

k

)

,
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B+
2k = φ′

((

Lh+
v
u
)2

k
+ γ

∣
∣
∣Lh+

v
∇u

∣
∣
∣

2

k

)

, B−

2k = φ′
((

Lh−
w
u
)2

k
+ γ

∣
∣
∣Lh−

w
∇u

∣
∣
∣

2

k

)

, and

B+
3k = φ′

(∣
∣
∣Lh+

v
∇u

∣
∣
∣

2

k

)

, B−

3k = φ′
(∣

∣
∣Lh−

w
∇u

∣
∣
∣

2

k

)

.

We will also set

Fk =
∇·wk − |Jwk|

h
. (33)

We look at the simplest termE1
3 and detail the derivation of its semi-discrete gradient. Tobe in the

assumptions of the above proposition, we extend the spatialdomain to the whole ofR2 and assume that
the both the image sequence and velocity fields have compact support. Letu = (uk)k the family of
image frames. Using forward difference approximation of Lie derivative, the semi-discretization ofE1

3

is

Ē1
3(u,v) =

1

2

∑

k∈Z

∫

R2

φ

((

Lh+
v
u
)2

k

)

dx.

In order to compute its gradient with respect tou, we use the directional derivative approach, and for
ξ = (ξk)k, we computedĒ1

u3ξ = ℓ′(0) whereℓ(τ) = Ē1
3(u + τξ,v) to obtain

dĒ1
3uξ =

∑

k∈Z

∫

R2

B+
1k

(

Lh+
v
u
)

k

(

Lh+
v
ξ
)

k
dx.

Applying the above proposition, one gets

dĒ1
3uξ = −

∑

k∈Z

∫

R2

ξk

[

Lh−
w

(

B+
1

(

Lh+
v

u

))

k
− Fk

((

B+
1k−1

(

Lh+
v

u

)

k−1

)

◦Kk

)]

dx

from which thek-component of the sought gradient can be written as

(
∇uĒ

2
1

)

k
= −Lh−

w

(

B+
1

(

Lh+
v

u

))

k
+ Fk

((

B+
1k−1

(

Lh+
v

u

)

k−1

)

◦Kk

)

But, by a straightforward calculation, sinceKk = H−1
k−1, one gets that

(

Lh+
v

u

)

k−1
◦Kk =

(

Lh−
w

u

)

k
, B+

ik−1 ◦Kk = B−

ik.

For a givenx ∈ R
2, setx+

k = Hk(x) = x + vk(x), x−

k = Kk(x) = x− wk(x). Then we can write

(
∇uĒ

1
3

)

k
(x) = −B

−

1kuk−1(x
−

k ) − (B−

1k +B+
1k)uk(x) +B+

1kuk+1(x
+
k )

h2
(34a)

+ B−

1k

uk(x) − uk−1(x
−

k )

h
Fk. (34b)

The spatial grid of the problem is usually imposed, and a spatial interpolation technique is necessary
to compute theu(x±

k ) and theB±

i . In this work, we have used bilinear and bicubic interpolations. A
natural question, when implementing schemes based on the above partial discretization is what to do
whenx

±

k falls out of the numerical domain. The easiest solution is then use the value atx instead, this
means that we impose(Lh+

v
u)k = 0 (resp. (Lh−

w
u)k = 0) which are the numerical translations of the
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boundary conditions we discussed in Paragraph 4.2.5. The same type of operations are applied for the
semi-discrete version of energyE2

3

Ē2
3(u,v) =

1

2

∑

k∈Z

∫

R2

φ

((

Lh+
v

u

)2

k
+ γ

∣
∣
∣

(

Lh+
v

∇u

)

k

∣
∣
∣

2
)

dx.

This lead to the following gradient

(
∇uĒ

2
3

)

k
= −B

−

2kuk−1(x
−

k ) − (B−

2k +B+
2k)uk(x) +B+

2kuk+1(x
+
k )

h2
(35a)

+ B−

2k

uk(x) − uk−1(x
−

k )

h
Fk (35b)

+ γ∇·
(
B−

2k∇uk−1(x
−

k ) − (B−

2k +B+
2k)∇uk(x) +B+

2k∇uk+1(x
+
k )

h2

)

(35c)

− γ∇·
(

B−

2k

∇uk(x) −∇uk−1(x
−

k )

h
Fk

)

(35d)

while, for energy

Ē3
3(u,v) =

1

2

∑

k∈Z

∫

R2

[

φ

((

Lh+
v

u

)2

k

)

+ γφ

(∣
∣
∣

(

Lh+
v

u

)

k

∣
∣
∣

2
)]

dx

the gradient is given by

(
∇uĒ

3
3

)

k
= −B

−

1kuk−1(x
−

k ) − (B−

1k +B+
1k)uk(x) +B+

1kuk+1(x
+
k )

h2
(36a)

+ B−

1k

uk(x) − uk−1(x
−

k )

h
Fk (36b)

+ γ∇·
(
B−

3k∇uk−1(x
−

k ) − (B−

3k +B+
3k)∇uk(x) +B+

3k∇uk+1(x
+
k )

h2

)

(36c)

− γ∇·
(

B−

3k

∇uk(x) −∇uk−1(x
−

k )

h
Fk

)

. (36d)

In the three cases care must be taken when dealing with the transport-like terms that appear in the dif-
ferent expressions above. While schemes resulting from (34) are relatively easy to implement, modulo
of course transport-like term, care is to be taken for schemes (35) and (36) due to the presence of spatial
divergence. When properly dealt with, a numerical scheme isthen available.

Before continuing, important points regarding the above energies and schemes must be addressed.

• The use of the forward difference approximations in the energies have also an effect on their
gradients with respect to the displacement field variable. An elementary computation for the case
of Ē1

3 gives
(
∇vĒ

1
3

)

k
= B1k

+
(

Lh+
v

u

)

k
∇uk+1 ◦Hk

where the warpingHk appears naturally and corresponds precisely to the type of computations
performed in multiresolution motion recovery. Remark thatonlyHk is used there and that there is
no assumption on its inversibility.
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• Being coherent with Lie derivatives approximations above,our motion recovery algorithm will
normally return only the forward displacement fieldv = (vk)k of the sequence, and thus we
have only directly access to the forward warpHk. How to compute the backward displacement
field w? Inversion of theHk is generally not an option: even in the case whereHk was a true
diffeomorphism, this would extremely complex. Moreover occlusion and disocclusion phenomena
make it impossible. However, a simple solution consists in computing this backward flow from the
image sequence itself. This should provide a reasonable solution for at least a good reason: Given
an imageu : R

2 × [0, T ] → R, let us denote bŷu the “time-reversed” sequence obtained as

û(x, t) := u(x, T − t).

Assume thatu is smooth. Then, taking the flow related part of our energy, i.e.Eij = λ3E
i
3+λ4E

j
4,

an elementary computation shows that ifv minimizesEij , so is−v for the image sequencêu. We
could replace the optical flow estimation by a symmetrized version, in the spirit of the work of
Alvarezet al. in [1], but this would deeply modify the formulations above.

• All the above gradients have some transport-like terms, e.gthe term (34b) in the expression of
∇uĒ

1
3 . Such a term may be difficult to handle numerically. One can ask whether it is necessary.

In an informal way, we do expect that the diffusion term (34a)alone will smooth variations ofu
along the flow lines, and thus decrease the energy, i.e. that even when forgetting the transport term,
the resulting expression would still be a descent directionfor the energy, so should be consider for
both explicit gradient descent resolution as well as some relaxation schemes. This however no
so simple, as (34a) involves not only forward Lie derivatives but also backward ones while only
forward ones are present in the semi-discrete energy. In theother hand, our flow regularizers
generally favor displacement fields with small divergence,thus generally reducing the influence of
the transport part.

5.2 Gradient and divergence discretizations

We use standard finite difference operators for discretization of spatial gradient and divergence terms.
As all divergence operators appear in our formulas as (negative) adjoints of gradients (via Prop 4.1) we
use this adjunction principle to develop divergence schemes, adjunction mechanisms naturally appear in
the derivations of gradients for the discretized energies.

Finite difference operators are often directly introducedon grid points, but because of motion terms
we often need to use them at points not on the grid. We use thus aslightly more general presentation.
For a givenh > 0, we define

δx
h+f(x, y) =

f(x+ h, y) − f(x, y)

h
,

δx
h−f(x, y) =

f(x, y) − f(x− h, y)

h
,

δx
hcf(x, y) =

f(x+ h, y) − f(x− h, y)

2h

and similar definitions hold forδy
h+, δy

h− andδy
hc. In order to alleviate the notations we set for a planar

functiong, goo = g(x, y), g+o = g(x+h, y), g−o = g(x−h, y), go+ = g(x, y+h), go− = g(x, y−h),
g
±

1

2
o = g(x± h/2, y) andgo± 1

2

= g(x, y ± h/2).
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Spatial gradient magnitude terms can approximated by forward and backward differences

|∇f |2oo ≈ 1

2

[(
δx
h+f

)2
+

(
δx
h−f

)2
]

oo

+
1

2

[(
δy
h+f)

)2
+

(
δy
h−f

)2
]

oo
.

Terms of the form∇· (a∇f) wherea is scalar valued, are then naturally discretized as

∇· (a∇f) ≈
δx
h−

(
aδx

h+f
)

+ δx
h+

(
aδx

h−f
)

2
+
δy
h−

(
aδy

h+f
)

+ δy
h+

(
aδy

h−f
)

2
+

Developing this expression gives

∇· (a∇f)oo ≈ (a+o + aoo)f+o − (a+o + 2aoo + a−o) foo + (aoo + a−o)f−o

2h2

+
(ao+ + aoo)fo+ − (ao+ + 2aoo + ao−) foo + (aoo + ao−)fo−

2h2
.

We may use instead central differences at half-grid points to approximate the square gradient magnitude
|∇f |2 of f :

|∇f |2oo ≈
[(

δx
h/2cf

)2
+

(

δy
h/2cf

)2
]

oo

.

The resulting discretization of∇· (a∇f) is then

∇· (a∇f)oo ≈
a 1

2
of+o −

(

a 1

2
o + a

−
1

2
o

)

foo + a
−

1

2
of−o

h2

+
ao 1

2

fo+ −
(

ao 1

2

+ ao− 1

2

)

foo + ao− 1

2

fo−

h2
. (37)

Interpolation is needed to compute diffusivities at half-grid points. An arithmetic averaging of closest
neighbors leads to the same scheme as above. Another form of interpolation used in the literature is,
using for instancea 1

2
o, given by

a 1

2
o ≈ 2

1
a+o

+ 1
aoo

. (38)

While averaging may favor too large diffusivities, this choice will better respect small ones and may be
interesting to limit diffusion across edges. An other consideration is the form of the diffusivity function.
In the spatial regularization term,a is the discrete counterpart of the functionA = φ′(|∇u|2) that was
introduced in formula (21). Using the central difference approximation of the gradient magnitude we
define the coefficientsAkr(x, y) as the values ofφ′(|∇uk|) at positionsr = {(±1

2o), (o± 1
2)}.

In flow line diffusion/transport,a is one of theB±

ik, i = 2, 3, defined in the previous subsection. They
may involve a large amount of interpolations.

We deal with Neumann-like boundary conditions by replacingone of the expressions above evaluated
outside the grid by the nearest value in the numerical domain.

5.3 Multiresolution details

As mentioned in Section 4.1, we solve the equations in a multiresolution framework. A few points should
be mentioned. When building the multiresolution pyramid, image coarsening is necessary, and is in fact
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already handled by the motion estimation solver. What is nothandled is the coarsening of the inpainting
mask, i.e the numeric characteristic function of the missing data locusΩ. Coarsening of the image is
usually performed by smoothing ans subsampling or any kind of method that has a proper low pass
property. Coarsening ofχΩ may be problematic when the same method is used. It blurs the boundary of
Ω, and while this blurring may seem coherent, as it may indicate that a given pixel at coarse resolution
contains some known partial information, we have constatedthat it often slows convergence down. We
have used instead the somehow rough but simple nearest neighbor approach that guaranties that the mask
remains binary valued and not become “too large” when coarsening.

In the other hand, one also need to interpolate the inpainting result from a given level to the next
finer level, while interpolation of the motion is performed already by the flow recovery algorithm. In
this work, image interpolation has been performed using a simple bilinear interpolation for inpainting
denoising, while for pure inpainting, values obtained by bilinear interpolation and not in the missing data
locus have been replaced by original image values downsampled at that resolution.

5.4 Solving the equations

Inpainting equations involving termsE2
3 andE3

3 are 4th-orders partial differential equations, with diffu-
sion of gradients. This type of higher order diffusion may not obey the minimum-maximum principle,
see for instance [26]. We rely therefore on a gradient descent scheme in these cases. For each resolution
level we do the following. Having chosen an evolution stepdτ , we create the familyun = (un

k)k, n ≥ 0
and write a standard Eulerian step

un+1
k (x) − un

k(x)

dτ
= −

(
∇u

nĒ(x)
)

k

whereĒ is either of the formλ1Ē1 +λ2Ē2 +λ3E
i
3 in the inpainting-denoising case, with(x, k) running

over the full spatio-temporal grid in that case, while in thepure inpainting casēE has the formλ2Ē2 +
λ3E

i
3 and(x, k) runs only on the missing data locus, i.e the discretized and downsampled copy ofΩ.

In the implementation, we choose once for all the evolution step dτ as well as the numberN of
evolution steps we perform. As in most explicit schemes,dτ must be chosen small enough, and this has
a drastic impact on the running-time, particularly in the case of inpainting denoising.

In the case where we useE1
3 , we may consider, in a fixed point approach, linearizing the resulting

equations and solvers such as Gauss-Seidel could be used. Inorder to be able to compare the different
methods, we have however in that work only used the explicit Gradient Descent approach.

6 Experimental Evaluation

We present results for several of the algorithms we have discussed, on synthetic and real sequences. We
follow the nomenclature of energy terms presented in Section 3, Tables 1 and 2. To accommodate the
variety of intensity ranges in the different sequences, intensities have been linearly normalized to range
[0, 1]. This imply that numerical partial derivatives are boundedin absolute value, by bounds of the same
order of magnitude, which in turns influences the practical range ofε values inφ(x2) =

√
x2 + ε2, we

have takenε = 10−3. In all gradient descents, we have used an algorithmic time stepdt = 10−3. This
in turns influences the choices of the different weightsλi for the corresponding energies.

Although flow regularization termE1
4 has been used, we only report results for termE2

4 in the exper-
iments we present here, as it has been argued [11, 12] that temporal regularity prior generally improves
motion estimation.

We present a series of stills in this section, the reader should also look at the companion sequences,
they are available at the locationhttp://image.diku.dk/francois/seqinp. Some previous
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versions were available at the the companion web sitehttp://www-sop.inria.fr/books/imath
for the monograph of Aubert and Kornprobst [6].

The first one is the well knownYosemite sequence, created by Lynn Quam, very often used for
optical flow evaluation. The sequence is artificial and the ground truth is known for the flow. It was
degraded by removing large polygonal patches, three of themoverlapping consecutivelyin time, on 6 of
the 15 frames.

Figure 2 shows frames 2, 3, and 4 of the original sequence, corresponding degraded frames, and the
noisy degraded ones where Gaussian noise of standard deviation 5% of the intensity range was added.

(a) original frame 3 (b) original frame 4 (c) original frame 5

(d) degraded frame 3 (e) degraded frame 4 (d) degraded frame 5

Figure 2:Yosemite sequence. Original and degraded frames. The degradation inframe 3 is very large
and one can notice that the 3 holes overlap around the frame centers.

We first run a simplified experiment where only the pure inpainting equation derived from termsE2

andE1
3 is solved and then the inpainting/denoising using the same spatial and trajectory smoothness

terms. We use the ground truth forward flow~vf . We deal with the absence of ground truth for the
backward optical flowvecvb by computing it from the optical flow PDE derived from termsE1

3 andE2
4 ,

having reversed time in the sequence and using as starting guesst 7→ −~vf (T − t) whereT is the forward
flow sequence last time/frame.

Figure 3 present the results of these two experiments on the three degraded frames show in Fig.
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2. For pure Inpainting, parameters whereλ2 = 0.1 (spatial regularization weight),λ3 = 1 (flow lines
regularization weight). For inpainting / denoising, the data weightλ1 has been set to 20, whileλ2 = λ3 =
1. Results of pure inpainting presented in (a), (b) and (c) aregenerally very good, one may however notice
a lack on sharpness in the center of frames (a) and (b). Unsurprisingly, inpainted/denoised results present
characteristics of Total Variation regularized images, some low scale details have been lost. Boulanger
et al. [10] as well as Buadeset al. [14] have shown that image sequence denoising is best achieved with
patch based / non local means methods. Nevertheless, they cannot cope as is with large missing data. It
may be worth investigating developing an hybrid method in that case.

(a) pure inpainting frame 3 (b) pure inpainting frame 4 (c) pure inpainting frame 4

(d) inpainted/denoised frame 3 (e) inpainted/denoised frame 4 (f) inpainted/denoised frame 5

Figure 3: Pure Inpainting and Inpainting/Denoising based on ground truth motion. While pure inpainted
sequence is of excellent quality, the inpainted/denoised shows the usual patterns of Total-Variation like
regularization with loss of fine scale details.

In the second set of experiments, we abandon the ground truthand run full recovery algorithms on
theYosemite sequence. In the first one, we run the pure inpainting algorithm corresponding to energy
λ2E2 + λ3E

1
3 + λ4E

2
4 with λ2 = 0.1, λ3 = 1 andλ4 = 0.2, four pyramid levels where the number of

pixels is roughly divided by 2 from one level to the next coarser one. Then Energyλ2E2 +λ3E
1
3 +λ4E

2
4

has been used, withe the gradient weightγ = 0.1, and these parameters, as well as pyramid sizes,
have been used in all the remaining experiments presented inthis work, except for theManon sequence.
Results are shown in Figure 4. Spotting visually differences between the two sequences is difficult,
although computing the differences, as illustrated on the last row of Figure 4 shows some, covering
about 7% of the intensity range, while a plot of histograms ofgradient magnitudes for the two results
seems to indicate that this difference is in fact hardly significative. These histograms are shown in figure
5.

The second example is taken from the companion CD ROM of Kokaram’s book [30]. We start with the
Mobile and Calendar sequence, that have been extensively used for MPEG coding, deinterlacing
and so on. It is a real one with 25 frames and with complex motion patterns. It is then artificially
degraded to simulate blotches. (approximately 6% of the image is degraded with blocthes of multiple
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Full Image and Motion recovery in the case of pure Inpainting. The first row from minimization
of low-order energyE2 +E1

3 +E2
4 , the second from higher order energyE2 +E2

3 +E2
4 and the last row

shows the differences.
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Figure 5: Comparisons of gradient magnitudes in inpainted regions. (a) when using energy termE1
3 , (b)

when using energy termE2
3 . They are almost identical.

size, they may overlap in time. Here too the energyE2 + E3
3 + E2

4 was used, with the same parameters
as above. Figure 6 presents four frames of the degraded sequence, the inpainting results using energy
(E2, E

3
3 , E

2
4), and a solver where the optical flow is computed with this energy while for the inpainting

we use the lower order equation (equivalently setting the gradient parameterγ to 0 inE3
3 ). Differences

are non significative. This too substantiates the idea that the lower order inpainting equation is a good
descent direction.

The third sequence,Manon is a realcolor sequence acquired by the first author with a mobile device,
featuring the author’s daughter. The original sequence wasencoded with the 3G format, a simplified
MPEG format for third generation mobile devices. It has beenartificially degraded with red blotches
and inpainted with thevectorial formof the energy(E2, E

2
3 , E

2
4) with λ2 = 0.1, λ3 = 1, γ = 0.1 and

λ4 = 0.02 a value 5 times smaller than in the other experiments, because a too large values caused
problems in the recovery of hair motion among others. By its encoding and its nature, a face with non
rigid motion, it presents some challenges. Three original frames, 7, 8 and 9, the corresponding degraded
sequences as well as the inpainted ones are presented on Figure 7. The result is visually very good.
Nevertheless, some serious problems were encountered at other locations of the sequence and Figure 8
presents some of the encountered problems at the 5th frame ofthe sequence, where a portion of the hair
and of an eye are wrongly interpolated.

The fourth and last sequence, calledFrankenstein, also taken from Kokaram’s book, is a real
degraded one, with 64 frames, for which no ground truth is known. In our experimentations we used
only a subsequence of 21 frames, with frame 8 presenting, among others, a relatively large blotch on
Frankenstein’s hair. In figure 9 we show this frame, the detected blotch and its reconstruction. In figure 10
we show a close-up of the damaged hair of the character with the detected blotch and the reconstruction.
Blotches were detected using the so called Rank Order Detector (ROD), as described in [30], modified
for the optical flow algorithm. Fine texture details were very plausibly recreated.

7 Conclusion

In this paper we have introduced a generic variational formulation for joint recovery of motion and inten-
sity in degraded image sequences, dealing both with noise and missing data. This generic formulation has
been instantiated in several energy formulations, mostly based on known motion recovery approached.
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Figure 6: On the first column, frames 10, 11, 12 and 13 of the degradedMobile and Calendar
sequence. The second column shows the results of minimization of energyE2 +E3

3 +E2
4 while the last

column shows the results when the corresponding inpaintingequation is replaced by the low order one.
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Figure 7: On the first column, frames 7,8 and 9 of the originalManon sequence. The second column
shows the corresponding degraded frames and the last columnthe results of the color inpainting using
Energy(E2, E

2
3 , E

2
4).

Figure 8: Original, degraded and inpainted frame 5 of theManon sequence. Problems can be observed
in the reconstruction of the left eye as well as part of the hair above it.
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Figure 9: TheFrankenstein sequence. From left to right: Frame 8, ROD detected defects and
inpainting. by minimizing energyE2 + E2

3 + E2
4

Figure 10: TheFrankenstein sequence: Close-up of the hair blotch, its detection and its inpaint-
ing
.
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They give rise to system of partial differential equations,for motion and intensity. We have focused on
the intensity ones and developed schemes to handle them numerically. We have validated our approach
on a series of experiments. While they provide often excellent results, they are generally computationally
demanding, especially due to higher order equations to solve for Inpainting. Is such complex equation
necessary? We discussed that a simpler equation might stillprovide a good descent direction when min-
imizing a higher order energy, and we presented an experiment that substantiate this idea: there is a
difference, but the result obtained with lower order equation is visually good. The possibility of using
a lower order equation opens the door for much more efficient solvers: multigrid solvers where devel-
oped for optical flow by [36] as well as [13] and we are currently working on developing fast multigrid
schemes for lower order inpainting equations. The general multiresolution optimization framework that
we have used, decouples, at each pyramid level, the computation of the flows and the images. We are
also investigating more coupled methods, also within the multigrid framework.
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